Atlas Copco Generators

QIX 190-540 QAS 80-325 QAC 500-1006



# **USER MANUAL FOR THE**

# **Qc4001 GENERATOR CONTROLLER**



## Table of content

| 1 | GEN                                                         | NERAL                                                                                                                                                                                                                                                                                                                                                                            | .7                                     |
|---|-------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
| 2 | DIS                                                         | PLAY UNIT                                                                                                                                                                                                                                                                                                                                                                        | . 8                                    |
|   | 2.1<br>2.2                                                  | PUSHBUTTON FUNCTIONS<br>LED FUNCTIONS                                                                                                                                                                                                                                                                                                                                            |                                        |
| 3 | STA                                                         | NDARD FUNCTIONS & PROTECTIONS                                                                                                                                                                                                                                                                                                                                                    | 12                                     |
|   | 3.1<br>3.2<br>3.3<br>3.4<br>3.5<br>3.6<br>3.7               | ENGINE PROTECTION                                                                                                                                                                                                                                                                                                                                                                | 12<br>13<br>13<br>13<br>13             |
| 4 | OPT                                                         | TIONAL FUNCTIONS & PROTECTIONS                                                                                                                                                                                                                                                                                                                                                   | 14                                     |
|   | 4.1<br>4.2<br>4.3<br>4.4<br>4.5<br>4.6<br>4.7<br>4.8<br>4.9 | Power Management System (PMS)<br>Can-open Serial communication<br>Mod-bus Serial communication<br>Profi-bus Serial communication<br>Analogue Transducer Output of measured values (2x 4 20mA)<br>7 Binary Inputs<br>4 Relay Outputs<br>4 Analog Inputs (4 20mA)<br>Ethernet – TCP/IP communication                                                                               | 14<br>14<br>14<br>14<br>14<br>14<br>14 |
| 5 | HAI                                                         | RDWARE                                                                                                                                                                                                                                                                                                                                                                           | 15                                     |
| 6 | 5.1<br>5.2<br>5.3<br>5.4<br>5.5<br>5.6<br>5.7<br>5.8        | SLOT #1, POWER SUPPLY AND BINARY I/O<br>SLOT #2, SERIAL COMMUNICATION (OPTIONAL)<br>SLOT #3, LOAD SHARING CONTROL, 13 BINARY INPUTS AND 4 RELAY OUTPUTS<br>SLOT #4, ANALOGUE OUTPUTS FOR GOVERNOR AND AVR CONTROL<br>SLOT #5, AC MEASURING<br>SLOT #5, AC MEASURING<br>SLOT #6, INPUT/OUTPUT CARDS (OPTIONAL)<br>SLOT #7, ENGINE INTERFACE CARD<br>SLOT #8, ENGINE COMMUNICATION | 18<br>19<br>20<br>20<br>21<br>22<br>23 |
| 7 |                                                             | NDARD MODES                                                                                                                                                                                                                                                                                                                                                                      |                                        |
|   | 7.1<br>7.2<br>7.3                                           | AUTO MODE                                                                                                                                                                                                                                                                                                                                                                        | 26<br>26<br>26                         |
| 8 |                                                             | NDARD APPLICATIONS                                                                                                                                                                                                                                                                                                                                                               |                                        |
|   | 8.1<br>8.2<br>8.3                                           | AMF FUNCTION<br>PEAK SHAVING<br>ISLAND MODE                                                                                                                                                                                                                                                                                                                                      | 27                                     |

| 15  | 5 I          | PASSWORD LEVELS                                                                                                            | 61 |
|-----|--------------|----------------------------------------------------------------------------------------------------------------------------|----|
|     |              | ALARM AND EVENT LIST MENU                                                                                                  |    |
|     | 14.4<br>14.5 |                                                                                                                            |    |
|     | 14.5<br>14.4 | S1 / S2 / S3 MENU                                                                                                          |    |
|     | 14.3         | THE JUMP BUTTON                                                                                                            |    |
|     |              | 2.5 If FOWER SETUP is selected                                                                                             |    |
|     |              | 2.2 If the CONTROL SETUP is selected<br>2.3 If POWER SETUP is selected                                                     |    |
|     |              | 2.2 If the CONTROL SETUP is selected                                                                                       |    |
|     |              | 2.1 If the PROTECTION SETUP is selected                                                                                    |    |
|     | 14.1<br>14.2 | MAIN VIEW                                                                                                                  |    |
|     | 14.1         | MAIN VIEW                                                                                                                  |    |
| 14  | 1 1          | MENU OVERVIEW & CHANGING PARAMETERS                                                                                        | 54 |
| 13  | 5 1          | REMOTE CONTROL VIA WWW (OPTIONAL)                                                                                          | 53 |
|     |              |                                                                                                                            |    |
|     |              | 2.6 Power Management System (optional)                                                                                     |    |
|     |              | <ul> <li>2.4 Fixed Tower (optional)</li> <li>2.5 Load Take Over (optional)</li> </ul>                                      |    |
|     |              | 2.5 Teak Shaving (optional)<br>2.4 Fixed Power (optional)                                                                  |    |
|     |              | 2.2 Island operation<br>2.3 Peak Shaving (optional)                                                                        |    |
|     |              | 2.1 AMF operation (optional)<br>2.2 Island operation                                                                       |    |
|     |              | 2.1 AMF operation (optional)                                                                                               |    |
|     | 12.<br>12.2  |                                                                                                                            |    |
|     |              | 1.4         Fixed Power           1.5         Load Take Over                                                               |    |
|     |              | 1.3 Peak Shaving application                                                                                               |    |
|     |              | 1.2 Island operation                                                                                                       |    |
|     |              | 1.1 AMF operation                                                                                                          |    |
|     | 12.1         | SINGLE RUNNING GEN-SET                                                                                                     |    |
| -   |              |                                                                                                                            |    |
| 12  | 2            | APPLICATIONS DETAILS FOR THE QC4001                                                                                        | 35 |
|     | 11.8         | SERIAL CABLE FOR PC                                                                                                        | 34 |
|     | 11.7         | DISPLAY CABLE                                                                                                              |    |
|     | 11.6         | OPTOCOUPLER OUTPUTS FOR EXTERNAL COUNTER                                                                                   |    |
|     | 11.5         | ANALOGUE INPUTS (EXTERNAL SET-POINTS)                                                                                      |    |
|     | 11.4         | BINARY INPUTS                                                                                                              |    |
|     | 11.3         | LOAD SHARING LINES                                                                                                         |    |
|     | 11.2         | WIRING FOR ISLAND AND PMS MODE APPLICATION                                                                                 |    |
|     | 11.1         | WIRING FOR AMF, PEAK SHAVING, FIXED POWER AND LOAD TAKE OVER APPLICATION                                                   |    |
| 11  |              | WIRINGS                                                                                                                    |    |
|     |              |                                                                                                                            |    |
|     | 10.2         | PEAK SHAVING OPERATION WITH SINGLE GEN-SET INSTALLATION                                                                    |    |
|     | 10.1         | AUTOMATIC MAINS FAILURE APPLICATION WITH SINGLE GEN-SET INSTALLATION<br>AND WITH BACK-SYNCRONIZING OF THE MAINS BREAKER MB | 30 |
| - 1 | 10.1         | AUTOMATIC MAINS FAILURE APPLICATION WITH SINGLE GEN-SET INSTALLATION                                                       |    |
| 1(  | <b>)</b> A   | APPLICATION EXAMPLES                                                                                                       | 30 |
|     | 9.2          | MULTI GEN-SET USE                                                                                                          | 29 |
|     | 9.1          | SINGLE GEN-SET USE                                                                                                         | 29 |
| 9   | SIN          | NGLE GENSET USE / MULTI GENSET USE                                                                                         | 29 |
|     | 8.6          |                                                                                                                            |    |
|     | 8.5          | LOAD TAKE OVER<br>Power Management System                                                                                  |    |
|     | 8.4          | FIXED POWER                                                                                                                |    |
|     | 0 1          |                                                                                                                            | 27 |

| 16 | FAIL    | CLASSES                                                         | 62 |
|----|---------|-----------------------------------------------------------------|----|
| 17 | MENU    | U SET-POINTS                                                    | 63 |
| 17 | .1 Pro  | TECTION SETUP                                                   | 63 |
|    | 17.1.1  | Bus voltage protection                                          |    |
|    | 17.1.2  | Bus frequency protection                                        |    |
|    | 17.1.3  | Generator Reverse Power                                         |    |
|    | 17.1.4  | Generator Overcurrent Protection                                |    |
|    | 17.1.5  | Generator Overload Protection                                   |    |
|    | 17.1.6  | Generator Current Unbalance Protection                          |    |
|    | 17.1.7  | Generator Voltage Unbalance Protection                          |    |
|    | 17.1.8  | Generator Reactive Power Import (loss of excitation) Protection |    |
|    | 17.1.9  | Generator Reactive Power Export (overexcitation) Protection     |    |
|    | 17.1.10 | Loss of Mains Protection                                        |    |
|    | 17.1.11 | Vector jump                                                     |    |
|    | 17.1.12 | Generator voltage protection                                    |    |
|    | 17.1.13 | Generator frequency protection                                  |    |
|    | 17.1.14 | Engine control                                                  |    |
|    | 17.1.15 | Mains Power 420 mA input                                        |    |
|    | 17.1.16 | Configurable 420 mA input 1                                     |    |
|    | 17.1.17 | Configurable 420 mA input 2                                     |    |
|    | 17.1.18 | Configurable VDO input 1                                        |    |
|    | 17.1.19 | Configurable VDO input 2                                        |    |
|    | 17.1.20 | Configurable VDO input 3                                        |    |
|    | 17.1.21 | Overspeed (tacho input)                                         |    |
|    | 17.1.22 | Ext. Engine Failure (binary input 8)                            |    |
|    | 17.1.23 | Emergency Stop (binary input 9)                                 |    |
|    | 17.1.24 | Non-configurable Sprinkler Input                                |    |
|    | 17.1.25 | Coolant Temperature 1                                           |    |
|    | 17.1.26 | Coolant Temperature 2                                           |    |
|    | 17.1.27 | Oil Pressure                                                    | 75 |
|    | 17.1.28 | Fuel Level 2                                                    |    |
|    | 17.1.29 | Configurable binary input $11 - 17$ (optional)                  |    |
|    | 17.1.30 | 2nd Set of Parameters (binary input 18)                         |    |
|    | 17.1.31 | 3rd Set of Parameters (binary input 19)                         |    |
|    | 17.1.32 | 4th Set of Parameters (binary input 20)                         |    |
|    | 17.1.33 | Configurable binary input 21.                                   |    |
|    | 17.1.34 | Configurable binary input 22                                    |    |
|    | 17.1.35 | Configurable binary input 23                                    |    |
|    | 17.1.36 | Configurable binary input 24                                    |    |
|    | 17.1.37 | Configurable binary input 25                                    |    |
|    | 17.1.38 | Configurable binary input 26                                    |    |
|    | 17.1.39 | Configurable binary input 27                                    |    |
|    | 17.1.40 | Configurable binary input 28                                    |    |
|    | 17.1.41 | Configurable binary input 29                                    |    |
|    | 17.1.42 | Configurable (binary input 30)                                  |    |
|    | 17.1.43 | Configurable 420 mÅ input (optional)                            |    |
|    | 17.1.44 | Run Status                                                      |    |
|    | 17.1.45 | Remote Start/Stop (binary input 31)                             |    |
|    | 17.1.46 | W/L (binary input 32)                                           |    |
|    |         |                                                                 |    |

| 17.1.47  | 17.1.47 Disable Analogue Fuel Input (binary input 33)                                                  |    |
|----------|--------------------------------------------------------------------------------------------------------|----|
| 17.1.48  | Static Charger (binary input 34)                                                                       | 81 |
| 17.1.49  | MDEC Run Signal                                                                                        | 81 |
| 17.2 Con | VTROL SETUP                                                                                            | 82 |
| 17.2.1   | Synchronisation type                                                                                   |    |
| 17.2.2   | Dynamic synchronisation                                                                                | 82 |
| 17.2.3   | Static synchronisation                                                                                 |    |
| 17.2.4   | Blackout closing of breaker                                                                            | 83 |
| 17.2.5   | Generator and mains breaker, general failure alarm                                                     |    |
| 17.2.6   | Frequency Controller                                                                                   | 83 |
| 17.2.7   | Power Controller                                                                                       |    |
| 17.2.8   | Power ramp up / Power ramp down                                                                        | 84 |
| 17.2.9   | Power ramp down                                                                                        | 84 |
| 17.2.10  | Voltage controller                                                                                     | 85 |
| 17.2.11  | Var controller                                                                                         | 85 |
| 17.2.12  | PF Control                                                                                             | 85 |
| 17.2.13  | Governor regulation failure                                                                            | 86 |
| 17.2.14  | AVR regulation failure                                                                                 | 86 |
| 17.2.15  | Breaker type                                                                                           |    |
| 17.2.16  | Static Synchronisation                                                                                 | 86 |
| 17.3 Pow | VER SETUP. PEAK SHAVING OPERATION                                                                      | 87 |
| 17.3.1   | Mains power (import power)                                                                             | 87 |
| 17.3.2   | Daytime period                                                                                         | 87 |
| 17.3.3   | Start gen-set                                                                                          | 87 |
| 17.3.4   | Stop gen-set                                                                                           | 88 |
| 17.3.5   | Load Dependent Start                                                                                   | 88 |
| 17.3.6   | Load Dependent Stop                                                                                    | 88 |
| 17.3.7   | Test running                                                                                           | 89 |
| 17.3.8   | Fixed power set-point (for active generator power and power factor)                                    | 89 |
| 17.3.9   | PMS Configuration                                                                                      | 90 |
| 17.3.10  | Internal Communication ID                                                                              | 90 |
| 17.3.11  | Priority Select                                                                                        | 90 |
| 17.3.12  | Number of ID's                                                                                         | 91 |
| 17.3.13  | Priority of ID's                                                                                       |    |
| 17.3.14  | Running hours                                                                                          |    |
| 17.3.15  | Ground Relay                                                                                           |    |
| 17.3.16  | Stop Noncon. Gen-sets                                                                                  |    |
| 17.3.17  | Power Capacity                                                                                         |    |
| 17.3.18  | Tie breaker                                                                                            | 93 |
| 17.4 Sys | TEM SETUP                                                                                              |    |
| 17.4.1   | Nominal settings (1 <sup>st</sup> / 2 <sup>nd</sup> / 3 <sup>th</sup> / 4 <sup>th</sup> Parameter Set) |    |
| 17.4.2   | Transformer generator (for generator voltage measuring)                                                |    |
| 17.4.3   | Transformer busbar (for busbar voltage measuring)                                                      |    |
| 17.4.4   | External communication control (optional)                                                              |    |
| 17.4.5   | Engine communication                                                                                   |    |
| 17.4.6   | Date and time (internal clock) setting                                                                 |    |
| 17.4.7   | Measuring of generator running time and circuit breaker operations                                     |    |
| 17.4.8   | Battery undervoltage / overvoltage alarm                                                               |    |
| 17.4.9   | Language                                                                                               |    |
| 17.4.10  | Loadshare output                                                                                       | 95 |

| 17.4.  | 11 Loadshare type                           | 96  |
|--------|---------------------------------------------|-----|
| 17.4.  |                                             |     |
| 17.4.  |                                             |     |
| 17.4.  |                                             |     |
| 17.4.  | 15 Gen-set modes                            | 97  |
| 17.4.  | 16 CAN Unit                                 | 97  |
| 17.4.  | 17 Tacho configuration                      | 97  |
| 17.4.  | 18 Start sequency of the engine             | 97  |
| 17.4.  | 19 GB ON / GB OFF sequence                  | 98  |
| 17.4.2 | 20 MB ON / MB OFF sequence                  | 99  |
| 17.4.2 | 21 Stop sequence                            | 100 |
| 17.4.2 | 22 MB Control                               | 101 |
| 17.4.2 | 23 Horn timeout                             | 102 |
| 17.4.2 |                                             |     |
| 17.4.2 | 25 Analogue output configuration (optional) | 102 |
| 17.4.2 |                                             |     |
| 17.4.2 | 27 Relay Setup (optional)                   | 103 |
| 17.4.2 | 1                                           |     |
| 17.4.2 |                                             |     |
| 17.4   | 30 Service Time                             | 105 |
| 17.4   | 31 Diagnostic Mode                          | 105 |
| 17.4.  | 32 User passwords                           | 105 |
| 17.4.  |                                             |     |
| 17.4.  |                                             | 106 |
| 17.4.  | 8                                           |     |
| 17.4.  | 8                                           |     |
| 17.4.  |                                             |     |
| 17.4.  | 11                                          |     |
| 17.4.  |                                             |     |
| 17.4.4 |                                             |     |
| 17.4.4 | 41 VDO 3                                    | 108 |
| 18 TE  | CHNICAL SPECIFICATIONS                      | 109 |
| 19 DI  | MENSIONS                                    | 111 |
| 19.1   | UNIT DIMENSIONS                             | 111 |
|        | Display Dimensions                          |     |
|        | PANEL CUTOUT FOR DISPLAY                    |     |
|        |                                             |     |
|        | GINE COMMUNICATION CAN-BUS                  |     |
|        | MTU MDEC                                    |     |
|        | Deutz EMR                                   |     |
| 20.3   | Detroit Diesel DDEC IV                      | 114 |

## 1 <u>General</u>

The Atlas Copco Qc4001 is a protection and control unit for a generator driven by a diesel engine. It will carry out all necessary tasks to control and protect a generator, regardless of the use of the generator. This means that the Atlas Copco Qc4001 can be used for several application types.

The Qc4001 measuring system is true RMS 3-phase measurement of generator voltage, generator current, generator frequency, mains voltage and mains frequency.

This User Manual is based on: Functional Specification 9822 1200 01.

The Functional Specification can be changed without prior notice.

The information contained in this User Manual is to assist you in the installation of your gen-set. If something is not clear, please do not hesitate to contact Atlas Copco for further help.

## 2 Display unit

The display unit used in the Qc4001 communicates and receives power supply via a 9-pole Sub-D plug.

The plug fits directly onto the main unit, so the display can be mounted on the top of the main unit.

If the display is to be used as remote display, a standard computer extension cable with male/female plug can be used for the connection.



## 2.1 Pushbutton functions

There are 16 pushbuttons on the display unit with the following functions:



**ALARM**: Shifts the display 3 lower lines to show the alarm list (up to 30 alarms can be in the list).

**JUMP**: This button enables the customer to enter a channel number selection. The module will jump directly to this channel. Using the JUMP button enables the user to select and display any setting without navigating all the way through the menus (see later).



LEFT: Moves the cursor left for manoeuvring in the menus.



AUTO: Puts the generator in AUTO mode.

**SEMI-AUTO**: Puts the generator in SEMI-AUTO (manual) mode.

**TEST**: Puts the generator in TEST mode.

To enter the TEST mode, the lowest level password needs to be entered.

**VIEW LOG**: Shifts the display 3 lower lines to show the alarm list (up to 150 alarms can be listed). These alarms will be kept in memory when the unit is powered off.

## 2.2 LED functions

## 9 LEDs are used on the display unit.

The colour is green or red or a combination in different situations.



| Alarm:      | Red LED flashing indicates that unacknowledged alarms are present.            |  |  |
|-------------|-------------------------------------------------------------------------------|--|--|
|             | LED fixed light indicates that ALL alarms are acknowledged.                   |  |  |
| Power:      | Green LED indicates that the auxiliary supply is switched on.                 |  |  |
| Run:        | Green LED indicates that the generator is running.                            |  |  |
| U/f OK:     | Green LED light indicates that voltage/frequency is present and OK.           |  |  |
| (GB) ON:    | Green LED indicates that the plant contactor is closed.                       |  |  |
| (MB) ON:    | Green LED indicates that the mains contactor is closed.                       |  |  |
| (MAINS) OK: | LED is green if the mains are present and OK.                                 |  |  |
|             | LED is red at a mains failure.                                                |  |  |
|             | LED is flashing green when the mains return during the "MAINS OK" delay time. |  |  |
| Auto:       | Green LED indicates that AUTO mode is selected.                               |  |  |
| Semi-Auto:  | Green LED indicates that SEMI-AUTO mode is selected.                          |  |  |

The main Qc4001 control unit includes 3 LEDs:

| Power:         | Green LED indicates that the auxiliary supply is switched on. |
|----------------|---------------------------------------------------------------|
| Self check ok: | Green LED indicates that the unit is OK.                      |
| Alarm inhibit: | Green LED fixed light indicates that the inhibit input is ON. |

## 3 Standard functions & protections

The Qc4001 measuring system is true RMS 3-phase measurement of generator voltage, generator current, generator frequency, mains voltage and mains frequency.

The Qc4001 module is built up with different extension cards that are mounted into one of the 9 different slots. Some of these cards are mounted as standard, and some as an option.

The Qc4001 has the following control and protection functions as standard:

#### 3.1 Engine Protection

The engine alarm extension card has the following configurable inputs and outputs:

- 14...20 mA input for Mains Power Transducer
- 2 configurable 4...20mA inputs
- 3 resistive sensor inputs for Engine Oil Pressure/Coolant Level, Coolant Temperature/Alternator Temperature, Fuel Level
- 1 tacho input
- 9 binary inputs for Access Lock, Running Feedback, Engine Failure, Emergency Stop, 2n<sup>d</sup> Parameter Set, W/L, Remote Start, disable analogue fuel input, Static Battery Charger.

#### 3.2 Alternator Protection

- Over current protection, definite time characteristic
- Reverse power protection, definite time characteristic
- Over- and under voltage (generator and busbar)
- Over- and under frequency (generator and busbar)
- Vector jump
- Df/dt (ROCOF)
- Overload
- Current unbalance
- Voltage asymmetry
- Reactive power (import (excitation loss)/export)

## 3.3 Voltage/var/cos(phi) control

Selectable (via binary inputs or (optional) serial interface) functions:

- Constant voltage (stand-alone)
- Constant reactive power (parallel with mains)
- Constant power factor (parallel with mains)
- Reactive power sharing (parallel with other generators, island operation)

#### 3.4 Analogue controller outputs

- +/-20mA for speed governor
- +/-20mA for voltage/var/cos control

#### 3.5 Load sharing between gen-sets' analogue lines

#### 3.6 Engine communication

Software selectable for:

- MTU MDEC communication
- Detroit Diesel DDEC communication
- Deutz EMR communication
- Volvo EDCIII
- John Deere JDEC communication
- Scania ScaniaDec communication

#### 3.7 Configurable I/O extension card

- 13 binary inputs and 4 relay outputs

#### Note: It is possible to configure binary inputs, analogue inputs and binary outputs.

#### **Binary Inputs**

- The text can be edited to a more saying name by using the USW
- Input 10 (terminal 118) can be configured as 'Sprinkler'. When 'Sprinkler' is selected, all alarms and fail classes are overruled. The only alarms the gen-set will react on are 'Emergency Stop' on terminal 117 or a 'Tacho Failure'. Also the gen-set has 7 start attempts before 'Start Failure'.

#### Analogue Inputs

- The text can be edited to a more saying name

#### **Binary Outputs**

- The output can be configured as 'Alarm' relay
- The output can be configured as 'Limit' relay

## 4 Optional functions & protections

As standard 6 slots out of 9 slots contain a dedicated extension card. This means that 3 slots are still free for the optional extension cards. The following optional extension cards are available:

- 4.1 Power Management System (PMS)
- 4.2 <u>Can-open Serial communication</u>
- 4.3 Mod-bus Serial communication
- 4.4 Profi-bus Serial communication

Note that it is only possible to have one of the above options 4.1 - 4.4 on one and the same unit.

- 4.5 Analogue Transducer Output of measured values (2x 4...20mA)
- 4.6 7 Binary Inputs
- 4.7 <u>4 Relay Outputs</u>
- 4.8 <u>4 Analog Inputs (4...20mA)</u>

Note that it is only possible to have one of the above options 4.5 - 4.8 on one and the same unit.

4.9 <u>Ethernet – TCP/IP communication</u>

Integrated Web Server with web pages for plant presentation.

## 5 <u>Hardware</u>

The Qc4001 housing is divided into board slot positions, some of which are standard (non-changeable) and some intended for options.

The unit is divided like this:

| - Slot #1 Power supply and binary I/O 1-28      |  |
|-------------------------------------------------|--|
| - Slot #2 Optional external communication 29-36 |  |
| - Slot #3 Load sharing control/I/O card 37-64   |  |
| - Slot #4 Governor control analog outputs 65-72 |  |
| - Slot #5 AC measuring 73-89                    |  |

- Slot #6 Optional inputs/outputs 90-97
- Slot #7 Engine interface card 98-125
- Slot #8 Engine communication 126-133
- Slot #9 Optional TCP/IP RJ45 conn.

Besides the slots there is an additional board where the communication ports are placed.

- RS232 PC service port

- Display port

An overview of the terminals can be seen on the next page. The slots are positioned in the unit as follows (seen from the top of the unit):

#### Note:

The "Common terminal" is referring to the Power supply (+12/24VDC).

Standard Option Standard Standard Option Standard Standard Option

Standard Standard



Note: For the relay outputs the following terms will be used: NO means Normally Open. NC means Normally Closed. Com. means common terminal for the relay in question.

## 5.1 Slot #1, Power Supply and Binary I/O

| Term.                                      | Function                       | Description                                  |  |  |
|--------------------------------------------|--------------------------------|----------------------------------------------|--|--|
| 1                                          | +12/24 VDC                     | Power supply                                 |  |  |
| 2                                          | 0 VDC                          |                                              |  |  |
| 3                                          |                                | Processor/power supply status supervision    |  |  |
| 4                                          | Common terminal for terminal 3 |                                              |  |  |
| 5                                          | NO Relay                       | Central alarm HORN                           |  |  |
| 6                                          | Common terminal for term       | ninals 5 and 7                               |  |  |
| 7                                          | NC Relay                       | Central alarm HORN                           |  |  |
| 8                                          | NO Relay                       | Open mains breaker (open breaker)            |  |  |
| 9                                          | Common terminal for term       |                                              |  |  |
| 10                                         | NC Relay                       | Open mains breaker (open breaker)            |  |  |
| 11                                         | NO Relay                       | Close mains breaker (synchronising)          |  |  |
| 12                                         | Common terminal for term       | ninals 11 and 13                             |  |  |
| 13                                         | NC Relay                       | Close mains breaker (synchronising)          |  |  |
|                                            |                                | Open generator breaker (deload)              |  |  |
| 15 Common terminal for terminals 14 and 16 |                                | ninals 14 and 16                             |  |  |
| 16                                         | NC Relay                       | Open generator breaker (deload)              |  |  |
| 17                                         | NO Relay                       | Close generator breaker (synchronising)      |  |  |
| 18 Common terminal for terminals 17 and 19 |                                |                                              |  |  |
| 19                                         | NC Relay                       | Close generator breaker (synchronising)      |  |  |
| 20                                         | Open collector 1               | Transistor out Pulse output 1, kWh counter   |  |  |
|                                            |                                | Transistor out Pulse output 2, kvarh counter |  |  |
| 22 Common terminal for terminals 21 and 22 |                                | ninals 21 and 22                             |  |  |
| 23                                         | Digital input 1                | Optocoupler Alarm inhibit                    |  |  |
| 24                                         | Digital input 2                | Optocoupler Mains breaker open               |  |  |
| 25                                         | Digital input 3                | Optocoupler Mains breaker closed             |  |  |
| 26                                         | Digital input 4                | Optocoupler Generator breaker open           |  |  |
|                                            |                                | Optocoupler Generator breaker closed         |  |  |
| 28                                         | Common terminal for term       | ninals 23 to 27                              |  |  |

The functionality of the alarm inhibit input (terminal 23) is described in the table below:

| Alarm inhibit input | ON  | OFF |
|---------------------|-----|-----|
| Generator low f     | -   | ACT |
| Generator low U     | -   | ACT |
| Generator high f    | ACT | ACT |
| Generator high U    | ACT | ACT |
| 420 mA input        | -   | ACT |
| Binary input        | -   | ACT |
| VDO input           | -   | ACT |
| Tacho input         | -   | ACT |

ACT = Alarm function is active ON = Input is high

#### 5.2 Slot #2, serial communication (optional)

Note: only 1 of the following options can be chosen: Can-open/Mod-bus/Profi-bus/Power Management

- Can-open:

| Term. | Function | Description                  |
|-------|----------|------------------------------|
| 29    | Can-H    | The can is based on can-open |
| 30    | GND      |                              |
| 31    | Can-L    |                              |
| 32    | Can-H    |                              |
| 33    | GND      |                              |
| 34    | Can-L    |                              |
| 35    | Not used |                              |
| 36    | Not used |                              |

- Mod-bus:

| Term. | Function   | Description        |
|-------|------------|--------------------|
| 29    | DATA + (A) | Mod-bus RTU, RS485 |
| 30    | GND        |                    |
| 31    | DATA - (B) |                    |
| 32    | DATA + (A) |                    |
| 33    | GND        |                    |
| 34    | DATA - (B) |                    |
| 35    | Not used   |                    |
| 36    | Not used   |                    |

- Profi-bus:

36

| Term. | Function   | Description                     |
|-------|------------|---------------------------------|
| 29    | DATA + (B) | Pin 3 on 9 pole sub-D connector |
| 30    | GND        | Pin 5 on 9 pole sub-D connector |
| 31    | DATA - (A) | Pin 8 on 9 pole sub-D connector |
| 32    | DATA + (B) |                                 |
| 33    | GND        |                                 |
| 34    | DATA - (A) |                                 |
| 35    | Not used   |                                 |

The serial communication line should be terminated between DATA + and DATA - with a resistor equal to the cable impedance. The terminals 29/32, 30/33 and 31/34 are internally connected on all communication PCBs.

Use shielded twisted pair cable.

Not used

## - Power Management System

| Term. | Function | Description            |
|-------|----------|------------------------|
| 29    | Can-H    | Internal communication |
| 30    | GND      |                        |
| 31    | Can-L    |                        |
| 32    | Can-H    |                        |
| 33    | CND      |                        |

- 33 GND
- 34 Can-L
- 35 Not used
- 36 Not used

The communication between Qc4001 units is used for power management purposes. With the Power Management System (PMS), the Can-bus is automatically integrated.

#### 5.3 Slot #3, load sharing control, 13 binary inputs and 4 relay outputs

| Term. | Function                        | Description                                          |
|-------|---------------------------------|------------------------------------------------------|
| 37    | -505 VDC                        | Active load sharing line I/O                         |
| 38    | Common terminal for load        | d sharing lines on terminals 37 and 39               |
| 39    | -505 VDC                        | Reactive load sharing I/O                            |
| 40    | -10010 VDC                      | Frequency/active load set-point Input                |
| 41    | Common terminal for terr        |                                                      |
| 42    | -10010 VDC                      | Voltage/var/power factor/reactive load set point In. |
| 43    | Binary input 18                 | 2 <sup>nd</sup> Parameter set, not configurable      |
| 44    | Binary input 19                 | 3 <sup>rd</sup> Parameter set, non configurable      |
| 45    | Binary input 20                 | 4 <sup>th</sup> Parameter set, non configurable      |
| 46    | Binary input 21                 | Configurable                                         |
| 47    | Binary input 22                 | Configurable                                         |
| 48    | Binary input 23                 | Configurable                                         |
| 49    | Binary input 24                 | Configurable                                         |
| 50    | Binary input 25                 | Configurable                                         |
| 51    | Binary input 26                 | Configurable                                         |
| 52    | Binary input 27                 | Configurable                                         |
| 53    | Binary input 28                 | Configurable                                         |
| 54    | Binary input 29                 | Configurable                                         |
| 55    | Binary input 30                 | Configurable                                         |
| 56    | Common terminal for terr        | ninals 43 to 55                                      |
| 57    | NO Relay 1                      | Configurable                                         |
| 58    | Common terminal for terminal 57 |                                                      |
| 59    | NO Relay 2                      | Configurable                                         |
| 60    | Common terminal for terr        | ninal 59                                             |
| 61    | NO Relay 3                      | Configurable                                         |
| 62    | Common terminal for terr        | ninal 61                                             |
| 63    | NO Relay 4                      | Configurable                                         |
| 64    | Common terminal for terr        | ninal 63                                             |
|       |                                 |                                                      |

## 5.4 Slot #4, analogue outputs for governor and AVR control

| Term.<br>65 | <i>Function</i><br>Not used | Description                     |
|-------------|-----------------------------|---------------------------------|
| 66          | +/-20 mA out                | Speed governor set-point output |
| 67          | 0                           |                                 |
| 68          | Not used                    |                                 |
| 69          | Not used                    |                                 |
| 70          | +/-20 mA out                | AVR voltage set-point output    |
| 71          | 0                           |                                 |
| 72          | Not used                    |                                 |

The analogue current outputs can, if needed, be converted to voltage using a resistor across the terminals (250 will convert the +/-20 mA into +/-5 VDC).

#### 5.5 Slot #5, AC measuring

| 73 |           | Description<br>Generator current L1 1/5A AC input |
|----|-----------|---------------------------------------------------|
| 74 | IL1 s2    |                                                   |
| 75 | I L2 s1   | Generator current L2 1/5A AC input                |
| 76 | I L2 s2   |                                                   |
| 77 | I L3 s1   | Generator current L3 1/5A AC input                |
| 78 | I L3 s2   |                                                   |
| 79 | U L1      | Generator voltage L1                              |
| 80 | Not used  |                                                   |
| 81 | U L2      | Generator voltage L2                              |
| 82 | Not used  |                                                   |
| 83 | U L3      | Generator voltage L3                              |
| 84 | U neutral | Generator voltage neutral                         |
| 85 | U L1      | Mains/bus voltage L1                              |
| 86 | Not used  | -                                                 |
| 87 | U L2      | Mains/bus voltage L2                              |
| 88 | Not used  | 6                                                 |
| 89 | U L3      | Mains/bus voltage L3                              |
|    |           | -                                                 |

Note: Current inputs are galvanically separated. Max. 0.3 VA per phase.

Voltage measurements are for phase-to-phase voltages between 120VAC and 480VAC.

### 5.6 Slot #6, input/output cards (optional)

Note: only 1 of the following options can be chosen: 7 binary inputs /4 relay outputs/ 4 analogue inputs 4...20mA / Analogue transducer output.

- 7 binary inputs:

- Term. Function
- 90 Common for terminals 91 up to 97
- 91 Configurable Binary Input 17
- 92 Configurable Binary Input 16
- 93 Configurable Binary Input 15
- 94 Configurable Binary Input 14
- 95 Configurable Binary Input 13
- 96 Configurable Binary Input 12
- 97 Configurable Binary Input 11

- 4 relay outputs:

- 90 NO Relay 1
- 91 Common for Terminal 90
- 92 NO Relay 2
- 93 Common for Terminal 92
- 94 NO Relay 3
- 95 Common for Terminal 94
- 96 NO Relay 4
- 97 Common for Terminal 96

- 4 analogue inputs 4...20mA:

- Term. Function
- 90 Common for Terminal 91
- 91 Analogue Input 5
- 92 Common for Terminal 93
- 93 Analogue Input 6
- 94 Common for Terminal 95
- 95 Analogue Input 7
- 96 Common for Terminal 97
- 97 Analogue Input 8

- Analogue transducer output:

These outputs are active outputs i.e. they use the internal power supply. The outputs are galvanically separated from each other and the rest of the Qc4001 unit. The individual output can be selected (in display or via Qc4001 Utility Software) to represent any AC measuring value or related values (e.g. power, power factor, frequency etc.).

For actual selection refer to the channel number 4500-4560.

Via software selection the outputs can be selected to be 0...20mA or 4...20mA.

- Term. Function
- 90 Not Used
- 91 Common for Terminal 92
- 92 Analogue Output 1
- 93 Not Used
- 94 Not Used
- 95 Common for Terminal 96
- 96 Analogue Output 2
- 97 Analogue Input 8

#### 5.7 Slot #7, engine interface card

The engine interface board is installed in slot #7. It consists of configurable inputs and outputs. The configuration is done through the Qc4001 Utility Software and the default settings can be changed to the relevant settings. To configure the inputs, upload the parameter list from the Qc4001 and select the input to be configured. Then a configuration dialog box appears and the settings can be changed.

The standard title (e.g. 4...20 mA in no. 2) can be changed and the new title will also be shown in the display.

The minimum and maximum values of the 4...20 mA input can be adjusted:

- Value: Alarm value (e.g. 85°C)
- Min.: Value corresponding to 4 mA (e.g. 0°C)
- Max.: Value corresponding to 20 mA (e.g. 100°C)

The inverse proportional function is used when the input has inverse proportionality according to the measured value.

The inputs can be used for a high or low alarm. As a "high alarm" the alarm appears when the measured value is higher than the alarm limit, and as a "low alarm" the alarm appears when the measured values are lower than the alarm limit.

The relay outputs on slot #7 are used for engine control.

- Start
- Stop solenoid
- Start prepare

The binary inputs use 12/24 volt constant signal. They do not use pulse inputs.

| <i>Term.</i><br>98 | <i>Function</i><br>Analogue input | Description/preconfiguration<br>420 mA mains power input |
|--------------------|-----------------------------------|----------------------------------------------------------|
| 99                 | Analogue input                    | GND for terminal 98                                      |
| 100                | Analogue input 1                  | 420 mA configurable input                                |
| 101                | Analogue input 1                  | GND for terminal 100                                     |
| 102                | Analogue input 2                  | 420 mA configurable input                                |
| 103                | Analogue input 2                  | GND for terminal 102                                     |
| 104                | Resistive input 1                 | for VDO sensor                                           |
| 105                | Resistive input 2                 | for VDO sensor                                           |
| 106                | Resistive Input 3                 | for VDO sensor                                           |
| 107                | Common ground for termina         |                                                          |
| 108                | Tacho Input                       | 0.570VAC                                                 |
| 109                | Tacho Input                       | /1010.000Hz                                              |
| 110                | Binary Input 31                   | Remote Start/Stop                                        |
| 111                | Binary input 32                   | W/L                                                      |
| 112                | Binary input 33                   | Disable Analogue Fuel Input                              |
| 113                | Binary Input 34                   | Static Battery Charger                                   |
| 114                | Binary input 6                    | Access lock, not configurable                            |
| 115                | Binary input 7                    | Running feedback, not configurable                       |
| 116                | Binary input 8                    | External engine failure, configurable                    |
| 117                | Binary input 9                    | Emergency stop, not configurable                         |
| 118                | Binary input 10                   | Sprinkler, not configurable                              |
| 119                | Common terminal for termin        | nals 110-118                                             |
| 120                | NO                                | Start relay                                              |
| 121                | Common terminal for termin        | nal 120                                                  |
| 122                | NO                                | Run relay                                                |
| 123                | Common terminal for terminal 122  |                                                          |
| 124                | NO                                | Preheat relay                                            |
| 125                | Common terminal for termin        | 5                                                        |

The access lock input blocks the display functions, and the settings and parameters cannot be changed. The view windows are still accessible.

## 5.8 Slot #8, engine communication

| Term. | Function | Description |
|-------|----------|-------------|
| 126   | Not used |             |
| 127   | Not used |             |
| 128   | Can-L    |             |
| 129   | GND      |             |
| 130   | Can-H    |             |
| 131   | Can-L    |             |
| 132   | GND      |             |
| 133   | Can-H    |             |

Can-communication is possible with following engine electronics:

- MTU MDEC
- Detroit Diesel DDEC
- Deutz EMR
- Volvo EDCIII
- John Deere JDEC
- Scania ScaniaDec

The engine electronics' type is selectable through the Qc4001 Utility Software, so that the same hardware can be used for all.

## 6 Languages

The default language (= Master language) used in the Qc4001 is English.

Other available languages are:

- Danish
- Dutch
- Finnish
- French
- German
- Italian
- Norwegian
- Portuguese
- Spanish
- Swedish
- 1 extra language

It is possible for qualified Atlas Copco personnel to edit and/or add text and/or languages through the 'Qc4001 Utility Software'.

Only the Master language English text is non-editable.

For the other languages, empty 'textcells' will be foreseen where the translations can be filled in by qualified Atlas Copco personnel.

With the current type of LCDisplay, it is not possible to display other than Roman characters. For other languages please contact Atlas Copco.

## 7 Standard Modes

The Qc4001 is a protection and control unit for a generator driven by a diesel engine. It will carry out all necessary tasks to control and protect a gen-set, regardless of the use of the generator. This means that the Qc4001 can be used for several application types such as described in chapter 10.

It is possible to operate the Qc4001 in three modes. The required mode can be selected via a dedicated pushbutton.

## 7.1 <u>AUTO mode</u>

The Qc4001 controls the gen-set and the circuit breakers (generator breaker GB and mains breaker MB) automatically according to the operational state.

## 7.2 SEMI-AUTO mode

Manual control and activation of the sequences with the buttons on the LCDisplay. The generator can be started/stopped manually.

The breakers can be closed/opened manually, but the module will check automatically synchronizing sequences.

## 7.3 <u>Test mode</u>

In this mode it is possible to enable/disable the synchronising feature.

| When enabled:  | <ul> <li>the gen-set will start-up</li> <li>the generator breaker will close after synchronizing</li> <li>the gen-set will take a defined load for a defined period</li> <li>the generator breaker will open</li> <li>the gen-set will cool down for a defined period</li> <li>the generator will stop.</li> </ul> |
|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| When disabled: | <ul> <li>the gen-set will start-up</li> <li>the circuit breaker remains open</li> <li>the gen-set will run with no load for a defined period</li> <li>the gen-set stops.</li> </ul>                                                                                                                                |

The percentage of nominal load and running time can be programmed. To go into the TEST mode, the lowest level password needs to be entered.

## 8 Standard Applications

It is possible to select 5 different applications (via display or configurator software).

## 8.1 AMF function

This application is only possible in combination with the AUTO mode. If the SEMI-AUTO mode is selected, the AMF operation will NOT function !!

Installation with the Mains.

- Automatic starting of the gen-set
- Operation of the mains breaker MB and generator breaker GB
- Back synchronising of gen-set to mains when the mains returns
- Stopping of the gen-set

## 8.2 Peak Shaving

This application is possible in combination with the AUTO mode or SEMI-AUTO mode. Installation with the Mains.

An optional Power Transducer is required.

- Automatic starting of the gen-set
- Operation of the mains breaker MB and generator breaker GB
- Load control
- Stopping of the gen-set

## 8.3 Island Mode

This application is possible in combination with SEMI-AUTO mode or AUTO mode with internal real time clock timer.

Installation is stand alone, never with the Mains.

- Operation of generator breaker GB.

## 8.4 Fixed Power

This application is possible in combination with SEMI-AUTO mode or AUTO mode with internal real time clock timer.

Installation is stand alone or with the Mains.

- Operation of generator breaker GB

## 8.5 Load Take Over

This application is possible in combination with SEMI-AUTO mode or AUTO mode with internal real time clock timer.

Installation is stand alone or with the Mains.

- Operation of the mains and generator breaker GB

### 8.6 Power Management System

This application is only possible in combination with the AUTO mode. If the SEMI-AUTO mode is selected, the PMS operation will NOT function !! An optional PMS circuit board inside the Qc4001 controller is required. This option cannot be added afterwards.

Installations are possible with stand alone generators or with the Mains (extra Qc4001 Mains is then needed):

- Operation of the generator breaker GB and Mains & Tie breaker
- Automatic start/stop function with multiple gensets depending on the load demand.

## 9 Single Genset use / Multi Genset use

Depending on the amount of generators in the installation, the customer can select between 5 or 6 applications:

### 9.1 Single Gen-set use

Only 1 generator in the installation. Installation can be stand alone or with the Mains.

#### 9.2 Multi gen-set use

More than 1 generator in the installation. In practice up to 16 gen-sets can be installed in parallel. Installation can be stand alone or with the Mains.

## 10 Application examples

10.1 <u>Automatic Mains Failure application with Single gen-set installation and with Back-</u> syncronizing of the mains breaker MB

When the Qc4001 is operating in automatic mains failure operation, the following sequence will be run through in a mains failure situation:



The mains failure must be present in the period "FAIL DELAY" before the MB is opened. The timer "FAIL DELAY" will be reset each time when the mains is restored.

When the mains is restored the following sequence is run through:



The mains must have been present in the period "MAINS OK DELAY" before the MB synchronises.

When the gen-set is running it will control the frequency and voltage to the nominal set point.

## 10.2 Peak Shaving operation with Single gen-set installation

When the Qc4001 is operating in peak shaving operation, the following sequence will be run through when the generator is in standby and the imported load increases above the configured limit:



When the load decreases below the stop gen-set limit, the following sequence is run through:



When the gen-set is running it will be loaded between the minimum load limit (e.g. 5%) and the maximum nominal generator load.

## 11 Wirings



#### 11.1 Wiring for AMF, peak shaving, fixed power and load take over application

This drawing gives only a rough overview on the wiring. For details please see the correct circuit diagrams of the machine.

#### 11.2 Wiring for Island and PMS mode application



This drawing gives only a rough overview on the wiring. For details please see the correct circuit diagrams of the machine.

User Manual Qc4001 – edition03 2954 1970 01

Page 31 of 114 20-06-2007

On the circuit diagrams you will find a terminal block (X25) where all the necessary connections have to be made. The circuit diagram for QAC gen-sets is 9822 0952 54.

Below you see a detail of circuit diagram 9822 0990 52 for QIX gen-sets. Depending on the application the user has to connect the following wires:

- Mains sensing wires on X25.3 / X25.4 / X25.5
- Remote start signal on X25.9 / X25.10
- Mains breaker feedback wires on X25.11 / X25.12
- Mains breaker control wires on X25.13 / X25.14 / X25.15 / X25.16
- Mains power signal (from optional Power Transducer) on X25.21 / X25.22
- Active and reactive load sharing lines on X30.1 / X30.2 / X30.3 / X31.1 / X31.2 / X31.3

Important notes:

- Remove link between X25.10 / X25.11 when NOT running in Island Mode. The Qc4001 module always needs some feedback from the Mains Breaker MB. If you are in Island mode, then there is no mains breaker in the system. In this case we simulate the 'mains breaker open' signal with a bridge.
- Remove link between X25.17 / X25.19 for no droop operation. This is valid for the QIX gen-sets with EMR control. In parallel operation with other gen-sets or with mains, you need a frequency droop.



## 11.3 Load sharing lines

Even though screened cable is not needed, it is recommended if the cable run is longer than 5 m between units.



#### Remark :

When the option PMS is installed these load sharing cables are **not** needed. The loads are shared through the PMS communication cable.

#### 11.4 Binary inputs

All binary inputs are 12/24 VDC bi-directional optocoupler. The binary inputs use fixed signals. They do not use pulse signals.

#### 11.5 Analogue inputs (external set-points)

The set-point inputs are passive, i.e. an external power source is needed. This can be an active output from e.g. a PLC, or a potentiometer can be used.

#### 11.6 Optocoupler outputs for external counter

The kWh counter (terminals 20-22) and kvarh counter (terminals 21-22) outputs are low-power outputs.

## 11.7 Display cable

A standard computer extension cable can be used (9-pole SUB-D male/female plugs) or a cable can be tailored:

- Wires min. 0.22 mm<sup>2</sup>
- Max. cable length 6 m



Cable types: Belden 9540, BICC H8146, Brand Rex BE57540 or equivalent.

## 11.8 Serial cable for PC

A standard computer null-modem cable can be used (9-pole SUB-D female/female plugs) or a cable can be tailored.



Connect shield to plug metallic casing. If non-metalleic casing is used, leave shield un-connected.

## 12 Applications details for the Qc4001

This chapter shows the correct application configuration for the different use of the Qc4001. The following application configurations are possible:

| Single gen-set | AMF operation           | AUTO mode         |
|----------------|-------------------------|-------------------|
|                |                         | (SEMI-AUTO mode)* |
|                | Island mode             | AUTO mode         |
|                |                         | SEMI-AUTO mode    |
|                | Peak shaving            | AUTO mode         |
|                |                         | SEMI-AUTO mode    |
|                | Fixed Power             | AUTO mode         |
|                |                         | SEMI-AUTO mode    |
|                | Load Take Over          | AUTO mode         |
|                |                         | SEMI-AUTO mode    |
| Multi gen-sets | AMF operation           | AUTO mode         |
|                |                         | (SEMI-AUTO mode)* |
|                | Island mode             | AUTO mode         |
|                |                         | SEMI-AUTO mode    |
|                | Peak shaving            | AUTO mode         |
|                |                         | SEMI-AUTO mode    |
|                | Fixed Power             | AUTO mode         |
|                |                         | SEMI-AUTO mode    |
|                | Load Take Over          | AUTO mode         |
|                |                         | SEMI-AUTO mode    |
|                | Power Management System | AUTO mode         |
|                |                         | (SEMI-AUTO mode)* |

()\* = the AMF and PMS operation will not function properly, when SEMI-AUTO mode is selected!

It is possible to use the Qc4001 for one of these purposes, or for peak shaving/fixed power/ load take over in combination with AMF.

The correct configuration can be set through the Qc4001 Utility Software or via the setup menu on the LCDisplay.

From each of the above applications the module can jump into the **Test mode**, by pushing the dedicated Test button on the LCDisplay. The gen-set will follow the defined Test sequences and afterwards the gen-set will return in its previous application, always in combination with the AUTO mode.

## 12.1 Single running gen-set

#### 12.1.1 AMF operation

When the mains goes outside the user-defined voltage (over and under) or frequency (over and under) for a certain user-defined time, the mains will be disconnected and the gen-set will be started to take over the load.

When the mains is restored within the user-defined limits for a certain user-defined time, the gen-set will synchronise to the mains and deload the gen-set according a user defined ramp before disconnecting the gen-set (only if back-synchronisation feature is enabled) The gen-set will then go into cool down and stop.

The generator is running in a system with only short simultaneous connection to other systems.

It is possible to enable/disable the back synchronisation feature.



Related customer settings:

- Check that the module is in AUTO mode
- Gen-set mode (=application)
- Cool down setting
- Mains V failure
- Mains Hz failure
- Back synchronisation setting of Mains breaker

Related customer wirings:

- Mains sensing lines L1 / L2 / L3.

- Wires for control and feedback of the Mains breaker.

For details on all setpoints, see the setpoint list. For details on the wirings, see the circuit diagram. pushbutton on display channel 4320 channel 4400 channel 4420 channel 4430 channel 4440
## 12.1.2 Island operation

In combination with SEMI-AUTO mode: The gen-set can be started/stopped wih a local start command. The breaker can be closed/opened with a local command (= LOCAL START).

In combination with AUTO mode: The gen-set can be started/stopped with a remote start command (= REMOTE START).

This can be a command through a signal from the internal real time clock.

This can be a command through a binary input. When an external hard-wired switch (connected to this dedicated input) is closed, the unit will start up and the generator breaker will be closed. When this external switch is opened again, the unit will open the generator circuit breaker and stop.

The generator is running in a system without simultaneous connection to other systems.



Related customer settings:

- Select the correct mode (Semi-auto/Auto)
- Gen-set mode (=application)
- Cool down setting
- Start command through internal real time clock
- Stop command through internal real time clock

Related customer wirings:

- Remote Start switch towards the dedicated binary input

For details on all setpoints, see the setpoint list. For details on the wirings, see the circuit diagram. pushbutton on display channel 4320 channel 4400 channel 4710 - 4780 channel 4710 - 4780

## 12.1.3 Peak Shaving application

In combination with AUTO mode:

The gen-set will start up when the mains imported power (measured through an optional Power Transducer PT) exceeds a user-defined level. The gen-set will synchronise with the bus, and will take load according a user-defined ramp until the user-defined allowable mains imported power level is reached.

When the mains imported power decreases below the user-defined mains imported power level for a user-definable time, the gen-set will deload according a user-defined ramp and disconnect from the bus. Then the gen-set will go into cooldown.

It is possible to define two levels of max. mains imported power: 'day' level and 'night' level.

In combination with SEMI-AUTO mode:

The gen-set starts up once a local start command is given. The gen-set breaker closes once the local command is given, and the synchronisation is done. The gen-set will take load only if the mains imported power exceeds a user-defined level.

The gen-set breaker can be opened and the gen-set stopped with a local command.

The generator is running in a system with long simultaneous connection to other systems.

It is possible to enable/disable AMF as a second application when the gen-set is in the peak shaving application. With AMF enabled, the gen-set will always guard the mains and will act as an AMF unit when not active as a peak shaving gen-set. It is possible to enable/disable the back synchronisation feature.



Related customer settings:

- Select the correct mode (Semi-auto/Auto)
- Power ramp up / ramp down
- Mains imported power level
- Daytime period
- Gen-set mode (=application)
- Cool down setting
- Back synchronisation setting of Mains breaker
- Enable/disable AMF as 2<sup>nd</sup> application

pushbutton on display channel 2110 - 2120 channel 3010 channel 3020 channel 4320 channel 4400 channel 4440 channel 4440 Related customer wirings:

- Power Transducer lines
- Wires for control and feedback of the Mains breaker

For details on all setpoints, see the setpoint list. For details on the wirings, see the circuit diagram For more information on the Power Transducer option, please contact Atlas Copco.

## 12.1.4 Fixed Power

In combination with SEMI-AUTO mode:

The gen-set will start up on a local command. The gen-set will synchronise with the mains, it will connect with the bus and it will take load according to a user-defined level and according a user-defined ramp.

Stopping on a local command will deload the gen-set according a user-defined ramp and disconnect the gen-set from the bus. Then the gen-set will go into cooldown and stop.

In combination with AUTO mode:

The gen-set will go through the same sequences once a remote command is given. This can be a command through a signal from the internal real time clock.

Or this can be a command through a binary input. When an external hard-wired switch (connected to this dedicated input) is closed, the unit will start up and the generator breaker will be closed. When this external switch is opened again, the unit will open the generator circuit breaker and stop.

It is possible to enable/disable AMF as a second application when the gen-set is in fixe power application. With AMF enabled, the gen-set will always guard the mains and will act as an AMF unit when not active as a fixed power gen-set.

It is possible to enable/disable the back synchronisation feature.

The generator is running in a system with long simultaneous connection to other systems.



Related customer settings:

- Select the correct mode (Semi-auto/Auto)
- Power ramp up / ramp down
- Fixed Power setpoint
- Gen-set mode (=application)
- Cool down setting
- Back synchronisation setting of Mains breaker
- Enable/disable AMF as 2<sup>nd</sup> application
- Start command through internal real time clock
- Stop command through internal real time clock

pushbutton on display channel 2110 - 2120 channel 3080 channel 4320 channel 4400 channel 4440 channel 4440 channel 4710 - 4780 channel 4710 - 4780

Related customer wirings:

- Remote Start switch towards the dedicated binary input.
- Wires for control and feedback of the Mains breaker.

For details on all setpoints, see the setpoint list. For details on the wirings, see the circuit diagram.

12.1.5 Load Take Over

In combination with SEMI-AUTO mode:

The gen-set will start up on a local command. The gen-set will synchronise with the mains, it will connect with the bus, and it will take over the load according a user-defined ramp and disconnect the mains. To know if the load is completely taken over from the mains, an optional Power Transducer (PT) is necessary.

After a local stop command, the gen-set will synchronise again to mains, connect the bus to mains, deload the gen-set according a user-defined ramp and disconnect the gen-set from the bus. Then the gen-set will go into cooldown and stop.

In combination with AUTO mode:

The gen-set will go through the same sequences once a remote command is given. This can be a command through a signal from the internal real time clock. Or this can be a command through a binary input.

It is possible to enable/disable AMF as a second application when the gen-set is in the Load Take Over application. With AMF enabled, the gen-set will always guard the mains and will act as an AMF unit when not active as a Load Take Over gen-set. It is possible to enable/disable the back synchronisation feature.

The generator is running in a system with short simultaneous connection to other systems.



Related customer settings:

| - Select the correct mode (Semi-auto/Auto)          | pushbutton on display |
|-----------------------------------------------------|-----------------------|
| - Power ramp up / ramp down                         | channel 2110 - 2120   |
| - Gen-set mode (=application)                       | channel 4320          |
| - Cool down setting                                 | channel 4400          |
| - Back synchronisation setting of Mains breaker     | channel 4440          |
| - Enable/disable AMF as 2 <sup>nd</sup> application | channel 4440          |
| - Start command through internal real time clock    | channel 4710 - 4780   |
| - Stop command through internal real time clock     | channel 4710 - 4780   |

Related customer wirings:

- Remote Start switch towards the dedicated binary input
- Wires for control and feedback of the Mains breaker
- Wires from the optional Power Transducer

For details on all setpoints, see the setpoint list.

For details on the wirings, see the circuit diagram.

For more information on the Power Transducer option, please contact Atlas Copco.

## 12.2 Multi running gen-sets

## 12.2.1 AMF operation (optional)

It is possible to have an optional power management system (PMS) that allows communication between the Qc4001 modules over CAN-bus. It has fully intelligent system which will start up all gen-sets in case of a mains failure, and then stops and starts gen-sets according to the actual load and according to each gen-set's status.

It is possible to do this kind of intelligent load sharing between up to 16 Qc4001 controllers (all equipped with this PMS option). This PMS option needs to be installed from the factory and can not be added in the field !

The generators are running in a system with only short simultaneous connection to other systems. For the correct working all the generator Qc4001 controllers need to be programmed in AMF – AUTO mode and the Qc4001 mains controller has to put in AMF – AUTO mode. An complete overview on the parameters that needs to be programmed in both controllers you can find below.



Related customer settings Qc4001 controller genset :

- Check that the module is in AUTO mode
- Gen-set mode (=application)
- Cool down setting
- Application
- Int. Communication ID
- PMS configuration
- Priority Select
- Stop Noncon. Gen-sets
- Running hours priority selection
- Manual priority selection
- Number of ID's
- Load dependent start
- Load dedendent stop

pushbutton on display channel 4320 channel 4400 channel 5000 channel 3110 channel 3100 channel 3120 channel 3220 channel 3220 channel 3160 - 3180 channel 3130 - 3150 channel 3050 channel 3060 Extra related customer settings Qc4001 Mains controller :

- Mains V failure
  Mains Hz failure
  Back synchronisation setting of Mains breaker
- Power capacity set-point
- Tie breaker
- Application

## Remark :

The Qc4001 controller of the generators and the Qc4001 mains controller are **NOT** the same controllers. It is not possible to mutual exchange the 2 controllers !

Related customer wirings:

- Mains sensing lines L1 / L2 / L3.
- Wires for control and feedback of the Mains and Tie breaker.
- PMS communication lines.

For more details on related customer settings, see the setpoint list. For more details on related customer wirings, see circuit diagram. For more details on the PMS option, see 12.2.6.

## 12.2.2 Island operation

In combination with SEMI-AUTO mode:

Starting up and loading generators can be done through local commands on the LCDisplays of each unit. For each extra generator that is started, the breaker will close once the local command is given and the synchronisation is done.

In combination with AUTO mode:

Starting up and loading generators can be done through a remote command. This can be a command through a signal from the internal real time clock. Or this can be a command through a binary input.

The load sharing will be done through the analogue load sharing lines.

It is possible to do load sharing between up to 8 gen-sets.

This 'analogue' load sharing is compatible with the Barber Colman Pow-R-Con. This means that old gen-sets can be parallelled with new gen-sets.

Optional it is possible to have a power management system (PMS) which allows communication between the Qc4001 modules over CAN-bus and to have a fully intelligent system which can determine which gen-sets to start and stop, according to the actual load and to each gen-set's status. It is possible to do this kind of intelligent load sharing between up to16 Qc4001 controllers (all equipped with this PMS option).

channel 4420 channel 4430 channel 4440 channel 3250 channel 3260 channel 5000

## Remark :

When paralleling generators with PMS, it is no longer necessary to use the analogue load sharing lines. This will be done through the PMS communication lines.

The generators are running in a system without simultaneous connection to other systems.



Related customer settings:

- Select the correct mode (Semi-auto/Auto)
- Gen-set mode (=application)
- Cool down setting
- Start command through internal real time clock
- Stop command through internal real time clock

Extra related settings if the PMS option is added :

- Application
- Int. Communication ID
- PMS configuration
- Priority Select
- Stop Noncon. Gen-sets
- Running hours priority selection
- Manual priority selection
- Number of ID's
- Load dependent start
- Load dedendent stop

pushbutton on display channel 4320 channel 4400 channel 4710 - 4780 channel 4710 - 4780

channel 5000 channel 3110 channel 3120 channel 3240 channel 3220 channel 3160 - 3180 channel 3130 - 3150 channel 3050 channel 3060 Related customer wirings:

- Remote Start switch towards the dedicated binary input
- PMS communication lines

For more details on related customer settings, see the setpoint list. For more details on related customer wirings, see circuit diagram. For more details on the PMS option, see 12.2.6.

## 12.2.3 Peak Shaving (optional)

It is possible to have an optional power management system (PMS) which allows communication between the Qc4001 modules over CAN-bus and to have a fully intelligent system which will start and stop the necessary gen-set(s) to limit the imported mains power (measured through an optional Qc4001 Mains controller module) according the user-defined level.

It is possible to define 2 levels of max mains imported power: 'day' level and 'night' level. It is possible to do this kind of intelligent peak shaving with up to 16 Qc4001 controllers (all equipped with this PMS option).

The generators are running in a system with long simultaneous connection to other systems.

It is possible to enable/disable AMF as a second application when the gen-sets are in this peak shaving application.

With AMF enabled, the gen-sets will always guard the mains and will act as AMF units when not active as peak shaving gen-sets (extra Tie breaker is needed; see 12.2.1).

It is possible to enable/disable the back synchronisation feature.



Related customer settings:

- Select the correct mode (Semi-auto/Auto)
- Power ramp up / ramp down
- Mains imported power level
- Daytime period
- Gen-set mode (=application)
- Cool down setting
- Back synchronisation setting of Mains breaker
- Enable/disable AMF as 2<sup>nd</sup> application
- Application
- Int. Communication ID
- PMS configuration
- Priority Select
- Stop Noncon. Gen-sets
- Running hours priority selection
- Manual priority selection
- Number of ID's
- Load dependent start
- Load dedendent stop

pushbutton on display channel 2110 - 2120 channel 3010 channel 3020 channel 4320 channel 4400 channel 4440 channel 4440 channel 5000 channel 3110 channel 3100 channel 3120 channel 3240 channel 3220 channel 3160 - 3180 channel 3130 - 3150 channel 3050 channel 3060

Related customer wirings:

- Mains sensing lines L1 / L2 / L3
- Wires for control and feedback of the Mains breaker
- PMS communication lines

For more details on related customer settings, see the setpoint list. For more details on related customer wirings, see circuit diagram. For more details on the PMS option, see 12.2.6.

## 12.2.4 Fixed Power (optional)

It is possible to have an optional power management system (PMS) which allows communication between the Qc4001 modules over CAN-bus and to have a fully intelligent system which will start up the necessary gen-set(s) when a start signal is given, synchronise the gen-set(s) with the mains, connect the gen-set(s) with the bus and load according a user-defined ramp to meet the user-defined fixed load. When a stop signal is given, the gen-set(s) will be deloaded according a user-defined ramp and they will be disconnected from the bus. The gen-set(s) will go into cooldown and stop.

The start and stop signals can be local commands (in combination with SEMI-AUTO mode), or remote commands from the binary input or from the internal real time clock (in combination with AUTO mode).

It is possible to do this kind of intelligent fixed loading with up to 16 QC4001 controllers (all equipped with this PMS option).

The generators are running in a system with long simultaneous connection to other systems.

It is possible to enable/disable AMF as a second application when the gen-sets are in this fixed power application. With AMF enabled, the gen-sets will always guard the mains and will act as AMF units when not active as a fixed power gen-sets (extra Tie breaker is needed; see 12.2.1).

It is possible to enable/disable the back synchronisation feature.



Related customer settings:

- Select the correct mode (Semi-auto/Auto)
- Power ramp up / ramp down
- Fixed Power setpoint
- Gen-set mode (=application)
- Cool down setting
- Back synchronisation setting of Mains breaker
- Enable/disable AMF as 2<sup>nd</sup> application
- Start command through internal real time clock
- Stop command through internal real time clock
- Application
- Int. Communication ID
- PMS configuration
- Priority Select
- Stop Noncon. Gen-sets
- Running hours priority selection
- Manual priority selection
- Number of ID's
- Load dependent start
- Load dedendent stop

Related customer wirings:

- Mains sensing lines L1 / L2 / L3
- Remote Start switch towards the dedicated binary input
- Wires for control and feedback of the Mains breaker
- PMS communication lines

pushbutton on display channel 2110 - 2120 channel 3080 channel 4320 channel 4400 channel 4440 channel 4440 channel 4710 - 4780 channel 4710 - 4780 channel 5000 channel 3110 channel 3100 channel 3120 channel 3240 channel 3220 channel 3160 - 3180 channel 3130 - 3150 channel 3050 channel 3060

For more details on related customer settings, see the setpoint list. For more details on related customer wirings, see circuit diagram. For more details on the PMS option, see 12.2.6.

## 12.2.5 Load Take Over (optional)

It is possible to have an optional power management system (PMS) which allows communication between the Qc4001 modules over CAN-bus and to have a fully intelligent system which will start the necessary gen-set(s) on a local command or remote command, synchronise the gen-set(s) to mains, connect to the bus, take over the load according a user defined ramp and disconnect mains.

This intelligent system will start and stop gen-sets to meet the actual load.

After a local command or remote stop command, the gen-set(s) will synchronise to mains, connect the bus to mains, deload the gen-set(s) according a user defined ramp and disconnect the gen-set from the bus. Then the gen-set(s) will go into cooldown and stop. It is possible to do this kind of intelligent load take over with up to 16 Qc4001 controllers (all equipped with this PMS option).

The local commands can be given when the module is in SEMI-AUTO mode. The remote commands can be given when the module is in AUTO mode. This can be through the binary input or through a signal from the internal real time clock.

The generator is running in a system with short simultaneous connection to other systems.

It is possible to enable/disable AMF as a second application when the gen-sets are in this Load Take Over application. With AMF enabled, the gen-sets will always guard the mains and will act as AMF units when not active as Load Take Over gen-sets (extra Tie breaker is needed; see 12.2.1).

It is possible to enable/disable the back synchronisation feature.



Related customer settings:

- Select the correct mode (Semi-auto/Auto)
- Power ramp up / ramp down
- Gen-set mode (=application)
- Cool down setting
- Back synchronisation setting of Mains breaker
   Enable/disable AMF as 2<sup>nd</sup> application
- Start command through internal real time clock
- Stop command through internal real time clock
- Application
- Int. Communication ID
- PMS configuration
- Priority Select
- Stop Noncon. Gen-sets
- Running hours priority selection
- Manual priority selection
- Number of ID's
- Load dependent start
- Load dependent stop

Related customer wirings:

- Mains sensing lines L1 / L2 / L3
- Remote Start switch towards the dedicated binary input
- Wires for control and feedback of the Mains breaker
- PMS communication lines

pushbutton on display channel 2110 - 2120 channel 4320 channel 4400 channel 4440 channel 4440 channel 4710 - 4780 channel 4710 - 4780 channel 5000 channel 3110 channel 3100 channel 3120 channel 3240 channel 3220 channel 3160 - 3180 channel 3130 - 3150 channel 3050

channel 3060

For more details on related customer settings, see the setpoint list. For more details on related customer wirings, see circuit diagram. For more details on the PMS option, see 12.2.6.

## 12.2.6 Power Management System (optional)

PMS (= Power Management System) is a system that will automatically start & stop generators based on the actual load dependency. This will be done through a PMS communication between the different units connected.

PMS applications are always in combination with AUTO mode. The Qc4001 controllers from the gensets need to be programmed as PMS in AUTO mode. When a Qc Mains controller is installed this needs to be programmed in the application that is required (AMF, LTO, Fixed power) and AUTO mode.

## Warning:

By programming the parameters in AUTO mode, the generator can start up immediately. It is recommended to place the generator in SEMI-AUTO mode while programming all the PMS parameters !

In an application with PMS it is important to program correctly the Start & Stop signals between the different generators because of the following reasons:

- The maximum load step needs to be programmed in the Qc4001 controllers. This never may exceeds the power reserve of the running generators. Otherwise the gensets will go in overload with a sudden max. load increase before the next generator is started up and connected to the busbar.
- To prevent the gensets to run in a start stop loop.

The start signal is the value of the maximum required load step The stop signal is the value when the generator should be stopped automatically.

Example : Installation with 3 gensets : G1 = 300 kW; G2 = 200 kW; G3 = 200 kW

Start signal is set at 90kW (Maximum load step < 90kW)</li>
 Start signal if :

Total Power needed > (Total available power of running gensets –setpoint start signal)

Only G1 is running; at 210kW load (300kW – 90kW) => **G2 will be started** G1 & G2 are running; at 410kW load (200kW + 300kW –90kW) => **G3 will be started**  - Stop signal is set at 100kW and priority is set as (high) G1 > G2 > G3 (low) Stop signal if :

Total Power needed < (Total available power of running gensets – Power of generator with lowest priority – setpoint stop signal)

G1&G2&G3 are running; at 400kW (700kW – 200kW –100kW) => **G3 will be stopped** G1&G3 are running; at 200kW (500kW – 200kW – 100kW) => **G2 will be stopped** 

The priority on starting & stopping the generators can be chosen on priority settings or on the amount of running hours. In manual mode the start & stop sequence is determent by the chosen priority between the generators. The generator with the lowest priority will start as the latest genset and will stop as first. If running hours are chosen as priority the start & stop sequence will be defined based on the actual running hours of the different generators. The lowest running hours will get the highest priority.

## Remark :

When paralleling generators with PMS, it is no longer necessary to use the analogue load sharing lines. This will be done through the PMS communication lines. Use a screened CAN communication cable with a maximum total distance of 200 meters. Do not connect the cable screen to the ground ! Use a 120 Ohm resistor at both end controllers of the PMS as described in the drawings below.

The connections between the generators Qc4001 controllers (without the Qc mains controller) :



The connections for PMS between the generator and the Qc mains controller :



## 13 Remote control via www (optional)

It is possible to communicate with the Qc4001 through the world wide web or local intranet. To be able to use this feature, one Qc4001 must be installed with the optional TCP/IP hardware, and all Qc4001 modules must be installed with the optional Can-bus communication (standard when PMS option installed).

The communication with the world wide web is done through the TCP/IP unit.

This unit communicates through fieldbus with the other units in the system.

The web pages show the installation with the gen-sets, the breakers and the Qc4001 units.

Clicking on the icons on the screen gives access to the following:

- Status: Screen showing the alarms and the status of all control inputs.
- Messages: Creates and sends e-mail messages if alarms occur.
- Settings: Screen showing setup menus.
- Measurements: Relevant values can be chosen between all measured gen-set values.

For more information, please contact Atlas Copco.

## 14 Menu overview & changing parameters

## 14.1 Main View

The display has 4 different lines. The information on these lines can change, depending on which view is used. There are 4 different main views possible: SETUP / S1 / S2 / S3.

| OFTI |      | /1 \ A / |
|------|------|----------|
| SETU | )P \ |          |

| QC4001     |    | V. 1.02.1 |    |
|------------|----|-----------|----|
| 2003-11-21 |    | 16:08:11  |    |
| SETUP MEN  | U  |           |    |
| SETUP      | S3 | S2        | S1 |

| S3 VIEW |           |         |        |
|---------|-----------|---------|--------|
|         | Phase     | missing |        |
| G       | 0,001     | PF      | 0kW    |
| G       |           | 0 kVA   | 0 kvar |
| SETUP   | <u>S3</u> | S2      | S1     |

## S2 VIEW

| S2 VIEW |       |           |        | S1 VIEW    |         |         |           |
|---------|-------|-----------|--------|------------|---------|---------|-----------|
| G       |       | C         | 00A    |            | Run Tim | ne      | 0Hour     |
| G       | 0,001 | PF        | 0kW    | Fuel level |         |         | 100%      |
| G       |       | 0 kVA     | 0 kvar | 2003-11-21 |         | 16:08:1 | 1         |
| SETUP   | S3    | <u>S2</u> | S1     | SETUP      | S3      | S2      | <u>S1</u> |

The user can scroll through these views with the scroll buttons.

## 14.2 SETUP menu

The SETUP view shows the module name, the software version, the date and the time. If you select SETUP then you get the following view :

| G      | 0,001    | PF    | 0kW  |
|--------|----------|-------|------|
| I-L1   |          |       | 0A   |
| PROTEC | TION SET | UP    |      |
| PROT   | CTRL     | POWER | SYST |

The fourth line is the entry selection for the Menu system. If the SELECT button is pressed, the selection of the menu indicated with an underscore will be entered. Choices are:

| "PROT"  | protection setup    |
|---------|---------------------|
| "CTRL"  | controls setup      |
| "POWER" | power control setup |
| "SYST"  | system setup        |

The user can scroll to these choices with the scroll buttons.

## 14.2.1 If the PROTECTION SETUP is selected

The following view will appear (example of parameter) :

| G                    |           | 0,001 | PF |     | 0kW     |
|----------------------|-----------|-------|----|-----|---------|
| 1210 Gen high-volt 1 |           |       |    |     |         |
|                      | Set point |       |    |     | 105,00% |
| LIM                  | DEL       | OA    | OB | ACT | FC      |

For a protective function the first entry shows the "gen high volt 1" setting. Scrolling down will give all the protection parameters.

**The first line** shows some generator data. There are 7 different information lines possible. The user can scroll through with the VIEW button.

| G    | 0,001 | PF | 0 kW   |
|------|-------|----|--------|
| G    | 0 k'  | VA | 0 kvar |
| G-L1 | 0.0   | Hz | 0 V    |
| B-L1 | 0.0   | Hz | 0 V    |
| G    | 0     | 0  | 0 V    |
| В    | 0     | 0  | 0 V    |
| G    | 0     | 0  | 0 A    |

**The second line** shows the channel number and the name of the parameter. The user can scroll through with the scroll buttons.

The third line shows the value of a setpoint of this parameter.

The fourth line shows the different possible setpoints. In this example:

| "LIM" | = LIMIT, setting of switch point                              |
|-------|---------------------------------------------------------------|
| "DEL" | = DELAY, setting of time delay                                |
| "OA"  | OUTPUT A, selection of which relay the function must activate |
| "OB"  | OUTPUT B, selection of which relay the function must activate |
| "ACT" | ACTION, activate/de-activate the function                     |
| "FC"  | FAIL CLASS, fail class setting.                               |

The user can scroll to these choices with the scroll button, and select one choice with the SELECT button. After selection of 'LIM' the following view will be visible:

| G              | 0,001 | PF | 0kW  |
|----------------|-------|----|------|
| ENTER PASSWORD |       |    | 1999 |
| ENTER          |       |    |      |

A password is needed in order to change the settings. There are 3 different password levels.

If the correct password is entered, the following view appears:

| G    | 0,001                  | PF       | 0kW  |  |  |
|------|------------------------|----------|------|--|--|
|      | 1211 Gen high          | n-volt 1 |      |  |  |
|      | 100,0,,,105,0,,,120,0% |          |      |  |  |
| RESE | T                      |          | SAVE |  |  |

Now the user can change the 'LIM' of parameter 'Gen high-volt 1'. This can be done with the scroll buttons.

Then the user has to select 'SAVE' to save the new settings.

To exit the user has to press the BACK button several time, till the main view appears.

This is the described menu flow:



## 14.2.2 If the CONTROL SETUP is selected

The following view will appear (example of parameter):

| G                   | 0,001       | PF   | 0kW |  |  |  |
|---------------------|-------------|------|-----|--|--|--|
| 2020Synchronisation |             |      |     |  |  |  |
|                     | dfMax 0,3Hz |      |     |  |  |  |
| fMax                | <u>fMin</u> | Umax | TGB |  |  |  |

For control functions one entry shows the "Synchronisation" function. In this case the fourth line shows:

| "fMax" | max allowed positive frequency deviation when synchronising. |
|--------|--------------------------------------------------------------|
| "fMin" | min allowed negative frequency deviation when synchronising. |
| "Umax" | max allowed voltage deviation (positive/ negative) when      |
|        | synchronising.                                               |
| "tCB"  | closing time delay for generator circuit breaker.            |

Scrolling down gives all the other control parameters.

The setpoints can be changed as explained in the protection setup.

## 14.2.3 If POWER SETUP is selected

The following view will appear (example of parameter):

| G   | 0,001           | 0kW   |  |  |  |  |  |
|-----|-----------------|-------|--|--|--|--|--|
|     | 3010Mains Power |       |  |  |  |  |  |
|     | Power 750 kW    |       |  |  |  |  |  |
| DAY | <u>NIGHT</u>    | TRANS |  |  |  |  |  |

For power setup the first entry shows the "Mains power" setting. In this case the fourth line shows:

| "DAY"   | setting of max allowed imported power during the daytime period.        |
|---------|-------------------------------------------------------------------------|
| "NIGHT" | setting of max allowed imported power during the daytime period.        |
| "TRANS" | setting of transducer scale for transducer used in peak shaving system. |

Scrolling down gives all the other power parameters. The setpoints can be changed as explained in the protection setup.

## 14.2.4 If the SYSTEM SETUP is selected

The following view will appear (example of parameter) :

| G | 0,001             | PF | 0kW |  |  |
|---|-------------------|----|-----|--|--|
|   | 4010Nom. Settings |    |     |  |  |
|   | Frequency 50,0Hz  |    |     |  |  |
| F | Р                 | I  | U   |  |  |

For system setup the first entry shows the "Nominal settings". In this case the fourth line shows:

| "f" | nominal frequency setting |
|-----|---------------------------|
|-----|---------------------------|

"P" nominal generator power setting

"I" nominal generator current setting

"U" nominal generator voltage setting

The above settings are used by the QC4001 to calculate the nominal apparent power and the power factor.

Scrolling down gives all the other system parameters.

The setpoints can be changed as explained in the protection setup.

# $\Rightarrow$

## 14.3 The JUMP button

Instead of navigating through the entire menu, the user can jump directly to the required parameter, if he knows the channel number of that specific parameter. For example, if the user wants to change 'language', he can jump directly to channel 4240.

If the JUMP button is pushed the password view will appear. Not all parameters can be changed by the end-user. The required password level for each parameter is given in the setpoint list.

## 14.4 S1 / S2 / S3 menu

The user can select 3 different views to read out information of gen-set, bus and mains.

S3 VIEW

|       | Phase missing              |       |        |  |  |  |
|-------|----------------------------|-------|--------|--|--|--|
| G     | 0,001                      | PF    | 0kW    |  |  |  |
| G     |                            | 0 kVA | 0 kvar |  |  |  |
| SETUP | TUP <u><b>S3</b></u> S2 S1 |       |        |  |  |  |

The S3 view shows operational status and selectable measurements During synchronisation the S3 view will show a synchronoscope in the first line. This is useful during manual synchronising.

## S2 VIEW

| G      |       | 0         | 00A    |  |
|--------|-------|-----------|--------|--|
| G<br>G | 0,001 | PF        | 0kW    |  |
| G      |       | 0 kVA     | 0 kvar |  |
| SETUP  | S3    | <u>S2</u> | S1     |  |

The S2 view shows selectable measurements.

S1 VIEW

|            | Run Time |          | 0Hour     |
|------------|----------|----------|-----------|
| Fuel level |          | 1009     | %         |
| 2002-11-21 |          | 16:08:11 |           |
| SETUP      | S3       | S2       | <u>S1</u> |

In the S1 view the user can scroll up and down to 15 configurable screens showing different selectable measurements.

The configuration of the 15 different screens is done through the Qc4001 Utility Software. It is not possible to configure the windows through the display.

The screen shown when leaving "S1" will be the screen shown when returning to "S1".

If the text "No text" is selected in all three lines in a window it will not be displayed. This is to get a continuous displaying if a window is no longer to be shown.

The selectable values and measurements are shown in the table below:

| I-L1<br>I-L2<br>I-L3<br>Run time<br>GB Operations<br>0 822 0999 97-02                                                                  | 0 A<br>0 A<br>0 A<br>0 Hour<br>0                                                                        |                                                                      |
|----------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|
| MB Operations<br>Mains P<br>Analog 1<br>Analog 2<br>Oil P<br>Cool. Temp.<br>Fuel Level<br>Analog 3<br>Analog 4<br>Analog 5<br>Analog 6 | 0<br>156 kW<br>5.5 mA<br>5.5 mA<br>91 psi<br>77 F<br>100 %<br>0.0 mA<br>0.0 mA<br>0.0 mA<br>0.0 mA      | 6.3 bar<br>25 ℃                                                      |
| Tacho<br>Serv. 1<br>Serv. 2<br>Engine I.<br>Engine I.<br>Engine I.<br>Engine I.<br>Engine I.<br>Engine I.<br>Engine I.                 | 0 rpm<br>0 d<br>1809 d<br>value<br>value<br>value<br>value<br>value<br>value<br>value<br>value<br>value | 49 h<br>49 h<br>N.A.<br>N.A.<br>N.A.<br>N.A.<br>N.A.<br>N.A.<br>N.A. |
| Engine I.<br>Engine I.<br>Engine I.<br>Engine I.<br>f-L1<br>f-L2<br>f-L3<br>P<br>Q                                                     | value<br>value<br>value<br>0.00 Hz<br>0.00 Hz<br>0.00 Hz<br>0.00 Hz<br>0 kW<br>0 kvar                   | N.A.<br>N.A.<br>N.A.<br>N.A.                                         |
| S<br>P factor<br>Angle L1L2<br>Angle L2L3<br>Angle L3L1<br>U-Bus L1<br>U-Bus L2<br>U-Bus L3<br>U-Bus L1L2<br>U-Bus L2L3<br>U-Bus L3L1  | 0 kVA<br>0.00 Ind<br>0 deg<br>0 deg<br>0 V<br>0 V<br>0 V<br>0 V<br>0 V<br>0 V<br>0 V<br>0 V             |                                                                      |
| U-Bus Max<br>U-Bus Min<br>f Bus<br>Ang BusL1L2<br>Ang Bus-Gen                                                                          | 0 V<br>0 V<br>0.00 Hz<br>0 deg<br>0 deg                                                                 |                                                                      |

| U-Supply   | 24.6 V |       |
|------------|--------|-------|
| E          | 0 MWh  | 0 kWh |
| U-Gen L1N  | 0 V    |       |
| U-Gen L2N  | 0 V    |       |
| U-Gen L3N  | 0V     |       |
| U-Gen L1L2 | 0 V    |       |
| U-Gen L2L3 | 0 V    |       |
| U-Gen L3L1 | 0 V    |       |
| U-Gen Max  | 0 V    |       |
| U-Gen Min  | 0 V    |       |
|            |        |       |

## 14.5 Alarm and event list menu

When selecting the alarm (and event) list, the second line will display the latest alarm/event. The user can scroll through the list with the scroll buttons.

## 15 Password levels

There are 4 different levels:

- No password level
- Customer password level
- Service password level
- Master password level

The user can scroll through the entire menu without any password.

From the moment that the user wants to change a setpoint, a password will be required. Changing different parameters requires different password levels. Some parameters cannot be changed by the end-customer because of safety reasons.

Once the password has be entered, the user can change all the accessible setpoints. Only if no actions have been taken within 3 minutes, the password entry will be deactivated, and a new password entry will be needed.

The user can change the Customer password in channel 4971. *Beware:* Write down the new password. If you forget it, entering the menus will not be possible.

Service password and Master password can only be set through the Qc4001 Utility Software.

## 16 Fail classes

All the activated alarms of the Qc4001 must be configured with a fail class. The fail classes define the category of the alarms and the subsequent action of the alarm.

4 different fail classes can be used:

|               | Action              |                  |         |                 |          |
|---------------|---------------------|------------------|---------|-----------------|----------|
| Fail Class    | Alarm Horn<br>Relay | Alarm<br>Display | GB Trip | Gen-Set<br>Stop | Shutdown |
| 1.Warning     | Х                   | Х                |         |                 |          |
| 2.Trip of GB  | Х                   | Х                | Х       |                 |          |
| 3.Trip & Stop | Х                   | Х                | Х       | Х               |          |
| 4. Shutdown   | Х                   | Х                | Х       |                 | Х        |

All alarms can be disabled or enabled as following:

- OFF disabled alarm, inactive supervision.
- ON enabled alarm, supervision of alarm all the time.
- RUN gen-set running alarm, only supervision when the gen-set is running.

## 17 Menu set-points

Each parameter has its specific channel number.

Changing a parameter requires a password. The password level is indicated for each parameter.



The set points are listed below in numerical order of channel number.

The default values depend on the type of gen-set. Some values are different for QIX,QAS and for QAC gen-sets. In the parameter list below we have taken the default values for a QAC gen-set.

## 17.1 Protection setup

17.1.1 Bus voltage protection

| 1010 | Bus High Volt. 1 |                | CUSTOMER LEVEL |                                         |
|------|------------------|----------------|----------------|-----------------------------------------|
|      | 1011             | Setpoint       | 103,0%         | (100.0 120.0)                           |
|      | 1012             | Delay          | 10.00s         | (0.10 99.99)                            |
|      | 1013             | Output Relay A | R0             | (R0 R3)                                 |
|      | 1014             | Output Relay B | R0             | (R0 R3)                                 |
|      | 1015             | Enable         | OFF            | (OFF / RUN / ON)                        |
|      | 1016             | Fail Class     | Warning        | (Warning / Trip / Trip+Stop / Shutdown) |
|      |                  |                |                |                                         |

1020 Bus High Volt. 2 SERVICE LEVEL 1021 (100.0 ... 150.0) Setpoint 108,0% 5.00s 1022 Delay (0.10 ... 99.99) 1023 Output Relay A R0 (R0 ... R3) 1024 Output Relay B R0 (R0 ... R3) 1025 Enable OFF (OFF / RUN / ON) 1026 Fail Class Trip (Warning / Trip / Trip+Stop / Shutdown)

#### 1030 Bus Low Volt. 1

#### CUSTOMER LEVEL

| 1031 Setpoint       | 97,0% (80         |
|---------------------|-------------------|
| 1032 Delay          | <b>10.00s</b> (0. |
| 1033 Output Relay A | <b>R0</b> (R      |
| 1034 Output Relay B | <b>R0</b> (R      |
| 1035 Enable         | OFF (O            |
| 1036 Fail Class     | Warning (W        |

(80.0 ... 100.0) (0.10 ... 99.99) (R0 ... R3) (R0 ... R3) (OFF / RUN / ON) (Warning / Trip / Trip+Stop / Shutdown)

| 1040 | Bus Lo              | ow Volt. 2     | SERVICE LEVEL |       |
|------|---------------------|----------------|---------------|-------|
|      | 1041 Setpoint       |                | 92,0%         | (50.0 |
|      | 1042 Delay          |                | 5.00s         | (0.10 |
|      | 1043 Output Relay A |                | R0            | (R0.  |
|      | 1044                | Output Relay B | R0            | (R0.  |
|      | 1045                | Enable         | OFF           | (OFF  |
|      | 1046                | Fail Class     | Trip          | (War  |

50.0 ... 100.0) 0.10 ... 99.99) R0 ... R3) R0 ... R3) OFF / RUN / ON) Warning / Trip / Trip+Stop / Shutdown)

#### 17.1.2 Bus frequency protection

| 1050 | Bus High Freq. 1 |                | CUSTOMER LE | EVEL                                    |
|------|------------------|----------------|-------------|-----------------------------------------|
|      | 1051 Setpoint    |                | 103,0%      | (100.0 120.0)                           |
|      | 1052             | Delay          | 10.00s      | (0.10 99.99)                            |
|      | 1053             | Output Relay A | R0          | (R0 R3)                                 |
|      | 1054             | Output Relay B | R0          | (R0 R3)                                 |
|      | 1055             | Enable         | OFF         | (OFF / RUN / ON)                        |
|      | 1056             | Fail Class     | Warning     | (Warning / Trip / Trip+Stop / Shutdown) |
|      |                  |                |             |                                         |

| <b>Bus High</b> | n Freq. 2      | SERVICE LEVEL |
|-----------------|----------------|---------------|
| 1061            | Setpoint       | 105,0%        |
| 1062            | Delay          | 5.00s         |
| 1063            | Output Relay A | R0            |
| 1064            | Output Relay B | R0            |
| 1065            | Enable         | OFF           |
| 1066            | Fail Class     | Trip          |

(100.0 ... 120.0) (0.10 ... 99.99) (R0 ... R3) (R0 ... R3) (OFF / RUN / ON) (Warning / Trip / Trip+Stop / Shutdown)

| 1070 | Bus Low             | Freq. 1    | CUSTOMER LI | EVEL |
|------|---------------------|------------|-------------|------|
|      | 1071                | Setpoint   | 97,0%       | (8   |
|      | 1072 Delay          |            | 10.00s      | (0   |
|      | 1073 Output Relay A |            | R0          | (R   |
|      | 1074 Output Relay B |            | R0          | (R   |
|      | 1075                | Enable     | OFF         | (C   |
|      | 1076                | Fail Class | Warning     | (V   |
|      |                     |            |             |      |

80.0 ... 100.0) 0.10 ... 99.99) R0 ... R3) R0 ... R3) OFF / RUN / ON) Warning / Trip / Trip+Stop / Shutdown)

 1080
 Bus Low Freq. 2

 1081
 Setpoint

1060

## SERVICE LEVEL

(80.0 ... 100.0) (0.10 ... 99.99) (R0 ... R3) (R0 ... R3) (OFF / RUN / ON) (Warning / Trip / Trip+Stop / Shutdown)

## 17.1.3 Generator Reverse Power

Reverse power settings relates to nominal power setting.

| 1090 | Reverse Power       | SERVICE LEVEL |      |
|------|---------------------|---------------|------|
|      | 1091 Setpoint       | -20,0%        | (-50 |
|      | 1092 Delay          | 5.00s         | (0.1 |
|      | 1093 Output Relay A | R0            | (R0  |
|      | 1094 Output Relay B | R0            | (R0  |
|      | 1095 Enable         | ON            | (OF  |
|      | 1096 Fail Class     | Trip + Stop   | (Wa  |

50.0 ... 0.0) 0.1 ... 100.0) R0 ... R3) R0 ... R3) DFF / RUN / ON) Varning / Trip / Trip+Stop / Shutdown)

## 17.1.4 Generator Overcurrent Protection

Settings relates to nominal generator current setting.

| 1100 | Over Current 1 |                | CUSTOMER LEVEL |                                         |
|------|----------------|----------------|----------------|-----------------------------------------|
|      | 1101           | Setpoint       | 110,0%         | (50.0 200.0)                            |
|      | 1102           | Delay          | 10.00s         | (0.1 100.0)                             |
|      | 1103           | Output Relay A | R0             | (R0 R3)                                 |
|      | 1104           | Output Relay B | R0             | (R0 R3)                                 |
|      | 1105           | Enable         | ON             | (OFF / RUN / ON)                        |
|      | 1106           | Fail Class     | Warning        | (Warning / Trip / Trip+Stop / Shutdown) |
|      |                |                |                |                                         |

| 1110 | Over Cur | rent 2         | SERVICE LEVEL |
|------|----------|----------------|---------------|
|      | 1111     | Setpoint       | 120,0%        |
|      | 1112     | Delay          | 5.00s         |
|      | 1113     | Output Relay A | R0            |
|      | 1114     | Output Relay B | R0            |
|      | 1115     | Enable         | ON            |
|      | 1116     | Fail Class     | Trip + Stop   |

(50.0 ... 200.0) (0.1 ... 100.0) (R0 ... R3) (R0 ... R3) (OFF / RUN / ON) (Warning / Trip / Trip+Stop / Shutdown)

## 17.1.5 Generator Overload Protection

Settings relates to nominal generator power setting.

| 1120 | Over Load 1 |                | CUSTOMER LEVEL |                                         |
|------|-------------|----------------|----------------|-----------------------------------------|
|      | 1121        | Setpoint       | 110,0%         | (1.0 200.0)                             |
|      | 1122        | Delay          | 10.00s         | (0.1 100.0)                             |
|      | 1123        | Output Relay A | R0             | (R0 R3)                                 |
|      | 1124        | Output Relay B | R0             | (R0 R3)                                 |
|      | 1125        | Enable         | ON             | (OFF / RUN / ON)                        |
|      | 1126        | Fail Class     | Warning        | (Warning / Trip / Trip+Stop / Shutdown) |

| 1130 | Over Load 2   |                | SERVICE LEVEL |                                         |
|------|---------------|----------------|---------------|-----------------------------------------|
|      | 1131 Setpoint |                | 120,0%        | (1.0 200.0)                             |
|      | 1132          | Delay          | 5.00s         | (0.1 100.0)                             |
|      | 1133          | Output Relay A | R0            | (R0 R3)                                 |
|      | 1134          | Output Relay B | R0            | (R0 R3)                                 |
|      | 1135          | Enable         | ON            | (OFF / RUN / ON)                        |
|      | 1136          | Fail Class     | Trip + Stop   | (Warning / Trip / Trip+Stop / Shutdown) |
|      |               |                |               |                                         |

## 17.1.6 Generator Current Unbalance Protection

Settings relates to nominal generator current.

| 1140 | Current | t Unbalance    | SERVICE LEVEL | _        |
|------|---------|----------------|---------------|----------|
|      | 1141    | Setpoint       | 30,0%         | (0.0 10  |
|      | 1142    | Delay          | 10.00s        | (0.1 10  |
|      | 1143    | Output Relay A | R0            | (R0 R3   |
|      | 1144    | Output Relay B | R0            | (R0 R3   |
|      | 1145    | Enable         | OFF           | (OFF / R |
|      | 1146    | Fail Class     | Trip + Stop   | (Warning |

0.0 ... 100.0) 0.1 ... 100.0) R0 ... R3) R0 ... R3) DFF / RUN / ON) Varning / Trip / Trip+Stop / Shutdown)

## 17.1.7 Generator Voltage Unbalance Protection

Settings relates to nominal generator voltage.

| 1150 | Voltage Unbalance   | SERVICE LEVEL |                                         |
|------|---------------------|---------------|-----------------------------------------|
|      | 1151 Setpoint       | 10,0%         | (0.0 50.0)                              |
|      | 1152 Delay          | 10.00s        | (0.1 100.0)                             |
|      | 1153 Output Relay A | R0            | (R0 R3)                                 |
|      | 1154 Output Relay B | R0            | (R0 R3)                                 |
|      | 1155 Enable         | OFF           | (OFF / RUN / ON)                        |
|      | 1156 Fail Class     | Trip + Stop   | (Warning / Trip / Trip+Stop / Shutdown) |

## 17.1.8 Generator Reactive Power Import (loss of excitation) Protection

| 1160 | var Import          | SERVICE LEVEL |                                         |
|------|---------------------|---------------|-----------------------------------------|
|      | 1161 Setpoint       | 50,0%         | (0.0 150.0)                             |
|      | 1162 Delay          | 10.00s        | (0.1 100.0)                             |
|      | 1163 Output Relay A | R0            | (R0 R3)                                 |
|      | 1164 Output Relay B | R0            | (R0 R3)                                 |
|      | 1165 Enable         | ON            | (OFF / RUN / ON)                        |
|      | 1166 Fail Class     | Warning       | (Warning / Trip / Trip+Stop / Shutdown) |

Settings relates to nominal generator power value (kW).

## 17.1.9 Generator Reactive Power Export (overexcitation) Protection

Settings relates to nominal generator power value (kW).

| 1170 | var Export          | SERVICE LEVEL |                                         |
|------|---------------------|---------------|-----------------------------------------|
|      | 1171 Setpoint       | 50,0%         | (0.0 100.0)                             |
|      | 1172 Delay          | 10.00s        | (0.1 100.0)                             |
|      | 1173 Output Relay A | R0            | (R0 R3)                                 |
|      | 1174 Output Relay B | R0            | (R0 R3)                                 |
|      | 1175 Enable         | ON            | (OFF / RUN / ON)                        |
|      | 1176 Fail Class     | Warning       | (Warning / Trip / Trip+Stop / Shutdown) |

## 17.1.10 Loss of Mains Protection

The loss of mains protection includes df/dt (Rate Of Change Of Frequency) protection. The protection is used when the generator is paralleling with the mains. When the protections are activated there is a fixed time delay of 1 second after the mains breaker closes. The loss of mains function trips the generator breaker.

NOTE: Time delay is in periods (per).

| 1180 | Df/Dt (ROCOF)       | SERVICE LEVEL |                  |
|------|---------------------|---------------|------------------|
|      | 1181 Setpoint       | 5.0Hz/s       | (0.1 10.0)       |
|      | 1182 Delay          | 6 periods     | (1 20)           |
|      | 1183 Output Relay A | R0            | (R0 R3)          |
|      | 1184 Output Relay B | R0            | (R0 R3)          |
|      | 1185 Enable         | OFF           | (OFF / RUN / ON) |

17.1.11 Vector jump

| 1190 | Vector Jump         | SERVICE LEVEL |                  |
|------|---------------------|---------------|------------------|
|      | 1191 Setpoint       | 10.0 deg      | (1.0 90.0)       |
|      | 1192 Output Relay A | R0            | (R0 R3)          |
|      | 1193 Output Relay B | R0            | (R0 R3)          |
|      | 1194 Enable         | OFF           | (OFF / RUN / ON) |

Page 67 of 114 20-06-2007

## 17.1.12 Generator voltage protection

1210

| Gen High | i Volt. 1      | CUSTOMER L | .EVEL |
|----------|----------------|------------|-------|
| 1211     | Setpoint       | 110,0%     | (1    |
| 1212     | Delay          | 5.0s       | (0    |
| 1213     | Output Relay A | R0         | (1    |
| 1214     | Output Relay B | R0         | (}    |
| 1215     | Enable         | ON         | ((    |
| 1216     | Fail Class     | Warning    | (1    |
|          |                |            |       |

(100.0 ... 120.0) (0.1 ... 100.0) (R0 ... R3) (R0 ... R3) (OFF / RUN / ON) (Warning / Trip / Trip+Stop / Shutdown)

| 1220 | Gen High | n Volt. 2      | MASTER LEVEL |
|------|----------|----------------|--------------|
|      | 1221     | Setpoint       | 120,0%       |
|      | 1222     | Delay          | 1.0s         |
|      | 1223     | Output Relay A | R0           |
|      | 1224     | Output Relay B | R0           |
|      | 1225     | Enable         | ON           |
|      | 1226     | Fail Class     | Shutdown     |
|      | 1226     | Fail Class     | Shutdown     |

(100.0 ... 150.0) (0.1 ... 100.0) (R0 ... R3) (R0 ... R3) (OFF / RUN / ON) (Warning / Trip / Trip+Stop / Shutdown)

| 1230 | Gen Low | Volt. 1        | CUSTOMER L | EVEL |
|------|---------|----------------|------------|------|
|      | 1231    | Setpoint       | 90,0%      | (8)  |
|      | 1232    | Delay          | 15.0s      | (0.  |
|      | 1233    | Output Relay A | R0         | (R   |
|      | 1234    | Output Relay B | R0         | (R   |
|      | 1235    | Enable         | RUN        | (0   |
|      | 1236    | Fail Class     | Warning    | (N   |
|      |         |                |            |      |

(80.0 ... 100.0) (0.1 ... 100.0) (R0 ... R3) (R0 ... R3) (OFF / RUN / ON) (Warning / Trip / Trip+Stop / Shutdown)

| 1240 | Gen Low | Volt. 2        | SERVICE LEVEL |   |
|------|---------|----------------|---------------|---|
|      | 1241    | Setpoint       | 70,0%         | ( |
|      | 1242    | Delay          | 10.0s         |   |
|      | 1243    | Output Relay A | R0            | ( |
|      | 1244    | Output Relay B | R0            | ( |
|      | 1245    | Enable         | RUN           |   |
|      | 1246    | Fail Class     | Shutdown      |   |

(50.0 ... 100.0) (0.1 ... 100.0) (R0 ... R3) (R0 ... R3) (OFF / RUN / ON) (Warning / Trip / Trip+Stop / Shutdown)

## 17.1.13 Generator frequency protection

| 1250 | Gen High | n Freq. 1      | CUSTOMER L | EVEL |
|------|----------|----------------|------------|------|
|      | 1251     | Setpoint       | 110,0%     | (*   |
|      | 1252     | Delay          | 5.0s       | ((   |
|      | 1253     | Output Relay A | R0         | (1   |
|      | 1254     | Output Relay B | R0         | (1   |
|      | 1255     | Enable         | ON         | ((   |
|      | 1256     | Fail Class     | Warning    | ()   |
|      |          |                |            |      |

(100.0 ... 120.0) (0.2 ... 100.0) (R0 ... R3) (R0 ... R3) (OFF / RUN / ON) (Warning / Trip / Trip+Stop / Shutdown)

| 1260 | Gen High | n Freq. 2      | MASTER LEVEL |
|------|----------|----------------|--------------|
|      | 1261     | Setpoint       | 120,0%       |
|      | 1262     | Delay          | 1.0s         |
|      | 1263     | Output Relay A | R0           |
|      | 1264     | Output Relay B | R0           |
|      | 1265     | Enable         | ON           |

(100.0 ... 120.0) (0.2 ... 100.0) (R0 ... R3) (R0 ... R3) (OFF / RUN / ON)

Page 68 of 114 20-06-2007

```
1266
     Fail Class
                          Shutdown
```

(Warning / Trip / Trip+Stop / Shutdown)

1270

| G | en Low | Freq. 1        | CUSTOMER LE | VEL |
|---|--------|----------------|-------------|-----|
|   | 1271   | Setpoint       | 90,0%       | (   |
|   | 1272   | Delay          | 10.0s       | (   |
|   | 1273   | Output Relay A | R0          | (   |
|   | 1274   | Output Relay B | R0          | (   |
|   | 1275   | Enable         | RUN         | (   |
|   | 1276   | Fail Class     | Warning     | (   |
|   |        |                |             |     |

(80.0 ... 100.0) (0.2 ... 100.0) (R0 ... R3) (R0 ... R3) (OFF / RUN / ON) (Warning / Trip / Trip+Stop / Shutdown)

| 1280 | Gen Low | Freq. 2        | SERVICE LEVEL |                                         |
|------|---------|----------------|---------------|-----------------------------------------|
|      | 1281    | Setpoint       | 80,0%         | (80.0 100.0)                            |
|      | 1282    | Delay          | 5.0s          | (0.2 100.0)                             |
|      | 1283    | Output Relay A | R0            | (R0 R3)                                 |
|      | 1284    | Output Relay B | R0            | (R0 R3)                                 |
|      | 1285    | Enable         | RUN           | (OFF / RUN / ON)                        |
|      | 1286    | Fail Class     | Shutdown      | (Warning / Trip / Trip+Stop / Shutdown) |
|      | 1200    |                | Shutdown      | (warning / rnp / rnp+Stop / Shutdown)   |

## 17.1.14 Engine control

The configuration of the engine interface card is done in the next channel groups. Configuration of the inputs is done through the display and the Qc4001 Utility Software.

## 17.1.15 Mains Power 4...20 mA input

The input is not configurable because it is used as a mains power input in the peak shaving mode.

## 17.1.16 Configurable 4...20 mA input 1

| 1310 <u>4.</u> . | 420mA Input 1.1 |                | CUSTOMER LEVEL |                                         |
|------------------|-----------------|----------------|----------------|-----------------------------------------|
|                  | 1311            | Setpoint       | 10.0mA         | (0.0 20.0)                              |
|                  | 1312            | Delay          | 15.0s          | (0.0 600.0)                             |
|                  | 1313            | Output Relay A | R0             | (R0 R3)                                 |
|                  | 1314            | Output Relay B | R0             | (R0 R3)                                 |
|                  | 1315            | Enable         | OFF            | (OFF / RUN / ON)                        |
|                  | 1316            | Fail Class     | Warning        | (Warning / Trip / Trip+Stop / Shutdown) |
|                  | USW             | Alarm type     | High           | (Low / High)                            |

1320 4...20mA Input 1.2

#### **CUSTOMER LEVEL** 1321 Setpoint 10.0mA (0.0 ... 20.0) (0.0 ... 600.0) 1322 Delay 15.0s 1323 Output Relay A R0 (R0 ... R3) 1324 Output Relay B (R0 ... R3) R0 (OFF / RUN / ON) OFF 1325 Enable (Warning / Trip / Trip+Stop / Shutdown) 1326 Fail Class Warning USW Alarm type High (Low / High)

High alarm = alarm when the actual value is higher than the setpoint.

## 17.1.17 Configurable 4...20 mA input 2

| 1330 | 420mA Input 2.1 |                | CUSTOMER LI | CUSTOMER LEVEL                          |  |
|------|-----------------|----------------|-------------|-----------------------------------------|--|
|      | 1331            | Setpoint       | 10.0mA      | (0.0 20.0)                              |  |
|      | 1332            | Delay          | 15.0s       | (0.0 600.0)                             |  |
|      | 1333            | Output Relay A | R0          | (R0 R3)                                 |  |
|      | 1334            | Output Relay B | R0          | (R0 R3)                                 |  |
|      | 1335            | Enable         | OFF         | (OFF / RUN / ON)                        |  |
|      | 1336            | Fail Class     | Warning     | (Warning / Trip / Trip+Stop / Shutdown) |  |
|      | USW             | Alarm type     | High        | (Low / High)                            |  |
|      |                 | 71             | 5           |                                         |  |

## 1340 <u>4...20mA Input 2.2</u> CUSTOMER LEVEL

| - |      |                |         |                                         |
|---|------|----------------|---------|-----------------------------------------|
|   | 1341 | Setpoint       | 10.0mA  | (0.0 20.0)                              |
|   | 1342 | Delay          | 15.0s   | (0.0 600.0)                             |
|   | 1343 | Output Relay A | R0      | (R0 R3)                                 |
|   | 1344 | Output Relay B | R0      | (R0 R3)                                 |
|   | 1345 | Enable         | OFF     | (OFF / RUN / ON)                        |
|   | 1346 | Fail Class     | Warning | (Warning / Trip / Trip+Stop / Shutdown) |
|   | USW  | Alarm type     | High    | (Low / High)                            |
|   |      |                |         |                                         |

High alarm = alarm when the actual value is higher than the setpoint

## 17.1.18 Configurable VDO input 1

This input will be used for a resistive Engine Oil Pressure VDO sensor or for a 'fail-safe' VDO Coolant Level Switch.

A sensor type must be software selectable (2 pressure sensors, 1 level switch & 1 configurable curve (8 points to be defined)).

If a pressure sensor is selected, the displayed value will be in bar and psi. If the level switch is selected, there's no value to be displayed.

| 1350 | VDO 1.1 |                | SERVICE LEVEL |                                         |
|------|---------|----------------|---------------|-----------------------------------------|
|      | 1351    | Setpoint       | N/A           | (0.0 10.0)                              |
|      | 1352    | Delay          | 5.0s          | (0.0 100.0)                             |
|      | 1353    | Output Relay A | R0            | (R0 R3)                                 |
|      | 1354    | Output Relay B | R0            | (R0 R3)                                 |
|      | 1355    | Enable         | OFF           | (OFF / RUN / ON)                        |
|      | 1356    | Fail Class     | Warning       | (Warning / Trip / Trip+Stop / Shutdown) |
|      | USW     | Sensor Type    | N/A           | (0 / 1 / 2 / 3)                         |
|      |         |                |               |                                         |

| 1360 | VDO 1.2 |                | MASTER LEVEL |                                         |
|------|---------|----------------|--------------|-----------------------------------------|
|      | 1361    | Setpoint       | N/A          | (0.0 10.0)                              |
|      | 1362    | Delay          | 5.0s         | (0.0 100.0)                             |
|      | 1363    | Output Relay A | R0           | (R0 R3)                                 |
|      | 1364    | Output Relay B | R0           | (R0 R3)                                 |
|      | 1365    | Enable         | OFF          | (OFF / RUN / ON)                        |
|      | 1366    | Fail Class     | Warning      | (Warning / Trip / Trip+Stop / Shutdown) |
|      |         |                |              |                                         |

The 'Sensor Type' and 'Alarm Type' parameters will only be accessible through the Atlas Copco Qc4001 Utility Software, and not through the display menu.

| Pressure | Sender 0<br>(ohm) | Sender 1<br>(ohm) |
|----------|-------------------|-------------------|
| 0 bar    | 10.0              | 10.0              |
| 0.5 bar  | 27.2              |                   |
| 1 bar    | 44.9              | 31.3              |
| 1.5 bar  | 62.9              |                   |
| 2 bar    | 81.0              | 51.5              |
| 2.5 bar  | 99.2              |                   |
| 3 bar    | 117.1             | 71.0              |
| 3.5 bar  | 134.7             |                   |
| 4 bar    | 151.9             | 89.6              |
| 4.5 bar  | 168.3             |                   |
| 5 bar    | 184.0             | 107.3             |
| 6 bar    |                   | 124.3             |
| 7 bar    |                   | 140.4             |
| 8 bar    |                   | 155.7             |
| 9 bar    |                   | 170.2             |
| 10 bar   |                   | 184.0             |
|          |                   |                   |

Sender 2 : Coolant Level Switch: Normal situation: resistive value > 200 ohm ; Alarm situation: resistive value < 200 ohm.

Sender 3 : configurable 0 – 10 bar (parameter 5010 - 5020).

## 17.1.19 Configurable VDO input 2

This input will be used for a resistive Engine Coolant Temperature VDO sensor or for an Alternator Temperature PTC.

A sensor type must be software selectable (3 temperature sensors, 1 PTC & 1 configurable curve (8 points to be defined)).

If a temperature sensor is selected, the displayed value will be in °C and °F. If the PTC is selected, there's no value to be displayed.

| 1370 | High alternator Temperature |                | SERVICE LEVEL |                                         |
|------|-----------------------------|----------------|---------------|-----------------------------------------|
|      | 1371                        | Setpoint       | N/A           | (40 150)                                |
|      | 1372                        | Delay          | 3.0s          | (0.0 100.0)                             |
|      | 1373                        | Output Relay A | R0            | (R0 R3)                                 |
|      | 1374                        | Output Relay B | R0            | (R0 R3)                                 |
|      | 1375                        | Enable         | OFF           | (OFF / RUN / ON)                        |
|      | 1376                        | Fail Class     | Warning       | (Warning / Trip / Trip+Stop / Shutdown) |
|      | USW                         | Sensor Type    | 3             | (0 / 1 / 2 / 3 / 4)                     |
|      |                             |                |               |                                         |

| 1380 | VDO 2.2 |                | SERVICE LEVEL |                                         |
|------|---------|----------------|---------------|-----------------------------------------|
|      | 1381    | Setpoint       | N/A           | (40 150)                                |
|      | 1382    | Delay          | 5.0s          | (0.0 100.0)                             |
|      | 1383    | Output Relay A | R0            | (R0 R3)                                 |
|      | 1384    | Output Relay B | R0            | (R0 R3)                                 |
|      | 1385    | Enable         | OFF           | (OFF / RUN / ON)                        |
|      | 1386    | Fail Class     | Warning       | (Warning / Trip / Trip+Stop / Shutdown) |

The 'Sensor Type' and 'Alarm Type' parameters will only be accessible through the Atlas Copco Qc4001 Utility Software, and not through the display menu.

| Temperature | Sender 0<br>(ohm) | Sender 1<br>(ohm) | Sender 2<br>(ohm) |
|-------------|-------------------|-------------------|-------------------|
| 40 °C       | 291.5             | 480.7             | 69.3              |
| 50 °C       | 197.3             | 323.6             |                   |
| 60 °C       | 134.0             | 222.5             | 36.0              |
| 70 °C       | 97.1              | 157.1             |                   |
| 80 °C       | 70.1              | 113.2             | 19.8              |
| 90 °C       | 51.2              | 83.2              |                   |
| 100 °C      | 38.5              | 62.4              | 11.7              |
| 110 °C      | 29.1              | 47.6              |                   |
| 120 °C      | 22.4              | 36.8              | 7.4               |
| 130 °C      |                   | 28.9              |                   |
| 140 °C      |                   | 22.8              |                   |
| 150 °C      |                   | 18.2              |                   |

Sender 3 : Alternator Temperature PTC: Normal Situation: resistive value < 1k7 ; Alarm situation: resistive value > 1k7.

## Sender 4 : Configurable 40 – 110 °C (parameter 5030 – 5040).
## 17.1.20 Configurable VDO input 3

This input will be used for a resistive Fuel Level VDO sensor.

A sensor type must be software selectable (2 level sensors & configurable curve (8 points to be defined)).

The displayed value will be in %.

| 1390 | Fuel Le | vel 1          | CUSTOMER LE | IVEL                          |
|------|---------|----------------|-------------|-------------------------------|
|      | 1391    | Setpoint 1     | 10,0%       | (0 100)                       |
|      | 1392    | Delay          | 10.0s       | (0.0 100.0)                   |
|      | 1393    | Output Relay A | R0          | (R0 R3)                       |
|      | 1394    | Output Relay B | R0          | (R0 R3)                       |
|      | 1395    | Enable         | ON          | (OFF / RUN / ON)              |
|      |         |                |             | (Warning / Trip / Trip+Stop / |
|      | 1396    | Fail Class     | Warning     | Shutdown)                     |
|      | USW     | Sensor Type    | 1           | (0 / 1 / 2)                   |

Resistive Fuel Level Sender 0: Linear: 0 % = 78.8 ohm ; 100 % = 1.6 ohm. Resistive Fuel Level Sender 1: Linear: 0 % = 3 ohm ; 100 % = 180 ohm. Resistive Fuel Level Sender 2: Configurable 0 - 100 % (parameter 5050 - 5060).

The fuel pump logics will also use this input to start/stop the fuel pump when necessary.

## 1400 Fuel Pump Logic

| Fuel Pump Logic         | CUSTOWER LEVEL |                  |
|-------------------------|----------------|------------------|
| 1401 Setpoint 2         | 20,0%          | (0 100)          |
| 1402 Setpoint 3         | 80.0%          | (0 100)          |
| 1403 Relay Output Pump  | R4             | (R0 R3)          |
| 1404 Enable Pump Logics | OFF            | (OFF / RUN / ON) |
| 1405 Fill Check Delay   | 60.0s          | (0.1 600.0)      |

## Fuel Pump Logics:

If the fuel level is below 'set-point 2', the 'relay output pump' will be energised. This 'relay output pump' will stay energised until the fuel level reaches 'set-point 3', until a general failclass 3 or 4 occurs, until the controller is powered off.

When the 'relay output pump' is energised, and the fuel level hasn't risen during the fill chack delay, the 'relay output pump' will be de-energised and a failclass 1 alarm 'Fuel Fill Pump Error' will be displayed.

Set-point 4 will be an extra high alarm. This set-point can operate a relay output defined in 1467.

| 1410 | Fuel Hi | gh level       | CUSTOME | ER LEVEL    |
|------|---------|----------------|---------|-------------|
|      | 1411    | Setpoint 4     | 98,0%   | (0 100)     |
|      | 1412    | Delay          | 5.0s    | (0.1 300.0) |
|      | 1413    | Output Relay A | R0      | (R0 R3)     |
|      | 1414    | Output Relay B | R0      | (R0 R3)     |

Set-point 4 will be an extra high alarm.

## 17.1.21 Overspeed (tacho input)

| 1420 | Overspeed |                | MASTER LEVEL |                                         |
|------|-----------|----------------|--------------|-----------------------------------------|
|      | 1421      | Setpoint       | 1650rpm      | (1 2250)                                |
|      | 1422      | Delay          | 3.0s         | (0.2 100.0)                             |
|      | 1423      | Output Relay A | R1           | (R0 R3)                                 |
|      | 1424      | Output Relay B | R0           | (R0 R3)                                 |
|      | 1425      | Enable         | ON           | (OFF / RUN / ON)                        |
|      | 1426      | Fail Class     | Shutdown     | (Warning / Trip / Trip+Stop / Shutdown) |
|      |           |                |              | · · · · · · · · ·                       |

| 1430 | Overspee          | ed           | MASTER LEVEL | _        |
|------|-------------------|--------------|--------------|----------|
|      | 1431              | Overspeed S2 | 1980rpm      | (1 2250) |
|      | 1432 Overspeed S3 |              | 1650rpm      | (1 2250) |
|      | 1433              | Overspeed S4 | 1650rpm      | (1 2250) |
|      | -                 |              |              |          |

Overspeed S2 set-point is used when the 2<sup>nd</sup> set of parameters are active. Overspeed S3 set-point is used when the 3<sup>rd</sup> set of parameters are active. Overspeed S4 set-point is used when the 4<sup>th</sup> set of parameters are active.

17.1.22 Ext. Engine Failure (binary input 8)

| 1440 | Engine Failure |                | SERVICE LEVEL |                                         |
|------|----------------|----------------|---------------|-----------------------------------------|
|      | 1441           | Delay          | 1.0s          | (0.0 180.0)                             |
|      | 1442           | Output Relay A | R0            | (R0 R3)                                 |
|      | 1443           | Output Relay B | R0            | (R0 R3)                                 |
|      | 1444           | Enable         | ON            | (OFF / RUN / ON)                        |
|      | 1445           | Fail Class     | Shutdown      | (Warning / Trip / Trip+Stop / Shutdown) |
|      |                |                |               |                                         |

## 17.1.23 Emergency Stop (binary input 9)

| 1450 | Emergency Stop      | MASTER LEVEL |                                         |
|------|---------------------|--------------|-----------------------------------------|
|      | 1451 Delay          | 0.0s         | (0.0 60.0)                              |
|      | 1452 Output Relay A | R0           | (R0 R3)                                 |
|      | 1453 Output Relay B | R0           | (R0 R3)                                 |
|      | 1454 Enable         | ON           | (OFF / RUN / ON)                        |
|      | 1455 Fail Class     | Shutdown     | (Warning / Trip / Trip+Stop / Shutdown) |

## 17.1.24 Non-configurable Sprinkler Input

Input 10 (terminal 118) can be configured as 'Sprinkler'. When 'Sprinkler' is selected, all alarms and fail classes are overruled. The only alarms the gen-set will react on are 'Emergency Stop' on terminal 117 or a 'Tacho Failure'. Also the gen-set has 7 start attempts before 'Start Failure'.

## 17.1.25 Coolant Temperature 1

A set-point can be configured for the coolant temperature value, that is read from the engine electronics over the CanBus.

| 1460 | Coolant Temperature 1 | SERVICE LEVEL |                                         |
|------|-----------------------|---------------|-----------------------------------------|
|      | 1461 Setpoint         | 100 deg       | (0 150.0)                               |
|      | 1462 Delay            | 3.0s          | (0.0 600.0)                             |
|      | 1463 Output Relay A   | R0            | (R0 R3)                                 |
|      | 1464 Output Relay B   | R0            | (R0 R3)                                 |
|      | 1465 Enable           | ON            | (OFF / RUN / ON)                        |
|      | 1466 Fail Class       | Warning       | (Warning / Trip / Trip+Stop / Shutdown) |
|      | USW Alarm type        | High          | (Low / High)                            |

High alarm = alarm when the actual value is higher than the setpoint.

## 17.1.26 Coolant Temperature 2

A set-point can be configured for the coolant temperature value, that is read from the engine electronics over the CanBus.

| 1470 | Coolant Temperature 2 | SERVICE LEVEL |                                         |
|------|-----------------------|---------------|-----------------------------------------|
|      | 1471 Setpoint         | 108 deg       | (0 150.0)                               |
|      | 1472 Delay            | 3.0s          | (0.0 600.0)                             |
|      | 1473 Output Relay A   | R0            | (R0 R3)                                 |
|      | 1474 Output Relay B   | R0            | (R0 R3)                                 |
|      | 1475 Enable           | ON            | (OFF / RUN / ON)                        |
|      | 1476 Fail Class       | Shutdown      | (Warning / Trip / Trip+Stop / Shutdown) |
|      | USW Alarm type        | High          | (Low / High)                            |

High alarm = alarm when the actual value is higher than the setpoint.

## 17.1.27 Oil Pressure

Here, a set-point can be configured for the oil pressure value, that is read from the engine electronics over the CanBus.

| 1480 | Oil Pressure        | SERVICE LEVEL |                                         |
|------|---------------------|---------------|-----------------------------------------|
|      | 1481 Setpoint       | 3.0 bar       | (0.0 15.0)                              |
|      | 1482 Delay          | 15.0s         | (0.0 600.0)                             |
|      | 1483 Output Relay A | R0            | (R0 R3)                                 |
|      | 1484 Output Relay B | R0            | (R0 R3)                                 |
|      | 1485 Enable         | RUN           | (OFF / RUN / ON)                        |
|      | 1486 Fail Class     | Warning       | (Warning / Trip / Trip+Stop / Shutdown) |
|      | USW Alarm type      | Low           | (Low / High)                            |
|      |                     |               |                                         |

Low alarm = alarm when the actual value is lower than the setpoint.

## 17.1.28 Fuel Level 2

This input will be used for a resistive Fuel Level VDO sensor. The displayed value will be in %.

| 1490 | Fuel Le | vel 2          | CUSTOMER LEVEL |                               |
|------|---------|----------------|----------------|-------------------------------|
|      | 1391    | Setpoint 1     | 5,0%           | (0 100)                       |
|      | 1392    | Delay          | 20.0s          | (0.0 100.0)                   |
|      | 1393    | Output Relay A | R0             | (R0 R3)                       |
|      | 1394    | Output Relay B | R0             | (R0 R3)                       |
|      | 1395    | Enable         | ON             | (OFF / RUN / ON)              |
|      |         |                |                | (Warning / Trip / Trip+Stop / |
|      | 1396    | Fail Class     | Trip + Stop    | Shutdown)                     |

17.1.29 Configurable binary input 11 – 17 (optional)

These settings will only be visible when the Qc4001 module contains the optional extension card with 7 binary inputs.

The reserved channels for these parameters are 1600 - 1666.

17.1.30 2nd Set of Parameters (binary input 18)

This input will be dedicated for a 2<sup>nd</sup> set of parameters input (see channel 4020: nominal settings 2).

When this input is made active, some of the settings will be re-set to another level. No configuration of this input must be possible.

17.1.31 3rd Set of Parameters (binary input 19)

This input will be dedicated for a 3<sup>rd</sup> set of parameters input (see channel 4030: nominal settings 3).

When this input is made active, some of the settings will be re-set to another level. No configuration of this input must be possible.

17.1.32 4th Set of Parameters (binary input 20)

This input will be dedicated for a 4th set of parameters input (see channel 4040: nominal settings 4).

When this input is made active, some of the settings will be re-set to another level. No configuration of this input must be possible.

## 17.1.33 Configurable binary input 21

| 1700    | Digital | Input 21                    | COSTUMER LEVEL |                               |
|---------|---------|-----------------------------|----------------|-------------------------------|
|         | 1701    | Delay                       | 10.0s          | (0.0 100.0)                   |
|         | 1702    | Output Relay A              | R0             | (R0 R3)                       |
|         | 1703    | Output Relay B              | R0             | (R0 R3)                       |
|         | 1704    | Enable                      | OFF            | (OFF / RUN / ON)              |
|         |         |                             |                | (Warning / Trip / Trip+Stop / |
|         | 1705    | Fail Class                  | Warning        | Shutdown)                     |
|         | 1706    | Туре                        | High           | (Low / High)                  |
| 1 Paula |         | A la man unde ana Ala a lue |                |                               |

High alarm = Alarm when the input closes

## 17.1.34 Configurable binary input 22

For the QAC gensets this input is dedicated to 'Manual Fuel fill'.

| 1710       | Man. Fuel Fill      | SERVICE LEVEL |                               |
|------------|---------------------|---------------|-------------------------------|
|            | 1711 Delay          | 0.0s          | (0.0 100.0)                   |
|            | 1712 Output Relay A | R4            | (R0 R3)                       |
|            | 1713 Output Relay B | R0            | (R0 R3)                       |
|            | 1714 Enable         | ON            | (OFF / RUN / ON)              |
|            |                     |               | (Warning / Trip / Trip+Stop / |
|            | 1715 Fail Class     | Warning       | Shutdown)                     |
|            | 1716 Type           | High          | (Low / High)                  |
| 1.12 and a | alawa Alawa         | t l           |                               |

High alarm = Alarm when the input closes

## 17.1.35 Configurable binary input 23

For the QAC gen-sets this input is dedicated to 'Air Shut off'.

| 1720 | Air Shut Off        | SERVICE LEVEL |  |
|------|---------------------|---------------|--|
|      | 1721 Delay          | 0.2s          |  |
|      | 1722 Output Relay A | R0            |  |
|      | 1723 Output Relay B | R0            |  |
|      | 1724 Enable         | ON            |  |
|      | 1725 Fail Class     | Shutdown      |  |
|      | 1726 Type           | High          |  |
|      |                     | · · ·         |  |

High alarm = Alarm when the input closes

(0.0 ... 100.0) (R0 ... R3) (R0 ... R3) (OFF / RUN / ON) (Warning / Trip / Trip+Stop / Shutdown) (Low / High)

## 17.1.36 Configurable binary input 24

For the QAC gen-sets this input is dedicated to 'Fan Failure'.

1730 Fan Fa

| Fan Failure         | SERVICE LEVEL |
|---------------------|---------------|
| 1731 Delay          | 60.0s         |
| 1732 Output Relay A | R0            |
| 1733 Output Relay B | R0            |
| 1734 Enable         | RUN           |
| 1735 Fail Class     | Trip + Stop   |
| 1736 Type           | High          |
|                     |               |

(0.0 ... 100.0) (R0 ... R3) (R0 ... R3) (OFF / RUN / ON) (Warning / Trip / Trip+Stop / Shutdown) (Low / High)

High alarm = Alarm when the input closes

17.1.37 Configurable binary input 25

For the QAC gen-sets this input is dedicated to 'Low coolant Level'.

| 1740 | Low Coolant Level            | SERVICE LEVEL |                                         |
|------|------------------------------|---------------|-----------------------------------------|
|      | 1741 Delay                   | 10.0s         | (0.0 100.0)                             |
|      | 1742 Output Relay A          | R0            | (R0 R3)                                 |
|      | 1743 Output Relay B          | R0            | (R0 R3)                                 |
|      | 1744 Enable                  | ON            | (OFF / RUN / ON)                        |
|      | 1745 Fail Class              | Warning       | (Warning / Trip / Trip+Stop / Shutdown) |
|      | 1746 Type                    | High          | (Low / High)                            |
| مالا | alarma — Alarma when the inn | ut deese      |                                         |

High alarm = Alarm when the input closes

## 17.1.38 Configurable binary input 26

For the QAC gensets this input is dedicated to 'Tank leakage'.

| 1750                                                     | Tank leakage        | SERVICE LEVEL |  |
|----------------------------------------------------------|---------------------|---------------|--|
|                                                          | 1751 Delay          | 10.0s         |  |
|                                                          | 1752 Output Relay A | R0            |  |
|                                                          | 1753 Output Relay B | R0            |  |
|                                                          | 1754 Enable         | ON            |  |
|                                                          | 1755 Fail Class     | Warning       |  |
|                                                          | 1756 Type           | High          |  |
| Liberta al anna Allanna cuita an tha bana cuita al a a a |                     |               |  |

(0.0 ... 100.0) (R0 ... R3) (R0 ... R3) (OFF / RUN / ON) (Warning / Trip / Trip+Stop / Shutdown) (Low / High)

High alarm = Alarm when the input closes

## 17.1.39 Configurable binary input 27

For the QAC gen-sets this input is dedicated to 'DDEC check engine'.

1760 DDEC Check Engine SERVICE LEVEL

| 1761 Delay          | 1.0s    |
|---------------------|---------|
| 1762 Output Relay A | R0      |
| 1763 Output Relay B | R0      |
| 1764 Enable         | RUN     |
| 1765 Fail Class     | Warning |
| 1766 Type           | Low     |

(0.0 ... 100.0) (R0 ... R3) (R0 ... R3) (OFF / RUN / ON) (Warning / Trip / Trip+Stop / Shutdown) (Low / High)

Low alarm = Alarm when the input opens

## 17.1.40 Configurable binary input 28

For the QAC gen-sets this input is dedicated to 'Terminal Board open'.

| 1770 | T.B. Open           | SERVICE LEVEL |                                         |
|------|---------------------|---------------|-----------------------------------------|
|      | 1771 Delay          | 0.0s          | (0.0 100.0)                             |
|      | 1772 Output Relay A | R0            | (R0 R3)                                 |
|      | 1773 Output Relay B | R0            | (R0 R3)                                 |
|      | 1774 Enable         | ON            | (OFF / RUN / ON)                        |
|      | 1775 Fail Class     | Trip          | (Warning / Trip / Trip+Stop / Shutdown) |
|      | 1706 Type           | High          | (Low / High)                            |
|      |                     |               |                                         |

High alarm = Alarm when the input closes

## 17.1.41 Configurable binary input 29

This input can not only enable, but also disable a relay output. For the QAC gen-sets this input is dedicated to 'DDEC Stop Engine'

| 1780    | DDEC Stop Engine               | SERVICE LEVEL |
|---------|--------------------------------|---------------|
|         | 1781 Delay                     | 1.0s          |
|         | 1782 Enable Output Relay       | R0            |
|         | 1783 Disable Output Relay      | R0            |
|         | 1784 Enable                    | RUN           |
|         | 1785 Fail Class                | Shutdown      |
|         | 1786 Type                      | High          |
| ما ما ا | alarma - Alarma when the input |               |

(0.0 ... 100.0) (R0 ... R3) (R0 ... R3) (OFF / RUN / ON) (Warning / Trip / Trip+Stop / Shutdown) (Low / High)

High alarm = Alarm when the input closes

## 17.1.42 Configurable (binary input 30)

This input can not only enable, but also disable a relay output.

1790 Digital Inc

| Digital Input 30          | CUSTOMER LEVEL |
|---------------------------|----------------|
| 1791 Delay                | 10.0s          |
| 1792 Enable Output Relay  | R0             |
| 1793 Disable Output Relay | R0             |
| 1794 Enable               | OFF            |
| 1795 Fail Class           | Warning        |
| 1796 Туре                 | High           |

(0.0 ... 100.0) (R0 ... R3) (R0 ... R3) (OFF / RUN / ON) (Warning / Trip / Trip+Stop / Shutdown) (Low / High)

High alarm = Alarm when the input closes

17.1.43 Configurable 4...20 mA input (optional)

These settings will only be visible when the Qc4001 module contains the optional extension card with 4 analogue inputs.

The reserved channels for these parameters are 1800 – 1856.

17.1.44 Run Status

All alarms can be:

- Disabled (OFF)
- Enabled all the time (ON)
- Enabled while the gen-set runs (RUN)

In case of 'enabled while gen-set runs' the alarms are monitored from when the generator is in running status.

| 1860 | Run Status          | SERVICE LEVEL |            |
|------|---------------------|---------------|------------|
|      | 1861 Delay          | 5.0s          | (0.0 60.0) |
|      | 1862 Output Relay A | R0            | (R0 R3)    |
|      | 1863 Output Relay B | R0            | (R0 R3)    |
|      | 1864 Enable         | OFF           | (OFF / ON) |

17.1.45 Remote Start/Stop (binary input 31)

This input will be dedicated for a remote start/stop command.

Closing a remote hard-wired switch, connected to this input, will start the gen-set and control its functions according the selected mode.

Opening of this switch will stop the gen-set according the selected mode.

This Remote Start/Stop can be used in Island Mode, in Fixed Power Mode and in Load Take Over Mode. It is active when the QC4001 is in "AUTO" mode and when all Real Time Clock Start/Stop Commands are disabled.

17.1.46 W/L (binary input 32)

This input will be dedicated for the charging feedback signal (W/L signal) of the charging alternator.

1870 W/I Input

| 70 | W/L Input |                | SERVICE LE | VEL          |
|----|-----------|----------------|------------|--------------|
|    | 1871      | Delay          | 3.0s       | (0.0 100.0)  |
|    | 1872      | Output Relay A | R0         | (R0 R3)      |
|    | 1873      | Enable         | RUN        | (OFF / ON)   |
|    | 1874      | Туре           | Low        | (Low / High) |

Low alarm = Alarm when the input opens

17.1.47 Disable Analogue Fuel Input (binary input 33)

This input will be dedicated for following purpose:

If the input is made high, the controller disables the analogue VDO fuel input. Then there will be no fuel level displayed, and all warnings, shutdowns or fuel pump actions will be disabled as well.

17.1.48 Static Charger (binary input 34)

This input will be dedicated for the static battery charger feedback signal. This will only be monitored if the bus/mains voltage is present.

| 1880                                     | Static Charger |                | SERVICE LEVEL |              |  |
|------------------------------------------|----------------|----------------|---------------|--------------|--|
|                                          | 1881           | Delay          | 10.0s         | (0.0 100.0)  |  |
|                                          | 1882           | Output Relay A | R0            | (R0 R3)      |  |
|                                          | 1883           | Enable         | ON            | (OFF / ON)   |  |
|                                          | 1884           | Туре           | High          | (Low / High) |  |
| High clorm - Alarm when the input closes |                |                |               |              |  |

High alarm = Alarm when the input closes

## 17.1.49 MDEC Run Signal

With a MDEC engine controller it is possible to connect an extra running signal from the engine controller to the Qc4001. This is default not connected and therefore disabled.

| MDEC Run Signal     | SERVICE LEVEL                                 |                                                                                    |
|---------------------|-----------------------------------------------|------------------------------------------------------------------------------------|
| 1891 Delay          | 10.0s                                         | (0.0 100.0)                                                                        |
| 1892 Output Relay A | R0                                            | (R0 R3)                                                                            |
| 1893 Output Relay B | R0                                            | (R0 R3)                                                                            |
| 1894 Enable         | OFF                                           | (OFF / ON)                                                                         |
|                     | 1891Delay1892Output Relay A1893Output Relay B | 1891   Delay   10.0s     1892   Output Relay A   R0     1893   Output Relay B   R0 |

## 17.2 Control setup

17.2.1 Synchronisation type

| 2010 | Sync. Type      | SERVICE LEVEL |                                |
|------|-----------------|---------------|--------------------------------|
|      | 2011 Sync. Type | Dynamic Sync. | (Dynamic Sync. / Static Sync.) |

If dynamic synchronisation is chosen, the next menu will be 2020. If static synchronisation is chosen, the next menu will be 2030.

### 17.2.2 Dynamic synchronisation

The setting of df max. and df min. decides whether the generator synchronises when running faster or slower than nominal frequency.

The "dU max." setting is related to nominal generator voltage. The "dU max." setting is +/- nominal generator voltage.

The Qc4001 module compensates for the breaker delay time when synchronising.

| 2020 | Dynamic Sync. |               | SERVICE LEVEL |            |
|------|---------------|---------------|---------------|------------|
|      | 2021          | Df max.       | 0.3Hz         | (0.0 0.5)  |
|      | 2022          | Df min.       | 0.0Hz         | (-0.5 0.3) |
|      | 2023          | DU max.       | 5%            | (2 10)     |
|      | 2024          | Breaker Delay | 75ms          | (40 300)   |

The synchronisation pulse is 400 ms.

#### 17.2.3 Static synchronisation

The phase gain and frequency gain are the control parameters used during static synchronisation. They both control the governor output.

The phase controller will keep the angle between the generator voltage and the busbar voltage within the closing window. The frequency controller will keep the generator frequency and the busbar frequency at the same value.

| 2030 | Static Sync.        | SERVICE LEVEL |             |
|------|---------------------|---------------|-------------|
|      | 2031 GB Close Time  | 1.0s          | (0.0 100.0) |
|      | 2032 Closing Window | 10.0 deg      | (0.1 20.0)  |
|      | 2033 Phase Gain     | 40            | (0 100)     |
|      | 2034 Frequency Gain | 40            | (0 100)     |

The synchronisation pulse is 400 ms.

## 17.2.4 Blackout closing of breaker

Settings are accepted limits (generator voltage and frequency) for closing the generator breaker. The "dU max." setting is related to nominal generator voltage.

| 2050 | Sync. Blackout |         | SERVICE LEVEL |           |
|------|----------------|---------|---------------|-----------|
|      | 2051           | Df max. | 3.0Hz         | (0.0 5.0) |
|      | 2052           | DU max. | 8%            | (2 10)    |

If blackout closing of breaker is enabled on more units, external precautions must be taken to avoid two or more generators closing on a black busbar. In that case synchronism will not be present.

17.2.5 Generator and mains breaker, general failure alarm

- Synchronisation time

- Phase sequence error

- Breaker ON/OFF feedback fail

Adjustable time delay channel 2061/2071 1 second fixed time delay 1 second fixed time delay

| 2060 | GB Sync | hr. Fail       | SERVICE LEVEL | _            |
|------|---------|----------------|---------------|--------------|
|      | 2061    | Delay          | 60.0s         | (30.0 300.0) |
|      | 2062    | Output Relay A | R0            | (R0 R3)      |
|      | 2063    | Output Relay B | R0            | (R0 R3)      |
|      |         |                |               |              |

| MB Sync | hr. Fail       | SERVICE LEVEL       | _                                                   |
|---------|----------------|---------------------|-----------------------------------------------------|
| 2071    | Delay          | 60.0s               | (30.0 300.0)                                        |
| 2072    | Output Relay A | R0                  | (R0 R3)                                             |
| 2073    | Output Relay B | R0                  | (R0 R3)                                             |
|         | 2071<br>2072   | 2072 Output Relay A | 2071   Delay   60.0s     2072   Output Relay A   R0 |

The general failure alarms cannot be disabled.

## 17.2.6 Frequency Controller

The Frequency KP and KI parameter are used for the speed settings on the genset. The proportional controller (Kp) will have the effect of reducing the rise time and will reduce ,but never eliminate the steady-state error. The integral control (Ki) will have the effect of eliminating the steady-state error. To have a quick and stable frequency both parameters needs to be adjusted and fine-tuned.

Frequency deadband % settings relate to nominal generator frequency.

| 2090 | Freq. Control     | CUSTOMER LEVEL |            |
|------|-------------------|----------------|------------|
|      | 2091 Deadband     | 0.2%           | (0.2 10.0) |
|      | 2092 Frequency KP | 35             | (0 1000)   |
|      | 2093 Frequency KI | 150            | (0 1000)   |

## 17.2.7 Power Controller

The Power KP and KI parameter are used for the power settings on the genset. The proportional controller (Kp) will have the effect of reducing the rise time and will reduce ,but never eliminate the steady-state error. The integral control (Ki) will have the effect of eliminating the steady-state error. To have a quick and stable power output both parameters needs to be adjusted and fine-tuned.

Power deadband % settings relate to nominal generator power.

| 2100 | Power Co | ontrol   | CUSTOMER LEVEL |            |
|------|----------|----------|----------------|------------|
|      | 2101     | Deadband | 0.2%           | (0.2 10.0) |
|      | 2102     | Power KP | 15             | (0 1000)   |
|      | 2103     | Power KI | 100            | (0 1000)   |

17.2.8 Power ramp up / Power ramp down

The delay point and time is the point where the generator stops ramping after closing of generator breaker to pre-heat the engine before commencing to take load. The time duration of the point is determined by the delay time setting. If the delay function is not needed, set the time to 0.

Power % settings relate to nominal generator power.

| 2110 | Power Ramp Up |             | CUSTOMER LEVEL |             |
|------|---------------|-------------|----------------|-------------|
|      | 2111          | Speed       | 10%/s          | (1.0 20.0)  |
|      | 2112          | Delay Point | 10%            | (1 100)     |
|      | 2113          | Delay Time  | 0.0s           | (0.0 180.0) |

## 17.2.9 Power ramp down

The breaker open point is where a relay output is activated to open the generator breaker before reaching 0 kW.

Power % settings relate to nominal generator power.

| 2120 | Power Ramp Down |              | CUSTOMER LEVEL |            |
|------|-----------------|--------------|----------------|------------|
|      | 2121            | Speed        | 10%/s          | (0.1 20.0) |
|      | 2122            | Breaker Open | 5%             | (1 20)     |

## 17.2.10 Voltage controller

The Voltage KP and KI parameter are used for the voltage settings on the genset. The proportional controller (Kp) will have the effect of reducing the rise time and will reduce ,but never eliminate the steady-state error. The integral control (Ki) will have the effect of eliminating the steady-state error. To have a quick and stable voltage parameters needs to be adjusted and fine-tuned.

The voltage controller is active when the generator is in island mode. Voltage deadband % settings relate to nominal generator voltage.

| 2140 | Voltage ( | Control  | CUSTOMER LEVEL | -           |
|------|-----------|----------|----------------|-------------|
|      | 2141      | Deadband | 0.2%           | (0.02 10.0) |
|      | 2142      | KP       | 200            | (0 1000)    |
|      | 2143      | KI       | 450            | (0 1000)    |

### 17.2.11 Var controller

The Var KP and KI parameter are used for the reactive power settings on the genset. The proportional controller (Kp) will have the effect of reducing the rise time and will reduce, but never eliminate., the steady-state error. The integral control (Ki) will have the effect of eliminating the steady-state error. To have a quick and stable reactive power both parameters needs to be adjusted and finetuned.

Frequency deadband % settings relate to nominal generator frequency. Var deadband % settings relate to nominal generator power value, i.e. it is assumed that the generator var value is the same as the kW value. This is not correct, but the assumption is made for control purposes only.

The var controller is active when the generator is parallel to mains controlling the PF.

CUSTOMED I EVEL

| 2150 | var Control |  |
|------|-------------|--|
|      |             |  |

| 130 |      |          |      | L          |
|-----|------|----------|------|------------|
|     | 2151 | Deadband | 0.2% | (0.0 10.0) |
|     | 2152 | KP       | 30   | (0 1000)   |
|     | 2153 | KI       | 150  | (0 1000)   |
|     |      |          |      |            |

#### 17.2.12 PF Control

The Power Factor deadband is put in percentage of the nominal PF setpoint for fixed power applications (parameter 3080). For fixed power application it can be necessary to change this deadband.

| 2170 | PF Control |          | COSTUMER LEVEL | _      |
|------|------------|----------|----------------|--------|
|      | 2171       | Deadband | 5%             | (0 10) |

## 17.2.13 Governor regulation failure

The alarm is activated if the difference between the measured value and the set-point is outside the deadband for longer than the timer set-point.

| 2180 | Gov. Reg. Failure   | SERVICE LEVEL |             |
|------|---------------------|---------------|-------------|
|      | 2181 Deadband       | 30.0%         | (1.0 100.0) |
|      | 2182 Timer          | 60.0s         | (10 300)    |
|      | 2183 Output Relay A | R0            | (R0 R3)     |
|      | 2184 Output Relay B | R0            | (R0 R3)     |

### 17.2.14 AVR regulation failure

The alarm is activated if the difference between the measured value and the set-point is outside the deadband for longer than the timer set-point.

| 2190 | AVR Reg. Failure    | SERVICE LEVEL |             |
|------|---------------------|---------------|-------------|
|      | 2191 Deadband       | 30.0%         | (1.0 100.0) |
|      | 2192 Timer          | 60.0s         | (10 300)    |
|      | 2193 Output Relay A | R0            | (R0 R3)     |
|      | 2194 Output Relay B | R0            | (R0 R3)     |

### 17.2.15 Breaker type

| 2200 | Breaker Type |         | CUSTOMER LEVEL |                      |
|------|--------------|---------|----------------|----------------------|
|      | 2201         | GB Туре | Pulse          | (Pulse / Continuous) |
|      | 2202         | МВ Туре | Pulse          | (Pulse / Continuous) |

If the selected type is 'pulse' then a closing pulse will be given for closing the breaker, and an opening pulse will be given to open the breaker.

When a contactor kit is used, then the selected type will be 'continuous'. Then a continuous signal will be given to the contactor when it needs to be closed, and the opening pulse output won't be used.

## 17.2.16 Static Synchronisation

With these parameters you can program the setpoint.

| 2210 | Static Sync.      | SERVICE LEVEL |            |
|------|-------------------|---------------|------------|
|      | 2211 Df max.      | 0.1Hz         | 0.0 0.25)  |
|      | 2212 DU max.      | 5%            | (2 10)     |
|      | 2213 Close Window | 10.0 deg      | (0.1 20.0) |
|      | 2214 KP           | 80            | (0 1000)   |
|      | 2215 KI           | 80            | (0 1000)   |
|      | 2216 Delay        | 1.0s          | (0.0 5.0)  |

## 17.3 Power setup. Peak shaving operation

## 17.3.1 Mains power (import power)

The mains power set point is the maximum imported power from the mains. If the load is higher than this set point, the mains will supply the load equal to the mains power set point and the gen-set will supply all additional loads.

It is possible to have two set points, daytime and nighttime set point. The purpose of this is to adapt the mains import to the different load conditions in different periods.

The Qc4001 needs a 4...20mA signal on terminal 98-99 from an optional Power Transducer, measuring the imported power from the mains. The calibration of the Power Transducer must be:

#### - 4 mA = 0.0 MW

- 20 mA = Transducer scale, set-point in channel 3013.

| 3010 | Mains Power           | CUSTOMER LEVEL |           |
|------|-----------------------|----------------|-----------|
|      | 3011 Day              | 5000kW         | (0 20000) |
|      | 3012 Night            | 5000kW         | (0 20000) |
|      | 3013 Transducer Scale | 5000kW         | (0 20000) |

#### 17.3.2 Daytime period

The start / stop time of the daytime period are adjusted with hours and minutes. The period outside the daytime period is defined as the night time period.

| 3020 | Daytime Period |              | CUSTOMER LEVEL |        |
|------|----------------|--------------|----------------|--------|
|      | 3021           | Start Hour   | 8              | (0 23) |
|      | 3022           | Start Minute | 0              | (0 59) |
|      | 3023           | Stop Hour    | 16             | (0 23) |
|      | 3024           | Stop Minute  | 0              | (0 59) |

#### 17.3.3 Start gen-set

The set point is used to start the gen-set. When the imported mains power exceeds the setpoint in channel 3031, the gen-set is started and synchronised to the busbar. The set-point in channel 3031 is referring to the mains power set-points in channel 3011 or 3012. The start generator minimum load point is the minimum loading of the gen-set. The mains will always supply the maximum possible power. The additional power will be supplied by the gen-set.

| 3030 | Start Generator   | CUSTOMER LEVEL |             |
|------|-------------------|----------------|-------------|
|      | 3031 Setpoint     | 80%            | (5 100)     |
|      | 3032 Delay        | 10.0s          | (0.0 990.0) |
|      | 3033 Minimum Load | 10             | (0 100)     |

Page 87 of 114 20-06-2007

## 17.3.4 Stop gen-set

This set-point is used to stop the gen-set. When the imported mains power decreases below the set point the stop sequence of the genset is commenced. The set point in channel 3041 refers to the mains power set points in channel 3011 or 3012.

| 3040 | Stop Generator |          | CUSTOMER LEVEL |             |
|------|----------------|----------|----------------|-------------|
|      | 3041           | Setpoint | 60%            | (0 80)      |
|      | 3042           | Delay    | 600.0s         | (0.0 990.0) |

## 17.3.5 Load Dependent Start

With the option PMS this is the setpoint for setting the maximum load step needed in the application. The setpoint will tell you the minimal load step that always will be available by the gensets.

The delay is the time before the next unit will be started.

The minimum load is the setpoint on which the generator wants to run minimally in a peak shaving application.

| 3050 | Load Dependent Start | CUSTOMER LEVEL |             |
|------|----------------------|----------------|-------------|
|      | 3051 Setpoint        | 50kW           | (0 20000)   |
|      | 3052 Delay           | 1.0s           | (0.0 990.0) |
|      | 3053 Minimum Load    | 20kW           | (0 20000)   |

## 17.3.6 Load Dependent Stop

With the option PMS the setpoint will give you the maximum power reserve before stopping the gensets

The delay is the time before the last genset will be stopped.

| 3060 | Load Depe | ndent Stop | CUSTOMER LEVEL |              |
|------|-----------|------------|----------------|--------------|
|      | 3061      | Setpoint   | 100kW          | (0 20000)    |
|      | 3062      | Delay      | 30.0s          | (5.0 9900.0) |

## 17.3.7 Test running

| 3070 | Te |
|------|----|
|      |    |

| ) | Test |          | CUSTOMER LEVEL |              |
|---|------|----------|----------------|--------------|
|   | 3071 | Setpoint | <b>50%</b>     | (1 100)      |
|   | 3072 | Delay    | 300.0s         | (30.0 990.0) |
|   | 3073 | Syncr.   | OFF            | (ON / OFF)   |

Test sequence:

When the TEST mode is selected, the gen-set is automatically started and synchronised with the mains. The sequence of the TEST is as follows:

- START sequence starts the gen-set
- Synchronise the generator breaker to the busbar (mains)
- Gen-set is loaded to the setting in channel 3071
- The parallel time expires and the generator is deloaded
- GB opens
- STOP sequence stops the gen-set

Pushing the TEST pushbutton on the display activates the test mode. The TEST mode can be used in peak shaving and AMF mode to check if the system is still functioning. After the test run the Qc4001 returns to AUTO mode.

If the setting 3073 (Syncr.) is OFF, the sequence of the test is as follows:

- START sequence starts the gen-set

- The test time expires and the STOP sequence stops the gen-set

17.3.8 Fixed power set-point (for active generator power and power factor)

The fixed power set points are used when the Qc4001 is configured to fixed power operation. The PF (power factor) set point is used when the generator is running parallel to mains.

| 3080 | Fixed Po | ower Setpoint | CUSTOMER LEVEL |             |
|------|----------|---------------|----------------|-------------|
|      | 3081     | P Setpoint    | 80%            | (0 100)     |
|      | 3082     | PF Setpoint   | 0.95           | (0.60 1.00) |

## 17.3.9 PMS Configuration

These are parameters that needs to be programmed if the option PMS is installed.

- The amount of generators that are installed in the application
- Activate the Qc4001 Mains controller in the application if needed.
- Activate the PMS in this Qc4001 controller.

## Warning:

By turning this parameter to ON in AUTO mode, the generator can start immediately. It is recommended to place the generator in SEMI-AUTO mode while programming the parameters !

- Program the Qc4001 command controller in the application. If one controller is set to ON the others will set automatically to OFF. Program the Qc4001 mains controller as command unit if possible. The command unit communicates the following parameters to the other connected units : start generator limit, start generator delay, stop generator limit, stop generator delay, command unit, start & stop command, timer values.
- Choose the way of starting up the application.

| 3100 | PMS Configuration         | CUSTOMER LEVEL |                          |
|------|---------------------------|----------------|--------------------------|
|      | 3101 # Gen-sets available | 1              | (1 16)                   |
|      | 3102 Mains available      | OFF            | (OFF / ON)               |
|      | 3103 PMS active           | OFF            | (OFF / ON)               |
|      | 3104 Command Unit         | ON             | (OFF / ON)               |
|      | 3105 Enable Start/Stop    | Local          | (Remote / Local / Timer) |

## 17.3.10 Internal Communication ID

Give every generator an individual ID. No duplicates are possible. Used only with the PMS option.

| 3110 | Internal Communication ID | CUSTOMER LEVEL |        |
|------|---------------------------|----------------|--------|
|      | 3111 Intern. Comm. ID     | 1              | (1 16) |

## 17.3.11 Priority Select

Choose the priority in starting up the gensets either manually by ID-numbers of by the actual running hours.

Used only with the PMS option.

| 3120 | Priority Select              | CUSTOMER LEVEL |                          |
|------|------------------------------|----------------|--------------------------|
|      | 3121 Priority Select         | Manual         | (Manual / Running Hours) |
| Ma   | nual = 0 / Running Hours = 1 |                | -                        |

## 17.3.12 Number of ID's

Enable or disable every genset and mains controller in the PMS application. By disabling an ID, the generator won't be started but instead the next in the starting and stopping sequence.

Used only with the PMS option.

| 3130 | Number of ID's |              | CUSTOMER LEVEL |  |  |            |
|------|----------------|--------------|----------------|--|--|------------|
|      | 3131           | Enable Mains | OFF            |  |  | (OFF / ON) |
|      | 3132           | Enable ID1   | ON             |  |  | (OFF / ON) |
|      | 3133           | Enable ID2   | OFF            |  |  | (OFF / ON) |
|      | 3134           | Enable ID3   | OFF            |  |  | (OFF / ON) |
|      | 3135           | Enable ID4   | OFF            |  |  | (OFF / ON) |
|      | 3136           | Enable ID5   | OFF            |  |  | (OFF / ON) |

| 3140 | Number of ID's |             | CUSTOMER LEVEL |  |  |            |
|------|----------------|-------------|----------------|--|--|------------|
|      | 3141           | Enable ID6  | OFF            |  |  | (OFF / ON) |
|      | 3142           | Enable ID7  | OFF            |  |  | (OFF / ON) |
|      | 3143           | Enable ID8  | OFF            |  |  | (OFF / ON) |
|      | 3144           | Enable ID9  | OFF            |  |  | (OFF / ON) |
|      | 3145           | Enable ID10 | OFF            |  |  | (OFF / ON) |
|      | 3146           | Enable ID11 | OFF            |  |  | (OFF / ON) |

3150 Number of ID's

#### CUSTOMER LEVEL

| ' ON) |
|-------|
| ' ON) |
| ' ON) |
| ' ON) |
| ' ON) |
| /     |

## 17.3.13 Priority of ID's

If manual priority (3120) is selected, the priority sequence needs to be programmed. Priority 1 means that the selected generator will be started first, then the generator with priority 2, etc.

Used only with the PMS option.

## 3160 Priority of ID's CUSTOMER LEVEL

| 3161 | Priority ID1 | 1   |
|------|--------------|-----|
| 3162 | Priority ID2 | 2   |
| 3163 | Priority ID3 | 3   |
| 3164 | Priority ID4 | 4   |
| 3165 | Priority ID5 | 5   |
| 3166 | Transmit     | OFF |

(1 ... #Gen-sets Available)(1 ... #Gen-sets Available)(1 ... #Gen-sets Available)

(1 ... #Gen-sets Available)

(1 ... #Gen-sets Available) (OFF / ON)

#### 3170 Priority of ID's

| Priority of ID's   | CUSTOMER LEVEL |                         |
|--------------------|----------------|-------------------------|
| 3171 Priority ID6  | 6              | (1 #Gen-sets Available) |
| 3172 Priority ID7  | 7              | (1 #Gen-sets Available) |
| 3173 Priority ID8  | 8              | (1 #Gen-sets Available) |
| 3174 Priority ID9  | 9              | (1 #Gen-sets Available) |
| 3175 Priority ID10 | 10             | (1 #Gen-sets Available) |
| 3176 Priority ID11 | 11             | (1 #Gen-sets Available) |

| f ID's        | CUSTOMER LEVEL |         |
|---------------|----------------|---------|
| Priority ID12 | 12             | (1 #Gen |
| Priority ID13 | 13             | (1 #Gen |
| Priority ID14 | 14             | (1 #Gen |
| Priority ID15 | 15             | (1 #Gen |
|               | 4.4            |         |

#### 3180 Priority of

| 3181 | Priority ID12 | 12 |  |
|------|---------------|----|--|
| 3182 | Priority ID13 | 13 |  |
| 3183 | Priority ID14 | 14 |  |
| 3184 | Priority ID15 | 15 |  |
| 3185 | Priority ID16 | 16 |  |

n-sets Available) n-sets Available)

n-sets Available)

n-sets Available)

(1 ... #Gen-sets Available)

### 17.3.14 Running hours

If running hours priority (3120) is selected, this parameter will become available. The costumer can set the delay before running hours between the generators will be checked on which the priority is based on.

Used only with the PMS option.

| 3220 | Running hours |       | COSTUMER LEVEL |          |
|------|---------------|-------|----------------|----------|
|      | 3221          | Hours | 175            | (120000) |

## 17.3.15 Ground Relay

In some special multi-genset PMS applications it is necessary to connect only 1 Neutral at a time to the load. These relay outputs can be connected to the separate Neutral breaker for getting only 1 Neutral closed. This will be based on the priorities between the genset, the open&close signal of the GB and the running feedback of the gensets.

| 3230 | Ground Relay        | COSTUMER LEVEL |            |
|------|---------------------|----------------|------------|
|      | 3231 Output Relay A | R0             | (R0 R3)    |
|      | 3232 Output Relay B | R0             | (R0 R3)    |
|      | 3233 Enable         | OFF            | (OFF / ON) |

## 17.3.16 Stop Noncon. Gen-sets

Extra safety delay time to stop the generator when through PMS a stop command is given but after a certain amount of time the genset does not stop. Used only with the PMS option.

3240 Stop Noncon. Gen-sets COSTUMER LEVEL (10.0 ... 600.0) 3241 Delav 60.0s

## 17.3.17 Power Capacity

This parameter will only be available on the Qc4001 mains control unit and is used for programming the power capacity that is needed on the generator side before switching over. With a setpoint that is higher than the total available power capacity by the gensets, the Mains controller will not close the tie-breaker. Used only with the PMS option.

3250Power CapacityCOSTUMER LEVEL3251Power Capacity50kW(0 ... 20000)

### 17.3.18 Tie breaker

This parameter will only be available on the Qc4001 mains control unit and is used for enabling the tie breaker.

Used only with the PMS option.

| 3260 | Tie breaker |             | COSTUMER LEVEL | _          |
|------|-------------|-------------|----------------|------------|
|      | 3261        | Tie breaker | OFF            | (OFF / ON) |

### 17.4 System setup

In the system setup it is possible to set up the Qc4001 with the specific parameters for application, engine and generator.

## 17.4.1 Nominal settings (1<sup>st</sup> / 2<sup>nd</sup> / 3<sup>th</sup> / 4<sup>th</sup> Parameter Set)

The 1<sup>st</sup> parameter set is used as standard.

Depending on the input that is activated the other parameter sets will be used. On the QAC genn-sets 2 parameter sets will be used: the 1th set for 50Hz operation and the 2th set for 60Hz operation. The input is activated by the 50/60Hz switch on the cubicle.

| 4010 | Nominal Settings<br>4011 Frequency |                   | SERVICE LEVEL | _           |
|------|------------------------------------|-------------------|---------------|-------------|
|      | 4011                               | Frequency         | 50Hz          | (48.0 62.0) |
|      | 4012                               | Generator Power   | 720kW         | (10 20000)  |
|      | 4013                               | Generator Current | 1300A         | (0 9000)    |
|      | 4014                               | Generator Voltage | 400V          | (100 25000) |
|      |                                    |                   |               |             |

| 4020 | Nominal | Settings 2        | SERVICE LEVEL |             |
|------|---------|-------------------|---------------|-------------|
|      | 4021    | Frequency         | 60Hz          | (48.0 62.0) |
|      | 4022    | Generator Power   | 810kW         | (10 20000)  |
|      | 4023    | Generator Current | 1217A         | (0 9000)    |
|      | 4024    | Generator Voltage | 480V          | (100 25000) |

| 4030                   | Nominal Settings 3   |                   | SERVICE LEVEL | _           |
|------------------------|----------------------|-------------------|---------------|-------------|
|                        | 4031 Frequency       |                   | 50Hz          | (48.0 62.0) |
|                        | 4032 Generator Power |                   | 720kW         | (10 20000)  |
| 4033 Generator Current |                      | Generator Current | 1300A         | (0 9000)    |
| 4034 Generator Voltage |                      | Generator Voltage | 400V          | (100 25000) |
|                        |                      |                   |               |             |
| 4040                   | Nominal Se           | ettings 4         | SERVICE LEVEL | _           |
|                        | 4041                 | Frequency         | 50Hz          | (48.0 62.0) |
|                        | 4042                 | Generator Power   | 720kW         | (10 20000)  |
|                        | 4043                 | Generator Current | 1300A         | (0 9000)    |
|                        | 4044                 | Generator Voltage | 400V          | (100 25000) |

17.4.2 Transformer generator (for generator voltage measuring)

Voltage transformer: If no voltage transformer is present, the primary and secondary side values are set to generator nominal value.

| 4050 | Transfo | rmer Gen.     | SERVICE LEVEL |             |
|------|---------|---------------|---------------|-------------|
|      | 4051    | Volt. Prim.   | 440V          | (100 25000) |
|      | 4052    | Volt. Sec.    | 440V          | (100 690)   |
|      | 4053    | Current Prim. | 1600A         | (5 9000)    |
|      | 4054    | Current Sec.  | 5A            | (1 / 5)     |

17.4.3 Transformer busbar (for busbar voltage measuring)

Voltage transformer: If no voltage transformer is present, the primary and secondary side values are set to generator nominal value.

| 4060 | Transformer Bus |             | SERVICE LEVEL |             |
|------|-----------------|-------------|---------------|-------------|
|      | 4061            | Volt. Prim. | 440V          | (100 25000) |
|      | 4062            | Volt. Sec.  | 440V          | (100 690)   |

## 17.4.4 External communication control (optional)

These setpoints will only be visible when an optional external communication extension card is mounted. The channels 4070-4094 are foreseen. The Baud rate can only be changed with Modbus communication.

## 17.4.5 Engine communication

| 4100  | Engine Comn   | ıs.         | SERVICE LEVEL          | <u>_</u>                         |
|-------|---------------|-------------|------------------------|----------------------------------|
|       | 4101          | Туре        | DDEC                   | (OFF / MDEC / DDEC / EMR / JDEC) |
| 0 = 0 | OFF / 1 = MDI | EC / 2 = DD | EC / 3 = EMR / 5 = JDE | EC                               |

## NOTE: Selecting communication control ON will overrule external and internal settings.

## 17.4.6 Date and time (internal clock) setting

| 4110 | Date and Time | e (internal clock) | CUSTOMER LEVEL | _   |
|------|---------------|--------------------|----------------|-----|
|      | 4110          | Date               | dd/mm/yyyy     | ( ) |
|      | 4110          | Time               | Hh:mm          | ( ) |

17.4.7 Measuring of generator running time and circuit breaker operations

The function 'running time' counts the hours the generator has been running (voltage on generator present).

The function 'GB operations' counts how many times the generator breaker has been closed.

The function 'MB operations' counts how many times the mains breaker has been closed.

The counters can be reset/set.

## 4120 Counters

| Counters           | MASTER LEVEL |           |
|--------------------|--------------|-----------|
| 4121 Running Time  | 0            | (0 20000) |
| 4122 GB Operations | 0            | (0 20000) |
| 4123 MB Operations | 0            | (0 20000) |
| 4124 Reset kWh     | OFF          |           |

### 17.4.8 Battery undervoltage / overvoltage alarm

| 4220 | Battery Low   |                | SERVICE LEVEL |             |
|------|---------------|----------------|---------------|-------------|
|      | 4221 Setpoint |                | 18.0V         | (6.0 36.0)  |
|      | 4222 Delay    |                | 3.0s          | (0.0 999.0) |
|      | 4223          | Output Relay A | R0            | (R0 R3)     |
|      | 4224          | Output Relay B | R0            | (R0 R3)     |
|      | 4225          | Enable         | ON            | (ON / OFF)  |

| 4230 | Battery High        |                | SERVICE LEVEL | _           |
|------|---------------------|----------------|---------------|-------------|
|      | 4231 Setpoint       |                | 30.0V         | (12.0 36.0) |
|      | 4232 Delay          |                | 0.5s          | (0.0 999.0) |
|      | 4233 Output Relay A |                | R0            | (R0 R3)     |
|      | 4234                | Output Relay B | R0            | (R0 R3)     |
|      | 4235                | Enable         | ON            | (ON / OFF)  |

## 17.4.9 Language

| 4240 | Language      | 9               | CUSTOMER LEVEL               |                                     |
|------|---------------|-----------------|------------------------------|-------------------------------------|
|      | 4241          | Language        | English                      | (GB/NL/F/D/E/I/DK/S/N/SF/P)         |
| 0 :  | = Master /    | 1 = English / 2 | 2 = Danish / 3 = Dutch / 4 = | Finnish / 5 = French / 6 = German / |
| 7 :  | = Italian / 8 | 3 = Norwegian   | / 9 = Portuguese / 10 = Sp   | anish / 11 = Swedish                |

## 17.4.10 Loadshare output

This function enables the user to set the voltage level of the active power loadshare line. This is only possible if the loadshare type Pow-R-Con is chosen (channel 4250).

| 4250 | Loadshare Out      | CUSTOMER LEVEL |           |
|------|--------------------|----------------|-----------|
|      | 4251 Loadshare Out | 5.0V           | (1.0 5.0) |

### 17.4.11 Loadshare type

This function enables the user to set the type of active power loadshare.

| 4260 | Loadshare Type               | CUSTOMER LEVEL |                              |
|------|------------------------------|----------------|------------------------------|
|      | 4261 Loadshare Type          | Qc4001         | (Qc4001 / Selco / Pow-R-Con) |
| 0    | = Qc4001 / 1 = Selco T4800 / | 2 = Pow-R-Con  |                              |

## 17.4.12 Battery undervoltag / overvoltage alarm 2

| 4270 | Battery Low 2 |                | COSTUMER LEVEL |             |
|------|---------------|----------------|----------------|-------------|
|      | 4271          | Setpoint       | N/A            | (6.0 36.0)  |
|      | 4272          | Delay          | 10.0s          | (0.0 999.0) |
|      | 4273          | Output Relay A | R0             | (R0 R3)     |
|      | 4274          | Output Relay B | R0             | (R0 R3)     |
|      | 4275          | Enable         | OFF            | (ON / OFF)  |

| 4270 | Battery High 2 |                | COSTUMER LEVEL |             |
|------|----------------|----------------|----------------|-------------|
|      | 4281           | Setpoint       | N/A            | (6.0 36.0)  |
|      | 4282           | Delay          | 0.5s           | (0.0 999.0) |
|      | 4283           | Output Relay A | R0             | (R0 R3)     |
|      | 4284           | Output Relay B | R0             | (R0 R3)     |
|      | 4285           | Enable         | OFF            | (ON / OFF)  |

## 17.4.13 Mode Relay

This function can be used to activate a relay in different modes.

| Mode Relay | 1            | COSTUMER LEVEL |                                       |
|------------|--------------|----------------|---------------------------------------|
| 4291       | Test         | R0             | (R0 R3)                               |
| 4292       | Auto         | R0             | (R0 R3)                               |
| 4293       | Semi         | R0             | (R0 R3)                               |
|            | 4291<br>4292 | 4292 Auto      | 4291   Test   R0     4292   Auto   R0 |

### 17.4.14 Engine type

| 4300 | Engine Type        | MASTER LEVEL |                |  |
|------|--------------------|--------------|----------------|--|
|      | 4301 Engine Type   | Diesel       | (Diesel / Gas) |  |
| 0 :  | = Diesel / 1 = Gas |              | -              |  |

#### 17.4.15 Gen-set modes

| 4320 | Gen-Set Mode                  | CUSTOMER LEVEL                  |                                      |
|------|-------------------------------|---------------------------------|--------------------------------------|
|      | 4321 Gen-Set Mode             | Island                          | (Island / AMF / PS / FP / LTO / PMS) |
| 0 =  | = Island / 1 = AMF / 2 = Peal | Shaving / 3 = Fixed Power / 4 = | Load Take Over /                     |
| 5 =  | Power Management System       | m                               |                                      |

### 17.4.16 CAN Unit

This parameter can be used to change the read-outs on the display.

| 4320 | CAN Unit    |                       | CUSTOMER LEVEL |                               |
|------|-------------|-----------------------|----------------|-------------------------------|
|      | 4331        | CAN Unit              | bar-celsius    | (bar-celsius / psi-farenheit) |
| 0 =  | = bar-celsi | us / 1 = psi-farenhei | t              |                               |

## 17.4.17 Tacho configuration

| 4350 | Tacho Config. |          | SERVICE LEVEL |          |
|------|---------------|----------|---------------|----------|
|      | 4351          | Setpoint | 500rpm        | (1 2000) |
|      | 4352          | Teeth    | 0             | (0 500)  |

The tacho input (=magnetic speed pick-up) must be configured to 0 teeth when not in use.

## 17.4.18 Start sequency of the engine

| 4360 | Starter             | COSTUMER LEVEL |                    |
|------|---------------------|----------------|--------------------|
|      | 4361 Start Prepare  | 1.0s           | (0.0 600.0)        |
|      | 4362 Start ON Time  | 12.0s          | (1.0 30.0)         |
|      | 4363 Start OFF Time | 12.0s          | (1.0 99.0)         |
|      | 4364 Prepare        | Normal         | (Normal/ Extended) |
| 4370 | Start Attempts      | SERVICE LEVEL  |                    |
|      | 4371 Attempts       | 3              | (1 10)             |
|      | 4372 Output Relay A | R0             | (R0 R3)            |
|      | 4373 Output Relay B | R0             | (R0 R3)            |

The settings "start prepare", "start ON time" and "start OFF time" are the periods that the relays on the engine interface card slot #7 are activated.

The start prepare output can for example be used for prelubricating or preheating. The start relay output is for activating the starter of the engine and the stop relay output is for activating the engine.

The amount of start attempts can be defined.

The start sequence is interrupted in the following situations:

- Running feedback from the engine
- Voltage is present at the generator
- STOP signal, e.g. by STOP pushbutton in SEMI-AUTO
- Shutdown alarm

The interruption deactivates the start relay, and a start failure alarm is displayed.

## 17.4.19 GB ON / GB OFF sequence

The GB ON sequence will synchronise and/or close the generator breaker. The breaker is closed directly without synchronising if the mains breaker is open or if no mains breaker is present (island mode), this means if the voltage on the busbar/mains is not present. The GB ON sequence is automatically initiated (except in SEMI-AUTO mode) when the automatic start sequence has been completed and the engine is running. In SEMI-AUTO mode the operator may initiate the GB ON sequence by pressing the "GB" pushbutton on the display.

Conditions, which must be fulfilled before a GB ON signal is activated:

- Running feedback from the engine (channel 4351, tacho configuration set-point or running feedback input).
- The frequency and voltage has been present in the time "f/U OK" (channel 4381).

This will initiate synchronising and/or closing of the generator breaker.

| 4380 | f/U OK      |                | SERVICE LEVEL |            |
|------|-------------|----------------|---------------|------------|
|      | 4381        | Delay          | 3.0s          | (1.0 99.0) |
|      |             |                |               |            |
| 4390 | f/U failure | 9              | SERVICE LEVEL |            |
|      | 4391        | Delay          | 30.0s         | (1.0 99.0) |
|      | 4392        | Output Relay A | R0            | (R0 R3)    |
|      | 4393        | Output Relay B | R0            | (R0 R3)    |
|      | -           |                |               |            |

The GB ON sequence is interrupted when:

- Synchronisation alarm
- GB ON alarm
- GB pushbutton pressed in SEMI-AUTO mode
- f/U failure

The GB OFF sequence is automatically initiated (except in SEMI-AUTO mode) when the generator has to be stopped. In AMF operation this is when the mains returns and the mains breaker is synchronised, and in PEAK SHAVING and LOAD TAKE OVER operation this is when the load is to be supplied by the mains only.

In SEMI-AUTO mode the operator may initiate the GB OFF sequence by pressing the "GB" pushbutton on the display.

Sequence (if parallel with mains):

- De-load the generator
- Open the breaker at a configurable setpoint (channel 2122)

Sequence (if island mode):

- Open the breaker immediately

The GB OFF sequence is interrupted when:

- A DELOAD alarm
- A GB OFFalarm
- GB pushbutton is pressed in SEMI-AUTO mode

17.4.20 MB ON / MB OFF sequence

The MB ON sequence will synchronise and/or close the mains breaker.

In AUTO mode the MB ON sequence is automatically initiated if the Qc4001 is in AMF operation and the mains returns after a mains failure. In peak shaving mode the MB ON sequence is automatically initiated when the mains is OK.

If the generator breaker is open and the mains is present, the MB will be closed immediately in AUTO mode.

In SEMI-AUTO mode the operator may initiate the MB ON sequence by pressing the "MB" pushbutton on the display. Pressing the MB pushbutton in SEMI-AUTO will close the MB immediately, if the GB is open and the mains is present.

Conditions that must be fulfilled before a MB ON signal is activated:

- No active MB alarms
- Mains OK

This will initiate synchronising and/or closing of the mains breaker.

Interruption of the MB ON sequence:

- Mains failure alarm
- MB ON alarm
- MB OFF pushbutton in SEMI-AUTO.

The MB OFF sequence is automatically initiated (except in SEMI-AUTO mode). In SEMI-AUTO mode the operator may initiate the MB OFF sequence by pressing the "MB" pushbutton on the display.

Sequence: AUTO (mains failure)

- Mains not present
- Open the mains breaker

Sequence: SEMI-AUTO (gen-set parallel with mains)

- MB pushbutton is pressed
- Open the mains breaker

Sequence: SEMI-AUTO (gen-set stopped, the mains supplies the load)

- MB OFF pushbutton pressed
- Open the mains breaker

Interruption of the MB OFF sequence:

- MB OFF alarm
- Pressing the MB pushbutton in SEMI-AUTO operation

17.4.21 Stop sequence

Stop sequence:

- Programmable cooling down time
- "STOP" output with programmable extended stop time

The stop sequence is carried out when the Qc4001 has completed the GB OFF sequence and the generator breaker is open.

In AUTO mode the stop sequence is initiated automatically. In SEMI-AUTO mode a stop command with the "STOP" pushbutton will stop the engine without cooling down. If the generator is running with the generator breaker closed and the "STOP" pushbutton is pressed, the generator is opened without deloading, and the engine is stopped without cooling down.

A start command will interrupt an ongoing cool down period and leave the engine in idle speed. A GB ON signal will synchronise and close the breaker.

A stop failure is displayed if the running feedback signal or the generator voltage and frequency are still present.

If the coil type is configured as 'running coil', the stop coil will be energized during starting and running and de-energized during stopping.

**STOP** parameters

| 4400 | Stop    |                      | SERVI | CE LEVEL  |              |
|------|---------|----------------------|-------|-----------|--------------|
|      | 440     | 1 Cool Down Time     | 60.0s |           | (0.0 990.0)  |
|      | 4402    | 2 Extended Stop      | 15.0s |           | (1.0 99.0)   |
|      | 4403    | 3 Coil Type          | RUN   |           | (RUN / STOP) |
| 0    | = Run ( | Coil / 1 = Stop Coil |       |           |              |
| 4410 | Stop Fa | ilure                | SERV  | ICE LEVEL |              |
|      | 4411    | Delay                | 20.0s |           | (10.0 120.0) |
|      | 4412    | Output Relay A       | R0    |           | (R0 R3)      |
|      | 4413    | Output Relay B       | R0    |           | (R0 R3)      |
|      |         |                      |       |           |              |

Mains failure:

Automatic mains failure is detected when the Qc4001 is in AUTO mode and configured as an AMF unit. When the timer "FAIL DELAY" expires the following sequence is carried out: - MB is opened

- Start sequence is initiated
- GB is closed

In case of MB open fail the sequence is stopped and an "MB OPEN FAILURE" alarm is displayed.

When the mains returns the change-over sequence is started. The sequence is started when the timer "MAINS OK DELAY" expires:

- MB is synchronised
- GB is de-loaded (if parallel running is allowed)
- GB is opened
- Stop sequence is initiated

In case of a sequence alarm the sequence will be stopped. If GB OFF fail and parallel running is not allowed, then the MB is opened.

| 4420 | Mains V Failure               | CUSTOMER LEVEL |                         |
|------|-------------------------------|----------------|-------------------------|
|      | 4421 Fail Delay               | 1.0s           | (1.0 990.0)             |
|      | 4422 Mains OK Delay           | 60.0s          | (10.0 990.0)            |
|      | 4423 Low Voltage              | 75%            | (50 100)                |
|      | 4424 High Voltage             | 120%           | (100 150)               |
|      | 4425 Mains Fail Control       | Start+Open MB  | (Start / Start+Open MB) |
|      | 0 = Start+Open MB / 1 = Start |                |                         |
| 4430 | Mains Hz Failure              | CUSTOMER LEVEL |                         |
|      | 4431 Fail Delay               | 1.0s           | (1.0 990.0)             |
|      | 4432 Mains OK Delay           | 60.0s          | (10.0 990.0)            |
|      | 4433 Low Frequency            | 95%            | (80 100)                |
|      | 4434 High Frequency           | 105%           | (100 120)               |

## 17.4.22 MB Control

| 4440 | MB Cont | rol           | SERVICE LEVEL  |                                    |
|------|---------|---------------|----------------|------------------------------------|
|      | 4441    | Function      | Mode Shift OFF | (MS OFF / PS-AMF-PS / LTO-AMF-LTO) |
|      | 4442    | Timer         | 0.5s           | (0.0 30.0)                         |
|      | 4443    | Back Sync.    | OFF            | (ON / OFF)                         |
|      | 4444    | Synchr. Timer | 75ms           | (40 3000)                          |

Description of Mode Shift:

In case of Peak Shaving, Fixed Power and Load Take Over mode, it is possible to enable the AMF function as a second application, next to the chosen mode.

If then a mains failure occurs, the unit changes to AMF operation and finally it returns to the chosen mode when the mains supply is restored.

## 17.4.23 Horn timeout

| 4450 | Alarm Horn |       | CUSTOMER LEVEL |             |
|------|------------|-------|----------------|-------------|
|      | 4451       | Delay | 20.0s          | (0.0 990.0) |

The setting is the maximum time the horn is sounding at an alarm. If the setting is adjusted to 0 s, the horn will sound continuously until the alarm is acknowledged.

## 17.4.24 GB Control

| 4460 | GB Control          | CUSTOMER LEVEL |            |
|------|---------------------|----------------|------------|
|      | 4461 GB Close Delay | 1.0s           | (0.0 30.0) |

17.4.25 Analogue output configuration (optional)

The analogue output option consists of two independent 0/4...20mA outputs. The related setpoints will only be shown when this analogue output extension card is mounted.

## 17.4.26 Relay Setup

The relays can be configured in the 2 different ways described below.

Alarm Relay Function:When an alarm activates the relay, it is activated as long as<br/>the alarm is present and unacknowledged.Limit Function:When an alarm activates the relay, no alarm message is<br/>displayed. After that the condition which activates this relay<br/>has returned to normal, the relay will deactivate after the<br/>'Off Delay' has expired.

| 4610 | Relay 1 |           | SERVICE LEVEL |                 |
|------|---------|-----------|---------------|-----------------|
|      | 4611    | Function  | Alarm         | (Limit / Alarm) |
|      | 4612    | Off Delay | 0.0s          | (0.0 999.9)     |
|      |         |           |               |                 |
| 4620 | Relay 2 |           | SERVICE LEVEL |                 |
|      | 4621    | Function  | Alarm         | (Limit / Alarm) |
|      | 4622    | Off Delay | 0.0s          | (0.0 999.9)     |
|      |         |           |               |                 |
| 4630 | Relay 3 |           | SERVICE LEVEL |                 |
|      | 4631    | Function  | Alarm         | (Limit / Alarm) |
|      | 4632    | Off Delay | 0.0s          | (0.0 999.9)     |
|      |         |           |               |                 |
| 4640 | Relay 4 |           | SERVICE LEVEL |                 |
|      | 4641    | Function  | Alarm         | (Limit / Alarm) |
|      | 4642    | Off Delay | 0.0s          | (0.0 999.9)     |

17.4.27 Relay Setup (optional)

These setpoints will only be shown when the optional output relay extension card is mounted in the Qc4001. The channels 4650-4682 are foreseen.

17.4.28 Real Time Clock Start & Stop commands

Up to 8 start/stop commands can be programmed on a weekly base.

These commands, if enabled, can be used when the Qc4001 is in AUTO-mode in following applications:

- Island Mode
- Fixed Power Mode
- Load Take Over Mode

If a Start command is enabled, then a Stop command should be enabled as well. Else the genset will keep on running.

For example: in channel 4710 a Start command can be defined on Monday 10h00, and in channel 4720 a Stop command can be defined on Tuesday 14h00.

Following days or groups of days can be selected:

| Setting      |    |  |  |  |
|--------------|----|--|--|--|
| MO           | 0  |  |  |  |
| TU           | 1  |  |  |  |
| WE           | 2  |  |  |  |
| TH           | 3  |  |  |  |
| FR           | 4  |  |  |  |
| SA           | 5  |  |  |  |
| SU           | 6  |  |  |  |
| MO-TU-WE-TH  | 7  |  |  |  |
| MO-TU-WE-TH- |    |  |  |  |
| FR           | 8  |  |  |  |
| SA-SU        | 9  |  |  |  |
| MO-TU-WE-TH- |    |  |  |  |
| FR -SA-SU    | 10 |  |  |  |

4710 Start/Stop Cmd. 1

#### CUSTOMER LEVEL

| 4711 | Enable     | OFF  | (0)  |
|------|------------|------|------|
| 4712 | START/STOP | STOP | (ST  |
| 4713 | Day(s)     | 10   | (0 / |
| 4714 | Hour       | 10   | (0.  |
| 4715 | Minute     | 0    | (0.  |
|      |            |      |      |

(ON / OFF) (START / STOP) (0 / 1 / 2 / 3 / 4 / 5 / 6 / 7 / 8 / 9 / 10) (0 ... 23) (0 ... 59)

4720 Start/Stop Cmd. 2

CUSTOMER LEVEL

| 4721 | Enable     | OFF  | (0 |
|------|------------|------|----|
| 4722 | START/STOP | STOP | (S |
| 4723 | Day(s)     | 11   | (0 |
| 4724 | Hour       | 10   | (0 |
| 4725 | Minute     | 0    | (0 |

ON / OFF) START / STOP) 0 / 1 / 2 / 3 / 4 / 5 / 6 / 7 / 8 / 9 / 10) 0 ... 23) 0 ... 59)

#### 4730 Start/Stop Cmd. 3

4740

#### CUSTOMER LEVEL

| 4731 | Enable     | OFF  |  |
|------|------------|------|--|
| 4732 | START/STOP | STOP |  |
| 4733 | Day(s)     | 11   |  |
| 4734 | Hour       | 10   |  |
| 4735 | Minute     | 0    |  |

(ON / OFF) (START / STOP) (0 / 1 / 2 / 3 / 4 / 5 / 6 / 7 / 8 / 9 / 10) (0 ... 23) (0 ... 59)

#### Start/Stop Cmd. 4 CUSTOMER LEVEL

| OFF  | (0)  |
|------|------|
| STOP | (S7  |
| 11   | (0 / |
| 10   | (0.  |
| 0    | (0.  |

ON/OFF) START/STOP) D/1 /2/3/4/5/6/7/8/9/10) D.... 23) D.... 59)

#### 4750 Start/Stop Cmd. 5

| 4751 | Enable     | OFF  | (( |
|------|------------|------|----|
| 4752 | START/STOP | STOP | (5 |
| 4753 | Day(s)     | 11   | (0 |
| 4754 | Hour       | 10   | (0 |
| 4755 | Minute     | 0    | (0 |

′ON / OFF) ′START / STOP) ′0 / 1 / 2 / 3 / 4 / 5 / 6 / 7 / 8 / 9 / 10) ′0 ... 23) ′0 ... 59)

#### 4760 Start/Stop Cmd. 6 C

#### **CUSTOMER LEVEL**

**CUSTOMER LEVEL** 

| 4761 | Enable     | OFF  |  |
|------|------------|------|--|
| 4762 | START/STOP | STOP |  |
| 4763 | Day(s)     | 11   |  |
| 4764 | Hour       | 10   |  |
| 4765 | Minute     | 0    |  |
|      |            |      |  |

(ON / OFF) (START / STOP) (0 / 1 / 2 / 3 / 4 / 5 / 6 / 7 / 8 / 9 / 10) (0 ... 23) (0 ... 59)

#### 4770 Start/Stop Cmd. 7

#### CUSTOMER LEVEL

| 4771 | Enable     | OFF  | (ON  |
|------|------------|------|------|
| 4772 | START/STOP | STOP | (ST  |
| 4773 | Day(s)     | 11   | (0 / |
| 4774 | Hour       | 10   | (0   |
| 4775 | Minute     | 0    | (0   |
|      |            |      |      |

′ON / OFF) ′START / STOP) ′0 / 1 / 2 / 3 / 4 / 5 / 6 / 7 / 8 / 9 / 10) ′0 ... 23) ′0 ... 59)

#### 4780 Start/Stop Cmd. 8

#### CUSTOMER LEVEL

|   | 4781        | Enable     | OFF  |  |
|---|-------------|------------|------|--|
|   | 4782        | START/STOP | STOP |  |
|   | 4783        | Day(s)     | 11   |  |
|   | 4784        | Hour       | 10   |  |
|   | 4785        | Minute     | 0    |  |
| _ | Stort / 1 - | - Stop     |      |  |

(ON / OFF) (START / STOP) (0 / 1 / 2 / 3 / 4 / 5 / 6 / 7 / 8 / 9 / 10) (0 ... 23) (0 ... 59)

0 = Start / 1 = Stop

### 17.4.29 GSM Pin Code

| 4790 | GSM Pin | Code     | COSTUMER LEVEL |          |
|------|---------|----------|----------------|----------|
|      | 4791    | Pin code | 0000           | (0 9999) |

## 17.4.30 Service Time

Two maintenance intervals can be monitored.

Both monitor the running hours (with a counter) and the elapsed time (with a timer) since the last service. The first parameter (counter or timer) that reaches its defined limit, will give a maintenance warning to the user.

For example on a QIX gen-set the maintenance interval is 500 running hours or 1 year, whichever comes first.

For each of the two intervals, if either the setted running hours or the setted elapsed time is reached, an alarm will be given.

Each interval can be reset by enabling the reset function. Then the respectively counter and timer will be put to 0.

The Service Timer menus can only be entered using the "JUMP" pushbutton.

| 4910 | 910 Service Timer 1 |                | SERVICE LEVEL |                                         |
|------|---------------------|----------------|---------------|-----------------------------------------|
|      | 4911                | Enable         | ON            | (ON / OFF)                              |
|      | 4912                | Run Hours      | 500h          | (10 10000)                              |
|      | 4913                | Elapsed Time   | 365 days      | (1 1000)                                |
|      | 4914                | Fail Class     | Warning       | (Warning / Trip / Trip+Stop / Shutdown) |
|      | 4915                | Output Relay A | R0            | (R0 R3)                                 |
|      | 4916                | Reset          |               |                                         |

#### 4920 Service Timer 2

SERVICE LEVEL 4921 Enable ON 4922 Run Hours 1000h 4923 Elapsed Time 365 days 4924 Fail Class Warning **Output Relay A** R0 4925 4926 Reset

(ON / OFF) (10 ... 10000) (1 ... 1000) (Warning / Trip / Trip+Stop / Shutdown) (R0 ... R3)

## 17.4.31 Diagnostic Mode

| 4930 | Diagnos  | tics Mode       | CUSTOMER LEVEL |                        |
|------|----------|-----------------|----------------|------------------------|
|      | 4930     | Diagnostics     | Normal         | (Normal / Diagnostics) |
| 0 =  | Normal / | 1 = Diagnostics |                |                        |

#### 17.4.32 User passwords

| 4940 | <b>Reset Event</b> | log   | MASTER LEVEL |            |
|------|--------------------|-------|--------------|------------|
|      | 4940               | Reset | OFF          | (ON / OFF) |

## 17.4.33 User passwords

Only the level 1 (customer level) password can be changed through the display menu. Higher levels of passwords can only be changed through theQc4001 Utility Software.

The level 1 password menu can only be entered using the "JUMP" pushbutton.

| 4971 | Level 1 Password | CUSTOMER LEVEL |           |
|------|------------------|----------------|-----------|
|      | 4971 Setting     | 2003           | (0 32000) |
|      |                  |                |           |
| 4972 | Level 2 Password | SERVICE LEVEL  |           |
|      | 4972 Setting     | ****           | (0 32000) |
|      |                  |                |           |
| 4973 | Level 3 Password | MASTER LEVEL   |           |
|      | 4973 Setting     | ****           | (0 32000) |
|      |                  |                |           |

## 17.4.34 Service menu

The service menu can only be entered using the "JUMP" pushbutton. This menu is used in service situations.

In the alarm selection you can see all the alarm timers and their remaining time if they are counting.

The input and output selections show the present status of the inputs and outputs. E.g. mode inputs, relay outputs and load sharing lines.

| No.  | Setting      |                   | Description                      |
|------|--------------|-------------------|----------------------------------|
| 4980 | Service Menu | Selection Display |                                  |
| 4981 | Service Menu | Alarm             | Shows remaining alarm delay time |
| 4982 | Service Menu | Digital Inputs    | Shows digital input status       |
| 4983 | Service Menu | Digital Outputs   | Shows digital output status      |

## 17.4.35 Diagnostics menu

This diagnostics menu can only be entered using the "JUMP" pushbutton. This menu is used in (mainly EMR) diagnostics situations.

If diagnostics is selected in this menu, the fuel solenoid relay output will be de-energized for 30 seconds (to make sure that the unit is completely stopped), and then gets energized again. Then EMR diagnostics can take place.

To leave this status, normal operation has to be selected again in this menu.

| 4930 | Diagnos | tics Mode   | CUSTOMER LEVEL |                        |
|------|---------|-------------|----------------|------------------------|
|      | 4930    | Diagnostics | Normal         | (Normal / Diagnostics) |

## It's only possible to start the gen-set when this parameter is at 'Normal'.

## 17.4.36 Clear Log Menu

This menu can only be entered by using the "JUMP" pushbutton. This menu will be used when the gen-sets leave the Atlas Copco test area, to clear the log memory in the Qc4001.

| 4940 | Reset Eventlog |       | MASTER |            |
|------|----------------|-------|--------|------------|
|      | 4940           | Reset | OFF    | (ON / OFF) |

## 17.4.37 Parameter Set ID

This is a text field which is saved and loaded together with the parameter set. The text is editable and contain a maximum of 15 characters (can be a combination of all kind of characters, eg. '9822 0999 97\_02').

This text is listed in the 'parameters shown on the display 'list.

This text can only be entered or edited through the Utility Software in the parameter file

## 17.4.38 Application

This parameter is default set on 0; only in a PMS application the Qc4001 mains controller needs to be set at 1.

Used only with the PMS option.

Warning : If a genset Qc4001 controller is set at 1; all the settings will be lost !

| 5000 | Applicati | on          | MASTER | _       |
|------|-----------|-------------|--------|---------|
|      | 5000      | Application | 0      | (0 / 1) |

## 17.4.39 VDO 1

Parameters to be programmed when a configurable oil pressure sensor is used.

| 5010 | VDO 1 |                 | SERVICE LEVEL | _       |
|------|-------|-----------------|---------------|---------|
|      | 5011  | VDO 1 @ 0,0 bar | 10            | (0 240) |
|      | 5012  | VDO 1 @ 2,5 bar | 44,9          | (0 240) |
|      | 5013  | VDO 1 @ 5,0 bar | 81            | (0 240) |
|      | 5014  | VDO 1 @ 6,0 bar | 134,7         | (0 240) |
|      |       |                 |               | •       |

| 5020 | VDO 1 |                  | SERVICE LEVEL |         |
|------|-------|------------------|---------------|---------|
|      | 5021  | VDO 1 @ 7,0 bar  | 184           | (0 240) |
|      | 5022  | VDO 1 @ 8,0 bar  | 200           | (0 240) |
|      | 5023  | VDO 1 @ 9,0 bar  | 210           | (0 240) |
|      | 5024  | VDO 1 @ 10,0 bar | 220           | (0 240) |

### 17.4.40 VDO 2

Parameters to be programmed when a configurable coolant temperature sensor is used.

| 5030 | VDO 2 |               | SERVICE LEVEL |         |
|------|-------|---------------|---------------|---------|
|      | 5031  | VDO 2 @ 40 °C | 292           | (0 480) |
|      | 5032  | VDO 2 @ 50 °C | 197           | (0 480) |
|      | 5033  | VDO 2 @ 60 °C | 134           | (0 480) |
|      | 5034  | VDO 2 @ 70 °C | 97            | (0 480) |

#### 5040 VDO 2

| VDO 2 |                | SERVICE LEVEL | _       |
|-------|----------------|---------------|---------|
| 5041  | VDO 2 @ 80 °C  | 70            | (0 480) |
| 5042  | VDO 2 @ 90 °C  | 51            | (0 480) |
| 5043  | VDO 2 @ 100 °C | 39            | (0 480) |
| 5044  | VDO 2 @ 110 °C | 29            | (0 480) |

## 17.4.41 VDO 3

Parameters to be programmed when a configurable fuel level sensor is used.

| VDO 3 |                                                              | SERVICE LEVEL                                                                                                                                          |                                                                                                                                                          |
|-------|--------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5051  | VDO 3 @ 0%                                                   | 78,8                                                                                                                                                   | (0 180)                                                                                                                                                  |
| 5052  | VDO 3 @ 40%                                                  | 47,9                                                                                                                                                   | (0 180)                                                                                                                                                  |
| 5053  | VDO 3 @ 50%                                                  | 40,2                                                                                                                                                   | (0 180)                                                                                                                                                  |
| 5054  | VDO 3 @ 60%                                                  | 32,5                                                                                                                                                   | (0 180)                                                                                                                                                  |
|       |                                                              |                                                                                                                                                        |                                                                                                                                                          |
| VDO 3 |                                                              | SERVICE LEVEL                                                                                                                                          | _                                                                                                                                                        |
| 5061  | VDO 3 @ 70%                                                  | 24,8                                                                                                                                                   | (0 180)                                                                                                                                                  |
| 5062  | VDO 3 @ 80%                                                  | 17                                                                                                                                                     | (0 180)                                                                                                                                                  |
| 5063  | VDO 3 @ 90%                                                  | 9,3                                                                                                                                                    | (0 180)                                                                                                                                                  |
|       | 5051<br>5052<br>5053<br>5054<br><b>VDO 3</b><br>5061<br>5062 | 5051   VDO 3 @ 0%     5052   VDO 3 @ 40%     5053   VDO 3 @ 50%     5054   VDO 3 @ 60%       VDO 3   60%     S061   VDO 3 @ 70%     5062   VDO 3 @ 80% | 5051 VDO 3 @ 0% 78,8   5052 VDO 3 @ 40% 47,9   5053 VDO 3 @ 50% 40,2   5054 VDO 3 @ 60% 32,5   VDO 3 @ 70%   5061 VDO 3 @ 70% 24,8   5062 VDO 3 @ 80% 17 |

1,6

5064 VDO 3 @ 100%

(0 ... 180)

## 18 <u>Technical specifications</u>

Accuracy: Class 1.0 according to IEC 688.

Operating temperature: -25...70 °C.

Aux. supply: 12/24 VDC -25/+30 %. Guaranteed performance @ dips down to 6V (for max. 1s.) during starting.

Measuring voltage: 100...690 VAC. Consumption max. 0.15 VA per phase.

Frequency: 30...70 Hz.

Measuring current: From current transformers .../1 A or .../5 A. Consumption max. 0.3 VA per phase.

Binary inputs: Input voltage 6...32 VDC. Impedance 2.4 k ., bi-directional.

Open collector outputs: Supply voltage 6...32 VDC. Load max. 10 mA.

Load sharing lines: +/-5 VDC.

Analogue inputs: +/-10 VDC, impedance 100 k .(not galvanically separated).

Relay outputs: 250 V/8 A or 24 VDC/1 A. Refer to actual description of I/O's.

Safety: To EN 61010-1 installation category (overvoltage category) III, 600 V, pollution degree 2.

CE and C-UL approved.

Galvanic separation: Between AC voltage, AC current and other I/O's: 3250 VAC - 50 Hz - 1 min. Between analogue outputs: 500 VDC - 1 min.

EMC/CE: According to EN-50081-1/2, EN-50082-1/2, SS4361503 (PL4) and IEC 255-3.

Material: All plastic parts are self-extinguishing to UL94 (V1).

Climate: HSE, to DIN 40040.

Connections: 4 mm<sup>2</sup> multi stranded for AC currents, all others 2.5 mm<sup>2</sup> multi stranded.

Response times: From the set-point is reached till the output is activated and the delay set to 0.

Generator: Over/under voltage 70-200 ms. Over/under frequency 70-200 ms.

Current: 100-200 ms. Fast overcurrent: <42 ms. High overcurrent: 100-200 ms.

Rocof: 100 ms (4 periods).

Vector jump: 30 ms.

Protection: Case: IP40.

Terminals: IP20.

Operator panel: IP52.

To IEC 529 and EN 60529.

Mounting: Base mounted with six screws or DIN-rail mounted.

Protection of PCB's: all PCB's shall be sprayed to guarantee good functioning of the controller in humid environments.

Cold Tested according to IEC 68-2-1.

Dry Heat Tested according to IEC 68-2-2.

Damp Heat Dynamic Tested according IEC 68-2-30.

Vibration Tested according IEC 60068-2-6.

Shock Tested according IEC 68-2-27.

Flammability Test according to IEC 695-2-2.

# 19 Dimensions

## 19.1 Unit dimensions



## 19.2 Display Dimensions



Page 111 of 114 20-06-2007

## 19.3 Panel cutout for display



# 20 Engine Communication CAN-bus

## 20.1 MTU MDEC

Specifications: All necessary information and specifications about the MDEC CAN-bus can be found in following MTU manuals:

- 'Connecting third-party devices to the MCS-5 FIELD BUS 1 / Documentation for design engineers / Structure and function of the field bus 1 communication protocol' E 531 827 / 00 E
- 'CAN bus interface / MTU-MDEC to third-party systems / DDC-MTU Series 2000 / Stationary applications / Documentation Part 1' E 531 966 / 00 E

MDEC Messages displayed on the Qc4001:

| Object                         | Туре     |
|--------------------------------|----------|
| Engine Speed                   | Value    |
| Overspeed Shutdown             | Shutdown |
| MDEC Yellow Alarm              | Warning  |
| MDEC Red Alarm                 | Shutdown |
| Oil Pressure                   | Value    |
| Low Oil Pressure Warning       | Warning  |
| Low Oil Pressure Shutdown      | Shutdown |
| Charge Air Pressure            | Value    |
| Low Coolant Level Warning      | Warning  |
| Actual MDEC Failures           | Digits   |
| MDEC ECU Failure               | Shutdown |
| Coolant Temperature            | Value    |
| High Coolant Temp. Warning     | Warning  |
| High Coolant Temp. Shutdown    | Shutdown |
| Charge Air Temperature         | Value    |
| High Intercooler Temp.         | Warning  |
| Oil Temperature                | Value    |
| High Oil Temp. Shutdown        | Shutdown |
| Fuel Temperature               | Value    |
| High Charge Air Temp. Shutdown | Shutdown |
| Defect Coolant Level Switch    | Warning  |
| Intercooler Temperature        | Value    |

## 20.2 Deutz EMR

Specifications: All necessary information and specification about the EMR CAN-bus can be found in following Deutz manual:

- 'EMR CAN Messages Documentation V1'

EMR Messages displayed on the Qc4001

| Object                      | Туре     |
|-----------------------------|----------|
| High Coolant Temp. Shutdown | Shutdown |
| Low Oil Pressure Shutdown   | Shutdown |
| Overspeed Shutdown          | Shutdown |
| EMR Warning                 | Warning  |
| EMR Shutdown                | Shutdown |
| Actual EMR Faults           | Digits   |
| Coolant Temperature         | Value    |
| Oil Pressure                | Value    |
| Engine Speed                | Value    |

## 20.3 Detroit Diesel DDEC IV

Specifications: All necessary information and specification about the DDEC IV CAN-bus can be found in the following Detroit Diesel manual:

- 'Detroit Diesel DDEC IV Application and Installation Manual' in Chapter 5 'Communication Protocols'.

DDEC IV Messages displayed on the Qc4001:

| Object                 | Туре  |
|------------------------|-------|
| Engine Speed           | Value |
| Coolant Temperature    | Value |
| Engine Oil Temperature | Value |
| Fuel Temperature       | Value |
| Engine Oil Pressure    | Value |
| Coolant Level          | Value |
| Fuel Rate              | Value |
| Air Inlet Temperature  | Value |
| Boost Pressure         | Value |