
U
ser’s M

anual

USBXTM Device Stack

User’s Manual: Software

Renesas SynergyTM Platform

Renesas Electronics
www.renesas.com

Rev. 5.7

synergygallery.renesas.com

the high performance USB stack

User Guide for USBX Device Stack

Express Logic, Inc.
858.613.6640

Toll Free 888.THREADX
FAX 858.521.4259

http://www.expresslogic.com

http://www.expresslogic.com/

©1999-2014 by Express Logic, Inc.

All rights reserved. This document and the associated USBX software are the sole
property of Express Logic, Inc. Each contains proprietary information of Express Logic,
Inc. Reproduction or duplication by any means of any portion of this document without
the prior written consent of Express Logic, Inc. is expressly forbidden.

Express Logic, Inc. reserves the right to make changes to the specifications described
herein at any time and without notice in order to improve design or reliability of USBX.
The information in this document has been carefully checked for accuracy; however,
Express Logic, Inc. makes no warranty pertaining to the correctness of this document.

Trademarks

FileX, and ThreadX are registered trademarks of Express Logic, Inc., and USBX, NetX,
picokernel, preemption-threshold, and event-chaining are trademarks of Express Logic,
Inc. All other product and company names are trademarks or registered trademarks of
their respective holders.

Warranty Limitations

Express Logic, Inc. makes no warranty of any kind that the USBX products will meet the
USER’s requirements, or will operate in the manner specified by the USER, or that the
operation of the USBX products will operate uninterrupted or error free, or that any
defects that may exist in the USBX products will be corrected after the warranty period.
Express Logic, Inc. makes no warranties of any kind, either expressed or implied,
including but not limited to the implied warranties of merchantability and fitness for a
particular purpose, with respect to the USBX products. No oral or written information or
advice given by Express Logic, Inc., its dealers, distributors, agents, or employees shall
create any other warranty or in any way increase the scope of this warranty and
licensee may not rely on any such information or advice.

Part Number: 000-1010

Revision 5.7

Contents

Contents .. 3

About This Guide .. 6

Chapter 1: Introduction to USBX ... 7

USBX features .. 7

Product Highlights .. 8

Powerful Services of USBX .. 8
Complete USB Device Framework Support ... 9

Easy-To-Use APIs .. 9

Chapter 2: USBX Installation ... 10

Host Considerations ... 10
Computer Type .. 10

Download Interfaces... 10
Debugging Tools .. 10
Required Hard Disk Space ... 10

Target Considerations .. 10

Configuration Options ... 13

Source Code Tree .. 15

Initialization of USBX resources ... 16

Definition of USB Device Controller .. 17

Troubleshooting .. 19

USBX Version ID .. 19

Chapter 3: Functional Components of USBX Device Stack 20

Execution Overview: ... 20
Initialization .. 20
Application Interface Calls .. 21
USB Device Stack APIs ... 21

USB Device Class APIs ... 21

Device Framework .. 21

Definition of the Components of the Device Framework 21
Definition of the Strings of the Device Framework ... 22
Definition of the Languages Supported by the Device for each String 23

VBUS Manager ... 24

Chapter 4: Description of USBX Device Services 25

ux_device_stack_alternate_setting_get ... 26

ux_device_stack_alternate_setting_set.. 27
ux_device_stack_class_register ... 28

ux_device_stack_configuration_get ... 30
ux_device_stack_configuration_set.. 31
ux_device_stack_descriptor_send ... 32
ux_device_stack_disconnect .. 33
ux_device_stack_endpoint_stall ... 34

ux_device_stack_host_wakeup .. 35
ux_device_stack_initialize .. 36
ux_device_stack_interface_delete ... 40
ux_device_stack_interface_get .. 41
ux_device_stack_interface_set .. 42

ux_device_stack_interface_start .. 43
ux_device_stack_transfer_request ... 44

ux_device_stack_transfer_request_abort ... 46

Chapter 5: USBX Device Class Considerations 47

USB Device Storage Class ... 47
Multiple SCSI LUN ... 49

USB Device CDC-ACM Class .. 51
ux_device_class_cdc_acm_read ... 54

ux_device_class_cdc_acm_write ... 55

USB Device CDC-ECM Class .. 56

USB Device RNDIS Class .. 60

USB Device DFU Class .. 63

USB Device HID Class ... 69
ux_device_class_hid_event_set ... 71
hid_callback ... 72

USB Device PIMA Class (PTP Responder) .. 73

Initialization of the PIMA device class ... 75

ux_device_class_pima_object_number_get ... 79
ux_device_class_pima_object_handles_get .. 80
ux_device_class_pima_object_info_get ... 82
ux_device_class_pima_object_data_get .. 84

ux_device_class_pima_object_info_send .. 87
ux_device_class_pima_object_data_send ... 89
ux_device_class_pima_object_delete .. 91

Chapter 6: USBX DPUMP Class Considerations 92

USBX DPUMP Device Class .. 93

Chapter 7: USBX Pictbridge implementation .. 94

Pictbridge client implementation ... 95
ux_pictbridge_jobinfo_object_data_read .. 99

Pictbridge host implementation... 100
ux_pictbridge_application_object_data_write ... 102

Chapter 8: USBX OTG .. 103

Index .. 106

About This Guide

This guide provides comprehensive information about USBX, the high performance
USB foundation software from Express Logic, Inc.

It is intended for the embedded real-time software developer. The developer should be
familiar with standard real-time operating system functions, the USB specification, and
the C programming language.

For technical information related to USB, see the USB specification and USB Class
specifications that can be downloaded at http://www.USB.org/developers

Organization

Chapter 1 contains an introduction to USBX

Chapter 2 gives the basic steps to install and use USBX with your ThreadX
application

Chapter 3 is titled Functional Components of USBX Device Stack

Chapter 4 is titled Description of USBX Device Services

Chapter 5 is titled USBX Device Class Considerations

Chapter 6 is titled USBX DPUMP Class Considerations

Chapter 7 is titled USBX Pictbridge Implementation

Chapter 8 is titled USBX OTG

Chapter 1: Introduction to USBX
USBX is a full-featured USB stack for deeply embedded applications. This chapter
introduces USBX, describing its applications and benefits.

USBX features

USBX support the three existing USB specifications: 1.1, 2.0 and OTG. It is designed to
be scalable and will accommodate simple USB topologies with only one connected
device as well as complex topologies with multiple devices and cascading hubs. USBX
supports all the data transfer types of the USB protocols: control, bulk, interrupt, and
isochronous.

USBX supports both the host side and the device side. Each side is comprised of three
layers:

 Controller layer

 Stack layer

 Class layer

The relationship between the USB layers is as follows:

Class Driver Class Driver

Host Stack

Host Controller

Driver

Host Controller

Device Stack

Device Controller

Driver

Device Controller

Host side Device side

H
ard

w
are

S
o

ftw
are

Product Highlights

Complete ThreadX processor support
No royalties
Complete ANSI C source code
Real-time performance
Responsive technical support
Multiple class support
Multiple class instances
Integration of classes with ThreadX, FileX and NetX
Support for USB devices with multiple configuration
Support for USB composite devices
Support for USB power management
Support for USB OTG
Export trace events for TraceX

Powerful Services of USBX

.

Complete USB Device Framework Support

USBX can support the most demanding USB devices, including multiple configurations,
multiple interfaces, and multiple alternate settings.

Easy-To-Use APIs

USBX provides the very best deeply embedded USB stack in a manner that is easy to
understand and use. The USBX API makes the services intuitive and consistent. By
using the provided USBX class APIs, the user application does not need to understand
the complexity of the USB protocols.

Chapter 2: USBX Installation

Host Considerations

Computer Type

Embedded development is usually performed on IBM-PC or Unix host computers. After
the application is compiled, linked, and located on the host, it is downloaded to the
target hardware for execution.

Download Interfaces

Usually the target download is done over an RS-232 serial interface, although parallel
interfaces, USB, and Ethernet are becoming more popular. See the development tool
documentation for available options.

Debugging Tools

Debugging is done typically over the same link as the program image download. A
variety of debuggers exist, ranging from small monitor programs running on the target
through Background Debug Monitor (BDM) and In-Circuit Emulator (ICE) tools. Of
course, the ICE tool provides the most robust debugging of actual target hardware.

Required Hard Disk Space

The source code for USBX is delivered in ASCII format and requires approximately 500
KBytes of space on the host computer’s hard disk. Please review the supplied
readme_usbx.txt file for additional host system considerations and options.

Target Considerations

USBX requires between 24 KBytes and 64 KBytes of Read Only Memory (ROM) on the
target in host mode. The amount of memory required is dependent on the type of
controller used and the USB classes linked to USBX. Another 32 KBytes of the target’s
Random Access Memory (RAM) are required for USBX global data structures and
memory pool. This memory pool can also be adjusted depending on the expected
number of devices on the USB and the type of USB controller. The USBX device side
requires roughly 10-12K of ROM depending on the type of device controller. The RAM
memory usage depends on the type of class emulated by the device.

USBX also relies on ThreadX semaphores, mutexes, and threads for multiple thread
protection, and I/O suspension and periodic processing for monitoring the USB bus
topology.

Product Distribution

Two USBX packages are available—standard and premium. The standard package
includes minimal source code, while the premium package contains the complete USBX
source code. Either package is shipped on a single CD.

The content of the distribution CD depends on the target processor, development tools,
and the USBX package. Following is a list of the important files common to most
product distributions:

readme_usbx.txt This file contains specific information about the USBX port,

including information about the target processor and the
development tools.

ux_api.h This C header file contains all system equates, data

structures, and service prototypes.

ux_port.h This C header file contains all development-tool-specific data

definitions and structures.

ux.lib This is the binary version of the USBX C library. It is

distributed with the standard package.

demo_usbx.c The C file containing a simple USBX demo

All filenames are in lower-case. This naming convention makes it easier to convert the
commands to Unix development platforms.

Installation of USBX is straightforward. The following general instructions apply to
virtually any installation. However, the readme_usbx_generic.txt file should be
examined for changes specific to the actual development tool environment.

Step 1: Backup the USBX distribution disk and store it in a safe location.

Step 2: Use the same directory in which you previously installed ThreadX on the host
hard drive. All USBX names are unique and will not interfere with the
previous USBX installation.

Step 3: Add a call to ux_system_initialize at or near the beginning of
tx_application_define. This is where the USBX resources are initialized.

Step 4: Add a call to ux_device_stack_initialize.

Step 5: Add one or more calls to initialize the required USBX classes (either host
and/or devices classes)

Step 6: Add one or more calls to initialize the device controller available in the
system.

Step 7 It may be required to modify the tx_low_level_initialize.c file to add low level
hardware initialization and interrupt vector routing. This is specific to the
hardware platform and will not be discussed here.

Step 8: Compile application source code and link with the USBX and ThreadX run
time libraries (FileX and/or Netx may also be required if the USB storage
class and/or USB network classes are to be compiled in), ux.a (or ux.lib) and
tx.a (or tx.lib). The resulting can be downloaded to the target and executed!

Configuration Options

There are several configuration options for building the USBX library. All options are
located in the ux_port.h.

The list below details each configuration option. Additional development tool options are
described in the readme_usbx.txt file supplied on the distribution disk:

UX_PERIODIC_RATE

This value represents how many ticks per seconds for a specific hardware platform. The
default is 1000 indicating 1 tick per millisecond.

UX_THREAD_STACK_SIZE

This value is the size of the stack in bytes for the USBX threads. It can be typically 1024
or 2048 bytes depending on the processor used and the host controller.

UX_THREAD_PRIORITY_ENUM

This is the ThreadX priority value for the USBX enumeration threads that monitors the
bus topology.

UX_THREAD_PRIORITY_CLASS

This is the ThreadX priority value for the standard USBX threads.

UX_THREAD_PRIORITY_KEYBOARD

This is the ThreadX priority value for the USBX HID keyboard class.

UX_THREAD_PRIORITY_DCD

This is the ThreadX priority value for the device controller thread.

UX_NO_TIME_SLICE

If defined to 1, the ThreadX target port does not use time slice.

UX_MAX_SLAVE_LUN

This value represents the current number of SCSI logical units represented in the
device storage class driver.

UX_SLAVE_REQUEST_CONTROL_MAX_LENGTH

This value represents the maximum number of bytes received on a control endpoint in
the device stack. The default is 256 bytes but can be reduced in memory constraint
environments

UX_SLAVE_REQUEST_DATA_MAX_LENGTH

This value represents the maximum number of bytes received on a bulk endpoint in the
device stack. The default is 4096 bytes but can be reduced in memory constraint
environments.

Source Code Tree

The USBX files are provided in several directories.

USBX Core

USBX Device Stack USBX Host Stack

USBX OTG

USBX Network Windows host filesUSBX Examples

USBX Device
Controllers

USBX Host
Controllers

USBX Device Classes USBX Host Classes

In order to make the files recognizable by their names, the following convention has
been adopted:

File Suffix Name File description

ux_host_stack usbx host stack core files

ux_host_class usbx host stack classes files

ux_hcd usbx host stack controller driver files

ux_device_stack usbx device stack core files

ux_device_class usbx device stack classes files

ux_dcd usbx device stack controller driver files

ux_otg usbx otg controller driver related files

ux_pictbridge usbx pictbridge files

ux_utility usbx utility functions

demo_usbx demonstration files for USBX

Initialization of USBX resources

USBX has its own memory manager. The memory needs to be allocated to USBX
before the host or device side of USBX is initialized. USBX memory manager can
accommodate systems where memory can be cached.
The following function initializes USBX memory resources with 128K of regular memory
and no separate pool for cache safe memory:

 /* Initialize USBX Memory */

 ux_system_initialize(memory_pointer,(128*1024),UX_NULL,0);

The prototype for the ux_system_initialize is as follows:

UINT ux_system_initialize(VOID *regular_memory_pool_start,

 ULONG regular_memory_size,

 VOID *cache_safe_memory_pool_start,

 ULONG cache_safe_memory_size)

Input parameters:

VOID *regular_memory_pool_start Beginning of the regular memory pool
ULONG regular_memory_size Size of the regular memory pool
VOID *cache_safe_memory_pool_start Beginning of the cache safe memory
 pool
ULONG cache_safe_memory_size Size of the cache safe memory pool

Not all systems require the definition of cache safe memory. In such a system, the
values passed during the initialization for the memory pointer will be set to UX_NULL
and the size of the pool to 0. USBX will then use the regular memory pool in lieu of the
cache safe pool.

In a system where the regular memory is not cache safe and a controller requires to
perform DMA memory (like OHCI, EHCI controllers amongst others) it is necessary to
define a memory pool in a cache safe zone.

Definition of USB Device Controller

Only one USB device controller can be defined at any time to operate in device mode.
The application initialization file should contain this definition. The example below refers
to the OKI USB device controller. For other controllers, the function entry definition has
to be changed accordingly.

The following line performs the definition of an OKI controller:

ux_dcd_ml6965_initialize(0x7BB00000, 0, 0xB7A00000);

The USB device initialization has the following prototype:

UINT ux_dcd_ml6965_initialize(ULONG dcd_io, ULONG dcd_irq,

 ULONG dcd_vbus_address);

with the following parameters:

ULONG dcd_io Address of the controller IO
ULONG dcd_irq Interrupt used by the controller
ULONG dcd_vbus_address Address of the VBUS GPIO

The following example is the initialization of USBX in device mode with the storage
device class and the OKI controller:

/* Initialize USBX Memory */

ux_system_initialize(memory_pointer,(128*1024), 0, 0);

/* The code below is required for installing the device portion of USBX */

status = ux_device_stack_initialize(&device_framework_high_speed,

DEVICE_FRAMEWORK_LENGTH_HIGH_SPEED,

&device_framework_full_speed,

DEVICE_FRAMEWORK_LENGTH_FULL_SPEED,

&string_framework, STRING_FRAMEWORK_LENGTH,

&language_id_framework, LANGUAGE_ID_FRAMEWORK_LENGTH,

UX_NULL);

/* If status equals UX_SUCCESS, installation was successful. */

/* Store the number of LUN in this device storage instance: single LUN. */

storage_parameter.ux_slave_class_storage_parameter_number_lun = 1;

/* Initialize the storage class parameters for reading/writing to the Flash Disk. */

storage_parameter.ux_slave_class_storage_parameter_lun[0].

 ux_slave_class_storage_media_last_lba = 0x1e6bfe;

storage_parameter.ux_slave_class_storage_parameter_lun[0].

 ux_slave_class_storage_media_block_length = 512;

storage_parameter.ux_slave_class_storage_parameter_lun[0].

 ux_slave_class_storage_media_type = 0;

storage_parameter.ux_slave_class_storage_parameter_lun[0].

 ux_slave_class_storage_media_removable_flag = 0x80;

storage_parameter.ux_slave_class_storage_parameter_lun[0].

 ux_slave_class_storage_media_read =

 tx_demo_thread_flash_media_read;

storage_parameter.ux_slave_class_storage_parameter_lun[0].

 ux_slave_class_storage_media_write =

 tx_demo_thread_flash_media_write;

storage_parameter.ux_slave_class_storage_parameter_lun[0].

 ux_slave_class_storage_media_status =

 tx_demo_thread_flash_media_status;

/* Initialize the device storage class. The class is connected with interface 0 */

status = ux_device_stack_class_register(ux_system_slave_class_storage_name,

 ux_device_class_storage_entry,

 ux_device_class_storage_thread,0,

 (VOID *)&storage_parameter);

/* Register the OKI USB device controllers available in this system */

status = ux_dcd_ml6965_initialize(0x7BB00000, 0, 0xB7A00000);

/* If status equals UX_SUCCESS, registration was successful. */

Troubleshooting

USBX is delivered with a demonstration file and a simulation environment. It is always a
good idea to get the demonstration platform running first—either on the target hardware
or a specific demonstration platform.

If the demonstration system does not work, try the following things to narrow the
problem:

USBX Version ID

The current version of USBX is available both to the user and the application software
during run-time.

The programmer can obtain the USBX version from examination of the usbx.txt file. In
addition, this file also contains a version history of the corresponding port. Application
software can obtain the USBX version by examining the global string _ux_version_id,
which is defined in ux_port.h.

Chapter 3: Functional Components of
USBX Device Stack

This chapter contains a description of the high performance USBX embedded USB
device stack from a functional perspective.

Execution Overview:

USBX for the device is composed of several components:
Initialization
Application interface calls
Device Classes
USB Device Stack
Device controller
VBUS manager

The following diagram illustrates the USBX Device stack:

USB device stack

Atmel USB Device

controller Driver

OKI USB Device

controller Driver

Philips USB Device

controller Driver

Other USB Device

controller Driver

Storage Class CDC Class Custom Class

VBUS Manager

Initialization

In order to activate USBX, the function ux_system_initialize must be called. This
function initializes the memory resources of USBX.

In order to activate USBX device facilities, the function ux_device_stack_initialize must
be called. This function will in turn initialize all the resources used by the USBX device
stack such as ThreadX threads, mutexes, and semaphores.

It is up to the application initialization to activate the USB device controller and one or
more USB classes. Contrary to the USB host side, the device side can have only one
USB controller driver running at any time. When the classes have been registered to the
stack and the device controller(s) initialization function has been called, the bus is active
and the stack will reply to bus reset and host enumeration commands.

Application Interface Calls

There are two levels of APIs in USBX:
USB Device Stack APIs
USB Device Class APIs

Normally, a USBX application should not have to call any of the USB device stack APIs.
Most applications will only access the USB Class APIs.

USB Device Stack APIs

The device stack APIs are responsible for the registration of USBX device components
such as classes and the device framework.

USB Device Class APIs

The Class APIs are very specific to each USB class. Most of the common APIs for USB
classes provided services such as opening/closing a device and reading from and
writing to a device. The APIs are similar in nature to the host side.

Device Framework

The USB device side is responsible for the definition of the device framework. The
device framework is divided into three categories, as described in the following sections.

Definition of the Components of the Device Framework

The definition of each component of the device framework is related to the nature of the
device and the resources utilized by the device. Following are the main categories.

 Device Descriptor

 Configuration Descriptor

 Interface Descriptor

 Endpoint Descriptor

USBX supports device component definition for both high and full speed (low speed
being treated the same way as full speed). This allows the device to operate differently

when connected to a high speed or full speed host. The typical differences are the size
of each endpoint and the power consumed by the device.

The definition of the device component takes the form of a byte string that follows the
USB specification. The definition is contiguous and the order in which the framework is
represented in memory will be the same as the one returned to the host during
enumeration.

Following is an example of a device framework for a high speed USB Flash Disk.

#define DEVICE_FRAMEWORK_LENGTH_HIGH_SPEED 60

UCHAR device_framework_high_speed[] = {

/* Device descriptor */

0x12, 0x01, 0x00, 0x02, 0x00, 0x00, 0x00, 0x40,

0x0a, 0x07, 0x25, 0x40, 0x01, 0x00, 0x01, 0x02,

0x03, 0x01,

/* Device qualifier descriptor */

0x0a, 0x06, 0x00, 0x02, 0x00, 0x00, 0x00, 0x40,

0x01, 0x00,

/* Configuration descriptor */

0x09, 0x02, 0x20, 0x00, 0x01, 0x01, 0x00, 0xc0,

0x32,

/* Interface descriptor */

0x09, 0x04, 0x00, 0x00, 0x02, 0x08, 0x06, 0x50,

0x00,

/* Endpoint descriptor (Bulk Out) */

0x07, 0x05, 0x01, 0x02, 0x00, 0x02, 0x00,

/* Endpoint descriptor (Bulk In) */

0x07, 0x05, 0x82, 0x02, 0x00, 0x02, 0x00

};

Definition of the Strings of the Device Framework

Strings are optional in a device. Their purpose is to let the USB host know about the
manufacturer of the device, the product name, and the revision number through
Unicode strings.

The main strings are indexes embedded in the device descriptors. Additional strings
indexes can be embedded into individual interfaces.

Assuming the device framework above has three string indexes embedded into the
device descriptor, the string framework definition could look like this:

/* String Device Framework:

 Byte 0 and 1: Word containing the language ID: 0x0904 for US

 Byte 2 : Byte containing the index of the descriptor

 Byte 3 : Byte containing the length of the descriptor string

*/

#define STRING_FRAMEWORK_LENGTH 38

UCHAR string_framework[] = {

/* Manufacturer string descriptor: Index 1 */

 0x09, 0x04, 0x01, 0x0c,

 0x45, 0x78, 0x70, 0x72, 0x65, 0x73, 0x20, 0x4c,

 0x6f, 0x67, 0x69, 0x63,

/* Product string descriptor: Index 2 */

 0x09, 0x04, 0x02, 0x0c,

 0x4D, 0x4C, 0x36, 0x39, 0x36, 0x35, 0x30, 0x30,

 0x20, 0x53, 0x44, 0x4B,

/* Serial Number string descriptor: Index 3 */

 0x09, 0x04, 0x03, 0x04,

 0x30, 0x30, 0x30, 0x31

};

If different strings have to be used for each speed, different indexes must be used as
the indexes are speed agnostic.

The encoding of the string is UNICODE-based. For more information on the UNICODE
encoding standard refer to the following publication:

The Unicode Standard, Worldwide Character Encoding, Version 1., Volumes 1
and 2, The Unicode Consortium, Addison-Wesley Publishing Company, Reading
MA.

Definition of the Languages Supported by the Device for
each String

USBX has the ability to support multiple languages although English is the default. The
definition of each language for the string descriptors is in the form of an array of
languages definition defined as follows:

#define LANGUAGE_ID_FRAMEWORK_LENGTH 2

UCHAR language_id_framework[] = {

/* English. */

 0x09, 0x04

};

To support additional languages, simply add the language code double-byte definition
after the default English code. The language code has been defined by Microsoft in the
document:

Developing International Software for Windows 95 and Windows NT, Nadine
Kano, Microsoft Press, Redmond WA

VBUS Manager

In most USB device designs, VBUS is not part of the USB Device core but rather
connected to an external GPIO, which monitors the line signal.

As a result, VBUS has to be managed separately from the device controller driver.

It is up to the application to provide the device controller with the address of the VBUS
IO. VBUS must be initialized prior to the device controller initialization.

Depending on the platform specification for monitoring VBUS, it is possible to let the
controller driver handle VBUS signals after the VBUS IO is initialized or if this is not
possible, the application has to provide the code for handling VBUS.

If the application wishes to handle VBUS by itself, its only requirement is to call the
function

 ux_device_stack_disconnect()

when it detects that a device has been extracted. It is not necessary to inform the
controller when a device is inserted because the controller will wake up when the BUS
RESET assert/deassert signal is detected.

Chapter 4: Description of USBX Device
Services

ux_device_stack_alternate_setting_get

Get current alternate setting for an interface value

Prototype

UINT ux_device_stack_alternate_setting_get(ULONG interface_value)

Description

This function is used by the USB host to obtain the current alternate setting for a
specific interface value. It is called by the controller driver when a
GET_INTERFACE request is received.

Input Parameter

interface_value Interface value for which the current alternate
setting is queried.

Return Values

UX_SUCCESS (0x00) The data transfer was completed.
UX_ERROR (0xFF) Wrong interface value.

Example

ULONG interface_value;

UINT status;

/* The following example illustrates this service. */

status = ux_device_stack_alternate_setting_get(interface_value);

/* If status equals UX_SUCCESS, the operation was successful. */

ux_device_stack_alternate_setting_set

Set current alternate setting for an interface value

Prototype

UINT ux_device_stack_alternate_setting_set(ULONG interface_value,

ULONG alternate_setting_value)

Description

This function is used by the USB host to set the current alternate setting for a
specific interface value. It is called by the controller driver when a
SET_INTERFACE request is received. When the SET_INTERFACE is
completed, the values of the alternate settings are applied to the class.

The device stack will issue a UX_SLAVE_CLASS_COMMAND_CHANGE to the
class that owns this interface to reflect the change of alternate setting.

Parameters

interface_value Interface value for which the current alternate
setting is set.

alternate_setting_value The new alternate setting value.

Return Values

Example

ULONG interface_value;

ULONG alternate_setting_value;

/* The following example illustrates this service. */

status = ux_device_stack_alternate_setting_set(interface_value,

 alternate_setting_value);

/* If status equals UX_SUCCESS, the operation was successful. */

 UX_SUCCESS (0x00) The data transfer was
completed.

 UX_INTERFACE_HANDLE_UNKNOWN (0x52) No interface attached.
 UX_ERROR (0xFF) Wrong interface value.

ux_device_stack_class_register

Register a new USB device class

Prototype

UINT ux_device_stack_class_register(UCHAR *class_name,

UINT (*class_entry_function)(struct UX_SLAVE_CLASS_COMMAND_STRUCT *),

ULONG configuration_number,

ULONG interface_number,

VOID *parameter)

Description

This function is used by the application to register a new USB device class. This
registration starts a class container and not an instance of the class. A class
should have an active thread and be attached to a specific interface.

Some classes expect a parameter or parameter list. For instance, the device
storage class would expect the geometry of the storage device it is trying to
emulate. The parameter field is therefore dependent on the class requirement
and can be a value or a pointer to a structure filled with the class values.

Parameters

class_entry_function The entry function of the class.
Configuration_number The configuration number this class is attached

to.
interface_number The interface number this class is attached to.
parameter A pointer to a class specific parameter list.

Return Values

UX_SUCCESS (0x00) The data transfer was completed.
UX_MEMORY_INSUFFICIENT (0x52) Not enough memory.
UX_THREAD_ERROR (0xFF) Cannot create a class thread.

Example

UINT status;

/* The following example illustrates this service. */

/* Initialize the device storage class. The class is connected with

 interface 1 */

status =

ux_device_stack_class_register(_ux_system_slave_class_storage_name,

 ux_device_class_storage_entry,

 1, 1, (VOID *)¶meter);

/* If status equals UX_SUCCESS, the operation was successful. */

ux_device_stack_configuration_get

Get the current configuration

Prototype

UINT ux_device_stack_configuration_get(VOID)

Description

This function is used by the host to obtain the current configuration running in the
device.

Input Parameter

None

Return Value

UX_SUCCESS (0x00) The data transfer was completed.

Example

UINT status;

/* The following example illustrates this service. */

status = ux_device_stack_configuration_get();

/* If status equals UX_SUCCESS, the operation was successful. */

ux_device_stack_configuration_set

Set the current configuration

Prototype

UINT ux_device_stack_configuration_set(ULONG configuration_value)

Description

This function is used by the host to set the current configuration running in the
device. Upon reception of this command, the USB device stack will activate the
alternate setting 0 of each interface connected to this configuration.

Input Parameter

configuration_value The configuration value selected by the host.

Return Value

UX_SUCCESS (0x00) The data transfer was completed.

Example

ULONG configuration_value;

UINT status;

/* The following example illustrates this service. */

status = ux_device_stack_configuration_set(configuration_value);

/* If status equals UX_SUCCESS, the operation was successful. */

ux_device_stack_descriptor_send

Send a descriptor to the host

Prototype

UINT ux_device_stack_descriptor_send(ULONG descriptor_type,

ULONG request_index, ULONG host_length)

Description

This function is used by the device side to return a descriptor to the host. This
descriptor can be a device descriptor, a configuration descriptor or a string
descriptor.

Parameters

descriptor_type The nature of the descriptor:

UX_DEVICE_DESCRIPTOR_ITEM
UX_CONFIGURATION_DESCRIPTOR_ITEM
UX_STRING_DESCRIPTOR_ITEM
UX_DEVICE_QUALIFIER_DESCRIPTOR_ITEM
UX_OTHER_SPEED_DESCRIPTOR_ITEM

request_index The index of the descriptor.
host_length The length required by the host.

Return Values

UX_SUCCESS (0x00) The data transfer was completed.
UX_ERROR (0xFF) The transfer was not completed.

Example

ULONG descriptor_type;

ULONG request_index;

ULONG host_length;

UINT status;

/* The following example illustrates this service. */

status = ux_device_stack_configuration_send(descriptor_type,

 request_index, host_length);

/* If status equals UX_SUCCESS, the operation was successful. */

ux_device_stack_disconnect

Disconnect device stack

Prototype

UINT ux_device_stack_disconnect(VOID)

Description

The VBUS manager calls this function when there is a device disconnection. The
device stack will inform all classes registered to this device and will thereafter
release all the device resources.

Input Parameter

None

Return Value

UX_SUCCESS (0x00) The device was disconnected.

Example

UINT status;

/* The following example illustrates this service. */

status = ux_device_stack_disconnected();

/* If status equals UX_SUCCESS, the operation was successful. */

ux_device_stack_endpoint_stall

Request endpoint Stall condition

Prototype

UINT ux_device_stack_endpoint_stall(UX_SLAVE_ENDPOINT *endpoint)

Description

This function is called by the USB device class when an endpoint should return a
Stall condition to the host.

Input Parameter

endpoint The endpoint on which the Stall condition is
requested.

Return Value

UX_SUCCESS (0x00) This operation was successful.

Example

UINT status;

/* The following example illustrates this service. */

status = ux_device_stack_endpoint_stall(endpoint);

/* If status equals UX_SUCCESS, the operation was successful. */

ux_device_stack_host_wakeup

Wake up the host

Prototype

UINT ux_device_stack_host_wakeup(VOID)

Description

This function is called when the device wants to wake up the host. This
command is only valid when the device is in suspend mode. It is up to the device
application to decide when it wants to wake up the USB host. For instance, a
USB modem can wake up a host when it detects a RING signal on the telephone
line.

Input Parameter

None

Return values

UX_SUCCESS (0x00) The call was successful.
UX_ERROR (0xFF) The call failed (the device was probably not in

the suspended mode).

Example

UINT status;

/* The following example illustrates this service. */

status = ux_device_stack_host_wakeup();

/* If status equals UX_SUCCESS, the operation was successful. */

ux_device_stack_initialize

Initialize USB device stack

Prototype

UINT ux_device_stack_initialize(UCHAR_PTR device_framework_high_speed,

ULONG device_framework_length_high_speed,

UCHAR_PTR device_framework_full_speed,

ULONG device_framework_length_full_speed,

UCHAR_PTR string_framework,

ULONG string_framework_length,

UCHAR_PTR language_id_framework,

ULONG language_id_framework_length),

UINT (*ux_system_slave_change_function)(ULONG)))

Description

This function is called by the application to initialize the USB device stack. It does
not initialize any classes or any controllers. This should be done with separate
function calls. This call mainly provides the stack with the device framework for
the USB function. It supports both high and full speeds with the possibility to
have completely separate device framework for each speed. String framework
and multiple languages are supported.

Parameters

device_framework_high_speed Pointer to the high speed framework.
device_framework_length_high_speed Length of the high speed framework.
device_framework_full_speed Pointer to the full speed framework.
device_framework_length_full_speed Length of the full speed framework.
string_framework Pointer to string framework.
string_framework_length Length of string framework.
language_id_framework Pointer to string language framework.
language_id_framework_length Length of the string language

framework.
ux_system_slave_change_function Function to be called when the device

state changes.

Return Values

UX_SUCCESS (0x00) This operation was successful.
UX_MEMORY_INSUFFICIENT (0x12) Not enough memory to initialize

the stack.

Example

/* Example of a device framework */

#define DEVICE_FRAMEWORK_LENGTH_FULL_SPEED 50

UCHAR device_framework_full_speed[] = {

/* Device descriptor */

0x12, 0x01, 0x10, 0x01, 0x00, 0x00, 0x00, 0x08,

0xec, 0x08, 0x10, 0x00, 0x00, 0x00, 0x00, 0x00,

0x00, 0x01,

/* Configuration descriptor */

0x09, 0x02, 0x20, 0x00, 0x01, 0x01, 0x00, 0xc0,

0x32,

/* Interface descriptor */

0x09, 0x04, 0x00, 0x00, 0x02, 0x08, 0x06, 0x50,

0x00,

/* Endpoint descriptor (Bulk Out) */

0x07, 0x05, 0x01, 0x02, 0x40, 0x00, 0x00,

/* Endpoint descriptor (Bulk In) */

0x07, 0x05, 0x82, 0x02, 0x40, 0x00, 0x00

};

#define DEVICE_FRAMEWORK_LENGTH_HIGH_SPEED 60

UCHAR device_framework_high_speed[] = {

/* Device descriptor */

0x12, 0x01, 0x00, 0x02, 0x00, 0x00, 0x00, 0x40,

0x0a, 0x07, 0x25, 0x40, 0x01, 0x00, 0x01, 0x02,

0x03, 0x01,

/* Device qualifier descriptor */

 0x0a, 0x06, 0x00, 0x02, 0x00, 0x00, 0x00, 0x40,

 0x01, 0x00,

/* Configuration descriptor */

0x09, 0x02, 0x20, 0x00, 0x01, 0x01, 0x00, 0xc0,

0x32,

/* Interface descriptor */

0x09, 0x04, 0x00, 0x00, 0x02, 0x08, 0x06, 0x50,

0x00,

/* Endpoint descriptor (Bulk Out) */

0x07, 0x05, 0x01, 0x02, 0x00, 0x02, 0x00,

/* Endpoint descriptor (Bulk In) */

0x07, 0x05, 0x82, 0x02, 0x00, 0x02, 0x00

};

/* String Device Framework:

Byte 0 and 1: Word containing the language ID: 0x0904 for US

Byte 2 : Byte containing the index of the descriptor

Byte 3 : Byte containing the length of the descriptor string

*/

#define STRING_FRAMEWORK_LENGTH 38

UCHAR string_framework[] = {

/* Manufacturer string descriptor: Index 1 */

0x09, 0x04, 0x01, 0x0c,

0x45, 0x78, 0x70, 0x72,0x65, 0x73, 0x20, 0x4c,

0x6f, 0x67, 0x69, 0x63,

/* Product string descriptor: Index 2 */

0x09, 0x04, 0x02, 0x0c,

0x4D, 0x4C, 0x36, 0x39, 0x36, 0x35, 0x30, 0x30,

0x20, 0x53, 0x44, 0x4B,

/* Serial Number string descriptor: Index 3 */

0x09, 0x04, 0x03, 0x04,

0x30, 0x30, 0x30, 0x31

};

/* Multiple languages are supported on the device, to add

 a language besides English, the Unicode language code must

 be appended to the language_id_framework array and the length

 adjusted accordingly. */

#define LANGUAGE_ID_FRAMEWORK_LENGTH 2

UCHAR language_id_framework[] = {

/* English. */

0x09, 0x04

};

The application can request a call back when the controller changes its state. The two
main states for the controller are:

UX_DEVICE_SUSPENDED
UX_DEVICE_RESUMED

If the application does not need Suspend/Resume signals, it would supply a UX_NULL
function.

UINT status;

/* The code below is required for installing the device portion of

 USBX. There is no call back for device status change in this

 example. */

status = ux_device_stack_initialize(&device_framework_high_speed,

 DEVICE_FRAMEWORK_LENGTH_HIGH_SPEED,

 &device_framework_full_speed,

 DEVICE_FRAMEWORK_LENGTH_FULL_SPEED,

 &string_framework,

 STRING_FRAMEWORK_LENGTH,

 &language_id_framework,

 LANGUAGE_ID_FRAMEWORK_LENGTH,

 UX_NULL);

/* If status equals UX_SUCCESS, initialization was successful. */

ux_device_stack_interface_delete

Delete a stack interface

Prototype

UINT ux_device_stack_interface_delete(UX_SLAVE_INTERFACE *interface)

Description

This function is called when an interface should be removed. An interface is
either removed when a device is extracted, or following a bus reset, or when
there is a new alternate setting.

Input Parameter

interface Pointer to the interface to remove.

Return Value

UX_SUCCESS (0x00) This operation was successful.

Example

UINT status;

/* The following example illustrates this service. */

status = ux_device_stack_interface_delete(interface);

/* If status equals UX_SUCCESS, the operation was successful. */

ux_device_stack_interface_get

Get the current interface value

Prototype

UINT ux_device_stack_interface_get(UINT interface_value)

Description

This function is called when the host queries the current interface. The device
returns the current interface value.

Input Parameter

interface_value Interface value to return.

Return Values

UX_SUCCESS (0x00) This operation was successful.
UX_ERROR (0xFF) No interface exists.

Example

ULONG interface_value;

UINT status;

/* The following example illustrates this service. */

status = ux_device_stack_interface_delete(interface_value);

/* If status equals UX_SUCCESS, the operation was successful. */

ux_device_stack_interface_set

Change the alternate setting of the interface

Prototype

UINT ux_device_stack_interface_set(UCHAR_PTR device_framework,

ULONG device_framework_length,

ULONG alternate_setting_value)

Description

This function is called when the host requests a change of the alternate setting
for the interface.

Parameters

device_framework Address of the device framework for this
interface.

device_framework_length Length of the device framework.
alternate_setting_value Alternate setting value to be used by this

interface.

Return Values

UX_SUCCESS (0x00) This operation was successful.
UX_ERROR (0xFF) No interface exists.

Example

UCHAR_PTR device_framework

ULONG device_framework_length;

ULONG alternate_setting_value;

UINT status;

/* The following example illustrates this service. */

status = ux_device_stack_interface_set(device_framework,

 device_framework_length,

 alternate_setting_value);

/* If status equals UX_SUCCESS, the operation was successful. */

ux_device_stack_interface_start

Start search for a class to own an interface instance

Prototype

UINT ux_device_stack_interface_start(UX_SLAVE_INTERFACE *interface)

Description

This function is called when an interface has been selected by the host and the
device stack needs to search for a device class to own this interface instance.

Input Parameter

interface Pointer to the interface created.

Return Values

UX_SUCCESS (0x00) This operation was successful.
UX_NO_CLASS_MATCH (0x57) No class exists for this interface.

Example

UINT status;

/* The following example illustrates this service. */

status = ux_device_stack_interface_start(interface);

/* If status equals UX_SUCCESS, the operation was successful. */

ux_device_stack_transfer_request

Request to transfer data to the host

Prototype

UINT ux_device_stack_transfer_request(UX_SLAVE_TRANSFER *transfer_request,

ULONG slave_length,

ULONG host_length)

Description

This function is called when a class or the stack wants to transfer data to the
host. The host always polls the device but the device can prepare data in
advance.

Parameters

transfer_request Pointer to the transfer request.
slave_length Length the device wants to return.
host_length Length the host has requested.

Return Values

UX_SUCCESS (0x00) This operation was successful.
UX_ERROR (0xFF) Transport error.

Example

UINT status;

/* The following example illustrates how to transfer more data

 than an application requests. */

while(total_length)

{

 /* How much can we send in this transfer? */

 if (total_length > UX_SLAVE_CLASS_STORAGE_BUFFER_SIZE)

 transfer_length = UX_SLAVE_CLASS_STORAGE_BUFFER_SIZE;

 else

 transfer_length = total_length;

 /* Copy the Storage Buffer into the transfer request memory. */

 ux_utility_memory_copy(transfer_request ->

 ux_slave_transfer_request_data_pointer,

 media_memory, transfer_length);

 /* Send the data payload back to the caller. */

 status = ux_device_transfer_request(transfer_request,

 transfer_length, transfer_length);

 /* If status equals UX_SUCCESS, the operation was successful. */

 /* Update the buffer address. */

 media_memory += transfer_length;

 /* Update the length to remain. */

 total_length -= transfer_length;

}

ux_device_stack_transfer_request_abort

Cancel a transfer request

Prototype

UINT ux_device_stack_transfer_abort(UX_SLAVE_TRANSFER *transfer_request,

ULONG completion_code)

Description

This function is called when an application needs to cancel a transfer request or
when the stack needs to abort a transfer request associated with an endpoint.

Parameters

transfer_request Pointer to the transfer request.
completion_code Error code to be returned to the class waiting

for this transfer request to complete.

Return Value

UX_SUCCESS (0x00) This operation was successful.

Example

UINT status;

/* The following example illustrates how to abort a transfer when

 a bus reset has been detected on the bus. */

status = ux_device_stack_transfer_abort(transfer_request,

 UX_TRANSFER_BUS_RESET);

/* If status equals UX_SUCCESS, the operation was successful. */

Chapter 5: USBX Device Class
Considerations

USB Device Storage Class

The USB device storage class allows for a storage device embedded in the system to
be made visible to a USB host.

The USB device storage class does not by itself provide a storage solution. It merely
accepts and interprets SCSI requests coming from the host. When one of these
requests is a read or a write command, it will invoke a pre-defined call back to a real
storage device handler, such as an ATA device driver or a Flash device driver.

When initializing the device storage class, a pointer structure is given to the class that
contains all the information necessary. An example is given below.

/* Store the number of LUN in this device storage instance: single LUN. */

storage_parameter.ux_slave_class_storage_parameter_number_lun = 1;

/* Initialize the storage class parameters for reading/writing to the

 Flash Disk. */

storage_parameter.ux_slave_class_storage_parameter_lun[0].

ux_slave_class_storage_media_last_lba = 0x1e6bfe;

storage_parameter.ux_slave_class_storage_parameter_lun[0].

ux_slave_class_storage_media_block_length = 512;

storage_parameter.ux_slave_class_storage_parameter_lun[0].

ux_slave_class_storage_media_type = 0;

storage_parameter.ux_slave_class_storage_parameter_lun[0].

ux_slave_class_storage_media_removable_flag = 0x80;

storage_parameter.ux_slave_class_storage_parameter_lun[0].

ux_slave_class_storage_media_read = tx_demo_thread_flash_media_read;

storage_parameter.ux_slave_class_storage_parameter_lun[0].

ux_slave_class_storage_media_write =

 tx_demo_thread_flash_media_write;

storage_parameter.ux_slave_class_storage_parameter_lun[0].

ux_slave_class_storage_media_status =

 tx_demo_thread_flash_media_status;

/* Initialize the device storage class. The class is connected with

 interface 0 */

status =

ux_device_stack_class_register(_ux_system_slave_class_storage_name,

ux_device_class_storage_entry, ux_device_class_storage_thread,

0, (VOID *)&storage_parameter);

In this example, the drive’s last block address or LBA is given as well as the logical
sector size. The LBA is the number of sectors available in the media –1. The block
length is set to 512 in regular storage media. It can be set to 2048 for optical drives.

The application needs to pass three callback function pointers to allow the storage class
to read, write and obtain status for the media.

The prototypes for the read and write functions are:

UINT media_read(UCHAR_PTR data_pointer, ULONG number_blocks, ULONG lba);

UINT media_write(UCHAR_PTR data_pointer, ULONG number_blocks, ULONG lba);

Where:

data_pointer is the address of the buffer to be used for reading or writing
number_blocks is the number of sectors to read/write
lba is the sector address to read.

The return value can have either the value UX_SUCCESS or UX_ERROR indicating a
successful or unsuccessful operation. These operations do not need to return any other
error codes. If there is an error in any operation, the storage class will invoke the status
call back function.

This function has the following prototype:

ULONG tx_demo_thread_media_status(ULONG media_id);

The calling parameter media_id is not currently used and should always be 0. In the
future it may be used to distinguish multiple storage devices or storage devices with
multiple SCSI LUNs. This version of the storage class does not support multiple
instances of the storage class or storage devices with multiple SCSI LUNs.

The return value is a SCSI error code that can have the following format:

Bits 0-7 Sense_key
Bits 8-15 Additional Sense Code
Bits 16-23 Additional Sense Code Qualifier

The following table provides the possible Sense/ASC/ASCQ combinations.

Sense
Key

ASC ASCQ Description

00 00 00 NO SENSE

01 17 01 RECOVERED DATA WITH RETRIES

01 18 00 RECOVERED DATA WITH ECC

02 04 01 LOGICAL DRIVE NOT READY - BECOMING READY

02 04 02 LOGICAL DRIVE NOT READY - INITIALIZATION REQUIRED

02 04 04 LOGICAL UNIT NOT READY - FORMAT IN PROGRESS

02 04 FF LOGICAL DRIVE NOT READY - DEVICE IS BUSY

02 06 00 NO REFERENCE POSITION FOUND

02 08 00 LOGICAL UNIT COMMUNICATION FAILURE

02 08 01 LOGICAL UNIT COMMUNICATION TIME-OUT

02 08 80 LOGICAL UNIT COMMUNICATION OVERRUN

02 3A 00 MEDIUM NOT PRESENT

02 54 00 USB TO HOST SYSTEM INTERFACE FAILURE

02 80 00 INSUFFICIENT RESOURCES

02 FF FF UNKNOWN ERROR

03 02 00 NO SEEK COMPLETE

03 03 00 WRITE FAULT

03 10 00 ID CRC ERROR

03 11 00 UNRECOVERED READ ERROR

03 12 00 ADDRESS MARK NOT FOUND FOR ID FIELD

03 13 00 ADDRESS MARK NOT FOUND FOR DATA FIELD

03 14 00 RECORDED ENTITY NOT FOUND

03 30 01 CANNOT READ MEDIUM - UNKNOWN FORMAT

03 31 01 FORMAT COMMAND FAILED

04 40 NN DIAGNOSTIC FAILURE ON COMPONENT NN (80H-FFH)

05 1A 00 PARAMETER LIST LENGTH ERROR

05 20 00 INVALID COMMAND OPERATION CODE

05 21 00 LOGICAL BLOCK ADDRESS OUT OF RANGE

05 24 00 INVALID FIELD IN COMMAND PACKET

05 25 00 LOGICAL UNIT NOT SUPPORTED

05 26 00 INVALID FIELD IN PARAMETER LIST

05 26 01 PARAMETER NOT SUPPORTED

05 26 02 PARAMETER VALUE INVALID

05 39 00 SAVING PARAMETERS NOT SUPPORT

06 28 00 NOT READY TO READY TRANSITION – MEDIA CHANGED

06 29 00 POWER ON RESET OR BUS DEVICE RESET OCCURRED

06 2F 00 COMMANDS CLEARED BY ANOTHER INITIATOR

07 27 00 WRITE PROTECTED MEDIA

0B 4E 00 OVERLAPPED COMMAND ATTEMPTED

Multiple SCSI LUN

The USBX device storage class supports multiple LUNs. It is therefore possible to
create a storage device that acts as a CD-ROM and a Flash disk at the same time. In
such a case, the initialization would be slightly different. Here is an example for a Flash
Disk and CD-ROM:

/* Store the number of LUN in this device storage instance. */

storage_parameter.ux_slave_class_storage_parameter_number_lun = 2;

/* Initialize the storage class parameters for reading/writing to the

Flash Disk. */

storage_parameter.ux_slave_class_storage_parameter_lun[0].

ux_slave_class_storage_media_last_lba = 0x7bbff;

storage_parameter.ux_slave_class_storage_parameter_lun[0].

ux_slave_class_storage_media_block_length = 512;

storage_parameter.ux_slave_class_storage_parameter_lun[0].

ux_slave_class_storage_media_type = 0;

storage_parameter.ux_slave_class_storage_parameter_lun[0].

ux_slave_class_storage_media_removable_flag = 0x80;

storage_parameter.ux_slave_class_storage_parameter_lun[0].

ux_slave_class_storage_media_read = tx_demo_thread_flash_media_read;

storage_parameter.ux_slave_class_storage_parameter_lun[0].

ux_slave_class_storage_media_write =

 tx_demo_thread_flash_media_write;

storage_parameter.ux_slave_class_storage_parameter_lun[0].

ux_slave_class_storage_media_status =

 tx_demo_thread_flash_media_status;

/* Initialize the storage class LUN parameters for reading/writing to

 the CD-ROM. */

storage_parameter.ux_slave_class_storage_parameter_lun[1].

ux_slave_class_storage_media_last_lba = 0x04caaf;

storage_parameter.ux_slave_class_storage_parameter_lun[1].

ux_slave_class_storage_media_block_length = 2048;

storage_parameter.ux_slave_class_storage_parameter_lun[1].

ux_slave_class_storage_media_type = 5;

storage_parameter.ux_slave_class_storage_parameter_lun[1].

 ux_slave_class_storage_media_removable_flag = 0x80;

storage_parameter.ux_slave_class_storage_parameter_lun[1].

 ux_slave_class_storage_media_read = tx_demo_thread_cdrom_media_read;

storage_parameter.ux_slave_class_storage_parameter_lun[1].

ux_slave_class_storage_media_write =

 tx_demo_thread_cdrom_media_write;

storage_parameter.ux_slave_class_storage_parameter_lun[1].

ux_slave_class_storage_media_status =

 tx_demo_thread_cdrom_media_status;

/* Initialize the device storage class for a Flash disk and CD-ROM. The

class is connected with interface 0 */

status =

 ux_device_stack_class_register(_ux_system_slave_class_storage_name,

 ux_device_class_storage_entry, ux_device_class_storage_thread,0,

 (VOID *) &storage_parameter);

USB Device CDC-ACM Class

The USB device CDC-ACM class allows for a USB host system to communicate with
the device as a serial device. This class is based on the USB standard and is a subset
of the CDC standard.

A CDC-ACM compliant device framework needs to be declared by the device stack. An
example is found here below:

unsigned char device_framework_full_speed[] = {

 /* Device descriptor 18 bytes

 0x02 bDeviceClass: CDC class code

 0x00 bDeviceSubclass: CDC class sub code

 0x00 bDeviceProtocol: CDC Device protocol

 idVendor & idProduct - http://www.linux-usb.org/usb.ids

 */

 0x12, 0x01, 0x10, 0x01,

 0xEF, 0x02, 0x01, 0x08,

 0x84, 0x84, 0x00, 0x00,

 0x00, 0x01, 0x01, 0x02,

 0x03, 0x01,

 /* Configuration 1 descriptor 9 bytes */

 0x09, 0x02, 0x4b, 0x00, 0x02, 0x01, 0x00,0x40, 0x00,

 /* Interface association descriptor. 8 bytes. */

 0x08, 0x0b, 0x00, 0x02, 0x02, 0x02, 0x00, 0x00,

 /* Communication Class Interface Descriptor Requirement. 9 bytes. */

 0x09, 0x04, 0x00, 0x00,0x01,0x02, 0x02, 0x01, 0x00,

 /* Header Functional Descriptor 5 bytes */

 0x05, 0x24, 0x00,0x10, 0x01,

 /* ACM Functional Descriptor 4 bytes */

 0x04, 0x24, 0x02,0x0f,

 /* Union Functional Descriptor 5 bytes */

 0x05, 0x24, 0x06, 0x00, /* Master interface */

 0x01, /* Slave interface */

 /* Call Management Functional Descriptor 5 bytes */

 0x05, 0x24, 0x01,0x03, 0x01, /* Data interface */

 /* Endpoint 1 descriptor 7 bytes */

 0x07, 0x05, 0x83, 0x03,0x08, 0x00, 0xFF,

 /* Data Class Interface Descriptor Requirement 9 bytes */

 0x09, 0x04, 0x01, 0x00, 0x02,0x0A, 0x00, 0x00, 0x00,

 /* First alternate setting Endpoint 1 descriptor 7 bytes*/

 0x07, 0x05, 0x02,0x02,0x40, 0x00,0x00,

 /* Endpoint 2 descriptor 7 bytes */

 0x07, 0x05, 0x81,0x02,0x40, 0x00, 0x00,

The CDC-ACM class uses a composite device framework to group interfaces (control
and data). As a result care should be taken when defining the device descriptor. USBX
relies on the IAD descriptor to know internally how to bind interfaces. The IAD descriptor
should be declared before the interfaces and contain the first interface of the CDC-ACM
class and how many interfaces are attached.

The CDC-ACM class also uses a union functional descriptor which performs the same
function as the newer IAD descriptor. Although a Union Functional descriptor must be
declared for historical reasons and compatibility with the host side, it is not used by
USBX.

The initialization of the CDC-ACM class expects the following parameters:

/* Set the parameters for callback when insertion/extraction of a

 CDC device. */

parameter.ux_slave_class_cdc_acm_instance_activate =

 tx_demo_cdc_instance_activate;

parameter.ux_slave_class_cdc_acm_instance_deactivate =

 tx_demo_cdc_instance_deactivate;

/* Initialize the device cdc class. This class owns both interfaces

 starting with 0. */

status =

 ux_device_stack_class_register(_ux_system_slave_class_cdc_acm_name,

ux_device_class_cdc_acm_entry, 1,0, ¶meter);

The 2 parameters defined are callback pointers into the user applications that will be
called when the stack activates or deactivate this class.

The CDC-ACM is based on a USB-IF standard and is automatically recognized by MAC
Os and Linux operating systems. On Windows platforms, this class requires a .inf file.
ExpressLogic supplies a template for the CDC-ACM class and it can be found in the
usbx_windows_host_files directory. For more recent version of Windows the file
CDC_ACM_Template_Win7_64bit.inf should be used. This file needs to be modified to
reflect the PID/VID used by the device. The PID/VID will be specific to the final
customer when the company and the product are registered with the USB-IF.
In the inf file, the fields to modify are located here:

[DeviceList]

%DESCRIPTION%=DriverInstall, USB\VID_8484&PID_0000

[DeviceList.NTamd64]

%DESCRIPTION%=DriverInstall, USB\VID_8484&PID_0000

In the device framework of the CDC-ACM device, the PID/VID are stored in the device
descriptor (see the device descriptor declared above)

When a USB host systems discovers the USB CDC-ACM device, it will mount a serial
class and the device can be used with any serial terminal program. See the host
Operating System for reference.

The CDC-ACM class APIs are defined below:

ux_device_class_cdc_acm_read

Read from CDC-ACM pipe

Prototype

UINT ux_device_class_cdc_acm_read(UX_SLAVE_CLASS_CDC_ACM *cdc_acm,

 UCHAR *buffer, ULONG requested_length, ULONG *actual_length)
Description

This function is called when an application needs to read from the OUT data pipe
(OUT from the host, IN from the device)

Parameters

cdc_acm Pointer to the cdc class instance.
buffer Buffer address where data will be stored.
requested_length The maximum length we expect
actual_length The length returned into the buffer

Return Value

UX_SUCCESS (0x00) This operation was
successful.

UX_CONFIGURATION_HANDLE_UNKNOWN (0x51) Device is no longer in
the configured state

UX_TRANSFER_NO_ANSWER (0x22) No answer from
device. The device
was probably
disconnected while the
transfer was pending.

Example

/* Read from the CDC class. */

status = ux_device_class_cdc_acm_read(cdc, buffer, UX_DEMO_BUFFER_SIZE,

 &actual_length);

if(status != UX_SUCCESS)

 return;

ux_device_class_cdc_acm_write

Writing to a CDC-ACM pipe

Prototype

UINT ux_device_class_cdc_acm_write(UX_SLAVE_CLASS_CDC_ACM *cdc_acm,

 UCHAR *buffer, ULONG requested_length, ULONG *actual_length)
Description

This function is called when an application needs to write to the IN data pipe (IN
from the host, OUT from the device)

Parameters

cdc_acm Pointer to the cdc class instance.
buffer Buffer address where data is stored.
requested_length The length of the buffer to write
actual_length The length returned into the buffer after write is

performed

Return Value

UX_SUCCESS (0x00) This operation was
successful.

UX_CONFIGURATION_HANDLE_UNKNOWN (0x51) Device is no longer in
the configured state

UX_TRANSFER_NO_ANSWER (0x22) No answer from
device. The device
was probably
disconnected while the
transfer was pending.

Example

/* Write to the CDC class bulk in pipe. */

status = ux_device_class_cdc_acm_write(cdc, buffer, UX_DEMO_BUFFER_SIZE,

 &actual_length);

if(status != UX_SUCCESS)

 return;

USB Device CDC-ECM Class

The USB device CDC-ECM class allows for a USB host system to communicate with
the device as a ethernet device. This class is based on the USB standard and is a
subset of the CDC standard.

A CDC-ACM compliant device framework needs to be declared by the device stack. An
example is found here below:

unsigned char device_framework_full_speed[] = {

 /* Device descriptor 18 bytes

 0x02 bDeviceClass: CDC_ECM class code

 0x06 bDeviceSubclass: CDC_ECM class sub code

 0x00 bDeviceProtocol: CDC_ECM Device protocol

 idVendor & idProduct - http://www.linux-usb.org/usb.ids

 0x3939 idVendor: ExpressLogic test.

 */

 0x12, 0x01, 0x10, 0x01,

 0x02, 0x00, 0x00, 0x08,

 0x39, 0x39, 0x08, 0x08,

 0x00, 0x01, 0x01, 0x02, 03,0x01,

 /* Configuration 1 descriptor 9 bytes. */

 0x09, 0x02, 0x58, 0x00,0x02, 0x01, 0x00,0x40, 0x00,

 /* Interface association descriptor. 8 bytes. */

 0x08, 0x0b, 0x00, 0x02, 0x02, 0x06, 0x00, 0x00,

 /* Communication Class Interface Descriptor Requirement 9 bytes */

 0x09, 0x04, 0x00, 0x00,0x01,0x02, 0x06, 0x00, 0x00,

 /* Header Functional Descriptor 5 bytes */

 0x05, 0x24, 0x00, 0x10, 0x01,

 /* ECM Functional Descriptor 13 bytes */

 0x0D, 0x24, 0x0F, 0x04,0x00, 0x00, 0x00, 0x00, 0xEA, 0x05, 0x00,

 0x00,0x00,

 /* Union Functional Descriptor 5 bytes */

 0x05, 0x24, 0x06, 0x00,0x01,

 /* Endpoint descriptor (Interrupt) */

 0x07, 0x05, 0x83, 0x03, 0x08, 0x00, 0x08,

 /* Data Class Interface Descriptor Alternate Setting 0, 0 endpoints. 9

 bytes */

 0x09, 0x04, 0x01, 0x00, 0x00, 0x0A, 0x00, 0x00, 0x00,

 /* Data Class Interface Descriptor Alternate Setting 1, 2 endpoints. 9

 bytes */

 0x09, 0x04, 0x01, 0x01, 0x02, 0x0A, 0x00, 0x00,0x00,

 /* First alternate setting Endpoint 1 descriptor 7 bytes */

 0x07, 0x05, 0x02, 0x02, 0x40, 0x00, 0x00,

 /* Endpoint 2 descriptor 7 bytes */

 0x07, 0x05, 0x81, 0x02, 0x40, 0x00,0x00

};

The CDC-ECM class uses a very similar device descriptor approach to the CDC-ACM
and also requires a IAD descriptor. See the CDC-ACM class for definition.

In addition to the regular device framework, the CDC-ECM requires special string
descriptors. An example is given below:

unsigned char string_framework[] = {

 /* Manufacturer string descriptor: Index 1 - "Express Logic" */

 0x09, 0x04, 0x01, 0x0c,

 0x45, 0x78, 0x70, 0x72, 0x65, 0x73, 0x20, 0x4c,

 0x6f, 0x67, 0x69, 0x63,

 /* Product string descriptor: Index 2 - "EL CDCECM Device" */

 0x09, 0x04, 0x02, 0x10,

 0x45, 0x4c, 0x20, 0x43, 0x44, 0x43, 0x45, 0x43,

 0x4d, 0x20, 0x44, 0x65, 0x76, 0x69, 0x63, 0x64,

 /* Serial Number string descriptor: Index 3 - "0001" */

 0x09, 0x04, 0x03, 0x04,

 0x30, 0x30, 0x30, 0x31,

 /* MAC Address string descriptor: Index 4 - "001E5841B879" */

 0x09, 0x04, 0x04, 0x0C,

 0x30, 0x30, 0x31, 0x45, 0x35, 0x38,

 0x34, 0x31, 0x42, 0x38, 0x37, 0x39

 };

The MAC address string descriptor is used by the CDC-ECM class to reply to the host
queries as to what MAC address the device is answering to at the TCP/IP protocol. It
can be set to the device choice but must be defined here.

The initialization of the CDC-ECM class is as follows:

/* Set the parameters for callback when insertion/extraction of a CDC

device. Set to NULL.*/

cdc_ecm_parameter.ux_slave_class_cdc_ecm_instance_activate = UX_NULL;

cdc_ecm_parameter.ux_slave_class_cdc_ecm_instance_deactivate = UX_NULL;

/* Define a NODE ID. */

cdc_ecm_parameter.ux_slave_class_cdc_ecm_parameter_local_node_id[0] =

 0x00;

cdc_ecm_parameter.ux_slave_class_cdc_ecm_parameter_local_node_id[1] =

 0x1e;

cdc_ecm_parameter.ux_slave_class_cdc_ecm_parameter_local_node_id[2] =

 0x58;

cdc_ecm_parameter.ux_slave_class_cdc_ecm_parameter_local_node_id[3] =

 0x41;

cdc_ecm_parameter.ux_slave_class_cdc_ecm_parameter_local_node_id[4] =

 0xb8;

cdc_ecm_parameter.ux_slave_class_cdc_ecm_parameter_local_node_id[5] =

 0x78;

/* Define a remote NODE ID. */

cdc_ecm_parameter.ux_slave_class_cdc_ecm_parameter_remote_node_id[0] =

 0x00;

cdc_ecm_parameter.ux_slave_class_cdc_ecm_parameter_remote_node_id[1] =

 0x1e;

cdc_ecm_parameter.ux_slave_class_cdc_ecm_parameter_remote_node_id[2] =

 0x58;

cdc_ecm_parameter.ux_slave_class_cdc_ecm_parameter_remote_node_id[3] =

 0x41;

cdc_ecm_parameter.ux_slave_class_cdc_ecm_parameter_remote_node_id[4] =

 0xb8;

cdc_ecm_parameter.ux_slave_class_cdc_ecm_parameter_remote_node_id[5] =

 0x79;

/* Initialize the device cdc_ecm class. */

status =

 ux_device_stack_class_register(_ux_system_slave_class_cdc_ecm_name,

 ux_device_class_cdc_ecm_entry, 1,0,

 &cdc_ecm_parameter);

The initialization of this class expects the same function callback for activation and
deactivation, although here as an exercise they are set to NULL so that no callback is
performed.

The next parameters are for the definition of the node IDs. 2 Nodes are necessary for
the CDC-ECM, a local node and a remote node. The remote node must be the same
one as the one declared in the device framework string descriptor.
The CDC-ECM class has built-in APIs for transferring data both ways but they are
hidden to the application as the user application will communicate with the USB
Ethernet device through NetX.

The USBX CDC-ECM class is closely tied to ExpressLogic NetX Network stack.
An application using both NetX and USBX CDC-ECM class will activate the NetX
network stack in its usual way but in addition needs to activate the USB network stack
as follows:

/* Initialize the NetX system. */

nx_system_initialize();

/* Perform the initialization of the network driver. This will initialize

the USBX network layer.*/

ux_network_driver_init();

The USB network stack needs to be activated only once and is not specific to CDC-
ECM but is required by any USB class that requires NetX services.

The CDC-ECM class will be recognized by MAC OS and Linux hosts. But there is no
driver supplied by Microsoft Windows to recognize CDC-ECM natively. Some
commercial products do exist for Windows platforms and they supply their own .inf file.
This file will need to be modified the same way as the CDC-ACM inf template to match
the PID/VID of the USB network device.

USB Device RNDIS Class

The USB device RNDIS class allows for a USB host system to communicate with the
device as a ethernet device. This class is based on the Microsoft proprietary
implementation and is specific to Windows platforms..

A RNDIS compliant device framework needs to be declared by the device stack. An
example is found here below:

unsigned char device_framework_full_speed[] = {

 /* Device descriptor

 0x02 bDeviceClass: RNDIS class code

 0x00 bDeviceSubclass: RNDIS class sub code

 0x00 bDeviceProtocol: RNDIS Device protocol

 idVendor & idProduct - http://www.linux-usb.org/usb.ids

 0x3939 idVendor: ExpressLogic test.

 */

 0x12, 0x01, 0x10, 0x01, 0x02, 0x00, 0x00,

 0x40, 0xb4, 0x04, 0x27, 0x11, 0x00, 0x01,

 0x01, 0x02, 0x03, 0x01,

 /* Configuration 1 descriptor */

 0x09, 0x02, 0x4b, 0x00, 0x02, 0x01, 0x00, 0x40, 0x00,

 /* Interface association descriptor. 8 bytes. */

 0x08, 0x0b, 0x00, 0x02, 0x02, 0x02, 0x00, 0x00,

 /* Communication Class Interface Descriptor Requirement */

 0x09, 0x04, 0x00, 0x00, 0x01, 0x02, 0x02, 0x00, 0x00,

 /* Header Functional Descriptor */

 0x05, 0x24, 0x00, 0x10, 0x01,

 /* ACM Functional Descriptor */

 0x04, 0x24, 0x02, 0x00,

 /* Union Functional Descriptor */

 0x05, 0x24, 0x06, 0x00, 0x01,

 /* Call Management Functional Descriptor */

 0x05, 0x24, 0x01, 0x00, 0x01,

 /* Endpoint 1 descriptor */

 0x07, 0x05, 0x83, 0x03, 0x08, 0x00, 0xFF,

 /* Data Class Interface Descriptor Requirement */

 0x09, 0x04, 0x01, 0x00, 0x02, 0x0A, 0x00, 0x00, 0x00,

 /* First alternate setting Endpoint 1 descriptor */

 0x07, 0x05, 0x02, 0x02, 0x40, 0x00, 0x00,

 /* Endpoint 2 descriptor */

 0x07, 0x05, 0x81, 0x02, 0x40, 0x00, 0x00

};

The RNDIS class uses a very similar device descriptor approach to the CDC-ACM and
CDC-ECM and also requires a IAD descriptor. See the CDC-ACM class for definition
and requirements for the device descriptor.

The activation of the RNDIS class is as follows:

 /* Set the parameters for callback when insertion/extraction of a CDC
 device. Set to NULL.*/

 parameter.ux_slave_class_rndis_instance_activate = UX_NULL;

 parameter.ux_slave_class_rndis_instance_deactivate = UX_NULL;

 /* Define a local NODE ID. */

 parameter.ux_slave_class_rndis_parameter_local_node_id[0] = 0x00;

 parameter.ux_slave_class_rndis_parameter_local_node_id[1] = 0x1e;

 parameter.ux_slave_class_rndis_parameter_local_node_id[2] = 0x58;

 parameter.ux_slave_class_rndis_parameter_local_node_id[3] = 0x41;

 parameter.ux_slave_class_rndis_parameter_local_node_id[4] = 0xb8;

 parameter.ux_slave_class_rndis_parameter_local_node_id[5] = 0x78;

 /* Define a remote NODE ID. */

 parameter.ux_slave_class_rndis_parameter_remote_node_id[0] = 0x00;

 parameter.ux_slave_class_rndis_parameter_remote_node_id[1] = 0x1e;

 parameter.ux_slave_class_rndis_parameter_remote_node_id[2] = 0x58;

 parameter.ux_slave_class_rndis_parameter_remote_node_id[3] = 0x41;

 parameter.ux_slave_class_rndis_parameter_remote_node_id[4] = 0xb8;

 parameter.ux_slave_class_rndis_parameter_remote_node_id[5] = 0x79;

 /* Set extra parameters used by the RNDIS query command with certain

 OIDs. */

 parameter.ux_slave_class_rndis_parameter_vendor_id = 0x04b4 ;

 parameter.ux_slave_class_rndis_parameter_driver_version = 0x1127;

 ux_utility_memory_copy(parameter.

ux_slave_class_rndis_parameter_vendor_description,

"ELOGIC RNDIS", 12);

 /* Initialize the device rndis class. This class owns both interfaces. */

 status =

 ux_device_stack_class_register(_ux_system_slave_class_rndis_name,

 ux_device_class_rndis_entry, 1,0,

 ¶meter);

As for the CDC-ECM, the RNDIS class requires 2 nodes, one local and one remote but
there is no requirement to have a string descriptor describing the remote node.

However due to Microsoft proprietary messaging mechanism, some extra parameters
are required. First the vendor ID has to be passed. Likewise, the driver version of the
RNDIS. A vendor string must also be given.

The RNDIS class has built-in APIs for transferring data both ways but they are hidden to
the application as the user application will communicate with the USB Ethernet device
through NetX.

The USBX RNDIS class is closely tied to ExpressLogic NetX Network stack.
An application using both NetX and USBX RNDIS class will activate the NetX network
stack in its usual way but in addition needs to activate the USB network stack as
follows:

 /* Initialize the NetX system. */

 nx_system_initialize();

 /* Perform the initialization of the network driver. This will

 initialize the USBX network layer.*/

 ux_network_driver_init();

The USB network stack needs to be activated only once and is not specific to RNDIS
but is required by any USB class that requires NetX services.

The RNDIS class will not be recognized by MAC OS and Linux hosts as it is specific to
Microsoft operating systems. On windows platforms a .inf file needs to be present on
the host that matches the device descriptor. ExpressLogic supplies a template for the
RNDIS class and it can be found in the usbx_windows_host_files directory. For more
recent version of Windows the file RNDIS_Template.inf should be used. This file needs
to be modified to reflect the PID/VID used by the device. The PID/VID will be specific to
the final customer when the company and the product are registered with the USB-IF.
In the inf file, the fields to modify are located here:

[ELogicDevices]

%ELogicDevice% = RNDIS, USB\VID_xxxx&PID_0000

[ELogicDevices.NT.5.1]

%ELogicDevice% = RNDIS.NT.5.1, USB\VID_xxxx&PID_0000

In the device framework of the RNDIS device, the PID/VID are stored in the device
descriptor (see the device descriptor declared above)

When a USB host systems discovers the USB RNDIS device, it will mount a network
interface and the device can be used with network protocol stack. See the host
Operating System for reference.

USB Device DFU Class

The USB device DFU class allows for a USB host system to update the device firmware
based on a host application. The DFU class is a USB-IF standard class.

USBX DFU class is relatively simple. It device descriptor does not require anything but
a control endpoint. Most of the time, this class will be embedded into a USB composite
device. The device can be anything such as a storage device or a comm device and the
added DFU interface can inform the host that the device can have its firmware updated
on the fly.

The DFU class works in 3 steps. First the device mounts as normal using the class
exported. An application on the host (Windows or Linux) will exercise the DFU class and
send a request to reset the device into DFU mode. The device will disappear from the
bus for a short time (enough for the host and the device to detect a RESET sequence)
and upon restarting, the device will be exclusively in DFU mode, waiting for the host
application to send a firmware upgrade. When the firmware upgrade has been
completed, the host application resets the device and upon re-enumeration the device
will revert to its normal operation with the new firmware.

A DFU device framework will look like this:

UCHAR device_framework_full_speed[] = {

 /* Device descriptor */

 0x12, 0x01, 0x10, 0x01, 0x00, 0x00, 0x00, 0x40,

 0x99, 0x99, 0x00, 0x00, 0x00, 0x00, 0x01, 0x02,

 0x03, 0x01,

 /* Configuration descriptor */

 0x09, 0x02, 0x1b, 0x00, 0x01, 0x01, 0x00, 0xc0,

 0x32,

 /* Interface descriptor for DFU. */

 0x09, 0x04, 0x00, 0x00, 0x00, 0xFE, 0x01, 0x01,

 0x00,

 /* Functional descriptor for DFU. */

 0x09, 0x21, 0x0f, 0xE8, 0x03, 0x40, 0x00, 0x00,

 0x01,

 };

In this example, the DFU descriptor is not associated with any other classes. It has a
simple interface descriptor and no other endpoints attached to it. There is a Functional
descriptor that describes the specifics of the DFU capabilities of the device.

The description of the DFU capabilities are as follows:

Name Offset Size type Description

bmAttributes 2 1 Bit field Bit 3: device will perform a bus detach-

attach sequence when it receives a
DFU_DETACH request.
The host must not issue a USB Reset.
(bitWillDetach)
0 = no
1 = yes
Bit 2: device is able to communicate via
USB after Manifestation phase.
(bitManifestationTolerant)
0 = no, must see bus reset
1 = yes
Bit 1: upload capable (bitCanUpload)
0 = no
1 = yes
Bit 0: download capable
(bitCanDnload)
0 = no
1 = yes

wDetachTimeOut 3 2 number Time, in milliseconds, that the device will
wait after receipt of the DFU_DETACH
request. If this time elapses without a
USB reset, then the device will terminate
the Reconfiguration phase and revert
back to normal operation. This
represents the maximum time that the
device can wait (depending on its timers,
etc.). USBX sets this value to 1000 ms.

wTransferSize 5 2 number Maximum number of bytes that the
device can accept per control-write
operation. USBX sets this value to 64
bytes.

The declaration of the DFU class is as follows:

 /* Store the DFU parameters. */
 dfu_parameter.ux_slave_class_dfu_parameter_instance_activate =

 tx_demo_thread_dfu_activate;

 dfu_parameter.ux_slave_class_dfu_parameter_instance_deactivate =

 tx_demo_thread_dfu_deactivate

;

 dfu_parameter.ux_slave_class_dfu_parameter_read =

 tx_demo_thread_dfu_read;

 dfu_parameter.ux_slave_class_dfu_parameter_write =

 tx_demo_thread_dfu_write;

 dfu_parameter.ux_slave_class_dfu_parameter_get_status =

 tx_demo_thread_dfu_get_status

;

 dfu_parameter.ux_slave_class_dfu_parameter_notify =

 tx_demo_thread_dfu_notify;

 dfu_parameter.ux_slave_class_dfu_parameter_framework =

 device_framework_dfu;

 dfu_parameter.ux_slave_class_dfu_parameter_framework_length =

 DEVICE_FRAMEWORK_LENGTH_DFU;

 /* Initialize the device dfu class. The class is connected with interface

 1 on configuration 1. */

 status =

 ux_device_stack_class_register(_ux_system_slave_class_dfu_name,

 ux_device_class_dfu_entry, 1, 0,

 (VOID *)&dfu_parameter);

 if (status!=UX_SUCCESS)

 return;

The DFU class needs to work with a device firmware application specific to the target.
Therefore it defines several call back to read and write blocks of firmware and to get
status from the firmware update application. The DFU class also has a notify callback
function to inform the application when a begin and end of transfer of the firmware
occur.

Following is the description of a typical DFU application flow.

DFU Detach

DFU Download

UX_SLAVE_CLASS_DFU_NOTIFICATION_BEGIN_DOWNLOAD

DFU Write

DFU Download

DFU Write

DFU Write

DFU DownloadDFU Download Size != 0

DFU Download Size != 0

DFU Download Size = 0

DFU Write

DFU Write

UX_SLAVE_CLASS_DFU_NOTIFICATION_END_DOWNLOAD

USBX DFU Class Device Application

The major challenge of the DFU class is getting the right application on the host to
perform the download the firmware. There is no application supplied by Microsoft or the
USB-IF. Some shareware exist and they work reasonably well on Linux and to a lesser
extent on Windows.

On Linux, one can use dfu-utils to be found here: http://wiki.openmoko.org/wiki/Dfu-util
A lot of information on dfu utils can also be found on this link:
http://www.libusb.org/wiki/windows_backend

The Linux implementation of DFU performs correctly the reset sequence between the
host and the device and therefore the device does not need to do it. Linux can accept
for the bmAttributes bitWillDetach to be 0. Windows on the other side requires the
device to perform the reset.

http://wiki.openmoko.org/wiki/Dfu-util
http://www.libusb.org/wiki/windows_backend

On Windows, the USB registry must be able to associate the USB device with its
PID/VID and the USB library which will in turn be used by the DFU application. This can
be easily done with the free utility Zadig which can be found here:
http://sourceforge.net/projects/libwdi/files/zadig/.

Running Zadig for the first time will show this screen:

From the device list, find your device and associate it with the libusb windows driver.
This will bind the PID/VID of the device with the Windows USB library used by the DFU
utilities.

To operate the DFU command, simply unpack the zipped dfu utilities into a directory,
making sure the libusb dll is also present in the same directory. The DFU utilities must
be run from a DOS box at the command line.

First, type the command dfu-util –l to determine whether the device is listed. If not, run
Zadig to make sure the device is listed and associated with the USB library. You should
see a screen as follows:

C:\usb specs\DFU\dfu-util-0.6>dfu-util -l
dfu-util 0.6

Copyright 2005-2008 Weston Schmidt, Harald Welte and OpenMoko Inc.
Copyright 2010-2012 Tormod Volden and Stefan Schmidt
This program is Free Software and has ABSOLUTELY NO WARRANTY

Found Runtime: [0a5c:21bc] devnum=0, cfg=1, intf=3, alt=0,
name="UNDEFINED"

http://sourceforge.net/projects/libwdi/files/zadig/

The next step will be to prepare the file to be downloaded. The USBX DFU class does
not perform any verification on this file and is agnostic of its internal format. This
firmware file is very specific to the target but not to DFU nor to USBX.

Then the dfu-util can be instructed to send the file by typing the following command:

dfu-util –R –t 64 -D file_to_download.hex

The dfu-util should display the file download process until the firmware has been
completely downloaded.

USB Device HID Class

The USB device HID class allows for a USB host system to connect to a HID device
with specific HID client capabilities.

USBX HID device class is relatively simple compared to the host side. It is closely tied
to the behavior of the device and its HID descriptor.

Any HID client requires first to define a HID device framework as the example below:

UCHAR device_framework_full_speed[] = {

 /* Device descriptor */

 0x12, 0x01, 0x10, 0x01, 0x00, 0x00, 0x00, 0x08,

 0x81, 0x0A, 0x01, 0x01, 0x00, 0x00, 0x00, 0x00,

 0x00, 0x01,

 /* Configuration descriptor */

 0x09, 0x02, 0x22, 0x00, 0x01, 0x01, 0x00, 0xc0, 0x32,

 /* Interface descriptor */

 0x09, 0x04, 0x00, 0x00, 0x01, 0x03, 0x00, 0x00, 0x00,

 /* HID descriptor */

 0x09, 0x21, 0x10, 0x01, 0x21, 0x01, 0x22, 0x3f, 0x00,

 /* Endpoint descriptor (Interrupt) */

 0x07, 0x05, 0x81, 0x03, 0x08, 0x00, 0x08

 };

The HID framework contains an interface descriptor that describes the HID class and
the HID device subclass. The HID interface can be a standalone class or part of a
composite device. Follows is a HID descriptor and the interrupt endpoint.

The initialization of the HID class is as follow, using a USB keyboard as an example:

 /* Initialize the hid class parameters for a keyboard. */

 hid_parameter.ux_device_class_hid_parameter_report_address =

 hid_keyboard_report;

 hid_parameter.ux_device_class_hid_parameter_report_length =

 HID_KEYBOARD_REPORT_LENGTH;

 hid_parameter.ux_device_class_hid_parameter_callback =

 tx_demo_thread_hid_callback;

 /* Initialize the device hid class. The class is connected with interface

 0 */

 status =

 ux_device_stack_class_register(_ux_system_slave_class_hid_name,

 ux_device_class_hid_entry, 1,0,

 (VOID *)&hid_parameter);

 if (status!=UX_SUCCESS)

 return;

The application needs to pass to the HID class a HID report descriptor and its length.
The report descriptor is a collection of items that describe the device. For more
information on the HID grammar refer to the HID USB class specification.

In addition to the report descriptor, the application passes a call back when a HID event
happens.

The USBX HID class supports the following standard HID commands from the host:

Command name Value Description
UX_DEVICE_CLASS_HID_COMMAND_GET_REPORT 0x01 Get a report from the device

UX_DEVICE_CLASS_HID_COMMAND_GET_IDLE 0x02 Get the idle frequency of

the interrupt endpoint

UX_DEVICE_CLASS_HID_COMMAND_GET_PROTOCOL 0x03 Get the protocol running on

the device

UX_DEVICE_CLASS_HID_COMMAND_SET_REPORT 0x09 Set a report to the device

UX_DEVICE_CLASS_HID_COMMAND_SET_IDLE 0x0a Set the idle frequency of

the interrupt endpoint

UX_DEVICE_CLASS_HID_COMMAND_SET_PROTOCOL 0x0b Get the protocol running on

the device

The Get and Set report are the most commonly used commands by HID to transfer data
back and forth between the host and the device. Most commonly the host sends data on
the control endpoint but can receive data either on the interrupt endpoint or by issuing a
GET_REPORT command to fetch the data on the control endpoint.

The HID class can send data back to the host on the interrupt endpoint by using the
ux_device_class_hid_event_set function. Its definition is below:

ux_device_class_hid_event_set

Setting an event to the HID class

Prototype

UINT ux_device_class_hid_event_set(UX_SLAVE_CLASS_HID *hid,

 UX_SLAVE_CLASS_HID_EVENT *hid_event)

Description

This function is called when an application needs to send a HID event back to the
host. The function is not blocking, it merely puts the report into a circular queue
and returns to the application

Parameters

hid Pointer to the hid class instance.
hid_event Pointer to structure of the hid event.

Return Value

UX_SUCCESS (0x00) This operation was successful.
UX_ERROR (0x01) Error on round robin queue

Example

 /* Insert a key into the keyboard event. Length is fixed to 8. */

 hid_event.ux_device_class_hid_event_length = 8;

 /* First byte is a modifier byte. */

 hid_event.ux_device_class_hid_event_buffer[0] = 0;

 /* Second byte is reserved. */

 hid_event.ux_device_class_hid_event_buffer[1] = 0;

 /* The 6 next bytes are keys. We only have one key here. */

 hid_event.ux_device_class_hid_event_buffer[2] = key;

 /* Set the keyboard event. */

 ux_device_class_hid_event_set(hid, &hid_event);

The callback defined at the initialization of the HID class performs the opposite of
sending an event. It gets as input the event sent by the host. The prototype of the
callback is as follows:

hid_callback

Getting an event from the HID class

Prototype

UINT hid_callback(UX_SLAVE_CLASS_HID *hid,

 UX_SLAVE_CLASS_HID_EVENT *hid_event)

Description

This function is called when the host sends a HID report to the application.

Parameters

hid Pointer to the hid class instance.
hid_event Pointer to structure of the hid event.

Example

 The following example shows how to interpret an event for a HID keyboard:

 UINT tx_demo_thread_hid_callback(UX_SLAVE_CLASS_HID *hid,

 UX_SLAVE_CLASS_HID_EVENT *hid_event)

{

 /* There was an event. Analyze it. Is it NUM LOCK ? */

 if (hid_event -> ux_device_class_hid_event_buffer[0] &

 HID_NUM_LOCK_MASK)

 /* Set the Num lock flag. */

 num_lock_flag = UX_TRUE;

 else

 /* Reset the Num lock flag. */

 num_lock_flag = UX_FALSE;

 /* There was an event. Analyze it. Is it CAPS LOCK ? */

 if (hid_event -> ux_device_class_hid_event_buffer[0] &

 HID_CAPS_LOCK_MASK)

 /* Set the Caps lock flag. */

 caps_lock_flag = UX_TRUE;

 else

 /* Reset the Caps lock flag. */

 caps_lock_flag = UX_FALSE;

 }

USB Device PIMA Class (PTP Responder)

The USB device PIMA class allows for a USB host system (Initiator) to connect to a
PIMA device (Resonder) to transfer media files. USBX Pima Class is conforming to the
USB-IF PIMA 15740 class also known as PTP class (for Picture Transfer Protocol).

USBX device side PIMA class supports the following operations:

Operation code Value Description
UX_DEVICE_CLASS_PIMA_OC_GET_DEVICE_INFO 0x1001 Obtain the device

supported operations

and events

UX_DEVICE_CLASS_PIMA_OC_OPEN_SESSION 0x1002 Open a session between

the host and the device

UX_DEVICE_CLASS_PIMA_OC_CLOSE_SESSION 0x1003 Close a session between

the host and the device

UX_DEVICE_CLASS_PIMA_OC_GET_STORAGE_IDS 0x1004 Returns the storage ID

for the device. USBX

PIMA uses one storage

ID only

UX_DEVICE_CLASS_PIMA_OC_GET_STORAGE_INFO 0x1005 Return information

about the storage

object such as max

capacity and free space

UX_DEVICE_CLASS_PIMA_OC_GET_NUM_OBJECTS 0x1006 Return the number of

objects contained in

the storage device

UX_DEVICE_CLASS_PIMA_OC_GET_OBJECT_HANDLES 0x1007 Return an array of

handles of the objects

on the storage device

UX_DEVICE_CLASS_PIMA_OC_GET_OBJECT_INFO 0x1008 Return information

about an object such as

the name of the object,

its creation date,

modification date …

UX_DEVICE_CLASS_PIMA_OC_GET_OBJECT 0x1009 Return the data

pertaining to a

specific object.

UX_DEVICE_CLASS_PIMA_OC_GET_THUMB 0x100A Send the thumbnail if

available about an

object

UX_DEVICE_CLASS_PIMA_OC_DELETE_OBJECT 0x100B Delete an object on the

media

UX_DEVICE_CLASS_PIMA_OC_SEND_OBJECT_INFO 0x100C Send to the device

information about an

object for its creation

on the media

UX_DEVICE_CLASS_PIMA_OC_SEND_OBJECT 0x100D Send data for an object

to the device

UX_DEVICE_CLASS_PIMA_OC_FORMAT_STORE 0x100F Clean the device media

UX_DEVICE_CLASS_PIMA_OC_RESET_DEVICE 0x0110 Reset the target device

Operation Code Value Description
UX_DEVICE_CLASS_PIMA_EC_CANCEL_TRANSACTION 0x4001 Cancels the current

transaction

UX_DEVICE_CLASS_PIMA_EC_OBJECT_ADDED 0x4002 An object has been

added to the device

media and can be

retrieved by the

host.

UX_DEVICE_CLASS_PIMA_EC_OBJECT_REMOVED 0x4003 An object has been

deleted from the

device media

UX_DEVICE_CLASS_PIMA_EC_STORE_ADDED 0x4004 A media has been

added to the device

UX_DEVICE_CLASS_PIMA_EC_STORE_REMOVED 0x4005 A media has been

deleted from the

device

UX_DEVICE_CLASS_PIMA_EC_DEVICE_PROP_CHANGED 0x4006 Device properties

have changed

UX_DEVICE_CLASS_PIMA_EC_OBJECT_INFO_CHANGED 0x4007 An object information

has changed

UX_DEVICE_CLASS_PIMA_EC_DEVICE_INFO_CHANGE 0x4008 A device has changed

UX_DEVICE_CLASS_PIMA_EC_REQUEST_OBJECT_TRANSFER 0x4009 The device requests

the transfer of an

object from the host

UX_DEVICE_CLASS_PIMA_EC_STORE_FULL 0x400A Device reports the

media is full

UX_DEVICE_CLASS_PIMA_EC_DEVICE_RESET 0x400B Device reports it was

reset

UX_DEVICE_CLASS_PIMA_EC_STORAGE_INFO_CHANGED 0x400C Storage information

has changed on the

device

UX_DEVICE_CLASS_PIMA_EC_CAPTURE_COMPLETE 0x400D Capture is completed

The USBX PIMA device class uses a TX Thread to listen to PIMA commands from the
host.

A PIMA command is composed of a command block, a data block and a status phase.

The function ux_device_class_pima_thread posts a request to the stack to receive a
PIMA command from the host side. The PIMA command is decoded and verified for
content. If the command block is valid, it branches to the appropriate command handler.

Most PIMA commands can only be executed when a session has been opened by the

host. The only exception is the command UX_DEVICE_CLASS_PIMA_OC_GET_DEVICE_INFO.
With USBX PIMA implementation, only one session can be opened between an Initiator
and Responder at any time. All transactions within the single session are blocking and
no new transaction can begin before the previous one completed.

PIMA transactions are composed of 3 phases, a command phase, an optional data
phase and a response phase. If a data phase is present, it can only be in one direction.

The Initiator always determines the flow of the PIMA operations but the Responder can
initiate events back to the Initiator to inform status changes that happened during a
session.

The following diagram shows the transfer of a data object between the host and the
PIMA device class:

Application PIMA Host classs PIMA device class Application

Get Device Info

Open Session

Application Gets Object

GetObjectInfo

Object Data

GetObject

pima -> ux_device_class_pima_object_data_get

Object Data

Open SessionOpen Session

Close Session

USB

Initialization of the PIMA device class

The PIMA device class needs some parameters supplied by the application during the
initialization.

The following parameters describe the device and storage information:

 ux_device_class_pima_manufacturer

 ux_device_class_pima_model

 ux_device_class_pima_device_version

 ux_device_class_pima_serial_number

 ux_device_class_pima_storage_id

 ux_device_class_pima_storage_type

 ux_device_class_pima_storage_file_system_type

 ux_device_class_pima_storage_access_capability

 ux_device_class_pima_storage_max_capacity_low

 ux_device_class_pima_storage_max_capacity_high

 ux_device_class_pima_storage_free_space_low

 ux_device_class_pima_storage_free_space_high

 ux_device_class_pima_storage_free_space_image

 ux_device_class_pima_storage_description

 ux_device_class_pima_storage_volume_label

The PIMA class also requires the registration of callback into the application to inform
the application of certain events or retrieve/store data from/to the local media. The
callbacks are:

 ux_device_class_pima_object_number_get

 ux_device_class_pima_object_handles_get

 ux_device_class_pima_object_info_get

 ux_device_class_pima_object_data_get

 ux_device_class_pima_object_info_send

 ux_device_class_pima_object_data_send

 ux_device_class_pima_object_delete

The following example shows how to initialize the client side of PIMA. This example
uses Pictbridge as a client for PIMA:

/* Initialize the first XML object valid in the pictbridge instance.

 Initialize the handle, type and file name.

 The storage handle and the object handle have a fixed value of 1 in our

 implementation. */

object_info = pictbridge -> ux_pictbridge_object_client;

object_info -> ux_device_class_pima_object_format =

 UX_DEVICE_CLASS_PIMA_OFC_SCRIPT;

object_info -> ux_device_class_pima_object_storage_id = 1;

object_info -> ux_device_class_pima_object_handle_id = 2;

ux_utility_string_to_unicode(_ux_pictbridge_ddiscovery_name,

 object_info ->

 ux_device_class_pima_object_filename);

/* Initialize the head and tail of the notification round robin buffers.

 At first, the head and tail are pointing to the beginning of the array.

*/

pictbridge -> ux_pictbridge_event_array_head = pictbridge ->

 ux_pictbridge_event_array;

pictbridge -> ux_pictbridge_event_array_tail = pictbridge ->

 ux_pictbridge_event_array;

pictbridge -> ux_pictbridge_event_array_end = pictbridge ->

 ux_pictbridge_event_array +

 UX_PICTBRIDGE_MAX_EVENT_NUMBER;

/* Initialialize the pima device parameter. */

pictbridge -> ux_pictbridge_pima_parameter.

ux_device_class_pima_parameter_manufacturer = pictbridge ->

 ux_pictbridge_dpslocal.ux_pictbridge_devinfo_vendor_name;

pictbridge -> ux_pictbridge_pima_parameter.

ux_device_class_pima_parameter_model = pictbridge ->

 ux_pictbridge_dpslocal.ux_pictbridge_devinfo_product_name;

pictbridge -> ux_pictbridge_pima_parameter.

ux_device_class_pima_parameter_serial_number = pictbridge ->

 ux_pictbridge_dpslocal.ux_pictbridge_devinfo_serial_no;

pictbridge -> ux_pictbridge_pima_parameter.

ux_device_class_pima_parameter_storage_id = 1;

pictbridge -> ux_pictbridge_pima_parameter.

ux_device_class_pima_parameter_storage_type =

UX_DEVICE_CLASS_PIMA_STC_FIXED_RAM;

pictbridge -> ux_pictbridge_pima_parameter.

ux_device_class_pima_parameter_storage_file_system_type =

UX_DEVICE_CLASS_PIMA_FSTC_GENERIC_FLAT;

pictbridge -> ux_pictbridge_pima_parameter.

 ux_device_class_pima_parameter_storage_access_capability =

 UX_DEVICE_CLASS_PIMA_AC_READ_WRITE;

pictbridge -> ux_pictbridge_pima_parameter.

ux_device_class_pima_parameter_storage_max_capacity_low =

pictbridge -> ux_pictbridge_dpslocal.

ux_pictbridge_devinfo_storage_size;

pictbridge -> ux_pictbridge_pima_parameter.

ux_device_class_pima_parameter_storage_max_capacity_high = 0;

pictbridge -> ux_pictbridge_pima_parameter.

ux_device_class_pima_parameter_storage_free_space_low = pictbridge ->

ux_pictbridge_dpslocal.ux_pictbridge_devinfo_storage_size;

pictbridge -> ux_pictbridge_pima_parameter.

ux_device_class_pima_parameter_storage_free_space_high = 0;

pictbridge -> ux_pictbridge_pima_parameter.

ux_device_class_pima_parameter_storage_free_space_image = 0;

pictbridge -> ux_pictbridge_pima_parameter.

ux_device_class_pima_parameter_storage_description =

_ux_pictbridge_volume_description;

pictbridge -> ux_pictbridge_pima_parameter.

ux_device_class_pima_parameter_storage_volume_label =

_ux_pictbridge_volume_label;

pictbridge -> ux_pictbridge_pima_parameter.

ux_device_class_pima_parameter_object_number_get =

ux_pictbridge_dpsclient_object_number_get;

pictbridge -> ux_pictbridge_pima_parameter.

ux_device_class_pima_parameter_object_handles_get =

ux_pictbridge_dpsclient_object_handles_get;

pictbridge -> ux_pictbridge_pima_parameter.

ux_device_class_pima_parameter_object_info_get =

ux_pictbridge_dpsclient_object_info_get;

pictbridge -> ux_pictbridge_pima_parameter.

ux_device_class_pima_parameter_object_data_get =

ux_pictbridge_dpsclient_object_data_get;

pictbridge -> ux_pictbridge_pima_parameter.

ux_device_class_pima_parameter_object_info_send =

ux_pictbridge_dpsclient_object_info_send;

pictbridge -> ux_pictbridge_pima_parameter.

ux_device_class_pima_parameter_object_data_send =

ux_pictbridge_dpsclient_object_data_send;

pictbridge -> ux_pictbridge_pima_parameter.

ux_device_class_pima_parameter_object_delete =

ux_pictbridge_dpsclient_object_delete;

/* Store the instance owner. */

pictbridge -> ux_pictbridge_pima_parameter.

ux_device_class_pima_parameter_application = (VOID *) pictbridge;

/* Initialize the device pima class. The class is connected with interface

 0 */

status = ux_device_stack_class_register(_ux_system_slave_class_pima_name,

 ux_device_class_pima_entry, 1, 0,

 (VOID *)&pictbridge ->

 ux_pictbridge_pima_parameter);

/* Check status. */

if (status != UX_SUCCESS)

ux_device_class_pima_object_number_get

Getting the object number from the application

Prototype

UINT ux_device_class_pima_object_number_get(UX_SLAVE_CLASS_PIMA *pima,

 ULONG &object_numner)

Description

This function is called when the PIMA class needs to retrieve the number of
objects in the local system and send it back to the host.

Parameters

pima Pointer to the pima class instance.
object_number Address of the number of objects to be

returned.

Example

UINT ux_pictbridge_dpsclient_object_number_get(UX_SLAVE_CLASS_PIMA *pima,

 ULONG *number_objects)

{

 /* We force the number of objects to be 1 only here. This will be the xml

 scripts. */

 *number_objects = 1;

 return(UX_SUCCESS);

}

ux_device_class_pima_object_handles_get

Return the object handle array

Prototype

UINT ux_device_class_pima_object_handles_get(UX_SLAVE_CLASS_PIMA_STRUCT

 *pima, ULONG object_handles_format_code,

 ULONG object_handles_association,

 ULONG *object_handles_array,

 ULONG object_handles_max_number);

Description

This function is called when the PIMA class needs to retrieve the object handles
array in the local system and send it back to the host.

Parameters

pima Pointer to the pima class instance.
object_handles_format_code Format code for the handles
object_handles_association Object association code
object_handle_array Address where to store the handles
object_handles_max_number Maximum number of handles in the array

Example

UINT ux_pictbridge_dpsclient_object_handles_get(UX_SLAVE_CLASS_PIMA *pima,

 ULONG object_handles_format_code, ULONG object_handles_association,

 ULONG *object_handles_array, ULONG object_handles_max_number)

{

UX_PICTBRIDGE *pictbridge;

UX_SLAVE_CLASS_PIMA_OBJECT *object_info;

 /* Get the pointer to the Pictbridge instance. */

 pictbridge = (UX_PICTBRIDGE *) pima -> ux_device_class_pima_application;

 /* Set the pima pointer to the pictbridge instance. */

 pictbridge -> ux_pictbridge_pima = (VOID *) pima;

 /* We say we have one object but the caller might specify differnt format

 code and associations. */

 object_info = pictbridge -> ux_pictbridge_object_client;

 /* Insert in the array the number of found handles so far: 0. */

 ux_utility_long_put((UCHAR *)object_handles_array, 0);

 /* Check the type demanded. */

 if (object_handles_format_code == 0 || object_handles_format_code ==

 0xFFFFFFFF || object_info ->

 ux_device_class_pima_object_format ==

 object_handles_format_code)

 {

 /* Insert in the array the number of found handles. This handle is

 for the client XML script. */

 ux_utility_long_put((UCHAR *)object_handles_array, 1);

 /* Adjust the array to point after the number of elements. */

 object_handles_array++;

 /* We have a candicate. Store the handle. */

 ux_utility_long_put((UCHAR *)object_handles_array, object_info ->

 ux_device_class_pima_object_handle_id);

 }

 return(UX_SUCCESS);

}

ux_device_class_pima_object_info_get

Return the object information

Prototype

UINT ux_device_class_pima_object_info_get(struct

 UX_SLAVE_CLASS_PIMA_STRUCT *pima, ULONG object_handle,

 UX_SLAVE_CLASS_PIMA_OBJECT **object);

Description

This function is called when the PIMA class needs to retrieve the object handles
array in the local system and send it back to the host.

Parameters

pima Pointer to the pima class instance.
object_handles Handle of the object
object Object pointer address

Example

UINT ux_pictbridge_dpsclient_object_info_get(UX_SLAVE_CLASS_PIMA *pima,

 ULONG object_handle, UX_SLAVE_CLASS_PIMA_OBJECT **object)

{

UX_PICTBRIDGE *pictbridge;

UX_SLAVE_CLASS_PIMA_OBJECT *object_info;

 /* Get the pointer to the Pictbridge instance. */

 pictbridge = (UX_PICTBRIDGE *)pima -> ux_device_class_pima_application;

 /* Check the object handle. If this is handle 1 or 2 , we need to return

 the XML script object.

 If the handle is not 1 or 2, this is a JPEG picture or other object to

 be printed. */

 if ((object_handle == UX_PICTBRIDGE_OBJECT_HANDLE_HOST_RESPONSE) ||

 (object_handle == UX_PICTBRIDGE_OBJECT_HANDLE_CLIENT_REQUEST))

 {

 /* Check what XML object is requested. It is either a request script

 or a response. */

 if (object_handle == UX_PICTBRIDGE_OBJECT_HANDLE_HOST_RESPONSE)

 object_info = (UX_SLAVE_CLASS_PIMA_OBJECT *) pictbridge ->

 ux_pictbridge_object_host;

 else

 object_info = (UX_SLAVE_CLASS_PIMA_OBJECT *) pictbridge ->

 ux_pictbridge_object_client;

 }

 else

 /* Get the object info from the job info structure. */

 object_info = (UX_SLAVE_CLASS_PIMA_OBJECT *) pictbridge ->

 ux_pictbridge_jobinfo.ux_pictbridge_jobinfo_object;

 /* Return the pointer to this object. */

 *object = object_info;

 /* We are done. */

 return(UX_SUCCESS);

}

ux_device_class_pima_object_data_get

Return the object data

Prototype

UINT ux_device_class_pima_object_info_get(UX_SLAVE_CLASS_PIMA *pima,

 ULONG object_handle, UCHAR *object_buffer, ULONG object_offset,

 ULONG object_length_requested, ULONG *object_actual_length)

Description

This function is called when the PIMA class needs to retrieve the object data in
the local system and send it back to the host.

Parameters

pima Pointer to the pima class instance.
object_handle Handle of the object
object_buffer Object buffer address
object_length_requested Object data length requested by the client to

the application
object_actual_length Object data length returned by the application

Example

UINT ux_pictbridge_dpsclient_object_data_get(UX_SLAVE_CLASS_PIMA *pima,

 ULONG object_handle, UCHAR *object_buffer, ULONG object_offset,

 ULONG object_length_requested, ULONG *object_actual_length)

{

UX_PICTBRIDGE *pictbridge;

UX_SLAVE_CLASS_PIMA_OBJECT *object_info;

UCHAR *pima_object_buffer;

ULONG actual_length;

UINT status;

 /* Get the pointer to the Pictbridge instance. */

 pictbridge = (UX_PICTBRIDGE *)pima -> ux_device_class_pima_application;

 /* Check the object handle. If this is handle 1 or 2 , we need to return

 the XML script object.

 If the handle is not 1 or 2, this is a JPEG picture or other object to

 be printed. */

 if ((object_handle == UX_PICTBRIDGE_OBJECT_HANDLE_HOST_RESPONSE) ||

 (object_handle == UX_PICTBRIDGE_OBJECT_HANDLE_CLIENT_REQUEST))

 {

 /* Check what XML object is requested. It is either a request script

 or a response. */

 if (object_handle == UX_PICTBRIDGE_OBJECT_HANDLE_HOST_RESPONSE)

 object_info = (UX_SLAVE_CLASS_PIMA_OBJECT *) pictbridge ->

 ux_pictbridge_object_host;

 else

 object_info = (UX_SLAVE_CLASS_PIMA_OBJECT *) pictbridge ->

 ux_pictbridge_object_client;

 /* Is this the corrent handle ? */

 if (object_info -> ux_device_class_pima_object_handle_id ==

 object_handle)

 {

 /* Get the pointer to the object buffer. */

 pima_object_buffer = object_info ->

 ux_device_class_pima_object_buffer;

 /* Copy the demanded object data portion. */

 ux_utility_memory_copy(object_buffer, pima_object_buffer +

 object_offset, object_length_requested);

 /* Update the length requested. for a demo, we do not do any

 checking. */

 *object_actual_length = object_length_requested;

 /* What cycle are we in ? */

 if (pictbridge -> ux_pictbridge_host_client_state_machine &

 UX_PICTBRIDGE_STATE_MACHINE_HOST_REQUEST)

 {

 /* Check if we are blocking for a client request. */

 if (pictbridge -> ux_pictbridge_host_client_state_machine &

 UX_PICTBRIDGE_STATE_MACHINE_CLIENT_REQUEST_PENDING)

 /* Yes we are pending, send an event to release the

 pending request. */

 ux_utility_event_flags_set(&pictbridge ->

 ux_pictbridge_event_flags_group,

 UX_PICTBRIDGE_EVENT_FLAG_STATE_MACHINE_READY, TX_OR);

 /* Since we are in host request, this indicates we are done

 with the cycle. */

 pictbridge -> ux_pictbridge_host_client_state_machine =

 UX_PICTBRIDGE_STATE_MACHINE_IDLE;

 }

 /* We have copied the requested data. Return OK. */

 return(UX_SUCCESS);

 }

 }

 else

 {

 /* Get the object info from the job info structure. */

 object_info = (UX_SLAVE_CLASS_PIMA_OBJECT *) pictbridge ->

 ux_pictbridge_jobinfo.ux_pictbridge_jobinfo_object;

 /* Obtain the data from the application jobinfo callback. */

 status = pictbridge ->

 ux_pictbridge_jobinfo.

 ux_pictbridge_jobinfo_object_data_read(pictbridge,

 object_buffer, object_offset,

 object_length_requested, &actual_length);

 /* Save the length returned. */

 *object_actual_length = actual_length;

 /* Return the application status. */

 return(status);

 }

 /* Could not find the handle. */

 return(UX_DEVICE_CLASS_PIMA_RC_INVALID_OBJECT_HANDLE);

}

ux_device_class_pima_object_info_send

Host sends the object information

Prototype

UINT ux_device_class_pima_object_info_send(UX_SLAVE_CLASS_PIMA *pima,

 UX_SLAVE_CLASS_PIMA_OBJECT *object, ULONG *object_handle)

Description

This function is called when the PIMA class needs to receive the object
information in the local system for future storage.

Parameters

pima Pointer to the pima class instance.
object Pointer to the object
object_handle Handle of the object

Example

UINT ux_pictbridge_dpsclient_object_info_send(UX_SLAVE_CLASS_PIMA *pima,

 UX_SLAVE_CLASS_PIMA_OBJECT *object, ULONG *object_handle)

{

UX_PICTBRIDGE *pictbridge;

UX_SLAVE_CLASS_PIMA_OBJECT *object_info;

UCHAR

string_discovery_name[UX_PICTBRIDGE_MAX_FILE_NAME_SIZE];

 /* Get the pointer to the Pictbridge instance. */

 pictbridge = (UX_PICTBRIDGE *)pima -> ux_device_class_pima_application;

 /* We only have one object. */

 object_info = (UX_SLAVE_CLASS_PIMA_OBJECT *) pictbridge ->

 ux_pictbridge_object_host;

 /* Copy the demanded object info set. */

 ux_utility_memory_copy(object_info, object,

 UX_SLAVE_CLASS_PIMA_OBJECT_DATA_LENGTH);

 /* Store the object handle. In Pictbridge we only receive XML scripts so

 the handle is hardwired to 1. */

 object_info -> ux_device_class_pima_object_handle_id = 1;

 *object_handle = 1;

 /* Check state machine. If we are in discovery pending mode, check file

 name of this object. */

 if (pictbridge -> ux_pictbridge_discovery_state ==

 UX_PICTBRIDGE_DPSCLIENT_DISCOVERY_PENDING)

 {

 /* We are in the discovery mode. Check for file name. It must match

 HDISCVRY.DPS in Unicode mode. */

 /* Check if this is a script. */

 if (object_info -> ux_device_class_pima_object_format ==

 UX_DEVICE_CLASS_PIMA_OFC_SCRIPT)

 {

 /* Yes this is a script. We need to search for the HDISCVRY.DPS

 file name. Get the file name in a ascii format. */

 ux_utility_unicode_to_string(object_info ->

 ux_device_class_pima_object_filename,

 string_discovery_name);

 /* Now, compare it to the HDISCVRY.DPS file name. Check length

 first. */

 if (ux_utility_string_length_get(_ux_pictbridge_hdiscovery_name)

 == ux_utility_string_length_get(string_discovery_name))

 {

 /* So far, the length of name of the files are the same.

 Compare names now. */

 if(ux_utility_memory_compare(

 _ux_pictbridge_hdiscovery_name,

 string_discovery_name,

 ux_utility_string_length_get(string_discovery_name))

 == UX_SUCCESS)

 {

 /* We are done with discovery of the printer. We can now

 send notifications when the camera wants to print an

 object. */

 pictbridge -> ux_pictbridge_discovery_state =

 UX_PICTBRIDGE_DPSCLIENT_DISCOVERY_COMPLETE;

 /* Set an event flag if the application is listening. */

 ux_utility_event_flags_set(&pictbridge ->

 ux_pictbridge_event_flags_group,

 UX_PICTBRIDGE_EVENT_FLAG_DISCOVERY, TX_OR);

 /* There is no object during th discovery cycle. */

 return(UX_SUCCESS);

 }

 }

 }

 }

 /* What cycle are we in ? */

 if (pictbridge -> ux_pictbridge_host_client_state_machine ==

 UX_PICTBRIDGE_STATE_MACHINE_IDLE)

 /* Since we are in idle state, we must have received a request from

 the host. */

 pictbridge -> ux_pictbridge_host_client_state_machine =

 UX_PICTBRIDGE_STATE_MACHINE_HOST_REQUEST;

 /* We have copied the requested data. Return OK. */

 return(UX_SUCCESS);

}

ux_device_class_pima_object_data_send

Host sends the object data

Prototype

UINT ux_device_class_pima_object_data_send(UX_SLAVE_CLASS_PIMA *pima,

 ULONG object_handle, ULONG phase, UCHAR *object_buffer,

 ULONG object_offset, ULONG object_length)

Description

This function is called when the PIMA class needs to receive the object data in
the local system for storage.

Parameters

pima Pointer to the pima class instance.
object_handle Handle of the object
phase phase of the transfer (active or complete)
object_buffer Object buffer address
object_offset Address of data
object_length Object data length sent by application

Example

UINT ux_pictbridge_dpsclient_object_data_send(UX_SLAVE_CLASS_PIMA *pima,

 ULONG object_handle,

 ULONG phase,

 UCHAR *object_buffer,

 ULONG object_offset,

 ULONG object_length)

{

UINT status;

UX_PICTBRIDGE *pictbridge;

UX_SLAVE_CLASS_PIMA_OBJECT *object_info;

ULONG event_flag;

UCHAR *pima_object_buffer;

 /* Get the pointer to the Pictbridge instance. */

 pictbridge = (UX_PICTBRIDGE *)pima -> ux_device_class_pima_application;

 /* Get the pointer to the pima object. */

 object_info = (UX_SLAVE_CLASS_PIMA_OBJECT *) pictbridge ->

 ux_pictbridge_object_host;

 /* Is this the corrent handle ? */

 if (object_info -> ux_device_class_pima_object_handle_id ==

 object_handle)

 {

 /* Get the pointer to the object buffer. */

 pima_object_buffer = object_info ->

 ux_device_class_pima_object_buffer;

 /* Check the phase. We should wait for the object to be completed and

 the response sent back before parsing the object. */

 if (phase == UX_DEVICE_CLASS_PIMA_OBJECT_TRANSFER_PHASE_ACTIVE)

 {

 /* Copy the demanded object data portion. */

 ux_utility_memory_copy(pima_object_buffer + object_offset,

 object_buffer, object_length);

 /* Save the length of this object. */

 object_info -> ux_device_class_pima_object_length =

 object_length;

 /* We are not done yet. */

 return(UX_SUCCESS);

 }

 else

 {

 /* Completion of transfer. We are done. */

 return(UX_SUCCESS);

 }

 }

}

ux_device_class_pima_object_delete

Delete a local object

Prototype

UINT ux_device_class_pima_object_delete(UX_SLAVE_CLASS_PIMA *pima,

 ULONG object_handle)

Description

This function is called when the PIMA class needs to delete an object on the
local storage.

Parameters

pima Pointer to the pima class instance.
object_handle Handle of the object

Example

UINT ux_pictbridge_dpsclient_object_delete(UX_SLAVE_CLASS_PIMA *pima,

 ULONG object_handle)

{

 /* Delete the object pointer by the handle. */

}

Chapter 6: USBX DPUMP Class
Considerations

USBX contains a DPUMP class for the host and device side. This class is not a
standard class per se, but rather an example that illustrates how to create a simple
device by using 2 bulk pipes and sending data back and forth on these 2 pipes. The
DPUMP class could be used to start a custom class or for legacy RS232 devices.

USB DPUMP flow chart:

Host Application DPUMP Host Class USB HostStack USB Device Stack

Write a packet

_ux_host_class_dpump_write

_ux_host_stack_transfer_request

DATA SENT OVER USB
Wait for transfer

completion

Receive transfer status

and data length sent

Receive a packet

_ux_host_class_dpump_read

_ux_host_stack_transfer_request

Wait for transfer

completion

Receive transfer status,

data packet and data

length received

DATA SENT OVER USB

_ux_device_stack_transfer_request

Wait for OUT packet on Bulk Out

 DPUMP Device Class Thread

Wait for a packet

Wait for transfer

completion

Write a packet

Wait for transfer

completion

_ux_device_stack_transfer_request

Wait for IN packet on Bulk IN

USBX DPUMP Device Class

The device DPUMP class uses a thread which is started upon connection to the USB
host. The thread waits for a packet coming on the Bulk Out endpoint. When a packet is
received, it copies the content to the Bulk In endpoint buffer and posts a transaction on
this endpoint, waiting for the host to issue a request to read from this endpoint. This
provides a loopback mechanism between the Bulk Out and Bulk In endpoints.

Chapter 7: USBX Pictbridge
implementation

UBSX supports the full Pictbridge implementation both on the host and the device.
Pictbridge sits on top of USBX PIMA class on both sides.

The PictBridge standards allows the connection of a digital still camera or a smart
phone directly to a printer without a PC, enabling direct printing to certain Pictbridge
aware printers.

When a camera or phone is connected to a printer, the printer is the USB host and the
camera is the USB device. However, with Pictbridge, the camera will appear as being
the host and commands are driven from the camera. The camera is the storage server,
the printer the storage client. The camera is the print client and the printer is of course
the print server.

Pictbridge uses USB as a transport layer but relies on PTP (Picture Transfer Protocol)
for the communication protocol.

The following is a diagram of the commands/responses between the DPS client and the
DPS server when a print job occurs:

DPS services Discovery

Storage Device Storage Server Print Client Print Server Storage Client Print Device

DPS_ConfigurePrintServicesDPS_ConfigurePrintServices

DPS_GetCapabilities

Application starts print

DPS_StartJob

DPS_GetFileInfo

DPS_GetFile

Get File Data

File Data

Print Data

DPS_NotifyDeviceStatus

Pictbridge client implementation

The Pictbridge on the client requires the USBX device stack and the PIMA class to be
running first.

A device framework describes the PIMA class in the following way:

UCHAR device_framework_full_speed[] =

{

 /* Device descriptor */

 0x12, 0x01, 0x10, 0x01, 0x00, 0x00, 0x00, 0x20,

 0xA9, 0x04, 0xB6, 0x30, 0x00, 0x00, 0x00, 0x00,

 0x00, 0x01,

 /* Configuration descriptor */

 0x09, 0x02, 0x27, 0x00, 0x01, 0x01, 0x00, 0xc0, 0x32,

 /* Interface descriptor */

 0x09, 0x04, 0x00, 0x00, 0x03, 0x06, 0x01, 0x01, 0x00,

 /* Endpoint descriptor (Bulk Out) */

 0x07, 0x05, 0x01, 0x02, 0x40, 0x00, 0x00,

 /* Endpoint descriptor (Bulk In) */

 0x07, 0x05, 0x82, 0x02, 0x40, 0x00, 0x00,

 /* Endpoint descriptor (Interrupt) */

 0x07, 0x05, 0x83, 0x03, 0x08, 0x00, 0x60

};

The Pima class is using the ID field 0x06 and has its subclass

is 0x01 for Still Image and the protocol is 0x01 for PIMA 15740.

3 endpoints are defined in this class, 2 bulks for

sending/receiving data and one interrupt for events.

Unlike other USBX device implementations, the Pictbridge

application does not need to define a class itself. Rather it

invokes the function ux_pictbridge_dpsclient_start. An example

is below:

/* Initialize the Pictbridge string components. */

ux_utility_memory_copy

(pictbridge.ux_pictbridge_dpslocal.ux_pictbridge_devinfo_vendor_name,

"ExpressLogic",13);

ux_utility_memory_copy

(pictbridge.ux_pictbridge_dpslocal.ux_pictbridge_devinfo_product_name,

"EL_Pictbridge_Camera",21);

ux_utility_memory_copy

(pictbridge.ux_pictbridge_dpslocal.ux_pictbridge_devinfo_serial_no,

"ABC_123",7);

ux_utility_memory_copy

(pictbridge.ux_pictbridge_dpslocal.ux_pictbridge_devinfo_dpsversions,

"1.0 1.1",7);

pictbridge.ux_pictbridge_dpslocal.

ux_pictbridge_devinfo_vendor_specific_version = 0x0100;

/* Start the Pictbridge client. */

status = ux_pictbridge_dpsclient_start(&pictbridge);

if(status != UX_SUCCESS)

 return;

The parameters passed to the pictbridge client are as follows:

pictbridge.ux_pictbridge_dpslocal.ux_pictbridge_devinfo_vendor_name

: String of Vendor name

pictbridge.ux_pictbridge_dpslocal.ux_pictbridge_devinfo_product_name

: String of product name

pictbridge.ux_pictbridge_dpslocal.ux_pictbridge_devinfo_serial_no,

: String of serial number

pictbridge.ux_pictbridge_dpslocal.ux_pictbridge_devinfo_dpsversions

: String of version

pictbridge.ux_pictbridge_dpslocal.

ux_pictbridge_devinfo_vendor_specific_version

: Value set to 0x0100;

The next step is for the device and the host to synchronize and be ready to exchange
information.

This is done by waiting on an event flag as follows:

/* We should wait for the host and the client to discover one another. */

status = ux_utility_event_flags_get

(&pictbridge.ux_pictbridge_event_flags_group,

 UX_PICTBRIDGE_EVENT_FLAG_DISCOVERY,TX_AND_CLEAR, &actual_flags,

 UX_PICTBRIDGE_EVENT_TIMEOUT);

If the state machine is in the DISCOVERY_COMPLETE state, the camera side (the
DPS client) will gather information regarding the printer and its capabilities.

If the DPS client is ready to accept a print job, its status will be set to
UX_PICTBRIDGE_NEW_JOB_TRUE. It can be checked below:

/* Check if the printer is ready for a print job. */

if (pictbridge.ux_pictbridge_dpsclient.ux_pictbridge_devinfo_newjobok ==

 UX_PICTBRIDGE_NEW_JOB_TRUE)

 /* We can print something … */

Next some print joib descriptors need to be filled as follows:

/* We can start a new job. Fill in the JobConfig and PrintInfo structures. */

jobinfo = &pictbridge.ux_pictbridge_jobinfo;

/* Attach a printinfo structure to the job. */

jobinfo -> ux_pictbridge_jobinfo_printinfo_start = &printinfo;

/* Set the default values for print job. */

jobinfo -> ux_pictbridge_jobinfo_quality =

 UX_PICTBRIDGE_QUALITIES_DEFAULT;

jobinfo -> ux_pictbridge_jobinfo_papersize =

 UX_PICTBRIDGE_PAPER_SIZES_DEFAULT;

jobinfo -> ux_pictbridge_jobinfo_papertype =

 UX_PICTBRIDGE_PAPER_TYPES_DEFAULT;

jobinfo -> ux_pictbridge_jobinfo_filetype =

 UX_PICTBRIDGE_FILE_TYPES_DEFAULT;

jobinfo -> ux_pictbridge_jobinfo_dateprint =

 UX_PICTBRIDGE_DATE_PRINTS_DEFAULT;

jobinfo -> ux_pictbridge_jobinfo_filenameprint =

 UX_PICTBRIDGE_FILE_NAME_PRINTS_DEFAULT;

jobinfo -> ux_pictbridge_jobinfo_imageoptimize =

 UX_PICTBRIDGE_IMAGE_OPTIMIZES_OFF;

jobinfo -> ux_pictbridge_jobinfo_layout =

 UX_PICTBRIDGE_LAYOUTS_DEFAULT;

jobinfo -> ux_pictbridge_jobinfo_fixedsize =

 UX_PICTBRIDGE_FIXED_SIZE_DEFAULT;

jobinfo -> ux_pictbridge_jobinfo_cropping =

 UX_PICTBRIDGE_CROPPINGS_DEFAULT;

/* Program the callback function for reading the object data. */

jobinfo -> ux_pictbridge_jobinfo_object_data_read =

 ux_demo_object_data_copy;

/* This is a demo, the fileID is hardwired (1 and 2 for scripts, 3 for photo

 to be printed. */

printinfo.ux_pictbridge_printinfo_fileid =

 UX_PICTBRIDGE_OBJECT_HANDLE_PRINT;

ux_utility_memory_copy(printinfo.ux_pictbridge_printinfo_filename,

 "Pictbridge demo file", 20);

ux_utility_memory_copy(printinfo.ux_pictbridge_printinfo_date, "01/01/2008",

 10);

/* Fill in the object info to be printed. First get the pointer to the

 object container in the job info structure. */

object = (UX_SLAVE_CLASS_PIMA_OBJECT *) jobinfo ->

 ux_pictbridge_jobinfo_object;

/* Store the object format: JPEG picture. */

object -> ux_device_class_pima_object_format =

 UX_DEVICE_CLASS_PIMA_OFC_EXIF_JPEG;

object -> ux_device_class_pima_object_compressed_size = IMAGE_LEN;

object -> ux_device_class_pima_object_offset = 0;

object -> ux_device_class_pima_object_handle_id =

 UX_PICTBRIDGE_OBJECT_HANDLE_PRINT;

object -> ux_device_class_pima_object_length = IMAGE_LEN;

/* File name is in Unicode. */

ux_utility_string_to_unicode("JPEG Image", object ->

 ux_device_class_pima_object_filename);

/* And start the job. */

status =ux_pictbridge_dpsclient_api_start_job(&pictbridge);

The Pictbridge client now has a print job to do and will fetch the image blocks at a time
from the application through the callback defined in the field

jobinfo -> ux_pictbridge_jobinfo_object_data_read

The prototype of that function is defined as:

ux_pictbridge_jobinfo_object_data_read

Copying a block of data from user space for printing

Prototype

UINT ux_pictbridge_jobinfo_object_data_read(UX_PICTBRIDGE *pictbridge,

 UCHAR *object_buffer, ULONG object_offset, ULONG object_length,

 ULONG *actual_length)

Description

This function is called when the DPS client needs to retrieve a data block to print
to the target Pictbridge printer.

Parameters

pictbridge Pointer to the pictbridge class instance.
object_buffer Pointer to object buffer
object_offset Where we are starting to read the data block
object_length Length to be returned
actual_length Actual length returned

Return Value

UX_SUCCESS (0x00) This operation was successful.
UX_ERROR (0x01) The application could not retrieve data.

Example

/* Copy the object data. */

UINT ux_demo_object_data_copy(UX_PICTBRIDGE *pictbridge,UCHAR *object_buffer,

 ULONG object_offset, ULONG object_length, ULONG *actual_length)

{

 /* Copy the demanded object data portion. */

 ux_utility_memory_copy(object_buffer, image + object_offset,

 object_length);

 /* Update the actual length. */

 *actual_length = object_length;

 /* We have copied the requested data. Return OK. */

 return(UX_SUCCESS);

}

Pictbridge host implementation

The host implementation of Pictbridge is different from the client.

The first thing to do in a Pictbridge host environment is to register the Pima class as the
example below shows:

status = ux_host_stack_class_register(_ux_system_host_class_pima_name,

 ux_host_class_pima_entry);

if(status != UX_SUCCESS)

 return;

This class is the generic PTP layer sitting between the USB host stack and the
Pictbridge layer.

The next step is to initialize the Pictbridge default values for print services as follows:

Pictbridge field Value

DpsVersion[0]
DpsVersion[1]
DpsVersion[2]
VendorSpecificVersion

0x00010000
0x00010001
0x00000000
0x00010000

PrintServiceAvailable 0x30010000

Qualities[0]
Qualities[1]
Qualities[2]
Qualities[3]

UX_PICTBRIDGE_QUALITIES_DEFAULT
UX_PICTBRIDGE_QUALITIES_NORMAL
UX_PICTBRIDGE_QUALITIES_DRAFT
UX_PICTBRIDGE_QUALITIES_FINE

PaperSizes[0]
PaperSizes[1]
PaperSizes[2]
PaperSizes[3]
PaperSizes[4]

UX_PICTBRIDGE_PAPER_SIZES_DEFAULT
UX_PICTBRIDGE_PAPER_SIZES_4IX6I
UX_PICTBRIDGE_PAPER_SIZES_L
UX_PICTBRIDGE_PAPER_SIZES_2L
UX_PICTBRIDGE_PAPER_SIZES_LETTER

PaperTypes[0]
PaperTypes[1]
PaperTypes[2]

UX_PICTBRIDGE_PAPER_TYPES_DEFAULT
UX_PICTBRIDGE_PAPER_TYPES_PLAIN
UX_PICTBRIDGE_PAPER_TYPES_PHOTO

FileTypes[0]
FileTypes[1]
FileTypes[2]
FileTypes[3]

UX_PICTBRIDGE_FILE_TYPES_DEFAULT
UX_PICTBRIDGE_FILE_TYPES_EXIF_JPEG
UX_PICTBRIDGE_FILE_TYPES_JFIF
UX_PICTBRIDGE_FILE_TYPES_DPOF

DatePrints[0]
DatePrints[1]
DatePrints[2]

UX_PICTBRIDGE_DATE_PRINTS_DEFAULT
UX_PICTBRIDGE_DATE_PRINTS_OFF
UX_PICTBRIDGE_DATE_PRINTS_ON

FileNamePrints[0]
FileNamePrints[1]
FileNamePrints[2]

UX_PICTBRIDGE_FILE_NAME_PRINTS_DEFAULT
UX_PICTBRIDGE_FILE_NAME_PRINTS_OFF
UX_PICTBRIDGE_FILE_NAME_PRINTS_ON

ImageOptimizes[0] UX_PICTBRIDGE_IMAGE_OPTIMIZES_DEFAULT

ImageOptimizes[1]
ImageOptimizes[2]

UX_PICTBRIDGE_IMAGE_OPTIMIZES_OFF
UX_PICTBRIDGE_IMAGE_OPTIMIZES_ON

Layouts[0]
Layouts[1]
Layouts[2]
Layouts[3]

UX_PICTBRIDGE_LAYOUTS_DEFAULT
UX_PICTBRIDGE_LAYOUTS_1_UP_BORDER
UX_PICTBRIDGE_LAYOUTS_INDEX_PRINT
UX_PICTBRIDGE_LAYOUTS_1_UP_BORDERLESS

FixedSizes[0]
FixedSizes[1]
FixedSizes[2]
FixedSizes[3]
FixedSizes[4]
FixedSizes[5]
FixedSizes[6]

UX_PICTBRIDGE_FIXED_SIZE_DEFAULT
UX_PICTBRIDGE_FIXED_SIZE_35IX5I
UX_PICTBRIDGE_FIXED_SIZE_4IX6I
UX_PICTBRIDGE_FIXED_SIZE_5IX7I
UX_PICTBRIDGE_FIXED_SIZE_7CMX10CM
UX_PICTBRIDGE_FIXED_SIZE_LETTER
UX_PICTBRIDGE_FIXED_SIZE_A4

Croppings[0]
Croppings[1]
Croppings[2]

UX_PICTBRIDGE_CROPPINGS_DEFAULT
UX_PICTBRIDGE_CROPPINGS_OFF
UX_PICTBRIDGE_CROPPINGS_ON

The state machine of the DPS host will be set to Idle and ready to accept a new print
job.
The host portion of Pictbridge can now be started as the example below shows:

 /* Activate the pictbridge dpshost. */

 status = ux_pictbridge_dpshost_start(&pictbridge, pima);

 if (status != UX_SUCCESS)

 return;

The Pictbridge host function requires a callback when data is ready to be printed. This is
accomplished by passing a function pointer in the pictbridge host structure as follows:

 /* Set a callback when an object is being received. */

 pictbridge.ux_pictbridge_application_object_data_write =

 tx_demo_object_data_write;

This function has the following properties:

ux_pictbridge_application_object_data_write

Writing a block of data for printing

Prototype

UINT ux_pictbridge_application_object_data_write(UX_PICTBRIDGE

 *pictbridge,UCHAR *object_buffer, ULONG offset,

 ULONG total_length, ULONG length);

Description

This function is called when the DPS server needs to retrieve a data block from
the DPS client to print to the local printer.

Parameters

pictbridge Pointer to the pictbridge class instance.
object_buffer Pointer to object buffer
object_offset Where we are starting to read the data block
total_length Entire length of object
length Length of this buffer

Return Value

UX_SUCCESS (0x00) This operation was successful.
UX_ERROR (0x01) The application could not print data.

Example

/* Copy the object data. */

UINT tx_demo_object_data_write(UX_PICTBRIDGE *pictbridge,

UCHAR *object_buffer, ULONG offset, ULONG total_length, ULONG length);

{

UINT status;

 /* Send the data to the local printer. */

 status = local_printer_data_send(object_buffer, length);

 /* We have printed the requested data. Return status. */

 return(status);

}

Chapter 8: USBX OTG

USBX supports the OTG functionalities of USB when an OTG compliant USB controller
is available in the hardware design.

USBX supports OTG in the core USB stack. But for OTG to function, it requires a
specific USB controller. USBX OTG controller functions can be found in the usbx_otg
directory. The current USBX version only supports the NXP LPC3131 with full OTG
capabilities.

The regular controller driver functions (host or device) can still be found in the standard
USBX usbx_device_controllers and usbx_host_controllers but the usbx_otg directory
contains the specific OTG functions associated with the USB controller.

There are 4 categories of functions for an OTG controller in addition to the usual
host/device functions:

 VBUS specific functions

 Start and Stop of the controller

 USB role manager

 Interrupt handlers

VBUS functions
Each controller needs to have a VBUS manager to change the state of VBUS based on
power management requirements. Usually this function only performs turning on or off
VBUS

Start and Stop the controller
Unlike a regular USB implementation, OTG requires the host and/or the device stack to
be activated and deactivated when the role changes.

USB role Manager
The USB role manager receives commands to change the state of the USB. There are
several states that need transitions to and from:

State Value Description

UX_OTG_IDLE 0 The device is Idle. Usually not connected
to anything

UX_OTG_IDLE_TO_HOST 1 Device is connected with type A connector

UX_OTG_IDLE_TO_SLAVE 2 Device is connected with type B connector

UX_OTG_HOST_TO_IDLE 3 Host device got disconnected

UX_OTG_HOST_TO_SLAVE 4 Role swap from Host to Slave

UX_OTG_SLAVE_TO_IDLE 5 Slave device is disconnected

UX_OTG_SLAVE_TO_HOST 6 Role swap from Slave to Host

Interrupt handlers
Both host and device controller drivers for OTG needs different interrupt handlers to
monitor signals beyond traditional USB interrupts, in particular signals due to SRP and
VBUS.

How to initialize a USB OTG controller. We use the NXP LPC3131 as an example here:

/* Initialize the LPC3131 OTG controller. */

 status = ux_otg_lpc3131_initialize(0x19000000, lpc3131_vbus_function,

 tx_demo_change_mode_callback);

In this example, we initialize the LPC3131 in OTG mode by passing a VBUS function
and a callback for mode change (from host to slave or vice versa).

The callback function should simply record the new mode and wake up a pending
thread to act up the new state:

void tx_demo_change_mode_callback(ULONG mode)

{

 /* Simply save the otg mode. */

 otg_mode = mode;

 /* Wake up the thread that is waiting. */

 ux_utility_semaphore_put(&mode_change_semaphore);

}

The mode value that is passed can have the following values:

 UX_OTG_MODE_IDLE

 UX_OTG_MODE_SLAVE

 UX_OTG_MODE_HOST
The application can always check what the device is by looking at the variable:
_ux_system_otg -> ux_system_otg_device_type

Its values can be:

 UX_OTG_DEVICE_A

 UX_OTG_DEVICE_B

 UX_OTG_DEVICE_IDLE

A USB OTG host device can always ask for a role swap by issuing the command:

/* Ask the stack to perform a HNP swap with the device. We relinquish the

 host role to A device. */

ux_host_stack_role_swap(storage -> ux_host_class_storage_device);

For a slave device, there is no command to issue but the slave device can set a state to
change the role which will be picked up by the host when it issues a GET_STATUS and
the swap will then be initiated.

/* We are a B device, ask for role swap. The next GET_STATUS from the host

 will get the status change and do the HNP. */

_ux_system_otg -> ux_system_otg_slave_role_swap_flag =

 UX_OTG_HOST_REQUEST_FLAG;

Index
API

USB device class 3, 22
USB device stack........................ 3, 22

bulk in 23, 39, 40, 100, 103
bulk out 23, 39, 100, 102
callback 4, 50, 55, 61, 62, 65, 70, 74, 76,

77, 82, 92, 105, 108, 111, 112
CDC-ACM class 54, 55, 56, 61, 65
CDC-ECM class 4, 59
class container 30
class instance .. 8, 57, 58, 76, 77, 85, 86,

88, 90, 93, 96, 98, 106, 109
Class layer ... 7
configuration . 4, 8, 14, 30, 32, 33, 34, 70
configuration descriptor ... 23, 39, 68, 74,

102
Controller layer 7
device descriptor . 22, 23, 39, 54, 59, 64,

68, 74, 102
device framework 3, 22, 24, 25, 40
device side 7, 10, 17, 22, 34, 78, 99
DFU class 4, 68, 69, 70, 71, 73
DPUMP 5, 6, 99, 100
EHCI controller 18
endpoint descriptor 23, 39, 40, 59, 74,

102, 103
FileX ... 2, 8, 13
firmware 68, 70, 71, 73
functional descriptor 55, 68, 69
handle 26, 82, 86, 87, 88, 90, 91, 92, 93,

96, 97, 98, 105
HID class 4, 74, 75, 76, 77
host controller 14
host side 7, 22, 55, 74, 80
host stack ... 17
initialization 13, 18, 22, 26, 41, 51, 55,

61, 62, 63, 66, 74, 76, 81

interface descriptor 23, 39, 54, 59, 60,
64, 68, 74, 102

LUN 4, 14, 19, 49, 51, 52
memory insufficient 30, 38
NetX 2, 8, 62, 63, 66
OTG 5, 6, 7, 8, 110, 111, 112
Picture Transfer Protocol 78, 101
PIMA class 78, 82, 85, 86, 88, 90, 93,

96, 98, 101, 102, 103, 107
pipe .. 57, 58
power management...................... 8, 111
PTP responder 4, 78
queue ... 76
reset sequence 68, 71
RNDIS class 4, 64
SCSI logical unit 15
semaphore 112
slave .. 19, 31, 38, 46, 47, 49, 50, 52, 53,

55, 61, 62, 65, 66, 69, 70, 75, 84, 111,
112

stack layer .. 7
target 10, 12, 13, 14, 20, 70, 73, 79, 106
ThreadX 2, 6, 8, 10, 12, 13, 14, 22
timer tick ... 14
TraceX .. 8
UNICODE ... 25
USB device ... 3, 4, 9, 18, 21, 22, 26, 49,

54, 59, 64, 68, 74, 78
USB device controller 3, 18
USB device stack 3, 21, 22
USB host stack 107
USB IF 55, 67, 68, 71, 78
USB protocol 7, 9
USBX pictbridge 5, 6, 101
USBX thread 14
VBUS 4, 18, 21, 26, 35, 110, 111
version_id ... 20

Renesas SynergyTM Platform

User’s Manual: Software

Publication Date: Rev.5.7 October, 2015

Renesas SynergyTM Platform

User’s Manual: Software

R11UM0007EU0570

