
HETS User Guide

– Version 0.85 –

Till Mossakowski, Christian Maeder, Klaus Lüttich

DFKI Lab Bremen, Bremen, Germany.

Comments to: hets@informatik.uni-bremen.de
or to: hets-users@informatik.uni-bremen.de

(the latter needs subscription to the mailing list)

February 12, 2009

1 Introduction

The Heterogeneous Tool Set (HETS) is the main analysis tool for the specifica-
tion language heterogeneous CASL. Heterogeneous CASL (HETCASL) combines
the specification language CASL [6, 28] with CASL extensions and sublanguages,
as well as completely different logics and even programming languages such as
Haskell. HETCASL (see Fig. 1 for a simple subset) extends the structuring mech-
anisms of CASL: Basic specifications are unstructured specifications or modules
written in a specific logic. The graph of currently supported logics and logic
translations (the latter are also called comorphisms) is shown in Fig. 2, and the
degree of support by HETS in Fig. 3.

With heterogeneous structured specifications, it is possible to combine and
rename specifications, hide parts thereof, and also translate them to other logics.
Architectural specifications prescribe the structure of implementations. Specifi-
cation libraries are collections of named structured and architectural specifica-
tions.

HETS consists of logic-specific tools for the parsing and static analysis of
the different involved logics, as well as a logic-independent parsing and static
analysis tool for structured and architectural specifications and libraries. The
latter of course needs to call the logic-specific tools whenever a basic specification
is encountered.

HETS is based on the theory of institutions [11], which formalize the notion
of a logic. The theory behind HETS is laid out in [20]. A short overview of HETS

is given in [25, 26].

1



SPEC ::= BASIC-SPEC

| SPEC then SPEC

| SPEC then %implies SPEC

| SPEC with SYMBOL-MAP

| SPEC with logic ID

DEFINITION ::= logic ID

| spec ID = SPEC end

| view ID : SPEC to SPEC = SYMBOL-MAP end

| view ID : SPEC to SPEC = with logic ID end

LIBRARY = DEFINITION*

Figure 1: Syntax of a simple subset of the heterogeneous specification language.
BASIC-SPEC and SYMBOL-MAP have a logic specific syntax, while ID stands for
some form of identifiers.

2 Logics supported by Hets

The following list of logics (formalized as so-called institutions [11]) is currently
supported by HETS:

CASL extends many sorted first-order logic with partial functions and subsort-
ing. It also provides induction sentences, expressing the (free) generation
of datatypes. For more details on CASL see [28, 6]. We have implemented
the CASL logic in such a way that much of the implementation can be re-
used for CASL extensions as well; this is achieved via “holes” (realized via
polymorphic variables) in the types for signatures, morphisms, abstract
syntax etc. This eases integration of CASL extensions and keeps the effort
of integrating CASL extensions quite moderate.

CoCASL [27] is a coalgebraic extension of CASL, suited for the specification of
process types and reactive systems. The central proof method is coinduc-
tion.

ModalCASL [19] is an extension of CASL with multi-modalities and term
modalities. It allows the specification of modal systems with Kripke’s
possible worlds semantics. It is also possible to express certain forms of
dynamic logic.

HasCASL is a higher order extension of CASL allowing polymorphic datatypes
and functions. It is closely related to the programming language Haskell
and allows program constructs being embedded in the specification. An
overview of HASCASL is given in [37]; the language is summarized in [34],
the semantics in [36, 35].

Haskell is a modern, pure and strongly typed functional programming lan-
guage. It simultaneously is the implementation language of HETS, such

2



Prop2CNF

3*CASL2PCFOL

2*CoCASL2CoPCFOL

OWL_DL ConstraintCASL

CspCASL

CASL_DL

CoCASL

Haskell

Modal

HasCASL

CASL

Propositional

SoftFOL

SuleCFOL2SoftFOLInduction

Isabelle

Haskell2IsabelleHOLCF

PCoClTyConsHOL2IsabelleHOL

Figure 2: Graph of logics currently supported by HETS. The more an ellipse
is filled with green, the more stable is the implementation of the logic. Blue
indicates a prover-supported logic.

Language Parser Static Analysis Prover
CASL x x -
COCASL x x -
ModalCASL x x -
HASCASL x x -
Haskell x x -
CSP-CASL (x) - -
ConstraintCASL x (x) -
Casl-DL x - -
OWL DL basic x (x) -
OWL DL structure x (x) -
Propositional x x x
SoftFOL - - x
ISABELLE - - x

Figure 3: Current degree of HETS support for the different languages.

3



that in the future, HETS might be applied to itself. The definitive reference
for Haskell is [30], see also www.haskell.org.

CspCASL [33] is a combination of CASL with the process algebra CSP.

ConstraintCASL is an experimental logic for the specification of qualitative
constraint calculi.

OWL DL is the Web Ontology Language (OWL) recommended by the World
Wide Web Consortium (W3C, http://www.w3c.org). It is used for knowl-
edge representation and the Semantic Web [5]. Hets calls an external OWL
DL parser written in JAVA to obtain the abstract syntax for an OWL file
and its imports. The JAVA parser is also doing a first analysis classify-
ing the OWL ontology into the sublanguages OWL Full, OWL DL and
OWL Lite. Hets only supports the last two, more restricted variants. The
structuring of the OWL imports is displayed as Development Graph.

CASL-DL [16] is an extension of a restriction of CASL, realizing a strongly
typed variant of OWL DL in CASL syntax. It extends CASL with cardi-
nality restrictions for the description of sorts and unary predicates. The
restrictions are based on the equivalence between Casl-DL, OWL DL and
SHOIN (D). Compared to CASL only unary and binary predicates, prede-
fined datatypes and concepts (subsorts of the topsort Thing) are allowed.
It is used to bring OWL DL and CASL closer together.

Propositional is classical propositional logic, with the zChaff SAT solver [13]
connected to it.

SoftFOL [17] offers three automated theorem proving (ATP) systems for first-
order logic with equality: (1) SPASS [43]; (2) Vampire [32]; and (3) Math-
Serve Broker1 [44]. These together comprise some of the most advanced
theorem provers for first-order logic.

ISABELLE [29] is an interactive theorem prover for higher-order logic.

Propositional, SoftFOL and ISABELLE are currently the only logics coming with
a prover. Proof support for the other logics can be obtained by using logic
translations to a prover-supported logic.

An introduction to CASL can be found in the CASL User Manual [6]; the
detailed language reference is given in the CASL Reference Manual [28]. These
documents explain both the CASL logic and language of basic specifications
as well as the logic-independent constructs for structured and architectural
specifications. The corresponding document explaining the HETCASL language
constructs for heterogeneous structured specifications is the HETCASL language
summary [18]; a formal semantics as well as a user manual with more exam-
ples are in preparation. Some of HETCASL’s heterogeneous constructs will be
illustrated in Sect. 6 below.

1which chooses an appropriate ATP upon a classification of the FOL problem

4

www.haskell.org
http://www.w3c.org


Prop2CASL

Propositional.Prop

CASL.SulPseCFOL=

CASL.SulPeCFOL=

CASL.SubPCFOL=CASL.SuleCFOL=

SoftFOL CASL.PCFOL=

CASL2SubCFOL

Prop2CASL

CASL2PCFOL
CASL2SubCFOL

CASL.CFOL=

CASL2PCFOL
SuleCFOL2SoftFOLSuleCFOL2SoftFOLInduction

CASL2TopSortCASL2PCFOL

CASL2PCFOL

CASL2PCFOL

HasCASL.PPolyTyConsHOL=

Prop2CASL

CASL2SubCFOL

HasCASL.PCoClTyConsHOL=

CASL2HasCASL

CASL2HasCASL

Isabelle HasCASL.SubPCoClTyConsHOL=

PCoClTyConsHOL2IsabelleHOL

PCoClTyConsHOL2IsabelleHOLHasCASL2IsabelleHOL

CFOL2IsabelleHOL

CASL2HasCASL

CASL2HasCASL

CASL2HasCASL

CASL2HasCASL

Figure 4: Graph of most important sublogics currently supported by HETS,
together with their comorphisms.

3 Logic translations supported by Hets

Logic translations (formalized as institution comorphisms [10]) translate from
a given source logic to a given target logic. More precisely, one and the same
logic translation may have several source and target sublogics: for each source
sublogic, the corresponding sublogic of the target logic is indicated. A graph
of the most important logics and sublogics, together with their comorphisms, is
shown in Fig. 4.

In more detail, the following list of logic translations is currently supported
by HETS:

5



CASL2CoCASL inclusion
CASL2CspCASL inclusion
CASL2HasCASL inclusion
CASL2Modal inclusion
CASL2PCFOL coding of subsorting by injec-

tions, see Chap. III:3.1 of the
CASL Reference Manual [28]

CASL2SubCFOL coding of partial functions by er-
ror elements (translation (4a′) of
[23], but extended to subsorting)

CASL2TopSort coding of subsorting by a top sort
and unary predicates for the sub-
sorts

CFOL2IsabelleHOL coding of CASL to Isabelle (trans-
lation (7) of [23])

CoCASL2CoPCFOL coding of subsorting by injec-
tions, similar to CASL2PCFOL

CoCASL2CoSubCFOL coding of partial functions by
error supersorts, similar to
CASL2SubCFOL

CoCFOL2IsabelleHOL coding of COCASL to Isabelle,
similar to CFOL2IsabelleHOL

HasCASL2HasCASL coding of HASCASL axiomatic re-
cursive definitions as HASCASL

recursive program definitions
HasCASL2Haskell translation of HASCASL recursive

program definitions to Haskell
HasCASL2IsabelleHOL coding of HasCASL to Is-

abelle/HOL [12]
Haskell2IsabelleHOL coding of Haskell to Is-

abelle/HOL [41]
Haskell2IsabelleHOLCF coding of Haskell to Is-

abelle/HOLCF [41]
Modal2CASL the standard translation of

modal logic to first-order logic
[7]

PCoClTyConsHOL2IsabelleHOL coding of HASCASL to Is-
abelle/HOL

SuleCFOL2SoftFOL coding of CASL to SoftFOL [17],
mapping types to soft types

SuleCFOL2SoftFOLIndcuction dto., but with instances of induc-
tion axioms for all proof goals

Prop2CASL inclusion
Prop2CNF conversion of propositional for-

mulas to conjunctive normal
form

6



4 Getting started

The latest HETS version can be obtained from the HETS tools home page

http://www.dfki.de/sks/hets

Since HETS is being improved constantly, it is recommended always to use the
latest version.

HETS currently is available for Linux, Solaris and Mac OS-X.
There are three possibilities to install HETS:

1. The Java-based HETS installer. Download a .jar file and start it with

java -jar file.jar

Note that you need Sun Java 1.4.2 or later. On a Mac, you can just
double-click on the .jar file.

The installer will lead you through the installation with a graphical inter-
face. It will download and install further software (if not already installed
on your computer):

CASL-lib specification library http://www.cofi.info/Libraries

uDraw(Graph) graph drawing http://www.informatik.uni-bremen.de/uDrawGraph/en/

Tcl/Tk graphics widget system http://www.scriptics.com/software/tcltk/

SPASS theorem prover http://spass.mpi-sb.mpg.de/

ISABELLE theorem prover http://www.cl.cam.ac.uk/Research/HVG/Isabelle/

(X)Emacs editor (for Isabelle) (must be installed manually)

2. If you do not have Sun Java, you can just download the hets binary. You
have to unpack it with bunzip2 and then put it at some place coverd by
your PATH. You also have to install the above mentioned software and set
several environment variables, as explained on the installation page.

3. If you want to compile HETS from the sources, please follow the link “Hets:
source code and information for developers” on the HETS web page, down-
load the sources (as tarball or from svn), and follow the instructions in
the INSTALL file.

5 Analysis of Specifications

Consider the following CASL specification:

spec Strict Partial Order =
sort Elem
pred < : Elem × Elem

7

http://www.dfki.de/sks/hets
http://www.cofi.info/Libraries
http://www.informatik.uni-bremen.de/uDrawGraph/en/
http://www.scriptics.com/software/tcltk/
http://spass.mpi-sb.mpg.de/
http://www.cl.cam.ac.uk/Research/HVG/Isabelle/


∀x , y , z : Elem
• ¬(x < x ) %(strict)%

• x < y ⇒ ¬(y < x ) %(asymmetric)%

• x < y ∧ y < z ⇒ x < z %(transitive)%

%{ Note that there may exist x, y such that
neither x < y nor y < x. }%

end

HETS can be used for parsing and checking static well-formedness of specifi-
cations.

Let us assume that the example is in a file named Order.casl (actually,
this file is provided with the HETS distribution). Then you can check the well-
formedness of the specification by typing (into some shell):

hets Order.casl

HETS checks both the correctness of this specification with respect to the CASL

syntax, as well as its correctness with respect to the static semantics (e.g.
whether all identifiers have been declared before they are used, whether opera-
tors are applied to arguments of the correct sorts, whether the use of overloaded
symbols is unambiguous, and so on). The following flags are available in this
context:

-p, --just-parse Just do the parsing – the static analysis is skipped.

-s, --just-structured Do the parsing and the static analysis of (heteroge-
neous) structured specifications, but leave out the analysis of basic spec-
ifications. This can be used for prototyping issues, namely to quickly
produce a development graph showing the dependencies among the spec-
ifications (cf. Sect. 7) even if the individual specifications are not correct
yet.

-L DIR, --hets-libdir=DIR Use DIR as the directory for specification libraries
(equivalently, you can set the variable HETS LIB before calling HETS).

--casl-amalg=ANALYSIS For the analysis of architectural specification (a quite
advanced feature of CASL), the ANALYSIS argument specifies the options
for amalgamability checking algorithm for CASL logic; it is a comma-
separated list of zero or more of the following options:

sharing perform sharing analysis for sorts, operations and predicates.
cell perform cell condition check; implies sharing. With this option on,

the subsort embeddings are analyzed.
colimit-thinness perform colimit thinness check; implies sharing. The

colimit thinness check is less complete and usually takes longer than
the full cell condition check (cell option), but may prove more effi-
cient in case of certain specifications.

If ANALYSIS is empty then amalgamability analysis for CASL is skipped.
The default value for --casl-amalg is cell.

8



6 Heterogeneous Specification

HETS accepts plain text input files with the following endings:

Ending default logic structuring language
.casl CASL CASL

.het CASL CASL

.hs Haskell Haskell

.owl OWL DL, OWL Lite OWL

Although the endings .casl and .het are interchangeable, the former should
be used for libraries of homogeneous CASL specifications and the latter for
HETCASL libraries of heterogeneous specifications (that use the CASL struc-
turing constructs). Within a HETCASL library, the current logic can be changed
e.g. to HASCASL in the following way:

logic HasCASL

The subsequent specifications are then parsed and analysed as HASCASL

specifications. Within such specifications, it is possible to use references to
named CASL specifications; these are then automatically translated along the
default embedding of CASL into HASCASL (cf. Fig. 2). (There are also hetero-
geneous constructs for explicit translations between logics, see [18].)

The ending .hs is available for directly reading in Haskell programs and
hence supports the Haskell module system. By contrast, in HETCASL libraries
(ending with .het), the logic Haskell has to be chosen explicitly, and the CASL

structuring syntax needs to be used:

library Factorial

logic Haskell

spec Factorial =
fac :: Int -> Int
fac n = foldl (*) 1 [1..n]
end

Note that according to the Haskell syntax, Haskell function declarations and
definitions need to start with the first column of the text.

7 Development Graphs

Development graphs are a simple kernel formalism for (heterogeneous) struc-
tured theorem proving and proof management.

A development graph consists of a set of nodes (corresponding to whole
structured specifications or parts thereof), and a set of arrows called definition
links, indicating the dependency of each involved structured specification on

9



its subparts. Each node is associated with a signature and some set of local
axioms. The axioms of other nodes are inherited via definition links. Definition
links are usually drawn as black solid arrows, denoting an import of another
specification.

Complementary to definition links, which define the theories of related nodes,
theorem links serve for postulating relations between different theories. Theo-
rem links are the central data structure to represent proof obligations arising in
formal developments. Theorem links can be global (drawn as solid arrows) or
local (drawn as dashed arrows): a global theorem link postulates that all axioms
of the source node (including the inherited ones) hold in the target node, while
a local theorem link only postulates that the local axioms of the source node
hold in the target node.

Both definition and theorem links can be homogeneous, i.e. stay within the
same logic, or heterogeneous, i.e. the logic changes along the arrow. Technically,
this is the case for Grothendieck signature morphisms (ρ, σ) where ρ 6= id. This
case is indicated with double arrows.

Theorem links are initially displayed in red. The proof calculus for develop-
ment graphs [21, 20] is given by rules that allow for proving global theorem links
by decomposing them into simpler (local and global) ones. Theorem links that
have been proved with this calculus are drawn in green. Local theorem links can
be proved by turning them into local proof goals. The latter can be discharged
using a logic-specific calculus as given by an entailment system for a specific
institution. Open local proof goals are indicated by marking the corresponding
node in the development graph as red; if all local implications are proved, the
node is turned into green. This implementation ultimately is based on a theo-
rem [20] stating soundness and relative completeness of the proof calculus for
heterogeneous development graphs.

Details can be found in the CASL Reference Manual [28, IV:4] and in [20, 21,
26].

The following option lets HETS show the development graph of a specification
library:

-g, --gui Shows the development graph in a GUI window.

Here is a summary of the types of nodes and links occurring in development
graphs:

Named nodes correspond to a named specification.

Unnamed nodes correspond to an anonymous specification.

Elliptic nodes correspond to a specification in the current library.

Rectangular nodes are external nodes corresponding to a specification down-
loaded from another library.

Red nodes have open proof obligations.

Green nodes have all proof obligations resolved.

10



Black links correspond to reference to other specifications (definition links in
the sense of [28, IV:4]).

Blue links correspond to hiding (hiding definition links).

Red links correspond to open proof obligations (theorem links).

Green links correspond to proved proof obligations (theorem links).

Yellow links correspond to open proof obligations involving hiding (hiding
theorem links).

Solid links correspond to global (definition or theorem) links in the sense of
[28, IV:4].

Dashed links correspond to local (definition or theorem) links in the sense of
[28, IV:4].

Single links have homogeneous signature morphisms (staying within one and
the same logic).

Double links have heterogeneous signature morphisms (moving between log-
ics).

We now explain the menus of the development graph window. Most of the
pull-down menus of the window are uDraw(Graph)-specific layout menus; their
function can be looked up in the uDraw(Graph) documentation2. The exception
is the Edit menu. Moreover, the nodes and links of the graph have attached
pop-up menus, which appear when clicking with the right mouse button.

Edit This menu has the following submenus:

undo Undo the last development graph proof step (see under Proofs)

redo Restore the last undone development graph proof step (see under
Proofs)

reload Reload the specification library (Attention! all proofs are lost. A
change management keep proofs is in preparation.)

Unnamed nodes The “Hide/show names” menu is a toggle: you can
switch on or off the display of names for nodes that are initially
unnamed. The newly named nodes get names that are derived from
named neighbour nodes.
With the “Hide nodes” submenu, it is possible to reduce the com-
plexity of the graph by hiding all unnamed nodes; only nodes corre-
sponding to named specifications remain displayed. Paths between
named nodes going through unnamed nodes are displayed as links.
With the “Show nodes” submenu, the unnamed nodes re-appear.

2see http://www.informatik.uni-bremen.de/uDrawGraph/en/service/uDG31 doc/.

11

http://www.informatik.uni-bremen.de/uDrawGraph/en/service/uDG31_doc/


Proofs This menu allows to apply some of the deduction rules for devel-
opment graphs, see Sect. IV:4.4 of the CASL Reference Manual [28]
or one of [20, 21, 26]. While support for local and global (definition
or theorem) links is stable, support for hiding links and checking con-
servativity is still experimental. In most cases, it is advisable to use
“Automatic”, which automatically applies the rules in the correct or-
der. As a result, the the open theorem links (marked in red) will be
reduced to local proof goals, that is, they become green, and instead,
some of the node will get red, indicating open local proof goals. Be-
sides the deduction rules, the menu contains entries for computing a
colimit approximation for the development graph and for computing
normal forms of all nodes (needed when dealing with hiding).

Translate Graph translates the whole development graph along a logic
comorphism.

Show Logic Graph shows the graph of logics and logic comorphisms
currently supported by HETS.

Show Library Graph shows the graph of libraries that have been loaded
into HETS, and their dependencies. For library, the corresponding de-
velopment graphs can be shown using its node menu. Also, a list of
specifications and views can be shown.

Pop-up menu for nodes Here, the number of submenus depends on the type
of the node:

Show signature Shows the signature of the node.

Show local axioms Shows the local axioms of the node.

Show theory Shows the theory of the node (including axioms imported
from other nodes). Warning: axioms imported via hiding links are
not part of the theory; they can be made visible only by re-adding
the hidden symbols, using the proof rule Theorem-Hide-Shift.

Translate theory Translates the theory of a node to another logic. A
menu with the possible translation paths will be displayed.

Taxonomy graphs (Only available for some logics) Shows the subsort
graph of the signature of the node.

Show sublogic Shows the logic and, within that logic, the minimal sublogic
for the signature and the axioms of the node.

Show origin Shows the kind of CASL structuring construct that led to
the node.

Show proof status Show open and proven local proof goals.

Prove Try to prove the local proof goals. See Section 10 for details.

Check consistency Check the consistency of the theory of the node.

Show just subtree (Only for named nodes) Reduce the complexity of
the graph by just showing the subtree below the current node.

12



Undo show just subtree (Only for named nodes) Undo the reduction.

Show referenced library (Only for external nodes) Open a new win-
dow showing the development graph for the library the external node
refers to.

Show number of node Show the internal number of the node.

Pop-up menu for links Again, the number of submenus depends on the type
of the link:

Show morphism Shows the signature morphism of the link. It consists
of two components: a logic translation and a signature morphism in
the target logic of the logic translation. In the (most frequent) case of
an intra-logic signature morphism, the logic translation component
is just the identity.

Show origin Shows the kind of CASL structuring construct that led to
the link.

Show proof status (Only for theorem links) Show the proof status.

Check conservativity (Experimental) Check whether the theory of the
target node of the link is a conservative extension of the theory of
the source node.

Show ID of this edge Shows the internal number of the edge. These
numbers are also used in the proof status information for edges.

8 Reading, Writing and Formatting

HETS provides several options controlling the types of files that are read and
written.

-i ITYPE, --input-type=ITYPE Specify ITYPE as the type of the input file.
The default is het (HETCASL plain text). ast is for reading in abstract
syntax trees in ATerm format, while ast.baf reads in the compressed
ATerm format. The possible input types are:

(casl|het|owl|hs|prf|omdoc|hpf|[tree.]gen_trm[.baf])

-O DIR, --output-dir=DIR Specify DIR as destination directory for output
files.

-o OTYPES, --output-types=OTYPES OTYPES is a comma separated list of out-
put types:

prf
| env
| omdoc
| hs

13



| thy
| comptable.xml
| (sig|th)[.delta]
| pp.(het|tex)
| graph.(exp.dot|dot)
| dfg[.c]
| tptp[.c]

The default is prf (a synonym for dg.taf), which means that the devel-
opment graph of the library is stored in textual ATerm format (taf). This
format can be read in when a library is downloaded from another library,
avoiding the need to re-analyse the downloaded library. You can also di-
rectly read in the prf format (both from the command line, by calling
HETS on the prf file, and from the GUI, using the File-Open menu.

The env format is currently not used.

The omdoc format [14] is an XML-based markup format and data model
for Open Mathematical Documents. It serves as semantics-oriented rep-
resentation format and ontology language for mathematical knowledge.
Currently, CASL specifications can be output in this format; support for
further logics is planned.

The hs format is used for Haskell modules. Executable CASL or HASCASL

specifications can be translated to Haskell.

When the thy format is selected, HETS will try to translate each specifi-
cation in the library to ISABELLE, and write one ISABELLE .thy file per
specification.

When the comptable.xml format is selected, HETS will extract the compo-
sition and inverse table of a Tarskian relation algebra from specification(s)
(selected with the -n or --spec option). It is assumed that the relation
algebra is generated by basic relations, and that the specification is writ-
ten in the CASL logic. A sample specification of a relation algebra can
be found in the HETS library Calculi/Space/RCC8.het, available from
www.cofi.info/Libraries. The output format is XML, the URL of the
DTD is included in the XML file.

The pp format is for pretty printing, either as plain text (het), LATEXinput
(tex) or HTML (html). A formatter with pretty-printed output currently
is available only for the CASL logic. For example, it is possible to generate
a pretty printed LATEX version of Order.casl by typing:

hets -o pp.tex Order.casl

This will generate a file Order.pp.tex. It can be included into LATEX
documents, provided that the style hetcasl.sty coming with the HETS

distribution (LaTeX/hetcasl.sty) is used.

The dfg format is used by the SPASS theorem prover [43].

14



The tptp format (http://www.tptp.org) is a standard format for first-
order theorem provers.

-t TRANS, --translation=TRANS chooses a translation option. TRANS is a colon-
separated list without blanks of one or more comorphism names (see
Sect. 3).

-R, --recursive output also imported libraries.

The other output formats are for future usage.

9 Miscellaneous Options

-v[Int], --verbose[=Int] Set the verbosity level according to Int. Default
is 1.

-q, --quiet Be quiet – no diagnostic output at all. Overrides -v.

-V, --version Print version number and exit.

-h, --help, --usage Print usage information and exit.

+RTS -KIntM -RTS Increase the stack size to Int megabytes (needed in case of
a stack overflow). This must be the first option.

-l LOGIC, --logic=LOGIC chooses the initial logic, which is used for processing
the specifications before the first logic L declaration. The default is CASL.

-n SPECS, --spec=SPECS chooses a list of named specifications for processing

-m FILE, --modelSparQ=FILE model check a qualitative calculus given in SparQ
lisp notation [42] against a CASL specification

-I, --interactive run HETS in interactive mode

10 Proofs with HETS

The proof calculus for development graphs (Sect. 7) reduces global theorem
links to local proof goals. Local proof goals (indicated by red nodes in the
development graph) can be eventually discharged using a theorem prover, using
the “Prove” menu of a red node.

The graphical user interface (GUI) for calling a prover is shown in Fig. 5 —
we call it “Proof Management GUI”. The list on the left shows all goal names
prefixed with the proof status in square brackets. A proved goal is indicated by
a ‘+’, a ‘-’ indicates a disproved goal, a space denotes an open goal, and a ‘×’
denotes an inconsistent specification (aka a fallen ‘+’; see below for details).

If you open this GUI when processing the goals of one node for the first
time, it will show all goals as open. Within this list you can select those goals
that should be inspected or proved. The button ‘Display’ shows the selected

15

http://www.tptp.org


Figure 5: Hets Goal and Prover Interface

16



goals in the ASCII syntax of this theory’s logic in a separate window. With the
‘Prove’ button the actual prover is launched. This is described in more detail in
the paragraphs below. By pressing the ‘Show Proof Details’ button a window
is opened where for each proved goal the used axioms, its proof script, and its
proof are shown — the level of detail depends on the used theorem prover. The
‘Status:’ shows either ‘No prover running’ or ‘Waiting for prover’ in black or
blue. If you press the ‘Close’ button the window is closed and the status of
the goals’ list is integrated into the development graph. If all goals have been
proved, the selected node turns from red into green.

The list ‘Pick Theorem Prover:’ lets you choose one of the connected provers
(currently, these are ISABELLE, MathServe Broker, SPASS, Vampire, and zChaff,
described below). By pressing ‘Prove’ the selected prover is launched and the
theory along with the selected goals is translated via the shortest possible path of
comorphisms into the provers logic. The button ‘More fine grained selection...’
lets you pick a (composed) comorphism in a separate window from where the
prover is launched then.

Since the amount and kind of sentences sent to an ATP system is a major
factor for the performance of the ATP system, it is possible to select the axioms
and proven theorems that will comprise the theory of the next proof attempt.
Based on this selection the sublogic may vary and also the available provers
and comorphisms to provers. Former theorems that are imported from other
specifications are marked with the prefix ‘(Th)’. Since former theorems do not
add additional logical content, they may be safely removed from the theory.

10.1 Automated Theorem Proving Systems
(Logic SoftFOL)

All ATPs integrated into HETS share the same GUI, with only a slight modifi-
cation for the MathServe Broker: it does not have input fields for extra options.
Figure 6 shows the instantiation for SPASS, where in the lower part of the win-
dow the batch mode can be controlled. The upper part shows on the left the
list of goals (with the same status indicators as in the Proof Management GUI),
and on the right a proof attempt of the selected goal is controlled and the re-
sult of the last proof attempt is displayed. The status line indicates ‘Open’,
‘Running’, ‘Proved’, ‘Disproved’, ‘Open (Time is up!)’, and ‘Proved (Theory
inconsistent!)’. The list of used axioms is actually only filled by SPASS. The
help button displays information about the extra options accepted by the ATP
system. The button ‘Show Details’ shows the whole output of the ATP system.
‘Save Prover Configuration’ allows you to save the configuration and status of
each proof for documentation. By pressing the button ‘Exit Prover’ the status
of these proofs and goals is transferred back to the Proof Management GUI.

The MathServe system [44] developed by Jürgen Zimmer provides a unified
interface to a range of different ATP systems; the most important systems are
listed in Table 1, along with their capabilities. These capabilities are derived
from the Specialist Problem Classes (SPCs) defined upon the basis of logical,
language and syntactical properties by Sutcliffe and Suttner [38]. Only two

17



Figure 6: Interface of the SPASS prover

18



ATP System Version Suitable Problem Classesa

DCTP 10.21p effectively propositional
EP 0.91 effectively propositional; real first-order, no

equality; real first-order, equality
Otter 3.3 real first-order, no equality
SPASS 2.2 effectively propositional; real first-order, no

equality; real first-order, equality
Vampire 8.0 effectively propositional; pure equality, equal-

ity clauses contain non-unit equality clauses;
real first-order, no equality, non-Horn

Waldmeister 704 pure equality, equality clauses are unit equal-
ity clauses

a The list of problem classes for each ATP system is not exhaustive, but only the
most appropriate problem classes are named according to benchmark tests made
with MathServe by Jürgen Zimmer.

Table 1: ATP systems provided as Web services by MathServe

of the Web services provided by the MathServe system are used by HETS cur-
rently: Vampire and the brokering system. The ATP systems are offered as
Web Services using standardized protocols and formats such as SOAP, HTTP
and XML. Currently, the ATP system Vampire may be accessed from HETS via
MathServe; the other systems are only reached after brokering.

SPASS

The ATP system SPASS [43] is a resolution-based prover for first-order logic with
equality. Furthermore, it provides a soft typing mechanism with subsorting that
treats sorts as unary predicates. The ATP SPASS should be installed locally and
available through your $PATH environment variable.

Vampire

The ATP system Vampire is the winner of the last 5 CADE ATP System Com-
petitions (CASC) (2002–2006) in the devisions FOF and CNF. It is a resolution
based ATP system supporting the calculi of ordered binary resolution and super-
position for handling equality. See http://www.cs.miami.edu/∼tptp/CASC/
J3/SystemDescriptions.html#Vampire---8.0 for detailed information. The
connection to Vampire is achieved by using an Web service of the MathServe
system.

MathServe Broker

The brokering service chooses the most appropriate ATP system upon a clas-
sification based on the SPCs, and on a training with the library Thousands
of Problems for Theorem Provers (TPTP) [44]. The TPTP format has been
introduced by Sutcliffe and Suttner for the annual competition CASC [39] and

19

http://www.cs.miami.edu/~tptp/CASC/J3/SystemDescriptions.html#Vampire---8.0
http://www.cs.miami.edu/~tptp/CASC/J3/SystemDescriptions.html#Vampire---8.0


provides a unified syntax for untyped FOL with equality, but without any sym-
bol declaration.

10.2 Isabelle

ISABELLE [29] is an interactive theorem prover, which is more powerful than
ATP systems, but also requires more user interaction.

ISABELLE has a very small core guaranteeing correctness, and its provers,
like the simplifier or the tableaux prover, are built on top of this core. Further-
more, there is over fifteen years of experience with it, and several mathematical
textbooks have been partially verified with ISABELLE.

ISABELLE is a tactic based theorem prover implemented in standard ML. The
main ISABELLE logic (called Pure) is some weak intuitionistic type theory with
polymorphism. The logic Pure is used to represent a variety of logics within
ISABELLE; one of them being HOL (higher-order logic). For example, logical
implication in Pure (written ==>, also called meta-implication), is different from
logical implication in HOL (written -->, also called object implication).

It is essential to be aware of the fact that the ISABELLE/HOL logic is differ-
ent from the logics that are encoded into it via comorphisms. Therefore, the
formulas appearing in subgoals of proofs with ISABELLE will not conform to the
syntax of the original input logic. They may even use features of ISABELLE/HOL

such as higher-order functions that are not present in an input logic like CASL.
ISABELLE is started with ProofGeneral [2, 1] in a separate Emacs [9, 40].

The ISABELLE theory file conforms to the Isabelle/Isar syntax [29]. It starts
with the theory (encoded along the selected comorphism), followed by a list
of theorems. Initially, all the theorems have trivial proofs, using the ‘oops‘
command. However, if you have saved earlier proof attempts, HETS will patch
these into the generated ISABELLE theory file, ensuring that your previous work
is not lost. (But note that this patching can only be successful if you do not
rename specifications, or change their structure.) You now can replace the ’oops’
commands with real ISABELLE proofs, and use Proof General to step through
the proofs. You finish your session by saving your file (using the Emacs file
menu, or the Ctrl-x Ctrl-s key sequence), and by exiting Emacs (Ctrl-x Ctrl-c).

10.3 zChaff

zChaff is a solver for satisfiabily problems of boolean formulas (SAT) in CNF.
It is connected as a prover for propositional logic to HETS. The prover SPASS

is used to transform arbitrary boolean formulas to CNF. zChaff implements
the CHAFF algorithm. We are using the property, that a conjecture under the
assumption of a set of axioms is true, if the variables of axioms together with
the negation of the conjecture have no satisfying assignment, to prove theorems
with zChaff. That is why you see the result UNSAT in the proof details, if a
theorem has been proved to be true. zChaff uses the same ATP GUI as the
provers for SoftFOL (ref. to section 10.1). zChaff does not accept any options

20



apart from the time-limit. The current integration of zChaff into HETS has been
tested with zChaff 2004.11.15.

11 Limits of Hets

HETS is still intensively under development. In particular, the following points
are still missing:

• There is no proof support for architectural specifications.

• Distributed libraries are always downloaded from the local disk, not from
the Internet.

• Version numbers of libraries are not considered properly.

• The proof engine for development graphs provides only experimental sup-
port for hiding links and for conservativity.

12 Architecture of Hets

The architecture of HETS is shown in Fig. 8. How is a single logic implemented
in the Heterogeneous Tool Set? This is depicted in the left column of Fig. 8.

HETS provides an abstract interface for institutions, so that new logics can
be integrated smoothly. In order to do so, a parser, a static checker and a prover
for basic specifications in the logic have to be provided.

Each logic is realized in the programming language Haskell [30] by a set of
types and functions, see Fig. 7, where we present a simplified, stripped down
version, where e.g. error handling is ignored. For technical reasons a logic is
tagged with a unique identifier type (lid), which is a singleton type the only
purpose of which is to determine all other type components of the given logic.
In Haskell jargon, the interface is called a multiparameter type class with func-
tional dependencies [31]. The Haskell interface for logic translations is realised
similarly.

The logic-independent modules in HETS can be found in the right half of
Fig. 8. These modules comprise roughly one third of HETS’ 100.000 lines of
Haskell code.

The heterogeneous parser transforms a string conforming to the syntax in
Fig. 1 to an abstract syntax tree, using the Parsec combinator parser [15]. Logic
and translation names are looked up in the logic graph — this is necessary to
be able to choose the correct parser for basic specifications. Indeed, the parser
has a state that carries the current logic, and which is updated if an explicit
specification of the logic is given, or if a logic translation is encountered (in the
latter case, the state is set to the target logic of the translation). With this, it
is possible to parse basic specifications by just using the logic-specific parser of
the current logic as obtained from the state.

21



class Logic lid sign morphism sentence basic_spec symbol_map

| lid -> sign morphism sentence basic_spec symbol_map where

identity :: lid -> sign -> morphism

compose :: lid -> morphism -> morphism -> morphism

dom, codom :: lid -> morphism -> sign

parse_basic_spec :: lid -> String -> basic_spec

parse_symbol_map :: lid -> String -> symbol_map

parse_sentence :: lid -> String -> sentence

empty_signature :: lid -> sign

basic_analysis :: lid -> sign -> basic_spec -> (sign, [sentence])

stat_symbol_map :: lid -> sign -> symbol_map -> morphism

map_sentence :: lid -> morphism -> sentence -> sentence

provers ::

lid -> [(sign, [sentence]) -> [sentence] -> Proof_status]

cons_checkers :: lid -> [(sign, [sentence]) -> Proof_status]

class Comorphism cid

lid1 sign1 morphism1 sentence1 basic_spec1 symbol_map1

lid2 sign2 morphism2 sentence2 basic_spec2 symbol_map2

| cid -> lid1 lid2 where

sourceLogic :: cid -> lid1 targetLogic :: cid -> lid2

map_theory :: cid -> (sign1, [sentence1]) -> (sign2, [sentence2])

map_morphism :: cid -> morphism1 -> morphism2

Figure 7: The basic ingredients of logics and logic comorphisms

22



Figure 8: Architecture of the heterogeneous tool set.

The static analysis is based on the static analysis of basic specifications, and
transforms an abstract syntax tree to a development graph (cf. Sect. 7 above).
Starting with a node corresponding to the empty theory, it successively extends
(using the static analysis of basic specifications) and/or translates (along the
intra- and inter-logic translations) the theory, while simultaneously adding nodes
and links to the development graph.

Heterogeneous proof management is done using heterogeneous development
graphs, as described in Sect. 7. For local proof goals, logic-specific provers are
invoked, see Sect. 10.

HETS can store development graphs, including their proofs. Therefore, HETS

uses the so-called ATerm format [8], which is used as interchange format for
interfacing with other tools.

More details can be found in [20, 26] and in the overview of modules provided
in the developers section of the HETS home page at http://www.dfki.de/sks/
hets.

HETS is mainly maintained by Christian Maeder (Christian.Maeder@dfki.de)
and Till Mossakowski (Till.Mossakowski@dfki.de). The mailing list is

hets-users@informatik.uni-bremen.de

the homepage is

23

http://www.dfki.de/sks/hets
http://www.dfki.de/sks/hets
hets-users@informatik.uni-bremen.de


http://www.informatik.uni-bremen.de/mailman/listinfo/hets-users.

You need to subscribe to the list before you can send a mail. But note that
subscription is very easy!

If your favourite logic is missing in HETS, please tell us (hets-users@informatik.uni-
bremen.de). We will take account your feedback when deciding which logics and
proof tools to integrate next into HETS. Help with integration of more logics and
proof tools into HETS is also welcome.

Acknowledgement The heterogeneous tool set HETS would not have possible
without cooperation with many people. Besides the authors, the following peo-
ple have been involved in the implementation of HETS: Katja Abu-Dib, Mihai
Codescu, Carsten Fischer, Jorina Freya Gerken, Rainer Grabbe, Sonja Gröning,
Daniel Hausmann, Wiebke Herding, Hendrik Iben, Cui “Ken” Jian, Heng Jiang,
Anton Kirilov, Tina Krausser, Martin Kühl, Mingyi Liu, Dominik Lücke, Ma-
ciek Makowski, Immanuel Normann, Razvan Pascanu, Daniel Pratsch, Felix
Reckers, Markus Roggenbach, Pascal Schmidt, Paolo Torrini, René Wagner,
Jian Chun Wang and Thiemo Wiedemeyer.

HETS has been built based on experiences with its precursors, CATS and
MAYA. The CASL Tool Set (CATS) [22, 24] provides parsing and static analysis
for CASL. It has been developed by the first author with help of Mark van den
Brand, Kolyang, Bartek Klin, Pascal Schmidt and Frederic Voisin.

MAYA [4, 3] is a proof management tool based on development graphs. MAYA

only supports development graphs without hiding and without logic transla-
tions. MAYA has been developed by Serge Autexier and Dieter Hutter.

We also want to thank Agnès Arnould, Thibaud Brunet, Pascale LeGall,
Kathrin Hoffmann, Katiane Lopes, Stefan Merz, Maria Martins Moreira, Christophe
Ringeissen, Markus Roggenbach, Dmitri Schamschurko, Lutz Schröder, Kon-
stantin Tchekine and Stefan Wölfl for giving feedback about CATS, HOL-CASL
and HETS. Finally, special thanks to Christoph Lüth and George Russell for
help with connecting HETS to their UniForM workbench.

References

[1] D. Aspinal, S. Berghofer, P. Callaghan, P. Courtieu, C. Rafalli, and
M. Wenzel. Emacs Proof General. Available at http://proofgeneral.
inf.ed.ac.uk/.

[2] David Aspinall. Proof general: A generic tool for proof development. In
Susanne Graf and Michael I. Schwartzbach, editors, TACAS, volume 1785
of Lecture Notes in Computer Science, pages 38–42. Springer, 2000.

[3] S. Autexier, D. Hutter, T. Mossakowski, and A. Schairer. The development
graph manager Maya (system description). In H. Kirchner and C. Ringeis-
sen, editors, Algebraic Methods and Software Technology, 9th International

24

http://www.informatik.uni-bremen.de/mailman/listinfo/hets-users
http://proofgeneral.inf.ed.ac.uk/
http://proofgeneral.inf.ed.ac.uk/


Conference, AMAST 2002, Saint-Gilles-les-Bains, Reunion Island, France,
Proceedings, LNCS Vol. 2422, pages 495–502. Springer, 2002.

[4] Serge Autexier and Till Mossakowski. Integrating Hol-Casl into the
development graph manager Maya. In A. Armando, editor, Fron-
tiers of Combining Systems, 4th International Workshop, FroCoS 2002,
Santa Margherita Ligure, Italy, Proceedings, LNCS Vol. 2309, pages 2–17.
Springer, 2002.

[5] T. Berners-Lee, J. Hendler, and O. Lassila. The Semantic Web. Scientific
American, May 2001.

[6] M. Bidoit and P. D. Mosses. Casl User Manual, volume 2900 of LNCS.
Springer, 2004. Free online version available at http://www.cofi.info.

[7] Patrick BLackburn, Maarten de Rijke, and Yde Venema. Modal Logic.
Cambridge University Press, Cambridge, England, 2001.

[8] M. G. J. van den Brand, H. A. de Jong, P. Klint, and P. Olivier. Efficient
annotated terms. Software, Practice & Experience, 30:259–291, 2000.

[9] Free Software Foundation. Emacs. Available at http://www.gnu.org/
software/emacs/emacs.html,.

[10] J. Goguen and G. Roşu. Institution morphisms. Formal aspects of comput-
ing, 13:274–307, 2002.

[11] J. A. Goguen and R. M. Burstall. Institutions: Abstract model theory for
specification and programming. Journal of the Association for Computing
Machinery, 39:95–146, 1992. Predecessor in: LNCS 164, 221–256, 1984.

[12] Sonja Gröning. Beweisunterstützung für HasCASL in Isabelle /HOL. Mas-
ter’s thesis, University of Bremen, 2005. Diplomarbeit.

[13] Marc Herbstritt. zChaff: Modifications and extensions. report00188, Insti-
tut für Informatik, Universität Freiburg, July 17 2003. Thu, 17 Jul 2003
17:11:37 GET.

[14] Michael Kohlhase. OMDoc - An Open Markup Format for Mathematical
Documents [version 1.2], volume 4180 of Lecture Notes in Computer Sci-
ence. Springer, 2006.

[15] Daan Leijen and Erik Meijer. Parsec: Direct style monadic parser combi-
nators for the real world. Technical report. UU-CS-2001-35.

[16] K. Lüttich, T. Mossakowski, and B. Krieg-Brückner. Ontologies for the Se-
mantic Web in CASL. In José Fiadeiro, editor, Recent Trends in Algebraic
Development Techniques, 17th International Workshop (WADT 2004), vol-
ume 3423 of Lecture Notes in Computer Science, pages 106–125. Springer;
Berlin; http://www.springer.de, 2005.

25

http://www.cofi.info
http://www.gnu.org/software/emacs/emacs.html
http://www.gnu.org/software/emacs/emacs.html
http://www.springer.de


[17] Klaus Lüttich and Till Mossakowski. Reasoning Support for CASL with
Automated Theorem Proving Systems. WADT 2006, Springer LNCS, to
appear.

[18] T. Mossakowski. HetCASL - heterogeneous specification. language sum-
mary, 2004.

[19] T. Mossakowski. ModalCASL - specification with multi-modal logics. lan-
guage summary, 2004.

[20] T. Mossakowski. Heterogeneous specification and the heterogeneous tool
set. Habilitation thesis, University of Bremen, 2005.

[21] T. Mossakowski, S. Autexier, and D. Hutter. Development graphs – proof
management for structured specifications. Journal of Logic and Algebraic
Programming, 67(1-2):114–145, 2006.

[22] Till Mossakowski. Casl: From semantics to tools. In S. Graf and
M. Schwartzbach, editors, Tools and Algorithms for the Construction and
Analysis of Systems, 6th International Conference, TACAS 2000, Berlin,
Germany, Proceedings, LNCS Vol. 1785, pages 93–108. Springer, 2000.

[23] Till Mossakowski. Relating CASL with other specification languages: the
institution level. Theoretical Computer Science, 286:367–475, 2002.

[24] Till Mossakowski, Kolyang, and Bernd Krieg-Brückner. Static semantic
analysis and theorem proving for Casl. In F. Parisi-Presicce, editor, Recent
Trends in Algebraic Development Techniques, 12th International Work-
shop, WADT’97, Tarquinia, Italy, 1997, Selected Papers, LNCS Vol. 1376,
pages 333–348. Springer, 1998.

[25] Till Mossakowski, Christian Maeder, and Klaus Lüttich. The Heteroge-
neous Tool Set. In Orna Grumberg and Michael Huth, editors, TACAS
2007, volume 4424 of Lecture Notes in Computer Science, pages 519–522.
Springer-Verlag Heidelberg, 2007.

[26] Till Mossakowski, Christian Maeder, and Klaus Lüttich. The Heteroge-
neous Tool Set. In Bernhard Beckert, editor, VERIFY 2007, volume 259
of CEUR Workshop Proceedings. 2007.

[27] Till Mossakowski, Lutz Schröder, Markus Roggenbach, and Horst Reichel.
Algebraic-co-algebraic specification in CoCASL. Journal of Logic and Al-
gebraic Programming. To appear.

[28] Peter D. Mosses, editor. CASL Reference Manual, volume 2960 of Lecture
Notes in Computer Science. Springer, 2004. Free online version available
at http://www.cofi.info.

[29] T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL — A Proof As-
sistant for Higher-Order Logic. Springer Verlag, 2002.

26

http://www.cofi.info


[30] S. Peyton-Jones, editor. Haskell 98 Language and Libraries — The Revised
Report. Cambridge, 2003. also: J. Funct. Programming 13 (2003).

[31] Simon Peyton Jones, Mark Jones, and Erik Meijer. Type classes: exploring
the design space. In Haskell Workshop. 1997.

[32] Alexandre Riazanov and Andrei Voronkov. The design and implementation
of VAMPIRE. AI Communications, 15(2-3):91–110, 2002.

[33] M. Roggenbach. CSP-CASL - a new integration of process algebra and
algebraic specification. Theoretical Computer Science, 354(1):42–71, 2006.

[34] L. Schröder, T. Mossakowski, and C. Maeder. HASCASL – Integrated
functional specification and programming. Language summary. Available
at http://www.informatik.uni-bremen.de/agbkb/forschung/formal
methods/CoFI/HasCASL, 2003.

[35] Lutz Schröder. Higher order and reactive algebraic specification and
development. Summary of papers constituting a cumulative habilita-
tion thesis; available under http://www.informatik.uni-bremen.de/
∼lschrode/papers/Summary.pdf, 2005.

[36] Lutz Schröder. The HasCASL prologue - categorical syntax and semantics
of the partial λ-calculus. Theoret. Comput. Sci., 353:1–25, 2006.

[37] Lutz Schröder and Till Mossakowski. HasCasl: Towards integrated
specification and development of Haskell programs. In H. Kirchner and
C. Ringeissen, editors, Algebraic Methods and Software Technology, 9th
International Conference, AMAST 2002, Saint-Gilles-les-Bains, Reunion
Island, France, Proceedings, LNCS Vol. 2422, pages 99–116. Springer, 2002.

[38] Geoff Sutcliffe and Christian B. Suttner. Evaluating general purpose au-
tomated theorem proving systems. Artificial Intelligence, 131(1-2):39–54,
2001.

[39] Geoff Sutcliffe and Christian B. Suttner. The state of CASC. AI Commu-
nications, 19(1):35–48, 2006.

[40] http://www.xemacs.org/People/index.html. XEmacs. Available at
http://www.xemacs.org/.

[41] Paolo Torrini, Christoph Lüth, Christian Maeder, and Till Mossakowski.
Translating Haskell to Isabelle. Isabelle workshop at CADE-21, 2007.

[42] Jan Oliver Wallgrün, Lutz Frommberger, Frank Dylla, and Diedrich Wolter.
SparQ user manual v0.6.2. University of Bremen, 2006.

[43] C. Weidenbach, U. Brahm, T. Hillenbrand, E. Keen, C. Theobalt, and
D. Topic. SPASS version 2.0. In Andrei Voronkov, editor, Automated
Deduction – CADE-18, volume 2392 of Lecture Notes in Computer Science,
pages 275–279. Springer-Verlag, July 27-30 2002.

27

http://www.informatik.uni-bremen.de/agbkb/forschung/formal_methods/CoFI/HasCASL
http://www.informatik.uni-bremen.de/agbkb/forschung/formal_methods/CoFI/HasCASL
http://www.informatik.uni-bremen.de/~lschrode/papers/Summary.pdf
http://www.informatik.uni-bremen.de/~lschrode/papers/Summary.pdf
http://www.xemacs.org/


[44] Jürgen Zimmer and Serge Autexier. The MathServe System for Seman-
tic Web Reasoning Services. In U. Furbach and N. Shankar, editors, 3rd
IJCAR, LNCS 4130. Springer, 2006.

28


	Introduction
	Logics supported by Hets
	Logic translations supported by Hets
	Getting started
	Analysis of Specifications
	Heterogeneous Specification
	Development Graphs
	Reading, Writing and Formatting
	Miscellaneous Options
	Proofs with HETS
	Automated Theorem Proving Systems
	Isabelle
	zChaff

	Limits of Hets
	Architecture of Hets

