-
»
5
s
<
Q
S
-
D

LENESAS

USBXTM Device Stack

User’'s Manual: Software

Renesas Synergy™ Platform

synergygallery.renesas.com

Renesas Electronics Rev. 5.7
www.renesas.com

m

the high performance USB stack

User Guide for USBX Device Stack

Express Logic, Inc.
858.613.6640
Toll Free 888.THREADX
FAX 858.521.4259

http://www.expresslogic.com

http://www.expresslogic.com/

©1999-2014 by Express Logic, Inc.

All rights reserved. This document and the associated USBX software are the sole
property of Express Logic, Inc. Each contains proprietary information of Express Logic,
Inc. Reproduction or duplication by any means of any portion of this document without
the prior written consent of Express Logic, Inc. is expressly forbidden.

Express Logic, Inc. reserves the right to make changes to the specifications described
herein at any time and without notice in order to improve design or reliability of USBX.
The information in this document has been carefully checked for accuracy; however,

Express Logic, Inc. makes no warranty pertaining to the correctness of this document.

Trademarks

FileX, and ThreadX are registered trademarks of Express Logic, Inc., and USBX, NetX,
picokernel, preemption-threshold, and event-chaining are trademarks of Express Logic,
Inc. All other product and company names are trademarks or registered trademarks of
their respective holders.

Warranty Limitations

Express Logic, Inc. makes no warranty of any kind that the USBX products will meet the
USER’s requirements, or will operate in the manner specified by the USER, or that the
operation of the USBX products will operate uninterrupted or error free, or that any
defects that may exist in the USBX products will be corrected after the warranty period.
Express Logic, Inc. makes no warranties of any kind, either expressed or implied,
including but not limited to the implied warranties of merchantability and fitness for a
particular purpose, with respect to the USBX products. No oral or written information or
advice given by Express Logic, Inc., its dealers, distributors, agents, or employees shall
create any other warranty or in any way increase the scope of this warranty and
licensee may not rely on any such information or advice.

Part Number: 000-1010

Revision 5.7

Contents

(@0] 1 1= 01 PN 3
ADOUL ThiS GUIEo e 6
Chapter 1: Introduction to USBXccoouiiiiiiiiiiiieee e 7
(0151 3 G (=T L0 (=P 7

[0 To [0 Tod e |] e o £ PS 8
Powerful Services 0f USBXcocooiiiiiiiiiiiiee et 8
Complete USB Device Framework SUPPOIcovveeeiiiveiiiiiieeeeeeeeeeeiiien e 9
EASY-TO-USE APIS... . 9
Chapter 2: USBX Installationccccooiiiiiiiii e, 10
[[0 LT A O 0] 1530 [=T = 1] 1T 10
(7o) 0] o 10 (=] g 1Y/ o1 PPN 10
Do)V] (o F=To I 11 (=] s = Tod = PR 10
Debugging TOOIS ... oo 10
Required Hard DiSK SPACE.........cccuviiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeee e 10

Target CoNSIAEratioNSuuuiiiii e e e e e e e e e e e e e eeanes 10

(@] a1 i o U= 140 T @] 1 o] o 13
Yo 10 o= @ To [T I (== 15
Initialization Of USBX rESOUICEScccoeeiieeeieeeee e 16
Definition of USB Device CONtroller.........coovv e eiiiieiiiieee e 17
TroubIESNOOLINGeueiii e e e e e 19
(0151 QY =T 1o T | 5 19
Chapter 3: Functional Components of USBX Device Stack 20
EXECULION OVEIVIEW: ... e e ettt s e e e e ettt eeennnnnnn s 20
INILANIZALION ..o 20
Application Interface CallS...........ooovviiiiiiiiii 21

USB DevVice StaCk APIScoovviiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee e 21

USB DEVICE ClaSS APISuuiiieieeeeeeie e e e e e e eaeaanns 21

DEVICE FramEWOIK.......cooeiiiiiiiiie et e e nnae s 21
Definition of the Components of the Device FrameworKccccoevvvvvvnnnnn. 21
Definition of the Strings of the Device Frameworkcccccooovviiiiiiiiiiiinienenn, 22
Definition of the Languages Supported by the Device for each String 23

BV 1O ST 1V = g = T 1= P 24

Chapter 4: Description of USBX Device ServiCesccccoevevvvieernnnnnnn. 25

ux_device_stack_alternate_setting_getcouuviiiiiiiiiiiiiiiiiie e 26

ux_device_stack alternate _setting_Set............ccceeiviiiiiiiiieeiiiii e, 27
ux_device_Stack ClassS regiSter........ciiii i 28
ux_device_stack configuration_getcccoevviiiiiiii e 30
ux_device_stack _configuration_Set............coovuuiiiiiiiniieieieeei e 31
ux_device_stack descriptor_Sendccoovvviiiiiiiii e 32
ux_device_Stack _diSCONNECT...........uuuiiiiiiiiiiieiic e 33
ux_device_stack _endpoint_stall.............ccoooiiiiiiiiiiiii e, 34
ux_device_stack _hosSt WaKeUP..........oiviieiiiiiiiiiiieee e 35
ux_device_stack iNitializecouvviiiiii i 36
ux_device_stack_interface_delete ..o 40
ux_device_stack interface get.......cccoiiviieiiiiiiiiiiii e 41
ux_device_stack _iNterface _Set........cccooviiiiiiiiiiiiiiii e 42
ux_device_stack interface _Start............ccccovviiiiiiiiiiii e 43
ux_device_stack _transfer reqUEeST..........coovvvveiiiiiiiiei e 44
ux_device_stack transfer_request_abort............cccooooiiiiiiiiiii e, 46
Chapter 5: USBX Device Class Considerations..........cccccceeveeveeeinneennn. 47
USB Device Storage Class.........ccouviiiiiiiiiiiiiiiiiieiieeeeeeeeeeeeeeeeeeee et a7
MUIEIPIE SCSILUN Lottt 49
USB DeVvice CDC-ACM CIASSccoveieeiiiiiiieee ettt e e s 51
ux_device_class_CAC_aCM Accceeeeeeiieieiiiiiiie e e e e e e ee et e e e e e 54
ux_device_ClasS_COC_AaCM_WIIEEuuiiieeeeieeieiiiiiie e e e et e e e 55
USB DevVvice CDC-ECM CIASScccvvviiiiiiiiiiiiiiiiieeeeeeeeeeeeeeee ettt 56
USB DeViCe RNDIS ClaSSuuiiiieeiiiiiiiiiiiiee e ettt e e e e e e e e e e eeeeenannnnes 60
USB DeViCe DFU ClIaSS.....cciiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeee ettt 63
USB DEVICE HID CIaSS ..ccvuuuiiiiee i e ettt e e e e e e e e e e e e e eeeennnnnn s 69
ux_device_class_hid _event Setl.........ccccooeiiiiiiiiiiiiii e 71

] o [o= 1| o 7= U] P 72
USB Device PIMA Class (PTP ReSPONdEr)...........uuuviiiieeeiieiiiiiiee e 73
Initialization of the PIMA deViCe ClasS..........coiiieeiiiiiiiiiiii e 75
ux_device_class_pima_object_ number_get............cooooiiiiiiiiiiii e, 79
ux_device_class_pima_object_handles_get...........ccccvvrriiiiiiiiiii e, 80
ux_device_class_pima_object_info_get.......ccccccviiiiiiiiiiii, 82
ux_device_class_pima_object_data_get........cccccceeiiiieiiiiiiiiiii e 84
ux_device_class_pima_object_info_sendcccccooviiiiiiiiii, 87
ux_device_class_pima_object_data_send.............cccceevvriiiiiiiiiie e, 89
ux_device_class_pima_object_delete...........covveiiiiiiiiiiiiiii e, 91
Chapter 6: USBX DPUMP Class Considerationscccceeeevevnneerennnnnn. 92

USBX DPUMP DEVICE ClaSS v iuintiee ettt ettt e e et e e e e e e eaeeas 93

Chapter 7: USBX Pictbridge implementation..........ccccooooviiiiiiiiniennnnnnnn. 94

Pictbridge client implementation ... 95
ux_pictbridge_jobinfo_object_data_read.............cccoeeeeeiiiiiiiiiiii e, 99
Pictbridge host implementation..............viiiiiiiiiieeeeee 100
ux_pictbridge_application_object_data Write.............ccovvvvvviiiiieeeereeeeeiinn, 102
Chapter 8: USBX OTG ..ottt e e 103

About This Guide

This guide provides comprehensive information about USBX, the high performance
USB foundation software from Express Logic, Inc.

It is intended for the embedded real-time software developer. The developer should be
familiar with standard real-time operating system functions, the USB specification, and
the C programming language.

For technical information related to USB, see the USB specification and USB Class
specifications that can be downloaded at http://www.USB.org/developers

Organization
Chapter 1 contains an introduction to USBX

Chapter 2 gives the basic steps to install and use USBX with your ThreadX
application

Chapter 3 is titled Functional Components of USBX Device Stack
Chapter 4 is titled Description of USBX Device Services

Chapter 5 is titled USBX Device Class Considerations

Chapter 6 is titted USBX DPUMP Class Considerations

Chapter 7 is titled USBX Pictbridge Implementation

Chapter 8 is titled USBX OTG

Chapter 1: Introduction to USBX

USBX is a full-featured USB stack for deeply embedded applications. This chapter
introduces USBX, describing its applications and benefits.

USBX features

USBX support the three existing USB specifications: 1.1, 2.0 and OTG. It is designed to
be scalable and will accommodate simple USB topologies with only one connected
device as well as complex topologies with multiple devices and cascading hubs. USBX
supports all the data transfer types of the USB protocols: control, bulk, interrupt, and
isochronous.

USBX supports both the host side and the device side. Each side is comprised of three
layers:

e Controller layer
e Stack layer
e Class layer

The relationship between the USB layers is as follows:

Class Driver Class Driver

r N A

v A 4

9Jem}jos

r N A

v v

Device Controller
Driver

Host Controller
Driver

|
|
|
|
|
|
|
|
|
|
|
|
|
Host Stack : Device Stack
|
|
|
|
|
|
|
|
|
|
|
|

Host Controller Device Controller

A A

Host side Device side

Product Highlights

Complete ThreadX processor support

No royalties

Complete ANSI C source code

Real-time performance

Responsive technical support

Multiple class support

Multiple class instances

Integration of classes with ThreadX, FileX and NetX
Support for USB devices with multiple configuration
Support for USB composite devices

Support for USB power management

Support for USB OTG

Export trace events for TraceX

Powerful Services of USBX

alempleHy

Complete USB Device Framework Support

USBX can support the most demanding USB devices, including multiple configurations,
multiple interfaces, and multiple alternate settings.

Easy-To-Use APIs

USBX provides the very best deeply embedded USB stack in a manner that is easy to
understand and use. The USBX APl makes the services intuitive and consistent. By
using the provided USBX class APIs, the user application does not need to understand
the complexity of the USB protocols.

Chapter 2: USBX Installation

Host Considerations

Computer Type

Embedded development is usually performed on IBM-PC or Unix host computers. After
the application is compiled, linked, and located on the host, it is downloaded to the
target hardware for execution.

Download Interfaces

Usually the target download is done over an RS-232 serial interface, although parallel
interfaces, USB, and Ethernet are becoming more popular. See the development tool
documentation for available options.

Debugging Tools

Debugging is done typically over the same link as the program image download. A
variety of debuggers exist, ranging from small monitor programs running on the target
through Background Debug Monitor (BDM) and In-Circuit Emulator (ICE) tools. Of
course, the ICE tool provides the most robust debugging of actual target hardware.

Required Hard Disk Space

The source code for USBX is delivered in ASCII format and requires approximately 500
KBytes of space on the host computer’s hard disk. Please review the supplied
readme_usbx.txt file for additional host system considerations and options.

Target Considerations

USBX requires between 24 KBytes and 64 KBytes of Read Only Memory (ROM) on the
target in host mode. The amount of memory required is dependent on the type of
controller used and the USB classes linked to USBX. Another 32 KBytes of the target’s
Random Access Memory (RAM) are required for USBX global data structures and
memory pool. This memory pool can also be adjusted depending on the expected
number of devices on the USB and the type of USB controller. The USBX device side
requires roughly 10-12K of ROM depending on the type of device controller. The RAM
memory usage depends on the type of class emulated by the device.

USBX also relies on ThreadX semaphores, mutexes, and threads for multiple thread
protection, and I/O suspension and periodic processing for monitoring the USB bus

topology.

Product Distribution

Two USBX packages are available—standard and premium. The standard package
includes minimal source code, while the premium package contains the complete USBX
source code. Either package is shipped on a single CD.

The content of the distribution CD depends on the target processor, development tools,
and the USBX package. Following is a list of the important files common to most
product distributions:

readme_usbx.txt This file contains specific information about the USBX port,
including information about the target processor and the
development tools.

ux_api.h This C header file contains all system equates, data
structures, and service prototypes.

ux_port.h This C header file contains all development-tool-specific data
definitions and structures.

ux.lib This is the binary version of the USBX C library. It is
distributed with the standard package.

demo_usbx.c The C file containing a simple USBX demo

All filenames are in lower-case. This naming convention makes it easier to convert the
commands to Unix development platforms.

Installation of USBX is straightforward. The following general instructions apply to
virtually any installation. However, the readme_usbx_generic.txt file should be
examined for changes specific to the actual development tool environment.

Step 1: Backup the USBX distribution disk and store it in a safe location.

Step 2: Use the same directory in which you previously installed ThreadX on the host
hard drive. All USBX names are unigue and will not interfere with the
previous USBX installation.

Step 3: Add a call to ux_system_.initialize at or near the beginning of
tx_application_define. This is where the USBX resources are initialized.

Step4: Add a call to ux_device_stack_initialize.

Step 5: Add one or more calls to initialize the required USBX classes (either host
and/or devices classes)

Step 6: Add one or more calls to initialize the device controller available in the
system.

Step 7

Step 8:

It may be required to modify the tx_low_level_initialize.c file to add low level
hardware initialization and interrupt vector routing. This is specific to the
hardware platform and will not be discussed here.

Compile application source code and link with the USBX and ThreadX run
time libraries (FileX and/or Netx may also be required if the USB storage
class and/or USB network classes are to be compiled in), ux.a (or ux.lib) and
tx.a (or tx.lib). The resulting can be downloaded to the target and executed!

Configuration Options

There are several configuration options for building the USBX library. All options are
located in the ux_port.h.

The list below details each configuration option. Additional development tool options are
described in the readme_usbx.txt file supplied on the distribution disk:

UX_PERIODIC_RATE

This value represents how many ticks per seconds for a specific hardware platform. The
default is 1000 indicating 1 tick per millisecond.

UX THREAD_ STACK_ SIZE

This value is the size of the stack in bytes for the USBX threads. It can be typically 1024
or 2048 bytes depending on the processor used and the host controller.

UX_THREAD_PRIORITY_ENUM

This is the ThreadX priority value for the USBX enumeration threads that monitors the
bus topology.

UX_THREAD_PRIORITY_CLASS

This is the ThreadX priority value for the standard USBX threads.
UX THREAD PRIORITY_KEYBOARD

This is the ThreadX priority value for the USBX HID keyboard class.
UX_THREAD_PRIORITY_DCD

This is the ThreadX priority value for the device controller thread.
UX_NO_TIME_SLICE

If defined to 1, the ThreadX target port does not use time slice.
UX_MAX_SLAVE_LUN

This value represents the current number of SCSI logical units represented in the
device storage class driver.

UX_SLAVE_REQUEST CONTROL_MAX_LENGTH

This value represents the maximum number of bytes received on a control endpoint in
the device stack. The default is 256 bytes but can be reduced in memory constraint
environments

UX_SLAVE_REQUEST_DATA_MAX_LENGTH
This value represents the maximum number of bytes received on a bulk endpoint in the

device stack. The default is 4096 bytes but can be reduced in memory constraint
environments.

Source Code Tree

The USBX files are provided in several directories.

USBX Core

USBX Device Stack

\ 4

USBX Device
Controllers

USBX Host Stack

\ 4

USBX Host
Controllers

v

USBX OTG

P USBX Device Classes

USBX Host Classes <€

USBX Network

USBX Examples

Windows host files

In order to make the files recognizable by their names, the following convention has
been adopted:

File Suffix Name File description
ux_host_stack usbx host stack core files
ux_host_class usbx host stack classes files
ux_hcd usbx host stack controller driver files
ux_device_ stack usbx device stack core files
ux_device_class usbx device stack classes files
ux_dcd usbx device stack controller driver files
ux_otg usbx otg controller driver related files
ux_pictbridge usbx pictbridge files
ux_utility usbx utility functions
demo_usbx demonstration files for USBX

Initialization of USBX resources

USBX has its own memory manager. The memory needs to be allocated to USBX
before the host or device side of USBX is initialized. USBX memory manager can
accommodate systems where memory can be cached.

The following function initializes USBX memory resources with 128K of regular memory
and no separate pool for cache safe memory:

/* Initialize USBX Memory */
ux_system_initialize(memory_pointer,(128*1024),UX_NULL,O);

The prototype for the ux_system_initialize is as follows:

UINT ux system initialize (VOID *regular memory pool start,
ULONG regular memory size,
VOID *cache safe memory pool start,
ULONG cache safe memory size)

Input parameters:

VOID *regular_memory_pool_start Beginning of the regular memory pool

ULONG regular_memory_size Size of the regular memory pool

VOID *cache_safe_memory_pool_start Beginning of the cache safe memory
pool

ULONG cache_safe_memory_size Size of the cache safe memory pool

Not all systems require the definition of cache safe memory. In such a system, the
values passed during the initialization for the memory pointer will be set to UX_NULL
and the size of the pool to 0. USBX will then use the regular memory pool in lieu of the
cache safe pool.

In a system where the regular memory is not cache safe and a controller requires to
perform DMA memory (like OHCI, EHCI controllers amongst others) it is necessary to
define a memory pool in a cache safe zone.

Definition of USB Device Controller

Only one USB device controller can be defined at any time to operate in device mode.
The application initialization file should contain this definition. The example below refers
to the OKI USB device controller. For other controllers, the function entry definition has
to be changed accordingly.

The following line performs the definition of an OKI controller:

ux_dcd ml16965_initialize (0x7BB00000, 0, 0xB7A00000);

The USB device initialization has the following prototype:

UINT ux dcd ml6965_ initialize (ULONG dcd io, ULONG dcd irgq,
ULONG dcd vbus address) ;

with the following parameters:
ULONG dcd _io Address of the controller 10
ULONG dcd_irq Interrupt used by the controller
ULONG dcd_vbus_address Address of the VBUS GPIO

The following example is the initialization of USBX in device mode with the storage
device class and the OKI controller:

/* Initialize USBX Memory */
ux_system_initialize(memory_pointer,(128*1024), 0, 0);

/* The code below is required for installing the device portion of USBX */
status = ux_device_stack initialize(&device framework high speed,
DEVICE FRAMEWORK LENGTH HIGH SPEED,
&device framework full speed,
DEVICE FRAMEWORK LENGTH FULL SPEED,
&string framework, STRING FRAMEWORK LENGTH,
&¢language id framework, LANGUAGE ID FRAMEWORK LENGTH,
UX_NULL) ;

/* If status equals UX SUCCESS, installation was successful. */

/* Store the number of LUN in this device storage instance: single LUN. */

storage parameter.ux slave class storage parameter number lun = 1;
/* Initialize the storage class parameters for reading/writing to the Flash Disk. */
storage parameter.ux slave class_storage parameter lun([O0].

ux slave class storage media last lba = Oxleb6bfe;
storage parameter.ux slave class_ storage parameter lun([O0].

ux slave class storage media block length = 512;

storage parameter.ux slave class_ storage parameter lun([0].

ux slave class storage media type = 0;
storage parameter.ux slave class storage parameter lun[O0].
ux_slave class storage media removable flag = 0x80;
storage parameter.ux slave class storage parameter lun[O0].
ux slave class storage media read =
tx demo thread flash media read;
storage parameter.ux slave class storage parameter lun([O0].
ux slave class storage media write =
tx demo thread flash media write;
storage parameter.ux slave class storage parameter lun[O0].
ux slave class storage media status =
tx demo thread flash media status;

/* Initialize the device storage class. The class is connected with interface 0 */
status = ux_device_stack class_register (ux system slave class storage name,
ux device class storage entry,
ux device class storage thread,0,
(VOID *) &storage parameter);

/* Register the OKI USB device controllers available in this system */
status = ux _decd ml6965_ initialize (0x7BB00000, 0, O0xB7A00000);

/* If status equals UX SUCCESS, registration was successful. */

Troubleshooting

USBX is delivered with a demonstration file and a simulation environment. It is always a
good idea to get the demonstration platform running first—either on the target hardware
or a specific demonstration platform.

If the demonstration system does not work, try the following things to narrow the
problem:

USBX Version ID

The current version of USBX is available both to the user and the application software
during run-time.

The programmer can obtain the USBX version from examination of the usbx.txt file. In
addition, this file also contains a version history of the corresponding port. Application
software can obtain the USBX version by examining the global string _ux_version_id,
which is defined in ux_port.h.

Chapter 3: Functional Components of
USBX Device Stack

This chapter contains a description of the high performance USBX embedded USB
device stack from a functional perspective.

Execution Overview:

USBX for the device is composed of several components:
Initialization
Application interface calls
Device Classes
USB Device Stack
Device controller
VBUS manager

The following diagram illustrates the USBX Device stack:

Storage Class CDC Class Custom Class

VBUS Manager

Atmel USB Device OKI USB Device Philips USB Device Other USB Device
controller Driver controller Driver controller Driver controller Driver
Initialization

In order to activate USBX, the function ux_system_initialize must be called. This
function initializes the memory resources of USBX.

In order to activate USBX device facilities, the function ux_device stack_initialize must
be called. This function will in turn initialize all the resources used by the USBX device
stack such as ThreadX threads, mutexes, and semaphores.

It is up to the application initialization to activate the USB device controller and one or
more USB classes. Contrary to the USB host side, the device side can have only one
USB controller driver running at any time. When the classes have been registered to the
stack and the device controller(s) initialization function has been called, the bus is active
and the stack will reply to bus reset and host enumeration commands.

Application Interface Calls

There are two levels of APIs in USBX:
USB Device Stack APlIs
USB Device Class APIs

Normally, a USBX application should not have to call any of the USB device stack APIs.
Most applications will only access the USB Class APIs.

USB Device Stack APIs

The device stack APIs are responsible for the registration of USBX device components
such as classes and the device framework.

USB Device Class APIs

The Class APIs are very specific to each USB class. Most of the common APIs for USB
classes provided services such as opening/closing a device and reading from and
writing to a device. The APIs are similar in nature to the host side.

Device Framework

The USB device side is responsible for the definition of the device framework. The
device framework is divided into three categories, as described in the following sections.

Definition of the Components of the Device Framework

The definition of each component of the device framework is related to the nature of the
device and the resources utilized by the device. Following are the main categories.

e Device Descriptor

e Configuration Descriptor

¢ Interface Descriptor

e Endpoint Descriptor

USBX supports device component definition for both high and full speed (low speed
being treated the same way as full speed). This allows the device to operate differently

when connected to a high speed or full speed host. The typical differences are the size
of each endpoint and the power consumed by the device.

The definition of the device component takes the form of a byte string that follows the
USB specification. The definition is contiguous and the order in which the framework is
represented in memory will be the same as the one returned to the host during
enumeration.

Following is an example of a device framework for a high speed USB Flash Disk.

#define DEVICE_FRAMEWORK_LENGTH_HIGH SPEED 60
UCHAR device framework high speed[] {

/* Device descriptor */
0x12, 0x01, 0Ox00, Ox02, 0x00, 0x00, 0x00, 0Ox40,
O0x0a, 0x07, 0x25, 0x40, 0x01, 0x00, 0x01, 0x02,
0x03, 0x01,

/* Device qualifier descriptor */
Ox0a, 0x06, 0x00, 0x02, 0x00, 0x00, 0x00, O0x40,
0x01, 0x00,

/* Configuration descriptor */
0x09, 0x02, 0x20, 0x00, 0x01, 0x01, 0x00, OxcO,
0x32,

/* Interface descriptor */
0x09, 0x04, 0x00, 0x00, 0Ox02, 0x08, 0x06, 0x50,
0x00,

/* Endpoint descriptor (Bulk Out) */
0x07, 0x05, 0x01, 0x02, 0x00, 0x02, 0x00,

/* Endpoint descriptor (Bulk In) */
0x07, 0x05, 0x82, 0x02, 0x00, 0x02, 0x00
}i

Definition of the Strings of the Device Framework

Strings are optional in a device. Their purpose is to let the USB host know about the
manufacturer of the device, the product name, and the revision number through
Unicode strings.

The main strings are indexes embedded in the device descriptors. Additional strings
indexes can be embedded into individual interfaces.

Assuming the device framework above has three string indexes embedded into the
device descriptor, the string framework definition could look like this:

/* String Device Framework:
Byte 0 and 1: Word containing the language ID: 0x0904 for US
Byte 2 : Byte containing the index of the descriptor
Byte 3 : Byte containing the length of the descriptor string
*/

#define STRING FRAMEWORK LENGTH 38
UCHAR string framework[] = {

/* Manufacturer string descriptor: Index 1 */
0x09, 0x04, 0x01, O0xOc,
0x45, 0x78, 0x70, 0x72, 0Oxe65, 0x73, 0x20, 0Ox4c,
Ox6f, 0x67, 0x69, 0x63,

/* Product string descriptor: Index 2 */
0x09, 0x04, 0x02, 0xOc,
0x4D, 0x4C, 0x36, 0x39, 0x36, 0x35, 0x30, 0x30,
0x20, 0x53, 0x44, 0x4B,

/* Serial Number string descriptor: Index 3 */
0x09, 0x04, 0x03, 0x04,
0x30, 0x30, 0x30, 0x31

bi

If different strings have to be used for each speed, different indexes must be used as
the indexes are speed agnostic.

The encoding of the string is UNICODE-based. For more information on the UNICODE
encoding standard refer to the following publication:
The Unicode Standard, Worldwide Character Encoding, Version 1., Volumes 1
and 2, The Unicode Consortium, Addison-Wesley Publishing Company, Reading
MA.

Definition of the Languages Supported by the Device for
each String

USBX has the ability to support multiple languages although English is the default. The
definition of each language for the string descriptors is in the form of an array of
languages definition defined as follows:

#define LANGUAGE ID FRAMEWORK LENGTH 2
UCHAR language id framework[] = {

/* English. */
0x09, 0x04
}i

To support additional languages, simply add the language code double-byte definition
after the default English code. The language code has been defined by Microsoft in the
document:
Developing International Software for Windows 95 and Windows NT, Nadine
Kano, Microsoft Press, Redmond WA

VBUS Manager

In most USB device designs, VBUS is not part of the USB Device core but rather
connected to an external GPIO, which monitors the line signal.

As a result, VBUS has to be managed separately from the device controller driver.

It is up to the application to provide the device controller with the address of the VBUS
0. VBUS must be initialized prior to the device controller initialization.

Depending on the platform specification for monitoring VBUS, it is possible to let the
controller driver handle VBUS signals after the VBUS IO is initialized or if this is not
possible, the application has to provide the code for handling VBUS.

If the application wishes to handle VBUS by itself, its only requirement is to call the
function

ux device stack disconnect ()

when it detects that a device has been extracted. It is not necessary to inform the
controller when a device is inserted because the controller will wake up when the BUS
RESET assert/deassert signal is detected.

Chapter 4. Description of USBX Device
Services

ux_device_stack_ alternate setting_get

Get current alternate setting for an interface value

Prototype

UINT wux device_stack_ alternate_setting get (ULONG interface value)

Description
This function is used by the USB host to obtain the current alternate setting for a
specific interface value. It is called by the controller driver when a
GET_INTERFACE request is received.

Input Parameter

interface_value Interface value for which the current alternate
setting is queried.

Return Values

UX_SUCCESS (Ox00) The data transfer was completed.
UX_ERROR (OxFF) Wrong interface value.
Example
ULONG interface value;
UINT status;

/* The following example illustrates this service. */
status = ux_device_stack_alternate_setting get(interface value);

/* If status equals UX SUCCESS, the operation was successful. */

ux_device_stack_ alternate setting_set

Set current alternate setting for an interface value
Prototype

UINT ux device_stack alternate_setting set (ULONG interface value,
ULONG alternate setting value)

Description

This function is used by the USB host to set the current alternate setting for a
specific interface value. It is called by the controller driver when a
SET_INTERFACE request is received. When the SET_INTERFACE is
completed, the values of the alternate settings are applied to the class.

The device stack will issue a UX_SLAVE_CLASS COMMAND_CHANGE to the
class that owns this interface to reflect the change of alternate setting.

Parameters
interface_value Interface value for which the current alternate
setting is set.
alternate_setting_value The new alternate setting value.
Return Values
UX_SUCCESS (Ox00) The data transfer was
completed.
UX_INTERFACE_HANDLE_UNKNOWN (0x52) No interface attached.
UX_ERROR (OxFF) Wrong interface value.
Example
ULONG interface value;

ULONG alternate setting value;

/* The following example illustrates this service. */
status ux_device_stack alternate_setting set(interface value,
alternate setting value);

/* If status equals UX SUCCESS, the operation was successful. */

ux_device_stack class_register

Register a new USB device class

Prototype

UINT ux device_stack class_ register (UCHAR *class name,
UINT (*class_entry function) (struct UX SLAVE CLASS COMMAND STRUCT *),
ULONG configuration number,
ULONG interface number,
VOID *parameter)

Description

This function is used by the application to register a new USB device class. This
registration starts a class container and not an instance of the class. A class
should have an active thread and be attached to a specific interface.

Some classes expect a parameter or parameter list. For instance, the device
storage class would expect the geometry of the storage device it is trying to
emulate. The parameter field is therefore dependent on the class requirement
and can be a value or a pointer to a structure filled with the class values.

Parameters
class_entry_function The entry function of the class.
Configuration_number The configuration number this class is attached
to.
interface_number The interface number this class is attached to.
parameter A pointer to a class specific parameter list.
Return Values
UX_SUCCESS (Ox00) The data transfer was completed.

UX_MEMORY_INSUFFICIENT (0x52) Not enough memory.
UX_THREAD_ ERROR (OxXFF) Cannot create a class thread.

Example

UINT status;
/* The following example illustrates this service. */

/* Initialize the device storage class. The class is connected with
interface 1 */
status =
ux device_stack class_register(ux system slave class_ storage name,
ux device class storage entry,
1, 1, (VOID *) ¶meter) ;

/* If status equals UX SUCCESS, the operation was successful. */

ux_device_stack _configuration_get

Get the current configuration

Prototype

UINT wux_device_stack configuration_get (VOID)
Description

This function is used by the host to obtain the current configuration running in the
device.

Input Parameter
None
Return Value

UX_SUCCESS (0x00) The data transfer was completed.

Example

UINT status;

/* The following example illustrates this service. */
status = ux_device_stack_configuration get();

/* If status equals UX SUCCESS, the operation was successful. */

ux_device_stack configuration_set

Set the current configuration

Prototype

UINT ux device_stack configuration set (ULONG configuration value)

Description
This function is used by the host to set the current configuration running in the
device. Upon reception of this command, the USB device stack will activate the
alternate setting 0 of each interface connected to this configuration.

Input Parameter

configuration_value The configuration value selected by the host.

Return Value

UX_SUCCESS (Ox00) The data transfer was completed.
Example

ULONG configuration value;

UINT status;

/* The following example illustrates this service. */
status = ux_device_stack configuration_set (configuration value);

/* If status equals UX SUCCESS, the operation was successful. */

ux_device_stack descriptor_send

Prototype

Send a descriptor to the host

UINT ux device_stack descriptor send (ULONG descriptor type,

Description

ULONG request index, ULONG host length)

This function is used by the device side to return a descriptor to the host. This
descriptor can be a device descriptor, a configuration descriptor or a string

descriptor.
Parameters

descriptor_type The nature of the descriptor:
UX_DEVICE_DESCRIPTOR_ITEM
UX_ CONFIGURATION_DESCRIPTOR_ITEM
UX_STRING_DESCRIPTOR_ITEM
UX_DEVICE_QUALIFIER_DESCRIPTOR_ITEM
UX_OTHER_SPEED_DESCRIPTOR_ITEM

request_index The index of the descriptor.

host_length The length required by the host.

Return Values

UX_SUCCESS (Ox00) The data transfer was completed.

UX_ERROR (OXFF) The transfer was not completed.
Example

ULONG descriptor type;

ULONG request index;

ULONG host length;

UINT status;

/* The following example illustrates this service. */

status =

ux_device_stack configuration_send(descriptor type,
request index, host length);

/* If status equals UX SUCCESS, the operation was successful. */

ux_device_stack _disconnect

Disconnect device stack

Prototype

UINT ux _device_stack_disconnect (VOID)

Description
The VBUS manager calls this function when there is a device disconnection. The
device stack will inform all classes registered to this device and will thereafter
release all the device resources.

Input Parameter
None

Return Value

UX_SUCCESS (Ox00) The device was disconnected.

Example

UINT status;

/* The following example illustrates this service. */
status = ux_device_stack_disconnected();

/* If status equals UX SUCCESS, the operation was successful. */

ux_device_stack _endpoint_stall

Request endpoint Stall condition
Prototype
UINT ux device_stack endpoint stall (UX SLAVE ENDPOINT *endpoint)
Description

This function is called by the USB device class when an endpoint should return a
Stall condition to the host.

Input Parameter

endpoint The endpoint on which the Stall condition is
requested.

Return Value

UX_SUCCESS (0x00) This operation was successful.

Example

UINT status;

/* The following example illustrates this service. */
status = ux_device_stack_endpoint stall (endpoint);

/* If status equals UX SUCCESS, the operation was successful. */

ux_device_stack host wakeup

Wake up the host

Prototype

UINT ux device_stack host wakeup (VOID)
Description

This function is called when the device wants to wake up the host. This
command is only valid when the device is in suspend mode. It is up to the device
application to decide when it wants to wake up the USB host. For instance, a
USB modem can wake up a host when it detects a RING signal on the telephone
line.

Input Parameter
None
Return values

UX_SUCCESS (0Ox00) The call was successful.
UX_ERROR (OXFF) The call failed (the device was probably not in
the suspended mode).

Example

UINT status;

/* The following example illustrates this service. */
status = ux_device_stack_host_wakeup();

/* If status equals UX SUCCESS, the operation was successful. */

ux_device_stack_initialize

Initialize USB device stack

Prototype

UINT ux device_stack initialize (UCHAR PTR device framework high speed,
ULONG device framework length high speed,
UCHAR PTR device framework full speed,
ULONG device framework length full speed,
UCHAR PTR string framework,
ULONG string framework length,
UCHAR PTR language id framework,
ULONG language id framework length),
UINT (*ux system slave change function) (ULONG)))

Description

This function is called by the application to initialize the USB device stack. It does
not initialize any classes or any controllers. This should be done with separate
function calls. This call mainly provides the stack with the device framework for
the USB function. It supports both high and full speeds with the possibility to
have completely separate device framework for each speed. String framework
and multiple languages are supported.

Parameters
device_framework_high_speed Pointer to the high speed framework.
device_framework_length_high_speed Length of the high speed framework.
device_framework_full_speed Pointer to the full speed framework.
device_framework length_full speed Length of the full speed framework.
string_framework Pointer to string framework.
string_framework_length Length of string framework.
language_id_framework Pointer to string language framework.
language_id_framework_length Length of the string language

framework.

ux_system_slave_change_function Function to be called when the device

state changes.
Return Values
UX_SUCCESS (Ox00) This operation was successful.

UX_MEMORY_INSUFFICIENT (0x12) Not enough memory to initialize
the stack.

Example

/* Example of a device framework */

#define DEVICE FRAMEWORK LENGTH FULL SPEED 50

UCHAR device framework full speed[] = {

/* Device descriptor */
0x12, 0x01, Ox10,
Oxec, 0x08, 0x10,
0x00, O0x01,

0x01,
0x00,

0x00,
0x00,

/* Configuration descriptor */
0x09, 0x02, 0x20, 0x00,

0x32,

0x01,

/* Interface descriptor */
0x09, 0x04, 0x00, 0x00,

0x00,

0x02,

/* (Bulk Out)

0x02,

Endpoint descriptor

0x07, 0x05, 0x01, 0x40,
/* (Bulk In)
0x02,

*/
0x40,

Endpoint descriptor
0x07, 0x05, 0x82,
}i

*/

0x00,
0x00,

0x01,

0x08,

0x00,

0x00,

#define DEVICE FRAMEWORK LENGTH HIGH SPEED 60

UCHAR device framework high speed[] = {

/* Device descriptor */
0x12, 0x01, 0x00,
Ox0a, 0x07, 0x25,
0x03, 0x01,

0x02,
0x40,

0x00,
0x01,

/* Device qualifier descriptor */
Ox0a, 0x06, 0x00, 0x02, 0x00,
0x01, 0x00,

/* Configuration descriptor */
0x09, 0x02, 0x20, 0x00,

0x32,

0x01,

/* Interface descriptor */
0x09, 0x04, 0x00, 0xO00,

0x00,

0x02,

/* (Bulk Out)

0x02,

Endpoint descriptor

0x07, 0x05, 0x01, 0x00,
/* (Bulk In)
0x02,

*/
0x00,

Endpoint descriptor
0x07, 0x05, 0x82,

*/

0x00,
0x00,

0x00,

0x01,

0x08,

0x02,

0x02,

0x00,
0x00,

0x00,

0x06,

0x00,

0x00

0x00,
0x01,

0x00,

0x00,

0x06,

0x00,

0x00

0x08,
0x00,

0xcO,

0x50,

0x40,
0x02,

0x40,

0xcO,

0x50,

/* String Device Framework:
Byte 0 and 1: Word containing the

Byte 2 Byte containing the
Byte 3 Byte containing the
*/

#define STRING FRAMEWORK LENGTH 38
UCHAR string framework[] = {

language ID: 0x0904 for US
index of the descriptor
length of the descriptor string

/* Manufacturer string descriptor: Index 1 */
0x09, 0x04, 0x01, O0xOc,
0x45, 0x78, 0x70, 0x72,0x65, 0x73, 0x20, Ox4c,
Ox6f, 0x67, 0x69, 0x63,
/* Product string descriptor: Index 2 */
0x09, 0x04, 0x02, 0xO0c,
0x4D, 0x4C, 0x36, 0x39, 0x36, 0x35, 0x30, 0x30,
0x20, 0x53, 0x44, 0x4B,
/* Serial Number string descriptor: Index 3 */
0x09, 0x04, 0x03, 0x04,
0x30, 0x30, 0x30, 0x31
}i
/* Multiple languages are supported on the device, to add

a language besides English, the Unicode language code must
be appended to the language id framework array and the length
adjusted accordingly. */

#define LANGUAGE ID FRAMEWORK LENGTH 2

UCHAR language id framework[] = {
/* English. */
0x09, 0x04

bi

The application can request a call back when the controller changes its state. The two
main states for the controller are:

UX_DEVICE_SUSPENDED
UX_DEVICE_RESUMED

If the application does not need Suspend/Resume signals, it would supply a UX_NULL
function.
UINT status;

/* The code below is required for installing the device portion of

USBX. There is no call back for device status change in this
example. */
status = ux_device_stack_initialize (&device framework high speed,

DEVICE FRAMEWORK LENGTH HIGH SPEED,

&device framework full speed,

DEVICE FRAMEWORK LENGTH FULL_ SPEED,
&string framework,

STRING FRAMEWORK LENGTH,
&language id framework,

LANGUAGE ID FRAMEWORK LENGTH,
UX_NULL) ;

/* If status equals UX SUCCESS, initialization was successful. */

ux_device_stack_interface delete

Delete a stack interface

Prototype

UINT wux device_stack_interface_delete (UX SLAVE INTERFACE *interface)
Description
This function is called when an interface should be removed. An interface is
either removed when a device is extracted, or following a bus reset, or when
there is a new alternate setting.
Input Parameter
interface Pointer to the interface to remove.
Return Value
UX_SUCCESS (Ox00) This operation was successful.
Example

UINT status;

/* The following example illustrates this service. */
status = ux_device_stack_interface_delete(interface);

/* If status equals UX SUCCESS, the operation was successful. */

ux_device_stack_interface get

Get the current interface value

Prototype

UINT ux device stack interface get (UINT interface value)

Description

This function is called when the host queries the current interface. The device
returns the current interface value.

Input Parameter
interface_value Interface value to return.

Return Values

UX_SUCCESS (Ox00) This operation was successful.
UX_ERROR (OXFF) No interface exists.
Example

ULONG interface value;
UINT status;

/* The following example illustrates this service. */
status = ux_device_stack_interface_delete(interface value);

/* If status equals UX SUCCESS, the operation was successful. */

ux_device_stack_interface_ set

Change the alternate setting of the interface
Prototype

UINT ux device stack interface set (UCHAR PTR device framework,
ULONG device framework length,
ULONG alternate setting value)

Description

This function is called when the host requests a change of the alternate setting
for the interface.

Parameters
device_framework Address of the device framework for this
interface.
device_framework_length Length of the device framework.
alternate_setting_value Alternate setting value to be used by this
interface.
Return Values
UX_SUCCESS (Ox00) This operation was successful.
UX_ERROR (OXFF) No interface exists.
Example
UCHAR PTR device framework
ULONG device framework length;
ULONG alternate setting value;

UINT status;

/* The following example illustrates this service. */
status = ux_device_stack_interface_set (device framework,

device framework length,
alternate setting value);

/* If status equals UX SUCCESS, the operation was successful. */

ux_device_stack_interface_ start

Start search for a class to own an interface instance

Prototype

UINT ux device_ stack interface_ start (UX SLAVE INTERFACE *interface)
Description

This function is called when an interface has been selected by the host and the
device stack needs to search for a device class to own this interface instance.

Input Parameter
interface Pointer to the interface created.

Return Values

UX_SUCCESS (Ox00) This operation was successful.
UX_NO_CLASS MATCH (Ox57) No class exists for this interface.
Example

UINT status;

/* The following example illustrates this service. */
status = ux_device_stack_interface_start (interface);

/* If status equals UX SUCCESS, the operation was successful. */

ux_device_stack_transfer_request

Request to transfer data to the host

Prototype

UINT ux_device stack_transfer request (UX SLAVE TRANSFER *transfer request,
ULONG slave length,
ULONG host length)

Description

This function is called when a class or the stack wants to transfer data to the
host. The host always polls the device but the device can prepare data in

advance.

Parameters
transfer_request Pointer to the transfer request.
slave_length Length the device wants to return.
host_length Length the host has requested.

Return Values

UX_SUCCESS (Ox00) This operation was successful.
UX_ERROR (OxFF) Transport error.

Example

UINT status;

/* The following example illustrates how to transfer more data
than an application requests. */
while (total length)
{
/* How much can we send in this transfer? */
if (total length > UX SLAVE CLASS STORAGE BUFFER SIZE)
transfer length = UX SLAVE CLASS STORAGE BUFFER SIZE;
else
transfer length = total length;

/* Copy the Storage Buffer into the transfer request memory. */
ux utility memory copy (transfer request ->
ux_slave transfer request data pointer,
media memory, transfer length);
/* Send the data payload back to the caller. */
status = ux_device_transfer request(transfer request,
transfer length, transfer length);

/* If status equals UX SUCCESS, the operation was successful. */

/* Update the buffer address. */
media memory += transfer length;

/* Update the length to remain. */
total length -= transfer length;

ux_device_stack_transfer_request_abort

Cancel a transfer request

Prototype

UINT wux_device_stack_ transfer abort (UX SLAVE TRANSFER *transfer request,
ULONG completion code)

Description

This function is called when an application needs to cancel a transfer request or
when the stack needs to abort a transfer request associated with an endpoint.

Parameters
transfer_request Pointer to the transfer request.
completion_code Error code to be returned to the class waiting

for this transfer request to complete.
Return Value
UX_SUCCESS (Ox00) This operation was successful.

Example

UINT status;

/* The following example illustrates how to abort a transfer when
a bus reset has been detected on the bus. */
status = ux_device_stack_transfer abort (transfer request,
UX TRANSFER BUS RESET) ;

/* If status equals UX SUCCESS, the operation was successful. */

Chapter 5: USBX Device Class
Considerations

USB Device Storage Class

The USB device storage class allows for a storage device embedded in the system to
be made visible to a USB host.

The USB device storage class does not by itself provide a storage solution. It merely
accepts and interprets SCSI requests coming from the host. When one of these
requests is a read or a write command, it will invoke a pre-defined call back to a real
storage device handler, such as an ATA device driver or a Flash device driver.

When initializing the device storage class, a pointer structure is given to the class that
contains all the information necessary. An example is given below.

/* Store the number of LUN in this device storage instance: single LUN.
storage parameter.ux slave class storage parameter number lun = 1;

/* Initialize the storage class parameters for reading/writing to the
Flash Disk. */

storage parameter.ux slave class_ storage parameter lun[O0].
ux_slave class_storage media last lba = Oxletbfe;

storage parameter.ux slave class storage parameter lun([O0].
ux_slave class_storage media block length = ©512;

storage parameter.ux slave class_ storage parameter lun[O0].
ux_slave class_storage media type = 0;

storage parameter.ux slave class storage parameter lun([O0].
ux_slave class storage media removable flag = 0x80;

storage parameter.ux slave class storage parameter lun[0]

ux_slave class_storage media read = tx demo thread flash media read;

storage parameter.ux slave class_ storage parameter lun[O0].
ux slave class storage media write =
tx demo_ thread flash media write;

storage parameter.ux slave class storage parameter lun([O0].
ux_slave class_storage media status =
tx demo_thread flash media status;

/* Initialize the device storage class. The class is connected with
interface 0 */

status =
ux_device_stack class_register(ux system slave class storage name,

*/

ux device class storage entry, ux device class_storage thread,
0, (VOID *)é&storage parameter);

In this example, the drive’s last block address or LBA is given as well as the logical
sector size. The LBA is the number of sectors available in the media —1. The block
length is set to 512 in regular storage media. It can be set to 2048 for optical drives.

The application needs to pass three callback function pointers to allow the storage class
to read, write and obtain status for the media.

The prototypes for the read and write functions are:

UINT media read(UCHAR PTR data pointer, ULONG number blocks, ULONG lba);
UINT media write (UCHAR PTR data pointer, ULONG number blocks, ULONG lba);

Where:

data_pointer is the address of the buffer to be used for reading or writing
number_blocks is the number of sectors to read/write
Iba is the sector address to read.

The return value can have either the value UX_SUCCESS or UX_ERROR indicating a

successful or unsuccessful operation. These operations do not need to return any other
error codes. If there is an error in any operation, the storage class will invoke the status
call back function.

This function has the following prototype:

ULONG tx demo_thread media status (ULONG media id);

The calling parameter media_id is not currently used and should always be 0. In the
future it may be used to distinguish multiple storage devices or storage devices with
multiple SCSI LUNSs. This version of the storage class does not support multiple
instances of the storage class or storage devices with multiple SCSI LUNSs.

The return value is a SCSI error code that can have the following format:
Bits 0-7 Sense_key
Bits 8-15 Additional Sense Code
Bits 16-23 Additional Sense Code Qualifier

The following table provides the possible Sense/ASC/ASCQ combinations.

Sense ASC ASCQ Description

Key

00 00 00 NO SENSE

01 17 01 RECOVERED DATA WITH RETRIES

01 18 00 RECOVERED DATA WITH ECC

02 04 01 LOGICAL DRIVE NOT READY - BECOMING READY

02 04 02 LOGICAL DRIVE NOT READY - INITIALIZATION REQUIRED
02 04 04 LOGICAL UNIT NOT READY - FORMAT IN PROGRESS
02 04 FF LOGICAL DRIVE NOT READY - DEVICE IS BUSY

02 06 00 NO REFERENCE POSITION FOUND

02 08 00 LOGICAL UNIT COMMUNICATION FAILURE

02 08 01 LOGICAL UNIT COMMUNICATION TIME-OUT

02 08 80 LOGICAL UNIT COMMUNICATION OVERRUN

02 3A 00 MEDIUM NOT PRESENT

02 54 00 USB TO HOST SYSTEM INTERFACE FAILURE

02 80 00 INSUFFICIENT RESOURCES

02 FF FF UNKNOWN ERROR

03 02 00 NO SEEK COMPLETE

03 03 00 WRITE FAULT

03 10 00 ID CRC ERROR

03 11 00 UNRECOVERED READ ERROR

03 12 00 ADDRESS MARK NOT FOUND FOR ID FIELD

03 13 00 ADDRESS MARK NOT FOUND FOR DATA FIELD

03 14 00 RECORDED ENTITY NOT FOUND

03 30 01 CANNOT READ MEDIUM - UNKNOWN FORMAT

03 31 01 FORMAT COMMAND FAILED

04 40 NN DIAGNOSTIC FAILURE ON COMPONENT NN (80H-FFH)
05 1A 00 PARAMETER LIST LENGTH ERROR

05 20 00 INVALID COMMAND OPERATION CODE

05 21 00 LOGICAL BLOCK ADDRESS OUT OF RANGE

05 24 00 INVALID FIELD IN COMMAND PACKET

05 25 00 LOGICAL UNIT NOT SUPPORTED

05 26 00 INVALID FIELD IN PARAMETER LIST

05 26 01 PARAMETER NOT SUPPORTED

05 26 02 PARAMETER VALUE INVALID

05 39 00 SAVING PARAMETERS NOT SUPPORT

06 28 00 NOT READY TO READY TRANSITION — MEDIA CHANGED
06 29 00 POWER ON RESET OR BUS DEVICE RESET OCCURRED
06 2F 00 COMMANDS CLEARED BY ANOTHER INITIATOR

07 27 00 WRITE PROTECTED MEDIA

0B 4E 00 OVERLAPPED COMMAND ATTEMPTED

Multiple SCSI LUN

The USBX device storage class supports multiple LUNS. It is therefore possible to
create a storage device that acts as a CD-ROM and a Flash disk at the same time. In
such a case, the initialization would be slightly different. Here is an example for a Flash
Disk and CD-ROM:

/* Store the number of LUN in this device storage instance. */
storage parameter.ux slave class_storage parameter number lun = 2;

/* Initialize the storage class parameters for reading/writing to the
Flash Disk. */

storage parameter.ux slave class_storage parameter lun[0].
ux_slave class_storage media last lba = O0x7bbff;

storage parameter.ux slave class_storage parameter lun[0].
ux_slave class_storage media block length = ©512;

storage parameter.ux slave class storage parameter lun[O0].
ux_ slave class_storage media type = 0;

storage parameter.ux slave class storage parameter lun[0].
ux slave class storage media removable flag = 0x80;

storage parameter.ux slave class_storage parameter lun[0].
ux_slave class_storage media read = tx demo thread flash media read;

storage parameter.ux slave class storage parameter lun[O0].
ux slave class storage media write =
tx demo_thread flash media write;

storage parameter.ux slave class storage parameter lun[0].
ux slave class storage media status =
tx demo_ thread flash media status;

/* Initialize the storage class LUN parameters for reading/writing to
the CD-ROM. */

storage parameter.ux slave class storage parameter lun[l].
ux_slave class_storage media last lba = 0x0O4caaf;

storage parameter.ux slave class storage parameter lun[l].
ux_slave class_storage media block length = 2048;

storage parameter.ux slave class storage parameter lun[l].
ux_slave class_storage media type = 5;

storage parameter.ux slave class storage parameter lun[l].
ux slave class storage media removable flag = 0x80;

storage parameter.ux slave class storage parameter lun[l].
ux_slave class_storage media read = tx demo thread cdrom media read;

storage parameter.ux slave class storage parameter lun[l].
ux_slave class_storage media write =
tx demo thread cdrom media write;

storage parameter.ux slave class storage parameter lun[l].
ux slave class storage media status =
tx demo_ thread cdrom media status;

/* Initialize the device storage class for a Flash disk and CD-ROM. The
class is connected with interface 0 */
status =
ux_device_stack class_register(ux system slave class storage name,
ux device class storage entry, ux device class storage thread,0,
(VOID *) &storage parameter);

USB Device CDC-ACM Class

The USB device CDC-ACM class allows for a USB host system to communicate with
the device as a serial device. This class is based on the USB standard and is a subset
of the CDC standard.

A CDC-ACM compliant device framework needs to be declared by the device stack. An
example is found here below:

unsigned char device framework full speed[] = {
/* Device descriptor 18 bytes
0x02 bDeviceClass: CDC class code

0x00 bDeviceSubclass: CDC class sub code
0x00 bDeviceProtocol: CDC Device protocol

idvendor & idProduct - http://www.linux-usb.org/usb.ids
*/
0x12, 0x01, 0x10, 0xO01,
OxEF, 0x02, 0x01, 0x08,
0Ox84, 0x84, 0x00, 0x00,
0x00, 0x01, 0x01, 0x02,
0x03, 0x01,

/* Configuration 1 descriptor 9 bytes */
0x09, 0x02, Ox4b, 0x00, 0x02, 0x01, 0x00,0x40, 0x00,

/* Interface association descriptor. 8 bytes. */
0x08, 0x0b, 0x00, 0x02, 0x02, 0x02, 0x00, 0x00,

/* Communication Class Interface Descriptor Requirement. 9 bytes. */
0x09, 0x04, 0x00, 0x00,0x01,0x02, 0x02, 0x01, 0x00,

/* Header Functional Descriptor 5 bytes */
0x05, 0x24, 0x00,0x10, O0x01,

/* ACM Functional Descriptor 4 bytes */
0x04, 0x24, 0x02,0x0f,

/* Union Functional Descriptor 5 bytes */
0x05, 0x24, 0x06, 0x00, /* Master interface */
0x01, /* Slave interface */

/* Call Management Functional Descriptor 5 bytes */
0x05, 0x24, 0x01,0x03, 0x01, /* Data interface */

/* Endpoint 1 descriptor 7 bytes */
0x07, 0x05, 0x83, 0x03,0x08, 0x00, OxFF,

/* Data Class Interface Descriptor Requirement 9 bytes */
0x09, 0x04, 0x01, 0x00, 0x02,0x0A, 0x00, 0x00, 0x00,

/* First alternate setting Endpoint 1 descriptor 7 bytes*/
0x07, 0x05, 0x02,0x02,0x40, 0x00,0x00,

/* Endpoint 2 descriptor 7 bytes */
0x07, 0x05, 0x81,0x02,0x40, 0x00, 0x00,

The CDC-ACM class uses a composite device framework to group interfaces (control
and data). As a result care should be taken when defining the device descriptor. USBX
relies on the IAD descriptor to know internally how to bind interfaces. The IAD descriptor
should be declared before the interfaces and contain the first interface of the CDC-ACM
class and how many interfaces are attached.

The CDC-ACM class also uses a union functional descriptor which performs the same
function as the newer IAD descriptor. Although a Union Functional descriptor must be
declared for historical reasons and compatibility with the host side, it is not used by
USBX.

The initialization of the CDC-ACM class expects the following parameters:

/* Set the parameters for callback when insertion/extraction of a
CDC device. */
parameter.ux slave class cdc_acm instance activate =
tx _demo_cdc_instance activate;
parameter.ux slave class cdc_acm instance deactivate =
tx demo_cdc_instance deactivate;

nitliallize e evice CdcC cCclass. 1S Class owns O interraces
/* Initiali the devi d 1 Thi 1 both interf
starting with 0. */

status =
ux device stack class register(ux system slave class cdc_acm name,
ux device class cdc_acm entry, 1,0, é¶meter);

The 2 parameters defined are callback pointers into the user applications that will be
called when the stack activates or deactivate this class.

The CDC-ACM is based on a USB-IF standard and is automatically recognized by MAC
Os and Linux operating systems. On Windows platforms, this class requires a .inf file.
ExpressLogic supplies a template for the CDC-ACM class and it can be found in the
usbx_windows_host_files directory. For more recent version of Windows the file
CDC_ACM_Template_Win7_64bit.inf should be used. This file needs to be modified to
reflect the PID/VID used by the device. The PID/VID will be specific to the final
customer when the company and the product are registered with the USB-IF.

In the inf file, the fields to modify are located here:

[Devicelist]
$DESCRIPTIONS=DriverInstall, USB\VID_8484&PID_OOOO

[DevicelList.NTamdo64]
$DESCRIPTION%=DriverInstall, USB\VID 8484&PID 0000

In the device framework of the CDC-ACM device, the PID/VID are stored in the device
descriptor (see the device descriptor declared above)

When a USB host systems discovers the USB CDC-ACM device, it will mount a serial
class and the device can be used with any serial terminal program. See the host
Operating System for reference.

The CDC-ACM class APIs are defined below:

ux_device_class_cdc_acm_read

Read from CDC-ACM pipe

Prototype

UINT ux_device class_cdc_acm read(UX SLAVE CLASS CDC ACM *cdc acm,
UCHAR *buffer, ULONG requested length, ULONG *actual length)

Description

This function is called when an application needs to read from the OUT data pipe
(OUT from the host, IN from the device)

Parameters
cdc_acm Pointer to the cdc class instance.
buffer Buffer address where data will be stored.
requested_length The maximum length we expect
actual_length The length returned into the buffer

Return Value

UX_SUCCESS (Ox00) This operation was
successful.

UX_CONFIGURATION_HANDLE_UNKNOWN (0x51) Device is no longer in
the configured state

UX_TRANSFER_NO_ANSWER (0Ox22) No answer from
device. The device
was probably
disconnected while the
transfer was pending.

Example

/* Read from the CDC class. */
status = ux_device_class_cdc_acm_read(cdc, buffer, UX DEMO BUFFER SIZE,
&actual length);

if (status != UX SUCCESS)
return;

ux_device_class_cdc_acm_write

Writing to a CDC-ACM pipe
Prototype
UINT ux_device class_cdc_acm write (UX SLAVE CLASS CDC ACM *cdc acm,

UCHAR *baffer, ULONG requested length, ULONG *actual length)
Description

This function is called when an application needs to write to the IN data pipe (IN
from the host, OUT from the device)

Parameters
cdc_acm Pointer to the cdc class instance.
buffer Buffer address where data is stored.
requested_length The length of the buffer to write
actual_length The length returned into the buffer after write is
performed
Return Value
UX_SUCCESS (Ox00) This operation was

successful.
UX_CONFIGURATION_HANDLE_UNKNOWN (0x51) Device is no longer in
the configured state
UX_TRANSFER_NO_ANSWER (0x22) No answer from
device. The device
was probably
disconnected while the
transfer was pending.

Example

/* Write to the CDC class bulk in pipe. */
status = ux_device_class_cdc_acm write(cdc, buffer, UX DEMO BUFFER SIZE,
&actual length);

if (status != UX SUCCESS)
return;

USB Device CDC-ECM Class

The USB device CDC-ECM class allows for a USB host system to communicate with
the device as a ethernet device. This class is based on the USB standard and is a
subset of the CDC standard.

A CDC-ACM compliant device framework needs to be declared by the device stack. An
example is found here below:

unsigned char device framework full speed[] = {
/* Device descriptor 18 bytes
0x02 bDeviceClass: CDC_ECM class code

0x06 bDeviceSubclass: CDC_ECM class sub code
0x00 bDeviceProtocol: CDC_ECM Device protocol

idvendor & idProduct - http://www.linux-usb.org/usb.ids
0x3939 idVendor: ExpressLogic test.

*/

0Ox12, 0x01, 0x10, 0x01,

0x02, 0x00, 0x00, 0x08,

0x39, 0x39, 0x08, 0x08,

0x00, 0x01, 0x01, 0x02, 03,0x01,

/* Configuration 1 descriptor 9 bytes. */
0x09, 0x02, 0x58, 0x00,0x02, 0x01, 0x00,0x40, 0x00,

/* Interface association descriptor. 8 bytes. */
0x08, 0x0b, 0x00, 0x02, 0x02, O0x06, 0x00, 0x00,

/* Communication Class Interface Descriptor Requirement 9 bytes */
0x09, 0x04, 0x00, 0x00,0x01,0x02, 0x06, 0x00, 0x00,

/* Header Functional Descriptor 5 bytes */
0x05, 0x24, 0x00, 0Ox10, O0x01,

/* ECM Functional Descriptor 13 bytes */
0x0D, 0x24, 0xO0F, 0x04,0x00, 0x00, 0x00, 0x00, OxEA, 0x05, 0x00,
0x00, 0x00,

/* Union Functional Descriptor 5 bytes */
0x05, 0x24, 0x06, 0x00,0x01,

/* Endpoint descriptor (Interrupt) */
0x07, 0x05, 0x83, 0x03, 0x08, 0x00, 0x08,

/* Data Class Interface Descriptor Alternate Setting 0, 0 endpoints. 9
bytes */
0x09, 0x04, 0x01, 0x00, 0x00, Ox0A, 0x00, 0x00, 0x00,

/* Data Class Interface Descriptor Alternate Setting 1, 2 endpoints. 9
bytes */
0x09, 0x04, 0x01, 0x01, 0x02, Ox0A, 0x00, 0x00,0x00,

/* First alternate setting Endpoint 1 descriptor 7 bytes */
0x07, 0x05, 0x02, 0x02, 0x40, 0x00, 0x00,

/* Endpoint 2 descriptor 7 bytes */
0x07, 0x05, 0x81, 0x02, 0x40, 0x00,0x00

The CDC-ECM class uses a very similar device descriptor approach to the CDC-ACM
and also requires a IAD descriptor. See the CDC-ACM class for definition.

In addition to the regular device framework, the CDC-ECM requires special string
descriptors. An example is given below:

unsigned char string framework[] = {

/* Manufacturer string descriptor: Index 1 - "Express Logic" */
0x09, 0x04, 0x01, 0xO0c,
0x45, 0x78, 0x70, 0x72, 0x65, 0x73, 0x20, Ox4c,
Ox6f, 0x67, 0x69, 0x63,

/* Product string descriptor: Index 2 - "EL CDCECM Device" */
0x09, 0x04, 0x02, O0Ox10,
0x45, Ox4c, 0x20, 0x43, 0x44, 0x43, 0x45, 0x43,
0x4d, 0x20, 0x44, 0x65, 0x76, 0x69, 0x63, 0x64,

/* Serial Number string descriptor: Index 3 - "0001"™ */
0x09, 0x04, 0x03, 0x04,
0x30, 0x30, 0x30, 0x31,

/* MAC Address string descriptor: Index 4 - "001E5841B879" */
0x09, 0x04, 0x04, 0x0C,
0x30, 0x30, 0x31, 0x45, 0x35, 0x38,
0x34, 0x31, 0x42, 0x38, 0x37, 0x39

bi

The MAC address string descriptor is used by the CDC-ECM class to reply to the host
gueries as to what MAC address the device is answering to at the TCP/IP protocol. It
can be set to the device choice but must be defined here.

The initialization of the CDC-ECM class is as follows:

/* Set the parameters for callback when insertion/extraction of a CDC
device. Set to NULL.*/

cdc_ecm parameter.ux slave class cdc ecm instance activate = UX NULL;
cdc_ecm parameter.ux slave class_cdc _ecm instance deactivate UX NULL;

/* Define a NODE ID. */
cdc_ecm parameter.ux slave class cdc ecm parameter local node id[0] =

0x00;
cdc_ecm parameter.ux slave class cdc_ecm parameter local node id[1l] =
Oxle;
cdc_ecm parameter.ux slave class cdc_ecm parameter local node id[2] =
0x58;
cdc_ecm parameter.ux slave class_cdc_ecm parameter local node id[3] =
0x41;
cdc_ecm parameter.ux slave class_cdc_ecm parameter local node id[4] =
0xb8;

cdc_ecm parameter.ux slave class cdc _ecm parameter local node id[5] =

/* Define a remote NODE ID. */
cdc_ecm parameter.ux slave class_cdc _ecm parameter remote node id[0] =

cdc_ecm parameter.ux slave class_cdc ecm parameter remote node id[1] =
cdc_ecm parameter.ux slave class_cdc _ecm parameter remote node id[2] =
cdc_ecm parameter.ux slave class_ cdc ecm parameter remote node id[3] =
cdc_ecm parameter.ux slave class_cdc _ecm parameter remote node id[4] =

cdc_ecm parameter.ux slave class_cdc _ecm parameter remote node id[5] =

/* Initialize the device cdc_ecm class. */
status =
ux device_stack class_register(ux system slave class cdc ecm name,
ux device class cdc_ecm entry, 1,0,
&cdc_ecm _parameter);

The initialization of this class expects the same function callback for activation and
deactivation, although here as an exercise they are set to NULL so that no callback is
performed.

The next parameters are for the definition of the node IDs. 2 Nodes are necessary for
the CDC-ECM, a local node and a remote node. The remote node must be the same
one as the one declared in the device framework string descriptor.

The CDC-ECM class has built-in APIs for transferring data both ways but they are
hidden to the application as the user application will communicate with the USB
Ethernet device through NetX.

The USBX CDC-ECM class is closely tied to ExpressLogic NetX Network stack.

An application using both NetX and USBX CDC-ECM class will activate the NetX
network stack in its usual way but in addition needs to activate the USB network stack
as follows:

/* Initialize the NetX system. */
nx_system_initialize();

/* Perform the initialization of the network driver. This will initialize
the USBX network layer.*/
ux network driver init();

The USB network stack needs to be activated only once and is not specific to CDC-
ECM but is required by any USB class that requires NetX services.

The CDC-ECM class will be recognized by MAC OS and Linux hosts. But there is no
driver supplied by Microsoft Windows to recognize CDC-ECM natively. Some
commercial products do exist for Windows platforms and they supply their own .inf file.
This file will need to be modified the same way as the CDC-ACM inf template to match
the PID/VID of the USB network device.

USB Device RNDIS Class

The USB device RNDIS class allows for a USB host system to communicate with the
device as a ethernet device. This class is based on the Microsoft proprietary
implementation and is specific to Windows platforms..

A RNDIS compliant device framework needs to be declared by the device stack. An
example is found here below:

unsigned char device framework full speed[] = {

/* Device descriptor
0x02 bDeviceClass: RNDIS class code
0x00 bDeviceSubclass: RNDIS class sub code
0x00 bDeviceProtocol: RNDIS Device protocol

idvendor & idProduct - http://www.linux-usb.org/usb.ids
0x3939 idVendor: ExpressLogic test.

*/

0x12, 0x01, 0x10, 0x01, 0x02, 0x00, 0x00,

0x40, Oxb4, 0x04, 0x27, 0Ox1ll, 0x00, 0xO01,

0x01, 0x02, 0x03, 0xO01,

/* Configuration 1 descriptor */
0x09, 0x02, Ox4b, 0x00, 0x02, 0x01, 0x00, 0x40, 0x00,

/* Interface association descriptor. 8 bytes. */
0x08, 0x0b, 0x00, 0x02, 0x02, 0x02, 0x00, 0x00,

/* Communication Class Interface Descriptor Requirement */
0x09, 0x04, 0x00, 0x00, O0x01, 0x02, 0x02, 0x00, 0x00,

/* Header Functional Descriptor */
0x05, 0x24, 0x00, 0Ox10, 0x01,

/* ACM Functional Descriptor */
0x04, 0x24, 0x02, 0x00,

/* Union Functional Descriptor */
0x05, 0x24, 0x06, 0x00, 0x01,

/* Call Management Functional Descriptor */
0x05, 0x24, 0x01, 0x00, 0x01,

/* Endpoint 1 descriptor */
0x07, 0x05, 0x83, 0x03, 0x08, 0x00, OxFF,

/* Data Class Interface Descriptor Requirement */
0x09, 0x04, 0x01, 0x00, 0x02, 0x0A, 0x00, 0x00, 0x00,

/* First alternate setting Endpoint 1 descriptor */
0x07, 0x05, 0x02, 0x02, 0x40, 0x00, 0x00,

/* Endpoint 2 descriptor */

0x07,
};

0x05,

0x81, 0x02, 0x40, 0x00, 0x00

The RNDIS class uses a very similar device descriptor approach to the CDC-ACM and
CDC-ECM and also requires a IAD descriptor. See the CDC-ACM class for definition
and requirements for the device descriptor.

The activation of the RNDIS class is as follows:

/* Set the parameters for callback when insertion/extraction of a CDC

device.

parameter.
parameter.

/* Define

parameter.
parameter.
parameter.
parameter.
parameter.
parameter.

/* Define

parameter.
parameter.
parameter.
.ux_slave class_rndis parameter remote node id
parameter.
parameter.

parameter

Set to NULL.*/
ux slave class _rndis_instance activate
ux slave class_rndis_instance deactivate

a local NODE ID. */

ux_slave class_rndis parameter local node id
ux_slave class_rndis_ parameter local node id
ux_slave class_rndis_ parameter local node id
ux_slave class rndis parameter local node id
ux_slave class rndis parameter local node id
ux_slave class_rndis parameter local node id

a remote NODE ID. */

ux_slave class rndis parameter remote node id
ux_slave class rndis parameter remote node id
ux_slave class_rndis parameter remote node id

ux_slave class_rndis parameter remote node id
ux_slave class rndis parameter remote node id

UX_NULL;
UX_NULL;

0x00;
Oxle;
0x58;
0x41;
0xb8;
0x78;

0x00;
Oxle;
0x58;
0x41;
0xb8;
0x79;

/* Set extra parameters used by the RNDIS query command with certain

OIDs.

parameter.
parameter.

*/
ux_slave class _rndis parameter vendor id
ux slave class rndis parameter driver version

ux utility memory copy (parameter.
ux slave class rndis parameter vendor description,

"ELOGIC

/* Initialize the device rndis class.

status

RNDIS", 12);

This class owns both interfaces.

0x04b4d ;
0x1127;

*/

ux device_stack class_ register(ux system slave class rndis name,

ux device class rndis entry,

¶meter) ;

1,0,

As for the CDC-ECM, the RNDIS class requires 2 nodes, one local and one remote but
there is no requirement to have a string descriptor describing the remote node.

However due to Microsoft proprietary messaging mechanism, some extra parameters
are required. First the vendor ID has to be passed. Likewise, the driver version of the
RNDIS. A vendor string must also be given.

The RNDIS class has built-in APIs for transferring data both ways but they are hidden to
the application as the user application will communicate with the USB Ethernet device
through NetX.

The USBX RNDIS class is closely tied to ExpressLogic NetX Network stack.

An application using both NetX and USBX RNDIS class will activate the NetX network
stack in its usual way but in addition needs to activate the USB network stack as
follows:

/* Initialize the NetX system. */
nx_system_initialize();

/* Perform the initialization of the network driver. This will
initialize the USBX network layer.*/
ux network driver init();

The USB network stack needs to be activated only once and is not specific to RNDIS
but is required by any USB class that requires NetX services.

The RNDIS class will not be recognized by MAC OS and Linux hosts as it is specific to
Microsoft operating systems. On windows platforms a .inf file needs to be present on
the host that matches the device descriptor. ExpressLogic supplies a template for the
RNDIS class and it can be found in the usbx_windows_host _files directory. For more
recent version of Windows the file RNDIS_Template.inf should be used. This file needs
to be modified to reflect the PID/VID used by the device. The PID/VID will be specific to
the final customer when the company and the product are registered with the USB-IF.
In the inf file, the fields to modify are located here:

[ELogicDevices]
%$ELogicDevice$%

RNDIS, USB\VID_XXXX&PID_OOOO

[ELogicDevices.NT.5.1]
$ELogicDevice% RNDIS.NT.5.1, USB\VID xxxx&PID 0000

In the device framework of the RNDIS device, the PID/VID are stored in the device
descriptor (see the device descriptor declared above)

When a USB host systems discovers the USB RNDIS device, it will mount a network
interface and the device can be used with network protocol stack. See the host
Operating System for reference.

USB Device DFU Class

The USB device DFU class allows for a USB host system to update the device firmware
based on a host application. The DFU class is a USB-IF standard class.

USBX DFU class is relatively simple. It device descriptor does not require anything but
a control endpoint. Most of the time, this class will be embedded into a USB composite
device. The device can be anything such as a storage device or a comm device and the
added DFU interface can inform the host that the device can have its firmware updated
on the fly.

The DFU class works in 3 steps. First the device mounts as normal using the class
exported. An application on the host (Windows or Linux) will exercise the DFU class and
send a request to reset the device into DFU mode. The device will disappear from the
bus for a short time (enough for the host and the device to detect a RESET sequence)
and upon restarting, the device will be exclusively in DFU mode, waiting for the host
application to send a firmware upgrade. When the firmware upgrade has been
completed, the host application resets the device and upon re-enumeration the device
will revert to its normal operation with the new firmware.

A DFU device framework will look like this:

UCHAR device framework full speed[] = {

/* Device descriptor */
0x12, 0x01, 0x10, 0x01, 0x00, 0x00, 0x00, O0x40,
0x99, 0x99, 0x00, 0Ox00, 0Ox00, 0x00, 0x01, 0x02,
0x03, 0x01,

/* Configuration descriptor */
0x09, 0x02, Oxlb, 0x00, 0x01, 0x01, 0x00, OxcO,
0x32,

/* Interface descriptor for DFU. */
0x09, 0x04, 0x00, 0x00, 0x00, OxFE, 0x01, 0x01,
0x00,

/* Functional descriptor for DFU. */
0x09, 0x21, 0x0f, OxE8, 0x03, 0x40, 0x00, 0x00,
0x01,

}i

In this example, the DFU descriptor is not associated with any other classes. It has a
simple interface descriptor and no other endpoints attached to it. There is a Functional
descriptor that describes the specifics of the DFU capabilities of the device.

The description of the DFU capabilities are as follows:

Name Offset | Size type Description

bmAttributes 2 1 Bit field | Bit 3: device will perform a bus detach-

attach sequence when it receives a
DFU_DETACH request.

The host must not issue a USB Reset.
(bitWillDetach)

0=no

1=yes

Bit 2: device is able to communicate via
USB after Manifestation phase.
(bitManifestationTolerant)

0 = no, must see bus reset

1=yes
Bit 1: upload capable (bitCanUpload)
0=no
1=yes
Bit 0: download capable
(bitCanDnload)
0=no
1=yes
wDetachTimeOut | 3 2 number | Time, in milliseconds, that the device will

wait after receipt of the DFU_DETACH
request. If this time elapses without a
USB reset, then the device will terminate
the Reconfiguration phase and revert
back to normal operation. This
represents the maximum time that the
device can wait (depending on its timers,
etc.). USBX sets this value to 1000 ms.

wTransferSize

5 2 number | Maximum number of bytes that the

device can accept per control-write
operation. USBX sets this value to 64
bytes.

The declaration of the DFU class is as follows:

/* Store the DFU parameters. */

dfu parameter.

dfu parameter

dfu parameter.
dfu parameter.

dfu parameter.

dfu parameter.

ux_slave class_dfu parameter instance activate =
tx demo_thread dfu activate;

.ux_slave class_dfu parameter instance deactivate =

tx demo_thread dfu deactivate

ux slave class_dfu parameter read =

tx demo thread dfu read;
ux_slave class_dfu parameter write =

tx demo_thread dfu write;
ux slave class _dfu parameter get status =

tx demo thread dfu get status

ux_slave class_dfu parameter notify =

tx _demo_thread dfu notify;
dfu parameter.ux slave class_dfu parameter framework =

device framework dfu;
dfu parameter.ux slave class dfu parameter framework length =

DEVICE FRAMEWORK LENGTH DFU;

/* Initialize the device dfu class. The class is connected with interface
1 on configuration 1. */
status =
ux device_stack class register(ux system slave class dfu name,
ux device class dfu entry, 1, 0,
(VOID *)&dfu parameter);

if (status!=UX SUCCESS)
return;

The DFU class needs to work with a device firmware application specific to the target.
Therefore it defines several call back to read and write blocks of firmware and to get
status from the firmware update application. The DFU class also has a notify callback
function to inform the application when a begin and end of transfer of the firmware
occur.

Following is the description of a typical DFU application flow.

USBX DFU Class Device Application

/

DFU Detach

/
/

DFU Download

/

UX_SLAVE_CLASS_DFU_NOTIFICATION_BEGIN_DOWNLOAD

/

DFU Download Size =0
DFU Write

|

T

/

DFU Download Size I=0
DFU Write

|

T

/

DFU Download Size =0
DFU Write

|

T

UX_SLAVE_CLASS_DFU_NOTIFICATION_END_DOWNLOAD

T

The major challenge of the DFU class is getting the right application on the host to
perform the download the firmware. There is no application supplied by Microsoft or the
USB-IF. Some shareware exist and they work reasonably well on Linux and to a lesser
extent on Windows.

On Linux, one can use dfu-utils to be found here: http://wiki.openmoko.org/wiki/Dfu-util
A lot of information on dfu utils can also be found on this link:
http://www.libusb.org/wiki/windows backend

The Linux implementation of DFU performs correctly the reset sequence between the
host and the device and therefore the device does not need to do it. Linux can accept
for the bmAttributes bitWillDetach to be 0. Windows on the other side requires the
device to perform the reset.

http://wiki.openmoko.org/wiki/Dfu-util
http://www.libusb.org/wiki/windows_backend

On Windows, the USB registry must be able to associate the USB device with its
PID/VID and the USB library which will in turn be used by the DFU application. This can
be easily done with the free utility Zadig which can be found here:
http://sourceforge.net/projects/libwdi/files/zadiqg/.

Running Zadig for the first time will show this screen:

Zadig ‘ -— || = | MR

Device Options Help

I'u'alidity Sensor (PID=0011) - I [Edit
Driver WinUSB (v2.1.0.3) = libusb-win32 (v1.2.6.0) i More Information
WinUSE {libushx
USBID 133A 0011 libusb-win32
) Replace Driver - libushk
WCID= 7% WinUSB (Microsoft

8 devices found.

From the device list, find your device and associate it with the libusb windows driver.
This will bind the PID/VID of the device with the Windows USB library used by the DFU
utilities.

To operate the DFU command, simply unpack the zipped dfu utilities into a directory,
making sure the libusb dll is also present in the same directory. The DFU utilities must
be run from a DOS box at the command line.

First, type the command dfu-util —| to determine whether the device is listed. If not, run
Zadig to make sure the device is listed and associated with the USB library. You should
see a screen as follows:

C:\usb specs\DFU\dfu-util-0.6>dfu-util -I
dfu-util 0.6

Copyright 2005-2008 Weston Schmidt, Harald Welte and OpenMoko Inc.
Copyright 2010-2012 Tormod Volden and Stefan Schmidt
This program is Free Software and has ABSOLUTELY NO WARRANTY

Found Runtime: [0a5c:21bc] devnum=0, cfg=1, intf=3, alt=0,
name="UNDEFINED"

http://sourceforge.net/projects/libwdi/files/zadig/

The next step will be to prepare the file to be downloaded. The USBX DFU class does

not perform any verification on this file and is agnostic of its internal format. This

firmware file is very specific to the target but not to DFU nor to USBX.

Then the dfu-util can be instructed to send the file by typing the following command:
dfu-util -R -t 64 -D file to download.hex

The dfu-util should display the file download process until the firmware has been
completely downloaded.

USB Device HID Class

The USB device HID class allows for a USB host system to connect to a HID device
with specific HID client capabilities.

USBX HID device class is relatively simple compared to the host side. It is closely tied
to the behavior of the device and its HID descriptor.

Any HID client requires first to define a HID device framework as the example below:

UCHAR device framework full speed[] = {

/* Device descriptor */
0x12, Ox01, Ox10, Ox01, 0Ox00, 0x00, 0x00, 0x08,
0x81, Ox0A, Ox01, Ox01, 0Ox00, 0x00, 0x00, 0x00,
0x00, O0x01,

/* Configuration descriptor */
0x09, 0x02, 0x22, 0x00, 0x01, 0x01, 0x00, OxcO, 0x32,

/* Interface descriptor */
0x09, 0x04, 0x00, 0x00, 0x01, 0x03, 0x00, 0x00, 0x00,

/* HID descriptor */
0x09, 0x21, 0x10, 0Ox01, Ox21, 0x01, Ox22, Ox3f, O0x00,

/* Endpoint descriptor (Interrupt) */
0x07, 0x05, 0x81, 0x03, 0x08, 0x00, 0x08

b

The HID framework contains an interface descriptor that describes the HID class and
the HID device subclass. The HID interface can be a standalone class or part of a
composite device. Follows is a HID descriptor and the interrupt endpoint.

The initialization of the HID class is as follow, using a USB keyboard as an example:

/* Initialize the hid class parameters for a keyboard. */
hid parameter.ux device class_hid parameter report address =
hid keyboard report;
hid parameter.ux device class_hid parameter report length =
HID KEYBOARD REPORT LENGTH;
hid parameter.ux device class_hid parameter callback =
tx demo_thread hid callback;

/* Initialize the device hid class. The class is connected with interface
0 */
status =
ux device_stack class_register(ux system slave class hid name,
ux device class hid entry, 1,0,
(VOID *)&hid parameter);
if (status!=UX SUCCESS)
return;

The application needs to pass to the HID class a HID report descriptor and its length.
The report descriptor is a collection of items that describe the device. For more
information on the HID grammar refer to the HID USB class specification.

In addition to the report descriptor, the application passes a call back when a HID event
happens.

The USBX HID class supports the following standard HID commands from the host:

Command name Value | Description
UX DEVICE CLASS HID COMMAND GET REPORT 0x01 Get a report from the device
UX DEVICE CLASS HID COMMAND GET IDLE 0x02 | Get the idle frequency of

the interrupt endpoint

UX DEVICE CLASS HID COMMAND GET PROTOCOL | 0x03 Get the protocol running on
the device

UX DEVICE CLASS HID COMMAND SET REPORT 0x09 | Set a report to the device

UX_DEVICE CLASS HID COMMAND SET IDLE 0x0a | Set the idle frequency of
the interrupt endpoint

UX DEVICE CLASS HID COMMAND SET PROTOCOL | 0x0b Get the protocol running on
the device

The Get and Set report are the most commonly used commands by HID to transfer data
back and forth between the host and the device. Most commonly the host sends data on
the control endpoint but can receive data either on the interrupt endpoint or by issuing a
GET_REPORT command to fetch the data on the control endpoint.

The HID class can send data back to the host on the interrupt endpoint by using the
ux_device_class_hid_event_set function. Its definition is below:

ux_device_class_hid_event_set

Setting an event to the HID class

Prototype

UINT ux device_class_hid event set (UX SLAVE CLASS HID *hid,

UX_SLAVE_CLASS_HID EVENT *hid_event)

Description

This function is called when an application needs to send a HID event back to the
host. The function is not blocking, it merely puts the report into a circular queue

and returns to the application

Parameters
hid Pointer to the hid class instance.
hid_event Pointer to structure of the hid event.

Return Value

UX_SUCCESS (Ox00) This operation was successful.
UX_ERROR (0x01) Error on round robin queue
Example

/* Insert a key into the keyboard event. Length is fixed to 8.

hid event.ux device class_hid event length = 8;

/* First byte is a modifier byte. */
hid event.ux device class_hid event buffer[0] = 0;

/* Second byte is reserved. */
hid event.ux device class _hid event buffer[l] = 0;

/* The 6 next bytes are keys. We only have one key here. */
hid event.ux device class_hid event buffer[2] = key;

/* Set the keyboard event. */
ux_device_class_hid event_set (hid, &hid event);

*/

The callback defined at the initialization of the HID class performs the opposite of
sending an event. It gets as input the event sent by the host. The prototype of the

callback is as follows:

hid_callback

Getting an event from the HID class

Prototype

UINT hid callback (UX SLAVE CLASS HID *hid,
UX_SLAVE_CLASS_HID EVENT *hid_event)

Description

This function is called when the host sends a HID report to the application.

Parameters
hid Pointer to the hid class instance.
hid_event Pointer to structure of the hid event.
Example

The following example shows how to interpret an event for a HID keyboard:

UINT tx_demo_thread hid callback (UX_SLAVE CLASS HID *hid,
UX_SLAVE CLASS HID EVENT *hid event)
{

/* There was an event. Analyze it. Is it NUM LOCK ? */
if (hid event -> ux device class hid event buffer[0] &
HID NUM LOCK MASK)

/* Set the Num lock flag. */
num lock flag = UX TRUE;
else

/* Reset the Num lock flag. */
num_ lock flag = UX FALSE;

/* There was an event. Analyze it. Is it CAPS LOCK ? */
if (hid event -> ux device class hid event buffer[0] &

HID CAPS_LOCK_MASK)

/* Set the Caps lock flag. */
caps_lock flag = UX TRUE;

else

/* Reset the Caps lock flag. */
caps_lock flag = UX FALSE;

USB Device PIMA Class (PTP Responder)

The USB device PIMA class allows for a USB host system (Initiator) to connect to a
PIMA device (Resonder) to transfer media files. USBX Pima Class is conforming to the
USB-IF PIMA 15740 class also known as PTP class (for Picture Transfer Protocol).

USBX device side PIMA class supports the following operations:

Operation code

Value

Description

UX_DEVICE CLASS PIMA OC GET DEVICE_INFO

0x1001

Obtain the device
supported operations
and events

UX DEVICE CLASS PIMA OC OPEN SESSION

0x1002

Open a session between
the host and the device

UX_DEVICE CLASS PIMA OC_CLOSE_SESSION

0x1003

Close a session between
the host and the device

UX DEVICE CLASS PIMA OC GET STORAGE IDS

0x1004

Returns the storage ID
for the device. USBX
PIMA uses one storage
ID only

UX DEVICE CLASS PIMA OC GET STORAGE INFO

0x1005

Return information
about the storage
object such as max
capacity and free space

UX DEVICE CLASS PIMA OC GET NUM OBJECTS

0x1006

Return the number of
objects contained in
the storage device

UX_DEVICE CLASS PIMA OC_GET_ OBJECT HANDLES

0x1007

Return an array of
handles of the objects
on the storage device

UX DEVICE CLASS PIMA OC_GET OBJECT INFO

0x1008

Return information
about an object such as
the name of the object,
its creation date,
modification date ..

UX_DEVICE CLASS PIMA OC GET_ OBJECT

0x1009

Return the data
pertaining to a
specific object.

UX DEVICE CLASS PIMA OC_GET THUMB

0x100A

Send the thumbnail if
available about an
object

UX_DEVICE CLASS PIMA OC DELETE OBJECT

0x100B

Delete an object on the
media

UX DEVICE CLASS PIMA OC_SEND OBJECT INFO

0x100C

Send to the device
information about an
object for its creation
on the media

UX DEVICE CLASS PIMA OC_SEND OBJECT

0x100D

Send data for an object
to the device

UX DEVICE CLASS PIMA OC FORMAT STORE

0x100F

Clean the device media

UX DEVICE CLASS PIMA OC RESET DEVICE

0x0110

Reset the target device

Operation Code Value Description

UX _DEVICE CLASS PIMA EC CANCEL TRANSACTION 0x4001 | Cancels the current
transaction
UX DEVICE CLASS PIMA EC_OBJECT ADDED 0x4002 | An object has been

added to the device
media and can be
retrieved by the
host.

UX DEVICE CLASS PIMA EC OBJECT REMOVED 0x4003 | An object has been
deleted from the
device media

UX DEVICE CLASS PIMA EC_STORE ADDED 0x4004 | A media has been
added to the device

UX _DEVICE CLASS PIMA EC STORE REMOVED 0x4005 | A media has been
deleted from the
device

UX DEVICE CLASS PIMA EC DEVICE PROP CHANGED 0x4006 | Device properties
have changed

UX DEVICE CLASS PIMA EC OBJECT INFO CHANGED 0x4007 | An object information
has changed

UX DEVICE CLASS PIMA EC DEVICE INFO CHANGE 0x4008 | A device has changed

UX DEVICE CLASS PIMA EC REQUEST OBJECT TRANSFER | 0x4009 | The device requests
the transfer of an
object from the host

UX DEVICE CLASS PIMA EC_STORE FULL 0x400A | Device reports the
media is full

UX DEVICE CLASS PIMA EC DEVICE RESET 0x400B | Device reports it was
reset

UX DEVICE CLASS PIMA EC_STORAGE INFO_ CHANGED 0x400C | Storage information
has changed on the
device

UX DEVICE CLASS PIMA EC CAPTURE COMPLETE 0x400D | Capture is completed

The USBX PIMA device class uses a TX Thread to listen to PIMA commands from the
host.

A PIMA command is composed of a command block, a data block and a status phase.

The function ux_device_class_pima_thread posts a request to the stack to receive a
PIMA command from the host side. The PIMA command is decoded and verified for
content. If the command block is valid, it branches to the appropriate command handler.

Most PIMA commands can only be executed when a session has been opened by the
host. The only exception is the command ux DEVICE CLASS PIMA OC_GET DEVICE INFO.
With USBX PIMA implementation, only one session can be opened between an Initiator
and Responder at any time. All transactions within the single session are blocking and
no new transaction can begin before the previous one completed.

PIMA transactions are composed of 3 phases, a command phase, an optional data
phase and a response phase. If a data phase is present, it can only be in one direction.

The Initiator always determines the flow of the PIMA operations but the Responder can
initiate events back to the Initiator to inform status changes that happened during a
session.

The following diagram shows the transfer of a data object between the host and the
PIMA device class:

4 N o 4 ' s A 4 '
| Application | | PIMA Host classs | | usB | PIMA device class | | Application

Get Device Info

\ 4

Open Session

\4

———Application Gets Object—

GetObjectInfo

v

GetObject

\ 4

—pima -> ux_device_class_pima_object_data_get=—»

Object Data

A

~@——0O0bject Data

lose Session

A\ 4

Initialization of the PIMA device class

The PIMA device class needs some parameters supplied by the application during the
initialization.

The following parameters describe the device and storage information:

e ux device class pima manufacturer

e ux device class pima model

e ux device class pima device version
e ux device class pima serial number

e ux device class pima_ storage id

e ux device class pima_ storage type

e ux device class pima storage file system type
e ux device class pima storage access capability
e ux device class pima_ storage max capacity low
e ux device class pima storage max capacity high
e ux device class pima_ storage free space low

e ux device class pima storage free space high

e ux device class pima storage free space image
e ux device class pima_ storage description

e ux device class pima storage volume label

The PIMA class also requires the registration of callback into the application to inform
the application of certain events or retrieve/store data from/to the local media. The
callbacks are:

e ux device class pima object number get
e ux device class pima object handles get
e ux device class pima object info get

e ux device class pima object data get

e ux device class pima object info send

e ux device class pima object data send

e ux device class pima object delete

The following example shows how to initialize the client side of PIMA. This example
uses Pictbridge as a client for PIMA:

/* Initialize the first XML object valid in the pictbridge instance.
Initialize the handle, type and file name.
The storage handle and the object handle have a fixed value of 1 in our
implementation. */
object info = pictbridge -> ux pictbridge object client;
object info -> ux device class pima object format =
UX DEVICE CLASS PIMA OFC SCRIPT;
object info -> ux device class pima object storage id = 1;
object info -> ux device class pima object handle id = 2;
ux utility string to unicode(ux pictbridge ddiscovery name,
object info ->
ux device class pima object filename);

/* Initialize the head and tail of the notification round robin buffers.
At first, the head and tail are pointing to the beginning of the array.
*/

pictbridge -> ux pictbridge event array head = pictbridge ->

ux pictbridge event array;
pictbridge -> ux pictbridge event array tail = pictbridge ->

ux pictbridge event array;
pictbridge -> ux pictbridge event array end = pictbridge ->

ux pictbridge event array +
UX PICTBRIDGE MAX EVENT NUMBER;

/* Initialialize the pima device parameter. */
pictbridge -> ux pictbridge pima parameter.

ux device class pima parameter manufacturer = pictbridge ->
ux pictbridge dpslocal.ux pictbridge devinfo vendor name;
pictbridge -> ux pictbridge pima parameter.
ux device class pima parameter model = pictbridge ->
ux pictbridge dpslocal.ux pictbridge devinfo product name;
pictbridge -> ux pictbridge pima parameter.
ux device class pima parameter serial number = pictbridge ->
ux pictbridge dpslocal.ux pictbridge devinfo serial no;
pictbridge -> ux pictbridge pima parameter.
ux device class pima parameter storage id = 1;
pictbridge -> ux pictbridge pima parameter.
ux device class pima parameter storage type =
UX DEVICE CLASS PIMA STC FIXED RAM;
pictbridge -> ux pictbridge pima parameter.
ux device class pima parameter storage file system type =
UX DEVICE CLASS PIMA FSTC GENERIC FLAT;
pictbridge -> ux pictbridge pima parameter.
ux device class pima parameter storage access capability =
UX DEVICE CLASS PIMA AC_READ WRITE;
pictbridge -> ux pictbridge pima parameter.
ux device class pima parameter storage max capacity low =
pictbridge -> ux pictbridge dpslocal.
ux pictbridge devinfo storage size;
pictbridge -> ux pictbridge pima parameter.
ux device class pima parameter storage max capacity high = 0;
pictbridge -> ux pictbridge pima parameter.
ux device class pima parameter storage free space low = pictbridge ->
ux pictbridge dpslocal.ux pictbridge devinfo storage size;
pictbridge -> ux pictbridge pima parameter.
ux device class pima parameter storage free space high = 0;
pictbridge -> ux pictbridge pima parameter.
ux device class pima parameter storage free space image = 0;
pictbridge -> ux pictbridge pima parameter.
ux device class pima parameter storage description =
_ux pictbridge volume description;
pictbridge -> ux pictbridge pima parameter.
ux device class pima parameter storage volume label =
_ux pictbridge volume label;
pictbridge -> ux pictbridge pima parameter.
ux device class pima parameter object number get =
ux pictbridge dpsclient object number get;
pictbridge -> ux pictbridge pima parameter.
ux device class pima parameter object handles get =
ux pictbridge dpsclient object handles get;
pictbridge -> ux pictbridge pima parameter.
ux device class pima parameter object info get
ux pictbridge dpsclient object info get;
pictbridge -> ux pictbridge pima parameter.
ux device class pima parameter object data get =
ux pictbridge dpsclient object data get;
pictbridge -> ux pictbridge pima parameter.
ux device class pima parameter object info send =
ux pictbridge dpsclient object info send;
pictbridge -> ux pictbridge pima parameter.
ux device class pima parameter object data send
ux pictbridge dpsclient object data send;
pictbridge -> ux pictbridge pima parameter.

ux device class pima parameter object delete =
ux pictbridge dpsclient object delete;

/* Store the instance owner. */
pictbridge -> ux pictbridge pima parameter.
ux device class pima parameter application = (VOID *) pictbridge;

/* Initialize the device pima class. The class is connected with interface
0 */
status = ux_device stack_class_register(ux system slave class pima name,
ux device class pima_entry, 1, 0,
(VOID *)&pictbridge ->
ux pictbridge pima parameter);

/* Check status. */
if (status != UX SUCCESS)

ux_device_class_pima_object_number_get

Getting the object number from the application

Prototype

UINT ux device_class_pima object number get (UX SLAVE CLASS PIMA *pima,
ULONG &object numner)

Description

This function is called when the PIMA class needs to retrieve the number of
objects in the local system and send it back to the host.

Parameters
pima Pointer to the pima class instance.
object_number Address of the number of objects to be
returned.
Example

UINT ux pictbridge dpsclient object_number get (UX SLAVE CLASS PIMA *pima,
ULONG *number objects)
{

/* We force the number of objects to be 1 only here. This will be the xml
scripts. */

*number objects = 1;

return (UX_ SUCCESS) ;

ux_device_class_pima_object_handles get

Return the object handle array

Prototype

UINT ux device_class_pima object_ handles get (UX SLAVE CLASS PIMA STRUCT
*pima, ULONG object handles format code,
ULONG object handles association,
ULONG *object handles array,
ULONG object handles max number) ;

Description

This function is called when the PIMA class needs to retrieve the object handles
array in the local system and send it back to the host.

Parameters

pima Pointer to the pima class instance.
object_handles_format_code Format code for the handles
object_handles_association Object association code
object_handle_array Address where to store the handles
object_handles_max_number Maximum number of handles in the array

Example

UINT ux pictbridge dpsclient object handles get (UX SLAVE CLASS PIMA *pima,
ULONG object handles format code, ULONG object handles association,
ULONG *object handles array, ULONG object handles max number)

{

UX PICTBRIDGE *pictbridge;

UX SLAVE CLASS PIMA OBJECT *object info;

/* Get the pointer to the Pictbridge instance. */
pictbridge = (UX PICTBRIDGE *) pima -> ux device class pima application;

/* Set the pima pointer to the pictbridge instance. */
pictbridge -> ux pictbridge pima = (VOID *) pima;

/* We say we have one object but the caller might specify differnt format
code and associations. */
object info = pictbridge -> ux pictbridge object client;

/* Insert in the array the number of found handles so far: 0. */
ux utility long put ((UCHAR *)object handles array, 0);

/* Check the type demanded. */

if (object handles format code == || object handles format code ==
OXFFFFFFFF || object info ->
ux device class pima object format ==
object handles format code)

/* Insert in the array the number of found handles. This handle is
for the client XML script. */
ux _utility long put ((UCHAR *)object handles array, 1);

/* Adjust the array to point after the number of elements. */
object handles array++;

/* We have a candicate. Store the handle. */

ux _utility long put ((UCHAR *)object handles array, object info ->
ux device class pima_ object handle id);

}

return (UX_SUCCESS) ;

ux_device_class_pima_object_info_get

Return the object information

Prototype

UINT ux _device_class pima object_info_get(struct
UX SLAVE CLASS PIMA STRUCT *pima, ULONG object handle,
UX_SLAVE CLASS PIMA OBJECT **object);

Description

This function is called when the PIMA class needs to retrieve the object handles
array in the local system and send it back to the host.

Parameters
pima Pointer to the pima class instance.
object_handles Handle of the object
object Object pointer address

Example

UINT ux pictbridge dpsclient object info get (UX SLAVE CLASS PIMA *pima,
ULONG object handle, UX SLAVE CLASS PIMA OBJECT **object)

{

UX PICTBRIDGE *pictbridge;

UX_ SLAVE CLASS PIMA OBJECT *object info;

/* Get the pointer to the Pictbridge instance. */
pictbridge = (UX PICTBRIDGE *)pima -> ux device class pima application;

/* Check the object handle. If this is handle 1 or 2 , we need to return
the XML script object.
If the handle is not 1 or 2, this is a JPEG picture or other object to
be printed. */
if ((object handle == UX_ PICTBRIDGE OBJECT HANDLE HOST RESPONSE) ||
(object _handle == UX_PICTBRIDGE OBJECT HANDLE CLIENT REQUEST))

/* Check what XML object is requested. It is either a request script

or a response. */
if (object handle == UX PICTBRIDGE OBJECT HANDLE HOST RESPONSE)
object info = (UX SLAVE CLASS PIMA OBJECT *) pictbridge ->
ux pictbridge object host;
else
object info = (UX SLAVE CLASS PIMA OBJECT *) pictbridge ->
ux pictbridge object client;
}
else
/* Get the object info from the job info structure. */
object info = (UX SLAVE CLASS PIMA OBJECT *) pictbridge ->

ux pictbridge jobinfo.ux pictbridge jobinfo object;

/* Return the pointer to this object. */
*object = object info;

/* We are done. */
return (UX_ SUCCESS) ;

ux_device_class_pima_object_data_get

Return the object data

Prototype
UINT wux device_class_pima_object_info_get (UX SLAVE CLASS PIMA *pima,

ULONG object handle, UCHAR *object buffer, ULONG object offset,
ULONG object length requested, ULONG *object actual length)

Description

This function is called when the PIMA class needs to retrieve the object data in
the local system and send it back to the host.

Parameters
pima Pointer to the pima class instance.
object_handle Handle of the object
object_buffer Object buffer address
object_length_requested Object data length requested by the client to
the application
object_actual_length Object data length returned by the application
Example

UINT ux pictbridge dpsclient object data get (UX SLAVE CLASS PIMA *pima,
ULONG object handle, UCHAR *object buffer, ULONG object offset,
ULONG object length requested, ULONG *object actual length)

{

UX PICTBRIDGE *pictbridge;

UX SLAVE CLASS PIMA OBJECT *object info;

UCHAR *pima_ object buffer;
ULONG actual length;

UINT status;

/* Get the pointer to the Pictbridge instance. */
pictbridge = (UX PICTBRIDGE *)pima -> ux device class pima application;

/* Check the object handle. If this is handle 1 or 2 , we need to return
the XML script object.
If the handle is not 1 or 2, this is a JPEG picture or other object to
be printed. */
if ((object handle == UX PICTBRIDGE OBJECT HANDLE HOST RESPONSE) ||
(object handle == UX PICTBRIDGE OBJECT HANDLE CLIENT REQUEST))

/* Check what XML object is requested. It is either a request script

or a response. */
if (objectihandle == UX PICTBRIDGE OBJECT HANDLE HOST RESPONSE)
object info = (UX SLAVE CLASS PIMA OBJECT *) pictbridge ->

ux_pictbridge object host;

else
object info = (UX SLAVE CLASS PIMA OBJECT *) pictbridge ->
ux pictbridge object client;

/* Is this the corrent handle ? */
if (object info -> ux device class pima object handle id ==
object handle)

/* Get the pointer to the object buffer. */
pima object buffer = object info ->
ux _device class pima object buffer;

/* Copy the demanded object data portion. */
ux utility memory copy(object buffer, pima object buffer +
object offset, object length requested);

/* Update the length requested. for a demo, we do not do any
checking. */
*object actual length = object length requested;

/* What cycle are we in ? */
if (pictbridge -> ux pictbridge host client state machine &
UX PICTBRIDGE STATE MACHINE HOST REQUEST)

/* Check if we are blocking for a client request. */
if (pictbridge -> ux pictbridge host client state machine &
UX PICTBRIDGE STATE MACHINE CLIENT REQUEST PENDING)

/* Yes we are pending, send an event to release the
pending request. */

ux utility event flags set (&pictbridge ->
ux pictbridge event flags group,
UX PICTBRIDGE EVENT FLAG STATE MACHINE READY, TX OR);

/* Since we are in host request, this indicates we are done
with the cycle. */
pictbridge -> ux pictbridge host client state machine =
UX_PICTBRIDGE STATE MACHINE IDLE;

}

/* We have copied the requested data. Return OK. */
return (UX_ SUCCESS) ;

else

/* Get the object info from the job info structure. */
object info = (UX SLAVE CLASS PIMA OBJECT *) pictbridge ->
ux pictbridge jobinfo.ux pictbridge jobinfo object;

/* Obtain the data from the application jobinfo callback. */
status = pictbridge ->

ux pictbridge jobinfo.

ux pictbridge jobinfo object data read(pictbridge,

object buffer, object offset,
object length requested, &actual length);

/* Save the length returned. */
*object actual length = actual length;

/* Return the application status. */
return (status);

}
/* Could not find the handle. */
return (UX_DEVICE CLASS PIMA RC INVALID OBJECT HANDLE) ;

ux_device_class_pima_object_info_send

Host sends the object information

Prototype

UINT ux device class pima object_info_send (UX SLAVE CLASS PIMA *pima,

UX SLAVE CLASS PIMA OBJECT *object, ULONG *object handle)

Description

This function is called when the PIMA class needs to receive the object
information in the local system for future storage.

Parameters
pima Pointer to the pima class instance.
object Pointer to the object
object_handle Handle of the object

Example

UINT wux pictbridge dpsclient object_info_send (UX SLAVE CLASS PIMA *pima,
UX SLAVE CLASS PIMA OBJECT *object, ULONG *object handle)
{

UX PICTBRIDGE *pictbridge;
UX_SLAVE CLASS PIMA OBJECT *object info;
UCHAR

string discovery name[UX PICTBRIDGE MAX FILE NAME SIZE];

/* Get the pointer to the Pictbridge instance. */

pictbridge = (UX PICTBRIDGE *)pima -> ux device class pima application;
/* We only have one object. */
object info = (UX SLAVE CLASS PIMA OBJECT *) pictbridge ->

ux pictbridge object host;
/* Copy the demanded object info set. */
ux utility memory copy(object info, object,
UX_SLAVE CLASS PIMA OBJECT DATA LENGTH) ;

/* Store the object handle. 1In Pictbridge we only receive XML scripts so

the handle is hardwired to 1. */
object info -> ux device class pima object handle id = 1;
*object handle = 1;

/* Check state machine. If we are in discovery pending mode, check file
name of this object. */
if (pictbridge -> ux pictbridge discovery state ==
UX PICTBRIDGE DPSCLIENT DISCOVERY PENDING)

/* We are in the discovery mode. Check for file name. It must match
HDISCVRY.DPS in Unicode mode. */

/* Check if this is a script. */
if (object info -> ux device class_pima object format ==
UX DEVICE CLASS PIMA OFC_ SCRIPT)

/* Yes this is a script. We need to search for the HDISCVRY.DPS
file name. Get the file name in a ascii format. */
ux utility unicode to string(object info ->
ux device class pima object filename,
string discovery name);

/* Now, compare it to the HDISCVRY.DPS file name. Check length
first. */
if (ux utility string length get(ux pictbridge hdiscovery name)
== ux_utility string length get(string discovery name))

/* So far, the length of name of the files are the same.
Compare names now. */
if (ux utility memory compare (
_ux pictbridge hdiscovery name,
string discovery name,
ux utility string length get(string discovery name))
== UX SUCCESS)

/* We are done with discovery of the printer. We can now
send notifications when the camera wants to print an
object. */

pictbridge -> ux pictbridge discovery state =

UX PICTBRIDGE DPSCLIENT DISCOVERY COMPLETE;

/* Set an event flag if the application is listening. */
ux utility event flags set (&pictbridge ->

ux pictbridge event flags group,

UX PICTBRIDGE EVENT FLAG DISCOVERY, TX OR);

/* There is no object during th discovery cycle. */
return (UX_SUCCESS) ;

}

/* What cycle are we in 2?2 */
if (pictbridge -> ux pictbridge host client state machine ==
UX_PICTBRIDGE STATE MACHINE IDLE)

/* Since we are in idle state, we must have received a request from
the host. */
pictbridge -> ux pictbridge host client state machine =
UX PICTBRIDGE STATE MACHINE HOST REQUEST;

/* We have copied the requested data. Return OK. */
return (UX SUCCESS) ;

ux_device_class_pima_object_data_send

Host sends the object data

Prototype

UINT ux device class pima object data_send (UX SLAVE CLASS PIMA *pima,
ULONG object handle, ULONG phase, UCHAR *object buffer,
ULONG object offset, ULONG object length)

Description

This function is called when the PIMA class needs to receive the object data in
the local system for storage.

Parameters
pima Pointer to the pima class instance.
object_handle Handle of the object
phase phase of the transfer (active or complete)
object_buffer Object buffer address
object_offset Address of data
object_length Object data length sent by application
Example

UINT wux pictbridge dpsclient object_data_send (UX SLAVE CLASS PIMA *pima,
ULONG object handle,
ULONG phase,
UCHAR *object buffer,
ULONG object offset,
ULONG object length)

{

UINT status;

UX PICTBRIDGE *pictbridge;

UX SLAVE CLASS PIMA OBJECT *object info;

ULONG event flag;

UCHAR *pima_ object buffer;

/* Get the pointer to the Pictbridge instance. */
pictbridge = (UX PICTBRIDGE *)pima -> ux device class pima application;

/* Get the pointer to the pima object. */
object info = (UX SLAVE CLASS PIMA OBJECT *) pictbridge ->
ux _pictbridge object host;

/* Is this the corrent handle ? */

if (object info -> ux device class pima object handle id ==
object handle)

{

/* Get the pointer to the object buffer. */
pima object buffer = object info ->
ux device class pima object buffer;

/* Check the phase. We should wait for the object to be completed and
the response sent back before parsing the object. */

if (phase == UX DEVICE CLASS PIMA OBJECT TRANSFER PHASE ACTIVE)

{

/* Copy the demanded object data portion. */
ux utility memory copy(pima object buffer + object offset,
object buffer, object length);

/* Save the length of this object. */
object info -> ux device class pima object length =

object length;

/* We are not done yet. */
return (UX_ SUCCESS) ;

else

/* Completion of transfer. We are done. */
return (UX_SUCCESS) ;

ux_device_class_pima_object_delete

Delete a local object

Prototype

UINT wux _device_class_pima_object_delete (UX SLAVE CLASS PIMA *pima,
ULONG object handle)

Description

This function is called when the PIMA class needs to delete an object on the
local storage.

Parameters
pima Pointer to the pima class instance.
object_handle Handle of the object

Example

UINT ux pictbridge dpsclient object delete (UX SLAVE CLASS PIMA *pima,
ULONG object handle)
{
/* Delete the object pointer by the handle. */
}

Chapter 6: USBX DPUMP Class
Considerations

USBX contains a DPUMP class for the host and device side. This class is not a
standard class per se, but rather an example that illustrates how to create a simple
device by using 2 bulk pipes and sending data back and forth on these 2 pipes. The
DPUMP class could be used to start a custom class or for legacy RS232 devices.

USB DPUMP flow chart:

Host Application DPUMP Host Class USB HostStack USB Device Stack DPUMP Device Class Thread

Write a packet

[y |

_ux_host_class_dpump_write

—

Wait for a packet

ux_host_stack_transfer_request _ux_device_stack_transfer_request

|
|

|

| |

| |

| /
| < y
| DATA SENT OVER USB

Wait for OUT packet on Bulk Out

Wait for transfer

completion
Receive transfer status

I

| Wait for transfer
I
I
I I
I I
and data length sent | |
I I
I I
I I
I
I

completion

Write a packet

Receive a packet

—

_ux_host_class_dpump_read _ux_device_stack_transfer_request

| _ux_host_stack_transfer_request

I

I

| Wait for IN packet on Bulk IN
I

I

| /

I I I
I

I

I

I

Wait for transfer

Wait for transfer .
completion

completion

| < DATA SENT OVER USB >
| |

| |
| | [R,
| |

Receive transfer status,
data packet and data
length received

USBX DPUMP Device Class

The device DPUMP class uses a thread which is started upon connection to the USB
host. The thread waits for a packet coming on the Bulk Out endpoint. When a packet is
received, it copies the content to the Bulk In endpoint buffer and posts a transaction on
this endpoint, waiting for the host to issue a request to read from this endpoint. This
provides a loopback mechanism between the Bulk Out and Bulk In endpoints.

Chapter 7: USBX Pictbridge
Implementation

UBSX supports the full Pictbridge implementation both on the host and the device.
Pictbridge sits on top of USBX PIMA class on both sides.

The PictBridge standards allows the connection of a digital still camera or a smart
phone directly to a printer without a PC, enabling direct printing to certain Pictbridge
aware printers.

When a camera or phone is connected to a printer, the printer is the USB host and the
camera is the USB device. However, with Pictbridge, the camera will appear as being
the host and commands are driven from the camera. The camera is the storage server,
the printer the storage client. The camera is the print client and the printer is of course
the print server.

Pictbridge uses USB as a transport layer but relies on PTP (Picture Transfer Protocol)
for the communication protocol.

The following is a diagram of the commands/responses between the DPS client and the
DPS server when a print job occurs:

| DPS services Discovery

A

+——DPS_ConfigurePrintServices—t———p

DPS_GetCapabilities

\/Storage Device> \/ Storage Server > Print Client \/ Print Server \/Storage Client \/ Print Device
>
>
>
>

olication starts prir

DPS_Startobr >
-t DPS_GetFileInfo
<7 DPS_GetFile
|e}—————Get File Data
File Data >
Print Data >
-¢ DPS_NotifyDeviceStatus

Pictbridge client implementation

The Pictbridge on the client requires the USBX device stack and the PIMA class to be
running first.

A device framework describes the PIMA class in the following way:

UCHAR device framework full speed[] =
{

/* Device descriptor */
0x12, 0x01, 0x10, 0x01, 0x00, 0x00, 0x00, 0x20,
0xA9, 0x04, 0xB6, 0x30, 0x00, 0x00, 0x00, 0x00,
0x00, O0x01,

/* Configuration descriptor */
0x09, 0x02, 0x27, 0x00, 0Ox01, 0x01, 0x00, OxcO, 0x32,

/* Interface descriptor */
0x09, 0x04, 0x00, 0x00, 0x03, 0x06, 0x01, 0x01, 0x00,

/* Endpoint descriptor (Bulk Out) */
0x07, 0x05, 0x01, 0x02, 0x40, 0x00, 0x00,

/* Endpoint descriptor (Bulk In) */

0x07, 0x05, 0x82, 0x02, 0x40, 0x00, 0x00,

/* Endpoint descriptor (Interrupt) */
0x07, 0x05, 0x83, 0x03, 0x08, 0x00, 0x60

}i

The Pima class is using the ID field 0x06 and has its subclass
is 0x01 for Still Image and the protocol is 0x01 for PIMA 15740.

3 endpoints are defined in this class, 2 bulks for
sending/receiving data and one interrupt for events.

Unlike other USBX device implementations, the Pictbridge
application does not need to define a class itself. Rather it
invokes the function ux pictbridge dpsclient start. An example
is below:

/* Initialize the Pictbridge string components. */

ux utility memory copy
(pictbridge.ux pictbridge dpslocal.ux pictbridge devinfo vendor name,
"ExpressLogic",13);

ux utility memory copy
(pictbridge.ux pictbridge dpslocal.ux pictbridge devinfo product name,
"EL Pictbridge Camera",21);

ux utility memory copy
(pictbridge.ux pictbridge dpslocal.ux pictbridge devinfo serial no,
"ABC 123",7);

ux utility memory copy
(pictbridge.ux pictbridge dpslocal.ux pictbridge devinfo dpsversions,
"1.0 1.1",7);

pictbridge.ux pictbridge dpslocal.
ux pictbridge devinfo vendor specific version = 0x0100;

/* Start the Pictbridge client. */

status = ux pictbridge dpsclient start(&pictbridge);

if (status != UX SUCCESS)
return;

The parameters passed to the pictbridge client are as follows:

pictbridge.ux pictbridge dpslocal.ux pictbridge devinfo vendor name
String of Vendor name

pictbridge.ux pictbridge dpslocal.ux pictbridge devinfo product name
String of product name

pictbridge.ux pictbridge dpslocal.ux pictbridge devinfo serial no,
String of serial number

pictbridge.ux pictbridge dpslocal.ux pictbridge devinfo dpsversions
String of version

pictbridge.ux pictbridge dpslocal.

ux pictbridge devinfo vendor specific version

Value set to 0x0100;

The next step is for the device and the host to synchronize and be ready to exchange
information.

This is done by waiting on an event flag as follows:

/* We should wait for the host and the client to discover one another. */
status = wux utility event flags get
(¢pictbridge.ux pictbridge event flags group,
UX_PICTBRIDGE EVENT FLAG DISCOVERY,TX AND CLEAR, &actual flags,
UX PICTBRIDGE EVENT TIMEOUT) ;

If the state machine is in the DISCOVERY_COMPLETE state, the camera side (the
DPS client) will gather information regarding the printer and its capabilities.

If the DPS client is ready to accept a print job, its status will be set to
UX_PICTBRIDGE_NEW_JOB_TRUE. It can be checked below:

/* Check if the printer is ready for a print job. */
if (pictbridge.ux pictbridge dpsclient.ux pictbridge devinfo newjobok ==
UX_PICTBRIDGE NEW JOB TRUE)
/* We can print something .. */

Next some print joib descriptors need to be filled as follows:

/* We can start a new Jjob. Fill in the JobConfig and PrintInfo structures. */
jobinfo = &pictbridge.ux pictbridge jobinfo;

/* Attach a printinfo structure to the job. */
jobinfo -> ux pictbridge jobinfo printinfo start = &printinfo;

/* Set the default values for print job. */
jobinfo -> ux pictbridge jobinfo gquality =
UX PICTBRIDGE QUALITIES DEFAULT;
jobinfo -> ux pictbridge jobinfo papersize =
UX PICTBRIDGE PAPER SIZES DEFAULT;
jobinfo -> ux pictbridge jobinfo papertype =
UX PICTBRIDGE PAPER TYPES DEFAULT;
jobinfo -> ux pictbridge jobinfo filetype =
UX PICTBRIDGE FILE TYPES DEFAULT;
jobinfo -> ux pictbridge jobinfo dateprint =
UX PICTBRIDGE DATE PRINTS DEFAULT;
jobinfo -> ux pictbridge jobinfo filenameprint =
UX PICTBRIDGE FILE NAME PRINTS DEFAULT;
jobinfo -> ux pictbridge jobinfo imageoptimize =
UX PICTBRIDGE IMAGE OPTIMIZES OFF;
jobinfo -> ux pictbridge jobinfo layout =
UX PICTBRIDGE LAYOUTS DEFAULT;
jobinfo -> ux pictbridge jobinfo fixedsize =
UX PICTBRIDGE FIXED SIZE DEFAULT;
jobinfo -> ux pictbridge jobinfo cropping =
UX PICTBRIDGE CROPPINGS DEFAULT;

/* Program the callback function for reading the object data. */

jobinfo -> ux pictbridge jobinfo object data read =
ux_demo_object data copy;

/* This is a demo, the fileID is hardwired (1 and 2 for scripts, 3 for photo
to be printed. */
printinfo.ux pictbridge printinfo fileid =
UX_PICTBRIDGE OBJECT HANDLE PRINT;

ux utility memory copy(printinfo.ux pictbridge printinfo filename,
"Pictbridge demo file"™, 20);

ux_utility memory copy(printinfo.ux pictbridge printinfo date, "01/01/2008",
10);

/* Fill in the object info to be printed. First get the pointer to the
object container in the job info structure. */
object = (UX SLAVE CLASS PIMA OBJECT *) jobinfo ->
ux pictbridge jobinfo object;

/* Store the object format: JPEG picture. */
object -> ux device class pima object format =

UX DEVICE CLASS PIMA OFC EXIF JPEG;
object -> ux device class pima object compressed size IMAGE LEN;
object -> ux device class pima object offset = 0y
object -> ux device class pima object handle id =

UX PICTBRIDGE OBJECT HANDLE PRINT;

object -> ux device class pima object length = IMAGE LEN;

/* File name is in Unicode. */
ux utility string to unicode ("JPEG Image", object ->
ux device class pima object filename);

/* And start the job. */
status =ux pictbridge dpsclient api start job(&pictbridge);

The Pictbridge client now has a print job to do and will fetch the image blocks at a time
from the application through the callback defined in the field
jobinfo -> ux pictbridge jobinfo object data read

The prototype of that function is defined as:

ux_pictbridge jobinfo_object data read

Copying a block of data from user space for printing

Prototype
UINT ux_pictbridge_ jobinfo_object_data_read (UX PICTBRIDGE *pictbridge,

UCHAR *object buffer, ULONG object offset, ULONG object length,
ULONG *actual length)

Description

This function is called when the DPS client needs to retrieve a data block to print
to the target Pictbridge printer.

Parameters
pictbridge Pointer to the pictbridge class instance.
object_buffer Pointer to object buffer
object_offset Where we are starting to read the data block
object_length Length to be returned
actual_length Actual length returned

Return Value

UX_SUCCESS (Ox00) This operation was successful.
UX_ERROR (Ox01) The application could not retrieve data.
Example

/* Copy the object data. */

UINT ux demo object data copy(UX PICTBRIDGE *pictbridge,UCHAR *object buffer,
ULONG object offset, ULONG object length, ULONG *actual length)

{

/* Copy the demanded object data portion. */
ux utility memory copy(object buffer, image + object offset,
object length);

/* Update the actual length. */
*actual length = object length;

/* We have copied the requested data. Return OK. */
return (UX SUCCESS) ;

Pictbridge host implementation

The host implementation of Pictbridge is different from the client.

The first thing to do in a Pictbridge host environment is to register the Pima class as the

example below shows:

status = ux host stack class register(ux system host class pima name,

if (status != UX SUCCESS)

return;

ux_host class pima entry);

This class is the generic PTP layer sitting between the USB host stack and the

Pictbridge layer.

The next step is to initialize the Pictbridge default values for print services as follows:

Pictbridge field Value
DpsVersion[0] 0x00010000
DpsVersion[1] 0x00010001
DpsVersion[2] 0x00000000
VendorSpecificVersion 0x00010000
PrintServiceAvailable 0x30010000
Qualities[0] UX_PICTBRIDGE_QUALITIES_DEFAULT
Qualities[1] UX_PICTBRIDGE_QUALITIES_NORMAL
Qualities[2] UX_PICTBRIDGE_QUALITIES_DRAFT
Qualities[3] UX PICTBRIDGE_QUALITIES FINE
PaperSizes[0] UX_PICTBRIDGE_PAPER_SIZES_DEFAULT
PaperSizes[1] UX_PICTBRIDGE_PAPER_SIZES 41X6l
PaperSizes|2] UX_PICTBRIDGE_PAPER_SIZES L
PaperSizes[3] UX_PICTBRIDGE_PAPER_SIZES 2L
PaperSizes[4] UX_PICTBRIDGE_PAPER SIZES LETTER
PaperTypes[0] UX_PICTBRIDGE_PAPER_TYPES_DEFAULT
PaperTypes[1] UX_PICTBRIDGE_PAPER_TYPES_PLAIN
PaperTypes[2] UX PICTBRIDGE_PAPER_TYPES PHOTO

FileTypes|[O]
FileTypes|[1]
FileTypes[2]
FileTypes|[3]

UX_PICTBRIDGE_FILE_TYPES_DEFAULT
UX_PICTBRIDGE_FILE_TYPES_EXIF_JPEG
UX_PICTBRIDGE_FILE_TYPES_JFIF
UX_PICTBRIDGE_FILE_TYPES_ DPOF

DatePrints[0]
DatePrints[1]
DatePrints[2]

UX_PICTBRIDGE_DATE_PRINTS_DEFAULT
UX_PICTBRIDGE_DATE_PRINTS_OFF
UX_PICTBRIDGE_DATE_PRINTS_ON

FileNamePrints[O]
FileNamePrints[1]
FileNamePrints[2]

UX_PICTBRIDGE_FILE_NAME_PRINTS_DEFAULT
UX_PICTBRIDGE_FILE_NAME_PRINTS_OFF
UX_PICTBRIDGE_FILE_NAME_PRINTS_ON

ImageOptimizes|[0]

UX_PICTBRIDGE_IMAGE_OPTIMIZES DEFAULT

ImageOptimizes[1] UX_PICTBRIDGE_IMAGE_OPTIMIZES_OFF
ImageOptimizes[2] UX_PICTBRIDGE_IMAGE_OPTIMIZES_ON
Layouts[O] UX_PICTBRIDGE_LAYOUTS_DEFAULT
Layouts[1] UX_PICTBRIDGE_LAYOUTS_1_UP_BORDER
Layouts[2] UX_PICTBRIDGE_LAYOUTS_INDEX_PRINT
Layouts[3] UX_PICTBRIDGE_LAYOUTS 1 _UP_BORDERLESS
FixedSizes[0] UX_PICTBRIDGE_FIXED_SIZE_DEFAULT
FixedSizes[1] UX_PICTBRIDGE_FIXED_SIZE_35IX5I
FixedSizes|[2] UX_PICTBRIDGE_FIXED_SIZE_41X6l
FixedSizes[3] UX_PICTBRIDGE_FIXED_SIZE_5IX7I
FixedSizes[4] UX_PICTBRIDGE_FIXED_SIZE_7CMX10CM
FixedSizes[5] UX_PICTBRIDGE_FIXED_SIZE_LETTER
FixedSizes|[6] UX_PICTBRIDGE_FIXED_SIZE_A4
Croppings|[0] UX_PICTBRIDGE_CROPPINGS_DEFAULT
Croppings[1] UX_PICTBRIDGE_CROPPINGS_OFF
Croppings[2] UX_PICTBRIDGE_CROPPINGS_ON

The state machine of the DPS host will be set to Idle and ready to accept a new print
job.
The host portion of Pictbridge can now be started as the example below shows:

/* Activate the pictbridge dpshost. */
status = ux pictbridge dpshost start (&pictbridge, pima);

if (status != UX SUCCESS)
return;

The Pictbridge host function requires a callback when data is ready to be printed. This is
accomplished by passing a function pointer in the pictbridge host structure as follows:

/* Set a callback when an object is being received. */
pictbridge.ux pictbridge application object data write =
tx _demo_object data write;

This function has the following properties:

ux_pictbridge application_object_data_write

Writing a block of data for printing

Prototype
UINT wux pictbridge application_object_data_write (UX PICTBRIDGE

*pictbridge, UCHAR *object buffer, ULONG offset,
ULONG total length, ULONG length);

Description

This function is called when the DPS server needs to retrieve a data block from
the DPS client to print to the local printer.

Parameters
pictbridge Pointer to the pictbridge class instance.
object_buffer Pointer to object buffer
object_offset Where we are starting to read the data block
total_length Entire length of object
length Length of this buffer

Return Value

UX_SUCCESS (Ox00) This operation was successful.
UX_ERROR (Ox01) The application could not print data.
Example

/* Copy the object data. */
UINT tx demo object data write (UX PICTBRIDGE *pictbridge,
UCHAR *object buffer, ULONG offset, ULONG total length, ULONG length);
{
UINT status;

/* Send the data to the local printer. */
status = local printer data send(object buffer, length);

/* We have printed the requested data. Return status. */
return (status) ;

Chapter 8: USBX OTG

USBX supports the OTG functionalities of USB when an OTG compliant USB controller
is available in the hardware design.

USBX supports OTG in the core USB stack. But for OTG to function, it requires a
specific USB controller. USBX OTG controller functions can be found in the usbx_otg
directory. The current USBX version only supports the NXP LPC3131 with full OTG
capabilities.

The regular controller driver functions (host or device) can still be found in the standard
USBX usbx_device_controllers and usbx_host_controllers but the usbx_otg directory
contains the specific OTG functions associated with the USB controller.

There are 4 categories of functions for an OTG controller in addition to the usual
host/device functions:

VBUS specific functions

Start and Stop of the controller
USB role manager

Interrupt handlers

VBUS functions

Each controller needs to have a VBUS manager to change the state of VBUS based on
power management requirements. Usually this function only performs turning on or off
VBUS

Start and Stop the controller
Unlike a regular USB implementation, OTG requires the host and/or the device stack to
be activated and deactivated when the role changes.

USB role Manager
The USB role manager receives commands to change the state of the USB. There are
several states that need transitions to and from:

State Value Description

UX_OTG_IDLE 0 The device is Idle. Usually not connected
to anything

UX OTG IDLE_TO HOST Device is connected with type A connector

UX OTG IDLE_TO SLAVE Device is connected with type B connector

UX OTG HOST TO IDLE Host device got disconnected

UX OTG HOST TO SLAVE Role swap from Host to Slave

UX OTG SLAVE TO IDLE Slave device is disconnected

OO WIN|EF

Role swap from Slave to Host

UX_OTG SLAVE TO HOST

Interrupt handlers

Both host and device controller drivers for OTG needs different interrupt handlers to
monitor signals beyond traditional USB interrupts, in particular signals due to SRP and
VBUS.

How to initialize a USB OTG controller. We use the NXP LPC3131 as an example here:

/* Initialize the LPC3131 OTG controller. */
status = ux otg 1pc3131 initialize (0x19000000, 1lpc3131 vbus function,
tx demo change mode callback);

In this example, we initialize the LPC3131 in OTG mode by passing a VBUS function
and a callback for mode change (from host to slave or vice versa).

The callback function should simply record the new mode and wake up a pending
thread to act up the new state:

void tx demo change mode callback (ULONG mode)
{

/* Simply save the otg mode. */
otg mode = mode;

/* Wake up the thread that is waiting. */

ux utility semaphore put (&mode_ change semaphore) ;

}

The mode value that is passed can have the following values:
e UX _OTG_MODE_IDLE
e UX OTG_MODE_SLAVE
e UX OTG_MODE_HOST

The application can always check what the device is by looking at the variable:
_ux system otg -> ux system otg device type

Its values can be:
e UX _OTG_DEVICE_A
e UX _OTG_DEVICE_B
e UX _OTG_DEVICE_IDLE

A USB OTG host device can always ask for a role swap by issuing the command:

/* Ask the stack to perform a HNP swap with the device. We relinquish the
host role to A device. */
ux_host stack role swap(storage -> ux host class_ storage device);

For a slave device, there is no command to issue but the slave device can set a state to
change the role which will be picked up by the host when it issues a GET_STATUS and
the swap will then be initiated.

/* We are a B device, ask for role swap. The next GET STATUS from the host
will get the status change and do the HNP. */
_ux_system otg -> ux system otg slave role swap flag =
UX OTG HOST REQUEST FLAG;

Index

AP
USB device class..........cccoeeeee... 3,22
USB device stack..........cccccuuveee... 3,22
bulk in.....ccooeeeevveeen. 23, 39, 40, 100, 103
bulk out........ccovveviinnnneens 23, 39, 100, 102

callback 4, 50, 55, 61, 62, 65, 70, 74, 76,
77,82,92,105, 108, 111, 112

CDC-ACMclass......... 54, 55, 56, 61, 65
CDC-ECMCclass ...cooeveeeiiiiiiaain . 4,59
class containercoceeveieeeiiiiiiiieen, 30

class instance.. 8, 57, 58, 76, 77, 85, 86,
88, 90, 93, 96, 98, 106, 109

Class layeruuuveeeeeiiiiiiiiiiiiiiiiiiiinns 7

configuration. 4, 8, 14, 30, 32, 33, 34, 70

configuration descriptor ... 23, 39, 68, 74,
102

Controller layer..........cuvvveveeiiiiiiiiiiinnns 7

device descriptor. 22, 23, 39, 54, 59, 64,
68, 74, 102

device framework......... 3,22, 24, 25, 40
device side........ 7,10, 17, 22, 34, 78, 99
DFU class............... 4,68,69,70,71,73
DPUMPcooveiiieeeii 5, 6,99, 100
EHCI controller.........ccooeeviieiiinienennn. 18
endpoint descriptor.... 23, 39, 40, 59, 74,
102, 103
FilleX e, 2,8,13
firmwarecooevevieeennnn. 68, 70, 71, 73
functional descriptor 55, 68, 69

handle 26, 82, 86, 87, 88, 90, 91, 92, 93,
96, 97, 98, 105

HID class.........ccccuven..... 4,74, 75,76, 77
host controller.........ccooeeveeiiieiiiieeinnn. 14
host side.........ccccceuuneeee. 7,22,55, 74, 80
host stackccooeevviiiiiie, 17

initialization.... 13, 18, 22, 26, 41, 51, 55,
61, 62, 63, 66, 74, 76, 81

interface descriptor.... 23, 39, 54, 59, 60,
64, 68, 74, 102

NetX ..o 2,8,62, 63, 66

OTG ...coeevvvn. 5,6,7,8,110, 111, 112

Picture Transfer Protocol............ 78, 101

PIMA class.... 78, 82, 85, 86, 88, 90, 93,
96, 98, 101, 102, 103, 107

1] 01 ISR 57, 58
power management...................... 8,111
PTP responder........cccccevvvvvieneeenn.. 4,78
(0 [T LT 76
reset SEqUENCE.......c.ceevvvvevneeennnn. 68, 71
RNDIS Class......ccoccoevveeiiiiiiieciieeen, 4, 64
SCSl logical unit.........cccooeeeeeeeveiiinnnnnn. 15
SEMAapPNOreccvviiiiiiiiiiiiiis 112

slave.. 19, 31, 38, 46, 47, 49, 50, 52, 53,
55, 61, 62, 65, 66, 69, 70, 75, 84, 111,
112

stack layer.......cccooooiiiiii 7
target 10, 12, 13, 14, 20, 70, 73, 79, 106
ThreadX 2,6,8,10, 12, 13, 14, 22
tiMer tiCK......viiii e, 14
TraCEX. e, 8
UNICODE.......o i 25

USB device ... 3, 4, 9, 18, 21, 22, 26, 49,
54,59, 64, 68, 74, 78

USB device controller..................... 3,18
USB device stack............c........ 3,21, 22
USB host stacK.........ccceeeevveeeivnnnn. 107
USBIF....ccooiiiiieeeennn. 55, 67,68, 71, 78
USB protocol.........coovvvvvveiiiieeeeeeeenns 7,9
USBX pictbridge.........cccovvvnnnn. 5, 6,101
USBX threadccooovvviiiiiiiiiieein, 14
VBUS 4,18, 21, 26, 35, 110, 111
VErsion_id......cooevvviiiiiieeieeeecee e 20

Renesas Synergy™ Platform

User's Manual: Software

Publication Date: Rev.5.7 October, 2015

Renesas Synergy™ Platform

User’s Manual: Software

ENESAS

Renesas Electronics Corporation

R11UMO0007EU0570

