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WGCNA User Manual 

(for version 1.0.x) 
 

A systems biologic microarray analysis software for finding important genes and pathways. 

 

The WGCNA (weighted gene co-expression network analysis) software implements a systems 

biologic method for analyzing microarray gene expression data, gene information data, and 

microarray sample traits (e.g. case control status or clinical outcomes). WGCNA can be used for 

constructing a weighted gene co-expression network, for finding co-expression modules, for 

calculating module membership measures, and for finding highly connected intramodular hub genes. 

WGCNA facilitates a network based gene screening method that can be used to identify candidate 

biomarkers or therapeutic targets. The gene screening method integrates gene significance 

information (e.g. correlation between gene expression and a clinical outcome) and module 

membership information to identify biologically and statistically plausible genes. The software has a 

graphic interface that facilitates straightforward input of microarray and clinical trait data or pre-

defined gene information. The software can analyze networks comprised of tens of thousands of 

genes and implements several options for automatic and manual gene selection ("network 

screening"). 

 

To cite the software, please use Zhang and Horvath (2005), Horvath et al (2006), and Langfelder et 

al (2007). 
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Background information  

WGCNA begins with the understanding that the information captured by microarray experiments is 

far richer than a list of differentially expressed genes. Rather, microarray data are more completely 

represented by considering the relationships between measured transcripts, which can be assessed by 

pair-wise correlations between gene expression profiles. In most microarray data analyses, however, 

these relationships go essentially unexplored. WGCNA starts from the level of thousands of genes, 

identifies clinically interesting gene modules, and finally uses intramodular connectivity, gene 

significance (e.g. based on the correlation of a gene expression profile with a sample trait) to identify 

key genes in the disease pathways for further validation. WGCNA alleviates the multiple testing 

problem inherent in microarray data analysis. Instead of relating thousands of genes to a microarray 

sample trait, it focuses on the relationship between a few (typically less than 10) modules and the 

sample trait. Toward this end, it calculates the eigengene significance (correlation between sample 

trait and eigengene) and the corresponding p-value for each module. The module definition does not 

make use of a priori defined gene sets. Instead, modules are constructed from the expression data by 

using hierarchical clustering. Although it is advisable to relate the resulting modules to gene 

ontology information to assess their biological plausibility, it is not required. Because the modules 

may correspond to biological pathways, focusing the analysis on intramodular hub genes (or the 

module eigengenes) amounts to a biologically motivated data reduction scheme. Because the 

expression profiles of intramodular hub genes are highly correlated, typically dozens of candidate 

biomarkers result. Although these candidates are statistically equivalent, they may differ in terms of 

biological plausibility or clinical utility. Gene ontology information can be useful for further 

prioritizing intramodular hub genes. Examples of biological studies that show the importance of 

intramodular hub genes can be found reported in (Horvath et al 2006, Carlson et al 2006, Gargalovic 

et al 2006, Ghazalpour et al 2006, Miller et al 2008). 

 

 

Analysis overview 

Construct a network
Rationale: make use of interaction patterns between genes

Identify modules
Rationale: module (pathway) based analysis

Relate modules to external information
Array Information: Clinical data, SNPs, proteomics
Gene Information: gene ontology, EASE, IPA

Rationale: find biologically interesting modules

Find the key drivers in interesting modules
Tools: intramodular connectivity 
(highly related to module membership),
gene significance
Rationale: experimental validation, therapeutics, biomarkers
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Short glossary of network concepts  

Term Definition 

Coexpression 

network 

We define coexpression networks as undirected, weighted gene networks. The 

nodes of such a network correspond to gene expressions, and edges between 

genes are determined by the pairwise Pearson correlations between gene 

expressions. By raising the absolute value of the Pearson correlation to a power 

β ≥ 1 (soft thresholding), the weighted gene coexpression network construction 

emphasizes large correlations at the expense of low correlations. Specifically, a ij 
= |cor(xi , xj )|

β
 represents the adjacency of an unsigned network. Optionally, the 

user can also specify a signed co-expression network where the adjacency is 

defined as follows:  a ij = |0.5+0.5*cor(xi , xj )|
β
 

Module 

Modules are clusters of highly interconnected genes. In an unsigned coexpression 

network, modules correspond to clusters of genes with high  absolute correlations. 

In a signed network, modules correspond to positively correlated genes.  

Connectivity 

For each gene, the connectivity (also known as degree) is defined as the sum of 

connection strengths with the other network genes: k i  = ∑ u≠i a iu . In coexpression 

networks, the connectivity measures how correlated a gene is with all other 

network genes.  

Intramodular 

connectivity 

(kIN) 

Intramodular connectivity measures how connected, or coexpressed, a given gene 

is with respect to the genes of a particular module. The intramodular connectivity 

may be interpreted as a measure of module membership.  

Module 

eigengene 

The module eigengene corresponds to the first principal component of a given 

module. It can be considered the most representative gene expression in a module. 

Example: MEblue (also denoted as PCblue) denotes the module eigengene of the 

blue module. 

Eigengene 

significance 

When a microarray sample trait y is available (e.g. case control status or body 

weight), one can correlate the module eigengenes with this outcome. The 

correlation coefficient is referrred to as eigengene significance. The WGCNA 

software outputs the eigengene significance of each module (eigengene) and the 

corresponding correlation test p-value. 

Module 

Membership 

also known as 

eigengene-based 

connectivity 

(kME) 

For each gene, we defined a “fuzzy” measure of module membership by 

correlating its gene expression profile with the module eigengene of a given 

module. For example MMblue(i)= cor(xi ,MEblue) measures how correlated gene 

i is to the blue module eigengene. MMBlue(i) measures the membership of the i
th

 

gene with respect to the Blue module. If MMBlue(i) is close to 0, then the i
th

 gene 

is not part of the Blue module. But if MMBlue(i)  is close to 1 or -1, it is highly 

connected to the Blue module genes. The sign of module membership encodes 

whether the gene has a positive or a negative relationship with the Blue module 

eigengene. WGCNA also outputs the corresponding correlation test p-value for 

module membership (denoted by PvalueMMblue). The module membership 

measure can be defined for all input genes (irrespective of their original module 

membership. It turns out that the module membership measure is highly related to 

the intramodular connectivity kIN. Highly connected intramodular hub genes tend 
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Term Definition 

to have high module membership values to the respective module.  

Hub gene 
This loosely defined term is used as an abbreviation of “highly connected gene.” 

By definition, genes inside coexpression modules tend to have high connectivity.  

Gene 

significance 

To incorporate external information into the co-expression network, we make use 

of gene significance measures. Abstractly speaking, the higher the absolute value 

of GS(i), the more biologically significant is the i-th gene. Examples: GS(i) could 

encode pathway membership (e.g. 1 if the gene is a known apoptosis gene and 0 

otherwise), knockout essentiality, or the correlation with an external microarray 

sample trait. A gene significance measure could also be defined by minus log of a 

p-value. The only requirement is that gene significance of 0 indicates that the gene 

is not significant with regard to the biological question of interest. The GS can 

take on either positive or negative. When the user specifies a microarray sample 

trait y (e.g. case control status or a quantitative outcome), WGCNA defines the 

gene significance measure as follows GeneSignificance(i)=cor(xi ,y). 

Module 

significance 

Module significance is determined as the average absolute gene significance 

measure for all genes in a given module. This measure is highly related to the 

correlation between module eigengene and the outcome y. 

Construction of weighted gene co-expression networks and 

modules 

Genes with expression levels that are highly correlated are biologically interesting, since they imply 

common regulatory mechanisms or participation in similar biological processes.  To construct a 

network from microarray gene-expression data, we begin by calculating the Pearson correlations for 

all pairs of genes in the network.  Because microarray data can be noisy and the number of samples 

is often small, we weight the Pearson correlations by taking their absolute value and raising them to 

the power ß.  This step effectively serves to emphasize strong correlations and punish weak 

correlations on an exponential scale.  These weighted correlations, in turn, represent the connection 

strengths between genes in the network.  By adding up these connection strengths for each gene, we 

produce a single number (called connectivity, or k) that describes how strongly that gene is 

connected to all other genes in the network.  We use the general framework of weighted gene co-

expression network analysis presented in (Zhang and Horvath 2005, Horvath et al 2006). Briefly, the 

absolute value of the Pearson correlation coefficient is calculated for all pairwise comparisons of 

gene-expression values across all microarray samples. The Pearson correlation matrix is then 

transformed into an adjacency matrix A, i.e., a matrix of connection strengths by using a power 

function. Thus, the connection strength (adjacency) a(i,j) between gene expressions x(i) and x(j) is 

defined as a(i,j)=|cor(x(i),x(j))|^β.  

Optionally, WGCNA can also be used to construct a signed network, which keeps track of the sign 

of the correlation coefficient: a(i,j)=|0.5+0.5*cor(x(i),x(j))|^β. 
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Because microarray data can be noisy and the number of samples is often small, we weight the 

Pearson correlations by taking their absolute value and raising them to the power β.  

The resulting weighted network represents an improvement over unweighted networks based on 

dichotomizing the correlation matrix, because (i) the continuous nature of the gene coexpression 

information is preserved and (ii) the results of weighted network analyses are highly robust with 

respect to the choice of the parameter β, whereas unweighted networks display sensitivity to the 

choice of the cutoff. The network connectivity k(i) of the ith gene expression profile x(i) is the sum 

of the connection strengths with all other genes in the network, i.e. it represents a measure of how 

correlated the i-th gene is with all the other genes in the network. 

To determine the power β used in the definition of the network adjacency matrix, we make use of the 

fact that gene expression networks, like virtually all types of biological networks, have been found to 

exhibit an approximate scale free topology (Albert et al 2000). 

To choose a particular power β, we used the scale-free topology criterion described in (Zhang and 

Horvath 2005).  
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Figure: Assessing the scale free topology of a weighted gene co-expression network (constructed 

using β=6). If the dots form an approximate straight line relationship then the network forms a scale 

free network. The black curve corresponds to the regression line with model fitting index R^2. The 

red curve describes a truncated exponential fit (see Zhang and Horvath 05) for more details. 

 

Scale free topology criterion (this technical section may be skipped at first reading). 

The network exhibits a scale free topology if the frequency distribution p(k) of the connectivity 

follows a power law: p(k)~k
-γ

. (Incidentally, the power gamma has nothing to do with the soft 

threshold beta that is used to define the co-expression network). To visually inspect whether 

approximate scale-free topology is satisfied, one plots log(p(k)) versus log(k). A straight line is 

indicative of scale-free topology. To measure how well a network satisfies a scale-free topology, we 

use the square of the correlation between log(p(k)) and log(k), i.e. the model fitting index R^2 of the 

linear model that regresses log(p(k)) on log(k). If R^2 of the model approaches 1, then there is a 

straight line relationship between log(p(k)) and log(k). Many co-expression networks satisfy the 

scale-free property only approximately.  
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Most biologists would be very suspicious of a gene co-expression network that does not satisfy 

scale-free topology at least approximately. Therefore, a soft threshold power β (in 

a(i,j)=|cor(x(i),x(j))|
β
) that give rise to a network that does not satisfy approximate scale-free 

topology should not be considered. There is a natural trade-off between maximizing scale-free 

topology model fit (scale free fitting parameter R^2) and maintaining a high mean number of 

connections. High values of β often lead to high values of R^2. But the higher the power β, the lower 

is the mean connectivity of the network. 

These considerations have motivated us to propose the following scale-free topology criterion for 

choosing the power β: Only consider those powers that lead to a network satisfying scale-free 

topology at least approximately, e.g. R^2>0.80. In addition, we recommend that the user take the 

following additional considerations into account when choosing the adjacency function parameter. 

First, the mean connectivity should be high so that the network contains enough information (e.g. for 

module detection). Second, the slope of the regression line between log(p(k)) and log(k) should be 

negative (typically smaller than -2). In practice, we find the relationship between R^2 and β is 

characterized by a saturation curve. In most applications, we use the lowest power β where 

saturation is reached. 

As a caveat, we mention that sometimes scale free topology cannot be reached for reasonably low 

values of β (say smaller than 20). For example, severe array outliers or globally distinct groups of 

arrays may lead to strong correlations between the expression profiles (and very large co-expression 

modules). In this case, we simply recommend going with the default choice of β: for an unsigned 

network β=6, for a signed network β=12. 
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Figure a) Scale free topology fit (R^2, y-axis) as a function of different powers. In many (but not all) 

applications, one observes a saturation type curve. Here we would choose a power of 6 since the 

saturation level is reached at this point. The analysis is highly robust with respect to the choice of the 

power. b) Mean connectivity (y-axis) versus the power. The higher the power, the lower the mean 

connectivity. 
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Module detection 

We use average linkage hierarchical clustering coupled with a gene dissimilarity measure to define a 

dendrogram (cluster tree) of the network.  

Once a dendrogram is obtained from a hierarchical clustering method, we choose a height cutoff to 

arrive at a clustering. Modules correspond to branches of the dendrogram 

WGCNA implements two network dissimilarity measures. The default choice is the topological 

overlap matrix based dissimilarity measure (Ravasz et al 2002, Zhang and Horvath 2005, Li and 

Horvath 2006, Yip and Horvath 2007). The use of topological overlap serves as a filter to exclude 

spurious or isolated connections during network construction.  

The topological overlap dissimilarity is used 

as input of hierarchical clustering

• Generalized in Zhang and Horvath (2005) to the case of weighted 

networks

• Generalized in Yip and Horvath (2006) to higher order interactions

min( , ) 1

iu uj ij

u
ij

i j ij

a a a

TOM
k k a




 



1ij ijDistTOM TOM 

 
As alternative dissimilarity measure, we also define dissA(i,j)=1-a(i,j) (i.e., 1 minus the adjacency 

matrix). This alternative measure is computationally much faster than the topological overlap 

measure and often leads to approximately similar modules. 

WGCNA defines modules by cutting (pruning) branches off the dendrogram. A common but 

inflexible method uses a static (constant) height cutoff value; this method exhibits suboptimal 

performance on complicated dendrograms. Therefore, WGCNA also implements dynamic branch 

cutting methods for detecting clusters in a dendrogram depending on their shape (Langfelder, Zhang 

and Horvath 2007). Compared to the constant height cutoff method, dynamic branch cutting 

offers the following advantages: (1) it is capable of identifying nested clusters; (2) it is flexible - 

branch shape parameters can be tuned to suit the application at hand; (3) they are suitable for 

automation. WGCNA implements two types of dynamic branch cutting method. The first only 

considers the shape parameters. The second method is hybrid method that combines the advantages 

of hierarchical clustering and partitioning around medoids.  

Research aims that can be addressed with WGCNA 

 

Identification of co-expression modules with high module significance. 

Based on the gene significance measure, we define two types of module significance measures. 
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The first type is simply the average gene significance of the module genes. The second type of is 

referred to as eigengene significance, which is only defined for a microarray sample trait y. 

When a microarray sample trait y is available (e.g. case control status or body weight), one can 

correlate the module eigengenes with this outcome. The correlation coefficient is referred to as 

eigengene significance. WGCNA also outputs the eigengene significance of each module (eigengene) 

and the corresponding correlation test p-value. 

 

Identification of intramodular hub genes. 

Intramodular connectivity can be interpreted as a fuzzy measure of module membership. Thus, a 

systems biologic gene screening method that combines gene significance and connectivity (module 

membership) measure amounts to a pathway based gene screening method. Empirical evidence 

shows that the resulting systems biologic gene screening methods can lead to important biological 

insights (Horvath et al 2006, Carlson et al 2006, Gargalovic et al 2006, Ghazalpour et al 2006). 

 

Fuzzy module annotation of the genes 

Apart from detecting co-expression modules, WGCNA also provide a comprehensive annotation of 

all genes on the array with regard to module membership. For each gene, the module membership 

table reports the module membership with regard to the identified modules. Instead of forcing genes 

into distinct modules, the fuzzy module assignment allows the user to identify genes that may be 

close to two or more modules. These fuzzy module annotation tables form a resource for biomarker 

discovery. The annotation tables can also be used to determine how close a given gene of interest is 

to the identified modules. We report both the module membership measure (correlation between the 

gene expression profile and the module eigengene) and the corresponding correlation test p-value. 

 

Functional enrichment analysis of module genes 

It is natural to use the module membership measure to come up with lists of genes that comprise the 

module. For example, one could select blue module genes on the basis of MMBlue>0.6 or 

MMBlue< -0.6. Alternatively, one could select the 200 genes with highest absolute module 

membership values. The selected genes could be used as input of a functional enrichment analysis 

software (EASE, KEGG, Webgestalt, Ingenuity, etc). 

For example, we often use the software EASE (David)  
http://david.abcc.ncifcrf.gov/summary.jsp 
 

Relating modules to each other and to a microarray sample trait 

WGCNA also outputs the module eigengenes in a separate file.  

By correlating the module eigengenes one can determine how related (co-expressed) the modules are 

to each other. Module eigengenes form the nodes of an eigengene network (Langfelder and Horvath 

2007), which may reveal that modules are organized into meta-modules (clusters of co-expressed 

modules). The module eigengenes can also be used as covariates of a multivariate regression models 

that regresses the microarray sample trait y on the eigengenes.  

 

Installation requirements 

1. Windows operating system (Win2000, NT, WinXP or Vista) with .NET Framework installed. 

NET Framework could be freely downloaded from Microsoft windows update. 

 

2. All necessary software is listed in the file “WGCNA_Installation_Guide.doc”, which is 

included in WGCNA package. Please follow the installation steps.  

http://david.abcc.ncifcrf.gov/summary.jsp
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3. There’s no hardware requirement for running WGCNA. However, considering the 

computation task of network construction, we recommend computers with CPU frequency higher 

than 2.0 GHz and memory bigger than 2 GB. 

Detailed description of the analysis steps 

1. Load data 

 
 

User should specify the “Expression Data” file location first. It’s a comma or tab delimited file 

where rows are genes (probe sets) and columns correspond to microarray samples. The first 

column should contain gene identifiers. 

 

 
(Example expression data) 

 

 

In order to screen for genes or modules that are biologically significant, WGCNA needs to define 

a gene significance measure. 

Option 1: based on a correlation with a microarray sample trait T that corresponds to a column in 

the trait file as “Sample Trait Data” file. 

 Then GeneSignificance(i)=|cor(Gene i, T)|;  the trait could be a binary outcome (case/control 

status) or a quantitative outcome (body weight) 

Option 2: based on pre-defined gene significance measure that corresponds to a column in the 

gene information file. It must contain the same gene sets as in the expression data. 
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In order to proceed, the user needs to load a trait file or a gene info file, or both. In the next step, 

the user can choose a column of the trait file as sample information trait or a column of the gene 

info file as pre-defined gene significance measure. 

 

 
(Example trait data) 

 

“Gene information Data” file can contain additional gene information like gene names, 

chromosome location etc that user wants to keep in the analysis.  

 

 
(Example gene information data) 

 

Please follow the data format as in sample files. WGCNA can take either comma or tab 

delimited text file as input. 

 

After loading the expression data and trait data (or gene information data), user should click the 

“Next->” button in order to move to data “Preprocess” step. 

2. Data preprocessing and Im Feeling Lazy analysis 

 
First, the user needs to specify how the gene significance measure should be defined. 
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For example a microarray sample trait (e.g. a numeric outcome) can be chosen from the sample 

trait file. If there is more than one trait in the trait data, user needs to choose a certain trait to be 

used for gene significance calculation. As an alternative, user can also specify a pre-defined gene 

significance column in gene info data.  WGCNA automatically detects whether a column is 

numeric (denoted by “N”) or character (denoted by “C”). Please make sure to choose a numeric 

column as trait or gene significance values.  

Alternatively, the user can choose a pre-specified gene significance measure from the gene 

information file. For example, the pre-specified gene significance measure indicates pathway 

membership, knock-out essentiality, or the T-test statistic from a prior study. 

 

After specifying the gene significance measure, the user can either choose the manual WGCNA 

analysis (which allows the user to identify modules and select intramodular hub genes) or the 

user can choose and automatic WGCNA analysis by pushing the “I’m feeling lazy” button.  

The automatic analysis will automatically choose modules and rank the entire genes according to 

network screening results. The automatic analysis has one major advantage: it can deal with tens 

of thousands of genes. However, the user does not get to see a cluster tree, module heatmaps etc. 

Although we find that the default parameters of the automatic (lazy) analysis work quite well in 

many real applications, there is a danger that a module may be an artefact e.g due to an array 

outlier.  

The manual analysis allows the user to interact with the program regarding module detection and 

gene selection but it can only deal with relatively few genes (on our laptop computer fewer than 

3600 genes). Since module detection is computationally intensive, the user can filter genes based 

on the variance (across the microarrays) and the user can select the most connected genes among 

the most varying genes. Since module genes tend to be highly connected, restricting the analysis 

to the most connected genes is a reasonable gene filtering criterion (when it comes to module 

detection). At the end of the analysis, WGCNA outputs module membership measures which are 

defined for all genes in the input data (not just the 3600 most connected genes). 

 

 
 

Figure: To proceed with the automatic or the manual WGCNA analysis.  

 (1). the automatic analysis (“I’m feeling lazy”) uses default parameters for finding modules and 

significant hub genes. For each gene and each module, WGCNA outputs a module membership 

(MM) value. MM values close to 1 or -1 suggest that the gene is a member in the respective 
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module. By using “I’m feeling lazy”, WGCNA will include all the available genes in its analysis, 

regardless of their variance or connectivity. Regarding to the output of the automatic analysis, 

please refer to the “5. Gene Selection” section for details. 

(2). the manual WGCNA analysis allows the user to proceed in a step-wise fashion to define 

modules and significant genes. In general, we recommend the manual analysis but it has a 

limitation: only 3600 genes can be included for the module definition.  

 

3. Network Construction 

 
 

First, the user needs to specify whethe a signed or an unsigned gene co-expression network 

should be constructed. Asigned network defines modules as clusters of positively correlated 

genes. An unsigned network defines modules based on the absolute value of the correlation 

coefficient.  

 

To construct a weighted network, a power (soft threshold) larger than or equal to 1 should be 

specified. Raising the co-expression similarity to this power would result in a weighted co-

expression network. The default power for an unsigned and a signed network is 6 and 12, 

respectively. To choose a power, the WGCNA also implements plots for the scale free topology 

criterion (Zhang and Horvath 2005). This criterion is described in a separate section. 

The “power selection” button results in a graph of scale free topology fit (R^2, y-axis) versus 

different power (x-axis). Choose the smallest power for which R^2>0.8 or if a saturation curve 

results, choose the power at the kind of the saturation curve. 

 

The button “ClusterSamples” can be used to assess whether arrays are outliers (average linkage 

hierarchical cluster tree, Euclidean distance). If the dendrogram has two or more very distinct 

branches or outlying arrays, the scale free topology criterion may be meaningless (low R^2 

values). In this case, simply choose a power (e.g. 6) or consider removing outlying arrays before 

proceeding. 
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Once the user have chosen a power, the “next” button will automatically create a weighted co-

expression network and a corresponding cluster tree, which will be used for module detection.  

 

The default network dissimilarity measure is based on the topological overlap matrix (TOM). A 

less time consuming alternative is to use check box “Use Adjacency instead of TOM”. 

 

Because calculation of TOM or adjacency matrix is very time consuming, WGCNA allows user 

to skip this step by un-checking “Re-Calculate Adjacency/TOM”. It’s particularly useful when 

user switch back to Step 2 to pick another trait or gene significance column for analysis without 

re-calculating the same gene network. 

 

After choosing power, user can click “Next->” button to move to module detection step. 

 

4. Module Detection 

 
WGCNA implements three different approaches for defining modules based on a hierarchical 

clustering tree of the genes. All of the three methods required a minimum module size setting. 

 

 1) The static branch cutting method simply defines modules as branches that lie below the 

height corresponding to the y-axis of the cluster tree.  

 

2) The dynamic height branch cutting method automatically chooses a height cut-off for each 

branch based on the shape of each branch (Langfelder et al, Bioinformatics 2007) 

 

3) The dynamic hybrid method is a hybrid between the dynamic method and partitioning around 

medoid (PAM) clustering. 

 

 

The button “Plot Module Significance” plots the average gene significance for each module. The 

user can go back to step 2 to specify a different gene significance (GS) measure in the gene info 

file or pick a different clinical trait (column) in the sample trait file. In this way, the user can 
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study module significance based on different significance measurements without re-calculating 

TOM (needs to keep “Re-Calculate Adjacency/TOM box unchecked). 

 

The module merge functions allow the user to manually or automatically merge closely related 

modules. User can go ahead to merge close modules using “Merge 2 modules” function. Besides, 

“Auto Module Merge” offers an automatic module merging process. 

 

 
Once modules are defined, user can generate module significance plot by clicking “plot module 

significance”. And the “plot cluster tree” button offers an easy way to re-draw hierarchical tree 

and module definitions without conducting module detection again.  

 
And the “plot ME Pairs” function plots the relationship between module eigengenes. It’s useful for 

studying module similarities, and help merging similar modules. Message: the module eigengenes 

(first PC) of different modules may be highly correlated. WGCNA can be interpreted as a 

biologically motivated data reduction scheme that allows for dependency between the resulting 

components. Compare this to principal component analysis that would impose orthogonality 

between the components. Since modules may represent biological pathways there is no biological 

reason why modules should be orthogonal to each other. 
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With modules detected, user can click “Next->” button to move to gene selection step. 

 

5. Gene Selection 

 
Based on the userr module significance analysis from the previous step, please choose a module 

of interest first.  

 

 
The user can use a heatmap button to plot the standardized expression values of the module 

genes (rows) across the arrays (columns). The top row shows the heatmap of the brown module 

genes (rows) across the microarrays (columns). The lower row shows the corresponding module 

eigengene expression values (y-axis) versus the same microarray samples. Note that the module 

eigengene takes on low values in arrays where a lot of module genes are under-expressed (green 
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color in the heatmap). The ME takes on high values for arrays where a lot of module genes are 

over-expressed (red in the heatmap). ME can be considered the most representative gene 

expression profile of the module. 

These plots may allow the user to understand the meaning of the module. High values of the 

module eigengene suggest that the module is “up” in the corresponding sample. If the correlation 

structure of the module is due to a single array, the array may be an outlier. 

 

 

 

Gene selection: 

 
It can be useful to study the relationship between gene significance and intramodular 

connectivity K using the button “Plot Gene significance versus intramodular connectivity”.  

 

The scaled version of the intramodular connectivity K/max(K) turns out to be highly related to 

the corresponding module membership measure. K measures how centrally located the gene is 

inside the module. 
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To select genes, the user can set the threshold parameters and manually output the genes that 

meet the selection criterion. (The user can also save the list to a file). Or the user can choose 

automatic gene selection procedure, which selects genes based on their gene significance and 

their membership to significant modules. 

 

In gene selection step, user can generate heat map for each specific module. The sample order is 

exact the same as in expression data. 

 

“Auto Gene Selection” function allows user to obtain a gene lists with most significant genes 

ranked by putting both gene significance and intra-modular connectivity into consideration. 

 

 

Gene selection output files 

Both “I am feeling lazy” and “auto gene selection” functions generate two files as output. They 

are of the same format. 

 

(1). Analysis using Trait data 

 

Output contains two different files  

     1) “LazyGenelist.csv” which contains results for each gene (rows) 

     2) “MEResults...csv” which contains results for each array sample. 

 

LazyGenelist.csv contains the following columns: 

Module membership information, see the columns MM.blue, etc 

For each gene and each automatically detected module, WGCNA outputs a module membership 

(MM) value. E.g, if a gene has an MMblue value close to 1 or -1, the gene is assigned to blue 

module. 

Module colors are assigned according to module size: turquoise denotes the largest module, blue 

next, then brown, green, yellow, etc. The color grey is reserved for non-module genes. 

 

Cor.Weighted denotes the weighted network estimate of the standard correlation cor(x[i],y) 

between the i-th gene and the outcome y. It use of module membership info as well as the 

module eigengene significance.  

 

Analogously, p.Weighted is a “weighted” version of a p-value, and q.Weighted is a weighted 

version of a q-value (local false discovery rate, see the qvalue library in R). Z.Weighted is a 

weighted version of the Fisher Z transform of a correlation coefficient. 

 

In order to learn about which module eigengenes affect the calculation of these measures, 

WGCNA also provides the file “MEResults”, which reports the values of the module eigenes 

(columns) for different arrays (rows). The top two rows in the file MEResults reports the 

eigengene significance of each module. 

 

(2). Analysis using gene significance data 
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Output contains two different files  

    1) “LazyGenelist.csv” which contains results for each gene (rows) 

    2) “MEResults...csv” which contains results for each array sample. 

LazyGenelist.csv contains the following columns: 

Module membership information, see the columns MM.blue, etc 

For each gene and each automatically detected module, WGCNA outputs a module membership 

(MM) value. For example, if a gene has an MMblue value close to 1 or -1, the  gene is assigned 

to the blue module. 

 

Module colors are assigned according to module size: turquoise denotes the largest module, blue 

next, then brown, green, yellow, etc. The color grey is reserved for non-module genes. 

 

GS.Weighted is the weighted network estimate of the corresponding pre-defined GS measure. 

GS.Weighted takes account of module membership information and the  hub gene significance 

measure (HGS) of each module. 

 

The file MEResults reports the module eigengenes (columns) across the arrays (rows). 

The top two rows in the file MEResults report the hub gene significance of each module. 

Save image  

 
The user can save any plot in the display panel to a local file using “Save Image” function under 

“File” menu. The image format is “emf”. EMF (Enhanced Meta File) is a vector-based image format 

designed for and popularized by Microsoft Windows, which could be easily transfer to other 

desirable format. 

 

To convert EMF files into PDF format, the user can insert the EMF file into Word, and then print it 

using “Acrobat PDFWriter” to crate a PDF file. If the user has Adobe Illustrator, the user can then 

edit the PDF file and save it to EPS format.  
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How to access help  

 
If needs to read help for current step, the user can display the help by click the “Show Help” menu 

under “Help”.  

 

Network function library update 

 

WGCNA utilizes a set of network functions, which is included in the WGCNA package called 

“NetworkFunctions-WGCNA.library”. Since we keep updating the library, please download the 

latest version from our website. The user can check the versions of both WGCNA program and its 

network library using “About WGCNA” menu under “Help”. 

In order to update the network library, the user can simple download the latest version and save it to 

“C:\WGCNA” folder. 

Recovery from unexpected errors 

 

If WGCNA crashes due to any unexpected error, please use “Windows Task Manager” to kill the 

R server process, whose name is displayed as “STATCO~1.EXE”. Otherwise, the user may 

encounter error like “Unable to create metafile” when the user re-run WGCNA. 
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