
User’s Manual for Genair

Hugo Gagnon

February 1, 2015

Contents

1 Preliminaries 2
1.1 Scope . 2
1.2 Suggested Readings . 2

2 Introduction 3
2.1 Installation . 3
2.2 Quick Start . 5
2.3 Saving and Loading . 8
2.4 Code Overview . 9

3 Non-Uniform Rational B-Spline Library 11
3.1 Point and NURBSObject Classes 12
3.2 OpenGL Interface . 15
3.3 Transforms . 17
3.4 Toolbox . 18

4 Component-Based Aircraft Design 18
4.1 Part Class . 18
4.2 Examples . 25

A Workflow with Jetstream 27
A.1 Fortran Interface . 27
A.2 Plot3D and Connectivity Files 27
A.3 Geometry Control System . 28

B Suggested Scripts 30
B.1 Multi-Segmented Wing . 30

1

1 Preliminaries

1.1 Scope

Genair is a high-fidelity conceptual aircraft design tool. At the moment it is most
useful to generate the outer mold line of general aircraft such as the blended
wing-body, the box wing, the truss-braced wing, etc. It does that through
a component-based approach, whereby wings, fuselages, nacelles, etc., can be
arbitrarily assembled in three-dimensional space.

Genair has been developed for high-fidelity, exploratory aerodynamic shape
optimization. As such, it emphasizes on high-quality surfaces, flexible aircraft
components, and an interactive interface. The graphical capability of the inter-
face has been kept to a minimum. The intention was to prioritize the develop-
ment of an intuitive API meant to steer large-scale, multidisciplinary optimiza-
tions.

Genair parameterizes aircraft components with non-uniform rational B-spli-
nes (NURBS), the same mathematical representation used in CAD. Hence,
Genair can be thought of as a hybrid between CAD and a parametric air-
craft design tool. The main difference with CAD is that model topology is
ignored. Moreover, surface trimming at wing-body junctions and the like is still
somewhat experimental.1

Genair uses object-oriented programming in Python to encapsulate aircraft
components. Each component defines its own “construction recipe”, thereby
hiding most of the geometry generation process to the user. Naturally, a good
understanding of NURBS or even Python is still required when designing custom
shapes or implementing new components.

1.2 Suggested Readings

Genair is not your typical CAD package, in that it remains a fairly low-level
library of classes and functions. The advantage is an increase in flexibility; the
disadvantage is the steep learning curve.

Here are some topics I suggest you brush up on before you install Genair.

1.2.1 Non-Uniform Rational B-Splines

Anyone serious about aircraft design should know about NURBS. The go-to
reference for NURBS is, surprise surprise, “The NURBS Book” [1]. I suggest
you read Chapters 1 to 4, and skim through Chapters 5 to 10. If you are short
on time then at least read “On NURBS: a survey” [2].

By the end of your readings you should be able to answer questions such as:
what is the effect of multiple knots or coincident control points on the geometric
and parametric continuity of NURBS curves and surfaces?

1 In practice, at least in Prof. David Zingg’s research group, these limitations are inconsequen-
tial since, first, we assume fixed topology throughout an optimization, and, second, surface
trimming is in any case best handled by the geometry kernel (e.g. Parasolid) native to the
mesh generator (e.g. ANSYS ICEM CFD) used to generate a watertight grid.

2

1.2.2 Free-Form Deformation

Free-form deformation (FFD) [3] is not only central to the geometry control
system implemented in Jetstream (Appendix A), but is also used in Genair for
the manual design of aircraft components. In both cases a significant departure
from standard FFD is the fact that it is the control points of the deforming
objects that are manipulated as opposed to their discretization.

1.2.3 Python, NumPy, and IPython

To use Genair effectively you will need a working knowledge of Python. Fortu-
nately, Python is very easy to learn and use. I suggest you read “The Python
Tutorial”, which is part of the standard documentation [4]. Pay special atten-
tion to the chapters on “Data Structures” and “Classes”.

What makes Python a scientific computing language comparable to Matlab
is NumPy. Genair makes extensive use of NumPy’s “array object”. To learn
about the array object and its use in linear algebra I suggest you read the
“Tentative NumPy Tutorial” [5]. Pay special attention to the section on “Copies
and Views”.

Finally, Genair uses IPython for its command-line interface. IPython can
be thought of as the “Command Window” of Matlab but for Python. I suggest
you read the “Introduction” chapter of IPython’s documentation [7]. Pay special
attention to the section called “Enhanced interactive Python shell”, including
the subsection called “Main features of the interactive shell”.

2 Introduction

2.1 Installation

2.1.1 Python Distribution

Before you install Genair you will need a Python 2 interpreter [4] along with
the NumPy [5], SciPy [6], IPython [7], PyOpenGL [8], pyglet [9], and PIL [10]
packages. While it is possible to install all of these using the standard Distutils,
I highly recommend using a third-party Python distribution such as Continuum
Analytics’ Anaconda [11]. Anaconda is free of charge and ships with a very
handy package manager called “conda”.

The following instructions assume that you have installed Anaconda, but
they can be easily adapted to any Python distribution.

If you have not already done so, start by updating conda followed by Ana-
conda itself:

$ conda update conda

$ conda update anaconda

Next, create a new conda environment called “genair” and activate it in your
current shell:

3

$ conda create -n genair pip

$ source activate genair

The second command should have modified your shell path and prepended the
string “(genair)” to your terminal prompt. To install the packages listed above
proceed with

(genair)$ conda install ipython numpy scipy pil

Then, depending on whether “conda search pyopengl” returns something or
not (as of February 2015 it does on OS X but not on Linux), use either one of

(genair)$ conda install pyopengl

or

(genair)$ pip install pyopengl

Finally, install pyglet:

(genair)$ pip install pyglet

To test IPython and NumPy, try the following in a new terminal:

(genair)$ ipython

which should put you in an IPython shell. From there type2

>>> import numpy as np

>>> np.__version__

and see if the version string matches the one returned by “!conda list”.
From time to time, say every other month, you may want to update the

packages to their latest version:3

(genair)$ conda update --all

(genair)$ pip install --upgrade pyglet

2.1.2 Genair

Installing Genair should be as simple as

$ git clone /nfs/carv/d1/people/comp-aero/genair.git

To test your clone of Genair, “cd” into “genair/” and type4

$ source activate genair

(genair)$./main.py

2 By convention, in this manual the default Python prompt (>>>) is used rather than
IPython’s prompt (In [n], where n ∈ Z+). 3 Repeat the second command for PyOpenGL

if you installed it with pip. 4 The first command assumes that you are using Anaconda; see
the previous section.

4

which should, again, put you in an IPython shell. The real test, however, is
whether pyglet supports your graphics card. If it does not then you probably
already know it from the error messages triggered by executing “main.py”.
If there were no such messages then cross your fingers and try this one last
command:

>>> draw(Point())

which should open a black window with a yellow point in the middle of it. You
can close that window by pressing the Escape key and you can exit Genair like
you would exit IPython, i.e. by typing “exit” at the prompt.

2.2 Quick Start

To give you a sense of what Genair can do I propose to go over a simple tutorial
where you will generate a box wing.

Start by launching Genair:5

$ source activate genair

(genair)$./main.py

which will automatically put you in the “play/” subdirectory of Genair’s root
directory.6 You can see this for yourself by typing “%pwd” at the prompt.7

By typing “%ls” you will also see that there is an “airfoils/” directory in
“play/”. “%cd” into it and type “%ls” once again. As you can see the directory
already contains a number of airfoil data files.

For this first tutorial you will fit the NACA 0012 airfoil. To do so you will
need the Airfoil class, but first you should learn how to use it. In Genair, the
easiest way to get information is through the “?” operator, e.g.8

>>> Airfoil?

Notice how the docstring tells you what the Airfoil class does and in particular
how it is intended to be used. In this case, it just so happens that the example
given also uses the NACA 0012 airfoil, so go ahead and follow it step by step,
starting with:

>>> af = Airfoil(‘n0012.dat’)

This commands creates an instance of the Airfoil class and assigns it to the
variable “af”.9

5 Again, the first command assumes that you are using the Anaconda Python distribution; see
Section 2.1.1. 6 The “play/” subdirectory is not tracked by Git so use it as you please. 7 In
IPython, the “%” character denotes a magic function. To learn more about IPython’s magic
function system type “%magic”. 8 The “?” operator is another extremely useful feature of
IPython; it lets you inspect an object’s docstring without leaving the prompt. Similarly, the
“??” operator lets you inspect not only an object’s docstring but also its source code. Both
“?” and “??” can be used on any Python object, e.g. try using them on the “%pwd” magic
function. 9 At this point it is worth mentioning that, similar to Matlab, IPython can list
the variables defined in your namespace by typing “%whos”.

5

The output of the previous command will have informed you that the data
file contains 132 points. Indeed, for this particular instance of the NACA 0012
airfoil, the lower and upper halves are each defined with 66 points. Type
“!head n0012.dat” to verify this information. Note also that the first line
of “n0012.dat” has been stored in

>>> af.name

In contrast, the “issymmetric” and “issharp” attributes are both evaluated
at runtime.

At this point feel free to inspect the data points in an OpenGL window:10

>>> draw(af)

Press the F2 key to switch to a xz view and then zoom in using the mouse
middle button.11 When you are done close the window by pressing the Escape
key.12

Next, proceed with the remaining instructions of the example:13

>>> af.fit()

>>> af.sharpen()

>>> af.fit()

>>> af.transform()

The last method transforms the airfoil so that its chord length becomes unity
and its quarter-chord point coincides with the global origin.14

You should now save your work to avoid repeating the same steps everytime
you want to use a NACA 0012 airfoil. Start by making a new subdirectory in
“play/” called “tutorial/”, “%cd” into it, and then save your Airfoil object
likewise:15,16

>>> save(af, fn=‘n0012.p’)

For the sake of demonstration, relaunch Genair, navigate to “tutorial/”, and
type

>>> af, = load(‘n0012.p’)

The Airfoil object that “af” now points to should be in the same exact state
than before and can thus be used in the same exact way.

Now to the box wing. We will assume that the three wing segments (lower,
tip fin, and upper) meet at right angles.17 This time you will need the Wing
class, so, as before, start by learning about it:

10 The reason why this command draws points and not a NURBS curve is because the airfoil
has not beeen fitted yet. 11 The OpenGL interface is explained in Section 3.2. Meanwhile,

have a look at the header of “plot/controller.py”. 12 As explained in Section 3.2, although
Genair supports multiple windows running at the same time, it is best to close them when
not needed. 13 Don’t forget to use the “?” operator to learn about the purpose and default

arguments of each method. 14 These transformations matter when constructing a Wing

object (Section 4.1.3). 15 Try the “%mkdir magic function. 16 The next section gives an

overview of the saving and loading mechanism. 17 An alternative would be to generate
smooth corner fillets.

6

>>> Wing?

Unsurprisingly, the docstring informs you that you need at least one Airfoil
object to instantiate a Wing object. So go ahead and type

>>> lower = Wing(af)

Next, create the “trajectory curve” along which “af” will be swept:18

>>> T = nurbs.tb.make_linear_curve(Point(), Point(y=3))

Assuming that you don’t want any twist nor any taper you can finalize the Wing
object with the following two commands:19,20

>>> lower.orient(T)

>>> lower.fit()

Finally, give it some sweep:21,22

>>> lower.glue()

>>> lower.sweep = 30

To generate the tip “fin” Wing object, repeat the same exact process but use
“Point(z=1)” instead of “Point(y=3)”. Also, instead of sweeping it, give it a
90 degree dihedral:

>>> fin.glue()

>>> fin.dihedral = 90

You could use a similar approach to generate the “upper” Wing object, but in
this case it is more convenient to simply copy the “lower” Wing object and to
give to that copy a 180 degree dihedral:23

>>> upper = lower.copy()

>>> upper.glue()

>>> upper.dihedral = 180

Now is a good time to save your work:

>>> save(lower, fin, upper, fn=‘lower_fin_upper.p’)

18 This is a common example of where you are required to directly interact with the NURBS
library. The library is discussed in Chapter 3; for now, to see other functions available in its
“toolbox”, type “nurbs.tb.” at the prompt followed by the Tab key. 19 As explained in

Section 4.1.3, twist and taper are easily specified through B-spline functions. 20 By default,
the second command will show you the NURBS representation of the final Wing object. In
Genair, keep in mind that what you see is only a triangulation of the actual NURBS curves
and surfaces. Type “draw?” to find out more. 21 Alternatively, one could have generated
a trajectory curve with the point “Point(x=1.73205081, y=3, z=0)” before orienting and
fitting the wing. Try it! 22 The “glue/unglue” mechanism is explained in Section 4.1.1.
Basically, it is necessary so that, for example, when sweeping a wing not only does its NURBS
representation shear but also its trajectory curve, wing tip (if any), etc. 23 Again, this
example reflects the fact that in Genair there are often multiple ways to arrive at the same
result.

7

You may have noticed that all three wing segments are positioned relative
to the global origin. (See it for yourself: “draw(lower, fin, upper)”.) What
remains to be done is to connect them one after the other and to make sure
that the connections are watertight. The WingMerger class does that for you:

>>> box = WingMerger(lower, fin, upper)

>>> box.merge()

Finally, you should save your work one last time:

>>> save(box, fn=‘box.p’)

and perhaps even export the geometry in IGES format if you intend on using
it in an external application such as ANSYS ICEM CFD. The next section
describes how to do this.

2.3 Saving and Loading

The “save” and “load” functions demonstrated in the previous section are
thin wrappers built around the “cpickle” module.24 A “pickle” is a binary
file, typically with the extension “.p”, that stores any number of any Python
objects (well, almost). In Genair, pickles are typically very small in size and are
thus ideal to share work with others.

It is important to understand that pickles are not specific to Genair. For
example, the snippet

>>> def power2(x):

... return x**2

>>> save(0.1, np.array([3, 2, 1]), power2)

works as expected.
You have probably figured out by now that the “save” function can take an

arbitrary number of arguments. Conversely, “load” takes only one argument
but returns a list of arbitrary length. While intuitive, this approach works best
if you are familiar with the concept of “unpacking”.25 For example, assuming
“a” is a Python list of length 3, use

>>> save(*a)

instead of

>>> save(a[0], a[1], a[2])

Similarly, use

>>> a0, a1, a2 = load()

instead of26,27

24 Part of the Python’s standard library [4]. 25 This concept is also very useful when it

comes to using the “draw” function described in Section 3.2.1. 26 The second command

is more succintly written as: “a0, a1, a2 = a”. 27 FYI length-1 sequences can also be
unpacked, e.g. “a0, = a” versus “a0 = a[0]”.

8

>>> a = load()

>>> a0 = a[0]; a1 = a[1]; a2 = a[2]

The “geom.io” module defines a few other functions related to I/O.28 Out
of those you will probably find “save IGES” most useful. Note that ultimately
“save IGES” only saves points and NURBS curves and surfaces; everything else
gets discarded. For example, assuming “af” is an Airfoil object, then

>>> geom.io.save_IGES(af)

only saves the NURBS curves representing the lower and upper portions of the
airfoil.29

2.4 Code Overview

If you have read and understood Sections 2.2 and 2.3 then you already know
more about Genair than you think. To learn about some other useful features,
e.g. geometrically nonlinear wings and automatically generated wingtips, you
can go ahead and jump to the relevant sections without worrying too much
about the code structure.

If, on the other hand, you plan on implementing new features, or even on
becoming proficient with Genair, I strongly suggest that you spend some time
understanding the machinery behind the interface. Indeed, the true intent of
this manual is not so much as documenting each and every aspect of Genair as
to explaining its design philosophy.

Central to this philosophy is the notion of inheritance. As seen from the
class diagram of Figure 1, all classes defined in Genair (at least those shown
here) are derived from the PlotObject class, which means that an instance of
any one of those classes will be recognized by the “draw” function. This is
easily remembered. In general, the end-user (you) only needs to know about
three “fundamental” classes: Point, NURBSObject, and Part (all of which are
shown in Figure 1). The first is universal and easily understood. The other
two are specific to Genair and are based on the same general principle that a
superclass inherits the properties and methods of its base class. For example,
the FFDVolume class inherits its “.p” attribute from the NURBSObject class
and the Wing class inherits its “glue” method from the Part class.30 Now, even
though the Point, NURBSObject, and Part classes are fundamentally different,
they still share some common methods too, including “copy”, “translate”,
“rotate”, “mirror”, “scale”, and “shear”.

For example, say “crv”, “fus”, and “pts” are a Curve, a Fuselage, and a
list of Point objects, respectively; then, the following commands are valid:

28 Again, use the tab completion feature of IPython to see all available functions. 29 To be
precise, its data points would be saved if the airfoil is not fitted. This is because “save IGES”
only saves what would be displayed by the “draw” function, i.e. what is returned by the
“ draw” method of a Part object. More on this topic in Sections 3.2.1 and 4.1.1. 30 Use
Python’s help system to see the full inheritance tree of an object, e.g. “help(Wing)”.

9

Pl
ot
Ob
je
ct

pl
ot

FF
DV
ol
um
e

ff
d

NU
RB
SO
bj
ec
t

Po
in
t

Cu
rv
e

Su
rf
ac
e

Vo
lu
me

nu
rb
s

Pa
rt

Ca
bi
n

Fu
el
Ta
nk

..
.

Ai
rc
ra
ft

Wi
ng

Ai
rf
oi
l

Wi
ng
ti
p

Ju
nc
ti
on

Wi
ng
st
ru
ct
ur
e

Fu
se
la
ge

Na
ce
ll
e

Fa
ir
in
gM
ol
de
r

Fu
se
la
ge
Mo
ld
er

ge
om

Hi
dd
en

Pu
bl
ic

in
he

rit
an

ce
as

so
ci

at
iv

ity

Implementation

1.
.21

0.
.1

0.
.2

x
x

0.
.1

* *1

*

*

*

*

1 *
*

F
ig

u
re

1:
P

ar
ti

al
cl

as
s

d
ia

gr
am

of
G

en
ai

r.
In

th
e

a
ss

o
ci

a
ti

v
it

y
tr

ee
,

th
e

sy
m

b
o
l
∗

d
en

o
te

s
“
ze

ro
o
r

m
o
re

in
st

a
n

ce
s”

a
n

d
th

e
n

ot
at

io
n
y
..
z

d
en

ot
es

fr
om

“y
to

z
in

st
an

ce
s”

.

10

>>> draw(crv, fus, *pts)

>>> crv.elevate(1)

>>> fus.glue(); fus.rotate(90)

>>> for pt in pts:

... pt.copy()

but these are not:

>>> draw(pts) # Not a PlotObject

>>> crv.glue() # Not a Part

>>> fus.elevate(1) # Not a NURBSObject

The remainder of this manual focuses on the Point and NURBSObject classes
of the “nurbs” package (Chapter 3) and on the Part class of the “geom” package
(Chapter 4). Before that here is an overview of the file structure used in Genair:

main.py The script used to launch Genair. It imports commonly used objects,
such as the Airfoil and Wing classes, the “draw” function, etc., and injects
them directly into the IPython namespace. These objects are not listed
by “%whos” and will not be deleted by a soft reset, i.e. “%reset -s”.

doc/ The directory related to the documentation. Includes this user’s manual.

ffd/ (see Figure 1) The directory related to FFD. It defines the FFDVolume
class which is used, for example, by the “geom” package.

geom/ (see Figure 1) The directory related to aircraft design. It defines the
family of Part classes. Implements high-level utilities, including the “save
and “load” functions and the “glue/unglue” mechanism.

nurbs/ (see Figure 1) The directory related to NURBS. It defines the Point
class and the family of NURBSObject classes. Implements low-level util-
ities, including data reduction and point inversion algorithms.

opti/ The directory related to Jetstream. It defines the Grid, Axial, and Joint
classes, as well as utilities to help set up the geometry control system for
optimization purposes.

play/ The directory that Genair puts you in upon launching. Use it as a
sandbox.

plot/ (see Figure 1) The directory related to OpenGL. It defines the PlotObject
class together with the “draw” function. Integrates the pyglet event loop
with the IPython shell.

3 Non-Uniform Rational B-Spline Library

A NURBS library is a set of utilities that specializes in the generation and
manipulation of NURBS. In Genair it is a completely independent entity; in
particular, it has no notion of the “geom” package.31

31 Hence, it may as well be used by an application other than Genair.

11

The goal of Genair is to automate aircraft design by making smart and
efficient use of the NURBS library. However, for increased flexibility, Genair
sometimes forces you to directly interact with the library.32 It is thus helpful
to know how it works and what it can and cannot do.

Most classes and functions discussed here are fairly well documented; don’t
hesitate to use the “?” and “??” operators to learn more about them.

3.1 Point and NURBSObject Classes

3.1.1 Point Class

The Point class is defined in the “nurbs.point” module.33 As explained in:

>>> Point?

it can be used either as a regular point or, more commonly, as a control point.
Example usage:

>>> pt = Point(1, 2, 3)

>>> pt.xyz

>>> pt.xyzw

The coordinates of a Point object are actually stored on its “ xyzw” at-
tribute.34 Do not modify this attribute directly, e.g. use35

>>> pt.xyzw = -1.0, None, None, None

as opposed to

>>> pt._xyzw[0] = -1.0

Actually, you can safely modify “ xyzw” as long as you make the modifications
in-place.36 If you do the only downside is that the position of the point will not
be updated in the OpenGL window(s), if any.

3.1.2 NURBSObject Class

The NURBSObject class is defined in the “nurbs.nurbs” module. It is the base
class of the Curve, Surface, and Volume classes (see Figure 1), respectively de-
fined in the “nurbs.curve”, “nurbs.surface”, and “nurbs.volume” modules.
As explained in:

>>> nurbs.nurbs.NURBSObject?

32 A common example is when generating a tracjectory curve for a Wing object. 33 Like
most classes discussed here the Point class has already been injected in your namespace, i.e.
“Point” is shorthand for “nurbs.point.Point”. 34 In Python, the underscore denotes a

private object; it is intended to discourage you from using that object. 35 “None” tells the

Point object to keep a coordinate intact. 36 This is a recurring concept in Genair; make sure
to understand the section on “Copies and Views” of the “Tentative NumPy Tutorial” [5].

12

it is fully defined by a ControlObject object (storing control point coordinates),
degree(s), and knot vector(s).

The ControlObject class is the base class for the ControlPolygon, Control-
Net, and ControlVolume classes, respectively required to instantiate a Curve,
Surface, and Volume object. As explained in:

>>> nurbs.nurbs.ControlObject?

it is fully defined by either Point objects or an object matrix. Both formats are
stored regardless. Example usage:

>>> p0 = Point(1, 0, w=1)

>>> p1 = Point(1, 1, w=1)

>>> p2 = Point(0, 1, w=2)

>>> cpol = ControlPolygon([p0, p1, p2])

The “n”, “cpts”, and “Pw” attributes of a ControlObject object store the num-
ber of control points (minus one), the Point objects (N −1 dimensional NumPy
array), and the object matrix (N dimensional NumPy array), respectively.37

The “ xyzw” array of the Point objects stored in the “cpts” array are views
(shallow copies) of the corresponding array elements in the “Pw” array. There-
fore, as long as modifications are performed in-place, modifying either type of
arrays (“ xyzw” or “Pw”) modifies the same data. For example,

>>> cpol.cpts[2].xyzw = None, 2, None, None

is equivalent to

>>> cpol.Pw[2,1] = 4

Note the 4 instead of the 2. This is because the “xyzw” attribute of the Point
object automatically converts the coordinates in homogeneous space for you.
Thus, “cpts” can be thought of as a user-friendly interface to “Pw”. Also note
that, analogous to the Point class, you must modify “Pw” through the “cpts”
interface in order to correctly update the OpenGL window(s), if any.

Once a ControlObject object is defined, a NURBSObject object is easily
instantiated. Continuing our example:38,39

>>> c = Curve(cpol, (2,))

The “cobj”, “p”, and “U” attributes of a NURBSObject object store the Con-
trolObject object, degree(s), and knot vector(s), respectively.

A NURBSObject object can be modified by modifying “cobj” or “U”. Mod-
ifying “cobj” consists of modifying “Pw” in-place (as explained above). This is
typically achieved through one of three interfaces:

1. “cpts” (as explained above),

37 N = 2, 3, and 4 for the ControlPolygon, ControlNet, and ControlVolume classes,
respectively. 38 The degree is specified as a 1-tuple to be consistent with the Surface and

Volume classes. 39 If unspecified the knot vector is assumed uniform.

13

2. OpenGL (as explained in Section 3.2), and

3. transforms (as explained in Section 3.3).

As for modifying “U”, the recommended approach is to simply reassign the
attribute, e.g.40

>>> c.U = (np.array([0, 0, 0, 2, 2, 2]),)

Internally, the library checks whether the new knot vector(s) are valid.41 This
won’t be possible if the modifications are performed in-place. For example,
although the command

>>> c.U[0][0] = 2

is technically valid, the resulting knot vector is invalid.
Modifying “p” on an existing NURBSObject object does not make sense

so the library won’t let you. What does make sense is to derive a new object
that has the same geometric and parametric continuity as the original one but
different NURBS degree(s). This is exactly what the “elevate” and “reduce”
methods do, e.g.42

>>> ce = c.elevate(1)

The NURBSObject classes each implement many other useful methods.
They are (as of February 2015):

Curve class eval point, eval derivatives, eval curvature, insert, split, extend,
refine, decompose, segment, remove, removes, elevate, reduce, project,
reverse

Surface class eval point, eval derivatives, eval curvature, insert, split, extract,
extend, refine, decompose, segment, remove, removes, elevate, reduce,
trim, project, reverse, swap

Volume class eval point, eval derivatives, split, extract, extend, refine, ele-
vate, project, reverse, swap

I strongly suggest that you read about and experiment with each one of those
methods. Doing so will ultimately increase both your productivity and the
quality of your designs. For example, to quickly generate a trajectory curve
suitable for a blended winglet, one could do:

>>> cpol = ControlPolygon([Point(), Point(y=3)])

>>> T = Curve(cpol, (1,)).elevate(2).insert(0.8, 1)

40 In this example, the same effect can be achieved with the “nurbs.knot.remap knot vec”
function. 41 Have a look at the source code of “nurbs.knot.check knot vec” to see what

constitutes a valid knot vector. 42 As of February 2015 the “reduce” method is not imple-
mented on the Volume class.

14

The second command first instantiates a Curve object of degree 1, which is
immediately used to instantiate a Curve object of degree 3, which is immediately
used to instantiate a Curve object that has one extra control point toward the
tip. Although the same could be achieved with

>>> cpol = ControlPolygon([Point(), Point(y=0.8), Point(y=1.8),

... Point(y=2.8), Point(y=3)])

>>> T = Curve(cpol, (3,),

... (np.array([0, 0, 0, 0, 0.8, 1, 1, 1, 1]),))

in general it is far more difficult to obtain a good parameterization with this
second, more “manual” approach.

3.2 OpenGL Interface

The OpenGL interface of Genair is key to a productive design session. The idea
is to quickly inspect or even modify parts of your design by opening and closing
OpenGL windows on the fly.

The OpenGL interface is not intended to replace the command-line interface
but rather to supplement it. As such, the OpenGL windows should be closed as
soon as you are done working with them. Besides, opening too many windows
at the same time will reduce the overall responsiveness of the application.

3.2.1 The “draw” Function

The “draw” function opens a new OpenGL window. For example, type:

>>> draw(T)

to render the Curve object defined at the end of the previous section.43

An OpenGL window is an instance of the Figure class. When you open a
new window Genair automatically injects the Figure object in your namespace
under the variable name “figN”, where “N” is the number of times you have
called the “draw” function so far.44 That same variable is automatically deleted
from your namespace when you close the window.

As explained in:

>>> draw?

no matter what combination of PlotObject objects (see Figure 1) you give to
“draw”, only Point and NURBSObject objects are actually rendered.45,46 All
the points, curves, surfaces, and volumes that a Figure object is aware of are
stored in its “pos” attribute.

43 The number displayed in the bottom-left corner of the window is the frame per second
(FPS); in general, a window is considered responsive if its FPS is at least 60 Hz. 44 The
same name is given to the window’s caption, so it is easy to know which variable corresponds
to which window. 45 When a Part object is drawn, “draw” draws the objects returned by

its “ draw” method; see Section 4.1.1. 46 For Volume objects, only the control point lattice
is rendered, not the underlying NURBS representation.

15

If you want to add (remove) any PlotObject object to (from) an existing
OpenGL window, use the “inject” (“deject”) method of the Figure object.
For example, say “srf”, “wi”, and “pts” are a Surface, a Wing, and a list of
Point objects, respectively; then, one could do:

>>> draw(srf, wi)

>>> fig2.inject(*pts)

>>> fig2.deject(wi)

A Figure object does not render the same object twice, e.g. in the above
example the fourth command:

>>> fig2.inject(srf)

has no effect.47 However, the same object can be rendered in two or more
OpenGL windows simultaneously. This is useful when modifying an object
under different views. For example, try the following with the Curve object
defined at the end of the previous section:

>>> draw(T); draw(T)

Reorient the view in each window as you please and then pick and drag individ-
ual control points (the next section explains how). The curve should be updated
at the same time in both windows.

3.2.2 Controller

An OpenGL window is controlled via mouse and keyboard input. The con-
trols are listed in the header of “plot/controller.py”. In particular, use the
left, middle, and right buttons of your mouse to respectively rotate, zoom, and
translate the view.48

It is possible to pick Point and NURBSObject objects inside an OpenGL
window. Try picking “T” in one of the two windows opened in the previous
example. If the pick is successful the curve should turn green. Next, try picking
its control points one by one.49

Everytime you pick something the Figure object updates three variables in
your namespace:50

>>> last_picked_xyz

>>> last_picked_object

>>> last_picked_objects

The first two are self-explanatory; the third is a Python list of the last picked
object(s) that gets reset on an unsuccessful pick.

In conjunction with “last picked xyz” it is sometimes convenient to pick
one of the two (four) extremities of a curve (surface). To do so pick any point

47 In other words, the “pos” attribute of the Figure object does not change. 48 Make sure

to deactivate the Num Lock key if you are on Linux. 49 Tip: you will need the “F8” key.
50 Listed by the magic function “%whos”.

16

closest to the extremity but press the right button of your mouse instead of the
left one.

Similar to the Vi text editor, an OpenGL window can be in one of several
“modes”. A window responds differently depending on which mode is active.
The default mode, “Translate Point”, allows you to not only pick Point objects
but also to drag them around.51,52 Similarly, the “Translate NURBS” mode
allows you to translate NURBSObject objects.53

The mode manager is aware of the “glue/unglue” mechanism described in
Section 4.1. For example, while in the “Translate NURBS” mode, try translating
an Airfoil object, before and after gluing it.

Finally, the mode manager implements a very basic “undo” mechanism.
Despite its simplicity it is actually quite useful, but keep in mind that closing a
window loses all the undos associated with that window!

3.3 Transforms

A useful property of NURBS is that an affine transformation is achieved by
applying the transformation to the control points.

Let A be a 4 × 4 transformation matrix and Pw be a (reshaped) object
matrix, then the product A · Pw achieves the desired transformation.

The “translate”, “rotate”, “mirror”, “scale”, and “shear” functions
defined in the “nurbs.transform” module each performs A ·Pw relative to any
arbitrary point, line, or plane in Euclidean space.54 For example, say “c” is a
Curve object, then the command

>>> nurbs.transform.scale(c.cobj.Pw, 2, L=(1,1,0))

scales “c” by a factor of 2 in the given direction.
All five transformation functions are implemented as methods on the Point

and NURBSObject classes. For example, the command:

>>> c.scale(2, L=(1,1,0))

is equivalent to the previous one. That being said, using the class methods
over the module functions is still preferable. First, they take less effort to type.
Second, they will correctly update the OpenGL window(s), if any. Third, anal-
ogous to the modes of an OpenGL window, they are aware of the “glue/unglue”
mechanism described in Section 4.1. So, say “af” is an Airfoil object, the com-
mands:

>>> af.glue()

>>> af.nurbs.rotate(90)

51 The translation occurs in the plane perpendicular to the view; this is also true for the
“Translate NURBS” mode. 52 If the point is a control point then the ControlObject object

of the NURBSObject object will be automatically updated. 53 You can toggle between the

two modes by simultaneously pressing the Control, Alt, and N keys. 54 Have a look at their
docstring, e.g. “nurbs.transform.scale?”

17

also rotate the lower and upper halves of the airfoil (“af.halves”) as well as
its camber line (“af.CL”).55,56

3.4 Toolbox

Section 3.1 explains how to instantiate a NURBBObject object, either directly
through class constructors or indirectly through class methods. A third way is
through the “toolbox” of the NURBS library.

The toolbox helps you generate and manipulate NURBS curves, surfaces,
and volumes. It is accessible from the “nurbs.tb” (virtual) module, which
is a single point of access to a set of functions collected from “curve.py”,
“surface.py”, “volume.py”, “conics.py”, and “fit.py”.57

For example, the commands:

>>> O, X, Y = (0, 1, 0), (1, 0, 0), (0, 1, 0)

>>> a = nurbs.tb.make_ellipse(O, X, Y, 3, 1, 0, 3 * np.pi / 2)

generate three-quarter of an ellipse. And the commands:

>>> a1 = a.copy(); a1.mirror()

>>> a2 = nurbs.tb.make_composite_curve([a, a1])

generate a single curve out of two.
I suggest that you read about and experiment with the remaining tools

of the toolbox. Doing so will help you understand how the “geom” package
works. For example, “make swept surface” is at the core of the “Wing” class.
Other utilities that you may find especially useful are “arc length to param”,
“param to arc length”, and “reparam arc length curve”.

4 Component-Based Aircraft Design

The only package in Genair that knows anything about aircraft design is “geom”.
Its main challenge is to translate the vocabulary of an aircraft designer to the
classes and functions of the “nurbs” package.

Like most tools of its kind, Genair takes a component-based approach to
aircraft design. For example, a wing-body configuration is generated from a wing
and a fuselage component. In Genair, each component is assigned a different
class and each class is derived from the same base class: Part (see Figure 1).

4.1 Part Class

The Part class is defined in the “geom.part” module. It is to the Airfoil, Wing,
etc., classes what the NURBSObject class is to the Curve, Surface, and Volume
classes, i.e. it implements functionality common to all aicraft components.

55 The attributes of the Airfoil class are explained in Section 4.1.2. 56 This example
is for demonstration purposes only; the second command is more intuitively written as
“af.rotate(90)”. 57 “fit.py” defines many other useful functions related to the inter-
polation and approximation of curves and surfaces; have a look!

18

4.1.1 Common Attributes

The Part class implements the following basic properties and methods: “bounds”,
“symmetrize”, “colorize”, “clamp”, and “copy”. Refer to their docstring and
source code for more information.58

Analogous to the Point and NURBSObject classes, the Part class implements
all five transformation functions (“translate”, “rotate”, “mirror”, “scale”,
and “shear”) as methods. For example, assuming “w” is a Wing object, one
could sweep it back like so:59

>>> w.glue()

>>> w.shear(30)

The “glue” and “unglue” methods of a Part object control which objects
actually transform when the Part object is transformed. In the previous ex-
ample, these objects include the trajectory curve (“w.T”), the wing surface
(“w.nurbs”), etc., but exclude the orientation curve (“w.Bv”).60

More specifically, the “glue/unglue” mechanism keeps track of a list of
Point and NURBSObject objects assigned to a Part object.61 Every object in
that list is also given a pointer to the list. Hence, transforming any object in the
list, either through one of the two “translate” modes of the OpenGL interface
(Section 3.2) or one of the five class methods (Section 3.3), has the same effect
than transforming the Part object itself. For example, the commands:

>>> w.glue()

>>> w.nurbs.shear(30)

are equivalent to the previous ones.
The “glue/unglue” mechanism is also responsible for updating the “family

tree” of a Part object. In the previous example, if “w” had a Wingtip object
assigned to it, then the wingtip surfaces would have also been sheared.

Note that “gluing” a component also unbinds it from its parent, if any. So,
continuing the previous example, the commands

>>> w.tip.glue()

>>> w.tip.shear(30)

shear only the wingtip. Analogously, the command

>>> w.tip.unglue()

unglues only the wingtip, but the command

>>> w.unglue()

58 Again, use the “?” and “??” operators of IPython. 59 A more convenient alternative

would be to use the “sweep” attribute of the Wing class; see Section 4.1.3. 60 Have a look
at the “ glue” method of a Part object to see which objects it controls, e.g. “w. glue??”.
61 FYI the list is a Python list called “glued”.

19

unglues both the wing and its wingtip.
Finally, each Part class implements its own “ draw” method. Similar to

“ glue”, this method returns a list of objects, the difference being that the
list only contains objects that the designer is most likely to be interested in
at a given stage of the design process. For example, once a Wing object has
been fitted, drawing it should no longer display its trajectory curve (“w.T”) but
rather its lower and upper surfaces (“w.halves”).62 This information is used
by a number of functions other than “draw”, including those in the “geom.io”
module.

4.1.2 Airfoil Class

The Airfoil class is defined in the “geom.airfoil” module. As explained in

>>> Airfoil?

it creates a B-spline approximation to an airfoil from a set of data points.
The Airfoil class is well documented; please refer to the “Intended section”

of its docstring and make sure to read the docstring of each one of its methods
as well. You may also want to revisit Section 2.2.

When fitting an airfoil for the first time make sure to find the right selection
of parameters that will give you the best possible fit.63 Generally speaking, a
good fit is one that results in few control points (say less than 40) and smooth
curvature plots. Unfortunately, depending on the number and quality of the
sampled data points, you may need to try several combinations of parameters
before you achieve a good fit. For example, a reasonable fit of the NASA SC(2)
0614 airfoil is achieved with the parameter “E” set to 0.0015:64,65,66

>>> a = Airfoil(‘sc20614.dat’)

>>> a.fit(E=0.0015)

Once you have found the right selection of parameters make sure to save
your airfoil to avoid repeating the same process.

The “nurbs” and “halves” attributes of an Airfoil object store the airfoil
curve in two equivalent forms. “nurbs” is a single curve that loops around the
airfoil counterclockwise (looking toward the negative y axis) starting from the
trailing edge. It is parameterized on [0, 1], where the parameter 0.5 corresponds
to the leading edge. “halves” is a list of two curves, each starting at the leading
edge, representing the lower and upper portions of the airfoil. They are also
both parameterized on [0, 1].

The direct analogs of the “nurbs” and “halves” attributes are implemented
on the Wing class.

62 See it for for yourself: “Wing. draw??”. 63 The default parameters were chosen based on

the NACA 0012 airfoil. 64 The “sc20614.dat” file should be located in your “airfoils/”

directory. 65 See what happens if you set “E” to its default value of 0.0001. 66 Note that
this airfoil is a good example where you won’t be able to use “sharpen”.

20

4.1.3 Wing Class

The Wing class is defined in the “geom.wing” module. As explained in

>>> Wing?

it creates a wing by sweeping an airfoil along a trajectory curve.
Like the Airfoil class, the Wing class is fairly well documented. Unlike the

Airfoil class, however, it is fairly complex. Indeed, the Wing class trades a lot of
user-friendliness for flexibility. This level of flexibility is certainly not required
when generating trapezoidal wings. For such wings it is in fact more convenient
to automate the generation process with scripts; see Appendix B.1.

Rather than describing each and every properties and methods of the Wing
class let us go over an example where you will generate a wing with linear twist
and nonlinear taper and dihedral.

Start off by loading two previously fitted airfoils, say the NACA 0012 and
the NASA SC(2) 0614 airfoils:67,68

>>> a0, = load(‘n0012.p’)

>>> a1, = load(‘sc20614.p’)

and use them to instantiate a Wing object:69

>>> w0 = Wing(a0, a1)

Next, generate a cubic B-spline curve to act as trajectory curve:

>>> T = nurbs.tb.make_linear_curve(Point(), Point(y=3))

>>> T = T.elevate(2)

and give it some nonlinear dihedral by translating some or all of its control
points in an OpenGL window.70 Then, create a linear B-spline function, e.g.71

>>> tw = BSplineFunctionCreator1(end=(0, 30)).fit()

that shall “orient” your wing with linear twist:72

>>> w0.orient(T, Tw=tw)

Next, create another B-spline function to specify taper. This time, since
we want nonlinear taper, use say, a quadratic B-spline function with 3 control
points:

>>> Sc = BSplineFunctionCreator1(end=(2, 1), p=2, n=3)

>>> Sc.design()

>>> sc = Sc.fit()

67 See the previous section for a suggestion of parameters that will give you a reasonable fit
of the NASA SC(2) 0614 airfoil. 68 Make sure that the “transform” method has been called

on both Airfoil objects. 69 The wing profile will be a linear interpolation of these two tip

airfoils. 70 Do that from a yz view to avoid giving it nonlinear sweep. 71 Currently, Genair
defines two other BSplineFunctionCreator* classes; example usage for each one of them are
given in Section 4.2. 72 As a rule of thumb, the more nonlinear the twisting function is, the
larger “m” (the third argument of “orient”) should be; here, the twisting function is linear so
the choice of “m” is irrelevant.

21

The second command will open an OpenGL window where you will be given the
opportunity to reshape the default “representation” curve. Pick and translate
the middle control point to about (x, y) = (0.5, 0.5). (Alternatively, pick the
control point without translating it and type

>>> last_picked_object.xyzw = 0.5, 0.5, None, None

at the prompt.) At this point you can finally fit (sweep) the wing likewise:

>>> w0.fit(scs=(sc,None,sc))

As explained in “w0.fit?”, the shape of the wing will only approximate the
true design intent. As a rule of thumb, the more nonlinear a wing is the less
acccurate the approximation will be. The approximation can be improved by
increasing the value of the argument “K”, but for all intents and purposes this
is seldom necessary.

Notice how the trajectory curve (“w0.T”) is almost the same as the quarter-
chord curve (“w0.QC”). This is because the quarter-chord point of the airfoils
stored on the Wing object each coincides with the global origin. If you want the
trajectory curve to match say, the trailing edge curve, then you must translate
the airfoils accordingly:73

>>> for a in w0.airfoils:

... xyz = a.nurbs.eval_point(0)

... a.glue(); a.translate(-xyz)

You may change the sweep and dihedral of a Wing object through its
“sweep” and “dihedral” attributes, respectively. These attributes are sim-
ple wrappers built around the “shear” method of the Part class (Section 4.1.1).
Note that the shearing origin is by default the root of the wing’s trajectory
curve. Therefore, if you want sweep with respect to say, the trailing edge curve,
then you must reassign the “T” attribute first, e.g.

>>> w0.T = w0.TE

>>> w0.glue(); w0.sweep = 20

At any point of the design process you may also reassign the “half” attribute
of a Wing object. For example, if you are designing a vertical tail then use a
value of 0 or 1 to only show the lower or upper portion of the wing surface,
respectively.74

4.1.4 WingMerger Class

The WingMerger class is defined in the “geom.wing” module. As explained in

>>> WingMerger?

73 Of course, this step must be performed prior to fitting the wing. 74 The attribute merely
modifies the list returned by “ draw”, not the internal representation of the Wing object (nor
of its “child” object(s), if any).

22

it merges wings one after the other.
The wings can be arbitrarily positioned and oriented in space prior to the

merge process. The only requirements are that the connecting tip(s) must share
the same airfoil as well as the same chord and twist.

Building on the example of the previous section, first generate a Wing object
that is merge-compatible with “w0”, e.g.

>>> w1 = Wing(a1, a0)

>>> w1.orient(T, Tw=tw.reverse(), show=False)

>>> w1.fit(scs=(sc.reverse(),None,sc.reverse()), show=False)

>>> w1.glue(); w1.dihedral = 45

Now use the following commands to merge “w0” and “w1”:

>>> wm = WingMerger(w0, w1)

>>> wm.merge()

and use the “merged wings” attribute of “wm” to retrieve the new, merged
Wings objects.

4.1.5 Wingtip Class

The Wingtip class is defined in the “geom.wingtip” module. As explained in

>>> geom.wingtip.Wingtip?

it creates a wingtip to fill the gap located at the tip of a wing.
Use a Wing object to instantiate a Wingtip object. Continuing the example

above:

>>> wm0, wm1 = wm.merged_wings

>>> tip = wm1.generate_tip()

>>> tip.fill()

See the docstring of the “fill” method to learn how to control the shape and
length of the wingtip extension.

Note, a Wingtip object is stored by a Wing object on its “tip” attribute.

4.1.6 Fuselage Class

The Fuselage class is defined in the “geom.fuselage” module. As explained in

>>> Fuselage?

it creates the outer mold line of a fuselage from a bullet-shaped cylinder by
successively molding the latter with FFD volume(s).

Unlike most other classes discussed in this chapter, the Fuselage class heavily
relies on the interactive features of the OpenGL interface (Section 3.2).

23

Please refer to the “Intended usage” section of the Fuselage class’ docstring
to get pointers on how to use the FuselageMolder and FairingMolder classes.75

Both of these classes are derived from the FFDVolume class (see Figure 1), so
refer to the latter for more information on how to “embed” and “unembed”
Point objects, including the control points of NURBSObject objects.

Use the “nurbs” attribute of a *Molder object to revert a Fuselage object
back to a previous state. For example, the commands:

>>> m = fus.molders.pop()

>>> fus.nurbs = m.nurbs

discard the changes introduced by the last *Molder object on a Fuselage object
called “fus”.

Don’t forget to call the “finalize” method of your Fuselage object at the
end of the molding process!

4.1.7 Aircraft Class

The Aircraft class is defined in the “geom.aircraft” module. As explained in

>>> Aircraft?

it is a customized Python dictionary that acts as root for all the Part objects it
is composed of.

More specifically, the Aircraft class inherits the properties and methods of
both the “dict” and Part classes. Hence, an Aircraft object may still be drawn,
transformed, clamped, etc. However, its main purpose is to store other Part
objects along with their assigned name, e.g.

>>> ac = Aircraft(wing=my_wing, fuselage=my_fuselage)

>>> ac.items()

Use the “blowup” method to quickly resume work from a previously saved
Aircraft object.

4.1.8 Miscellanea

Genair can help you define a few more aircraft components other than the ones
presented so far. For example, the “geom.misc” module defines the Nacelle and
WingStructure classes.

Consider, for example, the WingStructure class. As you can see from

>>> geom.misc.WingStructure??

it defines only two public methods: “generate spars” and “generate ribs”.
The first extract u-directional curves from the lower and upper halves of a wing

75 Tip: when translating the “pilot points” of an FFD volume make sure to be in either one
of the xy, yz, or zx views.

24

before linearly interpolating them.76 The second takes a similar approach but
with v-directional curves.

Note that, similar to a Wingtip object, a WingStructure object can be
instantiated directly from a Wing object through the “generate structure”
method.

4.2 Examples

The aircraft components described in the previous section are, for the most
part, highly flexible. This section gives examples of how this flexibility can be
exploited in the context of unconventional aicraft design.

The “play/examples/” directory of Genair contains a conventional tube-
wing (“ctw.p”), a box-wing (“bw.p”), a blended-wing-body (“bwb.p”), and a
strut-braced wing (“sbw.p”) configuration. All four configurations are saved as
Aircraft objects. Make sure to inspect each one of them, e.g.

>>> ctw, = load(‘ctw.p’)

>>> ctw.colorize()

>>> draw(ctw, *ctw.symmetrize())

and try to pay attention to things like: what trajectory curve was used for each
wing segment? which airfoils were used? how many FFD applications did the
fuselages have?

You may notice that none of the surfaces are trimmed where components
intersect. This is good practice. Indeed, because the geometry produced by
Genair is likely to be meshed in an external application anyway, and because
the IGES file format is ill-suited to export trimmed geometry, it is best to let
the external application do the hard work, i.e. clean up and trim the geometry
for you.77

You may also notice that the first wing segment of the blended wing-body
has a very specific and well delineated planform, and that the B-spline function
used to achieve this nonlinear taper is different than the one used to scale
the tip airfoils in the vertical direction. In this case both B-spline functions
were created from the same “BSplineFunctionCreator2” object. For your
convenience this object has been stored on the “Sc” attribute of the Aircraft
object;78 so, assuming that “bwb” is the Aicraft object, you may inspect it like
so:

>>> bwb.Sc.design()

and you may retrieve the B-spline functions with something like:

>>> r, n = 1000, 200

>>> scx = bwb.Sc.fit(r, n)

>>> scz = bwb.Sc.fit(r, n, di=2)

76 The “make ruled surface” function is part of the NURBS toolbox discussed in Section 3.4.
77 In ANSYS ICEM CFD look for the “Repair Geometry” tab. 78 BSplineFunctionCreator*
objects are normally saved as separate pickles.

25

Finally, both the blended wing-body and the box wing feature corner fillets
at wing-wing transitions. Those are actual Wing objects generated with the
help of the BSplineFunctionCreator3 class.

26

A Workflow with Jetstream

Genair can help you set up the geometry control system (GCS) implemented in
Jetstream. There are in fact many common features between the two: similar
to the trajectory curve of the Wing class (Section 4.1.3), the GCS uses axial
curves, and similar to the WingMerger class (Section 4.1.4), the GCS uses joints
to connect axial curves one after the other.

Note that despite the flexibility of the GCS it is unlikely that the default
implementation will satisfy your own needs. For example, the use of axial curves
to control FFD volumes is not necessarily recommended. So, as a first warning,
be prepared to tweak the code.

Also note that the material discussed in this section is for your convenience
only. In particular, the implementation of the GCS in Jetstream is capable of
more than what you can set up with the utilities provided by Genair. Again, be
prepared to tweak the code.

One more note: keep in mind that the GCS is ill-suited to handle surface-
surface intersections such as wing-body junctions. It can, however, support
wings of arbitrary topology, including boxed and braced configurations.

Now that you have better idea of what you are getting into, here is the
recommended workflow between Genair and Jetstream:79

1. generate the geometry using Genair,

2. generate the grid using ANSYS ICEM CFD,

3. map (fit) the grid using Jetstream,

4. set up the GCS using Genair, and

5. optimize the geometry using Jetstream.

The remainder of this section addresses Step 4.

A.1 Fortran Interface

First off, you need to compile the Fortran I/O interface of the “opti” package.
Simply navigate to “opti/io/” and type “make” in your shell. Make sure that
the “FC” variable in the Makefile points to a valid Fortran compiler.80

A.2 Plot3D and Connectivity Files

Following Step 3, you will need these four files: “newgrid.g” (typically renamed
as “grid.g”), “grid.map”, “grid.con”, and “patch.con”.81

A good place to put these files is in a subdirectory of “play/”, and a typical
usage session goes like:

79 Of course, you don’t have to use Genair in Step 1, but doing so will greatly facilitate
Step 4. 80 Tip: the Unix command “which” can help you locate the executable. 81 To
be precise, “grid.g” is not strictly required to set up the GCS, i.e. you could just copy and
rename “grid.map” to “grid.g”.

27

>>> gd = Grid()

>>> gd.read_grid()

>>> gd.read_connectivity()

>>> gd.read_map()

>>> gd.read_patch()

>>> save(gd, fn=‘gd.p’)

The Grid class is defined in the “opti.grid” module. It can be thought of
as a visual interface to the grid/connectivity files of Jetstream.

A Grid object has five attributes: “blk”, “iface”, “bcface”, “ptch”, and
“stch”. These are all Python lists that store Block, Interface, Boundary, Patch,
and Stitch objects, respectively.82 A sixth type of object, Map objects, are
stored directly on the “map” attribute of the Block objects. Note that all six
object types are derived from the NURBSObject classes, so they can all be,
for example, rendered in OpenGL window(s). Moreover, each object type im-
plements a “print info” method which is useful to verify information such as
boundary conditions and connectivity between patches.83

A.3 Geometry Control System

Essentially, a Grid object holds the surface control points that go inside the
FFD volumes of the GCS. The next step is thus to define those FFD volumes
and, if necessary, their assigned axial curve. For wings, Genair can automate
much of this step, provided that the wings were generated by Genair in the first
place (as suggested in Step 1 above).

Take, for example, the “wing” component of the Aircraft object saved in the
“ctw.p” file of the “play/examples/” directory:

>>> ctw, = load(‘ctw.p’)

>>> ctw.blowup()

>>> w0, w1 = wing.wings

You may easily generate the FFD volume and axial curve for each wing with
the “make axial from wing” function of the “opti.axial” module, e.g.

>>> a0 = opti.axial.make_axial_from_wing(w0, ‘LE’, 2, 1,

... (10, 4, 2), (3, 3, 1),

... offsets=[(0.01, 0.01), (0, 0), (0.01, 0.01)])

>>> a1 = opti.axial.make_axial_from_wing(w1, ‘LE’, 2, 1,

... (10, 8, 2), (3, 3, 1),

... offsets=[(0.01, 0.01), (0, 0.07), (0.01, 0.01)])

>>> draw(wing, a0, a1)

Next, you should check if the wings fit inside the FFD volumes. Normally,
you would do that by embedding the control points of the patches stored on a
Grid object, i.e.

82 The order of the objects stored in each list is implied from the connectivity files. 83 Tip:
if you don’t know the index of an object in a list then pick it from an OpenGL window and
type “last picked object.print info()” in the prompt.

28

>>> draw(*(gd.ptch+axials))

>>> for a in axials:

... a.ffd.embed(*gd.ptch)

but for this example try embedding the surface control points of the Wing
objects instead. Make sure that all the control points are successfully embedded,
including those at the tip and at the symmetry plane.84,85

Next, proceed with extracting “joints” (called “points” in Jetstream) from
the axial curves:

>>> axials = [a0, a1]

>>> joints = opti.axial.make_joints_from_axials(axials)

after which point is it customary to check the whole setup by visualizing the
effect of translating joints on the shape of the axial curves, FFD volumes, and
wings:86

>>> opti.axial.set_module_variables(axials, joints)

>>> draw(*(gd.ptch+axials+joints))

(Again, to follow with this example use the Wing objects instead of the grid
patches.)

If everything looks fine then the last step is to save the files required to run
Jetstream. This can be done with the following commands:

>>> opti.axial.write_axial_connectivity()

and

>>> ffds = [a.ffd for a in axials]

>>> gd.write_patch(ffds)

The first command saves the FFD volumes and axial curves in two separate
“B-spline” files (“.b”). It also saves connectivity information in a format that
is analogous to the “patch.con” file. As for the “write patch” method of the
Grid object, it saves a new “patch.con” file that contains additional information
such as which embedded surface control point belongs to which FFD volume.

The above commands are decoupled; i.e. you don’t need to embed control
points prior to calling “write axial connectivity” and, conversely, you don’t
need to call “set module variables” prior to calling “write patch”.

In the connectivity file, the “type” of a joint refers to: 0 for a normal joint,
1 for a joint that connects two or more axial curves at their common tip, and 2
for a joint that attaches the tip of an axial curve anywhere along another axial
curve. The “make joints from axials” utility can automatically detect Type
0 and 1 joints; Type 2 joints must be specified manually.

84 Here, because “w0” has dihedral, you must use a0.snap ffd() to snap the first row of FFD
volume control points on the y = 0 plane prior to embedding the surface control points. 85 A
Point object is successfully embedded if it turns green, except if it is a control point falling on
the origin of its NURBSObject object (in which case it won’t turn green even though it was
successfully embedded). 86 Tip: use the “undo” mechanism (Section 3.2.2) to come back to
the initial state.

29

B Suggested Scripts

B.1 Multi-Segmented Wing

The following script generates and merges an arbitrary number of trapezoidal
wing segments. The user must provide the Airfoil objects at each break point.
The variable “REF” refers to the curve about which sweep is applied; permissible
values are “LE”, “QC”, and “TE”.

AIRFOIL = [a0, a1, a2]

TWIST = [0, 0, 0]

CHORD = [5.82, 3.40, 0.78]

SPAN = [4.66, 8.44]

DIHEDRAL = [2, 2]

SWEEP = [30, 30]

REF = ‘LE’

###

class TrapezoidalWing(Wing):

def __init__(self, a0, a1, t0, t1, c0, c1, s, d, p):

super(TrapezoidalWing, self).__init__(a0, a1)

tw = BSplineFunctionCreator1(end=(t0,t1)).fit()

sc = BSplineFunctionCreator1(end=(c0,c1)).fit()

T = nurbs.tb.make_linear_curve(Point(), Point(y=s))

self.orient(T, Tw=tw, show=False)

self.fit(scs=(sc,None,sc), show=False)

if REF is not ‘QC’:

self.T = eval(‘self.’ + REF)

self.glue(); self.dihedral = d; self.sweep = p

ws = []

for i in xrange(len(AIRFOIL) - 1):

w = TrapezoidalWing(AIRFOIL[i], AIRFOIL[i+1],

TWIST[i], TWIST[i+1],

CHORD[i], CHORD[i+1],

SPAN[i], DIHEDRAL[i], SWEEP[i])

ws.append(w)

multi_segmented_wing = WingMerger(*ws)

multi_segmented_wing.merge()

30

References

[1] L. Piegl and W. Tiller, The NURBS Book, Springer, 2nd ed., 1997.

[2] L. Piegl, On NURBS: a survey, Computer Graphics and Applications,
IEEE 11 (1991), no. 1, 55–71.

[3] T. Sederberg and S. Parry, Free-form deformation of solid geometric mod-
els, ACM SIGGRAPH Computer Graphics, 20 (1986), no. 4, 151–160.

[4] https://www.python.org

[5] http://www.numpy.org

[6] http://www.scipy.org

[7] http://ipython.org

[8] http://pyopengl.sourceforge.net

[9] http://www.pyglet.org

[10] http://www.pythonware.com/products/pil/

[11] http://continuum.io

31

	Preliminaries
	Scope
	Suggested Readings

	Introduction
	Installation
	Quick Start
	Saving and Loading
	Code Overview

	Non-Uniform Rational B-Spline Library
	Point and NURBSObject Classes
	OpenGL Interface
	Transforms
	Toolbox

	Component-Based Aircraft Design
	Part Class
	Examples

	Workflow with Jetstream
	Fortran Interface
	Plot3D and Connectivity Files
	Geometry Control System

	Suggested Scripts
	Multi-Segmented Wing

