

VML4RE User Manual

 FCT/UNL

1 Contents

Introduction .. 3

2 System Requirements and Installation ... 3

3 Available Actions in VML4RE... 4

4 Applying VML4RE to a Case Study .. 5

4.1 Creating a new VML4RE Project ... 6

4.2 Modeling Commonalities and Variabilities ... 6

4.3 Modelling SPL Requirements Models with UML .. 7

4.4 Writing the VML4RE Specification .. 8

4.5 Deriving Product Models .. 10

4.6 Viewing Generated Trace Links ... 13

References .. 16

Introduction
Managing variability in Requirements Engineering (RE) is a key challenge in Software

Product Line (SPL) engineering. An important part of variability management is the ability to

express explicitly the relationship between variability models (expressing the variability in

the problem space, for example using feature models) and other artefacts of the product

line, for example, requirements models. Once these relations have been explicitly

represented, they can be used for a number of purposes, most importantly to automatically

derive product instances based on product-configuration specifications, but also for other

purposes such as trace-link generation and consistency checking of SPL models.

In this document we present the user guide for the VML4RE tool suite. We illustrate its use

for UML requirements models in a home automation case study called Smart Home. The

eclipse project containing the application of VML4RE to Smart Home can be found here.

2 System Requirements and Installation
The VML4RE tool was developed as an Eclipse plug-in and was designed to work with the
following set of requirements:

 Java SE Runtime Environment (JRE) 6

 Eclipse Modeling Tools Bundle v.3.4.1

 OpenArchitectureWare v.4.3.1 [1]

 UML2 Tools for Eclipse [2]

 Feature Modeling Plug-in (FMP) v.0.7 [3]

 ATF v0.2.1 (All ATF requirements must also be satisfied. Please, check ATF
documentation)

Since VML4RE is an instantiation of the VML* Suite to deal with use cases and activity
models, the suite should be included in your eclipse installation. VML* can be downloaded
from [4].

To install VML4RE plug-in, copy the following files to the directory dropins your Eclipse
installation:

- unl.vml4req_1.1.1.jar

- org.ample.vmlstar.util_1.1.1.jar

- org.ample.vmlstar.langinst_1.1.1.jar

- org.ample.vmlstar.langinst.model_1.1.1.jar

http://ample.di.fct.unl.pt/VML_4_RE/vml4resmarthome.zip

- org.ample.vmlstar.langinst.model.edit_1.1.1.jar

- org.ample.vml.vml4req_1.1.1.jar

- org.ample.vml.vml4req.generator_1.1.1.jar

- org.ample.vml.vml4req.editor_1.1.1.jar

Note that the numbers in the names can change, depending on the current version of the
tool.

This tool can also be found already installed and ready to use in the AMPLE Eclipse Bundle,
which can be downloaded from here [5].

3 Available Actions in VML4RE
VML4RE is an instance of the VML tool suite. In order to create the VML4RE language, a set
of actions specific for use cases and other requirements models were implemented. For
more information about the process of instantiating the VML* framework, please consult
the VML* documentation which can be obtained from the AMPLE website. These actions
can then be used to manage variability, i.e., when creating a VML4RE specification as we will
see in this document.

Table 1 shows the Set of available actions for use case and activity models.

Action Signature Description

insertUseCase (String name, Package p) A new use case named name is inserted into package p.

insertPackage (String name, Package p) A new package named name is inserted into package p.

createInclude (

 List[UseCase] from,

 List[UseCase] to)

A new dependency of type <<include>> is created

between each of the source use cases and each of the target

use cases.

createExtends (

 List[UseCase] from,

 List[UseCase] to)

A new dependency of type <<extends>> is created

between each of the source use cases and each of the target

use cases.

createInherits (

 List[UseCase] from,

 List[UseCase] to)

A new dependency if type <<inherits>> is created

between each of the source use cases and each of the target

use cases.

createAssociation (

 List[UseCase] from,

 List[UseCase] to)

A new association relationship is created between each of the

source model elements and each of the target models

elements.

insertActor (String name, Package p) A new actor named name is inserted into package p.

insertPackage (String name, Package p) A new package named name is inserted into package p.

removeElement (Element elem)

The element elem is removed from the model.

createActivityModel (String name,

Package p)

A new activity model named name is inserted into package p.

createAction (String name, Package p) A new opaque action named name is inserted into package p.

createObjectAction (String name,

Package p)

A new object action named name is inserted into package p.

connectActivityElements

(ActivityNode source, ActivityNode target,
String guard)

The activity elements source and target are connected

through a control flow with guard guard. If guard equals

“”, no guard name is created.

createDecisionNode (String name,

Package p)

A new decision node named name is inserted into package p.

createActivityParameter (String

name, Package p)

A new activity parameter named name is inserted into

package p.

createOutputPin (String name,

OpaqueAction oa)

Creates a new output pin named name for the action oa.

connectPins(OpaqueAction oa1,

String pin1name, OpaqueAction

oa2, String pin2name):

Connect pin named pin1name of action oa1 with pin names

pin2name of action oa2.

replaceActionByActivity

(OpaqueAction oa, Package p)
Replace the action oa with the contents present in the

package p

Trace (Element e) This operator traces the features where this action appear to
the element or set of elements referenced by e. It

Table 1 - List of available actions for VML4RE

The operator  trace (Element elem)  allows to define explicitly trace links from features
included in a feature expression with target model elements. To exemplify, if the vml4re
specification contains the following variant:

variant for f1 {

trace (“refelemx”);

}

the feature f1 will be traced to the element referenced by refelemx;

4 Applying VML4RE to a Case Study
To demonstrate how VML4RE can be used, we show the application of the tool with a case
study called Smart Home [6, 7]. Smart home is a home automation software product line
case study developed in the context of the AMPLE project. Smart homes have a wide variety
of electronic and electrical devices which include lights, thermostats, blinds and fire
detection sensors, security devices such as cameras, white goods such as washing machines,
communication devices such as phones and entertainment devices such as televisions. The
Smart Home system is designed to coordinate the behaviour of the devices to fulfil complex
tasks automatically. It also enables the inhabitants to visualize and control the status of the
devices from a common user interface. For brevity and clarity we only use some of the
features of the Smart Home.

4.1 Creating a new VML4RE Project

The first step is to create a new VML4RE project. For this, Right Click on the package

explorer view of your workspace:

New-> Other… -> XText DSL Wizards -> VML4RE Project. Give a name to your project (for

example, SmartHome)

Next, a new blank VML4RE project is created with the structure depicted in Figure 1.

Figure 1 - Empty VML4RE project

Before creating a VML4RE specification, it is necessary to create the feature and
requirements models. These steps are demonstrated in the next sections.

4.2 Modeling Commonalities and Variabilities

The next step of our approach is to model the commonalities and variabilities of the SPL.

Figure 2 (left) shows the feature model of the Smart Home product line and Figure 2 (right)

shows one of its possible configurations called Economic Smart Home. In the Economic

edition the optional features that will not be included in the final product are not ticked.

Therefore, camera surveillance and notifications via internet are not part of the final

product.

Figure 2- Feature model (left) and one of its configurations called Economic Smart Home (right).

Both models were created using the Feature Modelling Plug-in (FMP) [3] for Eclipse.

4.3 Modelling SPL Requirements Models with UML

The second step of our approach consists on modeling the requirements of the SPL using

UML, such as use case and activity models. We use the UML2 plug-in for Eclipse [2] to model

both use case and activity diagrams. However, the user could use other commercial tools

like Magic Draw [8] for example, since VML* is general enough and allows the user to define

or implement how models should be loaded.

To create use case and activity models, right click on the folder where do you want to put

the new model (e.g., scr), New -> Other… -> UML 2.1 Diagrams -> UMLUseCase Diagram.

Give a name to the new Model (SmartHome.uml, for example).

To create activity models you can right click on SmartHome.uml and then right click on

Initialize Activity Diagram. Figure 3 shows an example of a core use case model for the Smart

Home case study.

Figure 3 - Core UML Use Case Model for Smart Home

Figure 4 shows an example of the activity diagram for the scenario Adjust Heater Value.

Figure 4 - Activity Model for Activate Secure Mode scenario

4.4 Writing the VML4RE Specification

At this step, we can start writing the VML4RE specification.

Table 2 summarizes the general structure of a VML* specification. More information can be

found in the VML Suite documentation available in the AMPLE website.

VML Block Description

Import features path This block imports the feature model located in the path to

be used along the vml4re specification.

Import core path This imports the core model to be used along the vml4re

specification.

atf repname This line, when present, creates a new trace link repository

in ATF. Trace links generated during the execution of this

vml4re specification will be persisted in the created

repository.

Variant v_name feature_expression Variant allows giving a name to a feature expression. A

feature expression defines logic between a set of features.

Inside a variant, a set of actions should be defined.

Table 2- General structure of a VML specification

For demonstration purposes, simply copy the following vml4re specification into the

vml4req file. Note that the first two lines should be adapted, according to the path where

the previously created models are located. In the following example, the models are in

C:/VML4RESmartHome/.

import features <"File:C:/VML4RESmartHome/SmartHome.fmp">;

import core <"File:C:/ VML4RESmartHome/SmartHome.uml">;

atf "c:/tmp"

concern SmartHome {

 variant for GUI {

 trace("Notification");

 }

 variant for WindowsManagement {

 trace("Windowsmanagement");

 }

 variant for HeatingManagement {

 trace("Heating");

 trace("Thermostat");

 trace("Heater");

 }

 variant for SmartHeating {

 insertUseCase ("ControlTemperatureAutomatically", "Heating");

 insertUseCase ("CalculateEnergyConsumption", "Heating");

 createInclude ("Heating::ControlTemperatureAutomatically" ,

"Heating::AdjustHeaterValue");

 insertActor ("WindowActuator", "");

 createAssociation (or ("WindowActuator", "Thermostat") ,

"Heating::ControlTemperatureAutomatically");

 createExtends ("Heating::ControlTemperatureAutomatically",

"Heating::AdjustHeaterValue");

 createExtends ("Heating::CalculateEnergyConsumption",

"WindowsManagement::OpenAndCloseWindows");

 }

 variant for ElectronicWindows {

 insertUseCase ("OpenAndCloseWindowsAutomatically", "WindowsManagement");

 insertActor ("WindowActuator", "");

 insertActor ("WindowSensor", "");

 createInherits ("WindowsManagement::OpenAndCloseWindowsAutomatically" ,

"WindowsManagement::OpenAndCloseWindows");

 createInclude ("Heating::ControlTemperatureAutomatically",

"WindowsManagement::OpenAndCloseWindowsAutomatically") ;

 createAssociation (or ("WindowSensor","WindowActuator")

,"WindowsManagement::OpenAndCloseWindowsAutomatically");

 }

 variant secure_it for Security {

 insertPackage ("Security" , "");

 insertUseCase ("SecureTheHouse" , "Security");

 insertUseCase ("ActivateSecureMode" , "Security");

 createAssociation ("Inhabitant", "Security::.*");

 createInclude ("Security::SecureTheHouse",

or("Notification::SendSecurityNotification","WindowsManagement::OpenAndCloseWin

dowsAutomatically"));

 createActivityModel ("ActivateSecureMode", "");

 createAction ("VerifyInstalledGlassBreakSensors", "ActivateSecureMode");

 connectActionWithInitialNode

("ActivateSecureMode::VerifyInstalledGlassBreakSensors", "ActivateSecureMode");

 createAction ("WaitForAlarmSignal", "ActivateSecureMode");

 connectActionWithFinalNode ("ActivateSecureMode::WaitForAlarmSignal",

"ActivateSecureMode");

 connectActions("ActivateSecureMode::VerifyInstalledGlassBreakSensors","Activate

SecureMode::WaitForAlarmSignal");

 }

 variant for Siren {

 insertActor ("Siren", "") ;

 createAssociation ("Siren", "Security::SecureTheHouse");

 }

 variant for Light {

 insertActor ("Lights", "") ;

 createAssociation ("Lights", "Security::SecureTheHouse");

 }

 variant for GlassBreakSensors {

 insertActor ("GlassBreakSensor", "") ;

 createAssociation ("GlassBreakSensor", "Security::SecureTheHouse");

 createAssociation ("GlassBreakSensor", "Security::ActivateSecureMode");

 }

 variant for Cameras {

 insertActor ("Cameras", "") ;

 createAssociation ("Cameras", "Security::SecureTheHouse");

 }

 variant network for Internet {

 insertUseCase ("NotifyUsingInternet" , "Notification") ;

 createExtends ("Notification::NotifyUsingInternet" ,

"Notification::SendSecurityNotification");

 }

}

order (network, secure_it);

Figure 5 - VML4RE Smart Home Specification

4.5 Deriving Product Models

The product models are generated when the vml4re specification is compiled and executed.

To compile the vml4re specification, right click on the vml4re file and select:

Vml4req -> compile

When this operation is concluded, to execute the specification, right click again on the

vml4re file and select:

Vml4req -> configure

Here you should select the file that contains the configuration of the feature model. In this

case, since the FMP files already persists feature models and configurations in the same file,

you should select the same feature model file you defined in section import of your vml4re

specification.

After selecting the configuration file, some internal actions are performed. Finally, inside the

folder /src-gen of your project you can find the product model.

Considering the feature model and its configuration (presented in Section 4.1) and the

vml4re specification (Section 4.4), the product use case model was generated. Figure 6

depicts the generated product use case model for the configuration.

Figure 6 - Product use case model for Economic Smart Home

Figure 7 depicts the resulting product activity diagram for the scenario Activate Secure Mode.

Figure 7 - Activity Model for optional Scenario Activate Secure Mode

4.6 Viewing Generated Trace Links

To view the generated trace links, it is necessary to import the project with the ATF

repository to the workspace. To do this, you should right click and select:

import.. -> General -> Existing Projects into Workspace -> Select root directory

Then, browse to the directory which contains the repository (in this case, inside the path
c:\tmp, according to the vml4re specification).
After importing, the repository should be connected and a new traceability scenario should

be created (see [9] for more information on how to do this). Then, the tree register should

be executed. Figure 8 is a screenshot of the AMPLE Traceability Framework which allows to

filter the results the user want to see, by selecting the source, target and link types.

Figure 8 - Choosing artefacts and link types in ATF

For this examples, we have selected the following types:

 Source element types: Feature

 Target element types: umlActor, umlUseCase, umlPackage, umlOpaqueAction,

umlActivity

 Link Types: VMLADDLink

Figure 9 shows part of trace links generated for the product Economic Smart Home in the

ATF plug-in, for both features HeatingManagement and Security.

Figure 9 – Generated trace links for the features HeatingManagement (left) and Security (right)

The trace links generated for the feature HeatingManagement were created based on the
explicit use of the operator trace in the vml4re specification (Section 4.4). On the other
hand, the trace links generated for the feature Security were created based on the implicit
information contained in the actions present in the vml4re specification, i.e., VML4RE

identifies places where new model elements are created or existing ones deleted (we define
pointcuts into our transformation implementation to support this).

References
[1] "OpenArchitectureWare," http://www.openarchitectureware.org/ , 2008.
[2] "UML2 Plugin for Eclipse," www.eclipse.org/uml2/.
[3] "Feature Modelling Plugin (FMP) for Eclipse," http://gsd.uwaterloo.ca/projects/fmp-plugin/.
[4] "VML* Download," http://www.steffen-zschaler.de/publications/vmlstar/, 2009.
[5] "AMPLE Eclipse Bundle Distribution,"

http://www.caesarj.org/downloads/ample/platform/ample-tools-eclipse-20090706.zip,
2009.

[6] E. Figueiredo, N. Cacho, C. Sant'Anna, M. Monteiro, U. Kulesza, A. Garcia, S. Soares, F.
Ferrari, S. Khan, F. C. Filho, and F. Dantas, "Evolving software product lines with aspects: an
empirical study on design stability," in Proceedings of the 30th international conference on
Software engineering Leipzig, Germany: ACM, 2008.

[7] T. Young, "Using AspectJ to Build a Software Product Line for Mobile Devices -
www.cs.ubc.ca/grads/resources/thesis/Nov05/Trevor_Young.pdf," University of Waterloo,
2005, p. 73.

[8] "MagicDraw," http://www.magicdraw.com/, 2009.
[9] A. Sousa, "AMPLE Traceability Framework Frontend Manual,"

http://ample.di.fct.unl.pt/Front-End_Framework/ATF%20Front-end%20Manual.pdf, 2008.

http://www.openarchitectureware.org/
http://www.eclipse.org/uml2/
http://gsd.uwaterloo.ca/projects/fmp-plugin/
http://www.steffen-zschaler.de/publications/vmlstar/
http://www.caesarj.org/downloads/ample/platform/ample-tools-eclipse-20090706.zip
http://www.cs.ubc.ca/grads/resources/thesis/Nov05/Trevor_Young.pdf,
http://www.magicdraw.com/
http://ample.di.fct.unl.pt/Front-End_Framework/ATF%20Front-end%20Manual.pdf

