
NightTrace Manual

0890398-070

August 2000

Copyright 2000 by Concurrent Computer Corporation. All rights reserved. This publication or any part thereof is
intended for use with Concurrent products by Concurrent personnel, customers, and end–users. It may not be
reproduced in any form without the written permission of the publisher.

The information contained in this document is believed to be correct at the time of publication. It is subject to change
without notice. Concurrent makes no warranties, expressed or implied, concerning the information contained in this
document.

To report an error or comment on a specific portion of the manual, photocopy the page in question and mark the
correction or comment on the copy. Mail the copy (and any additional comments) to Concurrent Computer Corpora-
tion, 2881 Gateway Drive, Pompano Beach, FL 33069-4324. Mark the envelope“Attention: Publications Depart-
ment.” This publication may not be reproduced for any other reason in any form without written permission of the
publisher.

The license management portion of this product is based on:

Élan License Manager
Copyright 1989-1994 Elan Computer Group, Inc.
All rights reserved.

NightTrace, KernelTrace, NightView, NightStar, Power Hawk and MAXAda are trademarks of Concurrent Computer Corporation.

Élan License Manager is a trademark of Élan Computer Group, Inc.

PowerPC is a trademark of International Business Machines, Corp.

Motif, OSF, and OSF/Motif, X Window System and X are trademarks of The Open Group

Printed in U. S. A.

Revision History: Level: Effective With:

Original Release -- August 1992 000 NightTrace 1.0

Current Release -- August 2000 070 NightTrace 4.2

list of
Preface

Scope of Manual

This manual is a reference document and users guide for NightTraceTM1, a graphical, inter-
active debugging and performance analysis tool, and KernelTraceTM, a tool that collects
and textually analyzes system performance.

Structure of Manual

A brief description of the chapters and appendixes in this manual follows:

• Chapter 1 contains introductory material on NightTrace and KernelTrace.

• Chapter 2 describes system and user environmental requirements.

• Chapter 3 gives the syntax and examples of NightTrace library calls.

• Chapter 4 tells how to generate trace event logs withntraceud .

• Chapter 5 describes how to invoke thentrace display utility.

• Chapter 6 shows how to view trace event logs withntrace .

• Chapter 7 illustratesntrace display objects and their creation.

• Chapter 8 shows how to configurentrace display objects.

• Chapter 9 defines NightTrace expressions.

• Chapter 10 tells about NightTrace’s built-in tools.

• Chapter 11 describes kernel tracing withktrace , ntfilter , and
ntrace .

This manual also contains three appendixes, a glossary, and an index.

• Appendix A describes performance tuning.

• Appendix B describes graphical user interface (GUI) customization.

• Appendix C provides answers to common questions.

The glossary contains an alphabetical list of NightTrace, XTM2, and MotifTM3 words and
phrases used in this manual and their definitions. The index contains an alphabetical
topics, names, etc. found in the manual.

1. NightTrace is a trademark of Concurrent Computer Corporation
2. X Window System and X are trademarks of The Open Group
3. Motif, OSF, and OSF/Motif are trademarks of Open Software Foundation, Inc.
iii

NightTrace Manual

ear in

cify
y

ns

es-

eld,

are
ify

ipe
ype

try.

ing
Man page descriptions of programs, system calls, subroutines, and file formats app
the system manual pages.

Syntax Notation

The following notation is used throughout this guide:

italic Books, reference cards, and items that the user must spe
appear initalic type. Special terms and comments in code ma
also appear initalic.

list bold User input appears inlist bold type and must be entered
exactly as shown. Names of directories, files, commands, optio
and man page references also appear inlist bold type.

list Operating system and program output such as prompts and m
sages and listings of files and programs appears inlist type.
Keywords also appear inlist type.

emphasis Words or phrases that require extra emphasis use emphasistype.

window Keyboard sequences and window features such as button, fi
and menu labels and window titles appear inwindow type.

[] Brackets enclose command options and arguments that
optional. You do not type the brackets if you choose to spec
such option or arguments.

{} Braces enclose mutually exclusive choices separated by the p
(|) character, where one choice must be selected. You do not t
the braces or the pipe character with the choice.

... An ellipsis follows an item that can be repeated.

 ➭ An arrow separates a menu bar item from a pull-down menu en

The window images in this manual come from a Motif environment. If you are us
another environment, your windows may differ slightly from those presented here.

Referenced Publications

The following publications are referenced in this document:

0830048 HN6200 Architecture Reference Manual

0830046 HN6800 Architecture Manual

0890240 hf77 Fortran Reference Manual

0890300 X Window® System User’s Guide

0890378 C: A Reference Manual

0890380 OSF/MotifTM Documentation Set (3 volumes)

0890395 NightViewTM4 User’s Guide

0890423 PowerMAX OSTM5 Programming Guide
iv

Preface

l-
0890429 System Administration Volume 1

0890430 System Administration Volume 2

0890460 Compilation Systems Volume 2 (Concepts)

0890466 PowerMAX OSTM Real-Time Guide

0890474 NightTraceTM Pocket Reference

0890516 MAXAdaTM Reference Manual

0891019 Concurrent C Reference Manual

0891055 ÉlanTM6 License Manager Release Notes

0891082 Real-Time Clock and Interrupt Module User’s Guide

PowerPCTM7 604 RISC Microprocessor User’s Manual (not avai
able from Concurrent Computer Corporation)

4. NightView is a trademark of Concurrent Computer Corporation
5. PowerMAX OS is a trademark of Concurrent Computer Corporation
6. Élan License Manager is a trademark of Elan Computer Group, Inc.
7. PowerPC is a trademark of International Business Machines, Corp.
v

NightTrace Manual
vi

-1
-1
-2

1-2
-2

1-3
1-3
-3
1-3

1-6
1-7

-1
-1

-2
-3
-4
-5
-6
-6
-7
2-7
-8
-8
2-9
-9
10

-1
3-1

-2
-2
-2
3-3
-3
-5

3-9
-11
Contents

Chapter 1 Introduction

Overview . 1
What is NightTrace? . 1

User and Kernel Tracing. 1
Timestamp Source Selection .
Trace-Point Placement . 1
Languages Supported .
Processes and CPUs .
Information Displayed . 1
Searches and Summaries .

Logging and Analysis. 1-3
The Trace Event Logging Procedure . .. 1-4
The Trace Event Analysis Procedure .

Recommended Reading. .

Chapter 2 Establishing the Environment

Overview . 2
Requirements . 2
Installing Software. 2
Configuring the Kernel . 2
Administering Privileges . 2
Putting Users into Groups . 2
Granting Page Lock Privilege . 2

Using Page Locking . 2
Not Using Page Locking . 2

Granting Access to the Interrupt Priority Level Register .
Using the IPL Register . 2
Not Using the IPL Register . 2

Granting Access to the Trace Device. .
Granting Access to the Interval Timer. 2
Granting Access to the RCIM Synchronized Tick Clock . 2-

Chapter 3 Adding Library Calls to Your Application

Overview . 3
Language-Specific Source Considerations .

C . 3
Fortran . 3
Ada . 3

Inter-Process Communication and Library Routines .
Understanding NightTrace Library Calls . 3

trace_start(). 3
trace_open_thread() .
trace_event() and Its Variants . 3
vii

NightTrace Manual

-16
20

-22
23
24
5

25
25
25
-26

-1
4-1
-2
-3
-4

-6
-7
-8
-9

14
5

16
-17

19
-20
22

26
6
27

-1
-1
-2
-3
-3
-8

5-9
10
-12
13
4

15
8

trace_enable(), trace_disable(), and Their Variants . 3
trace_flush() and trace_trigger() . 3-
trace_close_thread() . 3
trace_end() . 3-

Disabling Tracing. 3-
Compiling and Linking . 3-2

C Example. 3-
Fortran Example . 3-
Ada Example. 3-

Exercise: Instrumenting Code . 3

Chapter 4 Generating Trace Event Logs with ntraceud

Overview . 4
The ntraceud Daemon .
The Default NightTrace Environment . 4
ntraceud Modes . 4
ntraceud Options . 4

Option to Get Help (-help) . 4
Option to Get Version Information (-version) . 4
Option to Disable the IPL Register (-ipldisable) . 4
Option to Prevent Page Locking (-lockdisable) . 4
Option to Establish File-Wraparound Mode (-filewrap). 4-10
Option to Establish Buffer-Wraparound Mode (-bufferwrap) 4-11
Option to Define Shared Memory Buffer Size (-memsize) 4-
Option to Set Timeout Interval (-timeout) . 4-1
Option to Set the Buffer-Full Cutoff Percentage (-cutoff) 4-
Option to Select Timestamp Source (-clock) . 4
Option to Reset the ntraceud Daemon (-reset) . .. 4-18
Option to Quit Running ntraceud (-quit) . 4-
Option to Present Statistical Information (-stats) . 4
Option to Disable Logging (-disable) . 4-
Option to Enable Logging (-enable). 4-24

Invoking ntraceud. 4-
Starting Your NightTrace Application . 4-2
Stopping ntraceud . 4-
Exercise: Logging Trace Events. 4-27

Chapter 5 Invoking the ntrace Display Utility

Overview . 5
X and NightTrace Vocabulary . 5
System Environment . 5
Invoking ntrace. 5
ntrace Options . 5
ntrace Arguments . 5

Understanding Trace Event Files .
Understanding Event-Map Files . 5-
Understanding Page Configuration Files . 5

ntrace Tables . 5-
String Tables. 5-1
Pre-Defined String Tables . 5-
Format Tables . 5-1
viii

Contents

21
21
-22
22
-23

5
-25
26
26
7
7
8
9
1
2

3
3

34
34

36
-36

-1
-3

-4
-5
-7
-8

11
11
2

4
6
6
8

-1
-2
-3

-4
4
-4
-5
-6

-7
-7
-8
Pre-Defined Format Tables . 5-
Configuring Display Pages . 5-

ntrace User Interface . 5
Using the Mouse. 5-
Understanding Pointer Shapes . 5
Anticipating Window Layout 5-23
Resizing Windows . 5-2

ntrace Notation Conventions . 5
ntrace Global Window . 5-

Message Display Area . 5-
Menu Bar . 5-2

File Menu Item . 5-2
New Page . 5-2
Default Page. 5-2
Open Config File . 5-3
Read Event-Map File . 5-3
Exit . 5-3

Help Menu Item . 5-3
The File Selection Dialog Box . 5-

Typing in the Exact File Name. 5-
Scrolling Through Existing File Names. 5-35
Typing in a Filter (File Name Pattern) . 5-

Exercise: Displaying Trace Events . 5

Chapter 6 Viewing Trace Event Logs with ntrace

Overview . 6
Mouse Button Operations . 6
The Grid. 6
Viewing Strategy . 6
The Interval Scroll Bar . 6
The Interval Push Buttons . 6
The Interval Control Area . 6-

Reading Fields . 6-
Editing Single Fields . 6-1
Editing Multiple Fields. 6-1

Field Editing . 6-1
Editing Text Fields . 6-1
Positioning Within Text Fields . 6-1

Chapter 7 Creating Display Objects

Overview . 7
The Display Page. 7
Display Page Modes . 7

Edit Mode . 7
View Mode . 7-

Operations on Display Objects . 7
Creating Display Objects . 7
Selecting Display Objects. 7
Moving Display Objects. 7
Resizing Display Objects . 7

Display Objects . 7
ix

NightTrace Manual

2
2
3

14
15
16
7

17
8
8
8

18
18
19
19

-1
8-1
-4
-4
-4
-5

-6
7
8
-9
-9

-9
-9
0
10
-11
2
3

14
16
17
9

-1
-1
-2
-2
-4
-4
-5
-5

-6
GridLabel . 7-1
DataBox . 7-1
Column . 7-1
StateGraph . 7-
EventGraph . 7-
DataGraph. 7-
Ruler . 7-1

Editing Operations . 7-
Select All. 7-1
Deselect All. 7-1
Delete . 7-1

File Operations. 7-
Save. 7-
Save As ... 7-
Close . 7-

Chapter 8 Configuring Display Objects

Overview . 8
Common Configuration Parameters. .

Display Object Name . 8
Event List . 8
If-Expression. 8
Then-Expression . 8
CPU List . 8
PID List. 8-
TID List. 8-
Node List. 8
Foreground Color . 8
Background Color. .. 8-9
Font . 8
Text Justify . 8
Text Gravity . 8-1

Configuration Form Push Buttons . 8-
Specific Configuration Parameters . 8

GridLabel . 8-1
DataBox . 8-1
StateGraph . 8-
EventGraph . 8-
DataGraph. 8-
Ruler . 8-1

Chapter 9 Using Expressions

Overview . 9
Expressions Menu . 9

Expression Dialog Boxes . 9
Expression Configuration Forms . 9

Expressions . 9
Operators. 9
Operands . 9
Constants. 9
Macros . 9
x

Contents

-9
12
3
19
9
0

1
1

2
3
3
4
5
5
6
7
7
8
9
9

30
30

2
2

33
34
4

5
5
6
7

7
8
9
9
0
1
1
2
2

44
4

5

Functions . 9
Function Parameters . 9-
Function Terminology . 9-1
Trace Event Functions. 9-

id() . 9-1
arg() . 9-2
arg_dbl(). 9-2
num_args() . 9-2
pid() . 9-2
raw_pid() . 9-2
lwpid() . 9-2
thread_id() . 9-2
task_id() . 9-2
tid(). 9-2
cpu() . 9-2
offset() . 9-2
time() . 9-2
node_id() . 9-2
pid_table_name() . 9-2
tid_table_name() . 9-2
node_name(). 9-
process_name() . 9-
task_name() 9-31
thread_name() .. 9-32
Multi-Event Functions . 9-3

event_gap() . 9-3
event_matches() . 9-

State Functions . 9-
Start Functions . 9-3

start_id() . 9-3
start_arg() . 9-3
start_arg_dbl(). 9-3
start_num_args() . 9-3
start_pid() . 9-3
start_raw_pid() . 9-3
start_lwpid() . 9-3
start_thread_id() . 9-3
start_task_id() . 9-4
start_tid(). 9-4
start_cpu() . 9-4
start_offset() . 9-4
start_time() . 9-4
start_node_id() 9-43
start_pid_table_name() . 9-
start_tid_table_name() . 9-4
start_node_name(). 9-45

End Functions . 9-4
end_id() 9-46
end_arg() . .. 9-47
end_arg_dbl(). 9-47
end_num_args() . .. 9-48
end_pid() . .. 9-48
end_raw_pid(). 9-49
end_lwpid(). 9-50
xi

NightTrace Manual

6
7

58
58
9

0
0

1
2
3
3
4
4
5
6
6

67
68

69
69
70
70
1
1
2
2
3
3
74
75
5
7
9
0
1

83
end_thread_id(). 9-51
end_task_id(). 9-51
end_tid() 9-52
end_cpu(). . .. 9-52
end_offset() .. 9-53
end_time() . .. 9-54
end_node_id(). 9-54
end_pid_table_name(). 9-55
end_tid_table_name(). 9-55
end_node_name() . .. 9-56

Multi-State Functions . 9-5
state_gap() . 9-5
state_dur() . .. 9-57
state_matches() . 9-
state_status() . 9-

Offset Functions . 9-5
offset_id() . 9-6
offset_arg() . 9-6
offset_arg_dbl() .. 9-61
offset_num_args(). 9-6
offset_pid() . 9-6
offset_raw_pid() . 9-6
offset_lwpid() . 9-6
offset_thread_id() . 9-6
offset_task_id(). 9-6
offset_tid() . 9-6
offset_cpu(). 9-6
offset_time() . 9-6
offset_node_id() .. 9-67
offset_pid_table_name(). 9-
offset_tid_table_name() . 9-
offset_node_name(). 9-68
offset_process_name() . 9-
offset_task_name() . 9-
offset_thread_name() . 9-

Summary Functions . 9-
min() . 9-7
max(). 9-7
avg() . 9-7
sum(). 9-7
min_offset() . 9-7
max_offset() . 9-7
summary_matches() . 9-

Format and Table Functions . 9-
get_string() . 9-7
get_item() . 9-7
get_format() . 9-7
format(). 9-8

Qualified Events . 9-8
Qualified States. 9-
xii

Contents

-1
0-1

-2
0-3
-4
-5
-6
-6

0-8
-9
-9
0
0
0

10
11
-12
-14
-15

-1
1-1
-1
-2
-3
-3
-4
-5

1-6
1-6
-6
-7
-7
-8
-9
-9
13
4
4

14
15
16
7

18
9
0
21
-22
22
3

Chapter 10 Using the Built-In Tools

Overview . 10
Searching for Points of Interest . 1

Search Form Radio Buttons . 10
Search Form Push Buttons . 1
Search Form Fields. 10

Summarizing Statistical Information. 10
Summarize Form Radio Buttons . 10
Summarize Form Fields . 10
Summarize Form Push Buttons . 1
Menu Bar . 10

File Operations . 10
Save Text . 10-1
Save Text As 10-1
Close. 10-1

Summary Display Area . 10-
Event Summaries . 10-
State Summaries . 10

Exercise: Using the Search Tool . 10
Exercise: Using the Summarize Tool. 10

Chapter 11 Tracing the Kernel

Overview . 11
Recommended Reading. 1
Using KernelTrace with NightTrace . 11
Default Kernel Trace Points. 11

Context Switch Trace Event . 11
Interrupt Trace Events . 11
Exception Trace Events . 11
Syscall Trace Events. 11
Shared Interrupt Trace Event . 1
Process Name Trace Event . 1

Kernel Trace Points Not Enabled By Default . 11
Page Fault Event . 11
Protection Fault Event . 11

Kernel Tracing with ktrace . 11
Invoking ktrace. 11
ktrace Options. 11
Viewing KernelTrace Trace Event Files with ktrace . 11-

ktrace Kernel Activity Summaries . 11-1
Configuration Summary. 11-1
System Call Summary . 11-
Exception and Interrupt Summaries. 11-
Exception and Interrupt Total Time Summaries 11-
Device Summary . 11-1

ktrace Trace Event Listings . 11-
ktrace -verbose Listing. 11-1
ktrace -raw Listing . 11-2

Converting KernelTrace Trace Event Files with ntfilter . 11-
Viewing Converted KernelTrace Trace Event Files with ntrace 11

Kernel Display Pages . 11-
RCIM Default Kernel Display Page . 11-2
xiii

NightTrace Manual

5
26
7
7
8
9
1
2
32
-34
35
35
36
36
37
38

-1
-1

-3
-3
-4
-4

-1
-2

-5
-5

1-4
1-7
3-4

-26
29
25
26
7
29
30
32
33
4

-2
CPU Information . 11-2
Running Process Information . 11-
Node Information . 11-2
Context Switch Information . 11-2
Interrupt Information . 11-2
Exception Information . 11-2
Syscall Information . 11-3
Color Information . 11-3

Kernel String Tables . 11-
Kernel Reference . 11

Interrupts . 11-
Non-Device-Related Interrupts . 11-
Device-Related Interrupts . 11-

Exceptions. 11-
Syscalls . 11-

Exercise: Kernel Tracing . 11-

Appendix A Performance Tuning

Overview . A
Preventing Trace Events Loss . A
Ensuring Accurate Timings . A
Optimizing File System and CPU Usage. A
Conserving Disk Space . A
Conserving Memory and Accelerating ntrace . A

Appendix B GUI Customization

Overview . B
Default X-Resource Settings for ntrace . B
Examples . B
Exercise: Customizing Display Colors . B

Appendix C Answers to Common Questions

Illustrations

Figure 1-1. Example of Instrumented C Code .
Figure 1-2. Example of a User Display Page with Display Objects
Figure 3-1. Inter-Process Communication and Library Routines
Figure 3-2. trace_start() andtrace_open_thread() Placement 3-8
Figure 3-3. entry_exit.c Before Instrumentation . 3
Figure 3-4. entry_exit.c After Instrumentation . 3-
Figure 5-1. Window Components . 5-
Figure 5-2. Global Window for a Single Trace Event File 5-
Figure 5-3. Global Window File Menu . 5-2
Figure 5-4. New Display Page . 5-
Figure 5-5. A Default Display Page . 5-
Figure 5-6. The Open Config File Dialog Box . 5-
Figure 5-7. The Read Event-Map File Dialog Box . 5-
Figure 5-8. Global Window Help Menu . 5-3
Figure 6-1. A Display Page in View Mode . 6
xiv

Contents

-4
-6
-7
6-8
11

-1
7-2
-3
7-5
7-8
12
12
12
13
-14
-15
-16
17
17
18
-1
10
10
-10
12
13
-14
16
17
8
8

19
19
9-1
-2
-3

-7
14
-15
82
84
-1
0-2
-10
-12
-14

22
-23
24

-25
25
25
Figure 6-2. The Grid . 6
Figure 6-3. Deciding What to Do Next in View Mode . 6
Figure 6-4. The Interval Scroll Bar . 6
Figure 6-5. The Interval Push Buttons .
Figure 6-6. The Interval Control Area . 6-
Figure 6-7. Amount of Scrolling Due to Increment Value. 6-14
Figure 7-1. Display Page with Display Objects . 7
Figure 7-2. Elements of a Display Page .
Figure 7-3. Edit and View Mode Buttons . 7
Figure 7-4. Button Functions on a Mouse .
Figure 7-5. Create Display Objects Menu .
Figure 7-6. Display Object Use Flowchart . 7-
Figure 7-7. GridLabel Examples . 7-
Figure 7-8. DataBox Examples . 7-
Figure 7-9. Column Example . 7-
Figure 7-10. StateGraph Example . 7
Figure 7-11. EventGraph Example . 7
Figure 7-12. DataGraph Examples . 7
Figure 7-13. Ruler Example . 7-
Figure 7-14. Edit Menu . 7-
Figure 7-15. File Menu . 7-
Figure 8-1. Configure Command Menu . 8
Figure 8-2. Left-, Center-, and Right-Justified Text . 8-
Figure 8-3. Top vs. Bottom Gravity . 8-
Figure 8-4. Configuration Form Push Buttons . 8
Figure 8-5. GridLabel Configuration Form . 8-
Figure 8-6. DataBox Configuration Form . 8-
Figure 8-7. StateGraph Configuration Form . 8
Figure 8-8. EventGraph Configuration Form . 8-
Figure 8-9. DataGraph Configuration Form . 8-
Figure 8-10. Solid vs. No Fill . 8-1
Figure 8-11. Maximum vs. Minimum Values . 8-1
Figure 8-12. Ruler Configuration Form . 8-
Figure 8-13. Mark and Lost Event Markers . 8-
Figure 9-1. Expressions Menu .
Figure 9-2. Macro Dialog Box . 9
Figure 9-3. Configuration Form Push Buttons . 9
Figure 9-4. Macro Configuration Form . 9
Figure 9-5. Function Terminology Illustrated . 9-
Figure 9-6. States and Events . 9
Figure 9-7. Qualified Event Configuration Form . 9-
Figure 9-8. Qualified State Configuration Form . 9-
Figure 10-1. Tools Menu . 10
Figure 10-2. The Search Form . 1
Figure 10-3. Summarize Form File Menu . 10
Figure 10-4. The Event Summarize Form . 10
Figure 10-5. The State Summarize Form . 10
Figure 11-1. Global Window File Menu . 11-
Figure 11-2. Sample Kernel Display Page . 11
Figure 11-3. Node Selection Dialog . 11-
Figure 11-4. Node Selection Warning Dialog . 11
Figure 11-5. Per-CPU Information . 11-
Figure 11-6. CPU Box . 11-
Figure 11-7. Running Process Boxes. 11-26
xv

NightTrace Manual

27
27
-28
-29

ts

-31
32

4-6
4-21
5-4

5-5
5-6
5-6
-10

-14
-15
-16
-17

-18
-19

-20

2-3
-3
-4
-3

4-4
4-4
4-23
4-23
4-25
4-25
5-23
-3
-8
15
16
18
7-5
8-2

8-5
9-6
9-6
10
1-1
Figure 11-8. Node Box . 11-
Figure 11-9. Context Switch Lines . 11-
Figure 11-10. Last Interrupt Box and Interrupt Graph . 11
Figure 11-11. Last Exception Box and Exception Graph . 11
Figure 11-12. TR_PAGEFLT_ADDR and TR_PROTFLT_ADDR Events. 11-30
Figure11-13.TR_SWITCHINvs.TR_PAGEFLT_ADDRandTR_PROTFLT_ADDREven
11-31
Figure 11-14. Last Syscall Box and Syscall Graph . 11
Figure 11-15. Color Key . 11-

Screens

Screen 4-1. Sample Output from the ntraceud -help Option.
Screen 4-2. Sample Output from ntraceud -stats Option .
Screen 5-1. Sample Output from the ntrace -help Option. .
Screen 5-2. Example of ntrace -listing Output (with instr page fault)
Screen 5-3. Example of ntrace -listing Output (with data page fault)
Screen 5-4. Example of ntrace -filestats Output .
Screen 11-1. Sample Output from the ktrace -help Option. 11
Screen 11-2. Configuration Summary . 11
Screen 11-3. System Call Summary . 11
Screen 11-4. Exception and Interrupt Summaries . 11
Screen 11-5. Exception and Interrupt Total Time Summaries 11
Screen 11-6. Device Summary . 11
Screen 11-7. ktrace -verbose Listing. 11
Screen 11-8. ktrace -raw Listing . 11

Tables

Table 2-1. Significant Kernel Tunable Parameter .
Table 2-2. Required Kernel Options . 2
Table 2-3. Required Privileges . 2
Table 4-1. NightTrace Environmental Defaults . 4
Table 4-2. Mode-Selection Guidelines .
Table 4-3. NightTrace Operating Modes. .
Table 4-4. ntraceud Disable Sequence #1 .
Table 4-5. ntraceud Disable Sequence #2 .
Table 4-6. ntraceud Enable Sequence #1 .
Table 4-7. ntraceud Enable Sequence #2 .
Table 5-1. ntrace Pointer Shapes and Their Usage .
Table 6-1. View-Mode Mouse Button Operations . 6
Table 6-2. Manipulating the Interval Scroll Bar . 6
Table 6-3. Valid Multiple Field Changes . 6-
Table 6-4. Making Editing Changes . 6-
Table 6-5. Positioning Within a Text Field . 6-
Table 7-1. Edit-Mode Mouse Button Operations .
Table 8-1. Common Configuration Parameters .
Table 8-2. Examples of If-Expressions. 8-5
Table 8-3. Examples of Then-Expressions .
Table 9-1. Time Units and Constant Suffixes .
Table 9-2. A Comparison of Functions and Macros .
Table 9-3. NightTrace Functions. 9-
Table 11-1. Recommended Reading . 1
xvi

Contents

26
-35
-36
-37
B-2
B-5
Table 11-2. Example Logical CPU Mapping . 11-
Table 11-3. Non-Device-Related Interrupt Reference . 11
Table 11-4. Device-Related Interrupt Reference . 11
Table 11-5. Exception Reference . 11
Table B-1. Meanings of Common Subobjects and Attributes
Table B-2. Suggested Colors for X Resources .

Glossary

Index
xvii

NightTrace Manual
xviii

-1
-1
-2

1-2
-2

1-3
1-3
-3
1-3

1-6
1-7
1
Introduction

Overview . 1
What is NightTrace? . 1

User and Kernel Tracing. 1
Timestamp Source Selection .
Trace-Point Placement . 1
Languages Supported .
Processes and CPUs .
Information Displayed . 1
Searches and Summaries .

Logging and Analysis. 1-3
The Trace Event Logging Procedure . .. 1-4
The Trace Event Analysis Procedure .

Recommended Reading. .

NightTrace Manual

sing

ight-
nt
, and

red

nts

in

ace
at
1
Chapter 1Introduction

1
1
1

Overview 1

This chapter provides an overview of NightTrace and KernelTrace, steps involved in u
both tools, and recommended readings.

What is NightTrace? 1

NightTrace is an interactive debugging and performance analysis tool, a part of the N
StarTM tool kit. NightTrace allows you to graphically display information about importa
events in your application and the kernel, for example, event occurrences, timings
data values. NightTrace consists of the following parts:

NightTrace library Routines in user applications that log trace events to sha
memory

ntraceud Daemon process that copies user applications’ trace eve
from shared memory to trace event file(s)

ntrace Tool that graphically displays user and kernel trace events
trace event file(s)

The KernelTrace tool set allows you to collect and textually analyze kernel tr
information. It also allows you to convert kernel trace information into NightTrace form
for graphical analysis. KernelTrace consists of the following parts:

ktrace Tool that collects and textually analyzes kernel trace events

ntfilter Tool that converts KernelTrace trace event files fromktrace
into NightTrace trace files thatntrace can display

NightTrace and KernelTrace are flexible. As a user, you control:

• Selection of user tracing of your application or kernel tracing

• Selection of timestamp source

• Trace-point placement within your application

• The source language of the trace application

• The number of processes and CPUs you gather data on
1-1

NightTrace Manual

our
s or

er-
rnel-
mp

BC),
of an
base

sup-
ports

The
s a

the

ake
ome
• The amounts and types of information you display

• Trace event searches and summaries

User and Kernel Tracing 1

If interactions are important, you can simultaneously capture event information from y
application and from the kernel. Alternatively, you can capture just user event
pre-defined kernel events.

Timestamp Source Selection 1

By default, the interval timer (NightHawk 6000 Series) or the Time Base Register (Pow
Hawk/PowerStack) is used to timestamp trace events. However, NightTrace and Ke
Trace can specify the Real-Time Clock and Interrupt Module (RCIM) as a timesta
source.

The RCIM is an optional hardware module, attached to a single-board computer (S
which contains a tick clock that can be synchronized between several SBCs by way
interconnection cable. This synchronized tick clock can be used as a common time
for both kernel-level tracing and user-level tracing across multiple SBCs. NightTrace
ports using the RCIM synchronized tick clock to timestamp trace events and also sup
displaying trace data generated on multiple SBCs having the common time base.
RCIM also contains a POSIX clock. However, the POSIX clock is not supported a
timestamp source by NightTrace.

Selection of the RCIM synchronized tick clock as the trace timing source is made via
-clock rcim_tick option to bothntraceud andktrace .

For more information about the RCIM, please see theclock_synchronize(1M) ,
rcim(7) , rcimconfig(1M) , andsync_clock(7) man pages.

Trace-Point Placement 1

A trace pointis a place of interest in the source code. At each user trace point, you m
your application log some user-specified information along with a timestamp and s
additional system information. This logged information is collectively called atrace event.
In user traces, each trace event has a user-definedtrace event IDnumber, and two different
trace event IDs delimit the boundaries of a user-definedstate.

Some typical user trace-point locations include:

• Suspected bug locations

• Process, subprogram, or loop entry and exit points

• Timing points, especially for clocking I/O processing

• Synchronization points/multi-process interaction
1-2

Introduction

your

rce.

ur
ents.

nts
ess
vent,

r as
hical

y
mize
and

s let
es let
erent

vent
• Endpoints of atomic operations

• Endpoints of shared memory access code

Careful trace point placement allows you to easily identify patterns and anomalies in
application’s behavior.

Kernel trace points and trace events are pre-defined and embedded in the kernel sou

Languages Supported 1

The NightTrace library is callable from C, Fortran and Ada. This means that yo
application can be written in any combination of these languages and still log trace ev

Processes and CPUs 1

ntraceud (the ntraceuser daemon) is responsible for actually recording the trace eve
logged by an application to disk. It can interact with single-process and multi-proc
applications; the processes may even run on different CPUs. When you log a trace e
NightTrace identifies both the originating process and optionally the CPU.

Information Displayed 1

The ntrace display utility lets you examine some or all trace events. Data appea
numerical statistics and as graphical images. You can create and configure the grap
components calleddisplay objectsor use the defaults. By creating your own displa
objects, you can make the graphical displays more meaningful to you. You can custo
display objects to reflect your preferences in content, labeling, position, size, color,
font.

Searches and Summaries 1

With thentrace display utility, you can perform searches and summaries. Searche
you filter out unwanted data and zero-in on trouble spots and specific data. Summari
you define characteristics of the trace event data to be summarized in several diff
ways.

Logging and Analysis 1

NightTrace and KernelTrace support two activities: trace event logging and trace e
analysis.
1-3

NightTrace Manual

only
only

ging,
The Trace Event Logging Procedure 1

The following text describes user and kernel trace event logging. If you are interested
in kernel tracing, skip the steps that are specific to user tracing. If you are interested
in user tracing, skip the steps that are specific to kernel tracing. For trace event log
follow these steps in the order shown:

1. Establish a suitable environment so you can run thentraceud daemon or
perform kernel tracing. Make sure you meet all the system requirements
discussed in theNightTrace Release Notesfor the version you are running.

2. (For user traces only) Select trace points in your source code. A trace
point marks a point in your application that is important to debugging or
performance analysis.

3. (For user traces only) Insert a call to a NightTrace trace event logging
routine at each trace point in your source code, so you can later see the
trace event information graphically inntrace . You can manually insert
these calls into your source code or insert them into the final executable
with the NightView debugger. See theNightView User’s Guidefor more
information.

4. (For user traces only) Insert calls at appropriate places in your application
to initialize the NightTrace trace event logging library and terminate
logging. This is necessary for resource allocation and deallocation, file
creation, and flushing trace events to disk. Steps 3 and 4 are called
instrumenting your code. Figure 1-1 shows instrumented C code.

Figure 1-1. Example of Instrumented C Code

5. (For user traces only) Compile and link your application with the Night-
Trace trace event logging library. For example:

#include <ntrace.h>
#define START 10
#define END 20

main()
{

trace_start("log");
trace_open_thread("main_thread");
trace_event(START);

process();

trace_event(END);
trace_close_thread();
trace_end();
exit(0);

}

1-4

Introduction

for
$ cc main.c process.c -lntrace -lud

6. (For RCIM synchronized tick clock only) Synchronize the tick clocks on
all connected RCIMs before kernel and/or user tracing has begun.

Use theclock_synchronize(1M) command.

7. (For kernel traces only) Invoke thektrace tool in the background. This
permits you to log kernel trace events simultaneously with user trace
events. For example:

$ ktrace -o raw_klog &
[1] 452
locking into memory
resetting priority
open /dev/trace
initialize
gather trace point data

Note that if you are running this command from a script, you may need to sleep
about 5 seconds so the “gather trace point data” message has time to appear.

NOTE

In order to use the RCIM synchronized tick clock, you will need
to specify the-clock rcim_tick command line option when
invoking ktrace . For more information, please see the
ktrace(1) man page.

8. (For user traces only) Invoke thentraceud daemon, so it can log trace
events for your application. For example:

$ ntraceud log

(Note that the trace event file on the call to thetrace_start library routine (step
4) matches the trace event file on thentraceud invocation (step 7).)

NOTE

In order to use the RCIM synchronized tick clock, you will need
to specify the-clock rcim_tick command line option when
invoking ntraceud . For more information, please see the
ntraceud(1) man page.

9. (For user traces only) Run your application. As NightTrace trace event
logging routines execute, they write trace event information into a shared
memory buffer. Periodical ly, thentraceud daemon copies this
information to a trace event file on disk. For example:

$ a.out
1-5

NightTrace Manual

hical
10. (For user traces only) When the application completes, stop thentraceud
daemon. For example:

$ ntraceud -quit log

11. (For kernel traces only) Kill thektrace tool, so it stops logging kernel
trace events. For example:

$ kill %1
terminating

12. (For kernel traces only) Invoke thentfilter tool to convert the Kernel-
Trace trace event file (raw_klog) that thektrace tool created into one
compatible with NightTrace (klog). For example:

$ ntfilter -v < raw_klog > klog

13. (For user traces only) Create an event-map file forntrace (optional). An
event-map file provides a mechanism for associating meaningful symbolic
tags with the different trace event IDs logged by the application. When
ntrace reads an event-map file, it can display the symbolic tags for trace
events; otherwise, it must display the more cryptic numeric trace event IDs.
For example (Assume the event-map file name ismap.):

event: 10 “START” 1 %d
event: 20 “END” 1 %d

The Trace Event Analysis Procedure 1

When trace event logging completes, you can begin trace event analysis. For grap
trace event analysis, follow these steps in the order shown:

1. Invoke thentrace display utility. Command-line options limit which
trace events are loaded. Command-line arguments usually include user
trace event file(s) and possibly a kernel trace event file,vectors file, and
user-created files that customize and annotate your displays. For example:

$ ntrace log map klog vectors

2. Create or modifydisplay pages. Display pages contain built-in graphical
components calleddisplay objects. There are pre-defined display pages for
user and kernel traces. You select and configure display objects so they
meet your needs. This usually means graphically displaying chronological
trace event or state information that your application and/or the kernel
logged. When you finish customizing your display pages, save them for
future use. Figure 1-2 shows an example of a user display page.
1-6

Introduction

t are
Figure 1-2. Example of a User Display Page with Display Objects

3. Iteratively locate and analyze significant data.

• Search for trace events of interest. You do this by controlling the
window that displays a portion of the trace event file. This window is
called theinterval. You can control the interval by zooming in or out,
scrolling, searching for specific trace events, or jumping to portions
of the trace event file.

• Display summary information. This information may be about your
entire trace session or the characteristics of particular trace events
and states in this trace session.

For textual kernel trace event analysis, follow the step shown:

$ ktrace -input rawfile > summary_file

Recommended Reading 1

Referenced publications appear in the front of this manual. Related text books tha
useful resources for general background information follow.
1-7

NightTrace Manual

ook
dow

ks

gy
X Window System User’s Guide

This text book by Valerie Quercia and Tim O’Reilly is published by O’Reilly &
Associates, Inc. It is available under publication number 0890300. This text b
introduces X terminology and concepts. It also discusses several popular win
managers, thexterm terminal emulator, X resources, and X desk accessories.

OSF/Motif Style Guide

This text book is published by Prentice-Hall, Inc. It and its companion boo
OSF/Motif User’s GuideandOSF/Motif Programmer’s Guideare packaged together
under publication number 0890380. This text book introduces Motif terminolo
and concepts. It also provides information about Motif features.
1-8

-1
-1

-2
-3
-4
-5
-6
-6
-7
2-7
-8
-8
2-9
-9
10
2
Establishing the Environment

Overview . 2
Requirements . 2
Installing Software. 2
Configuring the Kernel . 2
Administering Privileges . 2
Putting Users into Groups . 2
Granting Page Lock Privilege . 2

Using Page Locking . 2
Not Using Page Locking . 2

Granting Access to the Interrupt Priority Level Register .
Using the IPL Register . 2
Not Using the IPL Register . 2

Granting Access to the Trace Device. .
Granting Access to the Interval Timer. 2
Granting Access to the RCIM Synchronized Tick Clock . 2-

NightTrace Manual

an run

ch to
me

ging
2
Chapter 2Establishing the Environment

2
2
2

Overview 2

This chapter describes the system and user environment you must have before you c
NightTrace and KernelTrace.

Requirements 2

NightTrace and KernelTrace require a particular system and user environment in whi
run. It is your system administrator’s responsibility to establish this environment. So
tasks that must be performed include:

• Install the software

• Configure the kernel

• Administer privileges

• Put NightTrace users into groups based on their needs (optional):

- Users that need page lock privilege (P_PLOCK)

- Users that need access to the system’s interrupt priority level (IPL)
register

(Access to the IPL register and page lock access reduce trace event log
overhead for time-critical applications.)

• Grant read access to the kernel trace device to all KernelTrace users

• Grant read access to timestamp source

- Interval Timer

Grant read access to the system’s interval timer to all NightTrace and
KernelTrace users

- RCIM Synchronized Tick Clock

Grant read access to the RCIM synchronized tick clock to all Night-
Trace and KernelTrace users
2-1

NightTrace Manual

ol-

e

NOTE

Granting read access to the timestamp source is not necessary
when using the Time Base Register on Power Hawk systems.

Installing Software 2

All NightStar tools, including NightTrace’sntrace program, mustbe run with the Élan
License Manager. Theelanlm package contains files for the Élan License Manager. F
low the steps in the “Obtaining Licenses” section of theÉlan License Manager Release
Notes; the feature aliasis NightTrace . If you are not already running the Élan Licens
Manager, if you do not have a copy of theÉlan License Manager Release Notes, or if you
need a license key, contact Concurrent Software Distribution at 1-800-666-5405.

NOTE

If your system is already running the Élan License Manager, you
may not need to reinstall it.

Thentrace package contains files for NightTrace, and thetrace package contains files
for KernelTrace. The following example installs the NightTracentrace package from a
tape device namedtape1 :

pkgadd -d tape1 ntrace

For more information, seepkgadd(1M) , PowerMAX OS Version 2.1 Release Notes, and
“Installing Add-On Software” inSystem Administration Manual Volume 1.

NOTE

To determine where NightTrace will be installed on your system,
loo k at the set t ing of th ebasedir parameter in the
/var/sadm/install/admin/default file. (For possible
values, seeadmin(4) .)
2-2

Establishing the Environment
Configuring the Kernel 2

Table 2-1 describes the kernel tunable parameter that affects KernelTrace.

Table 2-2 describes the kernel options that NightTrace and KernelTrace require.

Refer to “Booting and System States” inSystem Administration Volume 1, “Configuring
and Building the Kernel” and “Tunable Parameters” inSystem Administration Volume 2,
idbuild(1M) andidtune(1M) for instructions on modifying kernel configurations.

Table 2-1. Significant Kernel Tunable Parameter

Kernel Tunable Parameter Description

TR_BUFFER_COUNT Number of kernel trace buffers
(For more information, see “Ker-
nel Tracing with ktrace” on page
11-8.)

Table 2-2. Required Kernel Options

Kernel Option Description

fp Fixed-priority class scheduler

ipc Inter-process communications. (NightTrace
applications log trace events to a shared memory
buffer. For more information about shared mem-
ory, see “Interprocess Communication” in thePow-
erMAX OS Programming Guide.)

procfs Processor file system

trace Kernel trace driver.
2-3

NightTrace Manual

ecial
s the

sses.
most

e and
iption

table
them.

e
ed to

egis-
(

Administering Privileges 2

NightTrace and KernelTrace use sensitive real-time system services that require sp
privileges that are not generally available to all users and processes. Table 2-3 show
privileges that processes must have to run NightTrace and KernelTrace.

Privileges are associated with users, executable files on disk, and executing proce
However, ultimately, the set of privileges associated with an executing process is
important.

NOTE

If a system service call requires a specific privilege, any process
calling that system service must also have that privilege.

The granting of privileges to users, executable files and processes is a complex issu
depends on the specific security configuration of each system. For a complete descr
of privileges and security refer to the “Trusted Facility Management” Chapter inSystem
Administration Volume 1andintro(2) .

A convenient way to associate privileges with users is through the use ofroles. A role is a
named description of a set of privileges that have been registered for certain execu
files, such as the shell. The system administrator creates roles and assigns users to
During the login process, use thetfadmin(1M) command to request that your shell b
granted the privileges associated with your role. Once privileges have been grant
your shell, subsequently spawned processes automatically inherit your privileges.

TIP:
The system administrator should issue the following commands to create a role and r
ter all the privileges that NightTrace programs require to three commonly used shellssh ,
ksh , andcsh).

$ /usr/bin/adminrole -n TRACE_USERS

$ /usr/bin/adminrole -a sh:/sbin/sh:owner:dev: \
sysops:fpri:tshar:plock:userint TRACE_USERS

$ /usr/bin/adminrole -a ksh:/usr/bin/ksh:owner:dev:\
sysops:fpri:tshar:plock:userint TRACE_USERS

$ /usr/bin/adminrole -a csh:/usr/bin/csh:owner:dev: \
sysops:fpri:tshar:plock:userint TRACE_USERS

Table 2-3. Required Privileges

P_OWNER P_FPRI P_USERINT

P_DEV P_TSHAR

P_SYSOPS P_PLOCK
2-4

Establishing the Environment

user

w

cally
y
,

really

into
e

TIP:
The system administrator should issue the following command to assign an example
(Kernel_Jock) to the TRACE_USERS role.

$ /usr/bin/adminuser -n -o TRACE_USERS Kernel_Jock

Kernel_Jockmust explicitly request privileges for the current shell by initiating a ne
shell with thetfadmin(1) command.

TIP:
For convenience,Kernel_Jockshould put the following line in his.profile (or
.login) file. (This file is executed during initialization of the login shell.)

exec /sbin/tfadmin TRACE_USERS: $SHELL

This causes the privileges associated with the TRACE_USERS role to be automati
granted to a newly spawned shell (SHELLis an environment variable that is automaticall
set by the shell; it representsKernel_Jock’s actual default shell path name; e.g.
/usr/bin/ksh). The original shell that executed the.profile (or .login) file is
replaced by the new shell spawned by thetfadmin command.

Kernel_Jockcan now run NightTrace and KernelTrace.

Putting Users into Groups 2

It is possible for one user to belong to several groups in the/etc/group file. Proper
group assignment permits limited use of restricted-access resources to users who
need them.

TIP:
Your system administrator should consider putting NightTrace and KernelTrace users
three groups in the/etc/group file. There could be one group for each of th
following:

• All NightTrace and KernelTrace users. Everyone in this group must be able
to read the system’s interval timer (/dev/interval_timer).

• Those users whose applications must notbe rescheduled or interrupted., for
example, those who are using user-level interrupts. Everyone in this group
must be able to read and write to the interrupt priority level register
(/dev/spl).

• Those users who perform kernel traces. Everyone in this group must be
able to read the kernel trace device (/dev/trace).

For more information about adding groups and users to the system, seeuseradd(1M) ,
usermod(1M) , andgroupadd(1M) .
2-5

NightTrace Manual

nes,
and

ge

ns
e
eir

r
trace

d to
rrupt
rary
the
ing

ator

e

Granting Page Lock Privilege 2

NightTrace does notrequire you to have page lock (P_PLOCK) privilege. However, if you
have it, you can prevent page faults within the NightTrace trace event logging routi
and optionally within your application. Page faults can distort your trace event timings
can degrade the efficiency of applications and facilities.

Usually, users are deniedP_PLOCKprivilege. By default, thentraceud daemon and the
library initialization routine use page locking.

From anP_PLOCK-privilege standpoint, NightTrace users fall into two categories:

• Those who haveP_PLOCKprivilege can prevent paging

• Those who lackP_PLOCKprivilege must accept paging

The following sections describe how NightTrace performs with and without the privile
to lock pages in memory.

Using Page Locking 2

This section discusses the followingP_PLOCKprivilege issues:

• What applications require it

• What are the advantages of it

• Why does NightTrace use it

• What action must your system administrator take

Applications that typically lock pages in memory include the following: user applicatio
that log trace events and, by default, thentraceud daemon. These applications must b
able to lock their pages in memory. Note: the NightTrace library routines lock only th
critical code and data pages in memory; you need not lock the entire application.

By locking pages in memory,ntraceud and the NightTrace library routines in use
applications prevent page faults during traces. Otherwise, this overhead can distort
event timings.

The NightTrace library uses page locking for two reasons. First, its routines nee
synchronize themselves when they are used at program level and in user-level inte
routines. The system cannot afford the overhead of a page fault in a NightTrace lib
routine while a user-level interrupt is waiting for the routine to complete. Second,
NightTrace library routines must be very efficient to reduce any performance and tim
impact on the user application.

To keep your applications from being paged out of memory, your system administr
must grant youP_PLOCKprivilege. You can query your privileges with thepriv special
command of/sbin/sh . The system administrator can set privileges with th
adminuser(1M) command.
2-6

Establishing the Environment

vent

age

el
and
rade

stem
he
Not Using Page Locking 2

This section discusses the lack ofP_PLOCKprivilege as it applies to these topics:

• What can you do if you lack it

• What are the disadvantages of lacking it

If you lack P_PLOCKprivilege, you must invoke thentraceud daemon with the
-lockdisable option. This option makesntraceud and the NightTrace library
routines in your application run without locking their pages in memory.

With this option you are able to log trace events. However, the overhead of the trace e
logging routines may increase due to paging, exceptions and interrupts.

NOTE

ntraceud always protects the data integrity of its shared
memory buffer with spin locks. If a page fault occurs while this
spin lock is locked, all other processes contending for the spin
lock wait until the page-faulted application is paged in and
rescheduled and logging of the trace event is completed. Locking
the NightTrace library in memory assures that the application will
not page fault while logging a trace event to the shared memory
buffer.

For more information onP_PLOCK, seeintro(2) . For more information on
ntraceud options, see “ntraceud Options” on page 4-4 and “Option to Prevent P
Locking (-lockdisable)” on page 4-9.

Granting Access to the Interrupt Priority Level Register 2

NightTrace does notrequire you to read and write the system’s interrupt priority lev
register (IPL). However, if you can modify this register, you can prevent rescheduling
interrupts during trace event logging; they can distort trace event timings and can deg
the efficiency of applications and facilities.

Usually, users are denied IPL modification access because it means relaxing sy
protection that normally limits IPL modification to the operating system. By default, t
ntraceud daemon and library initialization routine modify the IPL register.

From an IPL-modification standpoint, NightTrace users fall into two categories:

• Τhose who have IPL modification access and can prevent rescheduling and
interrupts

• Τhose who lack IPL modification access and must accept rescheduling and
interrupts
2-7

NightTrace Manual

s to

nd
, the

IPL

s.

he
race
pro-

r
’s

ugh

our

the

PL

due
The following sections describe how NightTrace performs with and without acces
modify the IPL register.

Using the IPL Register 2

This section discusses the following IPL modification access issues:

• What applications require it

• What are the advantages of it

• How does NightTrace use it

• What action must your system administrator take

Applications that typically modify the system’s IPL register to prevent rescheduling a
interrupts include the following: user applications that log trace events and, by default
ntraceud daemon. These programs must be able to read and write to the system’s
register.

By modifying this normally restricted system register,ntraceud prevents rescheduling
and interrupts during traces. Otherwise, this overhead could distort trace event timing

Applications that can modify the IPL register, temporarily raise their own priority in t
system’s IPL register. This way they prevent rescheduling and interrupts during t
event logging. NightTrace then locks a spin lock on the shared memory buffer. This
tects shared memory. Once logging of the trace event is complete,ntraceud unlocks the
spin lock and lowers the IPL register value back to zero.

By default, the NightTrace library routines open/dev/spl on Series 6000 systems o
/dev/spl1 and /dev/spl2 on Power Hawk systems to gain access to the system
IPL register. User applications do not explicitly access the system’s IPL register thro
NightTrace library routines.

If an application lacks the read and write access to these device files, thentraceud
daemon and library initialization routine exit with errors. If errors are detected, y
system administrator must do at least one of the following:

• Add you to the user group who has/dev/spl read and write permissions
(or /dev/spl1 and/dev/spl2 for Power Hawk systems)

• Grant read and write access to IPL register users

Not Using the IPL Register 2

If you lack read or write access to the system’s IPL register, you must invoke
ntraceud daemon with the-ipldisable option. This option preventsntraceud
and the NightTrace library routines in your application from modifying the system’s I
register.

With this option, you are able to trace events. However, their timings may be distorted
to process rescheduling and interrupts.
2-8

Establishing the Environment

ck
s to a
-
ared
WP
WP
the

the
-

IPL

rite

citly
s are
The-ipldisable option should be used with great care. Using it may lead to deadlo
if more than one LWP, each biased to run on the same CPU, is logging trace event
trace file created by anntraceud invoked with this option. Consider the following sce
nario: an LWP, preparing to log a trace event, locks the spin lock to protect the sh
memory buffer. It is preempted (through a rescheduling interrupt) by a second L
which also attempts to log a trace event. However, due to priority inversion, the first L
cannot release the spin lock, causing the second LWP to loop infinitely waiting for
spin lock to be released.

NOTE

ntraceud always protects the data integrity of its shared
memory buffer with spin locks. If rescheduling or an interrupt
occurs while this spin lock is locked, al l other processes
contending for the spin lock wait until the preempted process is
rescheduled and logging of the trace event is completed. Using the
IPL register and locking the NightTrace library pages in memory
prevents this.

For more information on the system’s IPL register, see “User-Level Interrupts” in
PowerMAX OS Real-Time Guide. For more information about spin locks, see “Interpro
cess Synchronization” in thePowerMAX OS Real-Time Guide.For more information on
ntraceud options, see “ntraceud Options” on page 4-4 and “Option to Disable the
Register (-ipldisable)” on page 4-8.

Granting Access to the Trace Device 2

Thektrace kernel-trace tool requires that its users have read access to/dev/trace ,
the kernel trace device. This access is not required for user tracing.

Granting Access to the Interval Timer 2

NOTE

This section does not apply to Power Hawk systems. On those
systems, the time base register of the microprocessor is used for
trace event timestamps.

The NightTrace library routines open/dev/interval_timer to gain access to the
system’s interval timer These routines in your application use this timer when they w
trace events to a shared memory buffer.

Although user applications must be able to read the interval timer, they do not expli
access it. (The NightTrace event-logging library accesses it.) Usually, system user
2-9

NightTrace Manual

that

em

rary

they

is-
unable to access the interval timer because it means relaxing system protection
normally limits interval timer access to the operating system.

If applications lack read access to/dev/interval_timer , the NightTrace daemon
and library initialization routine exit with errors. If errors are detected, your syst
administrator must do at least one of the following:

• Add you to the user group that has/dev/interval_timer read per-
mission

• Grant read access to interval timer users

CAUTION

Do not callclock_settime() from your application. This sys-
tem call can corrupt both the system interval timer and Time Base
Register which NightTrace uses for trace event timings.

Granting Access to the RCIM Synchronized Tick Clock 2

NOTE

This section applies only to those systems on which an RCIM is
installed, configured and functioning.

When trace events are to be timestamped by the RCIM tick clock, the NightTrace lib
routines open/dev/sync_clock to gain access to the clock.

Although user applications must be able to read the RCIM synchronized tick clock,
do not explicitly access it. (The NightTrace event-logging library accesses it.)

If applications lack read access to/dev/sync_clock , the NightTrace daemon and
library initialization routine exit with errors. If errors are detected, your system admin
trator must do at least one of the following:

• Add you to the user group that has/dev/sync_clock read permission

• Grant read access to the RCIM tick clock
2-10

Establishing the Environment
CAUTION

On Power Hawk and Power Stack systems, do not start, stop, or
synchronize the RCIM synchronized tick clock in the middle of
gathering trace events. Any one of these acts will render trace
data useless because it interferes with obtaining a valid times-
tamp. Also, there are certain situations in which the RCIM clock
values may be synchronized without direct user intervention.
Again, any one of these occurrences might invalidate trace data.
For more information, please see theReal-Time Clock and Inter-
rupt Module User's Guide.
2-11

NightTrace Manual
2-12

-1
3-1

-2
-2
-2
3-3
-3
-5

3-9
-11
-16
20

-22
23
4
5
5

25
5

-26
3
Adding Library Calls to Your Application

Overview . 3
Language-Specific Source Considerations .

C . 3
Fortran . 3
Ada . 3

Inter-Process Communication and Library Routines .
Understanding NightTrace Library Calls . 3

trace_start(). 3
trace_open_thread() .
trace_event() and Its Variants . 3
trace_enable(), trace_disable(), and Their Variants . 3
trace_flush() and trace_trigger(). 3-
trace_close_thread() . 3
trace_end() . 3-

Disabling Tracing . 3-2
Compiling and Linking . 3-2

C Example . 3-2
Fortran Example . 3-
Ada Example . 3-2

Exercise: Instrumenting Code. 3

NightTrace Manual

user

to
calls
3
Chapter 3Adding Library Calls to Your Application

3
3
3

Overview 3

This chapter describes language-specific considerations for using NightTrace with
applications.

CAUTION

Do not callclock_settime() from your application. This sys-
tem call can corrupt both the system interval timer and Time Base
Register which NightTrace uses for trace event timings.

CAUTION

The NightTrace Version 4.1ntraceud is incompatible with user
programs statically linked with NightTrace libraries prior to Ver-
sion 4.1. This is due to a change in the layout of the shared mem-
ory region used to provide communication betweenntraceud
and user programs.

Any user programs statically linked with these libraries will need
to be relinked with the Version 4.1 libraries. Failing to relink the
application with the new libraries can result in unpredictable
behavior or in the application looping infinitely when it calls
trace_open_thread() .

Beginning with the NightTrace 4.1 static library, applications can
detect when they are not compatible withntraceud and will
exit with an error code instead of exhibiting undesired behavior.
Programs linked with an earlier version of the static library cannot
detect this incompatibility.

Language-Specific Source Considerations 3

NightTrace applications must be written in C, Fortran, or Ada. For your applications
trace events, you must edit your source code and insert NightTrace library routine
(unless you are using the NightView debugger). This is calledinstrumenting your code.
Before you begin this task, you should read the appropriate language section below.
3-1

NightTrace Manual

le

ine
the
this

ines.
uely

age
C 3

NightTrace appl icat ions wr i t ten in C inc lude the NightTrace header f i
/usr/include/ntrace.h with the following line:

#include <ntrace.h>

Thentrace.h file contains the following:

• Function prototypes for all NightTrace library routines

• Return values for all NightTrace library routines

• C macros (described in “Disabling Tracing” on page 3-24)

The library routine return values identify the type of error, if any, the NightTrace rout
encountered. If you think you may want to disable the NightTrace library routines in
future without having to remove them from your source code, then you must include
file in your application.

C programs that are multi-thread can also be traced with the NightTrace library rout
For multi-thread programs, a C thread identifier is stored in each trace event, uniq
identifying which C thread was running at the time the trace event was logged.

For more information on C, seeC: A Reference Manualand the ConcurrentC Reference
Manual.

Fortran 3

The Fortran version of the NightTrace library routines followhf77 function-naming and
argument-passing conventions. For more information onhf77 , see thehf77 Fortran
Reference Manual.

All NightTrace library routines returnINTEGERS, but because they begin with a “t”,
Fortran implicitly types them asREAL. You must explicitly type them asINTEGERso that
they work correctly. For example, to explicitly type thetrace_start routine, use the
following declaration:

integer trace_start

Ada 3

Ada applications can access the NightTrace library routines via the Ada pack
night_trace_bindings which is included with the MAXAda product. The bindings
can be found in thebindings/general environment in the source f i le
night_trace.a .

Thenight_trace_bindings package contains the following:

• An enumeration type consisting of the return values for all NightTrace
library routines
3-2

Adding Library Calls to Your Application

dures

. For
uely

. The
f

tines

e

• The bindings that permit Ada applications to call the C routines in the
NightTrace library and to link in the NightTrace library

Many of the NightTrace functions have been overloaded as procedures. These proce
act as the corresponding functions, except they discard any error return values.

Ada programs that use tasking can also be traced with the NightTrace library routines
multitasking programs, an Ada task identifier is stored in each trace event, uniq
identifying which Ada task was running at the time the trace event was logged.

For more information on Ada, see the section titled “NightTrace Binding” in theMAXAda
Reference Manual.

Inter-Process Communication and Library Routines 3

Your application logs trace events to the shared memory buffer. Later, thentraceud
daemon copies trace events from the shared memory buffer to the trace event file
relationship between your application and thentraceud daemon and the sequence o
library calls needed to maintain this relationship appears in Figure 3-1.

Understanding NightTrace Library Calls 3

There is a C, Fortran, and Ada version of each NightTrace library routine. These rou
perform the following functions:

• Initialize a trace

• Open the current thread for trace event logging

• Log trace events to shared memory

• Enable and disable specified trace events

• Copy trace events from shared memory to disk

• Close the current thread for trace event logging

• Terminate a trace

See theNightTrace Pocket Referencecard for a syntax summary of these routines. Th
next sections describe these routines in detail.
3-3

NightTrace Manual
Figure 3-1. Inter-Process Communication and Library Routines

Parent processes follow this sequence:

trace_start()
trace_open_thread()
log trace events
trace_close_thread()
trace_end()

Child processes follow this sequence:

trace_open_thread()
log trace events
trace_close_thread()

Process A

Thread 1

Thread 2

Process B

Child of B Shared
Memory
Buffer

ntraceud

Child of B

Process C

Task 1

Task 2 Trace Event
File

An application written in C can log trace events using:

trace_event()
trace_event_arg()
trace_event_flt()
trace_event_two_flt()
trace_event_dbl()
trace_event_two_dbl()
trace_event_four_arg()

and it can control which trace events are logged and when they are written to disk using:

trace_enable()
trace_enable_range()
trace_enable_all()
trace_disable()
trace_disable_range()
trace_disable_all()
trace_flush()
trace_trigger()
3-4

Adding Library Calls to Your Application

for

.
e

ay
at

vel
trace_start() 3

The trace_start() routine initializes the trace mechanism and acquires resources
your process, C thread or Ada task.

SYNTAX

C: int trace_start(char * trace_file);

Fortran: integer function trace_start(trace_file)
character *(*) trace_file

Ada: function trace_start(trace_file : string)
return ntrace_error;

PARAMETERS

trace_file ntraceud logs trace events to an output file,trace_file. When you
invoke thentraceud daemon, you must specify this file’s name
For ntraceud to log your process’ trace events to this file, the trac
event file parameter in yourtrace_start() call must correspond
to the trace event file argument on thentraceud invocation line.
This means that the names do nothave to match exactly, but they do
have to refer to the same inode; for example, one path name m
begin at your current working directory and the other may begin
the root directory.

DESCRIPTION

The trace_start() routine performs the following operations:

• Verifies that an instance ofntraceud is running with the matching
trace event file name

• Verifies that the version of the NightTrace library linked with the
application is compatible with the version being used byntraceud

• Verifies that the RCIM synchronized tick clock is counting if it was
selected as the timestamp source

• Attaches thentraceud -created shared memory buffer

• Attaches the shared memory regions bound to the timestamp source
and interrupt priority level (IPL) register

• Locks critical NightTrace library routine pages in memory

• Initializes trace event tracing in this process

For more information on shared memory and the system’s interrupt priority le
(IPL) register, see thePowerMAX OS Real-Time Guide. For information about
page-locking privilege (P_PLOCK), seeintro(2) .
3-5

NightTrace Manual

the
as

r

to a

it the
f

herit

. If

n

e
-

s
s
e

ed.
ra-

s
not
g

ns

le
A process that results from theexec(2) system service does notinherit a trace
mechanism. Therefore, if that process is to log trace events, it must initialize
trace withtrace_start() . Processes that result from a fork in a process that h
already initialized the trace need not calltrace_start() .

Generally, calltrace_start() only once per parent process. However, fo
processes using C threads or Ada tasks,trace_start() can be called by
individual threads or tasks, allowing a specific thread or task to log trace events
unique trace event file. For detailed guidelines ontrace_start() placement, see
Figure 3-2.

For processes using C threads and Ada tasks, all threads and tasks will inher
trace context of the firsttrace_start() call that is made by any thread or task o
the process. However, subsequenttrace_start() calls by a thread or task will
override the default trace context. Newly created threads and tasks always in
the trace context of the thread or task that created them.

RETURN VALUES

The trace_start() routine returns a zero value (NTNOERROR) on successful
completion. Otherwise, it returns a non-zero value to identify the error condition
trace_start() returns any error code other thanNTALREADY, the application
cannot do a trace. A list oftrace_start() error codes follows.

[NTALREADY] The application has already initialized the trace without a
interveningtrace_end() . Tracing can continue in spite of
this error. Solution: Remove redundanttrace_start()
calls.

[NTBADVERSION] The calling application is linked with the static NightTrac
library and the static library is not compatible with the Night
Trace library being used by thentraceud daemon. Solution:
Relink the application with the static library version which
matches the library version being used by the daemon.

Note: This error code will be returned only if the application i
linked with the version 4.1 or later static library. Application
linked with a static library version previous to 4.1 must b
relinked to take advantage of this compatibility check.

[NTMAPCLOCK] The selected event timestamp source could not be attach
Solution: If read access is lacking, see your system administ
tor.

This can also occur if the RCIM synchronized tick clock i
selected as the event timestamp source but the tick clock is
counting. Solution: Start the synchronized tick clock by usin
the clock_synchronize(1M) command, restartntra-
ceud , and restart the application.

[NTNOTRACEFILE]The trace event file does not already exist. This often mea
that ntraceud is not running. Solution: Be sure that an
ntraceud daemon is running with the same trace event fi
name as thetrace_start() parameter.
3-6

Adding Library Calls to Your Application

ts.

the

r

ut

s
ith

ed
ho
s

If
tor

ce
[NTNODAEMON] The trace event file exists, but no shared memory region exis
This usually means that there is nontraceud daemon run-
ning with a trace event file name that matches the one on
trace_start() call. Solution: If thentraceud daemon is
not running, invoke it. If the file names do not match, eithe
invoke ntraceud with the correct file name or edit your
source code.

This can also occur if the shared memory region exists, b
there is no evidence of antraceud daemon currently running
(e.g., it aborted abnormally). This condition is not alway
detectable. Solution: Remove the shared memory region w
ipcrm(1) and restartntraceud .

[NTPERMISSION] The calling application lacks permission to attach the shar
memory buffer. Solution: Make sure that the same user w
started upntraceud is the current user logging trace event
in the application.

[NTMAPSPLREG] The system’s IPL register could not be attached. Solution:
read or write access is lacking, see your system administra
or invokentraceud with the-ipldisable option.

[NTPGLOCK] Permission to lock the text and data pages of the NightTra
library routines was denied. Solution: IfP_PLOCKprivilege is
lacking, see your system administrator or invokentraceud
with the-lockdisable option.

SEE ALSO

Related routines include:trace_open_thread() , trace_end()

See “ntraceud Options” on page 4-4 for more information onntraceud options.
3-7

NightTrace Manual
Figure 3-2. trace_start() and trace_open_thread() Placement

Yes

Several conditions in the application warrant trace_start() and
trace_open_thread() calls. These situations appear in the flowchart
below.

Note: All these cases assume that you want to do tracing in the process(es)
mentioned.

Is this process
the result of an

exec ?

Call trace_start() and
trace_open_thread()
at the beginning because
exec ’ed processes do not
inherit trace mechanisms.

Put unique
trace_open_thread()
call(s) at the beginning
of the child process(es)
because they inherit the
parent’s trace mechanism.

No

YesDoes the parent
call

trace_start()

?

No

Put identical
trace_start()

and unique
trace_open_thread()

calls at the beginning
of each child.

Note: C threads and Ada tasks of the same process may choose to call
trace_open_thread() and trace_start() on their own, however by
default the first trace_start() and trace_open_thread() apply to all
C threads and Ada tasks in a given process.
3-8

Adding Library Calls to Your Application

ask

pa-
t be

w

n

ble.
er
If

le,
e to

be

n

trace_open_thread() 3

The trace_open_thread() routine prepares the current process C thread or Ada t
for trace event logging.

SYNTAX

C: int trace_open_thread(char * thread_name);

Fortran: integer function trace_open_thread(thread_name)
character *(*) thread_name

Ada: function trace_open_thread(
thread_name: string

)
return ntrace_error;

PARAMETERS

thread_name
In NightTrace every thread of execution to be traced (whether a se
rate process, or a C thread or Ada task within a process) mus
associated with a name,thread_name,which may be null. Night-
Trace’s graphical displays and textual summary information sho
which threads logged trace events. If thetrace_open_thread()
thread name is null, thentrace display utility uses the global thread
identifier (TID) as a label in these displays. For more information o
global thread identifiers see “TID List” on page 8-8.

Naming your threads can make the displays much more reada
trace_open_thread() lets you associate a meaningful charact
string name with the current threads’ more cryptic numeric TID.
you provide a character string as the thread name, thentrace dis-
play utility uses it as a label in its displays. Becausentrace may be
unable to display long strings in the limited screen space availab
keep thread names short. (Long thread names cause NightTrac
log anNT_CONTINUEoverhead trace event.)

The following words are reserved in NightTrace and should not
used in upper case or lower case as thread names:NONE, ALL,
ALLUSER, ALLKERNEL, TRUE, FALSE, CALC. See
“Pre-Defined String Tables” on page 5-15 for more informatio
about thread names.

NOTE

Thread names mustbegin with an alphabetic character and consist
solely of alphanumeric characters and the underscore. Spaces and
punctuation are notvalid characters.
3-9

NightTrace Manual

s,
, that

texts
other.

” in

oth

rror

:

a

ion:
ro-

ce

s its
its
DESCRIPTION

A NightTrace “thread” can be a process, C thread or Ada task. Forntrace
displays,trace_open_thread() associates a thread name with the proces
thread or task logging trace events. Each process, including child processes
logs trace events must have its owntrace_open_thread() call. In addition, C
threads and Ada tasks may calltrace_open_thread() individually to associate
unique thread names with their trace events. In this way, the different trace con
of multiple processes, threads and tasks can be easily distinguished from each

For more information on threads, see “Programming with the Threads Library
thePowerMAX OS Programming Guide.

A process that results from theexec(2) system service does notinherit a trace
mechanism. Therefore, if that process is to log trace events, it must call b
trace_start() and trace_open_thread() . For detailed guidelines on
trace_open_thread() placement, see Figure 3-2.

RETURN VALUES

The trace_open_thread() routine returns a zero value (NTNOERROR) on
successful completion. Otherwise, it returns a non-zero value to identify the e
condition. A list oftrace_open_thread() error codes follows.

[NTINIT] The NightTrace library routines were not initialized. Solution
P u t a t r a ce _s ta r t () c a l l b e f o r e t h e
trace_open_thread() call.

[NTINVALID] An invalid thread name was specified. Solution: Choose
thread name that meets the requirements mentioned earlier.

[NTRESOURCE] There are not enough resources to open this thread. Solut
Ask your system administrator to increase the size of the p
cess table.

[NTPGLOCK] Permission to lock the text and data pages of the NightTra
library routines was denied. Solution: IfP_PLOCKprivilege is
lacking, see your system administrator or invokentraceud
with the-lockdisable option.

Note: This can also happen when a forked process change
user ID to one that does not have page lock privilege, yet
parent process did have page lock privilege.

SEE ALSO

Related routines include:trace_start() , trace_close_thread()

Seeintro(2) for more information on page lock privilege (P_PLOCK). See “ntra-
ceud Options” on page 4-4 for more information onntraceud options.
3-10

Adding Library Calls to Your Application

o the
trace_event() and Its Variants 3

The following routines log an enabled trace event and possibly some arguments t
shared memory buffer.

SYNTAX

C: int trace_event (int ID);

int trace_event_arg (int ID, long arg);

int trace_event_flt (int ID, float arg);

int trace_event_two_flt (int ID, float arg1, float arg2);

int trace_event_dbl (int ID, double arg);

int trace_event_two_dbl (int ID, double arg1, double arg2);

int trace_event_four_arg (

int ID, long arg1, long arg2,

long arg3, long arg4

);

Fortran: integer function trace_event (ID)

integer ID

integer function trace_event_arg (ID, arg)

integer ID, arg

integer function trace_event_flt (ID, arg)

integer ID

real arg

integer function trace_event_two_flt (ID, arg1, arg2)

integer ID

real arg1, arg2

integer function trace_event_dbl (ID, arg)

integer ID

double precision arg

integer function trace_event_two_dbl (ID, arg1, arg2)

integer ID

double precision arg1, arg2

integer function trace_event_four_arg (ID, arg1, arg2, arg3, arg4)

integer ID, arg1, arg2, arg3, arg4

Ada: type event_type is range 0.4095;
3-11

NightTrace Manual
(procedures)
procedure trace_event (ID : event_type);

procedure trace_event (ID : event_type; arg : integer);

procedure trace_event (ID : event_type; arg : float);

procedure trace_event (

ID : event_type;

arg1 : float; arg2 : float

);

procedure trace_event (ID : event_type; arg : long_float);

procedure trace_event (

ID : event_type;

arg1 : long_float; arg2 : long_float

);

procedure trace_event (

ID : event_type;

arg1 : integer; arg2 : integer;

arg3 : integer; arg4 : integer

);

(functions)
function trace_event (ID : event_type)

return ntrace_error;

function trace_event (ID : event_type; arg : integer)

return ntrace_error;

function trace_event (ID : event_type; arg : float)

return ntrace_error;

function trace_event (

ID : event_type;

arg1 : float; arg2 : float

)

return ntrace_error;

function trace_event (ID : event_type; arg : long_float)

return ntrace_error;

function trace_event (

ID : event_type;

arg1 : long_float; arg2 : long_float

)

return ntrace_error;
3-12

Adding Library Calls to Your Application

re

or
g
at

at,
nd-

n

ce
ug-
o be
als

er
use
of

4 for

ons”
function trace_event (

ID : event_type;

arg1 : integer; arg2 : integer;

arg3 : integer; arg4 : integer

)

return ntrace_error;

PARAMETERS

ID Each trace event has a user-defined trace event ID,ID. This ID is a
valid integer in the range reserved for user trace events (0-4095 ,
inclusive). See “Pre-Defined String Tables” on page 5-15 for mo
information about trace event IDs.

argN Sometimes it is useful to log the current value of a variable
expression,arg, along with your trace event. The trace event loggin
routines provide this capability. They differ by how many and wh
types of numeric arguments they accept. Thetrace_event() rou-
tine takes noargs. The trace_event_arg() routine takes a type
l o n g a rg. T h e t ra ce _e v en t_ f l t () a n d
trace_event_two_flt routines take (floating point) type of
f l o a t a rg s . T h e t r ac e _e ve nt _ db l () a n d
trace_event_two_dbl() routines take (floating point) type
doubleargs. The trace_event_four_arg() routine takes four
type longargs. If you want thentrace display utility to display
these trace event arguments in anything but decimal integer form
you can enter the trace event in an event-map file. See “Understa
ing Event-Map Files” on page 5-10 for more information o
event-map files and formats. Alternatively, you could call thefor-
mat() function. See “format()” on page 9-80 for details.

Every call totrace_event_four_arg() causes NightTrace to
log anNT_CONTINUEoverhead trace event.

DESCRIPTION

A trace pointis a place in your application’s source code where you call a tra
event logging routine. Usually this location marks a line that is important to deb
ging or performance analysis. Ideally, trace events provide enough information t
useful, but not so much information that it is overwhelming. Meeting these go
requires careful trace-point planning.

TIP:
To save time re-editing, recompiling, and relinking your application, consid
beginning with a few too many trace points in the source code. You can then
options to thentraceud daemon to selectively enable and disable the logging
specific trace events to the trace event file. See “ntraceud Options” on page 4-
more information onntraceud options. You can also save time by usingntrace
options to restrict which trace events are loaded for analysis. See “ntrace Opti
on page 5-3 for details.

Some typical trace points include the following:

• Suspected bug locations
3-13

NightTrace Manual

cted.
gs
the
hed,

This
hat
ome-
ible

ange

ring
rt of

to its

nd
es.

ins
The
a

Their

ould

heir
the

ge
lay

rror
• Process, subprogram, or loop entry and exit points

• Timing points, especially for clocking I/O processing

• Synchronization points / multi-process interaction

• Endpoints of atomic operations

• Endpoints of shared memory access code

Call one trace event logging routine at each of the trace points you have sele
When you call this routine, it writes the trace event information (including timin
and any arguments) to a shared memory buffer. By default, if this write fills
shared memory buffer or causes the buffer-full cutoff percentage to be reac
ntraceud wakes up and copies the trace event to the trace event file on disk.

Usually each trace event logging routine logs a different trace event ID number.
lets you easily identify which source line logged the trace event, how often t
source line executed, and what order source lines executed in. However, it is s
times useful to log the same trace event ID in multiple places. This makes it poss
to group trace events from related, but not identical, activities. In this case, a ch
of trace event ID usually separates or subdivides groups.

Probably the most common use of trace events is to identifystates. Two different
trace event IDs delimit the boundaries of a state. Most applications log recur
states with different time gaps (from the end of one instance of a state to the sta
another) and different state durations (from the start of one instance of a state
end).

TIP:
Consider putting related trace event IDs within a range. Library routines a
ntraceud options let you manipulate trace events by using trace event ID rang

By default, all trace events are enabled for logging. The NightTrace library conta
routines that allow you to selectively or globally enable or disable trace events.
ntraceud daemon has options that provide similar control. Attempting to log
disabled trace event has no effect. See “trace_enable(), trace_disable(), and
Variants” on page 3-16 for more information.

TIP:
Consider using symbolic constants instead of numeric trace event IDs. This w
make your calls to NightTrace routines more readable.

Once your application logs all of its trace events, you can look at them and t
arguments graphically with StateGraphs, EventGraphs, and DataGraphs in
ntrace display utility. See “StateGraph” on page 7-14, “EventGraph” on pa
7-15, and “DataGraph” on page 7-16 for more information about these disp
objects.

RETURN VALUES

The trace_event() , trace_event_arg() , trace_event_dbl() , and
trace_event_four_arg() routines return a zero value (NTNOERROR) on
successful completion. Otherwise, they return a non-zero value to identify the e
condition. A list of error codes for these routines follows.
3-14

Adding Library Calls to Your Application

se

:

ffer
e

[NTINVALID] An invalid trace event ID has been supplied. Solution: U
trace event IDs only in the range 0-4095, inclusive.

[NTINIT] The NightTrace library routines were not initialized. Solution
Be sure atrace_start() andtrace_open_thread()
call precede the trace event logging routine call.

[NTLOSTDATA] The trace event was lost because the shared memory bu
was full. Solution: Do one or more of the following. Increas
the trace event capacity of the buffer by invokingntraceud
with the -memsize option. Decrease the buffer-full cutoff
percentage by invokingntraceud with the-cutoff option.
Decrease thentraceud sleep interval by invok ing
ntraceud with the-timeout option.

SEE ALSO

Related routines include:
trace_flush() , trace_trigger() ,
trace_enable() , trace_enable_range() ,
trace_enable_all() , trace_disable() ,
trace_disable_range() , trace_disable_all()

See Chapter 4 for more information onntraceud options.
3-15

NightTrace Manual

The

race

ly
trace_enable(), trace_disable(), and Their Variants 3

By default, all trace events are enabled for logging to the shared memory buffer.
trace_disable() , trace_disable_range() , andtrace_disable_all()
routines respectively make your application ignore requests to log one or more t
ev en t s . Th e t ra ce _e n ab le () , t r ac e_ en a bl e_ ra n ge () , a n d
trace_enable_all() routines respectively make your application notice previous
disabled requests to log one or more trace events.

SYNTAX

C: int trace_enable (int ID);

int trace_enable_range (int ID_low, int ID_high);

int trace_enable_all ();

int trace_disable (int ID);

int trace_disable_range (int ID_low, int ID_high);

int trace_disable_all ();

Fortran: integer function trace_enable (ID)

integer ID

integer function trace_enable_range (ID_low, ID_high)

integer ID_low, ID_high

integer function trace_enable_all ()

integer function trace_disable (ID)

integer ID

integer function trace_disable_range (ID_low, ID_high)

integer ID_low, ID_high

integer function trace_disable_all ()

Ada: type event_type is range 0..4095;

(procedures)
procedure trace_enable (ID : event_type);

procedure trace_enable (

ID_low : event_type ; ID_high : event_type

);

procedure trace_enable_all;

procedure trace_disable (ID : event_type);
3-16

Adding Library Calls to Your Application

or

g a

g a

are
ents

the
ent

er of
n dis-
procedure trace_disable (

D_low : event_type; ID_high : event_type

);

procedure trace_disable_all;

(functions)
function trace_enable (ID : event_type)

return ntrace_error;

function trace_enable (

ID_low : event_type; ID_high : event_type

)

return ntrace_error;

function trace_enable_all

return ntrace_error;

function trace_disable (ID : event_type)

return ntrace_error;

function trace_disable (

ID_low : event_type; ID_high : event_type

)

return ntrace_error;

function trace_disable_all

return ntrace_error;

PARAMETERS

ID Each trace event has a user-defined trace event ID,ID. This ID is a
valid integer in the range reserved for user trace event IDs (0-4095 ,
inclusive). See “trace_event() and Its Variants” on page 3-11 f
more information.

ID_low It is possible to manipulate groups of trace event IDs by specifyin
range of trace event IDs.ID_low is the smallest trace event ID in the
range.

ID_high It is possible to manipulate groups of trace event IDs by specifyin
range of trace event IDs.ID_high is the largest trace event ID in the
range.

DESCRIPTION

The enable and disable library routines allow you to select which trace events
enabled and which are disabled for logging. A discussion of disabling trace ev
appears first because initially all trace events are enabled.

Sometimesntraceud logs so many trace events that it is hard to understand
ntrace display. Occasionally you know that a particular trace event or trace ev
range is not interesting at certain times but is interesting at others. When eith
these conditions exist, it is useful to disable the extraneous trace events. You ca
3-17

NightTrace Manual

can
f the

ce
any

th
n

h a

the
they
.
th
n

our
on

ith
est

rror

:

se
able trace events temporarily, where you disable and later re-enable them. You
also disable them permanently, where you disable them at the beginning o
process or at a later point and never re-enable them.

NOTE

These routines enable and disable trace events in allprocesses that
rely on the samentraceud daemon to log to the same trace
event file.

All disablelibrary routines make your application start ignoring requests to log tra
event(s) to the shared memory buffer. The disable routines differ by how m
trace events they disable.trace_disable() disables one trace event ID.
trace_disable_range() disables a range of trace event IDs, including bo
range endpoints.trace_disable_all() disables all trace events. Disabling a
already disabled trace event has no effect.

All enablelibrary routines let you re-enable a trace event that you disabled wit
disable library routine or the-disable option tontraceud . The effect is that
your application resumes noticing requests to log the specified trace event to
shared memory buffer. The enable routines differ by how many trace events
en a b l e . t r ac e_ e na bl e() e n a b le s o n e t r a c e e v e n t I D
trace_enable_range() enables a range of trace event IDs, including bo
range endpoints.trace_enable_all() enables all trace events. Enabling a
already enabled trace event has no effect.

TIP:
Consider invokingntraceud with the -enable and the-disable options
instead of calling thetrace_enable() and trace_disable() routines.
Using these options saves you from re-editing, recompiling and relinking y
application. See “ntraceud Options” on page 4-4 for more information
ntraceud options.

TIP:
If you want to log only a few of your trace events, disable all trace events w
trace_disable_all() and then selectively enable the trace events of inter
with trace_event() calls or by invokingntraceud with the-enable option.

RETURN VALUES

Th e t ra ce _d i sa bl e() , t r ac e_ di s ab le _r a ng e() ,
trace_disable_all() , trace_enable() , trace_enable_range() ,
andtrace_enable_all() routines return a zero value (NTNOERROR) on suc-
cessful completion. Otherwise, they return a non-zero value to identify the e
condition. A list of error codes for these routines follows.

[NTINIT] The NightTrace library routines were not initialized. Solution
Be sure atrace_start() andtrace_open_thread()
call precede the call to the disable or enable routine.

[NTINVALID] An invalid trace event ID has been supplied. Solution: U
trace event IDs only in the range0-4095 , inclusive.
3-18

Adding Library Calls to Your Application
SEE ALSO

Related routines include:
trace_event() , trace_event_arg() ,
trace_event_dbl(), trace_event_four_arg()

See “ntraceud Options” on page 4-4 for more information onntraceud options.
3-19

NightTrace Manual

r to

he

ou
ng
4-4
trace_flush() and trace_trigger() 3

The trace_flush() and trace_trigger() routines asynchronously wake the
ntraceud daemon and direct it to copy trace events from the shared memory buffe
the trace event file on disk. Note: These routines do notwait for the copy to complete.

SYNTAX

C: int trace_flush();

int trace_trigger();

Fortran: integer function trace_flush()

integer function trace_trigger()

Ada:
(procedures)

procedure trace_flush;

procedure trace_trigger;

(functions)
function trace_flush

return ntrace_error;

function trace_trigger
return ntrace_error;

DESCRIPTION

Whenntraceud is idle, it sleeps. The process of copying trace events from t
shared memory buffer to a trace event file is calledflushing the buffer. ntraceud
wakes up and flushes the buffer when any of these conditions exist:

• ntraceud ’s sleep interval elapses

• The buffer-full cutoff percentage is exceeded

• The shared memory buffer is full of unwritten trace events

• Your application callstrace_flush() , trace_trigger() , or
trace_end()

• No event has been logged in a period of time in which the lower 32
bits of the timestamp source would roll over. It is important to detect
this rollover so that proper ordering of trace events is maintained.

ntraceud options let you set limits for the first three conditions above. When y
invoke ntraceud with one of these options and it detects the correspondi
condition, it automatically flushes the buffer. See “ntraceud Options” on page
for more information onntraceud options.
3-20

Adding Library Calls to Your Application

ory

lost.

an

l

e
ory

l l

ow-

und
nd

lue

-

There is one key way thattrace_flush() andtrace_trigger() differ from
the flush control thentraceud options provide: withtrace_flush() and
trace_trigger() you decide when to asynchronously flush the shared mem
buffer based on your program flow, and with certain optionsntraceud flushes the
shared memory buffer automatically.

If the shared memory buffer becomes full of trace events, trace events may be
To keep this situation from occurring, configurentraceud to flush the buffer
regularly. This is particularly good to do if your application will soon be busy.

Waking thentraceud daemon to flush the buffer takes time and this overhead c
dis tor t t race even t t im ing s. Ther e fo re , ca l lt race_f lush() an d
trace_trigger() only in parts of your application where time is not critical.

TIP:
t r ac e _t r i gg e r() i s id e n t i ca l t o t ra ce _f l us h() , e x c ep t
t race_tr igger() wor ks onl y in bu ff er- wr aparo und mo de. Cal
trace_trigger() instead oftrace_flush() so that only buffer-wrap-
around’s performance is affected.

When you runntraceud in buffer-wraparound mode, you are telling NightTrac
to intentionally discard older or less-vital trace events when the shared mem
buffer gets fu l l . In buffer-wraparound mode, you must explici t ly ca
trace_flush() or trace_trigger() . Only then, doesntraceud copy the
remaining trace events from the shared memory buffer to the trace event file. H
ever, do not calltrace_flush() or trace_trigger() too often or you will
reduce the effectiveness of this mode. See “Option to Establish Buffer-Wraparo
Mode (-bufferwrap)” on page 4-11 for more information on buffer-wraparou
mode.

RETURN VALUES

The trace_flush() andtrace_trigger() routines return a zero value
(NTNOERROR) on successful completion. Otherwise, they return a non-zero va
to i d e n t i f y t h e e r r o r c o n d i t i o n . A l i s t o ft ra c e_ f l us h () a n d
trace_trigger() error codes follows.

[NTFLUSH] A failure occurred while attempting to flush the shared mem
ory buffer. Solution: Verify the status of thentraceud dae-
mon; if necessary, restart it and rerun the trace.

SEE ALSO

Related routines include:
trace_event(), trace_event_arg(),
trace_event_dbl(), trace_event_four_arg()
3-21

NightTrace Manual

nt

alls

” in

rror

:

trace_close_thread() 3

The trace_close_thread() routine disables trace event logging for the curre
thread or process.

SYNTAX

C: int trace_close_thread();

Fortran: integer function trace_close_thread()

Ada: function trace_close_thread return
ntrace_error;

DESCRIPTION

A NightTracethreadcan be a process, C thread or Ada task. Each thread that C c
trace_open_thread() must have its owntrace_close_thread() call.
For more information on threads, see “Programming with the Threads Library
thePowerMAX OS Programming Guide.

RETURN VALUES

The trace_close_thread() routine returns a zero value (NTNOERROR) on
successful completion. Otherwise, it returns a non-zero value to identify the e
condition. A list oftrace_close_thread() error codes follows.

[NTINIT] The NightTrace library routines were not initialized. Solution
Call trace_close_thread() only once if you previously
calledtrace_open_thread() .

SEE ALSO

Related routines include:trace_open_thread() , trace_end()
3-22

Adding Library Calls to Your Application

pro-

r

the

. A

-

s

li-
trace_end() 3

Thetrace_end() routine frees resources and terminates trace event tracing in your
cess.

SYNTAX

C: int trace_end();

Fortran: integer function trace_end()

Ada: function trace_end
return ntrace_error;

DESCRIPTION

Generally, calltrace_end() only once per logging process.However, fo
processes using C threads or Adatasks, trace_end() must also be called by
any individual threads or tasks that have previously calledtrace_start().
trace_end() performs the following operations:

• Terminates trace event tracing in this process or thread

• Flushes trace events from the shared memory buffer to the trace
event file

• Detaches the shared memory buffer, timestamp source, and interrupt
priority level (IPL) register

• Notifies thentraceud daemon that the current process has finished
logging trace events

When all processes in your application end their respective trace runs, use
following command to flush and close the trace event file.

ntraceud -quit trace_file

RETURN VALUES

The trace_end() routine returns a zero value (NTNOERROR) on successful
completion. Otherwise, it returns a non-zero value to identify the error condition
list of trace_end() error codes follows.

[NTFLUSH] A failure occurred while attempting to flush the shared mem
ory buffer. Solution: Verify the status of thentraceud dae-
mon; if necessary, restart it and rerun the trace.

[NTNODAEMON] There is nontraceud daemon with a trace event file name
that matches the one on thetrace_start() call attached to
the shared memory region. This condition is not alway
detectable. Solution: Use thentrace display utility to ana-
lyze your logged trace events. If the trace event file is inexp
cably truncated and thentraceud daemon is not running,
reinvokentraceud and rerun your application.
3-23

NightTrace Manual

h

cess

n,

ve

no

ere

ere
SEE ALSO

Related routines include:trace_start() , trace_close_thread()

Disabling Tracing 3

There are four ways to disable tracing in your application:

• For C applications, put a#include <ntrace.h> in your source code.
You must either recompile your application with the-DNNTRACE
preprocessor option or insert the following preprocessor control statement
beforethe#include <ntrace.h> .

#define NNTRACE

The NightTrace header file,ntrace.h , contains macro counterparts for eac
NightTrace library routine. When you defineNNTRACE, the compiler treats your
NightTrace routine calls as if they were macro calls that always return a suc
(zero) status. For more information on preprocessor options, seecpp(1) .

Use a command similar to the following one to turn off tracing in your applicatio
fl_sim.c .

$ cc -DNNTRACE fl_sim.c -lud

By disabling tracing this way, you have to rebuild your application, but you sa
compilation and execution time.

• Call the trace_disable_all() routine near the top of the source,
recompile, and relink your application with the NightTrace library. (For
more information about this routine, see “trace_enable(), trace_disable(),
and Their Variants” on page 3-16.) If your application calls any of the
enable routines, this method is not entirely effective.

By disabling tracing this way, you have to rebuild your application, and there is
saving in compilation time or execution time.

• Start upntraceud with the -disable 0-4095 or the -enable 0
option. (At ntraceud start up,-enable 0 disables all trace events
except trace event ID 0. For more information about these options, see
“Option to Disable Logging (-disable)” on page 4-22 and “Option to
Enable Logging (-enable)” on page 4-24.) If you linked with the Night-
Trace library before, you do not need to relink.

By disabling tracing this way, you do not have to rebuild your application, but th
is no saving in compilation time or execution time.

• Do not start upntraceud .

By disabling tracing this way, you do not have to rebuild your application, but th
is no saving in compilation or execution time.
3-24

Adding Library Calls to Your Application

ce
urce

t

ppli-
Compiling and Linking 3

You must link in the NightTrace library so that your application can initialize its tra
mechanism and log trace events. The name of this library depends on your so
language. C and Fortran applications must link in the/usr/lib/libntrace.a
library.

C Example 3

$ cc fl_sim.c -lntrace -lud

This step:

• Compiles thefl_sim.c application

• Links in the NightTrace library

• Creates an executable nameda.out if there were no major errors

For more information on compiling and linking C programs, see the ConcurrenC
Reference Manual.

Fortran Example 3

$ hf77 turn_matrix.f -lntrace -lud

This step:

• Compiles theturn_matrix.f application

• Links in the NightTrace library

• Creates an executable nameda.out if there were no major errors

For more information on compiling and linkinghf77 programs, see thehf77 Fortran
Reference Manual.

Ada Example 3

For a complete example on accessing the NightTrace library routines from an Ada a
cation, see the section titled “NightTrace Binding” in theMAXAda Reference Manual.
3-25

NightTrace Manual

the
Exercise: Instrumenting Code 3

Putting library calls in your application is calledinstrumenting your code. The following
application is in/usr/lib/NightTrace/examples/entry_exit.c .

Figure 3-3. entry_exit.c Before Instrumentation

Make a copy of this file in your directory, and call itentry_exit.c . Make the
following changes by inserting trace event library calls at appropriate places in
application:

• Start the trace session and log trace events to a file namedlog

• Open a thread namedtimings

#include <sys/types.h>
#include <time.h>
#include <stdio.h>

void take_a_nap(sleep_str)
struct timespec sleep_str;
{

printf("Sleeping for %.3f
seconds\n”,

(float) sleep_str.tv_nsec /
1e+09);

nanosleep(&sleep_str, NULL);

/* make the spacing between states
obvious */

sleep_str.tv_nsec = 30000000;
nanosleep(&sleep_str, NULL);

}

main()
{

int i;
struct timespec sleep_str;

for(i=0; i<10; ++i)
{

sleep_str.tv_nsec = (rand() %
1000) * 1000000;

take_a_nap(sleep_str);
}

exit(0);
}

3-26

Adding Library Calls to Your Application
• Log trace eventNAP_START(with trace event ID 10) andthe (typelong)
number of nanoseconds to sleep (sleep_str.tv_nsec) beforethe first
nanosleep call in take_a_nap

• Log trace eventNAP_END(with trace event ID 20) afterthe first
nano-sleep call intake_a_nap . (NAP_STARTandNAP_ENDform the
boundaries of a state.)

• Close the thread

• End the trace session

An example solution follows.
3-27

NightTrace Manual
/* For brevity, no return values are
checked */

#include <ntrace.h>
#include <sys/types.h>
#include <time.h>
#include <stdio.h>

#define NAP_START 10
#define NAP_END 20

void take_a_nap(sleep_str)
struct timespec sleep_str;
{

/* NAP_START & NAP_END are the
boundaries of a state */

trace_event_arg(NAP_START,
sleep_str.tv_nsec);

printf("Sleeping for %.3f
seconds\n”,

(float) sleep_str.tv_nsec / 1e+09
);

nanosleep(&sleep_str, NULL);
trace_event(NAP_END);

/* make the spacing between states
obvious */

sleep_str.tv_nsec = 30000000;
nanosleep(&sleep_str, NULL);

}

main()
{

int i;
struct timespec sleep_str;

trace_start("log”);
trace_open_thread("timings”);

for(i=0; i<10; ++i)
{

sleep_str.tv_nsec = (rand() %
1000) * 1000000;

take_a_nap(sleep_str);
}

trace_close_thread();
trace_end();
exit(0);

}

3-28

Adding Library Calls to Your Application
Figure 3-4. entry_exit.c After Instrumentation

This exercise continues in “Exercise: Logging Trace Events” on page 4-27.
3-29

NightTrace Manual
3-30

-1
4-1
-2
-3
-4

-6
-7
-8
-9

14
5

16
-17

19
-20
22

26
6
27
4
Generating Trace Event Logs with ntraceud

Overview . 4
The ntraceud Daemon .
The Default NightTrace Environment . 4
ntraceud Modes . 4
ntraceud Options . 4

Option to Get Help (-help) . 4
Option to Get Version Information (-version) . 4
Option to Disable the IPL Register (-ipldisable) . 4
Option to Prevent Page Locking (-lockdisable) . 4
Option to Establish File-Wraparound Mode (-filewrap). 4-10
Option to Establish Buffer-Wraparound Mode (-bufferwrap). 4-11
Option to Define Shared Memory Buffer Size (-memsize) 4-
Option to Set Timeout Interval (-timeout) . 4-1
Option to Set the Buffer-Full Cutoff Percentage (-cutoff) 4-
Option to Select Timestamp Source (-clock) . 4
Option to Reset the ntraceud Daemon (-reset) .. 4-18
Option to Quit Running ntraceud (-quit) . 4-
Option to Present Statistical Information (-stats) . 4
Option to Disable Logging (-disable). 4-
Option to Enable Logging (-enable). . .. 4-24

Invoking ntraceud . 4-
Starting Your NightTrace Application. 4-2
Stopping ntraceud . 4-
Exercise: Logging Trace Events. 4-27

NightTrace Manual

iles.

our
ation

trace

all
the

es.
heir
4
Chapter 4Generating Trace Event Logs with ntraceud

4
4
4

Overview 4

This chapter describes the following topics:

• Τhentraceud daemon

• The default NightTrace environment

• ntraceud modes

• ntraceud options

• Invoking ntraceud

• Starting your application

• Stoppingntraceud

The information in this chapter is not pertinent to creating KernelTrace trace event f
For information on creating KernelTrace trace event files, seektrace(1) and
Chapter 11.

The ntraceud Daemon 4

When you start upntraceud , it creates a daemon background process and returns y
prompt. The daemon creates a shared memory buffer in global memory. Your applic
writes trace events into this buffer, and the daemon copies these trace events to a
event file.

You supply the name of the trace event file on yourntraceud invocation and in the
trace_start() library call in your application. If this file does not exist,ntraceud
creates it; otherwise,ntraceud overwrites it. Unless yourumask(1) setting overrides
this default,ntraceud creates the file with mode 666, read and write permission to
users. If you want to maximize performance, use a trace event file that is local to
system where thentraceud daemon and your application run.

A single ntraceud daemon may service several running applications or process
Severalntraceud daemons can run simultaneously; the system identifies them by t
distinctive trace event file names. Thentraceud daemon resides on your system
under/usr/bin/ntraceud .
4-1

NightTrace Manual

by
e

an
off
trace

vide

gs
000
trace

.

avior
file

ults
d to

and

red
You must invokentraceud before any process in your application initializes a trace
calling thetrace_start() library routine. See “trace_start()” on page 3-5 for mor
information.

Whenever the daemon is idle, it sleeps. You can control the sleep interval with
ntraceud option. Logging a trace event may wake the daemon if the buffer-full cut
percentage is exceeded or if shared memory becomes full of trace events. Flushing
events from the shared memory buffer to disk always wakes the daemon.

The Default NightTrace Environment 4

You enter the default NightTrace environment by invokingntraceud with a trace event
file argument and without any options. You can override defaults by invokingntraceud
with particular options. Table 4-1 summarizes these options. Later sections pro
detailed descriptions of these options and operating modes.

In the default environment, alltrace events are enabled for logging. Your application lo
trace events to the shared memory buffer. By default, the interval timer (NightHawk 6
Series) or the Time Base Register (Power Hawk/PowerStack) is used to timestamp
events. However, the user may change the event timestamp source using the-clock
option tontraceud (see “Option to Select Timestamp Source (-clock)” on page 4-17)

The ntraceud daemon operates inexpansive mode. In expansive mode,ntraceud
copies all trace events from the shared memory buffer to the trace event file. This beh
differs from file-wraparound mode and buffer-wraparound mode. If the trace event
does not exist whenntraceud starts up,ntraceud creates it; otherwise,ntraceud
overwrites it.

ntraceud and the NightTrace library routines use page locking to prevent page fa
during trace event logging. NightTrace also modifies the shared memory region boun
the system’s interrupt priority level (IPL) register; this action prevents rescheduling
interrupts during trace event logging.

Whenntraceud is idle, it sleeps. The process of copying trace events from the sha
memory buffer to a trace event file is calledflushing the buffer. ntraceud wakes up and
flushes the buffer when any of these conditions exist:

• ntraceud ’s sleep interval elapses

• Τhe buffer-full cutoff percentage is exceeded

• Τhe shared memory buffer is full of unwritten trace events

• Your application calls trace_flush() , trace_trigger() , or
trace_end()

A summary of NightTrace environment defaults follows.
4-2

Generating Trace Event Logs with ntraceud

and
eeds
red

rap-

and
re

ap-
it is
ntraceud Modes 4

NightTrace can operate in three modes: expansive (default), file-wraparound,
buffer-wraparound. As the following two tables show, these modes meet different n
and have different characteristics. They differ mainly by their handling of the sha
memory buffer and the trace event file on disk.

By default, NightTrace operates in expansive mode. NightTrace operates in file-w
around mode when you specify the-filewrap option on thentraceud invocation
line. Thentraceud -bufferwrap option puts NightTrace in buffer-wraparound
mode. See “Option to Establish File-Wraparound Mode (-filewrap)” on page 4-10
“Option to Establish Buffer-Wraparound Mode (-bufferwrap)” on page 4-11 for mo
information on these options.

It is not possible to combine expansive mode with either file-wraparound or buffer-wr
around mode. Although you can mix file-wraparound and buffer-wraparound modes,
not recommended.

Table 4-2 provides some guidelines to help you decide which mode to use.

Table 4-1. NightTrace Environmental Defaults

Characteristic Default Modifying Option

ntraceud sleep interval 5 seconds -timeout seconds

Buffer-full cutoff percentage 20% full -cutoff percent

Shared memory buffer size 16K (16,384) trace
events

-memsize count

Flush mechanism (See above) -bufferwrap

Trace event file size Indefinite -filewrap bytes

Trace events enabled for log-
ging

All -disable ID and
-enable ID

Page-fault handling Page locking -lockdisable

Interrupt handling Modify IPL register -ipldisable
4-3

NightTrace Manual

ition.
nt file

vent
Table 4-3 shows how each NightTrace operating mode reacts to a particular cond
The process of copying trace events from the shared memory buffer to the trace eve
on disk is calledflushing the buffer.

ntraceud Options 4

ntraceud always copies trace events from the shared memory buffer to the trace e
file, trace_file. You can override some other NightTrace defaults by invokingntraceud

Table 4-2. Mode-Selection Guidelines

MODE

Constraint Expansive File-Wraparound Buffer-Wraparound

Trace event
importance

All trace events are
important

Newest trace events
are important

Events just before a
trace_flush()
are important

General Disk space and mem-
ory are plentiful

Disk space is limited Program will run a
long time

Table 4-3. NightTrace Operating Modes

MODE

Condition Expansive File-Wraparound Buffer-Wraparound

ntraceud sleep
interval exceeded
(-timeout)

Flush the buffer Flush the buffer (No reaction)

Buffer-full cutoff
percentage
exceeded
(-cutoff)

Flush the buffer Flush the buffer (No reaction)

Shared memory
buffer is full
(-memsize)

Flush the buffer Flush the buffer Overwrite the
buffer’s oldest
trace events with
the newest ones

Trace event file is
full (-filewrap)

N/A Overwrite the
file’s oldest
trace events with
the newest ones

N/A
4-4

Generating Trace Event Logs with ntraceud

st
are

e

tain
with option(s). You can also use options to quit running or resetntraceud and to obtain
version, statistical, or invocation-syntax information. The fullntraceud invocation
syntax is:

ntraceud [-help] [-version] [-ipldisable] [-lockdisable]
[-filewrap bytes] [-bufferwrap] [-memsize count]
[-timeout seconds] [-cutoff percent] [-clock source]
[-reset] [-quit] [-stats] [[-disable ID[- ID]] [...]]
[[-enable ID[- ID]] [...]] trace_file

You can abbreviate allntraceud options to their shortest unambiguous length, but mo
of the examples in this manual use the long option name. These options
case-insensitive. The following examples are all equivalent:

ntraceud -help
ntraceud -hel
ntraceud -he
ntraceud -h
ntraceud -H
ntraceud -HE
ntraceud -Hel
ntraceud -HELP

You can invokentraceud more than once with different options during a single trac
session; each invocation passes additional options and values to the runningntraceud
daemon. Usually you do this to dynamically enable or disable trace events or to ob
current statistical information. Options that are available only atntraceud start up are
described that way.

The following sections discuss thentraceud options.
4-5

NightTrace Manual

ete
Option to Get Help (-help) 4

The ntraceud -help option displays thentraceud invocation syntax on standard
output.

SYNTAX

ntraceud -help

DESCRIPTION

Thentraceud -help option displays a brief help message showing the compl
invocation syntax forntraceud . Screen 4-1 shows an example of-help option
output.

Screen 4-1. Sample Output from the ntraceud -help Option

usage: ntraceud [-help] [-version] [-ipldisable] [-lockdisable]
[-filewrap bytes] [-bufferwrap] [-memsize count] [-timeout seconds]
[-cutoff percent] [-clock source] [-reset] [-quit] [-stats]
[-disable ID[-ID]] [-enable ID[-ID]] trace_file

General options:
-help Write this message to standard output
-version Write the current ntraceud version stamp to standard

output

Options for a new ntraceud daemon:
-ipldisable Disable use of the IPL register
-lockdisable Disable use of page locking
-filewrap bytes Use file wraparound mode with max trace_file size in bytes
-bufferwrap Use shared memory buffer wraparound mode
-memsize count Set shared memory buffer size to specified event count
-timeout seconds Set the ntraceud timeout to specified seconds
-cutoff percent Flush events to disk at specified cutoff level
-clock source Specify source of event time stamps

Valid values for source are:
default Use the default system clock
rcim_tick Use the RCIM synchronized tick clock

Options for an existing ntraceud daemon:
-reset Reset the ntraceud daemon and the trace_file
-quit Quit running ntraceud
-stats Write statistics (resource/environment) to standard output

Options for new and existing ntraceud daemons:
-disable ID[-ID] Disable a specific event ID or ID range from logging
-enable ID[-ID] Enable a specific event ID or ID range to log

Files:
trace_file Holds events logged by your application and ntraceud
4-6

Generating Trace Event Logs with ntraceud

s

Option to Get Version Information (-version) 4

The ntraceud -version option displays the currentntraceud version stamp on
standard output.

SYNTAX

ntraceud -version

DESCRIPTION

The ntraceud -version option displays version stamp information for thi
ntraceud daemon.
4-7

NightTrace Manual

pt
r

,

m’s
nd

e

s. If
Option to Disable the IPL Register (-ipldisable) 4

The ntraceud -ipldisable option disables the default use of the system’s interru
priority level (IPL) register byntraceud and by the NightTrace library routines in you
application.

SYNTAX

ntraceud -ipldisable trace_file

DESCRIPTION

You can identify a runningntraceud daemon by its trace event file name
trace_file.

By default, NightTrace modifies a shared memory region bound to the syste
interrupt priority level (IPL) register. This modification prevents rescheduling a
interrupts during trace event logging.

If your application lacks read and write privilege to/dev/spl , the NightTrace
daemon and library initialization routine exit with errors. If you still want to trac
events, you must invoke thentraceud daemon with the-ipldisable option.
Note, however, that rescheduling and interrupts may distort trace event timing
you use the-ipldisable option, you must start upntraceud with it.

You must notuse the-ipldisable option if your user-level interrupt routine logs
trace events to the shared memory buffer.

CAUTION

The -ipldisable option should be used with great care to
avoid deadlock. This may occur if more than one LWP, each
biased to run on the same CPU, is logging trace events to a trace
file created by anntraceud invoked with the-ipldisable
option.

Consider the following scenario: an LWP, preparing to log a trace
event, locks the spin lock to protect the shared memory buffer. It
is preempted by a second LWP which also attempts to log a trace
event. However, due to priority inversion, the first LWP cannot
release the spin lock, causing the second LWP to loop infinitely
waiting for the spin lock to be released.

This deadlock could be avoided ifntraceud were invoked with-
out the-ipldisable option. This would allow the first LWP to
release the spin lock before being preempted.

SEE ALSO

For more information on the IPL register, see thePowerMAX OS Programming
Guide.
4-8

Generating Trace Event Logs with ntraceud

,

age

r

ge
Option to Prevent Page Locking (-lockdisable) 4

The ntraceud -lockdisable option disables default page locking byntraceud
and by the NightTrace library routines in your application.

SYNTAX

ntraceud -lockdisable trace_file

DESCRIPTION

You can identify a runningntraceud daemon by its trace event file name
trace_file.

By default, NightTrace locks its pages in memory. This capability prevents p
faults during trace event logging that could distort trace event timings.

If you lack P_PLOCKprivilege needed to lock your pages in memory, you
invocation ofntraceud and your application exit with errors. If you still want to
trace events, you must invoke thentraceud daemon with the-lockdisable
option. This option makesntraceud and the NightTrace library routines in your
application run without locking their pages in memory. Note, however, that pa
faults may distort trace event timings. If you use the-lockdisable option, you
must start upntraceud with it.

You must notuse the-lockdisable option if your user-level interrupt routine
logs trace events to the shared memory buffer.

SEE ALSO

For more information on privileges, see “Administering Privileges” on page 2-4.
4-9

NightTrace Manual

nsive

s

e the

can

d
t file

ally

ffer
d
in

this
t to
ost
. If

, see
Option to Establish File-Wraparound Mode (-filewrap) 4

By default, the trace event file can grow indefinitely. With thentraceud -filewrap
option, you can make NightTrace operate in file-wraparound mode, rather than expa
mode. In file-wraparound mode, you limit the trace event file size.

SYNTAX

ntraceud -filewrap bytes trace_file

DESCRIPTION

Thentraceud -filewrap option lets you specify the maximum byte size,bytes,
of the trace event file,trace_file. Specify thebytesparameter as a number of byte
or as a number with a K or M suffix to show that thebytesparameter is in kilobyte or
megabyte units, respectively. For example, 12K means 12,288 bytes. If you us
-filewrap option, you must start upntraceud with it.

Your application logs enabled trace events into a shared memory buffer.ntraceud
copies these trace events to the trace event file. In expansive mode, this file
grow indefinitely.

Thentraceud -filewrap option makes NightTrace operate in file-wraparoun
mode, rather than in expansive mode. In file-wraparound mode the trace even
can become full of trace events. When this happens,ntraceud overwrites the
oldest trace events in the beginning of the file with the newest ones, intention
discarding the oldest trace events to make room for the newest ones.

In expansive (default) and file-wraparound modes, you control automatic bu
flushing by setting thentraceud sleep interval, shared memory size, an
buffer-full cutoff percentage. In contrast, there is no automatic buffer flushing
buffer-wraparound mode; these values have no effect in this mode.

File-wraparound mode can be beneficial if you are short of disk space. With
mode, you specify the maximum size of the trace event file, instead of allowing i
grow indefinitely. Consider using this option if you are interested only in the m
recent of many trace events logged by an application over a long period of time
you want to determine how much disk space is available, run thedf(1) command
with the-k option and look at the “avail ” column.

SEE ALSO

For a comparison of expansive, file-wraparound, and buffer-wraparound modes
“ntraceud Modes” on page 4-3.
4-10

Generating Trace Event Logs with ntraceud

nt file

e. In
e
uffer

ory
ons

-
rap-
ueue
rding
nues

ace

ents
Option to Establish Buffer-Wraparound Mode (-bufferwrap) 4

The process of copying trace events from the shared memory buffer to the trace eve
on disk is calledflushing the buffer. With thentraceud -bufferwrap option, you can
make NightTrace operate in buffer-wraparound mode, rather than expansive mod
buffer-wraparound mode, thentraceud daemon flushes only the most recent trac
events, rather than all trace events. Your application asynchronously triggers every b
flush.

SYNTAX

ntraceud -bufferwrap trace_file

DESCRIPTION

The ntraceud daemon always logs enabled trace events into a shared mem
buffer. In expansive mode, when the buffer is full (or when some other conditi
exist),ntraceud automatically flushes the buffer to the trace event file,trace_file.

The ntraceud -bufferwrap option makes NightTrace operate in buffer-wrap
around mode, rather than in expansive mode. When the buffer is full in buffer-w
around mode, the application treats the shared memory buffer as a circular q
and overwrites the oldest trace events with the newest ones, intentionally disca
the oldest trace events to make room for the newest ones. This overwriting conti
until your application explicitly callstrace_flush() . Only then, doesntra-
ceud copy the remaining trace events from the shared memory buffer to the tr
event file. If you use the-bufferwrap option, you must start upntraceud with
it.

NOTE

You control automatic buffer flushing by setting thentraceud
sleep interval and buffer-full cutoff percentage in expansive
(default) mode and in file-wraparound mode. In contrast, there is
no automatic buffer flushing in buffer-wraparound mode; these
values have no effect in this mode. Invokingntraceud with the
-bufferwrap option, makesntraceud ignore any-time-
out and-cutoff options.

In buffer-wraparound mode, you can estimate the maximum number of trace ev
to be written to your trace event file by using the following formula:

max_events = max_events_in_buffer * flush_count

where:

max_events The maximum number of trace events.
4-11

NightTrace Manual

fer

then

ile.

eps

hen
s

to a
the
mory

his

e
ce.

and
max_events_in_buffer
The number of trace events the shared memory buf
can hold. You can set this value when you invokentra-
ceud with the -memsize option.

flush_count The number oftrace_flush() calls your application
executes.

For example, if you set your shared memory buffer size to 1000 trace events,
max_events_in_buffer is 1000. If you expect your threetrace_flush()
calls to execute two times each, thenflush_count is six (3 * 2). Calculating
max_events gives you about 6000 (1000 * 6) trace events in your trace event f

Buffer-wraparound mode:

• Can help you with debugging

• Can reduce trace events to a manageable number

• May conserve disk space

Buffer-wraparound mode can be useful in debugging.

Assume that you are debugging a fault in a large application. Follow the st
below to accomplish your task.

1. Insert atrace_flush() call in your code where you believe the
fault occurs.

2. Compile and link your application.

3. Invokentraceud with the-bufferwrap option.

4. Run your application.

When your application executes thetrace_flush() call, ntraceud copies all
trace events still in the shared memory buffer to the trace event file. You can t
use thentrace display utility to graphically analyze only the trace event
immediately preceding the fault.

Buffer-wraparound mode can also be useful in reducing trace events
manageable number. In this mode, when the shared memory buffer is full,
newest trace events overwrite the oldest ones. This means that if the shared me
buffer becomes full before your application executes thetrace_flush() call,
ntraceud copies only the current contents of the buffer to the trace event file. T
way, you can exclude the oldest trace events from yourntrace displays.

In buffer-wraparound mode,ntraceud usually flushes fewer trace events to th
trace event file than in expansive mode. Thus, this mode can conserve disk spa

If you want to determine how much disk space is available, run thedf(1)
command with the-k option and look at the “avail ” column. Use the following
command to see the system settings for the current, default, minimum,
maximum shared memory segment size:

$ /etc/conf/bin/idtune -g SHMMAX

See theidtune(1M) man page for more information.
4-12

Generating Trace Event Logs with ntraceud

”
rap-
the
ize
SEE ALSO

For more information ontrace_flush() , see “trace_flush() and trace_trigger()
on page 3-20. For a comparison of expansive, file-wraparound, and buffer-w
around modes, see “ntraceud Modes” on page 4-3. For information on limiting
number of logged trace events, see “Option to Define Shared Memory Buffer S
(-memsize)” on page 4-14.
4-13

NightTrace Manual

s full
to

d

e.
ber

one
es: 16
the

ult,

he

ab-
Option to Define Shared Memory Buffer Size (-memsize) 4

By default, the shared memory buffer can hold 16,384 trace events. When the buffer i
of unwritten trace events, thentraceud daemon wakes up and copies the trace events
the trace event file. Thentraceud -memsize option lets you alter the size of the share
memory buffer.

SYNTAX

ntraceud -memsize count trace_file

DESCRIPTION

The ntraceud -memsize option lets you set the shared memory buffer siz
Specify thecountparameter as a maximum number of trace events or as a num
with a K or M suffix to show that thecountparameter is in kilobyte or megabyte
units, respectively. For example, 12K means 12,288 trace events.ntraceud
rounds that number up to a full page boundary. A trace event with zero or
argument takes up 16 bytes; a trace event with more arguments takes up 32 byt
bytes for the basic trace event and one argument and 16 bytes for
NT_CONTINUEoverhead trace event and the remaining arguments.

Use the following command to see the system settings for the current, defa
minimum, and maximum shared memory segment size:

$ /etc/conf/bin/idtune -g SHMMAX

See theidtune(1M) man page for more information.

By default, if the shared memory buffer becomes full,ntraceud wakes up and
copies trace events from the shared memory buffer to the trace event file,trace_file.
You can increase thecountparameter to prevent trace event loss. If you use t
-memsize option, you must start upntraceud with it.

By changing the shared memory buffer size, you can:

• Alter the buffer flush frequency

• Control the number of trace events copied to the trace event file in
buffer-wraparound mode

SEE ALSO

For information on limiting the number of logged trace events, see “Option to Est
lish Buffer-Wraparound Mode (-bufferwrap)” on page 4-11.
4-14

Generating Trace Event Logs with ntraceud

he

,

s a

gs;
l be
t trace
ase
Option to Set Timeout Interval (-timeout) 4

By default, ntraceud sleeps 5 seconds after writing trace events to disk. T
ntraceud -timeout option lets you set this timeout interval.

SYNTAX

ntraceud -timeout seconds trace_file

DESCRIPTION

You can identify a runningntraceud daemon by its trace event file name
trace_file.

When ntraceud is idle, the daemon sleeps. By default, the sleep interval i
maximum of 5 seconds. Thentraceud -timeout option lets you establish the
maximum number of seconds,seconds, that thentraceud daemon sleeps.

Waking thentraceud daemon incurs overhead that can distort trace event timin
decreasing the timeout parameter makes it more likely that the daemon wil
awake when needed. You can also decrease the timeout parameter to preven
event loss. Note: If your application does not log events frequently, you can incre
the timeout to reduce the time the daemon runs and consumes CPU cycles.

If you use the-timeout option, you must start upntraceud with it. If you
invoke ntraceud with both the-timeout and -bufferwrap options,
ntraceud ignores the-timeout option.

ntraceud does not sleep for the full period if:

• Your application executes a call totrace_flush() ,
trace_trigger() , or trace_end()

• Your application logs a trace event that causes shared memory to
become full or your buffer-full cutoff percentage to be reached

• You specify a timeout parameter which exceeds the time in which the
lower 32 bits of the timestamp source would roll over. This rollover
time varies from architecture to architecture (with a minimum value
of 257.69803 seconds) and is calculated byntraceud as part of its
initialization. It is important to detect this rollover so that proper
ordering of trace events is maintained. If you specify a timeout inter-
val which exceeds the rollover time,ntraceud uses the rollover
time as the timeout interval, ignoring the value specified.
4-15

NightTrace Manual

race
vent

,
e

race

gs;
ely

flush
Option to Set the Buffer-Full Cutoff Percentage (-cutoff) 4

By default, when the shared memory buffer becomes 20-percent full of unwritten t
events, thentraceud daemon wakes up and copies the trace events to the trace e
file. Thentraceud -cutoff option lets you alter this percentage.

SYNTAX

ntraceud -cutoff percent trace_file

DESCRIPTION

The ntraceud -cutoff option lets you set the buffer-full cutoff percentage
percent, for the shared memory buffer.percentis an integer percentage in the rang
0-99, inclusive.

The process of copying trace events from the shared memory buffer to the t
event file,trace_file, on disk is calledflushing the buffer. When a logged trace event
causes the buffer to reach the buffer-full cutoff percentage,ntraceud wakes up
and flushes the buffer.

Waking thentraceud daemon incurs overhead that can distort trace event timin
decreasing the shared memory buffer-full cutoff percentage makes it more lik
that the daemon will be wakened by the application. You can also decrease theper-
centparameter to prevent trace event loss; the effect is an increase in the buffer
frequency.

If you use the-cutoff option, you must start upntraceud with it. If you invoke
ntraceud with both the-cutoff and -bufferwrap options,ntraceud
ignores the-cutoff option.
4-16

Generating Trace Event Logs with ntraceud

to

p

e

g
ick
mon

s)
race
Option to Select Timestamp Source (-clock) 4

Thentraceud -clock option allows you to select which timing source will be used
timestamp events.

SYNTAX

ntraceud -clock source trace_file

DESCRIPTION

Thentraceud -clock option lets you select the timing source used to timestam
trace events. Validsourcevalues are:

default the interval timer (NightHawk 6000 Series) or the Tim
Base Register (Power Hawk/PowerStack)

rcim_tick the RCIM synchronized tick clock

If you invokentraceud with the-clock option, you must supply a value for the
source.

If rcim_tick is specified for thesourceand the system on which you are tracin
does not have an RCIM installed or configured or if the RCIM synchronized t
clock on the system on which you are tracing is stopped, the NightTrace dae
and library initialization routine exit with errors.

If the -clock option is not specified, the interval timer (NightHawk 6000 Serie
or the Time Base Register (Power Hawk/PowerStack) is used to timestamp t
events.
4-17

NightTrace Manual

,

e

t

Option to Reset the ntraceud Daemon (-reset) 4

Thentraceud -reset option resets a runningntraceud daemon process.

SYNTAX

ntraceud -reset trace_file

DESCRIPTION

You can identify a runningntraceud daemon by its trace event file name
trace_file. By default,ntraceud overwrites the trace event file if it is not currently
in use. In contrast, thentraceud -reset option empties the file and prepares th
running daemon for another trace run. Use the-reset option when you are no
longer interested in the contents of an active trace event file. You can invokentra-
ceud multiple times with the-reset option.

SEE ALSO

For information on quitting anntraceud session without clearing the trace even
file, see “Option to Quit Running ntraceud (-quit)” on page 4-19.
4-18

Generating Trace Event Logs with ntraceud

,

lar
ses
:

tion

n,
Option to Quit Running ntraceud (-quit) 4

Thentraceud -quit option terminates a runningntraceud process.

SYNTAX

ntraceud -quit trace_file

DESCRIPTION

You can identify a runningntraceud daemon by its trace event file name
trace_file.

A process completes its NightTrace session by callingtrace_end() or exiting
normally. The-quit option tests whether all processes dealing with a particu
runningntraceud daemon have completed trace event logging. If some proces
have not completed,ntraceud waits. If all processes have completed, the option

• Terminates the running daemon process

• Flushes remaining trace events to the trace event file

• Closes the file

• Removes the shared memory buffer

TIP:
You cannot get statistical information after you quit runningntraceud . Consider
getting statistical information beforeyou quit runningntraceud . For statistical
information on your trace session, see “Option to Present Statistical Informa
(-stats)” on page 4-20.

Assume that you have invokedntraceud with the-quit option, and you want to
reinvokentraceud with the same trace event file. Your nextntraceud
invocation will automatically overwrite the trace event file.

SEE ALSO

For information on resettingntraceud and the trace event file for another sessio
see “Option to Reset the ntraceud Daemon (-reset)” on page 4-18.
4-19

NightTrace Manual

g

,

nt
mine
d in
Option to Present Statistical Information (-stats) 4

Thentraceud -stats option presents a display of statistical information for a runnin
ntraceud daemon on standard output.

SYNTAX

ntraceud -stats trace_file

DESCRIPTION

You can identify a runningntraceud daemon by its trace event file name
trace_file.

The-stats option provides statistical information that tells you about your curre
NightTrace environment and resource use. This information can help you deter
if you have adequate resources for your application. If you are intereste
watching changes in the statistics, invokentraceud multiple times with the
-stats option.

Specifically, the-stats option provides information on:

• ntraceud mode. ntraceud may run in the following modes:

- NT_M_DEFAULT, meaning expansive (default) mode

- NT_M_FILEWRAP, meaning file-wraparound mode

- NT_M_BUFFERWRAP, meaning buffer-wraparound mode

• Shared memory buffer size

• Buffer-full cutoff percentage

• ntraceud timeout interval

• Number of threads or processes logging in your application

• Number of times trace events were lost. This statistic refers to a
situation that infrequently arises during a NightTrace session.
ntraceud may lose some trace events if the trace events enter the
shared memory buffer faster thanntraceud can copy them to the
trace event file. For more information on this topic, see “Preventing
Trace Events Loss” on page A-1.

• Number of automatic buffer flushes (For more information on buffer
flushes, see “trace_flush() and trace_trigger()” on page 3-20.)

• Number of trace events logged to shared memory.ntraceud and
some NightTrace library routines occasionally log predefined trace
events into the shared memory buffer. Therefore, the statistic for
number of trace events logged to shared memory may exceed the
number of times your application logs a trace event.

• Trace event IDs enabled

Screen 4-2 shows a sample of-stats option output.
4-20

Generating Trace Event Logs with ntraceud

le

nd

rap-
t)”
on
Screen 4-2. Sample Output from ntraceud -stats Option

D e f au l t s f o r s o me o f th e se v a l u e s e x i s t i n t h e h e a d er f i
/usr/include/ntrace.h . You can override the default values with
ntraceud options. See Table 4-1 for more information on the default values a
the corresponding options used to override them.

SEE ALSO

For information on trace event loss prevention, see “Option to Establish File-W
around Mode (-filewrap)” on page 4-10, “Option to Set Timeout Interval (-timeou
on page 4-15, and “Option to Set the Buffer-Full Cutoff Percentage (-cutoff)”
page 4-16.

$ ntraceud -stats log

NTRACEUD STATISTICS

The ntraceud daemon is running in NT_M_DEFAULT mode.
There is a maximum of 16384 trace events in the shared memory buffer
The buffer-full threshold is 20% or 3276 trace events
The daemon timeout period is 5 seconds
There are 1 thread(s) logging trace events
The shared memory buffer had 0 events lost
There have been 0 unrequested buffer flushes
The total number of trace events logged to shared memory is 5

Enabled Events:
0-4095
4-21

NightTrace Manual

The
ific

the
ent

er of
can

. You
e the

d
e

ined
ace

the
g
to
ble
age

est.

ect.
Option to Disable Logging (-disable) 4

By default, all trace events are enabled for logging to the shared memory buffer.
ntraceud -disable option makes the application ignore requests to log a spec
trace event or range of trace events.

SYNTAX

ntraceud -disable ID [...] trace_file
ntraceud -disable ID_low- ID_high [...] trace_file

DESCRIPTION

Sometimesntraceud logs so many trace events that it is hard to understand
ntrace display. Occasionally you know that a particular trace event or trace ev
range is not interesting at certain times but is interesting at others. When eith
these conditions exist, it is useful to disable the extraneous trace events. You
disable trace events temporarily, where you disable and later re-enable them
can also disable trace events permanently, where you disable them befor
application runs or during its execution and never re-enable them.

In the first format, thentraceud -disable option dynamically disables a
specific trace event ID,ID, from logging to the shared memory buffer. In the secon
format, thentraceud -disable option dynamically disables a range of trac
event IDs,ID_low throughID_high, from logging to the shared memory buffer. In
either case, trace event IDs are integers in the range 0-4095, inclusive. At def
times,ntraceud copies trace events from the shared memory buffer to the tr
event file,trace_file.

NOTE

The -disable option disables trace events in allprocesses that
rely on the samentraceud daemon to log to the same trace
event file.

This first format provides the same functionality as thetrace_disable() Night-
Trace library routine. The second format provides the same functionality as
trace_disable_range() NightTrace library routine. One advantage of usin
the -disable option rather than the library routine is that you do not have
re-edit, recompile, and relink your application. For more information on disa
library routines, see “trace_enable(), trace_disable(), and Their Variants” on p
3-16.

Note: In the following text, the names of the trace event files are varied for inter

You can start upntraceud with the -disable (-d) option. You can also
re-invokentraceud with this option whilentraceud is running. Furthermore,
using the-disable option to disable an already disabled trace event has no eff
For example, assume that you invokentraceud three times, sequentially, before
your application terminates and thatntraceud has not logged to thentoutput
file before.
4-22

Generating Trace Event Logs with ntraceud

the
fers.
ts are
logged

le)”
3-16.
$ ntraceud -d4 ntoutput -- trace event 4 is disabled
$ ntraceud -d7 ntoutput -- trace events 4 & 7 are now disabled
$ ntraceud -d4 ntoutput -- no effect; trace events 4 & 7 disabled

There may be any number of-disable options on anntraceud invocation line.
The following example illustrates this fact.

$ ntraceud -d10 -d15 mytrace -- trace events 10 & 15 are disabled

You may specify a hyphenated trace event range on thentraceud invocation line.
The following example depicts this case.

$ ntraceud -d23-25 traceoutput -- events 23, 24, and 25 disabled

The following two sequences show how important timing can be when you use
-disable option. The same steps appear in both sequences, but their order dif
When the first sequence ends, nothing has been logged and all trace even
enabled. In contrast, when the second sequence ends, trace event 52 has been
once and is now disabled.

SEE ALSO

For information on enabling trace events, see “Option to Enable Logging (-enab
on page 4-24 and “trace_enable(), trace_disable(), and Their Variants” on page

Table 4-4. ntraceud Disable Sequence #1

From the Shell From the Application Comments

1. Invoke ntraceud All trace events enabled

2. Invoke ntraceud -d52 Trace event 52 disabled

3. Start application

4. Call trace_event(52) Trace event 52 notlogged

5. Call trace_enable(52) Trace event 52 enabled

Table 4-5. ntraceud Disable Sequence #2

From the Shell From the Application Comments

1. Invoke ntraceud All trace events enabled

2. Start application Trace event 52 enabled

3. Call trace_event(52) Trace event 52 logged

4. Call trace_enable(52) No effect

5. Invoke ntraceud -d52 Trace event 52 disabled
4-23

NightTrace Manual

The
s to

f

e. At
he

the
g
to
ble
age

st.
of a
Option to Enable Logging (-enable) 4

By default, all trace events are enabled for logging to the shared memory buffer.
ntraceud -enable option makes the application notice previously disabled request
log a specific trace event or a range of trace events.

SYNTAX

ntraceud -enable ID [...] trace_file
ntraceud -enable ID_low- ID_high [...] trace_file

DESCRIPTION

In the first format, thentraceud -enable option dynamically re-enables a
specific disabled trace event ID,ID, for logging to the shared memory buffer. In the
second format, thentraceud -enable option dynamically re-enables a range o
disabled trace event IDs,ID_low throughID_high, for logging to the shared memory
buffer. In either case, trace event IDs are integers in the range 0-4095, inclusiv
defined times,ntraceud copies trace events from the shared memory buffer to t
trace event file,trace_file.

NOTE

The -enable option affects allprocesses that rely on the same
ntraceud daemon to log to the same trace event file.

The first format provides the same functionality as thetrace_enable() Night-
Trace library routine. The second format provides the same functionality as
trace_enable_range() NightTrace library routine. One advantage of usin
the ntraceud option instead of the library routine is that you do not have
re-edit, recompile, and relink your application. For more information on ena
library routines, see “trace_enable(), trace_disable(), and Their Variants” on p
3-16.

In the following text, the names of the trace event files are varied for intere
Unless otherwise stated, all the following examples describe the results
non-startupntraceud invocation.

There may be any number of-enable (-e) options on anntraceud invocation
line. The following example illustrates this fact.

$ ntraceud -e10 -e15 mytrace -- trace events 10 and 15 enabled

You may specify a hyphenated trace event range on thentraceud invocation line.
The following example depicts this case.

$ ntraceud -e23-25 traceoutput -- trace events 23, 24, & 25
enabled
4-24

Generating Trace Event Logs with ntraceud

e
fol-

rther-
. For

the
fers.
ts are

been
The-enable option acts differently when you use it:

• On ntraceud start up

• On laterntraceud invocations

If you start upntraceud with the-enable option, the specified trace event(s) ar
the only one(s) enabled; all other trace events are disabled. For example, if the
lowing invocation starts upntraceud , then only trace event 18 is enabled.

$ ntraceud -e18 traceout

When you use the-enable option on non-startupntraceud invocations, Night-
Trace adds the specified trace event(s) to the list of enabled trace events. Fu
more, attempting to enable an already enabled trace event has no effect
example, assume that you invokentraceud four times, sequentially, before your
application terminates and thatntraceud has not logged to thentoutput file
before.

$ ntraceud ntoutput -- all trace events enabled
$ ntraceud -d4 -d7 ntoutput -- all except 4 and 7 enabled
$ ntraceud -e4 ntoutput -- all except 7 enabled
$ ntraceud -e4 ntoutput -- no effect; all except 7 enabled

The following two sequences show how important timing can be when you use
-enable option. The same steps appear in both sequences, but their order dif
When the first sequence ends, nothing has been logged and all trace even
enabled. In contrast, when the second sequence ends, trace event 52 has
logged once and is now disabled.

Table 4-6. ntraceud Enable Sequence #1

From the Shell From the Application Comments

1. Invoke ntraceud All trace events enabled

2. Start application

3. Call trace_disable(52) Trace event 52 disabled

4. Call trace_event(52) Trace event 52 notlogged

5. Invoke ntraceud -e52 Trace event 52 enabled

Table 4-7. ntraceud Enable Sequence #2

From the Shell From the Application Comments

1. Invoke ntraceud All trace events enabled

2. Start application

3. Call trace_event(52) Trace event 52 logged

4. Invoke ntraceud -e52 No effect

5. Call trace_disable(52) Trace event 52 disabled
4-25

NightTrace Manual

is-
” on

d the

ge

ce

this

ant

e

now
.

SEE ALSO

For information on disabling trace events, see “Option to Disable Logging (-d
able)” on page 4-22 and “trace_enable(), trace_disable(), and Their Variants
page 3-16.

Invoking ntraceud 4

Now that your system and user environment support NightTrace and you understan
ntraceud options, you can start upntraceud . This section shows a few common
ntraceud invocation examples. In each example, thetrace_fileargument corresponds to
the trace event file name you supply on your call to thetrace_start() library routine.

Normally, your firstntraceud invocation looks something like the following sample.

ntraceud trace_file

The next sample invocation assumes that you lack both page lock pr iv ile
(-lockdisable) and read and write access to/dev/spl needed to modify the
interrupt priority level register (-ipldisable).

ntraceud -lockdisable -ipldisable trace_file

You may use an invocation similar to the following one if you are tuning your NightTra
environment because you lost trace events last time.

ntraceud -memsize count-timeout seconds-cutoff percent trace_file

There are several times when you may want to use the following invocation. Usually
invocation is appropriate if you are usingtrace_flush() calls to debug a fault in your
application or to reduce the number of logged trace events so thentrace display is more
readable.

ntraceud -bufferwrap trace_file

The following invocation is also useful on several occasions. One example is if you w
to conserve disk space.

ntraceud -filewrap bytes trace_file

The following invocation quits runningntraceud , flushes remaining trace events to th
trace event file, closes the file, and removes the shared memory buffer.

ntraceud -quit trace_file

Starting Your NightTrace Application 4

Having already put the NightTrace library routine calls in your source code, you can
start up your application. If your application requires input, you must provide this now
4-26

Generating Trace Event Logs with ntraceud

tru-
Stopping ntraceud 4

Once all processes in your application complete, stop thentraceud daemon with a
command similar to the following one:

ntraceud -quit trace_file

At this point, you can begin data analysis.

Exercise: Logging Trace Events 4

The following exercise has you log trace events. It is a continuation of “Exercise: Ins
menting Code” on page 3-26.

1. Compile and linkentry_exit.c with the ntrace library. Give the
executable the nameentry_exit .

2. Start the ntraceud daemon. (Look at thetrace_start call to
determine the trace event file name.) You may need some additional
options if you cannot lock pages in memory or cannot read and write to the
IPL register.

3. Execute theentry_exit program.

4. Get thentraceud daemon to give you statistics.

5. When the program completes, stop thentraceud daemon.

An example solution follows.

$ cc -Xa -o entry_exit entry_exit.c -lntrace -lud
$ ntraceud log
$ entry_exit
$ ntraceud -stats log
$ ntraceud -quit log

This exercise continues in “Exercise: Displaying Trace Events” on page 5-36.
4-27

NightTrace Manual
4-28

-1
-1
-2
-3
-3
-8

5-9
10
-12
13
4

15
8

21
21
-22
22
-23

5
-25
26
26
7
7
8
9
1
2

3
3

34
34

36
-36
5
Invoking the ntrace Display Utility

Overview . 5
X and NightTrace Vocabulary . 5
System Environment . 5
Invoking ntrace . 5
ntrace Options . 5
ntrace Arguments. 5

Understanding Trace Event Files .
Understanding Event-Map Files. 5-
Understanding Page Configuration Files . 5

ntrace Tables . 5-
String Tables. 5-1
Pre-Defined String Tables . 5-
Format Tables. 5-1
Pre-Defined Format Tables . 5-

Configuring Display Pages . 5-
ntrace User Interface . 5

Using the Mouse. 5-
Understanding Pointer Shapes . 5
Anticipating Window Layout 5-23
Resizing Windows . 5-2

ntrace Notation Conventions . 5
ntrace Global Window . 5-

Message Display Area . 5-
Menu Bar . 5-2

File Menu Item . 5-2
New Page . 5-2
Default Page. 5-2
Open Config File . 5-3
Read Event-Map File . 5-3
Exit . 5-3

Help Menu Item . 5-3
The File Selection Dialog Box . 5-

Typing in the Exact File Name. 5-
Scrolling Through Existing File Names. 5-35
Typing in a Filter (File Name Pattern) . 5-

Exercise: Displaying Trace Events . 5

NightTrace Manual

d
ilt
trace

nts to
el

race

he X
u
rds
5
Chapter 5Invoking the ntrace Display Utility

5
5
5

Overview 5

The trace event display utility,ntrace , is an interactive, graphical debugging an
performance analysis tool.ntrace textually presents trace run statistics. As a tool bu
on the X Window System, it can graphically display user trace events and system
events.

ntrace is flexible: you choose the look of your graphical display pages.ntrace
provides many different built-in graphical components calleddisplay objects. You can
color, select, size, position, and group these objects and direct particular trace eve
specific objects; this is calledconfiguringdisplay objects. There are also ways to lab
trace events, trace event arguments, and other numeric values.

This chapter covers the following topics:

• X and NightTrace vocabulary

• System environment

• ntrace invocation

• ntrace options

• ntrace arguments

• ntrace user interface

• ntrace notation conventions

• ntrace Global Window

For information about textual analysis of kernel traces, see “Viewing KernelTrace T
Event Files with ktrace” on page 11-13.

X and NightTrace Vocabulary 5

The Massachusetts Institute of Technology developed a windowing system called t
Window System, or X for short. If you are unfamiliar with standard X terminology, yo
may find the glossary near the end of this manual useful. It contains definitions of wo
and phrases about:

• X applications in general
5-1

NightTrace Manual

m a
fer

ur X

t

ion

ue,

ing”
• Thentrace display utility

• Window components

• Common push buttons and menu item labels

• Mouse operations

System Environment 5

To run thentrace display utility, you need an installed X server.ntrace uses an X
server to support windowing in trace event displays.

Motif is a user environment based on X. The window images in this manual come fro
Motif environment. If you are using another environment, your windows may dif
slightly from those presented here.

ntrace displays appear on your terminal only if you set yourDISPLAY environment
variable. Determine if this variable is set by issuing the following command:

$ echo $DISPLAY

If this variable is not set, you must set it manually to a value based on the name of yo
server. For example, in Bourne shell, set theDISPLAY environment variable for a
terminal named “eagle” this way:

$ DISPLAY=eagle:0.0
$ export DISPLAY

In the Korn shell, this is:

$ export DISPLAY=eagle:0.0

In the C shell, this is:

% setenv DISPLAY eagle:0.0

The .Xdefaults (or .Xresources) file in your login directory establishes defaul
environmental settings for your X sessions. You may use specialntrace settings in this
file to customize yourntrace displays.

ntrace runs on both monochrome and color monitors. See Appendix B for informat
about setting color and other X resources that pertain tontrace .

TIP:
Experiment with colors and shadings until you find a set you like. To avoid visual fatig
use highly-contrasting colors and values sparingly.

For more information on window system concepts or Motif, see “Recommended Read
on page 1-7.
5-2

Invoking the ntrace Display Utility

of
sitive.
Invoking ntrace 5

The ntrace display utility resides on your system under/usr/bin/ntrace . It is the
graphical user interface to trace event analysis. If you do not have anyntrace -related
files but you still want to try out this tool, just type:

$ ntrace

You can override some default functionality by invokingntrace with options and
arguments. The fullntrace invocation syntax is:

ntrace [-help] [-version] [-listing] [-filestats]
[-nohardclock] [-process { all | name| PID }]
[-start { offset| time{ s |u} | percent%}]
[-end { offset| time{ s |u} | percent%}]
[-flat color] [-Xoption ...] [file ...]

Depending on yourntrace options and arguments, when you invokentrace , it:

• Loads alltrace event information into memory

• Checks the syntax of specifications in each file argument

• Processes each file argument

• Loads any display pages and their objects into memory

• Presents any display pages (See Chapter 6.)

• Displays theGlobal Window (See “ntrace Global Window” on page
5-26.)

The following sections discuss thentrace options and arguments.

ntrace Options 5

You can abbreviate allntrace options to their shortest unambiguous length, but most
the examples in this manual use the long option name. These options are case-insen
The following examples are all equivalent:

ntrace -help
ntrace -hel
ntrace -he
ntrace -h
ntrace -H
ntrace -HE
ntrace -Hel
ntrace -HELP

ntrace options include:
5-3

NightTrace Manual

t

t

o
ng
ent
ier
rst

,
ric

al
e

-help Displays thentrace invocation syntax on standard outpu
and exits. Screen 5-1 shows an example.

Screen 5-1. Sample Output from the ntrace -help Option

-version Displays the currentntrace version stamp on standard outpu
and exits.

-listing Chronologically listsall trace events in the trace event file(s) t
standard output and exits. The output includes the followi
information about a trace event: relative timestamp, trace ev
ID, any trace event argument(s), the global process identif
(PID) or thread name, and the CPU. The timestamp for the fi
trace event is zero seconds (0s). All other timestamps are rela-
tive to the first one.

If you supply an event-map file on the invocation line
ntrace displays symbolic trace event tags instead of nume
trace event IDs, andntrace displays trace event arguments in
the format you specify in the file, rather than the hexadecim
default format. For more information on event-map files, se
“Understanding Event-Map Files” on page 5-10.

$ ntrace -help
usage: ntrace [-help] [-version] [-listing]

[-filestats] [-nohardclock] [-process {all | name | PID}]
[-start {offset | time{s|u} | percent%}]
[-end {offset | time{s|u} | percent%}] [-flat color]
[-Xoption ...] [file ...]

Options that write to standard output:
-help Write this message to standard output
-version Write current ntrace version stamp to standard output
-listing Chronologically list all events to standard output
-filestats Write simple trace_file statistics to standard output

Options to select events:
-nohardclock Do not load kernel hardclock interrupt events
-process all Load kernel events for all user-traced processes
-process name Load kernel events associated with process_name
-process PID Load kernel events associated with PID
-start offset Load events after the specified event offset
-start time{s|u} Load events after the specified relative time
-start percent% Load events after the specified percent of total events
-end offset Load events before the specified event offset
-end time{s|u} Load events before the specified relative time
-end percent% Load events before the specified percent of total events

Options for graphical displays:
-flat color Color to use for all flat areas and frames
-Xoption Any standard X Toolkit command line options (see X(1))

Files:
config_file Holds configuration information: display pages,

macro definitions, qualified events, qualified
states and tables

event_map_file Maps event ID numbers with event tag names
trace_file Holds events logged by your application and ntraceud
5-4

Invoking the ntrace Display Utility

ace

ce
o-
ore
In kernel tracing, thevectors file provides names for system
processes, interrupts, and exceptions.

Screen 5-2 and Screen 5-3 show examples from a kernel tr
event file.

(Note that when viewing a user trace event file, a kernel tra
event file is required in order to resolve which CPU each pr
cess was logging trace events from. See Chapter 11 for m
information.)

NOTE

The information associated with thenode field appears in this
listing only when NightTrace is configured to use an RCIM to
timestamp events.

Screen 5-2. Example of ntrace -listing Output (with instr page fault)

5536: cpu=01 TR_PAGEFLT_ADDR pid=scheme tid=1241'0 time= 8.305265
S user instr page fault PC=0x1000fd54

5537: cpu=01 TR_EXCEPTION_SUS pid=scheme tid=1241'0 time= 8.305441
S vector=inst access

5538: cpu=01 TR_SWITCHIN pid=idle tid=0'0 time= 8.305441
S arg1= 0

5539: cpu=00 TR_INTERRUPT_ENT pid=idle tid=0'0 time= 8.313355
S vector=hardclock level=1

5540: cpu=00 TR_INTERRUPT_EXI pid=idle tid=0'0 time= 8.313408
S vector=hardclock level=0

5541: cpu=01 TR_INTERRUPT_ENT pid=idle tid=0'0 time= 8.313416
S vector=softclock level=1

5542: cpu=01 TR_INTERRUPT_EXI pid=idle tid=0'0 time= 8.313425
S vector=softclock level=0
5-5

NightTrace Manual

s)
he

ith
s

m-
st.
Screen 5-3. Example of ntrace -listing Output (with data page fault)

-filestats Displays simple statistics about all trace event file(
arguments to standard output, similar to the display on t
Global Window, and exits. (See “ntrace Global Window” on
page 5-26.) The statistics are grouped by trace event file, w
cumulative statistics for all trace event files. The statistic
include: the number of trace event files, their names, the nu
ber of trace events logged, and the number of trace events lo

Screen 5-4 shows an example, with:

log The user trace event file.

map The event-map file.

continuation eventsThe NT_CONTINUEtrace events thatntraceud
logs for multi-argument trace events.

Screen 5-4. Example of ntrace -filestats Output

13390: cpu=01 TR_PAGEFLT_ADDR pid=ls tid=1250'0 time= 14.194342
S user data page fault addr=0x300ad1c0 (PC=0xb0121fbc)
13391: cpu=01 TR_EXCEPTION_EXI pid=ls tid=1250'0 time= 14.194460
S vector=data access
13392: cpu=01 TR_SYSCALL_ENTRY pid=ls tid=1250'0 time= 14.194473
S syscall=read device=file
13393: cpu=01 TR_EXCEPTION_ENT pid=ls tid=1250'0 time= 14.194528
S vector=data access
13394: cpu=01 TR_PAGEFLT_ADDR pid=ls tid=1250'0 time= 14.194534
S kernel data page fault addr=0xe1e18000 (PC=0x000931cc)
13395: cpu=01 TR_EXCEPTION_EXI pid=ls tid=1250'0 time= 14.194590
S vector=data access
13396: cpu=01 TR_SYSCALL_EXIT pid=ls tid=1250'0 time= 14.194659
S syscall=read device=file
13397: cpu=01 TR_SYSCALL_ENTRY pid=ls tid=1250'0 time= 14.194715
S syscall=close device=file

amber2> ntrace -filestats n1.cap vectors.cap | p

1 trace event log file read.

Kernel trace event log file: n1.cap.
10916 trace events plus 9863 continuation events.
10916 events saved in memory.
0 trace events lost.
52.4036288s time span, from 0.0000000s to 52.4036288s.

RCIM synchronized tick clock was used to time stamp events.

10916 total events read from disk plus 9863 continuation events.
10916 total events saved in memory; 1 events internal to ntrace.
0 total trace events lost.
52.4036288s total time span saved in memory.
5-6

Invoking the ntrace Display Utility

t
ore

nt

t,

e

p-
ser

p-
en-
.
D

p-

ee
f-

ds

ce

ds

ce

sec-
By default, whenntrace starts up, it reads and loads alltrace events from all trace even
files into memory; therefore, the more trace events in your trace event file(s), the m
memoryntrace uses. The-nohardclock , -process , -start , and-end options
let you prevent the loading, but not the reading, of certain trace events.

-nohardclock Do not load hardclock interrupts from the kernel trace eve
file. This option may save about 15% of the memoryntrace
consumes. For more information on the hardclock interrup
see “Hardclock Interrupt Handling” in thePowerMAX OS
Real-Time Guide.

If you invoke ntrace with the -process option, it loads only exceptions and system
calls of processes you specify after the-process ; this takes some extra processing tim
during ntrace start up. You can invokentrace with multiple -process options.
The possible ways to use the-process option include:

-process all From the NightTrace kernel trace event file, load only exce
tions and system calls associated with process(es) in the u
trace event file(s). This implies that you invokentrace with
both a kernel trace event file and user trace event file(s).

-process PID From the NightTrace kernel trace event file, load only exce
tions and system calls associated with this global process id
tifier (PID). Note that a global PID is different than a raw PID
For more information on global process identifiers see “PI
List” on page 8-7.

-process name From the NightTrace kernel trace event file, load only exce
tions and system calls associated with this process name,name.
This implies that you invokentrace with both a kernel trace
event file and user trace event file(s).

-start offset Load trace events after the specified trace event offset. (S
“The Grid” on page 6-4 for information about trace event of
sets.)

-start time{ s |u} Load trace events after the specified relative time in secon
(s) or microseconds (u).

-start percent% Load trace events after the specified percent of total tra
events. The%is required.

-end offset Load trace events before the specified trace event offset.

-end time{ s |u} Load trace events before the specified relative time in secon
(s) or microseconds (u).

-end percent% Load trace events before the specified percent of total tra
events. The%is required.

For example, the following invocation loads trace events logged between 5 and 15
onds into the trace session.

$ ntrace -start 5s -end 15s log
5-7

NightTrace Manual

ext

y

s,

t

es in

er-

ts,

nts is
For example, the following invocation skips the first 10% of trace events, loads the n
15% of trace events, and skips the remaining 75% of trace events.

$ ntrace -start 10% -end 25% ulog

If you invoke ntrace with several-start options,ntrace pays attention only to the
last one. The same is true if you invokentrace with several-end options. If you
invokentrace with both a-start and a-end option and the-end condition precedes
the -start condition,ntrace does not load any real trace events; it loads two dumm
trace events.

You can establish a default windowing environment for all yourntrace sessions in your
.Xdefaults (or .Xresources) file. You can invokentrace with X options to:

• Customize an individualntrace session

• Override any corresponding settings in the.Xdefaults file

• Possibly improve the readability of yourntrace display

You can invokentrace with the following options:

-flat color Color to use for the window edges, scroll bars, push button
and menu bars.

-Xoption This option includes all of the standard X Tool ki
command-line options (seeX(1)).

TIP:
Consider experimenting with these options and then saving their counterpart valu
your .Xdefaults or .Xresources file.

Invoking ntrace on a color X server with nontrace options and nontrace settings
in .Xdefaults is nearly equivalent to:

$ ntrace -fg black -bg white -flat gray75 -fn fixed

Your X terminal vendor supplies you with vendor-specific directories and files that p
tain to colors and fonts. The file that contains available colors is calledrgb.txt . The
directory for fonts is/usr/lib/X11/fonts . For more information on X options, see
xterm(1) or X(1) .

ntrace Arguments 5

You can invokentrace with arguments that provide information about trace even
their tags, other labels, and desired display object layout.ntrace identifies the purpose
of a file argument by its contents; therefore, the order (and number) of these argume
not significant.
5-8

Invoking the ntrace Display Utility

our

m,

to
ace

d
lay

-
ring

e

p

not
oke
ing

ral
single

ce

the
king
ce

and

g

SYNTAX

ntrace [- option] [trace_files] [event_map_files] [config_files]
vectors

ARGUMENTS

trace_files Trace event files contain sequences of trace events that y
application and thentraceud daemon logged or NightTrace
kernel trace events logged by the kernel trace progra
ktrace(1) , and converted byntfilter(1) .

event_map_files Event-map files map short mnemonic trace event tags
numeric trace event IDs and associates data types with tr
event arguments. This is a hand-edited ASCII file.

config_files Configuration files define macros, qualified events, qualifie
states, string tables, format tables, display objects, and disp
pages. These ASCII files are usually created withntrace .

vectors The vectors file contains definitions of thevector ,
syscall , andpid string tables that provide names for sys
tem processes, interrupts, and exceptions that occurred du
kernel tracing. Thentfilter tool dynamically generates this
file for kernel-trace analysis. See “Converting KernelTrac
Trace Event Files with ntfilter” on page 11-21 for details.

See theNightTrace Pocket Referencecard for a syntax summary of formats for event-ma
files, string tables, and format tables.

Understanding Trace Event Files 5

You can invokentrace without any trace event file names as arguments, but you can
examine any trace events this way. Therefore, this is rarely done. Normally you inv
ntrace with one or more user trace event files and/or a kernel trace event file. Invok
ntrace with multiple trace event files is mainly useful when you have run seve
simultaneous, related trace sessions and you wish to merge their trace events into a
display.

In user tracing,ntraceud creates a trace event file to hold your application’s tra
events and some of NightTrace’s own trace events. Invoking thentraceud daemon with
the -quit option causes it to flush and close the trace event file. In kernel tracing,
ktrace tool creates a KernelTrace trace event file to hold kernel trace events. Invo
the ntfilter tool with this KernelTrace trace event file causes it to write the tra
events into a trace event file with a format compatible withntrace . Once this is done,
you can invokentrace with the trace event file names as its argument .ntrace reads
the trace event files, puts information about all loaded trace events in memory,
displays the trace events chronologically in the layouts you choose.

You can create NightTrace kernel trace event fi les with thektrace(1) and
ntfilter(1) tools. See “Kernel Tracing with ktrace” on page 11-8 and “Convertin
KernelTrace Trace Event Files with ntfilter” on page 11-21 for details.
5-9

NightTrace Manual

s to
nts
tion,

trace
r one

self,
tag
xact

it and
the
gic

(s),

ce
mber.
tic

race
ns or
ls

s
the
Because of the overhead involved in loading trace events into memory,ntrace loads
trace events only at start up.ntrace never prompts you for a trace event file name.

TIP:
Invoke ntrace only with the trace events and trace event files you need. Use option
ntrace to limit which trace events get loaded into memory. The more trace eve
ntrace must process, the slower its start up and display updates. For more informa
see “Conserving Memory and Accelerating ntrace” on page A-4.

A trace event file consists of:

• One file header record

• Several trace event and continuation records

The header record contains some NightTrace statistics that pertain to the whole
session. The trace event records describe individual trace events logged with zero o
numeric argument; these records may come from your application, from NightTrace it
or in kernel tracing from the kernel. Continuation records (with trace event
NT_CONTINUE) describe any other arguments logged with the trace event. The e
format of the trace event file appears on thentrace(4) man page.

Although you must have read permission to a trace event file, there is no reason to ed
rarely a reason to examine the contents of this file; however, you can inspect it with
od(1) octal dump command. Because trace event files begin with a specific ma
number, running thefile(1) command on a trace event file namedlog has the
following result:

$ file log
log: NightTrace trace event file

If ktrace(1) creates a KernelTrace trace event file that you nameklog , then running
file(1) on this file has the following result:

$ file klog
klog: KernelTrace trace event file

Understanding Event-Map Files 5

ntrace does not require you to use event-map files. However, if you use these file
you can improve the readability of yourntrace displays.

A trace pointis a location in the application’s source code where you call a NightTra
trace event logging routine. Each trace point has a corresponding trace event ID nu
An event-map fileallows you to associate meaningful tags or labels with the more cryp
trace event ID numbers. It also allows you to associate additional information with a t
event including the number of arguments and the argument conversion specificatio
display formats. Althoughntrace does not require you to use event-map files, labe
and correct display formats can make graphicalntrace displays and textual summary
information much more readable.

You can runntrace with multiple event-map files; however, if a trace event ID i
multiply-defined,ntrace writes an error message in the message display area of
5-10

Invoking the ntrace Display Utility

le to

ping
mmas
t

file

ts
e

ric
ther-

any
bout

ault
ult,

splay

ce
Global Window. For more information on theGlobal Window, see “ntrace Global
Window” on page 5-26.

TIP:
If you used symbolic constants to represent numeric trace event IDs, you may be ab
simply reformat this information in the event-map file.

To load an existing event-map file, either:

• Start anntrace session with the file name as an argument

• Click on File Ì Read Event-Map File ... on theGlobal Window

You must create an event-map file with a text editor before you invokentrace . The file
contains lines of ASCII text separated by newlines. There is one trace event tag map
per line. White space separates each field except the conversion specifications; co
separate the conversion specifications.ntrace ignores blank lines and treats tex
following a # as comments. The syntax for the trace event mappings in the event-map
follows:

event: ID “ event_tag” [nargs [conv_spec, ...]]

Fields in this file are:

event: The keyword that begins all trace event name mappings.

ID A valid integer in the range reserved for user trace even
(0-4095, inclusive). Each time you call a NightTrace trac
event logging routine, you must supply a trace event ID.

event_tag A character string to be associated withevent_ID. Trace event
tags must begin with a letter and consist solely of alphanume
characters and underscores.Keep trace event tags short; o
wise, ntrace may be unable to display them in the limited
window space available.

The following words are reserved inntrace and should not
be used in upper case or lower case as trace event tags:NONE,
ALL, ALLUSER, ALLKERNEL, TRUE, FALSE, CALC .

TIP:
Consider giving your trace events upper case tags in event-map files and giving
corresponding qualified event the same name in lower case. For more information a
qualified events, see “Qualified Events” on page 9-81.

If your application logs a trace event with one or more numeric arguments, by def
ntrace displays these arguments in decimal integer format. To override this defa
provide a count of argument values and one argument conversion specification or di
format per argument.

nargs The number of arguments associated with a particular tra
event. Ifnargs is too small and you invokentrace with the
event-map file and the-listing option, ntrace shows
only nargsarguments for the trace event.
5-11

NightTrace Manual

nt
y
s).
nt.
l-

ee

-15,

e
ng
conv_spec A conversion specification or display format for a trace eve
argument.ntrace uses conversion specification(s) to displa
the trace event’s argument(s) in the designated format(
There must be one conversion specification per argume
Valid conversion specifications for displays include the fo
lowing:

%dsigned decimal integer (default)

%ounsigned octal integer

%xunsigned hexadecimal integer

%lf signed double precision, decimal floating point

For more information on these conversion specifications, s
printf(3S) .

The following line is an example of an entry in an event-map file:

event: 5 “Error” 2 %x %lf

Trace event ID5 is an error condition; when appropriate,ntrace displays trace event 5
and labels the trace event“Error.” Trace event 5 also has two (2) arguments.ntrace
displays the first argument in unsigned hexadecimal integer (%x) format and the second
argument in signed double precision decimal floating point (%lf) format. (You may over-
ride these conversion specifications when you configure display objects.)

For more information on event-map files, see“Pre-Defined String Tables” on page 5
“Read Event-Map File” on page 5-32, and thentrace(4) man page. For information
about trace event tags for kernel trace events, see the/usr/l ib/Night-
Trace/eventmap file

Understanding Page Configuration Files 5

ntrace does not require you to use configuration files. However, using these file(s):

• Allows you to associate macros, qualified events, and qualified states with
particular display page(s)

• Improves the readability of your displays

• Saves you time laying out your display pages

A configuration fileis an ASCII file that contains definitions. These definitions look lik
initialized C structures. A configuration file can contain any number of the followi
definitions:

• Macro, qualified event, and qualified state definitions (See Chapter 9.)

• String table definitions (See “String Tables” on page 5-14.)

• Format table definitions (See “Format Tables” on page 5-18.)

• Display page definitions
5-12

Invoking the ntrace Display Utility

ge

les.

ke
any

ger

s 2, 5,
NOTE

The components of a configuration file are often interrelated. For
example, display pages may reference user-defined tables.
ntrace generates an error message if your configuration file
refers to a table before you define it. To avoid this problem, create
your configuration files so that a table definition precedes its
reference(s). There is no similar problem for macros, qualified
events, and qualified states.

If you accidentally define a macro, qualified event, or qualified
state more than once in a configuration file,ntrace flags
subsequent definitions as errors. If you define a string table or
format table more than once in a configuration file,ntrace
merges the two tables; if there are duplicate entries, values come
from the last definition.

Results can be unpredictable if multiple users simultaneously
modify a configuration file. Similarly,ntrace may behave
strangely if you edit your configuration file so that any of your
display objects overlap.

You can create, modify, save, and load configuration files from withinntrace ; however,
you must use a text editor to create and modify tables in a configuration file.ntrace
ignores blank lines and treats text between a/* and a*/ as comments in configuration
files; however, saving a configuration file removes your comments.

To load an existing configuration file, do one of the following:

• Start anntrace session with the file name as an argument

• Click on File Ì Open Config File ... on theGlobal Window

For more information on manipulating configuration files, see “File Menu Item” on pa
5-27.

ntrace Tables 5

The configuration file may contain two types of tables: string tables and format tab
Both types of table can improve the readability of yourntrace displays. The only way
to put tables into your configuration file is by text editing the file before you invo
ntrace . To avoid any forward-reference problems, define all string tables before
format tables.

A table lets you associate meaningful character strings with the more cryptic inte
values, such as trace event arguments. These character strings may appear inntrace
displays.

For example, suppose that one trace event’s argument may have the decimal value
and 8. You can define:

• A string that appears when the value is 2
5-13

NightTrace Manual

r

ore
-15,
.

t get

ion.

hese

eas-

ace.
lines
yntax

e
ng

the
in-
• A different string that appears when the value is 5

• A third string that appears when the value is 8

The following table names are reserved inntrace and should not be redefined in uppe
case or lower case:

event, pid, tid, boolean, name_pid, name_tid, node_name,
pid_ nodename, t id_ nodename, vector, syscall, device,
vector _ nodename, sysca l l_ nodenam e, devi ce_ nodename,
event_summary, event_arg_summary, event_arg_dbl_summary,
state_summary

The results are undefined if you supply your own version of these tables. For m
information on pre-defined tables, see “Pre-Defined String Tables” on page 5
“Pre-Defined Format Tables” on page 5-21, and “Kernel String Tables” on page 11-32

TIP:
Put tables in separate configuration files from display pages. This way tables do no
redefined if you close and reopen a display page during a singlentrace session.

If you define a string table or format table more than once in a configuration file,ntrace
merges the two tables; if there are duplicate entries, values come from the last definit

String Tables 5

You can log a trace event with one or more numeric arguments. Sometimes t
arguments can take on a nearly fixed set of values. Astring tableassociates an integer
value with a character string. Labeling numeric values with text can make the values
ier to interpret.

The syntax for a string table is:

string_table (table_name) = {
item = int_const, “ str_const” ;
...
[default_item = “ str_const” ;]

};

You do not need to separate the parts (tokens) of the string table with white sp
String-table tokens are indivisible; although these tokens need not break on the
shown, they must appear in the order shown. Include all special characters from the s
except the ellipsis (...) and square brackets ([]). The fields in a string table definition
are:

string_table The keyword that starts the definition of all string tables.

table_name The unique, user-defined name of this table. This nam
describes the relationship of the numeric values in this stri
table.

An item lineassociates an integer value with a character string. This line extends from
keyworditem through the semicolon. You may define any number of item lines in a s
gle string table. The fields in an item line are:

item The keyword that begins all item lines.
5-14

Invoking the ntrace Display Utility

cial

he

ault
no

enti-

e
e

int_const An integer constant that is unique withintable_name. It may be
decimal, octal, or hexadecimal. Decimal values have no spe
prefix. Octal values begin with a zero (0). Hexadecimal values
begin with0x .

str_const A character string to be associated withint_const. Keep this
string short; otherwise,ntrace may be unable to display it in
the limited window space available. Use a\n for a newline,
not a carriage return in the middle of the string.

The optionaldefault item lineassociates all other integer values with a single string. T
fields of the default item line are:

default_item The keyword that begins all default item lines.

str_const (Seestr_constabove.)

TIP:
If your table needs only one entry, you may omit the item line and supply only the def
item line. A get_string() call with this table name as the first parameter needs
second parameter.

ntrace returns a string of the item number in decimal if:

• There is no default item line, and the specified item is not found.

• The string table is not found. (The first timentrace cannot find a
particular string tablentrace flags it as an error.)

The following lines provide an example of a string table in a configuration file.

string_table (curr_state) = {
item = 3, “Processing Data”;
item = 1, “Initializing”;
item = 99, “Terminating”;
default_item = “Other”;

};

In this example, your application logs a trace event with a numeric argument that id
fies the current state (curr_state). This argument has three significant values (3, 1,
and 99). Whencurr_state has the value3, the ntrace display shows the string
“Processing Data .” When it has the value1, the display shows “Initializing .”
When it has the value99 , the display shows “Terminating .” For all other numeric
values, the display shows “Other .”

For more information on string tables and theget_string() function, see
“get_string()” on page 9-75 and the/usr/lib/NightTrace/tables file.

Pre-Defined String Tables 5

The following string tables are pre-defined inntrace :

event A dynamically generated string table internal tontrace . It
maps all known numeric trace event IDs with symbolic trac
e v en t t ag s . A s i m i l a r a sso c i a t i o n a p p e ar s i n th
/usr/l ib/NightTrace/eventmap f ile; this is an
5-15

NightTrace Manual

ce

me.

ro-
g, it

es

M
ed

r a
r a
s

e.

ith

M
ed

ar-
ad
r

e.
event-map file that associates trace event IDs with kernel tra
event tags.

This table is indexed by an event code or an event code na
Examples of using this table are:

get_string(event, 4112)
get_item(event, “TR_INTERRUPT_EXIT”)

pid A dynamically generated string table internal tontrace . In
user tracing, it associates global process ID numbers with p
cess names of the processes being traced. In kernel tracin
associates process ID numbers with all active process nam
and resides in the dynamically generatedvectors file.

When analyzing trace event files timestamped by the RCI
synchronized tick clock, process identifiers are not guarante
to be unique across nodes. Therefore, accessing thepid table
may result in an incorrect process name being returned fo
particular process ID. To get the correct process name fo
process ID, thepid table for the node on which the proces
identifier occurs should be used instead. Thepid table is
maintained for backwards compatibility.

This table is indexed by a process identifier or a process nam
Examples of using this table are:

get_string(pid, pid())
get item(pid, “ntraceud”)

See “PID List” on page 8-7 for more information.

tid A dynamically generated string table internal tontrace . In
user tracing, it associates NightTrace thread ID numbers w
thread names. In kernel tracing, this table is not used.

When analyzing trace event files timestamped by the RCI
synchronized tick clock, thread identifiers are not guarante
to be unique across nodes. Therefore, accessing thetid table
may result in an incorrect thread name being returned for a p
ticular thread ID. To get the correct thread name for a thre
ID, the tid table for the node on which the process identifie
occurs should be used instead. Thetid table is maintained for
backwards compatibility.

This table is indexed by a thread identifier or a thread nam
Examples of using this table are:

get_string(tid, tid())
get_item(tid, “cleanup_thread”)

See “TID List” on page 8-8 for more information.
5-16

Invoking the ntrace Display Utility

y

e.

y

e.

by

e.

ive
de’s
D
for a

e.

ci-
r a
boolean A string table defined in the /usr/lib/Night-
Trace/tables file. It associates0 with false and all other
values withtrue .

name_pid A dynamically generated string table internal tontrace . It
maps all known node ID numbers (which are internall
assigned byntrace) to the name of the node’s process ID
table).

This table is indexed by a node identifier or a node nam
Examples of using this table are:

get_string(name_pid, node_id())
get_item(name_pid, “system123”)

name_tid A dynamically generated string table internal tontrace . It
maps all known node ID numbers (which are internall
assigned byntrace) to the name of the node’s thread ID
table).

This table is indexed by a node identifier or a node nam
Examples of using this table are:

get_string(name_tid, 1)
get_item(name_tid, “charon”)

node_name A dynamically generated string table internal tontrace . It
associates node ID numbers (which are internally assigned
ntrace) with node names.

This table is indexed by a node identifier or a node nam
Examples of using this table are:

get_string(node_name, node_id())
get_item(node_name, “gandalf”)

pid_ nodename A dynamically generated string table internal tontrace . In
kernel tracing, it associates process ID numbers with all act
process names for a particular node and resides in that no
vectors file. In user tracing, it associates global process I
numbers with process names of the processes being traced
particular node.

This table is indexed by a process identifier or a process nam
Examples of using this table are:

get_string(pid_sbc1, pid())
get_item(pid_engsim, “nfsd”)

tid_ nodename A dynamically generated string table internal tontrace . In
kernel tracing, this table is not used. In user tracing, it asso
ates NightTrace thread ID numbers with thread names fo
particular node.
5-17

NightTrace Manual

e.

se the
e

on

g;
ally
ier to

rmat
, they
pt the

e
at

nds
es
This table is indexed by a thread identifier or a thread nam
Examples of using this table are:

get_string(tid_harpo, 1234567)
get_item(tid_shark, “reaper_thread”)

vector See “Kernel String Tables” on page 11-32.

syscall See “Kernel String Tables” on page 11-32.

device See “Kernel String Tables” on page 11-32.

vector_ nodenameSee “Kernel String Tables” on page 11-32.

syscall_ nodenameSee “Kernel String Tables” on page 11-32.

device_ nodenameSee “Kernel String Tables” on page 11-32.

You can use pre-defined string tables anywhere that string tables are appropriate. U
get_string() function to look up values in string tables. For information about th
get_string() function, see “get_string()” on page 9-75. For examples of functi
calls with these tables, see Table 8-3.

Format Tables 5

Like string tables,format tableslet you associate an integer value with a character strin
however, in contrast to a string table string, a format table string may be dynamic
formatted and generated. Labeling numeric values with text can make the values eas
interpret.

The syntax for a format table is:

format_table (table_name) = {
item = int_const, “ format_string” [, “ value1”] ... ;
...
[default_item = “ format_string” [, “ value1”] ... ;]

};

You do not need to separate the parts (tokens) of the format table with white space. Fo
table tokens are indivisible; although these tokens need not break on the lines shown
must appear in the order shown. Include all special characters from the syntax exce
ellipses (...) and square brackets ([]). The fields in a format table are:

format_table The keyword that begins the definition of all format tables.

table_name The unique, user-defined name of this table. This nam
describes the relationship of the numeric values in this form
table.

An item lineassociates a single integer value with a character string. This line exte
from the keyworditem through the semicolon. You may have any number of item lin
in a single format table. The fields in an item line are:

item The keyword that begins all item lines.
5-18

Invoking the ntrace Display Utility

es

or
s

ee

in
)

e

een
n-
th
int_const An integer constant that is unique withintable_name. This
value may be decimal, octal, or hexadecimal. Decimal valu
have no special prefix. Octal values begin with a zero (0).
Hexadecimal values begin with0x .

format_string A character string to be associated withint_const. Keep this
string short; otherwise,ntrace may be unable to display it in
the limited window space available. Use a\n for a newline,
not a carriage return in the middle of the string.

The string contains zero or more conversion specifications
display formats. Valid conversion specifications for display
include the following:

%iSigned integer

%uUnsigned decimal integer

%dSigned decimal integer

%oUnsigned octal integer

%xUnsigned hexadecimal integer

%lf Signed double precision, decimal floating point

%eSigned decimal floating point, exponential
notation

%cSingle character

%sCharacter string

%%Percent sign

\n Newline

For more information on these conversion specifications, s
printf(3S) .

value1 A value associated with the first conversion specification
format_string. The value may be a constant string (literal
expression or anntrace expression. A string literal expres-
sion must begin and end with a\\’ and must be enclosed in
double quotes; for example:

“\\’string expression\\’"

An expression may be aget_string() call; a description of
the get_string() function appears in “get_string()” on
page 9-75. For more information on expressions, se
Chapter 9.

format_string may contain any number of conversion
specifications. There is a one-to-one correspondence betw
conversion specifications and quoted values. A particular co
version specification-quoted value pair must match in bo
5-19

NightTrace Manual

d
er

m.
line

ault
no

a

ts the

n

data type and position. For example, ifformat_stringcontains a
%sand a%d, the first quoted value must be of type string an
the second one must be of type decimal integer. If the numb
or data type of the quoted value(s) do not matchformat_string,
the results are not defined.

The optionaldefault item lineassociates all other integer values with a single format ite
ntrace flags it as an error if an expression evaluates to a value that is not on an item
and you omit the default item line. The fields of the default item line are:

default_item The keyword that begins all default item lines.

format_string (Seeformat_stringabove.)

value1 (Seevalue1above.)

TIP:
If your table needs only one entry, you may omit the item line and supply only the def
item line. A get_format() call with this table name as the first parameter needs
second parameter.

The following lines provide an example of a string table and format table in
configuration file.

string_table (curr_state) = {
item = 3, “Processing Data”;
item = 1, “Initializing”;
item = 99, “Terminating”;
default_item = “Other”;

};

format_table (event_info) = {
item = 186, “Search for the next time we process data”;
item = 25, “The current state is %s”,

“get_string (curr_state, arg1())”;
item = 999, “Current state is %s, current trace event is %d”,

“get_string (curr_state, arg1())”,
“offset()”;

default_item = “Other”;
};

In this example, the first numeric argument associated with a trace event represen
current state (curr_state), and theevent_info format table represents information
as so c i a te d w i t h t h e t r a c e e v e n t ID s . W h en t r a ce ev e n t18 6 o c c u r s , a
get_format(event_info,186) makesntrace display:

Search for the next time we process data

When trace event25 occurs,ntrace replaces the conversion specification (%s) with the
result of theget_string() call. If arg1() has the value 1, thenntrace displays:

The current state is Initializing

When trace event999 occurs,ntrace replaces the first conversion specification (%s)
with the result of theget_string() call and replaces the second conversio
specification (%d) with the integer result of the numeric expressionoffset() . If
arg(1) has the value 99 andoffset() has the value 10, thenntrace displays:
5-20

Invoking the ntrace Display Utility

. Use
ut
c-

lay
, you

g or
Current state is Terminating, current trace event is
10

For all other trace events,ntrace displays “Other ”.

For more information onget_string() , see “get_string()” on page 9-75. For more
information on format tables and theget_format() function, see “get_format()” on
page 9-79. See also the/usr/lib/NightTrace/tables file. For more information
aboutarg1() , see “arg()” on page 9-20. For more information aboutoffset() , see
“offset()” on page 9-27.

Pre-Defined Format Tables 5

The following format tables are pre-defined in the/usr/lib/NightTrace/tables
file:

state_summary Formats statistics about the state matches
summarized, state durations, and state time
gaps. This table provides the default state
summary output format.

event_summary Formats statistics about the trace event
matches and trace event time gaps. This table
provides the default trace event summary
output format.

event_arg_summary Formats statistics about the trace event
matches and their type long trace event
arguments.

event_arg_dbl_summary
Formats statistics about the trace event
matches and their type double trace event
arguments.

For more information about summaries, see Chapter 10.

You can use pre-defined format tables anywhere that format tables are appropriate
the get_format() function to look up values in format tables. For information abo
the get_format() function, see “get_format()” on page 9-79. For examples of fun
tion calls with format tables, see Table 8-3.

Configuring Display Pages 5

The configuration file usually contains display page(s). You usentrace to put these
display page(s) in your configuration file.

ntrace lets you customize the layout of yourntrace display pages. You do this by
coloring, selecting, sizing, positioning, grouping, and otherwise configuring disp
objects on a particular display page. Once you have created a useful display page
may save it for futurentrace sessions. Saving a display page is the same as creatin
modifying a configuration file. See Chapter 7 and Chapter 8 for more information.
5-21

NightTrace Manual

” on

to

n 1 is
can

your

that
Rather than creating your own display page, you can letntrace create a default display
page for you. For more information on the default display page, see “Default Page
page 5-29 and “Kernel String Tables” on page 11-32.

ntrace User Interface 5

ntrace displays textual and graphical information, and it provides you with ways
manipulate this information. These displays and mechanisms make up thentrace user
interface.

The next sections describe the followingntrace user interface issues:

• Using the mouse

• Understanding pointer shapes

• Anticipating window layout

• Resizing windows

Using the Mouse 5

It is assumed that your X server has a three-button mouse. By default, mouse butto
the leftmost button, button 2 the middle button, and button 3 the rightmost button. You
reassign the functions associated with mouse buttons by usingxmodmap(1) . If you do
not have a three-button mouse or a standard 101-key North American keyboard, see
system administrator or read sections on input and navigation in theOSF/Motif Style
Guide.

You use the mouse with point-and-click interfaces inntrace . Each mouse button has a
different purpose. The only mouse button operation you need to know for now is
clicking mouse button 1 usually does a single selection.
5-22

Invoking the ntrace Display Utility

r
sage.

It
ch as
Understanding Pointer Shapes 5

When you move the mouse, themouse pointermoves on the screen. You use this pointe
to point to particular parts of the screen. The shape of the pointer shows the current u
The following table describes whenntrace uses each pointer shape.

Anticipating Window Layout 5

Your window managermay automatically place a window frame around your windows.
may also provide you with a means of performing some standard operations, su
minimizing (also known asiconifying) or maximizing the window size. If your window
manager provides a window frame, thenntrace puts a window title in the title area of
this frame. If you minimize a window,ntrace provides all or part of the window title for
the icon that represents that window.

ntrace windows may contain different mixtures of components. Inntrace the window
components include:

Table 5-1. ntrace Pointer Shapes and Their Usage

Shape When Used

By default

When a menu action is pending

While moving a display object

While resizing a display object

During display-object placement

During time-consuming operations, for example
while scrolling through a large trace event file
5-23

NightTrace Manual

d

es
y

the
er
e
ped
m-

sh

s a
ed

the
ult

rs.

ns.
l

ns.
r

i-
Menu bars and pull-down menus
A menu barappears at the top of the window. It consists of labele
pull-down menu(s). When youselect(click on) a pull-down menu,
entriesappear in a vertical list. Selecting a menu entry with ellips
on it, causes adialog boxor form to appear. Entries are grouped b
function with separatorsdividing groups. Any destructive items
appear last.

Push buttons Apush buttonis a graphic image of a labeled button on apanel. Push
buttons are evenly-spaced in a horizontal panel at the bottom of
window. The default push button is highlighted by having a bord
around it. Pressing<Enter> makes the default push button tak
effect. Push buttons are organized by frequency of use and grou
by functionality. Push button names are active verbs. The most-co
monly-used push buttons inntrace are: Apply, Reset , and
Close.

Rather than duplicating functionality in both a menu entry and pu
button,ntrace supports the menu entry.

Radio buttons Aradio buttonis a graphic, labeled diamond-shape that represent
mutually exclusive selection from related radio buttons. Relat
radio buttons usually appear on the same panel, a panel between
menu bar and the push buttons. The first radio button is the defa
one. The selected radio button has a different color than the othe

Scroll regions and scroll bars
A scroll regionappears between the menu bar and the push butto
The scroll bar is immediately below or to the right of the scrol
region.

Text fields A text field appears between the menu bar and the push butto
While a text field is being edited, it contains a blinking vertical ba
called thetext cursor. The text cursor shows your current edit pos
tion within the field.

Figure 5-1 illustrates these window components.
5-24

Invoking the ntrace Display Utility

you
to

row
Figure 5-1. Window Components

Resizing Windows 5

You can resize all windows inntrace . However, many windows require a minimum
size to display information. You can resize some windows only horizontally. When
make a window wider,ntrace horizontally stretches any push buttons in that window
take up the new width.

ntrace Notation Conventions 5

This manual uses the following notation convention to reference menu entries.

Menu barsconsist of one or moremenu items. Clicking on a menu item causes a
pull-down menu to appear.Pull-down menushave selectableentries. This manual lists
menu levels (from menu item to menu entry) in the order in which they appear. An ar
5-25

NightTrace Manual

m to
(Ì) separates each menu level from the next. To show the progression from menu ite
menu entry, this manual uses the following notation:

menu item Ì menu entry

For example, if you click on theFile menu bar item, you may then select theExit menu
entry. This manual shows this procedure as:

Click on File Ì Exit

If the menu item consists of more than one word, the procedure is shown as:

Click on File Ì Open Config File ...

ntrace Global Window 5

Unless you invokentrace with an option that writes to standard output,ntrace starts
up by displaying theGlobal Window. Thentrace Global Window consists of:

• A message display area and its associated scroll bar

• A menu bar

Figure 5-2. Global Window for a Single Trace Event File

Message Display Area 5

The message display area of theGlobal Window presents the following information:

• Version information
5-26

Invoking the ntrace Display Utility

,

an

not
gh all

nu
• Trace-session statistics grouped by trace event file

• Cumulative statistics for all trace event files

• Event timestamp source

• Error messages about corrupted or syntactically-incorrectntrace file
arguments

You can also obtain this statistical information by invokingntrace with the
-filestats option. If you invokentrace without any trace event file arguments
ntrace displays most of the statistics as zero values.

By default,ntrace is sized to hold twenty lines in the message display area. You c
alter this number by changing the size of theGlobal Window. To change theGlobal
Window size, resize your window by using features of your window manager. It is
necessary to resize a window to see messages 21 and higher; you can scroll throu
messages by using the scroll bar.

Menu Bar 5

The menu bar of theGlobal Window consists of the following menu items:

• File

• Help

File Menu Item 5

When you click on theFile menu item on theGlobal Window, the pull-down menu
shown in Figure 5-3 appears.

Figure 5-3. Global Window File Menu

New Page, Default Page, Default Kernel Page, and Open Config File ... ,
can all causentrace to bring up a display page. The difference between these me
5-27

NightTrace Manual

d in
later

te a
tely

efore
items is the origin and content of the display page. TheDefault Kernel Page is
disabled (dimmed) unless you provide a NightTrace kernel trace file. It is discusse
“Kernel Display Pages” on page 11-22. The rest of these menu entries are discussed
in this chapter. The regular features of a display page include:

• Create and configure display objects so they graphically depict your trace
session (See Chapter 7 and Chapter 8)

• Examine trace events, states, trace event arguments, and timings using dif-
ferent display objects (See Chapter 6)

• Create, configure, and modify macros, qualified events, and qualified
states (See Chapter 9)

• Search for trace events (See Chapter 10)

• Summarize data into statistics for trace events and states (See Chapter 10)

New Page 5

When you click onFile Ì New Page on theGlobal Window, a display page with a
dotted but otherwise empty grid appears. This menu item is useful if you want to crea
display page from scratch. Most regular features of a display page are immedia
available on a new page. However, you must create and configure display objects b
you can:

• Examine trace events, states, and trace event arguments using different
display objects

• Graphically depict your trace session

NOTE

The new display page comes up in Edit mode. In Edit mode, the
field labels, scroll bar and push buttons on the display page are
disabled (dimmed).
5-28

Invoking the ntrace Display Utility

age is
our

on a

your
one

ow all
on the

if a

that

this
and
Figure 5-4. New Display Page

Default Page 5

W hen y ou c l ick onF i l e Ì D e f a u l t P a g e on th e G l o b a l W i n d o w , an
automatically-generated display page appears. The purpose of the default display p
to save you time configuring display objects; if this page does not exactly meet y
needs, you can customize it or you can create a new display page.ntrace brings up this
page in View mode. All regular features of a display page are immediately available
default page.

Beforentrace displays a default display page, it counts the number of processes in
trace event file(s). Normally, it then creates and displays a default display page with
StateGraph per process in the trace event file(s). The StateGraph is configured to sh
user trace events. If there are so many processes that their StateGraphs do not fit
screen, thenntrace does not display any StateGraphs.

When analyzing trace events timestamped by an RCIM synchronized tick clock,
thread name is not unique in the trace events,ntrace prints a node name along with the
process ID number and thread ID number in the associated GridLabel to identify
thread.

Figure 5-5 shows a default display page. A brief description of the display objects on
display page follows. See Chapter 7 for a more detailed description of display objects
the display page.
5-29

NightTrace Manual

ext

as
The
’s
end

lds
phs,
her

bars
ows
the
NOTE

The dynamic information that display objects present relates to
the interval, a window into your trace session.

Figure 5-5. A Default Display Page

GridLabel A textual display object that contains a static user-specified t
string. This object labels other objects for clarity

DataBox A display object that displays textual or numeric information such
the trace event ID or tag and the time the trace event occurred.
information it displays is related to the current time. A DataBox
main use is to display data that is variable in nature and does not l
itself to graphical representation.

Column A scrollable display object that does not display data itself but ho
graphical display objects: StateGraphs, EventGraphs, DataGra
and Rulers. Its purpose is to define the width of and group toget
graphical display objects.

StateGraph A scrollable display object that graphically displays states as
and trace events as vertical lines in a Column. The StateGraph sh
relative chronological positions of trace events and states since
trace started.
5-30

Invoking the ntrace Display Utility

as
s

ent
ws
ce

he

lly
hat
ata-

nts,

n

dis-

tely

tion
EventGraph A scrollable display object that graphically displays trace events
vertical lines in a Column. It shows relative chronological position
of trace events since the trace started.

DataGraph A scrollable display object that graphically displays a trace ev
expression as a vertical line or bar in a Column. A DataGraph sho
the relative chronological positions of trace event arguments sin
the trace started. The height of the line or bar is proportional to t
value of the expression.

Ruler A scrollable display object resembling a ruler that graphica
displays the time. A Ruler appears within a Column and shows w
time a trace event occurred in a StateGraph, EventGraph, or D
Graph.

Open Config File 5

A configuration file contains user-created display page(s), macros, qualified eve
qualified states, and/or table definitions. When you click onFile Ì Open Config File
... on theGlobal Window, a dialog box appears. This window prompts you for a
existing configuration file name. To avoid anyntrace errors, you must have read
permission for the file. When you open a configuration file, all regular features of a
play page are immediately available.

When you open an existing configuration file that contains display page(s),ntrace
displays them. This can save time configuring display objects and let you immedia
begin trace event analysis.

TheOpen Config File Dialog Box (shown in Figure 5-6) is made up of:

• Α File Name text field

• Α Filter text field

• Α file name scroll region and its scroll bar

• Τhe (default)Open push button

• ΤheCancel push button

If you decide not to open a configuration file, click onCancel. This action causes the
Open Config Fi le Dialog Box to go away. If you still want to open an existing
configuration file, see “The File Selection Dialog Box” on page 5-34.

For more information on configuration files, see “Understanding Page Configura
Files” on page 5-12.
5-31

NightTrace Manual

trace

To

ther
your

age
Figure 5-6. The Open Config File Dialog Box

Read Event-Map File 5

An event-map file associates user-created mnemonic tags or labels with numeric
event IDs. When you click onFile Ì Read Event-Map File ... on theGlobal Win-
dow, a dialog box appears. This window prompts you for an existing event-map file.
avoid anyntrace errors, you must have read permission for this file.

Oncentrace reads an event-map file, it is able to display short trace event tags ra
than less-meaningful trace event IDs. By naming your trace events, you can make
displays much easier to understand.

TheRead Event-Map File Dialog Box is made up of:

• A File Name text field

• A Filter text field

• A file name scroll region and its scroll bar

• The (default)Read push button

• TheCancel push button

If you decide not to read an event-map file, click onCancel. This action causes the
Read Event-Map File Dialog Box to go away. If you still want to read an existing
event-map file, see “The File Selection Dialog Box” on page 5-34.

For more information on event-map files, see “Understanding Event-Map Files” on p
5-10.
5-32

Invoking the ntrace Display Utility

not
Figure 5-7. The Read Event-Map File Dialog Box

Exit 5

When you click onFile Ì Exit on theGlobal Window, ntrace :

• Prompts you to save any unsaved changes, if appropriate

• Discards unsaved changes, if appropriate

• Deallocates memory it used to store trace events

• Exits

ntrace puts up aWarning Dialog Box if you try to exit fromntrace without saving
your display page changes. If you want to save your changes, click onCancel; as a
result,ntrace removes the dialog box, and you can save your changes. If you do
want to save your changes, click onOK; this causesntrace to exit.

Help Menu Item 5

When you click on theHelp menu item on theGlobal Window, the pull-down menu
shown in Figure 5-8 appears.
5-33

NightTrace Manual

ts to
Figure 5-8. Global Window Help Menu

The Online Manual item opens the online version of theNightTrace Manualusing the
HyperHelp viewer that is shipped as part of the X Window System (x11) product.

The onlineNightTrace Manualcan also be accessed using thenhelp utility shipped with
the X Window System. The manual name isntrace . For example, from the command
line:

nhelp ntrace

opens the most recently installed version of theNightTrace Manualin the HyperHelp
viewer.

The File Selection Dialog Box 5

TheFile Selection Dialog Box gives you three ways to find a file:

• Type in the exact file name

• Scroll through existing file names until you see the one you want

• Type in a filter (file name pattern) forntrace to locate

Typing in the Exact File Name 5

If you know the exact file name, use the following steps to open the file.

1. Type a file name, possibly with leading directory name(s), into theFile
Name text field.

2. If you mistype the file name, see “Field Editing” on page 6-16 and correct
the problem.

3. Press<Enter>.

This causesntrace to remove theFile Selection Dialog Box.

If you have read permission to this file and it is of the right type,ntrace opens the file.
If it is a configuration file,ntrace puts up any display page(s) from this file. If it is an
event-map file,ntrace adds those trace event tags and trace event argument forma
its internal list.
5-34

Invoking the ntrace Display Utility

ave

pen

ts to

ave

me.
If opening the file was not successful,ntrace puts up aWarning Dialog Box. The
warning message in the dialog box differs depending on the problem. When you h
read the warning, click onOK. As a result,ntrace removes the dialog box.

If you causentrace to bring up thisFile Selection Dialog Box again, all fields
contain the same values as when you left this dialog box, except theFile Name text field
never comes up with more than a directory name.

Scrolling Through Existing File Names 5

If you would recognize the file name if you saw it, use the following steps to find and o
it.

1. Use the scroll bar to examine the alphabetical list of file and directory
names displayed in the scroll region.

2. Try to find the file name you are seeking.

3. If you find the file:

a. Click on the file name to select and highlight it.

b. Click onOpen.

As an alternative to these two steps, you could double click quickly on the file name.

If you have read permission to this file and it is of the right type,ntrace opens the file.
If it is a configuration file,ntrace puts up all display page(s) from this file. If it is an
event-map file,ntrace adds those trace event tags and trace event argument forma
its internal list.

If opening the file was not successful,ntrace puts up aWarning Dialog Box. The
warning message in the dialog box differs depending on the problem. When you h
read the warning, click onOK. As a result,ntrace removes the dialog box.

If you do not find the file in the list:

1. Click on the directory name under which it resides. This selects and high-
lights the directory name.

2. Click onOpen.

As an alternative to these two steps, you could double click quickly on the directory na

This causesntrace to:

• Put the selected directory’s name in theFile Name text field

• Change to that directory (cd)

• Display the file and directory names under that directory

You can repeat the steps in this method until you find the file.

If you causentrace to bring up thisFile Selection Dialog Box again, all fields
contain the same values as when you left this dialog box.
5-35

NightTrace Manual

he

and

es
n it,

xer-

n

or

he

le and

with
TIP:
Clicking on the“..” directory causes the scrolled list to be filled with the contents of t
parent directory.

Typing in a Filter (File Name Pattern) 5

If you know only some of the characters in the file name, use the steps below to find
open it.

1. Type a file name pattern, possibly with leading directory name(s) and
appropriately-placed asterisk(s), into theFilter text field. Each asterisk (*)
in this field represents zero or more characters at this position.

2. If you mistype the field name pattern, see “Field Editing” on page 6-16 and
correct the problem.

3. Press<Enter>.

This causesntrace to replace the contents of the scroll region with subdirectory nam
and file names that match your pattern. To locate your file in the scroll region and ope
see the “Scrolling Through Existing File Names” on page 5-35.

If you causedntrace to bring up thisFile Selection Dialog Box again, all fields
contain the same values as when you left this dialog box.

Exercise: Displaying Trace Events 5

The following exercise has you graphically display the trace events you logged in “E
cise: Logging Trace Events” on page 4-27.

Copy the/usr/lib/NightTrace/examples/entry_exit_page configuration
file to your directory and call itpage . (See “Understanding Page Configuration Files” o
page 5-12 for more information about configuration files.)

$ cp /usr/lib/NightTrace/examples/entry_exit_page page

Copy the/usr/lib/NightTrace/examples/entry_exit_map event-map file to
your directory and call itmap. (See “Understanding Event-Map Files” on page 5-10 f
more information about event-map files.)

$ cp /usr/lib/NightTrace/examples/entry_exit_map map

Invoke ntrace with the trace event file you created in the last exercise and t
configuration file you just created.

$ ntrace log page

NightTrace presents a display page. Concentrate on the dotted grid area in the midd
the row of push buttons at the bottom. Keep clicking on theZoom Out push button until
the display quits changing. Click on the Ruler around 2 seconds. The display object
5-36

Invoking the ntrace Display Utility

o
irst
race

ore

meric

nu

m.)
ent

cise:
digital “waves” is aStateGraph. It graphically displays trace events and states. The tw
“floating” DataBoxescontain textual information about the current trace event and its f
argument, respectively. Notice that the current trace event is identified by its cryptic t
event ID number. (See “StateGraph” on page 7-14 and “DataBox” on page 7-12 for m
information about StateGraphs and DataBoxes.)

The next few steps get the same display page to show symbolic tags instead of nu
IDs for trace events.

Close the display page by clicking onFile Ì Close. (See “Close” on page 7-19 for more
information about this menu item.)

Read in the event-map file namedmap by clicking onFile Ì Read Event-Map File
... . (See “Read Event-Map File” on page 5-32 for more information about this me
item.)

Re-open the configuration file namedpage by clicking onFile Ì Open Config File
.... (See “Open Config File” on page 5-31 for more information about this menu ite
Click on theRefresh push button on the display page. Notice that the current trace ev
is now identified by its symbolic tag because that trace event has an entry in themap file.

This exercise continues in “Exercise: Using the Search Tool” on page 10-14.

For practice customizing the graphical user interface, read Appendix B and try “Exer
Customizing Display Colors” on page B-5.
5-37

NightTrace Manual
5-38

-1
-3

-4
-5
-7
-8

11
11
2

4
6
6
8

6
Viewing Trace Event Logs with ntrace

Overview . 6
Mouse Button Operations . 6
The Grid. 6
Viewing Strategy . 6
The Interval Scroll Bar . 6
The Interval Push Buttons . 6
The Interval Control Area . 6-

Reading Fields . 6-
Editing Single Fields . 6-1
Editing Multiple Fields. 6-1

Field Editing . 6-1
Editing Text Fields . 6-1
Positioning Within Text Fields . 6-1

NightTrace Manual

it”
text
s

d the
ell as

age,

with

ed.

nd-
he
6
Chapter 6Viewing Trace Event Logs with ntrace

6
6
6

Overview 6

ntrace ’s display page has two modes: Edit mode and View mode. The words “Ed
and “View” pertain to the operations you can perform on the graphical display, not the
fields or scroll bar. This chapter discussesView mode, the mode that displays trace event
and states from your trace event file(s).ntrace displays this information:

• Graphically in configured display object(s) on the grid

• Statistically in fields of the interval control area

• Uniformly on all display page(s). (This means that changes on one page
are reflected on all pages.)

ntrace uses the samedisplay page(s) in both Edit and View modes. However, toggling
between modes changes the interval scroll bar, fields in the interval control area, an
push buttons. In View mode, the message display area shows some statistics, as w
errors and warnings. The default mode for an existing display is View mode.

View mode lets you locate interesting parts of your trace session by:

• Shifting with the interval scroll bar

• Clicking on some of the interval push buttons

• Editing some field(s) in the interval control area

• Using the built-in Search tool (See Chapter 10 for more information.)

See Chapter 7 for more information on Edit mode, the components of the display p
and display objects.

This chapter assumes that you have already created or loaded a display page
configured display objects. This manual uses the following term conventions:

<Enter> The key on your keyboard that issues a carriage return and line fe

<Backspace> The key on your keyboard that issues a<Ctrl> <h>. In ntrace this
is also<Delete>.

interval A time period in the trace session that has a specific starting and e
ing time. It is the “window” into the trace session that appears on t
display page.
6-1

NightTrace Manual

he

mn.
h
e

Figure 6-1. A Display Page in View Mode

current time The instance in time currently being displayed. It occurs within t
interval. Searches begin at the current time.

current time line The dashed vertical bar that represents the current time in a Colu
This line moves to the location of your pointer when you click wit
mouse button 1 in a Column. The position of the current time lin
determines the values that appear on display pages.

This chapter covers the following topics:

• Mouse button operations in View mode

• Understanding the grid

• Deciding what to do next in View mode

• Using the interval scroll bar

• Using the interval push buttons

• Understanding the interval control area
6-2

Viewing Trace Event Logs with ntrace

ne

e

ur-
• Field editing

Mouse Button Operations 6

Mouse button operations in View mode appear in Table 6-1 and in theNightTrace Pocket
Referencecard. Unfamiliar terminology is defined later in this chapter.

Table 6-1. View-Mode Mouse Button Operations

Button Use Within a Column

Mouse button 1 Move the current time line to the place where the pointer rests, or put the text cursor
where you clicked in the text field.

Hold down<Ctrl> and
click mouse button 1

Move the mark and the current time line to the place where the pointer rests.

Hold down<Ctrl>,
hold down mouse but-
ton 1, and drag horizon-
tally

Move the mark to the beginning point of the drag region, and move the current time li
to the ending point of the drag region. The drag region is highlighted as you drag the
pointer.

Mouse button 2 Write a statistic in the message display area that tells about the trace event where th
pointer rests in a StateGraph or EventGraph.

Hold down<Ctrl> and
click mouse button 2

Write a statistic in the message display area that tells how far the pointer is from the
mark. A positive number means the pointer is to the right of the mark. A negative
number means the pointer is to the left of the mark.

Mouse button 3 Write a statistic in the message display area that tells about the data item where the
pointer rests in a DataGraph.

Hold down<Ctrl> and
click mouse button 3

Write a statistic in the message display area that tells how far the pointer is from the c
rent time line. A positive number means the pointer is to the right of the current time
line. A negative number means the pointer is to the left of the current time line.
6-3

NightTrace Manual

of
er the

size,

the
r
trol

s, see

raph
rhead

raph
n 3,
For
page

here
ally
. The
The Grid 6

Figure 6-2. The Grid

The grid is a region of the display page that is filled with parallel rows and columns
dots. These dots serve as reference points for display-object alignment. You can alt
grid dimensions by changing the size of the display page. To change the display page
resize your window by using features of your window manager.

The trace_open_thread() routine and thentraceud daemon write overhead trace
events into your trace event file. The tags for these trace events areNT_ASSOC_PIDand
NT_ASSOC_TID. In View mode, you may see these trace events in display objects on
grid. ntrace assigns each trace event in the trace session a unique ordinal number ooff-
setbeginning with ordinal number 0. These ordinal numbers appear in the interval con
area and in the message display area. For more information on ordinal trace event
“The Interval Control Area” on page 6-11.

Some display objects on the grid contain vertical lines. Each vertical line in a StateG
or EventGraph represents a user trace event, kernel trace event, or NightTrace ove
trace event. If you click on a trace event with mouse button 2,ntrace writes information
about that trace event in the message display area. Each vertical line in a DataG
represents a trace event argument. If you click on a data value with mouse butto
ntrace writes information about the data value in the message display area.
information about StateGraphs, EventGraphs, and DataGraphs, see “StateGraph” on
7-14, “EventGraph” on page 7-15, and “DataGraph” on page 7-16.

If your grid has a Column and you have not already positioned your interval somew
else,ntrace displays in the Column the earliest 5 percent of your trace session. Usu
this information is uninteresting and you want to see other parts of your trace session
following list shows the ways you can getntrace to locate interesting parts of your trace
session:

• Scroll through the interval using the interval scroll bar

• Zoom in or zoom out using interval push buttons

• Change the parameters defining the interval by editing its fields
6-4

Viewing Trace Event Logs with ntrace

you
The

w

• Use theTools ➭ Search menu item to search for a specific trace event or
condition. (See Chapter 10 for more information.)

Viewing Strategy 6

ntrace is a flexible tool. Depending on your personal preferences and how much
know about your trace events, there are several ways to locate intervals of interest.
following flowchart provides information to help you decide what to do next in Vie
mode.
6-5

NightTrace Manual
Figure 6-3. Deciding What to Do Next in View Mode

Start

Look at the grid

Is the displayed
information

interesting yet?

No

Yes

Could the
display use

improvement?

No

Analyze trace event information

Yes

Stop

Do one of the following:

Use interval scroll bar to slowly scroll through total trace
run

Click on Zoom Out

Return to Edit mode, alter the display page, and return
to View mode

Click on Tools ➭ Search and set the search criteria

Change settings in the interval control area

Do one of the following:

Click on Zoom In

Click on Center

Click on Mark, align the interval, and click on

Zoom Region
6-6

Viewing Trace Event Logs with ntrace

lls
nt

play
most
more
11.

left
layed

nd of

f the
, the
the

l. By

hat

e

The Interval Scroll Bar 6

Although by its position it may look as if it scrolls the grid, the interval scroll bar scro
the interval. Moving the slider of the interval scroll bar allows you to examine differe
intervals in your trace session. By moving the slider, you change the displays in dis
objects on the grid and in the interval control area. Changes in the display objects are
obvious when you have a Column that contains both a StateGraph and a Ruler. For
information on the interval control area, see “The Interval Control Area” on page 6-
See Chapter 7 for more information on display objects.

The interval scroll bar is horizontal and extends the entire width of the grid. The
arrowhead represents the beginning of the entire trace session, not just the part disp
on the grid or by the interval control area fields. The right arrowhead represents the e
the entire trace session.

If you have not already positioned your interval somewhere else, the movable slider o
interval scroll bar is adjacent to the scroll bar’s left arrowhead. When the slider is here
Time Star t statistic in the interval control area is 0.0000000 seconds. The length of
slider is proportionate to the amount of the trace session displayed in the interva
default, a display page shows 5% of a trace session.

In the following interval scroll bar descriptions, the fields in the interval control area t
are affected by the interval scroll bar include:Current Time, Time Star t, Time End,
Event Star t, Event End, andIncrement. For more information on these fields, se
“The Interval Control Area” on page 6-11.

Figure 6-4. The Interval Scroll Bar

Manipulating the interval scroll bar in the following ways has the following results.
6-7

NightTrace Manual

The
ush

:

n

The Interval Push Buttons 6

Figure 6-5. The Interval Push Buttons

The interval push buttons let you examine different intervals in your trace session.
eight push buttons appear just below the grid on the display page. In the following p
button descriptions:

• Click on a push button by first pointing to it and then clicking with mouse
button 1.

• Current Time, Time Start, Time End, Time Length, Event
Star t, Event End, andEvent Count refer to fields in the interval
control area.

Table 6-2. Manipulating the Interval Scroll Bar

Action
Mouse
Button

Location Result

Click Any Left
arrowhead

If the interval scroll bar slider is not already at the leftmost position:

• Moves the slider to the left.
• Scrolls backwardIncrement seconds orIncrement percent of

the current display interval.

Click Any Right
arrowhead

If the interval scroll bar slider is not already at the rightmost position

• Moves the slider to the right.
• Scrolls forwardIncrement seconds orIncrement percent of

the current display interval.

Click 1 Between an
arrowhead and
the slider

• Moves the slider to the side you clicked on.
• Scrolls the current interval by twice the number of seconds i

Increment or by twice the percentage inIncrement.

Click or
Drag

2 Between an
arrowhead and
the slider

• Moves the slider where you clicked and/or dragged.
• Scrolls the current interval accordingly.
• If your current time line was not centered, centers it.

Drag 1 or 2 Slider (Same as preceding entry.)

Press and
Hold

Any Left or right
arrowhead

Causes animated scrolling of data in the direction the arrow points
6-8

Viewing Trace Event Logs with ntrace
Except for theReset push button, each push button has an effect on:

• The fields in the interval control area

• The display objects on the grid

• The current time line on the grid

The effect of clicking on a particular push button appears next.

Apply (the default)

• Validates any field change(s) in the interval control area and takes
appropriate action.

• Makes corresponding changes to other field(s).

• Possibly updates display objects on the grid.

• Possibly moves the current time line in a Column.

• Is equivalent to pressing<Enter>.

Reset

• Restores changed field(s) in the interval control area to the value(s) they
had immediately after the lastApply or <Enter>. This works only if you
have not already pressed<Enter> or clicked on theApply push button.

• Is equivalent to pressing<Esc>.

Center

• Centers the interval around the current time line in a Column.

• Makes corresponding changes toTime Star t, Time End, Event
Star t, andEvent End.

Mark

• Sets a mark that points to a particular time. A mark is represented by a
solid triangle on the Ruler.ntrace currently supports only one mark. By
default this mark is at time 0.

• Puts a mark at the current time line of all Rulers.

• Is useful before clicking onZoom Region.

• Can provide a statistic about the distance between your pointer and the
mark.

Some control sequences pertain to the mark, the current time line, and your pointer.

• Simultaneously pressing<Ctrl> and clicking on mouse button 1 moves the
mark and the current time line to the place where your pointer rests.

• Simultaneously holding down<Ctrl> and clicking on mouse button 2
causesntrace to write a statistic in the message display area that tells
how far your pointer is from the mark. A positive number means your
6-9

NightTrace Manual
pointer is to the right of the mark. A negative number means your pointer is
to the left of the mark.

• Simultaneously holding down<Ctrl> and clicking on mouse button 3
causesntrace to write a statistic in the message display area that tells
how far your pointer is from the current time line. A positive number
means your pointer is to the right of the current time line. A negative
number means your pointer is to the left of the current time line.

• Simultaneously holding down<Ctrl>, holding down mouse button 1, and
dragging your pointer horizontally in a Column makesntrace move the
mark to the beginning point of the drag region and move the current time
line to the ending point of the drag region. The region is highlighted as you
drag the pointer.

Zoom Region

• Sets the interval to be the time between the mark and the current time line
(inclusive).

• SetsTime Star t to either the mark or the current time line, whichever is
leftmost.

• SetsTime End to either the mark or the current time line, whichever is
rightmost.

• Centers the current time line in a Column.

• Displays an error message in the message display area if the mark and the
current time line are at the same place.

Zoom In

• Centers the interval around the current time line in a Column.

• Divides Time Length by the value ofZoom Factor; this provides a
microscopic view of a smaller interval.

• Makes corresponding changes toTime Star t, Time End, Event
Star t, Event Count, andEvent End.

Zoom Out

• Centers the interval around the current time line in a Column.

• Multiplies Time Length by the value ofZoom Factor; this provides a
macroscopic view of a larger interval.

• Makes corresponding changes toTime Star t, Time End, Event
Star t, Event Count, andEvent End.

Refresh

• Updates the grid to reflect the result of changes in configuration.

• Is implicit with any action that updates the grid.

• Should be used when you:
6-10

Viewing Trace Event Logs with ntrace

s of

ually
. You

ave

e

ce
- Open a display page

- Switch to View mode from Edit mode

- Change a configuration parameter from View mode

- Resize the grid

• Differs from the X window manager’sRefresh which redraws the
windows without notifyingntrace .

The Interval Control Area 6

The interval control area is a region of the display page that contains nine field
statistics. If you have not already positioned your interval somewhere else,ntrace
displays in the interval control area the earliest 5 percent of your trace session. Us
this information is uninteresting and you want to see other parts of your trace session
can do two things with the statistics in the interval control area:

• Read the fields to obtain information about the interval

• Edit the fields to change the interval

Figure 6-6. The Interval Control Area

Reading Fields 6

All field values in the interval control area are non-negative numbers. Some fields h
default values. Time fields all display the time in seconds with the “s ” suffix. A
description of each field follows. In the following text,interval is the time fromTime
Start throughTime End.

Time Star t Is the beginning time of the interval in seconds.

Time End Is the ending time of the interval in seconds.

Time Length Is the amount of time within this interval in seconds. It is th
difference betweenTime End andTime Start.

Current Time Is the present time within the interval in seconds.

Event Star t Is the ordinal number (offset), not the trace event ID, of the first tra
event in this interval.
6-11

NightTrace Manual

ce

he

e

es)
en

t of

our
ady

,
. If

For
-8.

fects
on
Event End Is the ordinal number (offset), not the trace event ID, of the last tra
event in this interval.

Event Count Is the quantity of trace events present in this interval. It is t
difference betweenEvent End andEvent Start plus one.

Zoom Factor Is the number of times to magnify (or reduce) the interval each tim
you click onZoom Out (or Zoom In). The default is 2.

Increment Controls how much the current interval scrolls (and the slider mov
when you click on an arrowhead of the interval scroll bar or betwe
an arrowhead and the slider on the interval scroll bar.

This field may contain either a percentage or an absolute amoun
time in seconds. The default is 25%.

Editing Single Fields 6

Changing the interval control area fields allows you to examine different intervals in y
trace session. Usually you modify fields in the interval control area when you alre
know something about your trace events and their distribution.

When you press<Enter> or click on theApply push button at the end of your editing
ntrace validates the data in each field you modified and takes appropriate action
ntrace detects an invalid value, it restores the affected field to its previous value.
more information on theApply push button, see “The Interval Push Buttons” on page 6

ntrace displays all times in the interval control area in seconds with the “s ” suffix. You
can enter times into time-related fields in the following ways:

• Numeric time. ntrace assumes that the time unit is seconds.

• Numeric time in seconds with a “s ” suffix.

• Numeric time in microseconds with a “u” suffix.

The following text explains what constitutes a valid field change and describes the ef
of changing a single field. For general information on field editing, see “Field Editing”
page 6-16.

Time Star t A valid change keepsTime Start less than the ending time in the
trace session. The new interval starts at the specified time.Time
Length remains unchanged, but other fields, includingTime End,
change appropriately.

If you set Time Start to the wordstart , ntrace resetsTime
Start to the start time (0 microseconds) of the trace session.

Time End A valid change keepsTime End greater than the beginning time in
the trace session and greater than or equal toTime Length. The
new interval ends at the specified time.Time Length remains
unchanged, but other fields, includingTime Star t, change appro-
priately.
6-12

Viewing Trace Event Logs with ntrace

es

r
rval

al

me
ins

the

.

l
ion.
ge

pri-
If you changeTime End so it is smaller thanTime Length,
ntrace setsTime End to Time Length. If you setTime End
to the wordend or an arbitrarily large number,ntrace resetsTime
End to the last time recorded in the trace event file(s) and chang
other fields appropriately.

Time Length A valid change keepsTime Length greater than 0 and less than o
equal to the last recorded time in the trace session. The new inte
length is the specified length.Time End and other fields change
appropriately.

If you set Time Length to the wordall or an arbitrarily large
number,ntrace resetsTime Length to the last time recorded in
the trace event file(s) and changes other fields appropriately.

Current Time Thecurrent timeis the specified time.

If the new current time is insidethe current interval, the current time
line moves appropriately in any Columns and the current interv
remains unchanged.

If the new current time is outsidethe current interval, the interval
shifts so the current time is centered in the interval, the current ti
line is centered in any Columns, and the interval length rema
unchanged.

Event Star t A valid change keepsEvent Star t less than the number of trace
events logged in the trace session. The new interval starts at
specified ordinal trace event number (offset).Time Le ngth
remains unchanged, but other fields change appropriately.

If you setEvent Star t to the wordstart , ntrace resetsEvent
Start to 0 andTime Star t to 0 microseconds.

Event End A valid change keepsEvent End non-negative. The new interval
ends at the specified ordinal trace event number (offset).Time
Length remains unchanged, but other fields change appropriately

If you setEvent End to the wordend , or an arbitrarily large num-
ber,ntrace resetsEvent End to the total number of trace events
in your trace event file(s).

Event Count A valid change keepsEvent Count less than or equal to the ordina
position (offset) of the last trace event recorded in the trace sess
The new trace event count is the specified count. Fields chan
appropriately.

If you set Event Count to the wordall or an arbitrarily large
number,ntrace resetsEvent Count to the total number of trace
events in your trace event file(s) and changes other fields appro
ately.

Zoom Factor A valid change keepsZoom Factor greater than or equal to 1. If
you setZoom Factor to the worddefault or a space,ntrace
resetsZoom Factor to the default value, 2.
6-13

NightTrace Manual

n or
nds
set

ll
al.
w

al

, you

r

y to

a and
Increment A valid change keeps percentages greater than 0% and less tha
equal to 100% and absolute numbers greater than 0 microseco
and less than or equal to the end time of the trace session. If you
Increme nt to the worddefault or a space,ntrace resets
Increment to the default value, 25%.

If Increment is less than 100% when you click on an interval scro
bar arrowhead, you see part of the previous interval in this interv
However, ifIncrement is equal to 100%, you see a completely ne
interval.

For more information on the interval scroll bar, see “The Interv
Scroll Bar” on page 6-7.

Figure 6-7. Amount of Scrolling Due to Increment Value

Editing Multiple Fields 6

Sometimes it makes sense to change multiple fields for a single effect; for example
may wish to change both theTime Star t and Time End fields or you may wish to
change both theTime Star t and Event Count fields. In these cases, apply you
changes only once, after you have edited each field of interest.

Changing some combinations of fields is not meaningful; for example, you may tr
change bothTime Length andEvent Count. Whenntrace detects a meaningless
combination of changes, it displays an error message in the message display are
restores the affected fields to their previous values. Whenntrace detects an invalid
value, it restores the affected field to its previous value.

Some general rules apply to multiple field editing.

• You must not simultaneously apply changes to more than two trace event
fields.

• You must not simultaneously apply changes to more than two time fields;
for these purposesCurrent Time is notconsidered to be a time field.

• You can changeCurrent Time with any other valid field changes as long
asCurrent Time falls within the new interval.

• You can changeZoom Factor with any other valid field changes.
6-14

Viewing Trace Event Logs with ntrace

lve

or
• You can changeIncrement with any other valid field changes.

• Simultaneously modifying one time field and clearing another time field
makesntrace use the static and modified fields to determine the values
of the cleared time field and the other fields.

• Simultaneously modifying one trace event field and clearing another trace
event field makesntrace use the static and modified fields to determine
the values of the cleared trace event field and the other fields.

The following table shows all the valid multiple field changes except those that invo
Current Time , Zoom Factor, or Increment . For information on editing specific
fields of the interval control area, see “The Interval Control Area” on page 6-11. F
general information on field editing, see “Field Editing” on page 6-16.

Table 6-3. Valid Multiple Field Changes

Fields Result

Time Star t
Time End

The new interval starts atTime Star t and ends atTime End.

Time Star t
Time Length

The new interval starts atTime Star t and has a length of the speci-
fied Time Length.

Time Length
Time End

The new interval ends atTime End and has a length of the specified
Time Length.

Event Star t
Event End

The new interval starts at ordinal trace event number (offset)Event
Star t and ends at ordinal trace event number (offset)Event End.

Event Star t
Event Count

The new interval starts at ordinal trace event number (offset)Event
Star t and includes the specified quantity of trace events.

Event Count
Event End

The new interval ends at ordinal trace event number (offset)Event
End and includes the specified quantity of trace events.

Time Star t
Event Count

The new interval starts atTime Star t and includes the specified
quantity of trace events unless theTime Length forcesTime Star t
to change.

Time End
Event Count

The new interval ends atTime End and includes the specified
quantity of trace events unless theTime Length forcesTime End
to change.

Event Star t
Time Length

The new interval starts at ordinal trace event number (offset)Event
Star t and has a length of the specifiedTime Length unless the
Time Length forcesEvent Start to change.

Event End
Time Length

The new interval ends at ordinal trace event number (offset)Event
End and has a length of the specifiedTime Length unless the
Time Length forcesEvent End to change.
6-15

NightTrace Manual
Field Editing 6

You make changes to fields by following these steps:

1. Do one of the following:

• Click with a mouse button on the field you want to edit. Clicking
with mouse button 1 leaves a blinking vertical bar called thetext
cursor where you clicked in the field. Clicking with the other mouse
buttons leaves the text cursor at the end of the field.

• Drag with mouse button 1 on the field you want to edit.

• If there already is a text cursor in a field, you can press<Tab> to
move to the next field or<Shift> <Tab> to move to the previous
field.

2. Use the built-in field editor to change values. Editing procedures follow.

3. Either press<Enter> or click on theApply push button. This is called
applying your changes.

Editing Text Fields 6

You can make the following types of editing changes in a text field:

• Insert text

• Delete text

• Replace text

• Undo a text change

Table 6-4. Making Editing Changes

Goal Steps to Attain Goal

Insert
character(s)

1. Position the text cursor where you want to insert character(s).
2. Type in the additional character(s).

Delete one character
to the right

1. Position the text cursor to the left of the character to be deleted.
2. Simultaneously press<Ctrl> <d>.

Delete one character
to the left

1. Position the text cursor to the right of the character to be deleted.
2. Either press<Backspace>, <Delete>, or simultaneously press

<Ctrl> <h>.
6-16

Viewing Trace Event Logs with ntrace

hese

g

utton,
the

utton,
the

ord
Sometimes it is desirable to change multiple fields before applying the changes. In t
cases, apply your changes only once, after you have edited each field of interest.

When you press<Enter> or click onApply at the end of your editing,ntrace validates
the data in each field you modified.ntrace rarely issues error messages about editin
errors it detects. Usually it takes a default action. Some of the default actions include:

• If you enter an invalid value, for example alphabetic characters in a
numeric field,ntrace ignores the changes and restores the previous val-
ues.

• Usually, if you enter a number that exceeds the maximum value,ntrace
replaces it with the maximum value.

• If a range’s starting value exceeds its ending value,ntrace swaps them.

Delete adjacent
character(s)

1. Point to the first character to be deleted.
2. Drag the pointer across any other characters to be deleted, release the mouse b

and keep the pointer in the field. This highlights the characters you dragged
pointer across.

3. Either press<Backspace>, <Delete>, or simultaneously press
<Ctrl> <h>.

Replace adjacent
character(s)

1. Point to the first character to be replaced.
2. Drag the pointer across any other characters to be replaced, release the mouse b

and keep the pointer in the field. This highlights the characters you dragged
pointer across.

3. Type in the new character(s).

Replace all
character(s)

1. Position the text cursor anywhere in the field you want to modify.
2. Simultaneously press<Ctrl> <u>. This highlights all characters in the field.
3. Type in the new character(s).

Restore the
default value

1. Replace all character(s) in the field with either a single space character or the w
default. Note: Some fields do not have default values.

2. Press<Enter> or click onApply.

Undo editing change(s)
since the last<Enter>
or Apply

1. Position in the window you want to modify.
2. Press<Esc> (or click onReset if this is available).

Table 6-4. Making Editing Changes

Goal Steps to Attain Goal
6-17

NightTrace Manual

ing
you
Positioning Within Text Fields 6

You can either position the text cursor to a particular place within a field by either click
or typing in key sequences. The following key sequences move the text cursor only if
are already positioned in a text field.

Table 6-5. Positioning Within a Text Field

Goal Steps to Attain Goal

Move text cursor left
one character

Press<LeftArrow> or simultaneously press<Ctrl> .
This action may cause scrolling.

Move text cursor right
one character

Press<RightArrow> or simultaneously press<Ctrl> <f>.
This action may cause scrolling.

Move text cursor to next
field

Press<Tab>.

Move text cursor to pre-
vious field

Press<Shift> <Tab>.
6-18

-1
-2
-3

-4
4
-4
-5
-6

-7
-7
-8
2
2
3

14
15
16
7

17
8
8
8

18
18
19
19
7
Creating Display Objects

Overview . 7
The Display Page. 7
Display Page Modes . 7

Edit Mode . 7
View Mode . 7-

Operations on Display Objects . 7
Creating Display Objects . 7
Selecting Display Objects. 7
Moving Display Objects. 7
Resizing Display Objects . 7

Display Objects . 7
GridLabel . 7-1
DataBox . 7-1
Column . 7-1
StateGraph . 7-
EventGraph. 7-
DataGraph. 7-
Ruler . 7-1

Editing Operations . 7-
Select All . 7-1
Deselect All . 7-1
Delete . 7-1

File Operations . 7-
Save . 7-
Save As ... 7-
Close. 7-

NightTrace Manual

(See

then
ts to
7
Chapter 7Creating Display Objects

7 sC
7
7

Overview 7

Figure 7-1. Display Page with Display Objects

Figure 7-1 shows what a display page may look like when you invokentrace and
specify the default display page. The default display page contains display objects.
“Default Page” on page 5-29.)Display objectsfilter, process, and display the information
in the trace event file. These display objects are created with the display page and
viewed on the display page. You may want to create your own set of display objec
view your trace event file. To do this, follow the steps below.

1. Read “The Display Page” on page 7-2 to learn about the various parts of a
display page.

2. Read “The Display Page” on page 7-2, which describes the different modes
a display page can be in: Edit and View.
7-1

NightTrace Manual
3. Put the display in Edit mode.

4. Read “Display Objects” on page 7-8, which explains what a display object
is and what the different types of display objects you can put on your
display page are.

5. Read “Operations on Display Objects” on page 7-4, which explains how to
perform various operations (creating, selecting, moving and resizing) on
display objects.

6. Create the various display objects you want and place them on the display
page. Move or resize any display objects necessary to improve the layout
of the page.

The Display Page 7

Figure 7-2. Elements of a Display Page
7-2

Creating Display Objects

ws
ng is

he
d
.

in
y

you

ny

d

the
side
y
side
A display pagelets you view the trace event data in the trace event file. Figure 7-2 sho
an example of a display page and points out the portions of the display page. Followi
a brief description of the portions of a display page:

Menu bar Contains menu items. When you click on a menu item in t
menu bar, a pull-down menu appears with a list of relate
menu entries. You can then initiate an operation on the menu

Mode buttons Are radio buttons that control whether the display page is
Edit or View mode and allow you to switch between modes b
clicking on them.

Message display areaDisplays error and status messages. It has a scroll bar so
can view previous or current messages.

Grid Contains display objects. Figure 7-2 shows a grid before a
display objects have been created.

Interval control areaContains information on the current interval being displaye
and the controls to manipulate the display.

Display Page Modes 7

Figure 7-3. Edit and View Mode Buttons

Display pages can be operated in one of two modes: Edit mode or View mode.Edit mode
lets you make changes to the display objects.View modelets you view the execution of
your application via the trace event file. The buttons for Edit and View mode are in
upper left-hand corner of the display page. If the display is in Edit mode, the button be
the word “Edit” is depressed. Otherwise, theView button is depressed and the displa
will be in View mode. To change modes, click with any mouse button on the button be
the desired mode.
7-3

NightTrace Manual

enu
nd

the

ver,
re

four

7-4,

n on
Edit Mode 7

When the display page is in Edit mode, you can perform any of the operations on the m
bar exceptTools, which is disabled (dimmed). The interval scroll bar, push buttons, a
fields in the interval control area are disabled too.

View Mode 7

Once you have created a set of display objects and configured them, you can view
trace event information in the trace event file.

To view the data in the trace event file, the display page must be in View mode. Howe
if the display page is in View mode, you will not be able to create, edit, or configu
display objects. See Chapter 6 for information on running (viewing) a display page.

Operations on Display Objects 7

This section describes some operations you can perform on display objects. The
operations discussed are:

• Creating new display objects and placing them on the grid

• Selecting display objects

• Moving display objects around the grid

• Resizing display objects

Each of these operations involves using the mouse buttons and the grid. Figure
Table 7-1, and theNightTrace Pocket Referencecard show which mouse buttons
correspond to which operations. These operations are referred to asgrid operations. You
can perform other operations on display objects using theEdit andConfigure menus.
Edit operations are discussed later in this chapter. See Chapter 8 for more informatio
configure operations.
7-4

Creating Display Objects

ject.
Figure 7-4. Button Functions on a Mouse

Creating Display Objects 7

Before you can do any of the other operations, you must first create a display ob
When you create a display object, you choose its place on the grid and its size.

Table 7-1. Edit-Mode Mouse Button Operations

Button Use Within the Grid

Mouse button 1 Create new objects, single select by clicking, or
multiple select by dragging

<Ctrl> mouse button 1 Select the Column display object

<Shift> mouse button
1

Multiple select or toggle selection

Mouse button 2 Move display objects

<Ctrl> mouse button 2 Move the Column display object

Mouse button 3 Resize display objects

<Ctrl> mouse button 3 Resize the Column display object

Create or Select

Move

Resize
7-5

NightTrace Manual

and

aphs,

For
ct.

n 1.
ct is

mn.

lect
Creating display objects involves three steps: selecting (loading) the type of display
object to be drawn, selecting the place on the grid where the display object will go,
selecting the size of the display object.

Some display objects go only inside of other display objects. StateGraphs, EventGr
DataGraphs and Rulers go only inside a Column.

To create a display object and place it on the grid, do the following:

1. Place the pointer on theCreate entry on the menu bar and click mouse
button 1.

2. Select the type of display object you want to create. Note that the pointer is
now a crosshair. The display object is now “loaded.”

3. Move the pointer until it is on the grid where you want to place a corner of
the display object. As mentioned previously, some display objects go only
inside of Columns. If the cursor is on the border of a Column or outside of
one, you will not be able to draw these display objects. Note that the left
and right sides of these display objects are determined by the Column, and
you only have to place the pointer somewhere on the intended top or
bottom edge of the display object.

4. Click and drag mouse button 1 until the display object is the size you want
it to be. While you are sizing a display object, its boundaries are shown as
dashed lines. Note that if you press the<Esc> key before releasing mouse
button 1, the operation aborts. The display object is still loaded, as signified
by the crosshair at the pointer location, so you can immediately try to
recreate the display object. Also note that display objects must not overlap
(except for graphical display objects, which must overlap a Column).

5. Release mouse button 1. The display object should appear on your grid
with solid line boundaries, unless there was an error (e.g., you placed a
DataBox on top of an existing GridLabel). Notice that the display object is
also selected (corners have handles). This is in case you want to move,
configure, or resize it at this time.

Selecting Display Objects 7

Often, you must select a display object before performing grid and edit operations.
example, before you can resize a display object you must first select the display obje

To select a single display object, simply click on the display object with mouse butto
The display object now has handles at the corners, indicating that the display obje
selected.

When display objects are inside a Column, it is sometimes difficult to select the Colu
To select an unselected Column, hold down the<Control> key and click mouse button 1.
If you perform the same action in a selected Column, the Column is deselected.

You can select multiple display objects three different ways. The first way to se
multiple display objects is as follows:

1. Position the cursor outside the display objects you want to select.
7-6

Creating Display Objects

ted
ects.
ame

18.

mn.

mn.

uired
2. Click mouse button 1 and drag the mouse until the rectangle that is formed
completely surrounds only the display objects you want to select. If a
display object is not completely surrounded by the rectangle, it will not be
selected.

3. Release mouse button 1. The display objects that were within the rectangle
will now have handles at each corner.

The second way to select multiple display objects is by using the<Shift> key. Holding
down the<Shift> key and clicking mouse button 1 while the cursor is in an unselec
display object selects that display object without deselecting any other display obj
This allows you to select any set of display objects that you want. If you perform the s
action in a display object that is already selected, the display object is deselected.

The third way to select multiple display objects is described in “Select All” on page 7-

Moving Display Objects 7

To move a display object to somewhere else on the grid, do the following:

1. Select the display object(s). Refer to “Selecting Display Objects” on page
7-6.

2. Using the mouse button 2, click anywhere on or within the selected display
object(s) and drag to the desired location.

3. Release the middle button.

When display objects are inside a Column, it is sometimes difficult to move the Colu
To move a selected Column, hold down the<Control> key and click mouse button 2.

Display objects must not overlap, except certain display objects mustbe placed inside a
Column. If you try to move a display object on top of another display object,ntrace
displays an error message in the message display area and aborts the move.

Resizing Display Objects 7

To resize a display object on the grid, do the following:

1. Select the display object. See “Selecting Display Objects” on page 7-6 for
more information.

2. Using mouse button 3, click on a handle and drag until the desired size is
reached.

3. Release the right button.

When display objects are inside a Column, it is sometimes difficult to resize the Colu
To resize a selected Column, hold down the<Control> key and click mouse button 3.
Note that a Column cannot be vertically resized smaller than the minimum space req
to hold all the StateGraphs, EventGraphs, DataGraphs and Rulers that it contains.
7-7

NightTrace Manual

to be
lay
s the

file.
The
rmats
rd:
ier
ber

s.

The

n a
t

ent
ddi-
n-
state
for

the
ish
Display objects must not overlap, with the exception that certain display objects need
placed inside a Column. If you try to resize a display object on top of another disp
object,ntrace displays an error message in the message display area and abort
resize.

Display Objects 7

Figure 7-5. Create Display Objects Menu

Display objects, which are created via theCreate menu shown in Figure 7-5, can be
thought of as combination filters and formatters for the data stored in the trace event
Every time a display object is updated, it filters through the data in the trace event file.
display object accepts input in the form of a trace event record, processes and refo
the information, and displays it. The following information is in a trace event reco
numeric trace event ID, global process identifier (PID), NightTrace thread identif
(TID), time, and optional arguments. NightTrace also keeps track of the ordinal num
(offset) of a trace event. You can usentrace functions to express any of these value
For more information about functions, see “Functions” on page 9-9.

Although the trace event file contains trace events, it also implicitly contains states.
concepts of trace events and states are key to understanding display objects.

trace event Corresponds to the point in the execution of your application whe
trace_event() call was executed. All the data logged at tha
time (trace event ID, arguments, etc.) is considered a trace event.

state A state is bounded by two trace events, a starteventand an endevent.
An instance of a state is the period of time between the start ev
and end event, including the start and end events themselves. A
tional conditions may be specified in a state definition to further co
strain the state. Instances of states do not nest; that is, once a
becomes active, events that might normally satisfy the conditions
the start event are ignored until the end event is encountered.

Different types of display objects display information in different ways. Depending on
type of information you want to display, you choose the display object or objects you w
7-8

Creating Display Objects

and
ta of
sary

ther

e fol-

of

the
is to

the
at-

phi-

te as
tes’
ed.
e

ace
ce
en

as a
he
nal
lay
to create. You can then configure those display objects to filter out unwanted data
process the information that you want displayed. This allows you to watch only the da
interest. Of course, all of this is dependent on the application having the neces
trace_event() calls enabled and inserted in the appropriate places.

All display objects are rectangular, but you specify the dimensions of the rectangle. O
properties of display objects you should be aware of are:

• Display objects can be dynamic or static.Dynamicmeans the contents vary
depending on values in the trace event file and may change depending on
what point in the execution of the application you are looking at.Static
means the contents do not change. All display objects except the GridLabel
and the Ruler are dynamic.

• Display objects can be configurable or non-configurable.Configurable
means you define the parameters that determine the content of the display
object.Non-configurablemeans the display object has no parameters. All
display objects except the Column are configurable.

• Display objects can be textual or graphical.Textual means the contents
consist of words or numbers.Graphical means the contents are lines or
shapes, like a bar chart.

• Display objects can be scrollable or non-scrollable.Scrollablemeans the
display object acts as a movable window into the trace event file.

The basic types of display objects you can create are listed below and discussed in th
lowing sections.

GridLabel Static textual display object that contains a user-specified string
text and is used to label other display objects for clarity.

DataBox Dynamic display object that displays textual information, such as
trace event tag or the time the trace event occurred. Its main use
display data that does not lend itself to graphical representation.

Column Dynamic display object that does not display data itself but holds
scrollable graphical display objects: StateGraphs, EventGraphs, D
aGraphs, and Rulers. Its purpose is to group together related gra
cal display objects. It is the only non-configurable display object.

StateGraph Dynamic, scrollable, graphical display object that displays a sta
a bar and other trace events as a vertical line. It indicates the sta
and trace events’ relative positions in time since the trace start
This display object is usually used if you want to know when th
application enters and exits a particular user-defined state.

EventGraph Dynamic, scrollable, graphical display object that displays a tr
event as a vertical line and indicates its relative position in time sin
the trace started. Use this display object if you want to know wh
particular trace events occur.

DataGraph Dynamic, scrollable, graphical display object that displays a data
vertical line or bar and indicates its relative position in time since t
trace started. The height of the line or bar can be made proportio
to the value of a trace event argument or other data. Use this disp
7-9

NightTrace Manual

nt

hat
phs,

each
the

he

eds.
rt at
object to display relative values of arguments in the trace eve
record.

Ruler Static, scrollable, graphical display object resembling a Ruler t
displays the time. Rulers are used with StateGraphs, EventGra
and DataGraphs to show what time a trace event occurred.

Each display page can hold multiple instances of these display objects, usually with
display object uniquely configured. All display objects on all display pages reflect
same interval; display object type, size, configuration, and position have no bearing.

Display objects just created in Edit mode contain little useful information. T
illustrations of display objects in this chapter show the display objects in View mode.

Figure 7-6 contains a flowchart to help you decide what display objects suit your ne
To use the flowchart, decide what type of information you want to display. Then sta
the upper left-hand corner of the chart in the box labeled “Start.”
7-10

Creating Display Objects
Start

Do you
want to

display text
or graphics?

Text
Is the text
constant?

Yes
Use a

GridLabel

Graphics

No
Use a

DataBox

Create a
Column

Do you
want a time

Ruler?

Yes
Use a
Ruler

No

Do you
want to

graph states
or events?

Yes
Use a StateGraph

or Event Graph

No

Stop

No
Do you

want to graph
argument or
expression

values?

Yes
Use a

DataGraph
7-11

NightTrace Manual

n
tle
asier

ide a

n.
lay

rance

the
(for

n
ile.
Figure 7-6. Display Object Use Flowchart

GridLabel 7

Figure 7-7. GridLabel Examples

Clicking onCreate ➭ GridLabel lets you draw or create a GridLabel display object o
the grid. AGridLabel is a rectangle that contains a string of text. This text usually is a ti
or description of an adjacent display object on the grid and makes the display page e
to interpret. GridLabels can appear anywhere on the grid, but they cannot go ins
Column. You can put several GridLabels on a grid.

If the text is too long to fit into the GridLabel, the lower right corner of the box is filled i
If this occurs, you should resize the GridLabel. This is described in “Resizing Disp
Objects” on page 7-7. A newly created label contains the wordlabel . See “GridLabel”
on page 8-12 for more information.

GridLabels are static display objects. That is, a GridLabel does not change its appea
or contents depending on the trace event data.

In addition to specifying the text inside of the GridLabel, you also specify the color of
text (and background), the font of the text, and where in the box the text will appear
example, top vs. bottom). See Chapter 8 for more information.

DataBox 7

Figure 7-8. DataBox Examples

Clicking on Create ➭ DataBox lets you draw or create a DataBox display object o
the grid. ADataBoxis a rectangle that textually displays data from the trace event f
7-12

Creating Display Objects

umu-

hical
top

e bot-
long
uld
By
ing
-80,

veral

e
of

des a
lumn
Although the data is usually related to the last trace event received, it can also be a c
lative total or other manipulations of data in the trace event file.

DataBoxes are useful when you want to display data that does not lend itself to grap
representation, as shown in Figure 7-8. This figure shows three databoxes: the
DataBox contains the interrupt name, the middle contains the exception name and th
tom contains the syscall name. If the value is too large to fit into the DataBox (e.g., a
trace event tag), the lower right corner of the box is filled in. If this occurs, you sho
resize the DataBox. This is described in “Resizing Display Objects” on page 7-7.
default, numeric data is displayed in decimal integer. (For information about overrid
this default, see “Understanding Event-Map Files” on page 5-10, “format()” on page 9
and “get_format()” on page 9-79.) A newly created DataBox contains a0. See “DataBox”
on page 8-13 for more information.

DataBoxes can appear anywhere on the grid except within a Column. You can put se
DataBoxes on a grid.

Some examples of data that you can configure a DataBox to show are:

• Τhe tag of the last trace event before the current time (See Table 8-3.)

• Τhe NightTrace thread name of the last trace event before the current time
(See Table 8-3.)

• A particular argument logged with the last trace event before the current
time (See “arg()” on page 9-20.)

• Τhe total amount of time the application was in a particular state before the
current time (See “state_dur()” on page 9-57 and “sum()” on page 9-72.)

• Τhe number of times a particular trace event has occurred before the
current time (See “event_matches()” on page 9-33.)

• A string of characters generated by a format expression (See “format()” on
page 9-80.)

Column 7

Figure 7-9. Column Example

Clicking onCreate ➭ Column lets you draw or create a Column display object on th
grid. When aColumnis first created, it is an empty rectangle that does not display data
its own. A Column holds StateGraphs, EventGraphs, DataGraphs and Rulers. It provi
convenient way of associating these graphical display objects. Figure 7-9 shows a Co
after a Ruler has been added.
7-13

NightTrace Manual

sical
d, so

ulers
play

on a
ns,

grid
ion to

jects
een
For

Set-

g the
lid
ctive.
ts that

nt is

n in

s can
events
trace
Columns ensure that all graphical display objects within them have the same phy
starting point and ending point and the same time scale. Columns are not configure
the only variations between Columns are in their height and width.

Without a Column, you cannot put any StateGraphs, EventGraphs, DataGraphs or R
on your grid, so you must create a Column before you can create any of these dis
objects.

You can place a Column anywhere on the grid. You can put more than one Column
grid. This allows you to group related graphical objects together. All of the Colum
however, show the same interval and current time in View mode.

To hold a Ruler and any other graphical display object, Columns must be at least five
dots high. Wider Columns are recommended because they determine the resolut
which trace events can be displayed.

TIP:
On a monochrome display, make sure that you can differentiate among display ob
within a Column. The easiest way to do this is to leave at least one grid dot betw
display objects in a Column and to make the background color of the Column black.
more information on setting a Column’s background color, see “Default X-Resource
tings for ntrace” on page B-2.

StateGraph 7

Figure 7-10. StateGraph Example

A stateis bounded by two user-specified trace events, a starteventand an endevent. An
instance of a state is the period of time between the start event and end event, includin
start and end events themselves. AStateGraphrepresents an instance of a state as a so
horizontal bar that starts when the state is active and ends when the state is ina
Instances of the same state do not nest; thus, once a state becomes active, even
might normally satisfy the conditions for the start event are ignored until the end eve
encountered. You can create a StateGraph by clicking onCreate ➭ StateGraph and
drawing on the grid.

StateGraphs must be placed in a Column. A StateGraph and a Ruler are show
Figure 7-10.

A StateGraph can display trace events in a manner identical to an EventGraph. Thi
be useful for saving screen space or detecting when state start and state end trace
occur out of order. For example, the trace event lines can show multiple state start
events occurring before a state end trace event.

Some examples of information that StateGraphs can be used to display are:
7-14

Creating Display Objects

the
that
utton

rt and

y
nt-
uler

the
vent
• The times your application is executing a particular subroutine

• The differences in the execution speed of parallel threads

• The time spent in contention for resources

See “StateGraph” on page 8-14 for more information.

In View mode, to find out more information about a particular trace event, position
cursor on a trace event line and click once with mouse button 2. Information about
trace event is displayed in the message display area. You can also click with mouse b
2 on the start and end of a displayed state to obtain information about the state sta
state end trace events.

EventGraph 7

Figure 7-11. EventGraph Example

Clicking on Create ➭ EventGraph lets you draw or create an EventGraph displa
object on the grid. AnEventGraphrepresents trace events as a thin vertical line. Eve
Graphs must be placed in a Column. Figure 7-11 shows an EventGraph with a R
below it.

Some examples of information that an EventGraph can be used to display are:

• The times your application starts executing a particular subroutine

• The sequence of execution of various modules in your application

• The timing of the birth and death of child processes

See “EventGraph” on page 8-16 for more information.

In View mode, to find out more information about a particular trace event, position
cursor on the line and click once with mouse button 2. Information about that trace e
is displayed in the message display area.
7-15

NightTrace Manual

t on
rtical
two
data

hich
rom
ts in

r you
ore

s.

to be
with
splay

line
the
DataGraph 7

Figure 7-12. DataGraph Examples

Clicking onCreate ➭ DataGraph lets you draw or create a DataGraph display objec
the grid. DataGraphs must be placed in a Column. They represent data as either ve
lines or bars of varying height. In Figure 7-12 the same set of data is used to draw the
basic types of DataGraph. The top DataGraph is a line DataGraph, which shows the
as vertical lines of varying height. The bottom DataGraph is a bar DataGraph, w
consists of bars of varying height. The height of the line or bar is proportional to data f
the trace event file. This display object is usually used to display values of argumen
the trace event record.

Some examples of ways that a DataGraph can be used are:

• Track the value of an expression over time

• Identify when an application variable takes on an abnormally high or low
value

When choosing a size for your DataGraphs, make sure that they are high enough fo
to distinguish differences in data values. See “DataGraph” on page 8-17 for m
information.

TIP:
The higher you make the DataGraph, the easier it is to differentiate similar data point

In View mode, to find out about the trace event that caused the data value expression
evaluated at a particular point, position the cursor on the line (or bar) and click once
mouse button 2. Information about the trace event is displayed in the message di
area.

In View mode, to find out the value of a particular data item, position the cursor on the
(or bar) and click once with mouse button 3. The value of that data item is displayed in
message display area.
7-16

Creating Display Objects

11,
rval

a
ave
nce.

first

and a

vent-
ns”

ntents
reflect

the
ore
Ruler 7

Figure 7-13. Ruler Example

The interval control area, which is described in “The Interval Control Area” on page 6-
has three numeric fields that list the beginning, end, and current time for the time inte
displayed in the Column. ARulerdisplay object, however, displays this information in
graphical format on the grid. Like their physical counterparts, Ruler display objects h
major and minor hash marks to mark divisions, but the units are of time, not dista
They represent the amount of time since the first trace event was logged. Usually the
trace event is logged by thetrace_open_thread() call. You can create a Ruler by
clicking onCreate ➭ Ruler and drawing on the grid.

In addition to hash marks and numbers, Rulers can also have lost-data indicators
mark. The lost-data indicator is a reverse-video “L” and indicates the location in time
where NightTrace lost some data. For more information on trace event loss, see “Pre
ing Trace Events Loss” on page A-1. Marks are explained in “The Interval Push Butto
on page 6-8.

Rulers are static display objects. That is, they do not change their appearance or co
depending on the trace event data. They do change their appearance, however, to
the current interval being displayed.

A Ruler should be at least three grid dots high. In addition to determining the size of
Ruler, you also specify other aspects of the Ruler. See “Ruler” on page 8-19 for m
information.

Editing Operations 7

Figure 7-14. Edit Menu
7-17

NightTrace Manual

h is

t to
g or

and
ade

e

Editing operations are enabled only when the display page is in Edit mode, whic
selected by clicking on the radio button labeled “Edit” in the upper left-hand corner of the
display page.

Select All 7

Select Al l selects every display object on the grid. This is useful when you wan
perform some operation on every display object on the grid (for example, movin
deleting every display object).

Deselect All 7

Deselect All deselects every selected display object on the grid.

Delete 7

Delete deletes the selected display object(s).

File Operations 7

Figure 7-15. File Menu

The file operations are accessed through theFile operations menu shown in Figure 7-15.

Save 7

Save saves the current display page (including all local macros, qualified events,
qualified states) to the configuration file you opened. Thus, any changes you have m
since the lastSave operation will be saved. You can continue editing or viewing th
display after this operation. TheSave operation is disabled (dimmed) if this is a new
7-18

Creating Display Objects

e was

You

ings,

s.
display page, or you have not made any changes since the last time the display pag
saved. Instead, useSave As

Save As ... 7

Save As ... saves the current display page to a file other than the one you opened.
can continue editing or viewing the display after this operation.

Save As ... uses aFile Selection Dialog Box to prompt you for a file name. See
“The File Selection Dialog Box” on page 5-34 for more information.

Close 7

Close ends the current editing/viewing session, resets all field and radio button sett
and clears the message display area. If you have unsaved changes and you do aClose, a
Warning Dialog Box appears, reminding you that you may want to save you change
7-19

NightTrace Manual
7-20

-1
8-1
-4
-4
-4
-5

-6
7
8
-9
-9

-9
-9
0
10
-11
2
3

14
16
17
9

8
Configuring Display Objects

Overview . 8
Common Configuration Parameters .

Display Object Name . 8
Event List . 8
If-Expression . 8
Then-Expression. 8
CPU List . 8
PID List . 8-
TID List . 8-
Node List . 8
Foreground Color . 8
Background Color. 8-9
Font. 8
Text Justify . 8
Text Gravity . 8-1

Configuration Form Push Buttons . 8-
Specific Configuration Parameters . 8

GridLabel . 8-1
DataBox . 8-1
StateGraph . 8-
EventGraph. 8-
DataGraph. 8-
Ruler . 8-1

NightTrace Manual

the

with

dix B

the
8
Chapter 8Configuring Display Objects

8
8
8

Overview 8

Customizing a display object so that it displays only the information you want it to – in
way that you want it to – is calledconfiguring. Configuring is done with theConfigure
➭ Content menu item shown in Figure 8-1.

Figure 8-1. Configure Command Menu

Sections on configuring display objects discuss the following topics:

• Configuration parameters that are common to many display objects

• Operations you can perform on the configuration data

• Configuration parameters that are specific to each type of display object

NOTE

Columns are the only display objects that are not configurable.

Common Configuration Parameters 8

Different types of configuration parameters exist. Some parameters are concerned
how the information appears in the display object. These parameters areForeground
Color, Background Color, Font, Text Justify, Text Gravity, Fill Style, Event
Color, Lost Event Color, Mark Color, Maximum, andMinimum. For each config-
uration parameter that pertains to color, there is an equivalent X resource. See Appen
for more information.

Other parameters are concerned with determining the content of the information in
display objects. The parameter that does this isThen-Expression.
8-1

NightTrace Manual

rs in
rtain

in the
hat

mon
wing
s on
The last type of parameter is concerned with constraining the information that appea
the display object. These parameters act as filters, allowing only data that meets ce
criteria to be displayed. These parameters areEvent List, If-Expression, CPU List,
PID L is t , TID Lis t , St ar t - Eve n ts , En d- Eve n ts , Sta r t -Ex pr es s ion , and
End-Expression.

The configuration parameters are changed with the same editing methods used
interval control area. See “Field Editing” on page 6-16 for more information. Note t
you can typedefault or just a space in a field to get the default value.

Many of the display objects share common configuration parameters. These com
configuration parameters are summarized in Table 8-1 and discussed in the follo
sections. For more information about configuration parameters, refer to the section
configuring the object you are interested in.

Table 8-1. Common Configuration Parameters

Parameter Name Possible Values Meaning

Display Object
Name

Any alphanumeric string beginning with a
letter. Underscores are also
allowed. Spaces are not allowed.

The name of the display object.

Event List

Any meaningful combination of the fol-
lowing:

• ALL
• ALLUSER
• ALLKERNEL
• NONE
• 0, 1, 2, ..., 4095
• 4100, 4101, 4102, ..., 4300
• A comma-separated list of alphanu-

meric strings beginning with letters.
Underscores are also allowed. Spaces
are not allowed.

• All trace events are caught.
• All user trace events are caught.
• All kernel trace events are caught.
• No trace events are caught.
• Listed user trace events are caught.
• Listed kernel trace events are caught.
• The tags of trace events as specified in

an event-map file are caught. See “Un-
derstanding Event-Map Files” on page
5-10 for more information.

If-Expression Boolean expression Expression is any valid boolean C-like
expression, possibly containing functions
or macros. See Chapter 9 for more
information.

Then-
Expression

Numeric expression or string Expression is any valid C-like expression,
possibly containing functions or macros.
See Chapter 9 for more information.

CPU List
ALL All CPUs are listened to.

NONE No CPUs are listened to.

1, 2, 3, ... Listed CPUs are listened to.
8-2

Configuring Display Objects
PID List

Any meaningful combination of the fol-
lowing:

• ALL
• NONE
• 123’1, 456’1, 789’1, ...
• A comma-separated list of alphanu-

meric strings beginning with letters.
Underscores are also allowed. Spaces
are not allowed.

• All PIDs are listened to.
• No PIDs are listened to.
• Listed PIDs are listened to.
• The name of a process.

TID List

Any meaningful combination of the fol-
lowing:

• ALL
• NONE
• 123’1, 456’1, 789’1, ...
• A comma-separated list of alphanu-

meric strings beginning with letters.
Underscores are also allowed. Spaces
are not allowed.

• All TIDs are listened to.
• No TIDs are listened to.
• Listed TIDs are listened to.
• The name of a thread as specified in

the trace_open_thread() call.
See “trace_open_thread()” on page
3-9 for more information.

Node List

Any meaningful combination of the fol-
lowing:

• ALL
• NONE
• 0, 1, 4
• A comma-separated list of host names.

Spaces are not allowed.

• All nodes are listened to.
• No nodes are listened to.
• Listed node IDs are listened to.
• The name of a node/host.

Foreground
Color

The colors your X server supports, as spec-
ified in thergb.txt file.

The color used by the display object to
draw text and graphics in the foreground.

Background
Color

The colors your X server supports as, spec-
ified in thergb.txt file.

The color in the background that any text
and graphics are drawn over.

Font The fonts your X server supports or are
installed are in the directory
/usr/lib/X11/fonts .

The style of text characters that the display
object uses to display text.

Text Justify

Left Text is justified on the left side of the
display object.

Center Text is horizontally centered in the display
object.

Right Text is justified on the right side of the
display object.

Default Same asLeft, unless a different default is
specified in an X resource.

Table 8-1. Common Configuration Parameters (Cont.)

Parameter Name Possible Values Meaning
8-3

NightTrace Manual

is
ject

can
that
s is

trace
t.

e

Display Object Name 8

The “Display Object Name” is the field at the top of the configuration form. This field
not titled in the configuration form; instead, it is labeled with the name of a display ob
type, for example, DataBox. This parameter allows:

• You to name a particular display object configuration. (By default, newly
created display objects bear the nameunnamed_object .)

• You to later define X resources to apply to the named display object. See
Appendix B for more information.

• ntrace to reference the display object by name in error messages.

Event List 8

The Event List parameter restricts the trace events on which the display object
display information. The display object ignores any trace event IDs or trace event tags
are not on the trace event list. If an explicit list of trace event tags and trace event ID
specified, the tags and IDs on the list must be separated by commas. Only listed
events are examined. Qualified events and qualified states must not appear in the lis

If-Expression 8

The If-Expression parameter determines whether theThen-Expression parameter is
evaluated.If-Expressions are boolean, i.e., they should evaluate tofalse (0) or true
(non-zero). If theI f-Expression is true, theThen-Express ion is evaluated and
displayed in the display object (assuming all other criteria are met). If anIf-Expression
evaluates to false, theThen-Expression retains its last value. See Chapter 9 for mor

Text Gravity

Bottom Text sinks to the bottom of the display
object.

Center Text is vertically centered in the display
object.

Top Text floats to the top of the display object.

Default Same asBottom, unless a different default
is specified in an X resource.

Table 8-1. Common Configuration Parameters (Cont.)

Parameter Name Possible Values Meaning
8-4

Configuring Display Objects

t is

pter 9

d

s

information on expressions. Some examples of validIf-Expressions and their effect on
theThen-Expression are shown in Table 8-2.

Then-Expression 8

The Then-Expression parameter determines what the output of the display objec
when theIf-Expression is true. If theIf-Expression is false, theThen-Expression
retains its last value. The possible values are a numeric expression or string. See Cha
for more information on expressions. Some examples of validThen-Expressions and
their resulting values are shown in Table 8-3.

Table 8-2. Examples of If-Expressions

If-Expression Effect onThen-Expression

true Always evaluated

false Never evaluated

id() == 200 Evaluated if current trace event ID is equal to 200

id() < 200 Evaluated if current trace event ID is less than 200

pid() == 237’1 Evaluated if current global process ID is equal to 237’1

tid() == 895’3 Evaluated if current NightTrace thread ID is equal to 895’3

cpu() == 2 || cpu() == 4 Evaluated if current trace event occurred on CPU 2 or 4

Table 8-3. Examples of Then-Expressions

Then-Expression Resulting Value or Meaning

id() The current trace event ID

arg2() The second argument of the current trace event

format (“abc=%d”, arg1()) The string“abc=10” if arg1() is 10 (See “format()” on
page 9-80.)

get_string (curr_state, id()) The string from thecurr_state string table pointed to by
id() (if any)

get_string (event, id()) Depending on whether trace event ID returned byid() is in
the pre-definedevent table, either the trace event ID num-
ber or its corresponding trace event tag is displayed. (See
“get_string()” on page 9-75, “Pre-Defined String Tables” on
page 5-15, and “id()” on page 9-19.)

get_string (pid, pid()) Depending on whether the global process identifier returne
by pid() is in the pre-definedpid table, either the global
process identifier (PID) or its corresponding process name i
displayed. (See “get_string()” on page 9-75, “Pre-Defined
String Tables” on page 5-15, and “pid()” on page 9-22.)
8-5

NightTrace Manual

Us)
Us on
lay
n be
ers

,

s

-

he

t

CPU List 8

TheCPU List parameter determines from which logical central processing units (CP
the display object will process trace events. Only processes that run on one of the CP
this list will be considered by this display object. If the trace event sent to the disp
object is not on the list of CPUs, then the trace event is ignored. A CPU number ca
specified only if a NightTrace kernel trace event file is specified. Multiple CPU numb
must be separated by commas.

get_string (tid, tid()) Depending on whether the NightTrace thread identifier
returned bytid() is in the pre-definedtid table, either
the NightTrace thread identifier (TID) or its corresponding
thread name is displayed. (See “get_string()” on page 9-75
“Pre-Defined String Tables” on page 5-15, and “tid()” on
page 9-25.)

get_string (boolean, arg) If arg has the value 0,false is displayed. Otherwise,true
is displayed. (See “get_string()” on page 9-75 and
“Pre-Defined String Tables” on page 5-15)

get_string (syscall, arg) arg’s value is looked up in the pre-definedsyscall table,
and its corresponding system call name is displayed. (This i
meaningful only for NightTrace kernel trace event files.)
(See “get_string()” on page 9-75 and “Kernel String Tables”
on page 11-32.)

get_string (vector, arg) arg’s value is looked up in the pre-definedvector table,
and its corresponding interrupt or exception name is
displayed. (This is meaningful only for NightTrace kernel
trace event files.) (See “get_string()” on page 9-75 and “Ker
nel String Tables” on page 11-32.)

get_format (next_state, id()) The formatted string from thenext_state format table
indexed by the integer returned byid() (if any)

get_format (state_summary) Display statistics about state matches, the state gaps, and t
state durations. (See “get_format()” on page 9-79 and
“Pre-Defined Format Tables” on page 5-21.)

get_format(event_summary) Display statistics about trace event matches and trace even
gaps. (See “get_format()” on page 9-79 and “Pre-Defined
Format Tables” on page 5-21.)

get_format(event_arg_summary,3) Display statistics about trace event matches and their type
long third argument. (See “get_format()” on page 9-79 and
“Pre-Defined Format Tables” on page 5-21.)

get_format(event_arg_dbl_summary,1) Display statistics about trace event matches and their type
double first argument. (See “get_format()” on page 9-79 and
“Pre-Defined Format Tables” on page 5-21.)

Table 8-3. Examples of Then-Expressions (Cont.)

Then-Expression Resulting Value or Meaning
8-6

Configuring Display Objects

es
in a
cified
must

s. To
ossi-
he
PID List 8

A global process identifier(PID) is a 32-bit integer. It includes a 16-bit integerraw PID
and a 16-bit integerlightweight process identifier (LWPID). The syntax for specifying a
PID is:

raw_PID’ LWPID

The PID List parameter is the list of global process identifiers (PIDs) or process nam
that the display object will accept trace events from. If the trace event did not occur
process listed in this parameter, the trace event is ignored. If a number or name is spe
that is not a valid PID, a warning message is displayed. Multiple numbers and names
be separated by commas.

NOTE

Prior to Version 4.1,ntrace converted process identifiers into
process names duringPID List input verification for a display
object. For each process identifier in thePID List , ntrace
would try to find its associated process name and display that
name in thePID List. However, because multiple processes hav-
ing the same name may exist on a system, changing a process
identifier into a process name introduces the possibility that the
display object will accept trace events from undesirable processes.
Therefore,ntrace no longer performs this conversion.

For example, suppose that two processes nameda.out exist on a
particular system and that one has a PID of1234 and the other
has a PID of5678 . Further suppose that you wish to create a
StateGraph to display events only for PID1234 . Prior to Version
4.1, if you entered1234 in the PID List parameter,ntrace
would have converted that toa.out . As the events were being
analyzed, any event that had a PID of5678 would also have been
displayed by the StateGraph since a process nameda.out also
existed with a PID of5678 .

If the trace event file has multiple processes with the same name (for example,a.out),
specifying any one of the PIDs for that process selects all the PIDs of that proces
avoid this, it is recommended that all processes be given unique names. If that is not p
ble, you can isolate individual processes by including a PID restrict ion in t
I f-Expres sion parameter. For example, ifa.out includes PIDs 100’1, 200’1, and
300’1 and you want information only on PID 100’1, set thePID List parameter toa.out
and theIf-Expression to pid() == 100’1 . For more information about thepid
function, see “pid()” on page 9-22.
8-7

NightTrace Manual

is:

es
in a
cified
must

le,
the
iven
TID

more
TID List 8

A NightTrace thread identifier(TID) is a 32-bit integer. It includes a 16-bit integerraw
PID and a 16-bit integerC threador Ada task identifier. If neither C threads nor Ada tasks
are in use, then the 16-bit integer will always be zero. The syntax for specifying a TID

raw_PID’ task_id

or:

raw_PID’ thread_id

TheTID List parameter is the list of NightTrace thread identifiers (TIDs) or thread nam
that the display object will accept trace events from. If the trace event did not occur
thread listed in this parameter, the trace event is ignored. If a number or name is spe
that is not a valid TID, a warning message is displayed. Multiple numbers and names
be separated by commas.

NOTE

Prior to Version 4.1,ntrace converted thread identifiers into
thread names duringTID List input verification for a display
object. For each thread identifier in theTID List, ntrace would
try to find its associated thread name and display that name in the
TID List. However, because multiple threads having the same
name may exist on a system, changing a thread identifier into a
thread name introduces the possibility that the display object will
accept trace events from undesirable threads. Therefore,ntrace
no longer performs this conversion.

For example, suppose that two threads nameddaemon exist on a
particular system and that one has a TID of1234’1 and the other
has a TID of5678’3 . Further suppose that you wish to create a
StateGraph to display events only for TID1234’1 . Prior to Ver-
sion 4.1, if you entered1234’1 in the TID List parameter,
ntrace would have converted that todaemon. As the events
were being analyzed, any event that had a TID of5678’3 would
also have been displayed by the StateGraph since the threaddae-
monalso existed with a TID of5678’3 .

If the trace event fi le has mult iple threads with the same name (for examp
CHILD_THREAD), specifying any one of the TIDs with that thread name selects all of
TIDs with that thread name. To avoid this, it is recommended that all threads be g
unique names. If that is not possible, you can isolate individual threads by including a
restriction in theI f-Expression parameter. For example, ifCHILD_THREADincludes
TIDs 100’1, 200’1, and 300’1 and you want information only on TID 100’1, set theTID
List parameter toCHILD_THREADand theIf-Expression to tid() == 100’1 . For
more information on thread names, see “trace_open_thread()” on page 3-9. For
information about thetid function, see“tid()” on page 9-25.
8-8

Configuring Display Objects

hro-
nted
dis-

is-
this

valid
ted by

the
play

he
e

layed
ot of
les in

ct.
Node List 8

When NightTrace processes a trace file which was timestamped by an RCIM sync
nized tick clock, it internally assigns a node identifier to each node/host name represe
by a trace file. If no trace file was generated using the tick clock, this parameter is not
played.

TheNode List parameter is the list of node identifiers or node names from which the d
play object will accept trace events. If the trace event did not occur on a node listed in
parameter, the trace event is ignored. If a number or name is specified that is not a
node, a warning message is displayed. Multiple numbers and names must be separa
commas.

Foreground Color 8

TheForeground Color parameter determines the color of items in the foreground of
display object, which usually corresponds to the data being displayed by the dis
object.

Background Color 8

The Background Color parameter determines the color of the background of t
display object. Although this is notthe color used to display the data of interest in th
display object, it should be a color that contrasts well with theForeground Color. This
will make the data easier to read.

Font 8

TheFont parameter determines the font that characters in the display object are disp
in. Use of a small font size is recommended due to the fact that there is generally a l
data being displayed and a small font size will help conserve screen space. All examp
this manual use the default “fixed ” font that is supplied with all X servers.

Text Justify 8

TheText Justify parameter determines the justification of the text in the display obje
Figure 8-2 shows what each type of text-justification looks like.
8-9

NightTrace Manual

or
vity

ttons

on
is is
Figure 8-2. Left-, Center-, and Right-Justified Text

Text Gravity 8

TheText Gravity parameter determines whether text in the object will float to the top
sink to the bottom of the display object. Figure 8-3 shows what each type of text gra
looks like.

Figure 8-3. Top vs. Bottom Gravity

Configuration Form Push Buttons 8

Figure 8-4. Configuration Form Push Buttons

Figure 8-4 shows the push buttons that all display object configuration forms have.

After you have changed the configuration parameters of a display object, these bu
allow you to perform the following operations:

Apply (default) Validate the changes you made to the configurati
parameters, and apply the changes to the display object. Th
equivalent to pressing<Enter>.
8-10

Configuring Display Objects

lied

ing
Reset Discard all changes made since the lastApply or <Enter>.
This is equivalent to pressing<Esc>.

Restore Discard all changes made since the window was opened.

Close Discard any changes made since the last change was app
and close the window.

Specific Configuration Parameters 8

The following sections discuss the configuration parameters specific to the follow
display objects:

• GridLabel

• DataBox

• StateGraph

• EventGraph

• DataGraph

• Ruler
8-11

NightTrace Manual

er is
ox on
the

am-
that
GridLabel 8

Figure 8-5. GridLabel Configuration Form

The configuration form for the GridLabel is shown in Figure 8-5.

TheText parameter is the only parameter that is unique to GridLabels. This paramet
set to the characters that are to appear in the GridLabel. For example, if you want a b
the grid containing the phrase, “Flight Simulation Trace Screen,” you would enter
following text in theText field:

Flight Simulation Trace Screen

See “GridLabel” on page 7-12 for more information. See “Common Configuration Par
eters” on page 8-1 for descriptions of the common configuration parameters
GridLabels use.
8-12

Configuring Display Objects

the

the
DataBox 8

Figure 8-6. DataBox Configuration Form

The configuration form for the DataBox is shown in Figure 8-6.

NOTE

TheNode List field appears in this dialog only when NightTrace
is configured to use an RCIM to timestamp events.

A DataBox can be used as a counter. A counter is simply a DataBox that counts
occurrences of a particular trace event or other condition up to the current time.

For example, if you wanted to display the number of trace events occurring before
current time, set theEvent List parameter toALL and put the following expression in the
Then-Expression field:

event_matches()
8-13

NightTrace Manual

more
ee
fig-

he
8-5
This expression counts the number of times the criteria were met. See Chapter 9 for
information on expressions. See “DataBox” on page 7-12 for more information. S
“Common Configuration Parameters” on page 8-1 for descriptions of the common con
uration parameters that DataBoxes use.

To det ermine th e for mat of the data d isp layed in th e DataB ox, g i ve t
Then-Expression parameter an expression value. See “Then-Expression” on page
for examples.

StateGraph 8

Figure 8-7. StateGraph Configuration Form

The configuration form for the StateGraph is shown in Figure 8-7.

NOTE

TheNode List field appears in this dialog only when NightTrace
is configured to use an RCIM to timestamp events.
8-14

Configuring Display Objects

g the
a state

t are

This
-

Like

ce
tarted
nd
to be

the
, as

ion to
using
he

the

ion
that
A stateis bounded by two user-specified trace events, a starteventand an endevent. An
instance of a state is the period of time between the start event and end event, includin
start and end events themselves. Instances of the same state do not nest; thus, once
becomes active, events that might normally satisfy the conditions for the start even
ignored until the end event is encountered.

The Start-Events parameter determines the trace events that can begin a state.
parameter, along with theEnd-Events parameter, defines part of what will be consid
ered a state for this display object. These parameters work exactly like theEvent List
parameters discussed earlier in “Common Configuration Parameters” on page 8-1.
theEvent List, they each have correspondingIf-Expressions, calledStar t-Expres-
sion andEnd-Expression, respectively.

The Star t-Expression parameter determines the criteria, in addition to the start tra
event(s) and other criteria, which must be true before a state is considered to be s
(active). TheEnd-Expression parameter determines the criteria, in addition to the e
trace event(s) and other criteria, which must be true before a state is considered
ended (inactive).

The following semantic rules apply to these expressions. In these rules,defining state
means a state with trace events in theStart-Events andEnd-Events lists.

• Star t-Expression must not refer to its defining states. For example, it
must not callstate_dur() , state_gap() , start or end functions for
these states. (See “Multi-State Functions” on page 9-56, “Start Functions”
on page 9-34, and “End Functions” on page 9-45 for details.) Calling these
functions for these states would be an attempt to define a state based on its
own definition. Note thatStar t -Express io n may call all of these
functions for qualified states.

• End-Expression must not refer to its defining states. For example, it
must not callstate_dur() , state_gap() , or end functions for these
states. Calling these functions for these states would be an attempt to
define a state based on its own definition. Note thatEnd-Expression
may call start functions for these states because at this point in the state
definition, the state has started. Note also thatEnd-Expression may call
all of these functions for qualified states.

The Event Color parameter specifies the color of the vertical lines that represent
events in theEvent List. The possible values are the colors your X server supports
specified in thergb.txt file. See Appendix B for more information.

StateGraphs indicate when a state is active by drawing a rectangle in theForeground
Color that spans the time when the start state and end state criteria are met. In addit
drawing this state rectangle, StateGraphs can behave exactly like EventGraphs by
the Event List andIf-Expression fields. Trace event lines are superimposed on t
state rectangle, which is useful for diagnosing problems where the criteria for starting
state are met multiple times before the criteria for ending the state are met.

See “StateGraph” on page 7-14 for more information. See “Common Configurat
Parameters” on page 8-1 for descriptions of the common configuration parameters
StateGraphs use.
8-15

NightTrace Manual

ers
8-1.

be
e

EventGraph 8

Figure 8-8. EventGraph Configuration Form

The configuration form for the EventGraph is shown in Figure 8-8. All of the paramet
for the EventGraph are discussed in “Common Configuration Parameters” on page
See “EventGraph” on page 7-15 for more information.

NOTE

TheNode List field appears in this dialog only when NightTrace
is configured to use an RCIM to timestamp events.

The I f-Expression of an EventGraph determines whether a trace event should
graphed. If theIf-Expression is true, then a vertical line is drawn at the point in tim
that the trace event occurred.
8-16

Configuring Display Objects

oices
a

ed
DataGraph 8

Figure 8-9. DataGraph Configuration Form

The configuration form for the DataGraph is shown in Figure 8-9.

NOTE

TheNode List field appears in this dialog only when NightTrace
is configured to use an RCIM to timestamp events.

TheFill Style parameter determines the style of DataGraph created. The possible ch
areNone or Solid. If None is chosen, then a vertical line is drawn only at the time of
trace event. IfSolid is chosen, then all space to the right of a trace event will be fill
until the next trace event is encountered. Figure 8-10 shows the difference betweenSolid
andNone.
8-17

NightTrace Manual

ata-

r that

um

f the

the
in
time

ured
re.
Figure 8-10. Solid vs. No Fill

TheMaximum parameter determines what data value corresponds to the top of the D
Graph. The possible values are integers orCALC. If an integer is specified as the
maximum, any data that is equal to or greater than that value results in a line or ba
goes to the top of the DataGraph. IfCALCis specified, the maximum value will be the
greatest value found in the trace event run up to that point in time. Note that the maxim
can change as time increases and new maximums are encountered.

The Minimum parameter determines what data value corresponds to the bottom o
DataGraph. The possible values are integers orCALC. If an integer is specified as the
minimum, any data that is equal to or less than that value will result in no line or bar on
DataGraph. IfCALCis specified, the minimum value will be the smallest value found
the trace event run up to that point in time. Note that the minimum can change as
increases and new minimums are encountered.

Figure 8-11 shows the same set of data drawn in three DataGraphs, each config
differently. The data range in value from 1 to 6 and are shown at the bottom of the figu

• The top DataGraph is configured with a minimum of 2 and a maximum of
4. Notice that several bars reach the top of the DataGraph even though
they represent different data values; also note that there is no bar where
data has a value less than the minimum.

• The middle DataGraph is configured with a minimum of 0 and a maximum
of 10. Notice that the bars do not reach the top of the DataGraph and that
the differences between values are harder to discern.

• The bottom DataGraph is configured with a minimum of 0 and a maximum
set toCALC. Notice that the two occurrences of the maximum value of six
cause bars to reach the top of the DataGraph.

Figure 8-11. Maximum vs. Minimum Values
8-18

Configuring Display Objects

ion
that

in
s are

at
ur X
bout

me-
lers
See “DataGraph” on page 7-16 for more information. See “Common Configurat
Parameters” on page 8-1 for descriptions of the common configuration parameters
DataGraphs use.

Ruler 8

Figure 8-12. Ruler Configuration Form

The configuration form for the Ruler is shown in Figure 8-12.

TheLost Event Color parameter specifies the color of the reverse-video “L” (shown
Figure 8-13) that is placed on a Ruler where NightTrace lost data. The possible value
the colors your X server supports, as specified in thergb.txt file. See “Preventing
Trace Events Loss” on page A-1 for more information on lost data.

The Mark Color parameter specifies the color of the mark indicator, a triangle th
appears on the Ruler (shown in Figure 8-13). The possible values are the colors yo
server supports. See “The Interval Push Buttons” on page 6-8 for more information a
the mark.

Figure 8-13. Mark and Lost Event Markers

See “Ruler” on page 7-17 for more information. See “Common Configuration Para
ters” on page 8-1 for descriptions of the common configuration parameters that Ru
use.
8-19

NightTrace Manual
8-20

-1
-1
-2
-2
-4
-4
-5
-5
-6
-9
12
3
19
9
0

1
1

2
3
3
4
5
5
6
7
7
8
9
9

30
30

2
2

33
34
4

5
5
6
7

7
8
9
9
0

9
Using Expressions

Overview . 9
Expressions Menu . 9

Expression Dialog Boxes . 9
Expression Configuration Forms . 9

Expressions . 9
Operators . 9
Operands. 9
Constants . 9
Macros . 9
Functions . 9

Function Parameters . 9-
Function Terminology . 9-1
Trace Event Functions. 9-

id() . 9-1
arg() . 9-2
arg_dbl(). 9-2
num_args() . 9-2
pid() . 9-2
raw_pid() . 9-2
lwpid() . 9-2
thread_id() . 9-2
task_id() . 9-2
tid(). 9-2
cpu() . 9-2
offset() . 9-2
time() . 9-2
node_id() . 9-2
pid_table_name() . 9-2
tid_table_name() . 9-2
node_name(). 9-
process_name() . 9-
task_name() 9-31
thread_name() .. 9-32
Multi-Event Functions . 9-3

event_gap() . 9-3
event_matches() . 9-

State Functions . 9-
Start Functions . 9-3

start_id() . 9-3
start_arg() . 9-3
start_arg_dbl(). 9-3
start_num_args() . 9-3
start_pid() . 9-3
start_raw_pid() . 9-3
start_lwpid() . 9-3
start_thread_id() . 9-3
start_task_id() . 9-4

NightTrace Manual

1
1
2
2

44
44

5

6
7

58
58
9

0
0

1
2
3
3
4
4
5
6
6
7

67
68
68
69
69
70
70
1
1

start_tid() . 9-4
start_cpu() . 9-4
start_offset() . 9-4
start_time() . 9-4
start_node_id(). 9-43
start_pid_table_name() . 9-
start_tid_table_name(). 9-
start_node_name() . .. 9-45

End Functions. 9-4
end_id(). 9-46
end_arg() 9-47
end_arg_dbl(). 9-47
end_num_args(). 9-48
end_pid() 9-48
end_raw_pid(). 9-49
end_lwpid() .. 9-50
end_thread_id(). 9-51
end_task_id(). 9-51
end_tid() 9-52
end_cpu(). . .. 9-52
end_offset() .. 9-53
end_time() . .. 9-54
end_node_id(). 9-54
end_pid_table_name(). 9-55
end_tid_table_name(). 9-55
end_node_name() . .. 9-56

Multi-State Functions . 9-5
state_gap() . 9-5
state_dur() . .. 9-57
state_matches() . 9-
state_status() . 9-

Offset Functions. 9-5
offset_id() . 9-6
offset_arg() . 9-6
offset_arg_dbl() .. 9-61
offset_num_args(). 9-6
offset_pid() . 9-6
offset_raw_pid() . 9-6
offset_lwpid() . 9-6
offset_thread_id() . 9-6
offset_task_id(). 9-6
offset_tid() . 9-6
offset_cpu(). 9-6
offset_time() . 9-6
offset_node_id() . 9-6
offset_pid_table_name(). 9-
offset_tid_table_name() . 9-
offset_node_name() . 9-
offset_process_name() . 9-
offset_task_name() . 9-
offset_thread_name() . 9-

Summary Functions . 9-
min() . 9-7
max(). 9-7

2
2
3
3
74
75
5
7
9
0
1

83
avg() . 9-7
sum() . 9-7
min_offset() . 9-7
max_offset() . 9-7
summary_matches() . 9-

Format and Table Functions . 9-
get_string() . 9-7
get_item() . 9-7
get_format() . 9-7
format() . 9-8

Qualified Events . 9-8
Qualified States . 9-

NightTrace Manual

the
d

res-
and

a-
ide

, and
Con-
9
Chapter 9Using Expressions

9
9
9

Overview 9

NightTrace allows you to define macros, qualified events, and qualified states to aid in
analysis of trace data.Macros are named expressions provided for flexibility an
convenience.Qualified eventsprovide a mechanism for referencingtrace event configu-
rations within certainfunctions. Qualified statesprovide a mechanism for referencing
state configurationswithin certain functions as well.

TheExpressions menu contains menu items for creating these entities. See “Exp
sions Menu” on page 9-1, “Macros” on page 9-6, “Qualified Events” on page 9-81,
“Qualified States” on page 9-83 for further information.

Macros, qualified events, and qualified states are configured usingexpressionsin much
the same way asdisplay objects. See “Expressions” on page 9-4 for a complete explan
tion of expressions. In addition, Chapter 8 - Configuring Display Objects may prov
some helpful information as well.

Expressions Menu 9

Figure 9-1 shows the display page menu that lets you define macros, qualified events
qualified states. For more information about display pages, see “Understanding Page
figuration Files” on page 5-12.

Figure 9-1. Expressions Menu

Selecting any of these menu entries makes anExpression Dialog Box appear.
9-1

NightTrace Manual

a

e

nd
Expression Dialog Boxes 9

In the following text,exprstands for macro, qualified event, and qualified state.

Selecting any of the entries from theExpressions menu of the display page, makes
dialog box like the one in Figure 9-2 appear. Because allexprsare user-defined, the list of
exprsis empty at first.

Figure 9-2. Macro Dialog Box

The caption and the list presented are suitably different for each of theexprdialog boxes.

The push buttons in the dialog boxes perform the following functions:

Add Create a newexpron the current display page. The initial nam
of an expr is type_###, wheretype is macro , event , or
state and### is a three-digit number beginning with001 .

Delete Remove the selectedexpr

Configure (default) Reconfigure or rename the selectedexpr

Close Close the dialog box

Add, Delete, andClose need no further explanation. SelectingConfigure makes an
exprConfiguration Form appear.

Expression Configuration Forms 9

In the following text,exprstands for macro, qualified event, and qualified state.

The Configuration Forms forexprsare similar. Common features are described here a
specific features appear in later sections.
9-2

Using Expressions

on

lied

ed.
see

, how-
ve

ge
The push buttons on a Configuration Form appear in Figure 9-3.

Figure 9-3. Configuration Form Push Buttons

A description of these push buttons follows:

Apply (default) Validate the changes you made to the configurati
parameters, and apply the changes to the selectedexpr. This is
equivalent to pressing<Enter>.

Reset Discard all changes made since the lastApply or <Enter>.
This is equivalent to pressing<Esc>.

Restore Discard all changes made since the window was opened.

Close Discard any changes made since the last change was app
and close the window.

When you have finished editing the fields on theConfiguration Form, press<Enter>
or click onApply. This causes NightTrace to validate the data in each field you modifi
For general information on field editing and how NightTrace handles editing errors,
“Field Editing” on page 6-16.

exprsare saved in a configuration file but are global to all display pages. That is, if anexpr
is created in one display page, it may be used by any other display page. This means
ever, that if anexpr is saved in one configuration file but altered in another, you will ha
to reopen the file with the original copy of theexprand save the new value.

NightTrace prevents you from creating more than one definition for a specificexpr. If you
wish to change the definintion of anexpr, you must select it from the list ofexprsand
pressConfigure. See “Expression Dialog Boxes” on page 9-2 for details.

TIP:
If you want to shareexprsamong multiple display pages, create an empty display pa
and put onlyexprsin it. Any new exprsor changes to oldexprsshould be added to this
display page. It is also a good idea to place a DataBox on this page for everyexpr that you
add to this page. This way, you can see the current value of all yourexprsat a glance.
9-3

NightTrace Manual

ssions

r

ds. A
Expressions 9

NightTrace expressions can evaluate to numbers, strings, or boolean values. Expre
appear in the following places in NightTrace:

• Start-Expression andEnd-Expression on:

- Configuration Forms

- Summarize Forms

• If-Expression on:

- Configuration Forms

- Summarize Forms

- Search Forms

• Then-Expression on Configuration Forms

• Filter-Expression and Summary-Expression on the Summarize
Form

• Expression onMacro Dialog Boxes

• Values in format tables

• Calls to format() , get_string() , get_item() , get_format() ,
and summary functions.

Start-Expressions, End-Expressions, If-Expressions, andFilter-Expression
must evaluate to boolean values.

See Chapter 8 for more information on theConfiguration Form . See Chapter 10 for
more information on theSearch andSummarize Forms. See “Format Tables” on
page 5-18 for more information on format tables. Information onformat() ,
get_string() , get_item() , get_format() , and summary functions appears late
in this chapter.

NightTrace expressions are comprised of a combination of operators and operan
description of these operators and operands appears in the following sections.

Operators 9

Operators in NightTrace expressions include:

• Arithmetic operators:() , * , / , % (modulo), + , - , unary-

• Shift operators: <<, >>

• Bitwise operators: ~ (not), & (and), ^ (exclusive or), | (or)

• Logical operators:! (not),&& (and),|| (or)

• Relational operators:<, <=, >, >=, == (equivalence),!= (non-equivalence)
9-4

Using Expressions

lan-

als.

con-
:

• Conditional operator:expr? true_value: false_value

• Unary casts to data types (where the parentheses are required): e.g.,(int)

NightTrace operators follow the operator precedence rules of the C programming
guage.

Operands 9

Operand types are largely based on the C programming language and include:

• integer

• double-precision floating point

• character

• string

• boolean

Operands include:

• constants (see “Constants” on page 9-5)

• macro calls (see “Macros” on page 9-6)

• function calls (see “Functions” on page 9-9)

• qualified events (in functions only) (see “Qualified Events” on page 9-81)

• qualified states (in functions only) (see “Qualified States” on page 9-83)

Constants 9

Constants are one type of operand that may be used in NightTrace expressions.

Integer literals may be expressed using typical C language notation:

• decimal literals have no special prefix

• octal literals begin with a zero

• hexadecimal literals begin with a0x

Floating point literals are always considered to be double-precision floating point liter

String literals must be enclosed within double quotes; to include a double quote in a
stant string literal, precede the double quote with a backslash character. For example

“possible \”meltdown\” alert”

The case-insensitive boolean constantsTRUEand FALSE have the values1 and 0,
respectively.
9-5

NightTrace Manual

on-
Table 9-1 shows units and suffixes for time constants.

Macros 9

Macrosare named expressions provided for flexibility and convenience. Table 9-2 c
trasts functions and macros.

To create a macro definition, select theMacros menu item from theExpressions menu
(see “Expressions Menu” on page 9-1) to open theMacro Dialog Box (see “Expression
Dialog Boxes” on page 9-2 for details on this type of dialog).

Click the Add button on theMacro Dialog Box, select the macro from the list, and
click on theConfigure button to pop up aMacro Configuration Form, like the one
shown in Figure 9-4.

Table 9-1. Time Units and Constant Suffixes

Time Unit Suffix

Seconds (This is the default) s

Milliseconds (10e-3 seconds) ms

Microseconds (10e-6 seconds) us

Nanoseconds (10e-9 seconds) ns

Table 9-2. A Comparison of Functions and Macros

Functions Macros

Predefined User-defined

May have parameters Cannot have parameters

Invoked with parentheses around the
parameter list

Invoked with a dollar sign ($) before the
macro name
9-6

Using Expressions

s.

if
ed

e
n

two

king

f the
ing

ific
ch of
Figure 9-4. Macro Configuration Form

The following parameters can be configured for a macro.

MacroDefinition The name by which you refer to this macro in expression
Only references to this macro have a dollar sign ($) prefix.

Expression Any valid expression. You must not call macros recursively;
you try it, NightTrace issues an error, and you get undefin
r esu l t s . Ma cr o s m ust n o t c a l l th eform at() an d
get_format() functions. (For more information about thes
functions, see “format()” on page 9-80 and “get_format()” o
page 9-79.)

EXAMPLES

A StateGraph configuration is a good candidate for a macro because it has
expressions that are often related. For example, the following configuration

Start Events: FOO
Start Expression: arg1() == 0x1234 &&

(arg2() == 0 || arg3() > 700)
End Events: BAR
End Expression: arg1() == 0x1234 &&

(arg2() == 0 || arg3() > 700)

graphs states of trace eventFOOthrough trace eventBAR, where the arguments of
the trace events must meet an identical criteria to be considered interesting. Ma

arg1() == 0x1234 && (arg2() == 0 || arg3() > 700)

a macro would help ensure that you did not type the expression wrong in one o
fields, and it would allow you to change the expressions easily, even while view
the trace run in View mode. (You can leaveMacro Configuration Forms up
while in View mode.)

Another good use for a macro is for focusing many display objects on a spec
process group. For example, if a Column contained several EventGraphs, ea
which had the followingIf-Expression:

If Expression: process_name() == $task
9-7

NightTrace Manual

cess

tate-
then atask macro definition of

“foobar”

would cause all of the EventGraphs to show only trace events logged by pro
foobar . Changing the macro to

“bazonk”

would shift the focus of the EventGraphs from processfoobar to process
bazonk . This technique can also be used in DataBoxes, DataGraphs, and S
Graphs.
9-8

Using Expressions

is as

nt
t

of

of

he
Functions 9

Functions are pre-defined NightTrace entities that may be used in anexpression. Night-
Trace defines five classes of functions:

• Trace event functions (see “Trace Event Functions” on page 9-19)

• State functions (see “State Functions” on page 9-34)

• Offset functions (see “Offset Functions” on page 9-59)

• Summary functions (see “Summary Functions” on page 9-70)

• Format and table functions (see “Format and Table Functions” on page
9-75)

The general syntax of all function calls except summary, format, and table functions
follows. (Optional parts of function calls are in brackets ([]).)

function_name[([parameter])]

The prefix of thefunction_namedetermines its class as follows:

offset_ Functions with this prefix provide information about the trace eve
at the specifiedoffset(or ordinal trace event number). See “Offse
Functions” on page 9-59.

start_ Functions with this prefix provide information about the startevent
of themost recent instance of a state. See “Start Functions” on page
9-34.

end_ Functions with this prefix provide information about the endeventof
the last completed instance of a stateSee “End Functions” on page
9-45.

state_ Functions with this prefix provide information about instances
states. See “Multi-State Functions” on page 9-56.

event_ Functions with this prefix provide information about instances
events. See “Multi-Event Functions” on page 9-32.

Some functions can be optionally suffixed by a number,N, which specifies theNth argu-
ment logged with the trace event.N defaults to 1 and can have the values 1 through t
maximum argument logged. For example,

arg() Returns the first argument

arg1() Returns the first argument

arg3() Returns the third argument

start_id() Returns a trace event ID

state_gap() Returns the time between instances of a state
9-9

NightTrace Manual
Table 9-3 contains a complete list of functions.

Table 9-3. NightTrace Functions

Syntax Return Type

id [([QE])]
start_id [([QS])]

end_id [([QS])]
offset_id (offset_expr)

The integertrace event ID.

arg [N] [([QE])]
start_arg [N] [([QS])]

end_arg [N] [([QS])]
offset_arg [N] (offset_expr)

The integertrace event argument.

arg [N]_dbl [([QE])]
start_arg [N]_dbl [([QS])]

end_arg [N]_dbl [([QS])]
offset_arg [N]_dbl (offset_expr)

The double-precision floating pointtrace
event argument.

num_args [([QE])]
start_num_args [([QS])]

end_num_args [([QS])]
offset_num_args (offset_expr)

The number of arguments associated with a
trace event.

pid [([QE])]
start_pid [([QS])]

end_pid [([QS])]
offset_pid (offset_expr)

The integer global process identifier (PID)
associated with atrace event.

raw_pid [([QE])]
start_raw_pid [([QS])]

end_raw_pid [([QS])]
offset_raw_pid (offset_expr)

The integer process identifier (raw PID)
associated with atrace event.

lwpid [([QE])]
start_lwpid [([QS])]

end_lwpid [([QS])]
offset_lwpid (offset_expr)

The integer lightweight process identifier
(LWPID) associated with atrace event.

thread_id [([QE])]
start_thread_id [([QS])]

end_thread_id [([QS])]
offset_thread_id (offset_expr)

The integerthreadidentifier (thread ID)
associated with atrace event.

task_id [([QE])]
start_task_id [([QS])]

end_task_id [([QS])]
offset_task_id (offset_expr)

The integer Ada task identifier associated
with a trace event.

tid [([QE])]
start_tid [([QS])]

end_tid [([QS])]
offset_tid (offset_expr)

The integer NightTrace thread identifier
(TID) associated with atrace event.
9-10

Using Expressions
cpu [([QE])]
start_cpu [([QS])]

end_cpu [([QS])]
offset_cpu (offset_expr)

The integer logical CPU number associated
with a trace event. This function is only
valid when applied to events from Night-
Trace kernel trace event files.

time [([QE])]
start_time [([QS])]

end_time [([QS])]
offset_time (offset_expr)

The double-precision floating point time,
expressed in units of seconds, between a
trace eventand the earliest trace event from
all trace event filescurrently in use.

node_id [([QE])]
start_node_id [([QS])]

end_node_id [([QS])]
offset_node_id (offset_expr)

The internally-assigned integernode identi-
fier associated with atrace event.

pid_table_name [([QE])]
start_pid_table_name [([QS])]

end_pid_table_name [([QS])]
offset_pid_table_name (offset_expr)

The string describing the name of the pro-
cess identifier table (PID table) associated
with a trace event.

tid_table_name [([QE])]
start_tid_table_name [([QS])]

end_tid_table_name [([QS])]
offset_tid_table_name (offset_expr)

The string describing the name of the inter-
nally-assigned thread identifier table (TID
table) associated with atrace event.

node_name [([QE])]
start_node_name [([QS])]

end_node_name [([QS])]
offset_node_name (offset_expr)

The string describing the name of the sys-
tem from which atrace eventwas logged.

process_name [([QE])]
offset_process_name (offset_expr)

The string describing the name of the pro-
cess (PID) associated with atrace event.

task_name [([QE])]
offset_task_name (offset_expr)

The string describing the name of the Ada
taskassociated with atrace event.

thread_name [([QE])]
offset_thread_name (offset_expr)

The string describing the name of the C
threadassociated with atrace event.

event_gap [([QE])]
state_gap [([QS])]

The double-precision floating point time,
expresed in units of seconds, between the
instances of either atrace eventor astate.

state_dur [([QS])] The double-precision floating point time,
expressed in units of seconds, of an instance
of a state.

event_matches [([QE])]
state_matches [([QS])]

summary_matches [()]

The integer number of instances of either a
trace eventor astate.

state_status [([QS])] The boolean status of astate; true if thecur-
rent time lineis within an instance of the
state, false otherwise. See “state_status()”
on page 9-58 for important details.

Table 9-3. NightTrace Functions

Syntax Return Type
9-11

NightTrace Manual

nal.

or
e
func-
Function Parameters 9

If the function has aparameter, the parentheses are required. Otherwise, they are optio
For example,

arg2 No parentheses are required

arg2() No parentheses are required

arg2(GAK) Parentheses are required

In many functions, theparameteris optional because it can be inferred from context. F
trace event functions, thecurrent trace eventis used if the parameter is omitted. For stat
functions, the state being defined is used if the parameter is omitted. (Thus, state
tions without parameters can only be used inside state definitions). For example,

arg1() Operates on thecurrent trace event

arg1(my_event) Operates on thequalified eventmy_event

end_arg1() Operates on thelast completed instanceof
the state being defined and can only appear
within a state definition

end_arg1(my_state) Operates on thelast completed instanceof
thequalified statemy_state

offset [([QE])]
start_offset [([QS])]

end_offset [([QS])]

The integer ordinal number (offset) of a
trace event.

min_offset (expr)
max_offset (expr)

The integer ordinal number (offset) of a
trace eventassociated with a minimum or
maximum occurrence ofexpr.

min (expr)
max (expr)
avg (expr)
sum (expr)

The minimum, maximum, average, or sum
of exprvalues before thecurrent time. The
return type is that ofexpr.

get_string (table_name[, int_expr]) The character string associated with item
int_exprin string tabletable_name.

get_item (table_name,“ str_const”) The first integer item number associated
with stringstr_constin string table
table_name.

get_format (table_name[, int_expr]) The character string associated with item
int_exprin format tabletable_name.

format (“format_string” [, arg] ...) A character string to format and display.

Table 9-3. NightTrace Functions

Syntax Return Type
9-12

Using Expressions

e

e

f a

ied

ed

nd
ify

ome

n
n, a
This manual uses the following conventions for functionparameters:

QE A user-definedqualified event. If supplied, the function applies
to the specified qualified event. For more information, se
“Qualified Events” on page 9-81.

QS A user-definedqualified state. If supplied, the function applies
to the specified qualified state. For more information, se
“Qualified States” on page 9-83.

offset_expr An expression that evaluates to theoffset (or ordinal trace
event number) of a trace event.

expr Any valid NightTraceexpression(see “Expressions” on page
9-4).

table_name An unquoted character string that represents the name o
string tableor format table.

int_expr An integer expression that acts as an index into the specif
string tableor format table. int_exprmust either match an
identifying integer value in thetable_nametable, or the
table_nametable must have adefault item line.

str_const A string constant literal that acts as an index into the specifi
string table.

format_string A character string that contains literal characters a
conversion specifications. Conversion specifications mod
zero or moreargs.

arg An optional expression to be formatted and displayed.

NOTE

NightTrace does not perform semantic error checking of func-
tions. For example, if you ask for information about the second
argument, but no second argument was logged, NightTrace does
not tell you. Similarly, NightTrace does not flag the use of unde-
fined macros, qualified events, andqualified states; it temporarily
puts their names in the appropriateDialog Box in case you want
to configure these constructs. For more information about these
Dialog Boxes, see “Expression Dialog Boxes” on page 9-2.

Function Terminology 9

In order to use the NightTrace functions effectively, it may be useful to understand s
of the concepts associated with them.

Remember that anevent(or trace event) is either a user-defined point of interest in a
application’s source code or a predefined point of interest in the kernel. In additio
stateis defined to be a region of source code bounded by two events.
9-13

NightTrace Manual

e are
The descriptions of the functions further speak in terms of “instances” of states. Thes
best defined as:

current instance The instance of a state which has begun but
has not yet completed. Thus, thecurrent
time line would be positioned within the
region from the start event up to, but not
including, the end event.

last completed instance The most recent instance of a state that has
already completed. Thus, thecurrent time
line would be positioned either on, or after,
the end event for a state.

most recent instance If the current time lineis positioned within a
current instance of a state, then it is that
instance of the state. Otherwise, it is the last
completed instance of a state.

Figure 9-5 illustrates some of these concepts with a StateGraph.

Figure 9-5. Function Terminology Illustrated
9-14

Using Expressions
A more detailed example is illustrated in the following figure.

Figure 9-6. States and Events

The following discusses the terminology with respect totime line x, time line y, andtime
line z.

Assuming the current time line was positioned attime line x in Figure 9-6, the various
“instances” would be defined as:

current instance No current instance is defined since the cur-
rent time line is not positioned within any
instance of a state.

last completed instance Instance B

most recent instance Instance B. Since the current time line is not
positioned within any instance of a state, the
most recent instance is the last completed
instance.
9-15

NightTrace Manual

ons
The table below indicates the information returned by various NightTrace functi
assuming the current time line was positioned attime line x in Figure 9-6.

Assuming the current time line was positioned attime line y in Figure 9-6, the various
“instances” would be defined as:

current instance Instance C

last completed instance Instance B

most recent instance Instance C

state_status() false The current time line was not posi-
tioned within a current instance of a
state.

state_gap() ~0.000020 The dura tion of t ime in seconds
between event b and event c. The
function operated the most recent
instance of the state (instance B) and
the immediately preceding instance
(instance A).

state_dur() ~0.000090 The dura tion of t ime in seconds
between event c and event d. The
function operated on the last com-
pleted instance of the state (instance
B).

state_matches() 2 Assuming no other instances of the
state preceded those shown in the fig-
ure. The function operated on all com-
pleted instances of the state (which
included instances A and B).

start_time() ~1.631750 The time associated with event c. The
function operated on the most recent
instance of the state (instance B).

end_time() ~1.631840 The time associated with event d. The
function operated on the last com-
pleted instance of the state (instance
B).
9-16

Using Expressions

ons
The table below indicates the information returned by various NightTrace functi
assuming the current time line was positioned attime line y in Figure 9-6.

Assuming the current time line was positioned attime line z in Figure 9-6, the various
“instances” would be defined as:

current instance No current instance is defined since the cur-
rent time line is positioned on the endevent
of an instance of a state.

last completed instance Instance C

most recent instance Instance C

state_status() true The current time line was positioned
inside a current instance of the state
(instance C).

state_gap() ~0.000030 The dura tion of t ime in seconds
between event d and event e. The
function operated on the most recent
instance of the state (instance C) and
the immediately preceding instance
(instance B).

state_dur() ~0.000090 The dura tion of t ime in seconds
between event c and event d. The
function operated on the last com-
pleted instance of the state (instance
B).

state_matches() 2 Assuming no other instances of the
state preceded those shown in the fig-
ure. The function operated on all com-
pleted instances of the state (which
included instances A and B).

start_time() ~1.631870 The time associated with event e. The
function operated on the most recent
instance of the state (instance C).

end_time() ~1.631840 The time associated with event d. The
function operated on the last com-
pleted instance of the state (instance
B).
9-17

NightTrace Manual

ons
The table below indicates the information returned by various NightTrace functi
assuming the current time line was positioned attime line z in Figure 9-6.

state_status() false The current time line was not posi-
tioned inside a current instance of the
state. Even though the current time
line is positioned on an endevent of
the state (event f), the corresponding
instance is said to have already com-
pleted.

state_gap() ~0.000030 The dura tion of t ime in seconds
between event d and event e. The
function operated on the most recent
instance of the state (instance C) and
the immediately preceding instance
(instance B).

state_dur() ~0.000040 The dura tion of t ime in seconds
between event e and event f. The func-
tion operated on the last completed
instance of the state (instance C).

state_matches() 3 Assuming no other instances of the
state preceded those shown in the fig-
ure. The function operated on all com-
pleted instances of the state (which
included instances A, B, and C).

start_time() ~1.631870 The time associated with event e. The
function operated on the most recent
instance of the state (instance C).

end_time() ~1.631910 The time associated with event f. The
function operated on the last com-
pleted instance of the state (instance
C).
9-18

Using Expressions
Trace Event Functions 9

The trace event functions operate on either thequalified eventspecified to that function or
thecurrent trace event. They include the following:

• id()

• arg()

• arg_dbl()

• num_args()

• pid()

• raw_pid()

• lwpid()

• cpu()

• thread_id()

• task_id()

• tid()

• offset()

• time()

• node_id()

• pid_table_name()

• tid_table_name()

• node_name()

• process_name()

• task_name()

• thread_name()

• Multi-event functions

id() 9

DESCRIPTION

The id() function returns thetrace event IDof the last instance of atrace event.

SYNTAX

id [([QE])]
9-19

NightTrace Manual

h
If

n

0.

ent
t.
e

35,
PARAMETERS

QE A user-definedqualified event. If supplied, the function returns
the trace event IDof the last instance of the trace event whic
satisfies the conditions of the specified qualified event.
omitted, the function returns thetrace event IDof the current
trace event. For more information, see “Qualified Events” o
page 9-81.

RETURN TYPE

integer

SEE ALSO

“start_id()” on page 9-35, “end_id()” on page 9-46, and “offset_id()” on page 9-6

arg() 9

DESCRIPTION

Thearg() function returns the value of a particulartrace event argument.

SYNTAX

arg [N] [([QE])]

PARAMETERS

N Specifies theNth argument logged with thetrace event.
Defaults to 1.

QE A user-definedqualified event. If supplied, the function returns
the specified argument for the last instance of the trace ev
which satisfies the conditions for the specified qualified even
If omitted, the function returns the specified argument for th
current trace event. For more information, see “Qualified
Events” on page 9-81.

RETURN TYPE

integer

SEE ALSO

“arg_dbl()” on page 9-21, “num_args()” on page 9-21, “start_arg()” on page 9-
“end_arg()” on page 9-47, and “offset_arg()” on page 9-60.
9-20

Using Expressions

ent
t.
e

36,

ent
t.

he
arg_dbl() 9

DESCRIPTION

Thearg_dbl() function returns the value of a particulartrace event argument.

SYNTAX

arg [N]_dbl [([QE])]

PARAMETERS

N Specifies theNth argument logged with thetrace event.
Defaults to 1.

QE A user-definedqualified event. If supplied, the function returns
the specified argument for the last instance of the trace ev
which satisfies the conditions for the specified qualified even
If omitted, the function returns the specified argument for th
current trace event. For more information, see “Qualified
Events” on page 9-81.

RETURN TYPE

double-precision floating point

SEE ALSO

“arg()” on page 9-20, “num_args()” on page 9-21, “start_arg_dbl()” on page 9-
“end_arg_dbl()” on page 9-47, and “offset_arg_dbl()” on page 9-61.

num_args() 9

DESCRIPTION

The num_args() function returns the number of arguments logged with atrace
event.

SYNTAX

num_args [([QE])]

PARAMETERS

QE A user-definedqualified event. If supplied, the function returns
the number of arguments of the last instance of the trace ev
which satisfies the conditions for the specified qualified even
If omitted, the function returns the number of arguments of t
current trace event. For more information, see “Qualified
Events” on page 9-81.
9-21

NightTrace Manual

age

ce
d
n-

ge
RETURN TYPE

integer

SEE ALSO

“arg()” on page 9-20, “start_num_args()” on page 9-37, “end_num_args()” on p
9-48, and “offset_num_args()” on page 9-61.

pid() 9

DESCRIPTION

The pid() function returns the global process identifier (PID) associated with a
trace event.

NOTE

A global process identifier does not have the same meaning as the
typical operating system definition ofpid . A PID within Night-
Trace is a 32-bit integer value that contains the operating system
process identifier (raw PID) in the upper 16 bits and the light-
weight process identifier (LWPID) in the lower 16 bits. Consult
the_lwp_global_self(2) man page for more information.

SYNTAX

pid [([QE])]

PARAMETERS

QE A user-definedqualified event. If supplied, the function returns
the global process identifier of the last instance of the tra
event which satisfies the conditions for the specified qualifie
event. If omitted, the function returns the global process ide
tifier of the current trace event. For more information, see
“Qualified Events” on page 9-81.

RETURN TYPE

integer

SEE ALSO

“PID List” on page 8-7, “raw_pid()” on page 9-23, “lwpid()” on page 9-23,
“start_pid()” on page 9-37, “end_pid()” on page 9-48, and “offset_pid()” on pa
9-62.
9-22

Using Expressions

nt
t.

d

raw_pid() 9

DESCRIPTION

Theraw_pid() function returns the process identifier (raw PID) associated with a
trace event.

NOTE

A NightTrace raw PID has the same meaning as the typical oper-
ating system definition ofpid . See thegetpid(2) man page
for more information.

SYNTAX

raw_pid [([QE])]

PARAMETERS

QE A user-definedqualified event. If supplied, the function returns
the process identifier of the last instance of the trace eve
which satisfies the conditions for the specified qualified even
If omitted, the function returns the process identifier of thecur-
rent trace event. For more information, see “Qualified Events”
on page 9-81.

RETURN TYPE

integer

SEE ALSO

“PID List” on page 8-7, “pid()” on page 9-22, “ lwpid()” on page 9-23,
“star t_raw_pid() ” on page 9-38, “end_raw_pid() ” on page 9-49, an
“offset_raw_pid()” on page 9-63.

lwpid() 9

DESCRIPTION

The lwpid() function returns the lightweight process identifier (LWPID) associ-
ated with atrace event.

NOTE

See the_lwp_self(2) man page for more information.
9-23

NightTrace Manual

e
d
t

n

ich
If
SYNTAX

lwpid [([QE])]

PARAMETERS

QE A user-definedqualified event. If supplied, the function returns
the lightweight process identifier of the last instance of th
trace event which satisfies the conditions for the specifie
qualified event. If omitted, the function returns the lightweigh
process identifier of thecurrent trace event. For more infor-
mation, see “Qualified Events” on page 9-81.

RETURN TYPE

integer

SEE ALSO

“PID List” on page 8-7, “pid()” on page 9-22, “raw_pid()” on page 9-23,
“start_lwpid()” on page 9-39, “end_lwpid()” on page 9-50, and “offset_lwpid()” o
page 9-63.

thread_id() 9

DESCRIPTION

The thread_id() function returns thethreadidentifier associated with atrace
event.

NOTE

See thethr_self(3thread) man page for more information.

SYNTAX

thread_id [([QE])]

PARAMETERS

QE A user-definedqualified event. If supplied, the function returns
the thread identifier of the last instance of the trace event wh
satisfies the conditions for the specified qualified event.
omitted, the function returns the thread identifier of thecurrent
trace event. For more information, see “Qualified Events” on
page 9-81.

RETURN TYPE

integer
9-24

Using Expressions

d

nt
t.

e

d

ier
SEE ALSO

“start_thread_id()” on page 9-39, “end_thread_id()” on page 9-51, an
“offset_thread_id()” on page 9-64.

task_id() 9

DESCRIPTION

The task_id() function returns the Ada task identifier associated with atrace
event.

NOTE

This function is only meaningful for trace events logged by Ada
tasking programs.

SYNTAX

task_id [([QE])]

PARAMETERS

QE A user-definedqualified event. If supplied, the function returns
the Ada task identifier of the last instance of the trace eve
which satisfies the conditions for the specified qualified even
If omitted, the function returns the Ada task identifier of th
current trace event. For more information, see “Qualified
Events” on page 9-81.

RETURN TYPE

integer

SEE ALSO

“s tar t_ task_id() ” on pag e 9-40, “end_task_id() ” on p age 9-51, an
“offset_task_id()” on page 9-64.

tid() 9

DESCRIPTION

The tid() function returns the internally-assigned NightTrace thread identif
(TID) associated with atrace event.

SYNTAX

tid [([QE])]
9-25

NightTrace Manual

ce
d
d

d

r.

nt
t.
e

PARAMETERS

QE A user-definedqualified event. If supplied, the function returns
the NightTrace thread identifier of the last instance of the tra
event which satisfies the conditions for the specified qualifie
event. If omitted, the function returns the NightTrace threa
identifier of thecurrent trace event. For more information, see
“Qualified Events” on page 9-81.

RETURN TYPE

integer

SEE ALSO

“TID List” on page 8-8, “start_tid()” on page 9-41, “end_tid()” on page 9-52, an
“offset_tid()” on page 9-65.

cpu() 9

DESCRIPTION

Thecpu() function returns the logical CPU number associated with atrace event.
CPUs are logically numbered starting at 0 and monotonically increase thereafte

NOTE

This function is only valid when applied to events from Night-
Trace kernel trace event files.

SYNTAX

cpu [([QE])]

PARAMETERS

QE A user-definedqualified event. If supplied, the function returns
the logical CPU number of the last instance of the trace eve
which satisfies the conditions for the specified qualified even
If omitted, the function returns the logical CPU number of th
current trace event. For more information, see “Qualified
Events” on page 9-81.

RETURN TYPE

integer
9-26

Using Expressions

ge

d

ge

use.

ent
t.
SEE ALSO

“start_cpu()” on page 9-41, “end_cpu()” on page 9-52, and “offset_cpu()” on pa
9-66.

offset() 9

DESCRIPTION

Theoffset() function returns the ordinal number (offset) of a trace event.

SYNTAX

offset [([QE])]

PARAMETERS

QE A user-definedqualified event. If supplied, the function returns
the ordinal number (offset) of the last instance of the trace
event which satisfies the conditions for the specified qualifie
event. If omitted, the function returns the ordinal number (off-
set) of the current trace event. For more information, see
“Qualified Events” on page 9-81.

RETURN TYPE

integer

SEE ALSO

“start_offset()” on page 9-42, “end_offset()” on page 9-53, “min_offset()” on pa
9-73, and “max_offset()” on page 9-73.

time() 9

DESCRIPTION

The time() function returns the time, in seconds, associated with atrace event.
Times are relative to the earliest trace event from all trace data files currently in

SYNTAX

time [([QE])]

PARAMETERS

QE A user-definedqualified event. If supplied, the function returns
the time, in seconds, of the last instance of the trace ev
which satisfies the conditions for the specified qualified even
If omitted, the function returns the time, in seconds, of thecur-
9-27

NightTrace Manual

ge
” on

ch
If
rent trace event. For more information, see “Qualified Events”
on page 9-81.

RETURN TYPE

double-precision floating point

SEE ALSO

“event_gap()” on page 9-32, “start_time()” on page 9-42, “end_time()” on pa
9-54, “state_gap()” on page 9-57, “state_dur()” on page 9-57, and “offset_time()
page 9-66.

node_id() 9

DESCRIPTION

Thenode_id() function returns the internally-assignednode identifierassociated
with a trace event.

NOTE

Thenode_id() function is of limited usefulness since the node
identifier is an internally-assigned integer number assigned by
NightTrace. Thenode_name() function is more useful, as it
returns the name of the system from which a trace event was
logged. (See “node_name()” on page 9-30 for more information
about this function.)

SYNTAX

node_id [([QE])]

PARAMETERS

QE A user-definedqualified event. If supplied, the function returns
the node identifier of the last instance of the trace event whi
satisfies the conditions for the specified qualified event.
omitted, the function returns the node identifier of thecurrent
trace event. For more information, see “Qualified Events” on
page 9-81.

RETURN TYPE

integer
9-28

Using Expressions

d

d

the
e

-67,

d

SEE ALSO

“start_node_id()” on page 9-43, “offset_node_id()” on page 9-67, an
“end_node_id()” on page 9-54.

pid_table_name() 9

DESCRIPTION

The pid_table_name() function returns the name of the internally-assigne
NightTrace process identifier table (PID table) associated with atrace event.

SYNTAX

pid_table_name [([QE])]

PARAMETERS

QE A user-definedqualified event. If supplied, the function returns
the name of the process identifier table (PID table) of the last
instance of the trace event which satisfies the conditions for
specified qualified event. If omitted, the function returns th
name of the process identifier table (PID table) of thecurrent
trace event. For more information, see “Qualified Events” on
page 9-81.

RETURN TYPE

string

SEE ALSO

“start_pid_table_name()” on page 9-44, “offset_pid_table_name()” on page 9
and “end_pid_table_name()” on page 9-55

tid_table_name() 9

DESCRIPTION

The tid_table_name() function returns the name of the internally-assigne
NightTrace thread identifier table (TID table) associated with atrace event.

SYNTAX

tid_table_name [([QE])]

PARAMETERS

QE A user-definedqualified event. If supplied, the function returns
the name of the thread identifier table (TID table) of the last
9-29

NightTrace Manual

the
e

and

ce
d
of

and
instance of the trace event which satisfies the conditions for
specified qualified event. If omitted, the function returns th
name of the thread identifier table (TID table) of the current
trace event. For more information, see “Qualified Events” on
page 9-81.

RETURN TYPE

string

SEE ALSO

“start_tid_table_name()” on page 9-44, “offset_tid_table_name()” on page 9-68,
“end_tid_table_name()” on page 9-55

node_name() 9

DESCRIPTION

The node_name() function returns the name of the system from which atrace
eventwas logged.

SYNTAX

node_name [([QE])]

PARAMETERS

QE A user-definedqualified event. If supplied, the function returns
the name of system from which the last instance of the tra
event which satisfies the conditions for the specified qualifie
event was logged. If omitted, the function returns the name
the system from which thecurrent trace eventwas logged. For
more information, see “Qualified Events” on page 9-81.

RETURN TYPE

string

SEE ALSO

“start_node_name()” on page 9-45, “offset_node_name()” on page 9-68,
“end_node_name()” on page 9-56

process_name() 9

DESCRIPTION

Theprocess_name() function returns the name of the process (PID) associated
with a trace event.
9-30

Using Expressions

d
o-

the
d
e

SYNTAX

process_name [([QE])]

PARAMETERS

QE A user-definedqualified event. If supplied, the function returns
the name associated with thePID of the last instance of the
trace event which satisfies the conditions for the specifie
qualified event. If omitted, the function returns the name ass
ciated with thePID of thecurrent trace event. For more infor-
mation, see “Qualified Events” on page 9-81.

RETURN TYPE

string

SEE ALSO

“offset_process_name()” on page 9-69

task_name() 9

DESCRIPTION

The task_name() function returns the name of the task associated with atrace
event.

NOTE

This function is only meaningful for trace events which were
logged from Ada tasking programs.

SYNTAX

task_name [([QE])]

PARAMETERS

QE A user-definedqualified event. If supplied, the function returns
the name of the task associated with the last instance of
trace event which satisfies the conditions for the specifie
qualified event. If omitted, the function returns the name of th
task associated with thecurrent trace event. For more infor-
mation, see “Qualified Events” on page 9-81.

RETURN TYPE

string
9-31

NightTrace Manual

ace
d
ci-

ent
SEE ALSO

“offset_task_name()” on page 9-69

thread_name() 9

DESCRIPTION

The thread_name() function returns the thread name associated with atrace
event.

SYNTAX

thread_name [([QE])]

PARAMETERS

QE A user-definedqualified event. If supplied, the function returns
the thread name associated with the last instance of the tr
event which satisfies the conditions for the specified qualifie
event. If omitted, the function returns the thread name asso
ated with thecurrent trace event. For more information, see
“Qualified Events” on page 9-81.

RETURN TYPE

string

SEE ALSO

“offset_thread_name()” on page 9-70

Multi-Event Functions 9

Multi-event functions return information about one or more instances of an event:

• event_gap()

• event_matches()

event_gap() 9

DESCRIPTION

Theevent_gap() function returns the time, in seconds, between the most rec
occurrence of a specific event and its immediately preceeding occurrence.

SYNTAX

event_gap [([QE])]
9-32

Using Expressions

ents
t.
nt

ore

57.

he
r-

of
e.
PARAMETERS

QE A user-definedqualified event. If supplied, the function calclu-
ates the gap between the two most recent occurrences of ev
which satisfy the conditions of the specified qualilfied even
If omitted, the function calculates the gap between the curre
trace event and the event immediately preceeding it. For m
information, see “Qualified Events” on page 9-81.

RETURN TYPE

double-precision floating point

SEE ALSO

“time()” on page 9-27, “state_gap()” on page 9-57, and “state_dur()” on page 9-

event_matches() 9

DESCRIPTION

The event_matches() function returns the number of occurrences of atrace
eventon or before thecurrent time line.

SYNTAX

event_matches [([QE])]

PARAMETERS

QE A user-definedqualified event. If supplied, the function calcu-
lates the number of occurrences of events which satisfy t
conditions of the specified qualified event on or before the cu
rent time line. If omitted, the function calculates the number
occurrences of all events on or before the current time lin
For more information, see “Qualified Events” on page 9-81.

RETURN TYPE

integer

SEE ALSO

“summary_matches()” on page 9-74.
9-33

NightTrace Manual

her

fied,

hat
State Functions 9

In its simplest form, astateis a region of source code bounded by twotrace events. A
state definition requires the specification of two trace events, a starteventand an end
event, respectively. Additional conditions may be specified in a state definition to furt
constrain the state. The state functions include the following:

• Start functions

• End functions

• Multi-state functions

Start Functions 9

The start functions provide information about the starteventof themost recent instance of
a state. The state to which the start function applies is either thequalified statespecified to
the function, or the state being currently defined. Thus, if a qualfied state is not speci
start functions are only meaningful when used inexpressionsassociated within a state def-
inition. In addition, start functions should not be used in a recursive manner in aStart
Expression ; a start function should not be specified in aStar t Expression that
applies to the state definition containing thatStart Expression. Conversely, anEnd
Expression may include start functions that apply to the state definition containing t
End Expression.

NOTE

Start functions provide information about themost recent instance
of a state, whereas end functions (see “End Functions” on page
9-45) provide information about thelast completed instance of a
state.

Start functions include the following:

• start_id()

• start_arg()

• start_arg_dbl()

• start_num_args()

• start_pid()

• start_raw_pid()

• start_thread_id()

• start_task_id()

• start_tid()

• start_lwpid()

• start_cpu()
9-34

Using Expressions

y
at

ge
• start_offset()

• start_time()

• start_node_id()

• start_pid_table_name()

• start_tid_table_name()

• start_node_name()

start_id() 9

DESCRIPTION

Thestart_id() function returns thetrace event IDof the starteventof themost
recent instance of a state.

SYNTAX

start_id [([QS])]

PARAMETERS

QS A user-definedqualified state. If supplied, it specifies the state
to which the function applies. If omitted, the function ma
only be used within a state definition and then applies to th
state. For more information, see “Qualified States” on pa
9-83.

RETURN TYPE

integer

SEE ALSO

“id()” on page 9-19, “end_id()” on page 9-46, and “offset_id()” on page 9-60.

start_arg() 9

DESCRIPTION

Thestart_arg() function returns the value of a particulartrace event argument
associated with the starteventof themost recent instance of a state.

SYNTAX

start_arg [N] [([QS])]
9-35

NightTrace Manual

y
at

ge

ge

y
at

ge

ge
PARAMETERS

N Specifies theNth argument logged with the startevent.
Defaults to 1.

QS A user-definedqualified state. If supplied, it specifies the state
to which the function applies. If omitted, the function ma
only be used within a state definition and then applies to th
state. For more information, see “Qualified States” on pa
9-83.

RETURN TYPE

integer

SEE ALSO

“arg()” on page 9-20, “start_arg_dbl()” on page 9-36, “start_num_args()” on pa
9-37, “end_arg()” on page 9-47, and “offset_arg()” on page 9-60.

start_arg_dbl() 9

DESCRIPTION

The start_arg_dbl() function returns the value of a particulartrace event
argumentassociated with the starteventof themost recent instance of a state.

SYNTAX

start_arg [N]_dbl [([QS])]

PARAMETERS

N Specifies theNth argument logged with the startevent.
Defaults to 1.

QS A user-definedqualified state. If supplied, it specifies the state
to which the function applies. If omitted, the function ma
only be used within a state definition and then applies to th
state. For more information, see “Qualified States” on pa
9-83.

RETURN TYPE

double-precision floating point

SEE ALSO

“arg_dbl()” on page 9-21, “start_arg()” on page 9-35, “start_num_args()” on pa
9-37, “end_arg_dbl()” on page 9-47, and “offset_arg_dbl()” on page 9-61.
9-36

Using Expressions

ed

y
at

ge

age
start_num_args() 9

DESCRIPTION

The start_num_args() function returns the number of arguments associat
with the starteventof themost recent instance of a state.

SYNTAX

start_num_args [([QS])]

PARAMETERS

QS A user-definedqualified state. If supplied, it specifies the state
to which the function applies. If omitted, the function ma
only be used within a state definition and then applies to th
state. For more information, see “Qualified States” on pa
9-83.

RETURN TYPE

integer

SEE ALSO

“start_arg()” on page 9-35, “num_args()” on page 9-21, “end_num_args()” on p
9-48, and “offset_num_args()” on page 9-61.

start_pid() 9

DESCRIPTION

The start_pid() function returns the global process identifier (PID) associated
with the starteventof themost recent instance of a state.

NOTE

A global process identifier does not have the same meaning as the
typical operating system definition ofpid . A PID within Night-
Trace is a 32-bit integer value that contains the operating system
process identifier (raw PID) in the upper 16 bits and the light-
weight process identifier (LWPID) in the lower 16 bits. Consult
the_lwp_global_self(2) man page for more information.

SYNTAX

start_pid [([QS])]
9-37

NightTrace Manual

y
at

ge

y
at

ge
PARAMETERS

QS A user-definedqualified state. If supplied, it specifies the state
to which the function applies. If omitted, the function ma
only be used within a state definition and then applies to th
state. For more information, see “Qualified States” on pa
9-83.

RETURN TYPE

integer

SEE ALSO

“pid()” on page 9-22, “raw_pid()” on page 9-23, “lwpid()” on page 9-23,
“end_pid()” on page 9-48, and “offset_pid()” on page 9-62.

start_raw_pid() 9

DESCRIPTION

Thestart_raw_pid() function returns the process identifier (raw PID) associ-
ated with the starteventof themost recent instance of a state.

NOTE

A NightTrace raw PID has the same meaning as the typical oper-
ating system definition ofpid . See thegetpid(2) man page
for more information.

SYNTAX

start_raw_pid [([QS])]

PARAMETERS

QS A user-definedqualified state. If supplied, it specifies the state
to which the function applies. If omitted, the function ma
only be used within a state definition and then applies to th
state. For more information, see “Qualified States” on pa
9-83.

RETURN TYPE

integer

SEE ALSO

“pid()” on page 9-22, “raw_pid()” on page 9-23, “lwpid()” on page 9-23,
“end_pid()” on page 9-48, and “offset_pid()” on page 9-62.
9-38

Using Expressions

y
at

ge
start_lwpid() 9

DESCRIPTION

Thestart_lwpid() function returns the lightweight process identifier (LWPID)
associated with the starteventof themost recent instance of a state.

NOTE

See the_lwp_self(2) man page for more information.

SYNTAX

start_lwpid [([QS])]

PARAMETERS

QS A user-definedqualified state. If supplied, it specifies the state
to which the function applies. If omitted, the function ma
only be used within a state definition and then applies to th
state. For more information, see “Qualified States” on pa
9-83.

RETURN TYPE

integer

SEE ALSO

“pid()” on page 9-22, “raw_pid()” on page 9-23, “lwpid()” on page 9-23,
“end_pid()” on page 9-48, and “offset_pid()” on page 9-62.

start_thread_id() 9

DESCRIPTION

The start_thread_id() function returns thethread identifier associated with
the starteventof themost recent instance of a state.

NOTE

See thethr_self(3thread) man page for more information.

SYNTAX

start_thread_id [([QS])]
9-39

NightTrace Manual

y
at

ge

h

y
at

ge

on
PARAMETERS

QS A user-definedqualified state. If supplied, it specifies the state
to which the function applies. If omitted, the function ma
only be used within a state definition and then applies to th
state. For more information, see “Qualified States” on pa
9-83.

RETURN TYPE

integer

SEE ALSO

“ th rea d_ id() ” on pa ge 9 -24 , “en d_ th rea d_ id() ” on p age 9-51 , an d
“offset_thread_id()” on page 9-64.

start_task_id() 9

DESCRIPTION

The start_task_id() function returns the Ada task identifier associated wit
the starteventof themost recent instance of a state.

NOTE

This function is only meaningful for trace events logged by Ada
tasking programs.

SYNTAX

start_task_id [([QS])]

PARAMETERS

QS A user-definedqualified state. If supplied, it specifies the state
to which the function applies. If omitted, the function ma
only be used within a state definition and then applies to th
state. For more information, see “Qualified States” on pa
9-83.

RETURN TYPE

integer

SEE ALSO

“task_id()” on page 9-25, “end_task_id()” on page 9-51, and “offset_task_id()”
page 9-64.
9-40

Using Expressions

d

y
at

ge

he
-

y
at
start_tid() 9

DESCRIPTION

The start_tid() function returns the internally-assigned NightTrace threa
identifier (TID) associated with the starteventof themost recent instance of a state.

SYNTAX

start_tid [([QS])]

PARAMETERS

QS A user-definedqualified state. If supplied, it specifies the state
to which the function applies. If omitted, the function ma
only be used within a state definition and then applies to th
state. For more information, see “Qualified States” on pa
9-83.

RETURN TYPE

integer

SEE ALSO

“tid()” on page 9-25, “end_tid()” on page 9-52, and “offset_tid()” on page 9-65.

start_cpu() 9

DESCRIPTION

The start_cpu() function returns the logical CPU number associated with t
starteventof themost recent instance of a state. CPUs are logically numbered start
ing at 0 and monotonically increase thereafter.

NOTE

This function is only valid when applied to events from Night-
Trace kernel trace event files.

SYNTAX

start_cpu [([QS])]

PARAMETERS

QS A user-definedqualified state. If supplied, it specifies the state
to which the function applies. If omitted, the function ma
only be used within a state definition and then applies to th
9-41

NightTrace Manual

ge

6.

y
at

ge

tart
e

state. For more information, see “Qualified States” on pa
9-83.

RETURN TYPE

integer

SEE ALSO

“cpu()” on page 9-26, “end_cpu()” on page 9-52, and “offset_cpu()” on page 9-6

start_offset() 9

DESCRIPTION

The start_offset() function returns the ordinal number (offset) of the start
eventof themost recent instance of a state.

SYNTAX

start_offset [([QS])]

PARAMETERS

QS A user-definedqualified state. If supplied, it specifies the state
to which the function applies. If omitted, the function ma
only be used within a state definition and then applies to th
state. For more information, see “Qualified States” on pa
9-83.

RETURN TYPE

integer

SEE ALSO

“offset()” on page 9-27 and “end_offset()” on page 9-53.

start_time() 9

DESCRIPTION

Thestart_time() function returns the time, in seconds, associated with the s
eventof themost recent instance of a state. Times are relative to the earliest trac
event from all trace data files currently in use.

SYNTAX

start_time [([QS])]
9-42

Using Expressions

y
at

ge

7,

y
at

ge

()”
PARAMETERS

QS A user-definedqualified state. If supplied, it specifies the state
to which the function applies. If omitted, the function ma
only be used within a state definition and then applies to th
state. For more information, see “Qualified States” on pa
9-83.

RETURN TYPE

double-precision floating point

SEE ALSO

“time()” on page 9-27, “end_time()” on page 9-54, “state_gap()” on page 9-5
“state_dur()” on page 9-57, and “offset_time()” on page 9-66.

start_node_id() 9

DESCRIPTION

The start_node_id() function returns the internally-assignednode identifier
associated with the starteventof themost recent instance of a state.

SYNTAX

start_node_id [([QS])]

PARAMETERS

QS A user-definedqualified state. If supplied, it specifies the state
to which the function applies. If omitted, the function ma
only be used within a state definition and then applies to th
state. For more information, see “Qualified States” on pa
9-83.

RETURN TYPE

integer

SEE ALSO

“node_id()” on page 9-28, “offset_node_id()” on page 9-67, and “end_node_id
on page 9-54
9-43

NightTrace Manual

-

y
at

ge

and

-

y
at

ge
start_pid_table_name() 9

DESCRIPTION

The start_pid_table_name() function returns the name of the inter
nally-assigned NightTrace process identifier table (PID table) associated with the
starteventof themost recent instance of a state.

SYNTAX

start_pid_table_name [([QS])]

PARAMETERS

QS A user-definedqualified state. If supplied, it specifies the state
to which the function applies. If omitted, the function ma
only be used within a state definition and then applies to th
state. For more information, see “Qualified States” on pa
9-83.

RETURN TYPE

string

SEE ALSO

“pid_table_name()” on page 9-29, “offset_pid_table_name()” on page 9-67,
“end_pid_table_name()” on page 9-55

start_tid_table_name() 9

DESCRIPTION

The start_tid_table_name() function returns the name of the inter
nally-assigned NightTrace thread identifier table (TID table) associated with the
starteventof themost recent instance of a state.

SYNTAX

start_tid_table_name [([QS])]

PARAMETERS

QS A user-definedqualified state. If supplied, it specifies the state
to which the function applies. If omitted, the function ma
only be used within a state definition and then applies to th
state. For more information, see “Qualified States” on pa
9-83.
9-44

Using Expressions

nd

h

y
at

ge

nd

eci-
state
RETURN TYPE

string

SEE ALSO

“tid_table_name()” on page 9-29, “offset_tid_table_name()” on page 9-68, a
“end_tid_table_name()” on page 9-55

start_node_name() 9

DESCRIPTION

The start_node_name() function returns the name of the system from whic
the starteventof themost recent instance of a statewas logged.

SYNTAX

start_node_name [([QS])]

PARAMETERS

QS A user-definedqualified state. If supplied, it specifies the state
to which the function applies. If omitted, the function ma
only be used within a state definition and then applies to th
state. For more information, see “Qualified States” on pa
9-83.

RETURN TYPE

string

SEE ALSO

“node_name()” on page 9-30, “offset_node_name()” on page 9-68, a
“end_node_name()” on page 9-56

End Functions 9

The end functions provide information about the endeventof the last completed instance
of a state. Thestateto which the end function applies is either thequalified statespecified
to the function, or the state being currently defined. Thus, if a qualfied state is not sp
fied, end functions are only meaningful when used in expressions associated within a
definition.

NOTE

End functions provide information about thelast completed
instance of a state, whereas start functions (see “Start Functions”
on page 9-34) provide information about themost recent instance
of a state.
9-45

NightTrace Manual

y
at

ge
End functions include:

• end_id()

• end_arg()

• end_arg_dbl()

• end_num_args()

• end_pid()

• end_raw_pid()

• end_lwpid()

• end_thread_id()

• end_task_id()

• end_tid()

• end_cpu()

• end_offset()

• end_time()

• end_node_id()

• end_pid_table_name()

• end_tid_table_name()

• end_node_name()

end_id() 9

DESCRIPTION

Theend_id() function returns thetrace event IDassociated with the endeventof
the last completed instance of a state.

SYNTAX

end_id [([QS])]

PARAMETERS

QS A user-definedqualified state. If supplied, it specifies the state
to which the function applies. If omitted, the function ma
only be used within a state definition and then applies to th
state. For more information, see “Qualified States” on pa
9-83.

RETURN TYPE

integer
9-46

Using Expressions

t.

y
at

ge

7,

t.
SEE ALSO

“id()” on page 9-19, “start_id()” on page 9-35, and “offset_id()” on page 9-60.

end_arg() 9

DESCRIPTION

The end_arg() function returns the value of a particulartrace event argument
associated with the endeventof the last completed instance of a state.

SYNTAX

end_arg [N] [([QS])]

PARAMETERS

N Specifies theNth argument logged with the trace even
Defaults to 1.

QS A user-definedqualified state. If supplied, it specifies the state
to which the function applies. If omitted, the function ma
only be used within a state definition and then applies to th
state. For more information, see “Qualified States” on pa
9-83.

RETURN TYPE

integer

SEE ALSO

“arg()” on page 9-20, “start_arg()” on page 9-35, “end_arg_dbl()” on page 9-4
“end_num_args()” on page 9-48, and “offset_arg()” on page 9-60.

end_arg_dbl() 9

DESCRIPTION

The end_arg_dbl() function returns the value of a particulartrace event argu-
mentassociated with the endeventof the last completed instance of a state.

SYNTAX

end_arg [N]_dbl [([QS])]

PARAMETERS

N Specifies theNth argument logged with the trace even
Defaults to 1.
9-47

NightTrace Manual

y
at

ge

47,

ith

y
at

ge

age
QS A user-definedqualified state. If supplied, it specifies the state
to which the function applies. If omitted, the function ma
only be used within a state definition and then applies to th
state. For more information, see “Qualified States” on pa
9-83.

RETURN TYPE

double-precision floating point

SEE ALSO

“arg_dbl()” on page 9-21, “start_arg_dbl()” on page 9-36, “end_arg()” on page 9-
“end_num_args()” on page 9-48, and “offset_arg_dbl()” on page 9-61.

end_num_args() 9

DESCRIPTION

Theend_num_args() function returns the number of arguments associated w
the endeventof the last completed instance of a state.

SYNTAX

end_num_args [([QS])]

PARAMETERS

QS A user-definedqualified state. If supplied, it specifies the state
to which the function applies. If omitted, the function ma
only be used within a state definition and then applies to th
state. For more information, see “Qualified States” on pa
9-83.

RETURN TYPE

integer

SEE ALSO

“num_args()” on page 9-21, “start_num_args()” on page 9-37, “end_arg()” on p
9-47, and “offset_num_args()” on page 9-61.

end_pid() 9

DESCRIPTION

The end_pid() function returns the global process identifier (PID) associated
with the endeventof the last completed instance of a state.
9-48

Using Expressions

y
at

ge
NOTE

A global process identifier does not have the same meaning as the
typical operating system definition ofpid . A PID within Night-
Trace is a 32-bit integer value that contains the operating system
process identifier (raw PID) in the upper 16 bits and the light-
weight process identifier (LWPID) in the lower 16 bits. Consult
the_lwp_global_self(2) man page for more information.

SYNTAX

end_pid [([QS])]

PARAMETERS

QS A user-definedqualified state. If supplied, it specifies the state
to which the function applies. If omitted, the function ma
only be used within a state definition and then applies to th
state. For more information, see “Qualified States” on pa
9-83.

RETURN TYPE

integer

SEE ALSO

“pid()” on page 9-22, “raw_pid()” on page 9-23, “lwpid()” on page 9-23,
“start_pid()” on page 9-37, and “offset_pid()” on page 9-62.

end_raw_pid() 9

DESCRIPTION

Theend_raw_pid() function returns the process identifier (raw PID) associated
with the endeventof the last completed instance of a state.

NOTE

A NightTrace raw PID has the same meaning as the typical oper-
ating system definition ofpid . See thegetpid(2) man page
for more information.

SYNTAX

end_raw_pid [([QS])]
9-49

NightTrace Manual

y
at

ge

y
at

ge
PARAMETERS

QS A user-definedqualified state. If supplied, it specifies the state
to which the function applies. If omitted, the function ma
only be used within a state definition and then applies to th
state. For more information, see “Qualified States” on pa
9-83.

RETURN TYPE

integer

SEE ALSO

“pid()” on page 9-22, “raw_pid()” on page 9-23, “lwpid()” on page 9-23,
“start_pid()” on page 9-37, and “offset_pid()” on page 9-62.

end_lwpid() 9

DESCRIPTION

The end_lwpid() function returns the lightweight process identifier (LWPID)
associated with the endeventof the last completed instance of a state.

NOTE

See the_lwp_self(2) man page for more information.

SYNTAX

end_lwpid [([QS])]

PARAMETERS

QS A user-definedqualified state. If supplied, it specifies the state
to which the function applies. If omitted, the function ma
only be used within a state definition and then applies to th
state. For more information, see “Qualified States” on pa
9-83.

RETURN TYPE

integer

SEE ALSO

“pid()” on page 9-22, “raw_pid()” on page 9-23, “lwpid()” on page 9-23,
“start_pid()” on page 9-37, and “offset_pid()” on page 9-62.
9-50

Using Expressions

y
at

ge

d

e

end_thread_id() 9

DESCRIPTION

Theend_thread_id() function returns thethreadidentifier associated with the
endeventof the last completed instance of a state.

NOTE

See thethr_self(3thread) man page for more information.

SYNTAX

end_thread_id [([QS])]

PARAMETERS

QS A user-definedqualified state. If supplied, it specifies the state
to which the function applies. If omitted, the function ma
only be used within a state definition and then applies to th
state. For more information, see “Qualified States” on pa
9-83.

RETURN TYPE

integer

SEE ALSO

“ thread_id() ” o n page 9-24, “star t_ th read_id() ” o n page 9-39, an
“offset_thread_id()” on page 9-64.

end_task_id() 9

DESCRIPTION

The end_task_id() function returns the Ada task identifier associated with th
endeventof the last completed instance of a state.

NOTE

This function is only meaningful for trace events logged by Ada
tasking programs.

SYNTAX

end_task_id [([QS])]
9-51

NightTrace Manual

y
at

ge

on

ti-

y
at

ge

nd
-

PARAMETERS

QS A user-definedqualified state. If supplied, it specifies the state
to which the function applies. If omitted, the function ma
only be used within a state definition and then applies to th
state. For more information, see “Qualified States” on pa
9-83.

RETURN TYPE

integer

SEE ALSO

“task_id()” on page 9-25, “start_task_id()” on page 9-40, and “offset_task_id()”
page 9-64.

end_tid() 9

DESCRIPTION

Theend_tid() function returns the internally-assigned NightTrace thread iden
fier (TID) associated with the endeventof the last completed instance of a state.

SYNTAX

end_tid [([QS])]

PARAMETERS

QS A user-definedqualified state. If supplied, it specifies the state
to which the function applies. If omitted, the function ma
only be used within a state definition and then applies to th
state. For more information, see “Qualified States” on pa
9-83.

RETURN TYPE

integer

SEE ALSO

“tid()” on page 9-25, “start_tid()” on page 9-41, and “offset_tid()” on page 9-65.

end_cpu() 9

DESCRIPTION

Theend_cpu() function returns the logical CPU number associated with the e
eventof the last completed instance of a state. CPUs are logically numbered start
ing at 0 and monotonically increase thereafter.
9-52

Using Expressions

y
at

ge

6.

y
at

ge
NOTE

This function is only valid when applied to events from Night-
Trace kernel trace event files.

SYNTAX

end_cpu [([QS])]

PARAMETERS

QS A user-definedqualified state. If supplied, it specifies the state
to which the function applies. If omitted, the function ma
only be used within a state definition and then applies to th
state. For more information, see “Qualified States” on pa
9-83.

RETURN TYPE

integer

SEE ALSO

“cpu()” on page 9-26, “start_cpu()” on page 9-41, and “offset_cpu()” on page 9-6

end_offset() 9

DESCRIPTION

The end_offset() function returns the ordinal number (offset) of the endevent
of the last completed instance of a state.

SYNTAX

end_offset [([QS])]

PARAMETERS

QS A user-definedqualified state. If supplied, it specifies the state
to which the function applies. If omitted, the function ma
only be used within a state definition and then applies to th
state. For more information, see “Qualified States” on pa
9-83.

RETURN TYPE

integer
9-53

NightTrace Manual

nd
t

y
at

ge

7,

y
at

ge
SEE ALSO

“offset()” on page 9-27 and “start_offset()” on page 9-42.

end_time() 9

DESCRIPTION

The end_time() function returns the time, in seconds, associated with the e
eventof the last completed instance of a state. Times are relative to the earlies
trace event from all trace data files currently in use.

SYNTAX

end_time [([QS])]

PARAMETERS

QS A user-definedqualified state. If supplied, it specifies the state
to which the function applies. If omitted, the function ma
only be used within a state definition and then applies to th
state. For more information, see “Qualified States” on pa
9-83.

RETURN TYPE

double-precision floating point

SEE ALSO

“time()” on page 9-27, “start_time()” on page 9-42, “state_gap()” on page 9-5
“state_dur()” on page 9-57, and “offset_time()” on page 9-66.

end_node_id() 9

DESCRIPTION

Theend_node_id() function returns the internally-assignednode identifierasso-
ciated with the endeventof the last completed instance of a state.

SYNTAX

end_node_id [([QS])]

PARAMETERS

QS A user-definedqualified state. If supplied, it specifies the state
to which the function applies. If omitted, the function ma
only be used within a state definition and then applies to th
state. For more information, see “Qualified States” on pa
9-83.
9-54

Using Expressions

()”

-

y
at

ge

nd

-

RETURN TYPE

integer

SEE ALSO

“node_id()” on page 9-28, “start_node_id()” on page 9-43, and “offset_node_id
on page 9-67

end_pid_table_name() 9

DESCRIPTION

The end_pid_table_name() function returns the name of the inter
nally-assigned NightTrace process identifier table (PID table) associated with the
endeventof the last completed instance of a state.

SYNTAX

end_pid_table_name [([QS])]

PARAMETERS

QS A user-definedqualified state. If supplied, it specifies the state
to which the function applies. If omitted, the function ma
only be used within a state definition and then applies to th
state. For more information, see “Qualified States” on pa
9-83.

RETURN TYPE

string

SEE ALSO

“pid_table_name()” on page 9-29, “start_pid_table_name()” on page 9-44, a
“offset_pid_table_name()” on page 9-67.

end_tid_table_name() 9

DESCRIPTION

The end_tid_table_name() function returns the name of the inter
nally-assigned NightTrace thread identifier table (TID table) associated with the end
eventof the last completed instance of a state.

SYNTAX

end_tid_table_name [([QS])]
9-55

NightTrace Manual

y
at

ge

nd

e

y
at

ge

nd
PARAMETERS

QS A user-definedqualified state. If supplied, it specifies the state
to which the function applies. If omitted, the function ma
only be used within a state definition and then applies to th
state. For more information, see “Qualified States” on pa
9-83.

RETURN TYPE

string

SEE ALSO

“tid_table_name()” on page 9-29, “start_tid_table_name()” on page 9-44, a
“offset_tid_table_name()” on page 9-68.

end_node_name() 9

DESCRIPTION

The end_node_name() function returns the name of the system from which th
endeventof the last completed instance of a statewas logged.

SYNTAX

end_node_name [([QS])]

PARAMETERS

QS A user-definedqualified state. If supplied, it specifies the state
to which the function applies. If omitted, the function ma
only be used within a state definition and then applies to th
state. For more information, see “Qualified States” on pa
9-83.

RETURN TYPE

string

SEE ALSO

“node_name()” on page 9-30, “start_node_name()” on page 9-45, a
“offset_node_name()” on page 9-68.

Multi-State Functions 9

Multi-state functions return information about one or more instances of a state:

• state_gap()

• state_dur()
9-56

Using Expressions

y
at

ge

ge

y

• state_matches()

• state_status()

For restrictions on usage, see “StateGraph” on page 8-14.

state_gap() 9

DESCRIPTION

Thestate_gap() function returns the time in seconds between the starteventof
themost recent instance of the stateand the endeventof the instance immediately
preceeding it or zero if there was no previous instance.

SYNTAX

state_gap [([QS])]

PARAMETERS

QS A user-definedqualified state. If supplied, it specifies thestate
to which the function applies. If omitted, the function ma
only be used within a state definition and then applies to th
state. For more information, see “Qualified States” on pa
9-83.

RETURN TYPE

double-precision floating point

SEE ALSO

“start_time()” on page 9-42, “end_time()” on page 9-54, “event_gap()” on pa
9-32, and “state_dur()” on page 9-57.

state_dur() 9

DESCRIPTION

The state_dur() function returns the time in seconds between the starteventand the
endeventof the last completed instance of a state. Thus, if thecurrent time lineoccurs
within an instance of the state but before it has ended,state_dur() returns the duration
of the previous instance or zero if there was no previous instance.

SYNTAX

state_dur [([QS])]

PARAMETERS

QS A user-definedqualified state. If supplied, it specifies thestate
to which the function applies. If omitted, the function ma
9-57

NightTrace Manual

at
ge

f a

y
at

ge
only be used within a state definition and then applies to th
state. For more information, see “Qualified States” on pa
9-83.

RETURN TYPE

double-precision floating point

SEE ALSO

“state_gap()” on page 9-57.

state_matches() 9

DESCRIPTION

The state_matches() function returns the number of completed instances o
state on or before thecurrent time line.

SYNTAX

state_matches [([QS])]

PARAMETERS

QS A user-definedqualified state. If supplied, it specifies thestate
to which the function applies. If omitted, the function ma
only be used within a state definition and then applies to th
state. For more information, see “Qualified States” on pa
9-83.

RETURN TYPE

integer

SEE ALSO

“Start Functions” on page 9-34 and “summary_matches()” on page 9-74.

state_status() 9

DESCRIPTION

The state_status() function indicates whether thecurrent time lineresides
within a current instance of a state. Thus, if the current time line is positioned in the
region from the starteventup to, but not including, the endeventof an instance of
the state, the return value is TRUE. Otherwise, it is FALSE.

SYNTAX

state_status [([QS])]
9-58

Using Expressions

y
at

ge
PARAMETERS

QS A user-definedqualified state. If supplied, it specifies thestate
to which the function applies. If omitted, the function ma
only be used within a state definition and then applies to th
state. For more information, see “Qualified States” on pa
9-83.

RETURN TYPE

boolean

Offset Functions 9

All offset functions take an expression that evaluates to an ordinal trace event (offset) as a
parameter. (Offsets begin at zero.) These functions include the following:

• offset_id()

• offset_arg()

• offset_arg_dbl()

• offset_num_args()

• offset_pid()

• offset_raw_pid()

• offset_lwpid()

• offset_thread_id()

• offset_task_id()

• offset_tid()

• offset_cpu ()

• offset_time()

• offset_node_id()

• offset_pid_table_name()

• offset_tid_table_name()

• offset_node_name()

• offset_process_name()

• offset_task_name()

• offset_thread_name()

Usually, these functions take one of the following functions as a parameter:

• offset()
9-59

NightTrace Manual

on
t()”

t.
• start_offset()

• end_offset()

• min_offset()

• max_offset()

For information about these functions, see “offset()” on page 9-27, “start_offset()”
page 9-42, “end_offset()” on page 9-53, “min_offset()” on page 9-73, and “max_offse
on page 9-73.

offset_id() 9

DESCRIPTION

The offset_id() function returns thetrace event IDof the ordinal trace event
(offset).

SYNTAX

offset_id(offset_expr)

PARAMETERS

offset_expr An expression that evaluates to theoffset (or ordinal trace
event number) of a trace event.

RETURN TYPE

integer

SEE ALSO

“id()” on page 9-19, “start_id()” on page 9-35, and “end_id()” on page 9-46.

offset_arg() 9

DESCRIPTION

The offset_arg() function returns the value of a particulartrace event argu-
mentfor the ordinal trace event (offset).

SYNTAX

offset_arg [N] (offset_expr)

PARAMETERS

N Specifies theNth argument logged with the trace even
Defaults to 1.
9-60

Using Expressions

7,

t.

ge

th
offset_expr An expression that evaluates to theoffset (or ordinal trace
event number) of a trace event.

RETURN TYPE

integer

SEE ALSO

“arg()” on page 9-20, “start_arg()” on page 9-35, “end_arg()” on page 9-4
“offset_arg_dbl()” on page 9-61, and “offset_num_args()” on page 9-61.

offset_arg_dbl() 9

DESCRIPTION

The offset_arg_dbl() function returns the value of a particulartrace event
argumentfor the ordinal trace event (offset).

SYNTAX

offset_arg [N]_dbl (offset_expr)

PARAMETERS

N Specifies theNth argument logged with the trace even
Defaults to 1.

offset_expr An expression that evaluates to theoffset (or ordinal trace
event number) of a trace event.

RETURN TYPE

double-precision floating point

SEE ALSO

“arg_dbl()” on page 9-21, “start_arg_dbl()” on page 9-36, “end_arg_dbl()” on pa
9-47, “offset_arg()” on page 9-60, and “offset_num_args()” on page 9-61.

offset_num_args() 9

DESCRIPTION

Theoffset_num_args() function returns the number of arguments logged wi
the ordinal trace event (offset).

SYNTAX

offset_num_args (offset_expr)
9-61

NightTrace Manual

” on
PARAMETERS

offset_expr An expression that evaluates to theoffset (or ordinal trace
event number) of a trace event.

RETURN TYPE

integer

SEE ALSO

“num_args()” on page 9-21, “start_num_args()” on page 9-37, “end_num_args()
page 9-48, “offset_arg()” on page 9-60, and “offset_arg_dbl()” on page 9-61.

offset_pid() 9

DESCRIPTION

The offset_pid() function returns the global process identifier (PID) from
which the ordinal trace event (offset) was logged.

NOTE

A global process identifier does not have the same meaning as the
typical operating system definition ofpid . A PID within Night-
Trace is a 32-bit integer value that contains the operating system
process identifier (raw PID) in the upper 16 bits and the light-
weight process identifier (LWPID) in the lower 16 bits. Consult
the_lwp_global_self(2) man page for more information.

SYNTAX

offset_pid (offset_expr)

PARAMETERS

offset_expr An expression that evaluates to theoffset (or ordinal trace
event number) of a trace event.

RETURN TYPE

integer

SEE ALSO

“pid()” on page 9-22, “raw_pid()” on page 9-23, “lwpid()” on page 9-23,
“start_pid()” on page 9-37, and “end_pid()” on page 9-48.
9-62

Using Expressions

r

offset_raw_pid() 9

DESCRIPTION

The offset_raw_pid() function returns the process identifier (raw PID) from
which the ordinal trace event (offset) was logged.

NOTE

A NightTrace raw PID has the same meaning as the typical oper-
ating system definition ofpid . See thegetpid(2) man page
for more information.

SYNTAX

offset_raw_pid (offset_expr)

PARAMETERS

offset_expr An expression that evaluates to theoffset (or ordinal trace
event number) of a trace event.

RETURN TYPE

integer

SEE ALSO

“pid()” on page 9-22, “raw_pid()” on page 9-23, “lwpid()” on page 9-23,
“start_pid()” on page 9-37, and “end_pid()” on page 9-48.

offset_lwpid() 9

DESCRIPTION

The offset_lwpid() function returns the lightweight process identifie
(LWPID) from which the ordinal trace event (offset) was logged.

NOTE

See the_lwp_self(2) man page for more information.

SYNTAX

offset_lwpid (offset_expr)
9-63

NightTrace Manual

d()”
PARAMETERS

offset_expr An expression that evaluates to theoffset (or ordinal trace
event number) of a trace event.

RETURN TYPE

integer

SEE ALSO

“pid()” on page 9-22, “raw_pid()” on page 9-23, “lwpid()” on page 9-23,
“start_lwpid()” on page 9-39, and “end_lwpid()” on page 9-50.

offset_thread_id() 9

DESCRIPTION

Theoffset_thread_id() function returns thethreadidentifier from which the
ordinal trace event (offset) was logged.

NOTE

See thethr_self(3thread) man page for more information.

SYNTAX

offset_thread_id (offset_expr)

PARAMETERS

offset_expr An expression that evaluates to theoffset (or ordinal trace
event number) of a trace event.

RETURN TYPE

integer

SEE ALSO

“thread_id()” on page 9-24, “start_thread_id()” on page 9-39, and “end_thread_i
on page 9-51.

offset_task_id() 9

DESCRIPTION

Theoffset_task_id() function returns the Ada task identifier from which the
ordinal trace event (offset) was logged.
9-64

Using Expressions

on

d

NOTE

This function is only meaningful for trace events logged by Ada
tasking programs.

SYNTAX

offset_task_id (offset_expr)

PARAMETERS

offset_expr An expression that evaluates to theoffset (or ordinal trace
event number) of a trace event.

RETURN TYPE

integer

SEE ALSO

“task_id()” on page 9-25, “start_task_id()” on page 9-40, and “end_task_id()”
page 9-51.

offset_tid() 9

DESCRIPTION

The offset_tid() function returns the internally-assigned NightTrace threa
identifier (TID) from which the ordinal trace event (offset) was logged.

SYNTAX

offset_tid (offset_expr)

PARAMETERS

offset_expr An expression that evaluates to theoffset (or ordinal trace
event number) of a trace event.

RETURN TYPE

integer

SEE ALSO

“tid()” on page 9-25, “start_tid()” on page 9-41, and “end_tid()” on page 9-52.
9-65

NightTrace Manual

al
no-

.

ing
offset_cpu() 9

DESCRIPTION

Theoffset_cpu() function returns the logical CPU number on which the ordin
trace event (offset) occurred. CPUs are logically numbered starting at 0 and mo
tonically increase thereafter.

NOTE

This function is only valid when applied to events from Night-
Trace kernel trace event files.

SYNTAX

offset_cpu (offset_expr)

PARAMETERS

offset_expr An expression that evaluates to theoffset (or ordinal trace
event number) of a trace event.

RETURN TYPE

integer

SEE ALSO

“cpu()” on page 9-26, “start_cpu()” on page 9-41, and “end_cpu()” on page 9-52

offset_time() 9

DESCRIPTION

Theoffset_time() function returns the time in seconds between the beginn
of the trace run and the ordinal trace event (offset).

SYNTAX

offset_time (offset_expr)

PARAMETERS

offset_expr An expression that evaluates to theoffset (or ordinal trace
event number) of a trace event.

RETURN TYPE

double-precision floating point
9-66

Using Expressions

4.

on

-

SEE ALSO

“time()” on page 9-27, “start_time()” on page 9-42, and “end_time()” on page 9-5

offset_node_id() 9

DESCRIPTION

The offset_node_id() function returns the internally-assignednode identifier
from which the ordinal trace event (offset) was logged.

SYNTAX

offset_node_id (offset_expr)

PARAMETERS

offset_expr An expression that evaluates to theoffset (or ordinal trace
event number) of a trace event.

RETURN TYPE

integer

SEE ALSO

“node_id()” on page 9-28, “start_node_id()” on page 9-43, and “end_node_id()”
page 9-54

offset_pid_table_name() 9

DESCRIPTION

The offset_pid_table_name() function returns the name of the inter
nally-assigned NightTrace process identifier table (PID table) for the ordinal trace
event (offset).

SYNTAX

offset_pid_table_name (offset_expr)

PARAMETERS

offset_expr An expression that evaluates to theoffset (or ordinal trace
event number) of a trace event.

RETURN TYPE

string
9-67

NightTrace Manual

nd

-

nd

h

SEE ALSO

“pid_table_name()” on page 9-29, “start_pid_table_name()” on page 9-44, a
“end_pid_table_name()” on page 9-55

offset_tid_table_name() 9

DESCRIPTION

The offset_tid_table_name() function returns the name of the inter
nally-assigned NightTrace thread identifier table (TID table) for the ordinal trace
event (offset).

SYNTAX

offset_tid_table_name (offset_expr)

PARAMETERS

offset_expr An expression that evaluates to theoffset (or ordinal trace
event number) of a trace event.

RETURN TYPE

string

SEE ALSO

“tid_table_name()” on page 9-29, “start_tid_table_name()” on page 9-44, a
“end_tid_table_name()” on page 9-55

offset_node_name() 9

DESCRIPTION

Theoffset_node_name() function returns the name of the system from whic
the ordinal trace event (offset) was logged.

SYNTAX

offset_node_name (offset_expr)

PARAMETERS

offset_expr An expression that evaluates to theoffset (or ordinal trace
event number) of a trace event.

RETURN TYPE

string
9-68

Using Expressions

nd

e

SEE ALSO

“node_name()” on page 9-30, “start_node_name()” on page 9-45, a
“end_node_name()” on page 9-56

offset_process_name() 9

DESCRIPTION

The offset_process_name() function returns the name of the process (PID)
from which the ordinal trace event (offset) was logged.

SYNTAX

offset_process_name (offset_expr)

PARAMETERS

offset_expr An expression that evaluates to theoffset (or ordinal trace
event number) of a trace event.

RETURN TYPE

string

SEE ALSO

“process_name()” on page 9-30

offset_task_name() 9

DESCRIPTION

Theoffset_task_name() function returns the name of the task from which th
ordinal trace event (offset) was logged.

NOTE

This function is only meaningful for trace events which were
logged from Ada tasking programs.

SYNTAX

offset_task_name (offset_expr)

PARAMETERS

offset_expr An expression that evaluates to theoffset (or ordinal trace
event number) of a trace event.
9-69

NightTrace Manual

e

ter.
RETURN TYPE

string

SEE ALSO

“task_name()” on page 9-31

offset_thread_name() 9

DESCRIPTION

The offset_thread_name() function returns the thread name from which th
ordinal trace event (offset) was logged.

SYNTAX

offset_thread_name (offset_expr)

PARAMETERS

offset_expr An expression that evaluates to theoffset (or ordinal trace
event number) of a trace event.

RETURN TYPE

string

SEE ALSO

“thread_name()” on page 9-32

Summary Functions 9

You usually use summary functions on theS u m m a r iz e F o r m . Except for
summary_matches() , all of these functions take another expression as a parame
They include the following:

• min()

• max()

• avg()

• sum()

• min_offset()

• max_offset()

• summary_matches()
9-70

Using Expressions

h the

on

h the
min() 9

DESCRIPTION

Themin() function returns the minimum value of all occurrences ofexprwithin a
time range. When used in aSummarize Form, the time range is defined by that
form. When used elsewhere, the time range is defined as the region starting wit
first trace eventand ending with thecurrent trace event.

SYNTAX

min (expr)

PARAMETERS

expr A numeric expression.

RETURN TYPE

data type ofexpr

SEE ALSO

“Summary Functions” on page 9-70 and “Summarizing Statistical Information”
page 10-5.

max() 9

DESCRIPTION

Themax() function returns the maximum value of all occurrences ofexprwithin a
time range. When used in aSummarize Form, the time range is defined by that
form. When used elsewhere, the time range is defined as the region starting wit
first trace eventand ending with thecurrent trace event.

SYNTAX

max (expr)

PARAMETERS

expr A numeric expression.

RETURN TYPE

data type ofexpr
9-71

NightTrace Manual

on

h the

on

.
first
SEE ALSO

“Summary Functions” on page 9-70 and “Summarizing Statistical Information”
page 10-5.

avg() 9

DESCRIPTION

The avg() function returns the average value of all occurrences ofexpr within a
time range. When used in aSummarize Form, the time range is defined by that
form. When used elsewhere, the time range is defined as the region starting wit
first trace eventand ending with thecurrent trace event.

SYNTAX

avg (expr)

PARAMETERS

expr A numeric expression.

RETURN TYPE

data type ofexpr

SEE ALSO

“Summary Functions” on page 9-70 and “Summarizing Statistical Information”
page 10-5.

sum() 9

DESCRIPTION

Thesum() function returns the sum value of all occurrences ofexpr within a time
range. When used in aSummarize Form, the time range is defined by that form
When used elsewhere, the time range is defined as the region starting with the
trace eventand ending with thecurrent trace event.

SYNTAX

sum (expr)

PARAMETERS

expr A numeric expression.
9-72

Using Expressions

on

s, if
t one

the
his

on

s, if
RETURN TYPE

data type ofexpr

SEE ALSO

“Summary Functions” on page 9-70 and “Summarizing Statistical Information”
page 10-5.

min_offset() 9

DESCRIPTION

The min_offset() function returns the ordinal trace event (offset) where the
minimum value of the parameter occurred for matches in the time range. Thu
the same minimum was seen more than once, the offset corresponds to the firs
seen.

SYNTAX

min_offset (expr)

PARAMETERS

expr A numeric expression.

RETURN TYPE

integer

NOTE

There is no function that returns the trace event ID where the minimum value of
first argument occurred for all matches in the time range. You could obtain t
value by nesting the functions as follows:

offset_id(min_offset(arg1()))

SEE ALSO

“Summary Functions” on page 9-70 and “Summarizing Statistical Information”
page 10-5.

max_offset() 9

DESCRIPTION

The max_offset() function returns the ordinal trace event (offset) where the
maximum value of the parameter occurred for matches in the time range. Thu
9-73

NightTrace Manual

st one

f the
his

on

i-
the same maximum was seen more than once, the offset corresponds to the fir
seen.

SYNTAX

max_offset (expr)

PARAMETERS

expr A numeric expression.

RETURN TYPE

integer

NOTE

There is no function that returns the trace event ID where the maximum value o
first argument occurred for all matches in the time range. You could obtain t
value by nesting the functions as follows:

offset_id(max_offset(arg1()))

SEE ALSO

“Summary Functions” on page 9-70 and “Summarizing Statistical Information”
page 10-5.

summary_matches() 9

DESCRIPTION

Thesummary_matches() function returns the number of times the summary cr
teria andFilter-Expression were matched in the time range.

NOTE

This function should only used in theSummarize Form . Its
behavior elsewhere is undefined. (See “Summarizing Statistical
Information” on page 10-5 for more information.)

SYNTAX

summary_matches ()

RETURN TYPE

integer
9-74

Using Expressions

rma-

to
ese

tring

the
ce

s

s”

he

e

s

SEE ALSO

“event_matches()” on page 9-33 and “state_matches()” on page 9-58. For info
tion aboutFilter-Expression, see “Summarize Form Fields” on page 10-6.

Format and Table Functions 9

The format function allows you to display a string. The table functions allow you
extract information from user-defined and pre-defined string and format tables. Th
functions include the following:

• get_string()

• get_item()

• get_format()

• format()

For more information about tables, see “ntrace Tables” on page 5-13 and “Kernel S
Tables” on page 11-32.

get_string() 9

Theget_string() routine dynamically looks up a string in a string table.

SYNTAX

get_string (table_name[, int_expr])

PARAMETERS

table_name table_nameis an unquoted character string that represents
name of a string table. To avoid possible forward referen
problems, try to make yourget_string() calls refer to pre-
viously-defined string tables. The following string table name
are pre-defined in NightTrace:event, pid, tid, bool-
ea n , n a me _p id , na m e_ t i d, n od e _n am e,
pid_ nodename, tid_ nodename, vector, syscall,
device, event_summary, event_arg_summary,
event_arg_dbl_summary, state_summary . For more
information on these tables, see “Pre-Defined String Table
on page 5-15 and “Kernel String Tables” on page 11-32.

int_expr int_expris an integer expression that acts as an index into t
specified string table.int_exprmust either match an identifying
integer value in thetable_namestring table, or thetable_name
str ing table must have a default i tem line; otherwis
get_string() returns a string ofint_expr in decimal. Often
int_expris based on a NightTrace function.

If your table consists of only a default item line, omit thi
parameter.
9-75

NightTrace Manual
DESCRIPTION

The following NightTrace constructs can callget_string() to dynamically
locate a static string in a string table:

• A Then-Expression of a display object configuration

• A value field of a format table

For eachget_string() call, NightTrace follows these steps:

1. Evaluatesint_expr

2. Uses this value as an index intotable_name

3. Retrieves the associated string fromtable_name

4. Returns a string

The following lines provide a brief example of a call toget_string() .
9-76

Using Expressions

ts the

e
use
n is

and

the
ce

s

s”

he

lts
string_table (conditions) = {
item = 1, “normal”;
item = 50, “YELLOW ALERT”;
item = 99, “RED ALERT”;
default_item = “N/A”;

};

In this example the numeric argument associated with a trace event represen
current conditions (conditions). If the argument has the value 99, NightTrace:

1. Uses the value 99 as in index intoconditions

2. Retrieves the associated string (“RED ALERT”) from conditions

3. Returns “RED ALERT”

RETURN TYPES

On successful completion,get_string() returns a string from a string table.
NightTrace returns a string of the item number,int_expr, in decimal iftable_nameis
not found, or ifint_expris not found and there is no default item line. The first tim
table_nameis not found, NightTrace issues an error message. Beca
get_string() returns a string, you can use it anywhere a string expressio
appropriate.

For more information on string tables, see “String Tables” on page 5-14, Table 8-3,
the /usr/lib/NightTrace/tables file.

get_item() 9

Theget_item() routine looks up an item number in a string table.

SYNTAX

int get_item (table_name,“ str_const”)

PARAMETERS

table_name table_nameis an unquoted character string that represents
name of a string table. To avoid possible forward referen
problems, try to make yourget_item() calls refer to previ-
ously-defined string tables. The following string table name
are pre-defined in NightTrace:event, pid, tid, bool-
ea n , n a me _p id , na m e_ t i d, n od e _n am e,
pid_ nodename, tid_ nodename, vector, syscall,
device, event_summary, event_arg_summary,
event_arg_dbl_summary, state_summary . For more
information on these tables, see “Pre-Defined String Table
on page 5-15 and “Kernel String Tables” on page 11-32.

str_const str_constis a string constant literal that acts as an index into t
specified string table.str_constmust either exactly match a
string value in thetable_namestring table, or thetable_name
string table must have a default item line; otherwise the resu
9-77

NightTrace Manual

ch

a
tring

as
s.

are
re
n

the
are undefined. Atable_namemay contain several item lines
with the samestr_constvalue.

DESCRIPTION

Usually you would put aget_item() call in aThen-Expression of a display
object configuration to locate an index number in a string table. For ea
get_item() call, NightTrace follows these steps:

1. Usesstr_constvalue as an index intotable_name

2. Retrieves the first associated index number fromtable_name

3. Returns the index number

Assume that the following string table definition is in your configuration file.

string_table (fruit) = {
item = 3, “apple”;
item = 4, “orange”;
item = 5, “cherry”;
item = 6, “banana”;
default_item = “Unknown”;

};

Assume that you make the following call in theThen-Expression of a DataBox.

get_item (fruit, “orange”)

In this example, thefruit string table associates specific numeric codes with
corresponding fruit name string; it associates all other numeric codes with the s
“Unknown. ” When NightTrace evaluates theTh en -E xpr es s io n of this
DataBox, it:

1. Callsget_item()

2. Uses the string“orange” as an index into thefruit string table

3. Retrieves the (first) associated index (4)

4. Returns the index number (4)

RETURN TYPES

On successful completion,get_item() returns an item number from a string
table. If several item lines within the string table have the same string value
str_const, get_item() returns the first item number from one of these item line
If table_nameis not found, NightTrace issues an error message, and the results
undefined. Ifstr_constis not found and there is no default item line, the results a
undefined. Becauseget_item() returns an integer, you can use it anywhere a
integer expression can be used.

For more information on string tables, see “String Tables” on page 5-14 and
/usr/lib/NightTrace/tables file. For more examples of function calls with
pre-defined string tables, see Table 8-3.
9-78

Using Expressions

the
ce

he

r-

s

e

get_format() 9

Theget_format() routine dynamically looks up a string in a format table.

SYNTAX

get_format (table_name[, int_expr])

PARAMETERS

table_name table_nameis an unquoted character string that represents
name of a format table. To avoid possible forward referen
problems, try to make yourget_format() calls refer to pre-
viously-defined format tables.

int_expr int_expris an integer expression that acts as an index into t
specified format table.int_exprmust either match an identify-
ing integer value in thetable_nameformat table, or the
table_nameformat table must have a default item line; othe
wise, the results are undefined. Oftenint_expr is based on a
NightTrace function.

If your table consists of only a default item line, omit thi
parameter.

DESCRIPTION

A call to get_format() must be the firstfunction call in an expression. You
must not nest calls toget_format() .

The T h e n - E x p r e s s io n parameter of a DataBox configuration and th
Summa rize-Expression on aSummary Form can callget_format() to
dynamically locate a string in a format table. For eachget_format() call, Night-
Trace follows these steps:

1. Evaluatesint_expr

2. Uses this value as an index intotable_name

3. Retrieves the associated string fromtable_name

4. Replaces any conversion specifications in the associated string

5. Returns a string

Assume that the following format table definition is in your configuration file.

format_table (what_pid) = {
item = 1, “Trace event 1 logged by pid %d’%d”, “raw_pid()”,

“lwpid()”;
default_item = “Unaccounted for event ID (%d)”, “id()”;

};

Assume that you make the following call in theThen-Expression of a DataBox.

get_format (what_pid, id())
9-79

NightTrace Manual

ed

lay

-

the

e
n
ion
ay

e
e

In this example, thewhat_pid format table associates one dynamically-generat
string with trace event ID 1 (id() == 1) and another string with all other trace
events (default_item). When NightTrace processes a trace event for the disp
object with the aboveget_format() , it:

1. Evaluates the NightTraceid() function. (Assume it evaluates to 1)

2. Callsget_format()

3. Uses this value (1) as an index into thewhat_pid format table

4. Retrieves the associated string (“Trace event 1 logged by
pid %d’%d”) from thewhat_pid format table

5. Evaluates the NightTraceraw_pid() and lwpid() functions.
(Assume they evaluate to 213 and 1 respectively)

6. Replaces the%d conversion specifiers with theraw_pid() and
lwpid() values

7. Displays“Trace event 1 logged by pid 213’1”

RETURN TYPES

On successful completion,get_format() returns a format table string. Other
wise, it returns an empty string.

For more information on format tables, see “Format Tables” on page 5-18 and
/usr/lib/NightTrace/tables file. For more examples of function calls with
pre-defined format tables, see Table 8-3.

format() 9

The format() routine displays a string.

SYNTAX

format (“ format_string” [, arg] ...)

PARAMETERS

format_string format_stringcontrols how the optionalargs are displayed.
format_stringis based on the format parameter used in th
printf(3S) routine in C. It is a character string enclosed i
double quotes that contains literal characters and convers
specifications. The literals are copied as is to the displ
object. Conversion specifications modify zero or moreargs.

arg arg is an optional expression to be formatted and displayed.

DESCRIPTION

Call the format() function to display a string. You can do this only from th
Th e n - E x p r e s s i o n parameter of a display object configuration or th
9-80

Using Expressions

-

n

e

a

race

pe
Summary-Expression of the Summarize Form . A call to format() must
be the firstfunction call in an expression. You must not nest calls toformat() .

The following lines provide examples offormat() statements and what they dis
play. Assume all variables have a value of 10 (decimal).

RETURN TYPES

On successful completion,format() returns a string. Otherwise, it returns a
empty string.

Qualified Events 9

A qualified eventis a user-definednamedeventconfiguration that consists of a set of on
or more trace events, possibly restricted by anI f-Expression, CPU List , TID List,
PID List, andNode List. Qualified events provide a mechanism for referencingtrace
event configurationswithin somefunctions; for example, they cannot appear alone in
DataBox configuration.

You may use a qualified event in trace event functions. For more information, see “T
Event Functions” on page 9-19.

To create a qualified event definition, select theQualified Events menu item from the
Expressions menu (see “Expressions Menu” on page 9-1) to open theQuali f ied
Events Dialog Box (see “Expression Dialog Boxes” on page 9-2 for details on this ty
of dialog).

Click theAdd button on theQualified Events Dialog Box, select the qualified event
from the list, and click on theConfigure button to pop up aQualified Event Config-
uration Form, like the one shown in Figure 9-7.

format("Error”) Error

format("Event=%d”, id()) Event=10

format("Argument is %X”, arg1()) Argument is A
9-81

NightTrace Manual

s-

any

om-

he
d to
ow

nt (or
iven
Figure 9-7. Qualified Event Configuration Form

The following parameter is specific to theQualified Event Configuration Form.

QualifiedEvent The name by which you refer to this qualified event in expre
sions.

TIP:
Consider giving your trace events upper case names in event-map files and giving
corresponding qualified event the same name in lower case.

NOTE

TheNode List field appears in this dialog only when NightTrace
is configured to use anRCIM to timestamp events. (See “Node
List” on page 8-9 for more information about this field.)

For information about other configuration parameters, see Chapter 8, especially “C
mon Configuration Parameters” on page 8-1.

Configuring qualified events is similar to configuring DataBox display objects. T
configuration parameters for a qualified event are identical to those that are use
configure a DataBox display object. See “DataBox” on page 8-13 for information on h
to configure a DataBox.

EXAMPLE

Qualified events can be useful when you are interested in seeing a trace eve
state) that occurs within a certain amount of time after another trace event. G
the following qualified event configuration:
9-82

Using Expressions

they
.

e

f-

end
age

pe
QualifiedEvent: fire
Event List: FIRE
CPU List: 2

an EventGraph can be configured to show onlyBARtrace events that happen within
100 microseconds of aFIRE trace event on CPU 2:

Event List: BAR
If Expression: time() - time(fire) < 100us

Note: TheBARtrace events themselves can happen on any CPU, and as long as
occur with 100 microseconds of aFIRE trace event on CPU 2, they will be graphed

Qualified States 9

A qualified stateis a user-definednamed stateconfiguration that consists of a set of on
or more states, possibly restricted by aStart-Expression, End-Expression, CPU
List, TID List, PID List, andNode List. Qualified states provide a mechanism for re
erencing stateconfigurationswithin somefunctions.

You may use a qualified state in the following predefined functions: start functions,
functions, and multi-state functions. For more information, see “Start Functions” on p
9-34, “End Functions” on page 9-45, and “Multi-State Functions” on page 9-56.

To create a qualified state definition, select theQualified States menu item from the
Expressions menu (see “Expressions Menu” on page 9-1) to open theQuali f ied
States Dialog Box (see “Expression Dialog Boxes” on page 9-2 for details on this ty
of dialog).

Click theAdd button on theQualified States Dialog Box, select the qualified state
from the list, and click on theConfigure button to pop up aQualified State Config-
uration Form, like the one shown in Figure 9-8.
9-83

NightTrace Manual

s-

om-

he
d to

n on

ccurs
Figure 9-8. Qualified State Configuration Form

The following parameter is specific to theQualified State Configuration Form.

QualifiedState The name by which you refer to this qualified state in expre
sions.

NOTE

TheNode List field appears in this dialog only when NightTrace
is configured to use anRCIM to timestamp events. (See “Node
List” on page 8-9 for more information about this field.)

For information about other configuration parameters, see Chapter 8, especially “C
mon Configuration Parameters” on page 8-1 and “StateGraph” on page 8-14.

Configuring qualified states is similar to configuring StateGraph display objects. T
configuration parameters for a qualified state are identical to those that are use
configure a StateGraph display object. See “StateGraph” on page 8-14 for informatio
how to configure a StateGraph.

EXAMPLE

Qualified states can be useful when you are interested in a trace event that o
while a certain state is active. The following qualified state:
9-84

Using Expressions

r
in
QualifiedState: foo_state
Start Events: PROG_A_BEGIN
End Events: PROG_A_EXIT

defines a state that is active whenever programA is running. Assume that anothe
process is loggingFOOtrace events asynchronously. If you are interested only
theFOOtrace events that are logged while programA is running, you can define an
EventGraph as follows:

Event List: FOO
If Expression: state_status(foo_state) == true

This graphs onlyFOOtrace events that occur while the qualified statefoo_state
is active. (The “== true ” is not necessary.) Thus, you see onlyFOOtrace events
logged while programA is running.
9-85

NightTrace Manual
9-86

-1
0-1

-2
0-3
-4
-5
-6
-6

0-8
-9
-9
0
0
0

10
11
-12
-14
-15
10
Using the Built-In Tools

Overview . 10
Searching for Points of Interest . 1

Search Form Radio Buttons . 10
Search Form Push Buttons . 1
Search Form Fields. 10

Summarizing Statistical Information. 10
Summarize Form Radio Buttons . 10
Summarize Form Fields . 10
Summarize Form Push Buttons . 1
Menu Bar . 10

File Operations . 10
Save Text . 10-1
Save Text As 10-1
Close. 10-1

Summary Display Area . 10-
Event Summaries . 10-
State Summaries . 10

Exercise: Using the Search Tool . 10
Exercise: Using the Summarize Tool. 10

NightTrace Manual

e it
your

f

you
10
Chapter 10Using the Built-In Tools

10
10
10

Overview 10

ntrace comes with a set of built-in tools available in View mode. These tools mak
easier for you to pinpoint important trace events and numerically analyze aspects of
trace session.

This chapter covers the following built-in tools:

Search Locates interesting parts of your trace session

Summarize Summarizes statistics about trace events or states

Figure 10-1 shows the display page menu that gives you access to these tools.

Figure 10-1. Tools Menu

Searching for Points of Interest 10

Clicking on Tools ➭ Search ... on the display page allows you to locate areas o
interest in your trace event file(s). When you click onTools ➭ Search ..., theSearch
Form appears. This form lets you provide search specifications and define conditions
wish to find in your trace event file(s).

TheSearch Form consists of:

• Radio buttons

• Push buttons

• Text fields

Figure 10-2 illustrates theSearch Form.
10-1

NightTrace Manual

ce

e

Figure 10-2. The Search Form

NOTE

TheNode List field appears in this dialog only when NightTrace
is configured to use an RCIM to timestamp events.

Search Form Radio Buttons 10

Through theSearch Form’s radio buttons, you can choose:

• The direction of a search

• The interval to search

• The effect of a search on the grid and interval control area of a display page

The Search Direction radio buttons let you search forward or backward in your tra
session, relative to the current time.

• Click on theForward radio button to search through newer trace events.
This is the default setting.

• Click on theBackward radio button to search through older trace events.
Note: This is a much less efficient search than a forward search.

The Search Constraints radio buttons let you limit your search to the entire trac
session or to the current interval.
10-2

Using the Built-In Tools

rval

nd
ut-
k-
no
he

nd
ut-
g
no

he
• Click on theGlobal Search radio button to search from the current time
through the end (or beginning) of the trace session. This is the default
setting.

• Click on Interval Search to search only between this interval’sTime
Star t andTime End.

The Interval Manipulation radio buttons let you choose the actionntrace takes if a
trace event meets all your criteria. This decision can affect both the grid and the inte
control area.

• Click on Scroll Current Time to Event if you wantntrace to set the
current time to the time when the trace event occurred and move the
interval. This is the default setting.

• Click on Zoom to Include Event to zoom out the interval end time (for
forward searches) or the interval start time (for backward searches) to
include the found trace event. Clicking this radio button also updates the
current time.

• Click on Do Not Move Current Time if you want ntrace to just
write a message to the message display area of the display page without
repositioning you on the grid or in the interval control area; a side-effect of
this setting is that repeatedly clicking on theSearch push button does not
find trace events after the first one found. This is because the current time
has not changed.

Search Form Push Buttons 10

Following is a summary of the effects of clicking on the push buttons in theSearch
Form:

Apply (default) Validates any field change(s) on theSearch Form.
Clicking onApply is equivalent to pressing<Enter>.

Reset Restores changed field(s) on theSearch Form to the value(s) they
had after the lastApply or <Enter>. This works only if you have
not already pressed<Enter> or clicked on theApply push button.
Clicking onReset is equivalent to pressing<Esc>.

Prev Goes backward one group of field settings in the search history a
displays those settings in the fields. You may click on this push b
ton multiple times to go backward several groups of settings. Clic
ing on this push button from the earliest group of settings has
effect. This push button is useful only after you have clicked on t
Search push button.

Next Goes forward one group of field settings in the search history a
displays those settings in the fields. You may click on this push b
ton multiple times to go forward several groups of settings. Clickin
on this push button from the most recent group of settings has
effect. This push button is useful only after you have clicked on t
Search andPrev push buttons.
10-3

NightTrace Manual

p
n

re

ield

lt

ng

by
identi-
t by
Close Closes theSearch Form window and erases all but the last grou
of field settings from the search history. That is, if you click o
Close and reopen this window during the samentrace session,
ntrace displays your most recent field settings; until you save mo
field settings, clicking onPrev andNext have no effect.

Search Performs a search starting at the current time and saves your f
changes, but not your radio button settings.

• Clicking on this push button causesntrace to
search through your trace event file(s) based on the
criteria from theSearch Form fields and the
radio button settings.

• If you have made a field change, clicking on this
push button makesntrace temporarily save your
field settings in the search history in memory. By
saving your field settings in the search history,
ntrace gives you an easy way to retrieve groups
of field settings for use in future searches.

Because all fields and radio buttons on theSearch Form have default settings, you can
click on theSearch push button without modifying anything in this window. The defau
search behavior is:

• Search forward through the entire trace session for any trace event from
any process on any CPU.

• If a trace event meets all these criteria,ntrace :

- Writes an informative message in the message display area of the
display page that tells which ordinal trace event (offset) it found.

- Sets the current time to the time when the trace event occurred.

- Updates the grid and fields in the interval control area of the display
page.

• If no trace event meets all these criteria,ntrace writes an error message
in the message display area of the display page that tells from which
ordinal trace event (offset) it began the search.

Search Form Fields 10

All fields of the Search Form have default values. Because of these defaults, clicki
on Search without making any field changes makesntrace search for the next (or
previous) trace event in your trace event file(s). If you want to restrict this operation
trace event ID, trace event tag, CPU number, node, process name or global process
fier (PID), thread name or NightTrace thread identifier, or expression, you can do tha
editing one or more of the fields on theSearch Form . You can restore a field to its
default value by entering a single space character or the worddefault into the field and
clicking Apply or pressing<Enter>.
10-4

Using the Built-In Tools

al

Ds

n,
pend-
. If
rror
n the

f set-

tion

lue.
e
t

e the
e

-

e

When you have finished editing theSearch Form fields, press<Enter> or click on
Apply. This causesntrace to validate the data in each field you modified. For gener
information on field editing and howntrace handles editing errors, see “Field Editing”
on page 6-16.

When you are ready forntrace to do a search, click on theSearch push button.
ntrace logical-ORs comma-separated lists of values within a field and logical-AN
fields’ values. This means that a trace event must match at least oneentry in each list and
all criteria from the fields. Ifntrace locates a trace event that meets every field criterio
it writes an informative message in the message display area on the display page. De
ing on your preferences, it may also reposition the interval and current time line
ntrace does not locate a trace event that meets every field criterion, it writes an e
message in the message display area on the display page. For more information o
Search push button, see “Search Form Push Buttons” on page 10-3.

When you make field changes and click onSearch, ntrace temporarily saves your
field settings in the search history in memory. You can step through these groups o
tings by clicking on thePrev andNext push buttons. Clicking on theClose push button
erases all but the last group of field settings from the search history. For more informa
on these push buttons, see “Search Form Push Buttons” on page 10-3.

See Chapter 8 for a definition of each field, all its possible values, and its default va
There is only one difference between thentrace behavior described there and th
behavior of theSearch Form: on theSearch Form ntrace searches for, but does no
display, data that meets the criteria. The search stops whenntrace finds a suitable value
or runs out of trace events.

TheNo Event List field is the only field that is unique to theSearch Form. This field
lets you decide which trace event(s) to ignore in a search. The possible values ar
same as those in theEvent List field. It is not meaningful to put the same value in th
Event List and in theNo Event List.

NOTE

TheNode List field appears in this dialog only when NightTrace
is configured to use an RCIM to timestamp events.

Summarizing Statistical Information 10

Clicking onTools ➭ Summarize ... on the display page lets you get statistical informa
tion about trace events and states. When you click onTools ➭ Summarize ..., the
Summar ize For m appears. This form lets you constrain the information to b
summarized.

TheSummarize Form consists of:

• Radio buttons

• Text fields

• Summary display area
10-5

NightTrace Manual

t

to

ts,
s

the
lobal
n do

r

nd
one
• Push buttons

• Menu items

Figure 10-4 and Figure 10-5 show twoS u m m a r i z e Fo r m s with different
configurations.

Summarize Form Radio Buttons 10

Through theSummarize Form ’s radio buttons, you can choose:

• Whether to summarize trace events or states

• The interval to summarize

The Summary Type radio buttons let you specify the type of information you wan
summarized.

• Click on the Event radio button to summarize trace event information.
This is the default setting.

• Click on theState radio button to summarize state information.

TheSummary Range radio buttons let you limit the summary to the current interval,
the time between a mark and the current time, or to the entire trace session.

• Click on theTrace Event File radio button to summarize data through-
out the trace session. This is the default setting.

• Click on Region to summarize data only between the mark and the
current time.

• Click on Interval to summarize data only between the current interval’s
Time Star t andTime End.

Summarize Form Fields 10

All fields of the Summarize Form have default values. Because of these defaul
clicking on Summarize without making any field or radio button changes make
ntrace summarize all trace events in your trace event file(s). If you want to restrict
summary by trace event ID, trace event tag, CPU number, node, process name or g
process identifier, thread name or NightTrace thread identifier, or expression, you ca
that by editing one or more of the fields on theSummarize Form.

When you have finished editing theSummarize Form fields, press<Enter> or click
on Apply. This causesntrace to validate the data in each field you modified. Fo
general information on field editing and howntrace handles editing errors, see “Field
Editing” on page 6-16.

When you are ready forntrace to summarize data, click on theSummarize push
button. ntrace logical-ORs comma-separated lists of values within a field a
logical-ANDs fields’ values. This means that a summary object must match at least
10-6

Using the Built-In Tools

on

y
all its

the

t

A

u
a

ault

d

ent

ou r

race
entry in each list and allcriteria from the fields. Every time you click onSummarize,
ntrace writes lines of statistics in the summary display area. For more information
theSummarize push button, see “Summarize Form Push Buttons” on page 10-8.

The text fields on theSummarize Form differ depending on the selected summar
type. See Chapter 8 for a definition of each field (except those described below) and
possible values. There is only one difference between thentrace behavior described
there and the behavior of theSummarize Form: on theSummarize Form, ntrace
textually summarizes all data, rather than displaying individual values that meet
criteria.

The following text describes fields specific to theSummarize Form, their possible and
default values, and how theSummarize push button behaves when you modify tha
field.

Filter-Expression This text field has all the characteristics ofIf-Expression,
except it is evaluated only if theIf-Expression (for trace
event summaries) orEnd-Expression (for state summa-
ries) are true. Values may be: a booleanntrace expres-
sion, the wordTRUE, or the wordFALSE. The default is
TRUE. When you click onSummarize, ntrace evaluates
the expression for every trace event it summarizes.
FALSE in this field essentially disables the summary.

Summary-Expression This text field is evaluated every time theIf-Expression
o r E n d - E x p r e s s i o n an d F i l t e r - E x p r e s s i o n
configuration criteria for your summary are met. It lets yo
specify the format of the summary text. Values may be:
call to theformat() or get_format() function.

The default is aget_format(event_summary) call
for trace event summaries. For state summaries, the def
is a get_format(state_summary) call. For more
information about these format tables, see “Pre-Define
Format Tables” on page 5-21.

For example, if you wanted to limit your summary to trace events with a first argum
value between 5 and 100, yourIf-Expression would look something like:

arg1() > 5 && arg1() < 100

I f yo u w a nt ed t o d ete r min e th e la rge s t o f th ese a rgu me nt v a l u es , y
Summary-Expression would look something like:

max(arg1())

In another example, the following configuration:

Event List:100
If Expression:TRUE
Summary Expression:min(arg1())

prints out the minimum value of the first argument of every trace event logged with a t
event ID of 100. To find the offset where this minimum occurred, set:

Summary Expression:min_offset(arg1())
10-7

NightTrace Manual

at at

end

mum

t he

ch as
tion

the

m the

for
If you want both statistics, use the following:

Summary Expression:format("min %d at %d",
min(arg1()), min_offset(arg1()))

TIP:
If you are interested in many statistics or if you are going to reuse this summary form
a later date, consider defining and using a format table. For example,

Summary Expression: get_format(my_table)

The lack of a second parameter indicates that the only entry in format tablemy_table is
the default item line. The pre-definedevent_arg_summary format table has four
formats defined in it. Format 1 produces summary data onarg1 , format 2 does the same
for arg2 , etc.

For more information about format tables, see “Format Tables” on page 5-18 and the
of /usr/lib/NightTrace/tables .

TIP:
The min_offset() andmax_offset() functions return the offset of the first trace
event where the expression minimum or maximum was seen. Thus, if the same mini
or maximum was seen more than once, the offset corresponds to the first one seen.

TIP:
Including min_offset() , max_offset() , min() , or max() in your summary text
te l ls yo u th e i nc lu s iv e r an g e o f mat ch es t hat y ou su mma ri zed , a nd
summary_matches() function tells the number of matches that you summarized.

TIP:
Sometimes there are anomalies in the trace information logged by an application, su
an unusually long state duration during program start up; this can throw off the dura
stat ist ics when analyzing “typica l” program performance. You can use
Start-Expression for state summaries and theIf-Expression for event summaries to
limit the range of trace events summarized and remove extraneous trace events fro
statistics produced.

See Chapter 8 for information about configuration parameters. See Chapter 9
information onntrace expressions. For more information on theSummarize push but-
ton, see “Summarize Form Push Buttons” on page 10-8.

Summarize Form Push Buttons 10

Following is a summary of the effects of clicking on the push buttons in theSummarize
Form:

Apply (default) Validates any field change(s) on theSummarize Form.
Clicking onApply is equivalent to pressing<Enter>.

Reset Restores changed field(s) on theSummarize Form to the value(s)
they had after the lastApply or <Enter>. This works only if you
10-8

Using the Built-In Tools

.

have not already pressed<Enter> or clicked on theApply push
button. Clicking onReset is equivalent to pressing<Esc>.

Restore Restores changed field(s) on theSummarize Form to the original
value(s) they had when you brought up the form.

Clear Erases all text in the summary display area.

Summarize Saves your field changes and summarizes the requested data.

• If you have made a field change, clicking on this push
button makesntrace temporarily save your field
settings.

• Clicking on this push button causesntrace to sum-
marize summary data from your trace event file(s)
based on the criteria from theSummarize Form
fields and the radio button settings.

Because all fields and radio buttons on theSummarize Form have default settings, you
can click on theSummarize push button without modifying anything in this window
The default summarize behavior is:

• ntrace writes statistical messages in the summary display area that tell
about trace event data through the entire trace session for any trace event
from any process on any CPU.

If you have configured theSummarize Form by specifying additional criteria, the
summarize behavior is:

• If a trace event or state meets all these criteria,ntrace writes statistical
messages in the summary display area that tell: the trace events or states
involved, and minimum, maximum, average, and total for intervals and/or
trace event arguments.

• If no trace event or state meets all these criteria,ntrace writes a message
in the summary display area that says that there are no trace event or state
matches to summarize.

Menu Bar 10

The menu bar of theSummarize Form consists of the following menu item:

• File

File Operations 10

When you click on theFile menu item on theSummarize Form, the pull-down menu
shown in Figure 10-3 appears.
10-9

NightTrace Manual

e last
g

se

after

isplay

ary

g
sible.
f you

re

his
Figure 10-3. Summarize Form File Menu

Save Text 10

When you click onFile ➭ Save Text on theSummarize Form, ntrace saves your
summary text to the file you saved to last time. Any changes you have made since th
Save Text or Save Text As ... operation will be saved. You can continue runnin
summaries after this operation. TheSave Text operation is disabled (dimmed) if you
have not both done aSave Text As ... andchanged the summary display. Instead, u
Save Text As ...

Save Text As ... 10

When you click onFile ➭ Save Text As ... on theSummarize Form , ntrace
saves your summary text to the specified file. You can continue running summaries
this operation.

Save Text As ... uses aFile Selection Dialog Box to prompt you for a file name.
See “The File Selection Dialog Box” on page 5-34 for more information.

Close 10

When you click onFile ➭ Close on theSummarize Form, ntrace ends the current
summary session, resets all field and radio button settings, and clears the summary d
area. It does not prompt you to save your summary text since the last time you did aSave
Text or Save Text As Therefore, if you have made any changes to the summ
display area that you want to keep, you must perform aSave Text or Save Text As ...
before you do aClose.

Summary Display Area 10

After you click onSummarize, ntrace appends statistics to the end of the scrollin
summary display area. It automatically scrolls this area so the newest statistics are vi
Every line in this area has a unique number. A blank line separates sets of statistics. I
want new statistics to appear alone in the summary display area, click onClear before
you click onSummarize. See “Summarize Form Push Buttons” on page 10-8 for mo
information.

By default,ntrace displays 14 lines in the summary display area. You can alter t
number by changing the size of theSummarize Form . To change theSummarize
10-10

Using the Built-In Tools

t is
h all

th of

ed to
ow

r

Form size, vertically resize your window by using features of your window manager. I
not necessary to resize a window to see lines 15 and higher; you can scroll throug
lines by using the scroll bar. Sometimes the statistical information exceeds the wid
the summary display area. In this case, you must horizontally resize your window.

The summary display area of theSummarize Form presents different information
depending on yourSummary-Expression and whether your summary type isEvent
or State.

Event Summaries 10

Configuringevent summariesis similar to configuring DataBox display objects. The
configuration parameters for an event summary are identical to those that are us
configure a DataBox display object. See “DataBox” on page 8-13 for information on h
to configure a DataBox.

By default, theSummary-Expression for an event summary type, displays one line fo
each of the following in the summary display area:

• The range of ordinal trace event numbers (offsets) summarized

• The number of matches summarized

• The minimum time gap between matches and the ordinal trace event
number (offset) where it began

• The maximum time gap between matches and the ordinal trace event
number (offset) where it began

• The average time gap between matches

Figure 10-4 shows an event summary.
10-11

NightTrace Manual

e
ed to
n on

mary

r

Figure 10-4. The Event Summarize Form

NOTE

TheNode List field appears in this dialog only when NightTrace
is configured to use an RCIM to timestamp events.

State Summaries 10

Configuringstate summariesis similar to configuring StateGraph display objects. Th
configuration parameters for a state summary are identical to those that are us
configure a StateGraph display object. See “StateGraph” on page 8-14 for informatio
how to configure a StateGraph.

The main difference between a state summary and a StateGraph is that a state sum
shows information textually and a StateGraph shows it graphically.

By default, theSummary-Expression for a state summary type, displays one line fo
each of the following in the summary display area:
10-12

Using the Built-In Tools
• The range of ordinal trace event numbers (offsets) summarized

• The number of matches summarized

• The minimum time gap between matches and the ordinal trace event
number (offset) where it began

• The maximum time gap between matches and the ordinal trace event
number (offset) where it began

• The average time gap between matches

• The sum of the time gaps between matches

• The minimum time duration of a match and the ordinal trace event number
(offset) where it began

• The maximum time duration of a match and the ordinal trace event number
(offset) where it began

• The average time duration of a match

• The sum of the time durations of matches

Figure 10-5 shows a state summary.
10-13

NightTrace Manual

ging
ace
Figure 10-5. The State Summarize Form

NOTE

TheNode List field appears in this dialog only when NightTrace
is configured to use an RCIM to timestamp events.

Exercise: Using the Search Tool 10

The following exercise has you search for trace events you logged in “Exercise: Log
Trace Events” on page 4-27, while using files you created in “Exercise: Displaying Tr
Events” on page 5-36.

Invoke the NightTrace display utility with thelog trace event file, themap event-map
file, and thepage configuration file.

$ ntrace log map page
10-14

Using the Built-In Tools

at is

the
f the

see

ging
After the display page appears, press theRefresh push button at the bottom right of the
page. The current time line should now be positioned inside the first visible state. Wh
the tag of the current trace event?

NAP START

Now, bring up the Search tool by clicking onTools ➭ Search ...

Use the default settings to search globally forward for all trace events and make
interval scroll the current time to the trace event. After one search, what is the tag o
current trace event?

NAP_END

Keep searching forward until you reach the end of the trace. You should continue to
alternatingNAP_STARTandNAP_ENDtrace event tags.

Close theSearch Form by clicking on theClose push button.

Exercise: Using the Summarize Tool 10

The following exercise has you summarize trace events you logged in “Exercise: Log
Trace Events” on page 4-27.

While stil l in ntrace , bring up the Summarize tool by clicking onTo o ls ➭

Summa rize ...

Press theSummarize button for the default event summary.

How many matches were summarized?

22

At which offset does the largest gap occur?

2

How large is this gap?

about 1.8 seconds

Close theSummarize Form by clicking onFile ➭ Close.

This exercise continues in “Exercise: Kernel Tracing” on page 11-38.
10-15

NightTrace Manual
10-16

-1
1-1
-1
-2
-3
-3
-4
-5

1-6
1-6
-6
-7
-7
-8
-9
-9
13
4
4

14
15
16
7

18
9
0
21
-22
22
3
5
26
7
7
8
9
1
2
32
-34
35
35
36
36
37
38
11
Tracing the Kernel

Overview . 11
Recommended Reading. 1
Using KernelTrace with NightTrace . 11
Default Kernel Trace Points. 11

Context Switch Trace Event . 11
Interrupt Trace Events . 11
Exception Trace Events . 11
Syscall Trace Events. 11
Shared Interrupt Trace Event . 1
Process Name Trace Event . 1

Kernel Trace Points Not Enabled By Default . 11
Page Fault Event . 11
Protection Fault Event . 11

Kernel Tracing with ktrace . 11
Invoking ktrace. 11
ktrace Options. 11
Viewing KernelTrace Trace Event Files with ktrace . 11-

ktrace Kernel Activity Summaries . 11-1
Configuration Summary. 11-1
System Call Summary . 11-
Exception and Interrupt Summaries. 11-
Exception and Interrupt Total Time Summaries 11-
Device Summary . 11-1

ktrace Trace Event Listings . 11-
ktrace -verbose Listing. 11-1
ktrace -raw Listing . 11-2

Converting KernelTrace Trace Event Files with ntfilter . 11-
Viewing Converted KernelTrace Trace Event Files with ntrace 11

Kernel Display Pages . 11-
RCIM Default Kernel Display Page . 11-2
CPU Information . 11-2
Running Process Information . 11-
Node Information . 11-2
Context Switch Information . 11-2
Interrupt Information. 11-2
Exception Information. 11-2
Syscall Information . 11-3
Color Information . 11-3

Kernel String Tables . 11-
Kernel Reference . 11

Interrupts. 11-
Non-Device-Related Interrupts . 11-
Device-Related Interrupts . 11-

Exceptions . 11-
Syscalls . 11-

Exercise: Kernel Tracing . 11-

NightTrace Manual

also
h the

ed in
11
Chapter 11Tracing the Kernel

11
11
11

Overview 11

This chapter provides a description of the trace points logged by the kernel. It
discusses the steps required to produce a highly detailed picture of kernel activity wit
KernelTrace and NightTrace tools. This lets you customize the defaultntrace kernel
display pages or combine kernel information with user-application trace information.

Recommended Reading 11

The following manuals and documents explain many of the concepts briefly discuss
this chapter.

Using KernelTrace with NightTrace 11

Using the KernelTrace package is optional. The following steps are involved:

Table 11-1. Recommended Reading

Manual Title Concepts

PowerMAX OS Programming Guide Understanding the kernel and
exceptions related to signals

PowerMAX OS Real-Time Guide Usingktrace(1) and
understanding the kernel and
hardclock interrupts

System Administration Volume 1 and Volume 2Understanding interrupts and creating
system devices

Section 2 system manual pages Understanding system calls

PowerPC 604 RISC Microprocessor User’s
Manual

Understanding exceptions

HN6200 Architecture Reference Manual Understanding interrupts

HN6800 Architecture Reference Manual Understanding interrupts
11-1

NightTrace Manual

d I/O
ne or

nts is
l

e

data

t-
• (Required) Installing thetrace package on your system. See “Installing
Software” on page 2-2.

• (Required) Enabling kernel tracing and default kernel trace points. See
“Configuring the Kernel” on page 2-3 and “Default Kernel Trace Points”
on page 11-2.

• (Required) Logging kernel trace events. This may also include enabling
and disabling more kernel trace points and analyzing textual trace event
summaries. See “Kernel Tracing with ktrace” on page 11-8.

• (Optional) Converting a KernelTrace trace event file to a NightTrace trace
event file for subsequent graphical analysis withntrace . See “Converting
KernelTrace Trace Event Files with ntfilter” on page 11-21.

• (Optional) Graphically analyzing trace event summaries. See “Viewing
Converted KernelTrace Trace Event Files with ntrace” on page 11-22.

Kernel trace points identify interrupts, exceptions, system calls, context switches, an
to various devices. When kernel tracing is enabled, the kernel tests whether to log o
more kernel trace events for each enabled kernel trace point. If thektrace tool is
running, kernel trace event logging takes place. Understanding the kernel trace poi
important for analyzingktrace output and creating and modifying graphical kerne
display pages forntrace .

Default Kernel Trace Points 11

The file <sys/ktrace.h > identifies allkernel and device driver trace points. Of thes
kernel trace points,ktrace enables only the following by default:

• TR_SWITCHIN

• TR_INTERRUPT_ENTRYandTR_INTERRUPT_EXIT

• TR_EXCEPTION_ENTRYandTR_EXCEPTION_EXIT

• TR_SYSCALL_ENTRY

• TR_IO_VNODE

• TR_ALT_INT_DISPATCH

• TR_PROCESS_NAME

These default kernel trace points are required to get meaningful kernel performance
in a KernelTrace trace event file. However, these trace points are notthe only trace points
that you will see withntrace after converting a KernelTrace trace event file into Nigh
Trace trace event file format withntfilter . Specifically, the following trace points are
introduced:

• TR_SYSCALL_EXIT

• TR_SYSCALL_SUSPENDandTR_SYSCALL_RESUME

• TR_EXCEPTION_SUSPENDandTR_EXCEPTION_RESUME
11-2

Tracing the Kernel

ent

nt
o the

dy to
at a

CPU
can

ss
al
f

g
lue

nts:

is

e

to
his
Whenntfilter converts a KernelTrace trace event file into a NightTrace trace ev
f i le , i t r em o v e s th e TR _I O _V NO DE, T R_ A LT _I NT _ DI SP AT C H, a n d
TR_PROCESS_NAMEtrace events.TR_ALT_INT_DISPATCH events are converted to
appropriateTR_INTERRUPT_ENTRYand/orTR_INTERRUPT_EXIT trace points. For
eachTR_PROCESS_NAMEevent,ntfilter extracts the process name from the eve
and adds the name to its process name table which is subsequently written t
vectors file.

The following sections discuss the trace events that you will see inntrace as a result of
logging the default kernel trace points.

Context Switch Trace Event 11

There is only one context switch trace event:

TR_SWITCHIN arg1

This trace event is logged whenever a process has been switched in and is rea
be run on a specific CPU. Because only one process can run on a given CPU
time, this trace event also signifies that the process that was running on the
immediately prior to the context switch trace event has been switched out and
no longer run. This trace event has one argument:

arg1 The numeric 32-bit global process identifier (PID) of the proce
being switched in. This information is redundant, since it is identic
to the PID that is already associated with the trace event. A PID o0
indicates that the CPU is idle.

The 32-bit global process identifier uniquely identifies the runnin
process on the system. This identifier is identical to the return va
of the _lwp_global_self() system call. See “pid()” on page
9-22.

Interrupt Trace Events 11

There are two trace events associated with interrupts:

TR_INTERRUPT_ENTRYarg1 arg2 arg3

This trace event is logged whenever an interrupt is entered. It has three argume

arg1 The interrupt vector number that indicates the type of interrupt. Th
is an index into thevector string table that is contained within the
vectors file generated by thentfilter tool. For more informa-
tion about thevector string table, see “Kernel String Tables” on
page 11-32. For more information about thentfilter tool, see
“Converting KernelTrace Trace Event Files with ntfilter” on pag
11-21.

arg2 The interrupt nesting level used by the pre-defined kernel pages
graph the different heights associated with the nesting level. T
11-3

NightTrace Manual

r-

enti-

nt:

on.

e

itch.
he

s that
ould

g

ME
fore

he

ment
argument will be1 for the first interrupt,2 for a second interrupt that
interrupted the first interrupt,3 for a third interrupt that interrupted
the second interrupt, etc.

arg3 The interrupt vector number of the previous interrupt that this inte
rupt entry is interrupting, if any.

TR_INTERRUPT_EXIT arg1 arg2 arg3

This trace event is logged whenever an interrupt is exited. Its arguments are id
cal to those of theTR_INTERRUPT_ENTRYtrace event.

Exception Trace Events 11

There are four trace events associated with exceptions:

TR_EXCEPTION_ENTRYarg1

This trace event is logged whenever an exception is entered. It has one argume

arg1 The exception vector number that indicates the type of excepti
This is an index into thevector string table that is contained within
thevectors file generated by thentfilter tool. For more infor-
mation about thevector string table, see “Kernel String Tables” on
page 11-32. For more information about thentfilter tool, see
“Converting KernelTrace Trace Event Files with ntfilter” on pag
11-21.

TR_EXCEPTION_SUSPENDarg1

This trace event is logged whenever an exception is suspended by a context sw
It has one argument that is identical to the argument logged with t
TR_EXCEPTION_ENTRYtrace event.

TR_EXCEPTION_RESUMEarg1

This trace event is logged whenever an exception is resumed (i.e., the proces
caused the exception to occur, which was switched out before the exception c
be completed, is switched back in). ATR_EXCEPTION_RESUMEtrace event will
always follow aTR_EXCEPTION_SUSPENDevent, unless the process is bein
switched in for the first time since kernel tracing began.

It is possible for severalTR_EXCEPTION_SUSPEND—TR_EXCEPTION_RESU
trace event pairs to occur if the process is switched in and out several times be
the exception completes.

TheTR_EXCEPTION_RESUMEtrace event has one argument that is identical to t
argument logged with theTR_EXCEPTION_ENTRYtrace event.

TR_EXCEPTION_EXIT arg1

This trace event is logged whenever an exception is completed. It has one argu
that is identical to the argument that is logged with theTR_EXCEPTION_ENTRY
trace event.
11-4

Tracing the Kernel

:

to

ted

h. It
the

that
d be

ed

the

l to

ernel

ents
Syscall Trace Events 11

There are four trace events associated with syscalls:

TR_SYSCALL_ENTRYarg1 arg2 arg3

This trace event is logged whenever a syscall is entered. It has three arguments

arg1 This argument is always zero for historical reasons.

arg2 The syscall number that identifies the syscall. This is an index in
the pre-definedsyscall string table.

arg3 The device number that indicates the type of device that is associa
with the syscall, if any. This is an index into the pre-defineddevice
string table.

For more information about the pre-definedsyscall anddevice string tables,
see “Kernel String Tables” on page 11-32.

TR_SYSCALL_SUSPENDarg1 arg2 arg3

This trace event is logged whenever a syscall is suspended by a context switc
has three arguments that are identical to the arguments logged with
TR_SYSCALL_ENTRYtrace event.

TR_SYSCALL_RESUMEarg1 arg2 arg3

This trace event is logged whenever a syscall is resumed (i.e., the process
caused the syscall to occur, which was switched out before the syscall coul
completed, is switched back in). ATR_SYSCALL_RESUMEtrace event will always
follow a TR_SYSCALL_SUSPENDtrace event, unless the process is being switch
in for the first time since kernel tracing began.

It is possible for severalTR_SYSCALL_SUSPEND—TR_SYSCALL_RESUMEtrace
event pairs to occur if the process is switched in and out several times before
syscall completes.

The TR_SYSCALL_RESUMEtrace event has three arguments that are identica
the arguments logged with theTR_SYSCALL_ENTRYtrace event. However, if a
TR_SYSCALL_RESUMEtrace event does not follow aTR_SYSCALL_SUSPEND
trace event (i.e., it is the first syscall trace event logged by the process since k
tracing began)arg2 identifies the syscall as “can’t determine .”

TR_SYSCALL_EXIT arg1 arg2 arg3

This trace event is logged whenever a syscall is completed. It has three argum
that are identical to the arguments logged with theTR_SYSCALL_ENTRYtrace
event.
11-5

NightTrace Manual

f
hich
rrupt
rrupts
that

y pro-

ent
e

ing
hen

ea-

exist

the

ent

hem
plica-
rove
Shared Interrupt Trace Event 11

The TR_ALT_INT_DISPATCH trace point assists in determining the real identity o
shared interrupts. A shared interrupt handler invokes another interrupt handler w
either directly processes the interrupt or determines more information about the inte
and dispatches yet another handler to process the interrupt. Because shared inte
share an interrupt vector, the vector number is not sufficient to distinguish the devices
share a vector. Whenever a shared interrupt handler invokes a handler which actuall
cesses the interrupt, the kernel logs aTR_ALT_INT_DISPATCH event to provide the
information necessary to uniquely identify the device which generated the interrupt.

Whenntfilter converts a KernelTrace trace event file into a NightTrace trace ev
f i le , T R_ AL T _I NT _D I SP AT CH e v e n t s a r e c o n v e r t ed t o a p p r o p r i a t
TR_INTERRUPT_ENTRYand/orTR_INTERRUPT_EXITtrace points.

Process Name Trace Event 11

TheTR_PROCESS_NAMEtrace point increases the likelihood of successfully associat
a process name with a process ID during analysis of trace events in NightTrace. W
ktrace is used to collect kernel trace data, it scans/proc once during initialization and
once during termination to gather process names. However, if the workload to be m
sured is run afterktrace has been initialized and completes beforektrace terminates,
that workload will not have a process name available since the process(es) did not
during either of the/proc traversals. The kernel will log aTR_PROCESS_NAMEevent,
which contains a global LWP ID and either the name of the LWP (if it is available) or
name of the LWP's containing process, in the following instances:

• The kernel creates an LWP, i.e. the kernel creates a kernel daemon.

• A user process creates an LWP either directly through the
_lwp_create(2) system call or indirectly through the Threads Library.

• A user process creates a child process through any of thefork(2) system
calls.

• A user process overlays the existing process with a new process image
through any of theexec(2) system calls.

Whenntfilter converts a KernelTrace trace event file into a NightTrace trace ev
file, ntfilter extracts the process name from eachTR_PROCESS_NAMEevent and
adds the name to its process name table which is subsequently written to thevectors
file.

Kernel Trace Points Not Enabled By Default 11

There are several kernel trace points which are not enabled by default but two of t
deserve special mention. These two events allow you to determine areas in your ap
tion code where address faults are occurring, to minimize such faults, and thus imp
11-6

Tracing the Kernel

otec-

lt can
led by

ly fre-

ault

or
on

n a

otec-
ent is
may

tion

or
on
the application's performance. The following sections discuss the page fault and pr
tion fault kernel trace points.

Page Fault Event 11

There is one page fault trace event:

TR_PAGEFLT_ADDRarg1 arg2 arg3

This trace event is logged whenever a kernel or user page fault occurs. The page fau
be either on a data address or on an instruction address. This trace event is not enab
default because, depending upon system activity, page faults may occur reasonab
quently. This trace event has three arguments:

arg1 The data address which caused the page fault. If the page f
occurred on an instruction, this will be set to zero.

arg2 The program counter value at the time of the page fault.

arg3 The flag indicating whether the fault occurred on a kernel address
on a user address. A value of zero indicates that the fault occurred
a user address. A value of one indicates that the fault occurred o
kernel address.

Protection Fault Event 11

There is one protection fault trace event:

TR_PROTFLT_ADDRarg1 arg2 arg3

This trace event is logged whenever a kernel or user protection fault occurs. The pr
tion fault can be either on a data address or on an instruction address. This trace ev
not enabled by default because, depending upon system activity, protection faults
occur reasonably frequently. This trace event has three arguments:

arg1 The data address which caused the protection fault. If the protec
fault occurred on an instruction, then this will be set to zero.

arg2 The program counter value at the time of the protection fault.

arg3 The flag indicating whether the fault occurred on a kernel address
on a user address. A value of zero indicates that the fault occurred
11-7

NightTrace Manual

n a

use

ce

alls,

ged to
to an

hich

g of
at

stem

e of

rs” in

ds to
e) in
here-
a user address. A value of one indicates that the fault occurred o
kernel address.

Kernel Tracing with ktrace 11

The KernelTrace feature consists of thektrace(1) and ntfilter(1) tools. Use
ktrace to collect KernelTrace data and generate textual summaries. Then
ntfilter to convert KernelTrace trace event files fromktrace into NightTrace trace
event files, suitable forntrace graphical displays. (See “Converting KernelTrace Tra
Event Files with ntfilter” on page 11-21 for details.)

ktrace collects data about the execution time of interrupts, exceptions, system c
context switches, and I/O to various devices. Thektrace program uses/dev/trace to
enable trace points within the kernel. These trace points cause trace records to be log
kernel trace buffers. Filling the kernel trace buffers causes trace records to be written
output file. (For more information about these buffers, see <sys/ktrace.h >.) The trace
record includes a trace event identifier, a timestamp that corresponds to the time at w
the kernel event occurred, and some additional system information.

ktrace can be used to read kernel trace buffers or an input file and to analyze the lo
trace records. Whenktrace is used to analyze trace records, it prints a summary th
contains the average, minimum, and maximum times for interrupts, exceptions, sy
calls, context switches, and I/O calls to various devices.

CAUTION

Summaries may be inaccurate because:

Kernels built with kernel tracing enabled run slower than those
built without it.

One CPU may block another CPU from writing to a trace buffer,
causing the time to record a trace point on a multiprocessor sys-
tem to be imprecise.

The kernel allocates buffers of three pages each (12,288 bytes) toktrace . This is part of
the kernel’s initialized global data, meaning these are reserved physical pages.

Normally ktrace does not lose kernel trace events. Ifktrace issues an error message
about lost trace events, ask your system administrator to increase the siz
TR_BUFFER_COUNTin /etc/conf/mtune.d/trace by running theidtune(1M)
command, rebuilding, and rebooting the system. (Usually aTR_BUFFER_COUNTof 5 is
sufficient.) For more information about tunable parameters, see “Tunable Paramete
System Administration Volume 2.

The trace mechanism is not able to deal with losing events. This is because it nee
match up start events with end events (interrupt start and interrupt end, for exampl
order to produce meaningful statistics. There are other ordering dependencies too. T
fore, if you see something like the following message:
11-8

Tracing the Kernel

ata
le)

der

of
sitive.

d

ERROR: events lost 15773
fatal error

ktrace exits immediately afterwards. Note that if you are logging data to a file, the d
written is still valid (the buffers with corrupted data will not have been written to the fi
so any summary produced should still be meaningful.

Invoking ktrace 11

The ktrace kernel trace logging and analysis tool resides on your system un
/usr/bin/ktrace . You can override some default functionality by invokingktrace
with options. The fullktrace invocation syntax is:

ktrace [-help] [-version] [-measure] [-output file]
[-bufferwrap count] [-disable][-enable tracepoint]
[-priority priority][-clock source][-cpu CPU]
[-process PID][-input file] [-ticks] [-wall]
[-start sec] [-nohardclock][-raw] [-verbose]

The following sections discuss thektrace options and arguments.

ktrace Options 11

You can abbreviate allktrace options to their shortest unambiguous length, but most
the examples in this manual use the long option name. These options are case-insen

ktrace options include:

-help Display thektrace invocation syntax on standard output an
exit. Screen 11-1 shows an example.
11-9

NightTrace Manual

t

ce

e
en
s
,

Screen 11-1. Sample Output from the ktrace -help Option

-version Display the currentktrace version stamp on standard outpu
and exit.

-measure Display to standard output the time required to log a tra
event and exit.

The following options are for the collection of kernel trace data.

-output file Write raw trace data to KernelTrace trace event filefile rather
than writing a summary to standard output.

-bufferwrap countWrite only the lastcounttrace buffers of the most recent trac
events to the output file. By default, all trace events are writt
t o th e o u t p u t f i l e . E ac h t r a c e b u f f er co n t a i n
TR_BUFFER_SIZEtrace events (for the value of this define
please see/usr/include/sys/ktrace.h).

usage: ktrace [-help] [-version] [-measure] [-output file]
[-bufferwrap count] [-disable] [-enable tracepoint]
[-priority priority] [-clock source] [-cpu CPU]
[-process PID] [-input file] [-ticks] [-wall]
[-start sec] [-nohardclock] [-raw] [-verbose]

General options:
-help Write this message to standard output
-version Write current ktrace version to standard output
-measure Measure the time required to log a trace event

Options for collection of kernel trace data:
-output file File to write collected data to
-bufferwrap count Write last count buffers to the output file
-disable Disable all default kernel trace points
-enable tracepoint Enable specified kernel trace point
-priority priority Run ktrace at specified RT priority (default: max)
-clock source Specify source of event time stamps

Valid values for source are:
default Use the default system clock
rcim_tick Use the RCIM synchronized tick clock

Options for analysis of kernel trace data:
-cpu CPU Include in analysis trace events only for given CPU

(default: all CPUs)
-process PID Include in analysis trace events only for given PID

(default: all PIDs)
-input file File of data to analyze (default: /dev/trace)
-ticks Report time in ticks instead of elapsed time
-wall Use wall times for the summary calculations
-start sec Exclude from analysis trace events before given time
-nohardclock Exclude from analysis hardclock interrupts
-raw Display raw data for each trace event
-verbose Display verbose data for each trace event
11-10

Tracing the Kernel

el

el
.).

ou
-
er

ed
CAUTION

Using the-bufferwrap option may cause a process name to be
unavailable for a process ID during subsequent trace data analy-
sis. If theTR_PROCESS_NAMEevent which names the process is
overwritten by buffer wraparound and the process name is not
picked up byktrace during its two scans of/proc , the process
will not have a name available for it.

-disable Disable all default kernel trace points. (See “Default Kern
Trace Points” on page 11-2 for details.) Use a subsequent
-enable to enable individual trace points.

-enable tracepointEnable kernel trace pointtracepointin addition to the default
kernel trace points. (For information about the default kern
trace points, see “Default Kernel Trace Points” on page 11-2
The allowed values fortracepointappear in the include file
<sys/ktrace.h >.
You can disable and enable all trace points at trace time. Y
would usually do this if you are interested only in tracking con
text switches and do not want to incur the overhead of the oth
trace points. For example, invokektrace as follows:

ktrace -disable -enable 50

where50 is the ID of theTR_SWITCHINtrace point.

-priority priority Runktrace at the specified real-time priority. The default is
the maximum real-time priority.

-clock source Use the specifiedsource for trace event timestamps. The
sourceis required. Validsourcevalues are:

default

the interval timer (NightHawk 6000 Series) or the
Time Base Register (Power Hawk/PowerStack)

rcim_tick

the RCIM synchronized tick clock

NOTE: If you specifyrcim_tick for thesourceand the sys-
tem on which you are tracing does not have an RCIM install
or configured or if the RCIM synchronized tick clock on the
system on which you are tracing is stopped,ktrace will exit
with an error.

The following options are for the analysis of kernel trace data.

-cpu CPU Include in analysis trace events only for logical CPUCPU. The
default is all CPUs.
11-11

NightTrace Manual

.,

al

ce

be
on

ce
ID

the
e

is
as
tart

,
-

er-
re-

e
e

ro-

d
ing
lt,
e

e
st-
-process PID Include in analysis trace events only for processPID, where
PID is the global process identifier of the process (e.g
237’1). See “PID List” on page 8-7 and “Context Switch
Trace Event” on page 11-3 for more information about glob
process identifiers. The default is all PIDs.

Out of necessity, the trace-point data includes interrupt tra
events for interrupts that occurred whilePID was running and
excludes interrupts generated byPID’s I/O requests.

From the NightTrace perspective, kernel trace points can
thought of as being logged by the processes that are running
the system’s CPUs, notby the kernel.

For example, even though aTR_SYSCALL_ENTRYtrace event
is logged by the kernel, the PID that is associated with the tra
event is the PID of the process that made the syscall. The P
of an exception entry is the PID of the process that caused
exception to occur, and the PID of an interrupt is the PID of th
process that was interrupted by the interrupt.

The PID of a context switch is the PID of the process that
being switched in. Thus, a context switch can be thought of
the first trace event that a process logs when it is ready to s
running.

-input file Read or analyze data infile. The default is to open the device
/dev/trace , that collects the trace-point data from the run
ning kernel.

-ticks Report time in ticks (256-nanosecond increments of the int
val timer) instead of elapsed time. This can be useful for cor
lating times with other tools.

-wall Make all time calculations as wall-time calculations. Unlik
default summaries, include time blocked in the kernel and tim
spent in interrupts that preempt execution of the current p
cess or current interrupt.

By default, the time reported for system calls, I/O calls, an
other exceptions only includes time spent actually process
the system call, I/O call, or other exception. Also by defau
the time reported for an interrupt would include only tim
spent while actually processing the current interrupt.

-start sec Exclude from analysis trace events logged during the firstsec
seconds of elapsed time.

-nohardclock Exclude from analysis trace events for hardclock interrupts.

-raw Display the raw trace records with minimal formatting. Not
that this option creates large output files. See “ktrace -raw Li
ing” on page 11-20 for an example.
11-12

Tracing the Kernel

x-
d
ut-
n

med

r,

re
-verbose Display the raw trace records with data interpretation and ma
imal formatting, including logical CPU ID, PID, and elapse
time for all trace points. Note that this option creates huge o
put files. See “ktrace -verbose Listing” on page 11-19 for a
example.

To collect raw trace data from a running kernel in a KernelTrace trace event file na
raw_klog , run ktrace with the invocation:

$ ktrace -output raw_klog

While ktrace is running, run the workload to be measured. Terminatektrace by
sending it a<Ctrl> <c> or using thekill(1) command to send it aSIGINTR signal.

CAUTION

Do not callclock_settime() from your application. This sys-
tem call can corrupt both the system interval timer and Time Base
Register which both NightTrace and KernelTrace use for trace
event timings.

The KernelTrace trace event files created withktrace have unique magic numbers, and
can be identified with thefile(1) command. For example:

$ file raw_klog
raw_klog: KernelTrace trace event file

To runktrace using the KernelTrace trace event fileraw_klog as input:

$ ktrace -input raw_klog > summary_file

The preceding example analyzes the trace records saved inraw_klog and writes textual
time summaries of kernel activity tosummary_file .

KernelTrace trace event files are notcompatible with the NightTrace tool set. Howeve
these files may be converted to NightTrace trace-file format with thentfilter tool. See
“Converting KernelTrace Trace Event Files with ntfilter” on page 11-21 for mo
information.

For more information about kernel tracing see the PowerMAX OSReal-Time Guide.

Viewing KernelTrace Trace Event Files with ktrace 11

Once you have aktrace KernelTrace trace event file, you can usektrace to analyze
and display it. You can use options to modify the summary reports.
11-13

NightTrace Manual

gh
ktrace Kernel Activity Summaries 11

By defaultktrace produces textual summaries of kernel activity. Screen 11-2 throu
Screen 11-6 illustrate a summary written to standard output after runningktrace for a
while without any options and interrupting it with a <Ctrl> <c>.

Configuration Summary 11

Screen 11-2 shows an examplektrace invocation and the resulting configuration
summary.

Screen 11-2. Configuration Summary

A configuration summary shows:

• The date of the trace

• The total elapsed wall time in seconds of the trace

• The machine type and name

• The operating system type and release level

• The event timestamp source

• The options used to invokektrace

System Call Summary 11

Screen 11-3 shows an example of aktrace system call summary.

Configuration Summary
=====================

Run date (data gathering): Thu Aug 26 17:12:41 1999
Total run time: 10.267777 sec
Machine type/node: Power Hawk 640/henry
Kernel type/release: PowerMAX_OS/4.3
Event time stamp source: RCIM synchronized tick clock
Ktrace options (data gathering): ktrace -output /tmp/k1 -clock rcim_tick
Ktrace options (analysis): ktrace -input /tmp/k1 -verbose
11-14

Tracing the Kernel

ring
Screen 11-3. System Call Summary

A system call summary contains one line for each type of system call that occurred du
the trace. Each line includes the following information:

• The number of times the system call occurred

• The minimum duration in microseconds of the system call and the elapsed
time in seconds during the trace when it occurred

• The average duration in microseconds of all occurrences of the system call

• The maximum duration in microseconds of the system call and the elapsed
time in seconds during the trace when it occurred

Exception and Interrupt Summaries 11

Screen 11-4 shows examples ofktrace exception and interrupt summaries.

System Call Summary
===================

system call count min @time avg max @time
--------------- ------ -------- ------------ ---------- ---------- ------------
fork 13 2534 7.445815 5089 10139 5.134528
read 3661 60 19.864994 180 1299 29.369101
write 3535 53 13.312549 98 6711 13.777209
open 70 171 7.523197 370 978 4.822754
close 176 21 5.180711 51 404 7.719841
creat 2 707 7.539468 708 710 7.449845
chdir 2 224 7.627435 228 232 7.375272
gtime 8 18 7.290165 24 46 10.464009
chmod 1 416 5.006350 416 416 5.006350
chown 1 492 5.005885 492 492 5.005885
brk 49 29 7.660741 95 186 5.272032
lseek 41 29 5.284300 37 54 5.157868
getpid 14 22 7.290425 24 27 7.669769
setuid 1 101 7.326856 101 101 7.326856
getuid 8 18 7.396601 24 28 7.396569
alarm 10 23 7.306740 56 88 5.176025
pause 1 285 7.513753 285 285 7.513753
access 18 221 7.405962 542 1615 10.456365
nice 1 61 5.291145 61 61 5.291145
setpgrp 3 20 7.389734 53 111 5.144212
dup 3 29 5.183234 37 46 5.183189
pipe 2 447 7.663649 460 472 7.443250
setgid 1 64 7.326563 64 64 7.326563
getgid 4 17 7.396665 19 21 13.231724
ssig 98 26 7.306903 50 105 13.232873
...
11-15

NightTrace Manual

ring
rred
Screen 11-4. Exception and Interrupt Summaries

An exception summary contains one line for each type of exception that occurred du
the trace. An interrupt summary contains one line for each type of interrupt that occu
on a specific CPU during the trace. Each line includes the following information:

• The number of times the exception or interrupt occurred

• The minimum duration in microseconds of the exception or interrupt and
the elapsed time in seconds during the trace when it occurred

• The average duration in microseconds of all occurrences of the exception
or interrupt

• The maximum duration in microseconds of the exception or interrupt and
the elapsed time in seconds during the trace when it occurred

Exception and Interrupt Total Time Summaries 11

Screen 11-5 shows examples ofktrace exception and interrupt total time summaries.

Exception Summary
=================

exception count min @time avg max @time
--------------- ------ -------- ------------ ---------- ---------- ------------
inst access 484 23 13.229954 38 675 20.004900
data access 3645 22 4.880435 176 1001 5.034892
syscall 8556 17 7.396665 161 13363 4.871685

Interrupt Summary
=================

cpu/interrupt count min @time avg max @time
--------------- ------ -------- ------------ ---------- ---------- ------------
1/spurious int 6 26 17.933975 155 197 29.369312
0/delayed int 41 36 13.416419 106 151 13.285586
1/rescheduling 24 13 5.252413 23 49 13.538494
0/rescheduling 8 11 10.463875 19 57 7.452930
1/eg 118 75 12.811796 187 359 5.465960
0/hsa 1069 12 9.220024 49 152 16.816370
0/softclock 17 34 16.816488 69 112 13.766340
0/console 493 28 14.145049 64 267 29.367308
1/hardclock 1762 9 2.898720 15 81 5.132768
0/hardclock 1761 23 16.349611 82 957 6.666530
1/cross proc 183 21 15.479378 27 52 4.998217
0/cross proc 1040 20 18.382416 24 65 13.648542
11-16

Tracing the Kernel
Screen 11-5. Exception and Interrupt Total Time Summaries

The exception total time summary includes:

• A line showing the total time spent in each type of exception

• The total time spent in all exceptions per CPU

The interrupt total time summary includes:

• A line showing the total time spent in each type of interrupt per CPU

• The total time spent in all interrupts per CPU

Device Summary 11

Screen 11-6 shows aktrace device summary.

Exception Total Times
=====================

exception total time spent in exception
--------------- -----------------------------------
inst access 0.018562 sec (18562 usec)
data access 0.643099 sec (643099 usec)
syscall 1.380817 sec (1380816 usec)

per cpu total time spent in exceptions
--------------- -----------------------------------
cpu 0 0.334344 sec (334344 usec)
cpu 1 1.708132 sec (1708132 usec)

Interrupt Total Times
=====================

cpu/interrupt total time spent in interrupt
--------------- -----------------------------------
0/delayed int 0.004361 sec (4361 usec)
0/rescheduling 0.000155 sec (155 usec)
0/hsa 0.053209 sec (53209 usec)
0/softclock 0.001184 sec (1184 usec)
0/console 0.031591 sec (31591 usec)
0/hardclock 0.145527 sec (145527 usec)
0/cross proc 0.026075 sec (26075 usec)

1/spurious int 0.000931 sec (931 usec)
1/rescheduling 0.000560 sec (560 usec)
1/eg 0.022186 sec (22186 usec)
1/hardclock 0.027925 sec (27925 usec)
1/cross proc 0.005143 sec (5143 usec)

per cpu total time spent in interrupts
--------------- -----------------------------------
cpu 0 0.258850 sec (258850 usec)
cpu 1 0.056358 sec (56358 usec)
11-17

NightTrace Manual

y an

sys-

ut in
round
Screen 11-6. Device Summary

A device summary includes a line of statistics for each type of device accessed b
open , close , read , write , ioctl or poll system call during the trace. The line
contains the same information that is included in the system call summary for those
tem calls except that here it is further broken down by device type.

ktrace Trace Event Listings 11

The preceding summaries are good for getting an overall idea of system activity, b
general you also want to be able to examine the kernel trace events that occurred a
the maximum times for certain durations. In order to do this you need to invokektrace
in a two step process:

Device Summary
==============

open count min @time avg max @time
------------- ------ -------- ------------ ---------- ---------- ------------
file 189 262 14.019941 2661 7879 7.600755
dir 24 125 13.425103 1528 3089 13.213366

close count min @time avg max @time
------------- ------ -------- ------------ ---------- ---------- ------------
file 216 28 7.410805 76 1518 5.029229
dir 38 30 5.593385 51 82 13.360715
fifo 44 37 6.572858 113 379 6.010460
pts 7 79 9.673261 105 123 7.432435
nullzero 2 56 10.338360 57 57 10.338130

read count min @time avg max @time
------------- ------ -------- ------------ ---------- ---------- ------------
file 1181 58 10.350096 201 629 10.607500
fifo 50 75 10.426975 436 776 14.009368
mm 2 111 4.574140 124 138 14.574760
trace 21 150 6.008959 207 241 13.851000
tcp 3 107 4.586716 130 153 14.588139

write count min @time avg max @time
------------- ------ -------- ------------ ---------- ---------- ------------
file 138 190 9.666454 528 4005 10.293841
fifo 46 108 10.417129 447 808 1.691544
ptm 1 207 17.909775 207 207 17.909775
pts 6 322 6.007895 369 456 14.008412
tcp 8 566 16.009590 638 704 6.009530

ioctl count min @time avg max @time
------------- ------ -------- ------------ ---------- ---------- ------------
file 33 35 5.712818 47 70 7.457112
fifo 9 64 15.274572 109 236 14.011427
udp 96 67 3.108406 78 123 3.140494
pts 26 39 5.305794 72 122 5.707121
tcp 114 39 4.566289 55 123 14.587958

poll count min @time avg max @time
------------- ------ -------- ------------ ---------- ---------- ------------
fifo 5 319 9.991041 371 455 15.991276
ptm 8 81 17.909548 291 380 10.008830
udp 8 200 5.480585 226 268 3.386693
tcp 61 68 6.008808 93 340 14.587762
ticotsor 23 401 6.115654 505 680 9.132074
11-18

Tracing the Kernel

file

ding
s

trace
d dif-
$ ktrace -output raw_klog
locking into memory
setting priority to RT 59
open /dev/trace
initialize
gather trace point data
<Ctrl> <c>
terminating
$ ktrace -input raw_klog > summary_file

Thus, an exhaustive log of kernel activity is recorded in theraw_klog output file.

TIP:
The output KernelTrace trace event file must be on a local file system and not an NFS
system. Check the destination file system first ifktrace always seems to be losing
numerous trace events.

ktrace -verbose Listing 11

By default,ktrace produces statistical summaries like the ones shown on the prece
screens. You can use the-verbose option to produce a verbose listing of all event
occurring in the run. For example,

$ ktrace -input raw_klog -verbose > listing

produces something like Screen 11-7.

Screen 11-7. ktrace -verbose Listing

The number in the second column of each line in the listing is the elapsed time of the
event in seconds since tracing began. Notice that trace events from different CPUs an
ferent processes are intermixed in this listing.

16637 12.373326 cpu=0 pid=sbc_msgd 171 hardclock entry
32 12.373358 cpu=0 pid=sbc_msgd 171 hardclock exit 32u

16665 12.373361 cpu=1 pid=idle 163 softclock entry
3 12.373365 cpu=1 pid=idle 163 softclock exit 3u

16634 12.389993 cpu=0 pid=sbc_msgd 171 hardclock entry
29 12.390023 cpu=0 pid=sbc_msgd 171 hardclock exit 29u

16660 12.390025 cpu=1 pid=idle 163 softclock entry
4 12.390029 cpu=1 pid=idle 163 softclock exit 4u

16636 12.406660 cpu=0 pid=sbc_msgd 171 hardclock entry
41 12.406701 cpu=0 pid=sbc_msgd 171 hardclock exit 41u

16674 12.406703 cpu=1 pid=idle 163 softclock entry
3 12.406707 cpu=1 pid=idle 163 softclock exit 3u

8408 12.415110 cpu=0 pid=sbc_msgd 178 decintr entry
8431 12.415139 cpu=1 pid=idle 160 rescheduling entry

46 12.415156 cpu=0 pid=sbc_msgd 178 decintr exit 46u
183 12.415333 cpu=1 pid=idle 160 rescheduling exit 194u

12 12.415346 cpu=1 pid=in.rlogind context switch
20 12.415366 cpu=1 pid=in.rlogind mip
12 12.415379 cpu=1 pid=in.rlogind ptm
39 12.415419 cpu=1 pid=in.rlogind 12 syscall exit 116u poll
11 12.415431 cpu=1 pid=in.rlogind context switch
23 12.415455 cpu=1 pid=in.rlogind 12 syscall entry

2 12.415457 cpu=1 pid=in.rlogind read
11-19

NightTrace Manual

of the
t of a
f the
n in
call

-

d and

ging
The numbers to the left of the trace event descriptions are the actual vector numbers
trace events and are generally not of interest. A number in parentheses to the righ
trace event description indicates a nesting level; the nesting level is displayed only i
level is greater than one. After an exit of a syscall, interrupt, or exception, the duratio
microseconds of the elapsed time from the matching start is given. Finally, for a sys
exit, the name of the system call exiting is listed.

ktrace -raw Listing 11

Use the-raw option if you suspect thatktrace is producing inaccurate listings or sum
maries. For example,

$ ktrace -input raw_klog -raw > listing

produces something like Screen 11-8.

Screen 11-8. ktrace -raw Listing

In a raw listing, no information is interpreted byktrace . The leading number is the off-
set of the trace event in the kernel trace event buffer where the trace event was logge
is generally not of interest.

The fields for each trace event are labeled clearly. Thespins field indicates how much
contention existed between multiple CPUs logging trace events at the trace event log
time. Thecode , cpu , andspins fields are displayed in decimal, and thetime and
param fields are displayed in hexadecimal.

1172: code=0050, cpu=1, spins=0000, time=93162472, param=00000004
1173: code=0013, cpu=0, spins=0000, time=931624c7, param=00000049
1174: code=0012, cpu=1, spins=0000, time=93162508, param=00000048
1175: code=0079, cpu=1, spins=0000, time=00000000, param=00004800
1176: code=0013, cpu=1, spins=0000, time=9316255d, param=00000048
1177: code=0050, cpu=1, spins=0000, time=931626ae, param=ffffffff
1178: code=0012, cpu=0, spins=0000, time=931720e3, param=00000049
1179: code=0079, cpu=0, spins=0000, time=00000000, param=00004900
1180: code=0013, cpu=0, spins=0000, time=93172194, param=00000049
1181: code=0012, cpu=1, spins=0000, time=931721d1, param=00000048
1182: code=0079, cpu=1, spins=0000, time=00000000, param=00004800
1183: code=0013, cpu=1, spins=0000, time=93172205, param=00000048
1184: code=0012, cpu=0, spins=0000, time=93181f36, param=00000049
1185: code=0079, cpu=0, spins=0000, time=00000000, param=00004900
1186: code=0013, cpu=0, spins=0000, time=93181fc2, param=00000049
1187: code=0012, cpu=1, spins=0000, time=93181ffc, param=00000048
1188: code=0079, cpu=1, spins=0000, time=00000000, param=00004800
1189: code=0013, cpu=1, spins=0000, time=93182030, param=00000048
1190: code=0012, cpu=0, spins=0000, time=93191d8a, param=00000049
1191: code=0079, cpu=0, spins=0000, time=00000000, param=00004900
1192: code=0013, cpu=0, spins=0000, time=93191e0c, param=00000049
1193: code=0012, cpu=1, spins=0000, time=93191e45, param=00000048
1194: code=0079, cpu=1, spins=0000, time=00000000, param=00004800
1195: code=0013, cpu=1, spins=0000, time=93191e71, param=00000048
1196: code=0012, cpu=0, spins=0000, time=931a1be0, param=00000049
1197: code=0079, cpu=0, spins=0000, time=00000000, param=00004900
1198: code=0013, cpu=0, spins=0000, time=931a1c69, param=00000049
11-20

Tracing the Kernel

ernel

r

t file

t-

g
les.

ent

conds
e of

and

ated
e-
rrays

has

race
tains
Converting KernelTrace Trace Event Files with ntfilter 11

The KernelTrace feature consists of thektrace(1) andntfilter(1) tools. Use
ktrace to collect kernel trace event data and generate textual summaries. (See “K
Tracing with ktrace” on page 11-8 for details.) Then usentfilter to convert Kernel-
Trace trace event files fromktrace into NightTrace trace event files, suitable fo
ntrace graphical displays.

The usual way to convert a KernelTrace trace event file into NightTrace trace even
format is to invokentfilter in the following manner:

ntfilter -v < raw_klog > klog

where:

-v Causesntfilter to produce a file namedvectors in the current
directory as it converts a KernelTrace trace event file into Nigh
Trace trace event file format. Thevectors file contains the defini-
tion of the vector , syscall , and pid string tables. See
“Pre-Defined String Tables” on page 5-15 and “Kernel Strin
Tables” on page 11-32 for more information about these string tab

raw_klog The KernelTrace trace event file to be converted.

klog The converted KernelTrace trace event file in NightTrace trace ev
file format.

For large KernelTrace trace event files, the conversion process may take several se
to complete. The resulting NightTrace trace event file is approximately twice the siz
the KernelTrace trace event file.

Converted KernelTrace trace event files are accepted as input to thentrace display
utility. A vectors file created with the-v option should always be specified tontrace
along with its corresponding converted KernelTrace trace event file. Thevectors file is
generated dynamically because it is system-configuration dependent. Without avectors
file, ntrace will not be able to display the names of the system processes, interrupts,
exceptions that occurred during kernel tracing.

Even though the vector information is coded into the KernelTrace trace event files cre
by ktrace , the system you runntfilter on must be the same as the system that cr
ated the KernelTrace trace event file due to size differences in statically-allocated a
internal tontfilter .

The file(1) command can be used to verify that the KernelTrace trace event file
been converted. For example:

$ file klog
klog: NightTrace trace event file

There is no difference between a converted KernelTrace trace event file and a NightT
trace event file, other than the fact that the converted KernelTrace trace event file con
kernel trace events.
11-21

NightTrace Manual

e

vent
d/or
wing

s-
l-

files
Viewing Converted KernelTrace Trace Event Files with ntrace 11

A l l o f t h e k e r n e l t r a ce ev e n t t a g s a r e d e f i n ed i n t h
/usr/lib/NightTrace/eventmap file. This file is automatically read byntrace
at start-up time.

Once you have a converted KernelTrace trace event file, you can usentrace to examine
it. You may design your own display pages to view converted KernelTrace trace e
files; see Chapter 7 and Chapter 8 for more information. Alternatively, you may use an
modify pre-defined kernel display pages. These pages are discussed in the follo
sections.

Kernel Display Pages 11

Figure 11-1 shows theFile menu of thentrace Global Window. This menu contains a
Default Kernel Page menu item which is used to open a dynamically-built kernel di
play page. TheDefault Kernel Page menu item is enabled only if a converted Kerne
Trace trace event file has been supplied tontrace on the command line.

Figure 11-1. Global Window File Menu

Figure 11-2 shows a sample kernel display page in View mode constructed from trace
on two differentnodes.

NOTE

The node information is displayed only when NightTrace is con-
figured to use an RCIM to timestamp events.
11-22

Tracing the Kernel

rted

tick
and
play

ernel
Figure 11-2. Sample Kernel Display Page

ntrace determines the number of CPUs on the system from information in the conve
KernelTrace trace event file.

RCIM Default Kernel Display Page 11

When viewing KernelTrace trace event files that have been timestamped by the RCIM
clock, ntrace determines the number of distinct nodes/hosts which have trace files
constructs a default display page accordingly. When you create a default kernel dis
page from trace event files that have been timestamped by the RCIM tick clock,ntrace
pops up a dialog box that allows you to select the nodes you wish to display on that k
page.
11-23

NightTrace Manual

s.
ge

are

t of

splay
ed the
Figure 11-3. Node Selection Dialog

The Available Nodes list shows all nodes that NightTrace has found in the trace file
TheSelected Nodes list contains all nodes you want shown on the kernel display pa
you are building.

NOTE

An asterisk (*) next to a node in theAvailable Nodes list indi-
cates that the particular node has already been selected through
the Node Selection Dialog.

You may select the nodes you wish to be included on the kernel display page you
building by either double-clicking each node name in theAvailable Nodes list or by
selecting a node from that list and using the right arrow button to add it to the lis
Selected Nodes. When the list ofSelected Nodes contains all the nodes you wish
to display on your kernel display page, you may press theBuild button.

As each node is added to the list ofSelected Nodes, ntrace figures out how much
vertical real estate the grid needs (based upon the number of nodes you wish to di
and how many CPUs each node has). If the required vertical space does not exce
maximum grid height,ntrace will allow the page to be created. Otherwise,ntrace
will pop up a warning dialog window and will not allow the page to be created.
11-24

Tracing the Kernel

mi-

f the
ving

ays.
e.
Figure 11-4. Node Selection Warning Dialog

Figure 11-5 shows the display of information for a CPU on a particular node on a dyna
cally-built kernel page.

NOTE

The node information is displayed only when NightTrace is con-
figured to use an RCIM to timestamp events.

Figure 11-5. Per-CPU Information

There are several pieces of information being displayed for each CPU. The position o
current time line determines the values that appear on the kernel display pages. Mo
the current time line within the current interval does not change the graphical displ
However, the textual displays always reflect the last values prior to the current time lin

The following sections discuss all of the different pieces of information in detail.

CPU Information 11

Figure 11-6. CPU Box
11-25

NightTrace Manual

sarily

er is

ard
ond.
ese

PU
f all
with
PUs

d 13

for-

box
rocess
on

race

8 for
Figure 11-6 shows a CPU box. The CPU box simply identifies which logicalCPU the
displayed data corresponds to. Logical CPU numbers are related to, but not neces
identical to, physical CPU numbers.

Each CPU in a system has a four-bit physical CPU number. The physical CPU numb
dependent on which card slot the CPU card containing the CPU is in andwhich location
on the card the CPU is in. The low two bits of the number specify the location on the c
that the CPU is in. These bits are either 00 for the first CPU location or 01 for the sec
The high two bits of the physical CPU number contain the CPU card slot number. Th
bits can be 00, 01, 10, or 11 (or, in decimal, 0, 1, 2, or 3).

For simplicity, most kernel utilities translate the physical CPU numbers into logical C
numbers. The mapping is accomplished by listing the physical CPU numbers o
configured CPUs in ascending order and then numbering them sequentially, starting
zero. For example, a four-CPU system having two CPUs on a card in slot 1 and two C
on a card in slot 3 will have physical CPU numbers 4 (0100), 5 (0101), 12 (1100) an
(1101). Table 11-2 shows the logical CPU mapping of this example system.

The CPU box is a GridLabel display object. See Chapter 7 and Chapter 8 for more in
mation on creating and configuring GridLabels.

Running Process Information 11

Figure 11-7. Running Process Boxes

Figure 11-7 shows two examples of running process boxes. The running process
shows the process that is executing at the current time on the associated CPU. The p
is listed by name, or by its raw PID and LWPID if no name is available. See “PID List”
page 8-7 for more information about PIDs, raw PIDs and LWPIDs.

You can supply NightTrace trace event files tontrace along with converted Kernel-
Trace trace event files.ntrace uses the process names of all processes that logged t
events when displaying the running process.

The running process box is a DataBox display object. See Chapter 7 and Chapter
more information on creating and configuring DataBoxes.

Table 11-2. Example Logical CPU Mapping

Physical CPU Number Logical CPU Number

4 (0100) 0

5 (0101) 1

12 (1100) 2

13 (1101) 3
11-26

Tracing the Kernel

yed

nfor-

l has
new

ocess
h line
Node Information 11

Figure 11-8. Node Box

Figure 11-7 shows a node box. The node box simply identifies which node the displa
data corresponds to.

NOTE

The node information is displayed only when NightTrace is con-
figured to use an RCIM to timestamp events.

The node box is a GridLabel display object. See Chapter 7 and Chapter 8 for more i
mation on creating and configuring GridLabels.

Context Switch Information 11

Figure 11-9. Context Switch Lines

Figure 11-9 shows an example of several context switch lines.Context switch linesare
superimposed on the exception and syscall graphs. They indicate that the kerne
switched out the process that was previously running on the CPU and switched in a
process. There is a direct correlation between context switch lines and the running pr
box: the running process box shows the process associated with the context switc
that immediately precedes the current time line.
11-27

NightTrace Manual

dis-
Inter-
nest-
upts
u will

line
th the
ply

date

, it is
last

t on

for
d in

ata-
and
Interrupt Information 11

Figure 11-10. Last Interrupt Box and Interrupt Graph

Figure 11-10 shows a last interrupt box and an interrupt graph. The interrupt graph
plays a state that is drawn whenever an interrupt is executing on the associated CPU.
rupts can be interrupted while executing, and the interrupt graph shows this interrupt
ing by increasing the height of the state bar. Although interrupts can nest, all interr
must complete before the process they interrupt can be switched out. Therefore, yo
never see a context switch occur in the middle of an interrupt.

The last interrupt box displays the name of the last interrupt prior to the current time
that executed (and may still be executing) on the associated CPU. It can be used wi
interrupt graph to identify any interrupts that are currently visible on the graph. Sim
move the current time line onto a graphed interrupt, and the last interrupt box will up
to display the name of the interrupt.

Because the last interrupt box displays the name of the last interrupt that executed
possible for there to be no interrupts visible on the interrupt graph even though the
interrupt box contains a valid interrupt name. This just signifies that the last interrup
the CPU ended prior to the beginning of the current interval.

An interrupt that is seen very often is the hardclock interrupt, which usually accounts
15% of the total number of trace events logged by the kernel. If you are not intereste
hardclock interrupts, they can be ignored byntrace , improving performance and
readability. See “ntrace Options” on page 5-3 for more information.

The last interrupt box is a DataBox display object, and the last interrupt graph is a D
Graph display object. See Chapter 7 and Chapter 8 for more information on creating
configuring DataBoxes and DataGraphs.
11-28

Tracing the Kernel

raph
CPU.
ame

ntext
his
use the
en the
d and

that
h the

ply
will

d, it is
e last
ption

tate-
and

ou to
ents

een in
Exception Information 11

Figure 11-11. Last Exception Box and Exception Graph

Figure 11-11 shows a last exception box and an exception graph. The exception g
displays a state that is drawn whenever an exception is executing on the associated
Unlike interrupts, exceptions cannot nest, so they are always graphed with the s
height.

Context switch lines are superimposed on exception graphs. It is common to see a co
switch line at what looks like the very end (or beginning) of an exception. Usually, t
does not indicate that the exception has ended, only that it has been suspended beca
process that originated the exception has switched out. The exception resumes wh
process is switched back in again. An example of an exception being suspende
resumed can be seen at the left end of the exception graph in Figure 11-11.

The last exception box displays the last exception prior to the current time line
executed (and may still be executing) on the associated CPU. It can be used wit
exception graph to identify any exceptions that are currently visible on the graph. Sim
move the current time line onto a graphed exception, and the last exception box
update to display the name of the exception.

Because the last exception box displays the name of the last exception that execute
possible for there to be no exceptions visible on the exception graph even though th
exception box contains a valid exception name. This just signifies that the last exce
on the CPU ended prior to the beginning of the current interval.

The last exception box is a DataBox display object, and the last exception graph is a S
Graph display object. See Chapter 7 and Chapter 8 for more information on creating
configuring DataBoxes and StateGraphs.

Lines indicatingTR_PAGEFLT_ADDRandTR_PROTFLT_ADDRevents are also superim-
posed on exception graphs. Exception graphs display these trace points to allow y
obtain a formatted dump of them in the message display area by clicking on the ev
with mouse button 2. An example of aTR_PAGEFLT_ADDRand aTR_PROTFLT_ADDR
event as well as their associated data in the message display area can be s
Figure 11-12.
11-29

NightTrace Manual

n page
splay

and

-13.
Figure 11-12. TR_PAGEFLT_ADDR and TR_PROTFLT_ADDR Events

Note theTR_PROTFLT_ADDRevent to the left of the current time line attime =9.459738
and theTR_PAGEFLT_ADDRevent to the right of the current time line attime =9.460050
and the corresponding data in the message display area. (See “The Display Page” o
7-2 for more information on the message display area and other elements of the di
page.)

Note also that theTR_PROTFLT_ADDRandTR_PAGEFLT_ADDRevents are represented
by a vertical line that only intersects the exception state graph whereas aTR_SWITCHIN
event (see “Context Switch Trace Event” on page 11-3) intersects both the exception
syscall state graphs. In addition,TR_PROTFLT_ADDRandTR_PAGEFLT_ADDRevents
will only appear within a currently executing exception. This can be seen in Figure 11
11-30

Tracing the Kernel

ays a
CPU.

ight.

ntext
oes
process
ess is
e seen

uted
ith a
Figure 11-13. TR_SWITCHIN vs. TR_PAGEFLT_ADDR and TR_PROTFLT_ADDR Events

Syscall Information 11

Figure 11-14. Last Syscall Box and Syscall Graph

Figure 11-14 shows a last syscall box and a syscall graph. The syscall graph displ
state that is drawn whenever a system call (syscall) is executing on the associated
Unlike interrupts, syscalls cannot nest, so they are always graphed with the same he

Context switch lines are superimposed on syscall graphs. It is common to see a co
switch line at what looks like the very end (or beginning) of a syscall. Usually, this d
not indicate that the syscall has ended, only that it has been suspended because the
that originated the syscall has switched out. The syscall resumes when the proc
switched back in again. An example of a syscall being suspended and resumed can b
at the right end of the syscall graph in Figure 11-14.

The last syscall box displays the last syscall prior to the current time line that exec
(and may still be executing) on the associated CPU. If the syscall is associated w
device, the name of the device is shown after the name of the syscall.
11-31

NightTrace Manual

t are
call,

, it is
yscall
nded

o be
scall

raph
and

the
port

are
y

X
ogical
The last syscall box can be used with the syscall graph to identify any syscalls tha
currently visible on the graph. Simply move the current time line onto a graphed sys
and the last syscall box will update to display the name of the syscall.

Because the last syscall box displays the name of the last syscall that executed
possible for there to be no syscalls visible on the syscall graph even though the last s
box contains a valid syscall name. This just signifies that the last syscall on the CPU e
prior to the beginning of the current interval.

It is possible for the first syscall logged by a process since kernel tracing began t
unknown. This can occur if the process is switched in and immediately resumes a sy
that was previously suspended. If this occurs, the last syscall box will display “can’t
determine ” for the name of the syscall.

The last syscall box is a DataBox display object, and the last syscall graph is a StateG
display object. See Chapter 7 and Chapter 8 for more information on creating
configuring DataBoxes and StateGraphs.

Color Information 11

Figure 11-15. Color Key

Figure 11-15 shows the color key that is located on the bottom left of the grid on
pre-defined kernel display pages. The color key is useful only on X terminals that sup
more colors than just black and white.

The text in the color key is color-coded. By default, the word “Interrupt” is red, and all
display objects on the kernel display page that display information about interrupts
also red. By default, the word “Exception” is green, and all display objects that displa
information about exceptions are also green. By default, the word “Syscall” is blue, and
all display objects that display information about syscalls are also blue.

The default colors of the different groups of kernel objects can be controlled with
resources. The colors are specified on a per-CPU basis. The default resources for l
CPU 0 are:

Ntrace*Color*GridObject*interrupt0*foreground: red
Ntrace*Color*GridObject*exception0*foreground: green
Ntrace*Color*GridObject*syscall0*foreground: blue

See Appendix B for more information on X resources.

Kernel String Tables 11

There are seven kernel related pre-defined string tables. They are:
11-32

Tracing the Kernel

es
on.

ef

an
:

that

me.

ntly

it

m-

ble.
ini-

ace
ce

en-

ial-

be

ing
vector This string table contains the interrupt and exception vector nam
associated with the system that the kernel tracing was performed
It is contained in thevectors file created by thentfilter tool.
For more information on creating avectors file, see “Converting
KernelTrace Trace Event Files with ntfilter” on page 11-21. For bri
descriptions of the entries in thevector string table, see “Inter-
rupts” on page 11-35 and “Exceptions” on page 11-36.

This table is indexed by an exception/interrupt vector number or
exception/interrupt vector name. Examples of using this table are

get_string(vector, arg3())
get_string(vector, 15)
get_item(vector, “ncr_intr”)

syscall This string table contains the names of all the possible syscalls
can occur on the system. It is contained in thevectors file created
by thentfilter tool. For brief descriptions of the entries in the
syscall table, see “Syscalls” on page 11-37.

This table is indexed by a system call number or a system call na
Examples of using this table are:

get_string(syscall, 44)
get_string(syscall, arg2())
get_item(syscall, “fork”)

device This string table contains the names the devices that are curre
configured in the kernel.ktrace gathers this information from the
/etc/conf/node.d directory on the current system and places
into the KernelTrace trace event file. It is transferred to thevectors
file created by thentfilter tool.

This table is indexed by a device number or a device name. Exa
ples of using this table are:

get_string(device, arg3())
get_string(device, 720900)
get_item(device, “gd”)

name_pid This string table contains the name of each node's process ID ta
It is dynamically built as the trace event files are processed upon
tialization.

node_name This string table contains the names of all nodes that have a tr
event file associated with them. It is dynamically built as the tra
event files are processed upon initialization.

pid_ nodename This string table contains the names associated with all process id
tifiers found in trace event files for node namenodename. It is
dynamically built as the trace event files are processed upon init
ization. It is contained in thevectors file created by thentfil-
ter tool. Because process identifiers are not guaranteed to
unique across nodes, using the predefined string tablepid to get the
process name for a process ID may result in an incorrect name be
11-33

NightTrace Manual

res
the

me.

that

me.

es

an
:

er-

m-

the
tion

ts,
returned from the table. Using the node process ID tables ensu
that the correct process name is returned for a process ID unless
process name is not unique on that particular node.

These tables are indexed by a process identifier or a process na
Examples of using these tables are:

get_string(pid_hal, pid())
get_item(pid_simulator, “odyssey”)

syscall_ nodenameThis string table contains the names of all possible system calls
can occur in trace event files for node namenodename. It is con-
tained in thevectors file created by thentfilter tool.

This table is indexed by a system call number or a system call na
Examples of using this table are:

get_string(syscall_systemx, 31)
get_string(syscall_systemy, arg2())
get_item(syscall_systemz, “read”)

vector_ nodenameThis string table contains the interrupt and exception vector nam
associated with trace event files for node namenodename. It is con-
tained in thevectors file created by thentfilter tool.

This table is indexed by an exception/interrupt vector number or
exception/interrupt vector name. Examples of using this table are

get_string(vector_machine1, arg3())
get_string(vector_machine2, 585)
get_item(vector_system3, “data access”)

device_ nodenameThis string table contains the names of devices configured in the k
nel for trace event files from node namenodename. It is contained in
thevectors file created by thentfilter tool.

This table is indexed by a device number or a device name. Exa
ples of using this table are:

get_string(device_simulator1, arg3())
get_string(device_simulator4, 3604484)
get_item(device_controller, “rtc”)

Thepid string table is also used by the kernel display pages. For more information on
pid string table, see “Pre-Defined String Tables” on page 5-15. For examples of func
calls with these tables, see Table 8-3.

Kernel Reference 11

The following sections provide a brief reference to the most common interrup
exceptions, and syscalls.
11-34

Tracing the Kernel

sible

ter-

l

Interrupts 11

There are many different types of interrupts that can be logged by the kernel. The pos
types are listed in the system-dependentvector string table that is generated by the
ntfilter tool. There are two main categories of interrupts:

• Non-device-related interrupts

• Device-related interrupts

The members of these two categories are described in the following two sections.

Non-Device-Related Interrupts 11

Table 11-3 provides an alphabetical list of the most common non-device-related in
rupts.

For more information about interrupts seeintstat(1M) anduistat(1M) .

Table 11-3. Non-Device-Related Interrupt Reference

Interrupt Description

callout int A real time clock interrupt that is used internally by the kernel.

console wake An interrupt caused by the console wakeup button.

int on no int An interrupt that occurs during the processing of another
interrupt.

power fail A power fail interrupt.

rescheduling A rescheduling interrupt used to trigger a context switch to run
the highest priority process that is ready to run.

softclock An interrupt used to process system callout queue entries.

spurious int An interrupt that usually indicates an unreported or
already-removed interrupt. This interrupt appears only in kerne
traces.

sysfault int An interrupt indicating that a fatal hardware condition has been
detected.

user int A user-level interrupt. Seeiconnect(3C) for a description of
enabling user-level interrupts.

xcall int An inter-processor interrupt used for cache flushing, delivering
exceptions to another processor, performance monitoring, and
halting processors.
11-35

NightTrace Manual

stem

pts.
iated

The
Device-Related Interrupts 11

The names printed for device interrupts correspond to the device names in the sy
configuration files. SeeSystem Administration Volume 2for information on adding
devices to a system.

Table 11-4 provides an alphabetical list of the most common device-specific interru
For more information on a device-specific interrupt, refer to the documentation assoc
with the particular device.

Exceptions 11

There are many different types of exceptions that can be logged by the kernel.
possible types are listed in the system-dependentvector string table that is generated by

Table 11-4. Device-Related Interrupt Reference

Interrupt Description

consintr A console terminal interrupt.

eg An Eagle ethernet controller interrupt.

eti_intr An edge-triggered interrupt.

ex An Excellan ethernet controller interrupt.

gpib An IEEE-488 GPIB controller interrupt.

hardclock A 60-Hertz clock interrupt.

hd An HDC disk-controller interrupt.

hps An HPS serial line-controller interrupt.

hrm A reflective memory interrupt.

hsa An HSA disk controller interrupt.

hsd An HSD controller interrupt.

ie An integral ethernet interrupt.

is An integral SCSI controller interrupt.

mpcc An MPCC controller interrupt.

pgintr An FDDI controller interrupt.

rtcintr A real-time clock interrupt.

xy A Xylogics tape-controller interrupt.
11-36

Tracing the Kernel

ns.

sible

n

s)
e. For
trace

e

ot
the ntfilter tool. Table 11-5 is an alphabetical list of the most common exceptio
See thePowerPC 604 RISC Microprocessor User’s Manualfor more information.

Syscalls 11

There are many different types of syscalls that can be logged by the kernel. The pos
types are listed in the architecture-dependentsyscall string table that is dynamically
generated into thevectors file. For an up-to-date, alphabetical list and brief descriptio
of all syscalls, type in the following command:

$ apropos “(2)” | pg

For most syscalls grouped by function, see theCompilation Systems Volume 2 (Concept
manual. For more information about a specific syscall, see the associated man pag
information about syscalls in an executable that has not been instrumented with
points, seetruss(1) .

Table 11-5. Exception Reference

Exception Description

data access An exception indicating that a page fault for a data page
occurred.

decrementer An exception that occurs when the decrementer register counts
down to zero.

float unavail An exception that occurs the first time a process attempts to us
the floating-point unit.

inst access A page fault exception that occurs during an instruction fetch.

inst brkpt An exception indicating that a breakpoint instruction was
executed.

kstack overflow A fatal exception generated due to kernel errors.

machine check A fatal exception generated for various reasons including parity
errors, hardware failures, and kernel errors.

misaligned An exception indicating that a load, store, or exchange
instruction was attempted with a destination memory address n
consistent with the size of the access.

program An exception indicating one of several possible conditions
including divide by zero, invalid instruction, and privilege
violation.

trace An exception generated during single stepping of the CPU.
11-37

NightTrace Manual

you
Exercise: Kernel Tracing 11

The following exercise has you log kernel and user trace events with the application
created in “Exercise: Logging Trace Events” on page 4-27.

1. Run thektrace program in the background so it creates a KernelTrace
trace event file namedraw_klog .

2. Sleep for three seconds to allow forktrace to initialize.

3. Invoke thentraceud daemon with yourlog trace event file.

4. Execute yourentry_exit program.

5. Quit running thentraceud daemon.

6. Quit runningktrace .

7. Sleep for three seconds to allow forktrace to shutdown.

8. Use thentfilter program to convert theraw_klog KernelTrace trace
event file into a NightTrace file namedklog .

A shell script with the following commands is one possible solution:

#!/bin/ksh
ktrace -output raw_klog &
sleep 3
ntraceud log
entry_exit
ntraceud -quit log
kill %1
sleep 3
ntfilter -v < raw_klog > klog
11-38

ce
ome

he
race

rd

report
mory
A
Appendix APerformance Tuning

1
1
1

Overview 1

Although NightTrace’s defaults are designed for maximum efficiency, your NightTra
environment and application may have special requirements that warrant s
performance tuning. You may want to investigate the following issues:

• Preventing trace event loss

• Ensuring accurate timings

• Optimizing file system and CPU usage

• Conserving disk space

• Conserving memory and acceleratingntrace

Preventing Trace Events Loss 1

By default, NightTrace copies alluser trace events from the shared memory buffer to t
trace event file. This means that normally NightTrace neither discards nor loses t
events.

To conserve disk space, you may invokentraceud with the-filewrap or -buffer-
wrap option. However, by doing so, you are telling NightTrace to intentionally disca
older or less-vital trace events. If discarding trace events is undesirable, runntraceud in
expansive mode. To do this, invokentraceud without the-filewrap and-buffer-
wrap options. See “Conserving Disk Space” on page A-4 for more information.

When NightTracediscardstrace events, it is intentional. When NightTracelosestrace
events, it is not. NightTrace does not report discarded trace events; it does, however,
lost trace events. Most trace event loss is preventable by flushing the shared me
buffer often.

NightTrace shows trace event loss in the following ways:

• As a non-zero “events lost” statistic fromntraceud -stats trace_file,
from ntrace -filestats , or on thentrace Global Window

• As a reverse video “L” on the ntrace display page Ruler at the location
where the trace event was lost

If trace event loss seems excessive, you can do the following:
A-1

NightTrace Manual

um,

write

vent
, when
ts, it
Use the following command to see the system settings for the current, default, minim
and maximum shared memory segment size:

$ /etc/conf/bin/idtune -g SHMMAX

See theidtune(1M) man page for more information.

A few other factors can affect trace event loss. Processes in your application may
trace events into the shared memory buffer at the same time thatntraceud is flushing
trace events from the shared memory buffer to the trace event file; if the trace e
incoming rate exceeds the flush rate, trace events may not be recorded. Furthermore
NightTrace must choose between operating unobtrusively and logging all trace even
favors being unobtrusive.

See Chapter 4 for more information onntraceud options and modes. For more
information ontrace_flush() or trace_trigger() , see “trace_flush() and
trace_trigger()” on page 3-20.

In kernel tracing,ktrace(1) usually does not lose trace events. Ifktrace issues an
error message about lost trace events:

• Verify that the output KernelTrace trace event file is on a local file system
and not an NFS file system. If you run the following command and there is
a colon (:) in the “Filesystem ” column, the file is on an NFS file
system.

$ df kernel_trace_file

• Ask your system administrator to increase the size ofTR_BUFFER_COUNT
in /etc/conf/mtune.d/trace by running theidtune(1M) com-
mand, rebuild, and reboot the system. (Usually aTR_BUFFER_COUNTof
5 is sufficient.) The kernel allocates buffers of 3 pages each (12,288 bytes)
to ktrace . This is part of the kernel’s initialized global data, meaning
these are reserved physical pages.

Action Reason

Decrease-cutoff , the shared memory buffer-full
cutoff percentage forntraceud

Increase the chance that the
ntraceud daemon will have
enough time to copy the trace
events in the shared memory
buffer to disk before the shared
memory buffer fills up.

Decrease-timeout , thentraceud timeout
interval

(Same)

Call trace_flush() or trace_trigger()
often from within your application, especially when
your application is at a non-time critical point

(Same)

Increase-memsize , the shared memory buffer
size forntraceud

(Same)
A-2

Performance Tuning

e
ge

ge
vel
ging.
ging

se
the

write

ze
on
h()

sing
race
n the

his
Ensuring Accurate Timings 1

If you lack the privilege to lock your pages in memory (P_PLOCK), you must invoke
ntraceud with the -lockdisable option. If your application lacks read and write
privilege to /dev/spl you must invokentraceud with the -ipldisable option.
Invoking ntraceud with either the-lockdisable or -ipldisable option, may
introduce delays and waiting within your application. Use the-lockdisable and
-ipldisable options only when necessary. For more information on th
-lockdisable option, see “Option to Prevent Page Locking (-lockdisable)” on pa
4-9. For more information on the-ipldisable option, see “Option to Disable the IPL
Register (-ipldisable)” on page 4-8.

By default,ntraceud and NightTrace library routines use page locking to prevent pa
faults during trace event logging. NightTrace also modifies the interrupt priority le
(IPL) register; this action prevents rescheduling and interrupts during trace event log
NightTrace prevents the operating system from pre-empting your trace event log
application to make itself most unobtrusive to your application.

If the application must wake thentraceud daemon unexpectedly, overhead can cau
trace event timings to be distorted. Do one or more of the following to increase
likelihood that the daemon will be awake when needed and to make sure that disk
rates are as fast as the application’s logging rate:

• Increase the shared memory buffer size (-memsize)

• Decrease the shared memory buffer-full cutoff percentage (-cutoff)

• Decrease thentraceud timeout interval (-timeout)

• Call trace_flush() or trace_trigger() appropriately

For more information on the-memsize , -cutoff , and -timeout options, and
trace_flush() , see, respectively, “Option to Define Shared Memory Buffer Si
(-memsize)” on page 4-14, “Option to Set the Buffer-Full Cutoff Percentage (-cutoff)”
page 4-16, “Option to Set Timeout Interval (-timeout)” on page 4-15, and “trace_flus
and trace_trigger()” on page 3-20.

Optimizing File System and CPU Usage 1

Different systems may share files via the Network File System (NFS); however, acces
an NFS-mounted file takes longer than accessing a local file. You get the best NightT
and KernelTrace performance if you avoid NFS accesses; put your trace event file o
same system where both thentraceud daemon (orktrace) and your application run.
To determine whether your disk is local to your system, verify that it is mounted on/dev
and not on another host. You can do this by running thedf(1) command and looking for
a colon (:) in the “Filesystem ” column.

A single system may have more than one CPU. Consider assigning thentraceud
daemon (orktrace) and your application to different CPUs on the same system; t
way,ntraceud (or ktrace) does not interfere with your application.
A-3

NightTrace Manual

t

e,
ome
t

sh

d
ode,
s the
tion

. The

.

p-
it does

Vari-

on

vent
y
st
You can use thempadvise(3C) library routine to help you determine which CPUs exis
on this system. You can assignntraceud (or ktrace) and your application to particular
CPUs with therun(1) command.

$ run -b bias command

Conserving Disk Space 1

To determine how much disk space is available on your system, run thedf(1) command
with the -k option and look at the “avail ” column. You can conserve disk space if you
permit NightTrace to discard some trace events. To do this, invokentraceud with either
the-filewrap option or the-bufferwrap option.

Thentraceud -filewrap option makes NightTrace operate in file-wraparound mod
rather than in expansive mode. In file-wraparound mode the trace event file can bec
full of trace events. When this happens,ntraceud overwrites the oldest trace events a
the beginning of the file with the newest ones. The overwriting is calleddiscarding trace
events. For more information on file-wraparound mode, see “Option to Establi
File-Wraparound Mode (-filewrap)” on page 4-10.

The ntraceud -bufferwrap option makes NightTrace operate in buffer-wraparoun
mode, rather than in expansive mode. When the buffer is full in buffer-wraparound m
the application treats the shared memory buffer as a circular queue and overwrite
oldest trace events with the newest ones. This overwriting continues until your applica
explicitly calls trace_flush() or trace_trigger() . Only then, doesntraceud
copy the remaining trace events from the shared memory buffer to the trace event file
overwriting is calleddiscarding trace events. For more information on buffer-wraparound
mode, see “Option to Establish Buffer-Wraparound Mode (-bufferwrap)” on page 4-11

By default,ntraceud operates in expansive mode, not file-wraparound or buffer-wra
around mode. In expansive mode, NightTrace uses the most disk space because
not discard any trace events.

You can also conserve disk space by invokingntraceud with the -disable option so
it logs fewer trace events. For details, see “trace_enable(), trace_disable(), and Their
ants” on page 3-16.

The-bufferwrap and-disable options toktrace offer similar benefits. The-cpu
and -process options also limit kernel trace event logging. See “ktrace Options”
page 11-9 for details.

Conserving Memory and Accelerating ntrace 1

ntrace can be a memory-intensive tool. By default, whenntrace starts up, it loads all
trace event information into memory; therefore, the more trace events in your trace e
file(s), the more memoryntrace uses. When you move the scroll bar on the Displa
Page to change the displayed interval,ntrace processes all trace events between the la
A-4

Performance Tuning

may
interval and this one; if there are many trace events, the display update (or search)
seem slow. To conserve memory and acceleratentrace :

• Log only trace events you are really interested in.

• Invoke ntrace only with the trace event files that are essential to your
analysis.

• Invoke ntrace with options (-nohardclock , -process -start ,
and-end) that restrict which trace events get loaded. For more informa-
tion aboutntrace options, see “ntrace Options” on page 5-3.
A-5

NightTrace Manual
A-6

ith
ains
e

push
ver-
ng

st
In

ct

he
e

B
Appendix BGUI Customization

2
2
2

Overview 2

The graphical user interface (GUI) forntrace is based on OSF/Motif.ntrace runs in
the environment of the X Window System. Your X terminal vendor supplies you w
vendor-specific directories and files that pertain to colors and fonts. The file that cont
available colors is calledrgb.txt . The fonts that your X server supports are in th
/usr/lib/X11/fonts directory.

ntrace has default values for X resources. These resources include fonts, some
button names, window titles, window-component dimensions, and colors. You can o
ride the following default X resource settings by providing new values in the followi
places:

• In your .Xdefaults file

• On thentrace invocation line

• In a resource file that thexrdb(1) X resource database manager reads

If you specify the same X resource on thentrace invocation line and in your
.Xdefaults file, the setting on the invocation line overrides the one in the file.

An X resource line has the following format:

object* subobject[* subobject...]* attribute: value

where:

object Is the name of the X client program,Ntrace .

subobject Is a level in the widget (window component) hierarchy with the mo
general level first; this always begins on an upper-case letter.
ntrace , the first subobjectis oftenColor for color displays or
Mono for monochrome displays. The lastsubobjectmay be the name
of your display object. For more information about display obje
names, see “Display Object Name” on page 8-4.

attribute Is a characteristic of the lastsubobject; this always begins on a
lower–case letter.

value Is a setting for theattribute.

It is possible to omit levels from the widget hierarchy. If you specify all levels of t
widget hierarchy and then avalue, the value applies to that specific widget. If you leav
B-1

NightTrace Manual

lass

d the

nd
tings.

ndow

ote:

ns,
out levels of the widget hierarchy, the attribute applies more generally, possibly to a c
of widgets.

For more information on X resources, see “Recommended Reading” on page 1-7 an
X Window System User’s Guide.

Default X-Resource Settings for ntrace 2

ntrace ’s default X-resource settings follow. They are primarily grouped by window a
display object. There are some subobjects and attributes that appear in many set
Table B-1 lists several common subobjects and attributes along with their meanings.

In the following X-resource strings, default values are shown where they exist.

The resource strings for the global window message display area dimensions and wi
title are:

Ntrace*GlobalWindow*TextScrollbox*defaultLines: 20
Ntrace*GlobalWindow*TextScrollbox*defaultChars: 80
Ntrace*GlobalWindow*name: NightTrace
Ntrace*GlobalWindow*geometry:

The resource strings for the line count of the display page message area follow. N
minimumLines must be less than or equal todefaultLines , anddefaultLines
must be less than or equal tomaximumLines .

Ntrace*DisplayPage*TextScrollbox*defaultLines: 3
Ntrace*DisplayPage*TextScrollbox*maximumLines: 3
Ntrace*DisplayPage*TextScrollbox*minimumLines: 3

The resource strings for grid attributes follow.ntrace uses thedefaultDotsHigh
and defaultDotsWide at t r ibutes only for newdisp lay pages. Note : i f
defaultDotsWide is too narrow to accommodate all the display page push butto
ntrace overrides this setting.

Ntrace*Grid*foreground:

Table B-1. Meanings of Common Subobjects and Attributes

Subobject/Attribute Meaning

TextScrollbox The message (or summary) display area

Dialog The dialog box

name The window title. Any window that has a name attribute
also has a geometry attribute.

geometry The location and dimensions of the window. See “Recom-
mended Reading” on page 1-7 for more information.

open A push button name in aFile Selection Dialog Box

caption The descriptive text within a window
B-2

GUI Customization

to
Ntrace*Grid*background:
Ntrace*Grid*font:
Ntrace*Grid*defaultDotsHigh: 30
Ntrace*Grid*defaultDotsWide: 60

The resource strings for theFile Selection Dialog Box width, window titles, push
buttons, and prompt strings follow. AFile Selection Dialog Box is the type of
window ntrace uses to prompt for file names, for example, configuration file names
open and save.

Ntrace*FileChooser*width: 180

Ntrace*OpenPopup*name: Open Dialog
Ntrace*OpenPopup*open: Open
Ntrace*OpenPopup*caption: Enter configuration file name:
Ntrace*OpenPopup*geometry:

Ntrace*ReadPopup*name: Read Dialog
Ntrace*ReadPopup*open: Read
Ntrace*ReadPopup*caption: Enter event-map file name:
Ntrace*ReadPopup*geometry:

Ntrace*SaveAsPopup*name: Save As Dialog
Ntrace*SaveAsPopup*open: Save
Ntrace*SaveAsPopup*caption: Enter configuration file name to save:
Ntrace*SaveAsPopup*geometry:

The resource strings for the other dialog box titles and descriptive text are:

Ntrace*WarningDialog*name: Warning Dialog

Ntrace*QuestionDialog*name: Question Dialog

Ntrace*WorkingDialog*name: Working Dialog

Ntrace*MacroDialog*name: Macros
Ntrace*MacroDialog*caption: List of Macros:

Ntrace*QualifiedEventDialog*name: Qualified Events
Ntrace*QualifiedEventDialog*caption: List of Qualified Events:

Ntrace*QualifiedStateDialog*name: Qualified States
Ntrace*QualifiedStateDialog*caption: List of Qualified States:

The resource strings for the window title and descriptive text for all Forms are:

Ntrace*SearchForm*name: Search

Ntrace*SummarizeForm*name: Summarize

Ntrace*SummarizeForm*TextScrollbox:defaultChars: 84
Ntrace*SummarizeForm*TextScrollbox:defaultLines: 14

Ntrace*SummarizeForm*SaveTextAsPopup*name: Save Summary Text As Dialog
Ntrace*SummarizeForm*SaveTextAsPopup*open: Save
Ntrace*SummarizeForm*SaveTextAsPopup*caption:

Enter file name to save text
to:

Ntrace*SummarizeForm*SaveTextAsPopup*geometry:
B-3

NightTrace Manual

f the
ings

ue,

jects
dis-

cific

on
TIP:
If you sometimes work at a monochrome monitor, you may want to have two sets o
following X resource settings: one for color and one for monochrome. The color sett
follow. The resource names for monochrome settings are identical except they sayMono
instead ofColor .

TIP:
Experiment with colors and shadings until you find a set you like. To avoid visual fatig
use highly-contrasting colors and values sparingly.

The resource strings for the specific display objects are:

Ntrace*Color*GridLabel*background:
Ntrace*Color*GridLabel*foreground:
Ntrace*Color*GridLabel*font:
Ntrace*Color*GridLabel*textJustify:
Ntrace*Color*GridLabel*textGravity:

Ntrace*Color*DataBox*background:
Ntrace*Color*DataBox*foreground:
Ntrace*Color*DataBox*font:
Ntrace*Color*DataBox*textJustify:
Ntrace*Color*DataBox*textGravity:

Ntrace*Color*Column*background:
Ntrace*Color*Column*foreground:

Ntrace*Color*StateGraph*background:
Ntrace*Color*StateGraph*foreground:
Ntrace*Color*StateGraph*eventColor:

Ntrace*Color*EventGraph*background:
Ntrace*Color*EventGraph*foreground:

Ntrace*Color*DataGraph*background:
Ntrace*Color*DataGraph*foreground:

Ntrace*Color*Ruler*background:
Ntrace*Color*Ruler*foreground:
Ntrace*Color*Ruler*font:
Ntrace*Color*Ruler*markColor:
Ntrace*Color*Ruler*lostEventColor:

TIP:
On a monochrome display, make sure that you can differentiate among display ob
within a Column. The easiest way to do this is to leave at least one grid dot between
play objects in a Column and to make the background color of the Column black.

Grid object settings apply if you have not set the corresponding setting for a spe
display object. The general grid object resource strings are:

Ntrace*Color*GridObject*background:
Ntrace*Color*GridObject*foreground:
Ntrace*Color*GridObject*borderColor:

For information about setting X resources for kernel displays, see “Color Information”
page 11-32.
B-4

GUI Customization

o not

y

Examples 2

Setting X resources to values is most consistent if the values of the X resources d
contain spaces. For example, even if yourrgb.txt color file contains a color called
“navy blue,” for simplicity type it as one word without any quotation marks.

In the following examples, you are making navy blue (navyblue) the foreground color
(foreground) of all grid objects (GridObject) on a color monitor (Color) for
ntrace (Ntrace). This example shows how this line may appear in your.Xdefaults
file.

Ntrace*color*GridObject*foreground: navyblue

The following example shows how you can use this setting on thentrace invocation
line. Note: there must notbe any spaces between the colon and the value.

$ ntrace -xrm Ntrace*color*GridObject*foreground:navyblue

Exercise: Customizing Display Colors 2

Edit your .Xdefaults file so it defines background colors for the following displa
objects. Suggested colors are provided.

Table B-2. Suggested Colors for X Resources

Display Object Suggested Color

Column CornflowerBlue

DataGraph PowderBlue

StateGraph LightSteelBlue

Ruler PaleGreen

DataBox Aquamarine

GridObject SkyBlue
B-5

NightTrace Manual
A possible solution follows:

Ntrace*Color*Column*background: CornflowerBlue
Ntrace*Color*DataGraph*background: PowderBlue
Ntrace*Color*StateGraph*background: LightSteelBlue
Ntrace*Color*Ruler*background: PaleGreen
Ntrace*Color*DataBox*background: Aquamarine
Ntrace*Color*GridObject*background: SkyBlue

To test your entries at an X terminal, invokentrace with the log trace event file, and
bring up the default display page.
B-6

ite it.
ds. See

ogging
trace
etimes
from

3-11.

bar,
tion
ore
C
Appendix CAnswers to Common Questions

3
3

Q: What can I do if trace events are not logging at all?

A: Verify that the trace event file name on thetrace_start() call matches the one on thentraceud
invocation. Furthermore, check that the file exists and that you have permission to read and wr
Additionally, be sure your thread name contains no embedded spaces or punctuation, including perio
“trace_start()” on page 3-5 and “trace_open_thread()” on page 3-9 for more information.

Q: When should I log a different trace event ID number?

A: Each endpoint of a state should have a different trace event ID number. Usually each trace event l
routine logs a different trace event ID number. This lets you easily identify which source line logged the
event, how often that source line executed, and what order source lines executed in. However, it is som
useful to log the same trace event ID in multiple places. This makes it possible to group trace events
related, but not identical, activities. For more information, see “trace_event() and Its Variants” on page

Q: How can I prevent user trace events from being discarded or lost?

A: Use expansive mode; avoid invokingntraceud with the-filewrap and-bufferwrap options. Flush
the shared memory buffer more often by tuning:

• The shared memory buffer size

• The shared memory buffer’s flush percentage

• Thentraceud timeout interval

See “Preventing Trace Events Loss” on page A-1 and Chapter 4 for more information.

Q: What can I do if trace events are not appearing in an ntrace display?

A: PressRefresh, fill out the Search Form, fill in values in the interval control area, use the interval scroll
keep pressing theZoom Out push button until you see trace events, examine a display object configura
so you know what it is “listening” for, add or reconfigure display objects on the grid. See Chapter 6 for m
information.

Q: My trace event timings occasionally have huge gaps of time between them. What is the cause?

A: You are probably running your application on a Series 6000 system and are callingclock_settime() .
This system call can corrupt the system interval timer which NightTrace uses for trace event timings.
C-1

NightTrace Manual

nition

ge
Q: How can I get my kernel trace events to be mnemonically labeled when there is no vectors file or defi
of the vector, syscall, and pid string tables anywhere?

A: Invokentfilter with the-v option. See “Converting KernelTrace Trace Event Files with ntfilter” on pa
11-21.

Q: How can I prevent kernel trace events from being lost?

A:
• Verify that the raw kernel trace file is on a local file system and not an NFS file system.

• Ask your system administrator to increase the size ofTR_BUFFER_COUNTkernel tunable
parameter.
C-2

ith
usly
ks
sk.

y is

m

Glossary

This glossary defines terms used in the documentation. Terms initalics are defined here.

Ada task

An Ada task is a construct of statements which logically execute in parallel w
other tasks within an Ada program (process). Tasks communicate asynchrono
via variables whose visibility is defined by normal Ada scoping rules. Tas
communicate synchronously via rendezvous between a calling and accepting ta

Add

A push buttonthat creates a newmacro, qualified event, or qualified stateon the
currentdisplay page.

Apply

A push buttonthat validates and saves all changes. The same functionalit
available by pressing<Enter> in a modified field.

argument

Seetrace event argument.

boolean table

A pre-definedstring tabledefined in the/usr/lib/NightTrace/tables file.
It associates0 with false and all other values withtrue .

buffer-wraparound mode

The mode that causes thentraceud daemon to treat theshared memory bufferas a
circular queue and to overwrite the oldesttrace eventswith the newest ones; this
means thatntraceud intentionally discards the oldest trace events to make roo
for the newest ones. Invokentraceud with the -bufferwrap option to obtain
this behavior. The two otherntraceud modes areexpansive modeandfile-wrap-
around mode.

button

Seemouse button, push button, andradio button.

click

To press and release amouse buttonwithout moving the pointer. Usually you do
this in NightTrace to select menu items,push buttons, or radio buttons.
Glossary-1

NightTrace Manual

a

ite.

n-

f the
, and

as
Close

A push buttonthat closes adialog box. This can also be a menu item that makes
windowclose.

color display

An X server display that contains greater color variety than black, gray, and wh
See alsomonochrome display.

Column

A display objectthat constrains the width ofStateGraphs, EventGraphs, Data-
Graphs, andRulers.

configuration

The definition of adisplay object, macro, qualified event,or qualified state.

configuration file

An NightTrace-generated ASCII file that holdsdisplay pages, macro, qualified
event, andqualified statedefinitions. This can also be a hand-edited table file, co
taining definition ofstring tablesand/orformat tables.

Configuration Form

The NightTrace form that allows you to define adisplay object’s data content,
constraints, and graphic attributes, the value of amacro or the constraints of a
qualified eventor qualified state.

Configure

A push buttonthat reconfigures and renames the selectedmacro, qualified event, or
qualified state.

context switch

An action that occurs inside the kernel. Its functions are to save the state o
process that is currently executing, to initialize the state of the process to be run
to begin execution of the new process.

context switch line

A vertical line superimposed on anexception graphor asyscall graphon a kernel
display page. It indicates that the kernel has switched out the process that w
previously running on the CPU and switched in a new process.

control

Seemouse button, push buttonandradio button.
Glossary-2

Glossary

t not
converted KernelTrace trace event file

A KernelTrace trace event fileoutput byntfilter . NightTrace reads it like any
trace event file.

CPU box

A GridLabelon a kerneldisplay page. It identifies which logicalcentral processing
unit the displayed data corresponds to. Logical CPU numbers are related to, bu
necessarily identical to, physical CPU numbers.

current instance of a state

The instance of astatewhich has begun but has not yet completed. Thus, thecur-
rent time linewould be positioned within the region from the starteventup to, but
not including, the endevent.

current time

The time in theinterval up to which alldisplay objectson adisplay pagehave been
updated.

current time line

The dashed vertical bar that represents thecurrent timein a Column.

current trace event

The lasttrace eventon or before thecurrent time line.

cursor

Seetext cursor.

DataBox

A display objectthat displays possibly variable textual or numeric information.

DataGraph

A scrollabledisplay objectthat graphically displays a bar chart of anexpression’s
value as it changes over theinterval.

Default Kernel Page

A menu item that automatically creates adisplay pageto depictcontext switches,
interrupts, exceptions, and system calls withdisplay objectsfor each CPU on the
system.

Default Page

A menu item that automatically creates adisplay pagewith a StateGraphfor each
trace event logging process in yourtrace event file(s).
Glossary-3

NightTrace Manual

ntly

ple
ed a

e

Delete

Remove the selectedmacro, qualified event, or qualified state.

device table

A pre-defined, dynamically generatedstring tablein thevectors file created by
ntfilter . This string table contains the names of the devices that are curre
configured in the kernel.

dialog box

A transient secondarywindowthat accepts input or conveys a message, for exam
information, errors, warnings, and questions. This construct is occasionally call
pop-up window.

dimmed

Seedisabled.

disabled

To flag a component, such as a menu item orpush button, as temporarily unavail-
able by graying out the label.

discarded trace event

A trace eventthat ntraceud intentionally did not log inbuffer-wraparoundor
file-wraparound mode.

display object

A user-configured graphical component of adisplay pagethat showstrace events,
states, trace event arguments, other numeric and text data. Display objects includ
the following: GridLabels, DataBoxes, Columns, StateGraphs, EventGraphs, Data-
GraphsandRulers.

display page

The NightTracewindow that allows you to layoutdisplay objectsand seetrace
eventandstateinformation in them. You can store display pages inconfiguration
files.

dotted area

Seegrid.

drag

To press and hold down amouse buttonwhile moving themouse. Usually you do
this in NightTrace to position adisplay object.
Glossary-4

Glossary

tax
nent

r
.
hen
duration

The period of time between the start and endtrace eventsof somestate.

Edit mode

The display-pagemode that allows you to create, edit, and configuredisplay
objects, macros, qualified events, andqualified states. The other display-page mode
is View mode.

ellipses (...)

An indicator at the end of a menu item that tells you this selection makes adialog
box appear. Also, an indicator in command line option summaries and syn
listings that tells you more than one occurrence of the previous syntactic compo
is allowed.

end function

A state functionthat provides information about the endingtrace eventof the last
completed instance of a state. Thestateto which the end function applies is eithe
the qualified statespecified to thefunction, or the state being currently defined
Thus, if a qualfied state is not specified, end functions are only meaningful w
used inexpressionsassociated within a state definition.

event

Seetrace event.

event_arg_dbl_summary table

A pre-definedformat tabledefined in/usr/lib/NightTrace/tables . It
contains formats for statistical displays of trace eventmatchesand type double
arguments.

event_arg_summary table

A pre-definedformat tabledefined in/usr/lib/NightTrace/tables . It
contains formats for statistical displays of trace eventmatchesand type long
arguments.

EventGraph

A scrollabledisplay objectthat graphically displaystrace eventsas vertical lines in
a Column.

event ID

Seetrace event ID.
Glossary-5

NightTrace Manual

ution

clude

t
e

event-map file

User-generated ASCII file that lets you associate or map short mnemonictagsor
labe ls w ith numer ict race event IDs. The kerne l ’s event -map f i le is
/usr/lib/NightTrace/eventmap .

event_summary table

A pre-definedformat tabledefined in /usr/lib/NightTrace/tables . It
contains formats for statistical displays of trace eventmatchesand trace event time
gaps. It determines the default event-summary output format.

event table

A pre-defined, dynamically generatedstring table. It is internal to NightTrace and
maps all known numerictrace event IDs with symbolictrace event tags.

event tag

Seetrace event tag.

exception

An event internal to the currently executing process that stops the current exec
stream. Exceptions can be suspended and resumed.

exception graph

A StateGraphon a kerneldisplay page. It displaysstatesrepresentingexceptions
executing on the associated CPU.

expansive mode

The (default) mode that causes thentraceud daemon to copy alltrace eventsthat
ever reach theshared memory bufferto the indefinitely-sizedtrace event file.
Invokentraceud without the-filewrap and-bufferwrap options to obtain
this behavior. The two otherntraceud modes arebuffer-wraparound modeand
file-wraparound mode.

expression

A combination of operators and operands that evaluate to a value. Operands in
constants,macrocalls,functioncalls,qualified events, andqualified states.

Exit

A menu item that terminates an NightTrace session.

file-wraparound mode

The mode that causes thentraceud daemon to overwrite the oldesttrace eventsin
the beginning of thetrace event filewith the newest ones; this means tha
ntraceud intentionally discardsthe oldest trace events to make room for th
Glossary-6

Glossary

ger
atted

d on

t

newest ones. Invokentraceud with the -filewrap option to obtain this
behavior. The two otherntraceud modes areexpansive modeandbuffer-wrap-
around mode.

flushing the buffer

The process of thentraceud daemon copyingtrace eventsfrom the shared
memory bufferto a trace event file.

font

A style of text characters.

format function

A functionthat allows you to display a string.

format table

The pre-defined or user-defined structure that allows you to group related inte
values together and associate each one with a corresponding dynamically-form
and generated character string. You hand-edit format tables intoconfiguration files.
The related structure is astring table.

function

A pre-defined NightTrace entity that may be used in anexpression. NightTrace pro-
vides several classes of functions:trace event, multi-event, start, end, multi-state,
offset, summary, format, andtable functions.

gap

The period of time between twotrace events, possibly the end of onestateand the
beginning of another.

global process identifier

SeePID.

Global Window

The NightTracewindow that displays summary statistics pertaining to yourtrace
event filesand allows you to open NightTrace-related files.

graphical user interface

The mechanism NightTrace uses to receive input and provide displays. It is base
the X Window System and Motif.

grid

The region of thedisplay pagefilled with parallel rows and columns of dots tha
holdsdisplay objects.
Glossary-7

NightTrace Manual

or

rrent
are

iated
o

dul-

lds

d

GridLabel

A display objectthat displays constant textual information.

GUI

Seegraphical user interface.

Help

A menu item that presents the online manual using the HyperHelp viewer.

icon

The small graphical image and/or text label that represents awindowor window
family when the window is minimized. The text label is either the window title
an abbreviated form of the title. Iconified windows are still active.

ID

Seetrace event ID.

instrumented code

Source code after you have put calls to NightTrace library routines into it.

interrupt

An event external to the currently executing process; an interrupt stops the cu
execution stream to begin execution of a higher-priority execution stream. There
device-related and software-generated interrupts. Interrupts have an assoc
priority known as the interrupt priority level (IPL), which allows an interrupt t
interrupt the execution stream of a lower-IPL interrupt.

interrupt graph

A DataGraphon a kerneldisplay page. It displaysstatesrepresentinginterrupts
executing on the associated CPU.

interrupt priority level (IPL) register

A system register than can be used by the NightTrace library to prevent resche
ing and interrupts during trace event logging.

interval

A time period in the trace session delimited by the Time Start and Time End fie
of the interval control area.

interval control area

The region of thedisplay pagethat holds nine numeric fields that define an
manipulate theintervaland thedisplay objectson thegrid.
Glossary-8

Glossary

that

des

a

em

U.

ted
interval timer

The system timer on the NightHawk 6000 Series and TurboHawk systems
NightTraceandKernelTraceuse to timestamptrace events.

KernelTrace

The tool that collects and textually analyzes system performance. It inclu
ktrace(1) andntfilter(1) .

KernelTrace trace event file

A trace event fileoutput byktrace(1) . This can be used analyzed withktrace ,
however it must be pre-processed byntfilter before NightTrace can read it. See
alsoconverted KernelTrace trace event file.

keyboard

A traditional input device for entering text into fields. In this manual, this is
standard 101-key North American keyboard.

ktrace

A part of KernelTracethat is a stand-alone tool that can be used to extract syst
call (syscall), exception, interrupt, context switch, and device information from the
kernel.

last completed instance of a state

The most recent instance of astatethat has already completed. Thus, thecurrent
time linewould be positioned either on, or after, the endeventfor a state.

last exception box

A DataBoxon a kerneldisplay page. It displays the lastexceptionprior to the
current time linethat executed (and may still be executing) on the associated CP

last interrupt box

A DataBoxon a kerneldisplay page. It displays the name of the lastinterrupt prior
to thecurrent time linethat executed (and may still be executing) on the associa
CPU.

last syscall box

A DataBoxon a kerneldisplay page. It displays the lastsyscallprior to thecurrent
time linethat executed (and may still be executing) on the associated CPU.

lightweight process identifier

SeeLWPID.
Glossary-9

NightTrace Manual

r. It
lost trace event

A trace eventntraceud was unable to log. Severalntraceud options exist to
prevent this trace event loss.

LWPID

An integer that represents an operating system lightweight process identifie
makes up the second half of aPID.

macro

A user-defined namedexpressionstored in aconfiguration file. When you call a
macro, precede the macro name with a dollar sign.

mark

The solid triangle on aRuler that points to a particular time.

match

A trace eventor statethat meets user-defined qualifying configuration criteria.

menu

A list of user-selectable choices.

menu bar

The horizontal band near the top of awindow that contains a list of labeled
pull-down menus.

message display area

The scrolling region of theGlobal Windowor thedisplay pagethat holds textual
statistics, as well as error and warning messages.

monochrome display

A black, gray, and white X-server display. See alsocolor display.

most recent instance of a state

If the current time lineis positioned within acurrent instance of a state, then it is
that instance of thestate. Otherwise, it is thelast completed instance of a state.

mouse

In this manual, a three-button pointing device for point-and-click interfaces.
Glossary-10

Glossary

ch
ing.

ing

on-

hips

.

ght-

sed
mine

s

mouse button

A part of themousethat you can press to alter aspects of the application. Ea
mouse button has a different purpose. Button 1 is usually for selecting or dragg
Button 2 is usually for movingdisplay objects. Button 3 is usually for resizing
display objects. You can make multiple selections by simultaneously press
<Shift> and clicking mouse button 1. You mayclick, drag, press, andrelease
mouse buttons.

multi-event function

Multi-event functions return information about ocurrences of events, or relati
ships between occurrences of events, before thecurrent time line.

multi-state function

Multi-state functions return information about instances of states, or relations
between instances of states, before thecurrent time line.

name_pid table

A pre-defined, dynamically generatedstring table. It is internal to NightTrace and
associates node ID numbers with the the name of each node's process ID table

name_tid table

A pre-defined, dynamically generatedstring table. It is internal to NightTrace and
associates node ID numbers with the the name of each node's thread ID table.

New Page

A menu item that creates an emptydisplay page.

NightTrace

The interactive debugging and performance analysis tool that is part of the Ni
Star tool kit. It consists of thentraceud daemon, NightTrace library routines, and
the ntrace display utility. This product allows you to logtrace eventsand data
from applications written in C, Fortran, or Ada; these applications may be compo
of one or more processes, running on one or more CPUs. You can then exa
these trace events and those from the kernel through thentrace display utility.

NightTrace thread

A process,thread or Ada task(or a set of any combination of these) that i
associated with a uniquely namedtrace context. The thread name is derived from
the argument specified to thetrace_open_thread() function.

NightTrace thread identifier

SeeTID.
Glossary-11

NightTrace Manual

nd
sses,
lly

for a
e's

h

NightView

A symbolic debugger that is part of the NightStar tool kit. It lets you debug C a
Fortran applications; these applications may be composed of one or more proce
running on one or more CPUs. Among other things, NightView can automatica
patch trace event logging routines into your executable application.

node

A system from which atrace event filecan come from.

node box

If the RCIM synchronized tick clock is used to timestamp events, this is aGridLabel
on a kerneldisplay page. It identifies whichnodeto which the displayed data corre-
sponds.

node ID

A unique identifier internally assigned by NightTrace to everynodethat has an
trace event filein a trace file analysis.

node name

The name of a system from which atrace event filecan come.

node_name table

A pre-defined, dynamically generatedstring table. It is internal to NightTrace and
associatesnode IDnumbers withnode names.

node PID table

A pre-defined, dynamically generatedstring table. It is internal to NightTrace and
associates process identifiers (PIDs) with process names for a particularnode. The
name of each node's table ispid_ nodenamewherenodenameis the node's name. If
kernel tracing, this table is stored in thevectors file created byntfilter .

node TID table

A pre-defined, dynamically generatedstring table. It is internal to NightTrace. If
user tracing, it associates NightTrace thread ID numbers with thread names
particularnode. If kernel tracing, this table is not used. The name of each nod
table istid_ nodenamewherenodenameis the node's name.

NT_ASSOC_PID

An overheadtrace eventthat ntraceud logs at the beginning and end of eac
process.
Glossary-12

Glossary

h

ons

ird
NT_ASSOC_TID

An overheadtrace eventthat ntraceud logs at the beginning and end of eac
threadandAda task.

NT_CONTINUE

An overheadtrace eventthatntraceud logs for multi-argument trace events.

ntfilter

A part of KernelTracethat converts a raw kernel trace file created byktrace(1)
into aconverted KernelTrace trace event filethat NightTrace can read.

ntrace display utility

The part ofNightTracethat graphically displaystrace events, trace event data, and
statesfor debugging and performance analysis.

ntraceud

The NightTracedaemon process that allows you to log user-definedtrace events
and data from user applications written in C, Fortran, or Ada. These applicati
may be composed of one or more processes, running on one or more CPUs.

object

Seedisplay object.

offset

The number that identifies the position of atrace eventin the chronologi-
cally-ordered sequence of trace events, regardless of thetrace event ID. Counting
starts from zero. For example, if a trace event with trace event ID 71 is the th
trace event in the trace session, then its offset is 2.

offset function

A functionthat takes anexpressionthat evaluates to anoffsetas a parameter.

OK

A push buttonthat acknowledges the warning in adialog box.

Open

A menu item andpush buttonthat opens an existing file.

ordinal trace event number

Seeoffset.
Glossary-13

NightTrace Manual

ntax
-

nti-

the
r is

ce
panel

A windowcomponent that groups related buttons, for examplepush buttons.

PID

A 32-bit integer that represents an operating system process. The following sy
numerically specifies a PID:raw_PID’LWPID. The operating system process iden
tifier (raw PID) is contained in the upper 16 bits and the lightweight process ide
fier (LWPID) is contained in the lower 16 bits.

PID table

A pre-defined, dynamically generatedstring table. It is internal to NightTrace and
associates process identifiers (PIDs) with process names. If kernel tracing, thepid
string table in thevectors file created byntfilter will be merged into this
table.

point

To move themouseso the mouse pointer is positioned at the place of interest.

pointer

A graphical symbol that represents the mouse pointer’s current location in
window. The shape of the pointer shows the current usage. Usually a pointe
shaped like an arrow pointing to the upper left.

pop-up window

Seedialog box.

press

To hold down amouse buttonwithout releasing it or to depress akeyboardkey.

pull-down menu

A list of related choices called menu items pulled down from themenu bar. Click
on a menu item to select it.

push button

A graphic image of a labeled button.Click on a push button to select it.

qualified event

A user-definednamedeventconfiguration that consists of a set of one or more tra
events, possibly restricted by anIf-Expression, CPU List, TID List, PID List,
andNode List. Qualified events provide a mechanism for referencingtrace events
configurationswithin certainfunctions. These definitions are stored inconfiguration
files.
Glossary-14

Glossary

e

ction

ck,
e set
rd-

s
, the
sin-
qualified state

A user-definednamed stateconfiguration that consists of a set of one or mor
states, possibly restricted by aStart-Expression, End-Expression, CPU
List, TID List, PID List, andNode List. Qualified state provides a mechanism
for referencing stateconfigurationswithin certainfunctions. These definitions are
stored inconfiguration files.

radio button

A graphic, labeled diamond-shape that represents a mutually exclusive sele
from related radio buttons.Click on a radio button to select it.

raw PID

A 16-bit integer that makes up the first half of aPID.

RCIM

Real-Time Clocks and Interrupts Module. It provides a synchronized clo
edge-triggered interrupts, real-time clocks and programmable interrupts. Som
of interrupts can be distributed and sent to all connected RCIMs. The RCIM ha
ware is available via a standard PCI mezzanine card (PMC).

RCIM synchronized tick clock

The primary clock on anRCIM. It is a 64-bit non-interrupting counter that count
each tick of the clock (400 nanoseconds). When connected to other RCIMs
synchronized tick clock provides a time base that is consistent for all connected
gle board computers.

Read

A menu item andpush buttonthat read an existing file.

record

Seetrace event.

region

The period of time between themarkand thecurrent time.

release

To let go of the currently-pressedmouse button.

Reset

A push buttonthat cancels (undoes) all unapplied changes.
Glossary-15

NightTrace Manual

ill

e

not

e.
Restore

A push buttonthat cancels all changes since thedialog boxwas displayed.

Ruler

A scrollabledisplay objectthat appears as a hash-marked timeline within aColumn.
The Ruler may also contain reverse video “L”s indicatinglost trace eventsand
user-definedmarks.

running process box

A DataBoxthat shows the process that is executing at thecurrent time lineon the
associated CPU. If theRCIM module is used to timestamp events, this DataBox w
show the process that is executing at thecurrent time lineon both the associated
CPU andnode.

Save

A menu item andpush buttonthat overwrite an existingconfiguration filewith the
currentdisplay page.

Save As

A menu item that saves the currentdisplay pagein a newconfiguration file.

Save Text

A menu item that overwrites an existing summary text file with text from th
summary display area.

Save Text As

A menu item that saves the current summary text from thesummary display area
into a new summary text file.

SBC

Single-board computer.

scroll bar

The narrow, rectangular graphic device used to change a display that would
otherwise fit in thewindow. It consists of atrough, a slider, and arrowhead buttons.
If the slider does not fill the trough, there is a gap on one or both sides.

Search Form

The NightTrace form that allows you to define criteria to be used to locate atrace
event in a trace event fileby its configured characteristics and its location in the fil
Glossary-16

Glossary

n

text

a
d in
uld

-

g the
state
once
start
selection

Thedisplay objectthat youclickedon. Alternatively, a selection may be the regio
of a text field youdraggedthemouseover. For menu items,push buttons, andradio
buttonsNightTrace indicates selection by highlighting your choice. Fordisplay
objects, NightTrace places handles on the display object. For dragged-over
fields, NightTrace displays that text in reverse video.

separator

A line that groups relatedwindowcomponents or menu components.

shared memory buffer

The intermediate destination oftrace eventsbeforentraceud copies them to the
trace event fileon disk.

slider

The graphic part of ascroll bar that you move in thetrough to change the display.
This component is sometimes called a thumb.

spin lock

A device used to protect a resource, for example, theshared memory buffer.

start function

A state functionthat provides information about the starteventof the most recent
instance of a state. Thestateto which the start function applies is either thequali-
fied statespecified to thefunction, or the state being currently defined. Thus, if
qualfied state is not specified, start functions are only meaningful when use
expressionsassociated within a state definition. In addition, start functions sho
not be used in a recursive manner in aStart Expression; a start function should
not be specified in aStart Expression that applies to the state definition contain
ing thatStart Expression. Conversely, anEnd Expression may include start
functions that apply to the state definition containing thatEnd Expression.

state

A state is bounded by two trace events, a starteventand an endevent. An instance
of a state is the period of time between the start event and end event, includin
start and end events themselves. Additional conditions may be specified in a
definition to further constrain the state. Instances of states do not nest; that is,
a state becomes active, events that might normally satisfy the conditions for the
event are ignored until the end event is encountered. See alsoqualified state.

state function

The class of NightTracefunctionswhich provide information aboutstates, includ-
ing: start functions, end functions, andmulti-state functions.
Glossary-17

NightTrace Manual

ger
string.

n. A
nes
ions.
StateGraph

A scrollabledisplay objectthat graphically displaysstatesas bars andtrace events
as vertical lines in aColumn.

state_summary table

A pre-definedformat tabledefined in/usr/lib/NightTrace/tables . It
contains formats for statistical displays of statematches, statedurations, and state
time gaps. It determines the default state-summary output format.

string table

The pre-defined or user-defined structure that allows you to group related inte
values together and associate each one with a corresponding static character
You hand-edit string tables intoconfiguration files. The related structure is aformat
table.

Summarize Form

The NightTrace form that allows you to obtaintrace eventandstatestatistics, such
as minimum, maximum, average, and total values ofgaps, durations, andtrace
event arguments.

summary display area

The scrolling region of theSummarize Form that holds textual summary
statistics.

summary function

A funct ion that takes anotherexpressionas a parameter (except for
summary_matches()).

summary syscall

A system call that is a special type ofexception. A syscallis made when a user
program forces a trap into the operating system via a special machine instructio
syscall is used to request a given service from the kernel. Many library routi
supplied as part of the operating system make syscalls to accomplish their funct
Syscalls can be suspended and resumed.

syscall

System call.

syscall graph

A StateGraphon a kerneldisplay page. It displaysstatesrepresenting system calls
(syscalls) executing on the associated CPU.
Glossary-18

Glossary

alls

ed

an

dit

as an
s at
dress
syscall table

A pre-defined, dynamically generatedstring tablein thevectors file created by
ntfilter . This string table contains the names of all the possible system c
(syscalls) that can occur on the system.

table

Seeformat tableandstring table.

table function

A functionthat allows you to extract information from user-defined and pre-defin
string tablesandformat tables.

tag

Seetrace event tag.

task

SeeAda task.

task ID

A 16-bit integer chosen by the Ada run-time executive that uniquely identifies
Ada taskwithin an Ada program.

text cursor

The blinking vertical bar in an editable text field that shows your current e
position within the field.

thread

A sequence of instructions and associated data that is scheduled and executed
independent entity. Every UNIX process linked with the Threads Library contain
least one, and possibly many, threads. Threads within a process share the ad
space of the process.

thread ID

A 16-bit integer chosen by the threads library that uniquely identifies athread
within a given process.

TID

A 32-bit integer that represents a unique context to whichtrace eventscan be
associated. The following syntax numerically specifies a TID:raw_PID’task_id,
raw_PID’thread_id, or raw_PID’0 (if neither Ada tasksnor threadsare in use).
The operating system process ID (raw PID) is contained in the upper 16 bits and
either athread ID, task ID, or zero is contained in the lower 16 bits.
Glossary-19

NightTrace Manual

t

y
n be

said
hen

ace

ace
TID table

A pre-defined, dynamically generatedstring table. It is internal to NightTrace and
associates NightTrace thread identifiers (TIDs) with thread names. This table is no
used in kernel tracing.

timestamp

The time at which a specifictrace eventwas logged. This provides the means b
which the chronology of the trace events logged by multiple processes ca
assembled. The timestamp is obtained from the systeminterval timer, theTime
Base Register, or theRCIM synchronized tick clock, depending on either the system
architecture or user-specified options tontraceud .

Time Base Register

The system timer on the Power Hawk/PowerStack systems thatNightTraceand
KernelTraceuse to timestamptrace events.

trace context

All trace pointsare associated with a log file (established viatrace_start) and a
thread name (established viatrace_open_thread). If two processes (ortasks,
or threads) are associated with the same log file and thread name, then they are
to have the same trace context. If they differ in log file, thread name, or both, t
they have different trace contexts.

trace event

A user-defined point of interest in an application’s source code that NightTr
represents with an integertrace event ID. Alternatively this may be a predefined
point of interest in the kernel. Along with the trace event ID,NightTracerecords the
timestampwhen the trace event occurred, any arguments logged with the tr
event, and the logging process identifier (PID). KernelTracealso records trace
events.

trace event argument

A user-defined numeric value logged by an application via atrace event.

trace event file

An ntraceud -created binary file that contains sequences oftrace eventsand data
that your application and thentraceud daemon logged. Seeconverted
KernelTrace trace event file.

trace event function

The class of NightTracefunctionsthat provide information abouttrace events. They
operate on either thequalified eventspecified to that function or, if unspecified, the
current trace event. Trace event functions includemulti-event functions.
Glossary-20

Glossary

e

our

.

ight-

.

trace event ID

An integer that identifies atrace event. User trace event IDs are in the rang
0-4095 , inclusive. Kernel trace event IDs are in the range4100-4300 , inclusive.

trace event tag

A symbolic name mapped to a numerictrace event IDin anevent-map file.

trace point

A place of interest in the source code. In user tracing, at each trace point in y
application you call a trace event logging routine to log atrace event, possibly with
additional data describing part of your program’sstateat that time. Kernel trace
points and trace events are already defined and embedded in the kernel source

trough

The graphic part of ascroll bar that holds theslider.

vector table

A pre-defined, dynamically generatedstring tablein thevectors file created by
ntfilter . This string table contains theinterrupt andexceptionvector names
associated with the system on which the kernel tracing was performed.

View mode

The display pagemode that allows you to see, search for, and summarizetrace
eventinformation in themessage display area, the summary display area, and
display objectson thegrid; create, edit, and configuremacros, qualified events, and
qualified states. The other display-page mode isEdit mode.

widget

A windowcomponent, for example ascroll baror push button.

window

A rectangular screen area that permits the display and/or entry of data. The N
Trace display utility consists of several windows.

window manager

The program that controlswindowplacement, size, and operations.

wraparound mode

The mode that causes thentraceud daemon to intentionally discard old events
There are two forms of wraparound mode:buffer-wraparoundand file-wrap-
around. The otherntraceud mode isexpansive mode.
Glossary-21

NightTrace Manual
Glossary-22

Index
Symbols

.login 2-5

.profile 2-5

.Xdefaults file 5-2, 5-8,B-1, B-5

.Xresources file 5-2, 5-8
/dev A-3
/dev/interval_timer 2-5, 2-9
/dev/spl 2-5, 2-8, A-3
/dev/trace 2-9, 11-8
/etc/conf/mtune.d/trace 11-8, A-2
/etc/group 2-5
/usr/bin/ktrace 11-9
/usr/bin/ntrace 5-3
/usr/bin/ntraceud 4-1
/usr/include/ntrace.h 3-2, 3-24, 4-21
/usr/include/sys/ktrace.h11-2, 11-8, 11-11
/usr/lib/libntrace.a 3-25
/usr/lib/NightTrace/eventmap 5-12, 5-15, 11-22
/usr/lib/NightTrace/examples 3-26, 5-36
/usr/lib/NightTrace/examples/entry_exit.c 3-26
/usr/lib/NightTrace/examples/entry_exit_map 5-36
/usr/lib/NightTrace/examples/entry_exit_page 5-36
/usr/lib/NightTrace/tables 5-15, 5-17, 5-21,5-21, 9-77,

9-78, 9-80, 10-8
/usr/lib/X11/fonts 5-8, 8-3, B-1
/var/sadm/install/admin/default 2-2

A

Access
interval timer 2-1, 2-5, 2-10
IPL register 2-5,2-7, 2-8, 2-9

Ada language 1-3
compiling and linking 3-25

Ada task identifier 8-8, 9-10, 9-25, 9-40, 9-51, 9-64
Add push button 9-2
admin(4) 2-2
adminrole(1M) command 2-4
adminuser(1M) command 2-5
Apply push button 6-9, 6-12, 6-17, 8-10, 9-3, 10-3, 10-8
apropos(1) command 11-37

arg function 9-9,9-20
arg_dbl function 9-21
arg1 function 5-20, 8-5, 9-9, 9-81, 10-7, 10-8
arg2 function 8-5, 9-12
avg function 9-72

B

Background Color configuration parameter 8-3, 8-9
Background Color field 8-3
Backward radio button 10-2
boolean table 5-17, 8-6
Box

CPU 11-26
last exception 11-29
last interrupt 11-28
last syscall 11-31
Node 11-27
running process 11-26

Box. see Display object
Buffer-wraparound

ktrace 11-10
Buffer-wraparound mode 3-21, 4-3, 4-11, 4-15, 4-16,

A-1, A-4, C-1
Button

dimmed. see Button
disabled

disabled 5-28, 7-4
grayed out. see Button

disabled

C

C language 1-3
compiling and linking 3-25
source considerations3-2

C thread identifier 8-8
Cancel push button 5-31, 5-32
Center push button 6-9
Clear push button 10-9, 10-10
Index-1

NightTrace Manual
Clock
ktrace 11-11

clock_settime(3C) routine 2-10, 3-1, 11-13, C-1
clock_synchronize(1M) command 3-6
Close menu item 7-19, 10-10
Close push button 8-11, 9-2, 9-3, 10-4, 10-5
Color display 11-32, B-1, B-4
Column 5-30, 6-2, 6-3, 6-4, 7-5, 7-9,7-13, 8-1, 9-7, B-4

moving 7-5
resizing 7-5
selecting 7-5

Comments
configuration file 5-13
event-map file 5-11

Common configuration parameters 8-1
Configuration file 5-9,5-12
Configuration form 8-4, 8-10, 8-12, 8-13, 8-14, 8-16,

8-17, 8-19, 9-4
DataBox 8-13
DataGraph 8-17
EventGraph 8-16
Expression 9-2
GridLabel 8-12
Macro 9-6, 9-7
Qualified Event 9-81
Qualified State 9-83, 9-84
Ruler 8-19
StateGraph 8-14

Configuration form radio button
Text Gravity 8-4
Text Justify 8-3

Configuration parameters
Background Color 8-3, 8-9
common 8-1
CPU List 8-2, 8-6
End-Events 8-15
End-Expression 8-15
Event Color 8-15
Event List 8-2, 8-4
Expression 9-4, 9-7
Fill Style 8-17
Font 8-3
Fonts 8-9
Foreground Color 8-3, 8-9
If-Expression 8-2, 8-4
Lost Event Color 8-19
MacroDefinition 9-7
Mark Color 8-19
Maximum 8-18
Minimum 8-18
Name 8-2
Node List 8-3, 8-9
PID List 8-3, 8-7
QualifiedEvent 9-82, 9-83

QualifiedState 9-84, 9-85
Start-Events 8-15
Start-Expression 8-15
Text 8-12
Text Gravity 8-4, 8-10
Text Justify 8-3, 8-9
Then-Expression 8-2,8-5, 9-4, 9-76, 9-78, 9-79,

9-80
TID List 8-3, 8-8

Configure menu 8-1
Configure push button 9-2
Configuring

display object 8-1
kernel 2-3

Conserving disk space 4-26, A-1, A-4
Constant string literals 5-19, 9-13, 9-77
Constant times 9-6
Content ... menu item 8-1
Context switch 11-2, 11-5

lines 11-27, 11-29, 11-31
Counters 7-13, 8-13
cpp(1) command 3-24
CPU

ktrace 11-11
CPU box 11-26
cpu function 8-5,9-26
CPU List configuration parameter 8-2, 8-6
CPU List field 8-2, 9-81, 9-83, Glossary-14,

Glossary-15
CPU number

logical 8-6, 11-26
physical 11-26

Create menu 7-6, 7-8
Create mouse operation 7-6
crossref trace_flush_and_trace_trigger 4-15
Current time 6-2
Current Time field 6-7, 6-11, 6-13
Current time line6-2, 6-2, 11-25, 11-28, 11-29

centering 6-9
manipulating 6-9

Cursor. see Text field
cursor

Cutoff 3-15, 4-3, 4-4, 4-16, A-3, C-1

D

DataBox 5-30,7-12, 8-13, 9-79, 9-82, 10-11, 11-26,
11-28, 11-29, 11-32, B-4

configuration form 8-13
using as a counter 7-13, 8-13

DataGraph 5-31, 6-4,7-16, 8-17, 11-28, B-4
configuration form 8-17
Index-2

Index
Fill Style configuration parameter 8-17
Maximum configuration parameter 8-18
Minimum configuration parameter 8-18

Debugger
NightView 1-4, 3-1

Default Kernel Page menu item 5-27, 11-22
Default Page menu item 5-27, 5-29
Default push button 5-24
Delete menu item 7-18
Delete push button 9-2
Deselect All menu item 7-18
device table 5-18, 11-5,11-33
device_nodename table 5-18,11-34
df(1M) command 4-10, 4-12, A-2, A-3
Dialog box

File Selection 5-34
Macro 9-4, 9-6, B-3
Open Config File ... 5-31
Qualified Event 9-81, B-3
Qualified State 9-83, B-3
Read Event-Map File ... 5-32
Warning 5-33, 5-35, 7-19, B-3

Dialog box. see Window
Dimmed

button. see Disabled
button

push button. see Disabled
push button

Dimmed field label 5-28
Dimmed label 5-28
Dimmed menu item. see Disabled menu item
Directory

/dev A-3
/etc/conf/mtune.d A-2
/usr/lib/NightTrace 5-12, 5-15, 5-17, 5-21, 9-77,

9-78, 9-80, 10-8, 11-22
/usr/lib/NightTrace/examples 3-26, 5-36
/usr/lib/X11/fonts 5-8, 8-3, B-1

Disabled button 5-28, 7-4
Disabled menu item 5-28, 7-4, 7-18, 10-10
Disabled push button 5-28, 7-4
Disabling

IPL usage 2-8, 3-7, 4-3, 4-8, 4-26, A-3
kernel trace points 11-11
library routines 3-2, 3-16,3-24
page locking 2-7, 3-10, 4-3, 4-9, 4-26, A-3
trace events3-17, 3-18, 3-24, 4-3, 4-22
tracing 3-16,3-24

Discarding trace events 3-21, A-1, A-4, C-1
Display

color 5-2, 11-32, B-1, B-4
monochrome 5-2, 7-14, B-1, B-4

DISPLAY environment variable 5-2

Display object 1-3, 1-6, 5-1, 7-1,7-8
Column 5-30, 6-2, 6-3, 6-4, 7-5, 7-9,7-13, 8-1, 9-7,

B-4
configuring 8-1
creating 7-1, 7-5
DataBox 5-30,7-12, 8-13, 9-79, 9-82, 10-11, 11-26,

11-28, 11-29, 11-32, B-4
DataGraph 5-31, 6-4,7-16, 8-17, 11-28, B-4
EventGraph 5-31, 6-4,7-15, 8-16, 9-7, B-4
GridLabel 5-30,7-12, 8-12, 11-26, 11-27, B-4
loading 7-6
moving 5-23, 7-5, 7-7
overlapping 7-8
placement 5-23, 7-6
properties 7-9
resizing 5-23, 7-5, 7-7
Ruler 5-31, 6-9,7-17, 8-19, A-1, B-4
selecting 7-5, 7-6
StateGraph 5-29, 5-30, 6-4,7-14, 8-14, 9-7, 9-84,

10-12, 11-29, 11-32, B-4
usage flowchart 7-12

Display object configuration parameters
Background Color 8-3, 8-9
common 8-1
CPU List 8-2, 8-6
End-Events 8-15
End-Expression 8-15
Event Color 8-15
Event List 8-2, 8-4
Fill Style 8-17
Font 8-3, 8-9
Foreground Color 8-3, 8-9
If-Expression 8-2, 8-4
Lost Event Color 8-19
Mark Color 8-19
Maximum 8-18
Minimum 8-18
Name 8-2
Node List 8-3, 8-9
PID List 8-3, 8-7
Start-Events 8-15
Start-Expression 8-15
Text 8-12
Text Gravity 8-4, 8-10
Text Justify 8-3, 8-9
Then-Expression 8-2,8-5, 9-4, 9-76, 9-78, 9-79,

9-80
TID List 8-3, 8-8

Display page 1-6, 5-27, 6-2,7-2, 11-22, B-2
X resources B-2

Display page area
grid 6-4, B-2
interval control area6-11
interval push buttons 6-8
Index-3

NightTrace Manual
interval scroll bar 6-7, C-1
message display area 6-1, 6-4, 6-9, 6-14, 7-3, 7-7,

7-15, 7-16
Do Not Move Current Time radio button 10-3
Dotted area. see Grid
Duration

state 9-57

E

Edit menu 7-17
Edit mode 5-28, 6-1,7-4
Editing operation

delete character 6-16
insert character 6-16
positioning 6-18
replace character 6-17
restore the default 6-17
undo 6-17

Élan License Manager 2-2
installing 2-2

Enabling
kernel trace points 11-11
trace events 3-17, 3-18, 3-24, 4-3, 4-24

End functions 9-45
end_arg function 9-47
end_arg_dbl function 9-47
end_cpu function 9-52
end_id function 9-46
end_lwpid function 9-50
end_node_id function 9-54
end_node_name function 9-56
end_num_args function 9-48
end_offset function 9-53
end_pid function 9-48
end_pid_table_name function 9-55
end_raw_pid function 9-49
end_task_id function 9-51
end_thread_id function 9-51
end_tid function 9-52
end_tid_table_name function 9-55
end_time function 9-54
End-Events configuration parameter 8-15
End-Events field 8-15, 9-7, 9-85
End-Expression configuration parameter 8-15
End-Expression field 8-15, 9-4, 9-7, 9-83, 10-7,

Glossary-15
Environment requirements 2-1
Environment variable

DISPLAY 5-2
SHELL 2-5

Event

gap 9-32
matches 8-6, 8-13,9-33
qualified 9-81
summary type 10-12
tag. see Trace event

tag
Event Color configuration parameter 8-15
Event Color field 8-15
Event Count field 6-12, 6-13
Event End field 6-7, 6-12, 6-13
Event ID. see Trace event

ID
Event List configuration parameter 8-2, 8-4
Event List field 8-2, 9-83, 9-85, 10-5, 10-7
Event radio button 10-6
Event Start field 6-7, 6-11, 6-13
Event summary 10-11
event table5-15, 8-5
Event. see Trace event
event_arg_dbl_summary table5-21, 8-6
event_arg_summary table5-21, 8-6, 10-8
event_gap function 9-32
event_matches function 8-13,9-33
event_summary table5-21, 8-6, 10-7
EventGraph 5-31, 6-4,7-15, 8-16, 9-7, B-4

configuration form 8-16
Event-map file 1-6, 3-13, 5-4, 5-9,5-10, 5-16, 5-32,

5-34, 5-35, 8-2, 11-22
eventmap file 5-12, 5-15, 11-22
Exception 5-5, 5-7, 5-9, 11-4, 11-29, 11-33, 11-34,

11-36
graph 11-29
reference 11-37
resumption11-4, 11-29
suspension11-4, 11-29

exec(2) service 3-6, 3-10
Exit menu item 5-33
Expansive mode4-2, 4-3, 4-4, 4-10, 4-11, 4-12, A-1,

A-4
Expression configuration parameter 9-4, 9-7
Expression field 9-7
Expressions 9-4

constant string literals 5-19, 9-13, 9-77
functions 9-9
macros 5-9, 5-12, 5-28, 5-31, 7-18, 8-2
operands 9-5
operators 9-4
qualified events 5-9, 5-11, 5-12, 5-28, 5-31, 7-18,

8-4,9-81
qualified states 5-9, 5-12, 5-28, 5-31, 7-18, 8-4,

9-83
Expressions menu 9-1
Index-4

Index

6
6

F

Field
Background Color 8-3
CPU List 8-2, 9-81, 9-83, Glossary-14, Glossary-15
Current Time 6-7, 6-11, 6-13
editing operations 6-16
End-Events 8-15, 9-7, 9-85
End-Expression 8-15, 9-4, 9-7, 9-83, 10-7,

Glossary-15
Event Color 8-15
Event Count 6-12, 6-13
Event End 6-7, 6-12, 6-13
Event List 8-2, 9-83, 9-85, 10-5, 10-7
Event Start 6-7, 6-11, 6-13
Expression 9-7
File Name 5-34, 5-35
Filter 5-36
Filter-Expression 9-4, 10-7
Font 8-3
Foreground Color 8-3
If-Expression 8-2, 9-4, 9-7, 9-81, 9-83, 9-85, 10-7,

10-8, Glossary-14
Increment 6-7, 6-12, 6-14
Lost Event Color 8-19
MacroDefinition 9-7
Mark Color 8-19
Maximum 8-18
Minimum 8-18
Name 8-2
No Event List 10-5
Node List 8-3, 9-81, 9-83, Glossary-14,

Glossary-15
PID List 8-3, 9-81, 9-83, Glossary-14, Glossary-15
QualifiedEvent 9-82
QualifiedState 9-84
Start-Events 8-15, 9-7, 9-85
Start-Expression 8-15, 9-4, 9-7, 9-83, 10-8
Summary-Expression 9-4, 9-81, 10-7, 10-8, 10-11,

10-12
Text 8-12
Then-Expression 8-2
TID List 9-81, 9-83, Glossary-14, Glossary-15
Time End 6-7, 6-11, 6-12, 10-3, 10-6
Time Length 6-11, 6-13
Time Start 6-7, 6-11, 6-12, 10-3, 10-6
Zoom Factor 6-12, 6-13

Field editing 6-16
multiple fields 6-14
single fields 6-12

Field label
dimmed 5-28, 7-4

File

.login 2-5

.profile 2-5

.Xdefaults 5-2, 5-8,B-1, B-5

.Xresources 5-2, 5-8
/dev/interval_timer 2-5, 2-9
/dev/spl 2-5, 2-8, A-3
/dev/trace 2-9, 11-8
/etc/conf/mtune.d/trace 11-8, A-2
/etc/group 2-5
/usr/bin/ktrace 11-9
/usr/bin/ntrace 5-3
/usr/bin/ntraceud 4-1
/usr/include/ntrace.h 3-2, 3-24, 4-21
/usr/include/sys/ktrace.h11-2, 11-8, 11-11
/usr/lib/libntrace.a 3-25
/usr/lib/NightTrace/eventmap 5-12, 5-15, 11-22
/usr/lib/NightTrace/examples/entry_exit.c 3-26
/usr/lib/NightTrace/examples/entry_exit_map 5-3
/usr/lib/NightTrace/examples/entry_exit_page 5-3
/usr/lib/NightTrace/tables 5-15, 5-17, 5-21,5-21,

9-77, 9-78, 9-80, 10-8
configuration 5-9,5-12
event-map 1-6, 3-13, 5-4, 5-9,5-10, 5-16, 5-32,

5-34, 5-35, 8-2, 11-22
filter 5-36
installation 2-2
KernelTrace trace event 1-6, 5-10,11-21
NightTrace kernel trace event 1-6, 5-5, 5-7, 5-9,

5-28,11-21
rgb.txt 5-8, 8-3, 8-15, 8-19, B-1, B-5
trace event 1-5, 3-5, 4-1, 4-10, 4-11, 5-9, A-4
trace. see trace event
vectors 5-5, 5-9, 5-16, 11-3, 11-6, 11-21, 11-33,

11-34
File menu 5-27, 7-18, 10-9
File Name field 5-34, 5-35
File Selection Dialog Box 5-32, 5-33,5-34, 7-19, 10-10,

B-3
File system

NFS 11-19, A-2, A-3, C-2
processor 2-3

file(1) command 5-10, 11-13, 11-21
File-wraparound mode 4-3, 4-4, 4-10, A-1, A-4, C-1
Fill Style configuration parameter 8-17
Filter 5-36
Filter field 5-36
Filter-Expression field 9-4, 10-7
Finding. see Searching
Flushing shared memory buffer3-20, 4-4,4-11, 4-16,

4-19, 4-26, A-1, A-2
Font configuration parameter 8-3, 8-9
Font field 8-3
Fonts 5-8, 8-3, B-1
Foreground Color configuration parameter 8-3, 8-9
Index-5

NightTrace Manual
Foreground Color field 8-3
fork(2) service 3-6, 3-10
Form

Configuration 8-4, 8-10, 8-12, 8-13, 8-14, 8-16,
8-17, 8-19, 9-2, 9-4

DataBox configuration 8-13
DataGraph configuration 8-17
EventGraph configuration 8-16
GridLabel configuration 8-12
Macro configuration 9-6, 9-7
Qualified Event configuration 9-81
Qualified State configuration 9-83, 9-84
Ruler configuration 8-19
Search 9-4,10-2, B-3, C-1
StateGraph configuration 8-14
Summarize 9-4,10-12, 10-14, B-3

Format
functions 9-75

format function 8-5, 9-4, 9-7,9-80, 10-7, 10-8
Format table 5-9,5-18, 9-79

event_arg_dbl_summary5-21, 8-6
event_arg_summary5-21, 8-6, 10-8
event_summary5-21, 8-6, 10-7
get_format function 5-21, 8-6, 9-4, 9-7,9-79,

10-7, 10-8
state_summary5-21, 8-6, 10-7

Fortran language 1-3
compiling and linking 3-25
source considerations3-2

Forward radio button 10-2
Functions 9-9

arg 9-9,9-20
arg_dbl 9-21
arg1 5-20, 8-5, 9-9, 9-81, 10-7, 10-8
arg2 8-5, 9-12
avg 9-72
cpu 8-5,9-26
end 9-45
end_arg 9-47
end_arg_dbl 9-47
end_cpu 9-52
end_id 9-46
end_lwpid 9-50
end_node_id 9-54
end_node_name 9-56
end_num_args 9-48
end_offset 9-53
end_pid 9-48
end_pid_table_name 9-55
end_raw_pid 9-49
end_task_id 9-51
end_thread_id 9-51
end_tid 9-52
end_tid_table_name 9-55

end_time 9-54
event_gap 9-32
event_matches 8-13,9-33
format 9-75
format 8-5, 9-4, 9-7,9-80, 10-7, 10-8
get_format 5-21, 8-6, 9-4, 9-7,9-79, 10-7, 10-8
get_item 9-4,9-77
get_string 5-18, 5-19, 5-20, 8-5, 9-4,9-75
id 8-5,9-19, 9-79, 9-81
lwpid 9-23
max 9-71, 10-7, 10-8
max_offset 9-73, 10-8
min 9-71, 10-7, 10-8
min_offset 9-73, 10-7, 10-8
multi-event 9-32
multi-state 9-56
node_id 9-28
node_name 9-30
num_args 9-21
offset 9-59
offset 5-20,9-27
offset_arg 9-60
offset_arg_dbl 9-61
offset_cpu 9-66
offset_id 9-60, 9-73, 9-74
offset_lwpid 9-63
offset_node_id 9-67
offset_node_name 9-68
offset_num_args 9-61
offset_pid 9-62
offset_pid_table_name 9-67
offset_process_name 9-69
offset_raw_pid 9-63
offset_task_id 9-64
offset_task_name 9-69
offset_thread_id 9-64
offset_thread_name 9-70
offset_tid 9-65
offset_tid_table_name 9-68
offset_time 9-66
pid 8-5, 8-7,9-22, 9-79
pid_table_name 9-29
process_name 9-7,9-30
raw_pid 9-23
start 9-34
start_arg 9-35
start_arg_dbl 9-36
start_cpu 9-41
start_id 9-9,9-35
start_lwpid 9-39
start_node_id 9-43
start_node_name 9-45
start_num_args 9-37
start_offset 9-42
Index-6

Index

,

start_pid 9-37
start_pid_table_name 9-44
start_raw_pid 9-38
start_task_id 9-40
start_thread_id 9-39
start_tid 9-41
start_tid_table_name 9-44
start_time 9-42
state_dur 9-57
state_gap 9-9,9-57
state_matches 9-58
state_status 9-58, 9-85
sum 9-72
summary 9-4, 9-70
summary_matches 9-74, 10-8
table 9-75
task_id 9-25
task_name 9-31
thread_id 9-24
thread_name 9-32
tid 8-6, 8-8,9-25
tid_table_name 9-29
time 9-27, 9-83
trace event 9-19

G

Gap
event 9-32
state 9-57

get_format function 5-21, 8-6, 9-4, 9-7,9-79, 10-7,
10-8

get_item function 9-4,9-77
get_string function 5-18, 5-19, 5-20, 8-5, 9-4,9-75
Global process identifier 7-8, 8-5, 8-7, 9-10, 9-22, 9-37,

9-48, 9-62, 10-4, 10-6, 11-3, 11-12
Global Search radio button 10-3
Global Window area

message display area 5-10, 5-26
Graph

data 5-31, 6-4,7-16, 11-28
event 5-31, 6-4,7-15, 9-7
exception 11-29
interrupt 11-28
state 5-29, 5-30, 6-4,7-14, 9-7, 9-84, 10-12, 11-29,

11-32
syscall 11-31

Graphical user interface 5-1, B-1
resources 11-32

Grayed out button. see Disabled button
Grid 6-4, B-2
GridLabel 5-30,7-12, 8-12, 11-26, 11-27, B-4

configuration form 8-12
Text configuration parameter 8-12

GridObject B-4
Grouping users 2-5
GUI. see Graphical user interface

H

Hardclock interrupts 5-7, 11-1, 11-28, 11-36
ktrace 11-12

Help
ktrace 11-9
ntrace 5-4
ntraceud 4-6

Help menu 5-33
hf77(1) command 3-2

I

Iconified window 5-23
iconnect(3C) routine 11-35
id function 8-5,9-19, 9-79, 9-81
idbuild(1M) command 2-3
idtune(1M) command 2-3, 4-12, 4-14, A-2
If-Expression configuration parameter 8-2, 8-4
If-Expression field 8-2, 9-4, 9-7, 9-81, 9-83, 9-85, 10-7

10-8, Glossary-14
Increment field 6-7, 6-12, 6-14
Input

ktrace 11-12
Installation file 2-2
Installing

Élan License Manager 2-2
NightTrace 2-2

Inter-process communication 2-3, 3-4
Interrupt 5-5, 5-9, 11-2, 11-3, 11-28, 11-33, 11-34,

11-35, 11-36
device-related 11-36
graph 11-28
hardclock 5-7, 11-1, 11-28, 11-36
non-device-related 11-35
preventing 2-7, 2-8
user-level 2-5, 2-6, 4-8, 4-9

Interval 1-7, 6-1
control area6-11
push buttons 6-8
scroll bar 6-7, C-1

Interval Manipulation radio buttons 10-3
Interval radio button 10-6
Interval Search radio button 10-3
Index-7

NightTrace Manual
Interval timer 2-9
access 2-1, 2-5, 2-10
ticks in ktrace 11-12

ipcrm(1) command 3-7
IPL register 2-1

access 2-5,2-7, 2-8, 2-9
disabling 4-8
failure to attach 3-7
modification 2-8, 4-2
use 4-8

K

Kernel
buffer allotment 11-8, A-2
configuring 2-3
display page 5-27, 11-22
NightTrace trace event file 1-6, 5-5, 5-7, 5-9, 5-28,

11-21
Kernel trace device 2-1, 2-5, 2-9
Kernel tracing 1-1, 1-4, 1-5, 1-6, 5-16, 8-2, 8-6, 11-1,

11-1, A-2
KernelTrace 11-8, 11-21

product 1-1
trace event file 1-6, 5-10,11-21

kill(1) command 11-13
ktrace

performance considerations A-2
ktrace option

-bufferwrap (buffer-wraparound) 11-10
-clock (clock) 11-11
-cpu (CPU) 11-11
-disable (disable) 11-11
-enable (enable) 11-11
-help (help) 11-9
-input (input) 11-12
-measure (measure) 11-10
-nohardclock (strip hardclock interrupts) 11-12
-output (output kernel trace file) 11-10, 11-13
-priority (priority) 11-11
-process (process) 11-12
-raw (raw kernel trace) 11-12
-start (analyze events after constraint) 11-12
-ticks (interval timer ticks) 11-12
-verbose (verbose) 11-13
-version (version) 11-10
-wall (wall time) 11-12

ktrace(1) command 2-9, 4-1, 5-9, 5-10, 11-1, 11-2,
11-8, 11-21, A-2, A-3, A-4

ktrace.h 11-2, 11-8, 11-11

L

Label
dimmed 5-28, 7-4

Language
Ada 1-3, 3-25
C 1-3,3-2, 3-25
Fortran 1-3,3-2, 3-25

Last exception box 11-29
Last interrupt box 11-28
Last syscall box 11-31
libntrace.a 3-25
Library routines 3-1

disabling 3-2
overloading in Ada 3-3
return values 3-2
trace_close_thread 3-22
trace_disable 3-16, 4-22
trace_disable_all 3-16, 3-24
trace_disable_range 3-16, 4-22
trace_enable 3-16, 4-24
trace_enable_all 3-16
trace_enable_range 3-16, 4-24
trace_end 3-6, 3-20,3-23, 4-2, 4-15, 4-19
trace_event 3-11, 7-8
trace_event_arg 3-11
trace_event_dbl 3-11
trace_event_flt 3-11
trace_event_four_arg 3-11
trace_event_two_dbl 3-11
trace_event_two_flt 3-11
trace_flush 3-20, 4-2, 4-4, 4-11, 4-12, 4-15,

4-26, A-2, A-3
trace_open_thread 3-9, 3-15, 3-18, 3-22, 6-4,

7-17, 8-3
trace_start 3-5, 3-10, 3-15, 3-18, 3-23, 4-1,

4-2, 4-26, C-1
trace_trigger 3-20, 4-2, 4-15, A-2, A-3, A-4

License Manager
Élan 2-2

Lightweight process identifier 8-7, 9-10, 9-23, 9-39,
9-50, 9-63

Loading
trace event 5-7, A-5

Locating. see Searching
Logging

kernel trace event11-10
trace event 1-3, 1-4, 2-1, 2-3, 4-10, 4-11,4-22, 4-24,

A-5, C-1
Loss

kernel trace event 11-8, A-2
trace event 3-15, 3-21, 4-14, 4-26, 7-17, 8-19,A-1,

C-1
Index-8

Index

-7,

,

Lost Event Color configuration parameter 8-19
Lost Event Color field 8-19
LWPID 8-7, 9-10, 9-23, 9-39, 9-50, 9-63
lwpid function 9-23

M

Macro
Configuration form 9-6, 9-7
dialog box 9-6
Expression configuration parameter 9-4, 9-7
MacroDefinition configuration parameter 9-7

MacroDefinition configuration parameter 9-7
MacroDefinition field 9-7
Macros 5-9, 5-12, 5-28, 5-31, 7-18, 8-2, 9-81
Map file. see Event-map file
Mark

inside Ruler 7-17, 8-19
manipulating 6-9
push button 6-9
representation 6-9

Mark Color configuration parameter 8-19
Mark Color field 8-19
Matches

event 8-6, 8-13,9-33
state 8-6, 9-58
summary 9-74

max function 9-71, 10-7, 10-8
max_offset function 9-73, 10-8
Maximum configuration parameter 8-18
Maximum field 8-18
Maximum value 8-18, 9-71, 9-73
Measure time

ktrace 11-10
Memory size 3-15, 4-3, 4-4, 4-14, A-3, C-1
Menu

Configure 8-1
Create 7-6, 7-8
Edit 7-17
Expressions 9-1
File 5-27, 7-18, 10-9
Help 5-33
Tools 10-1, 10-5

Menu item
Close 7-19, 10-10
Content ... 8-1
Default Kernel Page 5-27, 11-22
Default Page 5-27, 5-29
Delete 7-18
Deselect All 7-18
desensitized 5-28, 7-19
dimmed. see Menu item

disabled
disabled 5-28, 7-4, 7-18, 10-10
Exit 5-33
New Page 5-27, 5-28
Open Config File ... 5-13, 5-27, 5-31, 5-37
Read Event-Map File ... 5-11, 5-32, 5-37
Save 7-18
Save As ... 7-19
Save Text 10-10
Save Text As ... 10-10
Search ... 10-1
Select All 7-18
Summarize ... 10-5

Message display area 5-10, 5-26, 6-1, 6-4, 6-14, 7-3, 7
7-15, 7-16

statistics 6-9
min function 9-71, 10-7, 10-8
min_offset function 9-73, 10-7, 10-8
Minimum configuration parameter 8-18
Minimum field 8-18
Minimum value 8-18, 9-71, 9-73
Mode

buffer-wraparound 3-21, 4-3, 4-11, 4-15, 4-16, A-1
A-4, C-1

Edit 5-28, 6-1,7-4
expansive4-2, 4-3, 4-4, 4-10, 4-11, 4-12, A-1, A-4
file-wraparound 4-3, 4-4, 4-10, A-1, A-4, C-1
radio buttons 7-3
View 5-29, 6-1, 6-6,7-4, 9-7, 10-1, 11-22

Monochrome display 5-2, 7-14, B-1, B-4
Motif 1-8, 5-2
Mouse

pointer shapes 5-23
Mouse button

1 5-22, 6-2, 6-3, 6-8, 6-9, 6-16, 7-5, 7-6
2 6-3, 6-4, 6-8, 6-9, 6-16, 7-5, 7-7, 7-15, 7-16
3 6-3, 6-4, 6-10, 6-16, 7-5, 7-7, 7-16

Mouse operation
create 7-6
move 7-7
resize 7-7
select 7-6

Move mouse operation 7-7
mpadvise(3C) routine A-4
Multi-event functions 9-32
Multi-state functions 9-56

N

Name configuration parameter 8-2
Name field 8-2
name_pid table 5-17,11-33
Index-9

NightTrace Manual

,

5

,

name_tid table 5-17
New Page menu item 5-27, 5-28
Next push button 10-3, 10-5
NFS file system 11-19, A-2, A-3, C-2
NightStar tool kit 1-1
NightTrace

environment defaults 4-2
installation 2-2
product 1-1

NightTrace thread identifier 7-8, 8-5, 8-6, 8-8, 9-10,
9-25, 9-41, 9-52, 9-65, 10-4, 10-6

NightView debugger 1-4, 3-1
No Event List field 10-5
Node box 11-27
Node identifer 9-28
Node identifier

ending trace event 9-54
offset 9-67
starting trace event 9-43

Node List configuration parameter 8-3, 8-9
Node List field 8-3, 9-81, 9-83, Glossary-14,

Glossary-15
Node name 9-30

ending trace event 9-56
ordinal trace event 9-68
starting trace event 9-45

node_id function 9-28
node_name function 9-30
node_name table 5-17,11-33
NT_ASSOC_PID 6-4
NT_ASSOC_TID 6-4
NT_CONTINUE 3-9, 3-13, 4-14, 5-6,5-10
NT_M_BUFFERWRAP. see Buffer-wraparound mode
NT_M_DEFAULT. see Expansive mode
NT_M_FILEWRAP. see File-wraparound mode
ntfilter option

-v (create vectors file) 11-21
ntfilter(1) command 5-9, 11-3, 11-8,11-21,

11-33, 11-34, 11-35, 11-37
ntrace 1-3, 1-6, 5-1

format tables 5-9,5-18
functions 9-9
invoking 5-3
notation conventions 5-25
operands 9-5
operators 9-4
performance considerations 5-7, 10-2, A-5
string tables 5-9,5-14
viewing strategy 6-5

ntrace field
Background Color 8-3
CPU List 8-2, 9-81, 9-83, Glossary-14, Glossary-15
Current Time 6-7, 6-11, 6-13
End-Events 8-15, 9-7, 9-85

End-Expression 8-15, 9-4, 9-7, 9-83, 10-7,
Glossary-15

Event Color 8-15
Event Count 6-12, 6-13
Event End 6-7, 6-12, 6-13
Event List 8-2, 9-83, 9-85, 10-5, 10-7
Event Start 6-7, 6-11, 6-13
Expression 9-7
File Name 5-34, 5-35
Filter 5-36
Font 8-3
Foreground Color 8-3
If-Expression 8-2, 9-4, 9-7, 9-81, 9-83, 9-85, 10-7

10-8, Glossary-14
Increment 6-7, 6-12, 6-14
Lost Event Color 8-19
MacroDefinition 9-7
Mark Color 8-19
Maximum 8-18
Minimum 8-18
Name 8-2
No Event List 10-5
Node List 8-3, 9-81, 9-83, Glossary-14,

Glossary-15
PID List 8-3, 9-81, 9-83, Glossary-14, Glossary-1
QualifiedEvent 9-82
QualifiedState 9-84
Start-Events 8-15, 9-7, 9-85
Start-Expression 8-15, 9-4, 9-7, 9-83, 10-8
Text 8-12
Then-Expression 8-2
TID List 9-81, 9-83, Glossary-14, Glossary-15
Time End 6-7, 6-11, 6-12, 10-3, 10-6
Time Length 6-11, 6-13
Time Start 6-7, 6-11, 6-12, 10-3, 10-6
Zoom Factor 6-12, 6-13

ntrace functions 9-9
ntrace macros 5-9, 5-12, 5-28, 5-31, 7-18, 8-2
ntrace mode 7-3

Edit 5-28, 6-1,7-4
radio buttons 7-3
View 5-29, 6-1, 6-6,7-4, 9-7, 10-1, 11-22

ntrace option
-end (load events before constraint) 5-7, A-5
-filestats (list statistics and trace events) 5-6, 5-27

A-1
-flat (set flat color) 5-8
-help (help) 5-4
-listing (list trace events) 5-4, 5-11
-nohardclock (strip hardclock) 5-7, A-5
-process (load process’s events) 5-7, A-5
-start (load events after constraint) 5-7, A-5
-version (version) 5-4
-Xoption (use X(1) options) 5-8
Index-10

Index

,

,

,

,

ntrace qualified events 5-9, 5-11, 5-12, 5-28, 5-31, 7-18,
8-4, 9-81

ntrace qualified states 5-9, 5-12, 5-28, 5-31, 7-18, 8-4,
9-13, 9-35, 9-36, 9-37, 9-38, 9-39, 9-40, 9-41,
9-42, 9-43, 9-44, 9-45, 9-46, 9-47, 9-48, 9-49,
9-50, 9-51, 9-52, 9-53, 9-54, 9-55, 9-56, 9-57,
9-58, 9-59,9-83

ntrace window
Configuration 8-4, 8-10, 8-12, 8-13, 8-14, 8-16,

8-17, 8-19, 9-2, 9-4
Display Page 5-27, 6-2, 11-22
File Selection Dialog Box 5-32, 5-33,5-34, 7-19,

10-10, B-3
Global 5-3, 5-6, 5-11, 5-26, 11-22, A-1, B-2
iconified 5-23
Macro configuration 9-6, 9-7
Qualified Event configuration 9-81
Qualified State configuration 9-83, 9-84
resizing 5-25, 5-27
Search 9-4,10-2, B-3, C-1
Summarize 9-4,10-12, 10-14, B-3

ntrace window component
menu bar 5-24, 5-25
pull-down menu 5-24, 5-25
push button 5-24, 6-8
radio button 5-24
scroll bar 5-24
scroll region 5-24
text field 5-24

ntrace.h 3-2, 3-24, 4-21
ntraceud

buffer-full cutoff. see ntraceud
cutoff

cutoff 3-15, 4-3, 4-4, 4-16, A-3, C-1
daemon 1-3, 1-4,4-1
flush mechanism 4-3
help 4-6
initialization errors 2-8, 2-10
interrupt handling 4-3
invoking 4-26
memory size 3-15, 4-3, 4-4, 4-14, A-3, C-1
page-fault handling 4-3
performance considerations 2-6, 2-7, 4-1, 4-15,

4-16,A-1
protection considerations 2-7, 2-10
quit running 4-19, 4-26, 4-27, 5-9
reset 4-18
shared memory buffer size. see ntraceud

memory size
sleep interval 4-2, 4-3, 4-15
statistical information 4-20, A-1
stopping 4-27
timeout interval 3-15, 4-3, 4-4, 4-15, A-3, C-1

trace event file size 4-3, 4-10
trace event logging 4-3
version information 4-7

ntraceud mode
buffer-wraparound 3-21, 4-3, 4-11, 4-15, 4-16, A-1

A-4, C-1
expansive4-2, 4-3, 4-4, 4-10, 4-11, 4-12, A-1, A-4
file-wraparound 4-3, 4-4, 4-10, A-1, A-4, C-1

ntraceud option
-bufferwrap (buffer-wraparound mode) 4-3, 4-11,

4-15, 4-16, A-1, A-4, C-1
-cutoff (cutoff percentage) 3-15, 4-3, 4-4, 4-16,

A-3, C-1
-disable (disable logging) 3-18, 3-24, 4-3, 4-22
-enable (enable logging) 3-18, 3-24, 4-3, 4-24
-filewrap (file-wraparound mode) 4-3, 4-4, 4-10,

A-1, A-4, C-1
-help (help) 4-6
-ipldisable (do not set IPL) 2-8, 3-7, 4-3, 4-8, 4-26

A-3
-lockdisable (do not lock pages) 2-7, 3-10, 4-3, 4-9

4-26, A-3
-memsize (memory size) 3-15, 4-3, 4-4, 4-14, A-3

C-1
-quit (quit running) 4-19, 4-27, 5-9
-reset (reset ntraceud) 4-18
-stats (statistical information) 4-20, A-1
-timeout (timeout interval) 3-15, 4-3, 4-4, 4-15,

A-3, C-1
-version (version information) 4-7

num_args function 9-21

O

Object. see Display object
od(1) command 5-10
Offset 5-7,6-4, 6-11, 6-13, 6-15, 7-8, 9-9, 9-12, 9-13,

9-59, 9-60, 9-61, 9-62, 9-63, 9-64, 9-65, 9-66,
9-67, 9-68, 9-69, 9-70, 10-4, 10-11, 10-13

offset function 5-20,9-27
Offset functions 9-59
offset_arg function 9-60
offset_arg_dbl function 9-61
offset_cpu function 9-66
offset_id function 9-60, 9-73, 9-74
offset_lwpid function 9-63
offset_node_id function 9-67
offset_node_name function 9-68
offset_num_args function 9-61
offset_pid function 9-62
offset_pid_table_name function 9-67
offset_process_name function 9-69
Index-11

NightTrace Manual

5

offset_raw_pid function 9-63
offset_task_id function 9-64
offset_task_name function 9-69
offset_thread_id function 9-64
offset_thread_name function 9-70
offset_tid function 9-65
offset_tid_table_name function 9-68
offset_time function 9-66
Open Config File ... menu item 5-13, 5-27, 5-31, 5-37
Open push button 5-31
Operands

constants 9-5
functions 9-9
macros 5-9, 5-12, 5-28, 5-31, 7-18, 8-2
qualified events 5-9, 5-11, 5-12, 5-28, 5-31, 7-18,

8-4,9-81
qualified states 5-9, 5-12, 5-28, 5-31, 7-18, 8-4,

9-13, 9-35, 9-36, 9-37, 9-38, 9-39, 9-40,
9-41, 9-42, 9-43, 9-44, 9-45, 9-46, 9-47,
9-48, 9-49, 9-50, 9-51, 9-52, 9-53, 9-54,
9-55, 9-56, 9-57, 9-58, 9-59,9-83

Operands in expressions 9-5
Operators in expressions 9-4
Options. see ntrace option
Options. see ntraceud option
Options. see System configuration option
Output

ktrace 11-10

P

P_PLOCK 2-1,2-6, 2-6, 2-7, 3-7, 3-10, A-3
Package

Élan License Manager 2-2
elanlm 2-2
KernelTrace 2-2
NightTrace 2-2
ntrace 2-2
trace 2-2

Page
configuration file 5-9,5-12
default 5-27, 5-29
default kernel 5-27, 11-22
display 1-6,7-2, 11-22, B-2
lock disable 4-9
lock privilege 2-1,2-6, 2-6, 2-7, 3-7, 3-10, 4-26,

A-3
new 5-27, 5-28

Page faults
preventing 2-6

Parameters. see Configuration parameters
Performance considerations

ktrace A-2
NightTrace library routines 2-6
ntrace 5-7, 10-2, A-5
ntraceud 2-6, 2-7, 4-1, 4-15, 4-16,A-1

PID 7-8, 8-5, 8-7, 9-10, 9-22, 9-37, 9-48, 9-62, 10-4,
10-6, 11-3, 11-12

pid function 8-5, 8-7,9-22, 9-79
PID List configuration parameter 8-3, 8-7
PID List field 8-3, 9-81, 9-83, Glossary-14, Glossary-1
pid table 5-16, 8-5, 11-21, 11-34
PID table name 9-29
pid_nodename table 5-17,11-33
pid_table_name function 9-29
pkgadd(1M) command 2-2
Pointer shapes 5-23
Pop-up window

Open B-3
Read B-3
SaveAs 7-19, B-3
SaveTextAs 10-10, B-3

Pop-up window. see Dialog box
Pre-defined tables 5-15, 5-21, 11-5, 11-21, 11-32
Prev push button 10-3, 10-5
Preventing

interrupts 2-7, 2-8
page faults 2-6
rescheduling 2-7, 2-8, 2-9

printf(3S) routine 5-12, 5-19, 9-80
Priority

ktrace 11-11
Privilege

page lock 2-1,2-6, 2-6, 2-7, 3-7, 3-10, 4-26, A-3
Process

ktrace 11-12
ntrace 5-7

Process box 11-26
Process identifier

ending trace event 9-55
offset 9-67
starting trace event 9-44

Process identifier table name 9-29
Process name 9-30

ordinal trace event 9-69
process_name function 9-7,9-30
Processor file system 2-3
procfs file system 2-3
Protection considerations

ntraceud 2-7, 2-10
Pull-down menu. see Window component

pull-down menu
Push button

Add 9-2
Apply 6-9, 6-12, 6-17, 8-10, 9-3, 10-3, 10-8
Cancel 5-31, 5-32
Index-12

Index
Center 6-9
Clear 10-9, 10-10
Close 8-11, 9-2, 9-3, 10-4, 10-5
Configure 9-2
default 5-24
Delete 9-2
dimmed. see Push button

disabled
disabled 5-28, 7-4
grayed out. see Push button

disabled
Mark 6-9
Next 10-3, 10-5
on configuration form 8-10
Open 5-31
Prev 10-3, 10-5
Read 5-32
Refresh 6-10
Reset 6-9, 8-11, 9-3, 10-3, 10-8
Restore 8-11, 9-3, 10-9
Search 10-4
Summarize 10-6, 10-9, 10-10
Zoom In 6-10, 6-12
Zoom Out 6-10, 6-12, C-1
Zoom Region 6-10

Q

Qualified events 5-9, 5-11, 5-12, 5-28, 5-31, 7-18, 8-4,
9-81,9-81

Configuration form 9-81
dialog box 9-81
QualifiedEvent configuration parameter 9-82, 9-83

Qualified states 5-9, 5-12, 5-28, 5-31, 7-18, 8-4, 9-13,
9-35, 9-36, 9-37, 9-38, 9-39, 9-40, 9-41, 9-42,
9-43, 9-44, 9-45, 9-46, 9-47, 9-48, 9-49, 9-50,
9-51, 9-52, 9-53, 9-54, 9-55, 9-56, 9-57, 9-58,
9-59, 9-83,9-83

Configuration form 9-83, 9-84
dialog box 9-83
QualifiedState configuration parameter 9-84, 9-85

QualifiedEvent configuration parameter 9-82, 9-83
QualifiedEvent field 9-82
QualifiedState configuration parameter 9-84, 9-85
QualifiedState field 9-84

R

Radio button

Backward 10-2
Do Not Move Current Time 10-3
Edit mode 7-3, 7-18
Event 10-6
Forward 10-2
Global Search 10-3
Interval 10-6
Interval Manipulation 10-3
Interval Search 10-3
Region 10-6
Scroll Current Time to Event 10-3
Search Constraints 10-2
Search Direction 10-2
State 10-6
Summary Range 10-6
Summary Type 10-6
Text Gravity 8-4
Text Justify 8-3
Trace-Event File 10-6
View mode 7-3
Zoom to Include Event 10-3

Raw kernel trace
ktrace 11-12

Raw PID 8-7, 8-8
raw PID 9-10, 9-23, 9-38, 9-49, 9-63
raw_pid function 9-23
Read Event-Map File ... menu item 5-11, 5-32, 5-37
Read push button 5-32
Record. see Trace event
Refresh push button 6-10
Region radio button 10-6
Rescheduling

preventing 2-7, 2-8, 2-9
Reset push button 6-9, 8-11, 9-3, 10-3, 10-8
Resize mouse operation 7-7
Resizing

display objects 5-23, 7-5, 7-7
windows 5-25, 5-27

Restore push button 8-11, 9-3, 10-9
Return values 3-2
rgb.txt file 5-8, 8-3, 8-15, 8-19, B-1, B-5
Ruler 5-31, 6-9,7-17, 8-19, A-1, B-4

configuration form 8-19
Lost Event Color configuration parameter 8-19
Mark Color configuration parameter 8-19

run(1) command A-4
Running process box 11-26

S

Save As ... menu item 7-19
Save menu item 7-18
Index-13

NightTrace Manual
Save Text As ... menu item 10-10
Save Text menu item 10-10
Scroll bar 5-24, 6-7, C-1
Scroll Current Time to Event radio button 10-3
Scroll region 5-24
Search ... menu item 10-1
Search Constraints radio buttons 10-2
Search Direction radio buttons 10-2
Search form 9-4,10-2, B-3, C-1

default search behavior 10-4
Search form push buttons

Apply 10-3
Close 10-4, 10-5
Next 10-3, 10-5
Prev 10-3, 10-5
Reset 10-3
Search 10-4

Search form radio buttons
Backward 10-2
Do Not Move Current Time 10-3
Forward 10-2
Global Search 10-3
Interval Manipulation 10-3
Interval Search 10-3
Scroll Current Time to Event 10-3
Search Constraints 10-2
Search Direction 10-2
Zoom to Include Event 10-3

Search push button 10-4
Searching

trace event 1-3, 1-7, 6-1, 6-5,10-1, 10-1
Select All menu item 7-18
Select mouse operation 7-6
Shared memory

buffer 1-5, 4-11, 4-14
failure to attach 3-7
flushing 3-20, 4-4,4-11, 4-16, A-1, A-2
kernel tunable parameter 2-3
spin locks 2-7, 2-8, 2-9

SHELL environment variable 2-5
SHMMAX 4-12, 4-14, A-2
Spin lock 2-7, 2-8, 2-9
Start functions 9-34
start_arg function 9-35
start_arg_dbl function 9-36
start_cpu function 9-41
start_id function 9-9,9-35
start_lwpid function 9-39
start_node_id function 9-43
start_node_name function 9-45
start_num_args function 9-37
start_offset function 9-42
start_pid function 9-37
start_pid_table_name function 9-44

start_raw_pid function 9-38
start_task_id function 9-40
start_thread_id function 9-39
start_tid function 9-41
start_tid_table_name function 9-44
start_time function 9-42
Start-Events configuration parameter 8-15
Start-Events field 8-15, 9-7, 9-85
Start-Expression configuration parameter 8-15
Start-Expression field 8-15, 9-4, 9-7, 9-83, 10-8
State 1-2, 3-14,7-8, 7-14, 8-15, 11-28, 11-29

duration 9-57
gap 9-57
matches 8-6, 9-58
qualified 9-83
summary type 10-14

State radio button 10-6
State summary 10-12
state_dur function 9-57
state_gap function 9-9,9-57
state_matches function 9-58
state_status function 9-58, 9-85
state_summary table5-21, 8-6, 10-7
StateGraph 5-29, 5-30, 6-4,7-14, 8-14, 9-7, 9-84, 10-12,

11-29, 11-32, B-4
configuration form 8-14
End-Events configuration parameter 8-15
End-Expression configuration parameter 8-15
Start-Events configuration parameter 8-15
Start-Expression configuration parameter 8-15

Statistics 5-10, 10-1
multi-event 9-32
multi-state 9-56
ntrace 5-6, 6-9, A-1
ntraceud 4-20, A-1
summary 9-4, 9-70

String table 5-9,5-14, 9-75, 9-77
boolean 5-17, 8-6
device 5-18, 11-5,11-33
device_nodename 5-18,11-34
event 5-15, 8-5
get_item function 9-4,9-77
get_string function 5-18, 5-19, 5-20, 8-5, 9-4,

9-75
name_pid 5-17,11-33
name_tid 5-17
node_name 5-17,11-33
pid 5-16, 8-5, 11-21, 11-34
pid_nodename 5-17,11-33
syscall 5-18, 8-6, 11-5, 11-21,11-33, 11-37
syscall_nodename 5-18,11-34
tid 5-16, 8-6
tid_nodename 5-17
vector 5-18, 8-6, 11-3, 11-21,11-33, 11-35
Index-14

Index

5

vector_nodename 5-18,11-34
sum function 9-72
Summarize ... menu item 10-5
Summarize form 9-4,10-12, 10-14, B-3

Event summary type 10-12
State summary type 10-14
summary display area 10-7, 10-9, 10-10, 10-11,

10-12
Summarize form fields 10-6

Filter-Expression 9-4, 10-7
Summary-Expression 9-4, 9-81, 10-7, 10-8, 10-11,

10-12
Summarize form push buttons

Apply 10-8
Clear 10-9, 10-10
Reset 10-8
Restore 10-9
Summarize 10-6, 10-9, 10-10

Summarize form radio buttons
Event 10-6
Interval 10-6
Region 10-6
State 10-6
Summary Range 10-6
Summary Type 10-6
Trace-Event File 10-6

Summarize push button 10-6, 10-9, 10-10
Summarizing

trace event 1-3,10-5
trace session 1-7

Summary
event 10-11
matches 9-74, 10-8
state 10-12

Summary display area 10-7, 10-9, 10-10, 10-11, 10-12
Summary functions 9-4, 9-70
Summary Range radio buttons 10-6
Summary Type radio buttons 10-6
summary_matches function 9-74, 10-8
Summary-Expression field 9-4, 9-81, 10-7, 10-8, 10-11,

10-12
Syscall 11-5, 11-31, 11-33,11-37

graph 11-31
resumption 11-5
suspension 11-5, 11-31

syscall table 5-18, 8-6, 11-5, 11-21,11-33, 11-37
syscall_nodename table 5-18,11-34
System

administration 2-1
System call 11-5, 11-31, 11-33,11-37

T

Table
boolean 5-17, 8-6
device 5-18, 11-5,11-33
device_nodename 5-18,11-34
event 5-15, 8-5
event_arg_dbl_summary5-21, 8-6
event_arg_summary5-21, 8-6, 10-8
event_summary5-21, 8-6, 10-7
format 5-9, 5-18, 9-79
functions 9-75
name_pid 5-17,11-33
name_tid 5-17
node_name 5-17,11-33
pid 5-16, 8-5, 11-21, 11-34
pid_nodename 5-17,11-33
pre-defined 5-15, 5-21, 11-5, 11-21, 11-32
state_summary5-21, 8-6, 10-7
string 5-9, 5-14, 9-75, 9-77
syscall 5-18, 8-6, 11-5, 11-21,11-33, 11-37
syscall_nodename 5-18,11-34
tid 5-16, 8-6
tid_nodename 5-17
vector 5-18, 8-6, 11-3, 11-21,11-33, 11-35
vector_nodename 5-18,11-34

tables file 5-15, 5-17, 5-21,5-21, 9-77, 9-78, 9-80, 10-8
Tag. see Trace event

tag
Task name 9-31

ordinal trace event 9-69
task_id function 9-25
task_name function 9-31
Text configuration parameter 8-12
Text field 8-12

Background Color 8-3
CPU List 8-2, 9-81, 9-83, Glossary-14, Glossary-1
Current Time 6-7, 6-11, 6-13
cursor 6-16
editing operations 6-16
End-Events 8-15, 9-7, 9-85
End-Expression 8-15, 9-4, 9-7, 9-83, 10-7,

Glossary-15
Event Color 8-15
Event Count 6-12, 6-13
Event End 6-7, 6-12, 6-13
Event List 8-2, 9-83, 9-85, 10-5, 10-7
Event Start 6-7, 6-11, 6-13
Expression 9-7
File Name 5-34, 5-35
Filter 5-36
Filter-Expression 9-4, 10-7
Font 8-3
Index-15

NightTrace Manual

,

Foreground Color 8-3
If-Expression 8-2, 9-4, 9-7, 9-81, 9-83, 9-85, 10-7,

10-8, Glossary-14
Increment 6-7, 6-12, 6-14
Lost Event Color 8-19
MacroDefinition 9-7
Mark Color 8-19
Maximum 8-18
Minimum 8-18
Name 8-2
No Event List 10-5
Node List 8-3, 9-81, 9-83, Glossary-14,

Glossary-15
PID List 8-3, 9-81, 9-83, Glossary-14, Glossary-15
QualifiedEvent 9-82
QualifiedState 9-84
Start-Events 8-15, 9-7, 9-85
Start-Expression 8-15, 9-4, 9-7, 9-83, 10-8
Summary-Expression 9-4, 9-81, 10-7, 10-8, 10-11,

10-12
Text 8-12
Then-Expression 8-2
TID List 9-81, 9-83, Glossary-14, Glossary-15
Time End 6-7, 6-11, 6-12, 10-3, 10-6
Time Length 6-11, 6-13
Time Start 6-7, 6-11, 6-12, 10-3, 10-6
Zoom Factor 6-12, 6-13

Text Gravity configuration parameter 8-4, 8-10
Text Gravity radio button 8-4
Text Justify configuration parameter 8-3, 8-9
Text Justify radio button 8-3
tfadmin(1M) command 2-4
Then-Expression configuration parameter 8-2,8-5, 9-4,

9-76, 9-78, 9-79, 9-80
Then-Expression field 8-2
Thread event

ordinal 9-68
Thread identifier

ending trace event 9-55
offset 9-68
starting trace event 9-44

Thread identifier table name 9-29
Thread name 9-32

ordinal trace event 9-70
Thread names 5-4, 5-16, 8-3, 8-8, 10-4, 10-6
thread_id function 9-24
thread_name function 9-32
Ticks

ktrace 11-12
TID 7-8, 8-5, 8-6, 8-8, 9-10, 9-25, 9-41, 9-52, 9-65,

10-4, 10-6
tid function 8-6, 8-8,9-25
TID List configuration parameter 8-3, 8-8
TID List field 9-81, 9-83, Glossary-14, Glossary-15

tid table 5-16, 8-6
TID table name 9-29
tid_nodename table 5-17
tid_table_name function 9-29
Time End field 6-7, 6-11, 6-12, 10-3, 10-6
time function 9-27, 9-83
Time Length field 6-11, 6-13
Time Start field 6-7, 6-11, 6-12, 10-3, 10-6
Timeout interval 3-15, 4-3, 4-4, 4-15, A-3, C-1
Times

constant 9-6
Timestamp 1-2, 2-9,5-4, 6-7, 9-27, 9-42, 9-54, 9-66,

11-8
Tools menu 10-1, 10-5
TR_ALT_INT_DISPATCH trace event 11-6
TR_BUFFER_COUNT tunable parameter 2-3, 11-8,

A-2, C-2
TR_EXCEPTION_ENTRY trace event 11-4
TR_EXCEPTION_EXIT trace event 11-4
TR_EXCEPTION_RESUME trace event 11-4
TR_EXCEPTION_SUSPEND trace event 11-4
TR_INTERRUPT_ENTRY trace event 11-3, 11-6
TR_INTERRUPT_EXIT trace event 11-4, 11-6
TR_PAGEFLT_ADDR trace event 11-7, 11-29
TR_PROCESS_NAME trace event 11-6
TR_PROTFLT_ADDR trace event 11-7, 11-29
TR_SWITCHIN trace event 11-3
TR_SYSCALL_ENTRY trace event 11-5
TR_SYSCALL_EXIT trace event 11-5
TR_SYSCALL_RESUME trace event 11-5
TR_SYSCALL_SUSPEND trace event 11-5
Trace device 2-1, 2-5, 2-9
Trace event 1-2, 7-8

analysis 1-6, 5-1, 11-8
arguments3-13, 5-4, 5-10, 5-11, 5-13, 5-31, 7-8,

7-9, 7-16, 8-5, 9-20, 9-21, 9-35, 9-36, 9-37
9-47, 9-48, 9-60, 9-61, 10-9

average size 4-14
context switch 11-3
disabling 3-17, 3-18, 3-24, 4-3, 4-22
discarding 3-21, A-1, A-4, C-1
display utility 5-1
enabling 3-17, 3-18, 3-24, 4-3, 4-24
exception 11-4
file 1-5, 3-5, 4-1, 5-9
file format 5-10
file size 4-10, 4-11, A-4
functions 9-19
ID 1-2, 1-6,3-13, 3-17, 4-22, 4-24, 5-4, 5-9, 5-10,

5-11, 5-15, 5-30, 5-32, 8-2, 8-4, 8-5, 10-4,
10-6, C-1

information 7-15, 9-19
interrupt 11-3
kernel logging 11-10
Index-16

Index
KernelTrace file 1-6, 5-10,11-21
loading 5-7, A-5
logging 1-3, 1-4, 2-1, 2-3, 4-10, 4-11,4-22, 4-24,

A-5, C-1
loss 3-15, 3-21, 4-14, 4-26, 7-17, 8-19, 11-8,A-1,

A-2, C-1
NightTrace kernel file 1-6, 5-5, 5-7, 5-9, 5-28,

11-21
node identifer (ending trace event) 9-54
node identifer (offset) 9-67
node identifer (starting trace event) 9-43
node identifier 9-28
node name 9-30
node name (ending trace event) 9-56
node name (ordinal trace event) 9-68
node name (starting trace event) 9-45
NT_ASSOC_PID 6-4
NT_ASSOC_TID 6-4
NT_CONTINUE 3-9, 3-13, 4-14, 5-6,5-10
offset 9-59
offset. see Offset
ordinal 9-67, 9-68, 9-69, 9-70
ordinal number. see Offset
PID table name 9-29
process identifer (ending trace event) 9-55
process identifer (offset) 9-67
process identifer (starting trace event) 9-44
process identifier table name 9-29
process name 9-30
process name (ordinal trace event) 9-69
searching 1-3, 1-7, 6-1, 6-5,10-1, 10-1
summarizing 1-3,10-5
syscall 11-5
tag 1-6, 5-4, 5-9,5-10, 5-11, 5-15, 5-30, 5-32, 10-4,

10-6, 11-22
task name 9-31
task name (ordinal trace event) 9-69
thread identifer (ending trace event) 9-55
thread identifer (offset) 9-68
thread identifer (starting trace event) 9-44
thread identifier table name 9-29
thread name 9-32
thread name (ordinal trace event) 9-70
TID table name 9-29
timestamp 1-2, 2-9,5-4, 9-27, 9-42, 9-54, 9-66,

11-8
timing distortion 2-6, 2-7, 2-8, 3-21, 4-8, 4-9, 4-15
TR_ALT_INT_DISPATCH 11-6
TR_EXCEPTION_ENTRY 11-4
TR_EXCEPTION_EXIT 11-4
TR_EXCEPTION_RESUME 11-4
TR_EXCEPTION_SUSPEND 11-4
TR_INTERRUPT_ENTRY 11-3, 11-6
TR_INTERRUPT_EXIT 11-4, 11-6

TR_PAGEFLT_ADDR 11-7, 11-29
TR_PROCESS_NAME 11-6
TR_PROTFLT_ADDR 11-7, 11-29
TR_SWITCHIN 11-3
TR_SYSCALL_ENTRY 11-5
TR_SYSCALL_EXIT 11-5
TR_SYSCALL_RESUME 11-5
TR_SYSCALL_SUSPEND 11-5

Trace event. see Event
Trace file. see Trace event file
Trace point 1-2, 1-4, 3-13, 5-10

disabling 11-11
enabling 11-11

trace_close_thread 3-22
trace_disable 3-16, 4-22
trace_disable_all 3-16, 3-24
trace_disable_range 3-16, 4-22
trace_enable 3-16, 4-24
trace_enable_all 3-16
trace_enable_range 3-16, 4-24
trace_end 3-6, 3-20,3-23, 4-2, 4-15, 4-19
trace_event 3-11, 7-8
trace_event_arg 3-11
trace_event_dbl 3-11
trace_event_flt 3-11
trace_event_four_arg 3-11
trace_event_two_flt 3-11
trace_flush 3-20, 4-2, 4-4, 4-11, 4-12, 4-15, 4-26,

A-2, A-3
trace_open_thread 3-9, 3-15, 3-18, 3-22, 6-4,

7-17, 8-3
trace_start 3-5, 3-10, 3-15, 3-18, 3-23, 4-1, 4-2,

4-26, C-1
trace_trigger 3-20, 4-2, 4-15, A-2, A-3, A-4
Trace-Event File radio button 10-6
Tracing

disabling 3-16,3-24
kernel 1-1, 1-4, 1-5, 1-6, 5-16, 8-2, 8-6, 11-1,11-1,

A-2
user 1-1, 1-4, 1-6

truss(1) command 11-37

U

umask(1) command 4-1
User groups 2-5, 2-8, 2-10
User tracing 1-1, 1-4, 1-6
User-level interrupts 2-5, 2-6, 4-8, 4-9
Index-17

NightTrace Manual
V

Variable
DISPLAY 5-2
SHELL 2-5

vector table 5-18, 8-6, 11-3, 11-21,11-33, 11-35
vector_nodename table 5-18,11-34
vectors file 5-5, 5-9, 5-16, 11-3, 11-6, 11-21, 11-33,

11-34
Verbose

ktrace 11-13
Version

ktrace 11-10
ntrace 5-4
ntraceud 4-7

View mode 5-29, 6-1, 6-6,7-4, 9-7, 10-1, 11-22
Viewing strategy

ntrace 6-5

W

Wall time
ktrace 11-12

Window
Configuration 8-4, 8-10, 8-12, 8-13, 8-14, 8-16,

8-17, 8-19, 9-2, 9-4
Display Page 5-27, 6-2, 11-22
File Selection Dialog Box 5-32, 5-33,5-34, 7-19,

10-10, B-3
Global 5-3, 5-6, 5-11, 5-26, 11-22, A-1, B-2
iconified 5-23
Macro configuration 9-6, 9-7
manager 5-23, 5-27, 6-11
Qualified Event configuration 9-81
Qualified State configuration 9-83, 9-84
resizing 5-25, 5-27
Search 9-4,10-2, B-3, C-1
Summarize 9-4,10-12, 10-14, B-3

Window component
menu bar 5-24, 5-25
pull-down menu 5-24, 5-25
push button 5-24, 6-8
radio button 5-24
scroll bar 5-24
scroll region 5-24
text field 5-24

Window. see Dialog box

X

X resources
display page B-2

X Window System
desk accessories 1-8
options 5-8
resources 1-8, 11-32

X(1) utility 5-8
xmodmap(1) utility 5-22
xrdb(1) command B-1
xterm(1) utility 1-8, 5-8

Z

Zoom Factor field 6-12, 6-13
Zoom In push button 6-10, 6-12
Zoom Out push button 6-10, 6-12, C-1
Zoom Region push button 6-10
Zoom to Include Event radio button 10-3
Index-18

Spine for 1.5” Binder

Product Name: 0.5" from
top of spine, Helvetica,
36 pt, Bold

Volume Number (if any):
Helvetica, 24 pt, Bold

Volume Name (if any):
Helvetica, 18 pt, Bold

Manual Title(s):
Helvetica, 10 pt, Bold,
centered vertically
within space above bar,
double space between
each title

Bar: 1" x 1/8" beginning
1/4" in from either side

Part Number: Helvetica,
6 pt, centered, 1/8" up

P
ow

erM
A

X
O

S

NightTrace Manual

0890398

User/Admin

	NightTrace Manual
	Preface
	Contents
	Introduction
	Overview
	What is NightTrace?
	User and Kernel Tracing
	Timestamp Source Selection
	Trace-Point Placement
	Languages Supported
	Processes and CPUs
	Information Displayed
	Searches and Summaries

	Logging and Analysis
	The Trace Event Logging Procedure
	The Trace Event Analysis Procedure

	Recommended Reading

	Establishing the Environment
	Overview
	Requirements
	Installing Software
	Configuring the Kernel
	Administering Privileges
	Putting Users into Groups
	Granting Page Lock Privilege
	Using Page Locking
	Not Using Page Locking

	Granting Access to the Interrupt Priority Level Register
	Using the IPL Register
	Not Using the IPL Register

	Granting Access to the Trace Device
	Granting Access to the Interval Timer
	Granting Access to the RCIM Synchronized Tick Clock

	Adding Library Calls to Your Application
	Overview
	Language-Specific Source Considerations
	C
	Fortran
	Ada

	Inter-Process Communication and Library Routines
	Understanding NightTrace Library Calls
	trace_start()
	trace_open_thread()
	trace_event() and Its Variants
	trace_enable(), trace_disable(), and Their Variants
	trace_flush() and trace_trigger()
	trace_close_thread()
	trace_end()

	Disabling Tracing
	Compiling and Linking
	C Example
	Fortran Example
	Ada Example

	Exercise: Instrumenting Code

	Generating Trace Event Logs with ntraceud
	Overview
	The ntraceud Daemon
	The Default NightTrace Environment
	ntraceud Modes
	ntraceud Options
	Option to Get Help (-help)
	Option to Get Version Information (-version)
	Option to Disable the IPL Register (-ipldisable)
	Option to Prevent Page Locking (-lockdisable)
	Option to Establish File-Wraparound Mode (-filewrap)
	Option to Establish Buffer-Wraparound Mode (-bufferwrap)
	Option to Define Shared Memory Buffer Size (�memsize)
	Option to Set Timeout Interval (-timeout)
	Option to Set the Buffer-Full Cutoff Percentage (-cutoff)
	Option to Select Timestamp Source (-clock)
	Option to Reset the ntraceud Daemon (-reset)
	Option to Quit Running ntraceud (-quit)
	Option to Present Statistical Information (-stats)
	Option to Disable Logging (-disable)
	Option to Enable Logging (-enable)

	Invoking ntraceud
	Starting Your NightTrace Application
	Stopping ntraceud
	Exercise: Logging Trace Events

	Invoking the ntrace Display Utility
	Overview
	X and NightTrace Vocabulary
	System Environment
	Invoking ntrace
	ntrace Options
	ntrace Arguments
	Understanding Trace Event Files
	Understanding Event-Map Files
	Understanding Page Configuration Files
	ntrace Tables
	String Tables
	Pre-Defined String Tables
	Format Tables
	Pre-Defined Format Tables

	Configuring Display Pages

	ntrace User Interface
	Using the Mouse
	Understanding Pointer Shapes
	Anticipating Window Layout
	Resizing Windows

	ntrace Notation Conventions
	ntrace Global Window
	Message Display Area
	Menu Bar
	File Menu Item
	New Page
	Default Page
	Open Config File
	Read Event-Map File
	Exit

	Help Menu Item

	The File Selection Dialog Box
	Typing in the Exact File Name
	Scrolling Through Existing File Names
	Typing in a Filter (File Name Pattern)

	Exercise: Displaying Trace Events

	Viewing Trace Event Logs with ntrace
	Overview
	Mouse Button Operations
	The Grid
	Viewing Strategy
	The Interval Scroll Bar
	The Interval Push Buttons
	The Interval Control Area
	Reading Fields
	Editing Single Fields
	Editing Multiple Fields

	Field Editing
	Editing Text Fields
	Positioning Within Text Fields

	Creating Display Objects
	Overview
	The Display Page
	Display Page Modes
	Edit Mode
	View Mode

	Operations on Display Objects
	Creating Display Objects
	Selecting Display Objects
	Moving Display Objects
	Resizing Display Objects

	Display Objects
	GridLabel
	DataBox
	Column
	StateGraph
	EventGraph
	DataGraph
	Ruler

	Editing Operations
	Select All
	Deselect All
	Delete

	File Operations
	Save
	Save As ...
	Close

	Configuring Display Objects
	Overview
	Common Configuration Parameters
	Display Object Name
	Event List
	If-Expression
	Then-Expression
	CPU List
	PID List
	TID List
	Node List
	Foreground Color
	Background Color
	Font
	Text Justify
	Text Gravity

	Configuration Form Push Buttons
	Specific Configuration Parameters
	GridLabel
	DataBox
	StateGraph
	EventGraph
	DataGraph
	Ruler

	Using Expressions
	Overview
	Expressions Menu
	Expression Dialog Boxes
	Expression Configuration Forms

	Expressions
	Operators
	Operands
	Constants
	Macros
	Functions
	Function Parameters
	Function Terminology
	Trace Event Functions
	id()
	arg()
	arg_dbl()
	num_args()
	pid()
	raw_pid()
	lwpid()
	thread_id()
	task_id()
	tid()
	cpu()
	offset()
	time()
	node_id()
	pid_table_name()
	tid_table_name()
	node_name()
	process_name()
	task_name()
	thread_name()
	Multi-Event Functions
	event_gap()
	event_matches()

	State Functions
	Start Functions
	start_id()
	start_arg()
	start_arg_dbl()
	start_num_args()
	start_pid()
	start_raw_pid()
	start_lwpid()
	start_thread_id()
	start_task_id()
	start_tid()
	start_cpu()
	start_offset()
	start_time()
	start_node_id()
	start_pid_table_name()
	start_tid_table_name()
	start_node_name()

	End Functions
	end_id()
	end_arg()
	end_arg_dbl()
	end_num_args()
	end_pid()
	end_raw_pid()
	end_lwpid()
	end_thread_id()
	end_task_id()
	end_tid()
	end_cpu()
	end_offset()
	end_time()�
	end_node_id()
	end_pid_table_name()
	end_tid_table_name()
	end_node_name()

	Multi-State Functions
	state_gap()
	state_dur()
	state_matches()
	state_status()

	Offset Functions
	offset_id()
	offset_arg()
	offset_arg_dbl()
	offset_num_args()
	offset_pid()
	offset_raw_pid()
	offset_lwpid()
	offset_thread_id()
	offset_task_id()
	offset_tid()
	offset_cpu()
	offset_time()
	offset_node_id()
	offset_pid_table_name()
	offset_tid_table_name()
	offset_node_name()
	offset_process_name()
	offset_task_name()
	offset_thread_name()

	Summary Functions
	min()
	max()
	avg()
	sum()
	min_offset()
	max_offset()
	summary_matches()

	Format and Table Functions
	get_string()
	get_item()
	get_format()
	format()

	Qualified Events
	Qualified States

	Using the Built-In Tools
	Overview
	Searching for Points of Interest
	Search Form Radio Buttons
	Search Form Push Buttons
	Search Form Fields

	Summarizing Statistical Information
	Summarize Form Radio Buttons
	Summarize Form Fields
	Summarize Form Push Buttons
	Menu Bar
	File Operations
	Save Text
	Save Text As ...
	Close

	Summary Display Area
	Event Summaries
	State Summaries

	Exercise: Using the Search Tool
	Exercise: Using the Summarize Tool

	Tracing the Kernel
	Overview
	Recommended Reading
	Using KernelTrace with NightTrace
	Default Kernel Trace Points
	Context Switch Trace Event
	Interrupt Trace Events
	Exception Trace Events
	Syscall Trace Events
	Shared Interrupt Trace Event
	Process Name Trace Event

	Kernel Trace Points Not Enabled By Default
	Page Fault Event
	Protection Fault Event

	Kernel Tracing with ktrace
	Invoking ktrace
	ktrace Options
	Viewing KernelTrace Trace Event Files with ktrace
	ktrace Kernel Activity Summaries
	Configuration Summary
	System Call Summary
	Exception and Interrupt Summaries
	Exception and Interrupt Total Time Summaries
	Device Summary

	ktrace Trace Event Listings
	ktrace -verbose Listing
	ktrace -raw Listing

	Converting KernelTrace Trace Event Files with ntfilter
	Viewing Converted KernelTrace Trace Event Files with ntrace
	Kernel Display Pages
	RCIM Default Kernel Display Page
	CPU Information
	Running Process Information
	Node Information
	Context Switch Information
	Interrupt Information
	Exception Information
	Syscall Information
	Color Information

	Kernel String Tables

	Kernel Reference
	Interrupts
	Non-Device-Related Interrupts
	Device-Related Interrupts

	Exceptions
	Syscalls

	Exercise: Kernel Tracing

	Performance Tuning
	Overview
	Preventing Trace Events Loss
	Ensuring Accurate Timings
	Optimizing File System and CPU Usage
	Conserving Disk Space
	Conserving Memory and Accelerating ntrace

	GUI Customization
	Overview
	Default X-Resource Settings for ntrace
	Examples
	Exercise: Customizing Display Colors

	Answers to Common Questions

	Glossary
	Index

