EITF35 - Introduction to Structured VLSI Design (Fall 2013)

Course projects

v.1.0.0

1 Introduction

This document describes the course projects provided iRE3TIntroduction to Struc-
tured VLSI Design” conducted at EIT, LTH. The student mayag®from two different
projects to obtain grade 4 and has to complete both of thenbt@iroa grade 5. Both
projects are extensions to the lab assignments 2 and 3, wWieefd.U and PS/2 keyboard
controller need to be integrated to the whole system aloniy additional components.
The basic requirement for projects is that the result obthinas to be displayed on a
computer screen interfaced to the FPGA using the VGA portla&lkodiagram for the top
level is shown in Fig 1.

* Project 1 Grade4) - A calculator with memory:
Deadline Oct. 18

Instantiate an 8 kB, 8 bit wide RAM in your design using XilibogiCORE IP
generator. Integrate the keyboard, ALU, VGA and the newdated IP into your
design. The design should be able to input operands fromefiedard, store them
into the RAM and later calculate the result and display tiselteon the VGA.

* Project 2 Grade5) - Integrated ALU with memory and a square root unit:
Deadline Oct. 30

The design should be able to get operands from the keybodrstare them in the
RAM. Along with performing the already implemented opevas, the ALU should
be able to compute the square root of one operand with uptgi din accuracy
after the decimal point. The result should be displayed erséven segment display
as well as the VGA screen.

FPGA

PS/2

PS/2 Keyboard > ALU Square root
Keyboard

controller

System controller —]

¢ Monitor

Graphic drawing
engine

8k Byte RAM

Figure 1. An overview on the course projects



To ease the start of the project, a reference design of a V@#&alter on the target
FPGA board is provided, where a course welcome messagedisddeom FPGA's block
memories and displayed on the monitor. The student can snddg design to suit the
requirements of whichever project he/she chooses to imgriém

L ab preparation

- Read this manual and try to understand the given tasks. MBalethat you have
understood what is expected from both projects before ¢chg@stopic. Consult
the lab assistants, if the functionality or any task is ngirezsed clear enough.

- Choose a course project.

- Read VGA section of the FPGA user manual, and go through ttréiged VGA
controller reference design. Understand how a VGA cordgrolNorks, and read
about generation of IP cores using Xilinx LogiCORE IP getmra

Equipments

- A Xilinx Spartan-3 FPGA board, with a mounted FPGA devicelix “XC3S200”,
package type “FT256”, and speed grade “-4”.

- A PC monitor with a standard VGA port.
- APS/2 interfaced keyboard.



2 TheVGA referencedesign

In both course projects, a VGA display with pixel resolut@r640x 480@60Hz is used.
The VGA port connections, VGA color signals and basic timapgpcification may be
found in the user guide of the FPGA board provided by Xilinbegse find the file under:

“S\course_projects\datasheets\ SSBOARD_RM.pdf”,

on page 21). Therefore, descriptions for these parts areepatated in this manual,
whereas only the VGA signal timing diagram is illustratedehas shown in Fig. 2.

Horizontal Horizontal ____
) . blanking blanking
Video line internal internal

| | |

Horizontal : : :

Synch. | | |

| | |

| «—— 256us (40 clocks) —> | | ||

| €«——— 26.24 us (656 clocks) ———— | | I

I ! | I

| €— 30.08 us (752 clocks) ————— | |

: <«—— 32 us (800 clocks) > :

Vertical - =" Vertical

Video blanking blanking
frame internal internal

il

«——— 1536ms (480 lines) ——»! |
|€——— 15.424 ms (490 lines) ———p|
l 1
| €— 15744 ms (492 lines) ————— P

|
]
|
|
|
|
|
|
|
|
|l ——— 16.672 ms (521 lines) >:

|
Vertical :
Synch. |
|
|
|

Figure 2: Signal timing diagram for a 60Hz, 64880 VGA display.

To illustrate the use of the given signal timing informati@reference design of
the VGA controller is provided in this course and is brieflysdebed in this manual.
The reference design displays a course welcome message GA\aligplay, where the
message is saved as an image file stored in the block membtieskEPGA. An overview
of the provided VGA controller is shown in Fig. 3.

A) DCM (Digital Clock Management): This module divides timput clock frequency
by a factor of 2, as the provided VGA controller is designeddasbon a system
clock of 25MHz. The DCM unit is a primitive component avaialn Xilinx’s
FPGASs, which may be generated from Xilinx ISE environmerthvhe use of IP
core generator. The way of generating and properly configutie Xilinx DCM
core is shown as a video clip, placed under:

“S\tutorials\ise_clock_rom.wmv”,



blank

hcount hs
veount VGA controller vs
g 640 x 480@60Hz
50MHz s r ( © !
—P>||OS i
o= Monitor
2 rgb
Controller -
rst
rom_dout

Picture ROM

rom_addr

Figure 3: Block diagram of the VGA controller reference desi

B) Picture ROM: This is the place where the welcome messagfelisd. The message
is saved as a bitmap image and is stored inside FPGA's datasR@¥dta ROMs
may be generated with the use of Xilinx IP cores, howeverirtpet data files have
to be loaded in a “.coe” file format during the ROM generatidihis may be ac-
complished by using the software provided - “imageConvérpgaced under:

“S'\course_projects\imageConverter\”.

A bitmap image conversion is shown in a video climage converter.wmv’, and
ROM generation is shown inge_clock_romwmv’, both placed under:

“S\tutorials\".

C) VGA controller: This module contains two binary countarsed for tracking on
the horizontal video pixels and vertical video lines, retpely. Horizontal and
vertical synchronization pulses for the VGA display are eyated based on the
counters, and an additional blank signal is provided as apubdo indicate the
VGA blanking time interval.

D) Controller: The system controller keeps tracking on tineent VGA pixel position
by using the horizontal and vertical counter values pravittem the VGA con-
troller. This module also controls the address of picturdvR@nd reads out the
image data at the desired pixel locations. 3-bit color codiés one bit each for
red, green, and blue are sent to the VGA display, resultingawving 8 different
color tones.

Notice that physical pins mappings of the system I/O sigaalan FPGA are accom-
plished with the use of a constraint file, namely the “.ucfé filvhich is added in the
project structure.



3 Courseproject 1 (Grade4) - A calculator with memory

In this project, the ALU implemented in lab assignment 3 aBd2Fkeyboard controller
designed in lab assignment 2 will be reused. A new IP will beegated using the Xilinx
IP generator tool.

31 Task1

Start by first understanding how the given VGA controller kgrTry assigning your own
rgb colors to the display instead of ROM data. Figure out Hmwiertical and horizontal
counters can be used in order to emulate the seven segmliatydi® the LCD. An illus-

tration of the LCD display required is shown in a screen captplaced under:

“S\course_projects\rtl_ref_designs\project_1.jpg”.

Integrate the VGA controller to the keyboard and the ALU. @swp level file to in-
stantiate these three IPs as components in order to keepfthmtionally in separate
files. Reuse the binary to bcd function/component which veesiuo convert the inputs
from the keyboard into seven segment display. Reuse as nadlehas possible.

32 Task?2

Once Task 1 is done you can move onto generating your own nyemadule. The basic
steps of generating an IP core are listed below.

* Right click in the design hierarchy window -> New Source.
* Choose IP(Core generator and architecture wizard). Naooe pnemory module.

* In Memories & Storage elements, chooB&Ms & ROMs. Then choose Block
memory generator.

* In the new window that opens up, examine the memory blockwlibbe generated.
* Choose a Single port RAM with the Algorithm set to Minimumesr.

* Set Memory write width to 8 bits and write depth to 8 kB.

* Leave all other options unchanged. Generate memory.

Once this is done, a new IP will appear in your design hiesamgimdow. Examine the
HDL files generated by clicking on the IP and choosing the DL functional model.
The component instantiation that needs to be used in yoauleabr design can be found
in the HDL instantiation file.

If the memory module is generated as specified above, it w&ilerb ports. Clock,
write enable, address, data in and data out. The memoryaedewill also be a positive
edge triggered memory, meaning that data will be writtermé&odpecified address on the
positive edge of the clock signal if write enable is set tahkighen write enable is low,
the data stored in the address specified is read out.



33 Task3

Integrate the memory module into your design by instamiggii as a component. Once
this is done, the next step will be test whether the integnalias succeeded. Refer to
Fig 4 and the following steps for some suggested ways tostamking on the memory
controller. The goal of the following would be to perform desnd write operations to the
memory using the basic pins and switches available on thelboa

Figure 4: FPGA with memory controls

* Assign BTN[3] to reset your system.

* Even though the mem_data bus generated from the IP will bies8fbr testing we

will now use only 4 bits. Assign the mem_data[3 downto 0] bityour keyboard
out data. Assign the upper 4 bits to zero.

Design a counter and connect the mem_address to this gouhte idea is that
when BTN[2] is pressed if SWITCHIO] is set to 0, the addressusth increment
and decrement if BTNJ[2] is pressed when SWITCHIO] is set tdRemember to
use debouncing logic on the BTN, if not the memory addreskimgtement by
more than one at each press of BTN[2]. It would be a good idesstoconnect the
mem_write_enable to this button.

* Try and use the LEDO-7 present on the board for debuggingecKlvhether after
adding debouncing logic the address increments by thenesjsieps.

* Assign BTN[1] to enable data latching. Essentially the lkegrd data should be
registered to the memory input when BTN[1] is pressed.

Connect the memory_out data to the seven segment disjilagr en the FPGA or
on the LCD screen for debugging.

It is always a good idea to look at the warnings tab when swiivgy the design.
Understand the warnings shown and see if they are OK for yesigd. It may happen

6



that the memory block is not connected properly and youresystoes not work. Clean
the project files to obtain updated warnings on the next ggisiruns. This is done from
the Project menu in the ISE Project manager.

34 Task 4

Once you have the above things working, now it would be timetite code to enable
data to be stored in the memory along with the operators. kiseame BTN[2-1] logic
designed above to store a string of data into the memory alatigthe operands. Make
sure you are able to store 3 data digits into the memory. Tpetidata range is from
0 to 255. At the end of entering data values along with opesatite ALU should be
started. This can be done by pressing the <Enter> key. Atréssf every <Enter> key
the memory controller should be able to pop the top three mgtooations(the two data
operands and the operator), compute the result and digmaythe VGA screen. On the
next <Enter> key the next two data operands and the operat@a to popped out from
the memory and result should be displayed on the VGA screenthé mod 3 operator
we need to enter only one data and the operand. Remembeistiieaeuld be either a
positive or a negative number. Therefore it is required 8pldiy the sign of the result
before the result as shown in the example in Fig. 5. Since ake RAM created will be
8 bits wide and we need to store some operands along withstatee of the bit patterns
can be assigned for these operators(e.g. “+”, “-”, “=" “mhdChoose the range of 130
to 135 for operators. This also means that input data in thgeraf 130 to 135 shall not
be considered as operands. Think about storing the valubs RAM only when proper
operands and operators have been entered, meaning thalé lse@n option for the back
space key. If a mistake is done while entering the operamascould use the backspace
key to delete the already entered numbers and start oveail&@ktequirements for this
project is stated as following:

- Both data operands must be represented in at least 3 digitsi{eds, tens, units),
and the computation results must be represented in thres @dyindreds, tens,
units) along with the sign. The operands, computation tesohg with the operator
must be shown on the emulated 7-segments on a VGA monitoexaonple if one
has to compute the sum of 98 and 99 the VGA display should ligek Notice that
there is a sign operator before the result. The inputs wikttered in the 3 digits
format, meaning if one wants to use 9 as an operand, the inputthe keyboard
shall be 009. If the data entered is above the limit, then tirelbrer shall be stored
as 255. For example if the user enters 1234 as the first inguatg, the calculator
shall store this number as 255 if the data latch button isspeiks Note that the
backspace key could be used to fix the data before the dakalatton is pressed

if desired.
I [ ] —. 101
SHH 130

Figure 5: Example VGA Output



Remember that the result is signed and the operands arenadsighis will enable
one to design a simple state machine to accept the right anobumputs before
storing them in the memory.

- The design must be able to perform the following differesrhputation operations:
addition, subtraction, multiplication and modulo 3. Aniication of overflow/un-
derflow should also be displayed when it happens.

- The emulated 7-segments have to be shown in a visible dize allowed to load
digits and operators from data ROMs, however, you have tgsidenthe available
memory capacity in the FPGA. It is recommended to design plaisengine for
one 7-segment, and use it to generate digits at all locatiorisg system run-time.
Using either logics or data memories is always a design wéde/here a common
practice is to use a mixed design approach to find a balandad lpetween them.
You may, for instance, store all data operators (e.g. “+”, “=”) in ROMs, and
generate all digits by using one 7-segment display engine.

An example output for a list of operands is shown below. Asstimat the memory is
filled and looks as shown Fig 6



[E—
(8]

X

On first enter key
013%003 = 001
On second enter key
100*000 = 000
On third enter key
007*007 = 049
On fourth enter key
006-030 =-024
On fifth enter key
003*054 = 162
On sixth enter key
098+010 =108

(S)

54

0
6
B
4
98

Figure 6: Example output



4 Courseproject 2 (Grade5) - ALU with squareroot and
Memory

In this project an additional operation will be added to tHdJAThe ALU should be able

to compute the square root of an unsigned number and digmagsult on the emulated
seven segment display. The result obtained should be gesphaith upto three digits in

accuracy after the decimal point. The detailed requiremard as follows

- Interface the keyboard, ALU and the VGA as explained in thevjpus sections.
Emulate a seven segment display on the VGA screen.

- The square root unit is to be designed which should accepinaigned integer
as its input and produce the square root of the number withaat three digits in
accuracy after the decimal point. The input range for thesgtoot number will be
[0-255]. The square root unit has to be integrated into th& ALhe design should
be capable of accepting data from keyboard, compute rdsulisfferent operands
like addition, multiplication and square root, then digpthe result on the VGA
screen.

- Find an algorithm to calculate the square root like NewRiraphson method and
implement it in hardware. An introduction to algorithms ilementing square root
can be found on Wikipedia. Use a lookup table to find the ckosgsare root and
start with that as the seed to the algorithm. The followirgpstcan be done to
obtain a reasonably accurate square root of a number withdwésxmethod.

- Start by understanding the Matlab code provided in the agipewvhich uses the
fixed point notation tool. Understand what widths of inputd autputs are required
to produce the desired accuracy in the final result. Thinkualpomber of bits
needed by the divisor and choose correct widths appropyri&@elow is an example
of how one would compute the square root of 245 with an ingstimate of 16.

S=1245
Xo =16

S
X1 =0.5x (X0+—)
%0 ()
= 15.65625
S
Xo = 0.5 x (Xl—l— —)
X1
= 1565247

- As it can be seen from the above equations, you will needidetiwnit to perform
the square root algorithm. Instantiate a divider core gaoetP from the IP gener-
ator tool. Select the algorithm to be of type “fixed” with dieind and divisor widths
to be ofX andY bits respectively. The values #fandY should be obtained from
Matlab simulations or by calculations. Since you need 3rdatdigits of accuracy,
this would correspond to a fraction binary width of 10 bits100se the number of
clocks per division as 1. Generate the IP.

10



- Read the divider IPs manual to understand the number oésyttakes to produce
one division output. Construct a small testbench and véndy you understand the
divider’s operation.

- The next step is to design the above algorithm and integriati® the system. From
simulations done in Matlab you will be able to understandthenber of iterations
required to reach the desired accuracy for all the numbereirange from [0-255].
Once this is fixed, design a state machine which will startwleés say BTN[O] is
pressed and process the square root of the input number. e§timg purposes,
you can input the number from the SWITCH buttons. Remembaevatio for the
division operation to complete before proceeding to the itesation. Construct a
testbench and verify that the state machine is functiongngequired. The divider
IP returns the integer and fractional part of the quotiens.itAcan be seen in the
above equationx; is a fixed point number. Make sure you design your adders to
take care that the fractional bits are added correctly aadhtieger bits are updated.
Think about whether you need to shift up the divisor to malkefthctional bits into
integer bits, or whether it is ok to use the fractional divias it is.

- The final result obtained will contain an integer part andaxtional part. The
integer part needs to be converted into BCD code. Use theodld that you must
have written by now. The fractional part needs to be condddde displayed as a
BCD number also. Design a small function to do this.

- Integrate the square root unit to the ALU with memory destjim Project 1. The
final result should be displayed on the LCD monitor using ti@A\controller and
the input should come from the keyboard instead of the SWIKEYs.

- Remember to do things step by step. Create modules baseadotiohality and
integrate in the top level. For example, you should have arsée module which
accepts a seven segment coded number and displays on the aff@Aseparate
module to perform square root, one to do all the other ALU apens etc.

11



5 Appendix

%0sqrt_visi project code

clear ,clc

for k = 1:255

S = k;

%integer and fractional part bits
INT = 15;

FRA = 10;

run_len = 5;

Xx_col = zeros(1,run_len);

%Look up table

if (S < 32)
x_col(1l) = 5;

elseif(S<81)

x_col(1) = 9;
else
x_col(1l) = 16;
end
for i = 2:run_len
pre_calc = double(fi(x_col(+1),0,INT,FRA));
div_calc = double(fi (($S2"FRA/(pre_cale2”"FRA)),0,INT,FRA));
x_col(i) = 0.5+x(pre_calc+div_calc);
x_col(i) = double(fi(x_col(i),0,INT,FRA));
end

actual_sqrt = sqrt(S)ones(1l,run_len);
err_iter(:,k) = (actual_sqrtx_col);

end
surf(err_iter);
max(abs(err_iter (1,:)))
max(abs(err_iter (2,:)))
max(abs(err_iter (3,:)))
max(abs(err_iter (4,:)))
max(abs(err_iter (5,:)))

12



