
Combined Static and Dynamic Automated Test Generation

Sai Zhang1 David Saff2 Yingyi Bu3 Michael D. Ernst1

1University of Washington 2Google, Inc 3University of California, Irvine
{szhang, mernst}@cs.washington.edu, saff@google.com, yingyib@ics.uci.edu

ABSTRACT
In an object-oriented program, a unit test often consists of a se-

quence of method calls that create and mutate objects, then use them
as arguments to a method under test. It is challenging to automat-
ically generate sequences that are legal and behaviorally-diverse,
that is, reaching as many different program states as possible.

This paper proposes a combined static and dynamic automated
test generation approach to address these problems, for code without
a formal specification. Our approach first uses dynamic analysis
to infer a call sequence model from a sample execution, then uses
static analysis to identify method dependence relations based on
the fields they may read or write. Finally, both the dynamically-
inferred model (which tends to be accurate but incomplete) and
the statically-identified dependence information (which tends to
be conservative) guide a random test generator to create legal and
behaviorally-diverse tests.

Our Palus tool implements this testing approach. We compared
its effectiveness with a pure random approach, a dynamic-random
approach (without a static phase), and a static-random approach
(without a dynamic phase) on several popular open-source Java pro-
grams. Tests generated by Palus achieved higher structural coverage
and found more bugs.

Palus is also internally used in Google. It has found 22 previously-
unknown bugs in four well-tested Google products.

Categories and Subject Descriptors: D.2.5 [Software Engineer-
ing]: Testing and Debugging.
General Terms: Reliability, Experimentation.
Keywords: Automated test generation, static and dynamic analy-
ses.

1. INTRODUCTION
In an object-oriented language like Java, a unit test consists of

a sequence of method calls that explores a particular aspect of the
behavior of the methods under test. Two primary objectives of
testing are to achieve high structural coverage, which increases
confidence in the code under test, and to find unknown bugs. To
achieve either objective, unit testing requires desirable method-call

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISSTA ’11, July 17-21, 2011, Toronto, ON, Canada
Copyright 2011 ACM 978-1-4503-0562-4/11/05 ...$10.00.

sequences (in short, sequences) that create and mutate objects. These
sequences generate target object states of the receiver or arguments
of the method under test.

To reduce the burden of manually writing unit tests, many auto-
mated test generation techniques have been studied [2,6,7,19,26,33].
Of existing test generation techniques, bounded-exhaustive [5,23],
symbolic execution-based [15, 32, 37], and random [6, 26] ap-
proaches represent the state of the art. Bounded-exhaustive ap-
proaches generate sequences exhaustively up to a small bound on se-
quence length. However, generating good tests often requires longer
sequences beyond the small bound. Symbolic execution-based anal-
ysis tools such as JPF [37] and CUTE/jCUTE [32] explore paths in
the program under test symbolically and collect symbolic constraints
at all branching points in an explored path. The collected constraints
are solved if feasible, and a solution is used to generate an input
for a specific method. However, these symbolic execution-based
tools face the challenge of scalability, and the quality of generated
inputs heavily depends on the test driver (which is often manually
written [15, 32, 37]). Random approaches [6, 26]) are easy to use,
scalable, and able to find previously-unknown bugs [26], but they
face challenges in achieving high structural coverage for certain pro-
grams. One major reason is that, for programs that have constrained
interfaces, correct operations require calls to occur in a certain order
with specific arguments. Thus, most randomly-created sequences
may be illegal (violate the implicit specification) or may fail to reach
new target states.

One possible way to improve the effectiveness of automated
testing techniques is to use a formal specification to guide test
generation [7, 16, 36]. However, such a specification is often absent
in practice. Another way, which we follow, is to combine static
and dynamic analysis. Static analysis examines program code and
reasons over all possible behaviors that might arise at run time, while
dynamic analysis operates by executing a program and observing the
executions. Their mutual strengths can enhance one another [13].

This paper presents an automated technique (and its tool imple-
mentation called Palus) to generate legal and behaviorally-diverse
tests. Palus operates in three steps: dynamic inference, static analy-
sis, and guided random test generation. (1) In its dynamic compo-
nent, Palus takes a correct execution as input, infers a call sequence
model, and enhances it by annotating argument constraints. This
enhanced call sequence model captures legal method-call orders
and argument values observed from the sample execution. (2) In its
static component, Palus computes dependence relations among the
methods under test. The static analysis devised in this paper first
identifies field access (read or write) information for each method,
then uses the tf-idf weighting scheme [18] to weight the dependence
between each pair of methods. In general, methods that read and
write the same field are dependent, so testing them together has a

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISSTA’11, July 17–21, 2011, Toronto, ON, Canada
Copyright 2011 ACM 978-1-4503-0562-4/11/05 ...$10.00

353

higher chance of exploring different program behaviors. (3) Finally,
both the dynamically-inferred model and the statically-identified
dependence information guide a random test generator [26] to create
legal and behaviorally-diverse tests.

Several past research tools follow an approach similar to ours, but
omit one or two of the three stages of our approach. Randoop [26]
is a pure random test generation tool. Palulu [2] is a representative
of the dynamic-random approaches. It infers a call sequence model
from a sample execution, and follows that model to create tests.
However, the Palulu model lacks constraints for method arguments
and has no static analysis phase to enrich the dynamically-inferred
model with information about methods that are not covered by
the sample execution. Finally, RecGen [40] uses a static-random
approach. RecGen does not have a dynamic phase, and uses a
static analysis to guide random test generation. Lacking guidance
from an accurate dynamic analysis, RecGen may fail to create legal
sequences for programs with constrained interfaces, and may miss
many target states (an example will be discussed in Section 2).

Unlike past research tools [2,26,40] mentioned above that only
check generalized programming rules (e.g., the symmetry property
of equality: o.equals(o)), Palus integrates with the JUnit theory
framework [30]. This permits programmers to write project-specific
testing oracles for more effective bug finding.

Compared to past approaches, Palus increases the structural cov-
erage of generated tests or improves their ability to detect bugs.
We evaluated it on six popular open-source applications. The tests
generated by Palus achieved much higher structural coverage, and
detected more unknown bugs than the other approaches.

Palus is also internally used at Google. It found 22 previously-
unknown bugs in four well-tested products. These results suggest
that Palus can be effective in detecting real bugs in large codebases.

The source code of Palus is publicly available at: http://code.
google.com/p/tpalus/

2. MOTIVATING EXAMPLE
We next give an overview of our approach with an illustrative

example taken from the tinySQL [35] project, shown in Figure 1.
A tinySQL test must satisfy both value and ordering constraints.

Creating a tinySQLConnection object requires a valid url string
like jdbc:tinySQL:fileNameOnDisk to pass the check at line 4 or
line 161; and the sql string at line 23 must be a valid SQL state-
ment like select * from table_name. Moreover, a legal sequence
requires calling methods in a correct order: a valid tinySQLDriver,
a tinySQLConnection, and a tinySQLStatement object must be cre-
ated before a query can be issued. If a test generator fails to create
arguments that satisfy these constraints, no tinySQLConnection and
tinySQLStatement object will be created, no database query will be
issued successfully, and the generated tests will fail to cover most
of the code. As revealed by our experiment in Section 5, a pure
random approach Randoop and a static-random approach RecGen
could achieved only 29% line coverage for the tinySQL program.

A dynamic-random approach like Palulu [2] takes a (correct)
sample execution as shown in Figure 2 as input, builds a call se-
quence model, and uses the model to guide a random test generator.
The model inferred by Palulu from Figure 2 is shown in Figure 3.
This model captures possible legal method-call orders (e.g., calling
executeQuery(String) before close()) and argument values (e.g.,
the observed values of url and sql from the sample execution) to
construct a sequence. After obtaining the model, Palulu uses a two-

1Another constructor tinySQLConnection() creates an empty object
with all fields uninitialized. To become a valid object, its fields need
to be assigned separately.

1. public class tinySQLDriver implements java.sql.Driver {
2. public tinySQLDriver() {}
3. public Connection connect(String url, Properties info) {
4. if(!acceptsURL(url) {return null;}
5. return getConnection(info.getProperty("user"),url,this);
6. }

...8 more methods omitted here...
}

7. public class tinySQLConnection {
8. protected String url, user, tsql;
9. protected Driver driver;
10. public tinySQLConnection() {}
11. public tinySQLConnection(String user, String u, Driver d)
12. throws SQLException {
13. this.url = u;
14. this.user = user;
15. this.driver = d;

//check the validity of url
16. this.tsql = get_tinySQL();

}
17. public Statement createStatement() {
18. return (Statement)new tinySQLStatement(this);

}
... 20 more methods omitted here...

}
19. public class tinySQLStatement {
20. public tinySQLStatement(tinySQLConnection conn) {
21. this.connection = con;
22. }
23. public ResultSet executeQuery(String sql) {
24. //check the validity of this.connection
25. //then issue the query and get the result

}
... 20 more methods omitted here...

}

Figure 1: Three classes taken from the tinySQL project [35].
Creating good sequences for this code requires invoking
method calls in a specific order with specific arguments.

1. tinySQLDriver driver = new tinySQLDriver();
2. Connection conn

= driver.connect("jdbc:tinysql:db", new Property());
3. tinySQLStatement stmt = new tinySQLStatement(conn);
4. stmt.executeQuery("select * from table_name");
5. stmt.close();
6. conn.close();

Figure 2: A sample method call sequence for the code in Fig-
ure 1. A dynamic-random approach can use this sample execu-
tion to build a legal call sequence model, as shown in Figure 3.

phase strategy to generate sequences. In the first phase, it creates
sequences randomly without using the model, and keeps all gener-
ated sequences in a pool. In the second phase, it creates sequences
either by generating a new sequence from a model root (e.g., node
A, B, or C in Figure 3) or extending an existing sequence along
a model edge. If creating a sequence needs a type T argument, it
will randomly pick a sequence that creates a type T value from the
sequence pool.

Although the Palulu approach offers a possible solution to cre-
ate legal sequences, it faces several challenges to be effective in
practice. First, the random phase in Palulu may end up with
few legal sequences. For example, it is very likely to generate
no tinySQLStatement and tinySQLConnection objects for the mo-
tivating example. Second, the call sequence model in Figure 3
does not consider constraints for non-primitive arguments. For
example, the constructor of tinySQLStatement needs to have a
tinySQLConnection object with all its fields correctly initialized
as an argument. However, the Palulu-inferred model does not
keep such constraints. Therefore, Palulu will pick an existing
tinySQLConnection object randomly from the pool, and thus may
fail to create a valid tinySQLStatement object. Third, the sequences

354

A

D

B

E

G

C

F

H

I

<init>()
driver.connect(URL, property)

close()

<init>(conn)

close()

executeQuery(SQL)

tinySQLDriver tinySQLConnection tinySQLStatement

URL = "jdbc:tinysql:db"
SQL = "select * from table_name"

Figure 3: The call sequence model built by a dynamic-random
approach (Palulu [2]) for classes in Figure 1 using the sample
execution in Figure 2. Nodes A, B, and C represent the root
node for each class. Potential nested calls are omitted here.

it generates are restricted by the dynamically-inferred model, which
tends to be incomplete. For instance, a correct sample execution
would never contain an exception-throwing trace like:
tinySQLStatement.close();

tinySQLStatement.executeQuery("select * from ..");

Thus, Palulu may fail to generate sequences that either have different
method-call orders from the inferred model or contain methods not
covered by the sample execution. In our experiment as described
in Section 5, although Palulu outperforms Randoop and RecGen, it
achieved only 41% code coverage for the tinySQL program.

Our Palus approach remedies the above problems by enhancing
the call sequence model with argument constraints and performing
a static analysis to find dependent methods that should be tested
together (including those not covered by the model).

Take the code snippet in Figure 1 as an example. Palus first con-
structs a call sequence model (Figure 6) and annotates it with two
kinds of constraints, namely, direct state transition dependence con-
straints and abstract object profile constraints (Section 3.1.2). These
two constraints permit Palus to find a desirable object for creating a
legal sequence as well as a group of distinct objects. Then, Palus
performs a static analysis to identify method dependence relations
based on the fields they may read or write, and prefers related meth-
ods when extending a model sequence. Testing methods that access
the same field together may have a higher chance to explore different
program states. For example, let us assume method executeQuery in
class tinySQLStatement reads field connection, and method close

writes field connection (assigns it to null). Thus, when testing
method executeQuery, Palus may recommend to invoke method
close before it, since testing them together permits reaching a new
program state, and checks the behavior of executing a query after
closing a connection. This combined static and dynamic test gen-
eration strategy permits Palus to generate more effective tests. For
the tinySQL program, Palus achieves 59% code coverage, which is
30% higher than Randoop and RecGen and 18% higher than Palulu.

Palus also integrates with the JUnit theory framework [30], which
permits programmers to clarify design intentions and write project-
specific testing oracles such as the one in Figure 4. Palus will
automatically execute this theory and check its output when finding
a tinySQLStatement object and a String object.

3. APPROACH
Palus consists of four components (Figure 5), namely, a load-

time instrumentation component and a dynamic model inference
component (dynamic analysis, Section 3.1), a static method analysis

@Theory
void noActionAfterClose(tinySQLStatement stmt,String sql){

Assume.assumeNotNull(stmt);
Assume.assumeNotNull(sql);
stmt.close();
try {

stmt.executeQuery(sql);
fail("The statement should have been closed!");

} catch (Exception e) {
//ok here

}
}

Figure 4: A testing oracle expressed as a JUnit theory. For
any non-null tinySQLStatement object, the close method
should not throw any exception, after which executeQuery
must throw an exception.

Load-time
Instrumentation

Dynamic Model
Inference

Static M e thod
Analys is

Guided Random
Test Generation

Inputs:

Outputs: JUnit Tests

dynamic model

JU nit theories
 (optional)

testing oracles

method
dependence
information

P rogram
under test

A sample
trace

Figure 5: Architecture of the Palus tool.

component (static analysis, section 3.2), and a guided random test
generation component (Section 3.3).

The load-time instrumentation instruments the Java bytecode.
The dynamic model inference component collects traces from the
sample execution and builds an enhanced call sequence model for
each class under test. The static method analysis component com-
putes the set of fields that may be read or written by each method,
and then calculates pairwise method dependence relevance values.
Finally, the dynamically-inferred model and method dependence
information together guide the random sequence generation process.

3.1 Dynamic Analysis: Model Inference from
Sample Executions

We first briefly introduce the call sequence model in Section 3.1.1,
then present our enhancement in Section 3.1.2.

3.1.1 Call Sequence Model Inference
A call sequence model [2] is a rooted, directed, acyclic graph.

Each model is constructed for one class observed during execution.
Edges (or transitions) represent method calls and their arguments2,
and each node in the graph represents a collection of object states,
each of which may be obtained by executing the method calls along
some path from the root node. Each path starting at the root corre-
sponds to a sequence of calls that operate on a specific object — the
first method constructs the object, while the rest mutate the object
(possibly as one of their parameters).

The construction of the call sequence model is object-sensitive.
That is, the construction algorithm first constructs a call sequence
graph for each object of the class observed during execution. Then,
it merges all call sequence graphs of objects of the class. Thus, the
final call sequence model is a summary of the call sequence graphs
for all instances of the class. The call sequence model handles
2The original model only keeps primitive and string arguments, and
we will extend it to other argument types in the next section.

355

A

D

B

E

G

C

F

H

I

<init>()

driver.connect(URL, p ro perty)

close()

<init>(conn)

close()

executeQuery(SQL)

tinySQLDriver tinySQLConnection tinySQLStatement

Direct state transition dependence edge

Figure 6: An enhanced call sequence model with direct state
transition dependence edges for the example in Figure 1.

many Java features like nested calls, recursion, and private calls.
The detailed definition, construction steps, and inference algorithms
appear in [2].

3.1.2 Model Enhancement with Argument Constraints
The call sequence model is too permissive: using it can lead to

creating many sequences that are all illegal and thus have similar,
uninteresting behavior. Our approach enhances a call sequence
model with two kinds of method argument constraints. Direct state
transition dependence constraints are related to how a method argu-
ment was created. Abstract object profile constraints are related to
the value of a method argument’s fields.

Direct State Transition Dependence Constraint. This constraint
represents the state of a possible argument. An edge from node A
to B indicates that an object state at A may be used as an argument
when extending a model sequence at B.

Consider the sample execution in Figure 2. The Driver object
used at line 2 is the result produced by line 1, and the Connection

object used at line 3 is the execution outcome of line 2. Therefore,
our approach adds two direct state transition dependence edges
to the original call sequence model, and results in an enhanced
model shown in Figure 6. Using the enhanced model, when a
test generation tool is creating a sequence (for example, calling
method tinySQLStatement(conn)), it will follow the dependence
edge backward to an argument.

A state dependence edge may be too strict: it indicates an exact
sequence of method calls that must be used to construct an object.
However, a different object whose value is similar, but which was
constructed in a different way, may also be legal and permit the
method call to complete non-erroneously. To address this problem,
we use a lightweight abstract object profile representation as another
argument constraint.

Abstract Object Profile Constraint. For an object, we define its
concrete state as a vector, v = 〈v1, ...,vn〉, where each vi is the value
of an object field. An abstract object profile maps each field’s value
to an abstract value. Formally, we use a state abstraction function
which maps concrete value vi to an abstract value si as follows:

• Concrete numerical value vi (of type int, float, etc.), is
mapped to three abstract values vi < 0, vi = 0, and vi > 0.

• Array value vi is mapped to four abstract values vi = null, vi
is empty, vi contains null, and all others.
• Object reference value vi is mapped to two abstract values vi

= null, and vi �= null.
• Boolean and enumeration values are not abstracted. In other

words, the concrete value is re-used as the abstract value.

For example, let us assume a tinySQLConnection object
has four fields url, user, tsql, driver as in Figure 1. A
valid tinySQLConnection object might thus have a state v
= 〈‘jdbc:tinysql:file’, ‘user’, ‘select * from table’, new

tinySQLDriver()〉, which corresponds to an abstract state s =
〈�=null, �=null, �=null, �=null〉.

When our tool Palus builds a call sequence model from a sample
execution, it computes the abstract object profiles for all arguments
and keeps them in the model. If Palus is unable to obtain a value
created by a given sequence of method calls, then it instead uses one
that matches the abstract state profile.

Even coarse profiles prevent the selection of undesirable objects
as arguments. For example, if we run Palulu on the tinySQL sub-
ject programs for 20 seconds, it creates 65 tinySQLConnection ob-
jects. However, only 5 objects have legal state, that is, a state
corresponding to the observed abstract state 〈�=null, �=null, �=null,
�=null〉. The remaining 60 objects have the abstract state 〈=null,
=null, =null, =null〉. A tool like Palulu that randomly picks a
tinySQLConnection object is very likely to end with an illegal object
instance. In contrast, Palus has a higher chance of getting a legal
tinySQLConnection object, because it selects a tinySQLConnection

object with an abstract state 〈�=null, �=null, �=null, �=null〉.

3.2 Static Analysis: Model Expansion with
Dependence Analysis

The dynamically-inferred model provides a good reference in
creating legal sequences. However, the model is only as complete
as the observed executions and may fail to cover some methods
or method-call invocation orders. To alleviate this limitation, we
designed a lightweight static analysis to enrich the model. Our static
analysis hinges on the hypothesis that two methods are related if the
fields they read or write overlap. Testing two related methods has a
higher chance of exploring new program behaviors and states. Thus,
when extending a model sequence, our approach prefers to invoke
related methods together.

3.2.1 Method Dependence Analysis
Our approach computes two types of dependence relations: write-

read and read-read.
Write-read relation: If method f reads field x and method g writes

field x, we say method f has a write-read dependence relation on g.
Read-read relation: If two methods f and g both read the same

field x, each has a read-read dependence relation on the other. Two
methods that have a write-read dependence relation may also have
a read-read dependence relation.

In our approach, we first compute the read/write field set for
each method, then use the following strategy to merge the effects
of the method calls: if a callee is a private method or constructor,
we recursively merge its access field set into its callers. Otherwise,
we stop merging. This strategy is inspired by the common coding
practice that public methods are a natural boundary when developers
are designing and implementing features [21, 24].

3.2.2 Method Relevance Ranking
One method may depend on multiple other methods. We define a

measurement called method dependence relevance to indicate how
tightly each pair of methods is coupled. In the method sequence
generation phase (Section 3.3.1), when a method f is tested, its most
dependent methods are most likely to be invoked after it.

We used the tf-idf (term frequency – inverse document frequency)
weighting scheme [18] to measure the importance of fields to meth-
ods. In information retrieval, the tf-idf weight of a word w in a
document doc statistically measures the importance of w to doc.

356

Auxiliary Methods:
CoveredMethods(models): return all model-covered methods
DivideTime(timelimit): divide timelimit into 2 fractions
RandomMember(set): return a set member randomly
RandomGenerate(method): create a sequence for method using pure
random test generation [26]
GenSequences(timelimit, methods, models, dependences)
1: uncovered_methods ← methods \ CoveredMethods(models)

{reachingSeqs maps each node to the sequences that reach it}
2: reachingSeqs← new Map〈ModelNode, List〈Sequence〉〉

{In our experiments, tmodel-guided : tunguided = 4 : 6}
3: tmodel-guided , tunguided ← DivideTime(timelimit)
4: seqs← {}
5: while tmodel-guided not expired do
6: Randomly perform one of the following two actions:
7: 1. root← RandomMember(models)
8: tran← RandomMember(root.transitions)
9: newSeq← GuidedSeqGen(tran, dependences)

10: seqs← seqs ∪ newSeq
11: reachingSeqs[trans.dest_node].add(newSeq)
12: 2. node← RandomMember(reachingSeqs.keySet())
13: seq← RandomMember(reachingSeqs[node])
14: tran← RandomMember(node.transitions)
15: newSeq← GuidedSeqGen(tran, dependences)
16: seqs← seqs ∪ newSeq
17: reachingSeqs[node].remove(seq);
18: reachingSeqs[trans.dest_node].add(newSeq);
19: end while
20: while tunguided not expired do
21: method← RandomMember(uncovered_methods)
22: seqs← seqs ∪ RandomGenerate(method)
23: end while
24: return seqs

Figure 7: Sequence generation algorithm in Palus. The proce-
dure GuidedSeqGen is shown in Figure 8.

The importance increases proportionally to the frequency of w’s
appearance in doc, but decreases proportionally to the frequency of
w’s appearance in the corpus (all documents). Our approach treats
each method as a document and each field read or written as a word.

The dependence relevance W (mk,m j) between methods mk and
m j is the sum of the tf-idf weights of all fields, Vmk→mj , via which
mk depends on m j .

W (mk,m j) = ∑
vi∈Vmk→m j

tfidf (vi,mk)

The intuition is that the dependence relevance between two meth-
ods is determined by the fields they both access, as well as these
fields’ importance to the dependent method.

3.3 Guided Test Generation

3.3.1 Sequence Generation
The sequence generation algorithm listed in Figure 7 takes four

arguments, namely a time limit, a set of methods for which to gen-
erate sequences, enhanced call sequence models constructed from
observed sample executions (Section 3.1), and method dependence
relations (Section 3.2).

The algorithm shown in Figure 7 works in two phases: the first
phase for methods that were executed in the sample execution and
so appear in the model, and the second phase for other methods.
The generator creates sequences incrementally, maintaining a set

Auxiliary Methods:
GetDependentMethod(m): return a method, randomly chosen with
probability proportional to its dependence relevance with m
CreateSequenceForConst(value): create a new sequence that produces
the given (primitive or string) value
GetSequenceByState(dep_state): get an existing sequence that pro-
duces a result of the given dep_state
GetSequenceByProfile(profile): get an existing sequence that produces
a result of the given abstract object profile
GetSequenceByType(T): get an existing sequence that produces a re-
sult of type T; otherwise, return GetSequenceForConst(null)
Concatenate(param_seqs, m1, m2): concatenate param_seqs, m1, m2
to form a new sequence
GuidedSeqGen(transition, dependences)
1: m(T1, ... Tn)← transition.method
2: param_seqs← new List〈Sequence〉
3: for each Ti in (T1, ..., Tn) do
4: if Ti is primitive or string type then
5: seq← CreateSequenceForConst(transition.recordedValue)
6: else
7: 〈dep_state, profile〉 ← transition.constraints
8: seq← GetSequenceByState(dep_state)
9: if seq = null then

10: seq← GetSequenceByProfile(profile)
11: end if
12: if seq = null then
13: seq← GetSequenceByType(Ti)
14: end if
15: end if
16: param_seqs← param_seqs ∪ seq
17: end for
18: dep_m(T ′1, ..., T ′n)← GetDependentMethod(m)
19: for each T ′i in (T ′1, ..., T ′n) do
20: param_seqs← param_seqs ∪ GetSequenceByType(T ′i)
21: end for
22: return Concatenate(param_seqs, m, dep_m);

Figure 8: Guided sequence generation algorithm.

of generated sequences (lines 4, 10, 16, and 22). The algorithm
also maintains a node-sequence mapping that maps each node in
a call sequence model to a list of sequences that end at that node
(lines 2, 11, 17, and 18). When generating a sequence, the algorithm
either selects an edge that is going out of a model root and creates a
sequence for it (lines 7–11), or extends an existing sequence (lines
12–18). After extending an existing sequence (line 15), the existing
sequence is removed from the node-sequence map (line 17) and the
newly-created sequence is added to the map (line 18). The remove
prevents Palus from repeatedly extending a single sequence. The
extended sequence actually has had two calls, not one, added to it.
It is added to the map as if the second call did not affect its state
in the call sequence model; if the assumption is not true, then this
addition can add further variability to the generated tests. Finally, to
avoid missing model-uncovered methods, our algorithm randomly
creates sequences for model-uncovered methods (lines 20–23).

The algorithm in Figure 8 shows steps in creating a sequence
using both dynamic model and static dependence information. Given
a tested method m (line 1), the algorithm uses constraints (recorded
in the dynamic model) to find sequences for its parameters (lines
5, 8, 10, and 13). Then, the algorithm queries the dependence
information to get a dependent method dep_m and find parameter
sequences for it (lines 19–21). Finally, the parameter sequences,

357

tested method, and its dependent method are concatenated to form a
new sequence (lines 22).

Every sequence returned by GenSequences is executed and
checked against a set of generalized properties [26] as well as user-
provided oracles (Section 3.3.2). Any violating tests are classified
as failure-revealing tests.

3.3.2 Oracle Checking
Our approach integrates the JUnit theory framework [30] (which

is similar to Parameterized Unit Tests [34]), permitting programmers
to write domain-specific oracles. A theory is a generalized assertion
that should be true for any data.

Take the theory in Figure 4 as an example, Palus will automat-
ically check for every non-null tinySQLStatement object and non-
null String value pair, that the assertion should hold. When Palus
executes a theory with concrete object values, if an Assume.assume*

call fails and throws an AssumptionViolatedException, Palus inter-
cepts this exception and silently proceeds. If some generated inputs
cause an Assert.assert* to fail, or an exception to be thrown, the
failures are outputted to the programmer.

3.3.3 Annotation Support for Additional Inputs
Palus captures the primitive and string type argument values from

the observed sample execution in the same way as Palulu does. How-
ever, a test generator may still need more additional inputs to explore
certain behaviors of the program under test. For example, the sam-
ple execution in Figure 2 only covers a special case of selecting all
tuples in the example table in testing method executeQuery(String).
It would be useful if a test generator could feed more different input
values (a valid string) to the tested method. Palus provides an anno-
tation called @ParamValue to permit programmers to specify special
values for a specific tested method, and will use such user-provided
values to create new sequences. For example, a programmer could
write an annotation like:
@ParamValue(cn="tinySQLStatement",mn="executeQuery")

public static String queryMore = "select * from

table_name where id > 10";

When Palus creates a sequence for the executeQuery method in
class tinySQLStatement, it will also use the value of queryMore.

4. IMPLEMENTATION
We implemented Palus using the ASM bytecode analysis frame-

work and the Randoop test generation tool [26]. Palus uses ASM
to perform load-time instrumentation of Java bytecode, to record
the execution trace. The method dependence analysis is also per-
formed at the bytecode level. Palus works in a fully automatic and
push-button way to generate unit tests, and scales to realistic pro-
grams. The test generation phase requires from the user a time limit,
a sample execution trace, and a list of Java class names. Option-
ally, the user may specify additional theories for oracle checking
(Section 3.3.2), and @ParamValue annotations (Section 3.3.3).

To increase robustness, Palus spawns a test generation process
and monitors its execution. If it hangs before the user-specified time,
Palus spawns a new process, using a new random seed. Method
sequences generated before Palus crashes are also output to users.

5. EVALUATION
We compared tests generated by Palus with tests generated by

Randoop (a pure random approach), Palulu (a dynamic-random
approach), and RecGen (a static-random approach). We compare
the tests’ structural coverage and bug detection ability. Finally, we

Program (version) Lines of code Classes Methods
tinySQL (2.26) 7672 31 702
SAT4J (2.2.0) 9565 120 1320
JSAP (2.1) 4890 91 532
Rhino (1.7) 43584 113 2133
BCEL (5.2) 24465 302 2647
Apache Commons (3.2) 55400 445 5350

Table 1: Subject Programs.

discuss the suitability of these four tools to programs with different
characteristics.

We also report on experience using Palus at Google (Sec-
tion 5.5.2). Palus found 22 unique previously-known bugs in
four well-tested projects from Google’s codebase. This experience
demonstrates the applicability of Palus to real-world, industrial-
strength software products.

5.1 Research Questions
We investigated the following two research questions:

RQ1: Test coverage. Do tests generated by Palus achieve higher
structural coverage than an existing pure random test gener-
ation tool (Randoop), dynamic-random test generation tool
(Palulu), and static-random test generation tool (RecGen)?
This research question helps to demonstrate how dynamic and
static analyses help in improving automated test generation.

RQ2: Bug finding. Do tests generated by Palus detect more bugs
than tests generated by Randoop, Palulu, and RecGen? This
research question helps to demonstrate the bug finding ability
of our approach.

5.2 Subject Programs and Tools
We evaluated Palus on six open-source Java programs (Table 1).

tinySQL [35] is a lightweight SQL engine implementation that
includes a JDBC driver. SAT4J [31] is an efficient SAT solver.
JSAP [20] is a simple argument parser, which syntactically validates
a program’s command line arguments and converts those arguments
into objects. Rhino [28] is an implementation of JavaScript, which
is typically embedded into Java applications to provide scripting to
end users. BCEL [3] is a Java bytecode manipulation library that
lets users analyze and modify Java class files. Apache Commons [1]
extends the JDK with new interfaces, implementations, and utilities.

The top five subject programs in Table 1 contain many constraints
for writing legal tests, while the last subject program (Apache Com-
mons) is designed as a general utility library for developers, and thus
has few constraints on its methods. We compare the effectiveness
of Palus with three other closely related tools on the above set of
subject programs, and investigate the suitability of these four tools
on programs with different characteristics.

Randoop implements a technique called feedback-directed ran-
dom testing [26]. Its key idea is to execute each test as soon as it is
generated, and use information obtained from execution to guide the
test generation process as it creates further tests. Illegal sequences
like sqrt(-1) in which the argument is required to be non-negative
will be discarded immediately.

Palulu [2] is a typical dynamic-random approach. Since the
existing Palulu implementation relies on a deprecated version of
Randoop, we re-implemented its algorithm in Palus3.
3Our re-implementation of Palulu achieves higher coverage than the
previous one: for example, 41% and 44% line coverage for tinySQL
and SAT4J, respectively, compared to 32% and 36% for the previous
implementation [2].

358

Coverage (%)
Program Steps to obtain a sample trace line branch
tinySQL Execute 10 simple SQL statements 40 30
SAT4J Solve a satisfiable formula of 5

clauses
20 12

JSAP Run its unit test suite 35 30
Rhino Interpret a stream of JavaScript code 19 10
BCEL Parse one class 17 8
Apache
Com-
mons

Run a subset (484 tests) of its unit
test suite

20 16

Table 2: Steps to obtain a sample execution, and its coverage.

RecGen [40] is a representative of static-random approaches. It
uses the result of a static analysis to guide random test generation
by recommending closely related methods.

5.3 Experimental Procedure
To answer RQ1, we ran Palus, Randoop, Palulu, and RecGen

on each subject with a time limit of 100 seconds per class (not per
subject program). Increasing the time limit does not noticeably
increase coverage for any of the tools. We then ran the generated
tests and used Cobertura [8] to measure line/branch coverage.

Palus and Palulu require a sample trace to infer a model. We ran
each subject’s existing unit test suites, or, if no test suite is available,
one simple example from their user manuals. Palus and Palulu use
the same execution trace for test generation. Table 2 summarizes
the steps to obtain a sample trace, and its coverage.

For RQ2, we conducted two separate experiments. First, we
executed the JUnit tests generated by the four tools and measured
the number of unique bugs they find. Second, we wrote several
simple specifications using the JUnit theory framework, and ran
Palus on each subject again. We manually checked each failed tests
to verify those revealed bugs. Finally, we compared the bug-finding
ability of the four tools on four well-tested Google products.

5.4 Coverage Results
Figure 9 compares Randoop, Palulu, RecGen, and Palus on the

subject programs.

5.4.1 Comparison with a Pure Random Approach
Palus outperforms Randoop on 5 out of 6 subjects in both line

and branch coverage, and achieves the same coverage for the last
subject (Apache Commons). There are two primary reasons for this
improvement.

First, guided by the inferred model, it is easier for Palus to con-
struct legal sequences. Sequences like creating a database connec-
tion in the tinySQL subject, initializing a solver correctly in the
SAT4J subject, and generating a syntactically-correct JavaScript
program in the Rhino subject all require invoking method calls in a
specific order with specific arguments. Such sequences are difficult
to create by the randomized algorithm implemented in Randoop.
In fact, most of the tests generated by Randoop for the first five
subjects in Figure 1 only cover error-handling statements/branches.

Second, the static analysis used in Palus helps to diversify se-
quences on a specific legal path by testing related methods together.
This helps Palus to reach more program states. For the last subject
program, Apache Commons, Palus actually falls back to Randoop.
The reason is that, Apache Commons is designed as a general library
and has very few constraints that programmers must satisfy. For
example, one can put any object into a container without any specific
method invocation order or argument requirement. Therefore, the in-

formation provided by the sample execution trace is not very useful
for Palus. Randomly invoking methods and finding type-compatible
argument values across the whole candidate domain could achieve
the same results.

5.4.2 Comparison with a Dynamic-Random Ap-
proach

Tests generated by Palus achieve higher line/branch coverage
than Palulu for all six subjects. For most subjects, Palulu creates a
legal sequence with the assistance of the inferred model. However,
there are three major reasons for the result difference. First, the
pure random generation phase in Palulu creates many illegal object
instances, which pollute the sequence pool. Second, the model
inferred by Palulu lacks necessary constraints for method arguments,
so that it is likely to pick up invalid objects from the potentially
polluted sequence pool and then fail to reach desirable states. Third,
Palulu does not use static analysis to diversify a legal sequence by
appending related methods, and may miss some target states.

For example, in SAT4J, Palus achieves 81% line coverage and
43% branch coverage for the org.sat4j.minisat.constraints.cnf

package, while Palulu only achieves 39% and 21%, respectively.
The reason is that class constructors in this package often need
specific argument values. For instance, the constructor of class
BinaryClause only accepts an IVetInt (an integer vector wrapper)
object with exactly 2 elements. Thus, without explicit argument
constraints, choosing an arbitrary IVetInt value could easily fail
the object construction. We also find the static analysis phase to
be useful. For example, SAT4J’s DimacsSolver.addClause(IVecInt

literals) method first checks a boolean flag firstConstr, then
takes different branches according to its value. When testing this
method, Palus identifies another method reset(), which sets the
firstConstr be false, as dependent. Palus invokes reset() before
calling addClause(IVecInt literals) in some tests to make the
generated sequences reach more states.

Palus achieves little coverage increase over Palulu in two subjects,
namely JSAP and Rhino. We identified two possible reasons. First,
JSAP does not have as many constraints as other subjects in creating
legal sequences. The only constraints are to check the validity of
user inputs from command line before parsing (e.g., users need to
provide a well-formatted string input). Moreover, most methods
in JSAP perform string manipulation operations, and do not have
much dependence between each other. Thus, Palus achieves the
same coverage in most of the non-constrained code. Second, over
90% of the source code in Rhino belongs to the JavaScript parser
and code optimizer modules. Code in these two modules will not
be executed unless the interpreter is provided with a program with
certain code structure. Only specific code structures trigger the
optimizer to perform certain code transformations. However, the
example program we used in the experiment to obtain an execution
is a simple JavaScript program without any sophisticated structures.
Therefore, the model Palus inferred failed to guide the test gen-
erator to cover most of the sophisticated code transformation and
optimization part.

5.4.3 Comparison with a Static-Random Approach
Tests generated by Palus achieve higher coverage than RecGen

for all subjects. For subjects tinySQL and BCEL, Palus almost
doubles the coverage. The primary reason is that, although RecGen
uses a well-designed static analysis to recommend related methods
to test together, it fails to construct legal sequences for most of the
subjects with constrained interfaces.

Another problem is that the latest release of RecGen is built on
top of a deprecated version of Randoop that contains bugs that have

359

tinySQL SAT4J JSAP Rhino BCEL Apache Commons Average

0
10
20
30
40
50
60
70
80
90

100

0

44
53

30

41

25

393835 38

30

61
54

58

46

12

36

2220
30

14

40

13

30

20
2829

38

17

53

29

39

6265

0

20

44

59

29

41

29
L

in
e

 C
o

v
e

ra
g

e

 Sample Execution RANDOOP PALULU RECGEN PALUS

40

tinySQL SAT4J JSAP Rhino BCEL Apache Commons Average

0
10
20
30
40
50
60
70
80
90

100

36

20
27

23
17

70

16
22

19

2929

8

35

12
2017

10
18161514

36

19
28252522

72
68

B
ra

n
c
h

 C
o

v
e

ra
g

e

Figure 9: Structural coverage of tests generated by Randoop, Palulu, RecGen, and Palus. For each subject, coverage of the sample
execution is also shown. RecGen fails to generate compilable tests for SAT4J. The average coverage results are shown at the far right.

tinySQL SAT4J JSAP Rhino BCEL Average
0

10

20

30

40

50

60

70

80

Apache

Commons

+0
+0

+3
36

+3

+11

+0
38

+2
+2
+2
22

+1
+2
+7

62
+5

+5

+11

29

+2
+4
+24

L
in

e
 C

o
v

e
ra

g
e
 (

%
)

 Random+model+argument constraints+method dependence

 Random+model+argument constraints

 Random+model Random (Randoop)

44

+2
+4
+8

39

Figure 10: Breakdown of the line coverage increase for 6 sub-
jects in table 1. The average result is shown at the far right.
Branch coverage shows a similar pattern, which we omit for
brevity.

since been fixed. Thus, RecGen fails to generate compilable tests
for the SAT4J subject.

5.4.4 Coverage Increase Breakdown
Figure 10 shows the line coverage increase contributed by each

component in Palus. Using a call sequence model in Palus’s algo-
rithm (Figure 8) improves the line coverage percentage by 0–24%,
compared to a random approach. Enhancing the call sequence
model with argument constraints improves line coverage percentage
by another 0–11%. The static method dependence analysis further
improves line coverage percentage by 0–5%. Note that in Figure 10,
Random + model is better than Palulu [2], since the pure random
generation phase in Palulu pollutes the sequence pool.

Overall, by combining dynamic inference and static analysis,
Palus improves the line coverage on average by 14% (min = 0% for
Apache Commons, max = 30% for tinySQL) over a pure random
approach.

5.4.5 Input Execution Trace and Test Coverage
We next investigated how sensitive are the test coverage results

of Palus to its input execution traces. We chose tinySQL and SAT4J
as two examples, since the input trace size can be easily controlled.
For tinySQL, we executed all the available SQL statements (23 in
total) from its user manual to obtain a more comprehensive trace,

and then used that to guide Palus. The generated tests achieved
slightly higher structural coverage (60% line coverage and 41%
branch coverage) than the results reported in Figure 9 (59% line
coverage and 40% branch coverage). For SAT4J, we obtained two
additional execution traces by solving two complex formulas from
its example repository [31], containing 188 clauses and 800 clauses,
respectively. Using the formula with 188 clauses, Palus achieved
65% line coverage and 37% branch coverage. Using the formula
with 800 clauses, Palus achieved 66% line coverage and 37% branch
coverage. Compared to the results in Figure 9 by using a formula
with 5 clauses (65% line coverage and 36% branch coverage), the
coverage increase was slight. Although we have not tried all avail-
able examples in SAT4J’s code repository, which contains millions
of clauses in total, these two experiments indicate that a simple trace
is still useful for Palus, and suggest that Palus’s results is not very
sensitive to its input execution trace.

5.4.6 Model Size and Test Coverage
We further investigated the trade-off between model size and

generated test coverage, by applying the kTail algorithm [4] to refine
Palus’s model. The kTail algorithm merges model nodes whose
equivalence is computed by comparing their tails of length k, where
the tails of length k are the method invocation sequences that exit
the model node and include at most k method invocations.

We chose k = 3 in our experiment to generalize the inferred model,
since a value between 2 and 4 is recognized as a reasonable choice
in the absence of additional information [22]. We then used the
refined model to guide Palus. Figure 11 shows the experimental
results. The kTail algorithm can substantially reduce the model size
by 9%–95%, but also decreases the test coverage by 2%–18%.

The purpose of a dynamically-inferred model in Palus is to guide
a test generator to create legal method-call sequences, not for human
inspection to understand program behavior like [11, 22]. Thus, the
model size is not crucial to Palus.

5.5 Bug Finding Ability
We compared the bug finding ability of each tool on both six

open-source subjects (Table 1) and four well-tested Google products
(Table 3). Table 4 gives the experimental results.

5.5.1 Bugs in Experimental Subjects
The first part of this evaluation compares the number of unique

bugs found by Randoop, Palulu, RecGen, and Palus using default
contracts as testing oracles. The default contracts supported by all
four tools are listed as follows.

360

Figure 11: Model size (node number in log scale) and test cov-
erage after applying the kTail algorithm with k = 3. The line
coverage data for Palus is taken from Figure 9.

Subject Classes
Google Product A 238
Google Product B 600
Google Product C 1269
Google Product D 1455

Table 3: Four Google products used to evaluate Palus. Column
“Classes” is the number of classes we tested, which is a subset
of each product.

• For any object o, o.equals(o) returns true
• For any object o, o.equals(null) returns false
• For any objects o1 and o2, if o1.equals(o2), then

o1.hashCode() == o2.hashCode()

• For any object o, o.hashCode() and o.toString() throw no
exception

Randoop and Palus found the same number of bugs in all the open-
source subjects, while Palulu and RecGen found less. Randoop did
just as well as Palus because most of the bugs found in the subject
programs are quite superficial. Exposing them does not need a
specific method-call sequence or a particular value. For example, a
large number of BCEL classes incorrectly implement the toString()

method. For those classes, a runtime exception will be thrown when
calling toString() on objects created by the default constructors.
On the other hand, tests generated by Palulu are restricted by the
inferred model, and thus miss some un-covered buggy methods.

The second part of the experiment evaluates Palus’ bug finding
ability using additional testing oracles written as JUnit theories.
Since none of the authors is familiar with the subjects, we only
wrote 5 simple theories for the Apache Commons Collections library
based on our understanding. For example, according to the JDK
specification, Iterator.hasNext() and all its overriding methods
should never throw an exception. Thus, we wrote a theory for all
classes that override the Iterator.hasNext() method. After that,
we re-ran Palus to generate new tests, and Palus found one new
bug. That is, the hasNext() method in FilterListIterator throws
an exception in certain circumstances. This bug has been reported
to, and confirmed by, the Apache Commons Collections developers.

5.5.2 Palus at Google
A slightly customized version of Palus (for Google’s testing in-

frastructure) is internally used at Google. The source code of every
Google product is required to be peer-reviewed, and goes through

Subject Number of bugs found
Programs Randoop Palulu RecGen Palus
tinySQL 1 1 1 1
SAT4J 1 1 – 1
JSAP 0 0 0 0
Rhino 1 1 1 1
BCEL 74 70 37 74
Apache Commons 3 3 3 3 (4*)
Total 80 76 42 80 (81*)

Google Number of bugs found
Products Randoop Palulu RecGen Palus
Product A 2 2 – 4
Product B 2 2 – 3
Product C 2 2 – 2
Product D 13 12 – 13
Total 19 18 – 22

Table 4: Bugs found by Randoop, Palulu, RecGen, and Palus
in the programs of Tables 1 and 3. The starred values include
an additional bug Palus found with an additional testing oracle
written as a JUnit theory. RecGen fails to generate compilable
tests for the SAT4J subject, and can not be configured to work
properly in Google’s testing environment.

a rigorous testing process before being checked into the code base.
We chose four products to evaluate Palus (Table 3). Each product
has a comprehensive unit test suite. We executed the associated test
suite to obtain a sample execution trace, then used Palus to generate
tests. The results are shown in the bottom half of Table 4.

Palus revealed 22 previously-unknown bugs in the four products,
which is more than Randoop and Palulu found within the same time
using the same configurations. Each bug has been submitted with
the generated test. As of April 2011, 8 of the reported bugs had
been fixed. Another 4 bugs were tracked down, and confirmed in
the code of an internal code generation tool. The team building the
code generation tool has been notified to fix them. Palus found those
bugs in 5 hours of CPU time and 5 hours of human effort (spread
among several days, including tool configuration and inspection of
generated tests). In this case study, we only checked generated tests
against default properties as listed in Section 5.5.1, since writing
domain-specific testing oracles requires understanding of a specific
product’s code, which none of the authors has.

The bugs found by Palus eluded previous testing and peer review.
The primary reason we identified is that for large-scale software of
high complexity, it is difficult for testers to partition the input space
in a way that ensure all important cases will be covered. Testers
often miss corner cases. While Palus makes no guarantees about
covering all relevant partitions, its combined static and dynamic
test generation strategy permit it learn a call sequence model from
existing tests, fuzz on a specific legal method-call sequences, and
then lead it to create tests for which no manual tests were written.
As a result, Palus discovers many missed corner cases like testing
for an empty collection, checking type compatibility before casting,
and dereferencing a possibly null reference. As a comparison, the
primary reason why Randoop and Palulu found fewer bugs is that
they failed to construct good sequences for some classes under test
due to argument constraints.

5.6 Experiment Discussion and Conclusion
Still uncovered branches. Palus achieves coverage far less than
100%. There are several reasons for this. First, the code under test

361

often includes complex branches that are quite difficult to cover. As
mentioned in Section 5.4.2, the code in Rhino’s JavaScript parser
and optimizer modules is only covered when provided a JavaScript
program with certain structure. However, such an input is difficult to
generate automatically. Using the ParamValue annotation described
in Section 3.3.3 could help alleviate this problem. Second, the
generated tests depend on the completeness of the inferred model.
For parts of the code with constrained interfaces, if a sample trace
does not cover that, it is difficult for Palus to create effective tests.
Threats to validity. As with any empirical study, there are threats
to the validity of our conclusions. The major threat is the degree to
which the subject programs used in our experiment are representative
of true practice. Another threat is that we only compared Palus
with three state-of-the-art test generation tools. To the best of our
knowledge, these are the best publicly-available test generation
tools for Java. Future work could compare with other tools, such as
JCrasher [6].
Analysis cost. Palus runs in a practical amount of time. Our evalua-
tions were conducted on a 2.67GHz Intel R© CoreTM2 PC with 12GB
physical memory (3GB is allocated for JVM), running Ubuntu 10.04
LTS. For the largest subject, Apache Commons, Palus recorded over
300MB of traces from executing its test suite. Palus finished build-
ing the enhanced call sequence graph and performing static analysis
in 30 seconds. The performance has not been tuned, and we believe
that it could be improved further.
Applicability of different techniques. Feedback-directed random
test generation (Randoop) is effective in generating tests for pro-
grams with few constraints. Palulu improves Randoop’s effective-
ness on programs with constrained interfaces, but may miss some
states for program with dependence relations between methods.
RecGen improves Randoop’s effectiveness on programs with depen-
dence relations between methods, but could fail to generate valid
tests for programs with constrained interfaces. Palus improves on
both sides. It may be most effective in generating test inputs for
programs with constrained interfaces and inter-method dependences.
Conclusion. The combined static and dynamic test generation tech-
nique used in Palus permits generating more effective tests, and
finding more bugs in real-world code, compared to previous random
test generation techniques.

6. RELATED WORK
We next discuss the most closely-related work in program behav-

ior model inference and automated test generation techniques.
Program Behavior Model Inference. A rich body of work has
been done on program behavior model (or specification) inference
from either source code [38] or dynamic executions [9, 14, 22]. The
concept of learning models from actual program runs was pioneered
in [9] by applying a probabilistic NFA learner on C traces. Their
approach relies on manual annotations to relate functions to objects.
Dynamic invariant detection techniques [14] express properties of
data that hold at specific moments during the observed executions.
The work by Whaley et al. [38] mines models with anonymous states
and slices models by grouping methods that access the same fields.
Later, Lorenzoli et al. [22] mined extended finite state machines
with anonymous states, and used their GK-Tail algorithm to merge
states and compress models. Compared to other specification mining
techniques, the call sequence model used in this paper is designed
for test generation. It gives guidance in creating a legal sequence
that reproduces observed behavior, but does not try to generalize the
observations (e.g., inferring temporal properties such as that method
f is always called after method g).

The abstract object profile we used to enhance the original call
sequence model is closely related to the ADABU model [10, 11].

The difference is that the ADABU model [11] classifies methods
into mutators (methods that change the object state) and inspectors
(methods that keep the state unchanged), and then uses the return
value of each inspector to represent an object state. Furthermore,
the ADABU model is designed for program behavior understanding.
It is highly generalized from the observed executions, and does
not represent information on how to construct a legal method-call
sequence or how to find desirable argument objects [27], thus can
not be directly used for test generation.
Automated Test Generation. Many automated test generation tech-
niques for object-oriented programs [6,7,25,26] have been proposed
in the last decade. For example, JCrasher [6] creates test inputs by
using a parameter graph to find method calls whose return values
can serve as input parameters. Eclat [25] and Randoop [26] use
feedback information as guidance to generate random method-call
sequences. AutoTest [7] uses a formal specification provided by
programmers to check whether randomly-generated tests are error-
revealing. However, the sequence creation phase of all the above
work is random in nature, thus it can be difficult for these tools to
generate good sequences for programs with constrained interfaces.

To handle the large search space of possible sequences, data min-
ing techniques, such as frequent itemset mining, have been adapted
to improve the effectiveness of test generation. MSeqGen [33]
mines client code bases statically and extracts frequent patterns as
implicit programming rules that are used to assist in generating tests.
Such approaches can be sensitive to the specific client code, and
thus the results may heavily depend on the quality of client code
base provided by the code search engine. To avoid this problem,
the static analysis phase in our approach takes a different perspec-
tive. It emphasizes how methods are implemented rather than how
they are used, which is insensitive to a specific client code. It is
based on the observation that in general methods are related because
they share state (e.g., the fields they read or write). Such coupled
methods should be tested together to increase the chance to reach
more program states. The RecGen [40] approach takes a similar
strategy in recommending related methods for sequence creation. It
was proposed independently of the static analysis part of Palus [39].
Compared to RecGen, Palus uses a method from the information
retrieval community to rank the dependence relevance between pair-
wise methods, while RecGen mainly considers the degree of overlap
of access fields between two methods.

Another two alternative approaches to create test input objects
are via direct heap manipulation and using capture and replay tech-
niques. Korat [5] and TestEra [23] are two representative techniques
for direct object construction. They require users either to provide
a repOK() predicate method or to specify class invariants. In con-
trast, our approach does not require a manually-written invariant
to create inputs. Instead, our approach infers a model and uses
static analysis to guide the random search towards legal and diverse
sequences. On the other hand, the Object Capture-based Automated
Test (OCAT) approach [17] uses capture and replay techniques to
save object instances from sample executions, and then reuses these
saved object instances (serialized on disk) as parameter values when
creating sequences. Compared to our work, OCAT does not create a
sequence to generate the saved object instance, so OCAT might be
less useful for programmers who wish to understand how the object
instance can be created. Besides, OCAT is designed as a regression
test generation technique, and does not achieve the objective of
bug finding (in either their methodology or experimental results).
Test carving [12] and test factoring [29] also use capture and replay
techniques, but their focus is orthogonal to ours. They capture the
interactions between the target unit and its context to create the
scaffolding to replay those interactions. These two techniques focus

362

on generating small unit tests from system test cases, instead of
creating new tests to increase coverage and find new bugs.

The JUnit theory structure [30] can be viewed as a Java imple-
mentation of Parameterized Unit Tests (PUT) [34]. Palus uses the
theory as an oracle to check the intended program behavior and does
not try to convert generated sequences into a PUT.

7. CONCLUSION AND FUTURE WORK
This paper proposed a combined static and dynamic automated

test generation approach, and implemented it in the Palus tool. Our
approach is novel in using information from a dynamic analysis to
create legal sequences and using information from a static analysis
to diversify the generated sequences. Thus, our approach could
be regarded as fuzzing on a specific legal path. Integration with
the JUnit theory framework permits programmers to write project-
specific testing oracles.

A comparison between four different test generation tools on six
open-source programs and four Google products demonstrated the
effectiveness of our approach. Our experience of applying Palus
on Google’s code base suggests Palus can be effective in finding
real-world bugs in large, well-tested products.

For future work, we are interested in exploring two research di-
rections. First, we plan to use different models like ADABU [11] to
guide automated test generation. Second, we plan to develop ma-
chine learning techniques to complement the dynamically-inferred
model we introduced here.

Acknowledgements We thank Shay Artzi for discussion about
Palulu, and Valentin Dallmeier for discussion about ADABU. We
also thank Todd Schiller, Xiao Sophia Wang, and Nicolas Hunt for
their comments on an early draft. This work was supported in part
by ABB Corporation and by NSF grant CCF-0963757.

8. REFERENCES
[1] Apache Commons Collections project page.

http://commons.apache.org/collections/.
[2] S. Artzi, M. D. Ernst, A. Kieżun, C. Pacheco, and J. H.

Perkins. Finding the needles in the haystack: Generating legal
test inputs for object-oriented programs. In 1st Workshop on
Model-Based Testing and Object-Oriented, Oct, 2006.

[3] BCEL project page. http://jakarta.apache.org/bcel/.
[4] A. Biermann and J. Feldman. On the synthesis of finite-state

machines from samples of their behavior. IEEE Trans. on
Computers, 21(6), 1972.

[5] C. Boyapati, S. Khurshid, and D. Marinov. Korat: automated
testing based on Java predicates. In ISSTA, 2002.

[6] C.Csallner and Y. Smaragdakis. JCrasher: an automatic
robustness tester for Java. In Software: Practice and
Experience, 34(11), pages 1025–1050, 2004.

[7] I. Ciupa and A. Leitner. Automatic testing based on design by
contract. In In Proceedings of Net.ObjectDays, 2005.

[8] Cobertura home. http://cobertura.sourceforge.net/.
[9] J. E. Cook and A. L. Wolf. Discovering models of software

processes from event-based data. ACM Trans. Softw. Eng.
Methodol., 7(3):215–249, 1998.

[10] V. Dallmeier, N. Knopp, C. Mallon, S. Hack, and A. Zeller.
Generating test cases for specification mining. In ISSTA, 2010.

[11] V. Dallmeier, C. Lindig, A. Wasylkowski, and A. Zeller.
Mining object behavior with ADABU. In WODA, 2006.

[12] S. Elbaum, H. N. Chin, M. B. Dwyer, and J. Dokulil. Carving
differential unit test cases from system test cases. In
SIGSOFT/FSE-14, pages 253–264, 2006.

[13] M. D. Ernst. Static and dynamic analysis: Synergy and duality.
In WODA, 2003.

[14] M. D. Ernst, J. Cockrell, W. G. Griswold, and D. Notkin.
Dynamically discovering likely program invariants to support
program evolution. In ICSE, 1999.

[15] P. Godefroid, N. Klarlund, and K. Sen. DART: directed
automated random testing. In PLDI, 2005.

[16] W. Grieskamp, Y. Gurevich, W. Schulte, and M. Veanes.
Generating finite state machines from abstract state machines.
In ISSTA, 2002.

[17] H. Jaygarl, S. Kim, T. Xie, and C. K. Chang. OCAT: Object
capture-based automated testing. In ISSTA, 2010.

[18] K. S. Jones. A statistical interpretation of term specificity and
its application in retrieval. Journal of Documentation,
28:11–21, 1972.

[19] M. Jorde, S. Elbaum, and M. B. Dwyer. Increasing test
granularity by aggregating unit tests. In ASE, 2008.

[20] JSAP home. http://martiansoftware.com/jsap/.
[21] F. Long, X. Wang, and Y. Cai. API hyperlinking via structural

overlap. In ESEC/FSE, 2009.
[22] D. Lorenzoli, L. Mariani, and M. Pezzè. Automatic generation

of software behavioral models. In ICSE, 2008.
[23] D. Marinov and S. Khurshid. TestEra: A novel framework for

automated testing of Java programs. In ASE, 2001.
[24] S. McConnell. Code complete, 2nd ed. Microsoft Press, 2004.
[25] C. Pacheco and M. D. Ernst. Eclat: Automatic generation and

classification of test inputs. In ECOOP, 2005.
[26] C. Pacheco, S. K. Lahiri, M. D. Ernst, and T. Ball.

Feedback-directed random test generation. In ICSE, 2007.
[27] Valentin Dallmeier. Personal Communication, May 2011.
[28] Rhino project page. http://www.mozilla.org/rhino/.
[29] D. Saff, S. Artzi, J. H. Perkins, and M. D. Ernst. Automatic

test factoring for Java. In ASE, 2005.
[30] D. Saff, M. Boshernitsan, and M. D. Ernst. Theories in

practice: Easy-to-write specifications that catch bugs.
Technical Report MIT-CSAIL-TR-2008-002, MIT,
Cambridge, MA, 01/14, 2008.

[31] SAT4J project page. http://www.sat4j.org/.
[32] K. Sen, D. Marinov, and G. Agha. CUTE: a concolic unit

testing engine for C. In ESEC/FSE-13, 2005.
[33] S. Thummalapenta, T. Xie, N. Tillmann, P. de Halleux, and

W. Schulte. MSeqGen: Object-oriented unit-test generation
via mining source code. In ESEC/FSE, 2009.

[34] N. Tillmann and W. Schulte. Parameterized unit tests. In
ESEC/FSE-13, 2005.

[35] tinySQL home. http://www.jepstone.net/tinySQL/.
[36] C. D. Turner and D. J. Robson. The state-based testing of

object-oriented programs. In ICSM, 1993.
[37] W. Visser, C. S. Pǎsǎreanu, and S. Khurshid. Test input

generation with Java PathFinder. In ISSTA, 2004.
[38] J. Whaley, M. C. Martin, and M. S. Lam. Automatic extraction

of object-oriented component interfaces. In ISSTA, 2002.
[39] S. Zhang, Y. Bu, X. Wang, and M. D. Ernst.

Dependence-guided random test generation. CSE 503 Course
Project Report, University of Washington. URL:
www.cs.washington.edu/homes/szhang/gencc.pdf, May 2010.

[40] W. Zheng, Q. Zhang, M. Lyu, and T. Xie. Random unit-test
generation with mut-aware sequence recommendation. In
ASE, 2010.

363

