
B
R

IC
S

R
S

-00-22
H

une
&

S
andholm

:
U

sing
A

utom
ata

in
C

ontrolS
ynthesis

—
A

C
ase

S
tudy

BRICS
Basic Research in Computer Science

Using Automata in Control Synthesis
A Case Study

Thomas S. Hune
Anders B. Sandholm

BRICS Report Series RS-00-22

ISSN 0909-0878 September 2000



Copyright c© 2000, Thomas S. Hune & Anders B. Sandholm.
BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recent BRICS Report Series publications.
Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
Ny Munkegade, building 540
DK–8000 Aarhus C
Denmark
Telephone: +45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through the World Wide
Web and anonymous FTP through these URLs:

http://www.brics.dk
ftp://ftp.brics.dk
This document in subdirectory RS/00/22/



Using Automata in Control Synthesis –

a Case Study

Thomas Hune and Anders Sandholm

BRICS?, Department of Computer Science
University of Aarhus, Denmark
{baris,sandholm}@brics.dk

Abstract. We study a method for synthesizing control programs. The
method merges an existing control program with a control automaton.
For specifying the control automata we have used monadic second order
logic over strings. Using the Mona tool, specifications are translated into
automata. This yields a new control program restricting the behavior of
the old control program such that the specifications are satisfied. The
method is presented through a concrete example.

1 Introduction

This paper presents some practical experience on synthesizing pro-
grams for the LEGO RCX system. The synthesis presented here
is based partly on an existing simple program and partly on an au-
tomaton generated by the tool Mona [7]1.

Writing control programs can often be an error prone task, espe-
cially if a number of special cases must be taken into account. Often
most of the time and effort is spent on taking care of special case
or failure situations rather than solving the actual problem at hand.
Different methods and tools have been developed to help in writing
control programs. One well known method is based on a control au-
tomaton running in parallel with the actual program [12, 13]. The
automaton controls the input and output events of the program. By
doing this the sequences of I/O actions occurring is restricted.

The automata controlling the I/O actions can be specified in dif-
ferent ways, e.g. by specifying it directly in some suitable notation,
or by a logical formula. We have chosen the latter approach. There

? Basic Research in Computer Science,
Centre of the Danish National Research Foundation.

1 http://www.brics.dk/mona



are various logics which could be used as specification language. We
have chosen to use monadic second order logic over strings (M2L) [2]
for a number of reasons. First of all M2L has a number of nice prop-
erties such as being expressive and succinct. For instance, having sec-
ond order quantification M2L is more expressive than LTL. Further-
more, there are succinct M2L-formulae of size n which have minimal
corresponding automata of non-elementary size. Secondly, the tool
Mona [7] implements a translation from M2L formulae to minimal
deterministic automata (MDFA) accepting the language specified by
the formula. The automata generated do not contain any acceptance
condition for infinite executions so we will only be considering safety
properties.

The method we study here is a variation of classical synthesis as
described in e.g. [10, 12], in that the method is partly based on an
existing control program. The aim of the synthesis described here is
to restrict the behavior of an existing (hopefully very simple) control
program such that it satisfies certain given properties. The execu-
tions of the existing control program are restricted by the control
automaton having I/O events as alphabet. These events define the
interface between the existing control program and the specification.

For studying the method we will look at a control program for
a moving crane. We have implemented the method for this example
in the LEGO RCX system [9]. Using the LEGO RCX system
is interesting for at least two reasons. First of all the environment
of the RCX system and especially the programming language is
quite restricted, so it is not obvious that implementing the method
is feasible at all. Secondly, using the LEGO RCX system one can
build actual physical systems for testing the control programs. We
have built the crane and used it with different control programs.

The language running on the LEGO RCX brick (RCX lan-
guage) is an assembly-like language with a few high level features,
like a notion of task or process. Programs are written on a PC and
downloaded to the RCX brick where they are interpreted.

1.1 Related work

The use of finite state automata for controlling systems is not novel.
Ramadge and Wonham [12] give a survey of classic results.
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The method used in this paper has been used successfully in
<bigwig> [13], a tool for specifying and generating interactive Web
services. Our method for control synthesis is used as an integral part
of <bigwig> to define safety constraints. In fact, via use of a powerful
macro mechanism [1] the method has been used to extend the Web
programming language in <bigwig> with concepts and primitives for
concurrency control, such as, semaphores and monitors.

1.2 Outline of the paper

In the following section we will outline the method. A short presen-
tation of the LEGO system is given in Section 3. In Section 4 the
crane example is presented. The logic-based specification language is
presented in Section 5, and the merge of automata with the RCX
code in Section 6. Finally, Section 7 rounds off with conclusions, and
suggestions for future work.

2 Outline of the method

The two main components of the synthesis is a basic control pro-
gram and an automaton. From these two components we generate a
control program which is ready for use. We do not have any special
requirements for what a control program is, like no side effects, since
in our case the control program is the only program running on the
RCX brick. The interface between the two components is a prede-
fined set of I/O actions. This will typically be all commands in the
program for reading sensors or manipulating actuators.

Given a basic control program and an implementation of the
automaton we merge these. Each instruction in the basic control
program using one of the I/O actions is transformed to a sequence
of instructions first calling the automaton and based on the response
from the automaton performing the action or not. Section 6.3 will
discuss different approaches to what should happen, when a given
action is not allowed by the automaton.

Since the automaton is invoked only when the basic control pro-
gram is about to make an I/O action, it can only restrict the possible
I/O behaviors of the control program, not add I/O actions in new
places. Only looking at sequences of I/O actions the basic control
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program must therefore be able to generate all sequences present
in the solution. Since the automaton will prune away unwanted se-
quences, the basic control program might also generate unwanted se-
quences. The basic control program should not implement any kind
of priority scheme, unless one is sure that combining this with the
safety specification will not lead to deadlocks.

The hope is that writing such basic control programs should be
a simple task. In general the basic control program could be one
always being able to read any sensor and give any command to the
actuators. This amounts to generating the star operation of the input
alphabet. However, there will often be a correspondence between
input and output which it would be natural to have in a basic the
control program. Often, adding details like these to the basic control
program will make the specification of the automaton simpler. This
is the case in the example shown later.

One could see the basic control program as implementing the
method for controlling the sequences of I/O actions and the au-
tomaton defining the allowed policy for these. This suggests that
with one implementation of a basic control program it is possible to
test different specifications or strategies (policies) only by changing
the control automaton. Therefore, a fast (automatic) way of get-
ting an implementation of an automaton from a specification and
merging this with the control program allows for testing different
specifications fast.

3 The LEGO system

The studies we have conducted are based on the LEGO RCX
system and the associated RCX language. The language is an as-
sembly like language with some high level concepts like concurrent
tasks. The language is restricted in a number of ways, e.g. it is possi-
ble to address only 32 integer variables and allows only ten tasks in a
program. Furthermore, one cannot use symbolic names in programs.
However, we have not encountered problems with the mentioned re-
strictions during our experiments.

A small operating system is running on the RCX with pro-
cesses for handling I/O and one process running an interpreter for
the RCX language. The RCX brick has three output ports (for
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motors and lights) and three input ports. Four kinds of sensors for
the input ports are supplied by LEGO: touch, temperature, rota-
tion, and light.

3.1 The RCX language

A program consists of a collection of at most ten tasks. There is
no special way to communicate between tasks but all variables are
shared, providing a way of communication. A task can start another
task with the command StartTask(i) and stop it with the com-
mand StopTask(i). Starting a task means restarting it from the
beginning. That is, there is no command for resuming the execution
of a task nor spawning an extra “instance” of a task.

The language has some commands for controlling the output
ports, the main ones being On(li) and Off(li) where li is a list
of ports. The commands SetFwd(li) and SetRwd(li) sets the di-
rection of the ports in li to forward and reverse respectively. There
are also a number of instructions for manipulating variables. All of
these take three integer arguments. The first argument specifies the
target variable, the second the type of the source, and the third the
source. The most important types of sources are: variables (the third
argument is then the number of the variable), constants (the third ar-
gument is then the value), and sensor readings (the third argument is
then the number of the sensor). These types of sources can be used in
the instruction SetVar(i,j,k) for assigning a value to a variable. In
the instructions for calculating like SumVar(i,j,k), SubVar(i,j,k),
and MulVar(i,j,k) sensor readings are not allowed.

Loops can be defined in two ways, either by the Loop(j,k) in-
struction or by the While(j,k,l,m,n) instruction. The arguments
of the Loop indicates how many times the body should be iterated
in the same way as the source of the instructions for calculating.
The While loop is iterated as long as the condition specified by the
arguments is satisfied. The first two and last two arguments specify
the sources of a comparison as in an assignment and l specifies a
relation from the set {=, <, >, 6=}.

There is also a conditional, If(j,k,l,m,n), with the condition
specified as in the While construct and an Else branch can be spec-
ified as well.
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One can block a task for a given time using the Wait(j,k) state-
ment. When the specified time has passed, execution of the task is
resumed.

During execution a task is either enabled or blocked. A task can
be blocked by a StopTask(i) instruction, by a Wait(j,k) instruc-
tion, or by finishing its execution (reaching the end of the code).
Initially only task zero is enabled. The enabled tasks are executed
in a round robin fashion, where each task executes one instruction
and then leaves control for the next task.

The statements presented above constitute the part of the RCX
language which we have used for implementing control automata.

4 Example

As an example we will look at a crane which we will program in the
RCX language. We have built the crane and tested it with different
control programs. The crane is run by three motors connected to the
RCX. One motor is driving the wheels, one is turning the turret
around, and one is moving the hook up and down. The input for the
three motors are three touch sensors, which is all the RCX brick has
room for. This means we can only turn motors on and off. Therefore
the crane alternates between moving forward and backward each
time the motor is turned on. The direction of turret and the hook is
controlled in a similar way.

A very basic control program for the crane could consist of four
tasks. One task for setting up the sensors and motors, and starting
the other tasks. For each of the three inputs there is , one task for
monitoring input and controlling the motor correspondingly. Task 1
for monitoring sensor 0 would then be

BeginOfTask 1

Loop 2, 0 ’An infinite loop

SetFwd "0" ’Set direction of motor 0 to forward

SetVar 1, SENSOR, 0 ’Var1 := Sensor0

While VAR, 1, 3, CONST, 1 ’While Var1 != 1

SetVar 1, SENSOR, 0

EndWhile

On "0" ’Start motor 0

Wait CONST, 100 ’Wait

SetVar 1, SENSOR, 0 ’Var1 := Sensor0
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While VAR, 1, 3, CONST, 1 ’While Var1 != 1

SetVar 1, SENSOR, 0

EndWhile

Off "0" ’Stop motor 0

Wait CONST, 100 ’Wait

... repeat the code replacing SetFwd "0" with SetRwd "0" ...

EndLoop

EndOfTask

The Wait statements ensures that one touch of the sensor is not
read as two touches. We could of course have tested for this but for
our example this simple approach will do. The two other tasks for
controlling the remaining two motors look similar, only the numbers
of variables, sensors and motors are different.

For the purpose of illustrating the presented method we choose to
place the following constraints on the behavior of the crane. First of
all we only want one thing happening at a time, so we will not allow
for two motors to be turned on at the same time. Pressing the touch
sensor could now be seen as a request which the control program
may grant (and start the motor) when all the motors are stopped. A
motor can only be stopped by a request to stop that motor, not by
requests to start other motors. Moreover, we want that moving the
hook has higher priority than the wheels and the turret. Requests
from the other two are handled in order of arrival. The first constraint
on the behavior is basically mutual exclusion which is nontrivial
to implement in the RCX language (this is an integrated part of
the implementation of the automata-based approach described in
Section 6). On top of this we have a mixed priority and queue scheme.

5 Logic-based specifications

Basically we could keep the initial simple control program if we had
a way of pruning out some unwanted executions. To be able to imple-
ment the constraints we have to change the initial control program
slightly. This is done by considering touching a sensor as a request.
The motor can be turned on or off when the request is accepted.
Even with these changes the program is still a simple to write. Exe-
cution of the program gives rise to a sequence of events. In our case
we will consider input (requests), and two kinds of output (start and
stop motor) as events. We then implement the automaton accepting
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the language over these events satisfying the introduced constraints.
With this approach we can thus keep the control program simple.

Traditionally, control languages are described by automata which
are in some cases a good formalism to work with. However, having
experience in using logic for specifying properties, we will take that
approach here. In this section we describe the use of a logic formalism
from which we can automatically generate automata.

5.1 Terminology

An automaton is a structure A = (Q, qin, Σ,→, F ), where Q is a
set of states with initial state qin ∈ Q, Σ is a finite set of events,
→⊆ Q × Σ × Q is the transition relation, and F ⊆ Q the set of
acceptance states. We shall use q1

σ→ q2 to denote (q1, σ, q2) ∈→.
A sequence w = σ0σ1 . . . σn−1 ∈ Σ∗ is said to be accepted by the
automaton A if there exists a run of A which reads the sequence w
and ends up in an accepting state q. So we have q1, . . . , qn−1 ∈ Q

and q ∈ F , such that qin σ0→ q1
σ1→ . . .

σn−2→ qn−1
σn−1→ q. We shall

denote by L(A) the language recognized by an automaton, that is,
L(A) = {w ∈ Σ∗ | A accepts w }.

In order to be able to define the notion of a legal control language,
one partitions the event set Σ into uncontrollable and controllable
events: Σ = Σu ∪ Σc. The controllable events can be disabled by
the control automaton at any time, whereas the uncontrollable ones
are performed autonomously by the system without any possible in-
terference by the control automaton. The automaton merely has to
accept the fact that the particular uncontrollable event has occurred
and maybe change its state. Thus a control language must in some
sense, which is defined precisely below, respect the uncontrollable-
ness of certain events. Furthermore, since our method only allows
restrictions concerning safety properties, it does not make sense to
have non-prefix-closed languages as control languages. That is, we
define the notion of control language as follows.

Let pre(L) denote the prefix closure of a language L, and let
unc(L) denote closure of L under concatenation of uncontrollable
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events. That is, let

pre(L) = { v ∈ Σ∗ | ∃w ∈ Σ∗ : vw ∈ L } and

unc(L) = { vw ∈ Σ∗ | v ∈ L ∧ w ∈ Σ∗
u }.

A language, L over Σ = Σu ∪ Σc is called a control language if it
satisfies the two properties pre(L) = L and unc(L) = L.

When using deterministic finite state automata to specify sets
of sequences, checking for prefix closedness is easy. One just has to
make sure that all transitions from non-accepting states go to non-
accepting states. Similarly, checking closure under concatenation of
uncontrollable events is straightforward for deterministic automata.

What is new here, in comparison to the use of our method in [13],
apart from the new domain of LEGO RCX robots, is the par-
tition into controllable and uncontrollable events and the resulting
additional restrictions and computations.

5.2 Specification logic

It would be nice if instead of converting the informal requirement
in Section 4 into an automaton, one could write it formally in a
specification formalism closer to natural language. That is, we would
like to be able to write something like the following.

– Only one motor can be turned on at a time;
– If the wheels get turned on, then the hook must not be requesting

and the wheels must have been the first to make a request; and
– If the turret gets turned on, then the hook must not be requesting

and the wheels must have been the first to make a request.

We therefore turn to a formalism that is as expressive as finite state
automata and yet still allows for separation of the declaratively spec-
ified requirements (previously our control automaton) and the oper-
ational part of the control program (the existing RCX program).

Experience has shown that logic is a suitable specification formal-
ism for control languages. For the purpose of defining controllers for
LEGO RCX robots, we have chosen to use M2L. One might ar-
gue in favor of other specification formalisms such as high-level Petri
Nets [6] or Message Sequence Charts [11]. Being a logic formalism,
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however, M2L has the advantage that specifications can be developed
iteratively, that is, one can easily add, delete, and modify parts of
a specification. It also has a readable textual format. Moreover, the
formalism in use should be simple enough that a runtime checker,
such as an automaton, can actually be calculated and downloaded to
the RCX brick. Thus, M2L is powerful and yet just simple enough
to actually subject it to automated computation.

Experience in using M2L as a language for defining control re-
quirements has shown that only the first-order fraction of the logic
is used in practice [1, 13]. We shall thus consider only first order
quantifications, though second-order quantifications could be added
at no extra cost.

The abstract syntax of the logic is given by the following gram-
mar:

φ ::= ∃p : φ′ | ∀p : φ′ | ¬φ′ | φ′ ∧ φ′′ | φ′ ∨ φ′′ | φ′ ⇒ φ′′ | σ(t) | t < t′

t ::= p | t + 1

That is, M2L has the constructs: universal and existential quantifica-
tions over first order variables (ranging over positions in the sequence
of events), standard boolean connectives such as negation, conjunc-
tion, disjunction, and implication, the basic formulae, σ(t), to test
whether an event σ can be found at position t, and t < t′, to test
whether position t is before position t′. It also has operations on
terms, such as, given a position t one can point out its successor
(t + 1), and simple term variables (p).

A formula φ in M2L over the event set Σ will – when interpreted
over a finite sequence of events w – either evaluate to true or to
false and we shall write this as w |= φ or w 6|= φ, respectively.
The language associated with φ is L(φ) = {w ∈ Σ∗ | w |= φ }. The
language associated with an M2L formula is guaranteed to be regular.
In fact, it has been known since the sixties that M2L characterizes
regularity [2, 4].

The Mona tool implements the constructive proof of the fact
that for each M2L formula there is a minimal deterministic finite
state automaton accepting the language of the formula. That is,
Mona translates a particular M2L formulae, φ, into its correspond-
ing minimal deterministic finite state automata (MDFA), A, such
that L(φ) = L(A).
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Example 1. Let Σ = {a, b, c}. The M2L formula to left

// /.-,()*+�������� a ))

b;c

�� /.-,()*+��������
b

ii

c

�� a // /.-,()*+a;b;c

��∀p, p′′ : (p < p′′ ∧ a(p) ∧ a(p′′))
=⇒ ∃p′ : p < p′ < p′′ ∧ b(p′)

is true for sequences in which any two occurrences of a will have
an occurrence of b in between. Using Mona, one can compute the
automaton corresponding to the formula above. The resulting au-
tomaton appears to the right.

Example 2. With this logic-based specification language in place,
we can write a specification of the requirements given in the exam-
ple. The logic-based specification looks quite complex at first. How-
ever, because of it’s modular structure we find it easier to handle
than the automaton. The basic formulae for the elements of the al-
phabet are req1(t), req2(t), req3(t), turnon1(t), turnon2(t),
turnon3(t), turnoff1(t), turnoff2(t), and turnoff1(t). The
first three are uncontrollable events of the alphabet and the rest
are controllable events of the alphabet. A predicate is true if the
event at position t is the mentioned event. Using these basic formu-
lae we can define some basic predicates like all motors are stopped
by:

off1(t) = (∀t′ : t′ < t ⇒ ¬turnon1(t′))∨
(∀t′ : (t′ < t ∧ turnon1(t′)) ⇒
∃t′′ : t′ < t′′ ∧ t′′ < t ∧ turnoff1(t′′))

The predicate specifies that either there has never been a turnon1

action, or for every position where there is a turnon1 action there is
a turnoff1 action at a later position. Similarly, we define predicates
off2(t) and off3(t) and using these we can define a predicate,
alloff(t), specifying that all the motors are turned off.

alloff(t) = off1(t) ∧ off2(t) ∧ off3(t)

We can specify that motor 1 has been requested to be turned on but
has not yet been turned on by the following predicate:

request1(t) = ∃t′ : t′ < t ∧ req1(t′)∧
(∀t′′ : (t′ < t′′ ∧ t′′ < t) ⇒ ¬turnon1(t′′))
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This is specified by stating that at some position there is a request
req1 and at no later position is there a turnon1 action, handling
the request. Predicates request2(t) and request3(t) are specified
similarly. Using this we can define a predicate specifying that the
first request which has not been acknowledged is for motor one.

req1first(t) = request1(t) ∧ ∀t′ : (t′ < t ∧ req1(t′)∧
∀t′′ : (t′ < t′′ ∧ t′′ < t) ⇒ ¬req1(t′′)) ⇒
((request2(t′) ⇒
∃t′′ : t′ < t′′ ∧ t′′ < t ∧ ¬request2(t′′))∧
(request3(t′) ⇒
∃t′′ : t′ < t′′ ∧ t′′ < t ∧ ¬request3(t′′)))

The predicate specifies that at the current position, motor one is
requesting and that there is at position t′ a req1 action which has
not been handled. If it is the case that at position t′ motor two (three)
is already requesting then there is later position where motor two
(three) is not requesting any more (so the request has been handled
before the current position). Again, predicates req2first(t) and
req3first(t) are specified similarly. With these basic predicates
as building blocks we can give a specification closely related to the
informal requirements of the example.

∀t : (turnon1(t) ∨ turnon2(t) ∨ turnon3(t)) ⇒ alloff(t)∧
∀t : turnon2(t) ⇒ (¬request1(t) ∧ req2first(t))∧
∀t : turnon3(t) ⇒ (¬request1(t) ∧ req3first(t)),

An informal specification for the control of the crane containing three
properties was given in Section 5.2. Each of these properties corre-
sponds to one of the lines in the predicate above. For instance the
first line of the predicate specifies that if a motor is turned on then
all the motors are turned off. This corresponds to the first property
that only one motor can be turned on at a time. For the remaining
two lines, motor 2 (3) can be turned on, if there is no request for
motor 1 and the request for motor 2 (3) was first.

Since our basic control program specifies the order of the events
in the individual tasks (first req, then turnon, then req, and then
turnoff), this specification will define the wanted behavior.
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From this specification Mona generates the minimal deterministic
automaton which can be seen in Figure 1.

on1

req2

req3

req1

on2

req3

req1

req2

on3
off1
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req3

on1

req3
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req2

off2 req1
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on2

req1

on3

off3
req2

req1
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req2

on1

on1

off2
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off2
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off3

req1

off3 req2

off1

off1

off2

off3

Fig. 1. The automaton giving priority to motor one.

Had the order of events not been specified in the basic control
program, there should also have been predicates specifying this.

Should we want to change the control language of our example in
such a way that all three tasks have equal priority, the overall struc-
ture of the control automaton would change. As the following exam-
ple will show, modifying the logical formula is indeed quite compre-
hensible in the case of the LEGO crane requirements.

Example 3. Say that we would like to change the requirements such
that all motors are given equal priority, that is, they will be turned
on in a first come first served manner. Using the logic-based spec-
ification, all we have to do is to change the last two lines of our
specification slightly resulting in the following fifo requirement.

∀t : (turnon1(t) ∨ turnon2(t) ∨ turnon3(t)) ⇒ alloff(t)∧
∀t : turnon1(t) ⇒ req1first(t)∧
∀t : turnon2(t) ⇒ req2first(t)∧
∀t : turnon3(t) ⇒ req3first(t).

Note that the sub-formulae, such as, alloff() and req2first()

are reused from the previous specification. As we can see it is rela-
tively easy to change the specification using the previously defined
primitives.

From this specification Mona generates the automaton in Figure 2
which looks quite different from the one in Figure 1.
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Fig. 2. Control automaton giving equal priority to motor one, two, and three.

6 Merging automata and RCX code

Given a control automaton and the basic control program, one can
synthesize the complete control program. In this section we describe
how to translate an automaton into RCX code and how this is
merged with the existing RCX control program. For our example
we have done this by hand. It should be clear from this section that
only standard techniques are used and these can easily be carried
out automatically.

6.1 Wrapping the RCX code

The execution of the basic control program is restricted to sequences
allowed by a control automaton as follows. Firstly, RCX code is
generated for the control automaton and then this code is merged
with the existing RCX code. Merging RCX code with an au-
tomaton can in some sense be considered a program transformation.
Each statement involving a request or writing to an output port is
replaced by a block of code that tests whether the operation is le-
gal according to the control automaton. For our example an action
should be delayed if the control automaton does not allow it, waiting
for the other motor(s) to be turned off. Transforming the code for
turning motor 0 on, will lead to the following piece of code.

While VAR, 4, 3, CONST, 1 ’While automaton has not accepted the command

SetVar 31, CONST, 1 ’Arg := on0, the argument for the automaton

GoSub 0 ’Run the automaton

SetVar 4, VAR, 22 ’Local success:= global success

EndWhile

On "0" ’Execution of the actual command
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We have chosen to implement the automaton as a subroutine. Since
arguments for subroutines are not supported by the language, pass-
ing an argument to the automaton has to be done via a global vari-
able. Similarly, since a subroutine cannot return a value, return val-
ues are also placed in global variables for the process to read. The
while loop delays the action until the automaton accepts execution
of it.

6.2 Implementing mutual exclusion and automata

However, the idea described above is not sufficient since we will not
allow more tasks to use the automaton simultaneously. In the RCX
language the problem is obvious since we are using shared variables
for passing arguments and results. In general, we also need exclu-
sive access to the automaton since the outcome of the automaton
depends on its state when execution begins. If a process accesses the
automaton while it is used by another process, the state variable
might be corrupted. Therefore we must have exclusive access to the
automaton.

In our implementation we have used Dijkstra’s algorithm to im-
plement mutual exclusion between several processes [3]. But any cor-
rect mutual exclusion algorithm would of course do. The algorithm
uses some shared variables but this is no problem in the RCX lan-
guage since all variables are shared. There are no gotos in the RCX
language. Therefore, we have used an extra while loop and a success
variable for each task. Except from these details, the algorithm is
followed directly. Entering the critical region for process one is done
as follows.

SetVar 27, 2, 0 ’success(1):=0

While 0, 27, 2, 2, 0 ’while success(1) == 0

SetVar 30, 2, 1 ’ flag(1):=1

While 0, 24, 3, 2, 1 ’ while turn <> 1 do

If 0, 24, 2, 2, 2 ’ if turn == 2 then

If 0, 29, 2, 2, 0 ’ if flag(2) == 0 then

SetVar 24, 2, 1 ’ turn:=1

EndIf ’ endif

Else ’ else #turn is 3

If 0, 28, 2, 2, 0 ’ if flag(3) == 0 then

SetVar 24, 2, 1 ’ turn:=1

EndIf ’ endif
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EndIf ’ endif

EndWhile ’ endwhile

SetVar 30, 2, 2 ’ flag(1):=2

SetVar 27, 2, 1 ’ success(1):=1

If 0, 29, 2, 2, 2 ’ if flag(2) == 2 then

SetVar 27, 2, 0 ’ success(1):=0

EndIf ’ endif

If 0, 28, 2, 2, 2 ’ if flag(3) == 2 then

SetVar 27, 2, 0 ’ success(1):=0

EndIf ’ endif

EndWhile ’endwhile

The last two if statements is an ‘unfolding’ of the for loop

for j<>1 do

if flag(j)==2 then success(1):=0

Leaving the critical region is simple, just setting ones own flag to
zero.

An automaton is implemented in the standard way by repre-
senting the transition relation as nested conditionals of depth two
branching on the current state and the input symbol respectively.
The current state and the input symbol is represented by one variable
each. This gives us a way to combine the run of an automaton with
the execution of standard RCX code with wrapped input/output
statements. Implementation of the automaton in RCX code looks
like.

BeginOfSub 0

SetVar 22, 2, 1 ’Global success :=1

If 0, 23, 2, 2, 0 ’Initial state

If 0, 31, 2, 2, 1 ’Label==on1

SetVar 23, 2, 1 ’New state := state 1

Else

If 0, 31, 2, 2, 2 ’Label == on2

SetVar 23, 2, 2 ’New state :=state 2

Else

If 0, 31, 2, 2, 3 ’Label==on3

SetVar 23, 2, 3 ’New state := state 3

Else

SetVar 22, 2, 0 ’Global success :=0

EndIf

EndIf

EndIf

Else

If 0, 23, 2, 2, 1 ’State 1

...
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EndIf

EndIf

EndOfSub

6.3 Variations of the method

In the example an action is delayed if the control automaton does not
grant permission at once. Depending on the problem to be solved the
action taken when permission is not granted can vary. That is, there
are various ways of handling this temporary lack of acknowledgment
from the controller:

– as in the above example where the task is busy waiting, asking
the controller over and over whether its label had been enabled;
but

– one could also simply cancel or ignore the statement requesting
permission and continue execution. This could be done by replac-
ing the busy waiting while loop by an if statement.

The former would often be the preferred approach in cases where the
internal state of the code is important, such as, in our example, or
in a train gate controller. The latter would be a good choice in cases
where the code is written in a reactive style, constantly changing
output action based on newly read input, e.g. in autonomous robots.

The property implemented by the automaton in the example was
specific to the problem. One could also imagine using the method
for general properties e.g. for protecting hardware against malicious
sequences of actions. This leaves at least two options of where to
place the automaton:

– as in the example above where the automaton was put alongside
the wrapped code. Placing the code implementing the automaton
at this level seems a natural choice when dealing with properties
about the behavior of a specific program solving a particular
problem.

– If the property is of a more general kind, one should rather place
the automaton at the level of the operating system.

So far we have only considered untimed properties. One could easily
imagine using automata with discrete time as control automata. This
would open for a whole new range of properties to be specified, e.g.
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a minimum delay between two actions. In the example it would be
possible to specify properties like that a minimum time of 5 seconds
should pass between stopping the crane and starting to move the
hook.

On the RCX this could be realized by having a variable repre-
senting the discrete time. This variable could be updated by a task
consisting of an infinite loop waiting for one time unit and then up-
dating the variable. Assuming variable number zero represents the
time, it could be updated by:

SetVar 0, CONST, 0 ’Initialize the timer

Loop CONST, 0 ’An infinite loop

Wait CONST, 10 ’Wait for 1 sec.

SumVar 0, CONST, 1 ’Update the timer

EndLoop

7 Conclusion

We have used control automata in conjunction with basic control
programs for synthesizing complete control programs. Using this
method one can add to a basic control program a control automaton
which will ensure certain safety properties are satisfied. We have used
M2L to specify the control automata and the Mona tool to translate
formulae into automata.

The approach has been implemented in the setting of the LEGO
RCX system. This has allowed for the possibility of testing the
implementations on real physical systems.

Based on our experiments we find the method well suited for
synthesis of programs ensuring safety properties like the ones we
have used. We find the main advantage of the method is the ease of
testing different specifications. The separation of the active control
program and the restricting automaton also allows for ensuring (new)
safety specifications to existing control programs. In critical systems
one might consider the automaton only for monitoring actions, not
restricting these, to avoid deadlocks.

The main disadvantage of the method is the restriction to safety
properties. Since the all concurrent tasks must access the automaton
there is a danger of this becoming bottleneck.
Future work There is an overhead connected with gaining ex-
clusive access to the automaton and running it. How much time is
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spent on gaining access to the automaton of course depends on the
arrival of input events. It would be interesting to calculate some spe-
cific times for this given some input sequences. A tool for translating
RCX programs to timed models supported by Uppaal [8] exists [5].
Using Uppaal one can “measure” the time spent by a program from
an input is read until the response arrives.

The example presented in this paper only has one component
(one crane) and the control restrictions are consequently imposed
on that particular component only. One could easily imagine having
several components in a distributed environment working to achieve
a common goal. By use of modular synthesis and distributed con-
trol [12] via independence analysis [13] one can statically infer in-
formation about which constraints to put locally on the components
and which to put on the (most often necessary) central controller.
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