Aspect-Oriented, Model-Drive

Product Line Engineering

VML4ARE User Manual

FCT/UNL

1 Contents

INEFOAUCTION ..ttt sttt et et e bt e s bt e s he e sab e st e et e e b e e nbeenbeesmeesaeeeneeen 3
2 System Requirements and INStallationcceoivoiiiii i 3
3 Available Actions iN VIMILARE.......coui ittt sttt s st sbe e s 4
4 Applying VMLARE 10 @ CaSE STUYuviiiiiiiiieeeciiiee e ecieee e et e e et e e e eitae e e esatae e e eevae e e s anaeeesennreeeean 5
4.1 Creating @a NeW VIMLARE ProjeCt .ottt ee e e e e e e e ee e 6
4.2 Modeling Commonalities and Variabilitiesccoeeeeecieiicciiee e, 6
4.3 Modelling SPL Requirements Models With UMLccccoiooiiiiiiiiiii e, 7
4.4 Writing the VIMLARE SPeCifiCationc..ueiiiiiiiiecceeeccee ettt et 8
4.5 Deriving Product MOMEISoeiieiiiieiiiie ettt e ettr e e e ete e e s sara e e e enaaeeeeanes 10
4.6 Viewing Generated Trace LiNKS........coccuiiiiiiiie ittt ettt e e e 13

R =TT (o= TR 16

Introduction

Managing variability in Requirements Engineering (RE) is a key challenge in Software
Product Line (SPL) engineering. An important part of variability management is the ability to
express explicitly the relationship between variability models (expressing the variability in
the problem space, for example using feature models) and other artefacts of the product
line, for example, requirements models. Once these relations have been explicitly
represented, they can be used for a number of purposes, most importantly to automatically
derive product instances based on product-configuration specifications, but also for other
purposes such as trace-link generation and consistency checking of SPL models.

In this document we present the user guide for the VMLA4RE tool suite. We illustrate its use
for UML requirements models in a home automation case study called Smart Home. The
eclipse project containing the application of VML4RE to Smart Home can be found here.

2 System Requirements and Installation

The VMLA4RE tool was developed as an Eclipse plug-in and was designed to work with the
following set of requirements:

e Java SE Runtime Environment (JRE) 6

Eclipse Modeling Tools Bundle v.3.4.1

OpenArchitectureWare v.4.3.1 [1]

UML2 Tools for Eclipse [2]

Feature Modeling Plug-in (FMP) v.0.7 [3]

ATF v0.2.1 (All ATF requirements must also be satisfied. Please, check ATF
documentation)

Since VML4RE is an instantiation of the VML* Suite to deal with use cases and activity
models, the suite should be included in your eclipse installation. VML* can be downloaded
from [4].

To install VMLA4RE plug-in, copy the following files to the directory dropins your Eclipse
installation:

- unlvmldreq_1.1.1.jar
- org.ample.vmlstar.util_1.1.1.jar
- org.ample.vmlstar.langinst_1.1.1.jar

- org.ample.vmlstar.langinst.model_1.1.1.jar

http://ample.di.fct.unl.pt/VML_4_RE/vml4resmarthome.zip

- org.ample.vmlstar.langinst.model.edit_1.1.1.jar

- org.ample.vml.vmldreq_1.1.1.jar

- org.ample.vml.vmldreqg.generator_1.1.1.jar

- org.ample.vml.vmldreq.editor_1.1.1.jar

Note that the numbers in the names can change, depending on the current version of the

tool.

This tool can also be found already installed and ready to use in the AMPLE Eclipse Bundle,
which can be downloaded from here [5].

3 Available Actions in VML4RE

VMLA4RE is an instance of the VML tool suite. In order to create the VML4RE language, a set
of actions specific for use cases and other requirements models were implemented. For
more information about the process of instantiating the VML* framework, please consult
the VML* documentation which can be obtained from the AMPLE website. These actions
can then be used to manage variability, i.e., when creating a VML4RE specification as we will

see in this document.

Table 1 shows the Set of available actions for use case and activity models.

Action Signature

Description

insertUseCase (String name, Package p)

A new use case named name is inserted into package p.

insertPackage (String name, Package p)

A new package named name is inserted into package p.

createlInclude (
List[UseCase] from,
List[UseCase] to)

A new dependency of type <<include>> is created
between each of the source use cases and each of the target

use cases.

createExtends (
List[UseCase] from,
List[UseCase] to)

A new dependency of type <<extends>> is created
between each of the source use cases and each of the target

use cases.

createInherits (
List[UseCase] from,
List[UseCase] to)

A new dependency if type <<inherits>> is created
between each of the source use cases and each of the target

use cases.

createAssociation (
List[UseCase] from,
List[UseCase] to)

A new association relationship is created between each of the
source model elements and each of the target models
elements.

insertActor (String name, Package p)

A new actor named name is inserted into package p.

insertPackage (String name, Package p)

A new package named name is inserted into package p.

removeElement (Element elem)

The element elem is removed from the model.

createActivityModel (String name, A new activity model named name is inserted into package p.
Package p)
createAction (String name, Package p) | A new opaque action named name is inserted into package p.

createObjectAction
Package p)

(String name,

A new object action named name is inserted into package p.

connectActivityElements
(ActivityNode source, ActivityNode target,
String guard)

The activity elements source and target are connected
through a control flow with guard guard. If guard equals

“un

, ho guard name is created.

createDecisionNode (String name, A new decision node named name is inserted into package p .
Package p)

createActivityParameter (String A new activity parameter named name is inserted into

name, Package p) package p.

createQutputPin (String name, Creates a new output pin named name for the action oa.

OpaqueAction oa)

connectPins (OpaqueAction oal,
String pinlname, OpaqueAction

oa2, String pin2name):

Connect pin named pinlname of action oal with pin names

pin2name of action oa2.

replaceActionByActivity

Replace the action oa with the contents present in the

(OpaqueAction oa, Package p) package p

Trace (Element e) This operator traces the features where this action appear to

the element or set of elements referenced by e. It

Table 1 - List of available actions for VMLARE

The operator — trace (Element elem) — allows to define explicitly trace links from features
included in a feature expression with target model elements. To exemplify, if the vmldre
specification contains the following variant:

variant for fl1 {
trace (“refelemx”);

}

the feature £1 will be traced to the element referenced by refelemx;

4 Applying VML4RE to a Case Study

To demonstrate how VMLARE can be used, we show the application of the tool with a case
study called Smart Home [6, 7]. Smart home is a home automation software product line
case study developed in the context of the AMPLE project. Smart homes have a wide variety
of electronic and electrical devices which include lights, thermostats, blinds and fire
detection sensors, security devices such as cameras, white goods such as washing machines,
communication devices such as phones and entertainment devices such as televisions. The
Smart Home system is designed to coordinate the behaviour of the devices to fulfil complex
tasks automatically. It also enables the inhabitants to visualize and control the status of the
devices from a common user interface. For brevity and clarity we only use some of the
features of the Smart Home.

4.1 Creating a new VML4RE Project

The first step is to create a new VMLARE project. For this, Right Click on the package
explorer view of your workspace:

New-> Other... -> XText DSL Wizards -> VMLA4RE Project. Give a name to your project (for
example, SmartHome)

Next, a new blank VMLA4RE project is created with the structure depicted in Figure 1.

i ra
% Package Explarer 53 Tg Hierarchy\l = B | k] model.vmltreq 52
== | = | e k\,-’ wodel goes here...

IElfg_-'ﬂ- SmartHome

Eltﬁ SrC

[D model. vml4req

P B D SrartHame, aaw
e gro-gen

[+-B8, JRE Svstern Library [iren]

E-.,. Plug-in Dependencies
= META-INF

...... lord build, properties

Figure 1 - Empty VMLA4RE project

Before creating a VMLARE specification, it is necessary to create the feature and
requirements models. These steps are demonstrated in the next sections.

4.2 Modeling Commonalities and Variabilities

The next step of our approach is to model the commonalities and variabilities of the SPL.
Figure 2 (left) shows the feature model of the Smart Home product line and Figure 2 (right)
shows one of its possible configurations called Economic Smart Home. In the Economic
edition the optional features that will not be included in the final product are not ticked.
Therefore, camera surveillance and notifications via internet are not part of the final
product.

A SmartHome

HomeFunctions

® WindowsManagemenkt
O ElectronicWindows
® ManualWindows

'i!l.. Configuration 1 af SmarkHome (4 ¢
=l #® HomeFunctions
=l ® ‘\WindowsManagemenkt
] Electronicwindows
® ManualWindows

#® HeatingManagement - #% HeatingManagement

ManualHeating ® ManualHeating

@ SmartHeating E SmartHeating

=l @ Securitw = ESecurit\y‘
=l #® alarm = ® alarm
g Siren E Siren
o Light [Light
=I-- # IntrusionDetection =|-- #® IntrusionDetection
O GlassBreakSensars E GlassBreaksensors
O Cameras [cameras
=l & gl = % GlI

® Touch3creen ® Touch3creen

& Internet [trternet

Figure 2- Feature model (left) and one of its configurations called Economic Smart Home (right).

Both models were created using the Feature Modelling Plug-in (FMP) [3] for Eclipse.

4.3 Modelling SPL Requirements Models with UML

The second step of our approach consists on modeling the requirements of the SPL using
UML, such as use case and activity models. We use the UML2 plug-in for Eclipse [2] to model
both use case and activity diagrams. However, the user could use other commercial tools
like Magic Draw [8] for example, since VML* is general enough and allows the user to define
or implement how models should be loaded.

To create use case and activity models, right click on the folder where do you want to put
the new model (e.g., scr), New -> Other... -> UML 2.1 Diagrams -> UMLUseCase Diagram.
Give a name to the new Model (SmartHome.uml, for example).

To create activity models you can right click on SmartHome.uml and then right click on
Initialize Activity Diagram. Figure 3 shows an example of a core use case model for the Smart
Home case study.

product. umlusc *SmartHome umluse &5

=0

Heati
= eating

%——_._________ O AdjustHeatervdoe

Heater /

(O OpendndCloseiwincows

Thermostat

9

Inhabitant

indovesManagerment

O OpenfndCoseiwindmasManuay

Motification

o MotifylsingTouchSoeen

o i
o «exter:gb

O SendSecurityMotification

Figure 3 - Core UML Use Case Model for Smart Home

=

¥

[

L Palette

IRt

R

o Use Case
& Actor

=] Subject
1 Package

{7} Constraint

= Extension
Faint

@7, Element
Irnpork

/ Associa...
0 Extend
T Include
A Generali,,

{7} Constra...
Element

" Depend...

Figure 4 shows an example of the activity diagram for the scenario Adjust Heater Value.

-
*SmartHome, umlack &5

=]

Adjust Heater value

L& Palette

‘\&

Send command to termperature controller

Set desired termperature

I

Check current room termnperatune

w room temperature = desired termperatune

{

II'room temperature < desired termperaturs] |

{

Start heater Start AC
Increase Temperatue Decrease Temperature

N

Maintain Temperature

: 2

/

+)

e

5 Ackivity

Chmml

) Ackivity Parameter
= Activity Partition
Sl Accept Event Ackion

{5 Add Feature Yalue
Action

(@) Call Behavior Action

(@) Call Operation
Action

#1 Create Object
~ Action

0 Opague Ackion

o Send Signal Action
@ OpaqueBehavior

@ Activity Initial Mode
@ Activity Final Node
& Flow Final Mode

v

24 Merge Mode

[I2 Fark Mode

E'm; Conditional Node
{1 Expansion Region
{531 Loop Mode

i200 Struckured Ackivity
Mode

5 Central Buffer

[

Figure 4 - Activity Model for Activate Secure Mode scenario

4.4 Writing the VML4RE Specification
At this step, we can start writing the VMLA4RE specification.

Table 2 summarizes the general structure of a VML* specification. More information can be
found in the VML Suite documentation available in the AMPLE website.

VML Block Description

Import features path This block imports the feature model located in the path to
be used along the vml4re specification.

Import core path This imports the core model to be used along the vmldre
specification.

atf repname This line, when present, creates a new trace link repository
in ATF. Trace links generated during the execution of this
vmldre specification will be persisted in the created
repository.

Variant v_name feature_expression | Variant allows giving a name to a feature expression. A
feature expression defines logic between a set of features.
Inside a variant, a set of actions should be defined.

Table 2- General structure of a VML specification

For demonstration purposes, simply copy the following vmldre specification into the
vmldreq file. Note that the first two lines should be adapted, according to the path where
the previously created models are located. In the following example, the models are in
C:/VML4RESmartHome/.

import features <"File:C:/VML4RESmartHome/SmartHome. fmp">;
import core <"File:C:/ VML4RESmartHome/SmartHome.uml">;
atf "c:/tmp"

concern SmartHome {
variant for GUI {
trace ("Notification");

}

variant for WindowsManagement {
trace ("Windowsmanagement") ;

}

variant for HeatingManagement {
trace ("Heating") ;
trace ("Thermostat") ;
trace ("Heaterxr");

}

variant for SmartHeating {
insertUseCase ("ControlTemperatureAutomatically", "Heating");
insertUseCase ("CalculateEnergyConsumption", "Heating");
createInclude ("Heating::ControlTemperatureAutomatically" ,
"Heating::AdjustHeatervValue");
insertActor ("WindowActuator", "");
createAssociation (or ("WindowActuator", "Thermostat")
"Heating::ControlTemperatureAutomatically") ;
createExtends ("Heating::ControlTemperatureAutomatically",
"Heating: :AdjustHeaterValue");
createExtends ("Heating::CalculateEnergyConsumption",
"WindowsManagement: :OpenAndCloseWindows") ;

’

}

variant for ElectronicWindows {
insertUseCase ("OpenAndCloseWindowsAutomatically", "WindowsManagement");
insertActor ("WindowActuator", "");

}

order

insertActor ("WindowSensor", "");

createInherits ("WindowsManagement: :0OpenAndCloseWindowsAutomatically" ,
"WindowsManagement: :OpenAndCloseWindows") ;

createInclude ("Heating::ControlTemperatureAutomatically",
"WindowsManagement: :OpenAndCloseWindowsAutomatically") ;
createAssociation (or ("WindowSensor", "WindowActuator")

, "WindowsManagement: :OpenAndCloseWindowsAutomatically");

}

variant secure it for Security {
insertPackage ("Security" , "");
insertUseCase ("SecureTheHouse" , "Security");
insertUseCase ("ActivateSecureMode" , "Security");
createAssociation ("Inhabitant", "Security::.*");
createInclude ("Security::SecureTheHouse",
or ("Notification::SendSecurityNotification", "WindowsManagement: :OpenAndCloseWin
dowsAutomatically"));
createActivityModel ("ActivateSecureMode", "");
createAction ("VerifyInstalledGlassBreakSensors", "ActivateSecureMode");
connectActionWithInitialNode
("ActivateSecureMode: :VerifyInstalledGlassBreakSensors", "ActivateSecureMode");
createAction ("WaitForAlarmSignal", "ActivateSecureMode");
connectActionWithFinalNode ("ActivateSecureMode::WaitForAlarmSignal",
"ActivateSecureMode") ;

connectActions ("ActivateSecureMode: :VerifyInstalledGlassBreakSensors", "Activate
SecureMode: :WaitForAlarmSignal");

}

variant for Siren {
insertActor ("Siren", "") ;
createAssociation ("Siren", "Security::SecureTheHouse");

}

variant for Light {
insertActor ("Lights", "") ;
createAssociation ("Lights", "Security::SecureTheHouse");

}

variant for GlassBreakSensors {

insertActor ("GlassBreakSensor", "") ;
createAssociation ("GlassBreakSensor", "Security::SecureTheHouse");
createAssociation ("GlassBreakSensor", "Security::ActivateSecureMode");

}

variant for Cameras {
insertActor ("Cameras", "") ;
createAssociation ("Cameras", "Security::SecureTheHouse");

}

variant network for Internet {
insertUseCase ("NotifyUsingInternet" , "Notification") ;
createExtends ("Notification::NotifyUsingInternet"
"Notification::SendSecurityNotification");

(network, secure it);

Figure 5 - VML4RE Smart Home Specification

4.5 Deriving Product Models

The product models are generated when the vml4re specification is compiled and executed.

To compile the vml4re specification, right click on the vml4re file and select:

Vml4req -> compile

When this operation is concluded, to execute the specification, right click again on the

vml4re file and select:

Vmldreq -> configure

Here you should select the file that contains the configuration of the feature model. In this
case, since the FMP files already persists feature models and configurations in the same file,
you should select the same feature model file you defined in section import of your vml4re

specification.

After selecting the configuration file, some internal actions are performed. Finally, inside the
folder /src-gen of your project you can find the product model.

Considering the feature model and its configuration (presented in Section 4.1) and the
vmldre specification (Section 4.4), the product use case model was generated. Figure 6
depicts the generated product use case model for the configuration.

Heating

% o AdjustHeaterValue a

=
Heater ,;I,rqnclude»

o ControlTemperatureAutomatically

\
|
\

Thermostat

X

Inhabi

2 CalculateEnergyConsumption

LY . | "]
e “EXtQ\nd” - Yinclude #

sManagement \
'-\ ‘ WindowActuator
{

[} OpenAndCIoseW\indows

\

o OpentndClosevindowsManually L rﬂ__._-—f"‘”"’ i

o OpenbndCloseWindowsAutomatizally

WindowSensor
2 SecureTheHouse a Lights
0 ActivateSecureMode
d
Siren

Motification

W
© NotifyUsingT ouchScreen © SendSecurityNotification % GlassBreakSensor
—

(=1
i, “EXtEndw

Figure 6 - Product use case model for Economic Smart Home

Figure 7 depicts the resulting product activity diagram for the scenario Activate Secure Mode.

.ﬁ
YerifyInstaledGlassBreal:Sensors

i

WaitForalarmSignal

Figure 7 - Activity Model for optional Scenario Activate Secure Mode

4.6 Viewing Generated Trace Links

To view the generated trace links, it is necessary to import the project with the ATF
repository to the workspace. To do this, you should right click and select:

import.. -> General -> Existing Projects into Workspace -> Select root directory

Then, browse to the directory which contains the repository (in this case, inside the path
c:\tmp, according to the vml4re specification).
After importing, the repository should be connected and a new traceability scenario should

be created (see [9] for more information on how to do this). Then, the tree register should
be executed. Figure 8 is a screenshot of the AMPLE Traceability Framework which allows to
filter the results the user want to see, by selecting the source, target and link types.

Editor Artefacts Selection

Select source artefacts: Select target arkefacts:

umlExtend “ umlExtend -

modelElement _I modelElement _I

urnlactivityFinalode urilctivityFinalkode

unlGeneralization urnliGener alization

urnlActor umlfckor

campanent campanent

compilationUnitInkerface compilationUnitInterface
_ Featurs

unilInchude umlInclude

reguirement reguirernent

umlUseCase o

urilPackage

urlOpaquedction

unlassociation

compilationUnitPark

urnlAckivity o

model hd

Select link bype:

temparalDependency
conkainrment

deiendencE

Ok

Cancel

Figure 8 - Choosing artefacts and link types in ATF
For this examples, we have selected the following types:
e Source element types: Feature

e Target element types: umlActor, umlUseCase, umlPackage, umlOpaqueAction,
umlActivity

e Link Types: VMLADDLink

Figure 9 shows part of trace links generated for the product Economic Smart Home in the
ATF plug-in, for both features HeatingManagement and Security.

-0 8 Feature - HeatingManagement

----- O T umlactor - GlassEreakSensor

----- T umlactor - Heater

----- O T umlactor - Lights

----- OT umlactar - Siren

----- T umlbckar - Thermostat

----- OT umlactar - windowactuator

----- OT umlackor - WindowSensor

----- OT umlopaguesction - YerifyInstaledGlassBreakSensars
----- OT umopaqueaction - WaitFaralarmSignal

----- T umlPackage - Heating

----- OT umlPackage - Motification

----- OT umlPackage - Security

----- O T umlUseCase - ActivateSecureMode

----- O T umlUseCase - CalculateEnergyConsumption

----- OT umllsecase - ContralTemperaturedutomaticaly

----- OT umseCase - OpenandClosewindowsautomaticaly
----- OT umluseCase - secureTheHouse

E-00 8 Feature - Security

----- OT umlackor - GlassBreaksensor

----- O T umlactor - Heater

----- OT umlactor - Lights

----- OT umlactor - Siren

----- O T umlackor - Thermaostat

----- OT umlackor - windowactuator

----- OT umlackor - WindowSensor

----- T umidpaguedction - YerifyInstaledalassBreaksensors
----- T umlOpagquedction - WaitForAlarmSignal

----- OT umPackage - Heating

----- OT unlPackage - Notification

----- T umlPackage - Security

----- T umllseCase - ActivateSecureMode

----- OT umiseCase - CalculateEnergyConsumption

----- O T umlseCase - ControlTemperaturedutomatically

----- O T umluseCase - OpenAndClosewindowsAutamatically
----- T umlseCase - SecureTheHause

Figure 9 — Generated trace links for the features HeatingManagement (left) and Security (right)

The trace links generated for the feature HeatingManagement were created based on the
explicit use of the operator trace in the vmldre specification (Section 4.4). On the other
hand, the trace links generated for the feature Security were created based on the implicit
information contained in the actions present in the vmldre specification, i.e., VML4RE
identifies places where new model elements are created or existing ones deleted (we define
pointcuts into our transformation implementation to support this).

References

(1]
(2]
(3]
(4]
(5]

(6]

(7]

(8]
(9]

"OpenArchitectureWare," http://www.openarchitectureware.org/, 2008.

"UML2 Plugin for Eclipse," www.eclipse.org/uml2/.

"Feature Modelling Plugin (FMP) for Eclipse," http://gsd.uwaterloo.ca/projects/fmp-plugin/.
"VML* Download," http://www.steffen-zschaler.de/publications/vmlstar/, 2009.

"AMPLE Eclipse Bundle Distribution,"
http://www.caesarj.org/downloads/ample/platform/ample-tools-eclipse-20090706.zip,
20009.

E. Figueiredo, N. Cacho, C. Sant'Anna, M. Monteiro, U. Kulesza, A. Garcia, S. Soares, F.
Ferrari, S. Khan, F. C. Filho, and F. Dantas, "Evolving software product lines with aspects: an
empirical study on design stability," in Proceedings of the 30th international conference on
Software engineering Leipzig, Germany: ACM, 2008.

T. Young, "Using Aspect] to Build a Software Product Line for Mobile Devices -
www.cs.ubc.ca/grads/resources/thesis/Nov05/Trevor Young.pdf," University of Waterloo,

2005, p. 73.
"MagicDraw," http://www.magicdraw.com/, 2009.
A. Sousa, "AMPLE Traceability Framework Frontend Manual,"

http://ample.di.fct.unl.pt/Front-End Framework/ATF%20Front-end%20Manual.pdf, 2008.

http://www.openarchitectureware.org/
http://www.eclipse.org/uml2/
http://gsd.uwaterloo.ca/projects/fmp-plugin/
http://www.steffen-zschaler.de/publications/vmlstar/
http://www.caesarj.org/downloads/ample/platform/ample-tools-eclipse-20090706.zip
http://www.cs.ubc.ca/grads/resources/thesis/Nov05/Trevor_Young.pdf,
http://www.magicdraw.com/
http://ample.di.fct.unl.pt/Front-End_Framework/ATF%20Front-end%20Manual.pdf

