AmpFℓSTR[®] SEfiler Plus[™] PCR Amplification Kit

User Guide

AmpF/STR[®] SEfiler Plus[™]

PCR Amplification Kit

User Guide

© Copyright 2012, Life Technologies Corporation. All rights reserved.

Printed in the U.S.A.

Applera, Life Technologies Corporation, AB (Design), ABI PRISM, AmpFtSTR, GeneAmp, GeneMapper, GeneScan, LIZ, MicroAmp, PET, Profiler Plus, Quantifiler, SGM Plus, and VIC are registered trademarks and FAM, Hi-Di, NED, POP-4, SEfiler, and SEfiler Plus are trademarks of Applera Corporation or its subsidiaries in the U.S. and/or certain other countries.

TaqMan is a registered trademark of Roche Molecular Systems, Inc.

Windows NT is a registered trademark of Microsoft Corporation.

All other trademarks are the sole property of their respective owners.

Part Number 4385739 Rev. B 03/2012

Contents

Preface

How to Use This Guidev
Safety vi
How to Obtain More Information xi
How to Obtain Support xii

Chapter 1 Overview

Product Overview	. 1-2
Workflow Overview	. 1-9
nstrument and Software Overview	1-10
Materials and Equipment	1-12

Chapter 2 PCR Amplification

PCR Work Areas	2-2
Required User-Supplied Materials and Reagents	2-4
Quantifying DNA	2-5
Preparing the Reactions	2-7
Performing PCR	2-9
Amplification Using Bloodstained FTA Cards	2-10

Chapter 3 Performing Electrophoresis

Allelic Ladder Requirements	3-2
Setting-Up the 3100/3100- <i>Avant</i> or 3130/3130x/ Instrument for Electrophoresis	3-3
Preparing Samples for Electrophoresis on the 3100/3100-Avant or 3130/3130x/ Instrument	3-5
Setting-Up the 310 Instrument for Electrophoresis	3-7

Preparing Samples for Electrophoresis on the 310 Instrument 3	3-8
---	-----

Chapter 4 Analyzing Data

Overview of GeneMapper [®] ID Software	4-2
Setting Up GeneMapper [®] <i>ID</i> Software v3.2.1 for Analyzing	
AmpFℓSTR [®] SEfiler Plus [™] Kit Data	4-3
Analyzing and Editing Sample Files with GeneMapper® ID Software	4-16

Chapter 5 Experiments and Results

Overview
Developmental Validation 5-3
Accuracy, Precision, and Reproducibility 5-7
Extra Peaks in the Electropherogram 5-21
Characterization of Loci 5-30
Species Specificity
Sensitivity 5-34
Stability
Mixture Studies 5-42
Population Data 5-47
Mutation Rate 5-48
Probability of Identity 5-49
Probability of Paternity Exclusion 5-50

Appendix A Troubleshooting

Troubleshooting		A-2
-----------------	--	-----

Bibliography

Index

Preface

How to Use This Guide

Purpose of This Guide	The Applied Biosystems AmpF $\&$ STR [®] SEfiler Plus TM PCR Amplification Kit User Guide provides information about the Applied Biosystems instruments, chemistries, and software associated with the AmpF $\&$ STR [®] SEfiler Plus TM PCR Amplification Kit.
Pull-Out Chapters	This guide is designed to allow users to pull out chapters 2, 3, and 4. The pull-out chapters have title and back pages, which indicate the chapter and number title.
Text Conventions	This guide uses the following conventions:
	 Bold text indicates user action. For example: Type 0, then press Enter for each of the remaining fields. <i>Italic</i> text indicates new or important words and is also used for emphasis. For example: Before analyzing, <i>always</i> prepare fresh matrix. A right arrow symbol (▶) separates successive commands you select from a drop-down or shortcut menu. For example: Select File ▶ Open ▶ Spot Set. Right-click the sample row, then select View Filter ▶ View All Runs.
User Attention Words	Two user attention words appear in Applied Biosystems user documentation. Each word implies a particular level of observation or action as described below:
	Note: – Provides information that may be of interest or help but is not critical to the use of the product.
	IMPORTANT! – Provides information that is necessary for proper instrument operation, accurate chemistry kit use, or safe use of a chemical.

Examples of the user attention words appear below:

Note: The Calibrate function is also available in the Control Console.

IMPORTANT! To verify your client connection to the database, you need a valid user ID and password.

Safety

Safety Alert Words Four safety alert words appear in Applied Biosystems user documentation at points in the document where you need to be aware of relevant hazards. Each alert word–IMPORTANT, CAUTION, WARNING, DANGER–implies a particular level of observation or action, as defined below.

Definitions

IMPORTANT! – Indicates information that is necessary for proper instrument operation, accurate chemistry kit use, or safe use of a chemical.

CAUTION – Indicates a potentially hazardous situation that, if not avoided, may result in minor or moderate injury. It may also be used to alert against unsafe practices.

WARNING – Indicates a potentially hazardous situation that, if not avoided, could result in death or serious injury.

DANGER – Indicates an imminently hazardous situation that, if not avoided, will result in death or serious injury. This signal word is to be limited to the most extreme situations.

Chemical Hazard Warning **WARNING** CHEMICAL HAZARD. Some of the chemicals used with Applied Biosystems instruments and protocols are potentially hazardous and can cause injury, illness, or death.

Chemical Safety Guidelines

To minimize the hazards of chemicals:

- Read and understand the Material Safety Data Sheets (MSDSs) provided by the chemical manufacturer before you store, handle, or work with any chemicals or hazardous materials. (See "About MSDSs" on page vii.)
- Minimize contact with chemicals. Wear appropriate personal protective equipment when handling chemicals (for example, safety glasses, gloves, or protective clothing). For additional safety guidelines, consult the MSDS.
- Minimize the inhalation of chemicals. Do not leave chemical containers open. Use only with adequate ventilation (for example, fume hood). For additional safety guidelines, consult the MSDS.
- Check regularly for chemical leaks or spills. If a leak or spill occurs, follow the manufacturer's cleanup procedures as recommended in the MSDS.
- Comply with all local, state/provincial, or national laws and regulations related to chemical storage, handling, and disposal.

About MSDSs Chemical manufacturers supply current Material Safety Data Sheets (MSDSs) with shipments of hazardous chemicals to *new* customers. They also provide MSDSs with the first shipment of a hazardous chemical to a customer after an MSDS has been updated. MSDSs provide the safety information you need to store, handle, transport, and dispose of the chemicals safely.

Each time you receive a new MSDS packaged with a hazardous chemical, be sure to replace the appropriate MSDS in your files.

Obtaining
MSDSsThe MSDS for any chemical supplied by Applied Biosystems is
available to you free 24 hours a day. To obtain MSDSs:

- 1. Go to docs.appliedbiosystems.com/msdssearch.html
- 2. In the Search field of the MSDS Search page:
 - a. Enter the chemical name, part number, or other information that you expect to appear in the MSDS of interest.
 - b. Select the language of your choice.
 - c. Click Search.

- 3. To view, download, or print the document of interest:
 - a. Right-click the document title.
 - b. Select:
 - **Open** To view the document
 - Save Target As To download a PDF version of the document to a destination that you choose
 - Print Target To print the document
- 4. To have a copy of an MSDS sent by fax or e-mail, in the Search Results page:
 - a. Select Fax or Email below the document title.
 - b. Click **RETRIEVE DOCUMENTS** at the end of the document list.
 - c. Enter the required information.
 - d. Click View/Deliver Selected Documents Now.

Note: For the MSDSs of chemicals not distributed by Applied Biosystems, contact the chemical manufacturer.

Chemical Waste Hazards CAUTION HAZARDOUS WASTE. Refer to Material Safety Data Sheets and local regulations for handling and disposal.

WARNING CHEMICAL WASTE HAZARD. Wastes produced by Applied Biosystems instruments are potentially hazardous and can cause injury, illness, or death.

WARNING CHEMICAL STORAGE HAZARD. Never collect or store waste in a glass container because of the risk of breaking or shattering. Reagent and waste bottles can crack and leak. Each waste bottle should be secured in a low-density polyethylene safety container with the cover fastened and the handles locked in the upright position. Wear appropriate eyewear, clothing, and gloves when handling reagent and waste bottles.

Chemical Waste Safety Guidelines

To minimize the hazards of chemical waste:

- Read and understand the Material Safety Data Sheets (MSDSs) provided by the manufacturers of the chemicals in the waste container before you store, handle, or dispose of chemical waste.
- Provide primary and secondary waste containers. (A primary waste container holds the immediate waste. A secondary container contains spills or leaks from the primary container. Both containers must be compatible with the waste material and meet federal, state, and local requirements for container storage.)
- Minimize contact with chemicals. Wear appropriate personal protective equipment when handling chemicals (for example, safety glasses, gloves, or protective clothing). For additional safety guidelines, consult the MSDS.
- Minimize the inhalation of chemicals. Do not leave chemical containers open. Use only with adequate ventilation (for example, fume hood). For additional safety guidelines, consult the MSDS.
- Handle chemical wastes in a fume hood.
- After emptying the waste container, seal it with the cap provided.
- Dispose of the contents of the waste tray and waste bottle in accordance with good laboratory practices and local, state/provincial, or national environmental and health regulations.
- **Waste Disposal** If potentially hazardous waste is generated when you operate the instrument, you must:
 - Characterize (by analysis if necessary) the waste generated by the particular applications, reagents, and substrates used in your laboratory.
 - Ensure the health and safety of all personnel in your laboratory.
 - Ensure that the instrument waste is stored, transferred, transported, and disposed of according to all local, state/provincial, and/or national regulations.

IMPORTANT! Radioactive or biohazardous materials may require special handling, and disposal limitations may apply.

Biological Hazard Safety

WARNING BIOHAZARD. Biological samples such as tissues, body fluids, infectious agents, and blood of humans and other animals have the potential to transmit infectious diseases. Follow all applicable local, state/provincial, and/or national regulations. Wear appropriate protective equipment, which includes but is not limited to: protective eyewear, face shield, clothing/lab coat, and gloves. All work should be conducted in properly equipped facilities using the appropriate safety equipment (for example, physical containment devices). Individuals should be trained according to applicable regulatory and company/institution requirements before working with potentially infectious materials. Read and follow the applicable guidelines and/or regulatory requirements in the following:

- U.S. Department of Health and Human Services guidelines published in *Biosafety in Microbiological and Biomedical Laboratories* (stock no. 017-040-00547-4; bmbl.od.nih.gov)
- Occupational Safety and Health Standards, Bloodborne Pathogens (29 CFR§1910.1030; www.access.gpo.gov/nara/cfr/waisidx_01/ 29cfr1910a_01.html).
- Your company's/institution's Biosafety Program protocols for working with/handling potentially infectious materials.

Additional information about biohazard guidelines is available at:

www.cdc.gov

How to Obtain More Information

RelatedTo obtain any of the following documents, go toDocumentationwww.appliedbiosystems.com, then click the links for
Support ▶ Product and Service Literature.

Document	Part Number
Applied Biosystems 3130/3100xl Genetic Analyzers Using Data Collection Software v3.0 User Bulletin	4363787
Applied Biosystems 3130/3130xl Genetic Analyzers Getting Started Guide	4352715
Applied Biosystems 3130/3130xl Genetic Analyzers Maintenance, Troubleshooting, and Reference Guide	4352716
Applied Biosystems 3130/3130xl Genetic Analyzers Quick Reference Card	4362825
Applied Biosystems 3130/3130xl Genetic Analyzers AB Navigator Software Administrator Guide	4359472
ABI PRISM [®] 3100/3100-Avant Data Collection v2.0 User Guide	4347102
ABI PRISM [®] 3100/3100-Avant Genetic Analyzers Using Data Collection Software v2.0 User Bulletin	4350218
ABI PRISM [®] 3100 Genetic Analyzer User Manual (Data Collection v1.1)	4315834
ABI PRISM [®] 3100-Avant Genetic Analyzer User Guide (Data Collection v1.0)	4333549
ABI PRISM [®] 3100/3100-Avant Genetic Analyzers Protocols for Processing AmpF&TR [®] PCR Amplification Kit PCR Products User Bulletin	4332345
ABI PRISM [®] 310 Genetic Analyzer User Guide (Windows NT)	4317588
New Features and Installation Procedures for GeneMapper [®] ID Software V3.2 User Bulletin	4352543
GeneMapper [®] ID Software Versions 3.1 and 3.2 Human Identification Analysis Tutorial	4335523
GeneMapper [®] ID Software Version 3.1 Human Identification Analysis User Guide	4338775
Quantifiler [®] Kits: Quantifiler [®] Human DNA Quantification Kit and Quantifiler [®] Y Human Male DNA Quantification Kit User's Manual	4344790
GeneMapper [®] ID Software v3.2.1 Patch User Bulletin	4382255

Note: For additional documentation, see "How to Obtain Support" on page xii.

Send Us Your
CommentsApplied Biosystems welcomes your comments and suggestions for
improving its user documents. You can e-mail your comments to:

techpubs@appliedbiosystems.com

IMPORTANT! The e-mail address above is only for submitting comments and suggestions relating to documentation. To order documents, download PDF files, or for help with a technical question, go to **www.appliedbiosystems.com**, then click the link for **Support**. (See "How to Obtain Support" below).

How to Obtain Support

For the latest services and support information for all locations, go to **www.appliedbiosystems.com**, then click the link for **Support**.

At the Support page, you can:

- Access worldwide telephone and fax numbers to contact Applied Biosystems Technical Support and Sales facilities.
- Search through frequently asked questions (FAQs)
- Submit a question directly to Technical Support
- Order Applied Biosystems user documents, MSDSs, certificates of analysis, and other related documents
- Download PDF documents
- Obtain information about customer training
- · Download software updates and patches

Overview

1

This chapter covers:

Product Overview	.1-2
Workflow Overview	.1-8
Instrument and Software Overview	.1-9
Materials and Equipment	1-11

Product Overview

Purpose	The AmpF <i>l</i> STR [®] SEfiler Plus [™] PCR Amplification Kit is a short tandem repeat (STR) multiplex assay that amplifies 11 tetranucleotide repeat loci, including the SE33 locus required specifically for the German DNA database. The kit simultaneously coamplifies the seven loci of the European Standard Set (ESSL) (D3S1358, vWA, D8S1179, TH01, FGA, D21S11, and D18S51), the Amelogenin locus, the highly polymorphic SE33 (ACTBP2) locus, and the D2S1338, D16S539, and D19S433 loci. The AmpF <i>l</i> STR SEfiler Plus Kit has been developed to deliver improvements in performance over the original SEfiler Kit. Changes to the kit include modified PCR cycling conditions for enhanced sensitivity, a new buffer formulation to improve performance with inhibited samples, improvements in synthesis and purification of the amplification primers, and a redeveloped allelic ladder.
Product Description	The SEfiler Plus kit contains all the necessary reagents for the amplification of human genomic DNA.
	The reagents are designed for use with the following Applied Biosystems instruments:
	• Applied Biosystems 3130/3130 <i>xl</i> Genetic Analyzer
	 ABI PRISM[®] 3100/3100-Avant Genetic Analyzer ABI PRISM[®] 310 Genetic Analyzer
	• Silver 96-Well GeneAmp [®] PCR System 9700
	 Gold-plated silver block GeneAmp[®] PCR System 9700
About the Primers	The AmpFℓSTR [®] SEfiler Plus [™] kit contains the same loci and primer sequences as the SEfiler [™] kit but uses improved synthesis and purification processes to minimize the presence of dye-labeled artifacts. Modifications made in the production of VIC [®] and PET [®] dye-labeled primers have greatly minimized the occurrence of the 120 VIC dye artifact as well as the PET dye-labeled artifacts observed at approximately 105 to 115 bp.

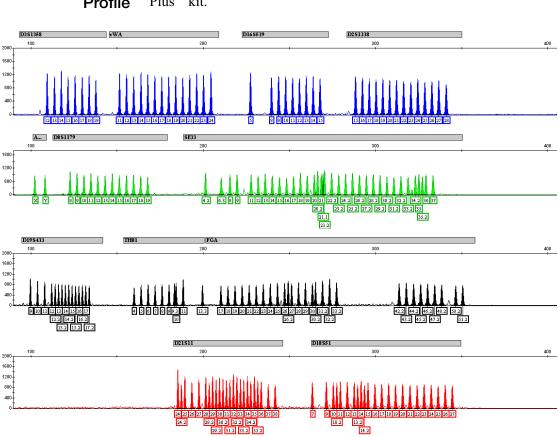
Loci Amplified by the Kit

Table 1-1 shows the loci amplified by the AmpF/STR[®] SEfiler PlusTM kit, their chromosomal locations, and the corresponding fluorescent marker dyes. The AmpF/STR[®] SEfiler PlusTM Allelic Ladder is used to genotype the analyzed samples. The alleles contained in the allelic ladder, and the genotype of the AmpF/STR Control DNA 007, are also listed in the table.

Table 1-1 AmpF/STR [®] SEfiler Plus [™] Kit loci ar

Locus Designation	Chromosome Location	Dye Label	AmpF/STR [®] Allelic Ladder Alleles	AmpF/STR [®] Control DNA 007 Genotype
D2S1338	2q35–37.1	6-FAM TM	15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28	20, 23
D3S1358	Зр	6-FAM	12, 13, 14, 15, 16, 17, 18, 19	15, 16
D8S1179 (in some references, designated as D6S502)	8	VIC	8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19	12, 13
D16S539	16q24-qter	6-FAM	5, 8, 9, 10, 11, 12, 13, 14, 15	9, 10
D18S51	18q21.3	PET	7, 9, 10, 10.2, 11, 12, 13, 13.2, 14, 14.2, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27	12, 15

Locus Designation	Chromosome Location	Dye Label	AmpF/STR [®] Allelic Ladder Alleles	AmpF/STR [®] Control DNA 007 Genotype
D19S433	19q12–13.1	NED	9, 10, 11, 12, 12.2, 13, 13.2, 14, 14.2, 15, 15.2, 16, 16.2, 17, 17.2	14, 15
D21S11	21q11.2–q21	PET	24, 24.2, 25, 26, 27, 28, 28.2, 29, 29.2, 30, 30.2, 31, 31.2, 32, 32.2, 33, 33.2, 34, 34.2, 35, 35.2, 36, 37, 38	28, 31
FGA	4q28	NED TM	17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 26.2, 27, 28, 29, 30, 30.2, 31.2, 32.2, 33.2, 42.2, 43.2, 44.2, 45.2, 46.2, 47.2, 48.2, 50.2, 51.2	24, 26


Table 1-1 AmpFℓSTR[®] SEfiler Plus[™] Kit loci and alleles

Locus Designation	Chromosome Location	Dye Label	AmpF/STR [®] Allelic Ladder Alleles	AmpF/STR [®] Control DNA 007 Genotype
SE33 (ACTBP2)	6	VIC	4.2, 6.3, 8, 9, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 20.2, 21, 21.1, 21.2, 22.2, 23.2, 24.2, 25.2, 26.2, 27.2, 28.2, 29.2, 30.2, 31.2, 32.2, 33.2, 34.2, 35, 35.2, 36, 37	17, 25.2
TH01	11p15.5	NED	4, 5, 6, 7, 8, 9, 9.3, 10, 11, 13.3	7, 9.3

 Table 1-1
 AmpFℓSTR[®] SEfiler Plus[™] Kit loci and alleles

Locus Designation	Chromosome Location	Dye Label	AmpF/STR [®] Allelic Ladder Alleles	AmpF/STR [®] Control DNA 007 Genotype
vWA	12p12-pter	6-FAM	11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24	14, 16
Amelogenin	X: p22.1–22.3 Y: p11.2	VIC	Х, Ү	Х, Ү

Table 1-1 AmpFℓSTR[®] SEfiler Plus[™] Kit loci and alleles

Allelic LadderFigure 1-1 shows the allelic ladder for the AmpFlSTR® SEfilerProfilePlusTM kit.

Figure 1-1 GeneMapper[®] *ID* Software plot of the AmpFℓSTR[®] SEfiler Plus[™] Allelic Ladder

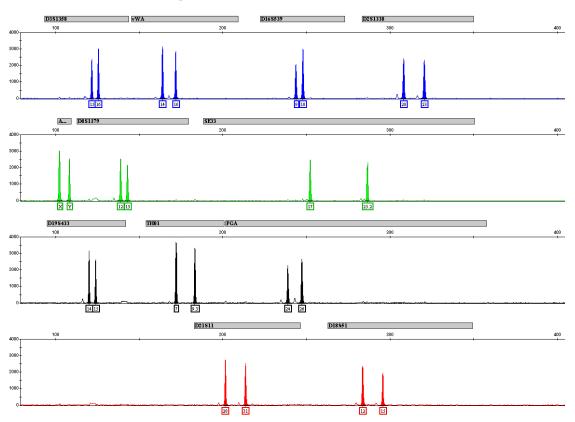
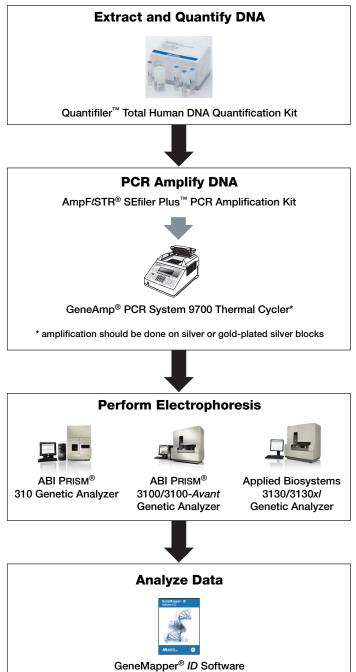



Figure 1-2 500 pg of Control DNA 007 amplified with the AmpF/STR SEfiler Plus kit and analyzed on the Applied Biosystems 3130x/ Genetic Analyzer

Workflow Overview

Instrument and Software Overview

This section provides information about the data collection and analysis software versions required to run the AmpFℓSTR[®] SEfiler Plus[™] PCR Amplification Kit on specific instruments.

Data Collection and Analysis Software

The data collection software provides instructions to firmware running on the instrument and displays instrument status and raw data in real time. As the instrument records sample fluorescence on the detection system hardware, the data collection software collects the data and stores it. Information about each sample is stored in a sample file (.fsa), which is then analyzed by the analysis software.

Instrument and Software Compatibility

Instrument	Operating System	Data Collection Software	Analysis Software
3130/3130 <i>x</i> /‡	Windows XP	3.0	GeneMapper [®] ID v3.2.1
3100/3100- Avant	Windows NT®	1.1 (3100) 1.0 (3100- <i>Avant</i>)	GeneMapper ID v3.2.1
	Windows 2000	2.0	GeneMapper ID v3.2.1
310	Windows XP	3.1	GeneMapper ID v3.2.1
	Windows NT and Windows 2000	3.0	GeneMapper ID v3.2.1

‡ Applied Biosystems performed validation studies for the SEfiler Plus kit using these configurations.

About Multicomponent Analysis

Applied Biosystems fluorescent multi-color dye technology allows the analysis of multiple loci, including loci that have alleles with overlapping size ranges. Alleles for overlapping loci are distinguished by labeling locus-specific primers with different colored dyes. Multicomponent analysis is the process that separates the five different fluorescent dye colors into distinct spectral components. The four dyes used in the AmpF/STR SEfiler Plus PCR Amplification Kit to label samples are 6-FAMTM, VIC[®], NEDTM, and PET[®]dyes. The fifth dye, LIZ[®], is used to label the GeneScanTM 600 LIZ[®] Size Standard.

How Multicomponent Analysis Works

Each of the fluorescent dyes emits its maximum fluorescence at a different wavelength. During data collection on the Applied Biosystems and ABI PRISM[®] instruments, the fluorescence signals are separated by a diffraction grating according to their wavelengths and projected onto a charge-coupled device (CCD) camera in a predictably spaced pattern. The 6-FAM dye emits at the shortest wavelength and is displayed as blue, followed by the VIC dye (green), NED dye (yellow), PET dye (red), and LIZ dye (orange).

Although each of these dyes emits its maximum fluorescence at a different wavelength, there is some overlap in the emission spectra between the dyes (Figure 1-3). The goal of multicomponent analysis is to correct for spectral overlap.

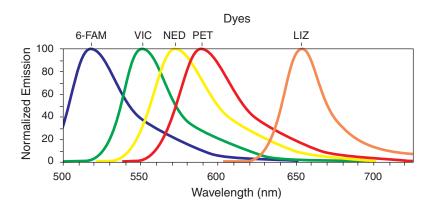


Figure 1-3 Emission spectra of the five dyes used in the AmpF/STR[®] SEfiler Plus[™] PCR Amplification Kit

Materials and Equipment

Kit Contents and Storage The AmpF/STR[®] SEfiler Plus[™] PCR Amplification Kit (PN 4382699) contains materials sufficient to perform 200 reactions at a 25-µL reaction volume.

IMPORTANT! The fluorescent dyes attached to the primers are lightsensitive. Protect the primer set from light when not in use. Amplified DNA, AmpFℓSTR[®] SEfiler Plus[™] Allelic Ladder, and GeneScan[™] 600 LIZ[®] Size Standard should also be protected from light. Keep freeze-thaw cycles to a minimum.

Table 1-2 AmpFℓSTR[®] SEfiler Plus[™] PCR Amplification Kit contents

Reagent	Contents	Quantity	Storage
AmpFℓSTR [®] SEfiler Plus [™] Primer Set	Forward and reverse primers to amplify human DNA target	1 tube, 0.50 mL	-15 to -25 °C on receipt, 2 to 8 °C after initial use
AmpF <i>t</i> STR [®] SEfiler Plus [™] Master Mix	Two tubes of Master Mix containing enzyme, salts, dNTPs, carrier protein, and 0.05% sodium azide	2 tubes, 0.50 mL/tube	-15 to -25 °C on receipt, 2 to 8 °C after initial use
AmpF <i>t</i> STR [®] SEfiler Plus [™] Allelic Ladder	Allelic ladder containing amplified alleles (refer to "AmpF/STR [®] SEfiler Plus [™] Kit loci and alleles" on page 1-3 for a list of alleles included in the ladder)	1 tube, 50 μL	-15 to -25 °C on receipt, 2 to 8 °C after initial use
AmpFtSTR [®] Control DNA 007	0.10 ng/μL human male 007 DNA in 0.02% sodium azide and buffer (refer to "AmpFtSTR [®] SEfiler Plus [™] Kit loci and alleles" on page 1-3 for profile)	1 tube, 0.3 mL	2 to 8 °C

Standards for Samples	 For the AmpFℓSTR[®] SEfiler Plus[™] Kit, the panel of standards needed for PCR amplification, PCR product sizing, and genotyping are: Control DNA 007 – A positive control for evaluating the efficiency of the amplification step and STR genotyping using the AmpFℓSTR[®] SEfiler Plus[™] Allelic Ladder.
	 GeneScan[™] 600 LIZ[®] Size Standard – A size standard used for obtaining sizing results in the 60 to 400 nt range during use with the AmpFℓSTR SEfiler Plus kit. The GeneScan 600 LIZ Size Standard contains 36 single-stranded fragments of 20, 40, 60, 80, 100, 114, 120, 140, 160, 180, 200, 214, 220, 240, 250, 260, 280, 300, 314, 320, 340, 360, 380, 400, 414, 420, 440, 460, 480, 500, 514, 520, 540, 560, 580, and 600 nucleotides. This standard has been evaluated as an internal size standard, and it yields precise sizing results for AmpFℓSTR SEfiler Plus PCR products. Order the GeneScan 600 LIZ Size Standard (PN 4366589) separately.
	• AmpF/STR [®] SEfiler Plus [™] Allelic Ladder – An allelic ladder developed by Applied Biosystems for accurate characterization of the alleles amplified by the SEfiler Plus kit. The AmpF/STR SEfiler Plus Allelic Ladder contains most alleles reported for the 11 autosomal loci. Refer to "Loci Amplified by the Kit" on page 1-3 for a list of the alleles included in the SEfiler Plus kit.

Equipment and
Materials Not
IncludedTables 1-3 and 1-4 list required and optional equipment and materials
not supplied with the SEfiler Plus kit. Unless otherwise indicated,
many of the items are available from major laboratory suppliers
(MLS).

Table 1-3	Equipment	

Equipment	Source
Applied Biosystems 3130/3100x/ Genetic Analyzer	Contact your local Applied Biosystems sales
ABI PRISM® 3100/3100-Avant Genetic Analyzer	representative
ABI PRISM® 310 Genetic Analyzer	_
GeneAmp [®] PCR System 9700 with the Silver 96-Well block	N8050001
GeneAmp [®] PCR System 9700 with the Gold-plated silver block	4314878
Silver 96-Well sample block	N8050251

Table 1-3 Equipment (continued)

Equipment	Source
Gold-plated Silver 96-Well sample block	4314443
Tabletop centrifuge with 96-well plate adapters (optional)	Major Laboratory Supplier (MLS)

Table 1-4 User-supplied materials[‡]

Material	Source
AmpFtSTR [®] SEfiler Plus [™] PCR Amplification Kit	4382699
3130/3100x/ Analyzer materials	
96-Well Plate Septa	4315933
Reservoir Septa	4315932
3130xl/3100 Genetic Analyzer Capillary Array, 36-cm	4315931
3130/3100-Avant Genetic Analyzer Capillary Array, 36-cm	4333464
POP-4 [™] Polymer for 3130/3130 <i>x</i> / Genetic Analyzers	4352755
3100/3100-Avant Genetic Analyzer Autosampler Plate Kit, 96-well	4316471
GeneScan [™] 600 LIZ [®] Size Standard	4366589
Running Buffer, 10×	402824
DS-33 Matrix Standard Kit (Dye Set G5)	4345833
MicroAmp [™] Optical 96-Well Reaction Plate	N8010560
Hi-Di [™] Formamide	4311320

For a complete list of parts and accessories for the 3130/3130*xl* instrument, refer to Appendix A of the *Applied Biosystems 3130/3130xl Genetic Analyzers Maintenance, Troubleshooting, and Reference Guide* (PN 4352716).

Table 1-4	User-supplied materials [‡]	(continued)
-----------	--------------------------------------	-------------

Material	Source	
3100/3100-Avant Analyzer materials		
96-Well Plate Septa	4315933	
Reservoir Septa	4315932	
3130x//3100 Genetic Analyzer Capillary Array, 36-cm	4315931	
3130/3100-Avant Genetic Analyzer Capillary Array, 36-cm	4333464	
POP-4 [™] Polymer for 3100/3100- <i>Avant</i> Genetic Analyzers	4316355	
3100/3100-Avant Genetic Analyzer Autosampler Plate Kit, 96-well	4316471	
GeneScan [™] 600 LIZ [®] Size Standard	4366589	
Running Buffer, 10×	402824	
DS-33 Matrix Standard Kit (Dye Set G5)	4345833	
MicroAmp [™] Optical 96-Well Reaction Plate	N8010560	
250-μL Glass Syringe, (array-fill syringe)	4304470	
5.0-mL Glass Syringe, (polymer-reserve syringe)	628-3731	
For a complete list of parts and accessories for the 3100/3100-Avant instrument, refer to Appendix B of the ABI PRISM [®] 3100 Genetic Analyzer and 3100-Avant Genetic Analyzer User Reference Guide (PN 4335393).		
310 Analyzer materials		
310 Genetic Analyzer Capillary, 47-cm	402839	
0.5-mL Sample Tray	5572	
96-Well Tray Adaptor (for 9700 thermal cycler trays)	4305051	
GeneScan [™] 600 LIZ [®] Size Standard	4366589	
Running Buffer, 10×	402824	
Genetic Analyzer Septa Retainer Clips for 96-Tube Sample Tray	402866	
Genetic Analysis Sample Tubes (0.5-mL)	401957	

Table 1-4 User-supplied materials[‡] (continued)

Material	Source
Septa for 0.5-mL Sample Tubes	401956
DS-33 Matrix Standard Set [6FAM [™] , VIC [®] , NED [™] , PET [®] , and LIZ [®] dyes] for ABI PRISM [®] 310/377 systems	4318159
MicroAmp [™] 8-Tube Strip, 0.2-mL	N8010580
MicroAmp [™] 96-Well Base (holds 0.2-mL reaction tubes)	N8010531
MicroAmp [™] 96-Well Full Plate Cover	N8010550
MicroAmp [™] 96-Well Tray/Retainer Set	403081
POP-4 [™] Polymer for the 310 Genetic Analyzer	402838
For a complete list of parts and accessories for the 310 instrument, refer to Appendix B of the ABI PRISM® 310 Genetic Analyzer User Guide (PN 4317588).	
PCR Amplification	
MicroAmp [™] 96-Well Tray	N8010541
MicroAmp [®] Reaction Tube with Cap, 0.2-mL	N8010540
MicroAmp [™] 8-Tube Strip, 0.2-mL	N8010580
MicroAmp [™] 8-Caps Strip	N8010535
MicroAmp [™] 96-Well Tray/Retainer Set	403081
MicroAmp [™] 96-Well Base	N8010531
MicroAmp [™] Optical 96-Well Reaction Plate	N8010560
Other user-supplied materials	
Hi-Di [™] Formamide, 25-mL	4311320
Aerosol-resistant pipette tips	MLS
Microcentrifuge tubes	MLS
Pipettors	MLS
Tape, labeling	MLS

 Table 1-4
 User-supplied materials[‡] (continued)

Material	Source
Tube, 50-mL Falcon	MLS
Tube decapper, autoclavable	MLS
Deionized water, PCR grade	MLS
Tris-HCL, pH 8.0	MLS
EDTA, 0.5 M	MLS
Vortex	MLS

‡ For the Material Safety Data Sheet (MSDS) of any chemical not distributed by Applied Biosystems, contact the chemical manufacturer. Before handling any chemicals, refer to the MSDS provided by the manufacturer, and observe all relevant precautions.

Chapter 2

PCR Amplification

AmpF&TR[®] SEfiler Plus[™] PCR Amplification Kit User Guide

This chapter covers:

PCR Work Areas	2-2
Required User-Supplied Materials and Reagents	2-4
Quantifying DNA	2-5
Preparing the Reactions.	2-7
Performing PCR	2-9
Amplification Using Bloodstained FTA Cards2	-10

PCR Work Areas

Work Area Setup and Lab Design	Many resources are available for the appropriate design of a PCR laboratory.
	 If you are using the AmpFℓSTR[®] SEfiler Plus[™] PCR Amplification Kit for forensic DNA testing, refer to <i>Forensic</i> <i>Laboratories: Handbook for Facility Planning, Design,</i> <i>Construction and Moving</i>, National Institute of Justice, 1998 (www.nij.org/publications).
	• If you are using the SEfiler Plus kit for parentage DNA testing, refer to the <i>Guidance for Standards for Parentage Relationship Testing Laboratories</i> , American Association of Blood Banks, 7th edition, 2004.
	The sensitivity of the SEfiler Plus kit (and other PCR-based tests) enables amplification of minute quantities of DNA, necessitating precautions to avoid contamination of samples yet to be amplified (Kwok and Higuchi, 1989).
	Also take care while handling and processing samples to prevent contamination by human DNA. Wear gloves at all times and change them frequently. Close sample tubes when not in use. Limit aerosol dispersal by handling sample tubes and reagents carefully.
	Note: Applied Biosystems does not intend these references for laboratory design to constitute all precautions and care necessary for using PCR technology.
PCR Setup Work Area	IMPORTANT! These items should never leave the PCR Setup Work Area.
	Calculator
	Gloves, disposable
	Marker pen, permanent
	Microcentrifuge
	• Microcentrifuge tubes, 1.5-mL, or 2.0-mL, or other appropriate clean tube (for Master Mix preparation)
	Microcentrifuge tube rack
	• Pipette tips, sterile, disposable hydrophobic filter-plugged

- Pipettors
- Tube decapper, autoclavable
- Vortex

Amplified DNA
Work AreaThe following GeneAmp[®] PCR Systems should be placed in the
Amplified DNA Work Area.

- Silver block 96-Well GeneAmp[®] PCR System 9700
- Gold-plated silver block GeneAmp[®] PCR System 9700

Required User-Supplied Materials and Reagents

Each AmpFℓSTR[®] SEfiler Plus[™] PCR Amplification Kit contains Kit Contents and materials sufficient to perform 200 reactions at a 25-µL reaction Storage volume. See "Kit Contents and Storage" on page 1-12 for details on SEfiler Plus kit contents. **IMPORTANT!** The fluorescent dyes attached to the primers are lightsensitive. Protect the primer set from light when not in use. Amplified DNA, AmpFℓSTR[®] SEfiler Plus[™] Allelic Ladder, and GeneScan[™] 600 LIZ[®] Size Standard should also be protected from light. Minimize freeze-thaw cycles. **User-Supplied** In addition to the SEfiler Plus kit reagents, the use of low TE buffer (10 mM Tris, 0.1 mM EDTA, pH 8.0) is recommended. You can Reagents prepare the buffer as described in the following table or order it from Teknova (Cat # T0223).

To prepare low TE buffer

1.	Mix together: • 10 mL of 1 M Tris-HCl, pH 8.0	
	• 0.2 mL of 0.5 M EDTA, pH 8.0	
	 990 mL glass-distilled or deionized water 	
	WARNING CHEMICAL HAZARD. EDTA. Exposure causes eye irritation. Read the MSDS, and follow the handling instructions. Wear appropriate protective eyewear, clothing, and gloves.	
	Note: Adjust the volumes accordingly for specific needs.	
2.	Aliquot and autoclave the solutions.	
3.	Store at room temperature.	

Quantifying DNA

Importance of Quantitation	Quantifying the amount of DNA in a sample before amplification allows you to determine whether or not sufficient DNA is present to permit amplification and to calculate the optimum amount of DNA to add to the reaction. The optimum amount of DNA for the SEfiler Plus Kit is 0.50 to 0.75 ng in a maximum input volume of 10 μ L.
	If too much DNA is added to the PCR reaction, then the increased amount of PCR product that is generated can result in:
	• Fluorescence intensity that exceeds the linear dynamic range for detection by the instrument ("off-scale" data). Off-scale data are problematic because:
	 Quantitation (peak height and area) for off-scale peaks is not accurate. For example, an allele peak that is off-scale can cause the corresponding stutter peak to appear higher in relative intensity, thus increasing the calculated percent stutter.
	 Multicomponent analysis of off-scale data is not accurate, and it results in poor spectral separation ("pull-up").
	Incomplete A nucleotide addition.
	When the total number of allele copies added to the PCR is extremely low, allelic dropout can occur resulting in a partial profile.
Methods for Quantifying DNA	Applied Biosystems provides several kits for quantifying DNA in samples. See the reference cited in Table 2-1 on page 2-6 for details about these kits.

Table 2-1 Methods for quantifying DNA

Product	Description	References
Quantifiler [®] Y Human Male DNA Quantification Kit (PN 4343906)	 Properties: Both Quantifiler[®] kits have high specificity for human DNA. The Quantifiler[®] Y kit is highly specific for human male DNA. 	Quantifiler [®] Human DNA Quantification Kits User's Manual (PN 4344790)
Quantifiler [®] Human DNA Quantification Kit	 The kit detects single-stranded and degraded DNA. 	
(PN 4343895)	How it works:	
	The DNA quantification assay combines two 5' nuclease assays:	
	 A target-specific (human DNA or human male DNA) assay, which consists of two primers for amplifying human or human male DNA and one TaqMan[®] MGB probe labeled with FAM[™] dye for detecting the amplified sequence 	
	 An internal PCR control (IPC) assay, which consists of an IPC template DNA (a synthetic sequence not found in nature), two primers for amplifying the IPC template DNA, and one TaqMan MGB probe labeled with VIC[®] dye for detecting the amplified IPC DNA 	

Preparing the Reactions

SEfiler Plus Kit Reactions

To prepare the reactions

1. Calculate the volume of each component needed to prepare the reactions, using the table below.

Component	
AmpFtSTR® SEfiler Plus™ Primer Set Note: Include additional reactions in your calcul provide excess volume for the loss that occurs dur transfers. 2. Prepare reagents. Thaw the AmpFtSTR® SEfiler Master Mix and the AmpFtSTR® SEfiler Plus™ I	olume Per eaction (µL)
 Note: Include additional reactions in your calcul provide excess volume for the loss that occurs dur transfers. Prepare reagents. Thaw the AmpFℓSTR[®] SEfiler Master Mix and the AmpFℓSTR[®] SEfiler Plus[™] I 	10.0
 provide excess volume for the loss that occurs dur transfers. 2. Prepare reagents. Thaw the AmpFℓSTR[®] SEfiler Master Mix and the AmpFℓSTR[®] SEfiler Plus[™] I 	5.0
Master Mix and the AmpFℓSTR [®] SEfiler Plus [™] I	
them briefly before opening the tubes.	Primer Set,
IMPORTANT! Thawing is required only during f the kit. After first use, reagents are stored at 2 to therefore, do not require subsequent thawing. Do refreeze the reagents.	o 8 °C and,
3. Pipette the required volumes of components into appropriately sized polypropylene tube.) an
4. Vortex the reaction mix for 3 seconds, then centr briefly.	rifuge
 5. Dispense 15 μL of the reaction mix into each reaction a MicroAmp[™] Optical 96-Well Reaction Plate on MicroAmp[®] Reaction Tube. 	ction well of r each

To prepare the reactions (continued)

6.	Prepare the DNA sat	mples:
	DNA Sample	To Prepare
	Negative Control	Add 10 µL of low TE buffer.
	Your Sample	Dilute a portion of your DNA sample with low TE buffer so that 0.50 to 0.75 ng of total DNA is in a final volume of 10 μ L. Add your sample to the reaction mix.
	Positive Control	Combine 5 μ L of control DNA (0.1 ng/ μ L) with 5 μ L of low TE buffer for a total volume of 10 μ L. (The final sample concentration is 0.05 ng/ μ L.) Add to the reaction mix.
	Note: The final read	ction volume should be 25 μ L.
7.		at 3,000 rpm for about 20 seconds in a with plate holders to remove any bubbles.
8.		a Silver block 96-Well GeneAmp [®] PCR fold-plated silver block GeneAmp [®] PCR

Performing PCR

To run PCR

	Initial Incubation	Cycle (30 cycles)		Final Extension	Final Hold	
	Step	De- nature	Anneal	Extend	-	
	HOLD		CYCLE	1	HOLD	HOLD
	95 °C 11 min	94 °C 20 sec	59 °C 2 min	72 °C 1 min	60 °C 60 min	4 °C ∞
2.	During inst	RNING P	PHYSICA peration, 1	L INJU	RY HAZAF	RD. e heated
	cover. During instruction cover can be	RNING F rument op e as high ck can be ated cove	PHYSICA peration, t as 108 °C as high as	L INJU the tempe the s 100 °C.	RY HAZAF rature of the temperature Keep hands	RD. the heated to f the
3.	cover. During instruction cover can be sample block from the he	RNING F rument op e as high ek can be ated cove n.	PHYSICA peration, t as 108 °C as high as r and sam	L INJU the tempe the s 100 °C.	RY HAZAF rature of the temperature Keep hands	RD. the heated to f the
3.	cover. WAF During instr cover can be sample bloc from the he Start the run	RNING F rument op e as high ck can be ated cove n. nplified I	PHYSICA peration, 1 as 108 °C as high as r and sam DNA.	AL INJU the tempe b, and the s 100 °C. ple block	RY HAZAF rature of the temperature Keep hands	RD. the heated to f the
2. 3. 4.	cover. During instruction cover can be sample bloc from the he Start the run Store the an	RNING F rument op e as high ck can be ated cove n. nplified I	PHYSICA peration, 1 as 108 °C as high as r and sam DNA.	AL INJU the tempe c, and the s 100 °C. aple block Stor	RY HAZAF rature of the temperature Keep hands	RD. the heated to f the

Amplification Using Bloodstained FTA Cards

FTA[™]-treated DNA collection cards can be useful for the collection, storage, and processing of biological samples. You can place a small punch disk of the bloodstained card directly into an amplification tube, purify it, and amplify it without transferring the evidence. Applied Biosystems studies indicate that a 1.2-mm bloodstained disk contains approximately 5 to 20 ng DNA. An appropriate cycle number for this high quantity of DNA is 25 cycles. It is recommended that each laboratory determine the cycle number based on individual validation studies.

In the example shown in Figure 2-1, a 1.2-mm disk of a bloodstained FTA card was purified using three washes with FTA Purification Reagent and two washes with $1 \times$ TE buffer. After drying at room temperature overnight, the punch was then amplified directly in the MicroAmp[®] tube for 25 cycles.

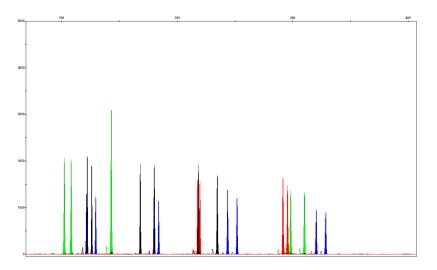


Figure 2-1 AmpF/STR[®] SEfiler Plus[™] PCR Amplification Kit results from a 1.2-mm FTA bloodstain disk (25-cycle amplification), analyzed on the Applied Biosystems 3130*x*/ Genetic Analyzer

Part Number 4385739 Rev. B 03/2012

Chapter 3

Electrophoresis

AmpF&TR[®] SEfiler Plus[™] PCR Amplification Kit User Guide

This chapter covers:

Allelic Ladder Requirements	3-2
Setting-Up the 3100/3100- <i>Avant</i> or 3130/3130xl Instrument for Electrophoresis	.3-3
Preparing Samples for Electrophoresis on the 3100/3100- <i>Avant</i> or 3130/3130 <i>xl</i> Instrument	.3-5
Setting-Up the 310 Instrument for Electrophoresis	3-7
Preparing Samples for Electrophoresis on the 310 Instrument	3-8

Allelic Ladder Requirements

To accurately genotype samples, use an Allelic Ladder sample that is run with the samples. Applied Biosystems recommends that for:

- ABI PRISM[®] 310 Genetic Analyzer Run at least one allelic ladder for every 10 sample injections.
- ABI PRISM[®] 3100 or Applied Biosystems 3130 series instruments – Run at least one allelic ladder for each set of 16 samples.
 - Applied Biosystems 3130xl or ABI PRISM[®] 3100 systems One ladder per injection; one injection = 16 samples (15 samples + 1 allelic ladder)
 - Applied Biosystems 3130 or ABI PRISM[®] 3100-Avant –
 One ladder for every 4 injections; one injection = 4 samples

IMPORTANT! Variation in laboratory temperature can cause changes in fragment migration speed, which can, in turn, cause sizing variation. Applied Biosystems recommends the above frequency of allelic ladder injections to account for normal variation in run speed. However, during internal validation studies, each laboratory should verify the required allelic ladder injection frequency to ensure accurate genotyping of all samples in each laboratory environment.

It is critical to genotype using an allelic ladder that is run under the same conditions as the samples because:

- Size values obtained for the same sample can differ between instrument platforms because of different polymer matrices and electrophoretic conditions.
- Slight procedural and reagent variations between single and multiple capillaries result in greater size variation than that found between samples injected in the same capillary in a single run.

Setting-Up the 3100/3100-Avant or 3130/3130x/ Instrument for Electrophoresis

Reagents and Parts	Table 1-4 on page 1-14 lists the required materials not supplied with the AmpFℓSTR [®] SEfiler Plus [™] PCR Amplification Kit.
	IMPORTANT! The fluorescent dyes attached to the primers are light- sensitive. Protect the primer set from light when not in use. Amplified DNA, AmpFℓSTR [®] SEfiler Plus [™] Allelic Ladder, and GeneScan [™] 600 LIZ [®] Size Standard should also be protected from light. Minimize freeze-thaw cycles.
Electrophoresis Setup Software and Reference	Table 3-1 lists data collection software and the run modules that you can use to analyze SEfiler Plus kit products. For details on the procedures, refer to the documents listed in the table.
Documents	Table 3-1 SEfiler Plus kit: data collection software and reference documents for use with the 3100/3100-Avant or 3130/3130x/

Operating System	Data Collection Software	Run Module	References
Windows XP	3.0 (3130/3130 <i>xl</i> Analyzer) [‡]	 HIDFragmentAnalysis36_ POP4_1 Dye Set G5 	Applied Biosystems 3130/3130xl Genetic Analyzers Using Data Collection Software v3.0, Protocols for Processing AmpF&TR [®] PCR Amplification Kit PCR Products User Bulletin (PN 4363787).
Windows 2000	2.0	 HIDFragmentAnalysis36_POP4_1 Dye Set G5 	ABI PRISM [®] 3100/3100-Avant Genetic Analyzers Using Data Collection Software v2.0, Protocols for Processing AmpF&TR [®] PCR Amplification Kit PCR Products User Bulletin (PN 4350218)

instruments

Operating System	Data Collection Software	Run Module	References
Windows NT [®]	1.1 (3100 Analyzer)	Run Module: GeneScan36vb_DyeSetG5Module Analysis Module: GS600Analysis.gsp	ABI PRISM [®] 3100/3100-Avant Genetic Analyzers Protocols for Processing AmpF STR [®] PCR Amplification Kit PCR Products User Bulletin (PN 4332345)
	1.0 (3100-Avant Analyzer)	Run Module: GeneScan36Avb_DyeSetG5Module Analysis Module: GS600Analysis.gsp	

‡ Applied Biosystems performed validation studies for the SEfiler Plus kit using this configuration.

Preparing Samples for Electrophoresis on the 3100/3100-Avant or 3130/3130x/ Instrument

Preparing the Samples

Prepare the samples for electrophoresis on the 3100/3100-Avant or 3130/3130xl instrument immediately before loading.

To prepare samples for electrophoresis

1.	Calculate the volume of Hi-Di [™] For 600 LIZ [®] Internal Size Standard new samples, using the table below.	
	Reagent	Volume per reaction (µL)
	GeneScan [™] 600 LIZ [®] Size Standard	0.6
	Hi-Di [™] Formamide	8.4
	Note: Include additional samples in provide excess volume for the loss th transfers.	
	IMPORTANT! The volume of size stable is a suggested amount. Determ amount of size standard based on your warning CHEMICAL H	nine the appropriate our results/experiments.
	Formamide. Exposure causes eye, s irritation. It is a possible developme hazard. Avoid breathing vapor. Use ventilation. Avoid contact with eyes MSDS, and follow the handling inst appropriate protective eyewear, clother eyewear.	kin, and respiratory tract intal and birth defect with adequate and skin. Read the tructions. Wear
2.	Pipette the required volumes of com appropriately sized polypropylene to	
3.	Vortex the tube, then centrifuge brie	efly.

To prepare samples for electrophoresis (continued)
--

4.	 Into each well of a MicroAmp[™] Optical 96-Well Reaction Plate, add: 9 μL of the formamide:size standard mixture 1 μL of PCR product or Allelic Ladder Note: For blank wells, add 10 μL of Hi-Di[™] formamide.
5.	Seal the reaction plate with appropriate septa, then briefly centrifuge the plate to ensure that the contents of each well are mixed and collected at the bottom.
6.	Heat the reaction plate in a thermal cycler for 3 minutes at 95 °C. WARNING PHYSICAL INJURY HAZARD. During instrument operation, the temperature of the heated cover can be as high as 108 °C, and the temperature of the sample block can be as high as 100 °C. Keep hands away from the heated cover and sample block.
7.	Immediately place the plate on ice for 3 minutes.
8.	Prepare the plate assembly on the autosampler.
9.	Start the electrophoresis run.

Setting-Up the 310 Instrument for Electrophoresis

Table 1-4 on page 1-14 lists the required materials not supplied with Reagents and the AmpFℓSTR[®] SEfiler Plus[™] PCR Amplification Kit. Parts

IMPORTANT! The fluorescent dyes attached to the primers are lightsensitive. Protect the primer set from light when not in use. Amplified DNA, AmpFISTR[®] SEfiler Plus[™] Allelic Ladder, and GeneScan[™] 600 LIZ[®] Size Standard should also be protected from light. Minimize freeze-thaw cycles.

Electrophoresis Table 3-2 lists data collection software and the run modules that you can use to analyze SEfiler Plus kit products. For details on the Setup Software and Reference Documents

procedures, refer to the documents listed in the table. Table 3-2 SEfiler Plus kit: data collection software and reference

							• • • • • •
docur	nen	ts for us	se wit	h the	e 310	instrument	

Operating System	Data Collection Software	Run Module	References
Windows XP	3.1 [‡]	GS STR POP4 (1ml) G5 v2.md5	ABI PRISM [®] 310 Genetic Analyzer User's Manual (Windows) (PN 4317588)
			ABI PRISM [®] 310 Protocols for Processing AmpFlSTR [®] PCR Amplification Kit Products with Microsoft Windows NT Operating System: User Bulletin (PN 4341742)
Windows NT [®] and Windows 2000	3.0	GS STR POP4 (1ml) G5 v2.md5	ABI PRISM [®] 310 Genetic Analyzer User's Manual (Windows) (PN 4317588)
			ABI PRISM [®] 310 Protocols for Processing AmpFtSTR [®] PCR Amplification Kit Products with Microsoft Windows NT Operating System: User Bulletin (PN 4341742)

‡ Applied Biosystems conducted concordance studies for the SEfiler Plus kit using this configuration.

Preparing Samples for Electrophoresis on the 310 Instrument

Preparing the Prepare the samples for electrophoresis on the 310 instrument immediately before loading. Samples To prepare samples for electrophoresis Calculate the volume of Hi-DiTM Formamide and GeneScanTM 1. 600 LIZ[®] Internal Size Standard needed to prepare the samples, using the table below. Volume Reagent per reaction (µL) GeneScan[™] 600 LIZ[®] Size Standard 1.0 Hi-Di[™] Formamide 24.0 **Note:** Include additional samples in your calculations to provide excess volume for the loss that occurs during reagent transfers. **IMPORTANT!** The volume of size standard indicated in the table is a suggested amount. Determine the appropriate amount of size standard based on your results/experiments. WARNING CHEMICAL HAZARD. Hi-Di Formamide. Exposure causes eye, skin, and respiratory tract irritation. It is a possible developmental and birth defect hazard. Avoid breathing vapor. Use with adequate ventilation. Avoid contact with eyes and skin. Read the MSDS, and follow the handling instructions. Wear appropriate protective eyewear, clothing, and gloves. 2. Pipette the required volumes of components into an appropriately sized polypropylene tube. 3. Vortex the tube, then centrifuge briefly.

To prepare samples for electrophoresis (continued)

4.	 Into each 0.2-mL or 0.5-mL sample tube, add: 25 μL of the formamide:size standard mixture 1.5 μL of PCR product or Allelic Ladder
5.	Seal the tubes with appropriate septa, then briefly centrifuge the tubes to ensure that the contents of each tube are mixed and collected at the bottom.
6.	Heat the tubes in a thermal cycler for 3 minutes at 95 °C. WARNING PHYSICAL INJURY HAZARD. During instrument operation, the temperature of the heated cover can be as high as 108 °C, and the temperature of the sample block can be as high as 100 °C. Keep hands away from the heated cover and sample block.
7.	Immediately place the tubes on ice for 3 minutes.
8.	Place the sample tray on the autosampler.
9.	Start the electrophoresis run.

Part Number 4385739 Rev. B 03/2012

Chapter 4

Analyzing Data

AmpF&TR[®] SEfiler Plus[™] PCR Amplification Kit User Guide

This chapter covers:

Overview of GeneMapper® ID Software
Setting Up GeneMapper [®] <i>ID</i> Software v3.2.1 for Analyzing AmpFℓSTR [®] SEfiler Plus [™] Kit Data4-3
Analyzing and Editing Sample Files with GeneMapper [®] ID Software

Overview of GeneMapper® ID Software

What Does GeneMapper <i>ID</i> Software Do?	GeneMapper [®] <i>ID</i> Software is an automated genotyping software solution for forensic, paternity, and database data analysis and other genotyping needs.
	After electrophoresis, the data collection software stores information for each sample in a .fsa file. Using GeneMapper <i>ID</i> v3.2.1 software, you can then analyze and interpret the data.
Instruments	Refer to "Instrument and Software Overview" on page 1-10 for a list of compatible instruments.
Before You Start	When using GeneMapper <i>ID</i> Software version 3.2.1 to perform Human Identification (HID) analysis with AmpF <i>l</i> STR [®] kits, consider that:
	• HID analysis requires at least one allelic ladder sample per run folder. Your laboratory can use multiple ladder samples in an analysis as long as it performs the appropriate validation studies.
	For multiple ladder samples, the GeneMapper <i>ID</i> Software calculates allelic bin offsets by using an average of all ladders that use the same panel within a run folder.
	• Allelic ladder samples in an individual run folder are considered to be from a single run.
	When the software imports multiple run folders into a project, only the ladder(s) within their respective run folders are used for calculating allelic bin offsets and subsequent genotyping.
	• Allelic ladder samples need to be identified as "Allelic Ladder" in the Sample Type column in a project. Failure to apply this setting for ladder samples results in failed analysis.
	 Allelic bin definitions are stored in the AmpFLSTR_SEfiler_Plus_Panels_v1 in the Panel Manager.
	• Injections containing the allelic ladder must be analyzed with the same analysis method and parameter values that are used for samples to ensure proper allele calling.
	When using GeneMapper <i>ID-X</i> Software version 1.0 to perform Human Identification (HID) analysis with AmpF <i>l</i> STR [®] kits, refer to the <i>GeneMapper[®] ID-X Software Version 1.0 Human Identification</i> <i>Analysis Getting Started Guide</i> (PN 4375574).

• Alleles not found in the AmpFlSTR[®] Allelic Ladders do exist. Off-ladder alleles may contain full and/or partial repeat units. An off-ladder allele is an allele that occurs outside the ±0.5-nt bin window of any known allelic ladder allele or virtual bin.

Note: If a sample allele peak is called as an off-ladder allele, the sample result needs to be verified according to the laboratory's protocol.

Setting Up GeneMapper[®] *ID* Software v3.2.1 for Analyzing AmpFℓSTR[®] SEfiler Plus[™] Kit Data

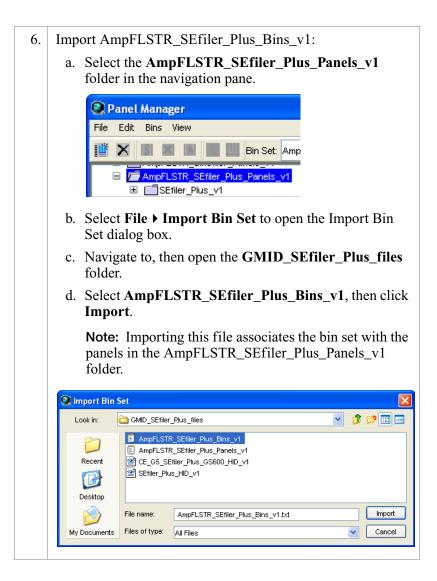
Overview

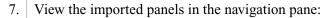
Before you can analyze sample (.fsa) files using GeneMapper *ID* Software v3.2.1 for the first time, you need to:

- Import panels and bins into the Panel Manager, as explained in "Importing Panels and Bins" on page 4-4.
- Import an analysis method as explained in "Importing an HID Analysis Method" on page 4-9.
- Define custom views of analysis tables.
- Refer to Chapter 1 of the *GeneMapper*[®] *ID Software Versions* 3.1 and 3.2 Human Identification Analysis Tutorial (PN 4335523) for more information.
- Define custom views of plots.
- Refer to Chapter 1 of the *GeneMapper*[®] *ID Software Versions* 3.1 and 3.2 Human Identification Analysis Tutorial (PN 4335523) for more information.

Note: For details about GeneMapper *ID* features, refer to the *GeneMapper*[®] *ID* Software Version 3.1 Human Identification Analysis User Guide (PN 4338775), *GeneMapper*[®] *ID* Software Versions 3.1 and 3.2 Human Identification Analysis Tutorial (PN 4335523). Also, refer to the Installation Procedures and New Features for GeneMapper[®] *ID* Software v3.2 User Bulletin (PN 4352543).

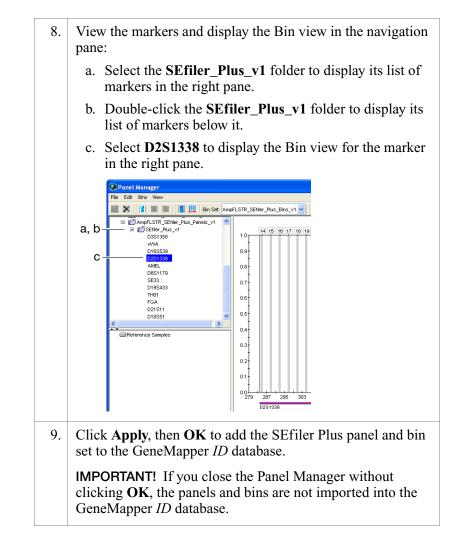
Note: For details about GeneMapper *ID-X*, refer to *GeneMapper*[®] *ID-X Software Version 1.0 Human Identification Analysis Getting Started Guide* (PN 4375574).


Importing Panels
and BinsTo import the SEfiler Plus kit panels and bin sets from the
Applied Biosystems web site into the GeneMapper *ID* software
database:


1.	 a. Download the GMID_SEfiler_Plus_files.zip file containing panels and bins from: www.appliedbiosystems.com ▶ Support ▶ Software Downloads ▶ Select GeneMapper[®] ID Software v3.2 ▶ Updaters & Patches. b. Unzip the file. 						
2.	Start the GeneMapper <i>ID</i> software, then log in with the appropriate user name and password. IMPORTANT! If you need log on instructions, refer to the <i>GeneMapper® ID Software Version 3.1 Human Identification Analysis User Guide</i> (PN 4338775), page 2-7.						
3.	Select Tools > Panel Manager to open the Panel Manager.						
4.	Find, then open the folder containing the panels and bins:a. Select Panel Manager in the navigation pane.						
	 Panel Manager File Edit Bins View Highlight this. b. Select File > Import Panels to open the Import Panels dialog box. c. Navigate to, then open the GMID_SEfiler_Plus_files folder that you unzipped in step . 						

5. Select AmpFLSTR_SEfiler_Plus_Panels_v1, then click Import.

Note: Importing this file creates a new folder in the navigation pane of the Panel Manager, AmpFLSTR_SEfiler_Plus_Panels_v1. This folder contains the panels and associated markers.


Look in:	🛅 GMID_SEfiler	_Plus_files	*	1	
Recent Desktop	AmpFLSTR	k_SEfiler_Plus_Bins_v1 <mark>k_SEfiler_Plus_Panels_v1</mark> filer_Plus_GS600_HID_v1 s_HID_v1			
1	File name:	AmpFLSTR_SEfiler_Plus_Panels_v1.txt			Impo
My Documents	Files of type:	All Files	•	~	Canc

- a. Double-click **AmpFLSTR_SEfiler_Plus_Panels_v1** folder to view the SEfiler_Plus_v1 folder.
 - b. Double-click the **SEfiler_Plus_v1** folder to display the panel information in the right pane and the markers below it.

File Edit Bins View							
🎬 🗙 📓 🕷 📓 🔜 Bin Set:	Amp	FLS	TR_SEfiler_Plus	_Bins_v1 💊		B	P
🗉 📂 AmpFLSTR_SEfiler_Plus_Panels_v1	^		Marker Name	Dye Color	Min Size	Max Size	Control
SEfiler_Plus_v1		1	D3S1358	blue	98.0	148.0	15,16
D3S1358		2	WVA.	blue	151.0	213.5	14,16
W/A		3	D16S539	blue	229.0	279.0	9,10
D16S539 D2S1338 AMEL			D2S1338	blue	284.0	350.0	20,23
			AMEL	green	106.0	114.0	X,Y
D8S1179		6	D8S1179	green	118.0	183.5	12,13
SE33 D19S433 TH01		7	SE33	green	190.0	350.0	17,25.
		8	D19S433	vellow	101.0	148.0	14,15
FGA		9	TH01	vellow	159.0	205.0	7,9.3
D21S11		10	FGA	vellow	206.25	360.0	24.26
D18S51	~		D21S11	red	184.5	247.5	28,31
		12	D18S51	red	264.49	350.0	12,15
Reference Samples		-	<				1.21.2

Importing an HID Analysis Method

The analysis method for the AmpFℓSTR[®] SEfiler Plus[™] PCR Amplification Kit uses the HID Advanced Mode Peak Detection Algorithm. This analysis method provides users with the same analysis parameters available in GeneScan[®] Software v3.7.1 for the Windows operating system.

Use the following procedure to import the analysis method for the SEfiler Plus kit from the folder that you downloaded from the Applied Biosystems web site into the GeneMapper *ID* software database. Refer to step 1a on page 4-4 for downloading instructions.

To import the HID Advanced Mode analysis method into GeneMapper *ID* software

1.	Select Tools > GeneMapper Manager to open the GeneMapper Manager.							
2.	Import an analysis method for HID_Advanced: a Select the Analysis Methods tab, then click Import							
	 a. Select the Analysis Methods tab, then click Import. CeneMapper Manager Projects Analysis Methods Table Settings Plot Settings Matrices Size Standards Narre SNaPshot Default 2005-03-16 16:00.3 gmid SNaPshot Peacer Provide Table Settings Navigate to, then open the GMID_SEfiler_Plus_files folder. 							
3.	3. Select SEfiler_Plus_HID_v1 , then click Import to import the SEfiler_Plus_HID_v1 analysis method into the GeneMapper <i>ID</i> database.							
	Import Analysis Method Import Analysis Method Look in: GMID_SEfiler_Plus_files Import Import Endow Import Import Import Plus_HID_v1 Import Import Import File name: SEfiler_Plus_HID_v1 xml Import Import Files of type: XML Files (*xml) Cancel							

To import the HID Advanced Mode analysis method into GeneMapper *ID* software *(continued)*

- 4. To view the settings in the SEfiler_Plus_HID_v1 analysis method:
 - a. Select the Analysis Methods tab.
 - b. Select **SEfiler_Plus_HID_v1** in the Name column, then click **Open**.

Table 4-1 on page 4-10 shows the settings for each tab of the Analysis Method Editor - HID.

Table 4-1 SEfiler_Plus_HID_v1 Advanced Mode analysis method settings

Tab	Settings						
General	Name: SEfiler_Plus_HID_v1						
	Analysis Method Editor - HID Ceneral Allele Peak Detector Peak Quality Quality Flags -Analysis Method Description Name: SEfiler_Plus_HID_v1						
	Description: SEfiler_Plus default Analysis Method version 1						
	Analysis Type: HID						
	OK Cancel						

)		Set	tings						
е	Analysis Method Editor - HID					X			
	General Allele Peak Detector Peak Quality Quality Flags								
	Bin Set: AmpFLSTR_SEfiler_Pl	us_Bins_v	1		~				
	Use marker-specific stutter	ratio if ava	ailable						
	Marker Repeat Type :	Tri	Tetra	Penta	Hexa				
	Cut-off Value	0.0	0.0	0.0	0.0				
	MinusA Ratio	0.0	0.0	0.0	0.0				
	MinusA Distance From	0.0	0.0	0.0	0.0				
	То	0.0	0.0	0.0	0.0				
	Minus Stutter Ratio	0.0	0.0	0.0	0.0				
	Minus Stutter Distance From	0.0	3.25	0.0	0.0				
	То	0.0	4.75	0.0	0.0				
	Plus Stutter Ratio	0.0	0.0	0.0	0.0				
	Plus Stutter Distance From	0.0	0.0	0.0	0.0				
	То	0.0	0.0	0.0	0.0				
	Range Filter			Fact	ory Defaults				
				Oł	K Cano	cel			
	 GeneMapper[®] ID S specify four types of penta, and hexa. Yo each type of repeat The "Use marker-sp check box is select software applies the AmpFLSTR_SEfiler 	of mar ou car in the pecific ed by e stutt	ker repe e enter p e approp stutter default er ratio	eat moti paramet priate co ratio if . Conse filters s	ifs: tri, te ter value olumn. available quently, upplied	s for e" the			
	Note: For more inform the <i>GeneMapper</i> [®] <i>ID S</i> <i>Identification Analysis</i> (PN 4338775) and the <i>Features for GeneMap</i> <i>Bulletin</i> (PN 4352543).	Softwa User (Install	are Vers Guide, (lation Pl	<i>ion 3.1</i> Chapter rocedur	Human 3 res and N	Vew			

Table 4-1 SEfiler_Plus_HID_v1 Advanced Mode analysis method settings *(continued)*

Table 4-1	SEfiler_Plus_HID_v1 Advanced Mode analysis method	
settings (c	ontinued)	

Tab	Settings
Peak Detector	IMPORTANT! Laboratories need to perform the appropriate internal validation studies to determine the peak amplitude threshold (highlighted in red below) that allows for reliable interpretation of SEfiler Plus data.
	Analysis Method Editor - HID General Allele Peak Detector Peak Quality Guality Flags Peak Detecton Algorithm Advanced Ranges Peak Detecton Partial Range Sizing Partial Range Peak Detecton Start PL 2500 Start Sizes Ø Stop Pt 10000 Stop Pt 10000 Smoothing None O Light Heavy Baseline Window: 51 Size Calling Method 0.0 Order Least Squares 0.0 O Lucic Southern Method Factory Defaults
	The software uses the peak detection parameters to specify the minimum peak height to limit the number of peaks detected. Although GeneMapper <i>ID</i> software displays peaks that occur below the specified amplitude in electropherograms, the software does not label or determine the genotype of these peaks. IMPORTANT! When analyzing data generated on an ABI PRISM [®] 310 Genetic Analyzer running on a Windows [®] NT platform, you may need to reduce the Peak Window Size from 15 to 13 to facilitate detection of each of the 1 bp microvariant alleles (21, 21.1, and 21.2) included in the SE33 allelic ladder. Laboratories must perform the appropriate internal validation studies to determine the Peak Window Size value that allows for reliable interpretation of SEfiler Plus [™] Kit data when run on an ABI PRISM [®] 310 Genetic Analyzer running on a Windows [®] NT platform.

Tab	Settings					
Peak Detector (continued)	Note: The analysis range is set by you based on location of the primer peaks and the size standard peaks.					
	Note: For information on peak-detection algorithms, refer to the <i>GeneMapper ID Software v3.1 Human Identification Analysis User Guide</i> (PN 4338775), Appendix A, and the <i>Installation Procedures and New Features for GeneMapper ID Software v3.2 User Bulletin</i> (PN 4352543).					
Peak Quality	Analysis Method Editor - HID					
	General Allele Peak Detector Peak Quality Quality Flags					
	Signal level Homozygous min peak height 200.0					
	Heterozygous min peak height 100.0					
	Heterozygote balance					
	Min peak height ratio					
	Peak morphology Max peak width (basepairs) 1.5					
	Pull-up peak					
	Pull-up ratio 0.05					
	Allele number					
	Max expected alleles 2					
	Factory Defaults					
	OK Cancel					

Table 4-1 SEfiler_Plus_HID_v1 Advanced Mode analysis method settings *(continued)*

Tab		Set	tings	
Quality Flags and PQV Thresholds	Quality weights are betwe -Quality Flag Settings Spectral Pull-up Broad Peak Out of Bin Allele Overlap	ector Peak Quality Quality Fi	Concordance 1.0 ak Height 0.3 e 0.8	
	PQV Thresholds	Pass Range:	Low Quality Range:	
		rom 0.75 to 1.0	From 0.0 to 0.25 From 0.0 to 0.25	
			Factory Defaults	
			OK Cancel	

 Table 4-1
 SEfiler_Plus_HID_v1
 Advanced
 Mode analysis
 method
 settings
 (continued)
 Image: continued
 Image: continued

Importing an HID Size Standard

The size standard for the AmpF ℓ STR[®] SEfiler PlusTM PCR Amplification Kit uses the following GS600 peaks in its sizing algorithm: 60, 80, 100, 114, 120, 140, 160, 180, 200, 214, 220, 240, 250, 260, 280, 300, 314, 320, 340, 360, 380, and 400.

Use the following procedure to import the size standard for the SEfiler Plus kit from the folder that you downloaded from the Applied Biosystems web site, into the GeneMapper *ID* software database. Refer to step 1a on page 4-4 for downloading instructions.

To import an HID Size Standard

1. Select **Tools** → **GeneMapper Manager** to open the GeneMapper Manager.

To import an HID Size Standard (continued)

Name	1	ĩ			
	Methods Table	Settings Plot Settin	ngs Matrices S Owner	Size Standards	Description
377_G5_HID	GS500	2006-09-20 14:10:2		Basic/Advanced	Factory Provided
377_F_HID_	- GS500	2006-09-20 14:10:2	gmid	Basic/Advanced	Factory Provided
		2006-09-20 14:10:2	gmid	Basic/Advanced	Factory Provided
		2006-09-20 14:10:2	gmid	Basic/Advanced	Factory Provided
<		-	111		
lew Op	en Save	e As Import.	Export.		Delete
					Done
folder.	•	•			
ect CE_ port to i	_ G5_SE import th	filer_Plus	s_GS60 _Plus_H	0_HID_v1, IID_v1 anal	then click
ect CE_ port to i o the Ge	_ G5_SE import th	filer_Plus he SEfiler_ ber <i>ID</i> data	s_GS60 _Plus_H	0_HID_v1,	then click
ect CE_ port to i o the Ge	G5_SE import the neMapp	filer_Plus he SEfiler ber <i>ID</i> data	s_GS60 _Plus_H	0_HID_v1, IID_v1 anal	then click
	377_F_HD_ CE_G5_HD CE_F_HD_ CE_F_HD_ Sw Op	377_F_HID_GS500 CE_G5_HID_GS500 CE_F_HID_GS500 CE_F_HID_GS500	377_F_HI0_C\$5500 2006-09-20 14:10:2 CE_G5_HID_C\$5500 2006-09-20 14:10:2 CE_F_HID_G\$500 2006-09-20 14:10:2 CE_F_HID_G\$500 2006-09-20 14:10:2	377_F_HID_c6S500 2006-09-2014:10:2 gmid CE_65_HID_6S500 2006-09-2014:10:2 gmid CE_F_HID_6S500 2006-09-2014:10:2 gmid W Open Save As Import Export.	377_F_HID_G\$\$500 2006-09-2014:10:2 gmid Basic/Advanced CE_G\$_HID_G\$\$500 2006-09-2014:10:2 gmid Basic/Advanced CE_F_HID_G\$\$500 2006-09-2014:10:2 gmid Basic/Advanced

Analyzing and Editing Sample Files with GeneMapper[®] *ID* Software

Analyzing a Project						
	1.	In the Project window, select File > Add Samples to Project , then navigate to the disk or directory containing the sample files.				
	2.	Apply analysis settings to the samples in the project.				
		Parameter	Advanced Analysis Method			
		Sample Type	Select the sample type.			
		Analysis Method	SEfiler_Plus_HID_v1			
		Panel	AmpFLSTR_SEfiler_Plus_Panels_v1			
		Size Standard [‡]	CE_G5_SEfiler_Plus_GS600_HID [§]			
		Matrix	Select a matrix for 310 instruments only.			
		ABI PRISM [®] Gene Operating Syster Caller User Bulle § The following fra size standard pro 60, 80, 100, 114, 280, 300, 314, 32 information about	ation about how the Size Caller works, refer to the eScan [®] Analysis Software for the Windows NT [®] <i>m</i> Overview of the Analysis Parameters and Size tin (PN 4335617). gments are defined for the CE_G5_HID_GS600 ovided with the AmpFt/STR [®] SEfiler Plus kit: 120, 140, 160, 180, 200, 214, 220, 240, 250, 260, 20, 340, 360, 380, and 400. For additional it size standards, refer to the GeneMapper [®] ID of 3.1 Human Identification Analysis User Guide ppendix D.			
	3.	 Project dialog), t The status b As a compercentag With text The table dianalyzed in sample). 	ze), enter a name for the project (in the Save then click OK to start analysis. our displays progress of analysis: npletion bar extending to the right with the ge indicated t messages on the left splays the row of the sample currently being green (or red if analysis failed for the rpes tab becomes available after analysis.			

Edit Analysis \		ois Heip				a a f				
🖻 🛯 🖻	<u> </u>	ш		1 🕨 🧯	Table Setting:	Concordance	~	D D B A3		
Project	Sample	s Geno	otypes							
⊞ [1_2007-04-1 ⊞ [1 2007-04-1]		Status	Sample File	Sample Name	Sample Type	Analysis Method	Panel	Size Standard	SQO SFNF	os so
a []1_2001-04-	1	6 J	101_A01.fsa	101	Sample	SEfiler_Plus_HID_v1	SEfiler_Plus_v1	CE_G5_SEfiler_Plus_GS600_HIE) 🔳	
	2	J.	102_B01.fsa	102	Sample	SEfiler_Plus_HID_v1	SEfiler_Plus_v1	CE_G5_SEfiler_Plus_GS600_HIE)	
	3	JM;	103_C01.fsa	103	Sample	SEfiler_Plus_HID_v1	SEfiler_Plus_v1	CE_G5_SEfiler_Plus_GS600_HID	>	
	4	I A	104_D01.fsa	104	Sample	SEfiler_Plus_HID_v1	SEfiler_Plus_v1	CE_G5_SEfiler_Plus_GS600_HID	>	
	5	J M;	105_E01.fsa	105	Sample	SEfiler_Plus_HID_v1	SEfiler_Plus_v1	CE_G5_SEfiler_Plus_GS600_HID		
	6	, m	106_F01.fsa	106	Sample	SEfiler_Plus_HID_v1	SEfiler_Plus_v1	CE_G5_SEfiler_Plus_GS600_HIE	P 🔳	
	7	1m	108_A02.fsa	108	Sample	SEfiler_Plus_HID_v1	SEfiler_Plus_v1	CE_G5_SEfiler_Plus_GS600_HIE		
	8		109_B02.fsa	109	Sample	SEfiler_Plus_HID_v1	SEfiler_Plus_v1	CE_G5_SEfiler_Plus_GS600_HIE	>	
	9		110_C02.fsa	110	Sample	SEfiler_Plus_HID_v1	SEfiler_Plus_v1	CE_G5_SEfiler_Plus_GS600_HID		
	10		111_D02.fsa	111	Sample	SEfiler_Plus_HID_v1	SEfiler_Plus_v1	CE_G5_SEfiler_Plus_GS600_HID		
	11		112_E02.fsa	112	Sample	SEfiler_Plus_HID_v1	SEfiler_Plus_v1	CE_G5_SEfiler_Plus_GS600_HD	>	
	12	1	113_F02.fsa	113	Sample	SEfiler_Plus_HID_v1	SEfiler_Plus_v1	CE_G5_SEfiler_Plus_GS600_HID		
	13		114_G02.fsa	114	Sample	SEfiler_Plus_HID_v1	SEfiler_Plus_v1	CE_G5_SEfiler_Plus_GS600_HID	5	
	14		ladder_G01.fsa	ladder	Allelic Ladder	SEfiler_Plus_HID_v1	SEfiler_Plus_v1	CE_G5_SEfiler_Plus_GS600_HID		
	15	1	115_A03.fsa	115	Sample	SEfiler_Plus_HID_v1	SEfiler_Plus_v1	CE_G5_SEfiler_Plus_GS600_HID		
	16		116_B03.fsa	116	Sample	SEfiler_Plus_HID_v1	SEfiler_Plus_v1	CE_G5_SEfiler_Plus_GS600_HID	5	
	17	<u> </u>	117_C03.fsa	117	Sample	SEfiler_Plus_HID_v1	SEfiler_Plus_v1	CE_G5_SEfiler_Plus_GS600_HD		
	18		118_D03.fsa	118	Sample	SEfiler_Plus_HID_v1	SEfiler_Plus_v1	CE_G5_SEfiler_Plus_GS600_HID		
	19		119_E03.fsa	119	Sample	SEfiler_Plus_HID_v1	SEfiler_Plus_v1	CE_G5_SEfiler_Plus_GS600_HIE	5	
	20	<u> </u>	120_F03.fsa	120	Sample	SEfiler_Plus_HID_v1	SEfiler_Plus_v1	CE_G5_SEfiler_Plus_GS600_HIE		
	21		122_A04.fsa	122	Sample	SEfiler_Plus_HID_v1	SEfiler_Plus_v1	CE_G5_SEfiler_Plus_GS600_HIE		
	22		123_B04.fsa	123	Sample	SEfiler_Plus_HID_v1	SEfiler_Plus_v1	CE_G5_SEfiler_Plus_GS600_HIE		
		<		1		-	1	-		

Figure 4-1 Project Window before analysis

For more information about any of these tasks, refer to the *GeneMapper*[®] *ID Software Version 3.1 Human Identification Analysis User Guide* (PN 4338775).

Examining and Editing a Project

You can display electropherogram plots from the Samples and Genotypes tabs of the Project window to examine the data. These procedures start with the Samples tab of the Project window (assuming the analysis is complete).

For more information about any of these tasks, refer to:

- Installation Procedures and New Features for GeneMapper[®] ID Software v3.2 User Bulletin (PN 4352543)
- GeneMapper[®] ID Software Version 3.1 Human Identification Analysis User Guide (PN 4338775)
- GeneMapper[®] ID Software Versions 3.1 and 3.2 Human Identification Analysis Tutorial (PN 4335523)

Part Number 4385739 Rev. B 03/2012

5

Experiments and Results

This chapter covers:

Overview
Developmental Validation
Accuracy, Precision, and Reproducibility
Extra Peaks in the Electropherogram5-21
Characterization of Loci
Species Specificity
Sensitivity
Stability
Mixture Studies
Population Data
Mutation Rate
Probability of Identity
Probability of Paternity Exclusion5-52

Overview

Experiments Using AmpFℓSTR [®] SEfiler Plus [™] Kit	This chapter provides results of the developmental validation experiments performed by Applied Biosystems using the AmpFℓSTR [®] SEfiler Plus [™] PCR Amplification Kit (SEfiler Plus kit).
Importance of Validation	Validation of a DNA typing procedure for human identification applications is an evaluation of the procedure's efficiency, reliability, and performance characteristics. By challenging the procedure with samples commonly encountered in forensic and parentage laboratories, the validation process uncovers attributes and limitations that are critical for sound data interpretation in casework (Sparkes, Kimpton, Watson <i>et al.</i> , 1996; Sparkes, Kimpton, Gilbard <i>et al.</i> , 1996; and Wallin <i>et al.</i> , 1998).
Experiments	Experiments to evaluate the performance of the AmpFℓSTR [®] SEfiler Plus [™] PCR Amplification Kit were performed at Applied Biosystems. These experiments were performed according to the DNA Advisory Board (DAB) Quality Assurance Standards, effective October 1, 1998 (DNA Advisory Board, 1998). The DAB standards describe the quality assurance requirements that a laboratory should follow to ensure the quality and integrity of the data and competency of the laboratory.
	Additional validation was performed according to the revised guidelines from the Scientific Working Group on DNA Analysis Methods (SWGDAM, July 10, 2003). Based on these guidelines, Applied Biosystems has performed experiments that comply with guidelines 1.0 and 2.0 and its associated subsections. This DNA methodology is not novel (Moretti <i>et al.</i> , 2001; Frank <i>et al.</i> , 2001; Wallin <i>et al.</i> , 2002; and Holt <i>et al.</i> , 2000).
	This chapter discusses many of the experiments performed by Applied Biosystems and provides examples of results obtained. Applied Biosystems chose conditions that produced maximum PCR product yield and that met reproducible performance standards. It is the opinion of Applied Biosystems that although these experiments are not exhaustive, they are appropriate for a manufacturer.
	IMPORTANT! Each laboratory using the AmpF ℓ STR [®] SEfiler Plus TM PCR Amplification Kit must perform internal validation studies.

Developmental Validation

SWGDAM Guideline 1.2.1	"Developmental validation is the demonstration of the accuracy, precision, and reproducibility of a procedure by the manufacturer, technical organization, academic institution, government laboratory, or other party." (SWGDAM, July 2003)
SWGDAM Guideline 2.10.1	"The reaction conditions needed to provide the required degree of specificity and robustness must be determined. These include thermocycling parameters, the concentration of primers, magnesium chloride, DNA polymerase, and other critical reagents." (SWGDAM, July 2003)
PCR Components	Applied Biosystems examined the concentration of each component of the AmpFlSTR [®] SEfiler Plus TM PCR Amplification Kit. The concentration for each individual component was established to be in the window that meets the reproducible performance characteristics of specificity and sensitivity. For example, various magnesium chloride concentrations were tested on the Applied Biosystems 3130xl Genetic Analyzer. The amplification of 0.50 ng of the control DNA 007 is shown in Figure 5-1 on page 5-4. Applied Biosystems observed that the performance of the multiplex is most robust within a ±20% window of magnesium chloride concentration.

% Change

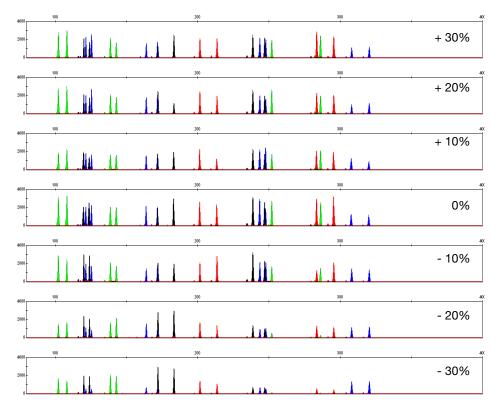


Figure 5-1 0.50 ng of control DNA 007 amplified with the AmpF/STR[®] SEfiler Plus[™] kit in the presence of varying concentrations of magnesium chloride and analyzed on the Applied Biosystems 3130*x*/ Genetic Analyzer

Thermal Cycler
ParametersThermal cycling parameters were established for amplification of the
SEfiler Plus kit. Thermal cycling times and temperatures of
GeneAmp[®] PCR systems were verified. Varying annealing and
denaturation temperature windows were tested to verify that a
specific PCR product with the desired sensitivity of at least 0.50 ng
of AmpFtSTR[®] Control DNA 007 was produced.

For example, annealing temperatures were tested at 55, 57, 59, 61, and 63 °C (Figure 5-2 on page 5-5) for 2-minute hold times in the Silver 96-Well GeneAmp[®] PCR System 9700. The PCR products were analyzed using the Applied Biosystems 3130*x1* Genetic Analyzer.

Of the tested annealing temperatures, 55 to 61 °C produced robust profiles. At 63 °C the yield of the majority of loci was significantly reduced. Routine thermal cycler calibration is recommended when you follow the amplification protocol. No preferential amplification was observed at the standard annealing temperature of 59 °C.

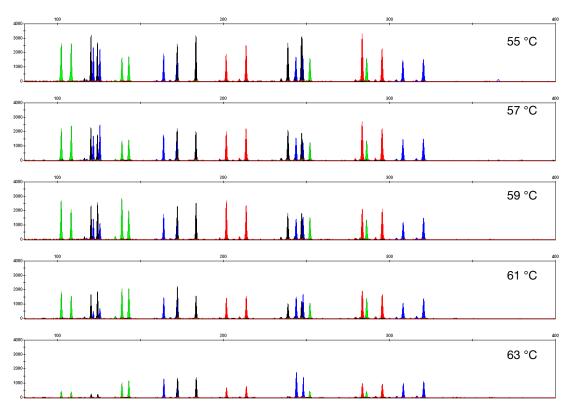
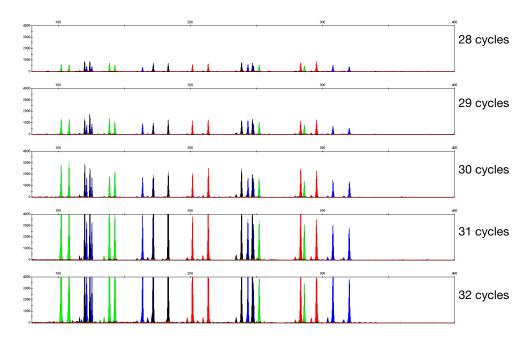
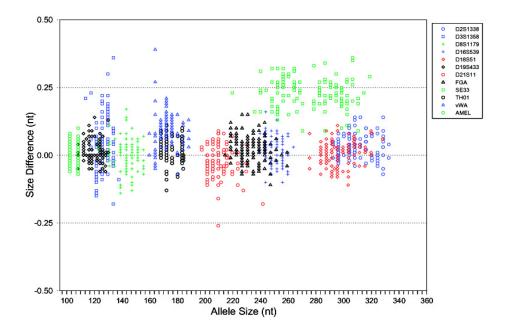
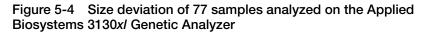


Figure 5-2 Electropherograms obtained from amplification of 0.50 ng of control DNA 007 at annealing temperatures of 55 °C, 57 °C, 59 °C, 61 °C, and 63 °C, analyzed on the Applied Biosystems 3130*x*/ Genetic Analyzer, Y-axis scale (0 to 4,000 RFUs)

PCR Cycle Number SEfiler Plus kit reactions were amplified for 28, 29, 30, 31, and 32 cycles on the Silver 96-Well GeneAmp[®] PCR System 9700 using 0.50 ng from three DNA samples. As expected, the amount of PCR product increased with the number of cycles. A full profile was generated at 28 cycles and off-scale data were collected for several allele peaks at 32 cycles (Figure 5-3).

Although none of the cycle numbers tested produced nonspecific peaks, 30 cycles was found to give optimal sensitivity when the amplified products were examined on Applied Biosystems 3130*xl* Genetic Analyzers.


Figure 5-3 Representative AmpF ℓ STR[®] SEfiler Plus[™] kit profiles obtained from amplification of 0.50 ng DNA template using 28, 29, 30, 31, and 32 cycles, analyzed on the Applied Biosystems 3130*xl* Genetic Analyzer, Y-axis scale (0 to 4,000 RFUs)

Accuracy, Precision, and Reproducibility

- **SWGDAM** Guideline 2.9 "The extent to which a given set of measurements of the same sample agree with their mean and the extent to which these measurements match the actual values being measured should be determined." (SWGDAM, July 2003)
 - Accuracy Laser-induced fluorescence detection of length polymorphism at short tandem repeat loci is not a novel methodology (Holt *et al.*, 2000; and Wallin *et al.*, 2002). However, accuracy and reproducibility of AmpFℓSTR[®] SEfiler Plus[™] PCR Amplification Kit profiles have been determined from various sample types.

Figure 5-4 on page 5-8 shows the size differences that are typically observed between sample alleles and allelic ladder alleles on the Applied Biosystems 3130xl Genetic Analyzer with POP-4TM polymer. The x-axis in Figure 5-4 on page 5-8 represents the nominal nucleotide sizes for the AmpFtSTR[®] SEfiler PlusTM Allelic Ladder. The dashed lines parallel to the x-axis represent the ± 0.25 -nt windows. The y-axis represents the deviation of each sample allele size from the corresponding allelic ladder allele size. All sample alleles are within ± 0.5 nt from a corresponding allele in the allelic ladder.

Precision and Size Windows

Sizing precision allows for determining accurate and reliable genotypes. Sizing precision was measured on the Applied Biosystems 3130xl Genetic Analyzer. The recommended method for genotyping is to employ a ± 0.5 -nt "window" around the size obtained for each allele in the AmpFlSTR[®] SEfiler PlusTM Allelic Ladder. A ± 0.5 -nt window allows for the detection and correct assignment of alleles. Any sample allele that sizes outside the specified window could be:

• An "off-ladder" allele, that is, an allele of a size that is not represented in the AmpFℓSTR[®] SEfiler PlusTM Allelic Ladder

or

• An allele that does correspond to an allelic ladder allele, but whose size is just outside a window because of measurement error The measurement error inherent in any sizing method can be defined by the degree of precision in sizing an allele multiple times. Precision is measured by calculating the standard deviation in the size values obtained for an allele that is run in several injections on a capillary instrument or in several lanes of one gel.

Table 5-1 on page 5-10 shows typical precision results obtained from five runs (16 capillaries/run) of the AmpF ℓ STR[®] SEfiler PlusTM Allelic Ladder on the Applied Biosystems 3130*xl* Genetic Analyzer (36-cm capillary and POP-4TM polymer). The internal size standard that was used was GeneScanTM 600 LIZ[®] Size Standard. The results were obtained within a set of injections on a single capillary array.

Sample alleles may occasionally size outside the ± 0.5 -nt window for a respective allelic ladder allele because of measurement error. The frequency of such an occurrence is lowest in detection systems having the smallest standard deviations in sizing. Figure 5-4 on page 5-8 illustrates the tight clustering of allele sizes obtained on the Applied Biosystems 3130xl Genetic Analyzer, where the standard deviation in sizing is typically less than 0.15 nt. The instance of a sample allele sizing outside of the ± 0.5 -nt window because of measurement error is relatively rare when the standard deviation in sizing is approximately 0.15 nt or less (Smith, 1995).

For sample alleles that do not size within a ± 0.5 -nt window, the PCR product must be rerun to distinguish between a true off-ladder allele versus measurement error of a sample allele that corresponds with an allele in the allelic ladder. Repeat analysis, when necessary, provides an added level of confidence to the final allele assignment.

The GeneMapper[®] *ID* software v3.2.1 automatically flags sample alleles that do not size within the specified window around an allelic ladder allele.

Although the precision within a set of capillary injections is very good, the determined allele sizes vary between platforms. Crossplatform sizing differences arise from a number of parameters, including type and concentration of polymer mixture, run temperature, and electrophoresis conditions. Variations in sizing can occur between runs on the same instrument and between runs on different instruments because of these factors.

Applied Biosystems strongly recommends that the allele sizes be compared to the sizes obtained for known alleles in the AmpFℓSTR[®] SEfiler Plus[™] Allelic Ladder from the same run and then be converted to genotypes (as described in "Before You Start" on

page 4-2.). See Table 5-1 for the results of five runs of the AmpF/STR[®] SEfiler PlusTM Allelic Ladder. For more information on precision and genotyping, see Lazaruk *et al.*, 1998 and Mansfield *et al.*, 1998.

In Table 5-1, the mean size for all the alleles in each run (16 capillaries) was calculated. The mean range shown in the table is the lowest and highest mean-size values of the five runs. Similarly, the standard deviation for the allele sizing was calculated for all the alleles in each run. The standard deviation range shown in Table 5-1 is the lowest and highest standard deviation values of the five runs.

	Precision results of five runs (16 capillaries/run) of the
AmpF/STF	l [®] SEfiler Plus [™] Allelic Ladder

Applied Biosystems 3130x/ Genetic Analyzer		
Allele	Mean	Standard Deviation
	Amelogenin	
Х	102.16–102.18	0.028-0.034
Y	108.14–108.15	0.015-0.038
	D16S539	
5	227.25–227.29	0.027-0.047
8	239.36–239.42	0.034-0.044
9	243.51–243.56	0.027-0.045
10	247.63–247.69	0.029-0.042
11	251.67–251.74	0.026-0.043
12	255.63–255.69	0.029-0.045
13	259.56–259.63	0.024-0.041
14	263.57–263.63	0.031-0.045
15	267.59–267.64	0.027–0.041

Table 5-1	Precision results of five runs (16 capillaries/run) of the
AmpF/STF	R [®] SEfiler Plus [™] Allelic Ladder (continued)

Applied Biosystems 3130x/ Genetic Analyzer		
Allele	Mean	Standard Deviation
	D18S51	
7	263.07–263.14	0.025–0.05
9	271.19–271.24	0.031–0.048
10	275.24–275.3	0.024–0.039
10.2	277.24–277.3	0.023–0.047
11	279.32–279.37	0.023–0.048
12	283.36–283.41	0.03–0.048
13	287.38–287.43	0.025–0.037
13.2	289.34–291.43	0.027-0.039
14	291.37–291.43	0.027-0.039
14.2	293.35–293.4	0.033–0.045
15	295.38–295.43	0.026–0.037
16	299.37–299.43	0.032-0.043
17	303.31–303.37	0.023–0.04
18	307.29–307.34	0.027–0.044
19	311.32–311.37	0.032-0.055
20	315.46–315.5	0.024-0.036
21	319.75–319.81	0.034–0.048
22	323.93–324	0.03–0.046
23	327.97–328.04	0.03–0.049
24	332.06-332.13	0.023–0.04

Table 5-1	Precision results of five runs (16 capillaries/run) of the
AmpF/STF	[®] SEfiler Plus [™] Allelic Ladder (continued)

Applied Biosystems 3130x/ Genetic Analyzer		
Allele	Mean	Standard Deviation
25	336.12-336.18	0.027–0.036
26	340.15–340.19	0.023–0.042
27	344.27–344.29	0.022-0.038
	D19S433	
9	99.6–99.68	0.03–0.05
10	103.76–103.85	0.04–0.044
11	107.9–107.97	0.03–0.045
12	111.99–112.06	0.029–0.053
12.2	114.03–114.11	0.024–0.039
13	115.97–116.06	0.029–0.036
13.2	117.96–118.04	0.027–0.044
14	119.89–119.98	0.034–0.045
14.2	121.87–121.95	0.033–0.045
15	123.8–123.9	0.033–0.039
15.2	125.79–125.9	0.03–0.04
16	127.76–127.86	0.03–0.044
16.2	129.75–129.86	0.027–0.047
17	131.72–131.83	0.035–0.057
17.2	133.72–133.84	0.034–0.044

Table 5-1	Precision results of five runs (16 capillaries/run) of the
AmpF/STF	[®] SEfiler Plus [™] Allelic Ladder (continued)

Applied Biosystems 3130x/ Genetic Analyzer		
Allele	Mean	Standard Deviation
	D21S11	
24	185.16–185.24	0.022-0.041
24.2	187.22–187.29	0.026-0.041
25	189.25–189.33	0.021-0.039
26	193.32–193.41	0.026–0.041
27	197.41–197.51	0.026-0.048
28	201.41–201.48	0.025–0.036
28.2	203.36–203.44	0.031–0.046
29	205.34–205.42	0.031–0.046
29.2	207.37–207.46	0.021–0.035
30	209.34–209.43	0.026-0.039
30.2	211.31–211.4	0.025–0.036
31	213.32–213.41	0.033–0.038
31.2	215.34–215.43	0.028–0.044
32	217.4–217.51	0.026-0.041
32.2	219.44–219.51	0.037–0.043
33	221.48-221.57	0.037–0.044
33.2	223.44–223.51	0.031–0.041
34	225.57–225.64	0.029–0.045
34.2	227.5–227.57	0.028–0.046
35	229.56-229.65	0.035–0.044

Table 5-1	Precision results of five runs (16 capillaries/run) of the
AmpF/STF	[®] SEfiler Plus [™] Allelic Ladder (continued)

Applied Biosystems 3130x/ Genetic Analyzer		
Allele	Mean	Standard Deviation
35.2	231.51–231.59	0.038–0.044
36	233.5–233.58	0.029–0.046
37	237.58–237.68	0.032-0.044
38	241.59–241.67	0.03–0.04
	D2S1338	
15	288.11–288.2	0.035–0.039
16	292.09–292.18	0.039–0.041
17	296.05–296.13	0.03–0.038
18	300–300.08	0.034–0.041
19	303.91–303.98	0.031-0.038
20	307.84-307.92	0.03–0.049
21	311.86–311.93	0.044–0.05
22	315.97–316.07	0.028-0.048
23	320.22-320.28	0.033–0.041
24	324.3–324.37	0.03–0.047
25	328.36–328.44	0.031–0.046
26	332.38–332.5	0.027–0.053
27	336.44-336.53	0.029–0.038
28	340.76-340.83	0.027–0.042

Table 5-1	Precision results of five runs (16 capillaries/run) of the
AmpF/STF	R [®] SEfiler Plus [™] Allelic Ladder (continued)

Applied Biosystems 3130x/ Genetic Analyzer		
Allele	Mean	Standard Deviation
	D3S1358	
12	109.27–109.27	0.027-0.041
13	113.51–113.52	0.009–0.033
14	117.47–117.48	0.02–0.035
15	121.31–121.34	0.027-0.037
16	125.44–125.46	0.027-0.044
17	129.56–129.58	0.027-0.052
18	133.57–133.58	0.024–0.044
19	137.5–137.51	0.033–0.037
D8S1179		
8	122.59–122.62	0.026–0.04
9	126.58–126.6	0.025–0.045
10	130.58–130.6	0.027–0.041
11	134.62–134.63	0.024–0.03
12	138.69–138.7	0.012-0.039
13	142.91–142.93	0.024–0.037
14	147.06–147.07	0.023-0.038
15	151.18–151.2	0.023-0.032
16	155.33–155.35	0.028-0.039
17	159.49–159.5	0.028-0.042
18	163.58–163.6	0.027–0.047

Table 5-1	Precision results of five runs (16 capillaries/run) of the
AmpF/STF	[®] SEfiler Plus [™] Allelic Ladder (continued)

Applied Biosystems 3130x/ Genetic Analyzer		
Allele	Mean	Standard Deviation
19	167.64–167.65	0.02-0.042
	FGA	-
17	210.09–210.1	0.032-0.038
18	214.14–214.15	0.027–0.042
19	218.28–218.3	0.026–0.032
20	222.4–222.42	0.025–0.043
21	226.47–226.5	0.033–0.046
22	230.54–230.57	0.029–0.048
23	234.63–234.65	0.033–0.041
24	238.71–238.73	0.033–0.044
25	242.86–242.89	0.029–0.037
26	247.03–247.06	0.029–0.044
26.2	249.1–249.13	0.034–0.039
27	251.1–251.14	0.03–0.037
28	255.11–255.13	0.038-0.043
29	259.08–259.11	0.027–0.035
30	263.15–263.18	0.034–0.049
30.2	264.97–265	0.036–0.049
31.2	269.03–269.06	0.035–0.048
32.2	273.09–273.11	0.031–0.045
33.2	277.17–277.2	0.036-0.047

Table 5-1	Precision results of five runs (16 capillaries/run) of the
AmpF/STF	[®] SEfiler Plus [™] Allelic Ladder (continued)

Applied Biosystems 3130x/ Genetic Analyzer		
Allele Mean Stand		Standard Deviation
42.2	313.41–313.48	0.039–0.053
43.2	317.67–317.72	0.028–0.046
44.2	321.89–321.94	0.039–0.042
45.2	326.03-326.07	0.039–0.048
46.2	330.04–330.06	0.037–0.045
47.2	47.2 334.09–334.13 0.024–0.05	
48.2	48.2 338.19–338.22 0.034–0.041	
50.2	346.3–346.35	0.032-0.043
51.2	350.39–350.44	0.031–0.04
	SE33	
4.2	201.24–201.27	0.026-0.046
6.3	210.31–210.34	0.037–0.046
8	215.36–215.4	0.03–0.042
9	219.5–219.54	0.027–0.05
11	227.65–227.7	0.032-0.051
12	231.71–231.76	0.036-0.042
13	235.79–235.83	0.031-0.041
14	239.87–239.91	0.031-0.049
15	244.04–244.08	0.033–0.048
16	248.19–248.26	0.04–0.052
17	252.26-252.31	0.029–0.047

Table 5-1	Precision results of five runs (16 capillaries/run) of the
AmpF/STF	[®] SEfiler Plus [™] Allelic Ladder (continued)

Applied Biosystems 3130x/ Genetic Analyzer		
Allele	Mean	Standard Deviation
18	256.26–256.3	0.035–0.045
19	260.2–260.24	0.031–0.053
20	264.24–264.3	0.034–0.047
20.2	266.23–266.28	0.034–0.05
21	268.3–268.36	0.034–0.049
21.1	269.3–269.37	0.029–0.054
21.2	270.26–270.31	0.033–0.051
22.2	274.34–274.38	0.034–0.052
23.2	278.42–278.46	0.032–0.049
24.2	282.47–282.51	0.044–0.053
25.2	286.47–286.53	0.039–0.05
26.2	290.49–290.53	0.04–0.049
27.2	294.48–294.54	0.036–0.045
28.2	298.48–298.53	0.028–0.043
29.2	302.43-302.48	0.027–0.051
30.2	306.38–306.44	0.035–0.05
31.2	310.39–310.46	0.036–0.052
32.2	314.48–314.56	0.042-0.052
33.2	318.75–318.82	0.033–0.049
34.2	322.93–323	0.036–0.048

Table 5-1	Precision results of five runs (16 capillaries/run) of the
AmpF/STF	R [®] SEfiler Plus [™] Allelic Ladder (continued)

Applied Biosystems 3130x/ Genetic Analyzer		
Allele	Mean	Standard Deviation
35	325.01–325.07	0.038–0.054
35.2	327.05-327.09	0.033–0.044
36	329.1–329.15	0.039–0.051
37	333.21–333.22	0.042-0.05
	TH01	
4	159.72–159.79	0.004–0.049
5	163.79–163.85	0.028-0.048
6	167.84–167.9	0.027–0.05
7	171.88–171.96	0.023–0.039
8	175.94–176	0.029–0.039
9	179.98–180.05	0.021-0.04
9.3	183.12–183.2	0.027–0.044
10	184.09–184.14	0.022–0.036
11	188.19–188.27	0.024–0.035
13.3	199.45–199.52	0.035–0.044
	vWA	
11	151.27–151.32	0.025–0.034
12	155.37–155.41	0.023–0.042
13	159.52–159.56	0.006-0.042
14	163.79–163.81	0.02–0.045
15	167.7–167.74	0.018-0.045

	Precision results of five runs (16 capillaries/run) of the
AmpF/STF	[®] SEfiler Plus [™] Allelic Ladder <i>(continued)</i>

Applied Biosystems 3130x/ Genetic Analyzer		
Allele	Mean	Standard Deviation
16	171.76–171.8	0.025-0.045
17	175.8–175.84	0.025–0.031
18	179.81–179.85	0.024–0.045
19	183.9–183.95	0.026-0.043
20	187.99–188.04	0.029–0.045
21	192.05–192.08	0.016-0.037
22	196.12–196.16	0.026-0.035
23	200.09–200.13	0.027-0.047
24	204.4–204.45	0.024–0.036

Extra Peaks in the Electropherogram

Causes of Extra Peaks

Peaks other than the target alleles may be detected on the electropherogram. Causes for extra peaks include stutter products, incomplete 3' A nucleotide addition (at the n-1 position), dye artifacts, and mixed DNA samples (see DAB Standard 8.1.2.2).

Stutter Products

A stutter is a well-characterized PCR artifact that refers to the appearance of a minor peak that is one repeat unit smaller (or, less frequently, one repeat unit larger) than the major STR product (Butler, 2005; Mulero *et al.*, 2006). Sequence analysis of stutter products at tetranucleotide STR loci has revealed that the stutter product is missing a single tetranucleotide core repeat unit relative to the main allele (Walsh *et al.*, 1996).

The proportion of the stutter product relative to the main allele (percent stutter) is measured by dividing the height of the stutter peak by the height of the main allele peak. Peak heights were measured for amplified samples (n = 229) at the loci used in the AmpFtSTR[®] SEfiler PlusTM PCR Amplification Kit. All data were generated on the Applied Biosystems 3130xl Genetic Analyzer.

Some conclusions from these measurements and observations are:

- For each SEfiler Plus kit locus, the percent stutter generally increases with allele length, as shown in Figure 5-5 to Figure 5-8 on pages 5-22 through 5-24.
- Smaller alleles display a lower level of stutter relative to the longer alleles within each locus.
- Each allele within a locus displays a percent stutter that is consistent.
- The highest observed percent stutter for each locus is included as the filtering step in the GeneMapper[®] *ID* software v3.2.1. These values are shown in Table 5-2 on page 5-25. Peaks in the stutter position that are above the highest observed percent stutter are not filtered. Peaks in the stutter position that have not been filtered and remain labeled can be further evaluated. For evaluation of mixed samples, see Figure 5-17 on page 5-45.
- The measurement of percent stutter for peaks that are off-scale may be unusually high.

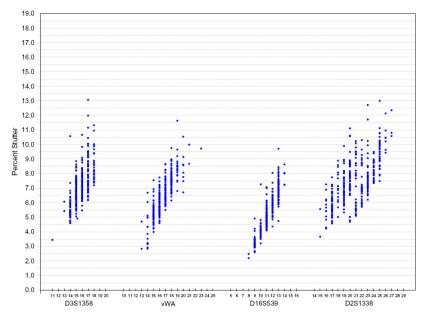


Figure 5-5 Stutter percentages for the D3S1358, vWA, D16S539, and D2S1338 loci

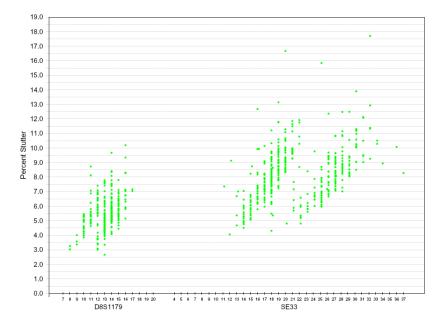


Figure 5-6 Stutter percentages for D8S1179 and SE33 loci

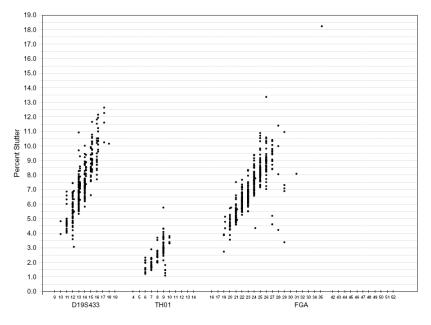
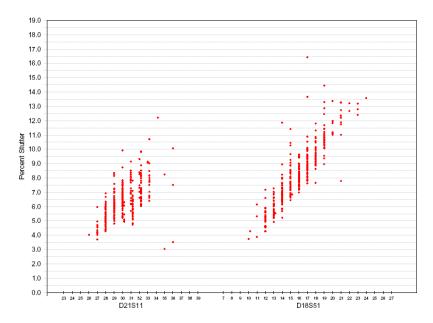
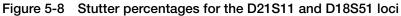




Figure 5-7 Stutter percentages for the D19S433, TH01, and FGA loci

Locus	% Stutter
D21S11	12.22
D18S51	16.43
D19S433	12.64
TH01	5.77
FGA	18.23
D3S1358	13.07
vWA	11.63
D16S539	9.71
D2S1338	13.00
D8S1179	10.19
SE33	17.70

Table 5-2 Marker-specific stutter percentages (ratios used in GeneMapper *ID* v3.2.1 AmpFLSTR_SEfilerPlus_panels_v1) for SEfiler Plus Kit loci

Addition of 3' A Nucleotide

Many DNA polymerases can catalyze the addition of a single nucleotide (predominately adenosine) to the 3' ends of doublestranded PCR products (Clark, 1988; Magnuson *et al.*, 1996). This nontemplate addition results in a PCR product that is one nucleotide longer than the actual target sequence. The PCR product with the extra nucleotide is referred to as the "+A" form.

The efficiency of +A addition is related to the particular sequence of the DNA at the 3' end of the PCR product. The SEfiler Plus kit includes two design features that promote maximum +A addition:

- The primer sequences have been optimized to encourage +A addition.
- The final extension step is 60 °C for 60 minutes.

This final extension step gives the DNA polymerase additional time to complete +A addition to all double-stranded PCR products. STR systems (where each allele is represented by two peaks that are one nucleotide apart) that have not been optimized for +A addition may have "split peaks."

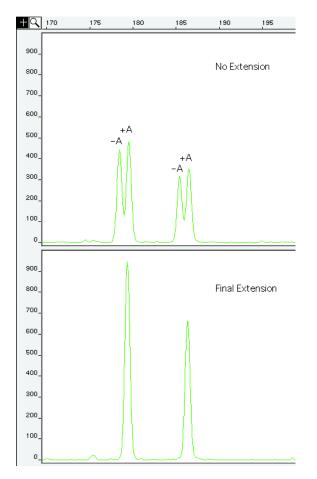


Figure 5-9 Omitting the final extension step results in split peaks due to incomplete A nucleotide addition. Data are from an ABI PRISM[®] 310 Genetic Analyzer using another AmpF/STR[®] kit.

Lack of complete +A nucleotide addition may be observed in SEfiler Plus kit results when the amount of input DNA is greater than the recommended protocols, because more time is needed for the enzyme to add the +A nucleotide to all molecules as more PCR product is generated. Amplification of too much input DNA may also result in off-scale data.

Artifacts Artifacts and anomalies are seen in all molecular biological systems. Artifacts are typically reproducible. Anomalies are nonreproducible, intermittent occurrences that are not consistently observed in a system, for example, spikes and baseline noise. Artifacts have been seen in data produced on genetic analyzers when using the SEfiler Plus kit. Low-level artifacts in the calling region may appear in the green (115 nt) and yellow (94 nt) dyes, depending on the sensitivity of the instrument.

> Figure 5-10 on page 5-28 and Figure 5-11 on page 5-29 show examples of baseline noise and artifacts in an electropherogram while using the SEfiler Plus kit. Genotyping may result in the detection of these artifacts as off-ladder (OL) alleles. This occurs if the recommended amount of input DNA is exceeded and off-scale data are obtained. You should consider possible noise and artifacts when interpreting data from the SEfiler Plus kit on the Applied Biosystems 3130/3130x1, ABI PRISM[®] 3100/3100-*Avant*, and ABI PRISM[®] 310 Genetic Analyzers.

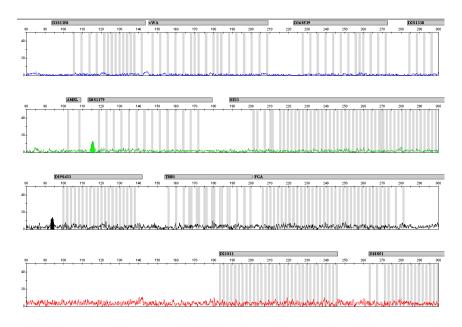
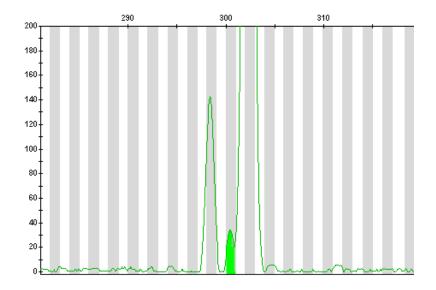
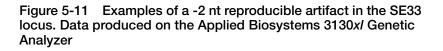




Figure 5-10 Examples of baseline noise and reproducible artifacts in data produced on the Applied Biosystems 3130*xl* Genetic Analyzer, Y-axis scale (0–50 RFUs)

Note that a high degree of magnification (y-axis) is used in Figure 5-10 on page 5-28 and Figure 5-11 on page 5-29 to show the artifacts.

Characterization of Loci

SWGDAM Guideline 2.1	"The basic characteristics of a genetic marker must be determined and documented." (SWGDAM, July 2003)	
	This section describes basic characteristics of the 11 loci and the sex- determining marker, amelogenin, that are amplified with the AmpFℓSTR [®] SEfiler Plus [™] PCR Amplification Kit. These loci have been extensively characterized by other laboratories.	
Nature of the Polymorphisms	The primers for the amelogenin locus flank a six-nucleotide deletion within intron 1 of the X homologue. Amplification results in 107-nt and 113-nt products from the X and Y chromosomes, respectively. (Sizes are the actual nucleotide size according to sequencing results, including 3' A nucleotide addition.) The remaining SEfiler Plus kit loci, except the SE33 locus, are all tetranucleotide short tandem repeat (STR) loci. The length differences among alleles of a particular locus result from differences in the number of 4-nt repeat units.	
	The SE33 locus is highly polymorphic. The SE33 locus not only possesses structural variation, it also exhibits length and sequence polymorphism (Möller, Schurenkamp <i>et al.</i> , 1995). Among the sequence polymorphisms Type I contains the known regular four nt repeat AAAG; while Type II has an additional hexanucleotide unit, AAAAAG. These result in additional interalleles in the SE33 locus differing by 1 to 3 nt (Urquhart <i>et al.</i> , 1993).	
	All the alleles in the AmpFlSTR [®] SEfiler Plus TM Allelic Ladder, including microvariants, have been subjected to DNA sequencing at Applied Biosystems. In addition, other groups have sequenced alleles at some of these loci (Nakahori <i>et al.</i> , 1991; Puers <i>et al.</i> , 1993; Möller <i>et al.</i> , 1994; Barber <i>et al.</i> , 1995; Möller and Brinkmann, 1995; Barber <i>et al.</i> , 1996; Barber and Parkin, 1996; Brinkmann <i>et al.</i> , 1998; Momhinweg <i>et al.</i> , 1998; Watson <i>et al.</i> , 1998). Among the various sources of sequence data on the AmpFlSTR SEfiler Plus kit loci, there is consensus on the repeat patterns and structure of the STRs.	
Inheritance	The Centre d'Etude du Polymorphisme Humain (CEPH) has collected DNA from families of Utah Mormon, French Venezuelan, and Amish descent. These DNA sets have been extensively studied all over the world and are routinely used to characterize the mode of	

inheritance of various DNA loci. Each family set contains three generations, generally including four grandparents, two parents, and several offspring. Consequently, the CEPH family DNA sets are ideal for studying inheritance patterns (Begovich *et al.*, 1992).

Because the oligonucleotide sequences between the SEfiler and SEfiler Plus kits are identical, no changes in the pattern of inheritance are reported.

Mapping The SEfiler Plus kit loci have been mapped, and the chromosomal locations have been published (Nakahori *et al.*, 1991; Edwards *et al.*, 1992; Kimpton *et al.*, 1992; Mills *et al.*, 1992; Sharma and Litt, 1992; Li *et al.*, 1993; Straub *et al.*, 1993; Barber and Parkin, 1996).

Species Specificity

SWGDAM"For techniques designed to type human DNA, the potential to detectGuideline 2.2DNA from forensically relevant nonhuman species should be
evaluated." (SWGDAM, July 2003)

The AmpFℓSTR[®] SEfiler Plus[™] PCR Amplification Kit provides the required specificity for detecting human alleles.

Nonhuman Studies

Nonhuman DNA may be present in forensic casework samples. The data from SEfiler Plus kit experiments on nonhuman DNA sources are shown in Figure 5-12.

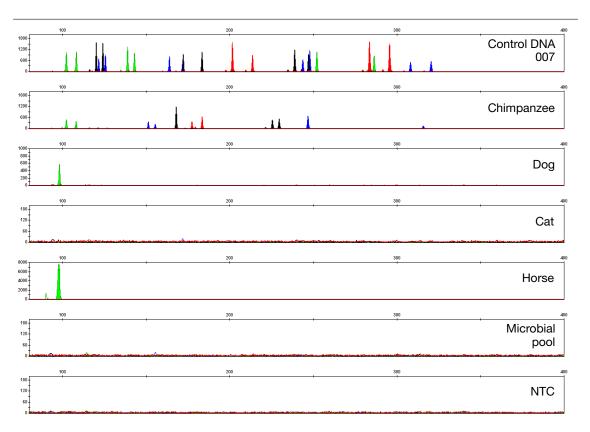


Figure 5-12 Representative electropherograms from a speciesspecificity study including positive and non-template controls (NTC) Figure 5-12 on page 5-32 shows amplification for: control DNA 007 (0.50 ng, panel 1), chimpanzee (0.50 ng, panel 2), dog (2.5 ng. panel 3), cat (2.5 ng, panel 4), horse (2.5 ng, panel 5), microbial DNA pool (equivalent to 10^5 copies of *Candida albicans*, *Neisseria gonorrhoeae*, *E. coli 0157:H7*, *Bacillus subtilis*, and *Lactobacillus rhamnosus*, panel 6), and the negative control (panel 7). The extracted DNA samples were amplified with the SEfiler Plus kit and analyzed using the Applied Biosystems 3130xl Genetic Analyzer.

- Primates: gorilla, chimpanzee, orangutan, and macaque (0.50 ng each)
- Non-primates: mouse, dog, sheep, rabbit, cat, horse, hamster, rat, chicken, and cow (2.5 ng each)
- Microorganisms: Candida albicans, Staphylococcus aureus, Escherichia coli, Neisseria gonorrhoeae, Bacillus subtilis, and Lactobacillus rhamnosus (equivalent to 10⁵ copies)

The chimpanzee and gorilla DNA samples produced partial profiles within the 70 to 283 nucleotide region.

The microorganisms, chicken, hamster, mouse, rabbit, and rat did not yield detectable products. Dog, horse, sheep, and cow produced a 98-bp fragment near the amelogenin locus in the VIC[®] dye.

Sensitivity

SWGDAM Guideline 2.3	"When appropriate, the range of DNA quantities able to produce reliable typing results should be determined." (SWGDAM, July 2003)	
Importance of Quantitation	The optimal amount of input DNA added to the AmpF4STR [®] SEfiler Plus TM PCR Amplification Kit should be between 0.50 and 0.75 ng. The DNA sample should be quantitated before amplification using a system such as the Quantifiler [®] Human DNA Quantification Kit (PN 4343895). The final DNA concentration should be 0.05 to 0.075 ng/µL so that 0.50 to 0.75 ng of DNA is added to the PCR reaction in a volume of 10 µL. If the sample contains degraded or inhibited DNA, amplification of additional DNA may be beneficial. In Figure 5-13 on page 5-35, the control DNA 007 was serially diluted from 1 ng to 0.062 ng. Full profiles (24 PCR products) were consistently obtained at 0.125 ng, but occasional partial profiles that are missing anywhere from 1 to 3 alleles were observed at 0.062 ng.	
Effect of DNA Quantity on	If too much DNA is added to the PCR reaction, the increased amount of PCR product that is generated can result in:	
Results	• Fluorescence intensity that exceeds the linear dynamic range for detection by the instrument ("off-scale" data)	
	Off-scale data is a problem because:	
	 Quantitation (peak height and area) for off-scale peaks is not accurate. For example, an allele peak that is off-scale can cause the corresponding stutter peak to appear higher in relative intensity, thus increasing the calculated percent stutter. 	
	 Multicomponent analysis of off-scale data is not accurate. This inaccuracy results in poor spectral separation ("pull-up"). 	
	Incomplete +A nucleotide addition	
	The sample can be reamplified using less DNA.	
	When the total number of allele copies added to the PCR is extremely low, unbalanced amplification of the alleles may occur due to stochastic fluctuation.	
	Individual laboratories may find it useful to determine an appropriate minimum peak height threshold based on their own results and instruments using low amounts of input DNA.	

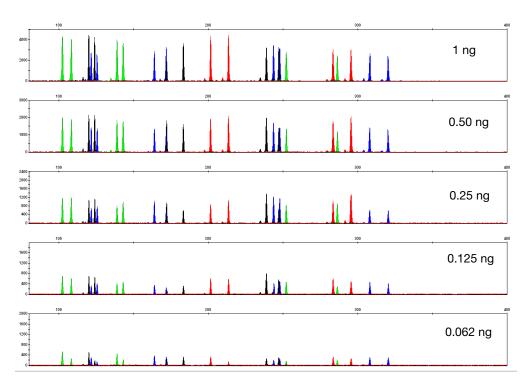


Figure 5-13 Effect of amplifying 1 ng, 0.50 ng, 0.25 ng, 0.125 ng, and 0.062 ng of control DNA 007 $\,$

Note that the y-axis scale is magnified for the lower amounts of DNA, analyzed using the Applied Biosystems 3130*xl* Genetic Analyzer.

Stability

SWGDAM Guideline 2.4

"The ability to obtain results from DNA recovered from biological samples deposited on various substrates and subjected to various environmental and chemical insults has been extensively documented. In most instances, assessment of the effects of these factors on new forensic DNA procedures is not required. However, if substrates and/or environmental and/or chemical insults could potentially affect the analytical process, then the process should be evaluated using known samples to determine the effects of such factors." (SWGDAM, July 2003)

Degraded DNA

As the average size of degraded DNA approaches the size of the target sequence, the amount of PCR product generated is reduced. This is due to the reduced number of intact templates in the size range necessary for amplification.

Degraded DNA was prepared to examine the potential for differential amplification of loci. High-molecular-weight Raji DNA was sonicated and incubated with increasing doses of DNase I (0 to 6 Units) for 20 minutes (Bender *et al.*, 2004). The DNA was examined by agarose gel analysis to determine the average size of the DNA fragments at each time point.

One nanogram of degraded DNA was amplified using the AmpF*l*STR SEfiler Plus Kit. As the DNA became increasingly degraded, the loci became undetectable according to size. Preferential amplification was not observed. The loci failed to robustly amplify in the order of decreasing size as the extent of degradation progressed.

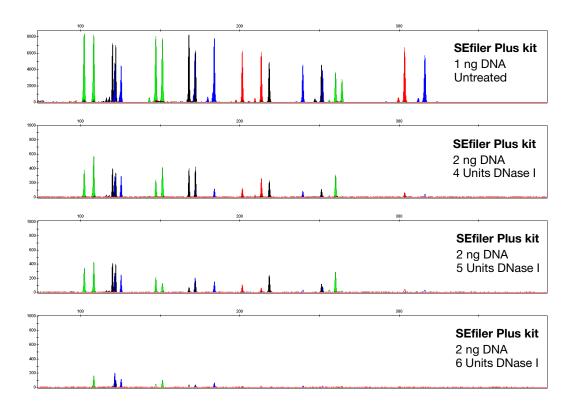


Figure 5-14 Amplification of Raji DNA samples sonicated and incubated with increasing doses of DNase I. Panels 1, 2, 3, and 4 correspond to 0, 4, 5, and 6 units of DNase I.

Effect of Inhibitors — Hematin

Heme compounds have been identified as PCR inhibitors in DNA samples extracted from bloodstains (DeFranchis *et al.*, 1988; Akane *et al.*, 1994). It is believed that the inhibitor is co-extracted and co-purified with the DNA and subsequently interferes with PCR by inhibiting polymerase activity.

To examine the effects of hematin on the amplification results obtained by the SEfiler Plus kit, male DNA 007 (1 ng input DNA for the SEfilerTM and SEfiler PlusTM kits) was amplified with increasing concentrations of hematin for 30 cycles of amplification. The concentrations of hematin used were 0 μ M, 30 μ M, 45 μ M, and 55 μ M (see Table 5-3).

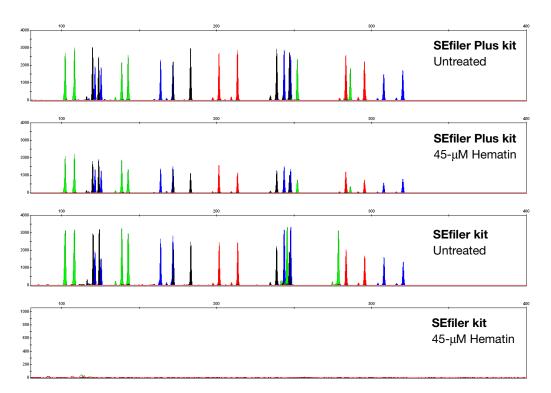


Figure 5-15 Amplification with AmpF/STR[®] SEfiler Plus[™] and SEfiler[™] kits in the presence and absence of hematin. Panels 1 and 3 correspond to control samples; panels 2 and 4 correspond to samples amplified in the presence of 45 μ M of hematin.

Comparison of SEfiler Plus[™] and SEfiler[™] kit performance in a simulated model of hematin inhibition

Only those peaks >50 RFUs were counted. A complete profile with control 007 DNA yields 24 peaks using the SEfiler Plus kit (see Table 5-3).

Table 5-3	Comparison of SEfiler Plus [™] and SEfiler [™] kit
performan	ce in simulated model of hematin inhibition $(n = 3)$

Hematin (µM)	SEfiler Plus [™] kit	SEfiler [™] kit
0	24/24, 24/24, 24/24	24/24, 24/24, 24/24
30	24/24, 24/24, 24/24	2/24, 2/24, 8/24
45	24/24, 21/24, 24/24	0/24, 0/24, 0/24
55	18/24, 23/24, 5/24	0/24, 0/24, 0/24

Effect of Inhibitors — Humic Acid

Traces of humic acid may inhibit the PCR amplification of DNA evidence collected from soil. In this study, Applied Biosystems tested increasing amounts of humic acid in the PCR amplification of 1 ng of control DNA 007 with the SEfiler and SEfiler Plus kits for 30 cycles of amplification (see Figure 5-16). The concentrations of humic acid tested were 0, 20, 40, and 60 ng/ μ L.

The SEfiler Plus kit efficiently amplified the DNA at concentrations of humic acid that inhibited the amplification of DNA with the SEfiler[™] kit (see Figure 5-16 on page 5-40).

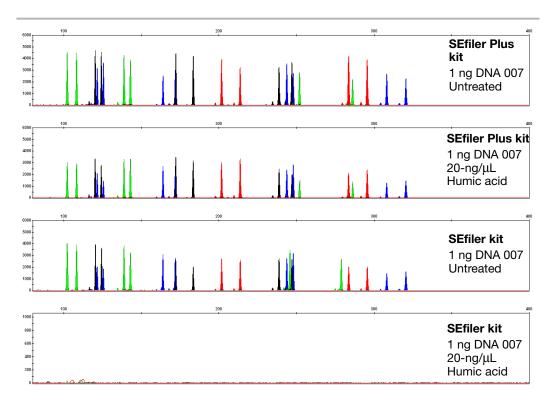


Figure 5-16 Amplification with AmpF/STR[®] SEfiler Plus[™] and SEfiler[™] kits in the presence and absence of humic acid. Panels 1 and 3 correspond to control samples; panels 2 and 4 correspond to samples amplified in the presence of 20 ng/µL humic acid.

Comparison of SEfiler Plus[™] and SEfiler[™] kit performance in a simulated model of humic acid inhibition

Only those peaks >50 RFUs were counted. A complete profile with control 007 DNA yields 24 peaks using the SEfiler Plus kit (see Table 5-4).

Table 5-4 Comparison of SEfiler PlusTM and SEfilerTM kit performance in simulated model of humic acid inhibition (n = 3)

Humic Acid (ng/μL)	SEfiler Plus [™] kit	SEfiler [™] kit
0	24/24, 24/24, 24/24	24/24, 24/24, 24/24
20	24/24, 24/24, 24/24	0/24, 0/24, 0/24
40	20/24, 23/24, 24/24	0/24, 0/24, 0/24
60	9/24, 8/24, 12/24	0/24, 0/24, 0/24

Mixture Studies

SWGDAM Guideline 2.8	"The ability to obtain reliable results from mixed source samples should be determined." (SWGDAM, July 2003)
	Evidence samples may contain DNA from more than one individual. The possibility of multiple contributors should be considered when interpreting the results. Applied Biosystems recommends that individual laboratories assign a minimum peak height threshold based on validation experiments performed in each laboratory to avoid typing when stochastic effects are likely to interfere with accurate interpretation of mixtures.
Mixture Studies	Evidence samples that contain body fluids and/or tissues originating from more than one individual are an integral component of forensic casework. Therefore, it is essential to ensure that the DNA typing system is able to detect DNA mixtures. Mixed samples can be distinguished from single-source samples by:
	• The presence of more than two alleles at a locus
	• The presence of a peak at a stutter position that is significantly greater in percentage than what is typically observed in a single-source sample

• Significantly imbalanced alleles for a heterozygous genotype

The peak height ratio is defined as the height of the lower peak (in RFU) divided by the height of the higher peak (in RFU), expressed as a percentage. Mean, median, minimum, and maximum peak height ratios observed for alleles in the AmpF ℓ STR[®] SEfiler PlusTM PCR Amplification Kit loci in unmixed population database samples are shown in Table 5-5:

Locus	Number of Observations (n)	Mean	Median	Minimum	Maximum
Amelogenin	160	82.5	84.2	50.0	99.7
D16S539	170	84.1	86.7	50.9	99.6
D18S51	200	83.5	86.0	44.4	99.9
D19S433	185	83.3	84.1	55.9	99.9
D21S11	202	82.6	83.9	35.3	99.9
D2S1338	203	80.7	82.2	37.8	100.0
D3S1358	154	83.5	84.5	43.8	99.7
D8S1179	177	83.3	84.3	51.3	99.8
FGA	193	83.4	85.4	45.6	99.9
SE33	214	82.3	84.5	43.6	100.0
TH01	176	82.2	84.7	33.0	99.9
vWA	194	83.4	83.8	54.1	99.8

Table 5-5 Peak height ratios for 0.50 ng of input DNA

If an unusually low peak height ratio is observed for one locus, and there are no other indications that the sample is a mixture, the sample may be reamplified and reanalyzed to determine if the imbalance is reproducible. Possible causes of imbalance at a locus are:

- Degraded DNA
- Presence of inhibitors
- Extremely low amounts of input DNA
- A mutation in one of the primer binding sites

• Presence of an allele containing a rare sequence that does not amplify as efficiently as the other allele

Resolution of Genotypes in Mixed Samples

A sample containing DNA from two sources can be comprised (at a single locus) of any of the seven genotype combinations (see below).

- Heterozygote + heterozygote, no overlapping alleles (four peaks)
- Heterozygote + heterozygote, one overlapping allele (three peaks)
- Heterozygote + heterozygote, two overlapping alleles two peaks)
- Heterozygote + homozygote, no overlapping alleles (three peaks)
- Heterozygote + homozygote, overlapping allele (two peaks)
- Homozygote + homozygote, no overlapping alleles (two peaks)
- Homozygote + homozygote, overlapping allele (one peak)

Specific genotype combinations and input DNA ratios of the samples contained in a mixture determine whether or not it is possible to resolve the genotypes of the major and minor component(s) at a single locus.

The ability to obtain and compare quantitative values for the different allele peak heights on Applied Biosystems instruments provides additional valuable data to aid in resolving mixed genotypes. This quantitative value is much less subjective than comparing relative intensities of bands on a stained gel.

Ultimately, the likelihood that any sample is a mixture must be determined by the analyst in the context of each particular case, including the information provided from known reference sample(s).

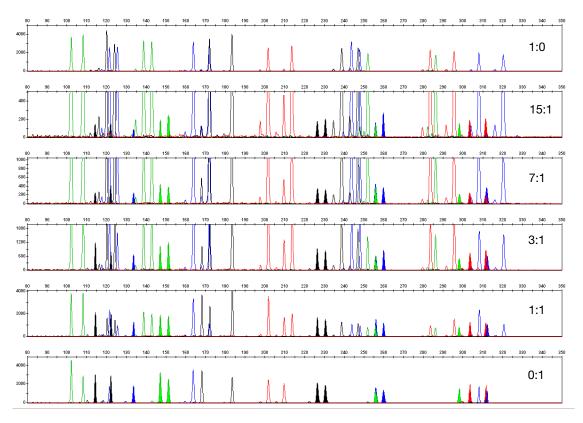


Figure 5-17 Amplification of DNA mixtures at various ratios

Limit of Detection of the Minor Component

Mixtures of two DNA samples were examined at various ratios (0:1, 1:1, 3:1, 7:1, 15:1, 1:0). The total amount of genomic input DNA mixed at each ratio was 1 ng. The samples were amplified in a GeneAmp[®] PCR System 9700, then electrophoresed and detected using an Applied Biosystems 3130xl Genetic Analyzer.

The results of the mixed DNA samples are shown in Figure 5-17 on page 5-45, where samples A and B were mixed according to the ratios provided. The minor component allele calls at non-overlapping loci are highlighted. The amplification of the minor contributor at 3:1 and 7:1 (0.875:0.125 ng) mixture ratios was readily typeable. 15:1 ratios generally resulted in partial profiles for the minor component.

Table 5-6 shows the profiles of the samples in Figure 5-17 on page 5-45.

Allele	Profile Sample A (Control DNA 007)	Profile Sample B
D3S1358	15, 16	15, 18
vWA	14, 16	14
D16S539	9,10	12, 13
D2S1338	20,23	20, 21
Amelogenin	Х, Ү	Х, Ү
D8S1179	12, 13	14, 15
SE33	17,25.2	18, 28.2
D19S433	14, 15	12.2, 14.2
TH01	7, 9.3	6, 9.3
FGA	24, 26	21, 22
D21S11	28, 31	28, 30
D18S51	12, 15	17, 19

Table 5-6 Genotypes of mixed DNA samples

Population Data

- **SWGDAM** "The distribution of genetic markers in populations should be determined in relevant population groups." (SWGDAM, July 2003)
 - **Overview** To interpret the significance of a match between genetically typed samples, it is necessary to know the population distribution of alleles at each locus in question. If the genotype of the relevant evidence sample is different from the genotype of the suspect's reference sample, then the suspect is excluded as the donor of the biological evidence tested. An exclusion is independent of the frequency of the two genotypes in the population.

If the suspect and evidence samples have the same genotype, then the suspect is included as a possible source of the evidence sample. The probability that another, unrelated individual would also match the evidence sample is estimated by the frequency of that genotype in the relevant population(s).

The AmpF*t*STR[®] SEfiler Plus[™] PCR Amplification Kit contains loci for which extensive population data are available. For additional information, see the population data and additional studies section of the *AmpFtSTR[®] SEfiler[™] PCR Amplification Kit User's Manual* (PN 4323291).

Mutation Rate

Estimating Germline Mutations	Estimation of spontaneous or induced germline mutation at genetic loci may be achieved through comparison of the genotypes of offspring to those of their parents. From such comparisons, the number of observed mutations are counted directly.
	In previous studies, genotypes of 10 STR loci amplified by the AmpF <i>l</i> STR [®] SGM Plus [®] PCR Amplification Kit were determined for a total of 146 parent-offspring allelic transfers (meioses) at the Forensic Science Service, Birmingham, England. One length-based STR mutation was observed at the D18S11 locus; mutation was not detected at any of the other nine STR loci. The D18S11 mutation was represented by an increase of one 4-nt repeat unit, a 17 allele was inherited as an 18 (single-step mutation). The maternal/paternal source of this mutation could not be distinguished.
Additional Mutation Studies	Additional studies (Edwards <i>et al.</i> , 1991; Edwards <i>et al.</i> , 1992; Weber and Wong, 1993; Hammond <i>et al.</i> , 1994; Brinkmann <i>et al.</i> , 1995; Chakraborty <i>et al.</i> , 1996; Chakraborty <i>et al.</i> , 1997; Brinkmann <i>et al.</i> , 1998; Momhinweg <i>et al.</i> , 1998; Szibor <i>et al.</i> , 1998) of direct mutation rate counts produced:
	 Larger sample sizes for some of the AmpFtSTR SEfiler Plus kit loci. Methods for modifications of these mutation rates (to infer

• Methods for modifications of these mutation rates (to infer mutation rates indirectly for those loci where these rates are not large enough to be measured directly and/or to account for those events undetectable as Mendelian errors).

Probability of Identity

Table of Probability of Identity

Table 5-7 shows the Probability of Identity (PI) values of the AmpFℓSTR[®] SEfiler Plus[™] PCR Amplification Kit loci individually and combined.

Table 5-7	Probability of identity values for the AmpF/STR®
SEfiler Plus	[™] kit STR loci

Locus	African-American	U.S. Caucasian
D2S1338	0.025	0.038
D3S1358	0.114	0.099
D8S1179	0.079	0.072
D16S539	0.074	0.085
D18S51	0.038	0.056
D19S433	0.045	0.126
D21S11	0.051	0.057
FGA	0.034	0.044
SE33	0.019	0.02
TH01	0.103	0.119
vWA	0.067	0.077
Combined	$6.47 imes 10^{-15}$	$7.46 imes 10^{-14}$

The P_I value is the probability that two individuals selected at random will have an identical SEfiler Plus kit genotype (Sensabaugh, 1982). The P_I values for the populations described in this section are then approximately $1/1.54 \times 10^{14}$ (African-American) and $1/1.34 \times 10^{13}$ (U.S. Caucasian).

Probability of Paternity Exclusion

Table of Probability of Paternity of Exclusion Table 5-8 shows the Probability of Paternity Exclusion (P_E) values of the AmpF ℓ STR[®] SEfiler PlusTM PCR Amplification Kit STR loci individually and combined.

Table 5-8 Probability of Paternity Exclusion values for the AmpF/STR[®] SEfiler Plus[™] kit STR loci

Locus	African-American	U.S. Caucasian
D2S1338	0.0745	0.621
D3S1358	0.734	0.65
D8S1179	0.477	0.763
D16S539	0.67	0.42
D18S51	0.725	0.912
D19S433	0.632	0.516
D21S11	0.745	0.734
FGA	0.784	0.676
SE33	0.745	0.792
TH01	0.578	0.734
vWA	0.613	0.705
Combined	0.999997	0.999998

The P_E value is the probability, averaged over all possible mother-child pairs, that a random alleged father will be excluded from paternity after DNA typing of the SEfiler Plus kit STR loci (Chakraborty and Stivers, 1996).

In This Appendix	Follow the recommended actions for the observations described in this appendix to understand and eliminate problems you experience during analysis.
	Troubleshooting

Troubleshooting

Table A-1 Troubleshooting causes and recommended actions

Observation	Possible Causes	Recommended Actions
Faint or no signal from both the AmpF <i>t</i> STR [®] Control DNA 007 and the DNA test samples at all loci.	Incorrect volume or absence of either AmpFℓSTR [®] SEfiler Plus [™] Master Mix or AmpFℓSTR [®] SEfiler Plus [™] Primer Set	Repeat amplification.
	No activation of enzyme	Repeat amplification, making sure to hold reactions initially at 95 °C for 11 min.
	Master Mix not vortexed thoroughly before aliquoting	Vortex Master Mix thoroughly.
	AmpFℓSTR [®] SEfiler Plus [™] Primer Set exposed to too much light	Store Primer Set protected from light.
	GeneAmp [®] PCR System malfunction	Refer to the thermal cycler user's manual and check instrument calibration.
	Incorrect thermal cycler parameters	Check the protocol for correct thermal cycler parameters.
	Tubes not seated tightly in the thermal cycler during amplification	Push reaction tubes firmly into contact with block after first cycle. Repeat test.
	Wrong PCR reaction tube	Use Applied Biosystems MicroAmp Reaction Tubes with Caps for the GeneAmp 9700.
	MicroAmp [™] Base used with tray/retainer set and tubes in GeneAmp® System 9700	Remove MicroAmp Base from tray/retainer set and repeat test.

Observation	Possible Causes	Recommended Actions
Faint or no signal from both the AmpFtSTR [®] Control DNA 007 and	Insufficient PCR product electrokinetically injected	For ABI PRISM [®] 3100/3100-Avant or Applied Biosystems 3130/3130 <i>xl</i> instrument runs:
the DNA test samples at all loci. <i>(continued)</i>		Mix 1.0 μL of PCR product and 9 μL of Hi-Di [™] Formamide/GeneScan [™] 600 LIZ [®] solution. WARNING CHEMICAL HAZARD. Formamide causes eye, skin, and respiratory tract irritation. It is a possible reproductive and birth defect hazard. Read the MSDS, and follow the handling instructions. Wear appropriate protective eyewear, clothing, and gloves.
	Degraded formamide	Check the storage of formamide; do not thaw and refreeze multiple times. Try Hi-Di [™] Formamide. WARNING CHEMICAL HAZARD. Formamide causes eye, skin, and respiratory tract irritation. It is a possible reproductive and birth defect hazard. Read the MSDS, and follow the handling instructions. Wear appropriate protective eyewear, clothing, and gloves.

Table A-1 Troubleshooting causes and recommended actions (continued)

Observation	Possible Causes	Recommended Actions	
Positive signal from AmpF <i>t</i> STR [®] Control DNA 007 but partial or no signal from DNA test samples	Quantity of test DNA sample is below assay sensitivity	Quantitate DNA and add 0.5 to 0.75 ng of DNA. Repeat test.	
	Test sample contains high concentration of PCR inhibitor (for example, heme compounds,	Quantitate DNA and add minimum necessary volume. Repeat test.	
	certain dyes)	Wash the sample in a Centricon [®] -100 centrifugal filter unit. Repeat test.	
	Test sample DNA is severely degraded	If possible, evaluate the quality of DNA sample by running an agarose gel. If DNA is degraded, reamplify with an increased amount of DNA.	
	Dilution of test sample DNA in H_2O or wrong buffer (for example, wrong EDTA concentration)	Redilute DNA using TE Buffer (with 0.1 mM EDTA).	
More than one allele present at a locus	Presence of exogenous DNA	Use appropriate techniques to avoid introducing foreign DNA during laboratory handling.	
	Too much DNA in reaction	Use recommended amount of template DNA (0.5 to 0.75 ng).	
	Mixed sample	See "Stutter Products" on page 5-21.	
	Amplification of stutter product (n-4 nt position)	page 5-21.	
	Incomplete 3' A base addition (n-1 nt position)	See "Addition of 3' A Nucleotide" on page 5-25. Be sure to include the final extension step of 60 °C for 45 min in the PCR.	
	Signal exceeds dynamic range of instrument (off-scale data)	Quantitate DNA and reamplify sample, adding 0.5 to 0.75 ng of DNA.	
	Poor spectral separation (bad matrix)	Follow the steps for creating a matrix file.	
		Confirm that Filter Set G5 modules are installed and used for analysis.	

Table A-1 Troubleshooting causes and recommended actions (continued)

Observation	Possible Causes	Recommended Actions
Some but not all loci visible on electropherogram	Test-sample DNA is severely degraded	If possible, evaluate the quality of DNA sample by running an agarose gel. If DNA is degraded, reamplify with an increased amount of DNA.
	Test sample contains high concentrations of a PCR inhibitor (for example, heme compounds, certain dyes)	Quantitate DNA and add minimum necessary volume. Repeat test.
		Wash the sample in a Centricon-100 centrifugal filter unit.
Poor peak height balance	Incorrect thermal cycler parameters.	Check the protocol for correct thermal cycler parameters
	GeneAmp PCR System 9700 with Aluminum 96-Well block or third- party thermal cyclers.	Use Applied Biosystems GeneAmp PCR System 9700 with silver or gold-plated silver blocks only.

Table A-1 Troubleshooting causes and recommended actions (continued)	Table A-1	Troubleshooting	causes and recommended actions	(continued)
--	-----------	-----------------	--------------------------------	-------------

Bibliography

Akane, A., Matsubara, K., Nakamura, H., Takahashi, S., and Kimura, K. 1994. Identification of the heme compound copurified with deoxyribonucleic acid (DNA) from bloodstains, a major inhibitor of polymerase chain reaction (PCR) amplification. *J. Forensic Sci.* 39:362–372.

Barber, M.D., McKeown, B.J., and Parkin, B.H. 1996. Structural variation in the alleles of a short tandem repeat system at the human alpha fibrinogen locus. *Intl. J. Legal Med.* 108:180–185.

Barber, M.D. and Parkin, B.H. 1996. Sequence analysis and allelic designation of the two short tandem repeat loci D18S51 and D8S1179. *Intl. J. Legal Med.* 109:62–65.

Barber, M.D., Piercy, R.C., Andersen, J.F., and Parkin, B.H. 1995. Structural variation of novel alleles at the Hum vWA and Hum FES/FPS short tandem repeat loci. *Intl. J. Legal Med.* 108:31–35.

Baron, H., Fung, S., Aydin, A., Bahrig, S., Luft, F.C., Schuster, H. 1996. Oligonucleotide ligation assay (OLA) for the diagnosis of familial hypercholesterolemia. *Nat. Biotechnol.* 14:1279–1282.

Begovich A.B., McClure G.R., Suraj V.C., Helmuth R.C., Fildes N., Bugawan T.L., Erlich H.A., Klitz W. 1992. Polymorphism, recombination, and linkage disequilibrium within the HLA class II region. *J. Immunol.* 148:249–58.

Bender, K., Farfan, M.J., Schneider, P.M. 2004. Preparation of degraded human DNA under controlled conditions. *Forensic Sci. Int.* 139:134–140.

Brinkman, B., Klintschar, M., Neuhuber, F., Huhne, J. and Rolf, B. 1998. Mutation rate in human microsatellites: Influence of the structure and length of the tandem repeat. *Am. J. Hum. Genet.* 62:1408–1415.

Brinkman, B., Moller, A. and Wiegand, P. 1995. Structure of new mutations in 2 STR systems. *Intl. J. Legal Med.* 107:201–203.

Butler, J.M. 2005. Forensic DNA Typing. Burlington, MA:Elsevier Academic Press.

Butler, J.M., Shen, Y., McCord, B.R. 2003. The development of reduced size STR amplicons as tools for analysis of degraded DNA. J. Forensic Sci. 48:1054–1064.

Chakraborty, R. Kimmel, M., Stivers, D., Davison, L., and Deka, R. 1997. Relative mutation rates at di-, tri-, and tetranucleotide microsatellite loci. *Proc. Natl. Acad. Sci. USA* 94:1041–1046.

Chakraborty, R., Stivers, D., and Zhong, Y. 1996. Estimation of mutation rates from parentage exclusion data: applications to STR and VNTR loci. *Mutat. Res.* 354:41–48.

Chung, D.T., Drabek, J., Opel, K.L., Butler, J.M. and McCord, B.R. 2004. A study of the effects of degradation and template concentration on the amplification efficiency of the Miniplex primer sets. *J. Forensic Sci.* 49:733–740.

Clark J.M. 1988. Novel non-templated nucleotide addition reactions catalyzed by procaryotic and eucaryotic DNA polymerases. *Nucleic Acids Res.* 16:9677–9686.

Coble, M.D. and Butler, J.M. 2005. Characterization of new miniSTR loci to aid analysis of degraded DNA. *J. Forensic Sci.* 50:43–53.

DeFranchis, R., Cross, N.C.P., Foulkes, N.S., and Cox, T.M. 1988. A potent inhibitor of Taq DNA polymerase copurifies with human genomic DNA. *Nucleic Acids Res.* 16:10355.

DNA Advisory Board, Federal Bureau of Investigation, U.S. Department of Justice. 1998. Quality assurance standards for forensic DNA testing laboratories.

Drabek, J., Chung, D.T., Butler, J.M., McCord, B.R. 2004. Concordance study between Miniplex assays and a commercial STR typing kit. *J. Forensic Sci.* 49:859–860.

Edwards, A., Civitello, A., Hammond, H., and Caskey, C. 1991. DNA typing and genetic mapping with trimeric and tetrameric tandem repeats. *Am. J. Hum. Genet.* 49:746–756.

Edwards, A., Hammond, H.A., Lin, J., Caskey, C.T., and Chakraborty, R. 1992. Genetic variation at five trimeric and tetrameric tandem repeat loci in four human population groups. *Genomics* 12:241–253.

Frank, W., Llewellyn, B., Fish, P., *et al.* 2001. Validation of the AmpFℓSTR[®] Profiler Plus[™] PCR Amplification Kit for use in forensic casework. *J. Forensic Sci.* 46:642–646.

Grossman, P.D., Bloch, W., Brinson, E., Chang, C.C., Eggerding, F.A., Fung, S., Iovannisci, D.M., Woo, S., Winn-Deen, E.S. 1994. High-density multiplex detection of nucleic acid sequences: oligonucleotide ligation assay and sequence-coded separation. Nucleic Acids Res. 22:4527–4534.

Grubwieser, P. Muhlmann, R., Berger, B., Niederstatter, H., Palvic, M., Parson, W. 2006. A new "mini-STR-multiplex" displaying reduced amplicon lengths for the analysis of degraded DNA. *Int. J. Legal Med.* 120:115–120.

Hammond, H., Jin, L., Zhong, Y., Caskey, C., and Chakraborty, R. 1994. Evaluation of 13 short tandem repeat loci for use in personal identification applications. *Am J. Hum. Genet.* 55:175–189.

Holt, C., Stauffer, C., Wallin, J., *et al.* 2000. Practical applications of genotypic surveys for forensic STR testing. *Forensic Sci. Int.* 112:91–109.

Kimpton, C., Walton, A., and Gill, P. 1992. A further tetranucleotide repeat polymorphism in the vWF gene. *Hum. Mol. Genet.* 1:287.

Kwok, S., and Higuchi, R. 1989. Avoiding false positives with PCR. *Nature* 339:237–238.

Lazaruk, K., Walsh, P.S., Oaks, F., Gilbert, D., Rosenblum, B.B., Menchen, S., Scheibler, D., Wenz, H.M., Holt, C., Wallin, J. 1998. Genotyping of forensic short tandem repeat (STR) systems based on sizing precision in a capillary electrophoresis instrument. *Electrophoresis*. 19:86–93.

Li, H. Schmidt, L., Wei, M-H., Hustad, T. Leman, M.I., Zbar, B. and Tory, K. 1993. Three tetranucleotide polymorphisms for loci:D3S1352; D3S1358; D3S1359. *Hum. Mol. Genet.* 2:1327.

Magnuson, V.L., Ally, D.S., Nylund, S.J., Karanjawala, Z.E., Rayman, J.B., Knapp, J.I., Lowe, A.L., Ghosh, S., Collins, F.S. 1996. Substrate nucleotide-determined non-templated addition of adenine by Taq DNA polymerase: implications for PCR-based genotyping and cloning. *Biotechniques* 21:700–709.

Mansfield, E.S., Robertson, J.M., Vainer, M., Isenberg, A.R., Frazier, R.R., Ferguson, K., Chow, S., Harris, D.W., Barker, D.L., Gill, P.D., Budowle, B., McCord, B.R. 1998. Analysis of multiplexed short tandem repeat (STR) systems using capillary array electrophoresis. *Electrophoresis* 19:101–107.

Mills, K.A., Even, D., and Murrau, J.C. 1992. Tetranucleotide repeat polymorphism at the human alpha fibrinogen locus (FGA). *Hum. Mol. Genet.* 1:779.

Möller, A. and Brinkmann, B. 1995. PCR-VNTRs (PCR-Variable Number of Tandem Repeats) in forensic science. *Cell. Molec. Biol.* 41:715–724.

Möller, A., Meyer, E., and Brinkmann, B. 1994. Different types of structural variation in STRs: HumFES/FPS, HumVWA, and HumD21S11. *Intl. J. Legal Med.* 106:319–323.

Möller, A., Schurenkamp, M., and Brinkmann, B. 1995. Evaluation of an ACTBP2 ladder composed of 26 sequenced alleles. *Int. J. Legal Med.* 108:75–78.

Momhinweg, E., Luckenbach, C., Fimmers, R., and Ritter, H. 1998. D3S1358: sequence analysis and gene frequency in a German population. *Forensic Sci. Int.* 95:173–178.

Moretti, T., Baumstark, A., Defenbaugh, D., Keys, K., Smerick, J., and Budowle, B. 2001. Validation of short tandem repeats (STRs) for forensic usage: Performance testing of fluorescent multiplex STR systems and analysis of authentic and simulated forensic samples. *J. Forensic Sci.* 46(3):647–660.

Mulero, J.J., Chang, C.W., and Hennessy, L.K. 2006. Characterization of N+3 stutter product in the trinucleotide repeat locus DYS392. *J. Forensic Sci.* 51:826–830.

Nakahori, Y., Takenaka, O., and Nakagome, Y. 1991. A human X-Y homologous region encodes amelogenin. *Genomics* 9:264–269.

Puers, C., Hammond, H., Jin, L., Caskey, C., and Schumm, J. 1993. Identification of repeat sequence heterogeneity at the polymorphic short tandem repeat locus HUMTH01 [AATG]n and reassignment of alleles in population analysis using a locus-specific allelic ladder. *Am. J. Hum. Genet.* 53:953–958.

Revised Validation Guidelines-Scientific Working Group on DNA Analysis Methods (SWGDAM). *Forensic Science Communications* (July 2004)-Volume 6 (3). Available at http://www.fbi.gov/hq/ lab/fsc/current/standards/2004_03_standards02.htm

Sensabaugh, G.F. 1982. Biochemical markers of individuality. In: Saferstein, R., ed. *Forensic Science Handbook*. Prentice-Hall, Inc., New York, pp. 338–415. Sharma, V., and Litt, M. 1992. Tetranucleotide repeat polymorphism at the D21S11 locus. *Hum Mol. Genet.* 1:67.

Smith, R.N. 1995. Accurate size comparison of short tandem repeat alleles amplified by PCR. *Biotechniques* 18:122–128.

Sparkes, R., Kimpton, C., Watson, S., Oldroyd, N., Clayton, T., Barnett, L., Arnold, J., Thompson, C., Hale, R., Chapman, J., Urquhart, A., and Gill, P. 1996a. The validation of a 7-locus multiplex STR test for use in forensic casework. (I). Mixtures, ageing, degradation and species studies. *Int. J. Legal Med.* 109:186–194.

Sparkes, R., Kimpton, C., Gilbard, S., Carne, P., Andersen, J., Oldroyd, N., Thomas, D., Urquhart, A., and Gill, P. 1996b. The validation of a 7-locus multiplex STR test for use in forensic casework. (II), Artifacts, casework studies and success rates. *Int. J. Legal Med.* 109:195–204.

Straub, R.E., Speer, M.C., Luo, Y., Rojas, K., Overhauser, J., Ott, J., and Gilliam, T.C. 1993. A microsatellite genetic linkage map of human chromosome 18. *Genomics* 15:48–56.

Szibor, R., Lautsch, S., Plate, I., Bender, K., and Krause, D. 1998. Population genetic data of the STR HumD3S1358 in two regions of Germany. *Intl. J. Legal Med.* 111:160–161.

Urquhart, A. Kimpton, C., and Gill, P. 1993. Sequence variability of the tetranucleotide repeat of the human beta-actin related pseudogene H-beta-Ac-psi-2 (ACTBP2) locus. *Hum. Genet.* 92:637–638.

Wallin, J.M., Buoncristiani, M.R., Lazaruk, K.D., Fildes, N., Holt, C.L., Walsh, P.S. 1998. SWGDAM validation of the AmpFISTR blue PCR amplification kit for forensic casework analysis. *J. Forensic Sci.* 43:854–70.

Wallin, J.M., Holt, C.L., Lazaruk, K.D., Nguyen, T.H., Walsh, P.S. 2002. Constructing universal multiplex PCR systems for comparative genotyping. *J. Forensic Sci.* 47:52–65.

Walsh, P.S., Fildes, N.J., Reynolds, R. 1996. Sequence analysis and characterization of stutter products at the tetranucleotide repeat locus vWA. *Nucleic Acids Res.* 24:2807–2812.

Watson, S., Kelsey, Z., Webb, R., Evans, J., and Gill, P. 1998. The development of a third generation STR multiplex system (TGM). In: Olaisen, B., Brinkmann, B., and Lincoln, P.J., eds. *Progress in Forensic Genetics 7: Proceedings of the 17th International ISFH Congress, Oslo 2-6 September 1997.* Elsevier, Amsterdam, pp. 192–194.

Weber, J. and Wong, C. 1993. Mutation of human short tandem repeats. *Hum. Mol. Genet.* 2:1123–1128.

Wiegand, P. and Kleiber, M. 2001. Less is more—length reduction of STR amplicons using redesigned primers. *Int. J. Legal Med.* 114:285–287.

Index

Symbols

+A nucleotide addition defined 5-25 efficiency of 5-25 lack of, causes 5-27

Numerics

310, allelic ladder requirements 3-2
3100 and 3130 series, allelic ladder requirements 3-2

Α

accuracy and reproducibility 5-7 alleles off-ladder 5-8 peak height ratio, table 5-42 allelic bin definitions 4-2 offsets 4-2 allelic ladder analysis method for 4-2 contents 1-12 figure 1-7 number per run, suggested 3-2 precision results table 5-10 requirements for accurate genotyping 3-2 sample type 4-2 volume per reaction 3-6, 3-9 AmpFISTR Panels v3 folder 4-6 analysis method, for allelic ladders 4-2 analysis settings, for project 4-16 annealing temperatures, validation of 5-4, 5-5 Applied Biosystems contacting xii customer feedback on documentation xii Information Development department xii

Technical Support xii artifacts in data 5-27

В

baseline noise, examples 5-28
bin sets importing 4-6 viewing 4-8
Bin view, displaying for a marker 4-8
biohazardous waste, handling ix
Bloodstained FTA Cards, amplification 2-10
bold text, when to use v

С

CAUTION, description vi CEPH 5-30 characterization of loci, validation 5-30 chemical safety vii chemical waste hazards viii chemical waste safety ix chromosome location locus designation 1-3 See Also allele; loci contents of kit 1-12 control DNA about 1-13 contents 1-12 storage 1-12 conventions bold text v for describing menu commands v IMPORTANT! V italic text v Notes v user attention words v

customer feedback, on Applied Biosystems documents xii cycle number, validation 5-6

D

D3S1358, locus designation 1-3 DANGER, description vi data accuracy, precision, and reproducibility 5-7 artifacts 5-27 for different populations 5-47 data collection software 1-10 developmental validation 5-3 DNA degraded 5-36 effect of quantity on result 5-34 effect of quantity, figure 5-35 methods for quantifying 2-5 mixture studies 5-42 mixture studies figure 5-44 negative control sample preparation 2-8 non-human specificity 5-32 positive control sample preparation 2-8 quantitation, importance of 5-34 sensitivity 5-34 stability 5-36 your sample preparation 2-8 DNA mixtures amplification figure 5-45 limit of detection 5-45 documentation, related xi

Ε

electropherogram causes of extra peaks 5-10 extra peaks 5-21 species specificity 5-32 electrophoresis data collection software 3-3, 3-7 preparing samples 3-5, 3-8 references 3-3, 3-7 run module 3-3, 3-7 set up 3-3, 3-7 emission spectra 1-11 equipment, not included with kit 1-13 experiments and results 5-1 extra peaks, causes 5-21

F

FGA locus designation 1-3 fluorescent dyes 1-11 FTA card DNA amplification using 2-10 figure showing results 2-10

G

GeneMapper ID software allele tab 4-11 analysis settings 4-16 analyzing and editing sample files 4-16 considerations 4-2 description 4-2 general tab 4-10 peak detector tab 4-12 peak quality tab 4-13 quality flags tab 4-14 size standard 4-16 viewing imported panels 4-7 GeneMapper Manager 4-9, 4-14 GeneScan size standard about 1-13 dve label 1-11 fragment sizes 4-16 volume per reaction 3-5, 3-8guidelines chemical safety vii chemical waste disposal viii chemical waste safety ix

Η

hazards, chemical waste viii hematin, effects of 5-38 HID analysis method, importing 4-9 Hi-Di formamide, volume per reaction 3-5, 3-8 humic acid, effect of 5-40

I

Import Panels dialog box 4-4 IMPORTANT, description vi Information Development department, contacting xii inheritance 5-30 italic text, when to use v

Κ

```
kit
   contents 1-12
   description 1-2
   fluorescent dyes 1-11
   instruments for use with 1-2
   loci amplified 1-3
   master mix 1-12
   part number 1-12
   primers 1-2, 1-12
   purpose 1-2
   reagents 1-12
   storage 1-12
   thermal cyclers for use with 2-3
kit performance, comparison
   DNase I figure 5-37
   hematin, figure 5-38
   hematin, table 5-39
   humic acid, figure 5-40
   humic acid. table 5-41
```

L

```
LIZ size standard
about 1-13
volume per reaction 3-5, 3-8
loci
AmpFISTR SGM Plus 1-3
amplified 1-3
characterization 5-30
mapping 5-31
low TE buffer, preparation 2-4
```

Μ

magnesium chloride concentration, validation of 5-4

marker, displaying Bin view of 4-8 master mix contents 1-12 storage 1-12 volume per reaction 2-7 materials and equipment 1-12 materials, not included with kit 1-13 menu commands, conventions for describing v mixed samples, resolution of genotypes 5-44 mixture studies 5-42 **MSDSs** description vii obtaining vii multicomponent analysis 1-10 mutation rate 5-48 mutation studies 5-48 mutation, STR 5-48

Ν

navigation pane displaying list of panels 4-7 Panel Manager 4-4

0

off-ladder alleles 4-3, 5-8 operating systems 1-10, 3-3, 3-7

Ρ

Panel Manager 4-4 panels, viewing 4-7 paternity exclusion 5-50 PCR performing 2-9 setup 2-2 PCR components, validation of 5-3 PCR cycle number, validation 5-6 PCR inhibitor hematin 5-38 humic acid 5-40 PCR work areas 2-2 peak detection parameters 4-12

peak height ratios, table of alleles 5-42 peak height, minimum 4-12 percent stutter highest value for locus 5-21 off-scale peaks 5-21 relation to allele length 5-21 PQV thresholds 4-14 precision and size windows 5-8 precision, sizing 5-8 primers about 1-2 Amelogenin 5-30 fluorescent dyes attached 1-12 storage 1-12 volume per reaction 2-7 probability of identity 5-49 project window, figure 4-17

Q

quality flag settings4-14Quantifiler kit, description2-6quantifying DNA, methods2-5

R

radioactive waste, handling ix reaction mix, for PCR 2-7 reaction volume, final for PCR 2-8 reactions, preparing for PCR 2-7 reagents low TE buffer 2-4 not included with kit 1-13 run module, electrophoresis 3-3, 3-7

S

safety biological hazards x chemical waste viii guidelines vii, viii, ix size deviation, sample alleles and ladder alleles 5-8 size standard, GeneMapper ID software 4-16 sizing precision 5-8 species specificity 5-32 split peaks +A nucleotide addition 5-26 figure 5-26 stability, DNA 5-36 standards for samples 1-13 storage recommendations, kit 1-12 stutter percent CSF1P0 and FGA loci 5-24 D13S317 and D7S820 loci 5-22 D16S539 and D18S51 loci 5-24 D2S1338 and D21S11 loci 5-23 for each kit locus 5-24 marker specific 5-24 stutter products 5-21

Т

Technical Support, contacting xii thermal cyclers for use with kit 2-3 programming 2-9 thermal cycling parameters, validation of 5-4 training, information on xii troubleshooting, causes and actions A-2

U

user attention words, described v

V

validation annealing temperatures 5-4, 5-5 characterization of loci 5-30 developmental 5-3 effect of DNA quantity 5-34 experiments to evaluate 5-2 importance of 5-2 importance of DNA quantitation 5-34 magnesium chloride concentration 5-4 mixture studies 5-42 mutation rate 5-48 PCR components 5-3 PCR cycle number 5-6 population data 5-47 probability of identity 5-49 probability of paternity exclusion 5-50 sensitivity 5-34 size deviation, sample and ladder alleles 5-8 species specificity 5-32 stability 5-36 thermal cycling parameters 5-4 vWA, locus designation 1-3

W

WARNING, description vi waste disposal, guidelines ix work area amplified DNA 2-3 PCR setup 2-2 setup and lab design 2-2

Worldwide Sales and Support

Applied Biosystems vast distribution and service network, composed of highly trained support and applications personnel, reaches 150 countries on six continents. For sales office locations and technical support, please call our local office or refer to our Web site at www.appliedbiosystems.com.

Applera is committed to providing the world's leading technology and information for life scientists. Applera Corporation consists of the Applied Biosystems and Celera Genomics businesses.

Headquarters

850 Lincoln Centre Drive Foster City, CA 94404 USA Phone: +1 650.638.5800 Toll Free (In North America): +1 800.345.5224 Fax: +1 650.638.5884

03/2012

Part Number 4385739 Rev. B