

3-Space Sensor Wireless 2.4GHz

Miniature Wireless Attitude & Heading Reference System

User's Manual

YEI Technology

630 Second Street Portsmouth, Ohio 45662

www.YeiTechnology.com www.3SpaceSensor.com

> Patents Pending ©2007-2011 Yost Engineering, Inc. Printed in USA

This page intentionally left blank

3-Space Sensor Wireless 2.4GHz

Miniature Wireless Attitude & Heading Reference System

User's Manual

YEI Technology

630 Second Street Portsmouth, Ohio 45662

www.YeiTechnology.com www.3SpaceSensor.com

> Toll-Free: 888-395-9029 Phone: 740-355-9029

Patents Pending ©2007-2011 Yost Engineering, Inc. Printed in USA

Table of Contents

1. Usage/Safety Considerations	1
1.1 Usage Conditions	1
1.2 Technical Support and Repairs	1
1.3 Regulatory Approval	1
1.3.1 United States FCC Approval.	1
1.3.2 Canada IC Approval	2
1.3.3 European Approval.	2 2
2. Overview of the VEI Wireless 2. Space Sensor	2
2. Overview of the 1 E1 whereas 5-space Sensol	
2.1 Infloduction	
2.2 Applications	
2.3.1 Wireless Sensor Hardware Overview	
2.3.2 Wireless Dongle Hardware Overview	4
2.4 Features	5
2.5 Block Diagram of Sensor Operation	6
2.6 Specifications	7
2.7 Physical Dimensions.	8
2.8 Axis Assignment.	9
2.9 Wireless Terminology	9
2.10 Wireless LED Modes.	10
3. Description of the 3-Space Sensor	
3.1 Orientation Estimation.	
3.1.1 Component Sensors	11 11
3.1.2 Scale, Blas, and Cross-Axis Effect.	
3.1.4 Additional Calibration	12
3.1.5 Reference Vectors	12
3.1.6 Orientation Filtering	13
3.1.7 Tare Orientation	13
3.1.8 Offset Orientation	
3.1.9 Other Estimation Parameters.	14
3.2 Communication	15
	1.7
3.2.1 Wired Streaming Mode	15
3.2.1 Wired Streaming Mode 3.2.2 Wireless Streaming Mode	15
3.2.1 Wired Streaming Mode	
 3.2.1 Wired Streaming Mode	
 3.2.1 Wired Streaming Mode	15 16 16 17 17
 3.2.1 Wired Streaming Mode	
 3.2.1 Wired Streaming Mode	15 16 16 17 17 17 17 17 17 17 18 18 18 18 18 18 18 18 18
 3.2.1 Wired Streaming Mode	15 16 16 17 17 17 17 17 17 17 17 18 18 18 18 18 18 18 19
 3.2.1 Wired Streaming Mode	15 16 16 17 17 17 17 17 17 17 18 18 18 18 18 18 19 19 19
 3.2.1 Wired Streaming Mode	15 16 16 17 17 17 17 17 17 18 18 18 18 18 18 18 19 19 19 19
 3.2.1 Wired Streaming Mode	15 16 16 17 17 17 17 17 17 18 18 18 18 18 18 18 18 19 19 19 19 19
 3.2.1 Wired Streaming Mode 3.2.2 Wireless Streaming Mode 3.2.3 Wireless Streaming Manual Mode. 3.3 Input Device Emulation. 3.3.1 Axes and Buttons 3.3.2 Joystick. 3.3.3 Mouse 3.3.4 Wireless Joystick/Mouse. 3.4 Wireless Joystick/Mouse. 3.4 Wireless Joystick/Mouse. 3.4.1 Committing Settings 3.4.2 Committing Settings 3.4.3 Natural Axes 3.4.4 Sensor Settings and Defaults 3.4.5 Dongle Settings and Defaults 3.4.6 Sensor Wireless Settings and Defaults 3.4.7 Dongle Wireless Settings and Defaults 4.3-Space Sensor Usage/Protocol 4.1 Usage Overview 	15 16 16 17 17 17 17 17 17 18 18 18 18 18 18 18 19 19 19 19 19 19 19 19 19 121 21
 3.2.1 Wired Streaming Mode 3.2.2 Wireless Streaming Mode 3.2.3 Wireless Streaming Manual Mode 3.3 Input Device Emulation 3.3.1 Axes and Buttons 3.3.2 Joystick 3.3.3 Mouse 3.4 Wireless Joystick/Mouse 3.4 Vireless Joystick/Mouse 3.4 Sensor Settings 3.4.1 Committing Settings 3.4.2 Committing Settings 3.4.3 Natural Axes. 3.4.4 Sensor Settings and Defaults 3.4.5 Dongle Settings and Defaults	15 16 16 17 17 17 17 17 17 18 18 18 18 18 18 18 18 19 19 19 19 19 21 21 21
 3.2.1 Wired Streaming Mode. 3.2.2 Wireless Streaming Mode. 3.2.3 Wireless Streaming Manual Mode. 3.3 Input Device Emulation. 3.3.1 Axes and Buttons. 3.3.2 Joystick. 3.3.3 Mouse. 3.4 Wireless Joystick/Mouse. 3.4 Sensor Settings. 3.4.1 Committing Settings. 3.4.2 Committing Settings. 3.4.3 Natural Axes. 3.4.4 Sensor Settings and Defaults. 3.4.5 Dongle Settings and Defaults. 3.4.6 Sensor Wireless Settings and Defaults. 3.4.7 Dongle Wireless Settings and Defaults. 4.1 Usage Overview. 4.1.1 Protocol Overview. 4.1.2 Computer Interfacing Overview(USB). 	15 16 16 17 17 17 17 17 17 18 18 18 18 18 18 18 19 19 19 19 21 21 21 21 21
 3.2.1 Wired Streaming Mode 3.2.2 Wireless Streaming Mode 3.2.3 Wireless Streaming Manual Mode. 3.3 Input Device Emulation	15 16 17 17 17 17 17 17 17 18 18 18 18 19 19 21
 3.2.1 Wired Streaming Mode 3.2.2 Wireless Streaming Mode 3.3 Input Device Emulation	15 16 17 17 17 17 17 17 17 18 18 18 19 19 21 22 22
 3.2.1 Wired Streaming Mode	15 16 17 17 17 17 17 17 18 18 18 19 19 21 21 21 21 21 21 21 21 21 21 21 21 21 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 23 24 25 26 27 28 29 21 21 22
 3.2.1 Wired Streaming Mode. 3.2.2 Wireless Streaming Manual Mode. 3.3 Input Device Emulation. 3.3.1 Axes and Buttons. 3.3.2 Joystick. 3.3.3 Mouse. 3.3.4 Wireless Joystick/Mouse. 3.4 Wireless Joystick/Mouse. 3.4 Committing Settings. 3.4.1 Committing Settings. 3.4.2 Committing Wireless Settings. 3.4.3 Natural Axes. 3.4.4 Sensor Settings and Defaults. 3.4.5 Dongle Settings and Defaults. 3.4.6 Sensor Wireless Settings and Defaults. 3.4.7 Dongle Wireless Gettings and Defaults. 3.4.7 Dongle Wireless Cettings and Defaults. 3.4.7 Dongle Wireless Settings and Defaults. 4.3 -Space Sensor Usage/Protocol. 4.1 Protocol Overview. 4.1.2 Computer Interfacing Overview(USB). 4.1.3 Computer Interfacing Overview(Wireless). 4.2 Wired Protocol Packet Format. 4.2.2 ASCII Text Packet Format. 4.3 Wireless Protocol 	15 16 17 17 17 17 17 17 18 18 18 19 19 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 22 23 23 24
 3.2.1 Wired Streaming Mode	$\begin{array}{c} 15\\ 16\\ 16\\ 16\\ 17\\ 17\\ 17\\ 17\\ 17\\ 17\\ 17\\ 17\\ 18\\ 18\\ 18\\ 18\\ 18\\ 18\\ 18\\ 18\\ 18\\ 18$
 3.2.1 Wired Streaming Mode. 3.2.2 Wireless Streaming Mode. 3.2.3 Wireless Streaming Manual Mode. 3.3 Input Device Emulation. 3.3.1 Axes and Buttons. 3.3.2 Joystick. 3.3.3 Mouse. 3.3.4 Wireless Joystick/Mouse. 3.4 Wireless Joystick/Mouse. 3.4 Sensor Settings. 3.4.1 Committing Settings. 3.4.2 Committing Wireless Settings. 3.4.3 Natural Axes. 3.4.4 Sensor Settings and Defaults. 3.4.5 Dongle Settings and Defaults. 3.4.6 Sensor Wireless Settings and Defaults. 3.4.7 Dongle Wireless Settings and Defaults. 4.1 Protocol Overview. 4.1.1 Protocol Overview. 4.1.2 Computer Interfacing Overview(USB). 4.1.3 Computer Interfacing Overview(Wireless). 4.2 Mired Protocol Packet Format. 4.2.1 Binary Packet Format. 4.3 Wireless Potocol Packet Format. 4.3 Wireless Potocol Packet Format. 4.3 Wireless Potocol Packet Format. 4.3 Wireless Communication Format. 4.3 Wireless Communication Format. 4.3 Binary Packet Format. 	$\begin{array}{c} 15\\ 16\\ 16\\ 16\\ 17\\ 17\\ 17\\ 17\\ 17\\ 17\\ 17\\ 17\\ 17\\ 17$
 3.2.1 Wirel Streaming Mode	$ \begin{array}{c} \begin{array}{c} 15\\ 16\\ 16\\ 16\\ 17\\ 17\\ 17\\ 17\\ 17\\ 17\\ 17\\ 17\\ 17\\ 17$
 3.2.1 Wirel Streaming Mode	$\begin{array}{c} 15\\ 16\\ 16\\ 16\\ 17\\ 17\\ 17\\ 17\\ 17\\ 17\\ 17\\ 17\\ 17\\ 17$
 3.2.1 Wired Streaming Mode	$\begin{array}{c} 15\\ 16\\ 16\\ 16\\ 17\\ 17\\ 17\\ 17\\ 17\\ 17\\ 17\\ 17\\ 17\\ 17$
 3.2.1 Wired Streaming Mode	$\begin{array}{c} 15\\ 16\\ 16\\ 16\\ 17\\ 17\\ 17\\ 17\\ 17\\ 17\\ 17\\ 17\\ 17\\ 18\\ 18\\ 18\\ 18\\ 18\\ 18\\ 18\\ 18\\ 19\\ 19\\ 19\\ 19\\ 19\\ 21\\ 21\\ 21\\ 21\\ 21\\ 21\\ 21\\ 21\\ 21\\ 21$
 3.2.1 Wired Streaming Mode	$\begin{array}{c} 15\\ 16\\ 16\\ 16\\ 17\\ 17\\ 17\\ 17\\ 17\\ 17\\ 17\\ 17\\ 18\\ 18\\ 18\\ 18\\ 18\\ 18\\ 18\\ 18\\ 19\\ 19\\ 19\\ 19\\ 19\\ 21\\ 21\\ 21\\ 21\\ 21\\ 21\\ 21\\ 21\\ 21\\ 22\\ 22$
 3.2.1 Wireld Streaming Mode. 3.2.2 Wireless Streaming Manual Mode. 3.3 Input Device Emulation. 3.3 Input Device Emulation. 3.3.1 Axes and Buttons. 3.3.3 Mouse. 3.3.4 Wireless Joystick/Mouse. 3.4 Wireless Joystick/Mouse. 3.4 Wireless Joystick/Mouse. 3.4 Wireless Joystick/Mouse. 3.4 Committing Settings. 3.4.1 Committing Settings. 3.4.2 Committing Settings. 3.4.3 Natural Axes. 3.4.4 Sensor Settings and Defaults. 3.4.5 Dongle Settings and Defaults. 3.4.7 Dongle Wireless Settings and Defaults. 3.4.7 Dongle Wireless Settings and Defaults. 3.4.1 I Vasge Overview. 4.1.1 Protocol Overview. 4.1.2 Computer Interfacing Overview(USB). 4.1.3 Computer Interfacing Overview(Wireless). 4.2 Wired Protocol Packet Format. 4.2.1 Binary Packet Format. 4.3.1 Wireless Communication Format. 4.3.2 Binary Command Response. 4.3.4 Sample Binary Commands. 4.3.5 ASCII Text Packet Format. 4.3.5 ASCII Text Packet Format. 4.3.6 ASCII Command Response. 4.3.7 Sample ASCII Commands. 4.4 Response Header Format. 4.3.7 Sample ASCII Commands. 4.4 Response Header Format. 4.3.7 Sample ASCII Commands. 4.4.4 Sample Binary Commands. 4.4.5 ASCII Command Response. 4.3.7 Sample ASCII Commands. 4.4.4 Response Header Format. 	$\begin{array}{c} 15\\ 16\\ 16\\ 16\\ 17\\ 17\\ 17\\ 17\\ 17\\ 17\\ 17\\ 17\\ 18\\ 18\\ 18\\ 18\\ 18\\ 18\\ 18\\ 18\\ 19\\ 19\\ 19\\ 19\\ 21\\ 21\\ 21\\ 21\\ 21\\ 21\\ 21\\ 21\\ 21\\ 22\\ 22$

4.4.2 Wired Streaming with Response Header	29
4.4.3 Wireless Response Header	29
4.4.4 Wireless Streaming with Response Header	29
4.5 Command Overview	
4.5.1 Orientation Commands	
4.5.2 Normalized Data Commands	
4.5.3 Corrected Data Commands	
4.5.4 Other Data Commands	
4.5.5 Raw Data Commands	32
4.5.6 Streaming Commands	32
4.5.7 Configuration Write Commands	
4.5.8 Configuration Read Commands	
4.5.9 Calibration Commands	40
4.5.10 Dongle Commands	41
4.5.11 Wireless Sensor & Dongle Commands	43
4.5.12 Battery Commands	43
4.5.13 General Commands	44
4.5.14 Wireless HID Commands	45
4.5.15 Wired HID Commands	45
4.5.16 General HID Commands	46
Appendix	47
USB Connector	47
Hex / Decimal Conversion Chart	

This page intentionally left blank

1. Usage/Safety Considerations

1.1 Usage Conditions

- Do not use the 3-Space Sensor in any system on which people's lives depend(life support, weapons, etc.)
- Because of its reliance on a compass, the 3-Space Sensor will not work properly near the earth's north or south pole.
- Because of its reliance on a compass and accelerometer, the 3-Space Sensor will not work properly in outer space or on planets with no magnetic field.
- Care should be taken when using the 3-Space Sensor in a car or other moving vehicle, as the disturbances caused by the vehicle's acceleration may cause the sensor to give inaccurate readings.
- Because of its reliance on a compass, care should be taken when using the 3-Space Sensor near ferrous metal structures, magnetic fields, current carrying conductors, and should be kept about 6 inches away from any computer screens or towers.
- Since the Wireless 3-Space Sensor uses RF communication technology, communication failure modes should be carefully considered when designing a system that uses the wireless 3-Space Sensor.
- The Wireless 3-Space Sensor is powered by a rechargeable lithium-polymer battery. Lithium-polymer batteries have high energy densities and can be dangerous if not used properly. See section 1.4 Battery Considerations for further information pertaining to battery safety.

1.2 Technical Support and Repairs

Standard Limited Product Warranty: YEI warrants the media and hardware on which products are furnished to be free from defects in materials and workmanship under normal use for sixty (60) days from the date of delivery except for OEM warranty items(see below). YEI will repair or replace any defective product which is returned within this time period. Returned items will be tested in order to confirm a manufacturing defect is present. No warranties exist for any misuse.

OEM Limited Product Warranty: The following OEM products are subject to additional return limitations beyond the Standard Limited Product Warranty: surface-mount modules, integrated circuits, bare PCB modules, and other electronic components. Because of the risk of damage or malfunction due to user testing and handling problems, returns will be granted only upon evidence and/or inspection conclusively demonstrating manufacturing defect. All OEM products are individually tested prior to shipment for quality control.

Product Support: YEI provides technical and user support via our toll-free number (888-395-9029) and via email (support@yeitech.com). Support is provided for the lifetime of the equipment. Requests for repairs should be made through the Support department. For damage occurring outside of the warranty period or provisions, customers will be provided with cost estimates prior to repairs being performed.

1.3 Regulatory Approval

1.3.1 United States FCC Approval

This device contains FCC ID: OA3MRF24J40MA

This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy, and if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

- Reorient or relocate the receiving antenna.
- Increase the separation between the equipment and receiver.

- Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
- Consult the dealer or an experienced radio/TV technician for help.

To satisfy FCC RF Exposure requirements for mobile and base station transmission devices, a separation distance of 20 cm or more should be maintained between the antenna of this device and persons during operation. To ensure compliance, operation at closer than this distance is not recommended. The antenna(s) used for this transmitter must not be co-located or operating in conjunction with any other antenna or transmitter.

If the Wireless Unit is used in a portable application (antenna is less than 20 cm from persons during operation), the integrator is responsible for performing Specific Absorption Rate (SAR) testing in accordance with FCC rules 2.1091

1.3.2 Canada IC Approval

This device contains IC ID: 7693A-24J40MA

This device has been certified for use in Canada under Industry Canada (IC) Radio Standards Specification (RSS) RSS-210 and RSS-Gen.

1.3.3 European Approval

The device contains a communication module that has been certified for use in European countries.

The following testing has been completed:

Test standard ETSI EN 300 328 V1.7.1 (2006-10):

- Maximum Transmit Power
- Maximum EIRP Spectral Density
- Frequency Range
- Radiated Emissions

Test standards ETSI EN 301 489-1:2008 and ETSI EN 301 489-17:2008:

- Radiated Emissions
- Electro-Static Discharge
- Radiated RF Susceptibility

1.4 Battery Safety Considerations

The Wireless 3-Space Sensor contains a rechargeable lithium-polymer battery. Lithium-polymer batteries have high energy densities and can be dangerous if not used and cared for properly. The Wireless 3-space Sensor has been designed to include multiple levels of battery safety assurance. The Wireless 3-Space Sensor circuitry includes smart charging circuitry with thermal management to prevent over-charging the battery. The battery pack itself also includes protection circuitry to prevent over-charge, over-current, and over-discharge conditions.

Most battery issues arise from improper handling of batteries, and particularly from the continued use of damaged batteries.

As with any lithium-polymer battery-powered device, the following should be observed:

- Don't disassemble, crush, puncture, shred, or otherwise attempt to change the form of your battery.
- Don't attempt to change or modify the battery yourself. Contact YEI technical support for battery replacement or battery repair.
- Don't let the mobile device or battery come in contact with water.
- Don't allow the battery to touch metal objects.
- Don't place the sensor unit near a heat source. Excessive heat can damage the sensor unit or the battery. High temperatures can cause the battery to swell, leak, or malfunction.
- Don't dry a wet or damp sensor unit with an appliance or heat source, such as a hair dryer or microwave oven.

- Don't drop the sensor unit. Dropping, especially on a hard surface, can potentially cause damage to the sensor unit or the battery.
- Discontinue use immediately and contact YEI technical support if the battery or sensor unit produce odors, emit smoke, exhibit swelling, produce excess heat, exhibit leaking.
- Dispose of Lithium-polymer batteries properly in accordance with local, state, and federal guidelines.

2. Overview of the YEI Wireless 3-Space Sensor

2.1 Introduction

The YEI 3-Space SensorTM Wireless integrates a miniature, high-precision, high-reliability, Attitude and Heading Reference System (AHRS) with a 2.4GHz DSSS communication interface and a rechargeable lithium-polymer battery solution into a single low-cost end-use-ready unit. The Attitude and Heading Reference System (AHRS) uses triaxial gyroscope, accelerometer, and compass sensors in conjunction with advanced on-board filtering and processing algorithms to determine orientation relative to an absolute reference orientation in real-time.

Orientation can be returned in absolute terms or relative to a designated reference orientation. The proprietary multireference vector mode increases accuracy and greatly reduces and compensates for sensor error. The YEI 3-Space Sensor Wireless system also utilizes a dynamic sensor confidence algorithm that ensures optimal accuracy and precision across a wide range of operating conditions.

The YEI 3-Space Sensor Wireless unit features are accessible via a well-documented open communication protocol that allows access to all available sensor data and configuration parameters using either 2.4GHz DSSS wireless or USB 2.0 interfaces. Versatile commands allow access to raw sensor data, normalized sensor data, and filtered absolute and relative orientation outputs in multiple formats including: quaternion, Euler angles (pitch/roll/yaw), rotation matrix, axis angle, two vector(forward/up).

The YEI Wireless 3-Space Sensor[™] communicates with a host PC via a USB dongle installed in the PC. Up to 15 sensor units can be associated with each wireless dongle, and multiple dongles can be used simultaneously to achieve high sensor counts or increase individual sensor throughput. Sensor and dongle units have individual wireless network PAN Id assignment and wireless channel assignment to allow multiple sensors to communicate simultaneously without interference or performance degradation.

When used as a USB device, the 3-Space SensorTM provides mouse emulation and joystick emulation modes that ease integration with existing applications.

2.2 Applications

- Robotics
- Motion capture
- · Positioning and stabilization
- Vibration analysis
- Inertial augmented localization
- · Personnel / pedestrian navigation and tracking
- Unmanned air/land/water vehicle navigation
- Education and performing arts
- · Healthcare monitoring
- · Gaming and motion control
- · Accessibility interfaces

· Virtual reality and immersive simulation

2.3 Hardware Overview

2.3.1 Wireless Sensor Hardware Overview

- 1. USB Connector The 3-Space Sensor uses a 5-pin mini USB connector to connect to a computer via USB and to charge the internal battery. The USB connector provides for both power and communication signals.
- 2. Recessed Power Switch The 3-Space Sensor can be switch on and off when powered from the internal battery by using the recessed power switch. When connected via USB, the unit is powered and the batteries will begin recharging regardless of the position of the recessed power switch
- **3.** Input Button 1 The 3-Space Sensor includes two input buttons that can be used in conjunction with the orientation sensing capabilities of the device. The inputs are especially useful when using the 3-Space Sensor as an input device such as in joystick emulation mode or mouse emulation mode.
- 4. Indicator LED The 3-Space Sensor includes an RGB LED that can be used for visual status feedback.
- 5. Input Button 2 The 3-Space Sensor includes two input buttons that can be used in conjunction with the orientation sensing capabilities of the device. The inputs are especially useful when using the 3-Space Sensor as an input device such as in joystick emulation mode or mouse emulation mode.

2.3.2 Wireless Dongle Hardware Overview

1. USB Connector – The 3-Space Wireless Dongle uses a 5-pin mini USB connector to connect to a computer

via USB. The USB connector provides for both power and communication.

2. Indicator LED – The 3-Space Wireless Dongle includes an RGB LED that can be used for visual status feedback.

2.4 Features

The YEI 3-Space Sensor Wireless has many features that allow it to be a flexible all-in-one solution for your orientation sensing needs. Below are some of the key features:

- Small self-contained high-performance wireless AHRS at 35mm x 60mm x 15mm and 28 grams
- · Integrated 2.4GHz DSSS wireless communication interface allows high-performance at ranges up to 200'
- Integrated Rechargeable Lithium-Polymer battery and charge control allows battery life of 5+ hours at full performance
- Fast sensor update and filter rate allow use in real-time applications, including stabilization, virtual reality, real-time immersive simulation, and robotics
- Highly customizable orientation sensing with options such as tunable filtering, oversampling, and orientation error correction
- Advanced integrated Kalman filtering allows sensor to automatically reduce the effects of sensor noise and sensor error
- Robust open protocol allows commands to be sent in human readable form, or more quickly in machine readable form
- Orientation output format available in absolute or relative terms in multiple formats (quaternion, rotation matrix, axis angle, two-vector)
- · Absolute or custom reference axes
- · Access to raw sensor data
- Flexible communication options: USB 2.0 or wireless 2.4GHz DSSS (FCC Certified)
- 2.4Ghz DSSS wireless communication allows orientation sensing without any wires, making activities requiring a high level of mobility like motion capture possible.
- Wireless sensors have configurable wireless channel selection and network PAN Ids to allow multiple sensors to communicate simultaneously without interference or performance degradation
- Each communication dongle unit supports up to 15 independent sensor units
- · Asynchronous communication support for improved performance with multiple sensor units
- · Communication through a virtual COM port
- · USB joystick/mouse emulation modes ease integration with existing applications
- Upgradeable firmware
- RGB status LED, two programmable input buttons
- · Available in either hand-held or screw-down packaging
- RoHS compliant

2.5 Block Diagram of Sensor Operation

2.6 Specifications

General		
Part number	TSS-WL (Handheld Sensor Unit) TSS-WL-S (Screw-down Sensor Unit) 35mm x 60mm x 15mm (1 38 x 2 36 x 0 59 in)	
Dimensions	35mm x 60mm x 15mm (1.38 x 2.36 x 0.59 in.)	
Weight	28 grams (0.98 oz)	
Supply voltage	+5v USB	
Battery technology	rechargeable Lithium-Polymer	
Battery lifetime	5+ hours continuous use at full performance	
Communication interfaces	USB 2.0, 2.4GHz DSSS Wireless (FCC certified)	
Wireless communication range	up to 200'	
Wireless PAN Ids selectable	65536	
Wireless channels selectable	16 (2.4GHz channel 11 through 26)	
Filter update rate	up to 200Hz with full functionality	
Orientation output	absolute & relative quaternion, Euler angles, axis angle, rotation matrix, two vector	
Other output	raw sensor data, corrected sensor data, normalized sensor data, temperature	
Shock survivability	5000g	
Temperature range	-40C ~ 85C (-40F ~ 185F)	
Processor	32-bit RISC running @ 60MHz	
Sensor		
Orientation range	360° about all axes	
Orientation accuracy	$\pm 2^{\circ}$ for dynamic conditions & all orientations	
Orientation resolution	<0.08°	
Orientation repeatability	0.085° for all orientations	
Accelerometer scale	$\pm 2g / \pm 4g / \pm 8g$ selectable	
Accelerometer resolution	14 bit	
Accelerometer noise density	99μg/√ Hz	
Accelerometer sensitivity	0.00024g/digit for ±2g range	
	0.00048g/digit for ±4g range	
	0.00096g/digit for ±8g range	
Accelerometer temperature sensitivity	±0.008%/°C	
Gyro scale	±250/±500/±2000 °/sec selectable	
Gyro resolution	16 bit	
Gyro noise density	0.03°/sec/√ Hz	
Gyro bias stability @ 25°C	11°/hr average for all axes	
Gyro sensitivity	0.00875°/sec/digit for ±250°/sec	
	0.01750°/sec/digit for ±500°/sec	
	$0.070^{\circ}/\text{sec}/\text{digit}$ for $\pm 2000^{\circ}/\text{sec}$	
Gyro non-linearity	0.2% full-scale	
Gyro temperature sensitivity	±0.016%/°C	
Compass scale	± 1.3 Ga default. Up to ± 8.1 Ga available	
Compass resolution	12 bit	
Compass sensitivity	5 mGa/digit	
Compass non-linearity	0.1% full-scale	

Dongle			
Part number	TSS-DNG (Wireless Communication Dongle)		
Dimensions	22.5mm x 65.6mm x 15mm (0.86 x 2.58 x 0.59 in.)		
Weight	12 grams (0.42 oz)		
Supply voltage	+5v USB		
Communication interfaces	USB 2.0, 2.4GHz DSSS Wireless (FCC certified)		
Wireless communication range	up to 200'		
Wireless sensors supported	15 simultaneous		
Wireless PAN Ids selectable	65536		
Wireless channels selectable	16 (2.4GHz channel 11 through 26)		
Processor	32-bit RISC running @ 60MHz		

*Specifications subject to change

2.7 Physical Dimensions

2.8 Axis Assignment

All YEI 3-Space Sensor product family members have re-mappable axis assignments and axis directions. This flexibility allows axis assignment and axis direction to match the desired end-use requirements.

The natural axes of the 3-Space Sensor are as follows:

- The positive X-axis points out of the right hand side of the sensor, which is the side that is facing right when the buttons face upward and plug faces towards you.
- The positive Y-axis points out of the top of the sensor, the side with the buttons.
- The positive Z-axis points out of the front of the sensor, the side opposite the plug.

The natural axes are illustrated in the diagram below

Bear in mind the difference between natural axes and the axes that are used in protocol data. While they are by default the same, they can be remapped so that, for example, data axis Y could contain data from natural axis X. This allows users to work with data in a reference frame they are familiar with.

2.9 Wireless Terminology

The following provides a list of commonly used wireless concepts and their definitions.

Pan ID – Refers to a 16-bit number that can be assigned to each individual wireless unit or dongle. The pan ID serves the purpose of separating units into clusters or networks, such that a unit with one pan ID cannot communicate with a unit on another pan ID.

Channel – Refers to the frequency on which a given unit transmits or receives upon. There are 16 available channels, ranging from 11-26, inclusive. Certain channels may be more well-suited for wireless communication than others at any given time. Refer to the command listing to find out how to scan channels. Like the pan ID, units with different channels cannot communicate with each other.

Address – Each unit has a unique built-in and unchangeable address (also referred to as hardware ID), which can be found etched into the back of wireless units (but not dongles). When communicating with a unit, addresses are not used directly. Instead, a mapping is provided in the form of logical IDs.

Logical ID – Since direct addresses are cumbersome, these are provided as a means to easily communicate with a given unit. There are 15 such logical IDs. Each logical ID can be mapped to a hardware address to ease communication. A table of logical IDs and their corresponding hardware addresses can be found inside the suite under the Dongle submenu, under Wireless Communication Settings... For more information on reading or setting logical IDs, please refer to the command chart.

2.10 Wireless LED Modes

Both the dongle and wireless unit have built-in LEDs that are meant to convey information about the state of the respective device. Each unit and dongle may also have a custom color that can be set. The wireless unit will display the following LED colors under the following circumstances:

- Upon receipt of a packet, the wireless unit will flash green temporarily. This will occur regardless of whether the wireless unit is plugged in or not.
- When the wireless unit is plugged in and charging, the sensor will flash orange every second.
- When the wireless unit is plugged in and fully charged, the sensor will flash green every second.
- When the wireless unit falls below a certain battery life level, it will flash red in increasingly quicker intervals. Note that this does not happen if the sensor is plugged in.
- Upon receipt of a packet, the dongle will flash green temporarily.
- If the dongle transmits a packet that does not reach its destination, the dongle will flash red temporarily.

Under all other circumstances, both devices will display the custom color that has been set. In addition to this default behavior, it is possible to set a static LED mode, in which the above functionality will be overridden. In this case, the LED will display only the custom color and nothing else. Please refer to the command chart for information on setting static LED mode.

3. Description of the 3-Space Sensor

3.1 Orientation Estimation

The primary purpose of the 3-Space Sensor is to estimate orientation. In order to understand how to handle this estimation and use it in a meaningful way, there are a few concepts about the sensor that should be understood. The following sections describe these concepts.

3.1.1 Component Sensors

The 3-Space Sensor estimates orientation by combining the data it gets from three types of sensors: a gyroscope, an accelerometer, and a compass. A few things you should know about each of these sensors:

- Accelerometer: This sensor measures the acceleration due to gravity, as well as any other accelerations that occur. Because of this, this sensor is at its best when the 3-Space Sensor is sitting still. Most jitter seen as the orientation of the sensor changes is due to shaking causing perturbations in the accelerometer readings. To account for this, by default, when the 3-Space Sensor is being moved, the gyroscope becomes more trusted(becomes a greater part of the orientation estimate), and the accelerometer becomes less trusted.
- **Gyroscope:** This sensor measures angular motion. It has no ability to give any absolute orientation information like the accelerometer or compass, and so is most useful for correcting the orientation during sensor motion. Its role during these times becomes vital, though, as the accelerometer readings can become unreliable during motion.
- **Compass:** This sensor measures magnetic direction. The readings from the compass and accelerometer are used together to form the absolute component of orientation, which is used to correct any short term changes the gyroscope makes. Its readings are much more stable than those of the accelerometer, but it can be adversely affected by any ferrous metal or magnetic objects. When the accelerometer is less trusted, the compass is treated in the same way so as to avoid updates to orientation based on partial absolute information.

3.1.2 Scale, Bias, and Cross-Axis Effect

The readings taken from each component sensor are not in a readily usable form. The compass and accelerometer readings are not unit vectors, and the gyroscope readings aren't yet in radians per second. To convert them to these forms, scale and bias must be taken into account. Scale is how much larger the range of data read from the component sensor is than the range of data should be when it is converted. For example, if the compass were to give readings in the range of -500 to 500 on the x axis, but we would like it to be in the range of -1 to 1, the scale would be 500. Bias is how far the center of the data readings is from 0. If another compass read from -200 to 900 on the x axis, the bias would be 350, and the scale would be 550. The last parameter used in turning this component sensor data into usable data is cross-axis effect. This is the tendency for a little bit of data on one axis of a sensor to get mixed up with the other two. This is an effect experienced by the accelerometer and compass. There are 6 numbers for each of these, one to indicate how much each axis is affected by each other axis. Values for these are generally in the range of 1 to 10%. These parameters are applied in the following order:

- 1) Bias is subtracted from each axis
- 2) The three axes are treated as a vector and multiplied by a matrix representing scale and cross-axis parameters

Factory calibration provides default values for these parameters for the accelerometer and compass, and users should probably never need to change these values. To determine these parameters for the gyroscope, you must calibrate it. Read the Quick Start guide or the 3-Space Suite manual for more information on how to do this.

3.1.3 Component Sensor Data Types

Component sensor data is presented by the 3-Space Sensor in three different stages and is readily accessible via certain protocol commands.

• **Raw Sensor Data:** This refers to data that is read directly from each of the component sensors before any additional processing has occurred. This kind of data is well-suited for users who wish to perform their own calibration routines as well as applications where precise analysis of motion is not extremely critical. Raw data commands are listed in Section 4.4.5, "Raw Data Commands" and span commands 0x40 through 0x43.

Example: In the $\pm 2G$ range, a raw accelerometer vector might look like (144, -25904, 744). This would indicate a force that is mostly in a downward direction.

• **Corrected Sensor Data:** This refers to 'raw' data that has been biased and scaled to represent real-world units, using the steps as described in Section 3.1.2, "Scale, Bias and Cross-Axis Effect". There is an additional scaling that occurs, which further alters the data reading based on each component sensor's device-specific values. This scaling provides the real-world equivalents for read data. For the accelerometer, these values are in units of g-forces, for the magnetometer, these values are in units of gauss, and for the gyroscope, these values are in units of radians/sec. This kind of data is well-suited for users who wish to accurately track the motion of objects in 3D space or measure the strength and direction of magnetic fields. Corrected data commands are listed in Section 4.4.3, "Corrected Data Commands" and span commands 0x25 through 0x28.

Example: In the ± 2 G range, the same raw accelerometer vector from before, when corrected, might look like (.004, -.791, .023). Note that these values are in units of g, and would indicate that at the moment of the sample, the sensor is accelerating mostly downwards at a rate of 7.75 meters per second squared.

• Normalized Sensor Data: This refers to 'corrected' data that has been geometrically normalized. For the accelerometer and magnetometer, all normalized sensor readings are unit-vectors and as such, have lengths of 1. For the gyroscope, these is no difference between 'corrected' and 'normalized' data. This kind of data is well-suited for users who are only interested in the direction of acceleration or magnetic fields. Normalized data commands are listed in Section 4.4.2, "Normalized Data Commands" and span commands 0x20 through 0x23.

Example: The corrected accelerometer vector from before, when normalized, would look like (0.05, -0.998, 0.011). Note that the magnitude information is lost, and only the direction of the acceleration remains.

3.1.4 Additional Calibration

The 3-Space Sensor provides multiple calibration modes that can improve performance at the cost of additional setup and calibration routines. For more information on setting these additional modes, please refer to command 169.

- **Bias Mode:** Applies default range scaling to raw data readings. Also applies a bias offset to raw data, the values of which are taken from the provided calibration parameters command. (See section 4.3.7 for more information)
- **Bias** / **Scale Mode:** The default calibration mode. Applies default range scaling to raw data readings. Also applies a bias offset to the raw data as well as an additional scale matrix. Uses the matrix and vector portions from the provided calibration parameters command.
- **Ortho-Calibration Mode:** A more advanced calibration mode that requires initial setup steps (Please refer to the 3-Space Suite Quick Start Guide for information on how to supply ortho-calibration data). Uses 24 orthogonal data points to provide accelerometer and compass correction factors for enhanced orientation accuracy.

3.1.5 Reference Vectors

In order to get an absolute estimation of orientation from the accelerometer and compass, the sensor needs a reference vector for each to compare to the data read from it. The most obvious choice for these are the standard direction of gravity(down) and the standard direction of magnetic force(north), respectively. However, the sensor does provide several different modes for determining which reference vector to use:

- **Single Manual:** Uses 2 reference vectors it is given as the reference vectors for the accelerometer and compass.
- Single Auto: When the sensor powers on or is put into this mode, it calculates gravity and north and uses those calculated vectors as the reference vectors.
- **Single Auto Continual:** The same as Single Auto, but the calculation happens constantly. This can account for some shifts in magnetic force due to nearby objects or change of location, and also can help to cope with the instability of the accelerometer.
- **Multiple:** Uses a set of reference vectors from which the best are picked each cycle to form a single, final reference vector. This mode has the ability to compensate for certain errors in the orientation. In this mode the sensor will have a slightly slower update rate, but will provide greater accuracy. For information on how to set up this mode, see the Quick Start guide or the 3-Space Suite manual.

3.1.6 Orientation Filtering

The 3-Space Sensor provides several different modes for providing orientation estimation. Note also that IMU data collection rate is bound to the update rate of the filter. For more information on setting these additional modes, please refer to command 123.

- **Kalman Filter:** The default filter mode. Normalized sensor data and reference vectors are fed into the Kalman filter, which uses statistical techniques to optimally combine the data into a final orientation reading. Provides the highest-accuracy orientation at the lowest performance.
- Alternating Kalman Filter: Uses the same Kalman filter as before, but skips every other update step. Slightly less accurate than the Kalman filter, but faster.
- **Complementary Filter**: Fuses low-pass filtered accelerometer/compass data with high-pass filtered gyroscope data to provide an orientation estimate. Less accurate than any Kalman filtering techniques, but provides significantly higher performance.
- **Quaternion Gradient Descent Filter**: Utilizes gradient descent techniques to avoid the high computational overhead of Kalman-based filters. Provides high performance and high accuracy.
- IMU Mode: Performs no orientation filtering, but allows IMU data to be read at the maximum update rate of 800 Hz.

3.1.7 Tare Orientation

Given the results of the Kalman filter, the sensor can make a good estimation of orientation, but it will likely be offset from the actual orientation of the device by a constant angle until it has been given a reference orientation. This reference orientation tells the sensor where you would like its zero orientation to be. The sensor will always consider the zero orientation to be the orientation in which the plug is facing towards you and top(the side with buttons on it) facing up. The sensor must be given a reference orientation that represents the orientation of the sensor when it is in the position in which you consider the plug to be towards you and the buttons up. The act of giving it this reference orientation to the sensor is called taring, just as some scales have a tare button which can be pressed to tell the scale that nothing is on it and it should read zero. For instructions on doing this, refer to the Quick Start guide or 3-Space Suite manual.

3.1.8 Offset Orientation

There are many applications for which it will be necessary or convenient to mount the sensor at odd angles, but it may also be desired in these situations that orientations can be treated as though the sensor were mounted normally. For

example, if the sensor were mounted on a sloped surface of a vehicle like a car hood, it would be helpful if the orientations could read as though the sensor was mounted in a way that more closely matched the overall orientation of the vehicle, which does not include that slope.

The feature the sensor has to deal with mounting differences is the offset quaternion. This offset allows the sensor to pretend it is mounted in any given orientation while being actually mounted in any other actual orientation. To help understand the relationship between filtered orientation, tare orientation, and offset orientation, this is how the orientations are used by the sensor:

orientation _{final}=orientation_{tare}*orientation_{filtered}*orientation_{offset}

There are several ways to use this feature. The simplest way is if you happen to know the quaternion that represents the offset you want applied to the orientation, you can send this to the sensor by way of command 21(0x15). There are also commands to allow for more automated offset setting. To use these commands, do the following:

- 1) Place the sensor as close as possible to the mounting point, but in an orientation aligned with the overall vehicle or device the sensor is being mounted on, or in the orientation that you would like the sensor to act like it is in.
- 2) Call command 22, which sets a hidden variable called the "base offset" which affects the operation of the "Offset with current orientation" command. This will record your desired orientation later. If you ever want to reset this base offset, use command 20(0x14).
- 3) Mount the sensor onto the vehicle or device as you intend to for the end application.
- 4) Call command 19(0x13), which will set the offset based on the difference between the current orientation and the base offset. After this command is called, the sensor should now be acting as though it were in the desired orientation.
- 5) Make sure to commit the sensor settings to keep this change. Note that the base offset is not committable, but the offset itself is committable.

It should be noted that while it may seem like the set axis directions command could be used for the same purpose, this feature is the preferred way to deal with alternate mountings, as the axis directions mode has no way to account for a mounting that isn't a 90 degree based orientation away from the standard orientation. In addition, the axis direction mode does not handle switching the Euler angles to account for a different mounting, while this feature does.

3.1.9 Other Estimation Parameters

The 3-Space Sensor offers a few other parameters to filter the orientation estimate. Please note that these only affect the final orientation and not the readings of individual component sensors.

- **Oversampling:** Oversampling causes the sensor to take extra readings from each of the component sensors and average them before using them to estimate orientation. This can reduce noise, but also causes each cycle to take longer proportional to how many extra samples are being taken.
- **Running Average:** The final orientation estimate can be put through a running average, which will make the estimate smoother at the cost of introducing a small delay between physical motion and the sensor's estimation of that motion.
- **Trust Values:** As mentioned earlier, by default the accelerometer and compass are trusted less than the gyros when the sensor is in motion. These values involve parameters, one for the accelerometer and one for the compass, that indicate how much these component sensors are to be trusted relative to the gyroscope. These values range from 0 to 1, with 1 being fully trusted and 0 will be not trusted at all. There is a minimum and maximum truth value for each of the accelerometer and compass. The minimum will be used while the sensor is in motion, and the maximum will be used while it is still. To disable this sort of behavior, set both truth values to the same value. Note that the QGrad filter has its own set of trust values that can only be read or set while the sensor is in QGrad filter mode.

3.2 Communication

Obtaining data about orientation from the sensor or giving values for any of its settings is done through the sensor's communication protocol. The protocol can be used through either the USB port or wireless interface, using the 3-Space Wireless Dongle. A complete description of how to use this protocol is given in section 4 of this document. Also, you may instead use the 3-Space Suite, which provides a graphical method to do the same. To learn how to use this, read the 3-Space Suite manual.

3.2.1 Wired Streaming Mode

The default mode of communication for the 3-Space Sensor is a call and response paradigm wherein you send a command and then receive a response. The sensor also features a streaming mode where it can be instructed to periodically send back the response from a command automatically, without any further communication from the host. To activate the streaming mode, use the following steps:

1) Set up the streaming to call the commands you want data from. First, figure out which commands you want data from. The following commands are valid for streaming:

0(0x00), Read tared orientation as quaternion 1(0x01), Read tared orientation as euler angles 2(0x02), Read tared orientation as rotation matrix 3(0x03), Read tared orientation as axis angle 4(0x04), Read tared orientation as two vector 5(0x05), Read difference quaternion 6(0x06), Read untared orientation as quaternion 7(0x07), Read untared orientation as euler angles 8(0x08), Read untared orientation as rotation matrix 9(0x09), Read untared orientation as axis angle 10(0x0a), Read untared orientation as two vector 11(0x0b), Read tared two vector in sensor frame 12(0x0c), Read untared two vector in sensor frame 32(0x20), Read all normalized component sensor data 33(0x21). Read normalized gyroscope vector 34(0x22). Read normalized accelerometer vector 35(0x23), Read normalized compass vector 37(0x25), Read all corrected component sensor data 38(0x26), Read corrected gyroscope vector 39(0x27), Read corrected accelerometer vector 40(0x28), Read corrected compass vector 41(0x29), Read corrected linear acceleration 43(0x2B) Read temperature C 44(0x2C), Read temperature F 45(0x2D), Read confidence factor 64(0x40), Read all raw component sensor data 65(0x41), Read raw gyroscope vector 66(0x42), Read raw accelerometer vector 67(0x43), Read raw compass vector 201(0xc9), Read battery voltage 202(0xca), Read battery percentage 203(0xcb), Read battery status 250(0xfa), Read button state 255(0xff), No command

There are 8 streaming slots available for use, and each one can hold one of these commands. These slots can be set using command 80(0x50), with the parameters being the 8 command bytes corresponding to each slot. Unused slots should be filled with 0xff so that they will output nothing.

Please note: The total amount of data the 8 slots can return at once is 256 bytes. If the resulting data exceeds

this, the set streaming slots command will fail.

2) Set up the streaming interval, duration, and start delay. These parameters control the timing of the streaming session. They can be set using command 82(0x52). All times are to be given in microseconds. They control the streaming as follows:

Interval determines how often the streaming session will output data from the requested commands. For example, an interval of 1000000 will output data once a second. An interval of 0 will output data as quickly as possible. The interval will be clamped to 1000 if the user attempts to set it in the range 1 - 1000.

Duration determines how long the streaming session will run for. For example, a duration of 5000000 indicates the session should stop after 5 seconds. A duration of 4294967295 (0xFFFFFFF) means that the session will run indefinitely until a stop streaming command is explicitly issued.

Start Delay determines how long the sensor should wait after a start command is issued to actually begin streaming. For example, a start delay 200000 means the session will start after 200 milliseconds.

3) Begin the streaming session. This can be done using command 85(0x55). Once started, the session will run until the duration has elapsed, or until the stop command, 86(0x56) has been called. Please note that only binary data is supported. While streaming sessions can be started with ascii commands, only binary data will be returned. Also note that if the sensor is sending large amounts of data the host doesn't have time to handle, this can cause buffer overflows in some communication drivers, leading to slowdowns and loss of data integrity. If the firmware detects that the buffer has overflowed, the asynchronous session will be stopped. If this occurs, this is a sure sign that either the streaming interval is set too low, the program is not working fast enough to handle the amount of data or both.

For more information on all these commands, see the Streaming Commands section in the command chart near the end of this document.

3.2.2 Wireless Streaming Mode

Wireless streaming communication is initiated in a similar manner as wired streaming, with the primary difference being that commands are sent to the 3-Space Dongle via a USB connection, where they are then forwarded to the 3-Space Wireless Sensor. The Start Streaming command will use the same output communication interface as the received command's input interface. In other words, a command received over a USB connection will result in streaming data output over the USB connection and a command received wirelessly via the dongle will result in all streaming data output over the wireless connection to be received by the dongle.

Unlike wired streaming sessions, wireless streaming supports two separate modes. There is an automatic streaming mode that behaves similarly to wired streaming sessions, where all data that is received is output immediately. There is also a manual flush mode that stores received data in internal buffers specific to each dongle's logical ID. This can be useful for communicating with multiple sensors. This also ensures that no data is lost due to communication driver buffer overflows, since the volume of wireless traffic can be substantially higher with up to 15 different sensors. More information on Manual Streaming Mode can be found in the next section.

Please note that while the maximum wired packet size is 256, wireless streaming enforces a limit of 96 bytes per sensor. Attempting to set streaming slots to include more return data than this will result in a failure code. Also note that the dongle itself is incapable of streaming data.

3.2.3 Wireless Streaming Manual Mode

By default, the dongle is configured to not automatically output received streamed data. This means that received streaming data must be 'released' via command 180 (Single manual flush) or 181 (Bulk manual flush). The main difference between the two is that command 180 is designed to accept a logical ID as an argument, meaning that it will only manually flush for one device. Command 181, on the other hand, will flush all data that is currently pending.

The format of data returned by command 181 is different from typical commands. Once the command has been called, data will be output in the following format (note that data in square brackets is optionally returned):

<Two-byte bitfield>[Response Header 0][Data for sensor 0] ... [Response Header N][Data for sensor N]

The initial two-byte bitfield represents the sensors that have new data, where the lowest bit corresponds to sensor 0, and the next highest bit refers to sensor 14. Each time the command is called, all bits will be reset to 0, thus it is possible to read a zero-value for each byte in the bitfield if it is read at a time when no new data has been received. Note also that old data can be overwritten by new data if it is not read quickly enough.

3.3 Input Device Emulation

3.3.1 Axes and Buttons

The 3-Space Sensor has the ability to act as a joystick and/or mouse when plugged in through USB. Both of these are defined in the same way, as a collection of axes and buttons. Axes are input elements that can take on a range of values, whereas buttons can only either be on or off. On a joystick, the stick part would be represented as 2 axes, and all the physical buttons on it as buttons. The 3-Space Sensor has no physical joystick and only 2 physical buttons, so there are a number of options to use properties of the orientation data as axes and buttons. Each input device on the 3-Space Sensor has 2 axes and 8 buttons. For more information on setting these up, see the 3-Space Suite manual. All communication for these input devices is done through the standard USB HID(Human Interface Device) protocol.

3.3.2 Joystick

As far as a modern operating system is concerned, a joystick is any random collection of axes and buttons that isn't a mouse or keyboard. Joysticks are mostly used for games, but can also be used for simulation, robot controls, or other applications. The 3-Space Sensor, as a joystick, should appear just like any other joystick to an operating system that supports USB HID(which most do).

3.3.3 Mouse

When acting as a mouse, the 3-Space Sensor will take control of the system's mouse cursor, meaning if the mouse portion is not properly calibrated, using it could easily leave you in a situation in which you are unable to control the mouse cursor at all. In cases like this, unplugging the 3-Space Sensor will restore the mouse to normal operation, and unless the mouse enabled setting was saved to the sensor's memory, plugging it back in should restore normal operation. Using the default mouse settings, caution should be exercised in making sure the orientation estimate is properly calibrated before turning on the mouse. For help with this, see the Quick Start guide.

The mouse defaults to being in Absolute mode, which means that the data it gives is meant to represent a specific position on screen, rather than an offset from the last position. This can be changed to Relative mode, where the data represents an offset. In this mode, the data which would have indicated the edges of the screen in Absolute mode will now represent the mouse moving as quickly as it can in the direction of that edge of the screen. For more information, see command 251 in section 4.3.7, or the 3-Space Suite manual.

3.3.4 Wireless Joystick/Mouse

The 3-Space Dongle can be set up to receive joystick and mouse data from a 3-Space Sensor wirelessly and present this data to the computer via a USB interface. This is accomplished by supplying the logical ID of the wireless device that will act as the mouse/joystick. Commands 240 and 241 are used to enable the wireless joystick and mouse respectively. When either of these commands are invoked, the chosen wireless sensor will immediately begin transmitting the requested HID data to the dongle. The update rate at which this information is received is determined by command 215. Additionally, HID information may be sent synchronously or asynchronously from the wireless sensor to the dongle. Command 217 allows the user to set the desired mode. Synchronous HID mode is the default mode, in which the dongle automatically asks for the requested data first. This mode enjoys a high rate of reliability and it is quite easy to interlace regular protocol commands with HID data transmission/reception. This mode is slower, however, than asynchronous mode, since information must both be requested and received. Asynchronous mode, on the other hand, forces the sensor to automatically send HID information without being asked to do so by the dongle. This allows for much higher update rates, at the expense of reliability due to the increased number of wireless transmissions and potential collisions. It is recommended to use this mode only if you will be using the 3-Space Sensor only as an HID joystick or mouse at the given time.

3.4 Sensor Settings

3.4.1 Committing Settings

Changes made to the 3-Space Sensor will not be saved unless they are committed. This allows you to make changes to the sensor and easily revert it to its previous state by resetting the chip. For instructions on how to commit your changes, see the Quick Start guide or 3-Space Suite manual. Any changes relating to the multiple reference vector mode are an exception to this rule, as all these changes are saved immediately.

3.4.2 Committing Wireless Settings

In addition to committing sensor settings, there are also settings specific to wireless devices. In order to commit these settings, command 197 must be used. Note that committing the default settings will have no effect on wireless settings, while committing wireless settings will not change the default settings. A list of wireless settings for the sensor can be found in table 3.4.6 and a list of wireless settings for the dongle can be found in table 3.4.7.

3.4.3 Natural Axes

The natural axes of the 3-Space Sensor are as follows:

- The positive X-axis points out of the right hand side of the sensor, which is the side that is facing right when the buttons face upward and plug faces towards you.
- The positive Y-axis points out of the top of the sensor, the side with the buttons.
- The positive Z-axis points out of the front of the sensor, the side opposite the plug.

Bear in mind the difference between natural axes and the axes that are used in protocol data. While they are by default the same, they can be remapped so that, for example, data axis Y could contain data from natural axis X. This allows users to work with data in a reference frame they are familiar with. See section 2.8 for a diagram of the natural axes.

a	-	
Setting Name	Purpose	Default Value
Accelerometer Trust Values	Determine how trusted the accelerometer is	Minimum of 1/101, maximum of 1/6
Compass Trust Values	Determine how trusted the compass is	Minimum of 1/101, maximum of 1/6
Accelerometer Coefficients	Determines the scale, bias, and cross-axis parameters for the accelerometer	Factory calibrated
Compass Coefficients	Determines the scale, bias, and cross-axis parameters for the compass	Factory calibrated
Gyroscope Coefficients	Determines the scale, bias and cross-axis parameters for the gyroscope	Factory calibrated
Accelerometer Enabled	Determines whether the compass is enabled or not	TRUE
Compass Enabled	Determines whether the accelerometer is enabled or not	TRUE
Gyroscope Enabled	Determines whether the gyroscope is enabled or not	TRUE
Filter Mode	Determines how orientation is filtered.	1 (Kalman)
Accelerometer Reference Vector	Determines which vector the accelerometer should read in order for the sensor's untared orientation to be the identity orientation.	0, 1, 0
Compass Reference Vector	Dertemines which vector the compass should read in order for the sensor's untared orientation to be the identity orientation.	0, 0, 1 (Default mode is to re-calculate this vector on startup)
Reference Vector Mode	Determines how reference vectors are calculated for orientation estimation.	1 (Single automatic)
Euler Order	Determines the default composition order of euler angles returned by the sensor.	YXZ
Calibration Mode	Determines how raw sensor data is transformed into normalized data	1 (Scale-Bias)
Axis Directions	Determines what natural axis direction each data axis faces	+X, +Y, +Z
Sample Rate	Determines how many samples the sensor takes per cycle	1 from each component sensor

3.4.4 Sensor Settings and Defaults

User's Manual

Running Average Percentage	Determines how heavy of a running average to run on the final orientation	0(no running average)
Desired Update Rate	Determines how long each cycle should take(ideally)	0 microseconds
RS232 Baud Rate	Determines the speed of RS232 communication	115200
CPU Speed	Determines how fast the CPU will run	60 MHz
LED Color	Determines the RGB color of the LED	0,0,1(Blue)
LED Mode	Determines whether the LED mode is static or not.	0 (Non-static)
Joystick Enabled	Determines whether the joystick is enabled or not	TRUE
Mouse Enabled	Determines whether the mouse is enabled or not	FALSE
Button Gyro Disable Length	Determines how many cycles the gyro is ignored after a button is pressed	5
Multi Reference Weight Power	Determines what power each multi reference vector weight is raised to	10
Multi Reference Cell Divisions	Determines how many cells the multi reference lookup table is divided into per axis	4
Multi Reference Nearby Vectors	Determines how many nearby vectors each multi reference lookup table cell stores	8
Wired Response Header Bitfield	Determines what kind of data is prepended to response data.	0
Streaming Slots	Determines which commands are executed during a streaming session.	255, 255, 255, 255, 255, 255, 255, 255
Streaming Timing	Dertemines the streaming interval, duration and delay.	10000, 4294967295, 0

3.4.5 Dongle Settings and Defaults

Setting Name	Purpose	Default Value
Desired Update Rate	Determines how long each cycle should take(ideally)	0 microseconds
LED Color	Determines the RGB color of the LED	0,0,1(Blue)
LED Mode	Determines whether the LED mode is static or not.	0 (Non-static)
Wired Response Header Bitfield	Determines what kind of data is prepended to response data.	0

3.4.6 Sensor Wireless Settings and Defaults

Setting Name	Purpose	Default Value
PanID	Determines the panID of this sensor.	1
Address	Determines the address of this sensor.	Factory determined (cannot be set, only read)
Channel	Determines the channel of this sensor.	26

3.4.7 Dongle Wireless Settings and Defaults

Setting Name	Purpose	Default Value
PanID	Determines the panID of this dongle.	1
Address	Determines the address of this dongle.	Factory determined (cannot be set, only read)
Channel	Determines the channel of this dongle.	26
Logical ID Table	Determines the mapping between logical ID and addresses.	Array of 15 unsigned 16-bit integers, values initialized to 0
Retries	Determines number of retries dongle will attempt on failed transaction	3
Joystick Logical ID	Determines the logical ID of the device that will act as the joystick, or -1 if there is no joystick desired.	-1
Mouse Logical ID	Determines the logical ID of the device that will act as the mouse, or -1 if there is no mouse desired.	-1

User's Manual

HID Update Rate	Update rate for requesting joystick/mouse information, in milliseconds.	15 (67 hz)
HID Asynchronous Mode	Determines whether joystick/mouse data transmission is asynchronous.	0
Streaming Flush Mode	Determines whether or not asynchronously requested data is automatically flushed or whether it must be requested via a dongle command.	0 (Auto flush off)
Wireless Response Header Bitfield	Determines what kind of data is prepended to wireless response data. Wireless Response Header Bitfield	0

4. 3-Space Sensor Usage/Protocol

4.1 Usage Overview

4.1.1 Protocol Overview

The 3-Space Sensor receives messages from the controlling system in the form of sequences of serial communication bytes called packets. For ease of use and flexibility of operation, two methods of encoding commands are provided: binary and text. Binary encoding is more compact, more efficient, and easier to access programmatically. ASCII text encoding is more verbose and less efficient yet is easier to read and easier to access via a traditional terminal interface. Both binary and ASCII text encoding methods share an identical command structure and support the entire 3-Space command set.

The 3-Space Sensor buffers the incoming command stream and will only take an action once the entire packet has been received and the checksum has been verified as correct(ASCII mode commands do not use checksums for convenience). Incomplete packets and packets with incorrect checksums will be ignored. This allows the controlling system to send command data at leisure without loss of functionality. The command buffer will, however, be cleared whenever the 3-Space Sensor is either reset or powered off/on.

Specific details of the 3-Space Sensor protocol and its control commands are discussed in the following pages.

4.1.2 Computer Interfacing Overview(USB)

When interfacing with a computer through USB, the 3-Space Sensor presents itself as a COM port, which provides a serial interface through which host may communication with the sensor unit by using protocol messages. The name of this COM port is specific to the operating system being used. It is possible to use multiple 3-Space Sensors on a single computer. Each will be assigned its own COM port. The easiest way to find out which COM port belongs to a certain sensor is to take note of what COM port appears when that sensor is plugged in(provided the drivers have been installed on that computer already. Otherwise, find out what COM port appears once driver installation has finished.) Additionally, each sensor can be identified programatically by reading the serial number of each attached sensor. For more information on how to install the sensor software on a computer and begin using it, see the Quick Start guide.

4.1.3 Computer Interfacing Overview(Wireless)

To interface to a sensor through a computer wirelessly, the 3-Space Dongle must be connected to the computer through USB. The Dongle will present itself as a COM port just as the 3-Space Sensor does. Each dongle can be associated with up to 15 wireless sensor units. To associate a sensor unit with a dongle, the user must place the desired sensor's serial number in one of the dongle's 15 logical wireless table slots. Any wireless 3-Space Sensors in range that have been given an address slot on the Dongle may then be communicated to using the Dongle. For information on how to set up the Dongle's address slots, see the Quick Start guide or <Dongle slot command ##>. For information on what data to send to the Dongle to communicate with a particular sensor, see section 4.3. The wireless communication protocol support the same commands, but are not identical. This allows the wireless protocol to include features that are specific to the nature of wireless communication such as wireless addressing, wireless reliability, and packet-loss handling, etc. For more information pertaining to the wired and wireless communication protocols, see sections 4.2 and 4.3 respectively.

4.2 Wired Protocol Packet Format

4.2.1 Binary Packet Format

The binary packet size can be three or more bytes long, depending upon the nature of the command being sent to the controller. Each packet consists of an initial **"start of packet"** byte, followed by a **"command value"** specifier byte, followed by zero or more **"command data"** bytes, and terminated by a packet **"checksum value"** byte.

Each binary packet is at least 3 bytes in length and is formatted as shown in figure 1

Figure 1 - Binary Command Packet Format

Binary Return Values:

When a 3 Space Sensor command is called in binary mode, any data it returns will also be in binary format. For example, if a floating point number is returned, it will be returned as its 4 byte binary representation.

For information on the floating point format, go here: <u>http://en.wikipedia.org/wiki/Single_precision_floating-point_format</u>

Also keep in mind that integer and floating point values coming from the sensor are stored in big-endian format.

The Checksum Value:

The checksum is computed as an arithmetic summation of all of the characters in the packet (except the checksum value itself) modulus 256. This gives a resulting checksum in the range 0 to 255. The checksum for binary packets is transmitted as a single 8-bit byte value.

4.2.2 ASCII Text Packet Format

ASCII text command packets are similar to binary command packets, but are received as a single formatted line of text. Each text line consists of the following: an ASCII colon character followed by an integral command id in decimal, followed by a list of ASCII encoded floating-point command values, followed by a terminating newline character. The command id and command values are given in decimal. The ASCII encoded command values must be separated by an ASCII comma character or an ASCII space character. Thus, legal command characters are: the colon, the comma, the period, the digits 0 through 9, the minus sign, the new-line, the space, and the backspace. When a command calls for an integer or byte sized parameter, the floating point number given for that parameter will be interpreted as being the appropriate data type. For simplicity, the ASCII encoded commands follow the same format as the binary encoded commands, but ASCII text encodings of values are used rather than raw binary encodings.

Each ASCII packet is formatted as shown in figure 2.

Figure 2 - ASCII Command Packet Format

Thus the ASCII packet consists of the the following characters:

- **I** : the ASCII colon character signifies the start of an ASCII text packet.
- , the ASCII comma character acts as a value delimiter when multiple values are specified.
- . the ASCII period character is used in floating point numbers.
- **0**~9 the ASCII digits are used to in integer and floating point values.
- - the ASCII minus sign is used to indicate a negative number
- | **h** the ASCII newline character is used to signify the end of an ASCII command packet.
- **b** the ASCII backspace character can be used to backup through the partially completed line to correct errors.

If a command is given in ASCII mode but does not have the right number of parameters, the entire command will be ignored. Also note that when communicating with the dongle or sensor in the 3-Space Suite, the newline is automatically appended to the input, thus it is not necessary to add it.

Sample	ASCII	commands:
--------	-------	-----------

:0\n	(If connected to the sensor)	Read orientation as a quaternion
:106,2\n	(If connected to the sensor)	Set oversample rate to 2
:214\n	(If connected to the dongle)	Read signal strength of most recent dongle reception
:208,5\n	(If connected to the dongle)	Read the serial number of the unit mapped to logical ID 5

ASCII Response:

All values are returned in ASCII text format when an ASCII-format command is issued. To read the return data, simply read data from the sensor until a Windows newline(a carriage return and a line feed) is encountered.

4.3 Wireless Protocol Packet Format

4.3.1 Wireless Communication Format

The protocol for communicating with sensors wirelessly is very similar to the wired protocol, but includes accommodations for wireless unit addressing and wireless communication failures. Thus, all wireless communication messages now also include an address specifying which sensor they are to be sent to. Additionally, each wireless protocol command returns status information pertaining to the success or failure of the wireless command.

4.3.2 Binary Packet Format

The wireless binary packet format is very similar to the wired format. Each packet consists of an initial "address" byte, followed by a "command value" specifier byte, followed by zero or more "command data" bytes, and terminated by a packet "checksum value" byte.

Each wireless binary packet is at least 3 bytes in length and is formatted as shown in figure 3

Figure 3 - Wireless Binary Command Packet Format

User's Manual

4.3.3 Binary Command Response

When a binary command is invoked wirelessly, before the data it would normally return in wired mode, it will return status bytes. First is the **success byte**, which is a 0 if the command was successful and non-0 if it was not. Some things which can cause a failure are:

- The lack of corresponding wireless sensor at the specified address.
- Wireless communication errors or dropped packets.
- Improper command formatting or data length

Second is the **address byte**. This indicates which sensor sent the response. If the success byte is zero, the **data length** byte will be present after this byte. If the success byte is non-zero, the data length byte will not be present at all. Assuming the command succeeded, the response data will be present directly after the data length byte.

4.3.4 Sample Binary Commands

Command	Description	Potential Response
F8 01 00 01	Read orientation as a quaternion from sensor 1	00 01 10 00 00 00 00 00 00 00 00 00 00 00 00 3F 80 00 00
F8 05 6A 02 71	Set oversample rate to 2 on sensor 5	00 05 00
F8 03 E6 E9	Read version string from sensor 3	00 03 0C 54 53 53 57 49 52 30 36 30 31 31 31
F8 00 EC EC	Read clock speed from powered-off sensor 0	01 00 (Failure)
F8 09 77 00 00 00 00 BF 80 00 00 00 00 00 BF	Set accelerometer reference vector to (0.0, -1.0, 0.0) on sensor 9	00 09 00

4.3.5 ASCII Text Packet Format

Wireless ASCII packets are very similar to wired ASCII packets. Each wireless ASCII packet is formatted as shown in figure 4.

Figure 4 - Wireless ASCII Command Packet Format

Thus the ASCII packet consists of the the following characters:

- > the ASCII greater than character signifies the start of an ASCII text packet.
- , the ASCII comma character acts as a value delimiter when multiple values are specified.
- . the ASCII period character is used in floating point numbers.
- **0**~9 the ASCII digits are used to in integer and floating point values.
- - the ASCII minus sign is used to indicate a negative number
- \n the ASCII newline character is used to signify the end of an ASCII command packet.
- **b** the ASCII backspace character can be used to backup through the partially completed line to correct errors.

If a command is given in ASCII mode but does not have the right number of parameters, the entire command will be ignored.

User's Manual

When an ASCII command is called wirelessly, before the data it would normally return in wired mode, it will return status values, each seperated by a comma. First is the **success/failure value**, which is a 0 if the command was successful and 1 if it was not. Some things which can cause a failure are:

- The lack of a sensor present wirelessly
- Communication interference causing the wireless sensor to not respond
- Improper command formatting or data length

Second is the **address byte**. This indicates which sensor sent the response. If the success byte is zero, the **data length** byte will be present after this byte. If the success byte is non-zero, the data length byte will not be present at all. Assuming the command succeeded, the response data will be present directly after the data length byte.

4.3.7 Sample ASCII Commands

Command	Description	Potential Response
>0,0\n	Read orientation as a quaternion from sensor 0	0,0,36,-0.07354,-0.97287,- 0.03232,0.21696\r\n
>5,106,2\n	Set oversample rate to 2 on sensor 5	5,0,0\r\n
>3,230\n	Read version string from sensor 3	0,0,14,08Jan2013K25\r\n
>2,236\n	Read clock speed from out-of-range sensor 2	1,2\r\n (Failure)

Note that wireless commands that either fail or do not return data at all will still be terminated with carriage return and line feed characters, even though the data length string may be "0" or not present at all.

4.4 Response Header Format

4.4.1 Wired Response Header

The 3-Space Sensor is capable of returning additional data that can be prepended to all command responses. This capability is managed via the Response Header Bitfield, which can be configured using command 221 (0xDD). Each bit in the field, if enabled, corresponds to a different piece of information that will be output prior to the expected response data. To use the Response Header Bitfield, use the following steps:

1.) Determine which additional data you would like to have output as the response header. The list of options are:

- 0x1 (Bit 0) Success/Failure; comprised of one byte with non-zero values indicating failure.
- 0x2 (Bit 1) Timestamp; comprised of four bytes representing the most recent sample time in microseconds. Note that this is not a difference, but a total accumulated time.
- 0x4 (Bit 2) Command echo; comprised of one byte. Echoes back the previous command.
- 0x8 (Bit 3) Additive checksum; comprised of one byte summed over the response data modulus 256. Note that this does not include the Response Header itself.
- 0x10 (Bit 4) Logical ID; comprised of one byte indicating the logical ID of the received packet. For wired communication, this always returns 0xFE.
- 0x20 (Bit 5) Serial number; comprised of four bytes.
- 0x40 (Bit 6) Data length; comprised of one byte. Represents the amount of response data. Note that this does not include the Response Header itself.

For example, if you wanted all future data to be preceded with a timestamp and a data length, you would want to use bits 1 and 6, which corresponds to the value 66 (0x00000042). This is the value that would be passed into the Set Wired Response Header Bitfield command (Command 221).

2.) Call command 221 passing in the specified value. Keep in mind that this is a 4-byte value.

3.) Ask for data using the Response Header Start Byte.

Typical wired binary commands use 0xF7 to indicate the start of a command packet. If 0xF7 is used, response data will never contain a Response Header. Instead, the user should use 0xF9 instead of 0xF7. This will cause the resulting command to prepend the requested Response Header to the response data. Typical wired ascii commands use ':' to indicate the start of a typical command packet and the ';' character to indicate to the sensor that the data should have the Response Header prepended. Also note that all Response Header data will be output in ascending order, starting with the lowest enabled bit and continuing on to the highest enabled bit.

4.) Parse the Response Header data.

Assume we wanted to ask for the raw accelerometer data along with the timestamp and data length and that we have already called command 221 with a parameter of 66. We then send the following to the sensor:

0xf9 0x42 0x42

We receive the following response from the sensor:

0x17 0x39 0x15 0x93 0x0c 0xc4 0x86 0x0 0x0 0xc5 0x54 0x0 0x0 0x46 0x7c 0xc0 0x0

Going in order, we used bits 1 and 6, so we can parse out the timestamp first, which is 4 bytes, and then the data length, which is 1 byte:

Timestamp: 0x17 0x39 0x15 0x93 (389617043)

Data Length: 0x0c (12)

Data: 0xc4 0x86 0x0 0x0 0xc5 0x54 0x0 0x0 0x46 0x7c 0xc0 0x0 (-1072.0, -3392.0, 16176.0)

For the ascii version, we would send the following:

";66\n"

We would receive the following response:

"389617043,37,-1072.00000,-3392.00000,16176.00000\r\n"

4.4.2 Wired Streaming with Response Header

Streaming data can also have Response Header data prepended to each streamed packet. This can be accomplished by calling the Start Streaming command (0x55) with the Response Header Packet Byte. Assuming that streaming has been configured properly and a non-zero Wired Response Header bitfield has been set, the following examples will start streaming with Response Headers disabled and enabled, respectively:

0xf7 0x55 0x55	//Start streaming WITHOUT response header prepended to each //packet
0xf9 0x55 0x55	//Start streaming WITH response header prepended to each packet

Keep in mind that the actual start command will also have a Response Header attached that must be successfully parsed.

4.4.3 Wireless Response Header

Wireless response headers work similarly to their wired counterparts. The major difference is that instead of using 0xF9, the user should use 0xFA to request data with response headers prepended. The other difference is that the response header is based on a different command than wired sensors. For dongles, command 219 should be used to set the Wireless Response Header Bitfield. Keep in mind that dongles also maintain a Wired Response Header Bitfield for commands sent directly to the dongle. All other commands sent wirelessly will use the Wireless Response Header Bitfield. Also note that typical wireless commands (Binary 0xF8 or Ascii '>') will ALWAYS have the success/failure byte, logical ID byte and data length byte (unless the command fails) prepended as described in Section 4.3.

For the ascii version, the character ']' should be used instead of '>' if the response header is desired.

4.4.4 Wireless Streaming with Response Header

Wireless streaming data can also have Response Header data prepended to each streamed packet. This can be accomplished by calling the Start Streaming command (0x55) with the Wireless Response Header Packet Byte. Assuming that streaming has been configured properly and a non-zero Wireless Response Header bitfield has been set, the following examples will start streaming with Response Headers disabled and enabled, respectively. We will also assume that we are communicating with the sensor mapped to logical ID 0:

0xf8 0x0 0x55 0x55	//Start streaming with only the success/failure, logical ID //and data length bytes prepended to each packet
0xfa 0x0 0x55 0x55	<pre>//Start streaming WITH wireless response header //prepended to each packet</pre>

Keep in mind that the actual start command will also have a Response Header attached that must be successfully parsed.

4.5 Command Overview

There are over 90 different command messages that are grouped numerically by function. Unused command message bytes are reserved for future expansion.

When looking at the following command message tables, note the following:

- The "Data Len" field indicates the number of additional data-bytes the command expects to follow the command-byte itself. This number doesn't include the Start of Packet, Command, or Checksum bytes. Thus, the total message size can be calculated by adding three bytes to the "Data Len" listed in the table.
- Likewise, the "Return Data Len" field indicates the number of data-bytes the command delivers back to the sender once the command has finished executing.
- Under "Return Data Details", each command lists the sort of data which is being returned and next to this in parenthesis the form this data takes. For example, a quaternion is represented by 4 floating point numbers, so a command which returns a quaternion would list "Quaternion(float x4)" for its return data details.
- Command length information only applies to binary commands, as ascii commands can vary in length.
- For quaternions, data is always returned in x, y, z, w order.
- Euler angles are always returned in pitch, yaw, roll order.
- When calling commands in ASCII mode, there is no fixed byte length for the parameter data or return data, as the length depends on the ASCII encoding.

4.5.1 Orientation Commands

			Return		Data	
Command	Description	Long Description	Data Len	Return Data Details	Len	Data Details
	Get tared orientation as	Returns the filtered, tared orientation estimate in				
0(0x00)	quaternion	quaternion form	16	Quaternion (float x4)	0	
	Get tared orientation as	Returns the filtered, tared orientation estimate in				
1(0x01)	euler angles	euler angle form	12	Euler Angles (float x3)	0	
	Get tared orientation as	Returns the filtered, tared orientation estimate in				
2(0x02)	rotation matrix	rotation matrix form	36	Rotation Matrix (float x9)	0	
	Get tared orientation as	Returns the filtered, tared orientation estimate in		Axis (float x3), Angle in		
3(0x03)	axis angle	axis-angle form	16	Radians (float)	0	
		Returns the filtered, tared orientation estimate in two				
	Get tared orientation as	vector form, where the first vector refers to forward		Forward Vector (float x3),		
4 (0x04	two vector.	and the second refers to down.	24	Down Vector (float x3)	0	
		Returns the difference between the measured				
5(0x05)	Get difference quaternion	orientation from last frame and this frame.	16	Quaternion (float x4)	0	
	Get untared orientation as	Returns the filtered, untared orientation estimate in				
6(0x06)	quaternion	quaternion form.	16	Quaternion (float x4)	0	
	Get untared orientation as	Returns the filtered, untared orientation estimate in				
7(0x07)	euler angles	euler angle form	12	Euler Angles (float x3)	0	
	Get untared orientation as	Returns the filtered, untared orientation estimate in				
8(0x08)	rotation matrix	rotation matrix form	36	Rotation Matrix (float x9)	0	
	Get untared orientation as	Returns the filtered, untared orientation estimate in		Axis (float x3), Angle in		
9(0x09)	axis angle	axis-angle form	16	Radians (float)	0	
		Returns the filtered, untared orientation estimate in				
	Get untared orientation as	two vector form, where the first vector refers to north		North Vector (float x3),		
10(0x0A)	two vector.	and the second refers to gravity.	24	Gravity Vector (float x3)	0	
		Returns the filtered, tared orientation estimate in two				
		vector form, where the first vector refers to forward				
		and the second refers to down. These vectors are				
44(0-00)	Get tared two vector in	given in the sensor reference frame and not the	04	Forward Vector (float x3),		
11(UXUB)	sensor frame	global reference frame.	24	Down Vector (float x3)	0	
		Returns the intered, untared orientation estimate in				
		two vector form, where the first vector refers to				
	Cot untared two voctor in	norward and the second refers to down. These		North Voctor (float x2)		
12(0×0C)	sensor frame	not the global reference frame	24	Gravity Vector (float x3)	0	
12(0/00)			<u> </u>	Ciuncy V COLOI (IIOGL AD)		1

4.5.2 Normalized Data Commands

			Return		Data	
Command	Description	Long Description	Data Len	Return Data Details	Len	Data Details
		Returns the normalized gyro rate vector,				
		accelerometer vector, and compass vector. Note that				
		the gyro vector is in units of radians/sec, while the		Gyro Rate in units of		
		accelerometer and compass are unit-length vectors		radians/sec (Vector x3),		
		indicating the direction of gravity and north,		Gravity Direction (Vector		
	Get all normalized	respectively. These two vectors do not have any		x3), North Direction (Vector		
32(0x20)	component sensor data	magnitude data associated with them.	36	x3)	0	
		Returns the normalized gyro rate vector, which is in		Gyro Rate in units of		
33(0x21)	Get normalized gyro rate	units of radians/sec.	12	radians/sec (float x3)	0	
		Returns the normalized accelerometer vector. Note				
		that this is a unit-vector indicating the direction of				
	Get normalized	gravity. This vector does not have any magnitude		Gravity Direction (Vector		
34(0x22)	accelerometer vector	data associated with it.	12	x3)	0	
		Returns the normalized compass vector. Note that				
		this is a unit-vector indicating the direction of gravity.				
	Get normalized compass	This vector does not have any magnitude data				
35(0x23)	vector	associated with it.	12	North Direction (Vector x3)	0	

4.5.3 Corrected Data Commands

			Return		Data	
Command	Description	Long Description	Data Len	Return Data Details	Len	Data Details
				Gyro Rate in units of		
		Returns the corrected gyro rate vector,		radians/sec (Vector x3),		
		accelerometer vector, and compass vector. Note that		Acceleration Vector in units		
		the gyro vector is in units of radians/sec, the		of G (Vector x3), Compass		
	Get all corrected	accelerometer vector is in units of G, and the		Vector in units of gauss		
37(0x25)	component sensor data	compass vector is in units of gauss.	36	(Vector x3)	0	
		Returns the corrected gyro rate vector, which is in				
		units of radians/sec. Note that this result is the				
		same data returned by the normalized gyro rate		Gyro Rate in units of		
38(0x26)	Get corrected gyro rate	command.	12	radians/sec (float x3)	0	
		Returns the acceleration vector in units of G. Note				
	Get corrected	that this acceleration will include the static		Acceleration Vector in units		
39(0x27)	accelerometer vector	component of acceleration due to gravity.	12	of G (float x3)	0	
	Get corrected compass			Compass Vector in units of		
40(0x28)	vector	Returns the compass vector in units of gauss.	12	gauss (float x3)	0	
		Returns the linear acceleration of the device, which				
		is the overall acceleration which has been orientation				
	Get corrected linear	compensated and had the component of				
	acceleration in global	acceleration due to gravity removed. Uses the tared		Acceleration Vector in units		
41(0x29)	space	orientation.	12	of G (float x3)	0	
		Converts the supplied raw data gyroscope vector to		Gyro Rate in units of		Gyro Rate in counts per
48(0x30)	Correct raw gyro data	its corrected data representation.	12	radians/sec (float x3)	12	degrees/sec (Vector x3)
		Converts the supplied raw data accelerometer vector		Acceleration Vector in units		Acceleration Vector in counts
49(0x31)	Correct raw accel data	to its corrected data representation.	12	of G (float x3)	12	per g (Vector x3)
		Converts the supplied raw data compass vector to its		Compass Vector in units of		Compass Vector in counts
50(0x32)	Correct raw compass data	corrected data representation.	12	gauss (float x3)	12	per gauss (Vector x3)

4.5.4 Other Data Commands

			Return		Data	
Command	Description	Long Description	Data Len	Return Data Details	Len	Data Details
43(0x2B)	Get temperature C	Returns the temperature of the sensor in Celsius.	4	Temperature (float)	0	
44(0x2C)	Get temperature F	Returns the temperature of the sensor in Fahrenheit	4	Temperature (float)	0	
		Returns a value indicating how much the sensor is				
		being moved at the moment. This value will return 1 if				
		the sensor is completely stationary, and will return 0				
		if it is in motion. This command can also return				
		values in between indicating how much motion the				
45(0x2D)	Get confidence factor	sensor is experiencing.	4	Confidence Factor (float)	0	

4.5.5 Raw Data Commands

			Return		Data	
Command	Description	Long Description	Data Len	Return Data Details	Len	Data Details
				Gyro Rate in counts per		
		Returns the raw gyro rate vector, accelerometer		degrees/sec (Vector x3),		
		vector and compass vector as read directly from the		Acceleration Vector in		
		component sensors without any additional post-		counts per g (Vector x3),		
	Get all raw component	processing. The range of values is dependent on the		Compass Vector in counts		
64(0x40)	sensor data	currently selected range for each respective sensor.	36	per gauss (Vector x3)	0	
		Returns the raw gyro rate vector as read directly				
		from the gyroscope without any additional post-		Gyro Rate in counts per		
65(0x41)	Get raw gyroscope rate	processing.	12	degrees/sec (Vector x3)	0	
		Returns the raw acceleration vector as read directly				
	Get raw accelerometer	from the accelerometer without any additional post-		Acceleration Vector in		
66(0x42)	data	processing.	12	counts per g (Vector x3)	0	
		Returns the raw compass vector as read directly				
		from the compass without any additional post-		Compass Vector in counts		
67(0x43)	Get raw compass data	processing.	12	per gauss (Vector x3)	0	

4.5.6 Streaming Commands

			Return		Data	
Command	Description	Long Description	Data Len	Return Data Details	Len	Data Details
		Configures data output slots for streaming mode.				
		Command accepts a list of eight bytes, where each				
		byte corresponds to a different data command. Every				
		streaming iteration, each command will be executed				
		in order and the resulting data will be output in the				
		specified slot. Valid commands are commands in				
		the ranges 0x0 – 0x10, 0x20 – 0x30, 0x40 – 0x50,				
		0xC9 – 0xCA (for battery-powered sensors) and				
		0xFA. A slot value of 0xFF 'clears' the slot and				
		prevents any data from being written in that position.				
		This command can fail if there is an invalid command				
		passed in as any of the parameters or if the total				
		allotted size is exceeded. Upon failure, all slots will				
		be reset to 0xFF. This setting can be saved to non-				
		volatile flash memory using the Commit Settings				
80(0x50)	Set streaming slots	command.	0	-	8	Commands (Byte x8)
81(0x51)	Get streaming slots	Returns the current streaming slots configuration.	8	Commands (Byte x8)	0	
		Configures timing information for a streaming				
		session. All parameters are specified in				
		microseconds. The first parameter is the interval,				
		which specifies now often data will be output. A				
		value of 0 means that data will be output at the end				
		of every filter loop. Aside from U, values lower than				
		1000 will be clamped to 1000. The second parameter				
		is the duration, which specifies the length of the				
		Streaming session. If this value is set to				
		UXFFFFFFFF, streaming will continue indefinitely				
		until it is stopped via command 0x56. The third				
		of time the senser will wait before outputting the first				
		of time the sensor will wait before outputting the list				Intenal (I Insigned int)
		to non volatile flash memory using the Commit				Duration (Unsigned int), Delay
82(0x52)	Set streaming timing	Settings command	0		12	(Unsigned int)
0_(0/(0_))	cot ottodarning tarming			Interval (Unsigned int)		(energined int)
				Duration (Unsigned int)		
83(0x53)	Get streaming timing	Returns the current streaming timing information	12	Delay (Unsigned int)	0	
()		Return a single packet of streaming data using the			-	
84(0x54)	Get streaming batch	current slot configuration	Varies		0	
- (,		Start a streaming session using the current slot and			-	
85(0x55)	Start streaming	timing configuration	0		0	
86(0x56)	Stop streaming	Stop the current streaming session.	0		0	
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		Set the current internal timestamp to the specified	-			
95(0x5F)	Update current timestamp	value.	0		4	Timestamp (Unsigned int)

4.5.7 Configuration Write Commands

Command	Description	Long Description	Return Data Len	Return Data Details	Data Len	Data Details
Communia		Sets the current euler angle decomposition order.				
		which determines how the angles returned from				
		command 0x1 are decomposed from the full				Eulor angle decomposition
	Set euler angle	XYZ 0x1 for YZX 0x2 for ZXY. 0x3 for ZYX 0x4 for				order
16(0x10)	decomposition order	XZY or 0x5 for YXZ (default).	0		1	(byte)
		Sets required parameters that are necessary to				
		trigger magnetometer resistance mode. First				
		parameter to the command specifies the change in magnetometer field strength that is required to				
		trigger the resistance. Once this field has been				
		detected, the magnetometer will enter a period				
		calculation—this period will increase while magnetic				
		perturbations are still being detected, but will				
		dissipate as the sensor remains stationary. Once				
		begin trusting the magnetometer again. The second				
		parameter represents the number of frames that				
		must elapse before the magnetometer is fully trusted				
		between 0 and 1 that indicates how guickly the				
		outright magnetometer rejection state will fall off.				
		Values closer to 1 result in the magnetometer				Magnetoresistive threshold in
		represents how quickly a magnetic perturbation is				magnetometer trust frames
		detected. Values closer to 1 result in the				(unsigned int), magnetometer
	Set magnetoresistive	magnetometer rejection occurring more slowly. This setting can be saved to non-volatile flash memory				lockout decay value (float),
17(0x11)	threshold	using the Commit Settings command.	0		16	detection value (float)
		Sets required parameters that are necessary to				
		trigger accelerometer rejection. During the				
		accelerometer rejection period, the contribution of the accelerometer to the selected orientation				
		estimation algorithm will be zero. The arguments to				
		this command specify the accelerometer threshold				
		respectively. This setting can be saved to non-				a's (float). Number of
	Set accelerometer	volatile flash memory using the Commit Settings				accelerometer lockout frames
18(0x12)	resistance threshold	command.	0		8	(unsigned int),
19(0x13)	orientation	current filtered orientation.	0		0	
20(0x14)	Reset base offset	Sets the base offset to an identity quaternion.	0		0	
		Sets the offset orientation to be the same as the				
21(0x15)	Offset with quaternion	guatemion.	0		16	Quaternion (float x4)
	Set base offset with	Sets the base offset orientation to be the same as				
22(0x16)	current orientation	the current filtered orientation.	0		0	
96(0x60)	orientation	current filtered orientation.	0		0	
. ,		Sets the tare orientation to be the same as the				
07(0x61)	Tare with quaternion	supplied orientation, which should be passed as a	0		16	Quatomion (float x4)
37(0×01)		Sets the tare orientation to be the same as the	0		10	
		supplied orientation, which should be passed as a				
98(0x62)	Tare with rotation matrix	rotation matrix.	0		36	Rotation Matrix (float x9)
		contribution is to the overall orientation estimation.				
	Set static accelerometer	Trust is 0 to 1, with 1 being fully trusted and 0 being				Accelerometer trust value
99(0x63)	trust value	not trusted at all.	0		4	(float)
		contribution is to the overall orientation estimation.				
		Instead of using a single value, uses a minimum and				
		maximum value. Trust values will be selected from				Minimum accelerometer trust
	Set confidence	can have the effect of smoothing out the				accelerometer trust value
100(0x64)	accelerometer trust values	accelerometer when the sensor is in motion.	0		8	(float)
		Determines how trusted the accelerometer				
		tribution is to the overall orientation estimation. Trust				
	Set static compass trust	is 0 to 1, with 1 being fully trusted and 0 being not				
101(0x65)	value	trusted at all.	0		4	Compass trust value (float)

Command	Description	Long Description	Return Data Len	Return Data Details	Data Len	Data Details
16(0x10)	Set euler angle decomposition order	Sets the current euler angle decomposition order, which determines how the angles returned from command 0x1 are decomposed from the full quaternion orientation. Possible values are 0x0 for XYZ, 0x1 for YZX, 0x2 for ZXY, 0x3 for ZYX, 0x4 for XZY or 0x5 for YXZ (default).	0		1	Euler angle decomposition order (byte)
16(UX1U)	decomposition order	Sets required parameters that are necessary to trigger magnetometer resistance mode. First parameter to the command specifies the change in magnetometer field strength that is required to trigger the resistance. Once this field has been detected, the magnetometer will enter a period where it is completely locked out of the orientation calculation—this period will increase while magnetic perturbations are still being detected, but will dissipate as the sensor remains stationary. Once this period is over, the sensor orientation will slowly begin trusting the magnetometer again. The second parameter represents the number of frames that must elapse before the magnetometer is fully trusted again. The third parameter represents a decay value between 0 and 1 that indicates how quickly the outright magnetometer rejection state will fall off. Values closer to 1 result in the magnetometer represents how quickly a magnetic perturbation is detected. Values closer to 1 result in the magnetometer rejection occurring more slowly. This	U		1	Magnetoresistive threshold in gauss(float), Number of magnetometer trust frames (unsigned int), magnetometer lockout decay value (float),
17(0x11)	Set magnetoresistive threshold	setting can be saved to non-volatile flash memory using the Commit Settings command.	0		16	magnetometer perturbation detection value (float)
18(0 x 12)	Set accelerometer	Sets required parameters that are necessary to trigger accelerometer rejection. During the accelerometer rejection period, the contribution of the accelerometer to the selected orientation estimation algorithm will be zero. The arguments to this command specify the accelerometer threshold and the number of frames that the rejection is active, respectively. This setting can be saved to non- volatile flash memory using the Commit Settings command	0		8	Accelerometer threshold in g's (float), Number of accelerometer lockout frames (unsigned int)
10(0x12)	Offset with current	Sets the offset orientation to be the same as the	0		0	
20(0x13)	Reset base offset	Sets the base offset to an identity quaternion.	0		0	
21(0x15) 22(0x16)	Offset with quaternion Set base offset with current orientation	Sets the offset orientation to be the same as the supplied orientation, which should be passed as a quaternion. Sets the base offset orientation to be the same as the current filtered orientation.	0		16 0	Quatemion (float x4)
96(0x60)	Tare with current	Sets the tare orientation to be the same as the current filtered orientation	0		0	
97(0x61)	Tare with quaternion	Sets the tare orientation to be the same as the supplied orientation, which should be passed as a quaternion.	0		16	Quaternion (float x4)
98(0x 62)	Tare with rotation matrix	supplied orientation, which should be passed as a rotation matrix. Determines how trusted the accelerometer contribution is to the overall orientation estimation.	0		36	Rotation Matrix (float x9)
99(0x63)	Set static accelerometer trust value	Irust is 0 to 1, with 1 being fully trusted and 0 being not trusted at all.	0		4	Accelerometer trust value (float)
100(0x64)	Set confidence accelerometer trust values	Determines how trusted the accelerometer contribution is to the overall orientation estimation. Instead of using a single value, uses a minimum and maximum value. Trust values will be selected from this range depending on the confidence factor. This can have the effect of smoothing out the accelerometer when the sensor is in motion. Determines how trusted the accelerometer contribution is to the overall crientation estimation	0		8	Minimum accelerometer trust value (float), Maximum accelerometer trust value (float)
101(0x65)	Set static compass trust value	tribution is to the overall orientation estimation. tribution is to the overall orientation estimation. Trust is 0 to 1, with 1 being fully trusted and 0 being not trusted at all.	0		4	Compass trust value (float)

			Return		Data	
Command	Description	Long Description	Data Len	Return Data Details	Len	Data Details
		Determines how trusted the compass contribution is				
		to the overall orientation estimation. Instead of using				
		a single value, uses a minimum and maximum value.				
		Irust values will be selected from this range				Minimum company trust volue
	Sat confidence compass	the effect of emeeting out the compass when the				(float) Maximum compass
102(0+66)	trust values	sensor is in motion	0		8	(iloat), Maximum compass
102(0x00)		Causes the processor to wait for the specified	Ŭ		0	
		number of microseconds at the end of each undate				
		loop. Can be useful for bounding the overall undate				Microsecond undate rate
103(0x67)	Set desired update rate	rate of the sensor if necessary	0		4	(unsigned integer)
100(0,01)		Uses the current tared orientation to set up the			-	
		reference vector for the nearest orthogonal				
		orientation. This is an advanced command that is				
		best used through 3-Space Sensor Suite calibration				
	Set multi reference vectors	utilities. For more information, please refer to the 3-				
104(0x68)	with current orientation	Space Sensor Suite Quick Start Guide.	0		0	
		Set the current reference vector mode. Parameter				
		can be 0 for single static mode, which uses a certain	1			
		reference vector for the compass and another certain				
		vector for the accelerometer at all times, 1 for single				
		auto mode, which uses (0, -1, 0) as the reference				
		vector for the accelerometer at all times and uses				
		the average angle between the accelerometer and				
		compass to calculate the compass reference vector				
		once upon initiation of this mode, 2 for single auto				
		continuous mode, which works similarly to single				
		auto mode, but calculates this continuously, or 3 for				
		multi-reference mode, which uses a collection of				
		reference vectors for the compass and				
105(0+60)	Sat reference vector mode	before each stop of the filter	0		1	Mode (Pyte)
103(0×03)		Sets the number of times to sample each	0		1	Node (Byte)
		component sensor for each iteration of the filter. This				
		can smooth out readings at the cost of				
		responsiveness. If this value is set to 0 or 1, no				
		oversampling occurs—otherwise, the number of				
		samples per iteration depends on the specified				Gyro Samples (unsigned
		parameter, up to a maximum of 65535. This setting				short), Accel Samples
		can be saved to non-volatile flash memory using the				(unsigned short), Compass
106(0x6A)	Set oversample rate	Commit Settings command.	0		6	Samples (unsigned short)
		Enable or disable gyroscope readings as inputs to				
		the orientation estimation. Note that updated				
		gyroscope readings are still accessible via				
		commands. This setting can be saved to non-volatile				
107(0x6B)	Set gyroscope enabled	flash memory using the Commit Settings command.	0		1	Enabled (Byte)
		Enable or disable accelerometer readings as inputs				
		to the orientation estimation. Note that updated				
		accelerometer readings are still accessible via				
		commands. This setting can be saved to non-volatile				
108(0x6C)	Set accelerometer enabled	flash memory using the Commit Settings command.	0		1	Enabled (Byte)
		Enable or disable compass readings as inputs to the				
		orientation estimation. Note that updated compass				
		readings are still accessible via commands. This				
		setting can be saved to non-volatile flash memory				
109(0x6D)	Set compass enabled	using the Commit Settings command.	0		1	Enabled (Byte)
	Reset multi-reference	Resets all reference vectors in the multi-reference				
110(0x6E)	vectors to zero	table to zero. Intended for advanced users.	0		0	
		Sets the number of cell dimensions and number of				
		table. First parameter indicates the number of cell				
		divisions as an example, multi reference mode, by				
		default only handles orientations reachable by				
		successive rotations of ninety degrees about any of				
		the three axes, and hence, has a resolution of 4 (360				
		/ 4 == 90). Thus, a resolution of 8 would provide				
		rotations of forty-five degrees about any of the three				
		axes $(360 / 8 == 45)$. The second parameter				
		indicates the number of adjacent vectors that will be				
		checked for each In addition, the number of				
		checked vectors can be adjusted as well. The				
		second parameters refers to the number of adjacent				
		reference vectors that are 'averaged' to produce the				
	Set multi-reference table	final reference vector for the particular orientation, up				Resolution (Byte), Number of
111(0x6F)	resolution	to a maximum of 32. Intended for advanced users.	0	1	2	Check Vectors (Byte)

Comment	Description		Return	Botum Doto Dotolla	Data	Data Dataila
Command	Description	Directly set the multi-reference compass vector at	Data Len	Return Data Details	Len	Data Detalis
		the specified index. First parameter is index, second				
	Set compass mulfi-	parameter is compass vector. Intended for advanced				Index (Byte), Compass
112(0X70)	reference vector	Users. Set the compass reading to be used as a check	0		13	Reference Vector (float X3)
		vector to determine which cell index to draw the				
		reference vector from. First parameter is an index,				
113(0x71)	Set compass multi-	second parameter is the compass vector. Intended	0		13	Index (Byte), Compass Check Vector (float x3)
110(0x11)		Directly set the multi-reference accelerometer vector				
		at the specified index. First parameter is index,				
114(0x72)	Set accelerometer multi-	second parameter is compass vector. Intended for advanced users	0		13	Index (Byte), Accelerometer Reference Vector (float x3)
114(0x12)		Set the accelerometer reading to be used as a	Ū			
		check vector to determine which cell index to draw				
	Set accelerometer multi-	the reference vector from. First parameter is an index, second parameter is the accelerometer				Index (Byte) Accelerometer
115(0x73)	reference check vector	vector. Intended for advanced users.	0		13	Check Vector (float x3)
		Sets alternate directions for each of the natural axes				
		of the sensor. The only parameter is a bitfield				
		swapping. The lower 3 bits specify where each of the				
		natural axes appears:				
		000: Y. Bight, V. Up. 7: Forward (laft handed				
		system, standard operation)				
		001: X Right, Y: Forward, Z Up (right-handed				
		system) 002: X: Up, X: Pight, 7: Forward (right handed				
		system)				
		003: X Forward, Y: Right, Z: Up (left-handed				
		system) 004: X: Lin, X: Forward, Z: Right (left-handed				
		system)				
		005: X: Forward, Y: Up, Z: Right (right-handed				
		system)				
		(For example, using X Right, Y: Forward, Z Up				
		means that any values that appear on the positive				
		component of any vectors and will have a positive				
		sign, and any that appear on the negative vertical				
		axis will be the \angle component and will have a negative sign)	•			
		Sign.)				
		The 3 bits above those are used to indicate which				
		axes, if any, should be reversed. If it is cleared, the axis will be pointing in the positive direction				
		Otherwise, the axis will be pointed in the negative				
		direction. (Note: These are applied to the axes after				
		the previous conversion takes place).				
		Bit 4: Positive/Negative Z (Third resulting component))			
		Bit 5: Positive/Negative Y (Second resulting				
		Bit 6: Positive/Negative X (First resulting component)				
		Note that for each negation that is applied, the handedness of the system flips. So, if X and Z are				
		negative and you are using a left-handed system, the	•			
		system will still be left handed, but if only X is				
116(0x74)	Set axis directions	negated, the system will become right-handed. Sets what percentage of running average to use on a	0		1	Axis Direction Byte (byte)
		component sensor, or on the sensor's orientation.				
		This is computed as follows:				
		total value = total value* percent				
		total_value = total_value + current_value * (1 -				
		percent)				
		If the percentage is 0, the running average will be				Gyro percent (float) accel
		shut off completely. Maximum value is 1. This				percent (float), compass
447(0, 75)	Set running average	setting can be saved to non-volatile flash memory	_		10	percent (float), orientation
117(0x75)	percent	using the Commit Settings command.	0	1	16	percent (float)

			Return		Data	
Command	Description	Long Description	Data Len	Return Data Details	Len	Data Details
	Set compass reference	Sets the static compass reference vector for Single				Compass Reference Vector
118(0x76)	vector	Reference Mode.	0		12	(float x3)
	Set accelerometer	Sets the static accelerometer reference vector for				Accelerometer Reference
119(0x77)	reference vector	Single Reference Mode.	0		12	Vector (float x3)
120(0x78)	Reset filter	Resets the state of the currently selected filter	0		0	
		Only parameter is the new accelerometer range,				
		which can be 0 for $\pm 2g$ (Default range), which can be				
		1 for $\pm 4g$, or 2 for $\pm 8g$. Higher ranges can detect and				
		report larger accelerations, but are not as accurate				
		to non-volatile flack memory using the Commit				A cooloromotor range cotting
121(0 - 79)	Set accelerometer range	Settings command	0		1	(byte)
121(0x73)	Set acceleronneter range	Set weighting power for multi reference vector	0			(byte)
		weights Multi reference vector weights are all raised				
		to the weight power before they are summed and				
		used in the calculation for the final reference vector.				
		Setting this value nearer to 0 will cause the reference				
		vectors to overlap more, and setting it nearer to				
	Set multi-reference weight	infinity will cause the reference vectors to influence a				
122(0x7a)	power	smaller set of orientations.	0		4	Weight power (float)
		List data disable disa sejarta Kar Characteria data				
		Used to disable the orientation filter or set the				
		be useful for tuning filter performance uprove				
		orientation update rates. Passing in a parameter of 0				
		places the sensor into IMI I mode, a 1 places the				
		sensor into Kalman Filtered Mode (Default mode), a				
		2 places the sensor into Alternating Kalman Filter				
		Mode, a 3 places the sensor into Complementary				
		Filter Mode, a 4 places the sensor into Quaternion				
		Gradient Descent Filter Mode, and a 5 places the				
		sensor into Magnetoresistive Quaternion Gradient				
		Descent Filter Mode. More information can be found				
		in Section 3.1.5. This setting can be saved to non-				
400(07h)	Cat filter made	volatile flash memory using the Commit Settings	0		1	Mada (Duta)
123(UX7D)	Set litter mode	command.	0		1	iviode (Byte)
		I lead to further smooth out the orientation at the				
		cost of higher latency. Passing in a parameter of 0				
		places the sensor into a static running average				
		mode, a 1 places the sensor into a confidence-				
		based running average mode, which changes the				
		running average factor based upon the confidence				
		factor, which is a measure of how 'in motion' the				
		sensor is. This setting can be saved to non-volatile				
124(0x7c)	Set running average mode	flash memory using the Commit Settings command.	0		1	Mode (Byte)
		Only parameter is the new gyroscope range, which				
		can be u for ±250 DPS, 1 for ±500 DPS, or 2 for				
		±2000 DPS (Delault faige). Higher faiges call				
		accurate for smaller angular rates. This setting can				
		be saved to non-volatile flash memory using the				Gyroscope range setting
125(0x7d)	Set gyroscope range	Commit Settings command.	0		1	(Byte)
	0,		-			
		Only parameter is the new compass range, which				
		can be 0 for ±0.88G, 1 for ±1.3G (Default range), 2				
		for $\pm 1.9G$, 3 for $\pm 2.5G$, 4 for $\pm 4.0G$, 5 for $\pm 4.7G$, 6 for				
		± 5.6 G, or 7 for ± 8.1 G. Higher ranges can detect and				
		report larger magnetic field strengths but are not as				
		accurate for smaller magnetic field strengths. This				
40000-7-1	Cat annual state	setting can be saved to non-volatile flash memory	^			
126(UX / e)	iser compass range	iusing the Commit Settings command.	1 0	1	1 1	Compass range setting (Byte)

4.5.8 Configuration Read Commands

Command	Description	Long Description	Return	Roturn Data Dotails	Data Lon	Data Dotails
Command	Get tare orientation as		Data Len	Neturn Data Detans	Len	
128(0x80)	quaternion	Returns the current tare orientation as a quaternion.	16	Quaternion (float x4)	0	
120(0v.81)	Get tare orientation as	Returns the current tare orientation as a rotation	36	Potation Matrix (float x0)	0	
130(0x82)	Get accelerometer trust	Returns the current accelerometer min and max trust values. If static trust values were set, both of these will be the same	8	Accelerometer trust values,	0	
130(0x02)	values	Returns the current compass min and max trust	0		0	
131(0x83)	Get compass trust values	values. If static trust values were set, both of these will be the same.	8	Compass trust values, min and max (float x2)	0	
132(0x84)	Get current update rate	update step.	4	microseconds (int)	0	
133(0x85)	Get compass reference vector	Reads the current compass reference vector. Note that this is not valid if the sensor is in Multi Reference Vector mode.	12	Compass reference vector (float x3)	0	
134(0x86)	Get accelerometer reference vector	Reads the current compass reference vector. Note that this is not valid if the sensor is in Multi Reference Vector mode.	12	Accelerometer reference vector (float x4)	0	
135(0x87)	Get reference vector mode	Reads the current reference vector mode. Return value can be 0 for single static, 1 for single auto, 2 for single auto continuous or 3 for multi.	1	Mode (byte)	0	
136(0x88)	Get compass multi- reference vector	Reads the multi-reference mode compass reference vector at the specified index. Intended for advanced users.	12	Compass multi-reference reference vector (float x3)	1	Index (byte)
137(0x89)	Get compass multi- reference check vector	Reads the multi-reference mode compass reference check vector at the specified index. Intended for advanced users.	12	Compass multi-reference reference check vector (float x3)	1	Index (byte)
138(0x8a)	Get accelerometer multi- reference vector	Reads the multi-reference mode accelerometer reference vector at the specified index. Intended for advanced users.	12	Accelerometer multi- reference reference vector (float x3)	1	Index (byte)
139(0x8b)	Get accelerometer multi- reference check vector	Reads the multi-reference mode accelerometer reference check vector at the specified index. Intended for advanced users.	12	Accelerometer multi- reference reference check vector (float x3)	1	Index (byte)
140(0x8c)	Get gyroscope enabled state	Returns a value indicating whether the gyroscope contribution is currently part of the orientation estimate: 0 for off, 1 for on.	1	Gyroscope enabled value (byte)	0	
141(0x8d)	Get accelerometer enabled state	Returns a value indicating whether the accelerometer contribution is currently part of the orientation estimate: 0 for off, 1 for on.	1	Accelerometer enabled value (byte)	0	
142(0x8e)	Get compass enabled state	Returns a value indicating whether the compass contribution is currently part of the orientation estimate: 0 for off 1 for on	1	Compass enabled value (byte)	0	
142/0×20	Cot avia direction	Returns a value indicating the current axis direction setup. For more information on the meaning of this value, please refer to the Set Axis Direction	1	Avia direction value (bute)	0	
444(0-00)		Returns values indicating how many times each component sensor is sampled before being stored as raw data. A value of 1 indicates that no oversampling is taking place, while a value that is higher indicates the number of samples per		Gyro Samples (unsigned short), Accel Samples (unsigned short), Compass Complex (unsigned short), Compass	0	
144(0X90)	Get oversample rate	Returns the running average percent value for each	6	Gyro percent (float), accel	0	
145(0x91)	Get running average percent	component sensor and for the orientation. The value indicates what portion of the previous reading is kept and incorporated into the new reading.	16	percent (float), compass percent (float), orientation percent (float)	0	
146(0x92)	Get desired update rate	returns the current desired update rate. Note that this value does not indicate the actual update rate, but instead indicates the value that should be spent 'idling' in the main loop. Thus, without having set a specified desired update rate, this value should read 0.	4	Desired update rate in microseconds (int)	0	
148(0x94)	Get accelerometer range	Return the current accelerometer measurement range, which can be a 0 for ±2g, 1 for ±4g or a 2 for ±8g.	1	Accelerometer range setting (byte)	0	
149(0x95)	Get multi-reference mode power weight	Read weighting power for multi-reference vector weights. Intended for advanced users.	4	Weight (float)	0	

User's Manual

			Return		Data	
Command	Description	Long Description	Data Len	Return Data Details	Len	Data Details
		Poods number of call divisions and number of nearby				
		vectors per cell for the multi-reference vector lookup				
		table. For more information on these values please		Number of cell divisions		
	Get multi-reference	refer to the Set Multi-Reference Resolution		(byte) number of nearby		
150(0x96)	resolution	command (111) Intended for advanced users	2	vectors (byte)	0	
100(0100)	Get number of multi-	Reads the total number of multi-reference cells	-			
151(0x97)	reference cells	Intended for advanced users.	4	Number of cells (int)	0	
		Returns the current filter mode, which can be 0 for				
		IMU mode, 1 for Kalman, 2 for Alternating Kalman, 3				
		for Complementary, or 4 for Quaternion Gradient				
		Descent. For more information, please refer to the				
152(0x98)	Get filter mode	Set Filter Mode command (123).	1	Filter mode (byte)	0	
		Reads the selected mode for the running average,		Running average mode		
153(0x99)	Get running average mode	which can be 0 for normal or 1 for confidence.	1	(byte)	0	
		Reads the current gyroscope measurement range,				
		which can be 0 for ±250 DPS, 1 for ±500 DPS or 2		Gyroscope range setting		
154(0x9a)	Get gyroscope range	for ±2000 DPS.	1	(byte)	0	
		Reads the current compass measurement range,				
		which can be 0 for ± 0.88 G, 1 for ± 1.3 G, 2 for ± 1.9 G,				
455(001.)	0.1	3 for ±2.5G, 4 for ±4.0G, 5 for ±4.7G, 6 for ±5.6G or		Compass range setting	~	
155(UX9D)	Get compass range	7 for ±8.1G.	1	(byte)	0	
	Cot oulor angle					
156(0x9c)	decomposition order	Reads the current culer angle decomposition order	1	order (byte)	0	
130(0x30)		i teads the current edier angle decomposition order.	1		0	
				Magnetoresistive threshold		
				in gauss(float). Number of		
				magnetometer trust frames		
				(unsigned int),		
				magnetometer lockout		
				decay value (float),		
	Get magnetoresistive	Reads the current magnetoresistive threshold		magnetometer perturbation		
157(0x9d)	threshold	parameters.	16	detection value (float)	0	
				Accelerometer threshold in		
				g's (float), Number of		
	Get accelerometer	Reads the current accelerometer threshold		accelerometer lockout		
158(0x9e)	resistance threshold	parameters.	8	frames (unsigned int),	0	
	Get offset orientation as	Returns the current offset orientation as a				
159(0x9f)	quaternion	quatemion.	16	Quatemion (float x4)	0	

4.5.9 Calibration Commands

			Return		Data	
Command	Description	Long Description	Data Len	Return Data Details	Len	Data Details
		Sets the current compass calibration parameters to				
		the specified values. These consist of a bias which				
		is added to the raw data vector and a matrix by				
	Cat same as a libration	which the value is multiplied. This setting can be				
160/0+00	Set compass calibration	saved to non-volatile liash memory using the Commit			40	
160(0xa0)	coenicients	Settings command.	0		40	x3)
		Sets the current accelerometer calibration				
		a bias which is added to the row data vector and a				
		a bias which is added to the raw data vector and a				
	Set accelerometer	can be saved to non-volatile flash memory using the				Matrix (float x9) Bias (float
161(0xa1)	calibration coefficients	Commit Settings command	0		48	x3)
To I (oxu I)	Cet compass calibration			Matrix (float x0) Bias (float	10	,(0)
162(0xa2)	coefficients	Return the current compass calibration parameters	48	v3)		
102(0/02)	Get accelerometer	Return the current accelerometer calibration	-10	Matrix (float x9) Bias (float		
163(0xa3)	calibration coefficients	narameters	48	x3)		
100(0x40)	Cet avroscope calibration		10	Matrix (float x0) Bias (float		
164(0x=4)	coefficients	Return the current avroscope calibration parameters	48	x3)		
104(0A04)		Performs auto-gyroscope calibration Sensor should				
		remain still while samples are taken. The ovroscope				
	Begin gyroscope auto-	bias will be automatically placed into the bias part of				
165(0xa5)	calibration	the avroscope calibration coefficient list.	0		0	
100(0/00)		Sets the current avroscope calibration parameters to	Ŭ		Ŭ	
		the specified values. These consist of a bias which				
		is added to the raw data vector and a matrix by				
		which the value is multiplied. This setting can be				
	Set avroscope calibration	saved to non-volatile flash memory using the Commit	:			Matrix (float x9), Bias (float
166(0xa6)	coefficients	Settings command.	0		48	x3)
		Bias. 1 for Scale-Bias and 2 for Ortho-Calibration.				,
		For more information, refer to section 3.1.3				
		Additional Calibration. This setting can be saved to				
		non-volatile flash memory using the Commit Settings				
169(0xa9)	Set calibration mode	command.	0		1	Mode (Byte)
		Reads the current calibration mode, which can be 0				
		for Bias, 1 for Scale-Bias or 2 for Ortho-Calibration.				
		For more information, refer to section 3.1.3				
170(0xaa)	Get calibration mode	Additional Calibration.	1	Mode (byte)	0	
	Set ortho-calibration data	Set the ortho-calibration compass and				
	point from current	accelerometer vectors corresponding to this				
171(0xab)	orientation	orthogonal orientation. Intended for advanced users.	0		0	
		Directly set a vector corresponding to this orthogonal				
		orientation. First parameter is type, where 0 is for				
		compass and 1 is for accelerometer. Second				Type (Byte), Index (Byte),
470(0	Set ortho-calibration data	parameter is index, which indicates the orthogonal				Accelerometer or Compass
172(0xac)	point from vector	orientation. Intended for advanced users.	0		14	Vector (float x3)
		Return the vector corresponding to the orthogonal				
		where 0 is for company and 1 is for coordenanter				
	Cet ortho calibration data	Second parameter is index, which indicates the		Accelerometer or compass		
173(0xad)	point	orthogonal orientation. Intended for advanced users	12	vector (float x3)	2	Type (Byte) Index (Byte)
175(0xau)	point	Stores accelerometer and compass data in the	12		2	Type (Dyte), index (Dyte)
		ortho-lookup table for use in the orientation fusion				
		algorithm. For best results, each of the 24				
		orientations should be filled in with component				
		sensor data. Note also that ortho-calibration data will				
		not be used unless the calibration mode is set to				
		Ortho-Calibration, For more information, refer to				
		Section 3.1.3 Additional Calibration. Intended for				
174(0xae)	Perform ortho-calibration	advanced users.	0		0	
. ,		Clear out all ortho-lookup table data. Intended for	1			
175(0xaf)	Clear ortho-calibration data	advanced users.	0		0	

4.5.10	Donale	Commands
	- • · · g · •	•••••••

Command	Description	Long Description	Return Data Len	Return Data Details	Data Len	Data Details
		Prevents the dongle from outputting wirelessly				
		streamed data. This can be useful in the case that				
		certain data responses are desired but an influx of				
85(0x55)	Pause streaming	timely manner.	0		0	
()	,	Resumes the dongle's outputting of wirelessly	-		-	
		streamed data. This command has no effect if the				
86(0x56)	Resume streaming	sensor was not paused.	0		0	
		mode If this value is set to 0 (default) data must be				
		'released' using manual flush commands. If this value				
		is set to 1, data will be output immediately via the				
		for wireless communication. Note that this only exists				
		refer to Section 3.2.2 and 3.3.3. This setting can be				
		set to non-volatile flash memory by using the				
176(0xb0)	Set wireless stream mode	Commit Settings command.	0		1	Auto-flush mode (byte)
		asynchronous flush mode, which can be 0 for auto				
		flush and 1 for manual flush. For more information,				
177(0xb1)	Get wireless stream mode	refer to Section 3.2.2 and Section 3.3.3.	1	Auto-flush mode (byte)	0	
		Allows the dongle to control which wirelessly				
		received data is output via manual flush mode. The				
		parameter represents a bitfield that represents which				
		wireless sensors' logical IDs can currently output				
		no data at all will be output for that sensor is set to 0,				
		condition, even if data is received for that sensor.				
	Set wireless streaming	This setting can be set to non-volatile flash memory			-	
178(0xb2)	manual flush bitfield	by using the Commit Settings command.	0		2	Manual flush bitfield (short)
		which logical lds will respond to asynchronous				
179(0xb3)	Get async flush bitfield	requests.	2	Manual flush bitfield (short)	0	
		Flush data output for a single logical ID. For more				
180(0xb4)	Manual flush single	Section 3.2.3	Varies		1	l ogical ID (Byte)
		Flush data output for all logical lds. For more	Vanco			
		information, please refer to Section 3.2.2 and				
181(0xb5)	Manual flush bulk	Section 3.2.3	Varies		0	
		message to all wireless sensors that are listening on				
		the same channel and PanID as the dongle. The				
		message will essentially set each receiving sensor's				
182(0xb6)	Broadcast synchronization	timestamp to the same timestamp as stored in the	0		0	
		Returns a bitfield where bits corresponding to logical				
		IDs will be set to 1 if the corresponding sensor has				
		sent a wireless packet to the dongle since the last		Minutes and the bill of		
183(0xb7)	Get reception bitfield	command will clear all bits to 0.	2	(short)	0	
100(0.0.1)	Get serial number at	Return the mapped serial number for the given	_		-	
208(0xd0)	logical ID	logical ID.	4	Serial number (int)	1	Logical ID (Byte)
		Set the mapped serial number given by the logical				
	Set serial number at	flash memory by calling the Commit Wireless				Logical ID (Byte), Serial
209(0xd1)	logical ID	Settings command.	0		5	number (int)
		Return the noise levels for each of the 16 wireless				
	Cot wireless channel noise	channels. A higher value corresponds to a noisier		Channel strongths (buts		
210(0xd2)	levels	reception and throughput.	16	x16)	0	
		Set the number of times a dongle will attempt to re-	-		-	
		transmit a data request after timing out. Default value				
		flash memory by calling the Committee to non-volatile				
211(0xd3)	Set wireless retries	Settings command.	0		1	Retries (byte)
		Read the number of times a dongle will attempt to				
212(0x d4)	Get wireless retries	re-transmit a data request after timing out. Default	1	Retries (byte)	0	

User's Manual

			Return		Data	
Command	Description	Long Description	Data Len	Return Data Details	Len	Data Details
		The dongle can simultaneously service up to sixteen				
		individual data requests to wireless sensors. As				
		sensors respond, requests are removed from the				
		table. In the case that too many requests are sent to				
		the dongle in too short a period, the dongle will begin				
		tossing them out. This value will return the number of				
		slots currently open. If this value is 0, no more				
040(0.15)		wireless requests will be handled until some are			~	
213(0xd5)	Get wireless slots open	Internally processed.	1	Slots open (byte)	0	
		Returns a value indicating the reception strength of				
214(0xdE)	Cot signal strongth	indicate a strenger link	1	(buto)	0	
214(0X00)			1	(byte)	0	
		Configures the response header for data returned				
		over a wireless connection. The only parameter is a				
		four-byte bitfield that determines which data is				
		prepended to all data responses. The following bits				
		are used:				
		0x1: (1 byte) Success/Failure, with non-zero values				
		representing failure.				
		0x2: (4 bytes) Timestamp, in microseconds.				
		Out: (1 buts) Command asha sutnuts the colled				
		command Botume 0xEE for streamed data				
		command. Returns over for streamed data.				
		0x8: (1 byte) Additive checksum over returned data				
		but not including response header.				
		0x10: (1 byte) Logical ID				
		0x20: (4 bytes) Serial number				
		0x40: (1 byte) Data length, returns the length of the				
		requested data, not including response header.				
		This setting can be committed to non-volatile flash				
		memory by calling the Commit Wireless Settings				Design of the state billion of
240(0xdb)	Set wireless response	command.	_		4	Response neader bittield
219(UX0D)			U	Deserves based as hit of the	4	(Unsigned Int)
220(0xdo)	Get wireless response	Deturn the surrent wireless response header hitfold		Response neader bitfield	_	
ZZU(UXCC)	neader Dittield	Return the current wireless response header bitfield.	4	(Unsigned Int)	U	

4.5.11 Wireless Sensor & Dongle Commands

			Return		Data	
Command	Description	Long Description	Data Len	Return Data Details	Len	Data Details
		Return the current panID for this wireless sensor or				
		dongle. For more information, refer to Section 2.9				
192(0xc0)	Read wireless panID	Wireless Terminology.	2	PanID (short)	0	
		Set the current panID for this wireless sensor or				
		dongle. Note that the panID for a wireless sensor				
		can only be set via the USB connection. For more				
		information, refer to Section 2.9 Wireless				
		Terminology. This setting can be committed to non-				
		volatile flash memory by calling the Commit				
193(0xc1)	Set wireless panID	Wireless Settings command.	0		2	PanID (short)
		Read the current channel for this wireless sensor or				
		dongle. For more information, refer to Section 2.9				
194(0xc2)	Read wireless channel	Wireless Terminology.	1	Channel (Byte)		
		Set the current channel for this wireless sensor or				
		dongle. For more information, refer to Section 2.9				
		Wireless Terminology. This setting can be				
		committed to non-volatile flash memory by calling				
195(0xc3)	Set wireless channel	the Commit Wireless Settings command.	0		1	Channel (byte)
		Commits all current wireless settings to non-volatile				
		flash memory, which will persist after the sensor is				
		powered off. For more information on which				
		parameters can be stored in this manner, refer to	-			
197(0xc5)	Commit wireless settings	Section 3.4 Sensor Settings.	0		0	
		Read the wireless hardware address for this sensor	1			
198(0xc6)	Read wireless address	or dongle.	2	Address (short)		

4.5.12 Battery Commands

			Return		Data	
Command	Description	Long Description	Data Len	Return Data Details	Len	Data Details
		Read the current battery level in volts. Note that this				
		value will read as slightly higher than it actually is if		Battery level in voltage		
201(0xc9)	Get battery voltage	it is read via a USB connection.	4	(float)	0	
		Read the current battery lifetime as a percentage of				
		the total. Note that this value will read as slightly				
	Get battery percent	higher than it actually is if it is read via a USB		Battery level as percent		
202(0xca)	remaining	connection.	1	(byte)	0	
		Returns a value indicating the current status of the				
		battery, which can be a 3 to indicate that the battery				
		is currently not charging, a 2 to indicate that the				
		battery is charging and thus plugged in, or a 1 to		Battery charge status		
203(0xcb)	Get battery status	indicate that the sensor is fully charged.	1	(byte)	0	

4.5.13 General Commands

			Return		Data	
Command	Description	Long Description	Data Len	Return Data Details	Len	Data Details
		Accepts a single parameter that can be 0 for				
		standard, which displays all standard LED status				
196(0xc4)	Set LED Mode	Indicators or 1 for static, which displays only the	0		1	I FD mode (byte)
130(0x04)		Returns the current sensor LED mode, which can be	Ū			
200(0xc8)	Get LED Mode	0 for standard or 1 for static.	1	LED mode (byte)	0	
		Configures the response header for data returned over a wired connection. The only parameter is a				
		four-byte bitfield that determines which data is				
		prepended to all data responses. The following bits				
		are used:				
		0x1: (1 byte) Success/Failure, with non-zero values				
		representing failure.				
		0x2: (4 bytes) Timestamp, in microseconds.				
		0x4: (1 byte) Command echo—outputs the called command. Returns 0xFF for streamed data.				
		0x8: (1 byte) Additive checksum over returned data, but not including response header.				
		0x10: (1 byte) Logical ID, returns 0xFE for wired sensors. Meant to be used with 3-Space Dongle response header (For more info, see command 0xDB).				
		0x20: (4 bytes) Serial number				
		0x40: (1 byte) Data length, returns the length of the requested data, not including response header.				
		This setting can be committed to non-volatile flash memory by calling the Commit Settings command.				
	Set wired response header	For more information on Response Headers, please				Response header
221(0xdd)	bitfield	refer to Section 4.4.	0	Deepense beeder	4	configuration (Unsigned int)
222(0xde)	bitfield	For more information, please refer to Section 4.4.	4	configuration (Unsigned int)	0	
000/0 10		Returns a string indicating the current firmware	40		•	
223(UX 01)	Get inmware version string	Return all non-volatile flash settings to their original	12	Firmware version (string)	0	
224(0xe0)	Restore factory settings	default settings.	0		0	
		Commits all current sensor settings to non-volatile				
		powered off. For more information on which				
		parameters can be stored in this manner, refer to				
225(0xe1)	Commit settings	Section 3.4 Sensor Settings.	0		0	
220(UXe2)	Soliware reset	Sets the current sleep mode of the sensor.	0		0	
		Supported sleep modes are 0 for NONE and 1 for				
227(0x o 3)	Set sleen mode	IDLE. IDLE mode merely skips all filtering steps.	0		1	Sleen mode (hyte)
227(0x00)		Reads the current sleep mode of the sensor, which	0			
228(0xe4)	Get sleep mode	can be 0 for NONE or 1 for IDLE.	1	Sleep mode (byte)	0	
		firmware upgrades. This will case normal operation				
		until the firmware update mode is instructed to return	I			
		the sensor to normal operation. For more information				
229(0xe5)	Enter bootloader mode	Suite Quick Start Guide.	0		0	
	Get hardware version	Returns a string indicating the current hardware			-	
230(0xe6)	string	version.	32	Hardware version (string)	0	
		setting does not need to be committed, but will not				
		take effect until the sensor is reset. Valid baud rates				
		57600, 115200 (default). 230400. 460800 and				
		921600. Note that this is only applicable for sensor				
231(0xe7)	Set UART baud rate	types that have UART interfaces.	0		4	Baud rate (int)
		that this is only applicable for sensor types that have				
232(0xe8)	Get UART baud rate	UART interfaces.	4	Baud rate (int)	0	

User's Manual

			Return		Data	
Command	Description	Long Description	Data Len	Return Data Details	Len	Data Details
233(0xe9)	Set USB Mode	Sets the communication mode for USB. Accepts one value that can be 0 for CDC (default) or 1 for FTDI.	0		1	USB communication mode (byte)
				USB communication mode		
234(0xea)	Get USB Mode	Returns the current USB communication mode.	1	(byte)	0	
237(0xed)	Get serial number	Returns the serial number, which will match the value etched onto the physical sensor.	4	Serial number (int)	0	
		Sets the color of the LED on the sensor to the specified RGB color. This setting can be committed to non-volatile flash memory by calling the Commit			40	
238(0xee)	Set LED color	Wireless Settings command.	0		12	RGB Color (float x3)
239(0xef)	Get LED color	Returns the color of the LED on the sensor.	12	RGB Color (float x3)	0	

4.5.14 Wireless HID Commands

			Return	Data		
Command	Description	Long Description	Data Len	Return Data Details	Len	Data Details
		Specify the interval at which HID information is				
		requested by the dongle. The default and minimum				
		value is 15ms in synchronous HID mode. In				
		asynchronous HID mode, the minimum is 5ms. This				
		setting can be committed to non-volatile flash				
	Set wireless HID update	memory by calling the Commit Wireless Settings		Last packet signal strength		HID update rate in
215(0xd7)	rate	command.	0	(byte)	1	milliseconds (byte)
	Get wireless HID update	Return the interval at which HID information is		HID update rate in		
216(0xd8)	rate	requested by the dongle.	1	milliseconds	0	
		Sets the current wireless HID communication mode.				
		Supplying a 0 makes wireless HID communication				
		synchronous, while a 1 makes wireless HID				
		asynchronous. For more information, refer to Section				
		3.3.4 Wireless Joystick/Mouse. This setting can be				
	Set wireless HID	committed to non-volatile flash memory by calling				HID communication mode
217(0xd9)	asynchronous mode	the Commit Wireless Settings command.	0		1	(byte)
		Returns the current wireless HID communication				
	Get wireless HID	mode, which can be a 0 for synchronous wireless				
218(0xda)	asynchronous mode	HID or a 1 for asynchronous wireless HID.	1	HID communication mode	0	
	Causes the sensor at the specified logical ID to					
		return joystick HID data. Passing a -1 will disable				
		wireless joystick data. For more information, refer to				Joystick logical ID (signed
240(0xf0)	Set joystick logical ID	Section 3.3.4 Wireless Joystick/Mouse.	0		1	byte)
		Causes the sensor at the specified logical ID to				
		return mouse HID data. Passing a -1 will disable				
		wireless mouse data. For more information, refer to				Mouse logical ID (signed
241(0xf1)	Set mouse logical ID	Section 3.3.4 Wireless Joystick/Mouse.	0		1	byte)
		Returns the current logical ID of the joystick-enabled		Joystick-enabled logical ID		
242(0xf2)	Get joystick logical ID	sensor or -1 if none exists.	1	(byte)	0	
		Returns the current logical ID of the mouse-enabled		Mouse-enabled logical ID		
243(0xf3)	Get mouse logical ID	sensor or -1 if none exists.	1	(byte)	0	

4.5.15 Wired HID Commands

			Return		Data	
Command	Description	Long Description	Data Len	Return Data Details	Len	Data Details
		Enable or disable streaming of joystick HID data for				
240(0xf0)	Set joystick enabled	this sensor.	0		1	Joystick enabled state (byte)
		Enable or disable streaming of mouse HID data for				
241(0xf1)	Set mouse enabled	this sensor.	0		1	Mouse enabled state (byte)
		Read whether the sensor is currently streaming		Joystick enabled state		
242(0xf2)	Get joystick enabled	joystick HID data.	1	(byte)	0	
		Read whether the sensor is currently streaming				
243(0xf3)	Get mouse enabled	mouse HID data.	1	Mouse enabled state (byte)	0	

4.5.16 General HID Commands

Command	Description	Long Description	Return	Poturn Data Dotaila	Data	Data Dataila	
Command	Description		Data Len	Return Data Details	Len	Data Detalis	
		Sets the operation mode for one of the controls. The					
		first parameter is the control class, which can be 0					
		for Joystick Axis, 1 for Joystick Button, 2 for Mouse					
		Axis or 3 for Mouse Button. There are two axes and					
		eight buttons on the joystick and mouse. The					
		second parameter, the control index, selects which					
		modify The third parameter the handler index					
		specifies which handler you want to take care of this					
		control. These can be the following:					
		Turn off this control: 255					
		Axes:					
		Screen Point: 1					
		Buttons:					
		Hardware Button: 0				Control class (byte), control	
		Orientation Button: 1				index (byte), handler index	
244(0xf4)	Set control mode	Shake Button: 2	0		3	(byte)	
		Sets parameters for the specified control's operation					
		mode. The control classes and indices are the same					
		as described in command 244. Each mode can have					
		up to 10 data points associated with it. How many				Control class (byte), control	
245(0xf5)	Set control data	should be set and what they should be set to is	0		7	(byte), data point (float)	
240(0210)		Reads the handler index of this control's mode. The	0		1		
		control classes and indices are the same as				Control class (byte), control	
246(0xf6)	Get control mode	described in command 244.	1	Handler index (byte)	2	index (byte)	
		Reads the value of a certain parameter of the					
		specified control's operation mode. The control				Control class (byte), control	
247(0xf7)	Get control data	command 244.	4	Data point (float)	3	(byte), data point index	
		Determines how long, in frames, the gyros should be					
		disabled after one of the physical buttons on the					
		sensor is pressed. A setting of 0 means they won't					
	Set button gyro disable	disturbances cause by the buttons causing small					
248(0xf8)	length	shockwaves in the sensor.	0		1	Number of frames (byte)	
	Get button gyro disable						
249(0xf9)	lentgh	Returns the current button gyro disable length.	1	Number of frames (byte)	0		
		buttons. This value returns a byte, where each bit					
		represents the state of the sensor's physical					
250(0xfa)	Get button state	buttons.	1	Button state (byte)	0		
		Puts the mode in absolute or relative mode. This					
		change will not take effect immediately and the					
	Set mouse	this mode. The only parameter can be 0 for absolute				Absolute or relative mode	
251(0xfb)	absolute/relative mode	(default) or 1 for relative	0		1	(byte)	
		Return the current mouse absolute/relative mode.					
	Get mouse	has been put in this mode, the mouse will not reflect		Absolute or relative mode			
252(0xfc)	absolute/relative mode	this change yet, even though the command will.	1	(byte)	0		
		Sets whether the joystick and mouse are present or					
		removed. The first parameter is for the joystick, and					
		can be U for removed or 1 for present. The second					
		show up as devices on the target system at all For				Joystick present/removed	
	Set joystick and mouse	these changes to take effect, the sensor driver may				(byte), Mouse	
253(0xfd)	present/removed	need to be reinstalled.	0		2	present/removed (byte)	
				Joystick present/removed			
254(0xfe)	Det JOYSTICK and MOUSE	returns whether the joystick and mouse are present	2	(Dyte), MOUSE	0		
ACTIONICI			-	IN CASHINGHIUVEU UVIEI		1	

Appendix

USB Connector

The 3-Space Sensor has a 5-pin USB Type-B jack and can be connected via a standard 5-pin mini USB cable.

Hex / Decimal Conversion Chart

		Second Hexadecimal digit															
		0	1	2	3	4	5	6	7	8	9	A	В	С	D	Ε	F
	0	000	001	002	003	004	005	006	007	008	009	010	011	012	013	014	015
	1	016	017	018	019	020	021	022	023	024	025	026	027	028	029	030	031
	2	032	033	034	035	036	037	038	039	040	041	042	043	044	045	046	047
	3	048	049	050	051	052	053	054	055	056	057	058	059	060	061	062	063
	4	064	065	066	067	068	069	070	071	072	073	074	075	076	077	078	079
igit	5	080	081	082	083	084	085	086	087	088	089	090	091	092	093	094	095
al D	6	096	097	098	099	100	101	102	103	104	105	106	107	108	109	110	111
ecim	7	112	113	114	115	116	117	118	119	120	121	122	123	124	125	126	127
exad	8	128	129	130	131	132	133	134	135	136	137	138	139	140	141	142	143
st He	9	144	145	146	147	148	149	150	151	152	153	154	155	156	157	158	159
Firs	A	160	161	162	163	164	165	166	167	168	169	170	171	172	173	174	175
	B	176	177	178	179	180	181	182	183	184	185	186	187	188	189	190	191
	С	192	193	194	195	196	197	198	199	200	201	202	203	204	205	206	207
	D	208	209	210	211	212	213	214	215	216	217	218	219	220	221	222	223
	E	224	225	226	227	228	229	230	231	232	233	234	235	236	237	238	239
	F	240	241	242	243	244	245	246	247	248	249	250	251	252	253	254	255

Notes:

Serial Number: _____

YEI Technology

630 Second Street Portsmouth, Ohio 45662

> Toll-Free: 888-395-9029 Phone: 740-355-9029

www.YeiTechnology.com www.3SpaceSensor.com

> Patents Pending ©2007-2011 Yost Engineering, Inc. Printed in USA