
Lab	
 1	

	

The	
 goal	
 of	
 this	
 lab	
 is	
 to	
 get	
 familiar	
 with	
 the	
 mechanics	
 of	
 designing	
 digital	
 systems	

using	
 VHDL	
 and	
 ALTERA’s	
 FPGAs.	
 	

The	
 development	
 board	
 used	
 in	
 this	
 class	
 is	
 ALTERA’s	
 DE2-­‐115.	
 The	
 board	
 provides	

the	
 following	
 hardware:	

• Altera	
 Cyclone	
 IV	
 EP4CE115F29C7	
 FPGA	
 device	

• Altera	
 Serial	
 Configuration	
 device	
 –	
 EPCS64	

• USB	
 Blaster	
 (on	
 board)	
 for	
 programming;	
 both	
 JTAG	
 and	
 Active	
 Serial	
 (AS)	

programming	
 modes	
 are	
 supported	

• 2MB	
 SRAM	

• Two	
 64MB	
 SDRAM	

• 8MB	
 Flash	
 memory	

• SD	
 Card	
 socket	

• 4	
 Push-­‐buttons	

• 18	
 Slide	
 switches	

• 18	
 Red	
 user	
 LEDs	

• 9	
 Green	
 user	
 LEDs	

• 50MHz	
 oscillator	
 for	
 clock	
 sources	

• 24-­‐bit	
 CD-­‐quality	
 audio	
 CODEC	
 with	
 line-­‐in,	
 line-­‐out,	
 and	
 microphone-­‐in	

jacks	

• VGA	
 DAC	
 (8-­‐bit	
 high-­‐speed	
 triple	
 DACs)	
 with	
 VGA-­‐out	
 connector	

• TV	
 Decoder	
 (NTSC/PAL/SECAM)	
 and	
 TV-­‐in	
 connector	

• 2	
 Gigabit	
 Ethernet	
 PHY	
 with	
 RJ45	
 connectors	

• USB	
 Host/Slave	
 Controller	
 with	
 USB	
 type	
 A	
 and	
 type	
 B	
 connectors	

• RS-­‐232	
 transceiver	
 and	
 9-­‐pin	
 connector	

• PS/2	
 mouse/keyboard	
 connector	

• IR	
 Receiver	

• 2	
 SMA	
 connectors	
 for	
 external	
 clock	
 input/output	

• One	
 40-­‐pin	
 Expansion	
 Header	
 with	
 diode	
 protection	

• One	
 High	
 Speed	
 Mezzanine	
 Card	
 (HSMC)	
 connector	

• 16x2	
 LCD	
 module	

talarico
Text Box
Tutorial #1

Figure	
 2.1	
 and	
 2.2	
 shows	
 the	
 layout	
 of	
 the	
 DE2-­‐115	
 board.	

	

	

	

The	
 objectives	
 of	
 the	
 lab	
 are:	

1. Complete	
 (and	
 read	
 thoroughly)	
 the	
 attached	
 tutorial	
 (skip	
 pp.	
 36-­‐39).	

Before	
 you	
 can	
 use	
 Quartus	
 II	
 software	
 you	
 will	
 have	
 to	
 setup	
 the	
 license	

(27001@licserver3).	

	

2. Make	
 sure	
 to	
 skim	
 through	
 the	
 DE2-­‐115	
 User	
 Manual	
 to	
 learn	
 more	
 about	
 the	

wide	
 range	
 of	
 features	
 offered	
 by	
 the	
 board.	

	

3. (Optional:	
 …	
 but	
 recommended)	
 Install	
 Altera	
 Web	
 Edition	
 and	
 Altera	

Modelsim	
 Starter	
 Edition	
 on	
 your	
 PC/Laptop	
 and	
 go	
 through	
 the	
 first	
 five	

interactive	
 tutorials	
 (Quartus	
 II	
 introduction,	
 Create	
 a	
 Design,	
 Compile	
 a	

Design,	
 Run	
 Timing	
 Analysis,	
 Configure	
 a	
 Device)	

	

NOTE:	
 	

The	
 only	
 class	
 of	
 constrains	
 set	
 in	
 this	
 tutorial	
 is	
 the	
 mapping	
 between	
 the	
 I/O	
 ports	

of	
 the	
 design	
 and	
 the	
 FPGA	
 PINs.	

In	
 general,	
 there	
 is	
 another	
 class	
 of	
 constrains	
 that	
 must	
 to	
 be	
 set:	
 the	
 timing	

specifications.	
 Timing	
 are	
 critically	
 important	
 for	
 a	
 successful	
 design.	
 Timing	

constrains	
 are	
 set	
 creating	
 a	
 Synopsys	
 Design	
 Constraints	
 File	
 (.sdc)	
 that	
 the	

Quartus	
 II	
 TimeQuest	
 Timing	
 Analyzer	
 uses	
 during	
 design	
 compilation.	

talarico
Text Box

ALTERA’s	
 “Development”	
 Methodology	

	

	

RTL	
 =	
 Register	
 Transfer	
 Level	

Analysis	
 and	
 Synthesis	
 =	
 check	
 HDL	
 code	
 and	
 construct	
 gate	
 level	
 netlist	
 	

P&R	
 =	
 derive	
 physical	
 layout	
 inside	
 the	
 FPGA	
 chip	
 (a.k.a.	
 fitting)	

Assembling	
 =	
 generate	
 the	
 configuration	
 file	
 (a.k.a.	
 bit	
 file)	

Device	
 programming:	
 =	
 downloading	
 the	
 configuration	
 file	
 into	
 the	
 target	
 device	

claudiotalarico
Pencil

claudiotalarico
Pencil

claudiotalarico
Stamp

claudiotalarico
Stamp

claudiotalarico
Pencil

Overview	
 of	
 Altera’s	
 Quartus	
 II	
 software	
 tools	

ISE	
 (integrated	
 Software	
 Environment)	
 Window	
 Structure:	

1. Project	
 Navigator	

2. Tasks	
 Window	
 (a.k.a.	
 process	
 window)	

3. Messages	
 Window	
 (ak.a.	
 log	
 window)	

4. Workplace	
 Window	

	

	

claudiotalarico
Line

claudiotalarico
Line

claudiotalarico
Line

claudiotalarico
Line

claudiotalarico
Line

claudiotalarico
Line

claudiotalarico
Line

claudiotalarico
Line

claudiotalarico
Line

claudiotalarico
Line

claudiotalarico
Pencil

claudiotalarico
Line

Checklist	
 of	
 Basic	
 Development	
 Steps	

	

1. Create	
 the	
 Logic	
 Design	

a. Create	
 a	
 project	
 (workspace	
 selection,	
 device	
 selection,	
 EDA	
 tools	

selection	
 	
 set	
 preferences)	

b. Create	
 or	
 add	
 HDL	
 files	

c. Check	
 HDL	
 syntax	
 (analysis)	

	

2. Create	
 an	
 HDL	
 Test	
 bench	
 and	
 perform	
 RTL	
 simulation	

	

3. Synthesis	
 and	
 Implementation	

a. Create	
 constrains	
 (Pin	
 Assignment,	
 Timing,	
 etc)	

b. Run	
 the	
 Synthesis	
 tool	
 and	
 the	
 fitter	
 tool	
 (P&R)	
 	

c. Create	
 and	
 check	
 design	
 reports	

	

4. Assemble	
 and	
 Program	

a. Connect	
 the	
 download	
 cable	
 (USB	
 blaster)	

b. Run	
 the	
 assembler	
 tool	
 to	
 generate	
 the	
 configuration	
 file	
 (a.k.a.	
 bit	

file)	

c. Download	
 the	
 configuration	
 file	

	

claudiotalarico
Pencil

claudiotalarico
Pencil

 1

Quartus II Introduction Using VHDL Design

This tutorial presents an introduction to the Quartus II 9.1 CAD system. It gives a general

overview of a typical CAD flow for designing circuits that are implemented by using FPGA

devices, and shows how this flow is realized in the Quartus II software. The design process is

illustrated by giving step-by-step instructions for using the Quartus II software to implement a

very simple circuit in an Altera FPGA device.

The Quartus II system includes full support for all of the popular methods of entering a

description of the desired circuit into a CAD system. This tutorial makes use of the VHDL

design entry method, in which the user specifies the desired circuit in the VHDL hardware

description language. Two other versions of this tutorial are also available; one uses the

Verilog hardware description language and the other is based on defining the desired circuit in

the form of a schematic diagram.

The last step in the design process involves configuring the designed circuit in an actual

FPGA device. To show how this is done, it is assumed that the user has access to the Altera

DE2-115 Development and Education board connected to a computer that has Quartus II

software installed. A reader who does not have access to the DE2-115 board will still find the

tutorial useful to learn how the FPGA programming and configuration task is performed.

The screen captures in the tutorial were obtained using the Quartus II version 5.0; if other

versions of the software are used, some of the images may be slightly different.

Contents:

Typical CAD flow

Getting started

Starting a New Project

VHDL Design Entry

Compiling the Design

Pin Assignment

Simulating the Designed Circuit

Programming and Configuring the FPGA Device

Testing the Designed Circuit

 2

Computer Aided Design (CAD) software makes it easy to implement a desired logic circuit

by using a programmable logic device, such as a field-programmable gate array (FPGA) chip.

A typical FPGA CAD flow is illustrated in Figure 1.

 Figure 1.Typical CAD flow.

The CAD flow involves the following steps:

� Design Entry – the desired circuit is specified either by means of a schematic

diagram, or by using a hardware description language, such as VHDL or Verilog

� Synthesis – the entered design is synthesized into a circuit that consists of the logic

elements (LEs) provided in the FPGA chip

� Functional Simulation – the synthesized circuit is tested to verify its functional

correctness; this simulation does not take into account any timing issues

 3

� Fitting – the CAD Fitter tool determines the placement of the LEs defined in the

netlist into the LEs in an actual FPGA chip; it also chooses routing wires in the chip to

make the required connections between specific LEs

� Timing Analysis – propagation delays along the various paths in the fitted circuit are

analyzed to provide an indication of the expected performance of the circuit

� Timing Simulation – the fitted circuit is tested to verify both its functional

correctness and timing

� Programming and Configuration – the designed circuit is implemented in a

physical FPGA chip by programming the configuration switches that configure the

LEs and establish the required wiring connections

This tutorial introduces the basic features of the Quartus II software. It shows how the

software can be used to design and implement a circuit specified by using the VHDL hardware

description language. It makes use of the graphical user interface to invoke the Quartus II

commands. Doing this tutorial, the reader will learn about:

� Creating a project

� Design entry using VHDL code

� Synthesizing a circuit specified in VHDL code

� Fitting a synthesized circuit into an Altera FPGA

� Assigning the circuit inputs and outputs to specifi c pins on the FPGA

� Simulating the designed circuit

� Programming and configuring the FPGA chip on Altera ’s DE2-115 board

1 Getting Started

Each logic circuit, or subcircuit, being designed with Quartus II software is called a project.

The software works on one project at a time and keeps all information for that project in a

single directory (folder) in the file system. To begin a new logic circuit design, the first step is to

create a directory to hold its files. To hold the design files for this tutorial, we will use a directory

introtutorial. The running example for this tutorial is a simple circuit for two-way light control.

Start the Quartus II software. You should see a display similar to the one in Figure 2. This

display consists of several windows that provide access to all the features of Quartus II

software, which the user selects with the computer mouse. Most of the commands provided by

Quartus II software can be accessed by using a set of menus that are located below the title

bar. For example, in Figure 2 clicking the left mouse button on the menu named File opens the

menu shown in Figure 3. Clicking the left mouse button on the entry Exit exits from Quartus II

9.1 software. In general, whenever the mouse is used to select something, the left button is

used. Hence we will not normally specify which button to press. In the few cases when it is

necessary to use the right mouse button, it will be specified explicitly.

 4

Figure 2.The main Quartus II display.

Figure 3.An example of the File menu.

 5

For some commands it is necessary to access two or more menus in sequence. We use

the convention Menu1 > Menu2 > Item to indicate that to select the desired command the

user should first click the left mouse button on Menu1 , then within this menu click on Menu2 ,

and then within Menu2 click on Item . For example, File > Exit uses the mouse to exit from the

system. Many commands can be invoked by clicking on an icon displayed in one of the

toolbars. To see the command associated with an icon, position the mouse over the icon and a

tooltip will appear that displays the command name.

1.1 Quartus II Online Help

Quartus II software provides comprehensive online documentation that answers many of

the questions that may arise when using the software. The documentation is accessed from

the menu in the Help window. To get some idea of the extent of documentation provided, it is

worthwhile for the reader to browse through the Help menu. For instance, selecting Help >

How to Use Help gives an indication of what type of help is provided. The user can quickly

search through the Help topics by selecting Help > Search , which opens a dialog box into

which key words can be entered. Another method, context-sensitive help, is provided for

quickly finding documentation for specific topics. While using most applications, pressing the

F1 function key on the keyboard opens a Help display that shows the commands available for

the application.

2 Starting a New Project

To start working on a new design we first have to define a new design project. Quartus II

software makes the designer’s task easy by providing support in the form of a wizard. Create a

new project as follows:

1. Select File > New Project Wizard to reach the window in Figure 4, which indicates the

capability of this wizard. You can skip this window in subsequent projects by checking the box

“Don’t show me this introduction again ”. Press Next to get the window shown in Figure 5.

 6

Figure 4.Tasks performed by the wizard.

 7

Figure 5.Creation of a new project.

2. Set the working directory to be introtutorial; of course, you can use some other

directory name of your choice if you prefer. The project must have a name, which is usually the

same as the top-level design entity that will be included in the project. Choose light as the

name for both the project and the top-level entity, as shown in Figure 5. Press Next . Since we

have not yet created the directory introtutorial, Quartus II software displays the pop-up box in

Figure 6 asking if it should create the desired directory. Click Yes, which leads to the window in

Figure 7.

Figure 6.Quartus II software can create a new directory for the project.

 8

Figure 7.The wizard can include user-specified design files.

3. The wizard makes it easy to specify which existing files (if any) should be included in

the project. Assuming that we do not have any existing files, click Next , which leads to the

window in Figure 8.

 9

Figure 8.Choose the device family and a specific device.

4. We have to specify the type of device in which the designed circuit will be implemented.

Choose Cyclone IV as the target device family. We can let Quartus II software select a specific

device in the family, or we can choose the device explicitly. We will take the latter approach.

From the list of available devices, choose the device called EP4CE115F29C7 which is the

FPGA used on Altera’s DE2-115 board. Press “Next ”, which opens the window in Figure 9.

 10

Figure 9.Other EDA tools can be specified.

5. The user can specify any third-party tools that should be used. A commonly used term

for CAD software for electronic circuits is EDA tools, where the acronym stands for Electronic

Design Automation. This term is used in Quartus II messages that refer to third-party tools,

which are the tools developed and marketed by companies other than Altera. Since we will rely

solely on Quartus II tools, we will not choose any other tools. Press Next.

6. A summary of the chosen settings appears in the screen shown in Figure 10. Press

Finish, which returns to the main Quartus II window, but with light specified as the new project,

in the display title bar, as indicated in Figure 11.

 11

Figure 10.Summary of the project settings.

 12

Figure 11.The Quartus II display for the created project.

3 Design Entry Using VHDL Code

As a design example, we will use the two-way light controller circuit shown in Figure 12.

The circuit can be used to control a single light from either of the two switches, x1and x2,

where a closed switch corresponds to the logic value 1. The truth table for the circuit is also

given in the figure. Note that this is just the Exclusive-OR function of the inputs x1 and x2, but

we will specify it using the gates shown.

Figure 12.The light controller circuit.

The required circuit is described by the VHDL code in Figure 13. Note that the VHDL

entity is called light to match the name given in Figure 5, which was specified when the project

was created. This code can be typed into a file by using any text editor that stores ASCII files,

or by using the Quartus II text editing facilities. While the file can be given any name, it is a

common designers’ practice to use the same name as the name of the top-level VHDL entity.

The file name must include the extension vhd, which indicates a VHDL file. So, we will use the

 13

name light.vhd.

LIBRARY ieee ;

USE ieee.std_logic_1164.all ;

ENTITY light IS

PORT (x1, x2 : IN STD_LOGIC ;

f: OUT STD_LOGIC) ;

END light ;

ARCHITECTURE LogicFunction OF light IS

BEGIN

f <= (x1 AND NOT x2) OR (NOT x1 AND x2);

END LogicFunction ;

Figure 13.VHDL code for the circuit in Figure 12.

3.1 Using the Quartus II Text Editor

This section shows how to use the Quartus II Text Editor. You can skip this section if you

prefer to use some other text editor to create the VHDL source code file, which we will name

light.vhd. Select File > New to get the window in Figure 14, choose VHDL File, and click OK.

This opens the Text Editor window. The first step is to specify a name for the file that will be

created. Select File > Save As to open the pop-up box depicted in Figure 15. In the box

labeled Save as type choose VHDL File. In the box labeled File name type light. Put a

checkmark in the box Add file to current project . Click Save, which puts the file into the

directory introtutorial and leads to the Text Editor window shown in Figure 16. Maximize the

Text Editor window and enter the VHDL code in Figure 13 into it. Save the file by typing File >

Save, or by typing the shortcut Ctrl-s .

 14

Figure 14.Choose to prepare a VHDL file.

 15

Figure 15.Name the file.

Figure 16.Text Editor window.

 16

Most of the commands available in the Text Editor are self-explanatory. Text is entered at

the insertion point, which is indicated by a thin vertical line. The insertion point can be moved

either by using the keyboard arrow keys or by using the mouse. Two features of the Text Editor

are especially convenient for typing VHDL code. First, the editor can display different types of

VHDL statements in different colors, which is the default choice. Second, the editor can

automatically indent the text on a new line so that it matches the previous line. Such options

can be controlled by the settings in Tools > Options > Text Editor .

3.1.1 Using VHDL Templates

The syntax of VHDL code is sometimes difficult for a designer to remember. To help with

this issue, the Text Editor provides a collection of VHDL templates. The templates provide

examples of various types of VHDL statements, such as an ENTITY declaration, a CASE

statement, and assignment statements. It is worthwhile to browse through the templates by

selecting Edit > Insert Template > VHDL to become familiar with this resource.

3.2 Adding Design Files to a Project

As we indicated when discussing Figure 7, you can tell Quartus II software which design

files it should use as part of the current project. To see the list of files already included in the

light project, select Assignments > Settings, which leads to the window in Figure 17. As

indicated on the left side of the figure, click on the item Files. An alternative way of making this

selection is to choose Project > Add/Remove Files in Project.

Figure 17.Settings window.

 17

If you used the Quartus II Text Editor to create the file and checked the box labeled Add

file to current project, as described in Section 3.1, then the light.vhd file is already a part of the

project and will be listed in the window in Figure 17. Otherwise, the file must be added to the

project. So, if you did not use the Quartus II Text Editor, then place a copy of the file light.vhd,

which you created using some other text editor, into the directory introtutorial. To add this file to

the project, click on the File name: button in Figure 17 to get the pop-up window in Figure 18.

Select the light.vhd file and click Open. The selected file is now indicated in the Files window of

Figure 17.Click OK to include the light.vhd file in the project. We should mention that in many

cases the Quartus II software is able to automatically find the right files to use for each entity

referenced in VHDL code, even if the file has not been explicitly added to the project. However,

for complex projects that involve many files it is a good design practice to specifically add the

needed files to the project, as described above.

Figure 18.Select the file.

4 Compiling the Designed Circuit

The VHDL code in the file light.vhd is processed by several Quartus II tools that analyze

the code, synthesize the circuit, and generate an implementation of it for the target chip. These

tools are controlled by the application program called the Compiler.

Run the Compiler by selecting Processing > Start Compilation , or by clicking on the

toolbar icon that looks like a purple triangle. As the compilation moves through various

 18

stages, its progress is reported in a window on the left side of the Quartus II display.

Successful (or unsuccessful) compilation is indicated in a pop-up box.

Acknowledge it by clicking OK, which leads to the Quartus II display in Figure 19. In the

message window, at the bottom of the figure, various messages are displayed. In case of

errors, there will be appropriate messages given.

When the compilation is finished, a compilation report is produced. A window showing this

report is opened automatically, as seen in Figure 19. The window can be resized, maximized,

or closed in the normal way, and it can be opened at any time either by selecting Processing

> Compilation Report or by clicking on the icon .The report includes a number of
sections listed on the left side of its window. Figure 19 displays the Compiler Flow Summary

section, which indicates that only one logic element and three pins are needed to implement

this tiny circuit on the selected FPGA chip.

4.1 Errors

Figure 19.Display after a successful compilation.

 19

Quartus II software displays messages produced during compilation in the Messages

window. If the VHDL design file is correct, one of the messages will state that the compilation

was successful and that there are no errors. If the Compiler does not report zero errors, then

there is at least one mistake in the VHDL code. In this case a message corresponding to each

error found will be displayed in the Messages window. Double-clicking on an error message

will highlight the offending statement in the VHDL code in the Text Editor window. Similarly, the

Compiler may display some warning messages. Their details can be explored in the same way

as in the case of error messages. The user can obtain more information about a specific error

or warning message by selecting the message and pressing the F1 function key.

To see the effect of an error, open the file light.vhd. Remove the semicolon in the

statement that defines the function f, illustrating a typographical error that is easily made.

Compile the erroneous design file by clicking on the icon. A pop-up box will ask if the changes

made to the light.vhd file should be saved; click Yes. After trying to compile the circuit, Quartus

II software will display a pop-up box indicating that the compilation was not successful.

Acknowledge it by clicking OK. The compilation report summary, given in Figure 21, now

confirms the failed result. Expand the Analysis & Synthesis part of the report and then select

Messages to have the messages displayed as shown in Figure 22. Double-click on the first

error message. Quartus II software responds by opening the light.vhd file and highlighting the

statement which is affected by the error, as shown in Figure 23.

Correct the error and recompile the design.

Figure 21.Compilation report for the failed design.

 20

Figure 22.Error messages.

Figure 23.Identifying the location of the error.

5 Pin Assignment

During the compilation above, the Quartus II Compiler was free to choose any pins on the

selected FPGA to serve as inputs and outputs. However, the DE2-115 board has hardwired

connections between the FPGA pins and the other components on the board. We will use two

toggle switches, labeled SW0 and SW1, to provide the external inputs, x1 and x2, to our

example circuit. These switches are connected to the FPGA pins AB28 and AC28,

respectively. We will connect the output f to the green light-emitting diode labeled LEDG0,

which is hardwired to the FPGA pin E21.

Pin assignments are made by using the Assignment Editor. Select Assignments > Pins

to reach the window in Figure 24. Under Category select Pin. Double-click on the entry

<<new>> which is highlighted in blue in the column labeled To. The drop-down menu in Figure

25 will appear. Click on x1 as the first pin to be assigned; this will enter x1 in the displayed

table. Follow this by double-clicking on the box to the right of this new x1 entry, in the column

 21

labeled Location. Now, the drop-down menu in Figure 26 appears. Scroll down and select

PIN_AB28 . Instead of scrolling down the menu to find the desired pin, you can just type the

name of the pin (AB28) in the Location box. Use the same procedure to assign input x2 to pin

AC28 and output f to pin E21, which results in the image in Figure 27. To save the

assignments made, choose File > Save . You can also simply close the Assignment Editor

window, in which case a pop-up box will ask if you want to save the changes to assignments;

click Yes. Recompile the circuit, so that it will be compiled with the correct pin assignments.

Figure 24.The Assignment Editor window.

Figure 25.The drop-down menu displays the input and output names.

 22

Figure 26.The available pins.

Figure 27.The complete assignment.

The DE2-115 board has fixed pin assignments. Having finished one design, the user will

want to use the same pin assignment for subsequent designs. Going through the procedure

described above becomes tedious if there are many pins used in the design. A useful Quartus

II feature allows the user to both export and import the pin assignments from a special file

format, rather than creating them manually using the Assignment Editor. A simple file format

that can be used for this purpose is the comma separated value (CSV) format, which is a

common text file format that contains comma-delimited values. This file format is often used in

conjunction with the Microsoft Excel spreadsheet program, but the file can also be created by

hand using any plain ASCII text editor. The format for the file for our simple project is

To, Location

 x1, PIN_AB28

 x2, PIN_AC28

f, PIN_E21

By adding lines to the file, any number of pin assignments can be created. Such csv files

can be imported into any design project. If you created a pin assignment for a particular project,

you can export it for use in a different project. To see how this is done, open again the

Assignment Editor to reach the window in Figure 27. Now, select File > Export which leads to

the window in Figure 28. Here, the file light.csv is available for export. Click on Export . If you

now look in the directory introtutorial, you will see that the file light.csv has been created.

 23

Figure 28.Exporting the pin assignment.

You can import a pin assignment by choosing Assignments > Import Assignments .

This opens the dialogue in Figure 29 to select the file to import. Type the name of the file,

including the csv extension and the full path to the directory that holds the file, in the File Name

box and press OK. Of course, you can also browse to find the desired file.

Figure 29.Importing the pin assignment.

For convenience when using large designs, all relevant pin assignments for the DE2-115

board are given in the file called DE2-15_pin_assignments.csv in the directory

DE2-115_tutorials\design_files, which is included on the CD-ROM that accompanies the

DE2-115 board and can also be found on Altera’s DE2-115 web pages. This file uses the

names found in the DE2-115 User Manual. If we wanted to make the pin assignments for our

example circuit by importing this file, then we would have to use the same names in our VHDL

 24

design file; namely, SW(0), SW(1) and LEDG(0) for x1, x2 and f, respectively. Since these

signals are specified in the DE2-115_pin_assignments.csv file as elements of arrays SW and

LEDG, we must refer to them in the same way in the VHDL design file. For example, in the

DE2-115_pin_assignments.csv file the 18 toggle switches are called SW [17] to SW [0]; since

VHDL uses parentheses rather than square brackets, these switches are referred to as SW

(17) to SW (0). They can also be referred to as an array SW (17 downto 0).

6 Simulating the Designed Circuit

Before implementing the designed circuit in the FPGA chip on the DE2-115 board, it is

prudent to simulate it to ascertain its correctness. Modelsim software can be used to simulate

the behavior of a designed circuit. Next we will introduce how to use the Modelsim to simulate,

as follows:

1. Run ModelSim.

Click Start > Project > Altera > ModelSim-Altera 6.5b or double-click the ModelSim icon

on the desktop. Then the interface shown as Figure 30 will appear. If you have ever set up

projects in ModelSim, it will automatically open the latest project.

Figure 30.ModelSim Start Interface

 25

2. Create a new project.

a. Select File > New > Project (Main window) from the menu bar to get the Create

Project window where you can input a Project Name, Project location (directory)

and Default Library Name (Figure 31). You can also refer to the library settings from

a selected .ini file or add them directly into the project. The default library is located

in the path of the project compilation files, and here we usually choose work

(default) .

b. Input light_simu in the Project Name field.

c. Input D:/my_proj/modelsim/light in Project Location where the project file will be

stored. Here we need to know that ModelSim can not automatically build a directory

for a new project, so we have to input the path instead of browsing one.

d. Choose work (default) as the Default Library Name.

e. Choose …modelsim_ase/modelsim.ini as the Copy Setting From.

f. Click OK.

Figure 31.Create Project Window

3. Then the dialog window shown as Figure 32 will appear, which indicates that the

project directory does not exist. Click on the OK button to create the directory for a new

project.

 26

Figure 32.Confirm the establishment of a new directory

4. Once you click OK to accept the new project settings, a blank Project window and the

“Add items to the Project ” window will appear (Figure 33), in which you can create a new

design file, add an existing file, create a simulation configuration or add a folder for

organization purposes.

Figure 33.Add items to a Project

5. Add existing file.

a. Click on the Add Existing File icon.

This leads to the Add file to Project window displayed in Figure 34.This window allows

you to browse the existing files, specify the file type, specify a folder to which the file will be

added, and identify whether to leave the file in its current location or copy it to the project

directory.

 27

Figure 34.Add existing file to Project

b. Click on the Browse button for the File Name field. This leads to the “Select files to

add to project ” window and displays the contents of the current directory. Select light.vhd and

click Open .

c. Click OK to add the files to the project.

d. Click Close to dismiss the Add items to the Project window.

6. Create new file.

Either Clicking on the Create New File icon of Figure 33 or selecting File >New > Project

from the menu bar can create a new file, here we choose the first method: the Create Project

File window shown in Figure 35 will appear. Specify the file type, specify a folder to which.

Here we input ligthVHD as File Name, choose VHDL for Add file as type and Top Level for

Folder (Folder means the path to which the file will be added and the Top Level means the

project path we just set), then click OK. Click Close to close the Add items to the Project

window.

Figure 35.Add new files to Project

7. Then, the Project option will appear in the Workspace window, which includes

lightVHD.vhd. There is also a question mark in Status bar which indicates the document has

not been compiled. Double click this file to get the edit window (Figure 36 in which we input our

design files as follows:

 28

Figure 36.Edit new Files

In the lightVHD.vhd file window, please input the testbench codes, Click the Save icon.

library ieee;

use ieee.std_logic_1164.all;

entity lightVHD is

end lightVHD;

architecture behav of lightVHD is

component light

port(

x1 :in std_logic;

x2 :in std_logic;

 f :out std_logic);

end component;

 29

signal ain :std_logic :='0';

signal bin :std_logic :='0';

signal cout :std_logic;

begin

----instantiate

U1 :light port map(x1 => ain,x2 => bin,f => cout);

 -----ain stimulus

 Process

 begin

 ain<='0';

 wait for 20 ns;

 ain<='1';

 wait for 20 ns;

 end process;

-----bin stimulus

process

begin

 bin<='0';

 wait for 40 ns;

 bin<='1';

 wait for 20 ns;

 end process;

end behav;

8. Compile the files.

a. Right-click either ligth.vhd or lightVHD.vhd in the Project window and select Compile >

Compile All from the pop-up menu. ModelSim not only compiles files but changes the symbol

in the Status column to a green check mark as well. A green check mark means the compile

succeeded, meantime, there ”Compile of lightVHD.vhd was successful ” in green will

appear in the transcript window(Figure 37). If the compilation fails, the symbol will be a red “X”,

and you will see an error message in the Transcript window.

 30

Figure 37.Compile the files

9. Load the Design and Click Menu Simulate > Start Simulate , then the interface shown

in Figure 38 will appear.

a. Click the Design tab .

b. Click on the + icon to expand the work library (Figure 38).

 Here we select lightvhd as our simulation object, and then work lightvhd module will

appear in Design unit. Resolution is the time accuracy for simulation, which is set to default,

finally click ok .

 31

Figure 38.Choose Simulation Object

10. Start simulation:

 We’re ready to start simulation. But before we do, we’ll open the Wave window and add

signals to it.

1. Open the Wave window.

a : Enter view wave at the VSIM> prompt in the Transcript window.

 The Wave window opens in the right side of the Main window (Figure 39).

 32

Figure 39.Using the command to open Wave Window

2. Add signals to the Wave window.

a: Enter add wave sim:/lightvhd/* at the VSIM> prompt in the Transcript window.

 All signals in the design are added to the Wave window (Figure 40).

Figure 40.Using the command to add Signals to Wave Window

 33

3. Run the simulation

a. Enter run 3us at the VSIM> prompt in the Transcript window (Figure 41).

By observing, we can find that the simulation results are the same with our design ones.

Figure 41.Waves Drawn in Wave Window

7 Programming and Configuring the FPGA Device

The FPGA device must be programmed and configured to implement the designed circuit.

The required configuration file is generated by the Quartus II Compiler’s Assembler module.

Altera’s DE2-115 board allows the configuration to be done in two different ways, known as

JTAG and AS modes. The configuration data is transferred from the host computer (which runs

the Quartus II software) to the board by means of a cable that connects a USB port on the host

computer to the leftmost USB connector on the board. To use this connection, it is necessary

to have the USB-Blaster driver installed. If this driver is not already installed, consult the

tutorial Getting Started with Altera’s DE2-115 Board for information about installing the driver.

Before using the board, make sure that the USB cable is properly connected and turn on the

power supply switch on the board.

In the JTAG mode, the configuration data is loaded directly into the FPGA device. The

acronym JTAG stands for Joint Test Action Group. This group defined a simple way for testing

digital circuits and loading data into them, which became an IEEE standard. If the FPGA is

configured in this manner, it will retain its configuration as long as the power remains turned on.

The configuration information is lost when the power is turned off. The second possibility is to

use the Active Serial (AS) mode. In this case, a configuration device that includes some flash

memory is used to store the configuration data.

 34

Quartus II software places the configuration data into the configuration device on the

DE2-115 board. Then, this data is loaded into the FPGA upon power-up or reconfiguration.

Thus, the FPGA need not be configured by the Quartus II software if the power is turned off

and on. The choice between the two modes is made by the RUN/PROG switch on the

DE2-115 board. The RUN position selects the JTAG mode, while the PROG position selects

the AS mode.

7.1 JTAG Programming

The programming and configuration task is performed as follows. Flip the RUN/PROG

switch into the RUN position. Select Tools > Programmer to reach the window in Figure 42.

Here it is necessary to specify the programming hardware and the mode that should be used.

If not already chosen by default, select JTAG in the Mode box. Also, if the USB-Blaster is not

chosen by default, press the Hardware Setup ... button and select the USB-Blaster in the

window that pops up, as shown in Figure 43.

Figure 42.The Programmer window.

Observe that the configuration file light.sof is listed in the window in Figure 42. If the file is

not already listed, then click Add File and select it. This is a binary file produced by the

Compiler’s Assembler module, which contains the data needed to configure the FPGA device.

The extension .sof stands for SRAM Object File. Note also that the device selected is

EP4CE115F29C7, which is the FPGA device used on the DE2-115 board. Click on the

Program /Configure check box, as shown in Figure 44.

 35

Figure 43.The Hardware Setup window.

Figure 44.The updated Programmer window.

Now, press Start in the window in Figure 44. An LED on the board will light up when the

configuration data has been downloaded successfully. If you see an error reported by Quartus

II software indicating that programming failed, then check to ensure that the board is properly

powered on.

 36

7.2 Active Serial Mode Programming

In this case, the configuration data has to be loaded into the configuration device on the

DE2-115 board, which is identified by the name EPCS64. To specify the required configuration

device select Assignments > Device , which leads to the window in Figure 45. Click on the

Device & Pin Options button to reach the window in Figure 46. Now, click on the

Configuration tab to obtain the window in Figure 47.

In the Configuration device box (which may be set to Auto) choose EPCS64 and click OK.

Upon returning to the window in Figure 45, click OK. Recompile the designed circuit.

Figure 45.The Device Settings window.

claudiotalarico
Text Box
Skip section 7.2 (pp.36-39)

claudiotalarico
Line

 37

Figure 46.The Options window.

Figure 47.Specifying the configuration device.

 38

The rest of the procedure is similar to the one described above for the JTAG mode. Select

Tools > Programmer to reach the window in Figure 42. In the Mode box select Active Serial

Programming . If you are changing the mode from the previously used JTAG mode, the

pop-up box in Figure 48 will appear, asking if you want to clear all devices. Click Yes. Now, the

Programmer window shown in Figure 49 will appear. Make sure that the Hardware Setup

indicates the USB-Blaster. If the configuration file is not already listed in the window, press

Add File . The pop-up box in Figure 50 will appear. Select the file light.pof in the directory

introtutorial and click Open . As a result, the configuration file light.pof will be listed in the

window. This is a binary file produced by the Compiler’s Assembler module, which contains the

data to be loaded into the EPCS64 configuration device. The extension .pof stands for

Programmer Object File. Upon returning to the Programmer window, click on the

Program /Configure check box, as shown in Figure 51.

Figure 48.Clear the previously selected devices.

Figure 49.The Programmer window with Active Serial Programming selected.

 39

Figure 50.Choose the configuration file.

Figure 51.The updated Programmer window.

Flip the RUN/PROG switch on the DE2-115 board to the PROG position. Press Start in

the window in Figure 50. An LED on the board will light up when the configuration data has

been downloaded successfully.

 40

8 Testing the Designed Circuit

Having downloaded the configuration data into the FPGA device, you can now test the

implemented circuit. Flip the RUN/PROG switch to RUN position. Try all four valuations of the

input variables x1 and x2, by setting the corresponding states of the switches SW1 and SW0.

Verify that the circuit implements the truth table in Figure 12.

If you want to make changes in the designed circuit, first close the Programmer window.

Then make the desired changes in the Block Diagram/Schematic file, compile the circuit, and

program the board as explained above.

 41

Copyright ○c 2010 Altera Corporation. All rights reserved. Altera, The Programmable

Solutions Company, the stylized Altera logo, specific device designations, and all other words

and logos that are identified as trademarks and/or service marks are, unless noted otherwise,

the trademarks and service marks of Altera Corporation in the U.S. and other countries. All

other product or service names are the property of their respective holders. Altera products are

protected under numerous U.S. and foreign patents and pending applications, mask work

rights, and copyrights. Altera warrants performance of its semiconductor products to current

specifications in accordance with Altera’s standard warranty, but reserves the right to make

changes to any products and services at any time without notice. Altera assumes no

responsibility or liability arising out of the application or use of any information, product, or

service described herein except as expressly agreed to in writing by Altera Corporation. Altera

customers are advised to obtain the latest version of device specifications before relying on

any published information and before placing orders for products or services. This document is

being provided on an “as-is” basis and as an accommodation and therefore all warranties,

representations or guarantees of any kind (whether express, implied or statutory) including,

without limitation, warranties of merchantability, non-infringement, or fitness for a particular

purpose, are specifically disclaimed.

	aaa.pdf
	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45

