NightTrace Manual

@ CONCURRENT 0890398-070
cgg"p’gglﬁsmw August 2000

Copyright 2000 by Concurrent Computer Corporation. All rights reserved. This publication or any part thereof is
intended for use with Concurrent products by Concurrent personnel, customers, and end-users. It may not be
reproduced in any form without the written permission of the publisher.

The information contained in this document is believed to be correct at the time of publication. It is subject to change
without notice. Concurrent makes no warranties, expressed or implied, concerning the information contained in this
document.

To report an error or comment on a specific portion of the manual, photocopy the page in question and mark the
correction or comment on the copy. Mail the copy (and any additional comments) to Concurrent Computer Corpora-
tion, 2881 Gateway Drive, Pompano Beach, FL 33069-4324. Mark the enveéitteation: Publications Depart-

ment.” This publication may not be reproduced for any other reason in any form without written permission of the
publisher.

The license management portion of this product is based on:

Elan License Manager
Copyright 1989-1994 Elan Computer Group, Inc.
All rights reserved.

NightTrace, KernelTrace, NightView, NightStar, Power Hawk and MAXAda are trademarks of Concurrent Computer Corporation.
Elan License Manager is a trademark of Elan Computer Group, Inc.
PowerPC is a trademark of International Business Machines, Corp.

Motif, OSF, and OSF/Motif, X Window System and X are trademarks of The Open Group

Printed in U. S. A.

Revision History: Level: Effective With:
Original Release -- August 1992 000 NightTrace 1.0
Current Release -- August 2000 070 NightTrace 4.2

Preface

Scope of Manual

This manual is a reference document and users guide for NighFMJa@graphical, inter-
active debugging and performance analysis tool, and KernelTfaeetool that collects
and textually analyzes system performance.

Structure of Manual

A brief description of the chapters and appendixes in this manual follows:

* Chapter 1 contains introductory material on NightTrace and KernelTrace.
* Chapter 2 describes system and user environmental requirements.

* Chapter 3 gives the syntax and examples of NightTrace library calls.

* Chapter 4 tells how to generate trace event logs witaceud

¢ Chapter 5 describes how to invoke thigace display utility.

* Chapter 6 shows how to view trace event logs witirace

¢ Chapter 7 illustratestrace display objects and their creation.

* Chapter 8 shows how to configuntrace display objects.

* Chapter 9 defines NightTrace expressions.

¢ Chapter 10 tells about NightTrace'’s built-in tools.

* Chapter 11 describes kernel tracing wittirace , ntfilter , and
ntrace

This manual also contains three appendixes, a glossary, and an index.
* Appendix A describes performance tuning.
¢ Appendix B describes graphical user interface (GUI) customization.
¢ Appendix C provides answers to common questions.

The glossary contains an alphabetical list of NightTracB‘3Xand Motif™3 words and
phrases used in this manual and their definitions. The index contains an alphabetical list of
topics, names, etc. found in the manual.

1. NightTrace is a trademark of Concurrent Computer Corporation
2. X Window System and X are trademarks of The Open Group
3. Motif, OSF, and OSF/Motif are trademarks of Open Software Foundation, Inc.

NightTrace Manual

Man page descriptions of programs, system calls, subroutines, and file formats appear in
the system manual pages.

Syntax Notation

The following notation is used throughout this guide:

italic Books, reference cards, and items that the user must specify
appear intalic type. Special terms and comments in code may
also appear iitalic.

list bold User input appears itist bold type and must be entered
exactly as shown. Names of directories, files, commands, options
and man page references also appeéisinbold type.

list Operating system and program output such as prompts and mes-
sages and listings of files and programs appeatssin type.
Keywords also appear iist type.

emphasis Words or phrases that require extra emphasis use emfgsis
window Keyboard sequences and window features such as button, field,

and menu labels and window titles appeanimdow type.

[Brackets enclose command options and arguments that are
optional. You do not type the brackets if you choose to specify
such option or arguments.

{ Braces enclose mutually exclusive choices separated by the pipe
() character, where one choice must be selected. You do not type
the braces or the pipe character with the choice.

An ellipsis follows an item that can be repeated.
O An arrow separates a menu bar item from a pull-down menu entry.

The window images in this manual come from a Motif environment. If you are using
another environment, your windows may differ slightly from those presented here.

Referenced Publications

The following publications are referenced in this document:

0830048 HN6200 Architecture Reference Manual
0830046 HN6800 Architecture Manual

0890240 hf77 Fortran Reference Manual

0890300 X WindoW System User’s Guide

0890378 C: A Reference Manual

0890380 OSF/Moti™ Documentation Set (3 volumes)
0890395 NightVie®* User’s Guide

0890423 PowerMAX O®'® Programming Guide

Preface

0890429 System Administration Volume 1

0890430 System Administration Volume 2

0890460 Compilation Systems Volume 2 (Concepts)
0890466 PowerMAX O3 Real-Time Guide

0890474 NightTrac® Pocket Reference

0890516 MAXAdaM Reference Manual

0891019 Concurrent C Reference Manual

0891055 Elafi*6 License Manager Release Notes

0891082 Real-Time Clock and Interrupt Module User’s Guide

PowerPCM’ 604 RISC Microprocessor User's Manual (not avail-
able from Concurrent Computer Corporation)

4. NightView is a trademark of Concurrent Computer Corporation

5. PowerMAX OS is a trademark of Concurrent Computer Corporation
6. Elan License Manager is a trademark of Elan Computer Group, Inc.
7. PowerPC is a trademark of International Business Machines, Corp.

NightTrace Manual

vi

Contents

Chapter 1 Introduction

OVBIVIBW . ettt e e e 1-1
What is NightTrace? e 1-1
Userand Kernel Tracing.o oottt e 1-2
Timestamp Source Selection i 1-2
Trace-Point Placement 1-2
Languages Supportedot 1-3
Processes and CPUS it 1-3
Information Displayed 1-3
Searches and SUMMArIES it e 1-3
Loggingand ANnalysSis 1-3
The Trace Event Logging Procedure. 1-4
The Trace Event Analysis Procedure, 1-6
Recommended Reading. 1-7
Chapter 2 Establishing the Environment
OVBIVIBW . o ettt e e e 2-1
ReqUIrEMENtS. . . . 2-1
Installing Software. 2-2
Configuringthe Kernel 2-3
Administering Privileges 2-4
Putting Users into GroUPSo .ottt e e e e e e e e e 2-5
Granting Page Lock Privilege 2-6
Using PagelLocking 2-6
Not Using Page Locking e 2-7
Granting Access to the Interrupt Priority Level Register 2-7
Usingthe IPL Register. e 2-8
Not Using the IPL Register e 2-8
Granting Access tothe Trace Device. 2-9
Granting Access tothe Interval Timer. i 2-9
Granting Access to the RCIM Synchronized Tick Clock 2-10
Chapter 3 Adding Library Calls to Your Application
OVBIVIBW . ottt e e 3-1
Language-Specific Source Considerations 3-1
C o 3-2
FOrtran ... 3-2
A . 3-2
Inter-Process Communication and Library Routines 3-3
Understanding NightTrace Library Calls 3-3
trace_Start().o 3-5
trace_open_thread() 3-9
trace_event()andItsVariants. 3-11

Vii

NightTrace Manual

trace_enable(), trace_disable(), and Their Variants 3-16
trace_flush() and trace_trigger(). 3-20
trace_close_thread() o 3-22
trace_end()ot 3-23
Disabling Tracing.o 3-24
Compilingand LIiNKing e 3-25
CEXAaMPIE. . 3-25
Fortran Exampleo 3-25
Ada Example. 3-25
Exercise: Instrumenting Code. e 3-26

Chapter 4 Generating Trace Event Logs with ntraceud

OVBIVIBW . . ottt e e e 4-1
The ntraceud Daemont 4-1
The Default NightTrace Environment i 4-2
ntraceud MOOES o 4-3
ntraceud OPLIONSo 4-4
Optionto GetHelp (-help) 4-6
Option to Get Version Information (-version) 4-7
Option to Disable the IPL Register (-ipldisable) 4-8
Option to Prevent Page Locking (-lockdisable) 4-9
Option to Establish File-Wraparound Mode (-filewrap). 4-10
Option to Establish Buffer-Wraparound Mode (-bufferwrap) 4-11
Option to Define Shared Memory Buffer Size (-memsize) 4-14
Option to Set Timeout Interval (-timeout) 4-15
Option to Set the Buffer-Full Cutoff Percentage (-cutoff) 4-16
Option to Select Timestamp Source (-clock) 4-17
Option to Reset the ntraceud Daemon (-reset). 4-18
Option to Quit Running ntraceud (-quit) i .. 4-19
Option to Present Statistical Information (-stats) 4-20
Option to Disable Logging (-disable). i .. 4-22
Option to Enable Logging (-enable). o i 4-24
Invoking ntraceud. 4-26
Starting Your NightTrace Application. i, 4-26
Stopping Ntraceudo e 4-27
Exercise: Logging Trace EVentS.ot 4-27

Chapter 5 Invoking the ntrace Display Utility

viii

OVBIVIBW . . ottt e e 5-1
Xand NightTrace Vocabulary i 5-1
System ENVIFONMENto 5-2
INVOKING NEraCe.o 5-3
Ntrace OPtiONSo 5-3
NIrace ArQUIMENTS . . . o oottt e e e e e e et e e e e 5-8
Understanding Trace EventFiles i, 5-9
Understanding Event-Map Files i 5-10
Understanding Page Configuration Files 5-12
ntrace Tables 5-13

String Tables. 5-14
Pre-Defined String Tables 5-15
FormatTables. 5-18

Contents

Pre-Defined Format Tables 5-21
Configuring Display Pageso 5-21
ntrace UserInterface 5-22
UsiNg the MOUSE.ot e 5-22
Understanding Pointer Shapes i 5-23
Anticipating Window Layout. 5-23
Resizing WINdows 5-25
ntrace Notation CoNVeNtionSt 5-25
ntrace Global WINndow 5-26
Message Display Area 5-26
MeNU Bar 5-27
File Menu ltem 5-27
NeW Page 5-28
Default Page. 5-29
OpenConfigFile 5-31
Read Event-Map File 5-32
EXI. .o 5-33
HelpMenu ltem 5-33
The File Selection Dialog BOXottt e 5-34
Typinginthe ExactFileName.......... i ... 5-34
Scrolling Through Existing File Names. 5-35
Typing in a Filter (File Name Pattern) 5-36
Exercise: Displaying Trace EVents.t 5-36

Chapter 6 Viewing Trace Event Logs with ntrace

OVBIVIBW . ettt e e e e e 6-1
Mouse Button Operations i 6-3
The Grid. . . e 6-4
VIEWING Strategy . . . oot i 6-5
Thelnterval Scroll Bar 6-7
The Interval PUSh BULtONSo e 6-8
The Interval Control Areao 6-11
Reading Fields 6-11
Editing Single Fields 6-12
Editing Multiple Fields. 6-14
Field EAItingo 6-16
Editing Text Fields 6-16
Positioning Within TextFields i 6-18
Chapter 7 Creating Display Objects
OVBIVIBW . o ettt e e e e 7-1
The Display Page.o 7-2
Display Page Modes 7-3
EditMOde 7-4
VIeW MOOe . .. 7-4
Operations on Display Objects i e 7-4
Creating Display Objects 7-5
Selecting Display Objects.o 7-6
Moving Display Objects. 7-7
Resizing Display Objects 7-7
Display ObjJecCtso 7-8

NightTrace Manual

GridLabel 7-12
DataBoX e e 7-12
ColUMN . . 7-13
StateGraph 7-14
BventGraph 7-15
DataGraph. 7-16
RUIET . . 7-17
Editing Operations i e 7-17
Select All. . .. 7-18
Deselect All. 7-18
DElete . . 7-18
File Operations. 7-18
AV . .« e 7-18
SAVE AS et e 7-19
ClOSE . o 7-19

Chapter 8 Configuring Display Objects

OVBIVIBW . ottt e e 8-1
Common Configuration Parameters. 8-1
Display Object Name e 8-4
EVeNt LISt . .. 8-4
- EXPreSSION. . .o 8-4
Then-EXPression 8-5
CPU LISt . ot 8-6
PID LiSt. . .ot 8-7
TID LiSt. .o 8-8
NOde LiSt. . . oo 8-9
Foreground Coloro 8-9
Background Color. 8-9
FONt . o 8-9
TeXt JUSHIfY . .. 8-9
TeXt GraVvity . ..o 8-10
Configuration Form Push Buttons 8-10
Specific Configuration Parameters i 8-11
GridLabel 8-12
DataBoX . ..ot 8-13
StateGraph 8-14
BventGraph 8-16
DataGraph. 8-17
RUIET . 8-19

Chapter 9 Using Expressions

OVBIVIBW . . ottt et e 9-1
EXPressions MenU 9-1
Expression Dialog BOXeSot 9-2
Expression Configuration Forms i 9-2
EXPrESSIONS . . .o 9-4
OPEIAIOIS. . o ot 9-4
OPeIANAS . . .ot 9-5
CONSANES. . .o e 9-5
/= T o 9-6

Contents

FUNCHIONS . ..o 9-9
Function Parameters 9-12
Function Terminology. 9-13
Trace Event FUNCLIONS. e 9-19

()« e 9-19
AN - 9-20
arg_ dbl() 9-21
NUM_AIGS() - - v ot v e et e e e e e e e 9-21
PIA() - .ot 9-22
FAW_PIA() - oo 9-23
IWPIA() - e 9-23
thread _id() 9-24
task _id() .« oo 9-25
Lo) 9-25
CPU() - v e e e 9-26
offset() .. .o 9-27
MeE() . o 9-27
Node Td() . ..o e e 9-28
pid_table_ name() 9-29
tid_table_name() 9-29
NOdEe _NAME(). . . oottt e 9-30
ProCeSS_NAME() . .o vttt e 9-30
task_name() . oo oo 9-31
thread_name()ot 9-32
Multi-Event Functions 9-32
eveNt_gap() - - - o 9-32
event_matches() 9-33
State FUNCLIONSo 9-34
Start FUNCLIONSo o 9-34
start_ id() ..o 9-35
start_arg() -« - v i 9-35
start_arg dbl(). 9-36
start NUM_args() . -« oo et 9-37
start_ pid() ..o 9-37
start_ raw_pid() - 9-38
start_wpid() . ..o 9-39
start_thread_id() 9-39
start task id(). 9-40
start tid().o 9-41
Start CPU() -« o e et e e 9-41
start_offset() 9-42
start_ time() oo 9-42
start node_id() . oo o vt 9-43
start_pid_table name().......... ... 9-44
start_tid_table name() 9-44
start_ node_name(). 9-45
End FUNCLIONSo 9-45
end_id(). .« v 9-46
eNnd_arg(). - -« o 9-47
end_arg dbl() 9-47
end_NUM_args() e v o vvee i e 9-48
end_pid(). - ..o 9-48
end_raw_pid().o 9-49
end_Iwpid(). 9-50

Xi

NightTrace Manual

xii

end_thread _id()...........o i 9-51
end_task id().........c 9-51
end_tid() .. wo i 9-52
eNA_CPU(). -« v et 9-52
end offset()o 9-53
end_time() 9-54
end_node id(). ...t 9-54
end_pid_table_ name()........ i 9-55
end_tid_table name(). i 9-55
end_node name() 9-56
Multi-State FUNCLIONS 9-56
State gap() . - v oo e 9-57
state dur() o 9-57
state_matches() 9-58
state_status() 9-58
OffSet FUNCLIONSo e 9-59
offset id(). 9-60
offset_arg(). 9-60
offset arg dbl() 9-61
offset num_args(). 9-61
offset pid(). oo 9-62
offset raw _pid()o 9-63
offset lwpid(). 9-63
offset thread_id()....... ... 9-64
offset task _id(). 9-64
offset tid()o 9-65
offset_ cpu().o 9-66
offset time().o 9-66
offset node id()........ ... 9-67
offset_pid_table name()......... 9-67
offset_tid_table name() i 9-68
offset node_name()........... 9-68
offset_process name() 9-69
offset task_ name()........ 9-69
offset_thread_name() i 9-70
Summary FUNCIONS. 9-70
MIN() . e e 9-71
MAX()- « e e et e e e 9-71
V() - o e 9-72
SUM() . e et e e e e 9-72
Min_offset() 9-73
max_offset() 9-73
summary matches() 9-74
Format and Table Functions, 9-75
gt StHNG() - - o v ot e 9-75
et M) . . oo e 9-77
get format() 9-79
format(). 9-80
Qualified EVENESo e 9-81
Qualified States.o e 9-83

Contents

Chapter 10 Using the Built-In Tools

OV IV W .« . ot 10-1
Searching for Points of Interest. 10-1
Search Form Radio BUttONS i e 10-2
Search Form Push Buttons i e e 10-3
Search Form Fields. e 10-4
Summarizing Statistical Information. 10-5
Summarize Form Radio Buttons i 10-6
Summarize Form Fields 10-6
Summarize Form Push Buttons i 10-8

MENU Bar . .. 10-9

File Operations 10-9

SaAVE TOXE . oot 10-10

Save TeXt AS .o oo e e 10-10

ClOSE. .ottt e 10-10

Summary Display Areat 10-10
EVENt SUMMaANIESo e 10-11
State SUMMANIES . . . o oo e e e 10-12
Exercise: Usingthe Search Tool 10-14
Exercise: Using the Summarize Tool. i 10-15

Chapter 11 Tracing the Kernel

OVBIVIBW . . ettt e e e e e 11-1
Recommended Reading. e 11-1
Using KernelTrace with NightTrace 11-1
Default Kernel Trace POINtS. e 11-2
Context Switch Trace EVent. e 11-3
Interrupt Trace EVents e 11-3
Exception Trace EVENtS o 11-4
Syscall Trace Events. e 11-5
Shared Interrupt Trace Event o 11-6
ProcessName Trace Event. i, 11-6
Kernel Trace Points Not Enabled By Default 11-6
Page Fault Event. 11-7
Protection Fault Event 11-7
Kernel Tracingwith ktrace 11-8
INVOKING KIrace. 11-9
Ktrace OptioNs.o 11-9
Viewing KernelTrace Trace Event Files with ktrace 11-13
ktrace Kernel Activity Summaries 11-14
Configuration Summary. 11-14
System Call Summary 11-14
Exception and Interrupt Summaries. 11-15
Exception and Interrupt Total Time Summaries 11-16
Device SUMMArYt et i 11-17
ktrace Trace Event Listings. i 11-18
ktrace -verbose Listing. 11-19
ktrace -raw Listing o 11-20
Converting KernelTrace Trace Event Files with ntfilter 11-21
Viewing Converted KernelTrace Trace Event Files withntrace 11-22
Kernel Display Pageso 11-22
RCIM Default Kernel Display Paget 11-23

xii

NightTrace Manual

CPRU INformation e 11-25
Running Process Information 11-26

Node Information 11-27
Context Switch Information i i 11-27
Interrupt Information. 11-28
Exception Information. 11-29

Syscall Information 11-31

ColorInformation 11-32

Kernel String Tables 11-32
Kernel Reference 11-34
I EITUPES . . oo 11-35
Non-Device-Related Interrupts i 11-35
Device-Related Interrupts 11-36
EXCEPLONS. ..o 11-36
SYSCallS . . . 11-37
Exercise: Kernel Tracingottt 11-38

Appendix A Performance Tuning

OVBIVIBW . . ottt e e e

Preventing Trace EVENtS LOSS ottt e
Ensuring Accurate TimiNgS oottt e
Optimizing File Systemand CPUUsage.,
Conserving Disk Spacet e
Conserving Memory and Acceleratingntrace

Appendix B GUI Customization

OVBIVIBW . . ottt e e

Default X-Resource Settings forntrace i i,
EXamples
Exercise: Customizing Display Colors

Appendix C Answers to Common Questions

Illustrations

Xiv

Figure 1-1. Example of InstrumentedC Code
Figure 1-2. Example of a User Display Page with Display Objects.............
Figure 3-1. Inter-Process Communication and Library Routines.
Figure 3-2.trace_start() andtrace_open_thread() Placement......
Figure 3-3. entry_exit.c Before Instrumentation
Figure 3-4. entry_exit.c After Instrumentation
Figure 5-1. Window COmponentsottt
Figure 5-2. Global Window for a Single Trace EventFile
Figure 5-3. Global Window File Menu i i,
Figure 5-4. New Display Page e
Figure 5-5. ADefault Display Page
Figure 5-6. The Open Config File Dialog Box
Figure 5-7. The Read Event-Map File DialogBox
Figure 5-8. Global Window HelpMenu
Figure 6-1. A Display PageinViewModeo i ..

Figure 6-2.
Figure 6-3.
Figure 6-4.
Figure 6-5.
Figure 6-6.
Figure 6-7.
Figure 7-1.
Figure 7-2.
Figure 7-3.
Figure 7-4.
Figure 7-5.
Figure 7-6.
Figure 7-7.
Figure 7-8.
Figure 7-9.

Figure 7-10.
Figure 7-11.
Figure 7-12.
Figure 7-13.
Figure 7-14.
Figure 7-15.

Figure 8-1.
Figure 8-2.
Figure 8-3.
Figure 8-4.
Figure 8-5.
Figure 8-6.
Figure 8-7.
Figure 8-8.
Figure 8-9.

Figure 9-1.
Figure 9-2.
Figure 9-3.
Figure 9-4.
Figure 9-5.
Figure 9-6.
Figure 9-7.
Figure 9-8.

Figure 10-1.
Figure 10-2.
Figure 10-3.
Figure 10-4.
Figure 10-5.
Figure 11-1.
Figure 11-2.
Figure 11-3.
Figure 11-4.
Figure 11-5.
Figure 11-6.
Figure 11-7.

Deciding What to Do Next in View Mode
The Interval Scroll Bar
The Interval Push Buttons
The Interval Control Area
Amount of Scrolling Due to Increment Value
Display Page with Display Objects
Elements of a Display Page
Edit and View Mode Buttons
Button Functions on a Mouse
Create Display Objects Menu
Display Object Use Flowchart
GridLabel Examples
DataBox Examples
Column Example
StateGraph Example
EventGraph Example
DataGraph Examples
Ruler Example

Configure Command Menu
Left-, Center-, and Right-Justified Text
Top vs. Bottom Gravity
Configuration Form Push Buttons
GridLabel Configuration Form
DataBox Configuration Form
StateGraph Configuration Form
EventGraph Configuration Form
DataGraph Configuration Form
Figure 8-10. Solid vs. No Fill
Figure 8-11. Maximum vs. Minimum Values
Figure 8-12. Ruler Configuration Form
Figure 8-13. Mark and Lost Event Markers
Expressions Menu
Macro Dialog Box
Configuration Form Push Buttons
Macro Configuration Form
Function Terminology lllustrated
States and Events
Qualified Event Configuration Form
Qualified State Configuration Form
Tools Menu
The Search Form
Summarize Form File Menu
The Event Summarize Form
The State Summarize Form
Global Window File Menu
Sample Kernel Display Page
Node Selection Dialog
Node Selection Warning Dialog
Per-CPU Information

Contents

XV

NightTrace Manual

Screens

Tables

Figure 11-8. NOAE BOX . . . oo vttt e e e e e e 11-27

Figure 11-9. Context Switch Lines i, 11-27

Figure 11-10. Last Interrupt Box and Interrupt Graph 11-28
Figure 11-11. Last Exception Box and Exception Graph..................... 11-29
Figure 11-12. TR_PAGEFLT_ADDR and TR_PROTFLT_ADDR Events.... 11-30

Figure11-13.TR_SWITCHINvs.TR_PAGEFLT_ADDRandTR_PROTFLT_ADDREvents
11-31

Figure 11-14. Last Syscall Box and Syscall Graph 11-31
Figure 11-15. Color KBYot e 11-32
Screen 4-1. Sample Output from the ntraceud -help Option. 4-6
Screen 4-2. Sample Output from ntraceud -stats Option 4-21
Screen 5-1. Sample Output from the ntrace -help Option. 5-4
Screen 5-2. Example of ntrace -listing Output (with instr page fault) 5-5
Screen 5-3. Example of ntrace -listing Output (with data page fault) 5-6
Screen 5-4. Example of ntrace -filestats Output. 5-6
Screen 11-1. Sample Output from the ktrace -help Option. 11-10
Screen 11-2. Configuration Summary i 11-14
Screen 11-3. System Call Summary 11-15
Screen 11-4. Exception and Interrupt Summaries 11-16
Screen 11-5. Exception and Interrupt Total Time Summaries 11-17
Screen 11-6. Device SUMMArYttt e 11-18
Screen 11-7. ktrace -verbose Listing. 11-19
Screen 11-8. ktrace -raw Listing. 11-20
Table 2-1. Significant Kernel Tunable Parameter 2-3
Table 2-2. Required Kernel Options it 2-3
Table 2-3. Required Privileges 2-4
Table 4-1. NightTrace Environmental Defaults 4-3
Table 4-2. Mode-Selection Guidelines i i 4-4
Table 4-3. NightTrace OperatingModes. i, 4-4
Table 4-4. ntraceud Disable Sequence #1........, 4-23
Table 4-5. ntraceud Disable Sequence #2........ 4-23
Table 4-6. ntraceud Enable Sequence #1 4-25
Table 4-7. ntraceud Enable Sequence #2 i 4-25
Table 5-1. ntrace Pointer Shapes and TheirUsage 5-23
Table 6-1. View-Mode Mouse Button Operations 6-3
Table 6-2. Manipulating the Interval ScrollBar. 6-8
Table 6-3. Valid Multiple Field Changes 6-15
Table 6-4. Making EditingChanges i, 6-16
Table 6-5. Positioning Withina TextField 6-18
Table 7-1. Edit-Mode Mouse Button Operations 7-5
Table 8-1. Common Configuration Parameters 8-2
Table 8-2. Examples of If-Expressions. 8-5
Table 8-3. Examples of Then-Expressions 8-5
Table 9-1. Time Units and Constant Suffixes 9-6
Table 9-2. A Comparison of Functionsand Macros......................... 9-6
Table 9-3. NightTrace FUNCLIONS. e 9-10
Table 11-1. Recommended Reading 11-1

Contents

Table 11-2. Example Logical CPUMapping, 11-26
Table 11-3. Non-Device-Related Interrupt Reference 11-35
Table 11-4. Device-Related Interrupt Reference 11-36
Table 11-5. Exception Reference i 11-37
Table B-1. Meanings of Common Subobjects and Attributes B-2
B-5

Table B-2. Suggested Colorsfor X Resources,

Glossary

Index

XVii

NightTrace Manual

Xviii

1

Introduction
OVBIVIBW . ottt e e e 1-1
What is NightTrace? e 1-1
Userand Kernel Tracing.ottt e 1-2
Timestamp Source Selection i 1-2
Trace-Point Placement 1-2
Languages Supportedot 1-3
Processes and CPUS it 1-3
Information Displayed 1-3
Searches and SUMMArIESt e 1-3
Loggingand ANnalysSis 1-3
The Trace Event Logging Procedure.o i, 1-4
The Trace Event Analysis Procedure 1-6
Recommended Reading

NightTrace Manual

1
Introduction

Overview

This chapter provides an overview of NightTrace and KernelTrace, steps involved in using
both tools, and recommended readings.

What is NightTrace?

NightTrace is an interactive debugging and performance analysis tool, a part of the Night-
Sta™ tool kit. NightTrace allows you to graphically display information about important
events in your application and the kernel, for example, event occurrences, timings, and
data values. NightTrace consists of the following parts:

NightTrace library Routines in user applications that log trace events to shared
memory

ntraceud Daemon process that copies user applications’ trace events
from shared memory to trace event file(s)

ntrace Tool that graphically displays user and kernel trace events in
trace event file(s)

The KernelTrace tool set allows you to collect and textually analyze kernel trace
information. It also allows you to convert kernel trace information into NightTrace format
for graphical analysis. KernelTrace consists of the following parts:

ktrace Tool that collects and textually analyzes kernel trace events

ntfilter Tool that converts KernelTrace trace event files frkimace
into NightTrace trace files thaitrace can display

NightTrace and KernelTrace are flexible. As a user, you control:
¢ Selection of user tracing of your application or kernel tracing
¢ Selection of timestamp source
* Trace-point placement within your application
* The source language of the trace application

* The number of processes and CPUs you gather data on

11

NightTrace Manual

* The amounts and types of information you display

* Trace event searches and summaries

User and Kernel Tracing

If interactions are important, you can simultaneously capture event information from your
application and from the kernel. Alternatively, you can capture just user events or
pre-defined kernel events.

Timestamp Source Selection

By default, the interval timer (NightHawk 6000 Series) or the Time Base Register (Power-
Hawk/PowerStack) is used to timestamp trace events. However, NightTrace and Kernel-
Trace can specify the Real-Time Clock and Interrupt Module (RCIM) as a timestamp
source.

The RCIM is an optional hardware module, attached to a single-board computer (SBC),
which contains a tick clock that can be synchronized between several SBCs by way of an
interconnection cable. This synchronized tick clock can be used as a common time base
for both kernel-level tracing and user-level tracing across multiple SBCs. NightTrace sup-
ports using the RCIM synchronized tick clock to timestamp trace events and also supports
displaying trace data generated on multiple SBCs having the common time base. The
RCIM also contains a POSIX clock. However, the POSIX clock is not supported as a
timestamp source by NightTrace.

Selection of the RCIM synchronized tick clock as the trace timing source is made via the
-clock rcim_tick option to bothntraceud andktrace

For more information about the RCIM, please seectlek _synchronize(1M) ,
rcim(7) , rcimconfig(1M) , andsync_clock(7) man pages.

Trace-Point Placement

A trace pointis a place of interest in the source code. At each user trace point, you make
your application log some user-specified information along with a timestamp and some
additional system information. This logged information is collectively calledee event

In user traces, each trace event has a user-defiaed event IDnumber, and two different
trace event IDs delimit the boundaries of a user-defistatie

Some typical user trace-point locations include:

* Suspected bug locations
* Process, subprogram, or loop entry and exit points
* Timing points, especially for clocking 1/O processing

¢ Synchronization points/multi-process interaction

1-2

Introduction

¢ Endpoints of atomic operations

¢ Endpoints of shared memory access code

Careful trace point placement allows you to easily identify patterns and anomalies in your
application’s behavior.

Kernel trace points and trace events are pre-defined and embedded in the kernel source.

Languages Supported

The NightTrace library is callable from C, Fortran and Ada. This means that your
application can be written in any combination of these languages and still log trace events.

Processes and CPUs

ntraceud (the ntraceuser daemon) is responsible for actually recording the trace events
logged by an application to disk. It can interact with single-process and multi-process
applications; the processes may even run on different CPUs. When you log a trace event,
NightTrace identifies both the originating process and optionally the CPU.

Information Displayed

Thentrace display utility lets you examine some or all trace events. Data appear as
numerical statistics and as graphical images. You can create and configure the graphical
components calledisplay objector use the defaults. By creating your own display
objects, you can make the graphical displays more meaningful to you. You can customize
display objects to reflect your preferences in content, labeling, position, size, color, and
font.

Searches and Summaries

With thentrace display utility, you can perform searches and summaries. Searches let
you filter out unwanted data and zero-in on trouble spots and specific data. Summaries let
you define characteristics of the trace event data to be summarized in several different
ways.

Logging and Analysis

NightTrace and KernelTrace support two activities: trace event logging and trace event
analysis.

1-3

NightTrace Manual

The Trace Event Logging Procedure

The following text describes user and kernel trace event logging. If you are interested only
in kernel tracing, skip the steps that are specific to user tracing. If you are interested only
in user tracing, skip the steps that are specific to kernel tracing. For trace event logging,
follow these steps in the order shown:

1. Establish a suitable environment so you can rumtreceud daemon or
perform kernel tracing. Make sure you meet all the system requirements
discussed in thélightTrace Release Notéar the version you are running.

2. (For user traces only) Select trace points in your source code. A trace
point marks a point in your application that is important to debugging or
performance analysis.

3. (For user traces only) Insert a call to a NightTrace trace event logging
routine at each trace point in your source code, so you can later see the
trace event information graphically imrace . You can manually insert
these calls into your source code or insert them into the final executable
with the NightView debugger. See tiNightView User’s Guiddor more
information.

4. (For user traces only) Insert calls at appropriate places in your application
to initialize the NightTrace trace event logging library and terminate
logging. This is necessary for resource allocation and deallocation, file
creation, and flushing trace events to disk. Steps 3 and 4 are called
instrumenting your coddigure 1-1 shows instrumented C code.

#include <ntrace.h>
#define START 10
#define END 20

main()

{
trace_start("log");
trace_open_thread("main_thread");
trace_event(START);

process();

trace_event(END);
trace_close_thread();
trace_end();

exit(0);

Figure 1-1. Example of Instrumented C Code

5. (For user traces only) Compile and link your application with the Night-
Trace trace event logging library. For example:

1-4

Introduction

$ cc main.c process.c -Intrace -lud

(For RCIM synchronized tick clock only) Synchronize the tick clocks on
all connected RCIMs before kernel and/or user tracing has begun.

Use theclock_synchronize(1M) command.

(For kernel traces only) Invoke therace tool in the background. This
permits you to log kernel trace events simultaneously with user trace
events. For example:

$ ktrace -0 raw_klog &
[1] 452

locking into memory
resetting priority

open /devitrace
initialize

gather trace point data

Note that if you are running this command from a script, you may need to sleep for
about 5 seconds so the “gather trace point data” message has time to appear.

NOTE

In order to use the RCIM synchronized tick clock, you will need
to specify the-clock rcim_tick command line option when
invoking ktrace . For more information, please see the
ktrace(1) man page.

(For user traces only) Invoke timraceud daemon, so it can log trace
events for your application. For example:

$ ntraceud log

(Note that the trace event file on the call to tivace_start library routine (step
4) matches the trace event file on thigaceud invocation (step 7).)

NOTE

In order to use the RCIM synchronized tick clock, you will need
to specify the-clock rcim_tick command line option when
invoking ntraceud . For more information, please see the
ntraceud(l) man page.

(For user traces only) Run your application. As NightTrace trace event
logging routines execute, they write trace event information into a shared
memory buffer. Periodically, thatraceud daemon copies this
information to a trace event file on disk. For example:

$ a.out

1-5

NightTrace Manual

10. (Foruser traces only) When the application completes, staptthesud
daemon. For example:

$ ntraceud -quit log

11. (For kernel traces only) Kill th&trace tool, so it stops logging kernel
trace events. For example:

$ kill %1
terminating

12. (For kernel traces only) Invoke tiéfilter tool to convert the Kernel-
Trace trace event filerdw_klog) that thektrace tool created into one
compatible with NightTracek{og). For example:

$ nffilter -v < raw_klog > klog

13. (Forusertraces only) Create an event-map filexfmce (optional). An
event-map file provides a mechanism for associating meaningful symbolic
tags with the different trace event IDs logged by the application. When
ntrace reads an event-map file, it can display the symbolic tags for trace
events; otherwise, it must display the more cryptic numeric trace event IDs.
For example (Assume the event-map file nammép.):

event: 10 “START” 1 %d
event: 20 “END” 1 %d

The Trace Event Analysis Procedure

When trace event logging completes, you can begin trace event analysis. For graphical
trace event analysis, follow these steps in the order shown:

1. Invoke thentrace display utility. Command-line options limit which
trace events are loaded. Command-line arguments usually include user
trace event file(s) and possibly a kernel trace event¥igetors file, and
user-created files that customize and annotate your displays. For example:

$ ntrace log map klog vectors

2. Create or modifydisplay pagesDisplay pages contain built-in graphical
components calledisplay objectsThere are pre-defined display pages for
user and kernel traces. You select and configure display objects so they
meet your needs. This usually means graphically displaying chronological
trace event or state information that your application and/or the kernel
logged. When you finish customizing your display pages, save them for
future use. Figure 1-2 shows an example of a user display page.

1-6

Introduction

Displuy Page

[Dl-lll|||||||L|q|r||||||||2I.:|.I||Il|-|‘slllllq:.|||||||‘|-ll||||I|

Figure 1-2. Example of a User Display Page with Display Objects

3. lteratively locate and analyze significant data.

* Search for trace events of interest. You do this by controlling the
window that displays a portion of the trace event file. This window is
called theinterval. You can control the interval by zooming in or out,
scrolling, searching for specific trace events, or jumping to portions
of the trace event file.

¢ Display summary information. This information may be about your
entire trace session or the characteristics of particular trace events
and states in this trace session.

For textual kernel trace event analysis, follow the step shown:

$ ktrace -input rawfile > summary_file

Recommended Reading

Referenced publications appear in the front of this manual. Related text books that are
useful resources for general background information follow.

1-7

NightTrace Manual

1-8

X Window System User's Guide

This text book by Valerie Quercia and Tim O’Reilly is published by O'Reilly &
Associates, Inc. It is available under publication number 0890300. This text book
introduces X terminology and concepts. It also discusses several popular window
managers, theterm terminal emulator, X resources, and X desk accessories.

OSF/Motif Style Guide

This text book is published by Prentice-Hall, Inc. It and its companion books
OSF/Motif User’s GuideandOSF/Motif Programmer’s Guidare packaged together
under publication number 0890380. This text book introduces Motif terminology
and concepts. It also provides information about Motif features.

Establishing the Environment

OVBIVIBW . ottt e e e 2-1
ReqUIrEMENtS. . . . 2-1
Installing Software. 2-2
Configuringthe Kernel 2-3
Administering Privileges 2-4
Putting Users into GroUPSo .ottt et e e e e e e e 2-5
Granting Page Lock Privilege 2-6
Using PagelLocking 2-6
Not Using Page Locking e 2-7
Granting Access to the Interrupt Priority Level Register 2-7
Usingthe IPL Register. e 2-8
Not Using the IPL Register e 2-8
Granting Access tothe Trace Device. i 2-9
Granting Access tothe Interval Timer. i 2-9

Granting Access to the RCIM Synchronized Tick Clock 2-10

NightTrace Manual

Establishing the Environment

Overview

This chapter describes the system and user environment you must have before you can run
NightTrace and KernelTrace.

Requirements

NightTrace and KernelTrace require a particular system and user environment in which to
run. It is your system administrator’s responsibility to establish this environment. Some
tasks that must be performed include:

* Install the software

¢ Configure the kernel

* Administer privileges

¢ Put NightTrace users into groups based on their needs (optional):
- Users that need page lock privilege (PLOCK

- Users that need access to the system’s interrupt priority level (IPL)
register

(Access to the IPL register and page lock access reduce trace event logging
overhead for time-critical applications.)

* Grant read access to the kernel trace device to all KernelTrace users
¢ Grant read access to timestamp source

- Interval Timer

Grant read access to the system’s interval timer to all NightTrace and
KernelTrace users

- RCIM Synchronized Tick Clock

Grant read access to the RCIM synchronized tick clock to all Night-
Trace and KernelTrace users

2-1

NightTrace Manual

NOTE

Granting read access to the timestamp source is not necessary
when using the Time Base Register on Power Hawk systems.

Installing Software

2-2

All NightStar tools, including NightTrace’strace program, musbe run with the Elan
License Manager. Thelanlm package contains files for the Elan License Manager. Fol-
low the steps in the “Obtaining Licenses” section of flan License Manager Release
Notes thefeature aliasis NightTrace . If you are not already running the Elan License
Manager, if you do not have a copy of théan License Manager Release Notesif you
need a license key, contact Concurrent Software Distribution at 1-800-666-5405.

NOTE

If your system is already running the Elan License Manager, you
may not need to reinstall it.

Thentrace package contains files for NightTrace, and ttaee package contains files
for KernelTrace. The following example installs the NightTrateice package from a
tape device nametépel :

pkgadd -d tapel ntrace

For more information, sepkgadd(1M) , PowerMAX OS Version 2.1 Release Notaxd
“Installing Add-On Software” inrSystem Administration Manual Volume 1

NOTE

To determine where NightTrace will be installed on your system,
look at the setting of thébasedir parameter in the
/var/sadm/install/admin/default file. (For possible
values, seadmin(4) .)

Establishing the Environment
Configuring the Kernel

Table 2-1 describes the kernel tunable parameter that affects KernelTrace.

Table 2-1. Significant Kernel Tunable Parameter

Kernel Tunable Parameter Description

TR_BUFFER_COUNT Number of kernel trace buffers
(For more information, see “Ker-
nel Tracing with ktrace” on page
11-8.)

Table 2-2 describes the kernel options that NightTrace and KernelTrace require.

Table 2-2. Required Kernel Options

Kernel Option Description

fp Fixed-priority class scheduler

ipc Inter-process communications. (NightTrace
applications log trace events to a shared memory
buffer. For more information about shared mem-
ory, see “Interprocess Communication” in tRew-
erMAX OS Programming Guide

procfs Processor file system

trace Kernel trace driver.

Refer to “Booting and System States” 8ystem Administration Volume “Configuring
and Building the Kernel” and “Tunable Parameters'System Administration Volume 2
idbuild(1M) andidtune(1M) for instructions on modifying kernel configurations.

2-3

NightTrace Manual
Administering Privileges

NightTrace and KernelTrace use sensitive real-time system services that require special
privileges that are not generally available to all users and processes. Table 2-3 shows the
privileges that processes must have to run NightTrace and KernelTrace.

Table 2-3. Required Privileges

P_OWNER P_FPRI P_USERINT
P_DEV P_TSHAR
P_SYSOPS P_PLOCK

Privileges are associated with users, executable files on disk, and executing processes.
However, ultimately, the set of privileges associated with an executing process is most
important.

NOTE

If a system service call requires a specific privilege, any process
calling that system service must also have that privilege.

The granting of privileges to users, executable files and processes is a complex issue and
depends on the specific security configuration of each system. For a complete description
of privileges and security refer to the “Trusted Facility Management” ChaptSygtem
Administration Volume andintro(2)

A convenient way to associate privileges with users is through the usdesf A role is a

named description of a set of privileges that have been registered for certain executable
files, such as the shell. The system administrator creates roles and assigns users to them.
During the login process, use tifadmin(1M) command to request that your shell be
granted the privileges associated with your role. Once privileges have been granted to
your shell, subsequently spawned processes automatically inherit your privileges.

TIP:

The system administrator should issue the following commands to create a role and regis-
ter all the privileges that NightTrace programs require to three commonly used stells (
ksh, andcsh).

$ /usr/bin/fadminrole -n TRACE_USERS

$ /usr/bin/adminrole -a sh:/sbin/sh:owner:dev: \
sysops:fpri:tshar:plock:userint TRACE_USERS

$ /usr/bin/adminrole -a ksh:/usr/bin/ksh:owner:dev:\
sysops:fpri:tshar:plock:userint TRACE_USERS

$ /usr/bin/adminrole -a csh:/usr/bin/csh:owner:dev: \
sysops:fpri:tshar:plock:userint TRACE_USERS

2-4

Establishing the Environment

TIP:

The system administrator should issue the following command to assign an example user
(Kernel_Jockto the TRACE_USERS role.

$ /usr/bin/adminuser -n -0 TRACE_USERS Kernel_Jock

Kernel_Jockmust explicitly request privileges for the current shell by initiating a new
shell with thetfadmin(1) command.

TIP:

For convenienceKernel_Jockshould put the following line in hisprofile (or
Jogin) file. (This file is executed during initialization of the login shell.)

exec /sbin/ttadmin TRACE_USERS: $SHELL

This causes the privileges associated with the TRACE_USERS role to be automatically
granted to a newly spawned shelHELLis an environment variable that is automatically
set by the shell; it representéernel_Jocks actual default shell path name; e.g.,
/usr/bin/ksh). The original shell that executed thgrofile (or.login) fileis
replaced by the new shell spawned by tfeelmin command.

Kernel_Jockcan now run NightTrace and KernelTrace.

Putting Users into Groups

It is possible for one user to belong to several groups in te/group file. Proper

group assignment permits limited use of restricted-access resources to users who really
need them.

TIP:

Your system administrator should consider putting NightTrace and KernelTrace users into
three groups in theéetc/group file. There could be one group for each of the
following:

¢ All NightTrace and KernelTrace users. Everyone in this group must be able
to read the system’s interval timgdév/interval_timer).

* Those users whose applications musthetescheduled or interrupted., for
example, those who are using user-level interrupts. Everyone in this group
must be able to read and write to the interrupt priority level register
(/dev/spl).

* Those users who perform kernel traces. Everyone in this group must be
able to read the kernel trace devidedey/trace).

For more information about adding groups and users to the systemssesdd(1M)
usermod(1M) , andgroupadd(1M)

2-5

NightTrace Manual
Granting Page Lock Privilege

NightTrace does naequire you to have page locR (PLOCK privilege. However, if you

have it, you can prevent page faults within the NightTrace trace event logging routines,
and optionally within your application. Page faults can distort your trace event timings and
can degrade the efficiency of applications and facilities.

Usually, users are denid®l PLOCKprivilege. By default, thetraceud daemon and the
library initialization routine use page locking.

From anP_PLOCKprivilege standpoint, NightTrace users fall into two categories:

* Those who hav®_PLOCKprivilege can prevent paging
* Those who lackP_PLOCKprivilege must accept paging

The following sections describe how NightTrace performs with and without the privilege
to lock pages in memory.

Using Page Locking

This section discusses the followifg PLOCKprivilege issues:

* What applications require it
* What are the advantages of it
* Why does NightTrace use it

* What action must your system administrator take

Applications that typically lock pages in memory include the following: user applications
that log trace events and, by default, titeaceud daemon. These applications must be
able to lock their pages in memory. Note: the NightTrace library routines lock only their
critical code and data pages in memory; you need not lock the entire application.

By locking pages in memorytraceud and the NightTrace library routines in user
applications prevent page faults during traces. Otherwise, this overhead can distort trace
event timings.

The NightTrace library uses page locking for two reasons. First, its routines need to
synchronize themselves when they are used at program level and in user-level interrupt
routines. The system cannot afford the overhead of a page fault in a NightTrace library
routine while a user-level interrupt is waiting for the routine to complete. Second, the
NightTrace library routines must be very efficient to reduce any performance and timing
impact on the user application.

To keep your applications from being paged out of memory, your system administrator
must grant youP_PLOCKQprivilege. You can query your privileges with tipgv special
command of/sbin/sh . The system administrator can set privileges with the
adminuser(1M) command.

2-6

Establishing the Environment

Not Using Page Locking

This section discusses the lack®fPLOCKprivilege as it applies to these topics:

* What can you do if you lack it

* What are the disadvantages of lacking it

If you lack P_PLOCKQprivilege, you must invoke thatraceud daemon with the
-lockdisable option. This option makestraceud and the NightTrace library
routines in your application run without locking their pages in memory.

With this option you are able to log trace events. However, the overhead of the trace event
logging routines may increase due to paging, exceptions and interrupts.

NOTE

ntraceud always protects the data integrity of its shared
memory buffer with spin locks. If a page fault occurs while this
spin lock is locked, all other processes contending for the spin
lock wait until the page-faulted application is paged in and
rescheduled and logging of the trace event is completed. Locking
the NightTrace library in memory assures that the application will
not page fault while logging a trace event to the shared memory
buffer.

For more information orP_PLOCK seeintro(2) . For more information on
ntraceud options, see “ntraceud Options” on page 4-4 and “Option to Prevent Page
Locking (-lockdisable)” on page 4-9.

Granting Access to the Interrupt Priority Level Register

NightTrace does natequire you to read and write the system’s interrupt priority level
register (IPL). However, if you can modify this register, you can prevent rescheduling and
interrupts during trace event logging; they can distort trace event timings and can degrade
the efficiency of applications and facilities.

Usually, users are denied IPL modification access because it means relaxing system
protection that normally limits IPL modification to the operating system. By default, the
ntraceud daemon and library initialization routine modify the IPL register.

From an IPL-modification standpoint, NightTrace users fall into two categories:

* Those who have IPL modification access and can prevent rescheduling and
interrupts

* Those who lack IPL modification access and must accept rescheduling and
interrupts

2-7

NightTrace Manual

The following sections describe how NightTrace performs with and without access to
modify the IPL register.

Using the IPL Register

This section discusses the following IPL modification access issues:

* What applications require it
* What are the advantages of it
* How does NightTrace use it

* What action must your system administrator take

Applications that typically modify the system’s IPL register to prevent rescheduling and
interrupts include the following: user applications that log trace events and, by default, the
ntraceud daemon. These programs must be able to read and write to the system’s IPL
register.

By modifying this normally restricted system registetraceud prevents rescheduling
and interrupts during traces. Otherwise, this overhead could distort trace event timings.

Applications that can modify the IPL register, temporarily raise their own priority in the
system’s IPL register. This way they prevent rescheduling and interrupts during trace
event logging. NightTrace then locks a spin lock on the shared memory buffer. This pro-
tects shared memory. Once logging of the trace event is compketeeud unlocks the

spin lock and lowers the IPL register value back to zero.

By default, the NightTrace library routines opatev/spl on Series 6000 systems or
/dev/spll and/dev/spl2 on Power Hawk systems to gain access to the system’s
IPL register. User applications do not explicitly access the system'’s IPL register through
NightTrace library routines.

If an application lacks the read and write access to these device filestrdmeud
daemon and library initialization routine exit with errors. If errors are detected, your
system administrator must do at least one of the following:

¢ Add you to the user group who haddev/spl read and write permissions
(or/dev/spll and/dev/spl2 for Power Hawk systems)

¢ Grant read and write access to IPL register users

Not Using the IPL Register

If you lack read or write access to the system’s IPL register, you must invoke the

ntraceud daemon with theipldisable option. This option preventstraceud
and the NightTrace library routines in your application from modifying the system’s IPL
register.

With this option, you are able to trace events. However, their timings may be distorted due
to process rescheduling and interrupts.

2-8

Establishing the Environment

The-ipldisable option should be used with great care. Using it may lead to deadlock

if more than one LWP, each biased to run on the same CPU, is logging trace events to a
trace file created by antraceud invoked with this option. Consider the following sce-
nario: an LWP, preparing to log a trace event, locks the spin lock to protect the shared
memory buffer. It is preempted (through a rescheduling interrupt) by a second LWP
which also attempts to log a trace event. However, due to priority inversion, the first LWP
cannot release the spin lock, causing the second LWP to loop infinitely waiting for the
spin lock to be released.

NOTE

ntraceud always protects the data integrity of its shared
memory buffer with spin locks. If rescheduling or an interrupt
occurs while this spin lock is locked, all other processes
contending for the spin lock wait until the preempted process is
rescheduled and logging of the trace event is completed. Using the
IPL register and locking the NightTrace library pages in memory
prevents this.

For more information on the system’s IPL register, see “User-Level Interrupts” in the
PowerMAX OS Real-Time GuidEor more information about spin locks, see “Interpro-
cess Synchronization” in theowerMAX OS Real-Time Guideor more information on
ntraceud options, see “ntraceud Options” on page 4-4 and “Option to Disable the IPL
Register (-ipldisable)” on page 4-8.

Granting Access to the Trace Device

Thektrace kernel-trace tool requires that its users have read accéds\firace
the kernel trace device. This access is not required for user tracing.

Granting Access to the Interval Timer

NOTE

This section does not apply to Power Hawk systems. On those
systems, the time base register of the microprocessor is used for
trace event timestamps.

The NightTrace library routines opéddev/interval_timer to gain access to the
system’s interval timer These routines in your application use this timer when they write
trace events to a shared memory buffer.

Although user applications must be able to read the interval timer, they do not explicitly
access it. (The NightTrace event-logging library accesses it.) Usually, system users are

2-9

NightTrace Manual

unable to access the interval timer because it means relaxing system protection that
normally limits interval timer access to the operating system.

If applications lack read access fev/interval_timer , the NightTrace daemon
and library initialization routine exit with errors. If errors are detected, your system
administrator must do at least one of the following:

¢ Add you to the user group that h&dev/interval_timer read per-
mission

* Grant read access to interval timer users

CAUTION

Do not callclock_settime() from your application. This sys-
tem call can corrupt both the system interval timer and Time Base
Register which NightTrace uses for trace event timings.

Granting Access to the RCIM Synchronized Tick Clock

2-10

NOTE

This section applies only to those systems on which an RCIM is
installed, configured and functioning.

When trace events are to be timestamped by the RCIM tick clock, the NightTrace library
routines operidev/sync_clock to gain access to the clock.

Although user applications must be able to read the RCIM synchronized tick clock, they
do not explicitly access it. (The NightTrace event-logging library accesses it.)

If applications lack read access fev/sync_clock , the NightTrace daemon and
library initialization routine exit with errors. If errors are detected, your system adminis-
trator must do at least one of the following:

¢ Add you to the user group that hagev/sync_clock read permission

* Grant read access to the RCIM tick clock

Establishing the Environment

CAUTION

On Power Hawk and Power Stack systems, do not start, stop, or
synchronize the RCIM synchronized tick clock in the middle of
gathering trace events. Any one of these acts will render trace
data useless because it interferes with obtaining a valid times-
tamp. Also, there are certain situations in which the RCIM clock
values may be synchronized without direct user intervention.
Again, any one of these occurrences might invalidate trace data.
For more information, please see tReal-Time Clock and Inter-
rupt Module User's Guide

2-11

NightTrace Manual

2-12

Adding Library Calls to Your Application

Inter-Process Communication and Library Routines
Understanding NightTrace Library Calls
trace_Start().o
trace_open_thread()
trace_event()andItsVariants.
trace_enable(), trace_disable(), and Their Variants
trace_flush() and trace_trigger().
trace_close_thread() o
trace_end()o
Disabling Tracingt
Compilingand LinKingo
CEXaMPIE . . e
Fortran Example
Ada Example
Exercise: Instrumenting Code.

NightTrace Manual

Adding Library Calls to Your Application

Overview

This chapter describes language-specific considerations for using NightTrace with user
applications.

CAUTION

Do not callclock_settime() from your application. This sys-
tem call can corrupt both the system interval timer and Time Base
Register which NightTrace uses for trace event timings.

CAUTION

The NightTrace Version 4.atraceud is incompatible with user
programs statically linked with NightTrace libraries prior to Ver-
sion 4.1. This is due to a change in the layout of the shared mem-
ory region used to provide communication betwedraceud

and user programs.

Any user programs statically linked with these libraries will need
to be relinked with the Version 4.1 libraries. Failing to relink the
application with the new libraries can result in unpredictable
behavior or in the application looping infinitely when it calls

trace_open_thread()

Beginning with the NightTrace 4.1 static library, applications can
detect when they are not compatible wittraceud and will

exit with an error code instead of exhibiting undesired behavior.
Programs linked with an earlier version of the static library cannot
detect this incompatibility.

Language-Specific Source Considerations

NightTrace applications must be written in C, Fortran, or Ada. For your applications to
trace events, you must edit your source code and insert NightTrace library routine calls
(unless you are using the NightView debugger). This is calstrumenting your code
Before you begin this task, you should read the appropriate language section below.

3-1

NightTrace Manual

C

Fortran

Ada

3-2

NightTrace applications written in C include the NightTrace header file
/usrfinclude/ntrace.h with the following line:

#include <ntrace.h>
Thentrace.h file contains the following:

* Function prototypes for all NightTrace library routines
* Return values for all NightTrace library routines

* C macros (described in “Disabling Tracing” on page 3-24)

The library routine return values identify the type of error, if any, the NightTrace routine
encountered. If you think you may want to disable the NightTrace library routines in the
future without having to remove them from your source code, then you must include this
file in your application.

C programs that are multi-thread can also be traced with the NightTrace library routines.
For multi-thread programs, a C thread identifier is stored in each trace event, uniquely
identifying which C thread was running at the time the trace event was logged.

For more information on C, se&: A Reference Manuand the Concurrer® Reference
Manual.

The Fortran version of the NightTrace library routines follafv7 function-naming and
argument-passing conventions. For more informatiomfy , see thehf77 Fortran
Reference Manual.

All NightTrace library routines returfiNTEGERS but because they begin with a “t”,
Fortran implicitly types them aREAL You must explicitly type them atNTEGERSso that
they work correctly. For example, to explicitly type thrace_start routine, use the
following declaration:

integer trace_start

Ada applications can access the NightTrace library routines via the Ada package
night_trace_bindings which is included with the MAXAda product. The bindings
can be found in thebindings/general environment in the source file
night_trace.a

Thenight_trace_bindings package contains the following:

* An enumeration type consisting of the return values for all NightTrace
library routines

Adding Library Calls to Your Application

* The bindings that permit Ada applications to call the C routines in the
NightTrace library and to link in the NightTrace library

Many of the NightTrace functions have been overloaded as procedures. These procedures
act as the corresponding functions, except they discard any error return values.

Ada programs that use tasking can also be traced with the NightTrace library routines. For
multitasking programs, an Ada task identifier is stored in each trace event, uniquely
identifying which Ada task was running at the time the trace event was logged.

For more information on Ada, see the section titled “NightTrace Binding” irMiAeXAda
Reference Manual.

Inter-Process Communication and Library Routines

Your application logs trace events to the shared memory buffer. Latenttheeud

daemon copies trace events from the shared memory buffer to the trace event file. The
relationship between your application and titeaceud daemon and the sequence of
library calls needed to maintain this relationship appears in Figure 3-1.

Understanding NightTrace Library Calls

There is a C, Fortran, and Ada version of each NightTrace library routine. These routines
perform the following functions:

* Initialize a trace

* Open the current thread for trace event logging
* Log trace events to shared memory

* Enable and disable specified trace events

* Copy trace events from shared memory to disk
¢ Close the current thread for trace event logging

* Terminate a trace

See theNightTrace Pocket Referencard for a syntax summary of these routines. The
next sections describe these routines in detail.

3-3

NightTrace Manual

Parent processes follow this sequence: Child processes follow this sequence:
® trace_start() ® trace_open_thread()
® trace_open_thread() ® |og trace events
® |og trace events e trace_close_thread()

e trace_close_thread()
e trace_end()

Thread 1
Process A 4 Thread 2

Process B \
Child of B Shared
\ Memory |«e—p| ntraceud

ChidofB | = Buffer

Task 1 /

Process C <:
Task 2 Trace Event

File

An application written in C can log trace events using:

e trace_event()

e trace_event_arg()

e trace_event_fit()

e trace_event_two_flt()
e trace_event_dbl()

e trace_event_two_dbl()
e trace_event_four_arg()

and it can control which trace events are logged and when they are written to disk using:

® trace_enable()

e trace_enable_range()
e trace_enable_all()

e trace_disable()

e trace_disable_range()
e trace_disable_all()

e trace_flush()

e trace_trigger()

Figure 3-1. Inter-Process Communication and Library Routines

3-4

Adding Library Calls to Your Application

trace_start()

Thetrace_start() routine initializes the trace mechanism and acquires resources for
your process, C thread or Ada task.

SYNTAX
C: int trace_start(char * trace_file;
Fortran integer function trace_start(trace_filg
character *(*) trace_file
Ada function trace_start(trace_file : string)
return ntrace_error;
PARAMETERS

trace_file ntraceud logs trace events to an output fileace_file When you
invoke thentraceud daemon, you must specify this file's name.
Forntraceud to log your process’ trace events to this file, the trace
event file parameter in yodrace_start() call must correspond
to the trace event file argument on thegaceud invocation line.
This means that the names do heitve to match exactly, but they do
have to refer to the same inode; for example, one path name may
begin at your current working directory and the other may begin at
the root directory.

DESCRIPTION
Thetrace_start() routine performs the following operations:

* \erifies that an instance aftraceud is running with the matching
trace event file name

* \erifies that the version of the NightTrace library linked with the
application is compatible with the version being usechbaceud

¢ \erifies that the RCIM synchronized tick clock is counting if it was
selected as the timestamp source

¢ Attaches thentraceud -created shared memory buffer

¢ Attaches the shared memory regions bound to the timestamp source
and interrupt priority level (IPL) register

* Locks critical NightTrace library routine pages in memory

* Initializes trace event tracing in this process

For more information on shared memory and the system’s interrupt priority level
(IPL) register, see thPowerMAX OS Real-Time GuidEor information about
page-locking privilegeR_PLOCK, seeintro(2)

3-5

NightTrace Manual

3-6

A process that results from thexec(2) system service does nitherit a trace
mechanism. Therefore, if that process is to log trace events, it must initialize the
trace withtrace_start() . Processes that result from a fork in a process that has
already initialized the trace need not caifice_start()

Generally, calltrace_start() only once per parent process. However, for
processes using C threads or Ada tagkace_start() can be called by
individual threads or tasks, allowing a specific thread or task to log trace events to a
unique trace event file. For detailed guidelinegi@te_start() placement, see
Figure 3-2.

For processes using C threads and Ada tasks, all threads and tasks will inherit the
trace context of the firdtace_start() call that is made by any thread or task of

the process. However, subsequeate_start() calls by a thread or task will
override the default trace context. Newly created threads and tasks always inherit
the trace context of the thread or task that created them.

RETURN VALUES

Thetrace_start() routine returns a zero valuBl\TNOERRQRN successful
completion. Otherwise, it returns a non-zero value to identify the error condition. If
trace_start() returns any error code other thAlTALREAD)the application
cannot do a trace. A list dface_start() error codes follows.

[NTALREADY] The application has already initialized the trace without an
interveningtrace_end() . Tracing can continue in spite of
this error. Solution: Remove redundamace_start()
calls.

[NTBADVERSION] The calling application is linked with the static NightTrace
library and the static library is not compatible with the Night-
Trace library being used by thdraceud daemon. Solution:
Relink the application with the static library version which
matches the library version being used by the daemon.

Note: This error code will be returned only if the application is
linked with the version 4.1 or later static library. Applications
linked with a static library version previous to 4.1 must be
relinked to take advantage of this compatibility check.

[NTMAPCLOCK] The selected event timestamp source could not be attached.
Solution: If read access is lacking, see your system administra-
tor.

This can also occur if the RCIM synchronized tick clock is
selected as the event timestamp source but the tick clock is not
counting. Solution: Start the synchronized tick clock by using
the clock_synchronize(1M) command, restartra-

ceud, and restart the application.

[NTNOTRACEFILE] The trace event file does not already exist. This often means
thatntraceud is not running. Solution: Be sure that an
ntraceud daemon is running with the same trace event file
name as thérace_start() parameter.

[NTNODAEMON]

[NTPERMISSION]

Adding Library Calls to Your Application

The trace event file exists, but no shared memory region exists.
This usually means that there is ntraceud daemon run-
ning with a trace event file name that matches the one on the
trace_start() call. Solution: If thentraceud daemon is

not running, invoke it. If the file names do not match, either
invoke ntraceud with the correct file name or edit your
source code.

This can also occur if the shared memory region exists, but
there is no evidence ofraceud daemon currently running
(e.g., it aborted abnormally). This condition is not always
detectable. Solution: Remove the shared memory region with
ipcrm(1) and restarhtraceud

The calling application lacks permission to attach the shared
memory buffer. Solution: Make sure that the same user who
started umtraceud is the current user logging trace events
in the application.

[NTMAPSPLREG] The system’s IPL register could not be attached. Solution: If
read or write access is lacking, see your system administrator
or invokentraceud with the-ipldisable option.

[NTPGLOCK] Permission to lock the text and data pages of the NightTrace
library routines was denied. Solution:Pf_ PLOCKQprivilege is
lacking, see your system administrator or invakeaceud
with the-lockdisable option.

SEE ALSO
Related routines includerace_open_thread() , trace_end()

See “ntraceud Options” on page 4-4 for more informatiomtraceud options.

3-7

NightTrace Manual

Several conditions in the application warrant trace_start() and
trace_open_thread() calls. These situations appear in the flowchart
below.

Note: All these cases assume that you want to do tracing in the process(es)
mentioned.

Call trace_start() and
trace_open_thread()

at the beginning because

exec 'ed processes do not
inherit trace mechanisms.

Is this process
the result of an
exec ?

Put unique
trace_open_thread()
call(s) at the beginning
of the child process(es)
because they inherit the
parent’s trace mechanism.

Does the parent

call
trace_start()

?

Put identical
trace_start()
and unique
trace_open_thread()
calls at the beginning
of each child.

Note: C threads and Ada tasks of the same process may choose to call
trace_open_thread() and trace_start() on their own, however by
default the first trace_start() and trace_open_thread() apply to all
C threads and Ada tasks in a given process.

Figure 3-2. trace_start() and trace_open_thread() Placement

3-8

Adding Library Calls to Your Application

trace_open_thread()

Thetrace_open_thread() routine prepares the current process C thread or Ada task
for trace event logging.

SYNTAX
C: int trace_open_thread(char * thread_nampg
Fortran: integer function trace_open_thread(thread_namg
character *(*) thread_name
Ada: function trace_open_thread(
thread_name: string
)
return ntrace_error;
PARAMETERS

thread_name
In NightTrace every thread of execution to be traced (whether a sepa-
rate process, or a C thread or Ada task within a process) must be
associated with a naméjread_namewhich may be null. Night-
Trace’s graphical displays and textual summary information show
which threads logged trace events. If thece_open_thread()
thread name is null, thetrace display utility uses the global thread
identifier (TID) as a label in these displays. For more information on
global thread identifiers see “TID List” on page 8-8.

Naming your threads can make the displays much more readable.
trace_open_thread() lets you associate a meaningful character
string name with the current threads’ more cryptic numeric TID. If
you provide a character string as the thread namenttaee dis-

play utility uses it as a label in its displays. Becang@ce may be
unable to display long strings in the limited screen space available,
keep thread names short. (Long thread names cause NightTrace to
log anNT_CONTINUBEoverhead trace event.)

The following words are reserved in NightTrace and should not be
used in upper case or lower case as thread naM@NE, ALL,
ALLUSER, ALLKERNEL, TRUE, FALSE, CALC. See
“Pre-Defined String Tables” on page 5-15 for more information
about thread names.

NOTE
Thread names mubegin with an alphabetic character and consist

solely of alphanumeric characters and the underscore. Spaces and
punctuation are notalid characters.

3-9

NightTrace Manual

DESCRIPTION

A NightTrace “thread” can be a process, C thread or Ada task.nf@ce
displays,trace_open_thread() associates a thread name with the process,
thread or task logging trace events. Each process, including child processes, that
logs trace events must have its otvace_open_thread() call. In addition, C
threads and Ada tasks may calice_open_thread() individually to associate
unique thread names with their trace events. In this way, the different trace contexts
of multiple processes, threads and tasks can be easily distinguished from each other.

For more information on threads, see “Programming with the Threads Library” in
the PowerMAX OS Programming Guide.

A process that results from thexec(2) system service does nitherit a trace
mechanism. Therefore, if that process is to log trace events, it must call both
trace_start() andtrace_open_thread() . For detailed guidelines on
trace_open_thread() placement, see Figure 3-2.

RETURN VALUES

Thetrace_open_thread() routine returns a zero valu&lTNOERRQPRN
successful completion. Otherwise, it returns a non-zero value to identify the error
condition. A list oftrace_open_thread() error codes follows.

[NTINIT] The NightTrace library routines were not initialized. Solution:
Put a trace_start() call before the
trace_open_thread() call.

[NTINVALID] An invalid thread name was specified. Solution: Choose a

thread name that meets the requirements mentioned earlier.

[NTRESOURCE] There are not enough resources to open this thread. Solution:
Ask your system administrator to increase the size of the pro-
cess table.

[NTPGLOCK] Permission to lock the text and data pages of the NightTrace
library routines was denied. Solution:Pf_ PLOCKQprivilege is
lacking, see your system administrator or invakeaceud
with the-lockdisable option.

Note: This can also happen when a forked process changes its
user ID to one that does not have page lock privilege, yet its
parent process did have page lock privilege.

SEE ALSO
Related routines includetrace_start() , trace_close_thread()

Seeintro(2) for more information on page lock privilegl (PLOCHK. See “ntra-
ceud Options” on page 4-4 for more informationmnaceud options.

3-10

Adding Library Calls to Your Application

trace_event() and Its Variants

The following routines log an enabled trace event and possibly some arguments to the
shared memory buffer.

SYNTAX
C: int trace_event (int ID);

int trace_event_arg (int ID, long arg);
int trace_event_fit (int ID, float arg);
int trace_event_two_flt (int ID, float argl, float arg2);
int trace_event_dbl (int ID, double arg);
int trace_event_two_dbl (int ID, double argl, double arg2);
int trace_event_four_arg (
int ID, long argl, long arg2
long arg3 long arg4
)

Fortran: integer function trace_event (ID)
integer ID

integer function trace_event_arg (ID, arg)
integer 1D, arg

integer function trace_event_fit (ID, arg)
integer 1D
real arg

integer function trace_event_two_flt (ID, argl, arg2)
integer 1D
real argl, arg2

integer function trace_event_dbl (ID, arg)

integer ID

double precision arg

integer function trace_event_two_dbl (ID, argl, arg?
integer ID

double precision argl, arg2

integer function trace_event_four_arg (ID, argl, arg2, arg3, arg}
integer 1D, argl, arg2, arg3, arg4

Ada: type event_type is range 0.4095;

3-11

NightTrace Manual

3-12

(procedures)

procedure trace_event (ID
procedure trace_event (ID
procedure trace_event (ID:

procedure trace_event (
ID : event_type;

argl : float; arg?2 : float
)
procedure trace_event (ID

procedure trace_event (
ID : event_type;
argl : long_float;

)

procedure trace_event (
ID : event_type;
argl : integer;
arg3 : integer;

);

function trace_event (ID
return ntrace_error;

function trace_event (ID
return ntrace_error;

function trace_event (D :
return ntrace_error;

function trace_event (
ID : event_type;
argl : float; arg?2 : float

)

return ntrace_error;

function trace_event (ID
return ntrace_error;

function trace_event (
ID : event_type;
argl : long_float;

)

return ntrace_error;

: event_type);

. event_type;

event_type;

: event_type;

arg2 : long_float

arg?2 : integer;
arg4 : integer

. event_type)

: event_type;

event_type;

: event_type;

arg2 : long_float

arg : integer);
arg : float);

arg : long_float);
arg : integer)
arg : float)

arg : long_float)

PARAMETERS

ID

argN

DESCRIPTION

Adding Library Calls to Your Application

function trace_event (

. event_type;
argl : integer; arg?2 : integer;
arg3 : integer; arg4 : integer

return ntrace_error;

Each trace event has a user-defined trace evenlDDThis ID is a
valid integer in the range reserved for user trace evelw4005 ,
inclusive). See “Pre-Defined String Tables” on page 5-15 for more
information about trace event IDs.

Sometimes it is useful to log the current value of a variable or
expressionarg, along with your trace event. The trace event logging
routines provide this capability. They differ by how many and what

types of numeric arguments they accept. Tlaee_event() rou-
tine takes nargs Thetrace_event arg() routine takes a type
long arg. The trace_event_flt() and
trace_event_two_flt routines take (floating point) type of
float args. The trace_event_dbl() and
trace_event_two_dbl() routines take (floating point) type
doubleargs Thetrace_event_four_arg() routine takes four

type longargs If you want thentrace display utility to display
these trace event arguments in anything but decimal integer format,
you can enter the trace event in an event-map file. See “Understand-
ing Event-Map Files” on page 5-10 for more information on
event-map files and formats. Alternatively, you could call the

mat() function. See “format()” on page 9-80 for detalils.

Every call totrace_event_four_arg() causes NightTrace to
log anNT_CONTINUBEbverhead trace event.

A trace pointis a place in your application’s source code where you call a trace
event logging routine. Usually this location marks a line that is important to debug-
ging or performance analysis. Ideally, trace events provide enough information to be
useful, but not so much information that it is overwhelming. Meeting these goals
requires careful trace-point planning.

TIP:

To save time re-editing, recompiling, and relinking your application, consider
beginning with a few too many trace points in the source code. You can then use
options to thentraceud daemon to selectively enable and disable the logging of
specific trace events to the trace event file. See “ntraceud Options” on page 4-4 for
more information omtraceud options. You can also save time by usimgace

options to restrict which trace events are loaded for analysis. See “ntrace Options”
on page 5-3 for details.

Some typical trace points include the following:

¢ Suspected bug locations

3-13

NightTrace Manual

3-14

* Process, subprogram, or loop entry and exit points
* Timing points, especially for clocking I/O processing
* Synchronization points / multi-process interaction

¢ Endpoints of atomic operations

¢ Endpoints of shared memory access code

Call one trace event logging routine at each of the trace points you have selected.
When you call this routine, it writes the trace event information (including timings
and any arguments) to a shared memory buffer. By default, if this write fills the
shared memory buffer or causes the buffer-full cutoff percentage to be reached,
ntraceud wakes up and copies the trace event to the trace event file on disk.

Usually each trace event logging routine logs a different trace event ID number. This
lets you easily identify which source line logged the trace event, how often that
source line executed, and what order source lines executed in. However, it is some-
times useful to log the same trace event ID in multiple places. This makes it possible
to group trace events from related, but not identical, activities. In this case, a change
of trace event ID usually separates or subdivides groups.

Probably the most common use of trace events is to idestdtes Two different

trace event IDs delimit the boundaries of a state. Most applications log recurring
states with different time gaps (from the end of one instance of a state to the start of
another) and different state durations (from the start of one instance of a state to its
end).

TIP:

Consider putting related trace event IDs within a range. Library routines and
ntraceud options let you manipulate trace events by using trace event ID ranges.

By default, all trace events are enabled for logging. The NightTrace library contains
routines that allow you to selectively or globally enable or disable trace events. The
ntraceud daemon has options that provide similar control. Attempting to log a
disabled trace event has no effect. See “trace_enable(), trace_disable(), and Their
Variants” on page 3-16 for more information.

TIP:

Consider using symbolic constants instead of numeric trace event IDs. This would
make your calls to NightTrace routines more readable.

Once your application logs all of its trace events, you can look at them and their
arguments graphically with StateGraphs, EventGraphs, and DataGraphs in the
ntrace display utility. See “StateGraph” on page 7-14, “EventGraph” on page
7-15, and “DataGraph” on page 7-16 for more information about these display
objects.

RETURN VALUES

Thetrace_event() , trace_event_arg() , trace_event_dbl() , and
trace_event_four_arg() routines return a zero valuél\TNOERRQPN
successful completion. Otherwise, they return a non-zero value to identify the error
condition. A list of error codes for these routines follows.

[NTINVALID]

[NTINIT]

[NTLOSTDATA]

SEE ALSO

Adding Library Calls to Your Application

An invalid trace event ID has been supplied. Solution: Use
trace event IDs only in the range 0-4095, inclusive.

The NightTrace library routines were not initialized. Solution:
Be sure drace_start() andtrace_open_thread()
call precede the trace event logging routine call.

The trace event was lost because the shared memory buffer
was full. Solution: Do one or more of the following. Increase
the trace event capacity of the buffer by invokintyaceud

with the-memsize option. Decrease the buffer-full cutoff
percentage by invokingtraceud with the-cutoff option.
Decrease theatraceud sleep interval by invoking
ntraceud with the-timeout option.

Related routines include:

trace_flush() , trace_trigger() .
trace_enable() , trace_enable_range() ,
trace_enable_all() , trace_disable() ,
trace_disable_range() , trace_disable_all()

See Chapter 4 for more information atraceud options.

3-15

NightTrace Manual

trace_enable(), trace_disable(), and Their Variants

By default, all trace events are enabled for logging to the shared memory buffer. The
trace_disable() , trace_disable_range() , andtrace_disable_all()

routines respectively make your application ignore requests to log one or more trace
events. Thetrace_enable() , trace_enable_range() , and
trace_enable_all() routines respectively make your application notice previously
disabled requests to log one or more trace events.

SYNTAX

C: int trace_enable (int ID);
int trace_enable_range (int
int trace_enable_all ();
int trace_disable (int ID);
int trace_disable_range (int
int trace_disable_all ();

Fortran integer function trace_enable (

integer 1D

integer function trace_enable_range (
integer ID_low, ID_high

integer function trace_enable_all ()

integer function trace_disable (
integer 1D

integer function trace_disable_range (
integer ID_low, ID_high

integer function trace_disable_all ()
Ada type event_type is range 0..4095;

(procedures)

procedure trace_enable (ID
procedure trace_enable (
ID_low : event_type
)

procedure trace_enable_all;

procedure trace_disable (ID

3-16

ID_low, int

ID_low, int

ID_high);

ID_high);

ID)

ID_low, ID_high)

ID)

ID_low, ID_high)

. event_type);

; ID_high : event_type

: event_type);

(functions)

PARAMETERS

ID

ID_low

ID_high

DESCRIPTION

The enable and disable library routines allow you to select which trace events are
enabled and which are disabled for logging. A discussion of disabling trace events

Adding Library Calls to Your Application

procedure trace disable (
D_low : event_type; ID_high : event_type
)

procedure trace_disable_all;

function trace_enable (ID : event type)
return ntrace_error;

function trace_enable (
ID_low : event_type; ID_high : event_type
)

return ntrace_error;

function trace_enable_all
return ntrace_error;

function trace_disable (ID : event_type)
return ntrace_error;

function trace_disable (
ID_low : event_type; ID_high : event_type
)

return ntrace_error;

function trace_disable_all
return ntrace_error;

Each trace event has a user-defined trace evenlDDThis ID is a
valid integer in the range reserved for user trace event 0B%Q5 ,
inclusive). See “trace_event() and Its Variants” on page 3-11 for
more information.

It is possible to manipulate groups of trace event IDs by specifying a

range of trace event ID$D_low is the smallest trace event ID in the
range.

It is possible to manipulate groups of trace event IDs by specifying a

range of trace event ID$D_high is the largest trace event ID in the
range.

appears first because initially all trace events are enabled.

Sometimestraceud

3-17

logs so many trace events that it is hard to understand the
ntrace display. Occasionally you know that a particular trace event or trace event
range is not interesting at certain times but is interesting at others. When either of
these conditions exist, it is useful to disable the extraneous trace events. You can dis-

NightTrace Manual

3-18

able trace events temporarily, where you disable and later re-enable them. You can
also disable them permanently, where you disable them at the beginning of the
process or at a later point and never re-enable them.

NOTE

These routines enable and disable trace events pratesses that
rely on the sametraceud daemon to log to the same trace
event file.

All disablelibrary routines make your application start ignoring requests to log trace
event(s) to the shared memory buffer. The disable routines differ by how many
trace events they disabldrace_disable() disables one trace event ID.
trace_disable_range() disables a range of trace event IDs, including both
range endpointstrace_disable_all() disables all trace events. Disabling an
already disabled trace event has no effect.

All enablelibrary routines let you re-enable a trace event that you disabled with a
disable library routine or thedisable option tontraceud . The effect is that

your application resumes noticing requests to log the specified trace event to the
shared memory buffer. The enable routines differ by how many trace events they

enable. trace_enable() enables one trace event ID.
trace_enable_range() enables a range of trace event IDs, including both
range endpointstrace_enable_all() enables all trace events. Enabling an

already enabled trace event has no effect.

TIP:
Consider invokingntraceud with the -enable and the-disable options
instead of calling theérace_enable() andtrace_disable() routines.

Using these options saves you from re-editing, recompiling and relinking your
application. See “ntraceud Options” on page 4-4 for more information on
ntraceud options.

TIP:

If you want to log only a few of your trace events, disable all trace events with
trace_disable_all() and then selectively enable the trace events of interest
with trace_event() calls or by invokingntraceud with the-enable option.

RETURN VALUES

The trace_disable() , trace_disable_range() ,
trace_disable_all() , trace_enable() , trace_enable_range() ,
andtrace_enable_all() routines return a zero valudlTNOERRQRN suc-

cessful completion. Otherwise, they return a non-zero value to identify the error
condition. A list of error codes for these routines follows.

[NTINIT] The NightTrace library routines were not initialized. Solution:
Be sure drace_start() andtrace_open_thread()
call precede the call to the disable or enable routine.

[NTINVALID] An invalid trace event ID has been supplied. Solution: Use
trace event IDs only in the ran@e4095 , inclusive.

Adding Library Calls to Your Application

SEE ALSO

Related routines include:
trace_event() , trace_event_arg() .
trace_event_dbl(), trace_event_four_arg()

See “ntraceud Options” on page 4-4 for more informatiomtwaceud options.

3-19

NightTrace Manual

trace_flush() and trace_trigger()

3-20

Thetrace_flush() andtrace_trigger() routines asynchronously wake the

ntraceud

daemon and direct it to copy trace events from the shared memory buffer to

the trace event file on disk. Note: These routines dowmit for the copy to complete.

SYNTAX
C: int trace_flush();
int trace_trigger();
Fortran: integer function trace_flush()
integer function trace_trigger()
Ada:
(procedures)
procedure trace_flush;
procedure trace_trigger;
(functions)
function trace_flush
return ntrace_error;
function trace_trigger
return ntrace_error;
DESCRIPTION

Whenntraceud is idle, it sleeps. The process of copying trace events from the
shared memory buffer to a trace event file is calledhing the buffer ntraceud
wakes up and flushes the buffer when any of these conditions exist:

ntraceud s sleep interval elapses
The buffer-full cutoff percentage is exceeded
The shared memory buffer is full of unwritten trace events

Your application callgrace_flush() , trace_trigger() , or
trace_end()

No event has been logged in a period of time in which the lower 32
bits of the timestamp source would roll over. It isimportant to detect
this rollover so that proper ordering of trace events is maintained.

ntraceud options let you set limits for the first three conditions above. When you

invoke ntraceud with one of these options and it detects the corresponding

condition, it automatically flushes the buffer. See “ntraceud Options” on page 4-4
for more information omtraceud options.

Adding Library Calls to Your Application

There is one key way thatace_flush() andtrace_trigger() differ from

the flush control thentraceud options provide: withtrace_flush() and
trace_trigger() you decide when to asynchronously flush the shared memory
buffer based on your program flow, and with certain optiotiaceud flushes the
shared memory buffer automatically.

If the shared memory buffer becomes full of trace events, trace events may be lost.
To keep this situation from occurring, configun&raceud to flush the buffer
regularly. This is particularly good to do if your application will soon be busy.

Waking thentraceud daemon to flush the buffer takes time and this overhead can

distort trace event timings. Therefore, calace_flush() and
trace_trigger() only in parts of your application where time is not critical.
TIP:

trace_trigger() is identical to trace_flush() , except
trace_trigger() works only in buffer-wraparound mode. Call
trace_trigger() instead oftrace_flush() so that only buffer-wrap-

around’s performance is affected.

When you rumtraceud in buffer-wraparound mode, you are telling NightTrace

to intentionally discard older or less-vital trace events when the shared memory
buffer gets full. In buffer-wraparound mode, you must explicitly call
trace_flush() or trace_trigger() . Only then, doesitraceud copy the
remaining trace events from the shared memory buffer to the trace event file. How-
ever, do not caltrace_flush() or trace_trigger() too often or you will
reduce the effectiveness of this mode. See “Option to Establish Buffer-Wraparound
Mode (-bufferwrap)” on page 4-11 for more information on buffer-wraparound
mode.

RETURN VALUES

Thetrace_flush() andtrace_trigger() routines return a zero value
(NTNOERRQPRN successful completion. Otherwise, they return a non-zero value
to identify the error condition. A list oftrace_flush() and
trace_trigger() error codes follows.

[NTFLUSH] A failure occurred while attempting to flush the shared mem-
ory buffer. Solution: Verify the status of th@raceud dae-
mon; if necessary, restart it and rerun the trace.

SEE ALSO

Related routines include:
trace_event(), trace_event_arg(),
trace_event_dbl(), trace_event_four_arg()

3-21

NightTrace Manual

trace_close_thread()

Thetrace_close_thread() routine disables trace event logging for the current
thread or process.

SYNTAX
C: int trace_close_thread();
Fortran: integer function trace_close_thread()
Ada: function trace close_thread return
ntrace_error;
DESCRIPTION

A NightTracethreadcan be a process, C thread or Ada task. Each thread that C calls
trace_open_thread() must have its owrrace_close_thread() call.

For more information on threads, see “Programming with the Threads Library” in
the PowerMAX OS Programming Guide.

RETURN VALUES
Thetrace_close_thread() routine returns a zero valuBlTNOERRQRN
successful completion. Otherwise, it returns a non-zero value to identify the error
condition. A list oftrace_close_thread() error codes follows.
[NTINIT] The NightTrace library routines were not initialized. Solution:

Call trace_close_thread() only once if you previously
calledtrace_open_thread()

SEE ALSO

Related routines includgace_open_thread() , trace_end()

3-22

Adding Library Calls to Your Application

trace_end()

Thetrace_end() routine frees resources and terminates trace event tracing in your pro-
cess.

SYNTAX
C: int trace_end();
Fortran: integer function trace_end()
Ada: function trace_end
return ntrace_error;
DESCRIPTION

Generally, calltrace_end() only once per logging process.However, for
processes using C threads or Adaks, trace_end() must also be called by
any individual threads or tasks that have previously cattade_start().
trace_end() performs the following operations:

* Terminates trace event tracing in this process or thread

* Flushes trace events from the shared memory buffer to the trace
event file

¢ Detaches the shared memory buffer, timestamp source, and interrupt
priority level (IPL) register

* Notifies thentraceud daemon that the current process has finished
logging trace events

When all processes in your application end their respective trace runs, use the
following command to flush and close the trace event file.

ntraceud -quit trace_file

RETURN VALUES

Thetrace_end() routine returns a zero valulNTNOERRQPRoNn successful
completion. Otherwise, it returns a non-zero value to identify the error condition. A
list of trace_end() error codes follows.

[NTFLUSH] A failure occurred while attempting to flush the shared mem-
ory buffer. Solution: Verify the status of thearaceud dae-
mon; if necessary, restart it and rerun the trace.

[NTNODAEMON] There is nontraceud daemon with a trace event file name
that matches the one on ttrace_start() call attached to
the shared memory region. This condition is not always
detectable. Solution: Use thtrace display utility to ana-
lyze your logged trace events. If the trace event file is inexpli-
cably truncated and thetraceud daemon is not running,
reinvokentraceud and rerun your application.

3-23

NightTrace Manual

SEE ALSO

Related routines includace_start() , trace_close_thread()

Disabling Tracing

There are four ways to disable tracing in your application:

* For C applications, put #include <ntrace.h> in your source code.
You must either recompile your application with taiBNNTRACE
preprocessor option or insert the following preprocessor control statement
beforethe#include <ntrace.h>

#define NNTRACE

The NightTrace header filetrace.h , contains macro counterparts for each
NightTrace library routine. When you defi?ndNTRACEthe compiler treats your
NightTrace routine calls as if they were macro calls that always return a success
(zero) status. For more information on preprocessor optionmed) .

Use a command similar to the following one to turn off tracing in your application,
fl_sim.c

$ cc -DNNTRACE fl_sim.c -lud

By disabling tracing this way, you have to rebuild your application, but you save
compilation and execution time.

¢ Call the trace_disable_all() routine near the top of the source,
recompile, and relink your application with the NightTrace library. (For
more information about this routine, see “trace_enable(), trace_disable(),
and Their Variants” on page 3-16.) If your application calls any of the
enable routines, this method is not entirely effective.

By disabling tracing this way, you have to rebuild your application, and there is no
saving in compilation time or execution time.

e Start upntraceud with the -disable 0-4095 or the-enable 0
option. (Atntraceud start up,-enable 0 disables all trace events
except trace event ID 0. For more information about these options, see
“Option to Disable Logging (-disable)” on page 4-22 and “Option to
Enable Logging (-enable)” on page 4-24.) If you linked with the Night-
Trace library before, you do not need to relink.

By disabling tracing this way, you do not have to rebuild your application, but there
is no saving in compilation time or execution time.

* Do not start umtraceud

By disabling tracing this way, you do not have to rebuild your application, but there
is no saving in compilation or execution time.

3-24

Adding Library Calls to Your Application
Compiling and Linking

You must link in the NightTrace library so that your application can initialize its trace
mechanism and log trace events. The name of this library depends on your source
language. C and Fortran applications must link in ther/lib/libntrace.a

library.

C Example

$ cc fl_sim.c -Intrace -lud
This step:
¢ Compiles thefl_sim.c application
¢ Links in the NightTrace library

* Creates an executable nansedut if there were no major errors

For more information on compiling and linking C programs, see the Concuent
Reference Manual.

Fortran Example

$ hf77 turn_matrix.f -Intrace -lud
This step:
¢ Compiles theurn_matrix.f application

¢ Links in the NightTrace library

* Creates an executable nansedut if there were no major errors

For more information on compiling and linkingf77 programs, see thef77 Fortran
Reference Manual.

Ada Example

For a complete example on accessing the NightTrace library routines from an Ada appli-
cation, see the section titled “NightTrace Binding” in tlé&XAda Reference Manual.

3-25

NightTrace Manual

Exercise: Instrumenting Code

3-26

Putting library calls in your application is callédstrumenting your codeThe following
application is infusr/lib/NightTrace/examples/entry _exit.c

#include <sys/types.h>
#include <time.h>
#include <stdio.h>

void take_a_nap(sleep_str)
struct timespec sleep_str;
{

printf("Sleeping for %.3f
seconds\n”,

(float) sleep_str.tv_nsec /

1le+09);

nanosleep(&sleep_str, NULL);

/* make the spacing between states
obvious */

sleep_str.tv_nsec = 30000000;

nanosleep(&sleep_str, NULL);

main()

{
int i
struct timespec sleep_str;

for(i=0; i<10; ++i)

{
sleep_str.tv_nsec = (rand() %
1000) * 1000000;
take_a_nap(sleep_str);

}

exit(0);

Figure 3-3. entry_exit.c Before Instrumentation

Make a copy of this file in your directory, and call éntry_exit.c . Make the
following changes by inserting trace event library calls at appropriate places in the
application:

¢ Start the trace session and log trace events to a file ndoged

* Open a thread nameiinings

Adding Library Calls to Your Application

* Log trace evenNAP_START(with trace event ID 10) anthe (typelong)
number of nanoseconds to sleaeép_str.tv_nsec) beforethe first
nanosleep call intake_a nap

* Log trace eventNAP_END(with trace event ID 20)_afterthe first
nano-sleep call inake_a_nap . (NAP_STARTandNAP_ENDform the
boundaries of a state.)

* Close the thread

* End the trace session

An example solution follows.

3-27

NightTrace Manual

3-28

/* For brevity, no return values are
checked */

#include <ntrace.h>
#include <sys/types.h>
#include <time.h>
#include <stdio.h>

#define NAP_START 10
#define NAP_END 20

void take_a_nap(sleep_str)
struct timespec sleep_str;
{

/* NAP_START & NAP_END are the
boundaries of a state */

trace_event_arg(NAP_START,
sleep_str.tv_nsec);

printf("Sleeping for %.3f
seconds\n”,

(float) sleep_str.tv_nsec / 1e+09

);

nanosleep(&sleep_str, NULL);

trace_event(NAP_END);

/* make the spacing between states
obvious */

sleep_str.tv_nsec = 30000000;

nanosleep(&sleep_str, NULL);

main()
{
int i
struct timespec sleep_str;

trace_start("log”);
trace_open_thread("timings”);

for(i=0; i<10; ++i)

{
sleep_str.tv_nsec = (rand() %
1000) * 1000000;
take_a_nap(sleep_str);

}

trace_close_thread();
trace_end();
exit(0);

Adding Library Calls to Your Application

Figure 3-4. entry_exit.c After Instrumentation

This exercise continues in “Exercise: Logging Trace Events” on page 4-27.

3-29

NightTrace Manual

3-30

Generating Trace Event Logs with ntraceud

OVBIVIBW . ottt e e e 4-1
The ntraceud DaemoOno 4-1
The Default NightTrace Environment. 4-2
ntraceud MOOESo e 4-3
ntraceud OPLtIONSo 4-4
Optionto GetHelp (-help) 4-6
Option to Get Version Information (-version) 4-7
Option to Disable the IPL Register (-ipldisable) 4-8
Option to Prevent Page Locking (-lockdisable) 4-9
Option to Establish File-Wraparound Mode (-filewrap). 4-10
Option to Establish Buffer-Wraparound Mode (-bufferwrap) 4-11
Option to Define Shared Memory Buffer Size (-memsize) 4-14
Option to Set Timeout Interval (-timeout) 4-15
Option to Set the Buffer-Full Cutoff Percentage (-cutoff). 4-16
Option to Select Timestamp Source (-clock) 4-17
Option to Reset the ntraceud Daemon (-reset) 4-18
Option to Quit Running ntraceud (-quit) 4-19
Option to Present Statistical Information (-stats). 4-20
Option to Disable Logging (-disable). i ... 4-22
Option to Enable Logging (-enable).... i i 4-24
Invoking ntraceud 4-26
Starting Your NightTrace Application. 4-26
Stopping Ntraceudo 4-27

Exercise: Logging Trace Events.t 4-27

NightTrace Manual

Generating Trace Event Logs with ntraceud

Overview

This chapter describes the following topics:

* Thentraceud daemon

* The default NightTrace environment
* ntraceud modes

* ntraceud options

* Invoking ntraceud

¢ Starting your application

¢ Stoppingntraceud

The information in this chapter is not pertinent to creating KernelTrace trace event files.
For information on creating KernelTrace trace event files, keace(1) and
Chapter 11.

The ntraceud Daemon

When you start umtraceud , it creates a daemon background process and returns your
prompt. The daemon creates a shared memory buffer in global memory. Your application
writes trace events into this buffer, and the daemon copies these trace events to a trace
event file.

You supply the name of the trace event file on yotiraceud invocation and in the
trace_start() library call in your application. If this file does not existtraceud

creates it; otherwisetraceud overwrites it. Unless youumask(1) setting overrides

this default,ntraceud creates the file with mode 666, read and write permission to all
users. If you want to maximize performance, use a trace event file that is local to the
system where thatraceud daemon and your application run.

A singlentraceud daemon may service several running applications or processes.
Severalntraceud daemons can run simultaneously; the system identifies them by their
distinctive trace event file names. Tind¢raceud daemon resides on your system
underusr/bin/ntraceud

4-1

NightTrace Manual

You must invokentraceud before any process in your application initializes a trace by
calling thetrace_start() library routine. See “trace_start()” on page 3-5 for more
information.

Whenever the daemon is idle, it sleeps. You can control the sleep interval with an
ntraceud option. Logging a trace event may wake the daemon if the buffer-full cutoff
percentage is exceeded or if shared memory becomes full of trace events. Flushing trace
events from the shared memory buffer to disk always wakes the daemon.

The Default NightTrace Environment

You enter the default NightTrace environment by invokirttaceud with a trace event

file argument and without any options. You can override defaults by invokirageud

with particular options. Table 4-1 summarizes these options. Later sections provide
detailed descriptions of these options and operating modes.

In the default environment, altace events are enabled for logging. Your application logs
trace events to the shared memory buffer. By default, the interval timer (NightHawk 6000
Series) or the Time Base Register (Power Hawk/PowerStack) is used to timestamp trace
events. However, the user may change the event timestamp source usiotptie

option tontraceud (see “Option to Select Timestamp Source (-clock)” on page 4-17).

Thentraceud daemon operates iexpansive moddn expansive modejtraceud

copies all trace events from the shared memory buffer to the trace event file. This behavior
differs from file-wraparound mode and buffer-wraparound mode. If the trace event file
does not exist whentraceud starts upntraceud creates it; otherwisentraceud
overwrites it.

ntraceud and the NightTrace library routines use page locking to prevent page faults
during trace event logging. NightTrace also modifies the shared memory region bound to
the system’s interrupt priority level (IPL) register; this action prevents rescheduling and
interrupts during trace event logging.

Whenntraceud is idle, it sleeps. The process of copying trace events from the shared
memory buffer to a trace event file is callédshing the buffer ntraceud wakes up and
flushes the buffer when any of these conditions exist:

¢ ntraceud 's sleep interval elapses
* The buffer-full cutoff percentage is exceeded
* The shared memory buffer is full of unwritten trace events

* Your application calls trace_flush() , trace_trigger()
trace_end()

, Or

A summary of NightTrace environment defaults follows.

4-2

Generating Trace Event Logs with ntracku

Table 4-1. NightTrace Environmental Defaults

Characteristic Default Modifying Option
ntraceud sleep interval 5 seconds -timeout seconds
Buffer-full cutoff percentage 20% full -cutoff percent
Shared memory buffer size 16K (16,384) trace -memsize count

events
Flush mechanism (See above) -bufferwrap
Trace event file size Indefinite -filewrap bytes
Trace events enabled for lo¢ All -disable ID and
ging -enable ID
Page-fault handling Page locking -lockdisable
Interrupt handling Modify IPL register -ipldisable

ntraceud Modes

NightTrace can operate in three modes: expansive (default), file-wraparound, and
buffer-wraparound. As the following two tables show, these modes meet different needs
and have different characteristics. They differ mainly by their handling of the shared

memory buffer and the trace event file on disk.

By default, NightTrace operates in expansive mode. NightTrace operates in file-wrap-
around mode when you specify thlewrap option on thentraceud invocation

line. Thentraceud -bufferwrap option puts NightTrace in buffer-wraparound
mode. See “Option to Establish File-Wraparound Mode (-filewrap)” on page 4-10 and
“Option to Establish Buffer-Wraparound Mode (-bufferwrap)” on page 4-11 for more
information on these options.

It is not possible to combine expansive mode with either file-wraparound or buffer-wrap-
around mode. Although you can mix file-wraparound and buffer-wraparound modes, it is
not recommended.

Table 4-2 provides some guidelines to help you decide which mode to use.

4-3

NightTrace Manual

Table 4-2. Mode-Selection Guidelines

MODE

Constraint Expansive File-Wraparound Buffer-Wraparound

Trace event All trace events are Newest trace events Events just before a
importance important are important trace_flush()
are important

General Disk space and mem Disk space is limited Program will run a
ory are plentiful long time

Table 4-3 shows how each NightTrace operating mode reacts to a particular condition.
The process of copying trace events from the shared memory buffer to the trace event file
on disk is calledlushing the buffer

Table 4-3. NightTrace Operating Modes

MODE
Condition Expansive File-Wraparound Buffer-Wraparound

ntraceud sleep | Flush the buffer Flush the buffer (No reaction)
interval exceeded
(-timeout)
Buffer-full cutoff Flush the buffer Flush the buffer (No reaction)
percentage
exceeded
(-cutoff)
Shared memory Flush the buffer Flush the buffer Overwrite the
buffer is full buffer’s oldest
(-memsize) trace events with

the newest ones
Trace eventfileis | N/A Overwrite the N/A
full (-filewrap) file's oldest

trace events with
the newest ones

ntraceud Options

ntraceud always copies trace events from the shared memory buffer to the trace event
file, trace_file You can override some other NightTrace defaults by invokitrgceud

4-4

Generating Trace Event Logs with ntracku

with option(s). You can also use options to quit running or regretceud and to obtain
version, statistical, or invocation-syntax information. The futHaceud invocation
syntax is:

ntraceud [-help][-version][-ipldisable] [-lockdisable]
[-filewrap byte§ [-bufferwrap] [-memsize couni
[-timeout secondp[-cutoff percenf[-clock sourcé
[-reset][-quit][-stats][[-disable ID[-ID]][...]]
[[-enable ID[- ID]][...]] trace_file

You can abbreviate afitraceud options to their shortest unambiguous length, but most
of the examples in this manual use the long option name. These options are
case-insensitive. The following examples are all equivalent:

ntraceud -help
ntraceud -hel
ntraceud -he
ntraceud -h
ntraceud -H
ntraceud -HE
ntraceud -Hel
ntraceud -HELP

You can invokentraceud more than once with different options during a single trace
session; each invocation passes additional options and values to the ratmaiceud
daemon. Usually you do this to dynamically enable or disable trace events or to obtain
current statistical information. Options that are available onlgteiceud start up are
described that way.

The following sections discuss tmtraceud options.

4-5

NightTrace Manual

Option to Get Help (-help)

The ntraceud -help
output.

SYNTAX

option displays theatraceud invocation syntax on standard

ntraceud -help

DESCRIPTION

The ntraceud -help option displays a brief help message showing the complete
invocation syntax fontraceud . Screen 4-1 shows an example-b&lp option

output.

[-filewrap bytes]
[-cutoff percent]
[-disable ID[-ID]]

General options:
-help
-version

output

-ipldisable
-lockdisable
-filewrap bytes
-bufferwrap
-memsize count

-cutoff percent
-clock source

default
rcim_tick

-reset
-quit
-stats

-disable ID[-ID]

-enable ID[-ID]
Files:

trace_file

Options for a new ntraceud daemon:

-timeout seconds

Valid values for source are:

Options for an existing ntraceud daemon:

Options for new and existing ntraceud daemons:

/usage: ntraceud [-help] [-version] [-ipldisable] [-lockdisable] \

[-bufferwrap] [-memsize count] [-timeout seconds]
[-clock source] [-reset] [-quit] [-stats]
[-enable ID[-ID]] trace_file

Write this message to standard output
Write the current ntraceud version stamp to standard

Disable use of the IPL register

Disable use of page locking

Use file wraparound mode with max trace_file size in bytes
Use shared memory buffer wraparound mode
Set shared memory buffer size to specified event count
Set the ntraceud timeout to specified seconds

Flush events to disk at specified cutoff level

Specify source of event time stamps

Use the default system clock
Use the RCIM synchronized tick clock

Reset the ntraceud daemon and the trace_file
Quit running ntraceud
Write statistics (resource/environment) to standard output

Disable a specific event ID or ID range from logging
Enable a specific event ID or ID range to log

Holds events logged by your application and ntraceud

Screen 4-1. Sample Output from the ntraceud -help Option

Generating Trace Event Logs with ntracku

Option to Get Version Information (-version)

Thentraceud -version option displays the curremtraceud version stamp on
standard output.

SYNTAX

ntraceud -version

DESCRIPTION

The ntraceud -version option displays version stamp information for this
ntraceud daemon.

4-7

NightTrace Manual

Option to Disable the IPL Register (-ipldisable)

The ntraceud -ipldisable option disables the default use of the system’s interrupt
priority level (IPL) register byntraceud and by the NightTrace library routines in your
application.
SYNTAX

ntraceud -ipldisable trace_file
DESCRIPTION

You can identify a runningitraceud daemon by its trace event file name,
trace_file

By default, NightTrace modifies a shared memory region bound to the system’s
interrupt priority level (IPL) register. This modification prevents rescheduling and
interrupts during trace event logging.

If your application lacks read and write privilege fdev/spl , the NightTrace
daemon and library initialization routine exit with errors. If you still want to trace
events, you must invoke thrdraceud daemon with theipldisable option.
Note, however, that rescheduling and interrupts may distort trace event timings. If
you use theipldisable option, you must start uptraceud with it.

You must_ notse theipldisable option if your user-level interrupt routine logs
trace events to the shared memory buffer.

CAUTION

The -ipldisable option should be used with great care to
avoid deadlock. This may occur if more than one LWP, each
biased to run on the same CPU, is logging trace events to a trace
file created by amtraceud invoked with the-ipldisable

option.

Consider the following scenario: an LWP, preparing to log a trace
event, locks the spin lock to protect the shared memory buffer. It
is preempted by a second LWP which also attempts to log a trace
event. However, due to priority inversion, the first LWP cannot
release the spin lock, causing the second LWP to loop infinitely
waiting for the spin lock to be released.

This deadlock could be avoidednfraceud were invoked with-

out the-ipldisable option. This would allow the first LWP to
release the spin lock before being preempted.

SEE ALSO

For more information on the IPL register, see ewerMAX OS Programming
Guide

4-8

Generating Trace Event Logs with ntracku

Option to Prevent Page Locking (-lockdisable)

The ntraceud -lockdisable option disables default page locking byraceud
and by the NightTrace library routines in your application.

SYNTAX

ntraceud -lockdisable trace_file

DESCRIPTION

You can identify a runningitraceud daemon by its trace event file name,
trace_file

By default, NightTrace locks its pages in memory. This capability prevents page
faults during trace event logging that could distort trace event timings.

If you lack P_PLOCKQprivilege needed to lock your pages in memory, your
invocation ofntraceud and your application exit with errors. If you still want to
trace events, you must invoke theraceud daemon with thelockdisable

option. This option makestraceud and the NightTrace library routines in your
application run without locking their pages in memory. Note, however, that page
faults may distort trace event timings. If you use theekdisable option, you
must start umtraceud with it.

You must_notuse the-lockdisable option if your user-level interrupt routine
logs trace events to the shared memory buffer.

SEE ALSO

For more information on privileges, see “Administering Privileges” on page 2-4.

4-9

NightTrace Manual

Option to Establish File-Wraparound Mode (-filewrap)

By default, the trace event file can grow indefinitely. With thieaceud -filewrap
option, you can make NightTrace operate in file-wraparound mode, rather than expansive
mode. In file-wraparound mode, you limit the trace event file size.

SYNTAX
ntraceud -filewrap bytes trace_file
DESCRIPTION
Thentraceud -filewrap option lets you specify the maximum byte sibgtes

of the trace event filetrace_file Specify thebytesparameter as a number of bytes

or as a number with a K or M suffix to show that thgtesparameter is in kilobyte or
megabyte units, respectively. For example, 12K means 12,288 bytes. If you use the
-filewrap option, you must start uptraceud with it.

Your application logs enabled trace events into a shared memory boffaceud
copies these trace events to the trace event file. In expansive mode, this file can
grow indefinitely.

The ntraceud -filewrap option makes NightTrace operate in file-wraparound
mode, rather than in expansive mode. In file-wraparound mode the trace event file
can become full of trace events. When this happetsceud overwrites the
oldest trace events in the beginning of the file with the newest ones, intentionally
discarding the oldest trace events to make room for the newest ones.

In expansive (default) and file-wraparound modes, you control automatic buffer
flushing by setting thentraceud sleep interval, shared memory size, and
buffer-full cutoff percentage. In contrast, there is no automatic buffer flushing in
buffer-wraparound mode; these values have no effect in this mode.

File-wraparound mode can be beneficial if you are short of disk space. With this
mode, you specify the maximum size of the trace event file, instead of allowing it to
grow indefinitely. Consider using this option if you are interested only in the most
recent of many trace events logged by an application over a long period of time. If
you want to determine how much disk space is available, rudffly command

with the-k option and look at thedvail ” column.

SEE ALSO

For a comparison of expansive, file-wraparound, and buffer-wraparound modes, see
“ntraceud Modes” on page 4-3.

4-10

Generating Trace Event Logs with ntracku

Option to Establish Buffer-Wraparound Mode (-bufferwrap)

The process of copying trace events from the shared memory buffer to the trace event file
on disk is calledlushing the bufferwith thentraceud -bufferwrap option, you can

make NightTrace operate in buffer-wraparound mode, rather than expansive mode. In
buffer-wraparound mode, thetraceud daemon flushes only the most recent trace
events, rather than all trace events. Your application asynchronously triggers every buffer
flush.

SYNTAX

ntraceud -bufferwrap trace_file

DESCRIPTION

Thentraceud daemon always logs enabled trace events into a shared memory
buffer. In expansive mode, when the buffer is full (or when some other conditions
exist),ntraceud automatically flushes the buffer to the trace event filace_file

The ntraceud -bufferwrap option makes NightTrace operate in buffer-wrap-
around mode, rather than in expansive mode. When the buffer is full in buffer-wrap-
around mode, the application treats the shared memory buffer as a circular queue
and overwrites the oldest trace events with the newest ones, intentionally discarding
the oldest trace events to make room for the newest ones. This overwriting continues
until your application explicitly callgrace_flush() . Only then, doesitra-

ceud copy the remaining trace events from the shared memory buffer to the trace
event file. If you use thebufferwrap option, you must start uptraceud with

it.

NOTE

You control automatic buffer flushing by setting th&raceud

sleep interval and buffer-full cutoff percentage in expansive
(default) mode and in file-wraparound mode. In contrast, there is
no automatic buffer flushing in buffer-wraparound mode; these
values have no effect in this mode. Invokinzaceud with the
-bufferwrap option, makesitraceud ignore any-time-

out and-cutoff options.

In buffer-wraparound mode, you can estimate the maximum number of trace events
to be written to your trace event file by using the following formula:

max_events = max_events_in_buffer * flush_count
where:

max_events The maximum number of trace events.

4-11

NightTrace Manual

4-12

max_events_in_buffer
The number of trace events the shared memory buffer
can hold. You can set this value when you invoite-
ceud with the-memsize option.

flush_count The number ofrace_flush() calls your application
executes.

For example, if you set your shared memory buffer size to 1000 trace events, then
max_events_in_buffer is 1000. If you expect your threteace_flush()

calls to execute two times each, thifmsh_count s six (3 * 2). Calculating
max_events gives you about 6000 (1000 * 6) trace events in your trace event file.

Buffer-wraparound mode:

¢ Can help you with debugging
¢ Can reduce trace events to a manageable number

* May conserve disk space
Buffer-wraparound mode can be useful in debugging.

Assume that you are debugging a fault in a large application. Follow the steps
below to accomplish your task.

1. Insert atrace_flush() call in your code where you believe the
fault occurs.

2. Compile and link your application.
3. Invokentraceud with the-bufferwrap option.

4. Run your application.

When your application executes thrace_flush() call, ntraceud copies all
trace events still in the shared memory buffer to the trace event file. You can then
use thentrace display utility to graphically analyze only the trace events
immediately preceding the fault.

Buffer-wraparound mode can also be useful in reducing trace events to a
manageable number. In this mode, when the shared memory buffer is full, the
newest trace events overwrite the oldest ones. This means that if the shared memory
buffer becomes full before your application executestthee_flush() call,
ntraceud copies only the current contents of the buffer to the trace event file. This
way, you can exclude the oldest trace events from ymuace displays.

In buffer-wraparound modentraceud usually flushes fewer trace events to the
trace event file than in expansive mode. Thus, this mode can conserve disk space.

If you want to determine how much disk space is available, rundf{&)
command with thek option and look at thedvail " column. Use the following
command to see the system settings for the current, default, minimum, and
maximum shared memory segment size:

$ /etc/conf/bin/idtune -g SHMMAX

See thadtune(1M) man page for more information.

Generating Trace Event Logs with ntracku

SEE ALSO

For more information ortrace_flush() , see “trace_flush() and trace_trigger()”

on page 3-20. For a comparison of expansive, file-wraparound, and buffer-wrap-
around modes, see “ntraceud Modes” on page 4-3. For information on limiting the
number of logged trace events, see “Option to Define Shared Memory Buffer Size
(-memsize)” on page 4-14.

4-13

NightTrace Manual

Option to Define Shared Memory Buffer Size (-memsize)

By default, the shared memory buffer can hold 16,384 trace events. When the buffer is full
of unwritten trace events, thegraceud daemon wakes up and copies the trace events to
the trace event file. Thetraceud -memsize option lets you alter the size of the shared
memory buffer.

SYNTAX

ntraceud -memsize count trace_file

DESCRIPTION

Thentraceud -memsize option lets you set the shared memory buffer size.
Specify thecountparameter as a maximum number of trace events or as a number
with a K or M suffix to show that theountparameter is in kilobyte or megabyte
units, respectively. For example, 12K means 12,288 trace evetriexeud

rounds that number up to a full page boundary. A trace event with zero or one
argument takes up 16 bytes; a trace event with more arguments takes up 32 bytes: 16
bytes for the basic trace event and one argument and 16 bytes for the
NT_CONTINUBbverhead trace event and the remaining arguments.

Use the following command to see the system settings for the current, default,
minimum, and maximum shared memory segment size:

$ /etc/conf/bin/idtune -g SHMMAX
See thadtune(1M) man page for more information.

By default, if the shared memory buffer becomes fatkaceud wakes up and
copies trace events from the shared memory buffer to the trace evetiie, file

You can increase theountparameter to prevent trace event loss. If you use the
-memsize option, you must start uptraceud with it.

By changing the shared memory buffer size, you can:

¢ Alter the buffer flush frequency

¢ Control the number of trace events copied to the trace event file in
buffer-wraparound mode

SEE ALSO

For information on limiting the number of logged trace events, see “Option to Estab-
lish Buffer-Wraparound Mode (-bufferwrap)” on page 4-11.

4-14

Generating Trace Event Logs with ntracku

Option to Set Timeout Interval (-timeout)

By default,ntraceud sleeps 5 seconds after writing trace events to disk. The

ntraceud -timeout option lets you set this timeout interval.
SYNTAX

ntraceud -timeout seconds trace_file
DESCRIPTION

You can identify a runningitraceud daemon by its trace event file name,
trace_file

Whenntraceud is idle, the daemon sleeps. By default, the sleep interval is a
maximum of 5 seconds. Tharaceud -timeout option lets you establish the
maximum number of secondsecondsthat thentraceud daemon sleeps.

Waking thentraceud daemon incurs overhead that can distort trace event timings;
decreasing the timeout parameter makes it more likely that the daemon will be
awake when needed. You can also decrease the timeout parameter to prevent trace
event loss. Note: If your application does not log events frequently, you can increase
the timeout to reduce the time the daemon runs and consumes CPU cycles.

If you use the-timeout option, you must start uptraceud with it. If you
invoke ntraceud with both the-timeout and-bufferwrap options,
ntraceud ignores thetimeout option.

ntraceud does not sleep for the full period if:

* Your application executes a call totrace flush()
trace_trigger() , ortrace_end()

* Your application logs a trace event that causes shared memory to
become full or your buffer-full cutoff percentage to be reached

* You specify a timeout parameter which exceeds the time in which the
lower 32 bits of the timestamp source would roll over. This rollover
time varies from architecture to architecture (with a minimum value
of 257.69803 seconds) and is calculatechbyaceud as part of its
initialization. It is important to detect this rollover so that proper
ordering of trace events is maintained. If you specify a timeout inter-
val which exceeds the rollover timatraceud uses the rollover
time as the timeout interval, ignoring the value specified.

4-15

NightTrace Manual

Option to Set the Buffer-Full Cutoff Percentage (-cutoff)

By default, when the shared memory buffer becomes 20-percent full of unwritten trace
events, thentraceud daemon wakes up and copies the trace events to the trace event

file. The ntraceud -cutoff option lets you alter this percentage.
SYNTAX
ntraceud -cutoff percent trace_file
DESCRIPTION
The ntraceud -cutoff option lets you set the buffer-full cutoff percentage,

percent for the shared memory buffepercentis an integer percentage in the range
0-99, inclusive.

The process of copying trace events from the shared memory buffer to the trace
event file,trace_file on disk is calledlushing the buffer When a logged trace event
causes the buffer to reach the buffer-full cutoff percentagiaceud wakes up

and flushes the buffer.

Waking thentraceud daemon incurs overhead that can distort trace event timings;
decreasing the shared memory buffer-full cutoff percentage makes it more likely
that the daemon will be wakened by the application. You can also decreagerthe
centparameter to prevent trace event loss; the effect is an increase in the buffer flush
frequency.

If you use the-cutoff option, you must start uptraceud with it. If you invoke

ntraceud with both the-cutoff and-bufferwrap options,ntraceud
ignores thecutoff option.

4-16

Generating Trace Event Logs with ntracku

Option to Select Timestamp Source (-clock)

The ntraceud -clock option allows you to select which timing source will be used to
timestamp events.

SYNTAX

ntraceud -clock source trace_file

DESCRIPTION

Thentraceud -clock option lets you select the timing source used to timestamp
trace events. Validourcevalues are:

default the interval timer (NightHawk 6000 Series) or the Time
Base Register (Power Hawk/PowerStack)

rcim_tick the RCIM synchronized tick clock

If you invoke ntraceud with the-clock option, you must supply a value for the
source

If rcim_tick is specified for thesourceand the system on which you are tracing
does not have an RCIM installed or configured or if the RCIM synchronized tick
clock on the system on which you are tracing is stopped, the NightTrace daemon
and library initialization routine exit with errors.

If the -clock option is not specified, the interval timer (NightHawk 6000 Series)

or the Time Base Register (Power Hawk/PowerStack) is used to timestamp trace
events.

4-17

NightTrace Manual

Option to Reset the ntraceud Daemon (-reset)

Thentraceud -reset option resets a runningtraceud daemon process.
SYNTAX

ntraceud -reset trace_file
DESCRIPTION

You can identify a runningitraceud daemon by its trace event file name,
trace_file By default,ntraceud overwrites the trace event file if it is not currently
in use. In contrast, thetraceud -reset option empties the file and prepares the
running daemon for another trace run. Use tteset option when you are no
longer interested in the contents of an active trace event file. You can imicke
ceud multiple times with thereset option.

SEE ALSO

For information on quitting amtraceud session without clearing the trace event
file, see “Option to Quit Running ntraceud (-quit)” on page 4-19.

4-18

Generating Trace Event Logs with ntracku

Option to Quit Running ntraceud (-quit)
Thentraceud -quit option terminates a runningraceud process.

SYNTAX

ntraceud -quit trace_file

DESCRIPTION

You can identify a runningitraceud daemon by its trace event file name,
trace_file

A process completes its NightTrace session by caltrage_end() or exiting
normally. The-quit option tests whether all processes dealing with a particular
runningntraceud daemon have completed trace event logging. If some processes
have not completeditraceud waits. If all processes have completed, the option:

¢ Terminates the running daemon process

* Flushes remaining trace events to the trace event file
* Closes the file

* Removes the shared memory buffer

TIP:

You cannot get statistical information after you quit runnimtgaceud . Consider
getting statistical information beforeou quit runningntraceud . For statistical
information on your trace session, see “Option to Present Statistical Information
(-stats)” on page 4-20.

Assume that you have invokedraceud with the-quit option, and you want to

reinvokentraceud with the same trace event file. Your nextraceud
invocation will automatically overwrite the trace event file.

SEE ALSO

For information on resettingtraceud and the trace event file for another session,
see “Option to Reset the ntraceud Daemon (-reset)” on page 4-18.

4-19

NightTrace Manual

Option to Present Statistical Information (-stats)

Thentraceud -stats option presents a display of statistical information for a running
ntraceud daemon on standard output.

SYNTAX

ntraceud -stats trace_file

DESCRIPTION

You can identify a runningitraceud daemon by its trace event file name,
trace_file

The-stats option provides statistical information that tells you about your current
NightTrace environment and resource use. This information can help you determine
if you have adequate resources for your application. If you are interested in
watching changes in the statistics, invokigaceud multiple times with the
-stats option.

Specifically, the-stats option provides information on:

* ntraceud mode. ntraceud may run in the following modes:
- NT_M_DEFAUL Tmeaning expansive (default) mode
- NT_M_FILEWRAPmeaning file-wraparound mode
- NT_M_BUFFERWRAReaning buffer-wraparound mode
¢ Shared memory buffer size
¢ Buffer-full cutoff percentage
* ntraceud timeout interval
* Number of threads or processes logging in your application

* Number of times trace events were lost. This statistic refers to a
situation that infrequently arises during a NightTrace session.
ntraceud may lose some trace events if the trace events enter the
shared memory buffer faster thatraceud can copy them to the
trace event file. For more information on this topic, see “Preventing
Trace Events Loss” on page A-1.

* Number of automatic buffer flushes (For more information on buffer
flushes, see “trace_flush() and trace_trigger()” on page 3-20.)

* Number of trace events logged to shared memnotyaceud and
some NightTrace library routines occasionally log predefined trace
events into the shared memory buffer. Therefore, the statistic for
number of trace events logged to shared memory may exceed the
number of times your application logs a trace event.

* Trace event IDs enabled

Screen 4-2 shows a sample-gfats option output.

4-20

Generating Trace Event Logs with ntracku

K$ ntraceud -stats log x

NTRACEUD STATISTICS

The ntraceud daemon is running in NT_M_DEFAULT mode.

There is a maximum of 16384 trace events in the shared memory buffer
The buffer-full threshold is 20% or 3276 trace events

The daemon timeout period is 5 seconds

There are 1 thread(s) logging trace events

The shared memory buffer had 0 events lost

There have been 0 unrequested buffer flushes

The total number of trace events logged to shared memory is 5

Enabled Events:
0-4095

N /

Screen 4-2. Sample Output from ntraceud -stats Option

Defaults for some of these values exist in the header file
/usr/include/ntrace.h . You can override the default values with
ntraceud options. See Table 4-1 for more information on the default values and
the corresponding options used to override them.

SEE ALSO

For information on trace event loss prevention, see “Option to Establish File-Wrap-
around Mode (-filewrap)” on page 4-10, “Option to Set Timeout Interval (-timeout)”
on page 4-15, and “Option to Set the Buffer-Full Cutoff Percentage (-cutoff)” on
page 4-16.

4-21

NightTrace Manual

Option to Disable Logging (-disable)

4-22

By default, all trace events are enabled for logging to the shared memory buffer. The
ntraceud -disable option makes the application ignore requests to log a specific
trace event or range of trace events.

SYNTAX

ntraceud -disable ID [..] trace_file

ntraceud -disable ID_low- ID_high [..] trace_file
DESCRIPTION

Sometimestraceud logs so many trace events that it is hard to understand the
ntrace display. Occasionally you know that a particular trace event or trace event
range is not interesting at certain times but is interesting at others. When either of
these conditions exist, it is useful to disable the extraneous trace events. You can
disable trace events temporarily, where you disable and later re-enable them. You
can also disable trace events permanently, where you disable them before the
application runs or during its execution and never re-enable them.

In the first format, thentraceud -disable option dynamically disables a
specific trace event IDD, from logging to the shared memory buffer. In the second
format, thentraceud -disable option dynamically disables a range of trace
event IDs,ID_low throughID_high, from logging to the shared memory buffer. In
either case, trace event IDs are integers in the range 0-4095, inclusive. At defined
times,ntraceud copies trace events from the shared memory buffer to the trace
event file,trace_file

NOTE

The-disable option disables trace events.in pllocesses that
rely on the sametraceud daemon to log to the same trace
event file.

This first format provides the same functionality as ttaee_disable() Night-

Trace library routine. The second format provides the same functionality as the
trace_disable_range() NightTrace library routine. One advantage of using
the-disable option rather than the library routine is that you do not have to
re-edit, recompile, and relink your application. For more information on disable
library routines, see “trace_enable(), trace_disable(), and Their Variants” on page
3-16.

Note: In the following text, the names of the trace event files are varied for interest.

You can start umtraceud with the -disable (-d) option. You can also
re-invokentraceud with this option whilentraceud is running. Furthermore,
using the-disable option to disable an already disabled trace event has no effect.
For example, assume that you invokigaceud three times, sequentially, before
your application terminates and tharaceud has not logged to thetoutput

file before.

Generating Trace Event Logs with ntracku

$ ntraceud -d4 ntoutput -- trace event 4 is disabled
$ ntraceud -d7 ntoutput -- trace events 4 & 7 are now disabled
$ ntraceud -d4 ntoutput -- no effect; trace events 4 & 7 disabled

There may be any number afisable options on amtraceud invocation line.
The following example illustrates this fact.

$ ntraceud -d10 -d15 mytrace -- trace events 10 & 15 are disabled

You may specify a hyphenated trace event range omtitezeud invocation line.
The following example depicts this case.

$ ntraceud -d23-25 traceoutput -- events 23, 24, and 25 disabled

The following two sequences show how important timing can be when you use the
-disable option. The same steps appear in both sequences, but their order differs.
When the first sequence ends, nothing has been logged and all trace events are
enabled. In contrast, when the second sequence ends, trace event 52 has been logged
once and is now disabled.

Table 4-4. ntraceud Disable Sequence #1

From the Shell From the Application Comments

Invoke ntraceud All trace events enabled

Invoke ntraceud -d52 Trace event 52 disabled

1

2

3. Start application
4 Call trace_event(52) Trace event 52 ndbgged
5

Call trace_enable(52) Trace event 52 enabled

Table 4-5. ntraceud Disable Sequence #2

From the Shell From the Application Comments
1. Invoke ntraceud All trace events enabled
2. Start application Trace event 52 enabled
3. Call trace_event(52) Trace event 52 logged
4. Call trace_enable(52) No effect
5. Invoke ntraceud -d52 Trace event 52 disabled
SEE ALSO

For information on enabling trace events, see “Option to Enable Logging (-enable)”
on page 4-24 and “trace_enable(), trace_disable(), and Their Variants” on page 3-16.

4-23

NightTrace Manual

Option to Enable Logging (-enable)

4-24

By default, all trace events are enabled for logging to the shared memory buffer. The
ntraceud -enable option makes the application notice previously disabled requests to
log a specific trace event or a range of trace events.

SYNTAX

ntraceud -enable ID [..] trace_file

ntraceud -enable ID_low- ID_high [..] trace_file
DESCRIPTION

In the first format, thentraceud -enable option dynamically re-enables a
specific disabled trace event IID, for logging to the shared memory buffer. In the
second format, thatraceud -enable option dynamically re-enables a range of
disabled trace event IDH)_lowthroughlD_high, for logging to the shared memory
buffer. In either case, trace event IDs are integers in the range 0-4095, inclusive. At
defined timesntraceud copies trace events from the shared memory buffer to the
trace event filetrace_file

NOTE

The-enable option affects albrocesses that rely on the same
ntraceud daemon to log to the same trace event file.

The first format provides the same functionality as tteeze_enable() Night-

Trace library routine. The second format provides the same functionality as the
trace_enable_range() NightTrace library routine. One advantage of using
thentraceud option instead of the library routine is that you do not have to
re-edit, recompile, and relink your application. For more information on enable
library routines, see “trace_enable(), trace_disable(), and Their Variants” on page
3-16.

In the following text, the names of the trace event files are varied for interest.
Unless otherwise stated, all the following examples describe the results of a
non-startumtraceud invocation.

There may be any number ednable (-e) options on amtraceud invocation
line. The following example illustrates this fact.

$ ntraceud -e10 -el5 mytrace -- trace events 10 and 15 enabled

You may specify a hyphenated trace event range omtiteeeud invocation line.
The following example depicts this case.

$ ntraceud -e23-25 traceoutput -- trace events 23, 24, & 25
enabled

Generating Trace Event Logs with ntracku

The-enable option acts differently when you use it:

* Onntraceud start up

¢ On laterntraceud invocations

If you start upntraceud with the-enable option, the specified trace event(s) are
the only one(s) enabled; all other trace events are disabled. For example, if the fol-
lowing invocation starts uptraceud |, then only trace event 18 is enabled.

$ ntraceud -e18 traceout

When you use theenable option on non-startuptraceud invocations, Night-
Trace adds the specified trace event(s) to the list of enabled trace events. Further-
more, attempting to enable an already enabled trace event has no effect. For
example, assume that you invok&aceud four times, sequentially, before your
application terminates and thatraceud has not logged to thetoutput file

before.
$ ntraceud ntoutput -- all trace events enabled
$ ntraceud -d4 -d7 ntoutput -- all except 4 and 7 enabled
$ ntraceud -e4 ntoutput -- all except 7 enabled
$ ntraceud -e4 ntoutput -- no effect; all except 7 enabled

The following two sequences show how important timing can be when you use the
-enable option. The same steps appear in both sequences, but their order differs.
When the first sequence ends, nothing has been logged and all trace events are
enabled. In contrast, when the second sequence ends, trace event 52 has been
logged once and is now disabled.

Table 4-6. ntraceud Enable Sequence #1

From the Shell From the Application Comments
1. Invoke ntraceud All trace events enabled
2. Start application
3. Call trace_disable(52) Trace event 52 disabled
4 Call trace_event(52) Trace event 52 ndbgged
5. Invoke ntraceud -e52 Trace event 52 enabled

Table 4-7. ntraceud Enable Sequence #2

From the Shell From the Application Comments
1. Invoke ntraceud All trace events enabled
2. Start application
3. Call trace_event(52) Trace event 52 logged
4. Invoke ntraceud -e52 No effect
Call trace_disable(52) Trace event 52 disabled

4-25

NightTrace Manual

SEE ALSO

For information on disabling trace events, see “Option to Disable Logging (-dis-
able)” on page 4-22 and “trace_enable(), trace_disable(), and Their Variants” on
page 3-16.

Invoking ntraceud

Now that your system and user environment support NightTrace and you understand the
ntraceud options, you can start uptraceud . This section shows a few common
ntraceud invocation examples. In each example, ttaee_fileargument corresponds to

the trace event file name you supply on your call tottlaee_start() library routine.

Normally, your firstntraceud invocation looks something like the following sample.
ntraceud trace_file

The next sample invocation assumes that you lack both page lock privilege
(-lockdisable) and read and write access tdev/spl needed to modify the
interrupt priority level register-{pldisable).

ntraceud -lockdisable -ipldisable trace_file

You may use an invocation similar to the following one if you are tuning your NightTrace
environment because you lost trace events last time.

ntraceud -memsize count-timeout = secondscutoff percent trace_file

There are several times when you may want to use the following invocation. Usually this
invocation is appropriate if you are usitrgce_flush() calls to debug a fault in your
application or to reduce the number of logged trace events satthee display is more
readable.

ntraceud -bufferwrap trace_file

The following invocation is also useful on several occasions. One example is if you want
to conserve disk space.

ntraceud -filewrap bytes trace_file

The following invocation quits runningtraceud |, flushes remaining trace events to the
trace event file, closes the file, and removes the shared memory buffer.

ntraceud -quit trace_file

Starting Your NightTrace Application

4-26

Having already put the NightTrace library routine calls in your source code, you can now
start up your application. If your application requires input, you must provide this now.

Generating Trace Event Logs with ntracku

Stopping ntraceud

Once all processes in your application complete, stopnth@ceud daemon with a
command similar to the following one:

ntraceud -quit trace_file

At this point, you can begin data analysis.

Exercise: Logging Trace Events

The following exercise has you log trace events. It is a continuation of “Exercise: Instru-
menting Code” on page 3-26.

1. Compile and linkentry exit.c with the ntrace library. Give the
executable the nanmentry_exit

2. Start thentraceud daemon. (Look at thetrace start call to
determine the trace event file name.) You may need some additional
options if you cannot lock pages in memory or cannot read and write to the
IPL register.

3. Execute thentry_exit program.
4. Getthentraceud daemon to give you statistics.
5. When the program completes, stop titeaceud daemon.

An example solution follows.

$ cc -Xa -0 entry_exit entry_exit.c -Intrace -lud
$ ntraceud log

$ entry_exit

$ ntraceud -stats log

$ ntraceud -quit log

This exercise continues in “Exercise: Displaying Trace Events” on page 5-36.

4-27

NightTrace Manual

4-28

Invoking the ntrace Display Utility

OVBIVIBW . ottt e e e 5-1
Xand NightTrace Vocabulary 5-1
System EnVIFONMENt e 5-2
INVOKING NEraCe oo e 5-3
NIrace OPtiIONS . . . oo 5-3
NIraCe ArQUIMENTS. . . o .ottt e et e e e e e e et e e e 5-8
Understanding Trace Event Files i 5-9
Understanding Event-Map Files. 5-10
Understanding Page Configuration Files 5-12
ntrace Tables 5-13
String Tables. 5-14
Pre-Defined String Tables 5-15
FormatTables. 5-18
Pre-Defined Format Tables 5-21
Configuring Display Pageso 5-21
ntrace UserInterface 5-22
UsiNg the MOUSE.ot e 5-22
Understanding Pointer Shapes i 5-23
Anticipating Window Layout. 5-23
Resizing WINdows 5-25
ntrace Notation CoNVENtioNS it 5-25
ntrace Global WINndow 5-26
Message Display Area 5-26
MeNU Bar 5-27
File Menu ltem 5-27
NeW Pageo 5-28
Default Page. 5-29
OpenConfigFile 5-31
Read Event-Map File 5-32
] 5-33
HelpMenu ltem 5-33
The File Selection Dialog BOXottt i 5-34
Typinginthe ExactFileName. i .. 5-34
Scrolling Through Existing File Names. 5-35
Typing in a Filter (File Name Pattern) 5-36
Exercise: Displaying Trace Events

NightTrace Manual

Overview

Invoking the ntrace Display Utility

The trace event display utilitygtrace , is an interactive, graphical debugging and
performance analysis toahtrace textually presents trace run statistics. As a tool built

on the X Window System, it can graphically display user trace events and system trace
events.

ntrace is flexible: you choose the look of your graphical display pag#sace

provides many different built-in graphical components caliézplay objectsYou can

color, select, size, position, and group these objects and direct particular trace events to
specific objects; this is calledonfiguringdisplay objects. There are also ways to label
trace events, trace event arguments, and other numeric values.

This chapter covers the following topics:

¢ X and NightTrace vocabulary
¢ System environment

* ntrace invocation

* ntrace options

* ntrace arguments

* ntrace user interface

e ntrace notation conventions

* ntrace Global Window

For information about textual analysis of kernel traces, see “Viewing KernelTrace Trace
Event Files with ktrace” on page 11-13.

X and NightTrace Vocabulary

The Massachusetts Institute of Technology developed a windowing system called the X
Window System, or X for short. If you are unfamiliar with standard X terminology, you
may find the glossary near the end of this manual useful. It contains definitions of words
and phrases about:

¢ X applications in general

5-1

NightTrace Manual

* Thentrace display utility
* Window components
¢ Common push buttons and menu item labels

* Mouse operations

System Environment

5-2

To run thentrace display utility, you need an installed X servemtrace uses an X
server to support windowing in trace event displays.

Motif is a user environment based on X. The window images in this manual come from a
Motif environment. If you are using another environment, your windows may differ
slightly from those presented here.

ntrace displays appear on your terminal only if you set y@ISPLAY environment
variable. Determine if this variable is set by issuing the following command:

$ echo $DISPLAY

If this variable is not set, you must set it manually to a value based on the name of your X
server. For example, in Bourne shell, set MESPLAY environment variable for a
terminal named “eagle” this way:

$ DISPLAY=eagle:0.0
$ export DISPLAY

In the Korn shell, this is:

$ export DISPLAY=eagle:0.0
In the C shell, this is:

% setenv DISPLAY eagle:0.0

The .Xdefaults (or .Xresources) file in your login directory establishes default
environmental settings for your X sessions. You may use spetide settings in this
file to customize yountrace displays.

ntrace runs on both monochrome and color monitors. See Appendix B for information
about setting color and other X resources that pertairirece

TIP:

Experiment with colors and shadings until you find a set you like. To avoid visual fatigue,
use highly-contrasting colors and values sparingly.

For more information on window system concepts or Motif, see “Recommended Reading”
on page 1-7.

Invoking the ntrace Display Utility
Invoking ntrace

Thentrace display utility resides on your system undast/bin/ntrace . Itis the
graphical user interface to trace event analysis. If you do not havatzage -related
files but you still want to try out this tool, just type:

$ ntrace

You can override some default functionality by invokingrace with options and
arguments. The fulitrace invocation syntax is:

ntrace [-help] [-version] [-listing] [filestats]
[-nohardclock] [-process { all |name|PID}]
[-start { offset| times|u} | percen®%o} |
[-end { offset| timg{ s|u} | percents} |
[-flat color] [-Xoption ...] [file ...]

Depending on yountrace options and arguments, when you invakeace |, it:

* |oads_alltrace event information into memory

* Checks the syntax of specifications in each file argument
* Processes each file argument

* Loads any display pages and their objects into memory

* Presents any display pages (See Chapter 6.)

* Displays theGlobal Window (See “ntrace Global Window” on page
5-26.)

The following sections discuss timrace options and arguments.

ntrace Options

You can abbreviate afitrace options to their shortest unambiguous length, but most of
the examples in this manual use the long option name. These options are case-insensitive.
The following examples are all equivalent:

ntrace -help
ntrace -hel
ntrace -he
ntrace -h
ntrace -H
ntrace -HE
ntrace -Hel
ntrace -HELP

ntrace options include:

5-3

NightTrace Manual

-help Displays thentrace invocation syntax on standard output

and exits. Screen 5-1 shows an example.

@trace -help

usage: ntrace [-help] [-version] [-listing]
[-filestats] [-nohardclock] [-process {all | name | PID}]
[-start {offset | time{s|u} | percent%}]
[-end {offset | time{s|u} | percent%}] [-flat color]
[-Xoption ...] [file ...]

Options that write to standard output:

-help Write this message to standard output

-version Write current ntrace version stamp to standard output
-listing Chronologically list all events to standard output
-filestats Write simple trace_file statistics to standard output

Options to select events:

-nohardclock Do not load kernel hardclock interrupt events

-process all Load kernel events for all user-traced processes

-process name Load kernel events associated with process_name
-process PID Load kernel events associated with PID

-start offset Load events after the specified event offset

-start time{s|u} Load events after the specified relative time

-start percent% Load events after the specified percent of total events
-end offset Load events before the specified event offset

-end time{s|u} Load events before the specified relative time

-end percent% Load events before the specified percent of total events

Options for graphical displays:

~

trace_file

N

-flat color Color to use for all flat areas and frames

-Xoption Any standard X Toolkit command line options (see X(1))
Files:

config_file Holds configuration information: display pages,

Maps event ID numbers with event tag names

event_map_file
Holds events logged by your application and ntraceud

macro definitions, qualified events, qualified
states and tables

/

Screen 5-1. Sample Output from the ntrace -help Option

-version

-listing

Displays the currenttrace version stamp on standard output
and exits.

Chronologically listsall trace events in the trace event file(s) to
standard output and exits. The output includes the following
information about a trace event: relative timestamp, trace event
ID, any trace event argument(s), the global process identifier
(PID) or thread name, and the CPU. The timestamp for the first
trace event is zero second3s(). All other timestamps are rela-
tive to the first one.

If you supply an event-map file on the invocation line,
ntrace displays symbolic trace event tags instead of numeric
trace event IDs, andtrace displays trace event arguments in
the format you specify in the file, rather than the hexadecimal
default format. For more information on event-map files, see
“Understanding Event-Map Files” on page 5-10.

Invoking the ntrace Display Utility

In kernel tracing, thevectors file provides names for system
processes, interrupts, and exceptions.

Screen 5-2 and Screen 5-3 show examples from a kernel trace
event file.

(Note that when viewing a user trace event file, a kernel trace
event file is required in order to resolve which CPU each pro-
cess was logging trace events from. See Chapter 11 for more
information.)

NOTE

The information associated with thmde field appears in this
listing only when NightTrace is configured to use an RCIM to
timestamp events.

@36: cpu=01 TR_PAGEFLT_ADDR pid=scheme tid=1241'0 time= 8.305265 x
S user instr page fault PC=0x1000fd54
5537: cpu=01 TR_EXCEPTION_SUS pid=scheme tid=1241'0 time= 8.305441
S vector=inst access
5538: cpu=01 TR_SWITCHIN pid=idle tid=0'0 time= 8.305441
S argl= 0
5539: cpu=00 TR_INTERRUPT_ENT pid=idle tid=0'0 time= 8.313355
S vector=hardclock level=1
5540: cpu=00 TR_INTERRUPT_EXI pid=idle tid=0'0 time= 8.313408
S vector=hardclock level=0
5541: cpu=01 TR_INTERRUPT_ENT pid=idle tid=0'0 time= 8.313416
S vector=softclock level=1
5542: cpu=01 TR_INTERRUPT_EXI pid=idle tid=0'0 time= 8.313425

Qector:softclock level=0 j

Screen 5-2. Example of ntrace -listing Output (with instr page fault)

NightTrace Manual

ﬁ\%‘go: cpu=01 TR_PAGEFLT_ADDR pid=ls tid=1250'0 time= 14.194342 \
S user data page fault addr=0x300ad1cO (PC=0xb0121fbc)
13391: cpu=01 TR_EXCEPTION_EXI pid=Is tid=1250'0 time= 14.194460
S vector=data access
13392: cpu=01 TR_SYSCALL_ENTRY pid=ls tid=1250'0 time= 14.194473
S syscall=read device=file
13393: cpu=01 TR_EXCEPTION_ENT pid=ls tid=1250'0 time= 14.194528
S vector=data access
13394: cpu=01 TR_PAGEFLT_ADDR pid=ls tid=1250'0 time= 14.194534
S kernel data page fault addr=0xel1e18000 (PC=0x000931cc)
13395: cpu=01 TR_EXCEPTION_EXI pid=Is tid=1250'0 time= 14.194590
S vector=data access
13396: cpu=01 TR_SYSCALL_EXIT pid=Is tid=1250'0 time= 14.194659
S syscall=read device=file
13397: cpu=01 TR_SYSCALL_ENTRY pid=ls tid=1250'0 time= 14.194715
S syscall=close device=file

/

Screen 5-3. Example of ntrace -listing Output (with data page fault)

-filestats Displays simple statistics about all trace event file(s)
arguments to standard output, similar to the display on the
Global Window, and exits. (See “ntrace Global Window” on
page 5-26.) The statistics are grouped by trace event file, with
cumulative statistics for all trace event files. The statistics
include: the number of trace event files, their names, the num-
ber of trace events logged, and the number of trace events lost.

Screen 5-4 shows an example, with:
log The user trace event file.
map The event-map file.

continuation eventsThe NT_CONTINUBrace events thattraceud
logs for multi-argument trace events.

Kamber2> ntrace -filestats nl.cap vectors.cap | p x

1 trace event log file read.

Kernel trace event log file: nl.cap.
10916 trace events plus 9863 continuation events.
10916 events saved in memory.
0 trace events lost.
52.4036288s time span, from 0.0000000s to 52.4036288s.

RCIM synchronized tick clock was used to time stamp events.

10916 total events read from disk plus 9863 continuation events.
10916 total events saved in memory; 1 events internal to ntrace.
0 total trace events lost.

\52.40362883 total time span saved in memory.

Screen 5-4. Example of ntrace -filestats Output

By default, whemtrace

Invoking the ntrace Display Utility

starts up, it reads and loads akice events from all trace event

files into memory; therefore, the more trace events in your trace event file(s), the more
memoryntrace uses. Thenohardclock ,-process ,-start , and-end options
let you prevent the loading, but not the reading, of certain trace events.

-nohardclock

Do not load hardclock interrupts from the kernel trace event
file. This option may save about 15% of the mematyace
consumes. For more information on the hardclock interrupt,
see “Hardclock Interrupt Handling” in theowerMAX OS
Real-Time Guide

If you invoke ntrace with the-process option, it loads only exceptions and system
calls of processes you specify after Hpeocess ; this takes some extra processing time
duringntrace start up. You can invokatrace with multiple -process options.
The possible ways to use thgrocess option include:

-process all

-process PID

-process name

-start offset

-start time{s|u}

-start percent

-end offset

-end times|u}

-end percent

From the NightTrace kernel trace event file, load only excep-
tions and system calls associated with process(es) in the user
trace event file(s). This implies that you invok&ace with

both a kernel trace event file and user trace event file(s).

From the NightTrace kernel trace event file, load only excep-
tions and system calls associated with this global process iden-
tifier (PID). Note that a global PID is different than a raw PID.
For more information on global process identifiers see “PID
List” on page 8-7.

From the NightTrace kernel trace event file, load only excep-
tions and system calls associated with this process naanee
This implies that you invokatrace with both a kernel trace
event file and user trace event file(s).

Load trace events after the specified trace event offset. (See
“The Grid” on page 6-4 for information about trace event off-
sets.)

Load trace events after the specified relative time in seconds
(s) or microsecondsu).

Load trace events after the specified percent of total trace
events. Théxsis required.

Load trace events before the specified trace event offset.

Load trace events before the specified relative time in seconds
(s) or microsecondsu).

Load trace events before the specified percent of total trace
events. Théxsis required.

For example, the following invocation loads trace events logged between 5 and 15 sec-
onds into the trace session.

$ ntrace -start 5s -end 15s log

5-7

NightTrace Manual

For example, the following invocation skips the first 10% of trace events, loads the next
15% of trace events, and skips the remaining 75% of trace events.

$ ntrace -start 10% -end 25% ulog

If you invoke ntrace with severalstart options,ntrace pays attention only to the
last one. The same is true if you invok&race with severalend options. If you
invokentrace with both a-start and a-end option and theend condition precedes

the-start condition,ntrace does not load any real trace events; it loads two dummy
trace events.

You can establish a default windowing environment for all yotrace sessions in your

Xdefaults (or .Xresources) file. You can invokentrace with X options to:
* Customize an individuaitrace session
¢ Override any corresponding settings in tXelefaults file
¢ Possibly improve the readability of yontrace display

You can invokentrace with the following options:

-flat color Color to use for the window edges, scroll bars, push buttons,
and menu bars.

-Xoption This option includes all of the standard X Tool Kit
command-line options (se&1)).

TIP:
Consider experimenting with these options and then saving their counterpart values in

your .Xdefaults or .Xresources file.

Invoking ntrace on a color X server with notrace options and natrace settings
in .Xdefaults is nearly equivalent to:

$ ntrace -fg black -bg white -flat gray75 -fn fixed

Your X terminal vendor supplies you with vendor-specific directories and files that per-
tain to colors and fonts. The file that contains available colors is cafbdxt . The
directory for fonts is/usr/lib/X11/fonts . For more information on X options, see
xterm(1) orX(1) .

ntrace Arguments

5-8

You can invokentrace with arguments that provide information about trace events,
their tags, other labels, and desired display object layotrace identifies the purpose

of a file argument by its contents; therefore, the order (and number) of these arguments is
not significant.

Invoking the ntrace Display Utility

SYNTAX
ntrace [- optior [trace file§ [event_map_filds[config_file}
vectors
ARGUMENTS
trace_files Trace event files contain sequences of trace events that your

application and thatraceud daemon logged or NightTrace
kernel trace events logged by the kernel trace program,
ktrace(1) , and converted bwtfilter(1)

event_map_files Event-map files map short mnemonic trace event tags to
numeric trace event IDs and associates data types with trace
event arguments. This is a hand-edited ASCII file.

config_files Configuration files define macros, qualified events, qualified
states, string tables, format tables, display objects, and display
pages. These ASCII files are usually created witlace

vectors The vectors file contains definitions of thevector
syscall , andpid string tables that provide names for sys-
tem processes, interrupts, and exceptions that occurred during
kernel tracing. Thantfilter tool dynamically generates this
file for kernel-trace analysis. See “Converting KernelTrace
Trace Event Files with ntfilter” on page 11-21 for details.

See theNightTrace Pocket Referencard for a syntax summary of formats for event-map
files, string tables, and format tables.

Understanding Trace Event Files

You can invokentrace without any trace event file names as arguments, but you cannot
examine any trace events this way. Therefore, this is rarely done. Normally you invoke
ntrace with one or more user trace event files and/or a kernel trace event file. Invoking
ntrace with multiple trace event files is mainly useful when you have run several
simultaneous, related trace sessions and you wish to merge their trace events into a single
display.

In user tracingntraceud creates a trace event file to hold your application’s trace
events and some of NightTrace’s own trace events. Invokingtifaeeud daemon with
the-quit option causes it to flush and close the trace event file. In kernel tracing, the
ktrace tool creates a KernelTrace trace event file to hold kernel trace events. Invoking
the ntfilter tool with this KernelTrace trace event file causes it to write the trace
events into a trace event file with a format compatible witrace . Once this is done,

you can invokentrace with the trace event file names as its argumentitace reads

the trace event files, puts information about all loaded trace events in memory, and
displays the trace events chronologically in the layouts you choose.

You can create NightTrace kernel trace event files with ktleace(1) and
ntfilter(1) tools. See “Kernel Tracing with ktrace” on page 11-8 and “Converting
KernelTrace Trace Event Files with ntfilter” on page 11-21 for details.

5-9

NightTrace Manual

Because of the overhead involved in loading trace events into memivage loads
trace events only at start uptrace never prompts you for a trace event file name.

TIP:

Invoke ntrace only with the trace events and trace event files you need. Use options to
ntrace to limit which trace events get loaded into memory. The more trace events
ntrace must process, the slower its start up and display updates. For more information,
see “Conserving Memory and Accelerating ntrace” on page A-4.

A trace event file consists of:

* One file header record

* Several trace event and continuation records

The header record contains some NightTrace statistics that pertain to the whole trace
session. The trace event records describe individual trace events logged with zero or one
numeric argument; these records may come from your application, from NightTrace itself,
or in kernel tracing from the kernel. Continuation records (with trace event tag
NT_CONTINUE describe any other arguments logged with the trace event. The exact
format of the trace event file appears on thie|ace(4) man page.

Although you must have read permission to a trace event file, there is no reason to edit and
rarely a reason to examine the contents of this file; however, you can inspect it with the
od(1) octal dump command. Because trace event files begin with a specific magic
number, running théile(1) command on a trace event file namkd) has the
following result:

$ file log
log: NightTrace trace event file

If ktrace(1) creates a KernelTrace trace event file that you natog , then running
file(2) on this file has the following result:

$ file klog
klog: KernelTrace trace event file

Understanding Event-Map Files

5-10

ntrace does not require you to use event-map files. However, if you use these file(s),
you can improve the readability of yoatrace displays.

A trace pointis a location in the application’s source code where you call a NightTrace
trace event logging routine. Each trace point has a corresponding trace event ID number.
An event-map fileallows you to associate meaningful tags or labels with the more cryptic
trace event ID numbers. It also allows you to associate additional information with a trace
event including the number of arguments and the argument conversion specifications or
display formats. Althougimtrace does not require you to use event-map files, labels
and correct display formats can make graphitahce displays and textual summary
information much more readable.

You can runntrace with multiple event-map files; however, if a trace event ID is
multiply-defined,ntrace writes an error message in the message display area of the

Invoking the ntrace Display Utility

Global Window. For more information on th&lobal Window, see “ntrace Global
Window” on page 5-26.

TIP:

If you used symbolic constants to represent numeric trace event IDs, you may be able to
simply reformat this information in the event-map file.

To load an existing event-map file, either:

e Startamtrace session with the file name as an argument

* Click onFile | Read Event-Map File ... on theGlobal Window

You must create an event-map file with a text editor before you invakece . The file
contains lines of ASCII text separated by newlines. There is one trace event tag mapping
per line. White space separates each field except the conversion specifications; commas
separate the conversion specificationrace ignores blank lines and treats text
following a# as comments. The syntax for the trace event mappings in the event-map file
follows:

event: ID “event tay[nargs [conv_spec...]]
Fields in this file are:
event: The keyword that begins all trace event name mappings.

ID A valid integer in the range reserved for user trace events
(0-4095, inclusive). Each time you call a NightTrace trace
event logging routine, you must supply a trace event ID.

event_tag A character string to be associated wébent_ID Trace event
tags must begin with a letter and consist solely of alphanumeric
characters and underscores.Keep trace event tags short; other-
wise,ntrace may be unable to display them in the limited
window space available.

The following words are reserved mtrace and should not
be used in upper case or lower case as trace event NQBLE,
ALL, ALLUSER, ALLKERNEL, TRUE, FALSE, CALC.

TIP:

Consider giving your trace events upper case tags in event-map files and giving any
corresponding qualified event the same name in lower case. For more information about
qualified events, see “Qualified Events” on page 9-81.

If your application logs a trace event with one or more numeric arguments, by default
ntrace displays these arguments in decimal integer format. To override this default,
provide a count of argument values and one argument conversion specification or display
format per argument.

nargs The number of arguments associated with a particular trace
event. Ifnargsis too small and you invokatrace with the
event-map file and thelisting option,ntrace shows
only nargsarguments for the trace event.

5-11

NightTrace Manual

conv_spec A conversion specification or display format for a trace event
argumentntrace uses conversion specification(s) to display
the trace event's argument(s) in the designated format(s).
There must be one conversion specification per argument.
Valid conversion specifications for displays include the fol-
lowing:

%dsigned decimal integer (default)

%aunsigned octal integer

%xunsigned hexadecimal integer

%If signed double precision, decimal floating point

For more information on these conversion specifications, see
printf(3S)

The following line is an example of an entry in an event-map file:
event: 5 “Error” 2 %x %lf

Trace event ICB is an error condition; when appropriatgrace displays trace event 5
and labels the trace eveltrror.” Trace event 5 also has twa)(argumentsntrace
displays the first argument in unsigned hexadecimal integey format and the second
argument in signed double precision decimal floating pdififf () format. (You may over-
ride these conversion specifications when you configure display objects.)

For more information on event-map files, see“Pre-Defined String Tables” on page 5-15,
“Read Event-Map File” on page 5-32, and thigzace(4) man page. For information
about trace event tags for kernel trace events, see/tise/lib/Night-
Trace/eventmap file

Understanding Page Configuration Files

5-12

ntrace does not require you to use configuration files. However, using these file(s):

¢ Allows you to associate macros, qualified events, and qualified states with
particular display page(s)

* Improves the readability of your displays

* Saves you time laying out your display pages

A configuration fileis an ASCII file that contains definitions. These definitions look like

initialized C structures. A configuration file can contain any number of the following
definitions:

* Macro, qualified event, and qualified state definitions (See Chapter 9.)
¢ String table definitions (See “String Tables” on page 5-14.)
* Format table definitions (See “Format Tables” on page 5-18.)

¢ Display page definitions

Invoking the ntrace Display Utility

NOTE

The components of a configuration file are often interrelated. For
example, display pages may reference user-defined tables.
ntrace generates an error message if your configuration file
refers to a table before you define it. To avoid this problem, create
your configuration files so that a table definition precedes its
reference(s). There is no similar problem for macros, qualified
events, and qualified states.

If you accidentally define a macro, qualified event, or qualified
state more than once in a configuration filgrace flags
subsequent definitions as errors. If you define a string table or
format table more than once in a configuration fiteérace
merges the two tables; if there are duplicate entries, values come
from the last definition.

Results can be unpredictable if multiple users simultaneously
modify a configuration file. Similarlyntrace may behave
strangely if you edit your configuration file so that any of your
display objects overlap.

You can create, modify, save, and load configuration files from wittiiace ; however,
you must use a text editor to create and modify tables in a configuratiomfilace
ignores blank lines and treats text betweef aand a*/ as comments in configuration
files; however, saving a configuration file removes your comments.

To load an existing configuration file, do one of the following:

e Startamtrace session with the file name as an argument

* Click onFile | Open Config File ... on theGlobal Window

For more information on manipulating configuration files, see “File Menu Item” on page
5-27.

ntrace Tables

The configuration file may contain two types of tables: string tables and format tables.
Both types of table can improve the readability of yotirace displays. The only way

to put tables into your configuration file is by text editing the file before you invoke
ntrace . To avoid any forward-reference problems, define all string tables before any
format tables.

A table lets you associate meaningful character strings with the more cryptic integer
values, such as trace event arguments. These character strings may apypesren
displays.

For example, suppose that one trace event’s argument may have the decimal values 2, 5,
and 8. You can define:

¢ A string that appears when the value is 2

5-13

NightTrace Manual

String Tables

5-14

¢ A different string that appears when the value is 5

¢ A third string that appears when the value is 8

The following table names are reservedchinace and should not be redefined in upper
case or lower case:

event, pid, tid, boolean, name_pid, name_tid, node_name,

pid_ nodename tid_ nodename vector, syscall, device,
vector_ nodename syscall_ nodename device_ nodename
event_summary, event_arg_summary, event_arg_dbl_summary,
state_summary

The results are undefined if you supply your own version of these tables. For more
information on pre-defined tables, see “Pre-Defined String Tables” on page 5-15,
“Pre-Defined Format Tables” on page 5-21, and “Kernel String Tables” on page 11-32.

TIP:

Put tables in separate configuration files from display pages. This way tables do not get
redefined if you close and reopen a display page during a simiilee session.

If you define a string table or format table more than once in a configuratiomfilace
merges the two tables; if there are duplicate entries, values come from the last definition.

You can log a trace event with one or more numeric arguments. Sometimes these
arguments can take on a nearly fixed set of valuestrig tableassociates an integer
value with a character string. Labeling numeric values with text can make the values eas-
ier to interpret.

The syntax for a string table is:

string_table (table_name) = {
item = int _const “ str_const ;
[default_item = “ str_const ;]
I3

You do not need to separate the parts (tokens) of the string table with white space.
String-table tokens are indivisible; although these tokens need not break on the lines
shown, they must appear in the order shown. Include all special characters from the syntax
except the ellipsis.(.) and square bracket§ (). The fields in a string table definition

are:

string_table The keyword that starts the definition of all string tables.

table_name The unique, user-defined name of this table. This name
describes the relationship of the numeric values in this string
table.

An item lineassociates an integer value with a character string. This line extends from the
keyworditem through the semicolon. You may define any number of item lines in a sin-
gle string table. The fields in an item line are:

item The keyword that begins all item lines.

Invoking the ntrace Display Utility

int_const An integer constant that is unique withisble_namelt may be
decimal, octal, or hexadecimal. Decimal values have no special
prefix. Octal values begin with a zer@), Hexadecimal values
begin withOx.

str_const A character string to be associated witli_const Keep this
string short; otherwisentrace may be unable to display it in
the limited window space available. Usara for a newline,
not a carriage return in the middle of the string.

The optionaldefault item lineassociates all other integer values with a single string. The
fields of the default item line are:

default_item The keyword that begins all default item lines.
str_const (Seestr_constabove.)

TIP:

If your table needs only one entry, you may omit the item line and supply only the default
item line. Aget_string() call with this table name as the first parameter needs no
second parameter.

ntrace returns a string of the item number in decimal if:

* There is no default item line, and the specified item is not found.

* The string table is not found. (The first timetrace cannot find a
particular string tabletrace flags it as an error.)

The following lines provide an example of a string table in a configuration file.

string_table (curr_state) = {
item = 3, “Processing Data”;
item = 1, “Initializing”;
item = 99, “Terminating”;
default_item = “Other”;

b

In this example, your application logs a trace event with a numeric argument that identi-
fies the current statec(rr_state). This argument has three significant valu8s 1,
and99). Whencurr_state has the valug, thentrace display shows the string
“Processing Data .” When it has the valud, the display showslhitializing
When it has the valu@9, the display showsTerminating .” For all other numeric
values, the display show©ther .”

For more information on string tables and tiget_string() function, see
“get_string()” on page 9-75 and thasr/lib/NightTrace/tables file.

Pre-Defined String Tables

The following string tables are pre-definedritrace

event A dynamically generated string table internaltrace . It
maps all known numeric trace event IDs with symbolic trace
event tags. A similar association appears in the
/usr/lib/NightTrace/eventmap file; this is an

5-15

NightTrace Manual

5-16

pid

tid

event-map file that associates trace event IDs with kernel trace
event tags.

This table is indexed by an event code or an event code name.
Examples of using this table are:

get_string(event, 4112)
get_item(event, “TR_INTERRUPT_EXIT")

A dynamically generated string table internalrtrace . In

user tracing, it associates global process ID numbers with pro-

cess names of the processes being traced. In kernel tracing, it
associates process ID numbers with all active process names
and resides in the dynamically generatedtors file.

When analyzing trace event files timestamped by the RCIM
synchronized tick clock, process identifiers are not guaranteed
to be unique across nodes. Therefore, accessinpithetable
may result in an incorrect process name being returned for a
particular process ID. To get the correct process name for a
process ID, thepid table for the node on which the process
identifier occurs should be used instead. Tdié table is
maintained for backwards compatibility.

This table is indexed by a process identifier or a process name.
Examples of using this table are:

get_string(pid, pid())
get item(pid, “ntraceud”)

See “PID List” on page 8-7 for more information.

A dynamically generated string table internalrtrace . In
user tracing, it associates NightTrace thread ID numbers with
thread names. In kernel tracing, this table is not used.

When analyzing trace event files timestamped by the RCIM
synchronized tick clock, thread identifiers are not guaranteed
to be unique across nodes. Therefore, accessintidhetable
may result in an incorrect thread name being returned for a par-
ticular thread ID. To get the correct thread name for a thread
ID, thetid table for the node on which the process identifier
occurs should be used instead. Tige table is maintained for
backwards compatibility.

This table is indexed by a thread identifier or a thread name.
Examples of using this table are:

get_string(tid, tid())
get_item(tid, “cleanup_thread”)

See “TID List” on page 8-8 for more information.

boolean

name_pid

name_tid

node_name

pid_ nodename

tid_

nodename

Invoking the ntrace Display Utility

A string table defined in the /usr/lib/Night-
Trace/tables file. It associate® with false and all other
values withtrue .

A dynamically generated string table internalritrace . It
maps all known node ID numbers (which are internally
assigned byntrace) to the name of the node’s process ID
table).

This table is indexed by a node identifier or a node name.
Examples of using this table are:

get_string(name_pid, node_id())
get_item(name_pid, “system123")

A dynamically generated string table internalritrvace . It
maps all known node ID numbers (which are internally
assigned byntrace) to the name of the node’s thread 1D
table).

This table is indexed by a node identifier or a node name.
Examples of using this table are:

get_string(name_tid, 1)
get_item(name_tid, “charon”)

A dynamically generated string table internalritrvace . It
associates node ID numbers (which are internally assigned by
ntrace) with node names.

This table is indexed by a node identifier or a node name.
Examples of using this table are:

get_string(node_name, node_id())
get_item(node_name, “gandalf”)

A dynamically generated string table internalrtsace . In
kernel tracing, it associates process ID numbers with all active
process names for a particular node and resides in that node’s
vectors file. In user tracing, it associates global process ID
numbers with process names of the processes being traced for a
particular node.

This table is indexed by a process identifier or a process name.
Examples of using this table are:

get_string(pid_sbc1, pid())
get_item(pid_engsim, “nfsd”)

A dynamically generated string table internalrtsace . In
kernel tracing, this table is not used. In user tracing, it associ-
ates NightTrace thread ID numbers with thread names for a
particular node.

5-17

NightTrace Manual

This table is indexed by a thread identifier or a thread name.
Examples of using this table are:

get_string(tid_harpo, 1234567)
get_item(tid_shark, “reaper_thread”)

vector See “Kernel String Tables” on page 11-32.
syscall See “Kernel String Tables” on page 11-32.
device See “Kernel String Tables” on page 11-32.

vector_ nodenameSee “Kernel String Tables” on page 11-32.
syscall_ nodenam8ee “Kernel String Tables” on page 11-32.
device_ nodenameSee “Kernel String Tables” on page 11-32.

You can use pre-defined string tables anywhere that string tables are appropriate. Use the
get_string() function to look up values in string tables. For information about the
get_string() function, see “get_string()” on page 9-75. For examples of function
calls with these tables, see Table 8-3.

Format Tables

Like string tablesformat tabledet you associate an integer value with a character string;
however, in contrast to a string table string, a format table string may be dynamically
formatted and generated. Labeling numeric values with text can make the values easier to
interpret.

The syntax for a format table is:

format_table (table_name) = {

item = int_const “ format_string [, “ valuel] ... ;

[default_item = * format_string [, “ valuel] ... ;]
I3

You do not need to separate the parts (tokens) of the format table with white space. Format
table tokens are indivisible; although these tokens need not break on the lines shown, they
must appear in the order shown. Include all special characters from the syntax except the
ellipses (..) and square bracketR (). The fields in a format table are:

format_table The keyword that begins the definition of all format tables.

table_name The unique, user-defined name of this table. This name
describes the relationship of the numeric values in this format
table.

An item lineassociates a single integer value with a character string. This line extends
from the keywordtem through the semicolon. You may have any number of item lines
in a single format table. The fields in an item line are:

item The keyword that begins all item lines.

5-18

int_const

format_string

valuel

Invoking the ntrace Display Utility

An integer constant that is unique withtable_name This
value may be decimal, octal, or hexadecimal. Decimal values
have no special prefix. Octal values begin with a zedp. (
Hexadecimal values begin withx .

A character string to be associated witli_const Keep this
string short; otherwisentrace may be unable to display it in
the limited window space available. Usara for a newline,
not a carriage return in the middle of the string.

The string contains zero or more conversion specifications or
display formats. Valid conversion specifications for displays
include the following:

%iSigned integer

%Wnsigned decimal integer

%d5igned decimal integer

%dJnsigned octal integer

%xUnsigned hexadecimal integer

%If Signed double precision, decimal floating point

%eSigned decimal floating point, exponential
notation

%cSingle character
%<Character string
%%Bercent sign

\n Newline

For more information on these conversion specifications, see
printf(3S)

A value associated with the first conversion specification in
format_string The value may be a constant string (literal)
expression or antrace expression. A string literal expres-
sion must begin and end with\6e and must be enclosed in
double quotes; for example:

“\Wstring expression\\

An expression may beget_string() call; a description of
the get_string() function appears in “get_string()” on
page 9-75. For more information on expressions, see
Chapter 9.

format_string may contain any number of conversion
specifications. There is a one-to-one correspondence between
conversion specifications and quoted values. A particular con-
version specification-quoted value pair must match in both

5-19

NightTrace Manual

5-20

data type and position. For examplefdfmat_stringcontains a
%sand a%d the first quoted value must be of type string and
the second one must be of type decimal integer. If the number
or data type of the quoted value(s) do not mdimtmat_string

the results are not defined.

The optionaldefault item lineassociates all other integer values with a single format item.
ntrace flags it as an error if an expression evaluates to a value that is not on an item line
and you omit the default item line. The fields of the default item line are:

default_item The keyword that begins all default item lines.
format_string (Seeformat_stringabove.)
valuel (Seevaluelabove.)

TIP:

If your table needs only one entry, you may omit the item line and supply only the default
item line. Aget_format() call with this table name as the first parameter needs no
second parameter.

The following lines provide an example of a string table and format table in a
configuration file.

string_table (curr_state) = {
item = 3, “Processing Data”;
item = 1, “Initializing”;
item = 99, “Terminating”;
default_item = “Other”;

b

format_table (event_info) = {
item = 186, “Search for the next time we process data”;
item = 25, “The current state is %s”,
“get_string (curr_state, argl1())”;
999, “Current state is %s, current trace event is %d”,
“get_string (curr_state, argl())”,
“offset()”;
default_item = “Other”;

item

b

In this example, the first numeric argument associated with a trace event represents the
current statedurr_state), and theevent_info format table represents information
associated with the trace event IDs. When trace evé86 occurs, a
get_format(event_info,186) makesntrace display:

Search for the next time we process data

When trace ever?5 occurs,ntrace replaces the conversion specificati®hg with the
result of theget_string() call. Ifargl() has the value 1, themrace displays:

The current state is Initializing

When trace everfi99 occurs,ntrace replaces the first conversion specificatidng
with the result of theget_string() call and replaces the second conversion
specification $0d with the integer result of the numeric expressioffset() . If
arg(l) has the value 99 anaffset() has the value 10, themtrace displays:

Invoking the ntrace Display Utility

Current state is Terminating, current trace event is
10

For all other trace eventsfrace displays ‘Other

For more information omget_string() , see “get_string()” on page 9-75. For more
information on format tables and thyet_format() function, see “get_format()” on
page 9-79. See also thesr/lib/NightTrace/tables file. For more information
aboutargl() , see “arg()” on page 9-20. For more information abofiset() , see
“offset()” on page 9-27.

Pre-Defined Format Tables

The following format tables are pre-defined in thusr/lib/NightTrace/tables
file:

state_summary Formats statistics about the state matches
summarized, state durations, and state time
gaps. This table provides the default state
summary output format.

event_summary Formats statistics about the trace event
matches and trace event time gaps. This table
provides the default trace event summary

output format.

event_arg_summary Formats statistics about the trace event
matches and their type long trace event
arguments.

event_arg_dbl_summary
Formats statistics about the trace event
matches and their type double trace event
arguments.

For more information about summaries, see Chapter 10.

You can use pre-defined format tables anywhere that format tables are appropriate. Use
the get_format() function to look up values in format tables. For information about
the get_format() function, see “get_format()” on page 9-79. For examples of func-
tion calls with format tables, see Table 8-3.

Configuring Display Pages

The configuration file usually contains display page(s). You msace to putthese
display page(s) in your configuration file.

ntrace lets you customize the layout of youatrace display pages. You do this by
coloring, selecting, sizing, positioning, grouping, and otherwise configuring display
objects on a particular display page. Once you have created a useful display page, you
may save it for futurentrace sessions. Saving a display page is the same as creating or
modifying a configuration file. See Chapter 7 and Chapter 8 for more information.

5-21

NightTrace Manual

Rather than creating your own display page, you cantigice create a default display
page for you. For more information on the default display page, see “Default Page” on
page 5-29 and “Kernel String Tables” on page 11-32.

ntrace User Interface

ntrace displays textual and graphical information, and it provides you with ways to
manipulate this information. These displays and mechanisms make ungréfte user
interface.

The next sections describe the followintyace user interface issues:

¢ Using the mouse
¢ Understanding pointer shapes
¢ Anticipating window layout

* Resizing windows

Using the Mouse

It is assumed that your X server has a three-button mouse. By default, mouse button 1 is
the leftmost button, button 2 the middle button, and button 3 the rightmost button. You can
reassign the functions associated with mouse buttons by usiregimap(1) . If you do

not have a three-button mouse or a standard 101-key North American keyboard, see your
system administrator or read sections on input and navigation i©8E/Motif Style

Guide

You use the mouse with point-and-click interfacesitrace . Each mouse button has a
different purpose. The only mouse button operation you need to know for now is that
clicking mouse button 1 usually does a single selection.

5-22

Invoking the ntrace Display Utility

Understanding Pointer Shapes

When you move the mouse, theouse pointemoves on the screen. You use this pointer
to point to particular parts of the screen. The shape of the pointer shows the current usage.
The following table describes whetrace uses each pointer shape.

Table 5-1. ntrace Pointer Shapes and Their Usage

Shape When Used

E By default

When a menu action is pending

+ While moving a display object

{_ _} While resizing a display object

During display-object placement

During time-consuming operations, for example
while scrolling through a large trace event file

o +

Anticipating Window Layout

Your window managemay automatically place a window frame around your windows. It
may also provide you with a means of performing some standard operations, such as
minimizing (also known asgconifying) or maximizing the window size. If your window
manager provides a window frame, thetmace puts a window title in the title area of

this frame. If you minimize a windowjtrace provides all or part of the window title for

the icon that represents that window.

ntrace windows may contain different mixtures of componentsnirace the window
components include:

5-23

NightTrace Manual

5-24

Menu bars and pull-down menus

Push buttons

Radio buttons

A menu barappears at the top of the window. It consists of labeled
pull-down men(s). When youwselect(click on) a pull-down menu,
entriesappear in a vertical list. Selecting a menu entry with ellipses
on it, causes dialog boxor form to appear. Entries are grouped by
function with separatorsdividing groups. Any destructive items
appear last.

MApush buttoris a graphic image of a labeled button opanel Push
buttons are evenly-spaced in a horizontal panel at the bottom of the
window. The default push button is highlighted by having a border
around it. Pressing Enter> makes the default push button take
effect. Push buttons are organized by frequency of use and grouped
by functionality. Push button names are active verbs. The most-com-
monly-used push buttons imrace are:Apply, Reset, and
Close.

Rather than duplicating functionality in both a menu entry and push
button,ntrace supports the menu entry.

Aadio buttonis a graphic, labeled diamond-shape that represents a
mutually exclusive selection from related radio buttons. Related
radio buttons usually appear on the same panel, a panel between the
menu bar and the push buttons. The first radio button is the default
one. The selected radio button has a different color than the others.

Scroll regions and scroll bars

Text fields

A scroll regionappears between the menu bar and the push buttons.
The scroll baris immediately below or to the right of the scroll
region.

A text field appears between the menu bar and the push buttons.
While a text field is being edited, it contains a blinking vertical bar
called thetext cursor The text cursor shows your current edit posi-
tion within the field.

Figure 5-1 illustrates these window components.

Invoking the ntrace Display Utility

Serall
Reglom
Radin - Bt and
Buotions | :.;: Sevall Bar

' - X8 d.n
FTUPETTS [AATIITITY SNTRL INOT1 FUTIOOY)
Scroll Bur
F i % : Tt
Push Zoam § Ingrement 7> i fime(1omes | Flelds
e Lm | ek | ZoomRegon | Zoomin | ZoomOuw | Retesh |

Figure 5-1. Window Components

Resizing Windows

You can resize all windows intrace . However, many windows require a minimum
size to display information. You can resize some windows only horizontally. When you
make a window widemtrace horizontally stretches any push buttons in that window to
take up the new width.

ntrace Notation Conventions

This manual uses the following notation convention to reference menu entries.

Menu barsconsist of one or morenenu itemsClicking on a menu item causes a
pull-down menu to appeaPull-down menusave selectablentries This manual lists
menu levels (from menu item to menu entry) in the order in which they appear. An arrow

5-25

NightTrace Manual

(1) separates each menu level from the next. To show the progression from menu item to
menu entry, this manual uses the following notation:

menu item | menu entry

For example, if you click on th&ile menu bar item, you may then select thgit menu
entry. This manual shows this procedure as:

Click onFile I Exit
If the menu item consists of more than one word, the procedure is shown as:

Click onFile I Open Config File ...

ntrace Global Window

Unless you invokentrace with an option that writes to standard outpottace starts
up by displaying th&slobal Window. Thentrace Global Window consists of:

* A message display area and its associated scroll bar

* A menu bar

m|

HightT

Help

MightTrace performance analyzer - Verszion 4,2
Copyright {C3 1396, Concurrent Computer Corporation

1 trace event log file read,

kernel trace ewvent log file: Att/hydrogenshomesrub/tmpsnl, jedi,
36111 trace events plus 31240 continuation ewvents,
26111 events saved in memory,
0 trace events lost,

L0 00 1 0 5] 4 ol B | | T
o

10 9,6682967= time span, from 0,0000000= to 9,5582967=,
11

12 Time Baze Regizter was uzed to time stamp events,

13

14 3E111 total events read from disk plus 31240 continuation events,
15 3E111 total events =zaved in memory: 1 events internal to ntrace,
16 0 total trace eventz lost,

17 9,5582967= total time span zaved in memory.

Figure 5-2. Global Window for a Single Trace Event File

Message Display Area

The message display area of tBéobal Window presents the following information:

¢ \ersion information

5-26

Invoking the ntrace Display Utility

* Trace-session statistics grouped by trace event file
¢ Cumulative statistics for all trace event files
* Event timestamp source

* Error messages about corrupted or syntactically-incorntace file
arguments

You can also obtain this statistical information by invokingrace with the
-filestats option. If you invokentrace without any trace event file arguments,
ntrace displays most of the statistics as zero values.

By default,ntrace is sized to hold twenty lines in the message display area. You can
alter this number by changing the size of B&bal Window. To change th&lobal
Window size, resize your window by using features of your window manager. It is not
necessary to resize a window to see messages 21 and higher; you can scroll through all
messages by using the scroll bar.

Menu Bar

The menu bar of th&lobal Window consists of the following menu items:
* File

* Help

File Menu Item

When you click on thé=ile menu item on thé&lobal Window, the pull-down menu
shown in Figure 5-3 appears.

File | Help
Mew F’age E analuyzer

Default Page nourrent

A, R N,
Dmimuh Vet Page

Open Config File ..

bz read,

. om dizk f

Read Event-tdap File ... |y nemory:
; ost,

Exit Span sawve

Figure 5-3. Global Window File Menu

New Page, Default Page, Default Kernel Page, and Open Config File ...,
can all causentrace to bring up a display page. The difference between these menu

5-27

NightTrace Manual

items is the origin and content of the display page. Trefault Kernel Page is
disabled (dimmed) unless you provide a NightTrace kernel trace file. It is discussed in
“Kernel Display Pages” on page 11-22. The rest of these menu entries are discussed later
in this chapter. The regular features of a display page include:

* Create and configure display objects so they graphically depict your trace
session (See Chapter 7 and Chapter 8)

* Examine trace events, states, trace event arguments, and timings using dif-
ferent display objects (See Chapter 6)

* Create, configure, and modify macros, qualified events, and qualified
states (See Chapter 9)

¢ Search for trace events (See Chapter 10)

* Summarize data into statistics for trace events and states (See Chapter 10)

New Page

When you click orFile | New Page on theGlobal Window, a display page with a
dotted but otherwise empty grid appears. This menu item is useful if you want to create a
display page from scratch. Most regular features of a display page are immediately
available on a new page. However, you must create and configure display objects before
you can:

* Examine trace events, states, and trace event arguments using different
display objects

¢ Graphically depict your trace session

NOTE
The new display page comes up in Edit mode. In Edit mode, the

field labels, scroll bar and push buttons on the display page are
disabled (dimmed).

5-28

Default Page

Invoking the ntrace Display Utility

Fie Eck Create Condgure Expressions Teools Help

= Edit
o WE

Thite Sta | coownes Thee Lergth |rovvEunn Thne B[, agamn
E'.'E"IZ:‘.-“ITI- Elsni :ISU'!HJ E'.'E"IE'I-“I"I
Zpom Fapter [20 AL CONPA Thi[o, ozsic

|A.|,'q.'l-|r| F:nm| -'nn-a-| r.1:.t| ."'mnHk;innl -Tm:'ﬂlrl ?-r:r.m-.'-.tl F!H'm-.:hl

Figure 5-4. New Display Page

When you click onFile | Default Page on theGlobal Window, an
automatically-generated display page appears. The purpose of the default display page is
to save you time configuring display objects; if this page does not exactly meet your
needs, you can customize it or you can create a new display ptigee brings up this

page in View mode. All regular features of a display page are immediately available on a
default page.

Beforentrace displays a default display page, it counts the number of processes in your
trace event file(s). Normally, it then creates and displays a default display page with one
StateGraph per process in the trace event file(s). The StateGraph is configured to show all
user trace events. If there are so many processes that their StateGraphs do not fit on the
screen, themtrace does not display any StateGraphs.

When analyzing trace events timestamped by an RCIM synchronized tick clock, if a
thread name is not unique in the trace eventsgce prints a node name along with the
process ID number and thread ID number in the associated GridLabel to identify that
thread.

Figure 5-5 shows a default display page. A brief description of the display objects on this
display page follows. See Chapter 7 for a more detailed description of display objects and
the display page.

5-29

NightTrace Manual

NOTE

The dynamic information that display objects present relates to
the interval, a window into your trace session.

Fie Eck Create Conigore Expressions Tools Hep

- Edit
= Wigw

||'|-ll.1d'. Lhe gt |

r (Eeartxi |

-5 Lx aal
1 1 1 I 1 1 1 | 1 1 1 I 1 1 1 | 1 1
Time Start[r . xxmnees Time Length 2. S Time Erecl 22, 25
Evant Sert[0 Eait Cn it [4 Euerd Ered[7
IN'I'IFH.M":-'J [H] R B T 1,122 150

|Am| ase | Contwr | Mk | ZoomPegion | Zoomwn | Zoemow | Faiesn |

Figure 5-5. A Default Display Page

GridLabel A textual display object that contains a static user-specified text
string. This object labels other objects for clarity

DataBox A display object that displays textual or numeric information such as
the trace event ID or tag and the time the trace event occurred. The
information it displays is related to the current time. A DataBox’s
main use is to display data that is variable in nature and does not lend
itself to graphical representation.

Column A scrollable display object that does not display data itself but holds
graphical display objects: StateGraphs, EventGraphs, DataGraphs,
and Rulers. Its purpose is to define the width of and group together
graphical display objects.

StateGraph A scrollable display object that graphically displays states as bars
and trace events as vertical lines in a Column. The StateGraph shows
relative chronological positions of trace events and states since the
trace started.

5-30

Open Config File

Invoking the ntrace Display Utility

EventGraph A scrollable display object that graphically displays trace events as
vertical lines in a Column. It shows relative chronological positions
of trace events since the trace started.

DataGraph A scrollable display object that graphically displays a trace event
expression as a vertical line or bar in a Column. A DataGraph shows
the relative chronological positions of trace event arguments since
the trace started. The height of the line or bar is proportional to the
value of the expression.

Ruler A scrollable display object resembling a ruler that graphically
displays the time. A Ruler appears within a Column and shows what
time a trace event occurred in a StateGraph, EventGraph, or Data-
Graph.

A configuration file contains user-created display page(s), macros, qualified events,
qualified states, and/or table definitions. When you clickFoke 1 Open Config File

... on theGlobal Window, a dialog box appears. This window prompts you for an
existing configuration file name. To avoid amyrace errors, you must have read
permission for the file. When you open a configuration file, all regular features of a dis-
play page are immediately available.

When you open an existing configuration file that contains display pagetfgice
displays them. This can save time configuring display objects and let you immediately
begin trace event analysis.

TheOpen Config File Dialog Box (shown in Figure 5-6) is made up of:
* A File Name text field
* A Filter text field
¢ A file name scroll region and its scroll bar
* The (default)Open push button
* TheCancel push button

If you decide not to open a configuration file, click @ancel. This action causes the
Open Config File Dialog Box to go away. If you still want to open an existing
configuration file, see “The File Selection Dialog Box” on page 5-34.

For more information on configuration files, see “Understanding Page Configuration
Files” on page 5-12.

5-31

NightTrace Manual

Read Event-Map File

5-32

— Open Dialog

Enter configuration file name:
wad

Fi A
ol
hAakefile
config1
confige
file
name1
arint
printe

prog
| Dpenl Cancel |

Figure 5-6. The Open Config File Dialog Box

I

Filter:|

An event-map file associates user-created mnemonic tags or labels with numeric trace
event IDs. When you click oRile | Read Event-Map File ... on theGlobal Win-

dow, a dialog box appears. This window prompts you for an existing event-map file. To
avoid anyntrace errors, you must have read permission for this file.

Oncentrace reads an event-map file, it is able to display short trace event tags rather
than less-meaningful trace event IDs. By naming your trace events, you can make your
displays much easier to understand.

TheRead Event-Map File Dialog Box is made up of:

* A File Name text field

A Filter text field

A file name scroll region and its scroll bar

The (default)Read push button

TheCancel push button

If you decide not to read an event-map file, click Gancel. This action causes the
Read Event-Map File Dialog Box to go away. If you still want to read an existing
event-map file, see “The File Selection Dialog Box” on page 5-34.

For more information on event-map files, see “Understanding Event-Map Files” on page
5-10.

Invoking the ntrace Display Utility

Enter event—-map file name:;
wad

/
ol
config_page
cpe
easy
easy.c
eventfile
eventfilez
f sim_log

harg n

Filter:|
| Readl Cancel |

Figure 5-7. The Read Event-Map File Dialog Box

Exit
When you click orFile 1 Exit on theGlobal Window, ntrace
* Prompts you to save any unsaved changes, if appropriate
¢ Discards unsaved changes, if appropriate
¢ Deallocates memory it used to store trace events
* Exits

ntrace puts up aVarning Dialog Box if you try to exit fromntrace without saving
your display page changes. If you want to save your changes, clickamtel; as a
result,ntrace removes the dialog box, and you can save your changes. If you do not
want to save your changes, click @¥K; this causestrace to exit.

Help Menu Item

When you click on theHelp menu item on th&lobal Window, the pull-down menu
shown in Figure 5-8 appears.

5-33

NightTrace Manual

He|

= Online kManual -
Copyright {C} 1996, Co

Figure 5-8. Global Window Help Menu

The Online Manual item opens the online version of tiNightTrace Manualsing the
HyperHelp viewer that is shipped as part of the X Window Systehi § product.

The onlineNightTrace Manuatan also be accessed using tihelp utility shipped with
the X Window System. The manual namenisace . For example, from the command
line:

nhelp ntrace

opens the most recently installed version of thightTrace Manualin the HyperHelp
viewer.

The File Selection Dialog Box

TheFile Selection Dialog Box gives you three ways to find a file:

* Type in the exact file name
¢ Scroll through existing file names until you see the one you want

* Type in afilter (file name pattern) fortrace to locate

Typing in the Exact File Name

If you know the exact file name, use the following steps to open the file.

1. Type a file name, possibly with leading directory name(s), intoRHe
Name text field.

2. If you mistype the file name, see “Field Editing” on page 6-16 and correct
the problem.

3. Press<Enter>.
This causestrace toremove theFile Selection Dialog Box.

If you have read permission to this file and it is of the right typgace opens the file.

If it is a configuration file,ntrace puts up any display page(s) from this file. If itis an
event-map filentrace adds those trace event tags and trace event argument formats to
its internal list.

5-34

Invoking the ntrace Display Utility

If opening the file was not successfultrace puts up aWarning Dialog Box. The
warning message in the dialog box differs depending on the problem. When you have
read the warning, click o®K. As aresultntrace removes the dialog box.

If you causentrace to bring up thisFile Selection Dialog Box again, all fields
contain the same values as when you left this dialog box, excetitheName text field
never comes up with more than a directory name.

Scrolling Through Existing File Names

If you would recognize the file name if you saw it, use the following steps to find and open
it.

1. Use the scroll bar to examine the alphabetical list of file and directory
names displayed in the scroll region.

2. Try to find the file name you are seeking.

3. Ifyou find the file:
a. Click on the file name to select and highlight it.
b. Click onOpen.

As an alternative to these two steps, you could double click quickly on the file name.

If you have read permission to this file and it is of the right typgace opens the file.

If it is a configuration file,ntrace puts up all display page(s) from this file. If it is an
event-map filentrace adds those trace event tags and trace event argument formats to
its internal list.

If opening the file was not successfultrace puts up aWarning Dialog Box. The
warning message in the dialog box differs depending on the problem. When you have
read the warning, click o®K. As aresultntrace removes the dialog box.

If you do not find the file in the list:

1. Click on the directory name under which it resides. This selects and high-
lights the directory name.

2. ClickonOpen.
As an alternative to these two steps, you could double click quickly on the directory name.
This causestrace to:

¢ Put the selected directory’s name in thke Name text field
¢ Change to that directored)

¢ Display the file and directory names under that directory
You can repeat the steps in this method until you find the file.

If you causentrace to bring up thisFile Selection Dialog Box again, all fields
contain the same values as when you left this dialog box.

5-35

NightTrace Manual

TIP:

Clicking on the"..” directory causes the scrolled list to be filled with the contents of the
parent directory.

Typing in a Filter (File Name Pattern)

If you know only some of the characters in the file name, use the steps below to find and
open it.

1. Type a file nhame pattern, possibly with leading directory name(s) and
appropriately-placed asterisk(s), into thidter text field. Each asterisk {
in this field represents zero or more characters at this position.

2. Ifyou mistype the field name pattern, see “Field Editing” on page 6-16 and
correct the problem.

3. PreskEnter>.

This causestrace to replace the contents of the scroll region with subdirectory names
and file names that match your pattern. To locate your file in the scroll region and open it,
see the “Scrolling Through Existing File Names” on page 5-35.

If you causechtrace to bring up thisFile Selection Dialog Box again, all fields
contain the same values as when you left this dialog box.

Exercise: Displaying Trace Events

5-36

The following exercise has you graphically display the trace events you logged in “Exer-
cise: Logging Trace Events” on page 4-27.

Copy the/usr/lib/NightTrace/examples/entry_exit_page configuration
file to your directory and call ipage . (See “Understanding Page Configuration Files” on
page 5-12 for more information about configuration files.)

$ cp /usr/lib/NightTrace/examples/entry_exit_page page

Copy thelusr/lib/NightTrace/examples/entry_exit_map event-map file to
your directory and call imap. (See “Understanding Event-Map Files” on page 5-10 for
more information about event-map files.)

$ cp /usr/lib/NightTrace/examples/entry_exit_map map

Invoke ntrace with the trace event file you created in the last exercise and the
configuration file you just created.

$ ntrace log page

NightTrace presents a display page. Concentrate on the dotted grid area in the middle and
the row of push buttons at the bottom. Keep clicking onZle®m Out push button until
the display quits changing. Click on the Ruler around 2 seconds. The display object with

Invoking the ntrace Display Utility

digital “waves” is aStateGraphlt graphically displays trace events and states. The two
“floating” DataBoxesontain textual information about the current trace event and its first
argument, respectively. Notice that the current trace event is identified by its cryptic trace
event ID number. (See “StateGraph” on page 7-14 and “DataBox” on page 7-12 for more
information about StateGraphs and DataBoxes.)

The next few steps get the same display page to show symbolic tags instead of numeric
IDs for trace events.

Close the display page by clicking ¢ile 1 Close. (See “Close” on page 7-19 for more
information about this menu item.)

Read in the event-map file nameuhp by clicking onFile 1 Read Event-Map File
.... (See “Read Event-Map File” on page 5-32 for more information about this menu
item.)

Re-open the configuration file nam@age by clicking onFile 1 Open Config File
.... (See “Open Config File” on page 5-31 for more information about this menu item.)
Click on theRefresh push button on the display page. Notice that the current trace event
is now identified by its symbolic tag because that trace event has an entryrimeghiile.

This exercise continues in “Exercise: Using the Search Tool” on page 10-14.

For practice customizing the graphical user interface, read Appendix B and try “Exercise:
Customizing Display Colors” on page B-5.

5-37

NightTrace Manual

5-38

Viewing Trace Event Logs with ntrace

VIEWING Strategy . . . oot o
The Interval Scroll Bar
The Interval Push BUttOnsS e
The Interval Control Areaot e
Reading Fields
Editing Single Fields
Editing Multiple Fields.
Field EAItingo
Editing Text Fields
Positioning Within TextFields. i i

NightTrace Manual

Overview

Viewing Trace Event Logs with ntrace

ntrace 's display page has two modes: Edit mode and View mode. The words “Edit”
and “View" pertain to the operations you can perform on the graphical display, not the text
fields or scroll bar. This chapter discusddsw modethe mode that displays trace events
and states from your trace event file(s)trace displays this information:

¢ Graphically in configured display object(s) on the grid
¢ Statistically in fields of the interval control area

¢ Uniformly on all display page(s). (This means that changes on one page
are reflected on all pages.)

ntrace uses the samdisplay pagés) in both Edit and View modes. However, toggling
between modes changes the interval scroll bar, fields in the interval control area, and the
push buttons. In View mode, the message display area shows some statistics, as well as
errors and warnings. The default mode for an existing display is View mode.

View mode lets you locate interesting parts of your trace session by:

¢ Shifting with the interval scroll bar
¢ Clicking on some of the interval push buttons
¢ Editing some field(s) in the interval control area

¢ Using the built-in Search tool (See Chapter 10 for more information.)

See Chapter 7 for more information on Edit mode, the components of the display page,
and display objects.

This chapter assumes that you have already created or loaded a display page with
configured display objects. This manual uses the following term conventions:

<Enter> The key on your keyboard that issues a carriage return and line feed.

<Backspace> The key on your keyboard that issues@trl> <h>. Inntrace this
is also<Delete>.

interval A time period in the trace session that has a specific starting and end-
ing time. It is the “window” into the trace session that appears on the
display page.

6-1

NightTrace Manual

i Message
Diispliy
Area

| |

The Grid

[0 1.;| g I d.1

Tmberval
Seroll
EBar

Inerval
Comiral
Area

Inierval
Push
Buttons

Figure 6-1. A Display Page in View Mode

current time The instance in time currently being displayed. It occurs within the
interval. Searches begin at the current time.

currenttime line The dashed vertical bar that represents the current time in a Column.
This line moves to the location of your pointer when you click with
mouse button 1 in a Column. The position of the current time line
determines the values that appear on display pages.

This chapter covers the following topics:
* Mouse button operations in View mode
* Understanding the grid
¢ Deciding what to do next in View mode
¢ Using the interval scroll bar
¢ Using the interval push buttons

¢ Understanding the interval control area

6-2

Viewing Trace Event Logs with ntrace

* Field editing

Mouse Button Operations

Mouse button operations in View mode appear in Table 6-1 and iNitletTrace Pocket
Referenceard. Unfamiliar terminology is defined later in this chapter.

Table 6-1. View-Mode Mouse Button Operations

Button

Use Within a Column

Mouse button 1

Hold down<Ctrl> and
click mouse button 1

Hold down<Ctrl>,

hold down mouse but-
ton 1, and drag horizon-
tally

Mouse button 2

Hold down<Ctrl> and
click mouse button 2

Mouse button 3

Hold down<Ctrl> and
click mouse button 3

Move the current time line to the place where the pointer rests, or put the text cursor
where you clicked in the text field.

Move the mark and the current time line to the place where the pointer rests.

Move the mark to the beginning point of the drag region, and move the current time line
to the ending point of the drag region. The drag region is highlighted as you drag the
pointer.

Write a statistic in the message display area that tells about the trace event where the
pointer rests in a StateGraph or EventGraph.

Write a statistic in the message display area that tells how far the pointer is from the
mark. A positive number means the pointer is to the right of the mark. A negative
number means the pointer is to the left of the mark.

Write a statistic in the message display area that tells about the data item where the
pointer rests in a DataGraph.

Write a statistic in the message display area that tells how far the pointer is from the cur-
rent time line. A positive number means the pointer is to the right of the current time
line. A negative number means the pointer is to the left of the current time line.

6-3

NightTrace Manual

The Grid

alfust = § ||..--|-|: ||-q| - [

Thrwsd; thrssd]

sy Eugaial

Figure 6-2. The Grid

The grid is a region of the display page that is filled with parallel rows and columns of
dots. These dots serve as reference points for display-object alignment. You can alter the
grid dimensions by changing the size of the display page. To change the display page size,
resize your window by using features of your window manager.

Thetrace_open_thread() routine and thentraceud daemon write overhead trace
events into your trace event file. The tags for these trace eventdTarASSOC_PIDand
NT_ASSOC_TID In View mode, you may see these trace events in display objects on the
grid. ntrace assigns each trace event in the trace session a unique ordinal nunalffer or
setbeginning with ordinal number 0. These ordinal numbers appear in the interval control
area and in the message display area. For more information on ordinal trace events, see
“The Interval Control Area” on page 6-11.

Some display objects on the grid contain vertical lines. Each vertical line in a StateGraph
or EventGraph represents a user trace event, kernel trace event, or NightTrace overhead
trace event. If you click on a trace event with mouse buttamtrace writes information

about that trace event in the message display area. Each vertical line in a DataGraph
represents a trace event argument. If you click on a data value with mouse button 3,
ntrace writes information about the data value in the message display area. For
information about StateGraphs, EventGraphs, and DataGraphs, see “StateGraph” on page
7-14, “EventGraph” on page 7-15, and “DataGraph” on page 7-16.

If your grid has a Column and you have not already positioned your interval somewhere
else,ntrace displays in the Column the earliest 5 percent of your trace session. Usually
this information is uninteresting and you want to see other parts of your trace session. The
following list shows the ways you can gerace to locate interesting parts of your trace
session:

¢ Scroll through the interval using the interval scroll bar

* Zoom in or zoom out using interval push buttons

* Change the parameters defining the interval by editing its fields

6-4

Viewing Trace Event Logs with ntrace

* Use theTools O Search menu item to search for a specific trace event or
condition. (See Chapter 10 for more information.)

Viewing Strategy

ntrace is a flexible tool. Depending on your personal preferences and how much you
know about your trace events, there are several ways to locate intervals of interest. The
following flowchart provides information to help you decide what to do next in View
mode.

6-5

NightTrace Manual

Look at the grid

[]

Is the displayed L4
information

interesting yet? ®

®

®

Do one of the following:

Use interval scroll bar to slowly scroll through total trace

run
ClickonZoom Out

Return to Edit mode, alter the display page, and return

to View mode

Click on Tools [] Search and set the search criteria

Change settings in the interval control area

No

Could the
display use
improvement?

Analyze trace event information

¢ Yes

Do one of the following:

ClickonZoom In

Click onCenter

Click on Mark, align the interval, and click on
Zoom Region

:

6-6

Figure 6-3. Deciding What to Do Next in View Mode

Viewing Trace Event Logs with ntrace

The Interval Scroll Bar

Although by its position it may look as if it scrolls the grid, the interval scroll bar scrolls
the interval. Moving the slider of the interval scroll bar allows you to examine different
intervals in your trace session. By moving the slider, you change the displays in display
objects on the grid and in the interval control area. Changes in the display objects are most
obvious when you have a Column that contains both a StateGraph and a Ruler. For more
information on the interval control area, see “The Interval Control Area” on page 6-11.
See Chapter 7 for more information on display objects.

The interval scroll bar is horizontal and extends the entire width of the grid. The left
arrowhead represents the beginning of the entire trace session, not just the part displayed
on the grid or by the interval control area fields. The right arrowhead represents the end of
the entire trace session.

If you have not already positioned your interval somewhere else, the movable slider of the
interval scroll bar is adjacent to the scroll bar’s left arrowhead. When the slider is here, the
Time Start statistic in the interval control area is 0.0000000 seconds. The length of the
slider is proportionate to the amount of the trace session displayed in the interval. By
default, a display page shows 5% of a trace session.

In the following interval scroll bar descriptions, the fields in the interval control area that
are affected by the interval scroll bar includgurrent Time, Time Start, Time End,
Event Start, Event End, andIncrement. For more information on these fields, see
“The Interval Control Area” on page 6-11.

I rouzh

Y T

F - -
T - T

Left Arrowhead Heght Ao row lsesl

Figure 6-4. The Interval Scroll Bar

Manipulating the interval scroll bar in the following ways has the following results.

6-7

NightTrace Manual

Table 6-2. Manipulating the Interval Scroll Bar

Mouse

Action Location Result
Button
Click Any Left If the interval scroll bar slider is not already at the leftmost position:
arrowhead
* Moves the slider to the left.
» Scrolls backwardncrement seconds oncrement percent of
the current display interval.
Click Any Right If the interval scroll bar slider is not already at the rightmost position:
arrowhead
» Moves the slider to the right.
» Scrolls forwardincrement seconds otncrement percent of
the current display interval.
Click 1 Between an » Moves the slider to the side you clicked on.
arrowhead and * Scrolls the current interval by twice the number of seconds in
the slider Increment or by twice the percentage Increment.
Click or 2 Between an » Moves the slider where you clicked and/or dragged.
Drag arrowhead and ¢ Scrolls the current interval accordingly.
the slider « If your current time line was not centered, centers it.
Drag lor2 Slider (Same as preceding entry.)
Press and Any Left or right Causes animated scrolling of data in the direction the arrow points
Hold arrowhead

The Interval Push Buttons

6-8

| Apply | Reset | Center | hark | Zoom Region | Zoom In | Zoom Outl Refresh |

Figure 6-5. The Interval Push Buttons

The interval push buttons let you examine different intervals in your trace session. The
eight push buttons appear just below the grid on the display page. In the following push
button descriptions:

¢ Click on a push button by first pointing to it and then clicking with mouse
button 1.

* Current Time, Time Start, Time End, Time Length, Event
Start, Event End, andEvent Count refer to fields in the interval
control area.

Viewing Trace Event Logs with ntrace

Except for theReset push button, each push button has an effect on:

* The fields in the interval control area
* The display objects on the grid

* The current time line on the grid
The effect of clicking on a particular push button appears next.
Apply (the default)

* Validates any field change(s) in the interval control area and takes
appropriate action.

* Makes corresponding changes to other field(s).
¢ Possibly updates display objects on the grid.
¢ Possibly moves the current time line in a Column.

* |s equivalent to pressingEnter>.

Reset

* Restores changed field(s) in the interval control area to the value(s) they
had immediately after the lagtpply or <Enter>. This works only if you
have not already pressedEnter> or clicked on theApply push button.

* |s equivalent to pressingEsc>.
Center

* Centers the interval around the current time line in a Column.

* Makes corresponding changes Tame Start, Time End, Event
Start, andEvent End.

Mark

* Sets a mark that points to a particular time. A mark is represented by a
solid triangle on the Rulemtrace currently supports only one mark. By
default this mark is at time 0.

¢ Puts a mark at the current time line of all Rulers.
¢ |s useful before clicking oZoom Region.

¢ Can provide a statistic about the distance between your pointer and the
mark.

Some control sequences pertain to the mark, the current time line, and your pointer.

¢ Simultaneously pressingCtrl> and clicking on mouse button 1 moves the
mark and the current time line to the place where your pointer rests.

¢ Simultaneously holding dowrCtrl> and clicking on mouse button 2
causeqitrace to write a statistic in the message display area that tells
how far your pointer is from the mark. A positive number means your

6-9

NightTrace Manual

pointer is to the right of the mark. A negative number means your pointer is
to the left of the mark.

Simultaneously holding dowrsCtrl> and clicking on mouse button 3
causesitrace to write a statistic in the message display area that tells
how far your pointer is from the current time line. A positive number
means your pointer is to the right of the current time line. A negative
number means your pointer is to the left of the current time line.

Simultaneously holding dowrCtrl>, holding down mouse button 1, and
dragging your pointer horizontally in a Column makdsace move the
mark to the beginning point of the drag region and move the current time
line to the ending point of the drag region. The region is highlighted as you
drag the pointer.

Zoom Region

Sets the interval to be the time between the mark and the current time line
(inclusive).

SetsTime Start to either the mark or the current time line, whichever is
leftmost.

SetsTime End to either the mark or the current time line, whichever is
rightmost.

Centers the current time line in a Column.

Displays an error message in the message display area if the mark and the
current time line are at the same place.

Zoom In

Centers the interval around the current time line in a Column.

Divides Time Length by the value ofZoom Factor; this provides a
microscopic view of a smaller interval.

Makes corresponding changes Tome Start, Time End, Event
Start, Event Count, andEvent End.

Zoom Out

Centers the interval around the current time line in a Column.

Multiplies Time Length by the value ofZoom Factor; this provides a
macroscopic view of a larger interval.

Makes corresponding changes Tome Start, Time End, Event
Start, Event Count, andEvent End.

Refresh

6-10

Updates the grid to reflect the result of changes in configuration.
Is implicit with any action that updates the grid.

Should be used when you:

Viewing Trace Event Logs with ntrace

- Open a display page

Switch to View mode from Edit mode

Change a configuration parameter from View mode
- Resize the grid

¢ Differs from the X window manager'sRefresh which redraws the
windows without notifyingntrace

The Interval Control Area

The interval control area is a region of the display page that contains nine fields of
statistics. If you have not already positioned your interval somewhere mtissse
displays in the interval control area the earliest 5 percent of your trace session. Usually
this information is uninteresting and you want to see other parts of your trace session. You
can do two things with the statistics in the interval control area:

¢ Read the fields to obtain information about the interval

¢ Edit the fields to change the interval

Time Start[4,5124576s Time Length [12. 0000000 Time End [15, 5124575
EuentStan|E EuentCounthE EuentEnd|20
£oom Factor|2.00 Increment|25.00:z Current Time |10.91248?Bs

Figure 6-6. The Interval Control Area

Reading Fields

All field values in the interval control area are non-negative numbers. Some fields have
default values. Time fields all display the time in seconds with thé suffix. A
description of each field follows. In the following textterval is the time fromTime

Start throughTime End.

Time Start Is the beginning time of the interval in seconds.
Time End Is the ending time of the interval in seconds.
Time Length Is the amount of time within this interval in seconds. It is the

difference betweeffime End andTime Start.
Current Time Is the present time within the interval in seconds.

Event Start Is the ordinal number (offset), not the trace event ID, of the first trace
event in this interval.

6-11

NightTrace Manual

Event End Is the ordinal number (offset), not the trace event ID, of the last trace
event in this interval.

Event Count Is the quantity of trace events present in this interval. It is the
difference betweekvent End andEvent Start plus one.

Zoom Factor Is the number of times to magnify (or reduce) the interval each time
you click onZoom Out (or Zoom In). The default is 2.

Increment Controls how much the current interval scrolls (and the slider moves)
when you click on an arrowhead of the interval scroll bar or between
an arrowhead and the slider on the interval scroll bar.

This field may contain either a percentage or an absolute amount of
time in seconds. The default is 25%.

Editing Single Fields

Changing the interval control area fields allows you to examine different intervals in your
trace session. Usually you modify fields in the interval control area when you already
know something about your trace events and their distribution.

When you pressEnter> or click on theApply push button at the end of your editing,
ntrace validates the data in each field you modified and takes appropriate action. If
ntrace detects an invalid value, it restores the affected field to its previous value. For
more information on thépply push button, see “The Interval Push Buttons” on page 6-8.

ntrace displays all times in the interval control area in seconds with #iesuffix. You
can enter times into time-related fields in the following ways:

* Numeric time.ntrace assumes that the time unit is seconds.
* Numeric time in seconds with &" suffix.

* Numeric time in microseconds with ar™ suffix.

The following text explains what constitutes a valid field change and describes the effects
of changing a single field. For general information on field editing, see “Field Editing” on
page 6-16.

Time Start A valid change keep3ime Start less than the ending time in the
trace session. The new interval starts at the specified tifiene
Length remains unchanged, but other fields, includinigne End,
change appropriately.

If you setTime Start to the wordstart , ntrace resetsTime
Start to the start time (0 microseconds) of the trace session.

Time End A valid change keep¥ime End greater than the beginning time in
the trace session and greater than or equdlitne Length. The
new interval ends at the specified tim@ime Length remains
unchanged, but other fields, includifgme Start, change appro-
priately.

6-12

Time Length

Current Time

Event Start

Event End

Event Count

Zoom Factor

Viewing Trace Event Logs with ntrace

If you changeTime End so it is smaller thanTime Length,
ntrace setsTime End to Time Length. If you setTime End

to the wordend or an arbitrarily large numbentrace resetsTime

End to the last time recorded in the trace event file(s) and changes
other fields appropriately.

A valid change keep¥ime Length greater than 0 and less than or
equal to the last recorded time in the trace session. The new interval
length is the specified lengthTime End and other fields change
appropriately.

If you setTime Length to the wordall or an arbitrarily large
number,ntrace resetsTime Length to the last time recorded in
the trace event file(s) and changes other fields appropriately.

Thecurrent timeis the specified time.

If the new current time is insidéhe current interval, the current time
line moves appropriately in any Columns and the current interval
remains unchanged.

If the new current time is outsidihe current interval, the interval
shifts so the current time is centered in the interval, the current time
line is centered in any Columns, and the interval length remains
unchanged.

A valid change keep&vent Start less than the number of trace
events logged in the trace session. The new interval starts at the
specified ordinal trace event number (offsefjime Length
remains unchanged, but other fields change appropriately.

If you setEvent Start to the wordstart , ntrace resetsEvent
Start to O andTime Start to 0 microseconds.

A valid change keep&vent End non-negative. The new interval
ends at the specified ordinal trace event number (offSEthe
Length remains unchanged, but other fields change appropriately.

If you setEvent End to the wordend, or an arbitrarily large num-
ber,ntrace resetsEvent End to the total number of trace events
in your trace event file(s).

A valid change keepEvent Count less than or equal to the ordinal
position (offset) of the last trace event recorded in the trace session.
The new trace event count is the specified count. Fields change
appropriately.

If you setEvent Count to the wordall or an arbitrarily large
number,ntrace resetsEvent Count to the total number of trace
events in your trace event file(s) and changes other fields appropri-
ately.

A valid change keepgoom Factor greater than or equal to 1. If
you setZoom Factor to the worddefault or a spacentrace
resetZoom Factor to the default value, 2.

6-13

NightTrace Manual

Increment A valid change keeps percentages greater than 0% and less than or
equal to 100% and absolute numbers greater than 0 microseconds
and less than or equal to the end time of the trace session. If you set
Increment to the worddefault or a spacentrace resets
Increment to the default value, 25%.

If Increment is less than 100% when you click on an interval scroll
bar arrowhead, you see part of the previous interval in this interval.
However, ifincrement is equal to 100%, you see a completely new
interval.

For more information on the interval scroll bar, see “The Interval
Scroll Bar” on page 6-7.

Imerement Increment

multigelied —— multiplied —
; hy 2 1] by 2 L
| i
f !

Increment In€remeint

Figure 6-7. Amount of Scrolling Due to Increment Value

Editing Multiple Fields

6-14

Sometimes it makes sense to change multiple fields for a single effect; for example, you
may wish to change both thEime Start andTime End fields or you may wish to
change both th@ime Start andEvent Count fields. In these cases, apply your
changes only once, after you have edited each field of interest.

Changing some combinations of fields is not meaningful; for example, you may try to
change botirime Length andEvent Count. Whenntrace detects a meaningless
combination of changes, it displays an error message in the message display area and
restores the affected fields to their previous values. Wiitemce detects an invalid

value, it restores the affected field to its previous value.

Some general rules apply to multiple field editing.

* You must not simultaneously apply changes to more than two trace event
fields.

* You must not simultaneously apply changes to more than two time fields;
for these purposeSurrent Time is notconsidered to be a time field.

* You can chang€urrent Time with any other valid field changes as long
asCurrent Time falls within the new interval.

* You can chang@oom Factor with any other valid field changes.

Viewing Trace Event Logs with ntrace

* You can changéncrement with any other valid field changes.

¢ Simultaneously modifying one time field and clearing another time field
makesntrace use the static and modified fields to determine the values
of the cleared time field and the other fields.

¢ Simultaneously modifying one trace event field and clearing another trace
event field makestrace use the static and modified fields to determine
the values of the cleared trace event field and the other fields.

The following table shows all the valid multiple field changes except those that involve
Current Time, Zoom Factor, orIncrement. For information on editing specific
fields of the interval control area, see “The Interval Control Area” on page 6-11. For

general information on field editing, see “Field Editing” on page 6-16.

Table 6-3. Valid Multiple Field Changes

Fields Result

Time Start The new interval starts dtime Start and ends atime End.

Time End

Time Start The new interval starts dtime Start and has a length of the speci-
Time Length fied Time Length.

Time Length The new interval ends d&time End and has a length of the specified
Time End Time Length.

Event Start
Event End

Event Start
Event Count

Event Count
Event End

Time Start
Event Count

Time End
Event Count

Event Start
Time Length

Event End
Time Length

The new interval starts at ordinal trace event number (oftSegnt
Start and ends at ordinal trace event number (offgatent End.

The new interval starts at ordinal trace event number (oftSegnt
Start and includes the specified quantity of trace events.

The new interval ends at ordinal trace event number (offSegnt
End and includes the specified quantity of trace events.

The new interval starts dtime Start and includes the specified
guantity of trace events unless theme Length forcesTime Start
to change.

The new interval ends dtime End and includes the specified
guantity of trace events unless thieme Length forcesTime End
to change.

The new interval starts at ordinal trace event number (oftSegnt
Start and has a length of the specifi#@ime Length unless the
Time Length forcesEvent Start to change.

The new interval ends at ordinal trace event number (ofiSegnt
End and has a length of the specifi@dme Length unless the
Time Length forcesEvent End to change.

6-15

NightTrace Manual

Field Editing

You make changes to fields by following these steps:

1. Do one of the following:

¢ Click with a mouse button on the field you want to edit. Clicking
with mouse button 1 leaves a blinking vertical bar called tiet
cursorwhere you clicked in the field. Clicking with the other mouse
buttons leaves the text cursor at the end of the field.

¢ Drag with mouse button 1 on the field you want to edit.

¢ If there already is a text cursor in a field, you can pre3ab> to
move to the next field ok Shift> <Tab> to move to the previous
field.

2. Use the built-in field editor to change values. Editing procedures follow.

3. Either pressxEnter> or click on theApply push button. This is called
applying your changes

Editing Text Fields

You can make the following types of editing changes in a text field:
* Insert text
¢ Delete text
* Replace text

¢ Undo atext change

Table 6-4. Making Editing Changes

Goal Steps to Attain Goal
Insert Position the text cursor where you want to insert character(s).
character(s) Type in the additional character(s).

Delete one character
to the right

Delete one character
to the left

6-16

Position the text cursor to the left of the character to be deleted.
Simultaneously pressCtrl> <d>.

Position the text cursor to the right of the character to be deleted.
Either pressBackspace>, <Delete>, or simultaneously press
<Ctrl> <h>.

NP NP DN

Viewing Trace Event Logs with ntrace

Table 6-4. Making Editing Changes

Goal

Delete adjacent
character(s)

Replace adjacent
character(s)

Replace all
character(s)

Restore the
default value

Undo editing change(s)
since the laskEnter>
or Apply

Steps to Attain Goal

=

Point to the first character to be deleted.

2. Dragthe pointer across any other characters to be deleted, release the mouse button,
and keep the pointer in the field. This highlights the characters you dragged the
pointer across.

3. Either pressBackspace>, <Delete>, or simultaneously press

<Ctrl> <h>.

=

Point to the first character to be replaced.

Dragthe pointer across any other characters to bereplaced, release the mouse button,
and keep the pointer in the field. This highlights the characters you dragged the
pointer across.

Type in the new character(s).

N

Position the text cursor anywhere in the field you want to modify.
Simultaneously pressCtrl> <u>. This highlights all characters in the field.
Type in the new character(s).

A

Replace all character(s) in the field with either a single space character or the word
default. Note: Some fields do not have default values.
2. Pres<xEnter> or click onApply.

Position in the window you want to modify.
Press<Esc> (or click onReset if this is available).

N

Sometimes it is desirable to change multiple fields before applying the changes. In these
cases, apply your changes only once, after you have edited each field of interest.

When you pressEnter> or click onApply at the end of your editingitrace validates
the data in each field you modifiedtrace rarely issues error messages about editing
errors it detects. Usually it takes a default action. Some of the default actions include:

* If you enter an invalid value, for example alphabetic characters in a
numeric field,ntrace ignores the changes and restores the previous val-
ues.

¢ Usually, if you enter a number that exceeds the maximum valinace
replaces it with the maximum value.

¢ |f arange’s starting value exceeds its ending vahiggce swaps them.

6-17

NightTrace Manual

Positioning Within Text Fields

You can either position the text cursor to a particular place within a field by either clicking
or typing in key sequences. The following key sequences move the text cursor only if you
are already positioned in a text field.

Table 6-5. Positioning Within a Text Field

Goal Steps to Attain Goal

Move text cursor left Press<LeftArrow> or simultaneously pressCtri> .
one character This action may cause scrolling.

Move text cursor right Press<RightArrow> or simultaneously pressCtrl> <f>.
one character This action may cause scrolling.

Move text cursor to next Press<Tab>.
field

Move text cursor to pre- Press<Shift> <Tab>.
vious field

6-18

7
Creating Display Objects

OVBIVIBW . ottt e e e 7-1
The Display Page.o 7-2
Display Page Modes 7-3
Edit MOde 7-4
VIeW MOOe . .. 7-4
Operations on Display Objects i e 7-4
Creating Display Objects 7-5
Selecting Display Objects.o 7-6
Moving Display Objects. 7-7
Resizing Display Objects 7-7
Display ObjJecCtso 7-8
GridLabel 7-12
DataBoOX . ..ot 7-12
COIUMN . 7-13
StateGraph o 7-14
BventGraph. 7-15
DataGraph. 7-16
RUIET . 7-17
Editing Operations.t 7-17
Select All ... 7-18
Deselect All .. .o 7-18
Delete . . 7-18
File Operations i 7-18
SV 7-18
SAVE AS et 7-19

NightTrace Manual

7
Creating Display Objects

Overview

Display Puge

o |

.. =
T

|2I|I-|IIII-I‘III‘I.:.IIIIII|‘IJIIIIIII

Figure 7-1. Display Page with Display Objects

Figure 7-1 shows what a display page may look like when you invatkece and
specify the default display page. The default display page contains display objects. (See
“Default Page” on page 5-29.Display objectdilter, process, and display the information

in the trace event file. These display objects are created with the display page and then
viewed on the display page. You may want to create your own set of display objects to
view your trace event file. To do this, follow the steps below.

1. Read “The Display Page” on page 7-2 to learn about the various parts of a
display page.

2. Read “The Display Page” on page 7-2, which describes the different modes
a display page can be in: Edit and View.

7-1

NightTrace Manual

3. Putthe display in Edit mode.

4. Read “Display Objects” on page 7-8, which explains what a display object
is and what the different types of display objects you can put on your
display page are.

5. Read “Operations on Display Objects” on page 7-4, which explains how to
perform various operations (creating, selecting, moving and resizing) on
display objects.

6. Create the various display objects you want and place them on the display
page. Move or resize any display objects necessary to improve the layout
of the page.

The Display Page

Message

Diispliy
Area

The Grid

[0 1.;| I]-l I d.1
|||||||||||||||||-|||||| Interval

I|'II|IIII|IIII|IIII
Seroll
EBar

Buttons

Figure 7-2. Elements of a Display Page

7-2

Creating Display Objects

A display pagdets you view the trace event data in the trace event file. Figure 7-2 shows
an example of a display page and points out the portions of the display page. Following is
a brief description of the portions of a display page:

Menu bar Contains menu items. When you click on a menu item in the
menu bar, a pull-down menu appears with a list of related
menu entries. You can then initiate an operation on the menu.

Mode buttons Are radio buttons that control whether the display page is in
Edit or View mode and allow you to switch between modes by
clicking on them.

Message display areBisplays error and status messages. It has a scroll bar so you
can view previous or current messages.

Grid Contains display objects. Figure 7-2 shows a grid before any
display objects have been created.

Interval control areaContains information on the current interval being displayed
and the controls to manipulate the display.

Display Page Modes

File Edit Creat

- Edit
e Wiew

Figure 7-3. Edit and View Mode Buttons

Display pages can be operated in one of two modes: Edit mode or View rEdidenode

lets you make changes to the display obje®isw moddets you view the execution of
your application via the trace event file. The buttons for Edit and View mode are in the
upper left-hand corner of the display page. If the display is in Edit mode, the button beside
the word ‘Edit” is depressed. Otherwise, thdew button is depressed and the display
will be in View mode. To change modes, click with any mouse button on the button beside
the desired mode.

7-3

NightTrace Manual

Edit Mode

View Mode

When the display page is in Edit mode, you can perform any of the operations on the menu
bar excepflools, which is disabled (dimmed). The interval scroll bar, push buttons, and
fields in the interval control area are disabled too.

Once you have created a set of display objects and configured them, you can view the
trace event information in the trace event file.

To view the data in the trace event file, the display page must be in View mode. However,
if the display page is in View mode, you will not be able to create, edit, or configure
display objects. See Chapter 6 for information on running (viewing) a display page.

Operations on Display Objects

7-4

This section describes some operations you can perform on display objects. The four
operations discussed are:

¢ Creating new display objects and placing them on the grid
¢ Selecting display objects

* Moving display objects around the grid

* Resizing display objects

Each of these operations involves using the mouse buttons and the grid. Figure 7-4,
Table 7-1, and th&lightTrace Pocket Referen@ard show which mouse buttons
correspond to which operations. These operations are referredgridagperations You

can perform other operations on display objects usingatigd andConfigure menus.

Edit operations are discussed later in this chapter. See Chapter 8 for more information on
configure operations.

Creating Display Objects

Create or Select = - Resize

Move

Figure 7-4. Button Functions on a Mouse

Table 7-1. Edit-Mode Mouse Button Operations

Button Use Within the Grid

Mouse button 1 Create new objects, single select by clicking, or
multiple select by dragging

<Ctrl> mouse button 1 Select the Column display object

<Shift> mouse button Multiple select or toggle selection
1

Mouse button 2 Move display objects
<Ctrl> mouse button 2 Move the Column display object
Mouse button 3 Resize display objects

<Ctrl> mouse button 3 Resize the Column display object

Creating Display Objects

Before you can do any of the other operations, you must first create a display object.
When you create a display object, you choose its place on the grid and its size.

7-5

NightTrace Manual

Creating display objects involves three steps: selectiogding) the type of display
object to be drawn, selecting the place on the grid where the display object will go, and
selecting the size of the display object.

Some display objects go only inside of other display objects. StateGraphs, EventGraphs,
DataGraphs and Rulers go only inside a Column.

To create a display object and place it on the grid, do the following:

1. Place the pointer on th@reate entry on the menu bar and click mouse
button 1.

2. Select the type of display object you want to create. Note that the pointer is
now a crosshair. The display object is now “loaded.”

3. Move the pointer until it is on the grid where you want to place a corner of
the display object. As mentioned previously, some display objects go only
inside of Columns. If the cursor is on the border of a Column or outside of
one, you will not be able to draw these display objects. Note that the left
and right sides of these display objects are determined by the Column, and
you only have to place the pointer somewhere on the intended top or
bottom edge of the display object.

4. Click and drag mouse button 1 until the display object is the size you want
it to be. While you are sizing a display object, its boundaries are shown as
dashed lines. Note that if you press thesc> key before releasing mouse
button 1, the operation aborts. The display object is still loaded, as signified
by the crosshair at the pointer location, so you can immediately try to
recreate the display object. Also note that display objects must not overlap
(except for graphical display objects, which must overlap a Column).

5. Release mouse button 1. The display object should appear on your grid
with solid line boundaries, unless there was an error (e.g., you placed a
DataBox on top of an existing GridLabel). Notice that the display object is
also selected (corners have handles). This is in case you want to move,
configure, or resize it at this time.

Selecting Display Objects

7-6

Often, you must select a display object before performing grid and edit operations. For
example, before you can resize a display object you must first select the display object.

To select a single display object, simply click on the display object with mouse button 1.
The display object now has handles at the corners, indicating that the display object is
selected.

When display objects are inside a Column, it is sometimes difficult to select the Column.
To select an unselected Column, hold down<i@ontrol> key and click mouse button 1.
If you perform the same action in a selected Column, the Column is deselected.

You can select multiple display objects three different ways. The first way to select
multiple display objects is as follows:

1. Position the cursor outside the display objects you want to select.

Creating Display Objects

2. Click mouse button 1 and drag the mouse until the rectangle that is formed
completely surrounds only the display objects you want to select. If a
display object is not completely surrounded by the rectangle, it will not be
selected.

3. Release mouse button 1. The display objects that were within the rectangle
will now have handles at each corner.

The second way to select multiple display objects is by using<®kift> key. Holding

down the<Shift> key and clicking mouse button 1 while the cursor is in an unselected
display object selects that display object without deselecting any other display objects.
This allows you to select any set of display objects that you want. If you perform the same
action in a display object that is already selected, the display object is deselected.

The third way to select multiple display objects is described in “Select All” on page 7-18.

Moving Display Objects

To move a display object to somewhere else on the grid, do the following:

1. Select the display object(s). Refer to “Selecting Display Objects” on page
7-6.

2. Using the mouse button 2, click anywhere on or within the selected display
object(s) and drag to the desired location.

3. Release the middle button.

When display objects are inside a Column, it is sometimes difficult to move the Column.
To move a selected Column, hold down #h@ontrol> key and click mouse button 2.

Display objects must not overlap, except certain display objects bauptaced inside a
Column. If you try to move a display object on top of another display objetcace
displays an error message in the message display area and aborts the move.

Resizing Display Objects

To resize a display object on the grid, do the following:

1. Select the display object. See “Selecting Display Objects” on page 7-6 for
more information.

2. Using mouse button 3, click on a handle and drag until the desired size is
reached.

3. Release the right button.

When display objects are inside a Column, it is sometimes difficult to resize the Column.
To resize a selected Column, hold down th@ontrol> key and click mouse button 3.
Note that a Column cannot be vertically resized smaller than the minimum space required
to hold all the StateGraphs, EventGraphs, DataGraphs and Rulers that it contains.

7-7

NightTrace Manual

Display objects must not overlap, with the exception that certain display objects need to be
placed inside a Column. If you try to resize a display object on top of another display
object,ntrace displays an error message in the message display area and aborts the
resize.

Display Objects

7-8

: Create|C0nﬁgure Expr

T GridLabel |

DataBox

Column
:' EventGraph [~

StateGraph

DataGraph |00 00000

Buler |-+ - .

Figure 7-5. Create Display Objects Menu

Display objects, which are created via tBeeate menu shown in Figure 7-5, can be
thought of as combination filters and formatters for the data stored in the trace event file.
Every time a display object is updated, it filters through the data in the trace event file. The
display object accepts input in the form of a trace event record, processes and reformats
the information, and displays it. The following information is in a trace event record:
numeric trace event ID, global process identifier (PID), NightTrace thread identifier
(TID), time, and optional arguments. NightTrace also keeps track of the ordinal number
(offset) of a trace event. You can usgace functions to express any of these values.

For more information about functions, see “Functions” on page 9-9.

Although the trace event file contains trace events, it also implicitly contains states. The
concepts of trace events and states are key to understanding display objects.

trace event Corresponds to the point in the execution of your application when a
trace_event() call was executed. All the data logged at that
time (trace event ID, arguments, etc.) is considered a trace event.

state A state is bounded by two trace events, a staentand an enevent
An instance of a state is the period of time between the start event
and end event, including the start and end events themselves. Addi-
tional conditions may be specified in a state definition to further con-
strain the state. Instances of states do not nest; that is, once a state
becomes active, events that might normally satisfy the conditions for
the start event are ignored until the end event is encountered.

Different types of display objects display information in different ways. Depending on the
type of information you want to display, you choose the display object or objects you wish

Creating Display Objects

to create. You can then configure those display objects to filter out unwanted data and
process the information that you want displayed. This allows you to watch only the data of
interest. Of course, all of this is dependent on the application having the necessary
trace_event() calls enabled and inserted in the appropriate places.

All display objects are rectangular, but you specify the dimensions of the rectangle. Other
properties of display objects you should be aware of are:

¢ Display objects can be dynamic or stafiynamicmeans the contents vary
depending on values in the trace event file and may change depending on
what point in the execution of the application you are lookingsatic
means the contents do not change. All display objects except the GridLabel
and the Ruler are dynamic.

* Display objects can be configurable or non-configurall®nfigurable
means you define the parameters that determine the content of the display
object.Non-configurablemeans the display object has no parameters. All
display objects except the Column are configurable.

* Display objects can be textual or graphicalextualmeans the contents
consist of words or numbersGraphical means the contents are lines or
shapes, like a bar chart.

¢ Display objects can be scrollable or non-scrollab&crollablemeans the
display object acts as a movable window into the trace event file.

The basic types of display objects you can create are listed below and discussed in the fol-
lowing sections.

GridLabel Static textual display object that contains a user-specified string of
text and is used to label other display objects for clarity.

DataBox Dynamic display object that displays textual information, such as the
trace event tag or the time the trace event occurred. Its main use is to
display data that does not lend itself to graphical representation.

Column Dynamic display object that does not display data itself but holds the
scrollable graphical display objects: StateGraphs, EventGraphs, Dat-
aGraphs, and Rulers. Its purpose is to group together related graphi-
cal display objects. It is the only non-configurable display object.

StateGraph Dynamic, scrollable, graphical display object that displays a state as
a bar and other trace events as a vertical line. It indicates the states’
and trace events’ relative positions in time since the trace started.
This display object is usually used if you want to know when the
application enters and exits a particular user-defined state.

EventGraph Dynamic, scrollable, graphical display object that displays a trace
event as a vertical line and indicates its relative position in time since
the trace started. Use this display object if you want to know when
particular trace events occur.

DataGraph Dynamic, scrollable, graphical display object that displays a data as a
vertical line or bar and indicates its relative position in time since the
trace started. The height of the line or bar can be made proportional
to the value of a trace event argument or other data. Use this display

7-9

NightTrace Manual

7-10

object to display relative values of arguments in the trace event
record.

Ruler Static, scrollable, graphical display object resembling a Ruler that
displays the time. Rulers are used with StateGraphs, EventGraphs,
and DataGraphs to show what time a trace event occurred.

Each display page can hold multiple instances of these display objects, usually with each
display object uniquely configured. All display objects on all display pages reflect the
same interval; display object type, size, configuration, and position have no bearing.

Display objects just created in Edit mode contain little useful information. The
illustrations of display objects in this chapter show the display objects in View mode.

Figure 7-6 contains a flowchart to help you decide what display objects suit your needs.
To use the flowchart, decide what type of information you want to display. Then start at
the upper left-hand corner of the chart in the box labeled “Start.”

Creating Display Objects

f

Do you
want to Text
. Is the text Use a
display text . constant? GridLabel
or graphics?
Use a
Graphics - DataBox
Do you
Create a) Use a
Colurmn P want a time Rul
Ruler? Her

Do you
want to
graph states
or events?

Yes Use a StateGraph

or Event Graph

Do you
want to graph
argument or
expression
values?

Use a
DataGraph

7-11

NightTrace Manual

GridLabel

DataBox

7-12

Figure 7-6. Display Object Use Flowchart

Hit Count | @0 po i il

oo | Available For | oo
~ | Too tuch | o [Quick Loading [

Samples From Distribution #6

Figure 7-7. GridLabel Examples

Clicking onCreate 0 GridLabel lets you draw or create a GridLabel display object on

the grid. AGridLabelis a rectangle that contains a string of text. This text usually is a title

or description of an adjacent display object on the grid and makes the display page easier
to interpret. GridLabels can appear anywhere on the grid, but they cannot go inside a
Column. You can put several GridLabels on a grid.

If the text is too long to fit into the GridLabel, the lower right corner of the box is filled in.
If this occurs, you should resize the GridLabel. This is described in “Resizing Display
Objects” on page 7-7. A newly created label contains the vialbdl . See “GridLabel”

on page 8-12 for more information.

GridLabels are static display objects. That is, a GridLabel does not change its appearance
or contents depending on the trace event data.

In addition to specifying the text inside of the GridLabel, you also specify the color of the
text (and background), the font of the text, and where in the box the text will appear (for
example, top vs. bottom). See Chapter 8 for more information.

hardclock
data access
poll mip

Figure 7-8. DataBox Examples

Clicking onCreate [0 DataBox lets you draw or create a DataBox display object on
the grid. ADataBoxis a rectangle that textually displays data from the trace event file.

Column

Creating Display Objects

Although the data is usually related to the last trace event received, it can also be a cumu-
lative total or other manipulations of data in the trace event file.

DataBoxes are useful when you want to display data that does not lend itself to graphical
representation, as shown in Figure 7-8. This figure shows three databoxes: the top
DataBox contains the interrupt name, the middle contains the exception name and the bot-
tom contains the syscall name. If the value is too large to fit into the DataBox (e.g., a long
trace event tag), the lower right corner of the box is filled in. If this occurs, you should
resize the DataBox. This is described in “Resizing Display Objects” on page 7-7. By
default, numeric data is displayed in decimal integer. (For information about overriding
this default, see “Understanding Event-Map Files” on page 5-10, “format()” on page 9-80,
and “get_format()” on page 9-79.) A newly created DataBox contathsSee “DataBox”

on page 8-13 for more information.

DataBoxes can appear anywhere on the grid except within a Column. You can put several
DataBoxes on a grid.

Some examples of data that you can configure a DataBox to show are:

* The tag of the last trace event before the current time (See Table 8-3.)

* The NightTrace thread name of the last trace event before the current time
(See Table 8-3.)

¢ A particular argument logged with the last trace event before the current
time (See “arg()” on page 9-20.)

* The total amount of time the application was in a particular state before the
current time (See “state_dur()” on page 9-57 and “sum()” on page 9-72.)

* The number of times a particular trace event has occurred before the
current time (See “event_matches()” on page 9-33.)

¢ A string of characters generated by a format expression (See “format()” on
page 9-80.)

Figure 7-9. Column Example

Clicking onCreate [0 Column lets you draw or create a Column display object on the
grid. When aColumnis first created, it is an empty rectangle that does not display data of
its own. A Column holds StateGraphs, EventGraphs, DataGraphs and Rulers. It provides a
convenient way of associating these graphical display objects. Figure 7-9 shows a Column
after a Ruler has been added.

7-13

NightTrace Manual

StateGraph

7-14

Columns ensure that all graphical display objects within them have the same physical
starting point and ending point and the same time scale. Columns are not configured, so
the only variations between Columns are in their height and width.

Without a Column, you cannot put any StateGraphs, EventGraphs, DataGraphs or Rulers
on your grid, so you must create a Column before you can create any of these display
objects.

You can place a Column anywhere on the grid. You can put more than one Column on a
grid. This allows you to group related graphical objects together. All of the Columns,
however, show the same interval and current time in View mode.

To hold a Ruler and any other graphical display object, Columns must be at least five grid
dots high. Wider Columns are recommended because they determine the resolution to
which trace events can be displayed.

TIP:

On a monochrome display, make sure that you can differentiate among display objects
within a Column. The easiest way to do this is to leave at least one grid dot between
display objects in a Column and to make the background color of the Column black. For
more information on setting a Column’s background color, see “Default X-Resource Set-
tings for ntrace” on page B-2.

2. 41ds EELE il Al Al |
A | i i ' B AL | ||||| ' B i ||||||

Figure 7-10. StateGraph Example

A stateis bounded by two user-specified trace events, a starhtand an eneévent An

instance of a state is the period of time between the start event and end event, including the
start and end events themselves StateGraplhrepresents an instance of a state as a solid
horizontal bar that starts when the state is active and ends when the state is inactive.
Instances of the same state do not nest; thus, once a state becomes active, events that
might normally satisfy the conditions for the start event are ignored until the end event is
encountered. You can create a StateGraph by clickinG@ate [0 StateGraph and

drawing on the grid.

StateGraphs must be placed in a Column. A StateGraph and a Ruler are shown in
Figure 7-10.

A StateGraph can display trace events in a manner identical to an EventGraph. This can
be useful for saving screen space or detecting when state start and state end trace events
occur out of order. For example, the trace event lines can show multiple state start trace
events occurring before a state end trace event.

Some examples of information that StateGraphs can be used to display are:

EventGraph

Creating Display Objects

* The times your application is executing a particular subroutine
* The differences in the execution speed of parallel threads

* The time spent in contention for resources
See “StateGraph” on page 8-14 for more information.

In View mode, to find out more information about a particular trace event, position the
cursor on a trace event line and click once with mouse button 2. Information about that
trace eventis displayed in the message display area. You can also click with mouse button
2 on the start and end of a displayed state to obtain information about the state start and
state end trace events.

T,

=N

B, 1.5
Ll lwlela b ba b Il L]

Figure 7-11. EventGraph Example

Clicking onCreate [0 EventGraph lets you draw or create an EventGraph display
object on the grid. ArEventGraphrepresents trace events as a thin vertical line. Event-
Graphs must be placed in a Column. Figure 7-11 shows an EventGraph with a Ruler
below it.

Some examples of information that an EventGraph can be used to display are:

* The times your application starts executing a particular subroutine
* The sequence of execution of various modules in your application
* The timing of the birth and death of child processes

See “EventGraph” on page 8-16 for more information.

In View mode, to find out more information about a particular trace event, position the
cursor on the line and click once with mouse button 2. Information about that trace event
is displayed in the message display area.

7-15

NightTrace Manual

DataGraph

7-16

Figure 7-12. DataGraph Examples

Clicking onCreate [0 DataGraph lets you draw or create a DataGraph display object on
the grid. DataGraphs must be placed in a Column. They represent data as either vertical
lines or bars of varying height. In Figure 7-12 the same set of data is used to draw the two
basic types of DataGraph. The top DataGraph is a line DataGraph, which shows the data
as vertical lines of varying height. The bottom DataGraph is a bar DataGraph, which
consists of bars of varying height. The height of the line or bar is proportional to data from
the trace event file. This display object is usually used to display values of arguments in
the trace event record.

Some examples of ways that a DataGraph can be used are:

* Track the value of an expression over time

¢ |dentify when an application variable takes on an abnormally high or low
value

When choosing a size for your DataGraphs, make sure that they are high enough for you
to distinguish differences in data values. See “DataGraph” on page 8-17 for more
information.

TIP:
The higher you make the DataGraph, the easier it is to differentiate similar data points.

In View mode, to find out about the trace event that caused the data value expression to be
evaluated at a particular point, position the cursor on the line (or bar) and click once with
mouse button 2. Information about the trace event is displayed in the message display
area.

In View mode, to find out the value of a particular data item, position the cursor on the line
(or bar) and click once with mouse button 3. The value of that data item is displayed in the
message display area.

Creating Display Objects

Ruler

18.4722s 18,4723s 18, 47245 18.4725= 18.4726= 18.4727=
T N T I EE T A T N T I T

Figure 7-13. Ruler Example

The interval control area, which is described in “The Interval Control Area” on page 6-11,
has three numeric fields that list the beginning, end, and current time for the time interval
displayed in the Column. Rulerdisplay object, however, displays this information in a
graphical format on the grid. Like their physical counterparts, Ruler display objects have
major and minor hash marks to mark divisions, but the units are of time, not distance.
They represent the amount of time since the first trace event was logged. Usually the first
trace event is logged by thteace _open_thread() call. You can create a Ruler by
clicking onCreate 0 Ruler and drawing on the grid.

In addition to hash marks and numbers, Rulers can also have lost-data indicators and a
mark. The lost-data indicator is a reverse-vidéd and indicates the location in time
where NightTrace lost some data. For more information on trace event loss, see “Prevent-
ing Trace Events Loss” on page A-1. Marks are explained in “The Interval Push Buttons”
on page 6-8.

Rulers are static display objects. That is, they do not change their appearance or contents
depending on the trace event data. They do change their appearance, however, to reflect
the current interval being displayed.

A Ruler should be at least three grid dots high. In addition to determining the size of the
Ruler, you also specify other aspects of the Ruler. See “Ruler” on page 8-19 for more
information.

Editing Operations

Edit| Create Con

_ Select All |

8 Deselect All
K Delete

Figure 7-14. Edit Menu

7-17

NightTrace Manual

Select All

Deselect All

Delete

Editing operations are enabled only when the display page is in Edit mode, which is
selected by clicking on the radio button labeld&ttit” in the upper left-hand corner of the
display page.

Select All selects every display object on the grid. This is useful when you want to
perform some operation on every display object on the grid (for example, moving or
deleting every display object).

Deselect All deselects every selected display object on the grid.

Delete deletes the selected display object(s).

File Operations

Save

7-18

File | Edit Cre
Save |:

Save As ..

Close

Figure 7-15. File Menu

The file operations are accessed throughRie operations menu shown in Figure 7-15.

Save saves the current display page (including all local macros, qualified events, and
qualified states) to the configuration file you opened. Thus, any changes you have made
since the lasSave operation will be saved. You can continue editing or viewing the
display after this operation. Th&ave operation is disabled (dimmed) if this is a new

Save As ...

Close

Creating Display Objects

display page, or you have not made any changes since the last time the display page was
saved. Instead, ustave As

Save As ... saves the current display page to a file other than the one you opened. You
can continue editing or viewing the display after this operation.

Save As ... uses a@ile Selection Dialog Box to prompt you for a file name. See
“The File Selection Dialog Box” on page 5-34 for more information.

Close ends the current editing/viewing session, resets all field and radio button settings,
and clears the message display area. If you have unsaved changes and yolode,a
Warning Dialog Box appears, reminding you that you may want to save you changes.

7-19

NightTrace Manual

7-20

8
Configuring Display Objects

OVBIVIBW . ottt e e e 8-1
Common Configuration Parameters i 8-1
Display Object Name 8-4
EVeNt LISt .. .o 8-4
- EXPreSSION . . 8-4
Then-EXPression. 8-5
CPU LiSt. oo 8-6
PID LISt . .t 8-7
TID LISt o e 8-8
NOde LISt . ..o 8-9
Foreground Coloro 8-9
Background Color. oo 8-9
FONt. . 8-9
TeXt JUSHIfY . . 8-9
TeXt GraVvity . ..ot 8-10
Configuration Form Push Buttons. i 8-10
Specific Configuration Parameters 8-11
GridLabel 8-12
DataBoX . ..ot 8-13
StateGraph 8-14
BventGraph. 8-16
DataGraph. 8-17

RUIBT . o 8-19

NightTrace Manual

Overview

8
Configuring Display Objects

Customizing a display object so that it displays only the information you want it to — in the
way that you want it to — is calledonfiguring Configuring is done with th€onfigure
0 Content menu item shown in Figure 8-1.

Cunﬁgure| Expressi

Figure 8-1. Configure Command Menu

Sections on configuring display objects discuss the following topics:

¢ Configuration parameters that are common to many display objects
¢ Operations you can perform on the configuration data

¢ Configuration parameters that are specific to each type of display object

NOTE

Columns are the only display objects that are not configurable.

Common Configuration Parameters

Different types of configuration parameters exist. Some parameters are concerned with
how the information appears in the display object. These parameteFoaeground

Color, Background Color, Font, Text Justify, Text Gravity, Fill Style, Event

Color, Lost Event Color, Mark Color, Maximum, andMinimum. For each config-
uration parameter that pertains to color, there is an equivalent X resource. See Appendix B
for more information.

Other parameters are concerned with determining the content of the information in the
display objects. The parameter that does thiBHgn-Expression.

8-1

NightTrace Manual

The last type of parameter is concerned with constraining the information that appears in
the display object. These parameters act as filters, allowing only data that meets certain
criteria to be displayed. These parametersiEvent List, If-Expression, CPU List,

PID List, TID List, Start-Events, End-Events, Start-Expression, and
End-Expression.

The configuration parameters are changed with the same editing methods used in the
interval control area. See “Field Editing” on page 6-16 for more information. Note that
you can typedefault or just a space in a field to get the default value.

Many of the display objects share common configuration parameters. These common
configuration parameters are summarized in Table 8-1 and discussed in the following
sections. For more information about configuration parameters, refer to the sections on
configuring the object you are interested in.

Table 8-1. Common Configuration Parameters

Parameter Name

Possible Values Meaning

Display Object Any alphanumeric string beginning with ¢ The name of the display object.
Name letter. Underscores are also
allowed. Spaces are not allowed.
Any meaningful combination of the fol-
lowing:
 ALL » Alltrace events are caught.
 ALLUSER » All user trace events are caught.
Event List ALLKERNEL » All kernel trace events are caught.
* NONE * No trace events are caught.
e 0,1, 2, ..., 4095 Listed user trace events are caught.
» 4100, 4101, 4102, ..., 4300 Listed kernel trace events are caught.
* A comma-separated list of alphan ¢ The tags of trace events as specified in
meric strings beginning with letter: an event-map file are caught. See “Un-
Underscores are also allowed. Spat derstanding Event-Map Files” on page
are not allowed. 5-10 for more information.
If-Expression Boolean expression Expression is any valid boolean C-like
expression, possibly containing functions
or macros. See Chapter 9 for more
information.
Then- Numeric expression or string Expression is any valid C-like expression,
Expression possibly containing functions or macros.
See Chapter 9 for more information.
ALL All CPUs are listened to.
CPU List NONE No CPUs are listened to.
1, 2, 3, .. Listed CPUs are listened to.

8-2

Table 8-1. Common Configuration Parameters (Cont.)

Configuring Display Objects

Parameter Name

Possible Values

Meaning

Any meaningful combination of the fol-
lowing:

PID List * ALL » All PIDs are listened to.
 NONE * No PIDs are listened to.
« 1231, 456’1, 7891, ... » Listed PIDs are listened to.
» A comma-separated list of alphani ¢ The name of a process.
meric strings beginning with letter:
Underscores are also allowed. Spat
are not allowed.
Any meaningful combination of the fol-
lowing:
TID List « ALL » Al TIDs are listened to.
* NONE * No TIDs are listened to.
« 1231, 456’1, 7891, ... » Listed TIDs are listened to.
* A comma-separated list of alphani ¢ The name of a thread as specified in
meric strings beginning with letter: the trace_open_thread() call.
Underscores are also allowed. Spat See “trace_open_thread()” on page
are not allowed. 3-9 for more information.
Any meaningful combination of the fol-
lowing:
Node List « ALL » All nodes are listened to.
* NONE » Nonodes are listened to.
« 0,14 Listed node IDs are listened to.
» Acomma-separated listofhostname¢ ¢ The name of a node/host.
Spaces are not allowed.
Foreground The colors your X server supports, as sp: The color used by the display object to
Color ified in thergb.txt file. draw text and graphics in the foreground.
Background The colors your X server supports as, spt The color in the background that any text
Color ified in thergb.txt file. and graphics are drawn over.
Font The fonts your X server supports or are The style of text characters that the display

installed are in the directory
{usr/lib/X11/fonts

object uses to display text.

Text Justify

Left Text is justified on the left side of the
display object.

Center Text is horizontally centered in the display
object.

Right Text is justified on the right side of the
display object.

Default Same as eft, unless a different default is

specified in an X resource.

8-3

NightTrace Manual

Table 8-1. Common Configuration Parameters (Cont.)

Parameter Name Possible Values Meaning
Bottom Text sinks to the bottom of the display
object.
Text Gravity Center Te?<t is vertically centered in the display
object.
Top Text floats to the top of the display object.
Default Same a8ottom, unless a different default

is specified in an X resource.

Display Object Name

Event List

If-Expression

8-4

The “Display Object Name” is the field at the top of the configuration form. This field is
not titled in the configuration form; instead, it is labeled with the name of a display object
type, for example, DataBox. This parameter allows:

* You to name a particular display object configuration. (By default, newly
created display objects bear the nanmmamed_object)

* You to later define X resources to apply to the named display object. See
Appendix B for more information.

* ntrace to reference the display object by name in error messages.

The Event List parameter restricts the trace events on which the display object can
display information. The display object ignores any trace event IDs or trace event tags that
are not on the trace event list. If an explicit list of trace event tags and trace event IDs is
specified, the tags and IDs on the list must be separated by commas. Only listed trace
events are examined. Qualified events and qualified states must not appear in the list.

Thelf-Expression parameter determines whether fhieen-Expression parameter is
evaluatedlf-Expressions are boolean, i.e., they should evaluatéaige (0) or true
(non-zero). If thelf-Expression is true, theThen-Expression is evaluated and
displayed in the display object (assuming all other criteria are met). If-&xpression
evaluates to false, thEhen-Expression retains its last value. See Chapter 9 for more

Configuring Display Objects

information on expressions. Some examples of vl xpressions and their effect on
theThen-Expression are shown in Table 8-2.

Table 8-2. Examples of If-Expressions

If-Expression Effect onThen-Expression
true Always evaluated
false Never evaluated
id() == 200 Evaluated if current trace event ID is equal to 200
id() < 200 Evaluated if current trace event ID is less than 200
pid() == 237’1 Evaluated if current global process ID is equal to 237’1
tid() == 895’3 Evaluated if current NightTrace thread ID is equal to 895’3
cpu() == 2 || cpu() == Evaluated if current trace event occurred on CPU 2 or 4

Then-Expression

The Then-Expression parameter determines what the output of the display object is
when thelf-Expression is true. If thelf-Expression is false, theThen-Expression

retains its last value. The possible values are a numeric expression or string. See Chapter 9
for more information on expressions. Some examples of Vidtidn-Expressions and

their resulting values are shown in Table 8-3.

Table 8-3. Examples of Then-Expressions

Then-Expression Resulting Value or Meaning

id() The current trace event ID

arg2() The second argument of the current trace event

format (“abc=%d", argl()) The string“abc=10" if argl() is 10 (See “format()” on
page 9-80.)

get_string (curr_state, id()) The string from thecurr_state string table pointed to by
id() (ifany)

get_string (event, id()) Depending on whether trace event ID returneddfy isin

the pre-definecvent table, either the trace event ID num-
ber or its corresponding trace event tag is displayed. (See
“get_string()” on page 9-75, “Pre-Defined String Tables” on
page 5-15, and “id()” on page 9-19.)

get_string (pid, pid()) Depending on whether the global process identifier returned
by pid() is in the pre-defineghid table, either the global
process identifier (PID) or its corresponding process name is
displayed. (See “get_string()” on page 9-75, “Pre-Defined
String Tables” on page 5-15, and “pid()” on page 9-22.)

8-5

NightTrace Manual

Table 8-3. Examples of Then-Expressions (Cont.)

Then-Expression Resulting Value or Meaning

get_string (tid, tid()) Depending on whether the NightTrace thread identifier
returned bytid() is in the pre-definedd table, either
the NightTrace thread identifier (TID) or its corresponding
thread name is displayed. (See “get_string()” on page 9-75,
“Pre-Defined String Tables” on page 5-15, and “tid()” on
page 9-25.)

get_string (boolean, arg) If arg has the value (alse s displayed. Otherwisérue
is displayed. (See “get_string()” on page 9-75 and
“Pre-Defined String Tables” on page 5-15)

get_string (syscall, arg) arg’'s value is looked up in the pre-definsgscall table,
and its corresponding system call name is displayed. (This is
meaningful only for NightTrace kernel trace event files.)
(See “get_string()” on page 9-75 and “Kernel String Tables”
on page 11-32.)

get_string (vector, arg) arg's value is looked up in the pre-definedctor table,
and its corresponding interrupt or exception name is
displayed. (This is meaningful only for NightTrace kernel
trace event files.) (See “get_string()” on page 9-75 and “Ker-
nel String Tables” on page 11-32.)

get_format (next_state, id()) The formatted string from theext_state format table
indexed by the integer returned () (if any)

get_format (state_summary) Display statistics about state matches, the state gaps, and the
state durations. (See “get_format()” on page 9-79 and
“Pre-Defined Format Tables” on page 5-21.)

get_format(event_summary) Display statistics about trace event matches and trace event
gaps. (See “get_format()” on page 9-79 and “Pre-Defined
Format Tables” on page 5-21.)

get_format(event_arg_summary,3) Display statistics about trace event matches and their type
long third argument. (See “get_format()” on page 9-79 and
“Pre-Defined Format Tables” on page 5-21.)

get_format(event_arg_dbl_summary,1) Display statistics about trace event matches and their type
double first argument. (See “get_format()” on page 9-79 and
“Pre-Defined Format Tables” on page 5-21.)

CPU List

TheCPU List parameter determines from which logical central processing units (CPUSs)
the display object will process trace events. Only processes that run on one of the CPUs on
this list will be considered by this display object. If the trace event sent to the display
object is not on the list of CPUs, then the trace event is ignored. A CPU number can be
specified only if a NightTrace kernel trace event file is specified. Multiple CPU numbers
must be separated by commas.

8-6

PID List

Configuring Display Objects

A global process identifie(PID) is a 32-bit integer. It includes a 16-bit integew PID
and a 16-bit integelightweight process identifig LWPID). The syntax for specifying a
PID is:

raw_PID LWPID

The PID List parameter is the list of global process identifiers (PIDs) or process names
that the display object will accept trace events from. If the trace event did not occur in a
process listed in this parameter, the trace event is ignored. If a number or name is specified
that is not a valid PID, a warning message is displayed. Multiple numbers and names must
be separated by commas.

NOTE

Prior to Version 4.1ntrace converted process identifiers into
process names durirfglD List input verification for a display
object. For each process identifier in tRéD List, ntrace

would try to find its associated process name and display that
name in thePID List. However, because multiple processes hav-
ing the same name may exist on a system, changing a process
identifier into a process name introduces the possibility that the
display object will accept trace events from undesirable processes.
Thereforentrace no longer performs this conversion.

For example, suppose that two processes naarmd exist on a
particular system and that one has a PIDLaB4 and the other
has a PID o6678. Further suppose that you wish to create a
StateGraph to display events only for P1234 . Prior to Version
4.1, if you enteredl234 in thePID List parameterntrace
would have converted that snout . As the events were being
analyzed, any event that had a PID5&78 would also have been
displayed by the StateGraph since a process naarmad also
existed with a PID 06678 .

If the trace event file has multiple processes with the same name (for exaanml¢,),
specifying any one of the PIDs for that process selects all the PIDs of that process. To
avoid this, it is recommended that all processes be given unique names. If that is not possi-
ble, you can isolate individual processes by including a PID restriction in the
If-Expression parameter. For example, &.out includes PIDs 100’1, 200’1, and
300’1 and you want information only on PID 100’1, set fAED List parameter t@.out

and thelf-Expression to pid() == 100’1 . For more information about thgid
function, see “pid()” on page 9-22.

8-7

NightTrace Manual

TID List

8-8

A NightTrace thread identifiefTID) is a 32-bit integer. It includes a 16-bit integew
PID and a 16-bit intege€ threador Ada task identifierlf neither C threads nor Ada tasks
are in use, then the 16-bit integer will always be zero. The syntax for specifying a TID is:

raw_PID task id
or:
raw_PID thread_id

TheTID List parameter is the list of NightTrace thread identifiers (TIDs) or thread names
that the display object will accept trace events from. If the trace event did not occur in a
thread listed in this parameter, the trace event is ignored. If a number or name is specified
that is not a valid TID, a warning message is displayed. Multiple numbers and names must
be separated by commas.

NOTE

Prior to Version 4.1ntrace converted thread identifiers into
thread names duringlID List input verification for a display
object. For each thread identifier in théD List, ntrace would

try to find its associated thread name and display that name in the
TID List. However, because multiple threads having the same
name may exist on a system, changing a thread identifier into a
thread name introduces the possibility that the display object will
accept trace events from undesirable threads. Therefoese

no longer performs this conversion.

For example, suppose that two threads naaegmon exist on a
particular system and that one has a TIDL@B4'1 and the other
has a TID of5678'3 . Further suppose that you wish to create a
StateGraph to display events only for TI234'1 . Prior to Ver-
sion 4.1, if you entered234’1 in theTID List parameter,
ntrace would have converted that taemon. As the events
were being analyzed, any event that had a TIB®78'3 would
also have been displayed by the StateGraph since the tHesad
monalso existed with a TID 056783 .

If the trace event file has multiple threads with the same name (for example,
CHILD_THREAD, specifying any one of the TIDs with that thread name selects all of the
TIDs with that thread name. To avoid this, it is recommended that all threads be given
unigue names. If that is not possible, you can isolate individual threads by including a TID
restriction in thelf-Expression parameter. For example, GHILD_THREADncludes

TIDs 1001, 200’1, and 300’1 and you want information only on TID 100’1, setTih

List parameter taCHILD_THREADand thelf-Expression totid() == 100’1 . For

more information on thread names, see “trace_open_thread()” on page 3-9. For more
information about théid function, see“tid()” on page 9-25.

Configuring Display Objects

Node List

When NightTrace processes a trace file which was timestamped by an RCIM synchro-
nized tick clock, it internally assigns a node identifier to each node/host name represented
by a trace file. If no trace file was generated using the tick clock, this parameter is not dis-

played.

TheNode List parameter is the list of node identifiers or node names from which the dis-
play object will accept trace events. If the trace event did not occur on a node listed in this
parameter, the trace event is ignored. If a number or name is specified that is not a valid
node, a warning message is displayed. Multiple numbers and names must be separated by
commas.

Foreground Color

TheForeground Color parameter determines the color of items in the foreground of the
display object, which usually corresponds to the data being displayed by the display
object.

Background Color

TheBackground Color parameter determines the color of the background of the
display object. Although this is ndhe color used to display the data of interest in the
display object, it should be a color that contrasts well withFlegeground Color. This

will make the data easier to read.

Font
TheFont parameter determines the font that characters in the display object are displayed
in. Use of a small font size is recommended due to the fact that there is generally a lot of
data being displayed and a small font size will help conserve screen space. All examplesin
this manual use the defaufiXed " font that is supplied with all X servers.

Text Justify

The Text Justify parameter determines the justification of the text in the display object.
Figure 8-2 shows what each type of text-justification looks like.

8-9

NightTrace Manual

- |This is
Co[left-justi

Thiz is

o |center—jus| -
Cright-just |

tified

This i=s| -

- |Fied text test - |ified text| -

Figure 8-2. Left-, Center-, and Right-Justified Text

Text Gravity

TheText Gravity parameter determines whether text in the object will float to the top or
sink to the bottom of the display object. Figure 8-3 shows what each type of text gravity

looks like.

S - [Thizs is
: o 1z 1= top
: Thiz is . center C o |gravity
- |bottom D |aravity
- |gravity

Figure 8-3. Top vs. Bottom Gravity

Configuration Form Push Buttons

Feset Festore Close

| Apply |

Figure 8-4. Configuration Form Push Buttons

Figure 8-4 shows the push buttons that all display object configuration forms have.

After you have changed the configuration parameters of a display object, these buttons
allow you to perform the following operations:

(default) Validate the changes you made to the configuration
parameters, and apply the changes to the display object. This is
equivalent to pressingEnter>.

Apply

8-10

Configuring Display Objects

Reset Discard all changes made since the laAstply or <Enter>.
This is equivalent to pressingEsc>.

Restore Discard all changes made since the window was opened.

Close Discard any changes made since the last change was applied
and close the window.

Specific Configuration Parameters

The following sections discuss the configuration parameters specific to the following
display objects:

¢ GridLabel
e DataBox

¢ StateGraph
¢ EventGraph
¢ DataGraph

* Ruler

8-11

NightTrace Manual

GridLabel

8-12

Figure 8-5. GridLabel Configuration Form

The configuration form for the GridLabel is shown in Figure 8-5.

The Text parameter is the only parameter that is unique to GridLabels. This parameter is
set to the characters that are to appear in the GridLabel. For example, if you want a box on
the grid containing the phrase, “Flight Simulation Trace Screen,” you would enter the
following text in theText field:

Flight Simulation Trace Screen

See “GridLabel” on page 7-12 for more information. See “Common Configuration Param-
eters” on page 8-1 for descriptions of the common configuration parameters that
GridLabels use.

DataBox

Configuring Display Objects

TR_SWITCHIM
RUE

format{"pid %¥=", get_stringf{pid_cap, argli?

Figure 8-6. DataBox Configuration Form

The configuration form for the DataBox is shown in Figure 8-6.

NOTE

TheNode List field appears in this dialog only when NightTrace
is configured to use an RCIM to timestamp events.

A DataBox can be used as a counter. A counter is simply a DataBox that counts the
occurrences of a particular trace event or other condition up to the current time.

For example, if you wanted to display the number of trace events occurring before the
current time, set thEvent List parameter té\LL and put the following expression in the
Then-Expression field:

event_matches()

8-13

NightTrace Manual

This expression counts the number of times the criteria were met. See Chapter 9 for more
information on expressions. See “DataBox” on page 7-12 for more information. See
“Common Configuration Parameters” on page 8-1 for descriptions of the common config-
uration parameters that DataBoxes use.

To determine the format of the data displayed in the DataBox, give the

Then-Expression parameter an expression value. See “Then-Expression” on page 8-5
for examples.

StateGraph

exceptiond

TR_EXCEPTION_ENTRY, TR_EXCEPTION_RESUME
TR_EXCEPTION_EXIT, TR_EXCEPTIOM_SUSPEND

A
TR_SWITCHIN
RUE

TRUE
TRUE

Figure 8-7. StateGraph Configuration Form

The configuration form for the StateGraph is shown in Figure 8-7.
NOTE

TheNode List field appears in this dialog only when NightTrace
is configured to use an RCIM to timestamp events.

8-14

Configuring Display Objects

A stateis bounded by two user-specified trace events, a starhtand an eneévent An

instance of a state is the period of time between the start event and end event, including the
start and end events themselves. Instances of the same state do not nest; thus, once a state
becomes active, events that might normally satisfy the conditions for the start event are
ignored until the end event is encountered.

The Start-Events parameter determines the trace events that can begin a state. This
parameter, along with thEnd-Events parameter, defines part of what will be consid-
ered a state for this display object. These parameters work exactly likevtbet List
parameters discussed earlier in “Common Configuration Parameters” on page 8-1. Like
the Event List, they each have correspondilfgExpressions, calledStart-Expres-

sion andEnd-Expression, respectively.

The Start-Expression parameter determines the criteria, in addition to the start trace
event(s) and other criteria, which must be true before a state is considered to be started
(active). TheEnd-Expression parameter determines the criteria, in addition to the end
trace event(s) and other criteria, which must be true before a state is considered to be
ended (inactive).

The following semantic rules apply to these expressions. In these dééajng state
means a state with trace events in Btart-Events andEnd-Events lists.

¢ Start-Expression must not refer to its defining states. For example, it
must not callstate_dur() , State_gap() , start or end functions for
these states. (See “Multi-State Functions” on page 9-56, “Start Functions”
on page 9-34, and “End Functions” on page 9-45 for details.) Calling these
functions for these states would be an attempt to define a state based on its
own definition. Note thaStart-Expression may call all of these
functions for qualified states.

* End-Expression must not refer to its defining states. For example, it
must not callstate_dur() , state_gap() , or end functions for these
states. Calling these functions for these states would be an attempt to
define a state based on its own definition. Note thaid-Expression
may call start functions for these states because at this point in the state
definition, the state has started. Note also thatl-Expression may call
all of these functions for qualified states.

The Event Color parameter specifies the color of the vertical lines that represent the
events in theEvent List. The possible values are the colors your X server supports, as
specified in thegb.txt file. See Appendix B for more information.

StateGraphs indicate when a state is active by drawing a rectangle kotlegground

Color that spans the time when the start state and end state criteria are met. In addition to
drawing this state rectangle, StateGraphs can behave exactly like EventGraphs by using
the Event List andIf-Expression fields. Trace event lines are superimposed on the
state rectangle, which is useful for diagnosing problems where the criteria for starting the
state are met multiple times before the criteria for ending the state are met.

See “StateGraph” on page 7-14 for more information. See “Common Configuration
Parameters” on page 8-1 for descriptions of the common configuration parameters that
StateGraphs use.

8-15

NightTrace Manual

EventGraph

Figure 8-8. EventGraph Configuration Form
The configuration form for the EventGraph is shown in Figure 8-8. All of the parameters
for the EventGraph are discussed in “Common Configuration Parameters” on page 8-1.
See “EventGraph” on page 7-15 for more information.
NOTE
TheNode List field appears in this dialog only when NightTrace

is configured to use an RCIM to timestamp events.

The If-Expression of an EventGraph determines whether a trace event should be
graphed. If thdf-Expression is true, then a vertical line is drawn at the point in time
that the trace event occurred.

8-16

Configuring Display Objects

DataGraph

interrupti

0, 0000
ER Y

>
4

[y
1]
=l

TR_INTERRUPT_ENTRY, TR_INTERRUPT_EXIT

TRUE

=
=
—

Figure 8-9. DataGraph Configuration Form

The configuration form for the DataGraph is shown in Figure 8-9.

NOTE

TheNode List field appears in this dialog only when NightTrace
is configured to use an RCIM to timestamp events.

TheFill Style parameter determines the style of DataGraph created. The possible choices
areNone or Solid. If None is chosen, then a vertical line is drawn only at the time of a
trace event. IfSolid is chosen, then all space to the right of a trace event will be filled
until the next trace event is encountered. Figure 8-10 shows the difference b&wkdn
andNone.

8-17

NightTrace Manual

8-18

Figure 8-10. Solid vs. No Fill

TheMaximum parameter determines what data value corresponds to the top of the Data-
Graph. The possible values are integersCHLC If an integer is specified as the
maximum, any data that is equal to or greater than that value results in a line or bar that
goes to the top of the DataGraph.GRALCis specified, the maximum value will be the
greatest value found in the trace event run up to that point in time. Note that the maximum
can change as time increases and new maximums are encountered.

The Minimum parameter determines what data value corresponds to the bottom of the
DataGraph. The possible values are integer€ALC If an integer is specified as the
minimum, any data that is equal to or less than that value will result in no line or bar on the
DataGraph. IfCALCis specified, the minimum value will be the smallest value found in
the trace event run up to that point in time. Note that the minimum can change as time
increases and new minimums are encountered.

Figure 8-11 shows the same set of data drawn in three DataGraphs, each configured
differently. The data range in value from 1 to 6 and are shown at the bottom of the figure.

* The top DataGraph is configured with a minimum of 2 and a maximum of
4. Notice that several bars reach the top of the DataGraph even though
they represent different data values; also note that there is no bar where
data has a value less than the minimum.

* The middle DataGraph is configured with a minimum of 0 and a maximum
of 10. Notice that the bars do not reach the top of the DataGraph and that
the differences between values are harder to discern.

* The bottom DataGraph is configured with a minimum of 0 and a maximum
set toCALC Notice that the two occurrences of the maximum value of six
cause bars to reach the top of the DataGraph.

!

Figure 8-11. Maximum vs. Minimum Values

Ruler

Configuring Display Objects

See “DataGraph” on page 7-16 for more information. See “Common Configuration
Parameters” on page 8-1 for descriptions of the common configuration parameters that
DataGraphs use.

— unnamed_ohject

Buler |unnamed_u:ul:uj ect

Lost Event Color |
tAark Color |

Foreground Color |

Background Color |
Font |

| | ﬁpplyl Resetl Resturel Clusel |

Figure 8-12. Ruler Configuration Form

The configuration form for the Ruler is shown in Figure 8-12.

TheLost Event Color parameter specifies the color of the reverse-video “L” (shown in
Figure 8-13) that is placed on a Ruler where NightTrace lost data. The possible values are
the colors your X server supports, as specified in gpie.txt file. See “Preventing
Trace Events Loss” on page A-1 for more information on lost data.

TheMark Color parameter specifies the color of the mark indicator, a triangle that
appears on the Ruler (shown in Figure 8-13). The possible values are the colors your X
server supports. See “The Interval Push Buttons” on page 6-8 for more information about
the mark.

006621 0, 06624

N N T S O T . A I

Figure 8-13. Mark and Lost Event Markers

See “Ruler” on page 7-17 for more information. See “Common Configuration Parame-
ters” on page 8-1 for descriptions of the common configuration parameters that Rulers
use.

8-19

NightTrace Manual

8-20

OVEIVIBW . . o e ettt e e e e 9-1
EXPressions MeNU o 9-1
Expression Dialog BoXesSo 9-2
Expression Configuration Forms 9-2
EXPrESSIONS . o oo 9-4
L@ 01T = (o] £ T 9-4
OPeIaANdS. . ot 9-5
CONSIANTS .. o 9-5
MaCIOS . .ot 9-6
FUNCHIONS . ..o 9-9
Function Parameters 9-12
Function Terminology. 9-13
Trace EVeNt FUNCLIONS. e 9-19

o 9-19

AN - o 9-20

arg_dbl() 9-21
NUM_ArGS() - - v ot v e e e e e e e e e 9-21

PIA() - .ot 9-22

FAW_PId() -« oo 9-23

IWPIA() - o e e 9-23

thread _id() 9-24

task id() . . oo 9-25

Lo 9-25

CPU() - e e e e 9-26

OffSet() .. oo 9-27

MeE() . o 9-27

Node 1d() . ..o et 9-28
pid_table_ name() 9-29
tid_table_name() 9-29

NOdEe _NAME(). .« o vttt 9-30
ProCeSS_NAME() . .o ittt et e e 9-30

task_name() . oo oo 9-31

thread_name()ot 9-32

Multi-Event Functions 9-32

eVENE GaP() - - - v 9-32

event_ matches() 9-33
State FUNCLIONSo 9-34
Start FUNCLIONSo 9-34

start id() ..o 9-35

start_arg() -« - v i 9-35

start_arg dbl(). 9-36

start NUM_args() . -« v oo 9-37

start_ pid() ..o 9-37
start_ raw _pid() - . ..o 9-38

start_ Iwpid()o e 9-39
start_thread_id() 9-39

9
Using Expressions

start task id() 9-40

NightTrace Manual

start tid(). . ..o 9-41
Start_ CPU() - -« oo e 9-41
start_offset() 9-42
start_ time()o 9-42
start node_id().o 9-43
start_pid_table name() 9-44
start_tid_table name().......... 9-44
start node_name(). 9-45
End FUNCLIONS. . ..o 9-45
end_id().o 9-46
eNd_arg()t 9-47
end_arg dbl(). 9-47
end_NuUmM_args() oo vt 9-48
end_pid() . . oo 9-48
end_raw_pid() 9-49
end_Iwpid() oo 9-50
end_thread _id()...........co i 9-51
end_task id()........c 9-51
end_tid() .. wo i 9-52
eNA_CPU(). -« vt e 9-52
end offset() 9-53
end_time() 9-54
end_node id(). ... 9-54
end_pid_table_ name()........ i 9-55
end_tid_table name(). i 9-55
end_node name() 9-56
Multi-State FUNCEIONS 9-56
State gap() . - v oo e 9-57
state dur() . ..o o 9-57
state_matches() 9-58
state_status() 9-58
OffSEt FUNCLIONS. e 9-59
offset_id()o 9-60
offset_arg()o 9-60
offset_arg dbl() 9-61
offset_num_args(). 9-61
offset_pid(). 9-62
offset_raw _pid()o 9-63
offset_Iwpid()o 9-63
offset_thread id()........ ..o 9-64
offset_task id().o 9-64
offset_tid()o 9-65
offset_cpu().o 9-66
offset_time().o 9-66
offset node id().........c i 9-67
offset_pid_table_ name()........... i 9-67
offset_tid_table name() 9-68
offset_ node name() 9-68
offset_process_name() 9-69
offset_task_ name()........ 9-69
offset_thread_ name() 9-70
Summary FUNCLIONS.o 9-70
MIN() . e e 9-71

SUM() .« ettt e e e 9-72
min_offset() 9-73
max_offset(). 9-73
summary_matches(). 9-74
Format and Table Functions i, 9-75
get_StrNG(). .« o v o 9-75
et temM(). . oot e 9-77
get_ format() 9-79
format()o 9-80

Qualified Events
Qualified States

NightTrace Manual

Overview

9
Using Expressions

NightTrace allows you to define macros, qualified events, and qualified states to aid in the
analysis of trace dataMacrosare named expressions provided for flexibility and
convenience.Qualified eventprovide a mechanism for referencitrgice event configu-
rations within certainfunctions Qualified stateprovide a mechanism for referencing
state configurationsvithin certain functions as well.

The Expressions menu contains menu items for creating these entities. See “Expres-
sions Menu” on page 9-1, “Macros” on page 9-6, “Qualified Events” on page 9-81, and
“Qualified States” on page 9-83 for further information.

Macros, qualified events, and qualified states are configured wesipgessionsn much

the same way adisplay objects See “Expressions” on page 9-4 for a complete explana-
tion of expressions. In addition, Chapter 8 - Configuring Display Objects may provide
some helpful information as well.

Expressions Menu

Figure 9-1 shows the display page menu that lets you define macros, qualified events, and
qualified states. For more information about display pages, see “Understanding Page Con-
figuration Files” on page 5-12.

ExEressiDns | Tools Hi

- hacros .. —
Gualified Events ..
Gualified States ..

Figure 9-1. Expressions Menu

Selecting any of these menu entries make&apression Dialog Box appear.

9-1

NightTrace Manual

Expression Dialog Boxes

In the following text,exprstands for macro, qualified event, and qualified state.

Selecting any of the entries from tliexpressions menu of the display page, makes a
dialog box like the one in Figure 9-2 appear. Becausexrsare user-defined, the list of
exprsis empty at first.

= hacros
List of Macros:
macra_001 A
stddey
T
| Add Delete | | Configure Close I

Figure 9-2. Macro Dialog Box

The caption and the list presented are suitably different for each expedialog boxes.

The push buttons in the dialog boxes perform the following functions:

Add Create a nevexpron the current display page. The initial name

of anexpris type ### wheretypeis macro, event , or
state and###is a three-digit number beginning wifd1 .

Delete Remove the selectezkpr
Configure (default) Reconfigure or rename the selectagr
Close Close the dialog box

Add, Delete, andClose need no further explanation. Selecti@@nfigure makes an
exprConfiguration Form appear.

Expression Configuration Forms

In the following text,exprstands for macro, qualified event, and qualified state.

The Configuration Forms foexprsare similar. Common features are described here and
specific features appear in later sections.

9-2

Using Expressions

The push buttons on a Configuration Form appear in Figure 9-3.

| Apply Feset Festore Close

Figure 9-3. Configuration Form Push Buttons

A description of these push buttons follows:

Apply (default) Validate the changes you made to the configuration
parameters, and apply the changes to the seleotpd This is
equivalent to pressingEnter>.

Reset Discard all changes made since the laAstply or <Enter>.
This is equivalent to pressingEsc>.

Restore Discard all changes made since the window was opened.

Close Discard any changes made since the last change was applied
and close the window.

When you have finished editing the fields on @enfiguration Form, press<Enter>

or click onApply. This causes NightTrace to validate the data in each field you modified.
For general information on field editing and how NightTrace handles editing errors, see
“Field Editing” on page 6-16.

exprsare saved in a configuration file but are global to all display pages. That iseijan

is created in one display page, it may be used by any other display page. This means, how-
ever, that if arexpris saved in one configuration file but altered in another, you will have

to reopen the file with the original copy of tlexprand save the new value.

NightTrace prevents you from creating more than one definition for a spesific If you
wish to change the definintion of axpr, you must select it from the list afxprsand
pressConfigure. See “Expression Dialog Boxes” on page 9-2 for details.

TIP:

If you want to sharexprsamong multiple display pages, create an empty display page
and put onlyexprsin it. Any new exprsor changes to oléxprsshould be added to this
display page. It is also a good idea to place a DataBox on this page for exgrthat you

add to this page. This way, you can see the current value of allepqrsat a glance.

9-3

NightTrace Manual

Expressions

Operators

9-4

NightTrace expressions can evaluate to numbers, strings, or boolean values.

appear in the following places in NightTrace:

¢ Start-Expression andEnd-Expression on:

- Configuration Forms
- Summarize Forms
If-Expression on:
- Configuration Forms
- Summarize Forms
- Search Forms
Then-Expression onConfiguration Forms

Filter-Expression and Summary-Expression on the Summarize
Form

Expression onMacro Dialog Boxes
Values in format tables

Calls toformat() , get_string() , get_item() , get format() ,
and summary functions.

Expressions

Start-Expressions, End-Expressions, If-Expressions, andFilter-Expression
must evaluate to boolean values.

See Chapter 8 for more information on tBenfiguration Form. See Chapter 10 for
more information on th&earch andSummarize Forms. See “Format Tables” on

page 5-18 for more information on format tables. Informationformat()

get_string() , get_item() , get_format() , and summary functions appears later
in this chapter.

NightTrace expressions are comprised of a combination of operators and operands. A

description of these operators and operands appears in the following sections.

Operators in NightTrace expressions include:

Arithmetic operatorsf) ,*,/, % (modulo) +, -, unary-
Shift operators: <<, >>

Bitwise operators: ~ (not), & (and), ” (exclusive or), | (or)
Logical operatorst (not),&&(and),|| (or)

Relational operators:, <=, >, >=, == (equivalence)!= (non-equivalence)

Operands

Constants

Using Expressions

¢ Conditional operatorexpr? true_value false_value

* Unary casts to data types (where the parentheses are requiredjné.g.,

NightTrace operators follow the operator precedence rules of the C programming lan-
guage.

Operand types are largely based on the C programming language and include:
* integer
* double-precision floating point
¢ character
* string
* boolean
Operands include:
¢ constants (see “Constants” on page 9-5)
* macro calls (see “Macros” on page 9-6)
¢ function calls (see “Functions” on page 9-9)
¢ qualified events (in functions only) (see “Qualified Events” on page 9-81)

¢ qualified states (in functions only) (see “Qualified States” on page 9-83)

Constants are one type of operand that may be used in NightTrace expressions.
Integer literals may be expressed using typical C language notation:

¢ decimal literals have no special prefix
¢ octal literals begin with a zero

* hexadecimal literals begin withGx
Floating point literals are always considered to be double-precision floating point literals.

String literals must be enclosed within double quotes; to include a double quote in a con-
stant string literal, precede the double quote with a backslash character. For example:

“possible \"'meltdown\" alert”

The case-insensitive boolean constahBBUEand FALSE have the valued andO,
respectively.

9-5

NightTrace Manual

Macros

9-6

Table 9-1 shows units and suffixes for time constants.

Table 9-1. Time Units and Constant Suffixes

Time Unit Suffix
Seconds (This is the default) S
Milliseconds (10e-3 seconds) ms

Microseconds (10e-6 seconds) us

Nanoseconds (10e-9 seconds) ns

Macrosare named expressions provided for flexibility and convenience. Table 9-2 con-

trasts functions and macros.

Table 9-2. A Comparison of Functions and Macros

Functions Macros
Predefined User-defined
May have parameters Cannot have parameters

Invoked with parentheses around tl Invoked with a dollar signg) before the
parameter list macro name

To create a macro definition, select thilacros menu item from thé&xpressions menu
(see “Expressions Menu” on page 9-1) to openitecro Dialog Box (see “Expression
Dialog Boxes” on page 9-2 for details on this type of dialog).

Click the Add button on theMacro Dialog Box, select the macro from the list, and
click on theConfigure button to pop up &acro Configuration Form, like the one
shown in Figure 9-4.

Using Expressions

— stddev

hacroDefinition |stddew

EXpI’ESSiDﬂ I{max{argi} - mintargl} /B

| | Apply | Feset | Festore | Close | |

Figure 9-4. Macro Configuration Form

The following parameters can be configured for a macro.

MacroDefinition The name by which you refer to this macro in expressions.
Only references to this macro have a dollar sighrefix.

Expression Any valid expression. You must not call macros recursively; if
you try it, NightTrace issues an error, and you get undefined
results. Macros must not call thieormat() and
get_format() functions. (For more information about these
functions, see “format()” on page 9-80 and “get_format()” on
page 9-79.)

EXAMPLES

A StateGraph configuration is a good candidate for a macro because it has two
expressions that are often related. For example, the following configuration

Start Events: FOO

Start Expression: argl() == 0x1234 &&
(arg2() == 0 || arg3() > 700)

End Events: BAR

End Expression: argl() == 0x1234 &&
(arg2() == 0 || arg3() > 700)

graphs states of trace evar®COthrough trace everBAR where the arguments of
the trace events must meet an identical criteria to be considered interesting. Making

argl() == 0x1234 && (arg2() == 0 || arg3() > 700)

a macro would help ensure that you did not type the expression wrong in one of the
fields, and it would allow you to change the expressions easily, even while viewing
the trace run in View mode. (You can leaMsacro Configuration Forms up

while in View mode.)

Another good use for a macro is for focusing many display objects on a specific
process group. For example, if a Column contained several EventGraphs, each of
which had the followindf-Expression:

If Expression: process_name() == $task

9-7

NightTrace Manual

9-8

then atask macro definition of
“foobar”

would cause all of the EventGraphs to show only trace events logged by process
foobar . Changing the macro to

“bazonk”

would shift the focus of the EventGraphs from procéssbar to process
bazonk . This technique can also be used in DataBoxes, DataGraphs, and State-
Graphs.

Using Expressions

Functions

Functions are pre-defined NightTrace entities that may be used éxmessionNight-
Trace defines five classes of functions:

* Trace event functions (see “Trace Event Functions” on page 9-19)
¢ State functions (see “State Functions” on page 9-34)

¢ Offset functions (see “Offset Functions” on page 9-59)

¢ Summary functions (see “Summary Functions” on page 9-70)

* Format and table functions (see “Format and Table Functions” on page
9-75)

The general syntax of all function calls except summary, format, and table functions is as
follows. (Optional parts of function calls are in brackets ([]).)

function_namf[paramete})]
The prefix of thefunction_nameletermines its class as follows:

offset_ Functions with this prefix provide information about the trace event
at the specifiedffset(or ordinal trace event number). See “Offset
Functions” on page 9-59.

start_ Functions with this prefix provide information about the starent
of the most recent instance of a stat8ee “Start Functions” on page
9-34.

end_ Functions with this prefix provide information about the ene:ntof
thelast completed instance of a stafgee “End Functions” on page
9-45.

state_ Functions with this prefix provide information about instances of
states. See “Multi-State Functions” on page 9-56.

event_ Functions with this prefix provide information about instances of
events. See “Multi-Event Functions” on page 9-32.

Some functions can be optionally suffixed by a numiberwhich specifies théth argu-
ment logged with the trace evenl defaults to 1 and can have the values 1 through the
maximum argument logged. For example,

arg() Returns the first argument

arg1() Returns the first argument

arg3() Returns the third argument

start_id() Returns a trace event ID

state_gap() Returns the time between instances of a state

9-9

NightTrace Manual

Table 9-3 contains a complete list of functions.

Table 9-3. NightTrace Functions

Syntax Return Type
id [([QE])] The integetrace event ID
start_id [([Q9)]
end_id [([Q9)]
offset_id (offset_expr
arg [N] [([QE])] The integetrace event argument
start_arg [N] [([QS)]
end_arg [N] [([QS)]
offset_arg [N] (offset_expr
arg [N]_dbl [([QE])] The double-precision floating poititace
start arg [N]_dbl [([QY)] eventargument

end_arg [N]_dbl [([QS)]
offset_arg [N]_dbl (offset_expr

num_args [([QE])]
start_num_args [([Q9Y)]

end_num_args [([QS)]
offset_num_args (offset_expr

The number of arguments associated with a
trace event

pid [([QE])]
start_pid [([QS)]
end_pid [([QS)]

The integer global process identifié?ID)
associated with frace event

offset_pid (offset_expr
raw_pid [([QE])] The integer process identifierafy PID)
start_raw_pid [([QY)] associated with &race event
end_raw_pid [([QS)]
offset_raw_pid (offset_expr
lwpid [([QE])] The integer lightweight process identifier
start_Iwpid [([QY)] (LWPID) associated with &race event
end_lwpid [([QS)]
offset_Iwpid (offset_expr
thread_id [([QE])] The integethreadidentifier (thread ID)
start_thread_id [([QY)] associated with &race event
end_thread_id [([QY)]
offset_thread_id (offset_expr
task_id [([QE])] The integer Ada task identifier associated
start_task_id [([QF)] with atrace event
end_task id [([Q9Y)]
offset_task_id (offset_expr
tid [([QE])] The integer NightTrace thread identifier
start_tid [([QF)] (TID) associated with &ace event
end_tid [([QS)]

offset_tid (offset_expr

9-10

Table 9-3. NightTrace Functions

Using Expressions

Syntax Return Type
cpu [([QE]] The integer logical CPU number associated
start cpu [([QY)] with atrace event This function is only
end _cpu [([QY)] valid when applied to events from Night-
offset cpu (offset_expr Trace kernel trace event files.
time [([QE])] The double-precision floating point time,
start_time [([QY)] expressed in units of seconds, between a
end_time [([QY)] trace evenand the earliest trace event from
offset_time (offset_expr all trace event filegurrently in use.

node_id [([QE])]

The internally-assigned integeode identi-

start_node_id [([QT)] fier associated with &ace event
end_node_id [([QS)]
offset_node_id (offset_expr
pid_table_name [([QE])] The string describing the name of the pro-
start_pid_table_name [([QY)] cess identifier tableRID table) associated
end pid_table_ name [([QY)] with atrace event
offset_pid_table_name (offset_expr
tid_table_name [([QE]] The string describing the name of the inter-
start_tid_table_name [([QY)] nally-assigned thread identifier tabl€ID
end_tid_table_name [([QY)] table) associated with race event

offset_tid_table_name (offset_expr

node_name [([QE])]
start_node_name [([Q9)]

end_node_name [([QS)]
offset_ node_name (offset_expr

The string describing the name of the sys-
tem from which arace eventvas logged.

process_name [([QE])]
offset_process_name (offset_expr

The string describing the name of the pro-
cess PID) associated with &ace event

task_name [([QE])]

offset_task_name (offset_expr

The string describing the name of the Ada
taskassociated with frace event

thread_name [([QE])]
offset_thread_name (offset_expr

The string describing the name of the C
threadassociated with &race event

event_gap [([QE])] The double-precision floating point time,

state_gap [([QY)] expresed in units of seconds, between the
instances of either eiace evenbr astate

state_dur [([QY)] The double-precision floating point time,

expressed in units of seconds, of an instance
of astate

event_matches [([QE])]
state_matches [([Q9)]
summary_matches [()]

The integer number of instances of either a
trace evenbr astate

state_status

[((QI]

The boolean status ofstate true if thecur-
rent time lineis within an instance of the
state, false otherwise. See “state_status()”
on page 9-58 for important details.

9-11

NightTrace Manual

Table 9-3. NightTrace Functions

Syntax Return Type
offset [([QE])] The integer ordinal numbeoffse) of a
start_offset [([QY)] trace event
end offset [([QY)]
min_offset (exp) The integer ordinal numbeoffse) of a
max_offset (exp trace eventssociated with a minimum or
maximum occurrence axpr.
min (expn The minimum, maximum, average, or sum
max (expn of exprvalues before theurrent time The
avg (expn return type is that oéxpr
sum (expn)
get_string (table_namg int_expt) The character string associated with item
int_exprin string tabletable_name
get _item (table_name)str_const) The first integer item number associated
with string str_consin string table
table_name
get format (table_namg int_expf) The character string associated with item
int_exprin format tabletable_name
format (“format_string [, arg] ...) A character string to format and display.

Function Parameters

If the function has garameterthe parentheses are required. Otherwise, they are optional.

For example,
arg2
arg2()
arg2(GAK)

No parentheses are required
No parentheses are required

Parentheses are required

In many functions, th@arameteiis optional because it can be inferred from context. For
trace event functions, theurrent trace evenis used if the parameter is omitted. For state
functions, the state being defined is used if the parameter is omitted. (Thus, state func-
tions without parameters can only be used inside state definitions). For example,

arg1()
argl(my_event)

end_argl()

end_argl(my_state)

9-12

Operates on theurrent trace event
Operates on thqualified evenimy_event

Operates on théast completed instancef
the state being defined and can only appear
within a state definition

Operates on théast completed instancef
thequalified statemy_state

Using Expressions

This manual uses the following conventions for functmarameters

QE A user-definedjualified eventlf supplied, the function applies
to the specified qualified event. For more information, see
“Qualified Events” on page 9-81.

QS A user-definedqualified statelf supplied, the function applies
to the specified qualified state. For more information, see
“Qualified States” on page 9-83.

offset_expr An expression that evaluates to tléfset (or ordinal trace
event number) of a trace event.

expr Any valid NightTraceexpression(see “Expressions” on page
9-4).
table_name An unquoted character string that represents the name of a

string tableor format table

int_expr An integer expression that acts as an index into the specified
string tableor format table int_exprmust either match an
identifying integer value in théable_nametable, or the

table_nameable must have default item line.

str_const A string constant literal that acts as an index into the specified
string table

format_string A character string that contains literal characters and

conversion specifications. Conversion specifications modify
zero or moreargs

arg An optional expression to be formatted and displayed.

NOTE

NightTrace does not perform semantic error checking of func-
tions. For example, if you ask for information about the second
argument, but no second argument was logged, NightTrace does
not tell you. Similarly, NightTrace does not flag the use of unde-
fined macros qualified eventsandqualified statesit temporarily

puts their names in the appropridalog Box in case you want

to configure these constructs. For more information about these
Dialog Boxes, see “Expression Dialog Boxes” on page 9-2.

Function Terminology

In order to use the NightTrace functions effectively, it may be useful to understand some
of the concepts associated with them.

Remember that aavent(or trace eventis either a user-defined point of interest in an
application’s source code or a predefined point of interest in the kernel. In addition, a
stateis defined to be a region of source code bounded by two events.

9-13

NightTrace Manual

The descriptions of the functions further speak in terms of “instances” of states. These are
best defined as:

current instance The instance of a state which has begun but
has not yet completed. Thus, tearrent
time linewould be positioned within the
region from the start event up to, but not
including, the end event.

last completed instance ~ The most recent instance of a state that has
already completed. Thus, tleairrent time
line would be positioned either on, or after,
the end event for a state.

most recent instance If the current time lineis positioned within a
current instance of a state, then it is that
instance of the state. Otherwise, it is the last
completed instance of a state.

Figure 9-5 illustrates some of these concepts with a StateGraph.

Evemi Lol

Siate ol
[uration |

f C
L e

State Gap Line

Figure 9-5. Function Terminology Illustrated

9-14

Using Expressions

A more detailed example is illustrated in the following figure.

> & [~ ~ LN
S‘\- c::'} '::‘Q. S '::‘N le,
1 E316= 1.6317= 1.6318= | | 1 E319=

time line z
time line y
time line x

Figure 9-6. States and Events

The following discusses the terminology with respediiee line x, time line y, andtime
line z.

Assuming the current time line was positionediate line x in Figure 9-6, the various
“instances” would be defined as:

current instance No current instance is defined since the cur-
rent time line is not positioned within any
instance of a state.

last completed instance Instance B

most recent instance Instance B. Since the current time line is not
positioned within any instance of a state, the
most recent instance is the last completed
instance.

9-15

NightTrace Manual

The table below indicates the information returned by various NightTrace functions

assuming the current time line was positionetirae line x in Figure 9-6.

state_status()

state_gap()

state_dur()

state_matches()

start_time()

end_time()

false

~0.000020

~0.000090

~1.631750

~1.631840

The current time line was not posi-
tioned within a current instance of a
state.

The duration of time in seconds
between event b and event c. The
function operated the most recent
instance of the state (instance B) and
the immediately preceding instance
(instance A).

The duration of time in seconds

between event c and event d. The
function operated on the last com-

pleted instance of the state (instance
B).

Assuming no other instances of the
state preceded those shown in the fig-
ure. The function operated on all com-
pleted instances of the state (which
included instances A and B).

The time associated with event c. The
function operated on the most recent
instance of the state (instance B).

The time associated with event d. The
function operated on the last com-
pleted instance of the state (instance
B).

Assuming the current time line was positionediate line y in Figure 9-6, the various
“instances” would be defined as:

current instance
last completed instance

most recent instance

9-16

Instance C

Instance C

Instance B

Using Expressions

The table below indicates the information returned by various NightTrace functions
assuming the current time line was positionetirae line y in Figure 9-6.

state_status() true

The current time line was positioned
inside a current instance of the state
(instance C).

state_gap() ~0.000030 The duration of time in seconds

between event d and event e. The
function operated on the most recent
instance of the state (instance C) and
the immediately preceding instance
(instance B).

state_dur() ~0.000090 The duration of time in seconds

state_matches() 2

between event c and event d. The
function operated on the last com-
pleted instance of the state (instance
B).

Assuming no other instances of the
state preceded those shown in the fig-
ure. The function operated on all com-
pleted instances of the state (which
included instances A and B).

start_time() ~1.631870 The time associated with event e. The

function operated on the most recent
instance of the state (instance C).

end_time() ~1.631840 The time associated with eventd. The

function operated on the last com-
pleted instance of the state (instance
B).

Assuming the current time line was positionediate line z in Figure 9-6, the various

“instances” would be defined as:

current instance

last completed instance

most recent instance

No current instance is defined since the cur-
rent time line is positioned on the erdent
of an instance of a state.

Instance C

Instance C

9-17

NightTrace Manual

The table below indicates the information returned by various NightTrace functions
assuming the current time line was positionedirae line z in Figure 9-6.

state_status() false The current time line was not posi-
tioned inside a current instance of the
state. Even though the current time
line is positioned on an enevent of
the state (event f), the corresponding
instance is said to have already com-
pleted.

state_gap() ~0.000030 The duration of time in seconds
between event d and evente. The
function operated on the most recent
instance of the state (instance C) and
the immediately preceding instance
(instance B).

state_dur() ~0.000040 The duration of time in seconds
between event e and event f. The func-
tion operated on the last completed
instance of the state (instance C).

state_matches() 3 Assuming no other instances of the
state preceded those shown in the fig-
ure. The function operated on all com-
pleted instances of the state (which
included instances A, B, and C).

start_time() ~1.631870 The time associated with event e. The
function operated on the most recent
instance of the state (instance C).

end_time() ~1.631910 The time associated with event f. The
function operated on the last com-
pleted instance of the state (instance
C).

9-18

Using Expressions

Trace Event Functions

The trace event functions operate on eitherghalified evenspecified to that function or
the current trace eventThey include the following:

* id()

e arg()

e arg_dbl()

¢ num_args()

* pid()

* raw_pid()

¢ lwpid()

* cpu()

¢ thread_id()

¢ task id()

* tid()

¢ offset()

¢ time()

* node_id()

¢ pid_table_name()
¢ tid_table_name()
* node_name()

* process_name()

¢ task _name()

¢ thread_name()

* Multi-event functions

id()

DESCRIPTION

Theid() function returns thérace event IDof the last instance of tiace event

SYNTAX

id [([QED]

9-19

NightTrace Manual

PARAMETERS
QE A user-definedjualified eventlf supplied, the function returns
the trace event IDof the last instance of the trace event which
satisfies the conditions of the specified qualified event. If
omitted, the function returns thteace event IDof the current

trace event. For more information, see “Qualified Events” on
page 9-81.

RETURN TYPE

integer
SEE ALSO
“start_id()” on page 9-35, “end_id()” on page 9-46, and “offset_id()" on page 9-60.
arg()

DESCRIPTION

Thearg() function returns the value of a particulaace event argument

SYNTAX
arg [N] [([QE])]
PARAMETERS
N Specifies theNth argument logged with thdrace event
Defaults to 1.
QE A user-definedjualified eventlf supplied, the function returns

the specified argument for the last instance of the trace event
which satisfies the conditions for the specified qualified event.
If omitted, the function returns the specified argument for the
current trace event For more information, see “Qualified
Events” on page 9-81.

RETURN TYPE

integer

SEE ALSO

“arg_dbl()” on page 9-21, “num_args()” on page 9-21, “start_arg()” on page 9-35,
“end_arg()” on page 9-47, and “offset_arg()” on page 9-60.

9-20

arg_dbl()

num_args()

Using Expressions

DESCRIPTION

Thearg_dbl() function returns the value of a particulmace event argument

SYNTAX

arg [N]_dbl [([QE]]

PARAMETERS
N Specifies theNth argument logged with thdrace event
Defaults to 1.
QE A user-definedjualified eventlf supplied, the function returns

the specified argument for the last instance of the trace event
which satisfies the conditions for the specified qualified event.
If omitted, the function returns the specified argument for the
current trace event For more information, see “Qualified
Events” on page 9-81.

RETURN TYPE

double-precision floating point

SEE ALSO

“arg()” on page 9-20, “num_args()” on page 9-21, “start_arg_dbl()" on page 9-36,
“end_arg_dbl()" on page 9-47, and “offset_arg_dbl()" on page 9-61.

DESCRIPTION

Thenum_args() function returns the number of arguments logged witheae
event

SYNTAX

num_args [([QE])]

PARAMETERS

QE A user-definedjualified eventlf supplied, the function returns
the number of arguments of the last instance of the trace event
which satisfies the conditions for the specified qualified event.
If omitted, the function returns the number of arguments of the
current trace event For more information, see “Qualified
Events” on page 9-81.

9-21

NightTrace Manual

RETURN TYPE

integer

SEE ALSO

“arg()” on page 9-20, “start_ num_args()” on page 9-37, “end_num_args()” on page
9-48, and “offset_num_args()” on page 9-61.

pid()

DESCRIPTION

Thepid() function returns the global process identifi€lD) associated with a
trace event

NOTE

A global process identifier does not have the same meaning as the
typical operating system definition gid . A PID within Night-
Trace is a 32-bit integer value that contains the operating system
process identifierraw PID) in the upper 16 bits and the light-
weight process identifiel{VPID) in the lower 16 bits. Consult

the _Ilwp_global_self(2) man page for more information.
SYNTAX
pid [([QEN]
PARAMETERS
QE A user-definedjualified eventlf supplied, the function returns

the global process identifier of the last instance of the trace
event which satisfies the conditions for the specified qualified
event. If omitted, the function returns the global process iden-
tifier of the current trace event For more information, see
“Qualified Events” on page 9-81.

RETURN TYPE

integer

SEE ALSO
“PID List” on page 8-7, “raw_pid()” on page 9-23, “lwpid()” on page 9-23,

“start_pid()” on page 9-37, “end_pid()” on page 9-48, and “offset_pid()” on page
9-62.

9-22

Using Expressions

raw_pid()

DESCRIPTION
Theraw_pid() function returns the process identifiea{v PID) associated with a
trace event
NOTE
A NightTrace raw PID has the same meaning as the typical oper-
ating system definition opid . See thegetpid(2) man page
for more information.

SYNTAX

raw_pid [([QE])]

PARAMETERS
QE A user-definedyjualified eventlf supplied, the function returns
the process identifier of the last instance of the trace event
which satisfies the conditions for the specified qualified event.
If omitted, the function returns the process identifier of tle-

rent trace event For more information, see “Qualified Events”
on page 9-81.

RETURN TYPE

integer

SEE ALSO

“PID List” on page 8-7, “pid()" on page 9-22, “lwpid()” on page 9-23,
“start_raw_pid()” on page 9-38, “end_raw_pid()" on page 9-49, and
“offset_raw_pid()” on page 9-63.

Iwpid()

DESCRIPTION

Thelwpid() function returns the lightweight process identifieé{PID) associ-
ated with atrace event

NOTE

See the lwp_self(2) man page for more information.

9-23

NightTrace Manual

SYNTAX

lwpid [([QE])]

PARAMETERS

QE A user-definedjualified eventlf supplied, the function returns
the lightweight process identifier of the last instance of the
trace event which satisfies the conditions for the specified
qualified event. If omitted, the function returns the lightweight
process identifier of theurrent trace event For more infor-
mation, see “Qualified Events” on page 9-81.

RETURN TYPE
integer
SEE ALSO

“PID List” on page 8-7, “pid()” on page 9-22, “raw_pid()” on page 9-23,
“start_lwpid()” on page 9-39, “end_Iwpid()” on page 9-50, and “offset_lwpid()” on

page 9-63.
thread_id()
DESCRIPTION
Thethread_id() function returns thehreadidentifier associated with txace
event
NOTE
See thahr_self(3thread) man page for more information.
SYNTAX
thread_id [([QE])]
PARAMETERS
QE A user-definedjualified eventlf supplied, the function returns

the thread identifier of the last instance of the trace event which
satisfies the conditions for the specified qualified event. If
omitted, the function returns the thread identifier of therent
trace event For more information, see “Qualified Events” on
page 9-81.

RETURN TYPE

integer

9-24

Using Expressions

SEE ALSO

“start_thread_id()” on page 9-39, “end_thread_id()” on page 9-51, and
“offset_thread_id()” on page 9-64.

task_id()
DESCRIPTION
The task_id() function returns the Ada task identifier associated wittnaace
event
NOTE
This function is only meaningful for trace events logged by Ada
tasking programs.
SYNTAX
task_id [([QE)]
PARAMETERS
QE A user-definedjualified eventlf supplied, the function returns
the Ada task identifier of the last instance of the trace event
which satisfies the conditions for the specified qualified event.
If omitted, the function returns the Ada task identifier of the
current trace event For more information, see “Qualified
Events” on page 9-81.
RETURN TYPE
integer
SEE ALSO
“start_task_id()” on page 9-40, “end_task_id()” on page 9-51, and
“offset_task_id()” on page 9-64.
tid()

DESCRIPTION

Thetid() function returns the internally-assigned NightTrace thread identifier
(TID) associated with &race event

SYNTAX

tid [([QED]

9-25

NightTrace Manual

PARAMETERS
QE A user-definedjualified eventlf supplied, the function returns
the NightTrace thread identifier of the last instance of the trace
event which satisfies the conditions for the specified qualified
event. If omitted, the function returns the NightTrace thread

identifier of thecurrent trace eventFor more information, see
“Qualified Events” on page 9-81.

RETURN TYPE
integer
SEE ALSO

“TID List” on page 8-8, “start_tid()” on page 9-41, “end_tid()" on page 9-52, and
“offset_tid()” on page 9-65.

cpu()

DESCRIPTION
Thecpu() function returns the logical CPU number associated wittaee event
CPUs are logically numbered starting at 0 and monotonically increase thereafter.
NOTE

This function is only valid when applied to events from Night-
Trace kernel trace event files.

SYNTAX

cpu [([QE)]

PARAMETERS

QE A user-definedjualified eventlf supplied, the function returns
the logical CPU number of the last instance of the trace event
which satisfies the conditions for the specified qualified event.
If omitted, the function returns the logical CPU number of the
current trace event For more information, see “Qualified
Events” on page 9-81.

RETURN TYPE

integer

9-26

offset()

time()

Using Expressions

SEE ALSO

“start_cpu()” on page 9-41, “end_cpu()” on page 9-52, and “offset_cpu()” on page
9-66.

DESCRIPTION

The offset() function returns the ordinal numbeof{se) of atrace event

SYNTAX

offset [([QE])]

PARAMETERS
QE A user-definedjualified eventlf supplied, the function returns
the ordinal numberdffse) of the last instance of the trace
event which satisfies the conditions for the specified qualified
event. If omitted, the function returns the ordinal numhisf-(

sel of the current trace event For more information, see
“Qualified Events” on page 9-81.

RETURN TYPE

integer

SEE ALSO

“start_offset()” on page 9-42, “end_offset()” on page 9-53, “min_offset()” on page
9-73, and “max_offset()” on page 9-73.

DESCRIPTION

Thetime() function returns the time, in seconds, associated wittaee event
Times are relative to the earliest trace event from all trace data files currently in use.

SYNTAX

time [([QE])]

PARAMETERS

QE A user-definedyjualified eventlf supplied, the function returns
the time, in seconds, of the last instance of the trace event
which satisfies the conditions for the specified qualified event.
If omitted, the function returns the time, in seconds, of¢he

9-27

NightTrace Manual

rent trace event For more information, see “Qualified Events”
on page 9-81.

RETURN TYPE

double-precision floating point

SEE ALSO

“event_gap()” on page 9-32, “start_time()” on page 9-42, “end_time()” on page
9-54, “state_gap()” on page 9-57, “state_dur()” on page 9-57, and “offset_time()” on
page 9-66.

node_id()

DESCRIPTION

Thenode_id() function returns the internally-assignadde identifierassociated
with atrace event

NOTE

Thenode_id() function is of limited usefulness since the node
identifier is an internally-assigned integer number assigned by
NightTrace. Thenode_name() function is more useful, as it
returns the name of the system from which a trace event was

logged. (See “node_name()” on page 9-30 for more information
about this function.)

SYNTAX

node_id [([QE])]

PARAMETERS

QE A user-definedjualified eventlf supplied, the function returns
the node identifier of the last instance of the trace event which
satisfies the conditions for the specified qualified event. If
omitted, the function returns the node identifier of therent
trace event For more information, see “Qualified Events” on
page 9-81.

RETURN TYPE

integer

9-28

pid_table_name()

tid_table_name()

Using Expressions

SEE ALSO

“start_node_id()" on page 9-43, “offset_node_id()” on page 9-67, and
“end_node_id()” on page 9-54.

DESCRIPTION

The pid_table_name() function returns the name of the internally-assigned
NightTrace process identifier tablPID table) associated with &race event

SYNTAX

pid_table_name [([QE])]

PARAMETERS

QE A user-definedjualified eventlf supplied, the function returns
the name of the process identifier tabRID table) of the last
instance of the trace event which satisfies the conditions for the
specified qualified event. If omitted, the function returns the
name of the process identifier tableID table) of the current
trace event For more information, see “Qualified Events” on
page 9-81.

RETURN TYPE

string

SEE ALSO

“start_pid_table_name()” on page 9-44, “offset_pid_table_name()” on page 9-67,
and “end_pid_table_name()” on page 9-55

DESCRIPTION

Thetid_table_name() function returns the name of the internally-assigned
NightTrace thread identifier tabld [D table) associated with &race event

SYNTAX

tid_table_name [([QE])]

PARAMETERS

QE A user-definedjualified eventlf supplied, the function returns
the name of the thread identifier tabl€ID table) of the last

9-29

NightTrace Manual

instance of the trace event which satisfies the conditions for the
specified qualified event. If omitted, the function returns the
name of the thread identifier tabl&ID table) of the current
trace event For more information, see “Qualified Events” on
page 9-81.

RETURN TYPE

string

SEE ALSO

“start_tid_table_name()” on page 9-44, “offset_tid_table_name()” on page 9-68, and
“end_tid_table_name()” on page 9-55

node_name()

DESCRIPTION

Thenode_name() function returns the name of the system from whictiace
eventwas logged.

SYNTAX
node_name [([QE])]
PARAMETERS
QE A user-definedjualified eventlf supplied, the function returns

the name of system from which the last instance of the trace
event which satisfies the conditions for the specified qualified
event was logged. If omitted, the function returns the name of
the system from which theurrent trace eventas logged. For
more information, see “Qualified Events” on page 9-81.

RETURN TYPE

string

SEE ALSO

“start_node_name()” on page 9-45, “offset_node_name()” on page 9-68, and
“end_node_name()” on page 9-56

process_name()

DESCRIPTION

Theprocess_name() function returns the name of the proceB$l¥) associated
with atrace event

9-30

Using Expressions

SYNTAX
process_name [([QE])]
PARAMETERS
QE A user-definedjualified eventlf supplied, the function returns

the name associated with tidD of the last instance of the
trace event which satisfies the conditions for the specified
qualified event. If omitted, the function returns the name asso-
ciated with thePID of thecurrent trace event For more infor-
mation, see “Qualified Events” on page 9-81.

RETURN TYPE

string
SEE ALSO
“offset_process_name()” on page 9-69

task_name()

DESCRIPTION

Thetask_name() function returns the name of the task associated wittace
event

NOTE

This function is only meaningful for trace events which were
logged from Ada tasking programs.

SYNTAX
task_name [([QE])]
PARAMETERS
QE A user-definedjualified eventlf supplied, the function returns

the name of the task associated with the last instance of the
trace event which satisfies the conditions for the specified
qualified event. If omitted, the function returns the name of the
task associated with theurrent trace event For more infor-
mation, see “Qualified Events” on page 9-81.

RETURN TYPE

string

9-31

NightTrace Manual

thread_name()

Multi-Event Functions

event_gap()

9-32

SEE ALSO

“offset_task_name()” on page 9-69

DESCRIPTION

Thethread_name() function returns the thread name associated witfaae
event

SYNTAX

thread_name [([QE])]

PARAMETERS

QE A user-definedjualified eventlf supplied, the function returns
the thread name associated with the last instance of the trace
event which satisfies the conditions for the specified qualified
event. If omitted, the function returns the thread name associ-
ated with thecurrent trace event For more information, see
“Qualified Events” on page 9-81.

RETURN TYPE

string

SEE ALSO

“offset_thread_name()” on page 9-70

Multi-event functions return information about one or more instances of an event:

¢ event_gap()

¢ event_matches()

DESCRIPTION

Theevent_gap() function returns the time, in seconds, between the most recent
occurrence of a specific event and its immediately preceeding occurrence.

SYNTAX

event_gap [([QE])]

event_matches()

Using Expressions

PARAMETERS
QE A user-definedjualified eventlf supplied, the function calclu-
ates the gap between the two most recent occurrences of events
which satisfy the conditions of the specified qualilfied event.
If omitted, the function calculates the gap between the current

trace event and the event immediately preceeding it. For more
information, see “Qualified Events” on page 9-81.

RETURN TYPE

double-precision floating point

SEE ALSO

“time()” on page 9-27, “state_gap()” on page 9-57, and “state_dur()” on page 9-57.

DESCRIPTION

The event_matches() function returns the number of occurrences dfaece
eventon or before theurrent time line

SYNTAX
event_matches [([QE])]
PARAMETERS
QE A user-definedqualified event If supplied, the function calcu-

lates the number of occurrences of events which satisfy the
conditions of the specified qualified event on or before the cur-

rent time line. If omitted, the function calculates the number of

occurrences of all events on or before the current time line.
For more information, see “Qualified Events” on page 9-81.

RETURN TYPE

integer

SEE ALSO

“summary_matches()” on page 9-74.

9-33

NightTrace Manual

State Functions

Start Functions

9-34

In its simplest form, astateis a region of source code bounded by ttvace events A
state definition requires the specification of two trace events, a starntand an_end
event respectively. Additional conditions may be specified in a state definition to further
constrain the state. The state functions include the following:

¢ Start functions
¢ End functions

* Multi-state functions

The start functions provide information about the séartntof the most recent instance of

a state The state to which the start function applies is eitherhalified statespecified to

the function, or the state being currently defined. Thus, if a qualfied state is not specified,
start functions are only meaningful when useeéipressionassociated within a state def-
inition. In addition, start functions should not be used in a recursive manneSia
Expression; a start function should not be specified irSéart Expression that
applies to the state definition containing ti&tart Expression. Conversely, afEnd
Expression may include start functions that apply to the state definition containing that
End Expression.

NOTE

Start functions provide information about thrst recent instance
of a state whereas end functions (see “End Functions” on page
9-45) provide information about thast completed instance of a
state

Start functions include the following:
e start_id()
e start_arg()
e start_arg_dbl()
¢ start_num_args()
¢ start_pid()
e start_raw_pid()
¢ start_thread id()
¢ start_task _id()
e start_tid()
¢ start_Iwpid()

e start_cpu()

start_id()

start_arg()

Using Expressions

¢ start_offset()

¢ start_time()

¢ start_node_id()

¢ start_pid_table_name()
¢ start_tid_table_name()

¢ start_node_name()

DESCRIPTION

Thestart_id() function returns therace event |Dof the starteventof the most
recent instance of a state

SYNTAX

start_id [([QT)]

PARAMETERS
QS A user-definedqualified state If supplied, it specifies the state
to which the function applies. If omitted, the function may
only be used within a state definition and then applies to that

state. For more information, see “Qualified States” on page
9-83.

RETURN TYPE

integer

SEE ALSO

“id()” on page 9-19, “end_id()" on page 9-46, and “offset_id()” on page 9-60.

DESCRIPTION

Thestart_arg() function returns the value of a particulace event argument
associated with the stagtventof the most recent instance of a state

SYNTAX

start_arg [N][([QS)]

9-35

NightTrace Manual

start_arg_dbl()

9-36

PARAMETERS

N

QS

RETURN TYPE

integer

SEE ALSO

Specifies theNth argument logged with the stasvent
Defaults to 1.

A user-definedqualified statelf supplied, it specifies the state
to which the function applies. If omitted, the function may
only be used within a state definition and then applies to that
state. For more information, see “Qualified States” on page
9-83.

“arg()” on page 9-20, “start_arg_dbl()" on page 9-36, “start_num_args()” on page
9-37, “end_arg()” on page 9-47, and “offset_arg()” on page 9-60.

DESCRIPTION

Thestart_arg_dbl() function returns the value of a particulaace event
argumentassociated with the stagtzentof the most recent instance of a state

SYNTAX

start_arg

PARAMETERS

N

QS

RETURN TYPE

[N]_dbl [([Q)]

Specifies theNth argument logged with the stasvent
Defaults to 1.

A user-definedqualified statelf supplied, it specifies the state
to which the function applies. If omitted, the function may
only be used within a state definition and then applies to that
state. For more information, see “Qualified States” on page
9-83.

double-precision floating point

SEE ALSO

“arg_dbl()” on page 9-21, “start_arg()” on page 9-35, “start_num_args()" on page
9-37, “end_arg_dbl()" on page 9-47, and “offset_arg_dbl()” on page 9-61.

Using Expressions

start_num_args()

DESCRIPTION

The start_num_args() function returns the number of arguments associated
with the starieventof themost recent instance of a state

SYNTAX

start_num_args [([Q9Y)]

PARAMETERS

QS A user-definedqualified state If supplied, it specifies the state
to which the function applies. If omitted, the function may
only be used within a state definition and then applies to that
state. For more information, see “Qualified States” on page
9-83.

RETURN TYPE

integer

SEE ALSO

“start_arg()” on page 9-35, “num_args()” on page 9-21, “end_num_args()” on page
9-48, and “offset_num_args()” on page 9-61.

start_pid()

DESCRIPTION

The start_pid() function returns the global process identifi®dD) associated
with the starieventof themost recent instance of a state

NOTE

A global process identifier does not have the same meaning as the
typical operating system definition gid . A PID within Night-
Trace is a 32-bit integer value that contains the operating system
process identifierraw PID) in the upper 16 bits and the light-
weight process identifiel {VPID) in the lower 16 bits. Consult

the _Ilwp_global_self(2) man page for more information.

SYNTAX

start_pid [([Q9)]

9-37

NightTrace Manual

start_raw_pid()

9-38

PARAMETERS
QS A user-definedqualified statelf supplied, it specifies the state
to which the function applies. If omitted, the function may
only be used within a state definition and then applies to that

state. For more information, see “Qualified States” on page
9-83.

RETURN TYPE

integer

SEE ALSO

“pid()” on page 9-22, “raw_pid()” on page 9-23, “lwpid()” on page 9-23,
“end_pid()" on page 9-48, and “offset_pid()” on page 9-62.

DESCRIPTION

Thestart_raw_pid() function returns the process identifieagv PID) associ-
ated with the stareventof themost recent instance of a state

NOTE
A NightTrace raw PID has the same meaning as the typical oper-
ating system definition opid . See thegetpid(2) man page
for more information.
SYNTAX

start_raw_pid [([QI]

PARAMETERS

Qs A user-definedqualified statelf supplied, it specifies the state
to which the function applies. If omitted, the function may
only be used within a state definition and then applies to that
state. For more information, see “Qualified States” on page
9-83.

RETURN TYPE

integer

SEE ALSO

“pid()” on page 9-22, “raw_pid()” on page 9-23, “lwpid()” on page 9-23,
“end_pid()" on page 9-48, and “offset_pid()” on page 9-62.

Using Expressions

start_lwpid()

DESCRIPTION

The start_lwpid() function returns the lightweight process identifiek{PID)
associated with the stagventof the most recent instance of a state
NOTE

See the lwp_self(2) man page for more information.

SYNTAX

start_Iwpid [([QI]

PARAMETERS
QS A user-definedqualified state If supplied, it specifies the state
to which the function applies. If omitted, the function may
only be used within a state definition and then applies to that

state. For more information, see “Qualified States” on page
9-83.

RETURN TYPE

integer

SEE ALSO

“pid()” on page 9-22, “raw_pid()” on page 9-23, “lwpid()” on page 9-23,
“end_pid()" on page 9-48, and “offset_pid()” on page 9-62.

start_thread_id()

DESCRIPTION

The start_thread_id() function returns theéhreadidentifier associated with
the starteventof the most recent instance of a state

NOTE

See thahr_self(3thread) man page for more information.

SYNTAX

start_thread_id [((QY]

9-39

NightTrace Manual

start_task_id()

9-40

PARAMETERS
QS A user-definedqualified statelf supplied, it specifies the state
to which the function applies. If omitted, the function may
only be used within a state definition and then applies to that

state. For more information, see “Qualified States” on page
9-83.

RETURN TYPE

integer

SEE ALSO

“thread_id()" on page 9-24, “end_thread_id()” on page 9-51, and
“offset_thread_id()” on page 9-64.

DESCRIPTION

The start_task_id() function returns the Ada task identifier associated with
the starteventof the most recent instance of a state

NOTE

This function is only meaningful for trace events logged by Ada
tasking programs.

SYNTAX
start_task_id [([QI]
PARAMETERS
Qs A user-definedqualified statelf supplied, it specifies the state

to which the function applies. If omitted, the function may
only be used within a state definition and then applies to that
state. For more information, see “Qualified States” on page
9-83.

RETURN TYPE

integer

SEE ALSO

“task_id()” on page 9-25, “end_task_id()" on page 9-51, and “offset_task_id()” on
page 9-64.

Using Expressions

start_tid()

DESCRIPTION

The start_tid() function returns the internally-assigned NightTrace thread
identifier (TID) associated with the stastzentof the most recent instance of a state

SYNTAX

start_tid [([Q9)]

PARAMETERS
QS A user-definedqualified state If supplied, it specifies the state
to which the function applies. If omitted, the function may
only be used within a state definition and then applies to that

state. For more information, see “Qualified States” on page
9-83.

RETURN TYPE

integer

SEE ALSO
“tid()” on page 9-25, “end_tid()” on page 9-52, and “offset_tid()” on page 9-65.

start_cpu()

DESCRIPTION
The dart_cpu() function returns the logical CPU number associated with the
starteventof themost recent instance of a stat€PUs are logically numbered start-
ing at 0 and monotonically increase thereafter.
NOTE
This function is only valid when applied to events from Night-
Trace kernel trace event files.

SYNTAX

start_cpu [([QI)]

PARAMETERS
QS A user-definedqualified state If supplied, it specifies the state

to which the function applies. If omitted, the function may
only be used within a state definition and then applies to that

9-41

NightTrace Manual

start_offset()

start_time()

9-42

state. For more information, see “Qualified States” on page
9-83.

RETURN TYPE

integer

SEE ALSO

“cpu()” on page 9-26, “end_cpu()” on page 9-52, and “offset_cpu()” on page 9-66.

DESCRIPTION

The start_offset() function returns the ordinal numbeoffsej of the start
eventof the most recent instance of a state

SYNTAX
start_offset (O]
PARAMETERS
QS A user-definedqualified statelf supplied, it specifies the state

to which the function applies. If omitted, the function may
only be used within a state definition and then applies to that
state. For more information, see “Qualified States” on page
9-83.

RETURN TYPE

integer

SEE ALSO

“offset()” on page 9-27 and “end_offset()” on page 9-53.

DESCRIPTION
Thestart_time() function returns the time, in seconds, associated with the start

eventof the most recent instance of a stat&imes are relative to the earliest trace
event from all trace data files currently in use.

SYNTAX

start_time [([Q9)]

start_node_id()

Using Expressions

PARAMETERS

QS A user-definedqualified state If supplied, it specifies the state
to which the function applies. If omitted, the function may
only be used within a state definition and then applies to that
state. For more information, see “Qualified States” on page
9-83.

RETURN TYPE

double-precision floating point

SEE ALSO

“time()” on page 9-27, “end_time()” on page 9-54, “state_gap()” on page 9-57,
“state_dur()” on page 9-57, and “offset_time()” on page 9-66.

DESCRIPTION

The start_node_id() function returns the internally-assignadde identifier
associated with the stagtventof the most recent instance of a state

SYNTAX

start_node_id [([QI]

PARAMETERS

Qs A user-definedqualified state If supplied, it specifies the state
to which the function applies. If omitted, the function may
only be used within a state definition and then applies to that
state. For more information, see “Qualified States” on page
9-83.

RETURN TYPE

integer

SEE ALSO

“node_id()" on page 9-28, “offset_node_id()" on page 9-67, and “end_node_id()"
on page 9-54

9-43

NightTrace Manual

start_pid_table_name()

start_tid_table_name()

9-44

DESCRIPTION

The start_pid_table_name() function returns the name of the inter-
nally-assigned NightTrace process identifier tal#¢) table) associated with the
starteventof the most recent instance of a state

SYNTAX
start_pid_table_name [([QI]
PARAMETERS
QS A user-definedqualified statelf supplied, it specifies the state

to which the function applies. If omitted, the function may
only be used within a state definition and then applies to that
state. For more information, see “Qualified States” on page
9-83.

RETURN TYPE

string

SEE ALSO

“pid_table_name()” on page 9-29, “offset_pid_table_name()” on page 9-67, and
“end_pid_table_name()” on page 9-55

DESCRIPTION

The start_tid_table_name() function returns the name of the inter-
nally-assigned NightTrace thread identifier tablél§ table) associated with the
starteventof the most recent instance of a state

SYNTAX
start_tid_table_name [([QI]
PARAMETERS
QS A user-definedqualified statelf supplied, it specifies the state

to which the function applies. If omitted, the function may
only be used within a state definition and then applies to that
state. For more information, see “Qualified States” on page
9-83.

Using Expressions

RETURN TYPE

string

SEE ALSO

“tid_table_name()” on page 9-29, “offset_tid_table_name()” on page 9-68, and
“end_tid_table_name()” on page 9-55

start_node_name()

DESCRIPTION

The start_node_name() function returns the name of the system from which
the starteventof the most recent instance of a states logged.

SYNTAX
start_node_name [([Q9)]
PARAMETERS
QS A user-definedqualified state If supplied, it specifies the state

to which the function applies. If omitted, the function may
only be used within a state definition and then applies to that
state. For more information, see “Qualified States” on page
9-83.

RETURN TYPE

string

SEE ALSO

“node_name()” on page 9-30, “offset_node_name()” on page 9-68, and
“end_node_name()” on page 9-56

End Functions

The end functions provide information about the eventof the last completed instance

of a state Thestateto which the end function applies is either tipealified statespecified

to the function, or the state being currently defined. Thus, if a qualfied state is not speci-
fied, end functions are only meaningful when used in expressions associated within a state
definition.

NOTE

End functions provide information about thast completed
instance of a statewhereas start functions (see “Start Functions”
on page 9-34) provide information about ttm@st recent instance
of a state

9-45

NightTrace Manual

End functions include:
e end_id()
¢ end_arg()
¢ end_arg_dbl()
¢ end_num_args()
¢ end_pid()
¢ end_raw_pid()
¢ end_lwpid()
¢ end_thread_id()
¢ end_task_id()
¢ end_tid()
¢ end_cpu()
¢ end_offset()
¢ end_time()
¢ end_node_id()
¢ end_pid_table_name()
¢ end_tid_table_name()

* end_node_name()

end_id()

DESCRIPTION

Theend_id() function returns thérace event IDassociated with the erelventof
thelast completed instance of a state

SYNTAX

end_id [([QI)]

PARAMETERS

QS A user-definedqualified statelf supplied, it specifies the state
to which the function applies. If omitted, the function may
only be used within a state definition and then applies to that
state. For more information, see “Qualified States” on page
9-83.

RETURN TYPE

integer

9-46

end_arg()

end_arg_dbl()

Using Expressions

SEE ALSO

“id()” on page 9-19, “start_id()” on page 9-35, and “offset_id()" on page 9-60.

DESCRIPTION

Theend_arg() function returns the value of a particulaace event argument
associated with the erelentof thelast completed instance of a state

SYNTAX

end_arg [N] [([Q9)]

PARAMETERS
N Specifies theNth argument logged with the trace event.
Defaults to 1.
Qs A user-definedqualified state If supplied, it specifies the state

to which the function applies. If omitted, the function may
only be used within a state definition and then applies to that
state. For more information, see “Qualified States” on page
9-83.

RETURN TYPE

integer

SEE ALSO

“arg()” on page 9-20, “start_arg()” on page 9-35, “end_arg_dbl()" on page 9-47,
“end_num_args()" on page 9-48, and “offset_arg()” on page 9-60.

DESCRIPTION

Theend_arg_dbl() function returns the value of a particulaace event argu-
mentassociated with the erelentof thelast completed instance of a state

SYNTAX

end_arg [N]_dbl [([QS)]

PARAMETERS

N Specifies theNth argument logged with the trace event.
Defaults to 1.

9-47

NightTrace Manual

end_num_args()

end_pid()

9-48

QS A user-definedqualified statelf supplied, it specifies the state
to which the function applies. If omitted, the function may
only be used within a state definition and then applies to that
state. For more information, see “Qualified States” on page
9-83.

RETURN TYPE

double-precision floating point

SEE ALSO

“arg_dbl()” on page 9-21, “start_arg_dbl()” on page 9-36, “end_arg()” on page 9-47,
“end_num_args()” on page 9-48, and “offset_arg_dbl()” on page 9-61.

DESCRIPTION

Theend_num_args() function returns the number of arguments associated with
the endeventof thelast completed instance of a state

SYNTAX

end_num_args [([Q9)]

PARAMETERS
Qs A user-definedqualified statelf supplied, it specifies the state
to which the function applies. If omitted, the function may
only be used within a state definition and then applies to that

state. For more information, see “Qualified States” on page
9-83.

RETURN TYPE

integer

SEE ALSO

“num_args()” on page 9-21, “start_num_args()” on page 9-37, “end_arg()” on page
9-47, and “offset_num_args()” on page 9-61.

DESCRIPTION

Theend_pid() function returns the global process identifi€&lD) associated
with the endeventof thelast completed instance of a state

Using Expressions

NOTE
A global process identifier does not have the same meaning as the
typical operating system definition gid . A PID within Night-
Trace is a 32-bit integer value that contains the operating system
process identifierraw PID) in the upper 16 bits and the light-
weight process identifiel {VPID) in the lower 16 bits. Consult
the _Ilwp_global_self(2) man page for more information.

SYNTAX

end_pid [([Q9)]

PARAMETERS
QS A user-definedqualified state If supplied, it specifies the state
to which the function applies. If omitted, the function may
only be used within a state definition and then applies to that

state. For more information, see “Qualified States” on page
9-83.

RETURN TYPE

integer

SEE ALSO

“pid()” on page 9-22, “raw_pid()” on page 9-23, “lwpid()” on page 9-23,
“start_pid()” on page 9-37, and “offset_pid()” on page 9-62.

end_raw_pid()

DESCRIPTION

Theend_raw_pid() function returns the process identifieafv PID) associated
with the endeventof thelast completed instance of a state

NOTE
A NightTrace raw PID has the same meaning as the typical oper-
ating system definition opid . See thegetpid(2) man page
for more information.

SYNTAX

end_raw_pid [([Q9)]

9-49

NightTrace Manual

end_lwpid()

9-50

PARAMETERS
QS A user-definedqualified statelf supplied, it specifies the state
to which the function applies. If omitted, the function may
only be used within a state definition and then applies to that

state. For more information, see “Qualified States” on page
9-83.

RETURN TYPE

integer

SEE ALSO

“pid()” on page 9-22, “raw_pid()” on page 9-23, “lwpid()” on page 9-23,
“start_pid()” on page 9-37, and “offset_pid()” on page 9-62.

DESCRIPTION
Theend_lwpid() function returns the lightweight process identifi€W{P1D)
associated with the erel/entof thelast completed instance of a state
NOTE

See the lwp_self(2) man page for more information.

SYNTAX

end_lwpid [([Q9)]

PARAMETERS

QS A user-definedqualified statelf supplied, it specifies the state
to which the function applies. If omitted, the function may
only be used within a state definition and then applies to that
state. For more information, see “Qualified States” on page
9-83.

RETURN TYPE

integer

SEE ALSO

“pid()” on page 9-22, “raw_pid()” on page 9-23, “lwpid()” on page 9-23,
“start_pid()” on page 9-37, and “offset_pid()" on page 9-62.

Using Expressions

end_thread_id()

DESCRIPTION

Theend_thread_id() function returns theéhreadidentifier associated with the
endeventof thelast completed instance of a state

NOTE
See thahr_self(3thread) man page for more information.
SYNTAX
end_thread_id [([Q9)]
PARAMETERS
QS A user-definedqualified state If supplied, it specifies the state

to which the function applies. If omitted, the function may
only be used within a state definition and then applies to that
state. For more information, see “Qualified States” on page
9-83.

RETURN TYPE

integer

SEE ALSO

“thread_id()” on page 9-24, “start_thread_id()” on page 9-39, and
“offset_thread_id()” on page 9-64.

end_task_id()

DESCRIPTION

Theend_task_id() function returns the Ada task identifier associated with the
endeventof thelast completed instance of a state

NOTE

This function is only meaningful for trace events logged by Ada
tasking programs.

SYNTAX

end_task_id [([Q9)]

9-51

NightTrace Manual

end_tid()

end_cpu()

9-52

PARAMETERS

QS A user-definedqualified statelf supplied, it specifies the state
to which the function applies. If omitted, the function may
only be used within a state definition and then applies to that
state. For more information, see “Qualified States” on page
9-83.

RETURN TYPE

integer

SEE ALSO

“task_id()” on page 9-25, “start_task_id()” on page 9-40, and “offset_task_id()” on
page 9-64.

DESCRIPTION

Theend_tid() function returns the internally-assigned NightTrace thread identi-
fier (TID) associated with the erel/entof thelast completed instance of a state

SYNTAX
end_tid [([Q9)]
PARAMETERS
QS A user-definedqualified statelf supplied, it specifies the state

to which the function applies. If omitted, the function may
only be used within a state definition and then applies to that
state. For more information, see “Qualified States” on page
9-83.

RETURN TYPE

integer

SEE ALSO

“tid()” on page 9-25, “start_tid()" on page 9-41, and “offset_tid()" on page 9-65.

DESCRIPTION

Theend_cpu() function returns the logical CPU number associated with the end
eventof thelast completed instance of a stat€PUs are logically numbered start-
ing at 0 and monotonically increase thereafter.

end_offset()

Using Expressions

NOTE
This function is only valid when applied to events from Night-
Trace kernel trace event files.
SYNTAX

end_cpu [([Q9)]

PARAMETERS
QS A user-definedqualified state If supplied, it specifies the state
to which the function applies. If omitted, the function may
only be used within a state definition and then applies to that

state. For more information, see “Qualified States” on page
9-83.

RETURN TYPE

integer

SEE ALSO

“cpu()” on page 9-26, “start_cpu()” on page 9-41, and “offset_cpu()” on page 9-66.

DESCRIPTION

Theend_offset() function returns the ordinal numbeoffse} of the endevent
of thelast completed instance of a state

SYNTAX

end_offset [([Q9)]

PARAMETERS

QS A user-definedqualified state If supplied, it specifies the state
to which the function applies. If omitted, the function may
only be used within a state definition and then applies to that
state. For more information, see “Qualified States” on page
9-83.

RETURN TYPE

integer

9-53

NightTrace Manual

end_time()

end_node_id()

9-54

SEE ALSO

“offset()” on page 9-27 and “start_offset()” on page 9-42.

DESCRIPTION

Theend_time() function returns the time, in seconds, associated with the end
eventof the last completed instance of a stat&imes are relative to the earliest
trace event from all trace data files currently in use.

SYNTAX
end_time [([QY)]
PARAMETERS
QS A user-definedqualified statelf supplied, it specifies the state

to which the function applies. If omitted, the function may
only be used within a state definition and then applies to that
state. For more information, see “Qualified States” on page
9-83.

RETURN TYPE

double-precision floating point

SEE ALSO

“time()” on page 9-27, “start_time()” on page 9-42, “state_gap()” on page 9-57,
“state_dur()” on page 9-57, and “offset_time()” on page 9-66.

DESCRIPTION

Theend_node_id() function returns the internally-assignedde identifierasso-
ciated with the en@ventof thelast completed instance of a state

SYNTAX
end_node_id [([Q9)]
PARAMETERS
QS A user-definedqualified statelf supplied, it specifies the state

to which the function applies. If omitted, the function may
only be used within a state definition and then applies to that
state. For more information, see “Qualified States” on page
9-83.

end_pid_table_name()

end_tid_table_name()

Using Expressions

RETURN TYPE

integer
SEE ALSO
“node_id()” on page 9-28, “start_node_id()” on page 9-43, and “offset_node_id()"
on page 9-67
DESCRIPTION
The end_pid_table_name() function returns the name of the inter-

nally-assigned NightTrace process identifier tal#¢) table) associated with the
endeventof thelast completed instance of a state

SYNTAX

end _pid_table_name [([Q9)]

PARAMETERS

QS A user-definedqualified state If supplied, it specifies the state
to which the function applies. If omitted, the function may
only be used within a state definition and then applies to that
state. For more information, see “Qualified States” on page
9-83.

RETURN TYPE

string

SEE ALSO

“pid_table_name()” on page 9-29, “start_pid_table_name()” on page 9-44, and
“offset_pid_table_name()” on page 9-67.

DESCRIPTION
The end_tid_table_name() function returns the name of the inter-

nally-assigned NightTrace thread identifier tablé table) associated with the end
eventof thelast completed instance of a state

SYNTAX

end_tid_table_name [([QMP]

9-55

NightTrace Manual

end_node_name()

Multi-State Functions

9-56

PARAMETERS

QS A user-definedqualified statelf supplied, it specifies the state
to which the function applies. If omitted, the function may
only be used within a state definition and then applies to that
state. For more information, see “Qualified States” on page
9-83.

RETURN TYPE

string

SEE ALSO

“tid_table_name()” on page 9-29, “start_tid_table_name()” on page 9-44, and
“offset_tid_table_name()” on page 9-68.

DESCRIPTION

Theend_node_name() function returns the name of the system from which the
endeventof thelast completed instance of a statas logged.

SYNTAX
end_node_name [([Q9)]
PARAMETERS
QS A user-definedqualified statelf supplied, it specifies the state

to which the function applies. If omitted, the function may
only be used within a state definition and then applies to that
state. For more information, see “Qualified States” on page
9-83.

RETURN TYPE

string

SEE ALSO

“node_name()” on page 9-30, “start_node_name()” on page 9-45, and
“offset_node_name()” on page 9-68.

Multi-state functions return information about one or more instances of a state:

¢ state_gap()

e state dur()

state_gap()

state_dur()

Using Expressions

¢ state_matches()

¢ state_status()

For restrictions on usage, see “StateGraph” on page 8-14.

DESCRIPTION

The state_gap() function returns the time in seconds between_the steahtof
themost recent instance of the statad the_endventof the instance immediately
preceeding it or zero if there was no previous instance.

SYNTAX
state_gap [([Q9)]
PARAMETERS
QS A user-definedqualified state If supplied, it specifies thetate

to which the function applies. If omitted, the function may
only be used within a state definition and then applies to that
state. For more information, see “Qualified States” on page
9-83.

RETURN TYPE

double-precision floating point

SEE ALSO

“start_time()” on page 9-42, “end_time()” on page 9-54, “event_gap()” on page
9-32, and “state_dur()” on page 9-57.

DESCRIPTION

The state_dur() function returns the time in seconds between_the stahtand the
endeventof the last completed instance of a stat&hus, if thecurrent time lineoccurs
within an instance of the state but before it has endtde_dur() returns the duration
of the previous instance or zero if there was no previous instance.

SYNTAX
state_dur [([Q)]
PARAMETERS
QS A user-definedqualified stateIf supplied, it specifies thetate

to which the function applies. If omitted, the function may

9-57

NightTrace Manual

state_matches()

state_status()

9-58

only be used within a state definition and then applies to that
state. For more information, see “Qualified States” on page
9-83.

RETURN TYPE

double-precision floating point

SEE ALSO

“state_gap()” on page 9-57.

DESCRIPTION

The state_matches() function returns the number of completed instances of a
state on or before theurrent time line

SYNTAX
state_matches [([QS)]
PARAMETERS
QS A user-definedyualified stateIf supplied, it specifies thetate

to which the function applies. If omitted, the function may
only be used within a state definition and then applies to that
state. For more information, see “Qualified States” on page
9-83.

RETURN TYPE

integer

SEE ALSO

“Start Functions” on page 9-34 and “summary_matches()” on page 9-74.

DESCRIPTION

The state_status() function indicates whether theurrent time lineresides
within acurrent instance of a stateThus, if the current time line is positioned in the
region from the startventup to, but not including, the enelventof an instance of
the state, the return value is TRUE. Otherwise, it is FALSE.

SYNTAX

state_status [{({E))

Offset Functions

Using Expressions

PARAMETERS

QS A user-definedqualified stateIf supplied, it specifies thetate
to which the function applies. If omitted, the function may
only be used within a state definition and then applies to that
state. For more information, see “Qualified States” on page
9-83.

RETURN TYPE

boolean

All offset functions take an expression that evaluates to an ordinal trace effej(@s a
parameter. (Offsets begin at zero.) These functions include the following:

¢ offset_id()

* offset_arg()

¢ offset_arg_dbl()

¢ offset_num_args()

* offset_pid()

¢ offset_raw_pid()

¢ offset_lwpid()

¢ offset_thread_id()

¢ offset_task _id()

¢ offset_tid()

¢ offset_cpu ()

¢ offset_time()

¢ offset_node_id()

¢ offset_pid_table_name()
¢ offset_tid_table_name()
¢ offset_node_name()

¢ offset_process_name()

¢ offset_task_name()

¢ offset_thread name()
Usually, these functions take one of the following functions as a parameter:

¢ offset()

9-59

NightTrace Manual

offset_id()

offset_arg()

9-60

¢ start_offset()
¢ end_offset()
* min_offset()

* max_offset()

For information about these functions, see “offset()” on page 9-27, “start_offset()” on
page 9-42, “end_offset()” on page 9-53, “min_offset()” on page 9-73, and “max_offset()”
on page 9-73.

DESCRIPTION

The offset_id() function returns thérace event IDof the ordinal trace event
(offse).

SYNTAX

offset_id(offset_expr)

PARAMETERS

offset_expr An expression that evaluates to tléfset (or ordinal trace
event number) of a trace event.

RETURN TYPE

integer

SEE ALSO

“id()” on page 9-19, “start_id()" on page 9-35, and “end_id()” on page 9-46.

DESCRIPTION

The offset_arg() function returns the value of a particulaace event argu-
mentfor the ordinal trace evenbffse).

SYNTAX
offset_arg [N] (offset_expr
PARAMETERS
N Specifies theNth argument logged with the trace event.

Defaults to 1.

offset_arg_dbl()

offset_num_args()

Using Expressions

offset_expr An expression that evaluates to tléfset (or ordinal trace
event number) of a trace event.

RETURN TYPE

integer

SEE ALSO

“arg()” on page 9-20, “start_arg()” on page 9-35, “end_arg()” on page 9-47,
“offset_arg_dbl()” on page 9-61, and “offset_num_args()” on page 9-61.

DESCRIPTION

The offset_arg_dbl() function returns the value of a particulaace event
argumentfor the ordinal trace evenbffse).

SYNTAX
offset_ arg [N]_dbl (offset_expr
PARAMETERS
N Specifies theNth argument logged with the trace event.
Defaults to 1.
offset_expr An expression that evaluates to tléfset (or ordinal trace

event number) of a trace event.

RETURN TYPE

double-precision floating point

SEE ALSO

“arg_dbl()” on page 9-21, “start_arg_dbl()” on page 9-36, “end_arg_dbl()" on page
9-47, “offset_arg()” on page 9-60, and “offset_num_args()” on page 9-61.

DESCRIPTION

Theoffset_num_args() function returns the number of arguments logged with
the ordinal trace evenbffse).

SYNTAX

offset_num_args (offset_expr

9-61

NightTrace Manual

PARAMETERS

offset_expr An expression that evaluates to tléfset (or ordinal trace
event number) of a trace event.

RETURN TYPE

integer

SEE ALSO

“num_args()” on page 9-21, “start_num_args()” on page 9-37, “end_num_args()” on
page 9-48, “offset_arg()” on page 9-60, and “offset_arg_dbl()" on page 9-61.

offset_pid()

DESCRIPTION

The offset_pid() function returns the global process identifi&lD) from
which the ordinal trace evenofifse} was logged.

NOTE
A global process identifier does not have the same meaning as the
typical operating system definition gid . A PID within Night-
Trace is a 32-bit integer value that contains the operating system
process identifierraw PID) in the upper 16 bits and the light-
weight process identifielVPID) in the lower 16 bits. Consult
the _Iwp_global_self(2) man page for more information.

SYNTAX

offset_pid (offset_expr

PARAMETERS

offset_expr An expression that evaluates to tléfset (or ordinal trace
event number) of a trace event.

RETURN TYPE

integer

SEE ALSO

“pid()” on page 9-22, “raw_pid()” on page 9-23, “lwpid()” on page 9-23,
“start_pid()” on page 9-37, and “end_pid()” on page 9-48.

9-62

Using Expressions

offset_raw_pid()

DESCRIPTION
The offset_raw_pid() function returns the process identifiea{v PID) from
which the ordinal trace evenoifse) was logged.
NOTE
A NightTrace raw PID has the same meaning as the typical oper-

ating system definition opid . See thegetpid(2) man page
for more information.

SYNTAX

offset_raw_pid (offset_expr

PARAMETERS

offset_expr An expression that evaluates to tléfset (or ordinal trace
event number) of a trace event.

RETURN TYPE

integer

SEE ALSO

“pid()” on page 9-22, “raw_pid()” on page 9-23, “lwpid()” on page 9-23,
“start_pid()” on page 9-37, and “end_pid()" on page 9-48.

offset_Iwpid()

DESCRIPTION

The offset_lwpid() function returns the lightweight process identifier
(LWPID) from which the ordinal trace evemnffse) was logged.

NOTE

See the lwp_self(2) man page for more information.

SYNTAX

offset_Iwpid (offset_expr

9-63

NightTrace Manual

offset_thread_id()

offset_task_id()

9-64

PARAMETERS

offset_expr An expression that evaluates to tléfset (or ordinal trace
event number) of a trace event.

RETURN TYPE

integer

SEE ALSO

“pid()” on page 9-22, “raw_pid()” on page 9-23, “lwpid()” on page 9-23,
“start_Iwpid()” on page 9-39, and “end_Iwpid()” on page 9-50.

DESCRIPTION

Theoffset_thread_id() function returns théhreadidentifier from which the
ordinal trace eventoffse} was logged.
NOTE

See thahr_self(3thread) man page for more information.

SYNTAX

offset_thread_id (offset_expr

PARAMETERS

offset_expr An expression that evaluates to tléfset (or ordinal trace
event number) of a trace event.

RETURN TYPE

integer

SEE ALSO

“thread_id()” on page 9-24, “start_thread_id()” on page 9-39, and “end_thread_id()”
on page 9-51.

DESCRIPTION

Theoffset_task_id() function returns the Ada task identifier from which the
ordinal trace eventoffse} was logged.

Using Expressions

NOTE
This function is only meaningful for trace events logged by Ada

tasking programs.

SYNTAX

offset_task_id (offset_expr

PARAMETERS

offset_expr An expression that evaluates to tléfset (or ordinal trace
event number) of a trace event.

RETURN TYPE

integer

SEE ALSO

“task_id()” on page 9-25, “start_task_id()" on page 9-40, and “end_task _id()” on
page 9-51.

offset_tid()

DESCRIPTION

The offset_tid() function returns the internally-assigned NightTrace thread
identifier (TID) from which the ordinal trace evemffse) was logged.

SYNTAX

offset_tid (offset_expr

PARAMETERS

offset_expr An expression that evaluates to tléfset (or ordinal trace
event number) of a trace event.

RETURN TYPE

integer

SEE ALSO

“tid()” on page 9-25, “start_tid()" on page 9-41, and “end_tid()” on page 9-52.

9-65

NightTrace Manual

offset_cpu()

DESCRIPTION
Theoffset_cpu() function returns the logical CPU number on which the ordinal

trace eventdffse) occurred. CPUs are logically numbered starting at 0 and mono-
tonically increase thereafter.

NOTE

This function is only valid when applied to events from Night-
Trace kernel trace event files.

SYNTAX
offset cpu (offset_expr
PARAMETERS
offset_expr An expression that evaluates to tléfset (or ordinal trace

event number) of a trace event.

RETURN TYPE

integer

SEE ALSO

“cpu()” on page 9-26, “start_cpu()” on page 9-41, and “end_cpu()” on page 9-52.

offset_time()

DESCRIPTION

The offset_time() function returns the time in seconds between the beginning
of the trace run and the ordinal trace eveoffge).

SYNTAX
offset_time (offset_expr
PARAMETERS
offset_expr An expression that evaluates to tléfset (or ordinal trace

event number) of a trace event.

RETURN TYPE

double-precision floating point

9-66

Using Expressions

SEE ALSO

“time()” on page 9-27, “start_time()” on page 9-42, and “end_time()” on page 9-54.

offset_node_id()

DESCRIPTION

The offset_node_id() function returns the internally-assignadde identifier
from which the ordinal trace eventffse) was logged.

SYNTAX

offset_node_id (offset_expr

PARAMETERS

offset_expr An expression that evaluates to tléfset (or ordinal trace
event number) of a trace event.

RETURN TYPE

integer

SEE ALSO

“node_id()" on page 9-28, “start_node_id()" on page 9-43, and “end_node_id()" on
page 9-54

offset_pid_table_name()

DESCRIPTION

The offset_pid_table_name() function returns the name of the inter-
nally-assigned NightTrace process identifier tal#¢Y table) for the ordinal trace
event pffse).

SYNTAX
offset_pid_table_name (offset_expr
PARAMETERS
offset_expr An expression that evaluates to tléfset (or ordinal trace

event number) of a trace event.

RETURN TYPE

string

9-67

NightTrace Manual

SEE ALSO

“pid_table_name()” on page 9-29, “start_pid_table_name()” on page 9-44, and
“end_pid_table_name()” on page 9-55

offset_tid_table_name()

DESCRIPTION

The offset_tid_table_name() function returns the name of the inter-
nally-assigned NightTrace thread identifier table table) for the ordinal trace
event pffse).

SYNTAX
offset_tid_table_name (offset_expr
PARAMETERS
offset_expr An expression that evaluates to tléfset (or ordinal trace

event number) of a trace event.

RETURN TYPE

string

SEE ALSO

“tid_table_name()” on page 9-29, “start_tid_table_name()” on page 9-44, and
“end_tid_table_name()” on page 9-55

offset_node_name()

DESCRIPTION

Theoffset_node_name() function returns the name of the system from which
the ordinal trace evenbffse) was logged.

SYNTAX
offset node_name (offset_expr
PARAMETERS
offset_expr An expression that evaluates to tléfset (or ordinal trace

event number) of a trace event.

RETURN TYPE

string

9-68

Using Expressions

SEE ALSO

“node_name()” on page 9-30, “start_node_name()” on page 9-45, and
“end_node_name()” on page 9-56

offset_process_name()

DESCRIPTION

The offset_process_name() function returns the name of the proceBs0})
from which the ordinal trace eventffse) was logged.

SYNTAX

offset_process_name (offset_expr

PARAMETERS

offset_expr An expression that evaluates to tléfset (or ordinal trace
event number) of a trace event.

RETURN TYPE

string

SEE ALSO

“process_name()” on page 9-30

offset_task_name()

DESCRIPTION

Theoffset_task_name() function returns the name of the task from which the
ordinal trace eventoffse} was logged.

NOTE

This function is only meaningful for trace events which were
logged from Ada tasking programs.

SYNTAX
offset_task_name (offset_expr
PARAMETERS
offset_expr An expression that evaluates to tléfset (or ordinal trace

event number) of a trace event.

9-69

NightTrace Manual
RETURN TYPE
string

SEE ALSO

“task_name()” on page 9-31

offset_thread_name()

DESCRIPTION

The offset_thread_name() function returns the thread name from which the
ordinal trace eventoffse} was logged.

SYNTAX
offset_thread_name (offset_expr
PARAMETERS
offset_expr An expression that evaluates to tléfset (or ordinal trace

event number) of a trace event.

RETURN TYPE

string

SEE ALSO

“thread_name()” on page 9-32

Summary Functions

You usually use summary functions on tlsaammarize Form. Except for
summary_matches() , all of these functions take another expression as a parameter.
They include the following:

* min()
* max()
* avg()
* sum()
* min_offset()
* max_offset()

¢ summary_matches()

9-70

min()

max()

Using Expressions

DESCRIPTION

Themin() function returns the minimum value of all occurrence®gprwithin a

time range. When used in@dummarize Form, the time range is defined by that
form. When used elsewhere, the time range is defined as the region starting with the
first trace eventind ending with theurrent trace event

SYNTAX

min (expr

PARAMETERS

expr A numeric expression.

RETURN TYPE

data type oexpr

SEE ALSO

“Summary Functions” on page 9-70 and “Summarizing Statistical Information” on
page 10-5.

DESCRIPTION

Themax() function returns the maximum value of all occurrencesxgrwithin a

time range. When used in@dummarize Form, the time range is defined by that
form. When used elsewhere, the time range is defined as the region starting with the
first trace eventind ending with theurrent trace event

SYNTAX

max (expr)

PARAMETERS

expr A numeric expression.

RETURN TYPE

data type oexpr

9-71

NightTrace Manual

avg()

sum()

9-72

SEE ALSO

“Summary Functions” on page 9-70 and “Summarizing Statistical Information” on
page 10-5.

DESCRIPTION
Theavg() function returns the average value of all occurrencesxpfwithin a
time range. When used in@dummarize Form, the time range is defined by that

form. When used elsewhere, the time range is defined as the region starting with the
first trace eventind ending with theurrent trace event

SYNTAX

avg (expn

PARAMETERS

expr A numeric expression.

RETURN TYPE

data type oexpr

SEE ALSO

“Summary Functions” on page 9-70 and “Summarizing Statistical Information” on
page 10-5.

DESCRIPTION
Thesum() function returns the sum value of all occurrencegxrwithin a time
range. When used in@ummarize Form, the time range is defined by that form.

When used elsewhere, the time range is defined as the region starting with the first
trace eventind ending with theurrent trace event

SYNTAX

sum (expn

PARAMETERS

expr A numeric expression.

min_offset()

max_offset()

Using Expressions

RETURN TYPE

data type oexpr

SEE ALSO

“Summary Functions” on page 9-70 and “Summarizing Statistical Information” on
page 10-5.

DESCRIPTION
The min_offset() function returns the ordinal trace evermiffse) where the
minimum value of the parameter occurred for matches in the time range. Thus, if

the same minimum was seen more than once, the offset corresponds to the first one
seen.

SYNTAX

min_offset (expi)

PARAMETERS

expr A numeric expression.

RETURN TYPE

integer

NOTE

There is no function that returns the trace event ID where the minimum value of the
first argument occurred for all matches in the time range. You could obtain this
value by nesting the functions as follows:

offset_id(min_offset(argl()))

SEE ALSO

“Summary Functions” on page 9-70 and “Summarizing Statistical Information” on
page 10-5.

DESCRIPTION

The max_offset() function returns the ordinal trace evermiffse) where the
maximum value of the parameter occurred for matches in the time range. Thus, if

9-73

NightTrace Manual

the same maximum was seen more than once, the offset corresponds to the first one
seen.

SYNTAX

max_offset (expi)

PARAMETERS

expr A numeric expression.

RETURN TYPE

integer

NOTE

There is no function that returns the trace event ID where the maximum value of the
first argument occurred for all matches in the time range. You could obtain this
value by nesting the functions as follows:

offset_id(max_offset(argl()))

SEE ALSO

“Summary Functions” on page 9-70 and “Summarizing Statistical Information” on
page 10-5.

summary_matches()

DESCRIPTION

Thesummary_matches() function returns the number of times the summary cri-
teria_ andrilter-Expression were matched in the time range.

NOTE
This function should only used in tteummarize Form. Its

behavior elsewhere is undefined. (See “Summarizing Statistical
Information” on page 10-5 for more information.)

SYNTAX

summary_matches ()

RETURN TYPE

integer

9-74

Using Expressions

SEE ALSO

“event_matches()” on page 9-33 and “state_matches()” on page 9-58. For informa-
tion aboutFilter-Expression, see “Summarize Form Fields” on page 10-6.

Format and Table Functions

get_string()

The format function allows you to display a string. The table functions allow you to
extract information from user-defined and pre-defined string and format tables. These
functions include the following:

¢ get_string()
¢ get_item()
¢ get_format()

¢ format()

For more information about tables, see “ntrace Tables” on page 5-13 and “Kernel String
Tables” on page 11-32.

Theget_string() routine dynamically looks up a string in a string table.

SYNTAX

get_string (table_namg int_expt)

PARAMETERS

table_name table_namie an unquoted character string that represents the
name of a string table. To avoid possible forward reference
problems, try to make youget_string() calls refer to pre-
viously-defined string tables. The following string table names
are pre-defined in NightTracevent, pid, tid, bool-
ean, name_pid, name_tid, node_name,
pid_ nodename tid_ nodename vector, syscall,
device, event_summary, event_arg_summary,
event_arg_dbl_summary, state_summary . For more
information on these tables, see “Pre-Defined String Tables”
on page 5-15 and “Kernel String Tables” on page 11-32.

int_expr int_expris an integer expression that acts as an index into the
specified string tablent_exprmust either match an identifying
integer value in théable_namestring table, or théable_name
string table must have a default item line; otherwise
get_string() returns a string oint_exprin decimal. Often
int_expris based on a NightTrace function.

If your table consists of only a default item line, omit this
parameter.

9-75

NightTrace Manual

DESCRIPTION

The following NightTrace constructs can cakt_string() to dynamically
locate a static string in a string table:

* A Then-Expression of a display object configuration

* Avalue field of a format table
For eachget_string() call, NightTrace follows these steps:

1. Evaluatesnt_expr
2. Uses this value as an index irtable_name
3. Retrieves the associated string frtable_name

4. Returns a string

The following lines provide a brief example of a calldet_string()

9-76

Using Expressions

string_table (conditions) = {
item = 1, “normal’;
item = 50, “YELLOW ALERT";
item = 99, “RED ALERT";
default_item = “N/A”

b

In this example the numeric argument associated with a trace event represents the
current conditionsdonditions). If the argument has the value 99, NightTrace:

1. Uses the value 99 as in index irgonditions
2. Retrieves the associated strin@ED ALERT) from conditions

3. Returns RED ALERT

RETURN TYPES

On successful completioget_string() returns a string from a string table.
NightTrace returns a string of the item numbat, expr in decimal iftable_names

not found, or ifint_expris not found and there is no default item line. The first time
table_nameis not found, NightTrace issues an error message. Because
get_string() returns a string, you can use it anywhere a string expression is
appropriate.

For more information on string tables, see “String Tables” on page 5-14, Table 8-3, and
the/usr/lib/NightTrace/tables file.

get_item()

Theget_item() routine looks up an item number in a string table.

SYNTAX

int get item (table_name'str_const)

PARAMETERS

table_name table_namnie an unquoted character string that represents the
name of a string table. To avoid possible forward reference
problems, try to make youget_item() calls refer to previ-
ously-defined string tables. The following string table names
are pre-defined in NightTracevent, pid, tid, bool-
ean, name_pid, name_tid, node_name,
pid_ nodename tid_ nodename vector, syscall,
device, event_summary, event_arg_summary,
event_arg_dbl_summary, state_summary . For more
information on these tables, see “Pre-Defined String Tables”
on page 5-15 and “Kernel String Tables” on page 11-32.

str_const str_congs a string constant literal that acts as an index into the
specified string tablestr_constmust either exactly match a
string value in thegable _namestring table, or theable_name
string table must have a default item line; otherwise the results

9-77

NightTrace Manual

are undefined. Aable_namenay contain several item lines
with the samestr_constvalue.

DESCRIPTION

Usually you would put aget_item() call in aThen-Expression of a display
object configuration to locate an index number in a string table. For each
get_item() call, NightTrace follows these steps:

1. Usesstr_constvalue as an index inttable_name
2. Retrieves the first associated index number ftable_name

3. Returns the index number
Assume that the following string table definition is in your configuration file.

string_table (fruit) = {
item = 3, “apple”;
item = 4, “orange”;
item = 5, “cherry”;
item = 6, “banana’”;
default_item = “Unknown”;

%
Assume that you make the following call in thdven-Expression of a DataBox.
get_item (fruit, “orange”)

In this example, thdruit string table associates specific numeric codes with a
corresponding fruit name string; it associates all other numeric codes with the string
“Unknown. " When NightTrace evaluates thEhen-Expression of this
DataBox, it:

Callsget_item()
Uses the strinfprange” as an index into th&uit string table

Retrieves the (first) associated index (4)

A LW dpoPE

Returns the index number (4)

RETURN TYPES

On successful completionget_item() returns an item number from a string
table. If several item lines within the string table have the same string value as
str_constget_item() returns the first item number from one of these item lines.

If table_names not found, NightTrace issues an error message, and the results are
undefined. Ifstr_consis not found and there is no default item line, the results are
undefined. Becausget_item() returns an integer, you can use it anywhere an
integer expression can be used.

For more information on string tables, see “String Tables” on page 5-14 and the
/usr/lib/NightTrace/tables file. For more examples of function calls with
pre-defined string tables, see Table 8-3.

9-78

Using Expressions

get_format()

Theget_format() routine dynamically looks up a string in a format table.

SYNTAX

get format (table_namg int_expt)

PARAMETERS

table_name table_namie an unquoted character string that represents the
name of a format table. To avoid possible forward reference
problems, try to make youwget_format() calls refer to pre-
viously-defined format tables.

int_expr int_expris an integer expression that acts as an index into the
specified format tablent_exprmust either match an identify-
ing integer value in théable_nameformat table, or the
table_namdormat table must have a default item line; other-
wise, the results are undefined. Oftient_expris based on a
NightTrace function.

If your table consists of only a default item line, omit this
parameter.

DESCRIPTION

A call to get_format() must be the firsfunction call in an expression. You
must not nest calls tget_format()

The Then-Expression parameter of a DataBox configuration and the
Summarize-Expression on aSummary Form can callget_format() to
dynamically locate a string in a format table. For eget format() call, Night-
Trace follows these steps:

Evaluatesnt_expr
Uses this value as an index irtable_name
Retrieves the associated string fréable_name

Replaces any conversion specifications in the associated string

o r w npoE

Returns a string
Assume that the following format table definition is in your configuration file.
format_table (what_pid) = {
item = 1, “Trace event 1 logged by pid %d'%d", “raw_pid()",
“lwpid()";
default_item = “Unaccounted for event ID (%d)”, “id()";
g
Assume that you make the following call in thidven-Expression of a DataBox.

get_format (what_pid, id())

9-79

NightTrace Manual

format()

9-80

In this example, thevhat_pid format table associates one dynamically-generated

string with trace event ID 1ig() == 1) and another string with all other trace
events @efault_item). When NightTrace processes a trace event for the display
object with the aboveget_format() , it:

1. Evaluates the NightTradd() function. (Assume it evaluates to 1)
2. Callsget_format()

3. Uses this value (1) as an index into thikkat_pid format table

4

. Retrieves the associated strirfdréce event 1 logged by
pid %d'%d”) from thewhat pid format table

5. Evaluates the NightTraceaw_pid() and lwpid() functions.
(Assume they evaluate to 213 and 1 respectively)

6. Replaces thésod conversion specifiers with theaw_pid() and
lwpid() values

~

Displays‘Trace event 1 logged by pid 213'1"

RETURN TYPES

On successful completioget_format() returns a format table string. Other-
wise, it returns an empty string.

For more information on format tables, see “Format Tables” on page 5-18 and the
/usr/lib/NightTrace/tables file. For more examples of function calls with
pre-defined format tables, see Table 8-3.

Theformat() routine displays a string.

SYNTAX
format (“format_string [, arg] ...)
PARAMETERS
format_string format_stringcontrols how the optionahrgs are displayed.
format_stringis based on the format parameter used in the
printf(3S) routine in C. It is a character string enclosed in
double quotes that contains literal characters and conversion
specifications. The literals are copied as is to the display
object. Conversion specifications modify zero or margs
arg argis an optional expression to be formatted and displayed.
DESCRIPTION

Call theformat() function to display a string. You can do this only from the
Then-Expression parameter of a display object configuration or the

Using Expressions

Summary-Expression of the Summarize Form. A call to format() = must
be the firstfunction call in an expression. You must not nest callfotonat()

The following lines provide examples &rmat() statements and what they dis-
play. Assume all variables have a value of 10 (decimal).

format("Error”) Error
format("Event=%d", id()) Event=10
format("Argument is %X", argl()) Argument is A

RETURN TYPES

On successful completionformat() returns a string. Otherwise, it returns an
empty string.

Qualified Events

A qualified events a user-definedamed eventconfiguration that consists of a set of one
or more trace events, possibly restricted byl xpression, CPU List, TID List,
PID List, andNode List. Qualified events provide a mechanism for referendiage
event configurationsvithin somefunctions for example, they cannot appear alone in a
DataBox configuration.

You may use a qualified event in trace event functions. For more information, see “Trace
Event Functions” on page 9-19.

To create a qualified event definition, select fRQealified Events menu item from the
Expressions menu (see “Expressions Menu” on page 9-1) to openQualified
Events Dialog Box (see “Expression Dialog Boxes” on page 9-2 for details on this type
of dialog).

Click the Add button on theQualified Events Dialog Box, select the qualified event
from the list, and click on th€onfigure button to pop up ualified Event Config-
uration Form, like the one shown in Figure 9-7.

9-81

NightTrace Manual

— event_001

QualifiedEvent |event_oo1

Mode List |ALL
Event List |TR_INTERRUPT_ENTRY

If Expression |TRUE
CPU List [ALL
PID List |ALL
TID List [ALL

| | Apply | Feset | Festore | Close |

Figure 9-7. Qualified Event Configuration Form

The following parameter is specific to tiigualified Event Configuration Form.

QualifiedEvent The name by which you refer to this qualified event in expres-
sions.

TIP:

Consider giving your trace events upper case names in event-map files and giving any
corresponding qualified event the same name in lower case.

NOTE

TheNode List field appears in this dialog only when NightTrace
is configured to use aRCIM to timestamp events. (See “Node
List” on page 8-9 for more information about this field.)

For information about other configuration parameters, see Chapter 8, especially “Com-
mon Configuration Parameters” on page 8-1.

Configuring qualified events is similar to configuring DataBox display objects. The
configuration parameters for a qualified event are identical to those that are used to
configure a DataBox display object. See “DataBox” on page 8-13 for information on how
to configure a DataBox.

EXAMPLE

Qualified events can be useful when you are interested in seeing a trace event (or
state) that occurs within a certain amount of time after another trace event. Given
the following qualified event configuration:

9-82

Qualified States

Using Expressions

QualifiedEvent: fire
Event List: FIRE
CPU List: 2

an EventGraph can be configured to show odBBARtrace events that happen within
100 microseconds of BIRE trace event on CPU 2:

Event List: BAR
If Expression: time() - time(fire) < 100us

Note: TheBARtrace events themselves can happen on any CPU, and as long as they
occur with 100 microseconds offdRE trace event on CPU 2, they will be graphed.

A qualified statds a user-definedamed stateconfiguration that consists of a set of one
or more states, possibly restricted bytart-Expression, End-Expression, CPU
List, TID List, PID List, andNode List. Qualified states provide a mechanism for ref-
erencing stateonfigurationswithin somefunctions

You may use a qualified state in the following predefined functions: start functions, end
functions, and multi-state functions. For more information, see “Start Functions” on page
9-34, “End Functions” on page 9-45, and “Multi-State Functions” on page 9-56.

To create a qualified state definition, select tDaalified States menu item from the
Expressions menu (see “Expressions Menu” on page 9-1) to openQualified
States Dialog Box (see “Expression Dialog Boxes” on page 9-2 for details on this type
of dialog).

Click the Add button on theQualified States Dialog Box, select the qualified state
from the list, and click on th€onfigure button to pop up &ualified State Config-
uration Form, like the one shown in Figure 9-8.

9-83

NightTrace Manual

9-84

— state 001

QualifiedState |state_ool

Start Events |TR_EXCEPTION_ENTRY
End Events |TR_EXCEPTION_EXIT
Start Expression |TRUE
End Expression |TRUE
Mode List | cap
CPU List |ALL
PIC List |ALL
TIDr List |ALL

| | Apply | Feset | Festore | Close |

Figure 9-8. Qualified State Configuration Form

The following parameter is specific to tiigualified State Configuration Form.

QualifiedState The name by which you refer to this qualified state in expres-
sions.

NOTE

TheNode List field appears in this dialog only when NightTrace
is configured to use aRCIM to timestamp events. (See “Node
List” on page 8-9 for more information about this field.)

For information about other configuration parameters, see Chapter 8, especially “Com-
mon Configuration Parameters” on page 8-1 and “StateGraph” on page 8-14.

Configuring qualified states is similar to configuring StateGraph display objects. The
configuration parameters for a qualified state are identical to those that are used to
configure a StateGraph display object. See “StateGraph” on page 8-14 for information on
how to configure a StateGraph.

EXAMPLE

Qualified states can be useful when you are interested in a trace event that occurs
while a certain state is active. The following qualified state:

Using Expressions

QualifiedState: foo_state
Start Events: PROG_A_BEGIN
End Events: PROG_A _EXIT

defines a state that is active whenever progiaia running. Assume that another
process is loggingrOOtrace events asynchronously. If you are interested only in
the FOOtrace events that are logged while progrArs running, you can define an
EventGraph as follows:

Event List: FOO
If Expression: state_ status(foo_state) == true

This graphs onlyFOOtrace events that occur while the qualified stite_state
is active. (The &= true " is not necessary.) Thus, you see oR@COtrace events
logged while program is running.

9-85

NightTrace Manual

9-86

10
Using the Built-In Tools

OV IV W . o 10-1
Searching for Points of Interest. 10-1
Search Form Radio BUttONS e 10-2
Search Form Push Buttons i e e 10-3
Search Form Fields. e 10-4
Summarizing Statistical Information. 10-5
Summarize Form Radio Buttons i 10-6
Summarize Form Fields 10-6
Summarize Form Push Buttons i 10-8

MENU Bar 10-9

File Operations 10-9

SaAVE TOXE . it e 10-10

Save TeXt AS ..o e e 10-10

ClOSE. . ot e 10-10

Summary Display Areaot 10-10
EVENt SUMMaANIES oo e e 10-11
State SUMMANIES . . . o oo e e e 10-12
Exercise: Usingthe Search Tool 10-14

Exercise: Using the Summarize Tool

NightTrace Manual

Overview

10
Using the Built-In Tools

ntrace comes with a set of built-in tools available in View mode. These tools make it
easier for you to pinpoint important trace events and numerically analyze aspects of your
trace session.

This chapter covers the following built-in tools:
Search Locates interesting parts of your trace session
Summarize Summarizes statistics about trace events or states

Figure 10-1 shows the display page menu that gives you access to these tools.

TDD|S| Help
- Search .. |

Summarize ...

Figure 10-1. Tools Menu

Searching for Points of Interest

Clicking onTools O Search ... on the display page allows you to locate areas of
interest in your trace event file(s). When you click ®ols [0 Search ..., theSearch

Form appears. This form lets you provide search specifications and define conditions you
wish to find in your trace event file(s).

TheSearch Form consists of:

¢ Radio buttons
* Push buttons

* Text fields

Figure 10-2 illustrates thBearch Form.

10-1

NightTrace Manual

| dorty| o] P | M| sown | oo |

Figure 10-2. The Search Form

NOTE

TheNode List field appears in this dialog only when NightTrace
is configured to use an RCIM to timestamp events.

Search Form Radio Buttons

Through theSearch Form'’s radio buttons, you can choose:

* The direction of a search
* The interval to search

* The effect of a search on the grid and interval control area of a display page

The Search Direction radio buttons let you search forward or backward in your trace
session, relative to the current time.

¢ Click on theForward radio button to search through newer trace events.
This is the default setting.

¢ Click on theBackward radio button to search through older trace events.
Note: This is a much less efficient search than a forward search.

The Search Constraints radio buttons let you limit your search to the entire trace
session or to the current interval.

10-2

Thelnterval Manipulation radio buttons let you choose the actiotnace
event meets all your criteria. This decision can affect both the grid and the interval

trace

Using the Built-In Tools

Click on theGlobal Search radio button to search from the current time
through the end (or beginning) of the trace session. This is the default
setting.

Click on Interval Search to search only between this intervallSme
Start andTime End.

takes if a

control area.

Click on Scroll Current Time to Event if you wantntrace to set the
current time to the time when the trace event occurred and move the
interval. This is the default setting.

Click onZoom to Include Event to zoom out the interval end time (for
forward searches) or the interval start time (for backward searches) to
include the found trace event. Clicking this radio button also updates the
current time.

Click on Do Not Move Current Time if you want ntrace to just

write a message to the message display area of the display page without
repositioning you on the grid or in the interval control area; a side-effect of
this setting is that repeatedly clicking on tBearch push button does not

find trace events after the first one found. This is because the current time
has not changed.

Search Form Push Buttons

Following is a summary of the effects of clicking on the push buttons inSkarch

Form:
Apply

Reset

Prev

Next

(default) Validates any field change(s) on tlgearch Form.
Clicking onApply is equivalent to pressingEnter>.

Restores changed field(s) on tBearch Form to the value(s) they
had after the lashpply or <Enter>. This works only if you have
not already pressedEnter> or clicked on theApply push button.
Clicking onReset is equivalent to pressingEsc>.

Goes backward one group of field settings in the search history and
displays those settings in the fields. You may click on this push but-
ton multiple times to go backward several groups of settings. Click-
ing on this push button from the earliest group of settings has no
effect. This push button is useful only after you have clicked on the
Search push button.

Goes forward one group of field settings in the search history and
displays those settings in the fields. You may click on this push but-
ton multiple times to go forward several groups of settings. Clicking
on this push button from the most recent group of settings has no
effect. This push button is useful only after you have clicked on the
Search andPrev push buttons.

10-3

NightTrace Manual

Close Closes theésearch Form window and erases all but the last group
of field settings from the search history. That is, if you click on
Close and reopen this window during the samteace session,
ntrace displays your most recent field settings; until you save more
field settings, clicking orPrev andNext have no effect.

Search Performs a search starting at the current time and saves your field
changes, but not your radio button settings.

* Clicking on this push button causedrace to
search through your trace event file(s) based on the
criteria from theSearch Form fields and the
radio button settings.

¢ If you have made a field change, clicking on this
push button makestrace temporarily save your
field settings in the search history in memory. By
saving your field settings in the search history,
ntrace gives you an easy way to retrieve groups
of field settings for use in future searches.

Because all fields and radio buttons on thearch Form have default settings, you can
click on theSearch push button without modifying anything in this window. The default
search behavior is:

¢ Search forward through the entire trace session for any trace event from
any process on any CPU.

¢ |f atrace event meets all these critemé&tace

- Writes an informative message in the message display area of the
display page that tells which ordinal trace event (offset) it found.

- Sets the current time to the time when the trace event occurred.

- Updates the grid and fields in the interval control area of the display
page.

* If no trace event meets all these critendrace writes an error message
in the message display area of the display page that tells from which
ordinal trace event (offset) it began the search.

Search Form Fields

All fields of the Search Form have default values. Because of these defaults, clicking

on Search without making any field changes makesace search for the next (or
previous) trace event in your trace event file(s). If you want to restrict this operation by
trace event ID, trace event tag, CPU number, node, process name or global process identi-
fier (PID), thread name or NightTrace thread identifier, or expression, you can do that by
editing one or more of the fields on ti&earch Form. You can restore a field to its
default value by entering a single space character or the default into the field and
clicking Apply or pressingcEnter>.

10-4

Using the Built-In Tools

When you have finished editing tiigearch Form fields, press<Enter> or click on
Apply. This causestrace to validate the data in each field you modified. For general
information on field editing and howtrace handles editing errors, see “Field Editing”
on page 6-16.

When you are ready fomtrace to do a search, click on th8earch push button.

ntrace logical-ORs comma-separated lists of values within a field and logical-ANDs
fields’ values. This means that a trace event must match at leagtndnein each list and

all criteria from the fields. Ihtrace locates a trace event that meets every field criterion,

it writes an informative message in the message display area on the display page. Depend-
ing on your preferences, it may also reposition the interval and current time line. If
ntrace does not locate a trace event that meets every field criterion, it writes an error
message in the message display area on the display page. For more information on the
Search push button, see “Search Form Push Buttons” on page 10-3.

When you make field changes and click 8earch, ntrace temporarily saves your

field settings in the search history in memory. You can step through these groups of set-
tings by clicking on thé’rev andNext push buttons. Clicking on th&lose push button
erases all but the last group of field settings from the search history. For more information
on these push buttons, see “Search Form Push Buttons” on page 10-3.

See Chapter 8 for a definition of each field, all its possible values, and its default value.
There is only one difference between thi#ace behavior described there and the
behavior of theSearch Form: on theSearch Form ntrace searches for, but does not
display, data that meets the criteria. The search stops wihace finds a suitable value

or runs out of trace events.

TheNo Event List field is the only field that is unique to thgearch Form. This field

lets you decide which trace event(s) to ignore in a search. The possible values are the
same as those in tHevent List field. It is not meaningful to put the same value in the
Event List and in theNo Event List.

NOTE

TheNode List field appears in this dialog only when NightTrace
is configured to use an RCIM to timestamp events.

Summarizing Statistical Information

Clicking onTools O Summarize ... on the display page lets you get statistical informa-
tion about trace events and states. When you clickoals 0 Summarize ..., the
Summarize Form appears. This form lets you constrain the information to be
summarized.

TheSummarize Form consists of:

¢ Radio buttons
* Text fields

e Summary display area

10-5

NightTrace Manual

* Push buttons

* Menu items

Figure 10-4 and Figure 10-5 show tw®ummarize Forms with different
configurations.

Summarize Form Radio Buttons

Through theSummarize Form'’s radio buttons, you can choose:

* Whether to summarize trace events or states

* The interval to summarize

The Summary Type radio buttons let you specify the type of information you want
summarized.

* Click on the Event radio button to summarize trace event information.
This is the default setting.

* Click on theState radio button to summarize state information.

TheSummary Range radio buttons let you limit the summary to the current interval, to
the time between a mark and the current time, or to the entire trace session.

* Click on theTrace Event File radio button to summarize data through-
out the trace session. This is the default setting.

¢ Click on Region to summarize data only between the mark and the
current time.

¢ Click on Interval to summarize data only between the current interval's
Time StartandTime End.

Summarize Form Fields

All fields of the Summarize Form have default values. Because of these defaults,
clicking on Summarize without making any field or radio button changes makes
ntrace summarize all trace events in your trace event file(s). If you want to restrict the
summary by trace event ID, trace event tag, CPU number, node, process name or global
process identifier, thread name or NightTrace thread identifier, or expression, you can do
that by editing one or more of the fields on tSemmarize Form.

When you have finished editing ttfBummarize Form fields, press<Enter> or click

on Apply. This causestrace to validate the data in each field you modified. For
general information on field editing and hawrace handles editing errors, see “Field
Editing” on page 6-16.

When you are ready fontrace to summarize data, click on ttRummarize push
button.ntrace logical-ORs comma-separated lists of values within a field and
logical-ANDs fields’ values. This means that a summary object must match at least one

10-6

Using the Built-In Tools

entry in each list and aliriteria from the fields. Every time you click cBummarize,
ntrace writes lines of statistics in the summary display area. For more information on
theSummarize push button, see “Summarize Form Push Buttons” on page 10-8.

The text fields on th&summarize Form differ depending on the selected summary
type. See Chapter 8 for a definition of each field (except those described below) and all its
possible values. There is only one difference betweemthece behavior described
there and the behavior of ttBummarize Form: on theSummarize Form, ntrace
textually summarizes all data, rather than displaying individual values that meet the
criteria.

The following text describes fields specific to tB&mmarize Form, their possible and
default values, and how theummarize push button behaves when you modify that
field.

Filter-Expression This text field has all the characteristicsléfExpression,
except it is evaluated only if thé-Expression (for trace
event summaries) dEnd-Expression (for state summa-
ries) are true. Values may be: a booledgrace expres-
sion, the wordTRUE or the wordFALSE The default is
TRUE When you click orBummarize, ntrace evaluates
the expression for every trace event it summarizes. A
FALSEIn this field essentially disables the summary.

Summary-Expression This text field is evaluated every time thEExpression
or End-Expression and Filter-Expression
configuration criteria for your summary are met. It lets you
specify the format of the summary text. Values may be: a
call to theformat() orget format() function.

The default is aget_format(event_summary) call

for trace event summaries. For state summaries, the default
is aget_format(state_summary) call. For more
information about these format tables, see “Pre-Defined
Format Tables” on page 5-21.

For example, if you wanted to limit your summary to trace events with a first argument
value between 5 and 100, yolfrExpression would look something like:

argl() > 5 && argl() < 100

If you wanted to determine the largest of these argument values, your
Summary-Expression would look something like:

max(argl())
In another example, the following configuration:

Event List:100
If Expression:TRUE
Summary Expression:min(argl())

prints out the minimum value of the first argument of every trace event logged with a trace
event ID of 100. To find the offset where this minimum occurred, set:

Summary Expression:min_offset(argl1())

10-7

NightTrace Manual

If you want both statistics, use the following:

Summary Expression:format("min %d at %d",
min(argl1()), min_offset(arg1()))

TIP:

If you are interested in many statistics or if you are going to reuse this summary format at
a later date, consider defining and using a format table. For example,

Summary Expression: get format(my_table)

The lack of a second parameter indicates that the only entry in formatrtableable is
the default item line. The pre-definevent_arg_summary format table has four
formats defined in it. Format 1 produces summary datargd , format 2 does the same
for arg2 , etc.

For more information about format tables, see “Format Tables” on page 5-18 and the end
of /ust/lib/NightTrace/tables

TIP:

The min_offset() andmax_offset() functions return the offset of the first trace
event where the expression minimum or maximum was seen. Thus, if the same minimum
or maximum was seen more than once, the offset corresponds to the first one seen.

TIP:

Including min_offset() , max_offset() , min() , ormax() inyour summary text
tells you the inclusive range of matches that you summarized, and the
summary_matches() function tells the number of matches that you summarized.

TIP:

Sometimes there are anomalies in the trace information logged by an application, such as
an unusually long state duration during program start up; this can throw off the duration
statistics when analyzing “typical” program performance. You can use the
Start-Expression for state summaries and thieExpression for event summaries to

limit the range of trace events summarized and remove extraneous trace events from the
statistics produced.

See Chapter 8 for information about configuration parameters. See Chapter 9 for
information onntrace expressions. For more information on thammarize push but-
ton, see “Summarize Form Push Buttons” on page 10-8.

Summarize Form Push Buttons

10-8

Following is a summary of the effects of clicking on the push buttons irBtheamarize
Form:

Apply (default) Validates any field change(s) on tBemmarize Form.
Clicking onApply is equivalent to pressingEnter>.

Reset Restores changed field(s) on tBe@mmarize Form to the value(s)
they had after the lagipply or <Enter>. This works only if you

Using the Built-In Tools

have not already pressetEnter> or clicked on theApply push
button. Clicking onReset is equivalent to pressingEsc>.

Restore Restores changed field(s) on tSemmarize Form to the original
value(s) they had when you brought up the form.

Clear Erases all text in the summary display area.
Summarize Saves your field changes and summarizes the requested data.

¢ If you have made a field change, clicking on this push
button makesitrace temporarily save your field
settings.

¢ Clicking on this push button causetrace to sum-
marize summary data from your trace event file(s)
based on the criteria from tfeummarize Form
fields and the radio button settings.

Because all fields and radio buttons on iemmarize Form have default settings, you
can click on theSummarize push button without modifying anything in this window.
The default summarize behavior is:

* ntrace writes statistical messages in the summary display area that tell
about trace event data through the entire trace session for any trace event
from any process on any CPU.

If you have configured th&ummarize Form by specifying additional criteria, the
summarize behavior is:

¢ If a trace event or state meets all these critenteace writes statistical
messages in the summary display area that tell: the trace events or states
involved, and minimum, maximum, average, and total for intervals and/or
trace event arguments.

* If no trace event or state meets all these critertegce writes a message
in the summary display area that says that there are no trace event or state
matches to summarize.

Menu Bar
The menu bar of th€ummarize Form consists of the following menu item:

* File

File Operations

When you click on thé=ile menu item on th6&&ummarize Form, the pull-down menu
shown in Figure 10-3 appears.

10-9

NightTrace Manual

File |

Cpnneen

wALEWIY P H f—

Save Text As ..

Close

Figure 10-3. Summarize Form File Menu

Save Text

When you click orFile [0 Save Text on theSummarize Form, ntrace saves your
summary text to the file you saved to last time. Any changes you have made since the last
Save Text or Save Text As ... operation will be saved. You can continue running
summaries after this operation. TBave Text operation is disabled (dimmed) if you
have not both done 8ave Text As ... andchanged the summary display. Instead, use
Save Text As ...

Save Text As ...

When you click onFile [0 Save Text As ... ontheSummarize Form, ntrace
saves your summary text to the specified file. You can continue running summaries after
this operation.

Save Text As ... uses &ile Selection Dialog Box to prompt you for a file name.
See “The File Selection Dialog Box” on page 5-34 for more information.

Close

When you click orFile O Close on theSummarize Form, ntrace ends the current
summary session, resets all field and radio button settings, and clears the summary display
area. It does not prompt you to save your summary text since the last time yosdidea

Text or Save Text As Therefore, if you have made any changes to the summary
display area that you want to keep, you must perforBaae Text or Save Text As ...

before you do £lose.

Summary Display Area

After you click onSummarize, ntrace appends statistics to the end of the scrolling
summary display area. It automatically scrolls this area so the newest statistics are visible.
Every line in this area has a unique number. A blank line separates sets of statistics. If you
want new statistics to appear alone in the summary display area, cliClear before

you click onSummarize. See “Summarize Form Push Buttons” on page 10-8 for more
information.

By default,ntrace displays 14 lines in the summary display area. You can alter this
number by changing the size of tBaimmarize Form. To change th6&ummarize

10-10

Using the Built-In Tools

Form size, vertically resize your window by using features of your window manager. lItis
not necessary to resize a window to see lines 15 and higher; you can scroll through all
lines by using the scroll bar. Sometimes the statistical information exceeds the width of
the summary display area. In this case, you must horizontally resize your window.

The summary display area of ttfBummarize Form presents different information
depending on youBummary-Expression and whether your summary typeksent
or State.

Event Summaries

Configuringevent summaries similar to configuring DataBox display objects. The
configuration parameters for an event summary are identical to those that are used to
configure a DataBox display object. See “DataBox” on page 8-13 for information on how
to configure a DataBox.

By default, theSummary-Expression for an event summary type, displays one line for
each of the following in the summary display area:

* The range of ordinal trace event numbers (offsets) summarized
* The number of matches summarized

* The minimum time gap between matches and the ordinal trace event
number (offset) where it began

* The maximum time gap between matches and the ordinal trace event
number (offset) where it began

* The average time gap between matches

Figure 10-4 shows an event summary.

10-11

NightTrace Manual

State Summaries

10-12

3
.5
S
ek Farmati et _omaany: |

g
i

Figure 10-4. The Event Summarize Form

NOTE

TheNode List field appears in this dialog only when NightTrace
is configured to use an RCIM to timestamp events.

Configuringstate summaries similar to configuring StateGraph display objects. The
configuration parameters for a state summary are identical to those that are used to
configure a StateGraph display object. See “StateGraph” on page 8-14 for information on
how to configure a StateGraph.

The main difference between a state summary and a StateGraph is that a state summary
shows information textually and a StateGraph shows it graphically.

By default, theSummary-Expression for a state summary type, displays one line for
each of the following in the summary display area:

Using the Built-In Tools

* The range of ordinal trace event numbers (offsets) summarized
* The number of matches summarized

* The minimum time gap between matches and the ordinal trace event
number (offset) where it began

* The maximum time gap between matches and the ordinal trace event
number (offset) where it began

* The average time gap between matches
* The sum of the time gaps between matches

* The minimum time duration of a match and the ordinal trace event number
(offset) where it began

* The maximum time duration of a match and the ordinal trace event number
(offset) where it began

* The average time duration of a match

* The sum of the time durations of matches

Figure 10-5 shows a state summary.

10-13

NightTrace Manual

g
i

Figure 10-5. The State Summarize Form

NOTE

TheNode List field appears in this dialog only when NightTrace
is configured to use an RCIM to timestamp events.

Exercise: Using the Search Tool

The following exercise has you search for trace events you logged in “Exercise: Logging
Trace Events” on page 4-27, while using files you created in “Exercise: Displaying Trace
Events” on page 5-36.

Invoke the NightTrace display utility with thieg trace event file, thenap event-map
file, and thepage configuration file.

$ ntrace log map page

10-14

Using the Built-In Tools

After the display page appears, press efresh push button at the bottom right of the
page. The current time line should now be positioned inside the first visible state. What is
the tag of the current trace event?

NAP START
Now, bring up the Search tool by clicking dimols [0 Search ...
Use the default settings to search globally forward for all trace events and make the
interval scroll the current time to the trace event. After one search, what is the tag of the
current trace event?

NAP_END

Keep searching forward until you reach the end of the trace. You should continue to see
alternatingNAP_STARTandNAP_ENDrace event tags.

Close theSearch Form by clicking on theClose push button.

Exercise: Using the Summarize Tool

The following exercise has you summarize trace events you logged in “Exercise: Logging
Trace Events” on page 4-27.

While still in ntrace , bring up the Summarize tool by clicking ofools O
Summarize ...

Press th&ummarize button for the default event summary.
How many matches were summarized?
22
At which offset does the largest gap occur?
2
How large is this gap?
about 1.8 seconds
Close theSummarize Form by clicking onFile O Close.

This exercise continues in “Exercise: Kernel Tracing” on page 11-38.

10-15

NightTrace Manual

10-16

11
Tracing the Kernel

OVBIVIBW . ottt e e e 11-1
Recommended Reading. e 11-1
Using KernelTrace with NightTrace 11-1
Default Kernel Trace POINtS.o e 11-2
Context Switch Trace EVeNt. i 11-3
Interrupt Trace EVents e 11-3
Exception Trace EVENtS o 11-4
Syscall Trace Events. e 11-5
Shared Interrupt Trace Event i 11-6
ProcessName Trace Event. i, 11-6
Kernel Trace Points Not Enabled By Default 11-6
Page Fault Event. 11-7
Protection Fault Event 11-7
Kernel Tracingwith ktrace 11-8
InVOKING Ktrace.o 11-9
Ktrace OptioNs. i 11-9
Viewing KernelTrace Trace Event Fileswith ktrace 11-13
ktrace Kernel Activity Summaries 11-14
Configuration Summary. 11-14
System Call Summary 11-14
Exception and Interrupt Summaries. 11-15
Exception and Interrupt Total Time Summaries 11-16
Device SUMMArY e e 11-17
ktrace Trace Event Listings. i 11-18
ktrace -verbose Listing. 11-19
ktrace -raw Listing o 11-20
Converting KernelTrace Trace Event Files with ntfilter 11-21
Viewing Converted KernelTrace Trace Event Files withntrace 11-22
Kernel Display Pagesot 11-22
RCIM Default Kernel Display Pageo it 11-23
CPRU INformation.t 11-25
Running Process Information 11-26
Node Information 11-27
Context Switch Information i 11-27
Interrupt Information. 11-28
Exception Information. 11-29
Syscall Information. 11-31
ColorInformation 11-32
Kernel String Tables. 11-32
Kernel Reference 11-34
I EITUPES. . . .o e 11-35
Non-Device-Related Interrupts 11-35
Device-Related Interrupts 11-36
EXCEPLONS . ..o 11-36
SYSCallS. . . 11-37

Exercise: Kernel TraCingo o it 11-38

NightTrace Manual

Overview

11
Tracing the Kernel

This chapter provides a description of the trace points logged by the kernel. It also
discusses the steps required to produce a highly detailed picture of kernel activity with the
KernelTrace and NightTrace tools. This lets you customize the deftnalte kernel
display pages or combine kernel information with user-application trace information.

Recommended Reading

The following manuals and documents explain many of the concepts briefly discussed in

this chapter.

Table 11-1. Recommended Reading

Manual Title

Concepts

PowerMAX OS Programming Guide

PowerMAX OS Real-Time Guide

System Administration Volume 1 and Volume

Section 2 system manual pages

PowerPC 604 RISC Microprocessor User’s
Manual

HN6200 Architecture Reference Manual
HN6800 Architecture Reference Manual

Understanding the kernel and
exceptions related to signals

Usingktrace(1) and
understanding the kernel and
hardclock interrupts

Understanding interrupts and creating
system devices

Understanding system calls

Understanding exceptions

Understanding interrupts

Understanding interrupts

Using KernelTrace with NightTrace

Using the KernelTrace package is optional. The following steps are involved:

11-1

NightTrace Manual

* (Required) Installing therace package on your system. See “Installing
Software” on page 2-2.

* (Required) Enabling kernel tracing and default kernel trace points. See
“Configuring the Kernel” on page 2-3 and “Default Kernel Trace Points”
on page 11-2.

* (Required) Logging kernel trace events. This may also include enabling
and disabling more kernel trace points and analyzing textual trace event
summaries. See “Kernel Tracing with ktrace” on page 11-8.

* (Optional) Converting a KernelTrace trace event file to a NightTrace trace
event file for subsequent graphical analysis wittace . See “Converting
KernelTrace Trace Event Files with nffilter” on page 11-21.

* (Optional) Graphically analyzing trace event summaries. See “Viewing
Converted KernelTrace Trace Event Files with ntrace” on page 11-22.

Kernel trace points identify interrupts, exceptions, system calls, context switches, and 1/0
to various devices. When kernel tracing is enabled, the kernel tests whether to log one or
more kernel trace events for each enabled kernel trace point. Ktthee tool is
running, kernel trace event logging takes place. Understanding the kernel trace points is
important for analyzincktrace output and creating and modifying graphical kernel
display pages fontrace

Default Kernel Trace Points

11-2

The file <sys/ktrace.h > identifies_allkernel and device driver trace points. Of these
kernel trace pointktrace enables only the following by default:

e TR_SWITCHIN

e TR_INTERRUPT ENTR¥NdTR_INTERRUPT_EXIT
e TR_EXCEPTION_ENTR¥ndTR_EXCEPTION_EXIT
e TR_SYSCALL_ENTRY

« TR_IO_VNODE

e TR_ALT_INT_DISPATCH

* TR_PROCESS_NAME

These default kernel trace points are required to get meaningful kernel performance data
in a KernelTrace trace event file. However, these trace points arthaatnly trace points

that you will see witmtrace after converting a KernelTrace trace event file into Night-
Trace trace event file format withtfilter . Specifically, the following trace points are
introduced:

e TR_SYSCALL_EXIT
* TR_SYSCALL_SUSPENBndTR_SYSCALL_RESUME
* TR_EXCEPTION_SUSPEN&hdTR_EXCEPTION_RESUME

Tracing the Kernel

Whenntfilter converts a KernelTrace trace event file into a NightTrace trace event
file, it removes theTR_IO_VNODE TR_ALT_INT_DISPATCH, and
TR_PROCESS NAMEace events.TR_ALT INT_DISPATCH events are converted to
appropriateTR_INTERRUPT_ENTRYnd/orTR_INTERRUPT_EXIT trace points. For
eachTR_PROCESS_ NAM#vent,nffilter extracts the process name from the event
and adds the name to its process name table which is subsequently written to the
vectors file.

The following sections discuss the trace events that you will seéréce as a result of
logging the default kernel trace points.

Context Switch Trace Event

There is only one context switch trace event:
TR_SWITCHIN argl

This trace event is logged whenever a process has been switched in and is ready to
be run on a specific CPU. Because only one process can run on a given CPU at a
time, this trace event also signifies that the process that was running on the CPU
immediately prior to the context switch trace event has been switched out and can
no longer run. This trace event has one argument:

argl The numeric 32-bit global process identifier (PID) of the process
being switched in. This information is redundant, since it is identical
to the PID that is already associated with the trace event. A PID of
indicates that the CPU is idle.

The 32-bit global process identifier uniquely identifies the running
process on the system. This identifier is identical to the return value
of the _lwp_global_self() system call. See “pid()” on page
9-22.

Interrupt Trace Events

There are two trace events associated with interrupts:
TR_INTERRUPT_ENTRYargl arg2 arg3
This trace event is logged whenever an interrupt is entered. It has three arguments:

argl The interrupt vector number that indicates the type of interrupt. This
is an index into thevector string table that is contained within the
vectors file generated by thatfilter tool. For more informa-
tion about thevector string table, see “Kernel String Tables” on
page 11-32. For more information about thigilter tool, see
“Converting KernelTrace Trace Event Files with ntfilter” on page
11-21.

arg2 The interrupt nesting level used by the pre-defined kernel pages to
graph the different heights associated with the nesting level. This

11-3

NightTrace Manual

argument will bel for the first interrupt?2 for a second interrupt that
interrupted the first interrup8 for a third interrupt that interrupted
the second interrupt, etc.

arg3 The interrupt vector number of the previous interrupt that this inter-
rupt entry is interrupting, if any.

TR_INTERRUPT_EXIT argl arg2 arg3

This trace event is logged whenever an interrupt is exited. Its arguments are identi-
cal to those of th@R_INTERRUPT_ENTRYrace event.

Exception Trace Events

11-4

There are four trace events associated with exceptions:

TR_EXCEPTION_ENTRYargl
This trace event is logged whenever an exception is entered. It has one argument:

argl The exception vector number that indicates the type of exception.
This is an index into thgector string table that is contained within
thevectors file generated by thatfilter tool. For more infor-
mation about theector string table, see “Kernel String Tables” on
page 11-32. For more information about thigilter tool, see
“Converting KernelTrace Trace Event Files with ntfilter” on page
11-21.

TR_EXCEPTION_SUSPENIrgl

This trace event is logged whenever an exception is suspended by a context switch.
It has one argument that is identical to the argument logged with the
TR_EXCEPTION_ENTR¥ace event.

TR_EXCEPTION_RESUMErgl

This trace event is logged whenever an exception is resumed (i.e., the process that
caused the exception to occur, which was switched out before the exception could
be completed, is switched back in). "/R_EXCEPTION_RESUMiEace event will
always follow aTR_EXCEPTION_SUSPEN®&vent, unless the process is being
switched in for the first time since kernel tracing began.

It is possible for severalR_EXCEPTION_SUSPEND—TR_EXCEPTION_RESUME
trace event pairs to occur if the process is switched in and out several times before
the exception completes.

The TR_EXCEPTION_RESUM#Eace event has one argument that is identical to the
argument logged with thER_EXCEPTION_ENTRYace event.

TR_EXCEPTION_EXIT argl

This trace event is logged whenever an exception is completed. It has one argument
that is identical to the argument that is logged with TR EXCEPTION_ENTRY
trace event.

Tracing the Kernel

Syscall Trace Events

There are four trace events associated with syscalls:
TR_SYSCALL_ENTRYargl arg2 arg3
This trace event is logged whenever a syscall is entered. It has three arguments:
argl This argument is always zero for historical reasons.

arg2 The syscall number that identifies the syscall. This is an index into
the pre-definedyscall string table.

arg3 The device number that indicates the type of device that is associated
with the syscall, if any. This is an index into the pre-defirtedice
string table.

For more information about the pre-definegscall anddevice string tables,
see “Kernel String Tables” on page 11-32.

TR_SYSCALL_SUSPENDrgl arg2 arg3

This trace event is logged whenever a syscall is suspended by a context switch. It
has three arguments that are identical to the arguments logged with the
TR_SYSCALL_ENTRYrace event.

TR_SYSCALL_RESUMHrgl arg2 arg3

This trace event is logged whenever a syscall is resumed (i.e., the process that
caused the syscall to occur, which was switched out before the syscall could be
completed, is switched back in). BR_SYSCALL_ RESUMiEace event will always
follow a TR_SYSCALL_SUSPENfMDace event, unless the process is being switched

in for the first time since kernel tracing began.

It is possible for severalR_SYSCALL_SUSPEND—TR_SYSCALL_REStite
event pairs to occur if the process is switched in and out several times before the
syscall completes.

The TR_SYSCALL_RESUMftace event has three arguments that are identical to
the arguments logged with thER_SYSCALL_ENTRYrace event. However, if a
TR_SYSCALL_RESUMtace event does not follow BR_SYSCALL_SUSPEND
trace event (i.e., it is the first syscall trace event logged by the process since kernel
tracing beganarg2 identifies the syscall ascan’'t determine

TR_SYSCALL_EXIT argl arg2 arg3

This trace event is logged whenever a syscall is completed. It has three arguments
that are identical to the arguments logged with Tie_SYSCALL_ENTRYrace
event.

11-5

NightTrace Manual

Shared Interrupt Trace Event

The TR_ALT_INT_DISPATCH trace point assists in determining the real identity of
shared interrupts. A shared interrupt handler invokes another interrupt handler which
either directly processes the interrupt or determines more information about the interrupt
and dispatches yet another handler to process the interrupt. Because shared interrupts
share an interrupt vector, the vector number is not sufficient to distinguish the devices that
share a vector. Whenever a shared interrupt handler invokes a handler which actually pro-
cesses the interrupt, the kernel log3R_ALT_INT_DISPATCH event to provide the
information necessary to uniquely identify the device which generated the interrupt.

Whenntfilter converts a KernelTrace trace event file into a NightTrace trace event
file, TR_ALT_INT_DISPATCH events are converted to appropriate
TR_INTERRUPT_ENTR¥nd/orTR_INTERRUPT_EXITtrace points.

Process Name Trace Event

The TR_PROCESS_NAMEace point increases the likelihood of successfully associating

a process name with a process ID during analysis of trace events in NightTrace. When
ktrace is used to collect kernel trace data, it scgm®c once during initialization and

once during termination to gather process names. However, if the workload to be mea-
sured is run aftektrace has been initialized and completes befhte@ce terminates,

that workload will not have a process name available since the process(es) did not exist
during either of thdproc traversals. The kernel will log 8R_PROCESS_NAMent,

which contains a global LWP ID and either the name of the LWP (if it is available) or the
name of the LWP's containing process, in the following instances:

* The kernel creates an LWP, i.e. the kernel creates a kernel daemon.

* A user process creates an LWP either directly through the
_lwp_create(2) system call or indirectly through the Threads Library.

* A user process creates a child process through any dotk€2) system
calls.

* A user process overlays the existing process with a new process image
through any of thexec(2) system calls.

Whenntfilter converts a KernelTrace trace event file into a NightTrace trace event
file, ntfilter extracts the process name from eddh PROCESS_NAM#vent and
adds the name to its process name table which is subsequently writtenwectoes

file.

Kernel Trace Points Not Enabled By Default

11-6

There are several kernel trace points which are not enabled by default but two of them
deserve special mention. These two events allow you to determine areas in your applica-
tion code where address faults are occurring, to minimize such faults, and thus improve

Tracing the Kernel

the application's performance. The following sections discuss the page fault and protec-
tion fault kernel trace points.

Page Fault Event

There is one page fault trace event:
TR_PAGEFLT_ADDFRargl arg2 arg3

This trace event is logged whenever a kernel or user page fault occurs. The page fault can
be either on a data address or on an instruction address. This trace event is not enabled by
default because, depending upon system activity, page faults may occur reasonably fre-
quently. This trace event has three arguments:

argl The data address which caused the page fault. If the page fault
occurred on an instruction, this will be set to zero.

arg2 The program counter value at the time of the page fault.

arg3 The flag indicating whether the fault occurred on a kernel address or
on a user address. A value of zero indicates that the fault occurred on
a user address. A value of one indicates that the fault occurred on a
kernel address.

Protection Fault Event

There is one protection fault trace event:
TR_PROTFLT_ADDRargl arg2 arg3

This trace event is logged whenever a kernel or user protection fault occurs. The protec-

tion fault can be either on a data address or on an instruction address. This trace event is
not enabled by default because, depending upon system activity, protection faults may

occur reasonably frequently. This trace event has three arguments:

argl The data address which caused the protection fault. If the protection
fault occurred on an instruction, then this will be set to zero.

arg2 The program counter value at the time of the protection fault.

arg3 The flag indicating whether the fault occurred on a kernel address or
on a user address. A value of zero indicates that the fault occurred on

117

NightTrace Manual

a user address. A value of one indicates that the fault occurred on a
kernel address.

Kernel Tracing with ktrace

11-8

The KernelTrace feature consists of tkieace(1) andntfilter(1) tools. Use
ktrace to collect KernelTrace data and generate textual summaries. Then use
ntfilter to convert KernelTrace trace event files framace into NightTrace trace

event files, suitable fontrace graphical displays. (See “Converting KernelTrace Trace
Event Files with ntfilter” on page 11-21 for details.)

ktrace collects data about the execution time of interrupts, exceptions, system calls,
context switches, and 1/O to various devices. klrace program usefdev/trace to

enable trace points within the kernel. These trace points cause trace records to be logged to
kernel trace buffers. Filling the kernel trace buffers causes trace records to be written to an
output file. (For more information about these buffers, segstktrace.h >.) The trace

record includes a trace event identifier, a timestamp that corresponds to the time at which
the kernel event occurred, and some additional system information.

ktrace can be used to read kernel trace buffers or an input file and to analyze the log of
trace records. Whektrace is used to analyze trace records, it prints a summary that
contains the average, minimum, and maximum times for interrupts, exceptions, system
calls, context switches, and 1/O calls to various devices.

CAUTION
Summaries may be inaccurate because:

Kernels built with kernel tracing enabled run slower than those
built without it.

One CPU may block another CPU from writing to a trace buffer,
causing the time to record a trace point on a multiprocessor sys-
tem to be imprecise.

The kernel allocates buffers of three pages each (12,288 bytkspt® . This is part of
the kernel’s initialized global data, meaning these are reserved physical pages.

Normally ktrace does not lose kernel trace eventskiiface issues an error message
about lost trace events, ask your system administrator to increase the size of
TR_BUFFER_COUNIR /etc/conf/mtune.d/trace by running thedtune(1M)
command, rebuilding, and rebooting the system. (UsualliRaBUFFER_COUNGT 5 is
sufficient.) For more information about tunable parameters, see “Tunable Parameters” in
System Administration Volume 2

The trace mechanism is not able to deal with losing events. This is because it needs to
match up start events with end events (interrupt start and interrupt end, for example) in
order to produce meaningful statistics. There are other ordering dependencies too. There-
fore, if you see something like the following message:

Tracing the Kernel

ERROR: events lost 15773
fatal error

ktrace exits immediately afterwards. Note that if you are logging data to a file, the data
written is still valid (the buffers with corrupted data will not have been written to the file)
so any summary produced should still be meaningful.

Invoking ktrace

Thektrace kernel trace logging and analysis tool resides on your system under
Jusr/bin/ktrace . You can override some default functionality by invokikigace
with options. The fulktrace invocation syntax is:

ktrace [-help][-version][-measure][-output file]
[-bufferwrap couni [-disable][-enable tracepoint
[-priority priority][-clock sourcd[-cpu CPU]
[-process PID][-input file] [-ticks][-wall]
[-start sed[-nohardclock][-raw] [-verbose]

The following sections discuss tlktrace options and arguments.

ktrace Options
You can abbreviate aktrace options to their shortest unambiguous length, but most of
the examples in this manual use the long option name. These options are case-insensitive.
ktrace options include:

-help Display thektrace invocation syntax on standard output and
exit. Screen 11-1 shows an example.

11-9

NightTrace Manual

11-10

@ge: ktrace [-help] [-version] [-measure] [-output file] x

[-bufferwrap count] [-disable] [-enable tracepoint]
[-priority priority] [-clock source] [-cpu CPU]
[-process PID] [-input file] [-ticks] [-wall]
[-start sec] [-nohardclock] [-raw] [-verbose]

General options:

-help Write this message to standard output
-version Write current ktrace version to standard output
-measure Measure the time required to log a trace event

Options for collection of kernel trace data:

-output file File to write collected data to
-bufferwrap count Write last count buffers to the output file
-disable Disable all default kernel trace points
-enable tracepoint Enable specified kernel trace point
-priority priority Run ktrace at specified RT priority (default: max)
-clock source Specify source of event time stamps
Valid values for source are:
default Use the default system clock
rcim_tick Use the RCIM synchronized tick clock

Options for analysis of kernel trace data:

-cpu CPU Include in analysis trace events only for given CPU
(default: all CPUs)

-process PID Include in analysis trace events only for given PID
(default: all PIDs)

-input file File of data to analyze (default: /dev/trace)

-ticks Report time in ticks instead of elapsed time

-wall Use wall times for the summary calculations

-start sec Exclude from analysis trace events before given time

-nohardclock Exclude from analysis hardclock interrupts

-raw Display raw data for each trace event

-verbose Display verbose data for each trace event

J

Screen 11-1. Sample Output from the ktrace -help Option

-version Display the currenktrace version stamp on standard output
and exit.
-measure Display to standard output the time required to log a trace

event and exit.
The following options are for the collection of kernel trace data.

-output file Write raw trace data to KernelTrace trace event fille rather
than writing a summary to standard output.

-bufferwrap countWrite only the lastounttrace buffers of the most recent trace
events to the output file. By default, all trace events are written
to the output file. Each trace buffer contains
TR_BUFFER_SIZEtrace events (for the value of this define,
please sefusr/include/sys/ktrace.h).

Tracing the Kernel

CAUTION

Using the-bufferwrap ~ option may cause a process nhame to be
unavailable for a process ID during subsequent trace data analy-
sis. IftheTR_PROCESS_NAM#zent which names the process is
overwritten by buffer wraparound and the process name is not
picked up byktrace during its two scans ofproc , the process

will not have a name available for it.

-disable Disable all default kernel trace points. (See “Default Kernel
Trace Points” on page 11-2 for details.) Use a subsequent
-enable to enable individual trace points.

-enable tracepointEnable kernel trace poittacepointin addition to the default
kernel trace points. (For information about the default kernel
trace points, see “Default Kernel Trace Points” on page 11-2.).
The allowed values fotracepointappear in the include file
<sys/ktrace.h >,
You can disable and enable all trace points at trace time. You
would usually do this if you are interested only in tracking con-
text switches and do not want to incur the overhead of the other
trace points. For example, invoké&race as follows:

ktrace -disable -enable 50

where50 is the ID of theTR_SWITCHINtrace point.

-priority priority Runktrace at the specified real-time priority. The default is
the maximum real-time priority.

-clock source Use the specifiedsource for trace event timestamps. The
sourceis required. Validsourcevalues are:

default

the interval timer (NightHawk 6000 Series) or the
Time Base Register (Power Hawk/PowerStack)

rcim_tick

the RCIM synchronized tick clock

NOTE: If you specifyrcim_tick for thesourceand the sys-
tem on which you are tracing does not have an RCIM installed
or configured or if the RCIM synchronized tick clock on the
system on which you are tracing is stoppktlace will exit
with an error.

The following options are for the analysis of kernel trace data.

-cpu CPU Include in analysis trace events only for logical CEBU. The
default is all CPUs.

11-11

NightTrace Manual

-process PID

-input file
-ticks

-wall

-start sec

-nohardclock

-raw

11-12

Include in analysis trace events only for proc&b, where
PID is the global process identifier of the process (e.g.,
237’1). See “PID List” on page 8-7 and “Context Switch
Trace Event” on page 11-3 for more information about global
process identifiers. The default is all PIDs.

Out of necessity, the trace-point data includes interrupt trace
events for interrupts that occurred whiéD was running and
excludes interrupts generated BiD'’s I/O requests.

From the NightTrace perspective, kernel trace points can be
thought of as being logged by the processes that are running on
the system’s CPUs, ndily the kernel.

For example, even thoughld&r_SYSCALL_ENTRYrace event

is logged by the kernel, the PID that is associated with the trace
event is the PID of the process that made the syscall. The PID
of an exception entry is the PID of the process that caused the
exception to occur, and the PID of an interrupt is the PID of the
process that was interrupted by the interrupt.

The PID of a context switch is the PID of the process that is
being switched in. Thus, a context switch can be thought of as
the first trace event that a process logs when it is ready to start
running.

Read or analyze data file. The default is to open the device,
/dev/trace , that collects the trace-point data from the run-
ning kernel.

Report time in ticks (256-nanosecond increments of the inter-
val timer) instead of elapsed time. This can be useful for corre-
lating times with other tools.

Make all time calculations as wall-time calculations. Unlike
default summaries, include time blocked in the kernel and time
spent in interrupts that preempt execution of the current pro-
cess or current interrupt.

By default, the time reported for system calls, 1/O calls, and
other exceptions only includes time spent actually processing
the system call, I/O call, or other exception. Also by default,
the time reported for an interrupt would include only time
spent while actually processing the current interrupt.

Exclude from analysis trace events logged during the fiest
seconds of elapsed time.

Exclude from analysis trace events for hardclock interrupts.

Display the raw trace records with minimal formatting. Note
that this option creates large output files. See “ktrace -raw List-
ing” on page 11-20 for an example.

Tracing the Kernel

-verbose Display the raw trace records with data interpretation and max-
imal formatting, including logical CPU ID, PID, and elapsed
time for all trace points. Note that this option creates huge out-
put files. See “ktrace -verbose Listing” on page 11-19 for an
example.

To collect raw trace data from a running kernel in a KernelTrace trace event file named
raw_klog , runktrace with the invocation:

$ ktrace -output raw_klog

While ktrace is running, run the workload to be measured. Termiridtace by
sending it ac Ctrl> <c> or using thekill(1) command to send it 8IGINTR signal.

CAUTION

Do not callclock_settime() from your application. This sys-
tem call can corrupt both the system interval timer and Time Base
Register which both NightTrace and KernelTrace use for trace
event timings.

The KernelTrace trace event files created wittace have uniqgue magic numbers, and
can be identified with théle(1) command. For example:

$ file raw_klog
raw_klog: KernelTrace trace event file

To runktrace using the KernelTrace trace event fiesv_klog as input:
$ ktrace -input raw_klog > summary_file

The preceding example analyzes the trace records savawirklog and writes textual
time summaries of kernel activity summary_file

KernelTrace trace event files are rautmpatible with the NightTrace tool set. However,

these files may be converted to NightTrace trace-file format witmtfiker tool. See
“Converting KernelTrace Trace Event Files with ntfilter” on page 11-21 for more
information.

For more information about kernel tracing see the PowerMAXR28I-Time Guide
Viewing KernelTrace Trace Event Files with ktrace

Once you have &trace KernelTrace trace event file, you can udeace to analyze
and display it. You can use options to modify the summary reports.

11-13

NightTrace Manual

ktrace Kernel Activity Summaries

By defaultktrace produces textual summaries of kernel activity. Screen 11-2 through
Screen 11-6 illustrate a summary written to standard output after rutkiage for a
while without any options and interrupting it with &¢rl> <c>.

Configuration Summary

Screen 11-2 shows an exam{gace invocation and the resulting configuration
summary.

Configuration Summary

Run date (data gathering): Thu Aug 26 17:12:41 1999

Total run time: 10.267777 sec

Machine type/node: Power Hawk 640/henry

Kernel type/release: PowerMAX_0S/4.3

Event time stamp source: RCIM synchronized tick clock
Ktrace options (data gathering): ktrace -output /tmp/kl -clock rcim_tick
Ktrace options (analysis): ktrace -input /tmp/kl -verbose

Screen 11-2. Configuration Summary

A configuration summary shows:
* The date of the trace
* The total elapsed wall time in seconds of the trace
* The machine type and name
* The operating system type and release level
* The event timestamp source

* The options used to invokdrace

System Call Summary

Screen 11-3 shows an example déteace system call summary.

11-14

Tracing the Kernel

@em Call Summary \

system call count min @time avg max @time
fork 13 2534 7.445815 5089 10139 5.134528
read 3661 60 19.864994 180 1299 29.369101
write 3535 53 13.312549 98 6711 13.777209
open 70 171 7.523197 370 978 4.822754
close 176 21 5.180711 51 404 7.719841
creat 2 707 7.539468 708 710 7.449845
chdir 2 224 7.627435 228 232 7.375272
gtime 8 18 7.290165 24 46 10.464009
chmod 1 416 5.006350 416 416 5.006350
chown 1 492 5.005885 492 492 5.005885
brk 49 29 7.660741 95 186 5.272032
Iseek 41 29 5.284300 37 54 5.157868
getpid 14 22 7.290425 24 27 7.669769
setuid 1 101 7.326856 101 101 7.326856
getuid 8 18 7.396601 24 28 7.396569
alarm 10 23 7.306740 56 88 5.176025
pause 1 285 7.513753 285 285 7.513753
access 18 221 7.405962 542 1615 10.456365
nice 1 61 5.291145 61 61 5.291145
setpgrp 3 20 7.389734 53 111 5.144212
dup 3 29 5.183234 37 46 5.183189
pipe 2 447 7.663649 460 472 7.443250
setgid 1 64 7.326563 64 64 7.326563
getgid 4 17 7.396665 19 21 13.231724
ssig 98 26 7.306903 50 105 13.232873

N J

Screen 11-3. System Call Summary

A system call summary contains one line for each type of system call that occurred during
the trace. Each line includes the following information:

* The number of times the system call occurred

* The minimum duration in microseconds of the system call and the elapsed
time in seconds during the trace when it occurred

* The average duration in microseconds of all occurrences of the system call

* The maximum duration in microseconds of the system call and the elapsed
time in seconds during the trace when it occurred

Exception and Interrupt Summaries

Screen 11-4 shows examplesktface exception and interrupt summaries.

11-15

NightTrace Manual

/Exception Summary \

exception count min @time avg max @time
inst access 484 23 13.229954 38 675 20.004900
data access 3645 22 4.880435 176 1001 5.034892
syscall 8556 17 7.396665 161 13363 4.871685

Interrupt Summary

N

cpu/interrupt count min @time avg max @time
1/spurious int 6 26 17.933975 155 197 29.369312
O/delayed int 41 36 13.416419 106 151 13.285586
1/rescheduling 24 13 5.252413 23 49 13.538494
O/rescheduling 8 11 10.463875 19 57 7.452930
l/eg 118 75 12.811796 187 359 5.465960
O/hsa 1069 12 9.220024 49 152 16.816370
0/softclock 17 34 16.816488 69 112 13.766340
0O/console 493 28 14.145049 64 267 29.367308
1/hardclock 1762 9 2.898720 15 81 5.132768
O/hardclock 1761 23 16.349611 82 957 6.666530
1/cross proc 183 21 15.479378 27 52 4.998217
0O/cross proc 1040 20 18.382416 24 65 13.648542

/

Screen 11-4. Exception and Interrupt Summaries

An exception summary contains one line for each type of exception that occurred during
the trace. An interrupt summary contains one line for each type of interrupt that occurred
on a specific CPU during the trace. Each line includes the following information:

* The number of times the exception or interrupt occurred

* The minimum duration in microseconds of the exception or interrupt and
the elapsed time in seconds during the trace when it occurred

* The average duration in microseconds of all occurrences of the exception

or interrupt

* The maximum duration in microseconds of the exception or interrupt and
the elapsed time in seconds during the trace when it occurred

Exception and Interrupt Total Time Summaries

11-16

Screen 11-5 shows examplesktface exception and interrupt total time summaries.

Tracing the Kernel

ﬁxception Total Times

exception

total time spent in exception

inst access
data access
syscall

per cpu

0.018562 sec (18562 usec)
0.643099 sec (643099 usec)
1.380817 sec (1380816 usec)

total time spent in exceptions

cpu 0
cpu 1

Interrupt Total Times

0.334344 sec (334344 usec)
1.708132 sec (1708132 usec)

cpu/interrupt

total time spent in interrupt

O/delayed int
0/rescheduling
0/hsa
0/softclock
O/console
O/hardclock
O/cross proc

1/spurious int
1/rescheduling
1/eg
1/hardclock
1/cross proc

per cpu

0.004361 sec (4361 usec)
0.000155 sec (155 usec)
0.053209 sec (53209 usec)
0.001184 sec (1184 usec)
0.031591 sec (31591 usec)
0.145527 sec (145527 usec)
0.026075 sec (26075 usec)
0.000931 sec (931 usec)
0.000560 sec (560 usec)
0.022186 sec (22186 usec)
0.027925 sec (27925 usec)
0.005143 sec (5143 usec)

total time spent in interrupts

cpu 0
cpu 1

N

0.258850 sec (258850 usec)
0.056358 sec (56358 usec)

~

Screen 11-5. Exception and Interrupt Total Time Summaries

The exception total time summary includes:

¢ Aline showing the total time spent in each type of exception

* The total time spent in all exceptions per CPU

The interrupt total time summary includes:

¢ Aline showing the total time spent in each type of interrupt per CPU

* The total time spent in all interrupts per CPU

Device Summary

Screen 11-6 showskdrace device summary.

11-17

NightTrace Manual

ﬁevice Summary \

open count min @time avg max @time
file 189 262 14.019941 2661 7879 7.600755
dir 24 125 13.425103 1528 3089 13.213366
close count min @time avg max @time
file 216 28 7.410805 76 1518 5.029229
dir 38 30 5.593385 51 82 13.360715
fifo 44 37 6.572858 113 379 6.010460
pts 7 79 9.673261 105 123 7.432435
nullzero 2 56 10.338360 57 57 10.338130
read count min @time avg max @time
file 1181 58 10.350096 201 629 10.607500
fifo 50 75 10.426975 436 776 14.009368
mm 2 111 4.574140 124 138 14.574760
trace 21 150 6.008959 207 241 13.851000
tcp 3 107 4586716 130 153 14.588139
write count min @time avg max @time
file 138 190 9.666454 528 4005 10.293841
fifo 46 108 10.417129 447 808 1.691544
ptm 1 207 17.909775 207 207 17.909775
pts 6 322 6.007895 369 456 14.008412
tcp 8 566 16.009590 638 704 6.009530
ioctl count min @time avg max @time
file 33 35 5.712818 47 70 7.457112
fifo 9 64 15.274572 109 236 14.011427
udp 96 67 3.108406 78 123 3.140494
pts 26 39 5.305794 72 122 5.707121
tcp 114 39 4.566289 55 123 14.587958
poll count min @time avg max @time
fifo 5 319 9.991041 371 455 15.991276
ptm 8 81 17.909548 291 380 10.008830
udp 8 200 5.480585 226 268 3.386693
tcp 61 68 6.008808 93 340 14.587762
ticotsor 23 401 6.115654 505 680 9.132074

_ /

Screen 11-6. Device Summary

A device summary includes a line of statistics for each type of device accessed by an
open, close , read , write ,ioctl orpoll system call during the trace. The line
contains the same information that is included in the system call summary for those sys-
tem calls except that here it is further broken down by device type.

ktrace Trace Event Listings

The preceding summaries are good for getting an overall idea of system activity, but in
general you also want to be able to examine the kernel trace events that occurred around
the maximum times for certain durations. In order to do this you need to inkto&ee

in a two step process:

11-18

ktrace -verbose Listing

Tracing the Kernel

$ ktrace -output raw_klog

locking into memory

setting priority to RT 59

open /devitrace

initialize

gather trace point data

<Ctrl> <c>

terminating

$ ktrace -input raw_klog > summary_file

Thus, an exhaustive log of kernel activity is recorded inrthe_klog output file.

TIP:

The output KernelTrace trace event file must be on a local file system and not an NFS file
system. Check the destination file system firskiface always seems to be losing
numerous trace events.

By default,ktrace produces statistical summaries like the ones shown on the preceding
screens. You can use theerbose option to produce a verbose listing of all events
occurring in the run. For example,

$ ktrace -input raw_klog -verbose > listing

produces something like Screen 11-7.

ﬂ6637 12.373326 cpu=0 pid=sbc_msgd 171 hardclock entry \
32 12.373358 cpu=0 pid=sbc_msgd 171 hardclock exit 32u
16665 12.373361 cpu=1 pid=idle 163 softclock entry
3 12.373365 cpu=1 pid=idle 163 softclock exit 3u
16634 12.389993 cpu=0 pid=sbc_msgd 171 hardclock entry
29 12.390023 cpu=0 pid=sbc_msgd 171 hardclock exit 29u
16660 12.390025 cpu=1 pid=idle 163 softclock entry
4 12.390029 cpu=1 pid=idle 163 softclock exit 4u
16636 12.406660 cpu=0 pid=sbc_msgd 171 hardclock entry
41 12.406701 cpu=0 pid=sbc_msgd 171 hardclock exit 41u
16674 12.406703 cpu=1 pid=idle 163 softclock entry
3 12.406707 cpu=1 pid=idle 163 softclock exit 3u
8408 12.415110 cpu=0 pid=sbc_msgd 178 decintr entry
8431 12.415139 cpu=1 pid=idle 160 rescheduling entry
46 12.415156 cpu=0 pid=sbc_msgd 178 decintr exit 46u
183 12.415333 cpu=1 pid=idle 160 rescheduling exit 194u
12 12.415346 cpu=1 pid=in.rlogind context switch
20 12.415366 cpu=1 pid=in.rlogind mip
12 12.415379 cpu=1 pid=in.rlogind ptm
39 12.415419 cpu=1 pid=in.rlogind 12 syscall exit 116u poll
11 12.415431 cpu=1 pid=in.rlogind context switch
23 12.415455 cpu=1 pid=in.rlogind 12 syscall entry

2 12.415457 cpu=1 pid=in.rlogind read

Screen 11-7. ktrace -verbose Listing

The number in the second column of each line in the listing is the elapsed time of the trace
event in seconds since tracing began. Notice that trace events from different CPUs and dif-
ferent processes are intermixed in this listing.

11-19

NightTrace Manual

The numbers to the left of the trace event descriptions are the actual vector numbers of the
trace events and are generally not of interest. A number in parentheses to the right of a
trace event description indicates a nesting level; the nesting level is displayed only if the
level is greater than one. After an exit of a syscall, interrupt, or exception, the duration in
microseconds of the elapsed time from the matching start is given. Finally, for a syscall
exit, the name of the system call exiting is listed.

ktrace -raw Listing

Use the-raw option if you suspect thdttrace is producing inaccurate listings or sum-
maries. For example,

$ ktrace -input raw_klog -raw > listing

produces something like Screen 11-8.

672: code=0050, cpu=1, spins=0000, time=93162472, param=00000004 \
1173: code=0013, cpu=0, spins=0000, time=931624c7, param=00000049
1174: code=0012, cpu=1, spins=0000, time=93162508, param=00000048
1175: code=0079, cpu=1, spins=0000, time=00000000, param=00004800
1176: code=0013, cpu=1, spins=0000, time=9316255d, param=00000048
1177: code=0050, cpu=1, spins=0000, time=931626ae, param=ffffffff
1178: code=0012, cpu=0, spins=0000, time=931720e3, param=00000049
1179: code=0079, cpu=0, spins=0000, time=00000000, param=00004900
1180: code=0013, cpu=0, spins=0000, time=93172194, param=00000049
1181: code=0012, cpu=1, spins=0000, time=931721d1, param=00000048
1182: code=0079, cpu=1, spins=0000, time=00000000, param=00004800
1183: code=0013, cpu=1, spins=0000, time=93172205, param=00000048
1184: code=0012, cpu=0, spins=0000, time=93181f36, param=00000049
1185: code=0079, cpu=0, spins=0000, time=00000000, param=00004900
1186: code=0013, cpu=0, spins=0000, time=93181fc2, param=00000049
1187: code=0012, cpu=1, spins=0000, time=93181ffc, param=00000048
1188: code=0079, cpu=1, spins=0000, time=00000000, param=00004800
1189: code=0013, cpu=1, spins=0000, time=93182030, param=00000048
1190: code=0012, cpu=0, spins=0000, time=93191d8a, param=00000049
1191: code=0079, cpu=0, spins=0000, time=00000000, param=00004900
1192: code=0013, cpu=0, spins=0000, time=93191e0c, param=00000049
1193: code=0012, cpu=1, spins=0000, time=93191e45, param=00000048
1194: code=0079, cpu=1, spins=0000, time=00000000, param=00004800
1195: code=0013, cpu=1, spins=0000, time=93191e71, param=00000048
1196: code=0012, cpu=0, spins=0000, time=931lalbe0, param=00000049
1197: code=0079, cpu=0, spins=0000, time=00000000, param=00004900
1198: code=0013, cpu=0, spins=0000, time=931alc69, param=00000049

. /

Screen 11-8. ktrace -raw Listing

In a raw listing, no information is interpreted liyrace . The leading number is the off-
set of the trace event in the kernel trace event buffer where the trace event was logged and
is generally not of interest.

The fields for each trace event are labeled clearly. 3pias field indicates how much
contention existed between multiple CPUs logging trace events at the trace event logging
time. Thecode, cpu, andspins fields are displayed in decimal, and ttime and

param fields are displayed in hexadecimal.

11-20

Tracing the Kernel
Converting KernelTrace Trace Event Files with ntfilter

The KernelTrace feature consists of tkieace(1) andntfilter(1) tools. Use
ktrace to collect kernel trace event data and generate textual summaries. (See “Kernel
Tracing with ktrace” on page 11-8 for details.) Then usiter to convert Kernel-
Trace trace event files frorktrace into NightTrace trace event files, suitable for
ntrace graphical displays.

The usual way to convert a KernelTrace trace event file into NightTrace trace event file

format is to invokentfilter in the following manner:
ntfilter -v < raw_klog > klog
where:
-V Causeffilter to produce a file namedectors in the current

directory as it converts a KernelTrace trace event file into Night-
Trace trace event file format. Thectors file contains the defini-
tion of thevector , syscall , andpid string tables. See
“Pre-Defined String Tables” on page 5-15 and “Kernel String
Tables” on page 11-32 for more information about these string tables.

raw_klog The KernelTrace trace event file to be converted.

klog The converted KernelTrace trace event file in NightTrace trace event
file format.

For large KernelTrace trace event files, the conversion process may take several seconds
to complete. The resulting NightTrace trace event file is approximately twice the size of
the KernelTrace trace event file.

Converted KernelTrace trace event files are accepted as input totithee display

utility. A vectors file created with thev option should always be specifieditrace

along with its corresponding converted KernelTrace trace event filevébmrs file is
generated dynamically because it is system-configuration dependent. Withettbes

file, ntrace will not be able to display the names of the system processes, interrupts, and
exceptions that occurred during kernel tracing.

Even though the vector information is coded into the KernelTrace trace event files created
by ktrace , the system you runtfilter on must be the same as the system that cre-
ated the KernelTrace trace event file due to size differences in statically-allocated arrays
internal tontfilter

Thefile(1) command can be used to verify that the KernelTrace trace event file has
been converted. For example:

$ file klog
klog: NightTrace trace event file

There is no difference between a converted KernelTrace trace event file and a NightTrace
trace event file, other than the fact that the converted KernelTrace trace event file contains
kernel trace events.

11-21

NightTrace Manual
Viewing Converted KernelTrace Trace Event Files with ntrace

All of the kernel trace event tags are defined in the
/ust/lib/NightTrace/eventmap file. This file is automatically read bytrace
at start-up time.

Once you have a converted KernelTrace trace event file, you cantit@éee to examine

it. You may design your own display pages to view converted KernelTrace trace event
files; see Chapter 7 and Chapter 8 for more information. Alternatively, you may use and/or
modify pre-defined kernel display pages. These pages are discussed in the following
sections.

Kernel Display Pages

Figure 11-1 shows thEile menu of thentrace Global Window. This menu contains a
Default Kernel Page menu item which is used to open a dynamically-built kernel dis-
play page. Thdefault Kernel Page menu item is enabled only if a converted Kernel-
Trace trace event file has been suppliedtiace onthe command line.

File | Help
' Mew Page E

Default Page neur
Default Kernel Page
Open Config File .. _
Fead Event-tdap File ...]SF;}
Exit e
}? e, 4056288s time spar

E B

Figure 11-1. Global Window File Menu

Figure 11-2 shows a sample kernel display page in View mode constructed from trace files
on two differentnodes

NOTE

The node information is displayed only when NightTrace is con-
figured to use an RCIM to timestamp events.

11-22

Tracing the Kernel

: : T T3 : = ;
rl‘.:ll‘illrl |';||||||..||I||-.|||||||';:|||||||r|';||||||||JI||.||||||E|¢:

Figure 11-2. Sample Kernel Display Page

ntrace determines the number of CPUs on the system from information in the converted
KernelTrace trace event file.

RCIM Default Kernel Display Page

When viewing KernelTrace trace event files that have been timestamped by the RCIM tick
clock, ntrace determines the number of distinct nodes/hosts which have trace files and

constructs a default display page accordingly. When you create a default kernel display
page from trace event files that have been timestamped by the RCIM tick ciivake

pops up a dialog box that allows you to select the nodes you wish to display on that kernel
page.

11-23

NightTrace Manual

11-24

Smlact Modes 1o IL.:I‘

Salec tha nodes youiwish in dapiy on this kemal paga
Snmilanis Mod=s; Smisciad Modew:

2

FERR

=R

Figure 11-3. Node Selection Dialog

The Available Nodes list shows all nodes that NightTrace has found in the trace files.
TheSelected Nodes list contains all nodes you want shown on the kernel display page
you are building.

NOTE

An asterisk (*) next to a node in th&vailable Nodes list indi-
cates that the particular node has already been selected through
the Node Selection Dialog.

You may select the nodes you wish to be included on the kernel display page you are
building by either double-clicking each node name in #hailable Nodes list or by
selecting a node from that list and using the right arrow button to add it to the list of
Selected Nodes. When the list ofSelected Nodes contains all the nodes you wish

to display on your kernel display page, you may pressBthédd button.

As each node is added to the list®€élected Nodes, ntrace figures out how much
vertical real estate the grid needs (based upon the number of nodes you wish to display
and how many CPUs each node has). If the required vertical space does not exceed the
maximum grid heightptrace will allow the page to be created. Otherwisgrace

will pop up a warning dialog window and will not allow the page to be created.

Tracing the Kernel

Warning Dialog

? Adding this node would exceed maximum display page height

(0].% |

Figure 11-4. Node Selection Warning Dialog

Figure 11-5 shows the display of information for a CPU on a particular node on a dynami-
cally-built kernel page.
NOTE

The node information is displayed only when NightTrace is con-
figured to use an RCIM to timestamp events.

Lssi Besierrogt latcrrapt Cirnph
i Lot Enceptien \ Enceptipn Gragh
u-||1|_ P Eawt Syacall Susrall diragh
\ \ " \ |7 M P
""" I —— == . -
:‘: L S VR | - _,': F— S—— E—— — S—
T T TS] T
[Eniarrugt | T all | A G e TR I ST T T |..-{':‘-I L1 P B T I PR
L& ll-!r:-ﬂ"r’r

Currend lima Lineg

Figure 11-5. Per-CPU Information

There are several pieces of information being displayed for each CPU. The position of the
current time line determines the values that appear on the kernel display pages. Moving
the current time line within the current interval does not change the graphical displays.

However, the textual displays always reflect the last values prior to the current time line.

The following sections discuss all of the different pieces of information in detail.

CPU Information

- [ePu o | -
Figure 11-6. CPU Box

11-25

NightTrace Manual

Figure 11-6 shows a CPU box. The CPU box simply identifies which logidal the
displayed data corresponds to. Logical CPU numbers are related to, but not necessarily
identical to, physical CPU numbers.

Each CPU in a system has a four-bit physical CPU number. The physical CPU number is
dependent on which card slot the CPU card containing the CPU_is invaiah location

on the card the CPU is in. The low two bits of the number specify the location on the card
that the CPU is in. These bits are either 00 for the first CPU location or 01 for the second.
The high two bits of the physical CPU number contain the CPU card slot number. These
bits can be 00, 01, 10, or 11 (or, in decimal, 0, 1, 2, or 3).

For simplicity, most kernel utilities translate the physical CPU numbers into logical CPU
numbers. The mapping is accomplished by listing the physical CPU numbers of all
configured CPUs in ascending order and then numbering them sequentially, starting with
zero. For example, a four-CPU system having two CPUs on a card in slot 1 and two CPUs
on a card in slot 3 will have physical CPU numbers 4 (0100), 5 (0101), 12 (1100) and 13
(1101). Table 11-2 shows the logical CPU mapping of this example system.

Table 11-2. Example Logical CPU Mapping

Physical CPU Number Logical CPU Number

4 (0100) 0
5 (0101) 1
12 (1100) 2
13 (1101) 3

The CPU box is a GridLabel display object. See Chapter 7 and Chapter 8 for more infor-
mation on creating and configuring GridLabels.

Running Process Information

[pid in.rlogind | - [L1
Figure 11-7. Running Process Boxes

Figure 11-7 shows two examples of running process boxes. The running process box
shows the process that is executing at the current time on the associated CPU. The process
is listed by name, or by its raw PID and LWPID if no name is available. See “PID List” on
page 8-7 for more information about PIDs, raw PIDs and LWPIDs.

You can supply NightTrace trace event filesrtmace along with converted Kernel-
Trace trace event filemtrace uses the process names of all processes that logged trace
events when displaying the running process.

The running process box is a DataBox display object. See Chapter 7 and Chapter 8 for
more information on creating and configuring DataBoxes.

11-26

Tracing the Kernel

Node Information

E| buzzard |E

Figure 11-8. Node Box

Figure 11-7 shows a node box. The node box simply identifies which node the displayed
data corresponds to.

NOTE
The node information is displayed only when NightTrace is con-

figured to use an RCIM to timestamp events.

The node box is a GridLabel display object. See Chapter 7 and Chapter 8 for more infor-
mation on creating and configuring GridLabels.

Context Switch Information

Uonesol Swilch Limes

|| 21 | [

il

Current Time Line

Figure 11-9. Context Switch Lines

Figure 11-9 shows an example of several context switch li@estext switch linesire
superimposed on the exception and syscall graphs. They indicate that the kernel has
switched out the process that was previously running on the CPU and switched in a new
process. There is a direct correlation between context switch lines and the running process
box: the running process box shows the process associated with the context switch line
that immediately precedes the current time line.

11-27

NightTrace Manual

Interrupt Information

Last Interrapt Mam # Current Time Line

/ e

loterrupis Mested Tmiermupis

Figure 11-10. Last Interrupt Box and Interrupt Graph

11-28

Figure 11-10 shows a last interrupt box and an interrupt graph. The interrupt graph dis-
plays a state that is drawn whenever an interrupt is executing on the associated CPU. Inter-
rupts can be interrupted while executing, and the interrupt graph shows this interrupt nest-
ing by increasing the height of the state bar. Although interrupts can nest, all interrupts
must complete before the process they interrupt can be switched out. Therefore, you will
never see a context switch occur in the middle of an interrupt.

The last interrupt box displays the name of the last interrupt prior to the current time line
that executed (and may still be executing) on the associated CPU. It can be used with the
interrupt graph to identify any interrupts that are currently visible on the graph. Simply
move the current time line onto a graphed interrupt, and the last interrupt box will update
to display the name of the interrupt.

Because the last interrupt box displays the name of the last interrupt that executed, it is
possible for there to be no interrupts visible on the interrupt graph even though the last
interrupt box contains a valid interrupt name. This just signifies that the last interrupt on
the CPU ended prior to the beginning of the current interval.

An interrupt that is seen very often is the hardclock interrupt, which usually accounts for
15% of the total number of trace events logged by the kernel. If you are not interested in
hardclock interrupts, they can be ignored myace , improving performance and
readability. See “ntrace Options” on page 5-3 for more information.

The last interrupt box is a DataBox display object, and the last interrupt graph is a Data-
Graph display object. See Chapter 7 and Chapter 8 for more information on creating and
configuring DataBoxes and DataGraphs.

Tracing the Kernel

Exception Information

Lai Excepiion Name Currest Time Line Exceptions

/

¥ 1 =
1 | I _

Context Switch Lines

Figure 11-11. Last Exception Box and Exception Graph

Figure 11-11 shows a last exception box and an exception graph. The exception graph
displays a state that is drawn whenever an exception is executing on the associated CPU.
Unlike interrupts, exceptions cannot nest, so they are always graphed with the same
height.

Context switch lines are superimposed on exception graphs. It is common to see a context
switch line at what looks like the very end (or beginning) of an exception. Usually, this
does not indicate that the exception has ended, only that it has been suspended because the
process that originated the exception has switched out. The exception resumes when the
process is switched back in again. An example of an exception being suspended and
resumed can be seen at the left end of the exception graph in Figure 11-11.

The last exception box displays the last exception prior to the current time line that
executed (and may still be executing) on the associated CPU. It can be used with the
exception graph to identify any exceptions that are currently visible on the graph. Simply
move the current time line onto a graphed exception, and the last exception box will
update to display the name of the exception.

Because the last exception box displays the name of the last exception that executed, it is
possible for there to be no exceptions visible on the exception graph even though the last
exception box contains a valid exception name. This just signifies that the last exception
on the CPU ended prior to the beginning of the current interval.

The last exception box is a DataBox display object, and the last exception graph is a State-
Graph display object. See Chapter 7 and Chapter 8 for more information on creating and
configuring DataBoxes and StateGraphs.

Lines indicatingTR_PAGEFLT_ADDBndTR_PROTFLT_ADDRvents are also superim-
posed on exception graphs. Exception graphs display these trace points to allow you to
obtain a formatted dump of them in the message display area by clicking on the events
with mouse button 2. An example offiR_PAGEFLT_ADDRnd aTR_PROTFLT_ADDR

event as well as their associated data in the message display area can be seen in
Figure 11-12.

11-29

NightTrace Manual

Falalwi-§ Ul

e e —

[&m [a-m m - |
i |||||||||

Figure 11-12. TR_PAGEFLT_ADDR and TR_PROTFLT_ADDR Events

11-30

Note theTR_PROTFLT_ADDRvent to the left of the current time linetihe =9.459738

and theTR_PAGEFLT_ADDIRRvent to the right of the current time linetahe =9.460050

and the corresponding data in the message display area. (See “The Display Page” on page
7-2 for more information on the message display area and other elements of the display

page.)

Note also that th&R_PROTFLT_ADDRNdTR_PAGEFLT_ADDRvents are represented

by a vertical line that only intersects the exception state graph wheregs @WITCHIN

event (see “Context Switch Trace Event” on page 11-3) intersects both the exception and
syscall state graphs. In additiohR_PROTFLT_ADDRBRNdTR_PAGEFLT_ADDRvents

will only appear within a currently executing exception. This can be seen in Figure 11-13.

Tracing the Kernel

T AT pisin.rbed TIEI® Tieest S al=iSTEDT
mem k{5 e gy
P i

pidmidle Eaded'0 sl

Falalwi-§ Ul
dala wrre

|wed i, rtad | [shim=

L2 i r.m AT
I:I prailigials

- I i i, [
| Irémnrupt. | Cocapt | Fpcall | Lialisor losealls s s iBiuus ppa iy |||||||.|||||||.

Figure 11-13. TR_SWITCHIN vs. TR_PAGEFLT_ADDR and TR_PROTFLT_ADDR Events

Syscall Information

Last Syecall Mam e . Time Line

L

v e
\ Comtoxt Switch Lines

Associnted Device (if sny) Sysealls

Figure 11-14. Last Syscall Box and Syscall Graph

Figure 11-14 shows a last syscall box and a syscall graph. The syscall graph displays a
state that is drawn whenever a system call (syscall) is executing on the associated CPU.
Unlike interrupts, syscalls cannot nest, so they are always graphed with the same height.

Context switch lines are superimposed on syscall graphs. It is common to see a context
switch line at what looks like the very end (or beginning) of a syscall. Usually, this does

not indicate that the syscall has ended, only that it has been suspended because the process
that originated the syscall has switched out. The syscall resumes when the process is
switched back in again. An example of a syscall being suspended and resumed can be seen
at the right end of the syscall graph in Figure 11-14.

The last syscall box displays the last syscall prior to the current time line that executed
(and may still be executing) on the associated CPU. If the syscall is associated with a
device, the name of the device is shown after the name of the syscall.

11-31

NightTrace Manual

Color Information

The last syscall box can be used with the syscall graph to identify any syscalls that are
currently visible on the graph. Simply move the current time line onto a graphed syscall,
and the last syscall box will update to display the name of the syscall.

Because the last syscall box displays the name of the last syscall that executed, it is
possible for there to be no syscalls visible on the syscall graph even though the last syscall
box contains a valid syscall name. This just signifies that the last syscall on the CPU ended
prior to the beginning of the current interval.

It is possible for the first syscall logged by a process since kernel tracing began to be
unknown. This can occur if the process is switched in and immediately resumes a syscall
that was previously suspended. If this occurs, the last syscall box will dispkayt*
determine " for the name of the syscall.

The last syscall box is a DataBox display object, and the last syscall graph is a StateGraph
display object. See Chapter 7 and Chapter 8 for more information on creating and
configuring DataBoxes and StateGraphs.

| Interrupt |Exu:eptiu:un | Syzcall |
Figure 11-15. Color Key

Figure 11-15 shows the color key that is located on the bottom left of the grid on the
pre-defined kernel display pages. The color key is useful only on X terminals that support
more colors than just black and white.

The text in the color key is color-coded. By default, the wohdt&rrupt” is red, and all
display objects on the kernel display page that display information about interrupts are
also red. By default, the wordException” is green, and all display objects that display
information about exceptions are also green. By default, the wydtall” is blue, and

all display objects that display information about syscalls are also blue.

The default colors of the different groups of kernel objects can be controlled with X
resources. The colors are specified on a per-CPU basis. The default resources for logical
CPUO are:

Ntrace*Color*GridObject*interruptO*foreground: red
Ntrace*Color*GridObject*exceptionO*foreground: green
Ntrace*Color*GridObject*syscall0*foreground: blue

See Appendix B for more information on X resources.

Kernel String Tables

11-32

There are seven kernel related pre-defined string tables. They are:

vector

syscall

device

name_pid

node_name

pid_ nodename

Tracing the Kernel

This string table contains the interrupt and exception vector names
associated with the system that the kernel tracing was performed on.
It is contained in thevectors file created by thentfilter tool.

For more information on creatingwectors file, see “Converting
KernelTrace Trace Event Files with ntfilter” on page 11-21. For brief
descriptions of the entries in theector string table, see “Inter-
rupts” on page 11-35 and “Exceptions” on page 11-36.

This table is indexed by an exception/interrupt vector number or an
exception/interrupt vector name. Examples of using this table are:

get_string(vector, arg3())
get_string(vector, 15)
get_item(vector, “ncr_intr")

This string table contains the names of all the possible syscalls that
can occur on the system. It is contained in tleetors file created

by thentfilter tool. For brief descriptions of the entries in the
syscall table, see “Syscalls” on page 11-37.

This table is indexed by a system call number or a system call name.
Examples of using this table are:

get_string(syscall, 44)
get_string(syscall, arg2())
get_item(syscall, “fork”)

This string table contains the names the devices that are currently
configured in the kernektrace gathers this information from the
/etc/conf/node.d directory on the current system and places it
into the KernelTrace trace eventfile. It is transferred towbetors

file created by thentfilter tool.

This table is indexed by a device number or a device name. Exam-
ples of using this table are:

get_string(device, arg3())
get_string(device, 720900)
get_item(device, “gd”)

This string table contains the name of each node's process ID table.
It is dynamically built as the trace event files are processed upon ini-
tialization.

This string table contains the names of all nodes that have a trace
event file associated with them. It is dynamically built as the trace
event files are processed upon initialization.

This string table contains the names associated with all process iden-
tifiers found in trace event files for node namedename It is
dynamically built as the trace event files are processed upon initial-
ization. It is contained in thgectors file created by thentfil-

ter tool. Because process identifiers are not guaranteed to be
unique across nodes, using the predefined string tgileto get the
process name for a process ID may result in an incorrect name being

11-33

NightTrace Manual

returned from the table. Using the node process ID tables ensures
that the correct process name is returned for a process ID unless the
process hame is not unique on that particular node.

These tables are indexed by a process identifier or a process name.
Examples of using these tables are:

get_string(pid_hal, pid())
get_item(pid_simulator, “odyssey”)

syscall_ nodenamehis string table contains the names of all possible system calls that
can occur in trace event files for node namedename It is con-
tained in thevectors file created by thentfilter tool.

This table is indexed by a system call number or a system call name.
Examples of using this table are:

get_string(syscall_systemx, 31)
get_string(syscall_systemy, arg2())
get_item(syscall_systemz, “read”)

vector_ nodename his string table contains the interrupt and exception vector names
associated with trace event files for node namdename It is con-
tained in thevectors file created by thentfilter tool.

This table is indexed by an exception/interrupt vector number or an
exception/interrupt vector name. Examples of using this table are:

get_string(vector_machinel, arg3())
get_string(vector_machine2, 585)
get_item(vector_system3, “data access”)

device_ nodenamd his string table contains the names of devices configured in the ker-
nel for trace event files from node namedename It is contained in
thevectors file created by thentfilter tool.

This table is indexed by a device number or a device name. Exam-
ples of using this table are:

get_string(device_simulatorl, arg3())
get_string(device_simulator4, 3604484)
get_item(device_controller, “rtc”)

Thepid string table is also used by the kernel display pages. For more information on the
pid string table, see “Pre-Defined String Tables” on page 5-15. For examples of function
calls with these tables, see Table 8-3.

Kernel Reference

The following sections provide a brief reference to the most common interrupts,
exceptions, and syscalls.

11-34

Tracing the Kernel

Interrupts

There are many different types of interrupts that can be logged by the kernel. The possible
types are listed in the system-dependeattor string table that is generated by the
ntfilter tool. There are two main categories of interrupts:

* Non-device-related interrupts

¢ Device-related interrupts

The members of these two categories are described in the following two sections.

Non-Device-Related Interrupts

Table 11-3 provides an alphabetical list of the most common non-device-related inter-
rupts.

Table 11-3. Non-Device-Related Interrupt Reference

Interrupt Description

callout int A real time clock interrupt that is used internally by the kernel.

console wake An interrupt caused by the console wakeup button.

int on no int An interrupt that occurs during the processing of another
interrupt.

power fail A power fail interrupt.

rescheduling A rescheduling interrupt used to trigger a context switch to run
the highest priority process that is ready to run.

softclock An interrupt used to process system callout queue entries.

spurious int An interrupt that usually indicates an unreported or
already-removed interrupt. This interrupt appears only in kernel
traces.

sysfault int An interrupt indicating that a fatal hardware condition has been
detected.

user int A user-level interrupt. Seieonnect(3C) for a description of

enabling user-level interrupts.

xcall int An inter-processor interrupt used for cache flushing, delivering
exceptions to another processor, performance monitoring, and
halting processors.

For more information about interrupts sieéstat(1M) anduistat(1M)

11-35

NightTrace Manual

Device-Related Interrupts

The names printed for device interrupts correspond to the device names in the system
configuration files. Se&ystem Administration Volumef@r information on adding
devices to a system.

Table 11-4 provides an alphabetical list of the most common device-specific interrupts.
For more information on a device-specific interrupt, refer to the documentation associated
with the particular device.

Table 11-4. Device-Related Interrupt Reference

Interrupt Description

consintr A console terminal interrupt.
eg An Eagle ethernet controller interrupt.

eti_intr An edge-triggered interrupt.

ex An Excellan ethernet controller interrupt.
gpib An |IEEE-488 GPIB controller interrupt.
hardclock A 60-Hertz clock interrupt.

hd An HDC disk-controller interrupt.

hps An HPS serial line-controller interrupt.
hrm A reflective memory interrupt.

hsa An HSA disk controller interrupt.

hsd An HSD controller interrupt.

ie An integral ethernet interrupt.

is An integral SCSI controller interrupt.
mpcc An MPCC controller interrupt.

pgintr An FDDI controller interrupt.

rtcintr A real-time clock interrupt.

Xy A Xylogics tape-controller interrupt.

Exceptions

There are many different types of exceptions that can be logged by the kernel. The
possible types are listed in the system-dependector string table that is generated by

11-36

Tracing the Kernel

the ntfilter tool. Table 11-5 is an alphabetical list of the most common exceptions.
See thPowerPC 604 RISC Microprocessor User's Mant@ more information.

Table 11-5. Exception Reference

Exception Description

data access An exception indicating that a page fault for a data page
occurred.

decrementer An exception that occurs when the decrementer register counts
down to zero.

float unavail An exception that occurs the first time a process attempts to use
the floating-point unit.

inst access A page fault exception that occurs during an instruction fetch.

inst brkpt An exception indicating that a breakpoint instruction was
executed.

kstack overflow A fatal exception generated due to kernel errors.

machine check A fatal exception generated for various reasons including parity

errors, hardware failures, and kernel errors.

misaligned An exception indicating that a load, store, or exchange
instruction was attempted with a destination memory address not
consistent with the size of the access.

program An exception indicating one of several possible conditions
including divide by zero, invalid instruction, and privilege
violation.

trace An exception generated during single stepping of the CPU.

Syscalls

There are many different types of syscalls that can be logged by the kernel. The possible
types are listed in the architecture-dependsstcall string table that is dynamically
generated into theectors file. For an up-to-date, alphabetical list and brief description

of all syscalls, type in the following command:

$ apropos “(2)” | pg

For most syscalls grouped by function, see @ampilation Systems Volume 2 (Concepts)
manual. For more information about a specific syscall, see the associated man page. For
information about syscalls in an executable that has not been instrumented with trace
points, sedruss(1)

11-37

NightTrace Manual
Exercise: Kernel Tracing

The following exercise has you log kernel and user trace events with the application you
created in “Exercise: Logging Trace Events” on page 4-27.

1. Run thektrace program in the background so it creates a KernelTrace
trace event file namegw_klog

Sleep for three seconds to allow fdrace to initialize.
Invoke thentraceud daemon with youtog trace event file.
Execute youentry_exit program.

Quit running thentraceud daemon.

Quit runningktrace

Sleep for three seconds to allow fdrace to shutdown.

© N o o ~ w0 N

Use thentfilter program to convert theaw_klog KernelTrace trace
event file into a NightTrace file namddog .

A shell script with the following commands is one possible solution:

#!/bin/ksh

ktrace -output raw_klog &
sleep 3

ntraceud log

entry_exit

ntraceud -quit log

kill %1

sleep 3

ntfilter -v < raw_klog > klog

11-38

Overview

A
Performance Tuning

Although NightTrace’s defaults are designed for maximum efficiency, your NightTrace
environment and application may have special requirements that warrant some
performance tuning. You may want to investigate the following issues:

* Preventing trace event loss

* Ensuring accurate timings

¢ Optimizing file system and CPU usage
* Conserving disk space

¢ Conserving memory and acceleratinigace

Preventing Trace Events Loss

By default, NightTrace copies aliser trace events from the shared memory buffer to the
trace event file. This means that normally NightTrace neither discards nor loses trace
events.

To conserve disk space, you may invakeaceud with the-filewrap or -buffer-

wrap option. However, by doing so, you are telling NightTrace to intentionally discard
older or less-vital trace events. If discarding trace events is undesirabletraseud in
expansive mode. To do this, invokéraceud without the-filewrap and-buffer-

wrap options. See “Conserving Disk Space” on page A-4 for more information.

When NightTracaliscardstrace events, it is intentional. When NightTrdosestrace
events, itis not. NightTrace does not report discarded trace events; it does, however, report
lost trace events. Most trace event loss is preventable by flushing the shared memory
buffer often.

NightTrace shows trace event loss in the following ways:

* As a non-zero “events lost” statistic frontraceud -stats trace_file
from ntrace -filestats , oron thentrace Global Window

* As areverse videol'” on the ntrace display page Ruler at the location
where the trace event was lost

If trace event loss seems excessive, you can do the following:

A-1

NightTrace Manual

Action Reason

Decreasecutoff , the shared memory buffer-ful Increase the chance that the

cutoff percentage fomtraceud ntraceud daemon will have
enough time to copy the trace
events in the shared memory
buffer to disk before the shared
memory buffer fills up.

Decreasetimeout , thentraceud timeout (Same)
interval
Call trace_flush() or trace_trigger() (Same)

often from within your application, especially whe
your application is at a non-time critical point

Increasememsize , the shared memory buffer (Same)
size forntraceud

Use the following command to see the system settings for the current, default, minimum,
and maximum shared memory segment size:

$ /etc/conf/binfidtune -g SHMMAX
See thadtune(1M) man page for more information.

A few other factors can affect trace event loss. Processes in your application may write
trace events into the shared memory buffer at the same timetitzieud is flushing

trace events from the shared memory buffer to the trace event file; if the trace event
incoming rate exceeds the flush rate, trace events may not be recorded. Furthermore, when
NightTrace must choose between operating unobtrusively and logging all trace events, it
favors being unobtrusive.

See Chapter 4 for more information ariraceud options and modes. For more
information ontrace_flush() or trace_trigger() , see “trace_flush() and
trace_trigger()” on page 3-20.

In kernel tracingktrace(1) usually does not lose trace eventskiface issues an
error message about lost trace events:

¢ Verify that the output KernelTrace trace event file is on a local file system
and not an NFS file system. If you run the following command and there is
a colon ¢) in the “Filesystem " column, the file is on an NFS file
system.

$ df kernel_trace_file

¢ Ask your system administrator to increase the siz€Rf BUFFER_COUNT
in /etc/conf/mtune.d/trace by running theidtune(1M) com-
mand, rebuild, and reboot the system. (Usualljfa BUFFER_COUNGf
5 is sufficient.) The kernel allocates buffers of 3 pages each (12,288 bytes)
to ktrace . This is part of the kernel’s initialized global data, meaning
these are reserved physical pages.

Performance Tuning
Ensuring Accurate Timings

If you lack the privilege to lock your pages in memo® (PLOCH, you must invoke
ntraceud with the -lockdisable option. If your application lacks read and write
privilege to/dev/spl you must invokentraceud with the-ipldisable option.
Invoking ntraceud with either the-lockdisable or -ipldisable option, may
introduce delays and waiting within your application. Use tloekdisable and
-ipldisable options only when necessary. For more information on the
-lockdisable option, see “Option to Prevent Page Locking (-lockdisable)” on page
4-9. For more information on thépldisable option, see “Option to Disable the IPL
Register (-ipldisable)” on page 4-8.

By default,ntraceud and NightTrace library routines use page locking to prevent page
faults during trace event logging. NightTrace also modifies the interrupt priority level
(IPL) register; this action prevents rescheduling and interrupts during trace event logging.
NightTrace prevents the operating system from pre-empting your trace event logging
application to make itself most unobtrusive to your application.

If the application must wake thetraceud daemon unexpectedly, overhead can cause
trace event timings to be distorted. Do one or more of the following to increase the
likelihood that the daemon will be awake when needed and to make sure that disk write
rates are as fast as the application’s logging rate:

* Increase the shared memory buffer sizaémsize)
* Decrease the shared memory buffer-full cutoff percentagedff)
* Decrease thatraceud timeout interval {timeout)

¢ Calltrace_flush() or trace_trigger() appropriately

For more information on thememsize , -cutoff , and-timeout options, and
trace_flush() , see, respectively, “Option to Define Shared Memory Buffer Size
(-memsize)” on page 4-14, “Option to Set the Buffer-Full Cutoff Percentage (-cutoff)” on
page 4-16, “Option to Set Timeout Interval (-timeout)” on page 4-15, and “trace_flush()
and trace_trigger()” on page 3-20.

Optimizing File System and CPU Usage

Different systems may share files via the Network File System (NFS); however, accessing
an NFS-mounted file takes longer than accessing a local file. You get the best NightTrace
and KernelTrace performance if you avoid NFS accesses; put your trace event file on the
same system where both th#aceud daemon (oktrace) and your application run.

To determine whether your disk is local to your system, verify that it is mountgden

and not on another host. You can do this by runningdtfg) command and looking for

a colon () in the Filesystem " column.

A single system may have more than one CPU. Consider assigningttaeeud
daemon (oktrace) and your application to different CPUs on the same system:; this
way, ntraceud (or ktrace) does not interfere with your application.

A-3

NightTrace Manual

You can use thenpadvise(3C) library routine to help you determine which CPUs exist
on this system. You can assigtraceud (or ktrace) and your application to particular
CPUs with therun(1) command.

$ run -b bias command

Conserving Disk Space

To determine how much disk space is available on your system, ruif¢ghe command
with the-k option and look at thedvail " column. You can conserve disk space if you
permit NightTrace to discard some trace events. To do this, inmbkeeud with either
the -filewrap option or the-bufferwrap option.

Thentraceud -filewrap option makes NightTrace operate in file-wraparound mode,
rather than in expansive mode. In file-wraparound mode the trace event file can become
full of trace events. When this happemgraceud overwrites the oldest trace events at

the beginning of the file with the newest ones. The overwriting is caliedarding trace
events For more information on file-wraparound mode, see “Option to Establish
File-Wraparound Mode (-filewrap)” on page 4-10.

The ntraceud -bufferwrap option makes NightTrace operate in buffer-wraparound
mode, rather than in expansive mode. When the buffer is full in buffer-wraparound mode,
the application treats the shared memory buffer as a circular queue and overwrites the
oldest trace events with the newest ones. This overwriting continues until your application
explicitly callstrace_flush() or trace_trigger() . Only then, doestraceud

copy the remaining trace events from the shared memory buffer to the trace event file. The
overwriting is calleddiscarding trace events-or more information on buffer-wraparound
mode, see “Option to Establish Buffer-Wraparound Mode (-bufferwrap)” on page 4-11.

By default,ntraceud operates in expansive mode, not file-wraparound or buffer-wrap-
around mode. In expansive mode, NightTrace uses the most disk space because it does
not discard any trace events.

You can also conserve disk space by invokimgceud with the -disable option so
it logs fewer trace events. For details, see “trace_enable(), trace_disable(), and Their Vari-
ants” on page 3-16.

The-bufferwrap and-disable options toktrace offer similar benefits. Thecpu
and-process options also limit kernel trace event logging. See “ktrace Options” on
page 11-9 for details.

Conserving Memory and Accelerating ntrace

ntrace can be a memory-intensive tool. By default, wherace starts up, it loads all

trace event information into memory; therefore, the more trace events in your trace event
file(s), the more memorytrace uses. When you move the scroll bar on the Display
Page to change the displayed intervdatace processes all trace events between the last

A4

Performance Tuning

interval and this one; if there are many trace events, the display update (or search) may
seem slow. To conserve memory and accelenatee

* Log only trace events you are really interested in.

* Invoke ntrace only with the trace event files that are essential to your
analysis.

* Invoke ntrace with options ¢nohardclock , -process -start ,
and-end) that restrict which trace events get loaded. For more informa-
tion aboutntrace options, see “ntrace Options” on page 5-3.

A-5

NightTrace Manual

A-6

Overview

B
GUI Customization

The graphical user interface (GUI) fatrace is based on OSF/Motiftrace runs in

the environment of the X Window System. Your X terminal vendor supplies you with
vendor-specific directories and files that pertain to colors and fonts. The file that contains
available colors is calledgb.txt . The fonts that your X server supports are in the
Just/lib/X11/fonts directory.

ntrace has default values for X resources. These resources include fonts, some push
button names, window titles, window-component dimensions, and colors. You can over-
ride the following default X resource settings by providing new values in the following
places:

* Inyour.Xdefaults file
* Onthentrace invocation line

* Inaresource file that therdb(1) X resource database manager reads

If you specify the same X resource on thé&race invocation line and in your
Xdefaults file, the setting on the invocation line overrides the one in the file.

An X resource line has the following format:
object subobjedt: subobject.]* attribute value
where:
object Is the name of the X client programNtrace .

subobject Is a level in the widget (window component) hierarchy with the most
general level first; this always begins on an upper-case letter. In
ntrace , the firstsubobjecis oftenColor for color displays or
Mono for monochrome displays. The lagibobjecmay be the name
of your display object. For more information about display object
names, see “Display Object Name” on page 8-4.

attribute Is a characteristic of the lastubobject this always begins on a
lower—case letter.

value Is a setting for thattribute

It is possible to omit levels from the widget hierarchy. If you specify all levels of the
widget hierarchy and then\alue the value applies to that specific widget. If you leave

B-1

NightTrace Manual

out levels of the widget hierarchy, the attribute applies more generally, possibly to a class
of widgets.

For more information on X resources, see “Recommended Reading” on page 1-7 and the
X Window System User's Guide

Default X-Resource Settings for ntrace

B-2

ntrace 's default X-resource settings follow. They are primarily grouped by window and
display object. There are some subobjects and attributes that appear in many settings.
Table B-1 lists several common subobjects and attributes along with their meanings.

Table B-1. Meanings of Common Subobjects and Attributes

Subobject/Attribute Meaning

TextScrollbox The message (or summary) display area

Dialog The dialog box

name The window title. Any window that has a name attribute
also has a geometry attribute.

geometry The location and dimensions of the window. See “Recom-
mended Reading” on page 1-7 for more information.

open A push button name in Rile Selection Dialog Box

caption The descriptive text within a window

In the following X-resource strings, default values are shown where they exist.

The resource strings for the global window message display area dimensions and window
title are:

Ntrace*GlobalWindow*TextScrollbox*defaultLines: 20
Ntrace*GlobalWindow*TextScrollbox*defaultChars: 80
Ntrace*GlobalWindow*name: NightTrace
Ntrace*GlobalWindow*geometry:

The resource strings for the line count of the display page message area follow. Note:
minimumLines must be less than or equal defaultLines , anddefaultLines
must be less than or equaltimaximumLines .

Ntrace*DisplayPage*TextScrollbox*defaultLines: 3
Ntrace*DisplayPage*TextScrollbox*maximumLines: 3
Ntrace*DisplayPage*TextScrollbox*minimumLines: 3

The resource strings for grid attributes follomirace uses thalefaultDotsHigh

and defaultDotsWide attributes only for_newdisplay pages. Note: if
defaultDotsWide is too narrow to accommodate all the display page push buttons,
ntrace overrides this setting.

Ntrace*Grid*foreground:

GUI Customization

Ntrace*Grid*background:
Ntrace*Grid*font:
Ntrace*Grid*defaultDotsHigh: 30
Ntrace*Grid*defaultDotsWide: 60

The resource strings for theile Selection Dialog Box width, window titles, push
buttons, and prompt strings follow. Rile Selection Dialog Box is the type of

window ntrace
open and save.

uses to prompt for file names, for example, configuration file names to

Ntrace*FileChooser*width: 180

Ntrace*OpenPopup*name: Open Dialog
Ntrace*OpenPopup*open: Open
Ntrace*OpenPopup*caption: Enter configuration file name:

Ntrace*OpenPopup*geometry:

Ntrace*ReadPopup*name: Read Dialog
Ntrace*ReadPopup*open: Read
Ntrace*ReadPopup*caption: Enter event-map file name:

Ntrace*ReadPopup*geometry:

Ntrace*SaveAsPopup*name: Save As Dialog
Ntrace*SaveAsPopup*open: Save

Ntrace*SaveAsPopup*caption: Enter configuration file name to save:
Ntrace*SaveAsPopup*geometry:

The resource strings for the other dialog box titles and descriptive text are:

Ntrace*WarningDialog*name: Warning Dialog
Ntrace*QuestionDialog*name: Question Dialog
Ntrace*WorkingDialog*name: Working Dialog
Ntrace*MacroDialog*name: Macros
Ntrace*MacroDialog*caption: List of Macros:
Ntrace*QualifiedEventDialog*name: Qualified Events

Ntrace*QualifiedEventDialog*caption: List of Qualified Events:

Ntrace*QualifiedStateDialog*name: Qualified States
Ntrace*QualifiedStateDialog*caption: List of Qualified States:

The resource strings for the window title and descriptive text for all Forms are:

Ntrace*SearchForm*name: Search

Ntrace*SummarizeForm*name: Summarize

Ntrace*SummarizeForm*TextScrollbox:defaultChars: 84
Ntrace*SummarizeForm*TextScrollbox:defaultLines: 14

Ntrace*SummarizeForm*SaveTextAsPopup*name: Save Summary Text As Dialog
Ntrace*SummarizeForm*Save TextAsPopup*open: Save
Ntrace*SummarizeForm*Save TextAsPopup*caption:

Enter file name to save text
to:

Ntrace*SummarizeForm*Save TextAsPopup*geometry:

B-3

NightTrace Manual

B-4

TIP:

If you sometimes work at a monochrome monitor, you may want to have two sets of the
following X resource settings: one for color and one for monochrome. The color settings
follow. The resource names for monochrome settings are identical except thiosay
instead ofColor .

TIP:

Experiment with colors and shadings until you find a set you like. To avoid visual fatigue,
use highly-contrasting colors and values sparingly.

The resource strings for the specific display objects are:

Ntrace*Color*GridLabel*background:
Ntrace*Color*GridLabel*foreground:
Ntrace*Color*GridLabel*font:
Ntrace*Color*GridLabel*textJustify:
Ntrace*Color*GridLabel*textGravity:

Ntrace*Color*DataBox*background:
Ntrace*Color*DataBox*foreground:
Ntrace*Color*DataBox*font:
Ntrace*Color*DataBox*textJustify:
Ntrace*Color*DataBox*textGravity:

Ntrace*Color*Column*background:
Ntrace*Color*Column*foreground:

Ntrace*Color*StateGraph*background:
Ntrace*Color*StateGraph*foreground:
Ntrace*Color*StateGraph*eventColor:

Ntrace*Color*EventGraph*background:
Ntrace*Color*EventGraph*foreground:

Ntrace*Color*DataGraph*background:
Ntrace*Color*DataGraph*foreground:

Ntrace*Color*Ruler*background:
Ntrace*Color*Ruler*foreground:
Ntrace*Color*Ruler*font:
Ntrace*Color*Ruler*markColor:
Ntrace*Color*Ruler*lostEventColor:

TIP:

On a monochrome display, make sure that you can differentiate among display objects
within a Column. The easiest way to do this is to leave at least one grid dot between dis-
play objects in a Column and to make the background color of the Column black.

Grid object settings apply if you have not set the corresponding setting for a specific
display object. The general grid object resource strings are:

Ntrace*Color*GridObject*background:
Ntrace*Color*GridObject*foreground:
Ntrace*Color*GridObject*borderColor:

For information about setting X resources for kernel displays, see “Color Information” on
page 11-32.

Examples

GUI Customization

Setting X resources to values is most consistent if the values of the X resources do not
contain spaces. For example, even if yogb.txt color file contains a color called
“navy blue,” for simplicity type it as one word without any quotation marks.

In the following examples, you are making navy bluayyblue) the foreground color
(foreground) of all grid objects GGridObject) on a color monitor Color) for
ntrace (Ntrace). This example shows how this line may appear in yoidefaults

file.

Ntrace*color*GridObject*foreground: navyblue

The following example shows how you can use this setting omtrece invocation
line. Note: there must ndte any spaces between the colon and the value.

$ ntrace -xrm Ntrace*color*GridObject*foreground:navyblue

Exercise: Customizing Display Colors

Edit your .Xdefaults file so it defines background colors for the following display
objects. Suggested colors are provided.

Table B-2. Suggested Colors for X Resources

Display Object Suggested Color
Column CornflowerBlue
DataGraph PowderBlue
StateGraph LightSteelBlue
Ruler PaleGreen
DataBox Aquamarine
GridObject SkyBlue

B-5

NightTrace Manual

A possible solution follows:

Ntrace*Color*Column*background: CornflowerBlue
Ntrace*Color*DataGraph*background: PowderBlue
Ntrace*Color*StateGraph*background: LightSteelBlue
Ntrace*Color*Ruler*background: PaleGreen
Ntrace*Color*DataBox*background: Aquamarine
Ntrace*Color*GridObject*background: SkyBlue

To test your entries at an X terminal, invok&race with thelog trace event file, and
bring up the default display page.

B-6

2O

2O

2O

2O

2O

C
Answers to Common Questions

What can | do if trace events are not logging at all?

Verify that the trace event file name on tirace_start() call matches the one on thgraceud

invocation. Furthermore, check that the file exists and that you have permission to read and write it.
Additionally, be sure your thread name contains no embedded spaces or punctuation, including periods. See
“trace_start()” on page 3-5 and “trace_open_thread()” on page 3-9 for more information.

When should | log a different trace event ID humber?

Each endpoint of a state should have a different trace event ID number. Usually each trace event logging
routine logs a different trace event ID number. This lets you easily identify which source line logged the trace
event, how often that source line executed, and what order source lines executed in. However, it is sometimes
useful to log the same trace event ID in multiple places. This makes it possible to group trace events from
related, but not identical, activities. For more information, see “trace_event() and Its Variants” on page 3-11.

How can | prevent user trace events from being discarded or lost?

Use expansive mode; avoid invokimgraceud with the -filewrap and-bufferwrap options. Flush
the shared memory buffer more often by tuning:

* The shared memory buffer size
* The shared memory buffer’s flush percentage

* Thentraceud timeout interval

See “Preventing Trace Events Loss” on page A-1 and Chapter 4 for more information.

What can | do if trace events are not appearing in an ntrace display?

PressRefresh, fill out the Search Form, fill in values in the interval control area, use the interval scroll bar,
keep pressing thBoom Out push button until you see trace events, examine a display object configuration
so you know what it is “listening” for, add or reconfigure display objects on the grid. See Chapter 6 for more
information.

My trace event timings occasionally have huge gaps of time between them. What is the cause?

You are probably running your application on a Series 6000 system and are citlakgsettime()
This system call can corrupt the system interval timer which NightTrace uses for trace event timings.

C-1

NightTrace Manual

Q: How can | get my kernel trace events to be mnemonically labeled when there is no vectors file or definition
of the vector, syscall, and pid string tables anywhere?

A: Invokentfilter with the-v option. See “Converting KernelTrace Trace Event Files with ntfilter” on page
11-21.

How can | prevent kernel trace events from being lost?

20

* Verify that the raw kernel trace file is on a local file system and not an NFS file system.

¢ Ask your system administrator to increase the siz& ef BUFFER_COUNHernel tunable
parameter.

C-2

Glossary

This glossary defines terms used in the documentation. Teriitedigs are defined here.

Ada task

Add

Apply

argument

boolean table

buffer-wraparound mode

button

click

An Ada task is a construct of statements which logically execute in parallel with
other tasks within an Ada program (process). Tasks communicate asynchronously
via variables whose visibility is defined by normal Ada scoping rules. Tasks
communicate synchronously via rendezvous between a calling and accepting task.

A push buttorthat creates a newacrg qualified eventor qualified stateon the
currentdisplay page

A push buttorthat validates and saves all changes. The same functionality is
available by pressingEnter> in a modified field.

Seetrace event argument

A pre-definedstring tabledefined in the'usr/lib/NightTrace/tables file.
It associate® with false and all other values wittrue .

The mode that causes thgaceud daemon to treat thehared memory buffers a
circular queue and to overwrite the oldeésace eventavith the newest ones; this
means thahtraceud intentionally discards the oldest trace events to make room
for the newest ones. Invokdraceud with the -bufferwrap option to obtain
this behavior. The two othertraceud modes arexpansive modandfile-wrap-
around mode

Seemouse buttonpush buttonandradio button

To press and releasemouse buttonmvithout moving the pointer. Usually you do
this in NightTrace to select menu itenmjsh buttonsor radio buttons

Glossary-1

NightTrace Manual

Close

color display

Column

configuration

configuration file

Configuration Form

Configure

context switch

context switch line

control

Glossary-2

A push buttorthat closes aialog box This can also be a menu item that makes a
windowclose.

An X server display that contains greater color variety than black, gray, and white.
See alsanonochrome display

A display objectthat constrains the width BtateGraphsEventGraphsData-
Graphs andRulers

The definition of adisplay objectmacrqg qualified eventor qualified state

An NightTrace-generated ASCII file that holdssplay pagesmacrg qualified
event andqualified statedefinitions. This can also be a hand-edited table file, con-
taining definition ofstring tablesand/orformat tables

The NightTrace form that allows you to defined&splay objecs data content,
constraints, and graphic attributes, the value ofi@roor the constraints of a
qualified evenbr qualified state

A push buttorthat reconfigures and renames the select@drg qualified eventor
qualified state

An action that occurs inside the kernel. Its functions are to save the state of the
process that is currently executing, to initialize the state of the process to be run, and
to begin execution of the new process.

A vertical line superimposed on axception graplor asyscall graphon a kernel
display pagelt indicates that the kernel has switched out the process that was
previously running on the CPU and switched in a new process.

Seemouse buttonpush buttorandradio button

Glossary

converted KernelTrace trace event file

A KernelTrace trace event fileutput byntfilter . NightTrace reads it like any
trace event file

CPU box

A GridLabelon a kernelisplay page It identifies which_logicakentral processing
unit the displayed data corresponds to. Logical CPU numbers are related to, but not
necessarily identical to, physical CPU numbers.

current instance of a state

The instance of atatewhich has begun but has not yet completed. Thuscthre
rent time linewould be positioned within the region from the stavtentup to, but
not including, the en@vent

current time

The time in thenterval up to which alldisplay objecton adisplay pagehave been
updated.

current time line

The dashed vertical bar that representsdineent timein a Column

current trace event

The lasttrace evenbn or before theurrent time line

cursor

Seetext cursor
DataBox

A display objecthat displays possibly variable textual or numeric information.
DataGraph

A scrollabledisplay objectthat graphically displays a bar chart of erpressiots
value as it changes over thgerval.

Default Kernel Page

A menu item that automatically createslsplay pageto depictcontext switches
interrupts exceptionsand system calls witlisplay objectdor each CPU on the
system.

Default Page

A menu item that automatically createslsplay pagewith a StateGraphfor each
trace event logging process in yauace event file(s)

Glossary-3

NightTrace Manual

Delete

device table

dialog box

dimmed

disabled

discarded trace event

display object

display page

dotted area

drag

Glossary-4

Remove the selectedacrqg qualified eventor qualified state

A pre-defined, dynamically generatstting tablein thevectors file created by
ntfilter . This string table contains the names of the devices that are currently
configured in the kernel.

A transient secondarnywindowthat accepts input or conveys a message, for example
information, errors, warnings, and questions. This construct is occasionally called a
pop-up window.

Seedisabled

To flag a component, such as a menu itenposh buttonas temporarily unavail-
able by graying out the label.

A trace eventhatntraceud intentionally did not log inbuffer-wraparoundor
file-wraparound mode

A user-configured graphical component oflizplay pagehat showsrace events
statestrace event argumentsther numeric and text data. Display objects include
the following: GridLabels DataBoxesColumns StateGraphsEventGraphsData-
GraphsandRulers

The NightTracewindowthat allows you to layoutlisplay objectsand sedrace
eventandstateinformation in them. You can store display pagesanfiguration
files.

Seegrid.

To press and hold downmaouse buttonvhile moving themouse Usually you do
this in NightTrace to position display object

duration

Edit mode

ellipses (...)

end function

event

Glossary

The period of time between the start and ¢ratte event®f somestate

The display-pagemode that allows you to create, edit, and configdigplay
objects macros qualified eventsandqualified states The other display-page mode
is View mode

An indicator at the end of a menu item that tells you this selection makkzlag

box appear. Also, an indicator in command line option summaries and syntax
listings that tells you more than one occurrence of the previous syntactic component
is allowed.

A state functiorthat provides information about the enditrgce evenbf thelast
completed instance of a stat@’hestateto which the end function applies is either
the qualified statespecified to thefunction or the state being currently defined.
Thus, if a qualfied state is not specified, end functions are only meaningful when
used inexpressiongissociated within a state definition.

Seetrace event

event_arg_dbl_summary table

event_arg_summary table

EventGraph

event ID

A pre-definedformat tabledefined in/usr/lib/NightTrace/tables Ct
contains formats for statistical displays of trace evewatchesand type double
arguments

A pre-definedformat tabledefined in/usr/lib/NightTrace/tables Ct
contains formats for statistical displays of trace everdtchesand type long
arguments

A scrollabledisplay objecthat graphically displayrace eventss vertical lines in
aColumn

Seetrace event ID

Glossary-5

NightTrace Manual

event-map file

event_summary table

event table

event tag

exception

exception graph

expansive mode

expression

Exit

file-wraparound mode

Glossary-6

User-generated ASCII file that lets you associate or map short mnenagsor
labels with numerictrace event IDs The kernel’s event-map file is
Jusr/lib/NightTrace/eventmap

A pre-definedformat tabledefined in /usr/lib/NightTrace/tables Lt
contains formats for statistical displays of trace ewaatchesand trace event time
gaps It determines the default event-summary output format.

A pre-defined, dynamically generatstting table It is internal to NightTrace and
maps all known numeritrace event I3 with symbolictrace event tag.

Seetrace event tag

An event internal to the currently executing process that stops the current execution
stream. Exceptions can be suspended and resumed.

A StateGraplon a kerneldisplay page It displaysstatesrepresentingxceptions
executing on the associated CPU.

The (default) mode that causes thteaceud daemon to copy alrace eventghat
ever reach thehared memory buffeio the indefinitely-sizedrace event file
Invoke ntraceud without the-filewrap and-bufferwrap options to obtain
this behavior. The two othertraceud modes aréuffer-wraparound modand
file-wraparound mode

A combination of operators and operands that evaluate to a value. Operands include
constantsmacrocalls,functioncalls,qualified eventsandqualified states

A menu item that terminates an NightTrace session.

The mode that causes theaceud daemon to overwrite the oldesace eventsn
the beginning of thdrace event filewith the newest ones; this means that
ntraceud intentionallydiscardsthe oldest trace events to make room for the

flushing the buffer

font

format function

format table

function

gap

global process identifier

Global Window

graphical user interface

grid

Glossary

newest ones. Invokatraceud with the -filewrap option to obtain this
behavior. The two othemtraceud modes arexpansive modandbuffer-wrap-
around mode

The process of thatraceud daemon copyindrace eventf§rom theshared
memory buffeto atrace event file

A style of text characters.

A functionthat allows you to display a string.

The pre-defined or user-defined structure that allows you to group related integer
values together and associate each one with a corresponding dynamically-formatted
and generated character string. You hand-edit format tablesdmtiiguration files

The related structure isstring table

A pre-defined NightTrace entity that may be used ireapressionNightTrace pro-
vides several classes of functionigce eventmulti-event start, end multi-state
offset summaryformat andtable functions

The period of time between twioace eventspossibly the end of onstateand the
beginning of another.

SeePID.

The NightTracewindowthat displays summary statistics pertaining to ytrace
event filesand allows you to open NightTrace-related files.

The mechanism NightTrace uses to receive input and provide displays. It is based on
the X Window System and Motif.

The region of thalisplay pagsdfilled with parallel rows and columns of dots that
holdsdisplay objects

Glossary7

NightTrace Manual

GridLabel

GUI

Help

icon

instrumented code

interrupt

interrupt graph

A display objecthat displays constant textual information.

Seegraphical user interface

A menu item that presents the online manual using the HyperHelp viewer.

The small graphical image and/or text label that represem;edowor window
family when the window is minimized. The text label is either the window title or
an abbreviated form of the title. Iconified windows are still active.

Seetrace event ID

Source code after you have put calls to NightTrace library routines into it.

An event external to the currently executing process; an interrupt stops the current
execution stream to begin execution of a higher-priority execution stream. There are
device-related and software-generated interrupts. Interrupts have an associated
priority known as the interrupt priority level (IPL), which allows an interrupt to
interrupt the execution stream of a lower-IPL interrupt.

A DataGraphon a kerneldisplay page It displaysstatesrepresentingnterrupts
executing on the associated CPU.

interrupt priority level (IPL) register

interval

interval control area

Glossary-8

A system register than can be used by the NightTrace library to prevent reschedul-
ing and interrupts during trace event logging.

A time period in the trace session delimited by the Time Start and Time End fields
of theinterval control area

The region of thalisplay pagethat holds nine numeric fields that define and
manipulate théntervaland thedisplay object®n thegrid.

interval timer

KernelTrace

KernelTrace trace event file

keyboard

ktrace

Glossary

The system timer on the NightHawk 6000 Series and TurboHawk systems that
NightTraceandKernelTraceuse to timestamfrace events

The tool that collects and textually analyzes system performance. It includes
ktrace(1) andntfilter(1)

A trace event fileoutput byktrace(1) . This can be used analyzed wktrace ,
however it must be pre-processedrjilter before NightTrace can read it. See
alsoconverted KernelTrace trace event file

A traditional input device for entering text into fields. In this manual, this is a
standard 101-key North American keyboard.

A part of KernelTracethat is a stand-alone tool that can be used to extract system
call (syscal), exceptioninterrupt, context switchand device information from the
kernel.

last completed instance of a state

last exception box

last interrupt box

last syscall box

lightweight process identifier

The most recent instance ofséatethat has already completed. Thus, therent
time linewould be positioned either on, or after, the eavéntfor a state.

A DataBoxon a kerneldisplay pagelt displays the lasexceptionprior to the
current time linethat executed (and may still be executing) on the associated CPU.

A DataBoxon a kernetisplay page It displays the name of the laistterrupt prior
to thecurrent time linethat executed (and may still be executing) on the associated
CPU.

A DataBoxon a kernedisplay page It displays the lassyscallprior to thecurrent
time linethat executed (and may still be executing) on the associated CPU.

SeelL WPID.

Glossary-9

NightTrace Manual

lost trace event

A trace evenntraceud was unable to log. Severatraceud options exist to
prevent this trace event loss.

LWPID
An integer that represents an operating system lightweight process identifier. It
makes up the second half ofdD.
macro
A user-defined namedxpressiorstored in aconfiguration file When you call a
macro, precede the macro name with a dollar sign.
mark
The solid triangle on &ulerthat points to a particular time.
match
A trace evenbr statethat meets user-defined qualifying configuration criteria.
menu
A list of user-selectable choices.
menu bar

The horizontal band near the top ofwandowthat contains a list of labeled
pull-down menus

message display area

The scrolling region of th&lobal Windowor thedisplay pagehat holds textual
statistics, as well as error and warning messages.

monochrome display

A black, gray, and white X-server display. See atstor display

most recent instance of a state

If the current time lineis positioned within aurrent instance of a statehen it is
that instance of thetate Otherwise, it is théast completed instance of a state

mouse

In this manual, a three-button pointing device for point-and-click interfaces.

Glossary-10

mouse button

multi-event function

multi-state function

name_pid table

name_tid table

New Page

NightTrace

NightTrace thread

NightTrace thread identifier

Glossary

A part of themousethat you can press to alter aspects of the application. Each
mouse button has a different purpose. Button 1 is usually for selecting or dragging.
Button 2 is usually for movinglisplay objectsButton 3 is usually for resizing
display objects. You can make multiple selections by simultaneously pressing
<Shift> and clicking mouse button 1. You mayick, drag, press andrelease
mouse buttons.

Multi-event functions return information about ocurrences of events, or relation-
ships between occurrences of events, beforetingent time line

Multi-state functions return information about instances of states, or relationships
between instances of states, beforedhegent time line

A pre-defined, dynamically generatstting table It is internal to NightTrace and
associates node ID numbers with the the name of each node's process ID table.

A pre-defined, dynamically generatstting table It is internal to NightTrace and
associates node ID numbers with the the name of each node's thread ID table.

A menu item that creates an emptigplay page

The interactive debugging and performance analysis tool that is part of the Night-
Star tool kit. It consists of thatraceud daemon, NightTrace library routines, and
thentrace display utility. This product allows you to loggace eventand data

from applications written in C, Fortran, or Ada; these applications may be composed
of one or more processes, running on one or more CPUs. You can then examine
these trace events and those from the kernel throughtthee display utility.

A processthreador Ada task(or a set of any combination of these) that is
associated with a uniquely namédce contextThe thread name is derived from
the argument specified to thace_open_thread() function.

SeeTID.

Glossary-11

NightTrace Manual

NightView

node

node box

node ID

node name

node_name table

node PID table

node TID table

NT_ASSOC_PID

Glossary-12

A symbolic debugger that is part of the NightStar tool kit. It lets you debug C and
Fortran applications; these applications may be composed of one or more processes,
running on one or more CPUs. Among other things, NightView can automatically
patch trace event logging routines into your executable application.

A system from which @race event filecan come from.

If the RCIM synchronized tick clock is used to timestamp events, thisSsdLabel
on a kernelisplay page It identifies whichnodeto which the displayed data corre-
sponds.

A unique identifier internally assigned by NightTrace to evapdethat has an
trace event filan a trace file analysis.

The name of a system from whichrace event filecan come.

A pre-defined, dynamically generatstting table It is internal to NightTrace and
associatesode IDnumbers witmode names

A pre-defined, dynamically generatstting table It is internal to NightTrace and
associates process identifieRIDs) with process names for a particulande The
name of each node's tablefgl_ nodenamavherenodenamés the node's name. If
kernel tracing, this table is stored in thectors file created byntfilter

A pre-defined, dynamically generatstting table Itis internal to NightTrace. If

user tracing, it associates NightTrace thread ID numbers with thread names for a
particularnode If kernel tracing, this table is not used. The name of each node's
table istid_ nodenamevherenodenamés the node's name.

An overheadrace eventhatntraceud logs at the beginning and end of each
process.

NT_ASSOC_TID

NT_CONTINUE

ntfilter

ntrace display utility

ntraceud

object

offset

offset function

OK

Open

ordinal trace event number

Glossary

An overheadrace eventhatntraceud
threadandAda task

logs at the beginning and end of each

An overheadrace eventhatntraceud logs for multi-argument trace events.

A part of KernelTracethat converts a raw kernel trace file createdirace(1)
into aconverted KernelTrace trace event fitat NightTrace can read.

The part ofNightTracethat graphically displaysace eventstrace event data, and
statesfor debugging and performance analysis.

The NightTracedaemon process that allows you to log user-defitrade events
and data from user applications written in C, Fortran, or Ada. These applications
may be composed of one or more processes, running on one or more CPUs.

Seedisplay object

The number that identifies the position ofteace eventin the chronologi-
cally-ordered sequence of trace events, regardless dfdabe event ID Counting
starts from zero. For example, if a trace event with trace event ID 71 is the third
trace event in the trace session, then its offset is 2.

A functionthat takes amexpressiorihat evaluates to aoffsetas a parameter.

A push buttorthat acknowledges the warning ird&alog box

A menu item angush buttorthat opens an existing file.

Seeoffset

Glossary-13

NightTrace Manual

panel

PID

PID table

point

pointer

pop-up window

press

pull-down menu

push button

qualified event

Glossary-14

A windowcomponent that groups related buttons, for exarppkh buttons

A 32-bit integer that represents an operating system process. The following syntax
numerically specifies a PIDaw_PID'LWPID. The operating system process iden-
tifier (raw PID) is contained in the upper 16 bits and the lightweight process identi-
fier (LWPID) is contained in the lower 16 bits.

A pre-defined, dynamically generatstting table It is internal to NightTrace and
associates process identifieRIDs) with process names. If kernel tracing, thie
string table in thevectors file created byntfilter will be merged into this
table.

To move themouseso the mouse pointer is positioned at the place of interest.

A graphical symbol that represents the mouse pointer’s current location in the
window The shape of the pointer shows the current usage. Usually a pointer is
shaped like an arrow pointing to the upper left.

Seedialog box

To hold down amouse buttomvithout releasing it or to depresskayboardkey.

A list of related choices called menu items pulled down fromrienu bar Click
on a menu item to select it.

A graphic image of a labeled buttorClick on a push button to select it.

A user-definechamed eventconfiguration that consists of a set of one or more trace
events, possibly restricted by &Expression, CPU List, TID List, PID List,
andNode List. Qualified events provide a mechanism for referent¢rage events
configurationswithin certainfunctions These definitions are storedéonnfiguration
files.

qualified state

radio button

raw PID

RCIM

RCIM synchronized tick clock

Read

record

region

release

Reset

Glossary

A user-definedhamed stateconfiguration that consists of a set of one or more
states, possibly restricted byStart-Expression, End-Expression, CPU
List, TID List, PID List, andNode List. Qualified state provides a mechanism
for referencing stateonfigurationswithin certainfunctions These definitions are
stored inconfiguration files

A graphic, labeled diamond-shape that represents a mutually exclusive selection
from related radio button€lick on a radio button to select it.

A 16-bit integer that makes up the first half oP4D.

Real-Time Clocks and Interrupts Module. It provides a synchronized clock,
edge-triggered interrupts, real-time clocks and programmable interrupts. Some set
of interrupts can be distributed and sent to all connected RCIMs. The RCIM hard-
ware is available via a standard PCI mezzanine card (PMC).

The primary clock on aRCIM. It is a 64-bit non-interrupting counter that counts
each tick of the clock (400 nanoseconds). When connected to other RCIMs, the
synchronized tick clock provides a time base that is consistent for all connected sin-
gle board computers.

A menu item angush buttorthat read an existing file.

Seetrace event

The period of time between thearkand thecurrent time

To let go of the currently-pressedouse button

A push buttorthat cancels (undoes) all unapplied changes.

Glossary-15

NightTrace Manual

Restore

A push buttorthat cancels all changes since tlialog boxwas displayed.

Ruler

A scrollabledisplay objecthat appears as a hash-marked timeline with®oiumn
The Ruler may also contain reverse video “L”s indicatiogt trace eventsind
user-definednarks

running process box

A DataBoxthat shows the process that is executing atdingent time lineon the
associated CPU. If theCIM module is used to timestamp events, this DataBox will
show the process that is executing at terent time lineon both the associated
CPU andnode

Save
A menu item ancpush buttorthat overwrite an existingonfiguration filewith the
currentdisplay page

Save As
A menu item that saves the curratisplay pagdan a newconfiguration file

Save Text

A menu item that overwrites an existing summary text file with text from the
summary display area

Save Text As

A menu item that saves the current summary text fromstn@mary display area
into a new summary text file.

SBC

Single-board computer.

scroll bar

The narrow, rectangular graphic device used to change a display that would not
otherwise fit in thewindow It consists of arough, aslider, and arrowhead buttons.
If the slider does not fill the trough, there is a gap on one or both sides.

Search Form

The NightTrace form that allows you to define criteria to be used to locétaca
evert in atrace event fildy its configured characteristics and its location in the file.

Glossary-16

selection

separator

shared memory buffer

slider

spin lock

start function

state

state function

Glossary

Thedisplay objecthat youclickedon. Alternatively, a selection may be the region

of a text field youdraggedthemouseover. For menu itemgush buttonsandradio
buttonsNightTrace indicates selection by highlighting your choice. Bisplay
objects NightTrace places handles on the display object. For dragged-over text
fields, NightTrace displays that text in reverse video.

A line that groups relatedindowcomponents or menu components.

The intermediate destination tice eventdbeforentraceud copies them to the
trace event fileon disk.

The graphic part of acroll barthat you move in théroughto change the display.
This component is sometimes called a thumb.

A device used to protect a resource, for example stiered memory buffer

A state functiorthat provides information about the stastentof the most recent
instance of a state Thestateto which the start function applies is either theali-

fied statespecified to thdunction or the state being currently defined. Thus, if a
qualfied state is not specified, start functions are only meaningful when used in
expressionsissociated within a state definition. In addition, start functions should
not be used in a recursive manner iStart Expression; a start function should

not be specified in &tart Expression that applies to the state definition contain-
ing thatStart Expression. Conversely, afEnd Expression may include start
functions that apply to the state definition containing thatd Expression.

A state is bounded by two trace events, a stagntand an enevent An instance

of a state is the period of time between the start event and end event, including the
start and end events themselves. Additional conditions may be specified in a state
definition to further constrain the state. Instances of states do not nest; that is, once
a state becomes active, events that might normally satisfy the conditions for the start
event are ignored until the end event is encountered. Segaddiied state

The class of NightTractunctionswhich provide information aboigtates includ-
ing: start functionsend functionsandmulti-state functions

Glossary-T

NightTrace Manual

StateGraph

state_summary table

string table

Summarize Form

summary display area

summary function

summary syscall

syscall

syscall graph

Glossary-18

A scrollabledisplay objecthat graphically displaystatesas bars andrace events
as vertical lines in £&olumn

A pre-definedformat tabledefined in/usr/lib/NightTrace/tables Ct
contains formats for statistical displays of statatchesstatedurations and state
time gaps It determines the default state-summary output format.

The pre-defined or user-defined structure that allows you to group related integer
values together and associate each one with a corresponding static character string.
You hand-edit string tables intwonfiguration files The related structure isfarmat

table

The NightTrace form that allows you to obtairace eventindstatestatistics, such
as minimum, maximum, average, and total valueg&ps durations andtrace
event arguments

The scrolling region of th&&ummarize Form that holds textual summary
statistics.

A functionthat takes anotheexpressionas a parameter (except for
summary_matches()).

A system call that is a special type ekception A syscallis made when a user
program forces a trap into the operating system via a special machine instruction. A
syscall is used to request a given service from the kernel. Many library routines
supplied as part of the operating system make syscalls to accomplish their functions.
Syscalls can be suspended and resumed.

System call.

A StateGraplon a kernelisplay page It displaysstatesrepresenting system calls
(syscall§ executing on the associated CPU.

syscall table

table

table function

tag

task

task ID

text cursor

thread

thread ID

TID

Glossary

A pre-defined, dynamically generatstting tablein thevectors file created by
ntfilter . This string table contains the names of all the possible system calls
(syscall$ that can occur on the system.

Seeformat tableandstring table

A functionthat allows you to extract information from user-defined and pre-defined
string tablesandformat tables

Seetrace event tag

SeeAda task.

A 16-bit integer chosen by the Ada run-time executive that uniquely identifies an
Ada taskwithin an Ada program.

The blinking vertical bar in an editable text field that shows your current edit
position within the field.

A sequence of instructions and associated data that is scheduled and executed as an
independent entity. Every UNIX process linked with the Threads Library contains at
least one, and possibly many, threads. Threads within a process share the address
space of the process.

A 16-bit integer chosen by the threads library that uniquely identifigsr@ad
within a given process.

A 32-bit integer that represents a unique context to whielte eventsan be
associated. The following syntax numerically specifies a Tiéw_PID'task_id
raw_PIDthread_id or raw_PID’0 (if neither Ada tasksnor threadsare in use).
The operating system process I PID) is contained in the upper 16 bits and
either athread ID, task ID, or zero is contained in the lower 16 bits.

Glossary-19

NightTrace Manual

TID table
A pre-defined, dynamically generatstting table It is internal to NightTrace and
associates NightTrace thread identifiefs[§s) with thread names. This table is not
used in kernel tracing.

timestamp

The time at which a specifitace eventvas logged. This provides the means by
which the chronology of the trace events logged by multiple processes can be
assembled. The timestamp is obtained from the systeerval timer, the Time

Base Registenr theRCIM synchronized tick clocklepending on either the system
architecture or user-specified optionstwaceud

Time Base Register

The system timer on the Power Hawk/PowerStack systems\iwdittTraceand
KernelTraceuse to timestamfrace events

trace context

All trace pointsare associated with a log file (establishedware start) and a
thread name (established \trace_open_thread). If two processes (otasks

or threadg are associated with the same log file and thread name, then they are said
to have the same trace context. If they differ in log file, thread name, or both, then
they have different trace contexts.

trace event

A user-defined point of interest in an application’s source code that NightTrace
represents with an integérace event ID Alternatively this may be a predefined
point of interest in the kernel. Along with the trace event NOghtTracerecords the
timestampwhen the trace event occurred, any arguments logged with the trace
event, and the logging process identifi€lD). KernelTracealso records trace
events.

trace event argument

A user-defined numeric value logged by an application Viicaee event

trace event file

An ntraceud -created binary file that contains sequencefrade eventsand data
that your application and thetraceud daemon logged. Seeonverted
KernelTrace trace event file

trace event function

The class of NightTracginctionsthat provide information aboutace events They
operate on either thgualified evenspecified to that function or, if unspecified, the
current trace eventTrace event functions includaulti-event functions

Glossary-20

trace event ID

trace event tag

trace point

trough

vector table

View mode

widget

window

window manager

wraparound mode

Glossary

An integer that identifies @&race event User trace event IDs are in the range
0-4095 , inclusive. Kernel trace event IDs are in the radd©0-4300 , inclusive.

A symbolic name mapped to a numetiace event IDin anevent-map file

A place of interest in the source code. In user tracing, at each trace point in your
application you call a trace event logging routine to logeece eventpossibly with
additional data describing part of your prograratateat that time. Kernel trace
points and trace events are already defined and embedded in the kernel source.

The graphic part of acroll barthat holds theslider.

A pre-defined, dynamically generatstting tablein thevectors file created by
ntfilter . This string table contains thaterrupt andexceptionvector names
associated with the system on which the kernel tracing was performed.

Thedisplay pagemode that allows you to see, search for, and summadriaze
eventinformation in themessage display areghe summary display areaand
display objecton thegrid; create, edit, and configumaacros qualified eventsand
qualified statesThe other display-page modekslit mode

A windowcomponent, for examplescroll baror push button

A rectangular screen area that permits the display and/or entry of data. The Night-
Trace display utility consists of several windows.

The program that controlsindowplacement, size, and operations.

The mode that causes thtraceud daemon to intentionally discard old events.
There are two forms of wraparound modbuffer-wraparoundandfile-wrap-
around The othemtraceud mode isexpansive mode

Glossary-21

NightTrace Manual

Glossary-22

Index

Symbols arg function 9-9,9-20

arg_dbl function 9-21

argl function 5-20, 8-5, 9-9, 9-81, 10-7, 10-8
arg2 function 8-5, 9-12

avg function 9-72

Jogin 2-5

.profile 2-5

Xdefaults file 5-2, 5-8B-1, B-5

Xresources file 5-2, 5-8

/dev A-3

/devl/interval_timer 2-5, 2-9 B

/dev/spl 2-5,2-8, A-3

/devitrace 2-9,11-8

/etc/conf/mtune.d/trace 11-8, A-2

letc/group 2-5

Jusr/bin/ktrace 11-9

usr/bin/ntrace 5-3

/usr/bin/ntraceud 4-1

/usr/include/ntrace.h 3-2, 3-24, 4-21

Jusr/include/sys/ktrace.11-2, 11-8, 11-11

[usr/lib/libntrace.a 3-25

usr/lib/NightTrace/eventmap 5-12, 5-15, 11-22

/usr/lib/NightTrace/examples 3-26, 5-36

/usr/lib/NightTrace/examples/entry_exit.c 3-26

/usr/lib/NightTrace/examples/entry_exit_map 5-36

/usr/lib/NightTrace/examples/entry_exit_page 5-36

/usr/lib/NightTrace/tables 5-15, 5-17, 5-2-21, 9-77,
9-78, 9-80, 10-8

Background Color configuration parameter 8-3, 8-9
Background Color field 8-3
Backward radio button 10-2
boolean table 5-17, 8-6
Box
CPU 11-26
last exception 11-29
last interrupt 11-28
last syscall 11-31
Node 11-27
running process 11-26
Box. see Display object
Buffer-wraparound
ktrace 11-10
Buffer-wraparound mode 3-21, 4-3, 4-11, 4-15, 4-16,

Jusr/lib/X11/fonts 5-8, 8-3, B-1 auen DA c-1
/var/sadm/install/admin/default 2-2 .
dimmed. see Button
disabled
disabled 5-28, 7-4
A grayed out. see Button
disabled
Access
interval timer 2-1, 2-5, 2-10
IPL register 2-52-7, 2-8, 2-9 C

Ada language 1-3
compiling and linking 3-25
Ada task identifier 8-8, 9-10, 9-25, 9-40, 9-51,9-64 C language 1-3

Add push button 9-2 compiling and linking 3-25
admin(4) 2-2 source consideration3-2
adminrole(1M) command 2-4 C thread identifier 8-8
adminuser(1M) command 2-5 Cancel push button 5-31, 5-32
Apply push button 6-9, 6-12, 6-17, 8-10, 9-3, 10-3, 10-8 Center push button 6-9
apropos(1) command 11-37 Clear push button 10-9, 10-10

Index-1

NightTrace Manual

Clock QualifiedState 9-84, 9-85
ktrace 11-11 Start-Events 8-15
clock_settime(3C) routine 2-10, 3-1, 11-13, C-1 Start-Expression 8-15
clock_synchronize(1M) command 3-6 Text 8-12
Close menu item 7-19, 10-10 Text Gravity 8-4, 8-10
Close push button 8-11, 9-2, 9-3, 10-4, 10-5 Text Justify 8-3, 8-9
Color display 11-32, B-1, B-4 Then-Expression 8-8-5, 9-4, 9-76, 9-78, 9-79,
Column 5-30, 6-2, 6-3, 6-4, 7-5, 7-9;13 8-1, 9-7, B-4 9-80
moving 7-5 TID List 8-3, 8-8
resizing 7-5 Configure menu 8-1
selecting 7-5 Configure push button 9-2
Comments Configuring
configuration file 5-13 display object 8-1
event-map file 5-11 kernel 2-3
Common configuration parameters 8-1 Conserving disk space 4-26, A-1, A-4
Configuration file 5-95-12 Constant string literals 5-19, 9-13, 9-77
Configuration form 8-4, 8-10, 8-12, 8-13, 8-14, 8-16, Constanttimes 9-6
8-17, 8-19, 9-4 Content ... menu item 8-1
DataBox 8-13 Context switch 11-2, 11-5
DataGraph 8-17 lines 11-27, 11-29, 11-31
EventGraph 8-16 Counters 7-13, 8-13
Expression 9-2 cpp(l) command 3-24
GridLabel 8-12 CPU
Macro 9-6, 9-7 ktrace 11-11
Qualified Event 9-81 CPU box 11-26
Qualified State 9-83, 9-84 cpu function 8-5,9-26
Ruler 8-19 CPU List configuration parameter 8-2, 8-6
StateGraph 8-14 CPU List field 8-2, 9-81, 9-83, Glossary-14,
Configuration form radio button Glossary-15
Text Gravity 8-4 CPU number
Text Justify 8-3 logical 8-6,11-26
Configuration parameters physical 11-26
Background Color 8-3, 8-9 Create menu 7-6, 7-8
common 8-1 Create mouse operation 7-6
CPU List 8-2, 8-6 crossref trace_flush_and_trace_trigger 4-15
End-Events 8-15 Current time 6-2
End-Expression 8-15 Current Time field 6-7, 6-11, 6-13
Event Color 8-15 Current time line6-2, 6-2, 11-25, 11-28, 11-29
Event List 8-2, 8-4 centering 6-9
Expression 9-4, 9-7 manipulating 6-9
Fill Style 8-17 Cursor. see Text field
Font 8-3 cursor
Fonts 8-9 Cutoff 3-15, 4-3, 4-4, 4-16, A-3, C-1

Foreground Color 8-3, 8-9
If-Expression 8-2, 8-4
Lost Event Color 8-19

MacroDefinition 9-7 D

Mark Color 8-19

Maximum 8-18 DataBox 5-30/-12 8-13 9-79, 9-82, 10-11, 11-26,
Minimum 8-18 11-28, 11-29, 11-32, B-4

Name 8-2 configuration form 8-13

Node List 8-3, 8-9 using as a counter 7-13, 8-13

PID List 8-3, 8-7 DataGraph 5-31, 6-4-16 8-17, 11-28, B-4
QualifiedEvent 9-82, 9-83 configuration form 8-17

Index-2

Fill Style configuration parameter 8-17
Maximum configuration parameter 8-18
Minimum configuration parameter 8-18
Debugger
NightView 1-4, 3-1
Default Kernel Page menu item 5-27,11-22
Default Page menu item 5-27, 5-29
Default push button 5-24
Delete menu item 7-18
Delete push button 9-2
Deselect All menu item 7-18
device table 5-18, 11-3,1-33
device_nodename table 5-18l-34
df(1M) command 4-10, 4-12, A-2, A-3
Dialog box
File Selection 5-34
Macro 9-4, 9-6, B-3
Open Config File ... 5-31
Quialified Event 9-81, B-3
Qualified State 9-83, B-3
Read Event-Map File ... 5-32
Warning 5-33, 5-35, 7-19, B-3
Dialog box. see Window
Dimmed
button. see Disabled
button
push button. see Disabled
push button
Dimmed field label 5-28
Dimmed label 5-28
Dimmed menu item. see Disabled menu item
Directory
/dev A-3
/etc/conf/mtune.d A-2
/usr/lib/NightTrace 5-12, 5-15, 5-17, 5-21, 9-77,
9-78, 9-80, 10-8, 11-22
/usr/lib/NightTrace/examples 3-26, 5-36
usr/lib/X11/fonts 5-8, 8-3, B-1
Disabled button 5-28, 7-4
Disabled menu item 5-28, 7-4, 7-18, 10-10
Disabled push button 5-28, 7-4
Disabling
IPL usage 2-8, 3-7, 4-3, 4-8, 4-26, A-3
kernel trace points 11-11
library routines 3-2, 3-163-24
page locking 2-7, 3-10, 4-3, 4-9, 4-26, A-3
trace events3-17, 3-18, 3-24, 4-3, 4-22
tracing 3-163-24
Discarding trace events 3-21, A-1, A-4, C-1
Display
color 5-2,11-32,B-1,B-4
monochrome 5-2, 7-14, B-1, B-4
DISPLAY environment variable 5-2

Index

Display object 1-3, 1-6, 5-1, 7-7-8
Column 5-30, 6-2, 6-3, 6-4, 7-5, 7-8;13 8-1, 9-7,
B-4
configuring 8-1
creating 7-1, 7-5
DataBox 5-307-12,8-13 9-79,9-82, 10-11, 11-26,
11-28, 11-29, 11-32, B-4
DataGraph 5-31, 6-4/-16 8-17, 11-28, B-4
EventGraph 5-31, 6-47-15, 8-16, 9-7, B-4
GridLabel 5-30,7-12 8-12 11-26, 11-27, B-4
loading 7-6
moving 5-23, 7-5, 7-7
overlapping 7-8
placement 5-23, 7-6
properties 7-9
resizing 5-23, 7-5, 7-7
Ruler 5-31, 6-97-17, 8-19 A-1, B-4
selecting 7-5, 7-6
StateGraph 5-29, 5-30, 6-4;14, 8-14, 9-7, 9-84,
10-12,11-29, 11-32, B-4
usage flowchart 7-12
Display object configuration parameters
Background Color 8-3, 8-9
common 8-1
CPU List 8-2,8-6
End-Events 8-15
End-Expression 8-15
Event Color 8-15
Event List 8-2, 8-4
Fill Style 8-17
Font 8-3, 8-9
Foreground Color 8-3, 8-9
If-Expression 8-2, 8-4
Lost Event Color 8-19
Mark Color 8-19
Maximum 8-18
Minimum 8-18
Name 8-2
Node List 8-3, 8-9
PID List 8-3, 8-7
Start-Events 8-15
Start-Expression 8-15
Text 8-12
Text Gravity 8-4, 8-10
Text Justify 8-3, 8-9
Then-Expression 8-8-5, 9-4, 9-76, 9-78, 9-79,
9-80
TID List 8-3, 8-8
Display page 1-6, 5-27, 6-7;2, 11-22, B-2
X resources B-2
Display page area
grid 6-4, B-2
interval control area6-11
interval push buttons 6-8

Index-3

NightTrace Manual

interval scroll bar 6-7, C-1
message display area 6-1, 6-4, 6-9, 6-14, 7-3, 7-7,
7-15,7-16
Do Not Move Current Time radio button 10-3
Dotted area. see Grid
Duration

state 9-57

Edit menu 7-17
Edit mode 5-28, 6-17-4
Editing operation

delete character 6-16

insert character 6-16

positioning 6-18

replace character 6-17

restore the default 6-17

undo 6-17
Elan License Manager 2-2

installing 2-2
Enabling

kernel trace points 11-11

trace events 3-17, 3-18, 3-24, 4-3,4-24
End functions 9-45
end_arg function 9-47
end_arg_dbl function 9-47
end_cpu function 9-52
end_id function 9-46
end_Iwpid function 9-50
end_node_id function 9-54
end_node_name function 9-56
end_num_args function 9-48
end_offset function 9-53
end_pid function 9-48
end_pid_table_name function 9-55
end_raw_pid function 9-49
end_task id function 9-51
end_thread id function 9-51
end_tid function 9-52
end_tid_table_name
end_time function 9-54
End-Events configuration parameter 8-15
End-Events field 8-15, 9-7, 9-85
End-Expression configuration parameter 8-15
End-Expression field 8-15, 9-4, 9-7, 9-83, 10-7,

Glossary-15

Environment requirements 2-1
Environment variable

DISPLAY 5-2

SHELL 2-5
Event

function 9-55

Index-4

gap 9-32
matches 8-6, 8-13-33
qualified 9-81
summary type 10-12
tag. see Trace event
tag
Event Color configuration parameter 8-15
Event Color field 8-15
Event Count field 6-12, 6-13
Event End field 6-7, 6-12, 6-13
Event ID. see Trace event
ID
Event List configuration parameter 8-2, 8-4
Event List field 8-2, 9-83, 9-85, 10-5, 10-7
Event radio button 10-6
Event Start field 6-7, 6-11, 6-13
Event summary 10-11
event table5-15 8-5
Event. see Trace event
event_arg_dbl_summary tabe 21, 8-6
event_arg_summary tablg-21, 8-6, 10-8
event_gap function 9-32
event_matches function 8-139-33
event_summary tabl&-21, 8-6, 10-7
EventGraph 5-31, 6-4/-15, 8-16, 9-7, B-4
configuration form 8-16
Event-map file 1-6, 3-13, 5-4, 5-8-10, 5-16, 5-32,
5-34, 5-35, 8-2, 11-22
eventmap file 5-12, 5-15, 11-22
Exception 5-5, 5-7,5-9, 11-4, 11-29, 11-33, 11-34,
11-36
graph 11-29
reference 11-37
resumption11-4, 11-29
suspensionl1-4, 11-29
exec(2) service 3-6, 3-10
Exit menu item 5-33
Expansive moded-2, 4-3, 4-4, 4-10, 4-11, 4-12, A-1,
A-4
Expression configuration parameter 9-4, 9-7
Expression field 9-7
Expressions 9-4
constant string literals 5-19, 9-13, 9-77
functions 9-9
macros 5-9, 5-12, 5-28, 5-31, 7-18, 8-2
operands 9-5
operators 9-4
qualified events 5-9, 5-11, 5-12, 5-28, 5-31, 7-18,
8-4,9-81
qualified states 5-9, 5-12, 5-28, 5-31, 7-18, 8-4,
9-83
Expressions menu 9-1

Field

Background Color 8-3

CPU List 8-2,9-81, 9-83, Glossary-14, Glossary-15

Current Time 6-7, 6-11, 6-13

editing operations 6-16

End-Events 8-15, 9-7, 9-85

End-Expression 8-15, 9-4, 9-7, 9-83, 10-7,
Glossary-15

Event Color 8-15

Event Count 6-12, 6-13

Event End 6-7, 6-12, 6-13

Event List 8-2, 9-83, 9-85, 10-5, 10-7

Event Start 6-7, 6-11, 6-13

Expression 9-7

File Name 5-34, 5-35

Filter 5-36

Filter-Expression 9-4, 10-7

Font 8-3

Foreground Color 8-3

If-Expression 8-2, 9-4, 9-7, 9-81, 9-83, 9-85, 10-7,
10-8, Glossary-14

Increment 6-7, 6-12, 6-14

Lost Event Color 8-19

MacroDefinition 9-7

Mark Color 8-19

Maximum 8-18

Minimum 8-18

Name 8-2

No Event List 10-5

Node List 8-3, 9-81, 9-83, Glossary-14,
Glossary-15

PID List 8-3, 9-81, 9-83, Glossary-14, Glossary-15

QualifiedEvent 9-82

QualifiedState 9-84

Start-Events 8-15, 9-7, 9-85

Start-Expression 8-15, 9-4, 9-7, 9-83, 10-8

Summary-Expression 9-4, 9-81, 10-7, 10-8, 10-11,
10-12

Text 8-12

Then-Expression 8-2

TID List 9-81, 9-83, Glossary-14, Glossary-15

Time End 6-7, 6-11, 6-12, 10-3, 10-6

Time Length 6-11, 6-13

Time Start 6-7, 6-11, 6-12, 10-3, 10-6

Zoom Factor 6-12, 6-13

Field editing 6-16

multiple fields 6-14
single fields 6-12

Field label

File

dimmed 5-28, 7-4

Index

Jogin 2-5

.profile 2-5

Xdefaults 5-2, 5-8B-1, B-5

.Xresources 5-2, 5-8

/devl/interval_timer 2-5, 2-9

/dev/spl 2-5,2-8, A-3

/dev/trace 2-9, 11-8

/etc/conf/mtune.d/trace 11-8, A-2

/etc/group 2-5

/usr/bin/ktrace 11-9

/usr/bin/ntrace 5-3

/usr/bin/ntraceud 4-1

/usr/include/ntrace.h 3-2, 3-24, 4-21
/usrf/include/sys/ktrace.fi1-2, 11-8, 11-11
/usrl/lib/libntrace.a 3-25
[usr/lib/NightTrace/eventmap 5-12, 5-15, 11-22
/usr/lib/NightTrace/examples/entry_exit.c 3-26

fusr/lib/NightTrace/examples/entry _exit_map 5-36
/usr/lib/NightTrace/examples/entry_exit_page 5-36

/usr/lib/NightTrace/tables 5-15, 5-17, 5-28L21,
9-77,9-78, 9-80, 10-8
configuration 5-95-12
event-map 1-6, 3-13, 5-4, 5-8;10, 5-16, 5-32,
5-34, 5-35, 8-2, 11-22
filter 5-36
installation 2-2
KernelTrace trace event 1-6, 5-11001-21
NightTrace kernel trace event 1-6, 5-5, 5-7, 5-9,
5-28,11-21
rgb.txt 5-8, 8-3, 8-15, 8-19, B-1, B-5
trace event 1-5, 3-5, 4-1, 4-10, 4-11, 5-9, A-4
trace. see trace event
vectors 5-5, 5-9, 5-16, 11-3, 11-6, 11-21, 11-33,
11-34
File menu 5-27, 7-18, 10-9
File Name field 5-34, 5-35
File Selection Dialog Box 5-32, 5-38;34, 7-19, 10-10,
B-3
File system
NFS 11-19, A-2, A-3, C-2
processor 2-3
file(1) command 5-10, 11-13, 11-21
File-wraparound mode 4-3, 4-4, 4-10, A-1, A-4, C-1
Fill Style configuration parameter 8-17
Filter 5-36
Filter field 5-36
Filter-Expression field 9-4, 10-7
Finding. see Searching
Flushing shared memory buffe3-2Q, 4-4,4-11, 4-16,
4-19, 4-26, A-1, A-2
Font configuration parameter 8-3, 8-9
Font field 8-3
Fonts 5-8, 8-3, B-1
Foreground Color configuration parameter 8-3, 8-9

Index-5

NightTrace Manual

Foreground Color field 8-3
fork(2) service 3-6, 3-10
Form

Configuration 8-4, 8-10, 8-12, 8-13, 8-14, 8-16,

8-17, 8-19, 9-2,9-4
DataBox configuration 8-13
DataGraph configuration 8-17
EventGraph configuration 8-16
GridLabel configuration 8-12
Macro configuration 9-6, 9-7
Qualified Event configuration 9-81
Qualified State configuration 9-83, 9-84
Ruler configuration 8-19
Search 9-410-2 B-3,C-1
StateGraph configuration 8-14
Summarize 9-410-12 10-14, B-3
Format
functions 9-75
format function 8-5, 9-4, 9-79-80, 10-7, 10-8
Format table 5-95-18 9-79
event_arg_dbl_summar§-21, 8-6
event_arg_summar$-21, 8-6, 10-8
event_summarny-21, 8-6, 10-7
get_format function 5-21, 8-6, 9-4, 9-R-79,
10-7, 10-8
state_summaryp-21, 8-6, 10-7
Fortran language 1-3
compiling and linking 3-25
source consideration3-2
Forward radio button 10-2
Functions 9-9
arg 9-9,9-20
arg_dbl 9-21
argl 5-20, 8-5, 9-9, 9-81, 10-7, 10-8
arg2 8-5,9-12
avg 9-72
cpu 8-5,9-26
end 9-45
end_arg 9-47
end_arg_dbl 9-47
end_cpu 9-52
end_id 9-46
end_lwpid 9-50
end _node _id 9-54
end_node_name 9-56
end_num_args 9-48
end_offset 9-53
end_pid 9-48
end_pid_table_name 9-55
end_raw_pid 9-49
end task id 9-51
end_thread id 9-51
end tid 9-52
end_tid_table_name 9-55

Index-6

end_time 9-54

event gap 9-32
event_matches 8-13,9-33
format 9-75

format 8-5, 9-4, 9-79-80 10-7, 10-8
get format 5-21, 8-6, 9-4, 9-79-79, 10-7, 10-8
get item 9-4,9-77

get_string 5-18, 5-19, 5-20, 8-5, 9-8-75
id 8-5,9-19 9-79,9-81

lwpid 9-23

max 9-71, 10-7, 10-8
max_offset 9-73 10-8

min 9-71, 10-7, 10-8
min_offset 9-73 10-7,10-8
multi-event 9-32

multi-state 9-56

node_id 9-28

node_name 9-30

num_args 9-21

offset 9-59

offset 5-20,9-27

offset_arg 9-60
offset_arg_dbl 9-61
offset_cpu 9-66

offset_id 9-6Q, 9-73, 9-74
offset_Iwpid 9-63
offset_node_id 9-67
offset_node_name 9-68
offset_num_args 9-61
offset_pid 9-62
offset_pid_table_name 9-67
offset_process_name 9-69
offset_raw_pid 9-63
offset_task id 9-64
offset_task_name 9-69
offset_thread_id 9-64
offset_thread_name 9-70
offset_tid 9-65
offset_tid_table_name 9-68
offset_time 9-66

pid 8-5, 8-7,9-22 9-79
pid_table_name 9-29
process_name 9-7,9-30
raw_pid 9-23

start 9-34

start_arg 9-35
start_arg_dbl 9-36
start_cpu 9-41

start_id 9-9,9-35
start_Iwpid 9-39
start_node_id 9-43

start hode_name 9-45
start_num_args 9-37
start_offset 9-42

Index

start_pid 9-37 configuration form 8-12
start_pid_table_name 9-44 Text configuration parameter 8-12
start_raw_pid 9-38 GridObject B-4

start_task_id 9-40 Grouping users 2-5

start_thread id 9-39 GUI. see Graphical user interface
start_tid 9-41

start_tid_table_name 9-44

start_time 9-42

state_dur 9-57 H

state_gap 9-9,9-57

state_matches 9-58 Hardclock interrupts 5-7,11-1, 11-28, 11-36
state_status 9-58, 9-85 ktrace 11-12

sum 9-72 Help

summary 9-4, 9-70 ktrace 11-9

summary_matches 9-74, 10-8 ntrace 5-4

table 9-75 ntraceud 4-6

task_id 9-25 Help menu 5-33

task_name 9-31 hf77(1) command 3-2

thread id 9-24
thread_name 9-32

td 8-6, 8-8,9-25
tid_table_name 9-29
time 9-27,9-83

trace event 9-19 Iconified window 5-23
iconnect(3C) routine 11-35
id function 8-5,9-19 9-79, 9-81
idbuild(1M) command 2-3

G idtune(1M) command 2-3, 4-12, 4-14, A-2
If-Expression configuration parameter 8-2, 8-4
Gap If-Expression field 8-2, 9-4,9-7,9-81, 9-83, 9-85, 10-7,
event 9-32 10-8, Glossary-14
state 9-57 Increment field 6-7, 6-12, 6-14
get_format function 5-21, 8-6, 9-4, 9-R-79, 10-7, Input
10-8 ktrace 11-12
get_item function 9-4,9-77 Installation file 2-2

get_string function 5-18, 5-19, 5-20, 8-5, 9-8;75 Installing
Global process identifier 7-8, 8-5, 8-7, 9-10, 9-22, 9-37, Elan License Manager 2-2

9-48, 9-62, 10-4, 10-6, 11-3,11-12 NightTrace 2-2
Global Search radio button 10-3 Inter-process communication 2-3, 3-4
Global Window area Interrupt 5-5, 5-9, 11-2,11-3, 11-28, 11-33, 11-34,
message display area 5-10, 5-26 11-3511-36
Graph device-related 11-36
data 5-31, 6-47-16 11-28 graph 11-28
event 5-31, 6-47-15 9-7 hardclock 5-7,11-1,11-28, 11-36
exception 11-29 non-device-related 11-35
interrupt 11-28 preventing 2-7, 2-8
state 5-29, 5-30, 6-#-14, 9-7, 9-84, 10-12, 11-29, user-level 2-5,2-6, 4-8, 4-9
11-32 Interval 1-7, 6-1
syscall 11-31 control area6-11
Graphical user interface 5-1, B-1 push buttons 6-8
resources 11-32 scroll bar 6-7, C-1
Grayed out button. see Disabled button Interval Manipulation radio buttons 10-3
Grid 6-4,B-2 Interval radio button 10-6
GridLabel 5-30,7-12 8-12 11-26, 11-27, B-4 Interval Search radio button 10-3

Index-7

NightTrace Manual

Interval timer 2-9
access 2-1, 2-5, 2-10
ticks in ktrace 11-12
ipcrm(1) command 3-7
IPL register 2-1
access 2-%-7, 2-8, 2-9
disabling 4-8
failure to attach 3-7
modification 2-8, 4-2
use 4-8

K

Kernel
buffer allotment 11-8, A-2
configuring 2-3
display page 5-27,11-22

NightTrace trace event file 1-6, 5-5, 5-7, 5-9, 5-28,

11-21
Kernel trace device 2-1, 2-5, 2-9
Kernel tracing 1-1, 1-4, 1-5, 1-6, 5-16, 8-2, 8-6, 11-1,
11-1, A-2
KernelTrace 11-8, 11-21
product 1-1
trace event file 1-6, 5-1@,1-21
kill(1) command 11-13
ktrace
performance considerations A-2
ktrace option
-bufferwrap (buffer-wraparound) 11-10
-clock (clock) 11-11
-cpu (CPU) 11-11
-disable (disable) 11-11
-enable (enable) 11-11
-help (help) 11-9
-input (input) 11-12
-measure (measure) 11-10
-nohardclock (strip hardclock interrupts) 11-12
-output (output kernel trace file) 11-10, 11-13
-priority (priority) 11-11
-process (process) 11-12
-raw (raw kernel trace) 11-12
-start (analyze events after constraint) 11-12
-ticks (interval timer ticks) 11-12
-verbose (verbose) 11-13
-version (version) 11-10
-wall (wall time) 11-12
ktrace(1)
11-8 11-21, A-2, A-3, A-4
ktrace.h11-2 11-8, 11-11

Index-8

command 2-9, 4-1, 5-9, 5-10, 11-1, 11-2,

Label
dimmed 5-28, 7-4
Language
Ada 1-3, 3-25
C 1-3,3-2,3-25
Fortran 1-33-2, 3-25
Last exception box 11-29
Last interrupt box 11-28
Last syscall box 11-31
libntrace.a 3-25
Library routines 3-1
disabling 3-2
overloading in Ada 3-3
return values 3-2

trace_close_thread 3-22

trace_disable 3-16, 4-22

trace_disable_all 3-16, 3-24

trace_disable_range 3-16 4-22

trace_enable 3-16 4-24

trace_enable_all 3-16

trace_enable_range 3-16, 4-24

trace_end 3-6, 3-20,3-23 4-2, 4-15, 4-19

trace_event 3-11,7-8

trace_event_arg 3-11

trace_event_dbl 3-11

trace_event_flt 3-11

trace_event four_arg 3-11

trace_event_two_dbl 3-11

trace_event_two_fit 3-11

trace_flush 3-20 4-2, 4-4, 4-11, 4-12, 4-15,
4-26, A-2, A-3

trace_open_thread 3-9, 3-15, 3-18, 3-22, 6-4,
7-17, 8-3

trace_start 3-5, 3-10, 3-15, 3-18, 3-23, 4-1,
4-2,4-26, C-1
trace_trigger 3-20,4-2, 4-15, A-2, A-3, A-4
License Manager
Elan 2-2
Lightweight process identifier 8-7, 9-10, 9-23, 9-39,
9-50, 9-63
Loading
trace event 5-7, A-5
Locating. see Searching
Logging
kernel trace event.1-10
trace event 1-3,1-4,2-1,2-3,4-10,4-2122 4-24,
A-5,C-1
Loss
kernel trace event 11-8, A-2
trace event 3-15, 3-21, 4-14, 4-26, 7-17, 8-A91,
C-1

Index

Lost Event Color configuration parameter 8-19 disabled

Lost Event Color field 8-19 disabled 5-28, 7-4, 7-18, 10-10
LWPID 8-7,9-10, 9-23, 9-39, 9-50, 9-63 Exit 5-33

Iwpid function 9-23 New Page 5-27, 5-28

Open Config File ... 5-13, 5-27, 5-31, 5-37

Read Event-Map File ... 5-11, 5-32, 5-37
M Save 7-18

Save As ... 7-19

Save Text 10-10

Macro Save Text As ... 10-10
Configuration form 9-6, 9-7 Search ... 10-1
dialog box 9-6 Select All 7-18
Expression configuration parameter 9-4, 9-7 Summarize ... 10-5
MacroDefinition configuration parameter 9-7 Message display area 5-10, 5-26, 6-1, 6-4, 6-14, 7-3, 7-7,
MacroDefinition configuration parameter 9-7 7-15,7-16
MacroDefinition field 9-7 statistics 6-9
Macros 5-9, 5-12, 5-28, 5-31, 7-18, 8-2, 9-81 min function 9-71, 10-7, 10-8
Map file. see Event-map file min_offset function 9-73, 10-7, 10-8
Mark Minimum configuration parameter 8-18
inside Ruler 7-17, 8-19 Minimum field 8-18
manipulating 6-9 Minimum value 8-18, 9-71, 9-73
push button 6-9 Mode
representation 6-9 buffer-wraparound 3-21, 4-3, 4-11, 4-15, 4-16, A-1,
Mark Color configuration parameter 8-19 A-4,C-1
Mark Color field 8-19 Edit 5-28, 6-1,7-4
Matches expansive4-2, 4-3, 4-4, 4-10, 4-11, 4-12, A-1, A-4
event 8-6, 8-139-33 file-wraparound 4-3, 4-4, 4-10, A-1, A-4, C-1
state 8-6, 9-58 radio buttons 7-3
summary 9-74 View 5-29, 6-1, 6-67-4, 9-7, 10-1, 11-22
max function 9-71, 10-7, 10-8 Monochrome display 5-2, 7-14, B-1, B-4
max_offset function 9-73 10-8 Motif 1-8, 5-2
Maximum configuration parameter 8-18 Mouse
Maximum field 8-18 pointer shapes 5-23
Maximum value 8-18, 9-71, 9-73 Mouse button
Measure time 1 5-22, 6-2, 6-3, 6-8, 6-9, 6-16, 7-5, 7-6
ktrace 11-10 2 6-3, 6-4, 6-8, 6-9, 6-16, 7-5, 7-7, 7-15, 7-16
Memory size 3-15, 4-3, 4-4, 4-14, A-3, C-1 3 6-3, 6-4, 6-10, 6-16, 7-5, 7-7, 7-16
Menu Mouse operation
Configure 8-1 create 7-6
Create 7-6, 7-8 move 7-7
Edit 7-17 resize 7-7
Expressions 9-1 select 7-6
File 5-27,7-18, 10-9 Move mouse operation 7-7
Help 5-33 mpadvise(3C) routine A-4
Tools 10-1, 10-5 Multi-event functions 9-32
Menu item Multi-state functions 9-56
Close 7-19,10-10
Content ... 8-1
Default Kernel Page 5-27,11-22
Default Page 5-27, 5-29 N
Delete 7-18
Deselect All 7-18 Name configuration parameter 8-2
desensitized 5-28, 7-19 Name field 8-2
dimmed. see Menu item name_pid table 5-17,1-33

Index-9

NightTrace Manual

name_tid table 5-17
New Page menu item 5-27, 5-28
Next push button 10-3, 10-5
NFS file system 11-19, A-2, A-3, C-2
NightStar tool kit 1-1
NightTrace
environment defaults 4-2
installation 2-2
product 1-1
NightTrace thread identifier 7-8, 8-5, 8-6, 8-8, 9-10,
9-25, 9-41, 9-52, 9-65, 10-4, 10-6
NightView debugger 1-4, 3-1
No Event List field 10-5
Node box 11-27
Node identifer 9-28
Node identifier
ending trace event 9-54
offset 9-67
starting trace event 9-43
Node List configuration parameter 8-3, 8-9
Node List field 8-3, 9-81, 9-83, Glossary-14,
Glossary-15
Node name 9-30
ending trace event 9-56
ordinal trace event 9-68
starting trace event 9-45
node_id function 9-28
node_name function 9-30
node_name table 5-171-33
NT_ASSOC_PID 6-4
NT_ASSOC_TID 6-4
NT_CONTINUE 3-9, 3-13, 4-14, 5-6-10
NT_M_BUFFERWRAP. see Buffer-wraparound mode
NT_M_DEFAULT. see Expansive mode
NT_M_FILEWRAP. see File-wraparound mode
ntfilter option
-v (create vectors file) 11-21
ntfilter(1) command 5-9, 11-3, 11-81-21,
11-33, 11-34, 11-35, 11-37
ntrace 1-3, 1-6, 5-1
format tables 5-95-18
functions 9-9
invoking 5-3
notation conventions 5-25
operands 9-5
operators 9-4
performance considerations 5-7, 10-2, A-5
string tables 5-95-14
viewing strategy 6-5
ntrace field
Background Color 8-3
CPU List 8-2,9-81, 9-83, Glossary-14, Glossary-15
Current Time 6-7, 6-11, 6-13
End-Events 8-15, 9-7, 9-85

Index-10

End-Expression 8-15, 9-4, 9-7, 9-83, 10-7,
Glossary-15
Event Color 8-15
Event Count 6-12, 6-13
Event End 6-7, 6-12, 6-13
Event List 8-2, 9-83, 9-85, 10-5, 10-7
Event Start 6-7, 6-11, 6-13
Expression 9-7
File Name 5-34, 5-35
Filter 5-36
Font 8-3
Foreground Color 8-3
If-Expression 8-2, 9-4, 9-7, 9-81, 9-83, 9-85, 10-7,
10-8, Glossary-14
Increment 6-7, 6-12, 6-14
Lost Event Color 8-19
MacroDefinition 9-7
Mark Color 8-19
Maximum 8-18
Minimum 8-18
Name 8-2
No Event List 10-5
Node List 8-3, 9-81, 9-83, Glossary-14,
Glossary-15
PID List 8-3,9-81, 9-83, Glossary-14, Glossary-15
QualifiedEvent 9-82
QualifiedState 9-84
Start-Events 8-15, 9-7, 9-85
Start-Expression 8-15, 9-4, 9-7, 9-83, 10-8
Text 8-12
Then-Expression 8-2
TID List 9-81, 9-83, Glossary-14, Glossary-15
Time End 6-7, 6-11, 6-12, 10-3, 10-6
Time Length 6-11, 6-13
Time Start 6-7, 6-11, 6-12, 10-3, 10-6
Zoom Factor 6-12, 6-13
ntrace functions 9-9
ntrace macros 5-9, 5-12, 5-28, 5-31, 7-18, 8-2
ntrace mode 7-3
Edit 5-28, 6-1,7-4
radio buttons 7-3
View 5-29, 6-1, 6-67-4, 9-7, 10-1, 11-22
ntrace option
-end (load events before constraint) 5-7, A-5
-filestats (list statistics and trace events) 5-6, 5-27,
A-1
-flat (set flat color) 5-8
-help (help) 5-4
-listing (list trace events) 5-4,5-11
-nohardclock (strip hardclock) 5-7, A-5
-process (load process’s events) 5-7, A-5
-start (load events after constraint) 5-7, A-5
-version (version) 5-4
-Xoption (use X(1) options) 5-8

ntrace qualified events 5-9, 5-11, 5-12, 5-28, 5-31, 7-18,

8-4,9-81

ntrace qualified states 5-9, 5-12, 5-28, 5-31, 7-18, 8-4,
9-13, 9-35, 9-36, 9-37, 9-38, 9-39, 9-40, 9-41,
9-42, 9-43, 9-44, 9-45, 9-46, 9-47, 9-48, 9-49,
9-50, 9-51, 9-52, 9-53, 9-54, 9-55, 9-56, 9-57,

9-58, 9-599-83
ntrace window
Configuration 8-4, 8-10, 8-12, 8-13, 8-14, 8-16,
8-17, 8-19, 9-2,9-4
Display Page 5-27, 6-2, 11-22
File Selection Dialog Box 5-32, 5-35;34, 7-19,
10-10, B-3
Global 5-3, 5-6, 5-11, 5-26, 11-22, A-1, B-2
iconified 5-23
Macro configuration 9-6, 9-7
Qualified Event configuration 9-81
Qualified State configuration 9-83, 9-84
resizing 5-25, 5-27
Search 9-410-2 B-3,C-1
Summarize 9-410-12 10-14, B-3
ntrace window component
menu bar 5-24, 5-25
pull-down menu 5-24, 5-25
push button 5-24, 6-8
radio button 5-24
scroll bar 5-24
scroll region 5-24
text field 5-24
ntrace.h 3-2, 3-24, 4-21
ntraceud
buffer-full cutoff. see ntraceud
cutoff
cutoff 3-15, 4-3, 4-4, 4-16, A-3, C-1
daemon 1-3, 1-4-1
flush mechanism 4-3
help 4-6
initialization errors 2-8, 2-10
interrupt handling 4-3
invoking 4-26
memory size 3-15, 4-3, 4-4, 4-14, A-3, C-1
page-fault handling 4-3
performance considerations 2-6, 2-7, 4-1, 4-15,
4-16,A-1
protection considerations 2-7, 2-10
quit running 4-19, 4-26, 4-27, 5-9
reset 4-18
shared memory buffer size. see ntraceud
memory size
sleep interval 4-2, 4-3, 4-15
statistical information 4-20, A-1
stopping 4-27
timeout interval 3-15, 4-3, 4-4, 4-15, A-3, C-1

Index

trace event file size 4-3, 4-10
trace event logging 4-3
version information 4-7
ntraceud mode
buffer-wraparound 3-21, 4-3, 4-11, 4-15, 4-16, A-1,
A-4,C-1
expansive4-2, 4-3, 4-4, 4-10, 4-11, 4-12, A-1, A-4
file-wraparound 4-3, 4-4, 4-10, A-1, A-4, C-1
ntraceud option
-bufferwrap (buffer-wraparound mode) 4-3, 4-11,
4-15, 4-16, A-1, A-4, C-1
-cutoff (cutoff percentage) 3-15, 4-3, 4-4, 4-16,
A-3,C-1
-disable (disable logging) 3-18, 3-24, 4-3, 4-22
-enable (enable logging) 3-18, 3-24, 4-3, 4-24
-filewrap (file-wraparound mode) 4-3, 4-4, 4-10,
A-1,A-4,C-1
-help (help) 4-6
-ipldisable (do not set IPL) 2-8, 3-7, 4-3, 4-8, 4-26,
A-3
-lockdisable (do not lock pages) 2-7, 3-10, 4-3, 4-9,
4-26, A-3
-memsize (memory size) 3-15, 4-3, 4-4,4-14, A-3,
C-1
-quit (quit running) 4-19, 4-27, 5-9
-reset (reset ntraceud) 4-18
-stats (statistical information) 4-20, A-1
-timeout (timeout interval) 3-15, 4-3, 4-4, 4-15,
A-3,C-1
-version (version information) 4-7
num_args function 9-21

O

Object. see Display object

od(1) command 5-10

Offset 5-7,6-4, 6-11, 6-13, 6-15, 7-8, 9-9, 9-12, 9-13,
9-59, 9-60, 9-61, 9-62, 9-63, 9-64, 9-65, 9-66,
9-67, 9-68, 9-69, 9-70, 10-4, 10-11, 10-13

offset function 5-209-27

Offset functions 9-59

offset_ arg function 9-60

offset_arg_dbl function 9-61

offset cpu function 9-66

offset_id function 9-60, 9-73, 9-74

offset_Iwpid function 9-63

offset_node_id function 9-67

offset node_name function 9-68

offset num_args function 9-61

offset_pid function 9-62

offset_pid_table_name

offset_process_name

function 9-67
function 9-69

Index-11

NightTrace Manual

ktrace A-2
NightTrace library routines 2-6
ntrace 5-7,10-2, A-5
ntraceud 2-6, 2-7, 4-1, 4-15, 4-14;1
PID 7-8, 8-5, 8-7, 9-10, 9-22, 9-37, 9-48, 9-62, 10-4,

function 9-63
function 9-64
function 9-69
function 9-64
function 9-70

offset_raw_pid
offset_task id
offset_task_name
offset_thread id
offset_thread _name

offset_tid function 9-65 10-6,11-3, 11-12
offset_tid_table_name function 9-68 pid function 8-5, 8-79-22 9-79
offset_time function 9-66 PID List configuration parameter 8-3, 8-7

Open Config File ... menu item 5-13, 5-27, 5-31, 5-37 PID Listfield 8-3, 9-81, 9-83, Glossary-14, Glossary-15
Open push button 5-31 pid table 5-16, 8-5, 11-21, 11-34
Operands PID table name 9-29

constants 9-5 pid_nodename table 5-171-33

functions 9-9 pid_table_name function 9-29

macros 5-9, 5-12, 5-28, 5-31, 7-18, 8-2 pkgadd(1M) command 2-2

qualified events 5-9, 5-11, 5-12, 5-28, 5-31, 7-18, Pointer shapes 5-23

8-4,9-81 Pop-up window
qualified states 5-9, 5-12, 5-28, 5-31, 7-18, 8-4, Open B-3
9-13, 9-35, 9-36, 9-37, 9-38, 9-39, 9-40, Read B-3

9-41, 9-42, 9-43, 9-44, 9-45, 9-46, 9-47,
9-48, 9-49, 9-50, 9-51, 9-52, 9-53, 9-54,

SaveAs 7-19, B-3
SaveTextAs 10-10, B-3

9-55, 9-56, 9-57, 9-58, 9-59:83

Operands in expressions 9-5
Operators in expressions 9-4
Options. see ntrace option
Options. see ntraceud option
Options. see System configuration option
Output

ktrace 11-10

P_PLOCK 2-12-6, 2-6, 2-7, 3-7, 3-10, A-3
Package

Elan License Manager 2-2

elanlm 2-2

KernelTrace 2-2

NightTrace 2-2

ntrace 2-2
trace 2-2
Page

configuration file 5-95-12

default 5-27, 5-29

default kernel 5-27, 11-22

display 1-6,7-2,11-22, B-2

lock disable 4-9

lock privilege 2-12-6, 2-6, 2-7, 3-7, 3-10, 4-26,

A-3

new 5-27,5-28
Page faults

preventing 2-6
Parameters. see Configuration parameters
Performance considerations

Index-12

Pop-up window. see Dialog box
Pre-defined tables 5-15, 5-21, 11-5, 11-21, 11-32
Prev push button 10-3, 10-5
Preventing
interrupts 2-7, 2-8
page faults 2-6
rescheduling 2-7, 2-8, 2-9

printf(3S) routine 5-12,5-19, 9-80
Priority

ktrace 11-11
Privilege

page lock 2-12-6, 2-6, 2-7, 3-7, 3-10, 4-26, A-3
Process
ktrace 11-12
ntrace 5-7
Process box 11-26
Process identifier
ending trace event 9-55
offset 9-67
starting trace event 9-44
Process identifier table name 9-29
Process name 9-30
ordinal trace event 9-69
process_name function 9-7,9-30
Processor file system 2-3
procfs file system 2-3
Protection considerations
ntraceud 2-7, 2-10
Pull-down menu. see Window component
pull-down menu
Push button
Add 9-2
Apply 6-9, 6-12, 6-17, 8-10, 9-3, 10-3, 10-8
Cancel 5-31, 5-32

Center 6-9

Clear 10-9, 10-10

Close 8-11, 9-2, 9-3, 10-4, 10-5

Configure 9-2

default 5-24

Delete 9-2

dimmed. see Push button
disabled

disabled 5-28, 7-4

grayed out. see Push button
disabled

Mark 6-9

Next 10-3, 10-5

on configuration form 8-10

Open 5-31

Prev 10-3, 10-5

Read 5-32

Refresh 6-10

Reset 6-9, 8-11, 9-3, 10-3, 10-8

Restore 8-11, 9-3, 10-9

Search 10-4

Summarize 10-6, 10-9, 10-10

Zoom In 6-10, 6-12

Zoom Out 6-10, 6-12, C-1

Zoom Region 6-10

Q

Qualified events 5-9, 5-11, 5-12, 5-28, 5-31, 7-18, 8-4,

9-81,9-81
Configuration form 9-81
dialog box 9-81

QualifiedEvent configuration parameter 9-82, 9-83
Quialified states 5-9, 5-12, 5-28, 5-31, 7-18, 8-4, 9-13,

Index

Backward 10-2
Do Not Move Current Time 10-3
Edit mode 7-3, 7-18
Event 10-6
Forward 10-2
Global Search 10-3
Interval 10-6
Interval Manipulation 10-3
Interval Search 10-3
Region 10-6
Scroll Current Time to Event 10-3
Search Constraints 10-2
Search Direction 10-2
State 10-6
Summary Range 10-6
Summary Type 10-6
Text Gravity 8-4
Text Justify 8-3
Trace-Event File 10-6
View mode 7-3
Zoom to Include Event 10-3
Raw kernel trace
ktrace 11-12
Raw PID 8-7, 8-8
raw PID 9-10, 9-23, 9-38, 9-49, 9-63
raw_pid function 9-23
Read Event-Map File ... menu item 5-11, 5-32, 5-37
Read push button 5-32
Record. see Trace event
Refresh push button 6-10
Region radio button 10-6
Rescheduling
preventing 2-7, 2-8, 2-9
Reset push button 6-9, 8-11, 9-3, 10-3, 10-8
Resize mouse operation 7-7
Resizing
display objects 5-23, 7-5, 7-7

9-35, 9-36, 9-37, 9-38, 9-39, 9-40, 9-41, 9-42,
9-43, 9-44, 9-45, 9-46, 9-47, 9-48, 9-49, 9-50,
9-51, 9-52, 9-53, 9-54, 9-55, 9-56, 9-57, 9-58,
9-59, 9-839-83

Configuration form 9-83, 9-84
dialog box 9-83

QualifiedState configuration parameter 9-84, 9-85

QualifiedEvent configuration parameter 9-82, 9-83
QualifiedEvent field 9-82
QualifiedState configuration parameter 9-84, 9-85
QualifiedState field 9-84

R

Radio button

windows 5-25, 5-27
Restore push button 8-11, 9-3, 10-9
Return values 3-2
rgb.txt file 5-8, 8-3, 8-15, 8-19, B-1, B-5
Ruler 5-31, 6-97-17, 8-19 A-1, B-4
configuration form 8-19

Lost Event Color configuration parameter 8-19

Mark Color configuration parameter 8-19
run(l) command A-4
Running process box 11-26

Save As ... menu item 7-19
Save menu item 7-18

Index-13

NightTrace Manual

Save Text As ... menu item 10-10
Save Text menu item 10-10
Scroll bar 5-24, 6-7, C-1
Scroll Current Time to Event radio button 10-3
Scroll region 5-24
Search ... menu item 10-1
Search Constraints radio buttons 10-2
Search Direction radio buttons 10-2
Search form 9-4]10-2, B-3, C-1
default search behavior 10-4
Search form push buttons
Apply 10-3
Close 10-4,10-5
Next 10-3, 10-5
Prev 10-3, 10-5
Reset 10-3
Search 10-4
Search form radio buttons
Backward 10-2
Do Not Move Current Time 10-3
Forward 10-2
Global Search 10-3
Interval Manipulation 10-3
Interval Search 10-3
Scroll Current Time to Event 10-3
Search Constraints 10-2
Search Direction 10-2
Zoom to Include Event 10-3
Search push button 10-4
Searching
trace event 1-3, 1-7, 6-1, 6-80-1, 10-1
Select All menu item 7-18
Select mouse operation 7-6
Shared memory
buffer 1-5, 4-11, 4-14
failure to attach 3-7
flushing 3-20, 4-4,4-11, 4-16, A-1, A-2
kernel tunable parameter 2-3
spin locks 2-7, 2-8, 2-9
SHELL environment variable 2-5
SHMMAX 4-12, 4-14, A-2
Spin lock 2-7, 2-8, 2-9
Start functions 9-34
start_arg function 9-35
start_arg_dbl function 9-36
start_cpu function 9-41
start_id function 9-9,9-35
start_Iwpid function 9-39
start_node_id function 9-43
start_node_name function 9-45
start_ num_args function 9-37
start_offset function 9-42
start_pid function 9-37

start_pid_table_name function 9-44

Index-14

function 9-38
start_task_id function 9-40
start_thread_id function 9-39
start_tid function 9-41
start_tid_table_name
start_time function 9-42
Start-Events configuration parameter 8-15
Start-Events field 8-15, 9-7, 9-85
Start-Expression configuration parameter 8-15
Start-Expression field 8-15, 9-4, 9-7, 9-83, 10-8
State 1-2, 3-147-8, 7-14, 8-15, 11-28, 11-29
duration 9-57
gap 9-57
matches 8-6, 9-58
qualified 9-83
summary type 10-14
State radio button 10-6
State summary 10-12
state_dur function 9-57
state_ gap function 9-9,9-57
state_matches function 9-58
state_status function 9-58, 9-85
state_summary tabl&-21, 8-6, 10-7
StateGraph 5-29, 5-30, 6-4;14, 8-14, 9-7,9-84, 10-12,
11-29, 11-32, B-4
configuration form 8-14
End-Events configuration parameter 8-15
End-Expression configuration parameter 8-15
Start-Events configuration parameter 8-15
Start-Expression configuration parameter 8-15
Statistics 5-10, 10-1
multi-event 9-32
multi-state 9-56
ntrace 5-6, 6-9, A-1
ntraceud 4-20, A-1
summary 9-4, 9-70
String table 5-95-14, 9-75, 9-77
boolean 5-17, 8-6
device 5-18, 11-511-33
device_nodename 5-181-34
event 5-15 8-5
get_item function 9-4,9-77
get_string function 5-18, 5-19, 5-20, 8-5, 9-4,
9-75
name_pid 5-1711-33
name_tid 5-17
node_name 5-17,1-33
pid 5-16 8-5, 11-21, 11-34
pid_nodename 5-17,1-33
syscall 5-18, 8-6, 11-5, 11-211-33 11-37
syscall_nodename 5-181-34
tid 5-16, 8-6
tid_nodename 5-17
vector 5-18, 8-6, 11-3, 11-211-33 11-35

start_raw_pid

function 9-44

Index

vector_nodename 5-18]1-34 T
sum function 9-72
Summarize ... menu item 10-5
Summarize form 9-410-12 10-14, B-3
Event summary type 10-12
State summary type 10-14
summary display area 10-7, 10-9, 10-10, 10-11,
10-12
Summarize form fields 10-6
Filter-Expression 9-4, 10-7
Summary-Expression 9-4, 9-81, 10-7, 10-8, 10-11,

Table
boolean 5-17, 8-6
device 5-18, 11-511-33
device_nodename 5-181-34
event 5-15 8-5
event_arg_dbl_summar§y-21, 8-6
event_arg_summar$-21, 8-6, 10-8
event_summaryp-21, 8-6, 10-7
format 5-9, 5-18, 9-79

10-12 :
. functions 9-75
Summarize form push buttons .
name_pid 5-1711-33
Apply 10-8 .
name_tid 5-17
Clear 10-9, 10-10 node_name 5-17,1-33
Reset 10-8 -

pid 5-16 8-5,11-21, 11-34

pid_nodename 5-121-33

pre-defined 5-15, 5-21, 11-5, 11-21, 11-32
state_summaryp-21, 8-6, 10-7

Restore 10-9
Summarize 10-6, 10-9, 10-10
Summarize form radio buttons

E}‘:gxallg'gﬁ string 5-9, 5-14, 9-75, 9-77

. syscall 5-18, 8-6, 11-5, 11-211-33 11-37
Region 10-6 syscall nodename 5-181-34
State 10-6 yscal

tid 5-16, 8-6
tid_nodename 5-17
vector 5-18, 8-6,11-3, 11-211-33 11-35
vector_nodename 5-181-34
tables file 5-15,5-17, 5-28-21, 9-77, 9-78, 9-80, 10-8
Tag. see Trace event
tag
Task name 9-31

Summary Range 10-6

Summary Type 10-6

Trace-Event File 10-6
Summarize push button 10-6, 10-9, 10-10
Summarizing

trace event 1-310-5

trace session 1-7

Summar .
y ordinal trace event 9-69
event 10-11 . .
task _id function 9-25
matches 9-74, 10-8 — .
task_name function 9-31
state 10-12 —

Text configuration parameter 8-12
Text field 8-12
Background Color 8-3
CPU List 8-2,9-81, 9-83, Glossary-14, Glossary-15
Current Time 6-7, 6-11, 6-13
cursor 6-16
editing operations 6-16

Summary display area 10-7, 10-9, 10-10, 10-11, 10-12
Summary functions 9-4, 9-70

Summary Range radio buttons 10-6

Summary Type radio buttons 10-6

summary_matches function 9-74, 10-8
Summary-Expression field 9-4,9-81,10-7, 10-8,10-11,

10-12
End-Events 8-15, 9-7, 9-85
Syscall 11-5, 11-31, 11-331-37 End-Expression 8-15, 9-4, 9-7, 9-83, 10-7,
graph 11-31

Glossary-15
Event Color 8-15
Event Count 6-12, 6-13
Event End 6-7, 6-12, 6-13
Event List 8-2, 9-83, 9-85, 10-5, 10-7
Event Start 6-7, 6-11, 6-13
Expression 9-7
File Name 5-34, 5-35
Filter 5-36
Filter-Expression 9-4, 10-7
Font 8-3

resumption 11-5
suspension 11-5,11-31
syscall table 5-18, 8-6, 11-5, 11-211-33 11-37
syscall_nodename table 5-1Bl-34
System
administration 2-1
System call 11-5, 11-31, 11-331-37

Index-15

NightTrace Manual

Foreground Color 8-3

If-Expression 8-2, 9-4, 9-7, 9-81, 9-83, 9-85, 10-7,

10-8, Glossary-14
Increment 6-7,6-12, 6-14
Lost Event Color 8-19
MacroDefinition 9-7
Mark Color 8-19
Maximum 8-18
Minimum 8-18
Name 8-2
No Event List 10-5
Node List 8-3, 9-81, 9-83, Glossary-14,

Glossary-15

tid table 5-16, 8-6
TID table name 9-29
tid_nodename table 5-17
tid_table_name function 9-29
Time End field 6-7, 6-11, 6-12, 10-3, 10-6
time function 9-27, 9-83
Time Length field 6-11, 6-13
Time Start field 6-7, 6-11, 6-12, 10-3, 10-6
Timeout interval 3-15, 4-3, 4-4, 4-15, A-3, C-1
Times
constant 9-6
Timestamp 1-2, 2-%-4, 6-7, 9-27, 9-42, 9-54, 9-66,
11-8

PID List 8-3, 9-81, 9-83, Glossary-14, Glossary-15 Tools menu 10-1, 10-5

QualifiedEvent 9-82

QualifiedState 9-84

Start-Events 8-15, 9-7, 9-85
Start-Expression 8-15, 9-4, 9-7, 9-83, 10-8

TR_ALT_INT_DISPATCH trace event 11-6

TR_BUFFER_COUNT tunable parameter 2-3, 11-8,
A-2,C-2

TR_EXCEPTION_ENTRY trace event 11-4

Summary-Expression 9-4, 9-81, 10-7, 10-8, 10-11, TR_EXCEPTION_EXIT trace event 11-4

10-12
Text 8-12
Then-Expression 8-2
TID List 9-81, 9-83, Glossary-14, Glossary-15
Time End 6-7, 6-11, 6-12, 10-3, 10-6
Time Length 6-11, 6-13
Time Start 6-7, 6-11, 6-12, 10-3, 10-6
Zoom Factor 6-12, 6-13
Text Gravity configuration parameter 8-4, 8-10
Text Gravity radio button 8-4
Text Justify configuration parameter 8-3, 8-9
Text Justify radio button 8-3
tfadmin(1M) command 2-4
Then-Expression configuration parameter &5, 9-4,
9-76, 9-78, 9-79, 9-80
Then-Expression field 8-2
Thread event
ordinal 9-68
Thread identifier
ending trace event 9-55
offset 9-68
starting trace event 9-44
Thread identifier table name 9-29
Thread name 9-32
ordinal trace event 9-70
Thread names 5-4, 5-16, 8-3, 8-8, 10-4, 10-6
thread_id function 9-24
thread_name function 9-32
Ticks
ktrace 11-12
TID 7-8, 8-5, 8-6, 8-8, 9-10, 9-25, 9-41, 9-52, 9-65,
10-4, 10-6
tid function 8-6, 8-89-25
TID List configuration parameter 8-3, 8-8
TID List field 9-81, 9-83, Glossary-14, Glossary-15

Index-16

TR_EXCEPTION_RESUME trace event 11-4
TR_EXCEPTION_SUSPEND trace event 11-4
TR_INTERRUPT_ENTRY trace event 11-3, 11-6
TR_INTERRUPT_EXIT trace event 11-4, 11-6
TR_PAGEFLT_ADDR trace event 11-7, 11-29
TR_PROCESS_NAME trace event 11-6
TR_PROTFLT_ADDR trace event 11-7, 11-29
TR_SWITCHIN trace event 11-3
TR_SYSCALL_ENTRY trace event 11-5
TR_SYSCALL_EXIT trace event 11-5
TR_SYSCALL_RESUME trace event 11-5
TR_SYSCALL_SUSPEND trace event 11-5
Trace device 2-1, 2-5, 2-9
Trace event 1-2,7-8
analysis 1-6,5-1, 11-8
arguments3-13 5-4, 5-10, 5-11, 5-13, 5-31, 7-8,
7-9,7-16, 8-5,9-20,9-21, 9-35, 9-36, 9-37,
9-47,9-48, 9-60, 9-61, 10-9
average size 4-14
context switch 11-3
disabling 3-17, 3-18, 3-24, 4-3, 4-22
discarding 3-21, A-1, A-4,C-1
display utility 5-1
enabling 3-17, 3-18, 3-24, 4-3, 4-24
exception 11-4
file 1-5, 3-5, 4-1, 5-9
file format 5-10
file size 4-10, 4-11, A-4
functions 9-19
ID 1-2,1-6,3-13 3-17, 4-22, 4-24, 5-4, 5-9, 5-10,
5-11, 5-15, 5-30, 5-32, 8-2, 8-4, 8-5, 10-4,
10-6, C-1
information 7-15, 9-19
interrupt 11-3
kernel logging11-10

KernelTrace file 1-6, 5-1011-21
loading 5-7, A-5
logging 1-3, 1-4, 2-1, 2-3, 4-10, 4-14;22, 4-24,

A-5,C-1

loss 3-15, 3-21, 4-14, 4-26, 7-17, 8-19, 11A8],
A-2,C-1

NightTrace kernel file 1-6, 5-5, 5-7, 5-9, 5-28,
11-21

node identifer (ending trace event) 9-54

node identifer (offset) 9-67

node identifer (starting trace event) 9-43

node identifier 9-28

node name 9-30

node name (ending trace event) 9-56

node name (ordinal trace event) 9-68

node name (starting trace event) 9-45

NT_ASSOC_PID 6-4

NT_ASSOC_TID 6-4

NT_CONTINUE 3-9, 3-13, 4-14, 5-6-10

offset 9-59

offset. see Offset

ordinal 9-67, 9-68, 9-69, 9-70

ordinal number. see Offset

PID table name 9-29

process identifer (ending trace event) 9-55

process identifer (offset) 9-67

process identifer (starting trace event) 9-44

process identifier table name 9-29

process name 9-30

process name (ordinal trace event) 9-69

searching 1-3, 1-7, 6-1, 6-30-1, 10-1

summarizing 1-310-5

syscall 11-5

tag 1-6, 5-4, 5-95-10, 5-11, 5-15, 5-30, 5-32, 10-4,
10-6, 11-22

task name 9-31

task name (ordinal trace event) 9-69

thread identifer (ending trace event) 9-55

thread identifer (offset) 9-68

thread identifer (starting trace event) 9-44

thread identifier table name 9-29

thread name 9-32

thread name (ordinal trace event) 9-70

TID table name 9-29

timestamp 1-2, 2-%-4, 9-27, 9-42, 9-54, 9-66,
11-8

timing distortion 2-6, 2-7, 2-8, 3-21, 4-8, 4-9, 4-15

TR_ALT_INT_DISPATCH 11-6

TR_EXCEPTION_ENTRY 11-4

TR_EXCEPTION_EXIT 11-4

TR_EXCEPTION_RESUME 11-4

TR_EXCEPTION_SUSPEND 11-4

TR_INTERRUPT_ENTRY 11-3,11-6

TR_INTERRUPT_EXIT 11-4,11-6

Index

TR_PAGEFLT_ADDR 11-7, 11-29
TR_PROCESS_NAME 11-6
TR_PROTFLT_ADDR 11-7,11-29
TR_SWITCHIN 11-3
TR_SYSCALL_ENTRY 11-5
TR_SYSCALL_EXIT 11-5
TR_SYSCALL_RESUME 11-5
TR_SYSCALL_SUSPEND 11-5
Trace event. see Event
Trace file. see Trace event file
Trace point 1-2, 1-4, 3-13, 5-10
disabling 11-11
enabling 11-11
trace_close_thread 3-22
trace_disable 3-16, 4-22
trace_disable_all 3-16, 3-24
trace_disable_range 3-16 4-22
trace_enable 3-16 4-24
trace_enable_all 3-16
trace_enable_range 3-16, 4-24
trace_end 3-6, 3-20,3-23 4-2, 4-15, 4-19
trace_event 3-11,7-8
trace_event_arg 3-11
trace_event_dbl 3-11
trace_event_flt 3-11
trace_event four_arg 3-11
trace_event_two_fit 3-11

trace_flush 3-20 4-2, 4-4, 4-11, 4-12, 4-15, 4-26,
A-2, A-3

trace_open_thread 3-9, 3-15, 3-18, 3-22, 6-4,
7-17, 8-3

trace_start 3-5, 3-10, 3-15, 3-18, 3-23, 4-1, 4-2,
4-26, C-1

trace_trigger 3-20, 4-2, 4-15, A-2, A-3, A-4
Trace-Event File radio button 10-6
Tracing
disabling 3-163-24
kernel 1-1,1-4, 1-5, 1-6, 5-16, 8-2, 8-6, 1111-1,
A-2
user 1-1,1-4, 1-6
truss(1l) command 11-37

U

umask(1l) command 4-1

User groups 2-5, 2-8, 2-10

User tracing 1-1, 1-4, 1-6

User-level interrupts 2-5, 2-6, 4-8, 4-9

Index-I7

NightTrace Manual

\%

Variable
DISPLAY 5-2
SHELL 2-5
vector table 5-18, 8-6, 11-3, 11-211-33 11-35
vector_nodename table 5-1B1-34
vectors file 5-5, 5-9, 5-16, 11-3, 11-6, 11-21, 11-33,
11-34
Verbose
ktrace 11-13
Version
ktrace 11-10
ntrace 5-4
ntraceud 4-7
View mode 5-29, 6-1, 6-67-4, 9-7, 10-1, 11-22
Viewing strategy
ntrace 6-5

W

Wall time
ktrace 11-12
Window
Configuration 8-4, 8-10, 8-12, 8-13, 8-14, 8-16,
8-17, 8-19, 9-2,9-4
Display Page 5-27, 6-2, 11-22
File Selection Dialog Box 5-32, 5-33;34, 7-19,

10-10, B-3
Global 5-3, 5-6, 5-11, 5-26, 11-22, A-1, B-2
iconified 5-23

Macro configuration 9-6, 9-7
manager 5-23, 5-27, 6-11
Qualified Event configuration 9-81
Qualified State configuration 9-83, 9-84
resizing 5-25, 5-27
Search 9-410-2 B-3,C-1
Summarize 9-410-12 10-14, B-3
Window component
menu bar 5-24, 5-25
pull-down menu 5-24, 5-25
push button 5-24, 6-8
radio button 5-24
scroll bar 5-24
scroll region 5-24
text field 5-24
Window. see Dialog box

Index-18

X

X resources
display page B-2
X Window System
desk accessories 1-8
options 5-8
resources 1-8,11-32
X(1) utility 5-8
xmodmap(1) utility 5-22
xrdb(1) command B-1
xterm(1) utility 1-8,5-8

Zoom Factor field 6-12, 6-13

Zoom In push button 6-10, 6-12

Zoom Out push button 6-10, 6-12, C-1
Zoom Region push button 6-10

Zoom to Include Event radio button 10-3

Spine for 1.5” Binder

Product Name: 0.5" from
top of spine, Helvetica,
36 pt, Bold

Volume Number (if any):
Helvetica, 24 pt, Bold

Volume Name (if any):
Helvetica, 18 pt, Bold

Manual Title(s):
Helvetica, 10 pt, Bold,
centered vertically
within space above bar,
double space between
each title

Bar: 1" x 1/8" beginning
1/4" in from either side

Part Number: Helvetica,
6 pt, centered, 1/8" up

-
)
=
@
<
>
X
O
)

User/Admin

NightTrace Manual

0890398

	NightTrace Manual
	Preface
	Contents
	Introduction
	Overview
	What is NightTrace?
	User and Kernel Tracing
	Timestamp Source Selection
	Trace-Point Placement
	Languages Supported
	Processes and CPUs
	Information Displayed
	Searches and Summaries

	Logging and Analysis
	The Trace Event Logging Procedure
	The Trace Event Analysis Procedure

	Recommended Reading

	Establishing the Environment
	Overview
	Requirements
	Installing Software
	Configuring the Kernel
	Administering Privileges
	Putting Users into Groups
	Granting Page Lock Privilege
	Using Page Locking
	Not Using Page Locking

	Granting Access to the Interrupt Priority Level Register
	Using the IPL Register
	Not Using the IPL Register

	Granting Access to the Trace Device
	Granting Access to the Interval Timer
	Granting Access to the RCIM Synchronized Tick Clock

	Adding Library Calls to Your Application
	Overview
	Language-Specific Source Considerations
	C
	Fortran
	Ada

	Inter-Process Communication and Library Routines
	Understanding NightTrace Library Calls
	trace_start()
	trace_open_thread()
	trace_event() and Its Variants
	trace_enable(), trace_disable(), and Their Variants
	trace_flush() and trace_trigger()
	trace_close_thread()
	trace_end()

	Disabling Tracing
	Compiling and Linking
	C Example
	Fortran Example
	Ada Example

	Exercise: Instrumenting Code

	Generating Trace Event Logs with ntraceud
	Overview
	The ntraceud Daemon
	The Default NightTrace Environment
	ntraceud Modes
	ntraceud Options
	Option to Get Help (-help)
	Option to Get Version Information (-version)
	Option to Disable the IPL Register (-ipldisable)
	Option to Prevent Page Locking (-lockdisable)
	Option to Establish File-Wraparound Mode (-filewrap)
	Option to Establish Buffer-Wraparound Mode (-bufferwrap)
	Option to Define Shared Memory Buffer Size (�memsize)
	Option to Set Timeout Interval (-timeout)
	Option to Set the Buffer-Full Cutoff Percentage (-cutoff)
	Option to Select Timestamp Source (-clock)
	Option to Reset the ntraceud Daemon (-reset)
	Option to Quit Running ntraceud (-quit)
	Option to Present Statistical Information (-stats)
	Option to Disable Logging (-disable)
	Option to Enable Logging (-enable)

	Invoking ntraceud
	Starting Your NightTrace Application
	Stopping ntraceud
	Exercise: Logging Trace Events

	Invoking the ntrace Display Utility
	Overview
	X and NightTrace Vocabulary
	System Environment
	Invoking ntrace
	ntrace Options
	ntrace Arguments
	Understanding Trace Event Files
	Understanding Event-Map Files
	Understanding Page Configuration Files
	ntrace Tables
	String Tables
	Pre-Defined String Tables
	Format Tables
	Pre-Defined Format Tables

	Configuring Display Pages

	ntrace User Interface
	Using the Mouse
	Understanding Pointer Shapes
	Anticipating Window Layout
	Resizing Windows

	ntrace Notation Conventions
	ntrace Global Window
	Message Display Area
	Menu Bar
	File Menu Item
	New Page
	Default Page
	Open Config File
	Read Event-Map File
	Exit

	Help Menu Item

	The File Selection Dialog Box
	Typing in the Exact File Name
	Scrolling Through Existing File Names
	Typing in a Filter (File Name Pattern)

	Exercise: Displaying Trace Events

	Viewing Trace Event Logs with ntrace
	Overview
	Mouse Button Operations
	The Grid
	Viewing Strategy
	The Interval Scroll Bar
	The Interval Push Buttons
	The Interval Control Area
	Reading Fields
	Editing Single Fields
	Editing Multiple Fields

	Field Editing
	Editing Text Fields
	Positioning Within Text Fields

	Creating Display Objects
	Overview
	The Display Page
	Display Page Modes
	Edit Mode
	View Mode

	Operations on Display Objects
	Creating Display Objects
	Selecting Display Objects
	Moving Display Objects
	Resizing Display Objects

	Display Objects
	GridLabel
	DataBox
	Column
	StateGraph
	EventGraph
	DataGraph
	Ruler

	Editing Operations
	Select All
	Deselect All
	Delete

	File Operations
	Save
	Save As ...
	Close

	Configuring Display Objects
	Overview
	Common Configuration Parameters
	Display Object Name
	Event List
	If-Expression
	Then-Expression
	CPU List
	PID List
	TID List
	Node List
	Foreground Color
	Background Color
	Font
	Text Justify
	Text Gravity

	Configuration Form Push Buttons
	Specific Configuration Parameters
	GridLabel
	DataBox
	StateGraph
	EventGraph
	DataGraph
	Ruler

	Using Expressions
	Overview
	Expressions Menu
	Expression Dialog Boxes
	Expression Configuration Forms

	Expressions
	Operators
	Operands
	Constants
	Macros
	Functions
	Function Parameters
	Function Terminology
	Trace Event Functions
	id()
	arg()
	arg_dbl()
	num_args()
	pid()
	raw_pid()
	lwpid()
	thread_id()
	task_id()
	tid()
	cpu()
	offset()
	time()
	node_id()
	pid_table_name()
	tid_table_name()
	node_name()
	process_name()
	task_name()
	thread_name()
	Multi-Event Functions
	event_gap()
	event_matches()

	State Functions
	Start Functions
	start_id()
	start_arg()
	start_arg_dbl()
	start_num_args()
	start_pid()
	start_raw_pid()
	start_lwpid()
	start_thread_id()
	start_task_id()
	start_tid()
	start_cpu()
	start_offset()
	start_time()
	start_node_id()
	start_pid_table_name()
	start_tid_table_name()
	start_node_name()

	End Functions
	end_id()
	end_arg()
	end_arg_dbl()
	end_num_args()
	end_pid()
	end_raw_pid()
	end_lwpid()
	end_thread_id()
	end_task_id()
	end_tid()
	end_cpu()
	end_offset()
	end_time()�
	end_node_id()
	end_pid_table_name()
	end_tid_table_name()
	end_node_name()

	Multi-State Functions
	state_gap()
	state_dur()
	state_matches()
	state_status()

	Offset Functions
	offset_id()
	offset_arg()
	offset_arg_dbl()
	offset_num_args()
	offset_pid()
	offset_raw_pid()
	offset_lwpid()
	offset_thread_id()
	offset_task_id()
	offset_tid()
	offset_cpu()
	offset_time()
	offset_node_id()
	offset_pid_table_name()
	offset_tid_table_name()
	offset_node_name()
	offset_process_name()
	offset_task_name()
	offset_thread_name()

	Summary Functions
	min()
	max()
	avg()
	sum()
	min_offset()
	max_offset()
	summary_matches()

	Format and Table Functions
	get_string()
	get_item()
	get_format()
	format()

	Qualified Events
	Qualified States

	Using the Built-In Tools
	Overview
	Searching for Points of Interest
	Search Form Radio Buttons
	Search Form Push Buttons
	Search Form Fields

	Summarizing Statistical Information
	Summarize Form Radio Buttons
	Summarize Form Fields
	Summarize Form Push Buttons
	Menu Bar
	File Operations
	Save Text
	Save Text As ...
	Close

	Summary Display Area
	Event Summaries
	State Summaries

	Exercise: Using the Search Tool
	Exercise: Using the Summarize Tool

	Tracing the Kernel
	Overview
	Recommended Reading
	Using KernelTrace with NightTrace
	Default Kernel Trace Points
	Context Switch Trace Event
	Interrupt Trace Events
	Exception Trace Events
	Syscall Trace Events
	Shared Interrupt Trace Event
	Process Name Trace Event

	Kernel Trace Points Not Enabled By Default
	Page Fault Event
	Protection Fault Event

	Kernel Tracing with ktrace
	Invoking ktrace
	ktrace Options
	Viewing KernelTrace Trace Event Files with ktrace
	ktrace Kernel Activity Summaries
	Configuration Summary
	System Call Summary
	Exception and Interrupt Summaries
	Exception and Interrupt Total Time Summaries
	Device Summary

	ktrace Trace Event Listings
	ktrace -verbose Listing
	ktrace -raw Listing

	Converting KernelTrace Trace Event Files with ntfilter
	Viewing Converted KernelTrace Trace Event Files with ntrace
	Kernel Display Pages
	RCIM Default Kernel Display Page
	CPU Information
	Running Process Information
	Node Information
	Context Switch Information
	Interrupt Information
	Exception Information
	Syscall Information
	Color Information

	Kernel String Tables

	Kernel Reference
	Interrupts
	Non-Device-Related Interrupts
	Device-Related Interrupts

	Exceptions
	Syscalls

	Exercise: Kernel Tracing

	Performance Tuning
	Overview
	Preventing Trace Events Loss
	Ensuring Accurate Timings
	Optimizing File System and CPU Usage
	Conserving Disk Space
	Conserving Memory and Accelerating ntrace

	GUI Customization
	Overview
	Default X-Resource Settings for ntrace
	Examples
	Exercise: Customizing Display Colors

	Answers to Common Questions

	Glossary
	Index

