
EverBEEN

Martin Sixta, Tadeáš Palusga, Radek Mácha, Jakub Břečka

www.everbeen.cz

Contents

1 Introduction to EverBEEN 5

1.1 Foreword . 5

1.1.1 Related works . 6

1.2 Case study . 6

1.2.1 Regression benchmarking . 6

1.2.2 Pull-oriented benchmarking . 6

1.2.3 Push-oriented benchmarking . 7

1.3 Target audience . 7

1.4 Project history . 7

1.4.1 BEEN . 7

1.4.2 WillBEEN . 8

1.4.3 State of WillBEEN in 2012 . 8

1.4.4 EverBEEN . 8

1.5 Project Goals . 9

1.5.1 Overview . 9

1.5.2 Goals . 9

1.5.3 How we met the goals . 9

1.6 Project Output . 10

1.6.1 Distributed nature of EverBEEN . 10

1.6.2 EverBEEN’s Support for Regression Benchmarking 11

1.7 The EverBEEN team . 11

1.7.1 Contributions . 11

1.8 Glossary . 12

2 EverBEEN user guide 13

2.1 EverBEEN requirements . 13

2.2 Basic concepts . 14

2.2.1 BEEN services . 14

2.2.2 Tasks . 14

2.2.3 Contexts . 14

2.2.4 Benchmarks . 15

1

CONTENTS 2

2.2.5 Results . 15

2.2.6 Evaluators . 15

2.2.7 Node types . 15

2.3 Deployment process . 15

2.3.1 Running EverBEEN . 15

2.3.2 Node directory structure . 17

2.3.3 Limitations . 18

2.4 Web Interface . 18

2.4.1 Connecting to the cluster . 18

2.4.2 Cluster overview . 18

2.4.3 Package listing and package uploading . 19

2.4.4 Cluster information and service logs . 19

2.4.5 Runtimes . 19

2.4.6 Benchmarks and tasks . 21

2.4.7 Submitting a new task, task context or benchmark 22

2.4.8 Listing tasks and task contexts . 22

2.4.9 Task, task context and benchmark detail . 24

2.4.10 Displaying logs from tasks . 26

2.4.11 Listing and displaying evaluator results . 26

2.4.12 Debugging tasks . 27

2.4.13 Handling web interface errors . 28

2.5 Task and Benchmark API . 28

2.5.1 Maven Plugin and Packaging . 29

2.5.2 Descriptor Format . 30

2.5.3 Task API . 33

2.5.4 Task Properties . 33

2.5.5 Persisting Results . 34

2.5.6 Querying Results . 35

2.5.7 Checkpoints and Latches . 35

2.5.8 Benchmark API . 36

2.5.9 Creating Task Contexts . 37

2.5.10 Resubmitting and Benchmark Storage . 37

2.5.11 Evaluators . 38

2.6 BPKs and Software repository . 38

2.6.1 Been package (BPK) . 38

2.6.2 Software repository . 40

2.6.3 BPK versioning . 40

2.7 Persistence layer . 40

2.7.1 Characteristics . 40

CONTENTS 3

2.7.2 Components . 41

2.8 EverBEEN configuration . 42

2.8.1 Configuration options . 42

2.9 EverBEEN best practices . 45

2.10 EverBEEN extension points . 46

2.10.1 Storage extension . 46

2.10.2 MapStore extension . 51

3 EverBEEN developer documentation 53

3.1 Design goals . 53

3.1.1 Scalability, Redundancy, Reliability . 53

3.1.2 Modularity . 53

3.1.3 Ease of use . 54

3.2 Decision timeline . 54

3.3 EverBEEN architecture . 55

3.3.1 Cluster . 55

3.3.2 Services . 55

3.3.3 Native Nodes, Data Nodes . 56

3.3.4 User code . 56

3.3.5 User code zone . 57

3.3.6 User Interface . 57

3.4 Principal features . 57

3.5 EverBEEN services . 58

3.5.1 Host Runtime . 58

3.5.2 Task Manager . 63

3.5.3 Software Repository . 67

3.5.4 Object Repository . 69

3.5.5 Map Store . 71

3.5.6 Web Interface . 72

3.6 Modular approach . 72

3.6.1 Module overview . 73

3.7 Used technologies . 76

3.7.1 Hazelcast . 76

3.7.2 0MQ . 77

3.7.3 Apache Maven . 77

3.7.4 Apache Commons . 77

3.7.5 Apache HTTP Core/Components . 77

3.7.6 Jackson . 77

3.7.7 JAXB . 77

3.7.8 Logback (logging implementarion) . 78

CONTENTS 4

3.7.9 MongoDB . 78

3.7.10 SLF4J (logging interface) . 78

3.7.11 Tapestry5 . 78

3.7.12 Twitter Bootstrap . 78

3.8 Current limitations and future work . 78

Chapter 1

Introduction to EverBEEN

1.1 Foreword

Automatic testing of software has become an integral part of software development and software engineering
today heavily relies on two levels of testing and verification to ensure the quality of programs:

• Unit testing which refers to the process of testing whether a single isolated component behaves
according to the specification. Unit tests are usually conducted in a white-box manner and nowadays,
software is often engineered in a test-driven development environment, where the developers first
write unit tests before actually implementing a component.

• Integration testing which tries to verify the interaction and integration of multiple components
within a system. It is usual to perform this using black-box testing and there are several patterns
and approaches for integration testing.

Such testing is not only done in order to hunt bugs and discover non-functional code, but it has found its
use in performance testing and evaluation as well. The requirement to focus development on performance
is becoming a standard part of software engineering. Performance evaluation (benchmarking) can have
different goals, e.g.:

• Regression testing, which helps the developer determine whether a newly implemented feature
has any impact on the performance of the system.

• Scalability measures, where the system is measured under an increasing load.
• Comparison with competing software
• Determining the bottleneck

Despite the fact that performance measuring is definitely useful, it still has quite a low popularity
among development teams. Regression benchmarking is uncommon and the implementation of individual
benchmarks is usually project-specific. The need for a generic framework for regression benchmarking is
obvious for many reasons:

• Benchmarking middleware is hard because of the need for a complex environment. A generic
framework could simplify the tasks of deployment, configuration and management of a networked
benchmarking environment.

• Performing a long-running benchmark on multiple machines requires a significant amount of work
to ensure the benchmark will continue even after a failure of one machine. The framework could
provide such facilities easily.

• A benchmarking framework could easily automate evaluation and integrate it into the development
process.

5

CHAPTER 1. INTRODUCTION TO EVERBEEN 6

• The environment can offer facilities, such as synchronization, logging and communication mechanisms,
that would make the task of creating a benchmark easier.

• Statistics, analysis and visualization are good candidates for having a helpful library instead of
writing a custom one.

1.1.1 Related works

• Kalibera, T., Lehotsky J., Majda D., Repcek B., Tomcanyi M., Tomecek A., Tuma, P., Urban J.:
Automated Benchmarking and Analysis Tool1 (PDF, 149 kB), VALUETOOLS 2006

• Kalibera, T., Bulej, L., Tuma, P.: Generic Environment for Full Automation of Benchmarking2

(PDF, 84 kB), SOQUA 2004

• Täuber, J.: Deployment of Performance Evaluation Tools in Industrial Use Case3 (PDF, 614 kB),
MFF 2013

1.2 Case study

During the development of EverBEEN, several use cases were considered and this section describes the
ones that BEEN was specifically designed for.

1.2.1 Regression benchmarking

Regression benchmarking is a technique mostly aimed at discovering negative performance impact of a
newly added feature, an upgrade or a single patch in the source code. This usually involves performing
the same set of benchmarks against various versions of the same software. Often, even individual revisions
of the source tree are tested. When the benchmark is stable enough to result in consistent data, it is easy
to immediately see which commits had an impact on performance.

While performance degradation is obviously an undesired effect, unplanned performance increase can
also be an indicative of a problem. This can easily happen when an expensive check (e.g. for security
purposes) is unintentionally removed or bypassed. Whether performance fluctuations be positive or
negative, regression benchmarking provides the development team with crucial information which not
only denotes the actutal performance change, but also points to the exact code modification that caused
it.

1.2.2 Pull-oriented benchmarking

Consider the following case: We have access to a source code repository with version history of a software
product, whose developers don’t do any regular benchmarking. Suddenly, they realize that their software
behaves much slower than a year ago. Although the performance degradation is probably caused by
several factors, the developers would like to determine major slowdown culprits and eliminate them.

If this software were a standalone desktop application, the obvious solution would be to build all the
revisions of the software since last year and benchmark them. Writing a script automating this task
would be straightforward. When the software in question is distributed middleware, even setting up a
benchmarking environment could be a costly task.

This task can be generalized into a problem of running a benchmark over a set of parameters. The
parameters are known in advance and the benchmark is by necessity a user-written code. A generic
benchmarking framework should therefore simplify both parameter specification and the process of writing
benchmark code. The user’s options must be flexible enough to support many possible configurations of
the benchmark — one might want to benchmark a single piece of software with various configurations.

1http://d3s.mff.cuni.cz/publications/download/Submitted_1404_BEEN.pdf
2http://d3s.mff.cuni.cz/publications/download/KaliberaBulejTuma-FullAutomationOfBenchmarking.pdf
3https://is.cuni.cz/webapps/zzp/detail/78663/4417375

http://d3s.mff.cuni.cz/publications/download/Submitted_1404_BEEN.pdf
http://d3s.mff.cuni.cz/publications/download/KaliberaBulejTuma-FullAutomationOfBenchmarking.pdf
https://is.cuni.cz/webapps/zzp/detail/78663/4417375

CHAPTER 1. INTRODUCTION TO EVERBEEN 7

A benchmark iterating over a predefined set of parameters is called a pull-oriented benchmark. The
details of EverBEEN’s support for this use case are discussed later along with the project goals.

1.2.3 Push-oriented benchmarking

Another practical use case is the incorporation of benchmarking into a continuous integration envi-
ronment. Such environments usually perform a large suite of unit tests whenever a commit into the
repository is made. The results (especially failed tests) are then shown either on a project status web
page or sent via email to the developers.
Deploying a continuous regression testing suite into such a system would then be a matter of integrating
a benchmarking framework in such a way that a suite of prepared benchmarks would be run every time a
new commit is made. We call this case push-oriented benchmarking, because there is no predefined
set of items to benchmark. Instead, a push event should be dispatched that would cause the newly created
revision to be tested.

1.3 Target audience

EverBEEN is a project for developers, testers, software project leaders and researchers who are looking for
a way to automate benchmarking and testing. To these people, EverBEEN can provide an environment
that can be easily deployed into a heterogeneous network and that can ease the task of creating,
debugging, running and managing benchmarks, especially those aimed at evaluating distributed systems
and middleware.
What BEEN is not:

• BEEN is not a benchmark, nor will it by itself perform any actual benchmarking.

• BEEN is not a standalone desktop application, you will have to provide or write your own tasks
and benchmarks.

To be able to use BEEN, users are expected to be experienced in the area of software benchmarking and
performance testing. Users should already know what exactly they want to benchmark, how they are
going to benchmark it and what the outcome of their benchmarks should be. They should know how to
interpret and evaluate the resulting data and be able to understand what the benchmark measured and
whether the output makes sense.
Users should also have a decent knowledge about general benchmarking practices, possible problems,
and various factors that can influence the validity of results. This is especially required for regression
benchmarking, where the consequences of a wrong choice of metrics or data misinterpretation are amplified
by the direct projection of benchmarking conclusions on the development process.

1.4 Project history

1.4.1 BEEN

The original BEEN project was started in Fall 2004 and finished at the turn of 2006 and 2007 It was
supervised by Tomáš Kalibera and developed by Jakub Lehotský, David Majda, Branislav Repček, Michal
Tomčányi, Antonín Tomeček and Jaroslav Urban. This project’s assignment was:

“The aim of the project will be to create a highly configurable and modular environment for
benchmarking of applications, with special focus on middleware benchmarks.”

The team that worked on the project created the whole architecture and individual components of the
framework and eventually implemented a functional benchmarking environment in Java, using RMI as
the main mean of communication among its individual parts.

CHAPTER 1. INTRODUCTION TO EVERBEEN 8

1.4.2 WillBEEN

The second incarnation of the framework was called WillBEEN and it mainly continued development
of the original project. Its goal was to extend BEEN, mainly focusing on adding support for non-Java
user tasks (scripts), creating a modular results repository component and devising a fast and reliable
command-line user interface for the framework.

This project was supervised by Petr Tůma and developed by Andrej Podzimek, Jan Tattermusch and
Jiří Täuber. The team started working in 2009 and finished the project in March 2010. During the
development, several components were redesigned and reimplemented and the project integrated several
new technologies, such as JAXB4 and Apache Derby5.

1.4.3 State of WillBEEN in 2012

In 2011, the faculty decided to create another assignment for BEEN as its state was still far from ideal.
Since the original team started working on the project more that 7 years before, its codebase used
obsolete technologies and the legacy of the initial architecture was causing issues with both stability
and performance. The choice of RMI for component communication was deemed to be the main culprit.
WillBEEN also had many single points of failure, e.g., disconnecting a single component rendered the
whole environment unusable.

WillBEEN’s development team had to cope with a large, old and fragile codebase. While changes
introduced during the development were of good to high quality, the team lacked necessary resources to
radically change or rewrite all parts of the framework.

WillBEEN deployment was yet another problematic part. Installing and configuring the environment
took a tremendous amount of effort. Last but not least, the user API for writing benchmarks was very
complicated, and user benchmark code was almost impossible to debug.

The new team was therefore supposed to eliminate some of these shortcomings, while stabilizing the
framework even further. Thus the goals set were to rewrite the oldest parts of the framework, while
maintaining the rest, along with finding a better approach to component communication based on
asynchronous message passing. The work load was estimated to +20,000 LOC.

1.4.4 EverBEEN

EverBEEN is a complete rewrite of the BEEN framework from scratch. It took into account previous
experience6 with WillBEEN deployment and exploited current technologies and software development
standards.

EverBEEN has a fundamentally different, decentralized architecture. Many aspects of the project were
simplified by virtue of popular 3rd party Java libraries, which makes the whole framework more stable
and compliant to modern development techniques. However, the naming of individual BEEN components
and work units was preserved. Therefore, users familiar with previous BEEN implementations should
have no trouble adapting to the new system implementation.

The decision to do a complete rewrite was made after careful consideration of all options. The incompati-
bility of project goals with the state of WillBEEN’s codebase was the key piece that tipped the odds in
favor of restarting from scratch.

EverBEEN is supervised by Andrej Podzimek and Petr Tůma, and developed by Martin Sixta, Tadeáš
Palusga, Radek Mácha and Jakub Břečka. The work on the project started in Fall 2012 and its first stage
is aimed to finish in September 2013.

4http://jaxb.java.net/
5http://db.apache.org/derby/
6https://is.cuni.cz/webapps/zzp/detail/78663/4417375/

http://jaxb.java.net/
http://db.apache.org/derby/
https://is.cuni.cz/webapps/zzp/detail/78663/4417375/

CHAPTER 1. INTRODUCTION TO EVERBEEN 9

1.5 Project Goals

This section contains text copied directly from the Project Committee’s web site.

http://ksvi.mff.cuni.cz/~holan/SWP/zadani/ebeen.txt

1.5.1 Overview

“The Been framework automatically executes software performance measurements in a het-
erogeneous networked environment. The basic architecture of the Been framework consists of
a host runtime capable of executing arbitrary tasks, a task manager that relies on the host
runtime to distribute and execute scheduled sequences of tasks, and a benchmark manager that
creates the sequences of tasks to execute and measure benchmarks. Other components include
a software repository, a results repository, and a graphical user interface.”

The Been framework has been developed as a part of a student project between 2004-2006, and substantially
modified as a part of another student project between 2009-2010.

1.5.2 Goals

The overall goal of this project is to modify the Been framework to facilitate truly continuous execution.
In particular, this means:

• Reviewing the code responsible for communication between hosts, setting up rules that prevent the
communication from creating orphan references (and therefore memory leaks), and rules that make
the communication robust in face of network and host failures.

• Reviewing the code responsible for logging, setting up rules that govern all log storage (and prevent
uncontrolled growth of logs).

• Reviewing the code responsible for temporary data storage, setting up rules that enforce reliable
temporary data storage cleanup while preserving enough data for post mortem inspection of failed
tasks and hosts.

• Reviewing the code responsible for measurement result storage, setting up rules for archival and
cleanup that would make it possible to store recent results in detail and older results for overview
purposes.

• Generally clean up any reliability related bugs.

1.5.3 How we met the goals

The following overview takes into account goals set for the project as submitted to the Project Committee.
The overall changes were much more substantial than anticipated.

Reviewing the code responsible for communication between hosts . . .
A completely new architecture and communication protocol was introduced based on scalable, redundant
data distribution.

Reviewing the code responsible for logging . . .
Both user code API and framework code were ported under a unified logging system compliant to latest
Java development standards.

Reviewing the code responsible for temporary data storage . . .
A deletion policy was set up for all leftover user task data (working directories, logs, results), enforcing
automatic cleanup after a configurable expiration period or possibility of easy manual deletion.

http://ksvi.mff.cuni.cz/~holan/SWP/zadani/ebeen.txt

CHAPTER 1. INTRODUCTION TO EVERBEEN 10

Reviewing the code responsible for measurement result storage . . .
A complete overhaul of the component responsible for result storage and retrieval was made.

Generally clean up any reliability related bugs.
Adoption of standard development techniques and usage of third party components resulted in a much
smaller and compact code base.

1.6 Project Output

The initial assignment of the EverBEEN project mainly focuses on delivering a more usable, stable and
scalable product. That being said, it was assumed that the development team will work on existing
codebase and refactor it instead of starting from scratch.

There were, however, multiple design flaws refactoring alone could not remedy. The RMI library was
too deeply embedded into the codebase to be simply replaced. The individual modules of WillBEEN
were cross-linked and couldn’t be separated by well-defined interfaces. Multiple implementations of the
same functionality (e.g. logging) made the codebase scattered and inconsistent. Also, the WillBEEN
implemented several custom facilities which are, as of toady, standard issue among external Java libraries.

To meet stability and scalability requirements, the team decided to rewrite BEEN from scratch, only
preserving the concept and several design decision, e.g. the choice of most components and their purpose.
Subsequently, the team could focus on creating a scalable, usable product from the first moment.

Therefore the project goals were extended to include:

• Preserving the basic concept of the whole environment
• Innovating the code base by use of modern technologies and practices
• Delivering a highly scalable and stable product
• Reducing the number of single points of failure
• Making the framework easy to deploy
• Improving usability by simplifying task and benchmark creation and debugging

1.6.1 Distributed nature of EverBEEN

One of WillBEEN’s major issues was reliance on network stability. The framework required that all
involved computers be running and available. Disconnecting some of the core services caused the whole
framework to hang or crash, and recovery was often impossible. Also, the core EverBEEN components
were required to be running for the whole time, which created a lot of single points of failure. That
aggravated common situations like short-term network outages to irrecoverable system failures.

Such fragile client-server architecture seemed inappropriate for a framework supposedly tailored for
large and heterogeneous networks. That is why EverBEEN is built on Hazelcast – a decentralized,
highly scalable platform for distributed data sharing. Hazelcast is a Java-based library that implements
peer-to-peer communication over TCP/IP, featuring redundant data sharing, transparent replication
and automatic peer discovery. This platform provides distributed maps, queues, lists, locks, topics,
transactions and synchronization mechanisms using distributed hashing tables.

Hazelcast supports data redundancy and fail-over mechanisms, which EverBEEN uses to provide a
decentralized benchmarking environment. Its nodes are mutually equal, and the framework keeps running
as long as at least one node is partaking in data sharing. When a node gets disconnected, the cluster is
notified and ceases using this node until it reconnects. To fully profit from this fault-tolerant behavior,
core EverBEEN components function in a decentralized manner and transparently partition work across
many instances.

This architecture makes EverBEEN a fully distributed platform with high availability and scalability,
while eliminating most bottlenecks and substantially reducing the number of critical components.

CHAPTER 1. INTRODUCTION TO EVERBEEN 11

1.6.2 EverBEEN’s Support for Regression Benchmarking

EverBEEN was designed to cover both use cases discussed in the Case Study, while keeping the user code
API to a minimum. The API for writing benchmarks is a unified means of creating and submitting sets
of tasks on every invocation (realized by the framework). Depending on the benchmark’s control flow, it
can either act like a service to support push-oriented benchmarking, or iterate over a pre-defined set of
parameters in a pull-oriented way.
During development, implementation of a declarative language describing benchmarks was considered.
Such language would, however only support the pull-oriented case. Subsequently, EverBEEN would
require a different API for push-oriented benchmarking. The unified API offers unlimited flexibility, as
the generation of task sets is in full control of the user. Additionally, the running benchmark can take
the current (incomplete) results into account and modify the progress of the benchmark. This feature has
many uses, for example granularity refinement in reaction to a previously detected anomaly.
The unified API for writing tasks and benchmarks is discussed in detail in section 2.5 (Task and Benchmark
API).

1.7 The EverBEEN team

The EverBEEN framework was developed by Jakub Břečka, Radek Mácha, Tadeáš Palusga and Martin
Sixta, under the supervision of Andrej Podzimek.

1.7.1 Contributions

Overview of main contributions to the project by team members:
Jakub Břečka

• Task API
• Benchmark API
• Monitoring
• Web Interface
• nginx benchmark

Radek Mácha

• Object Repository
• Software Repository
• JAXB internals
• Inter-process communication

Tadeáš Palusga

• Host Runtime
• Web Interface
• Software Repository
• BPK Plugin for Maven

Martin Sixta

• Task Manger
• Host Runtime
• Task API
• Inter-process communication
• Hazelcast benchmark

CHAPTER 1. INTRODUCTION TO EVERBEEN 12

1.8 Glossary

benchmark
Special-purpose task designed for task context generation.

Benchmark API
API assisting EverBEEN users with writing benchmarks.

BPK
EverBEEN package containing software and metadata necessary for running tasks, benchmarks and/or
evaluators.

BPK Plugin
Apache Maven plugin capable of generating BPK bundles.

checkpoint
Inter-task synchronization primitive.

DATA node
A node instance that participates in distributed data sharing and runs a Task Manager service.

evaluator
Special-purpose task designed to perform presentable evaluations on results generated by other tasks.

EverBEEN service
A software component that adds extra functionality to an EverBEEN node. Services are launched at
node boot time. Node service selection is specified by command-line options.

Host Runtime
EverBEEN service that executes tasks and mediates communication between tasks and the rest of the
EverBEEN cluster.

NATIVE node
A node instance that does not participate in distributed data sharing.

node
Java application providing clustering functionality and capable of running EverBEEN services.

Object Repository
Universal storage component for EverBEEN user data.

Result
User type carrying task output data.

Software Repository
An EverBEEN service cabable of distributing BPK bundles across the cluster.

task
Unit of user-written code executable by the EverBEEN framework.

Task API
API assisting EverBEEN users with writing tasks.

task descriptor
XML description of a task’s configuration.

task context
A container grouping multiple tasks into a logical unit.

task context descriptor
A XML representation of a task context.

Task Manger
EverBEEN service in charge of task scheduling.

Chapter 2

EverBEEN user guide

2.1 EverBEEN requirements

BEEN is designed from the ground up to be a multi-platform software. Currently supported platforms
include:

• Linux – most recent distributions
• Mac OS X 10.8 and later
• Microsoft Windows 7 and later
• FreeBSD

In order to deploy BEEN these software packages need to be installed:

• Java Runtime Environment (JRE) version 1.7

For writing and debugging user-written tasks:

• Apache Maven version 3

For a node that will run the web interface client:

• Java Servlet compatible container (e.g. Tomcat 7, Jetty)

(The container is optional, the Web Interface can be also run in embedded mode.)
For a node that will run the results repository, the machine needs:

• MongoDB version 2.4

The clients that should be able to access the web interface need to have one of the following web browsers:

• Google Chrome version 29 or newer
• Mozilla Firefox version 22 or newer

The project does not have any explicit hardware requirements, any machine that meets the software
requirements listed above, should be able to run BEEN. However, the recommended minimum machine
hardware configuration is:

• Modern CPU with at least 2.0 GHz
• 100Mbit network interface
• 4 GB of RAM
• 10 GB of HDD free space

13

CHAPTER 2. EVERBEEN USER GUIDE 14

2.2 Basic concepts

Before delving into the deployment process a few concepts must be explained. The concepts are explored
and further explained in the following chapters.

2.2.1 BEEN services

An EverBEEN service is a component that runs indefinitely and processes requests. Essential services
include:

• Host Runtime — executes tasks
• Task Manager — schedules tasks
• Software Repository — serves packages
• Object Repository — provides persistence layer

2.2.2 Tasks

An EverBEEN task is a basic executable unit of the framework. Tasks are user written code which the
framework runs on Host Runtimes.

Tasks are distributed in the form of package files called BPK s (from BEEN package). BPKs are uploaded
to the Software Repository and are uniquely identified by groupId, bpkId and version.

Task Descriptors are XML files describing which package to use, where and how to run a task. Task
Descriptors are submitted to a Task Manager which schedules and instantiates the task on a Host Runtime
which meets user-defined constraints.

Tasks have states:

CREATED
Initial state of the task.

SUBMITTED
The state after the task is submitted to a Task Manager.

ACCEPTED
The state after a task is accepted on a Host Runtime to be run.

RUNNING
The state indicates that the task is running on a Host Runtime.

FINISHED
Indicates successful completion of the task.

ABORTED
Indicates that the task failed while running or cannot be run at all (for example because of a missing
BPK).

2.2.3 Contexts

EverBEEN contexts group related tasks to achieve a shared goal. Contexts are not runnable entities, their
life cycle is derived from states of contained tasks. Contexts are described by Task Context Descriptor
XML files.

Task context states:

RUNNING
Contained tasks are running, scheduled or waiting to be scheduled.

CHAPTER 2. EVERBEEN USER GUIDE 15

FINISHED
All contained tasks finished without an error.

FAILED
At least one task from the context failed.

2.2.4 Benchmarks

Benchmark are user-written tasks with additional capabilities (in form of the Benchmark API). Benchmark
tasks generate task contexts which are submitted to the framework.

2.2.5 Results

Results are task generated objects representing certain values — for example measured code characteristics.

2.2.6 Evaluators

Evaluators are special purpose tasks which generate evaluator results the framework knows how to
interpret, for example a graph image.

2.2.7 Node types

In EverBEEN node is a program capable of running BEEN services. The node must be able to interact
with other nodes through a computer network. Type of a node determines the mechanism used to connect
to other nodes. Since EverBEEN uses Hazelcast as its means of connecting nodes, node types follow a
design pattern from Hazelcast. Currently two types are supported:

DATA node
Data nodes form a cluster that share distributed data. The cluster can be formed either through
broadcasting or by directly contacting existing nodes, see section 2.8.1.1 (Cluster Configuration). The
Task Manager service must be run on each DATA node (this requirement is enforced by the framework).
Be aware that DATA nodes incur overhead due to sharing data.

NATIVE node
Native nodes can be though of as cluster clients. They do not participate in sharing of distributed
data and therefore do not incur overhead from it. NATIVE nodes connect directly to DATA nodes
(failures are transparently handled). This also means that at all times at least one DATA node must be
running in order for the framework to work. For configuration details see section 2.8.1.2 (Cluster Client
Configuration).

All services except the Task Manager can run on both node types.

2.3 Deployment process

2.3.1 Running EverBEEN

The deployment process assumes a set of interconnected computers on which the framework is supposed
to run and a running MongoDB instance. See section 2.1 (Requirements) and MongoDB installation
guide1 for details.

Deploying EverBEEN consists of two steps:
1http://docs.mongodb.org/manual/installation/

http://docs.mongodb.org/manual/installation/

CHAPTER 2. EVERBEEN USER GUIDE 16

• Copying EverBEEN onto each machine — single executable jar file is provided

• Creating clustering configurations

The exact configuration is highly dependent on the network topology. In the following example configura-
tion two scenarios will be presented depending on how the cluster will be formed.

Usually, there will be a few DATA nodes and as many NATIVE nodes running the Host Runtime service
as needed.

We will also assume that MongoDB instance is running on mongodb.example.com. All nodes must use
the same group and group password.

2.3.1.1 Broadcasting scenario

The cluster is formed through broadcasting.

been.cluster.mapstore.db.hostname=mongodb.example.com
mongodb.hostname=mongodb.example.com

been.cluster.multicast.group=224.2.2.4
been.cluster.multicast.port=54326

been.cluster.group=dev
been.cluster.password=dev-pass

Only the first two configuration options are needed, rest of options have sane defaults.

2.3.1.2 Direct connection scenario

The cluster will be formed by directly connecting nodes.

been.cluster.mapstore.db.hostname=mongodb.example.com
mongodb.hostname=mongodb.example.com

been.cluster.join=tcp
been.cluster.tcp.members=195.113.16.40:5701;host1.example.com;host2.example.com

been.cluster.group=dev
been.cluster.password=dev-pass

The been.cluster.tcp.members option specifies a (potentially partial) list of nodes to which the
connecting node will try to connect. If no node in the list is responding a new cluster will be formed.

2.3.1.3 Connecting NATIVE nodes

NATIVE nodes must be informed to which DATA nodes to connect:

been.cluster.client.members=host1.example.com:5701;host2.example.com
been.cluster.group=dev
been.cluster.password=dev-pass

The been.cluster.client.members option is important, again specifying a (potentially partial) list of
DATA nodes to connect to.

The configuration can be copied directly onto the hosts or can be referenced by an URL (which is the
preferred way).

CHAPTER 2. EVERBEEN USER GUIDE 17

2.3.1.4 Configuring EverBEEN services

The next step is to decide which BEEN services will be run and where. In the simplest and most straight
forward case one node will be running Software repository, Object repository, Host Runtime and implicitly
the Task Manager.

java -jar been.jar -r -sw -rr -cf http://been.example.com/been.properties

Other nodes thus can run only the Host Runtime service.

java -jar been.jar -t NATIVE -r -cf http://been.example.com/been-clients.properties
for NATIVE nodes

java -jar been.jar -r http://been.example.com/been-broadcast.properties
in case of the broadcasting scenario

java -jar been.jar -r -sw -rr -cf http://been.example.com/been-direct.properties
in case of the direct connection scenario

To list available command line options run EverBEEN with:

`java -jar been.jar --help`

2.3.1.5 Running the Web Interface

The last step consists of deploying and running the Web Interface. The supplied war file can be deployed
to a standard Java Servlet container (e.g. Tomcat). Or can be run directly by

java -jar web-interface-3.0.0-SNAPSHOT.war

using an embedded container.

2.3.2 Node directory structure

Node working directory is created on startup.

1. .HostRuntime/
2. ___ tasks/
3. ___ 1378031207851/
4. ___ 1378038338005/
5. ___ 1378038763308/
6. ___ 1378040071618/
7. ___ example-task-a_1bdcaeb4/
8. | ___ config.xml
9. | ___ files/
10. | ___ lib/
11. | ___ stderr.log
12. | ___ stdout.log
13. | ___ tcds/
14. | ___ tds/
15. ___ example-task-b_6a2ccc11/
16. ___ ...
17. ___ ...

• .HostRuntime directory (1) — Host Runtime global working directory. It can be configured by
changing the property hostruntime.wrkdir.name. The default name is .HostRuntime.

CHAPTER 2. EVERBEEN USER GUIDE 18

• Each run of EverBEEN creates separate working directory for its tasks in the tasks subdirectory
(2).

• On restart a new working directory for tasks (3,4,5,6) is created. Names of these directories are
based on the node startup (wall clock) time. EverBEEN on each start checks these directories and if
their number exceeds 4 (by default), the oldest one is deleted. This prevents an unexpected growth
of the Host Runtime working directory size, but allows debugging failed tasks when the underlying
Host Runtime is terminated and restarted. The number of backed up directories is configurable by
the hostruntime.tasks.wrkdir.maxHistory configuration option.

• Working directories of tasks (7,15,16,17) contain files from an extracted BPK (8,9,10,13,14) and log
files for the standard error output (11) and standard output (12).

The working directory of a task is deleted only if the task finished its execution without error, otherwise
the directory remains unchanged. Alternatively, you can either clean up the directory manually or use
the Web Interface for that purpose.

2.3.3 Limitations

• If you want to run more than one Host Runtime on the same machine we strongly recommend to
start each node with a different working directory name. Running multiple instances concurrently
with the same working directory is not supported.

• Running EverBEEN for a long time without clearing directories after failed tasks can result in low
disk space.

2.4 Web Interface

The Web Interface is the tool to interact with the EverBEEN framework.

2.4.1 Connecting to the cluster

First, the Web Interface needs to connect to the EverBEEN cluster (Figure 2.1). You have to provide
cluster connection credentials. If you run your nodes with default configuration, default host name, port
(type of the node must be DATA), group name and group password is prefilled in the login form. Click
on connect to establish a connection with the cluster.

Figure 2.1: Login

2.4.2 Cluster overview

The overview page (Figure 2.2) shows a quick overview of connected nodes, node resources, currently
active or failed tasks and task logs.

CHAPTER 2. EVERBEEN USER GUIDE 19

Figure 2.2: Cluster overview

2.4.3 Package listing and package uploading

Click on the Packages tab. If the Software Repository is connected, you can list and download already
uploaded packages (Figure 2.3).

Figure 2.3: Uploaded packages

Additionally you can upload new packages directly through the Web Interface (Figure 2.4).

2.4.4 Cluster information and service logs

To view information about the cluster click on the Cluster tab (Figure 2.5). The page displays a list of
cluster members, information about connected services and their states. A cluster member is a EverBEEN
DATA node - NATIVE nodes will not be shown here.

The Service logs tab allows to download service logs (Figure 2.6).

2.4.5 Runtimes

The Runtimes tab displays all connected Host Runtimes in a table along with basic information on each
runtime (Figure 2.7).

CHAPTER 2. EVERBEEN USER GUIDE 20

Figure 2.4: Uploading new package

Figure 2.5: Cluster info

Figure 2.6: Service logs

CHAPTER 2. EVERBEEN USER GUIDE 21

Figure 2.7: Listing runtimes

You can display runtime details by clicking on its ID (Figure 2.8).

Figure 2.8: Runtime detail

2.4.6 Benchmarks and tasks

To run a task, task context or benchmark click on the Benchmarks & Tasks tab. The page (Figure 2.9)
presents information about running tasks, task contexts and benchmarks. You can kill them or remove
them from the BEEN cluster. To to kill a benchmark, click on the kill button next to the benchmark id.
All running tasks will be finished and no new tasks and contexts will be started. When the benchmark
is killed or finished, you can remove it from the cluster by clicking on the remove button next to the
benchmark id. All entities related to the benchmark and its task contexts and all persisted records of the
benchmark will be deleted, including logs and results. To remove all finished benchmarks, you can use
the button remove finished benchmarks in the top right corner of the page.

CHAPTER 2. EVERBEEN USER GUIDE 22

Figure 2.9: Benchmark tree

2.4.7 Submitting a new task, task context or benchmark

To submit and run a new task, task context or benchmark click the Submit new item button on the
Benchmarks & Tasks page. The submit page (Figure 2.10) will present available descriptors from
uploaded BPKs as well as user-saved descriptors to run.

Figure 2.10: Submitting new item

After clicking on the submit button, you can edit the selected descriptor (Figure 2.1). You can also save
the descriptor for future use.

2.4.8 Listing tasks and task contexts

Instead of working with the benchmark tree, you can list tasks and task contexts independently. Go to
the Tasks (Figure 2.12) or Task contexts tab (Figure 2.13) on the Benchmarks & Tasks page.

CHAPTER 2. EVERBEEN USER GUIDE 23

Figure 2.11: Submitting a benchmark

Figure 2.12: Listing tasks

CHAPTER 2. EVERBEEN USER GUIDE 24

Figure 2.13: Listing task contexts

2.4.9 Task, task context and benchmark detail

To see a task detail (Figure 2.14), task context detail (Figure 2.15) or benchmark detail (Figure 2.15),
click on its id anywhere on the page. If the task, context or benchmark is running, you can kill it by
clicking on the kill button in the top right corner of the page. If the task, context or benchmark is
finished or failed, you will see the remove button instead of the kill button in top right of the page. Click
on the button to delete all results, logs and all service information about task from EverBEEN.

Figure 2.14: Task detail

CHAPTER 2. EVERBEEN USER GUIDE 25

Figure 2.15: Task context detail

Figure 2.16: Benchmark detail

CHAPTER 2. EVERBEEN USER GUIDE 26

2.4.10 Displaying logs from tasks

To display logs from tasks (Figure 2.17), go to the page with task details and press the show logs button
in the top right corner of the page.

Figure 2.17: Task logs

If you want to see detailed information, e.g. a stack trace (Figure 2.18), click on the line with an
appropriate log message.

Figure 2.18: Detail of a task log

2.4.11 Listing and displaying evaluator results

To list results (Figure 2.19), switch to the Results tab. The page lists all Evaluators results. You can
download or delete them. Currently only evaluator results can be displayed and downloaded directly
through the Web Interface.

You can also display an evaluator result directly (Figure 2.20), but its MIME type must be supported.
Supported MIME types are:

CHAPTER 2. EVERBEEN USER GUIDE 27

Figure 2.19: Listing of evaluator results

• image/png
• image/jpeg
• image/gif
• text/html
• text/plain

Figure 2.20: Example of an evaluator result

2.4.12 Debugging tasks

To see which tasks running in listen debug mode (Figure 2.21), switch to the Debug tab. The page
displays information about host names and ports where the Java debugger can connected. Currently only
JVM-based task can be debugged.

CHAPTER 2. EVERBEEN USER GUIDE 28

Figure 2.21: Debug page

2.4.13 Handling web interface errors

If something goes wrong or you are trying to invoke an invalid operation, the web interface will present a
simple error message (Figure 2.22).

Figure 2.22: Error page example

If you are interested in the stack trace of the error, click on the show detailed stack trace link in
bottom right corner of the page.

2.5 Task and Benchmark API

One of the main goals of the EverBEEN project was to make the task API as simple as possible and to
minimize the amount of work needed to create a benchmark.

EverBEEN works with three concepts of user-supplied code and configuration:

• Task, is an elementary unit of code that can be submitted to and run by EverBEEN. Tasks are
created by subclassing the abstract Task class and implementing appropriate methods. Each task
has to be described by a XML task descriptor which specifies the main class to run and parameters
of the task.

• Task context is a container for multiple tasks. Containers can interact, pass data to each other
and synchronize among themselves. Tasks contexts do not contain any user-written code, they only
serve as wrappers for the contained tasks. Each task context is described by a XML task context
descriptor that specifies which tasks should be contained within the context.

• Benchmark is a first-class object that generates task contexts based on its generator task, which
is again a user-written code created by subclassing the abstract Benchmark class. Each benchmark is
described by a XML benchmark descriptor which specifies the main class to run and parameters
of the benchmark. A benchmark is different from a task, because its API provides features for
generating task contexts and it can also persist its state so it can be re-run when an error occurs
and the generator task fails.

All these three concepts can be submitted to EverBEEN and run individually, e.g. if you only want to
test a single task, you can submit it without providing a task context or benchmark.

CHAPTER 2. EVERBEEN USER GUIDE 29

Figure 2.23: Debugging the Web Interface

2.5.1 Maven Plugin and Packaging

The easiest way to create a submittable item (e.g. a task) is by creating a Maven project and adding a
dependency on the appropriate EverBEEN module (e.g. task-api) in the pom.xml of the project:

<dependency>
<groupId>cz.cuni.mff.d3s.been</groupId>
<artifactId>task-api</artifactId>
<version>3.0.0-SNAPSHOT</version>

</dependency>

Tasks, contexts and benchmark must be packaged into a BPK file, which can then be uploaded to
EverBEEN. Each BPK package can contain multiple submittable items and multiple XML descriptors.
The problem of packaging is made easier by the supplied bpk-maven-plugin Maven plugin. The preferred
way to use it is to add the plugin to the package Maven goal in pom.xml of the project:

<plugin>
<groupId>cz.cuni.mff.d3s.been</groupId>
<artifactId>bpk-maven-plugin</artifactId>
<version>1.0.0-SNAPSHOT</version>
<executions>

<execution>
<goals>

<goal>buildpackage</goal>
</goals>

</execution>
</executions>
<configuration>

...
</configuration>

</plugin>

CHAPTER 2. EVERBEEN USER GUIDE 30

In the plugin’s configuration the user must specify at least one descriptor of a task, context or benchmark.
To add a descriptor into the BPK, it should be added as a standard Java resource file and then referenced
in the plugin configuration by using a <taskDescriptors> or <taskContextDescriptors> element. For
example, the provided sample benchmark called nginx-benchmark uses this configuration:

<configuration>
<taskDescriptors>

<param>src/main/resources/cz/cuni/mff/d3s/been/nginx/NginxBenchmark.td.xml</param>
</taskDescriptors>

</configuration>

This specifies that the package should publish a single descriptor named NginxBenchmark.td.xml which
is located in the specified resource path. With such a configuration, creating the BPK package is simply
a matter of invoking mvn package on the project — it will produce a .bpk file that can be uploaded to
EverBEEN.

2.5.1.1 Maven repositories

Maven repositories are available. Put the following declarations into the pom.xml to transparently resolve
dependencies:

<pluginRepositories>
<pluginRepository>

<id>everbeen.cz-plugins-snapshots</id>
<url>http://everbeen.cz/artifactory/plugins-snapshot-local</url>

</pluginRepository>
</pluginRepositories>

<repositories>
<repository>

<id>everbeen.cz-snapshots</id>
<url>http://everbeen.cz/artifactory/libs-snapshot-local</url>

</repository>
</repositories>

The current version of the bpk-maven-plugin is 1.0.0-SNAPSHOT.

2.5.2 Descriptor Format

There are two types of descriptors, task descriptors and task context descriptors. Note that benchmarks
don’t have a special descriptor format, instead you only provide a task descriptor for a generator task
of the benchmark. These descriptors are written in XML and they must conform to the supplied XSD
definitions (task-descriptor.xsd2 and task-context-descriptor.xsd3).

The recommended naming practice is to name your task descriptors with the filename ending with
.td.xml and your task context descriptors ending with .tcd.xml.

A simple task descriptor for a single task can look like this:

<?xml version="1.0"?>
<taskDescriptor xmlns="http://been.d3s.mff.cuni.cz/task-descriptor"

groupId="my.sample.benchmark" bpkId="hello-world" version="3.0.0-SNAPSHOT"
name="hello-world-task" type="task">

<java>
2http://www.everbeen.cz/xsd/task-descriptor.xsd
3http://www.everbeen.cz/xsd/task-context-descriptor.xsd

http://www.everbeen.cz/xsd/task-descriptor.xsd
http://www.everbeen.cz/xsd/task-context-descriptor.xsd

CHAPTER 2. EVERBEEN USER GUIDE 31

<mainClass>my.sample.benchmark.HelloWorldTask</mainClass>
</java>

</taskDescriptor>

It specifies the main class and package that should be used to run the task. Apart from this, you can
specify what parameters the task should receive and their default values:

<properties>
<property name="key">value</property>

</properties>

These properties will be presented to the user in the web interface before submitting the task and the
user can modify them. Next, you can specify command line arguments passed to Java:

<arguments>
<argument>-Xms4m</argument>
<argument>-Xmx8m</argument>

</arguments>

For debugging purposes, you can specify the <debug> element which will enable remote debugging when
running the task (also available from the Web Interface).

2.5.2.1 Host Runtime selection

With the <hostRuntimes> element you can constrain the Host Runtimes the task can be run on. The
value of this setting is an expression in XML Path Language (XPath) Version 1.04.
The most useful options for host selection are presented here. For full specification see runtime-info.xsd5,
hardware-info.xsd6, monitor.xsd7

Basic Information about a Host Runtime

/id
/port
/host

Java runtime specification

/java/version
/java/vendor
/java/runtimeName
/java/VMVersion
/java/VMVendor
/java/runtimeVersion
/java/specificationVersion

Operation system information

/operatingSystem/name
/operatingSystem/version
/operatingSystem/arch
/operatingSystem/vendor
/operatingSystem/vendorVersion
/operatingSystem/dataModel
/operatingSystem/endian

4http://www.w3.org/TR/xpath
5http://www.everbeen.cz/xsd/runtime-info.xsd
6http://www.everbeen.cz/xsd/hardware-info.xsd
7http://www.everbeen.cz/xsd/monitor.xsd

http://www.w3.org/TR/xpath
http://www.everbeen.cz/xsd/runtime-info.xsd
http://www.everbeen.cz/xsd/hardware-info.xsd
http://www.everbeen.cz/xsd/monitor.xsd

CHAPTER 2. EVERBEEN USER GUIDE 32

CPU information (there can be multiply CPUs)

/hardware/cpu/vendor
/hardware/cpu/model
/hardware/cpu/mhz
/hardware/cpu/cacheSize

File system information (there can be multiply file systems)

/filesystem/deviceName
/filesystem/directory
/filesystem/type
/filesystem/free
/filesystem/total

Network information (there can be multiply network interfaces)

/hardware/networkInterface/name
/hardware/networkInterface/hwaddr
/hardware/networkInterface/type
/hardware/networkInterface/mtu
/hardware/networkInterface/netmask
/hardware/networkInterface/broadcast
/hardware/networkInterface/address

Main memory information

/hardware/memory/ram
/hardware/memory/swap

Examples

The following example will select the Host Runtime with host name eduroam40.ms.mff.cuni.cz.

<hostRuntimes>
<xpath>host = "eduroam40.ms.mff.cuni.cz"</xpath>

</hostRuntimes>

<hostRuntimes>
<xpath>//networkInterface[address = "195.113.16.40"]</xpath>

</hostRuntimes>

Selects the Host Runtime with an IPv4 address of 195.113.16.40.

<hostRuntimes>
<xpath>/hardware/networkInterface[contains(address,"195.113.16")]</xpath>

</hostRuntimes>

Selects all Host Runtimes whose IP address contains “195.113.16”.

<hostRuntimes>
<xpath>contains(/operatingSystem/name, "Linux")</xpath>

</hostRuntimes>

Selects all Linux operating systems.
Selection expression can be tested on the runtime/list page in the Web Interface.

CHAPTER 2. EVERBEEN USER GUIDE 33

2.5.3 Task API

To create a task submittable into EverBEEN, you should start by subclassing the Task8 abstract class.
The run method needs to be overridden.

EverBEEN uses SLF4J9 as its logging mechanism and provides a logging backend for all user-written
code. This means that you can simply use the standard loggers and any logs will be automatically stored
through EverBEEN.

Knowing this, the simplest task that will only log a message looks like this:

package my.sample.benchmark;

import cz.cuni.mff.d3s.been.taskapi.Task;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

public class HelloWorldTask extends Task {
private static final Logger log = LoggerFactory.getLogger(HelloWorldTask.class);

@Override
public void run(String[] args) {

log.info("Hello, world!");
}

}

If this class is in a Maven project as described in the 2.5.1 (Maven Plugin and Packaging) section, it can
be packaged into a BPK package by invoking mvn package. This package can be uploaded and run from
the Web Interface.

BEEN provides several APIs for user-written tasks:

• Properties — Tasks are configurable either from their descriptors or by the benchmark that generated
them. These properties are again configurable by the user before submitting the task. All properties
have a name and a simple string value and these can be accessed via the getTaskProperty method
of the abstract Task class.

• Result storing — Each task can persist a result that it has gathered by using the API providing
access to the persistence layer. To store a result, use a Persister object, which can be created by
using the method createResultPersister from the Task abstract class.

• Synchronization and communication — When multiple tasks run in a task context, they can interact
with each other either for synchronization purposes or to exchange data. API is provided by the
CheckpointController10 class. EverBEEN provides the concepts of checkpoints and latches.
Latches serve as context-wide atomic numbers with the methods for setting a value, decreasing the
value by one and waiting until the latch reaches zero. Checkpoints are also waitable objects that
store a value.

2.5.4 Task Properties

Every task has a key-value property storage. These properties can be set from various places: From the
XML descriptor, from user input when submitting, inherited from a task context or set from a benchmark
when it generates a task context. To access these values, you can use the getTaskProperty method of
the Task class:

int numberOfClients = Integer.parseInt(this.getTaskProperty("numberOfClients"));
8http://everbeen.cz/javadoc/everBeen/cz/cuni/mff/d3s/been/taskapi/Task.html
9http://www.slf4j.org/

10http://everbeen.cz/javadoc/everBeen/cz/cuni/mff/d3s/been/taskapi/CheckpointController.html

http://everbeen.cz/javadoc/everBeen/cz/cuni/mff/d3s/been/taskapi/Task.html
http://www.slf4j.org/
http://everbeen.cz/javadoc/everBeen/cz/cuni/mff/d3s/been/taskapi/CheckpointController.html

CHAPTER 2. EVERBEEN USER GUIDE 34

These properties are inherited, in the sense that that when a task context has a property, the task can see
it as well. But when a task has the same property with a different value, the task’s value will be override
the previous one.
One important property recognized by the Task API is task.log.level which sets the log level for a
task. The property can have the following values (in increasing severity):

• TRACE
• DEBUG
• INFO
• WARN
• ERROR

The default log level is INFO.

Warning for the TRACE log level
Note that the TRACE log level is used by the Task API (instead of the DEBUG level which is reserved
for user code). Setting the TRACE level will print Task API debug messages.

2.5.5 Persisting Results

The persistence layer provided by EverBEEN is capable of storing user-supplied types and classes. To
create a class that can be persisted, simply create a subclass of the Result11 class and ensure that all
contained fields are serializable. Also make sure to include a default non-parameterized constructor so
that the object can be deserialized.
Each result type is identified with a string Group ID (we recommend to create a constant). The Group ID
is an identification of a group of related results - each benchmark should use its unique own Group ID(s).
A naming convection is recommended to distinguish between multiple types of results. An example of a
result:

public class SampleResult extends Result {
public static final String GROUP_ID = "example-data";

public int data;

public SampleResult() {}
}

All fields will be stored (even private). Setters and getters are not necessary but still recommended.
Persisting the result is then only a simple matter of creating the appropriate object, instantiating the
Persister12 class through the supplied results field and calling persist on it:

SampleResult result = results.createResult(SampleResult.class);
Persister persister = results.createResultPersister(SampleResult.GROUP_ID));
persister.persist(result);

The results.createResult(SampleResult.class) call properly initializes results with taskId, contextId
and (if running as part of a benchmark) benchmarkId. These parameters are useful in identifying results.
The Persister can be reused, but the close() method should be called once you are done with it.
The best way to achieve this is to use the try-with-resources statement (the Persister implements
AutoCloseable):

try (Persister persister = results.createResultPersister(SampleResult.GROUP_ID)) {
persister.persist(result);

}
11http://everbeen.cz/javadoc/everBeen/cz/cuni/mff/d3s/been/results/Result.html
12http://everbeen.cz/javadoc/everBeen/cz/cuni/mff/d3s/been/taskapi/Persister.html

http://everbeen.cz/javadoc/everBeen/cz/cuni/mff/d3s/been/results/Result.html
http://everbeen.cz/javadoc/everBeen/cz/cuni/mff/d3s/been/taskapi/Persister.html

CHAPTER 2. EVERBEEN USER GUIDE 35

2.5.6 Querying Results

Tasks can also query stored results. Note that results storage is asynchronous and may take some time.
Usually this is not a problem. Blocking results persistence is a planned feature.

First a Query13 specifying what results to select must be built using the ResultQueryBuilder14. The
ResultQueryBuilder uses a fluent API to build a query.

Following example creates a query which will fetch results from the SampleResult.GROUP_ID group,
requesting that the taskId property is set to the ID of the current task and data property is 47;

Query query = new ResultQueryBuilder().on(SampleResult.GROUP_ID)
.with("taskId", getId()).with("data", 47).fetch();

The query can be now used to fetch a collection of results, again using the results helper object which
is part of the Task object:

Collection<ExampleResult> taskResults = results.query(query, ExampleResult.class);

Currently tasks can only fetch results, not delete them (this is design decision, the code is fully capable
of issuing deletes).

An overview of the ResultQueryBuilder API follows:

public ResultQueryBuilder on(String group)
Sets the Group ID of the results to fetch.

public ResultQueryBuilder with(String attribute, Object value)
Adds a criterion to the query, where the attribute is the name of the property, and value is the
expected value of the property.

public ResultQueryBuilder without(String attribute)
Removes a criterion from the query, the value of attribute will not be fetched (beware of NullPoint-
erExceptions).

public ResultQueryBuilder retrieving(String... attributes)
Sets attributes to fetch. Other attributes will be omitted and will not be set.

2.5.7 Checkpoints and Latches

Checkpoints provide a powerful mechanism for synchronization and communication among tasks contained
in a single context. Tasks can wait for the value of a Checkpoint (most usually set by another task). This
waiting is passive and once a value is assigned to a checkpoint, the waiter will receive it.

To use checkpoints, create a CheckpointController15, which is an AutoCloseable16 object so the
preferred way to use it is inside the try-with-resources block to ensure the object will be properly
destroyed:

try (CheckpointController requestor = CheckpointController.create()) {
...

} catch (MessagingException e) {
...

}
13http://everbeen.cz/javadoc/everBeen/cz/cuni/mff/d3s/been/persistence/Query.html
14http://everbeen.cz/javadoc/everBeen/cz/cuni/mff/d3s/been/persistence/ResultQueryBuilder.html
15http://everbeen.cz/javadoc/everBeen/cz/cuni/mff/d3s/been/taskapi/CheckpointController.html
16http://docs.oracle.com/javase/7/docs/api/java/lang/AutoCloseable.html

http://everbeen.cz/javadoc/everBeen/cz/cuni/mff/d3s/been/persistence/Query.html
http://everbeen.cz/javadoc/everBeen/cz/cuni/mff/d3s/been/persistence/ResultQueryBuilder.html
http://everbeen.cz/javadoc/everBeen/cz/cuni/mff/d3s/been/taskapi/CheckpointController.html
http://docs.oracle.com/javase/7/docs/api/java/lang/AutoCloseable.html

CHAPTER 2. EVERBEEN USER GUIDE 36

Each checkpoint has a name, which is context-wide. You don’t have to explicitly create a checkpoint, it
will be created automatically once a task uses it. Setting a value to a checkpoint can be done with:

requestor.checkPointSet("mycheckpoint", "the value");

A typical scenario is that one tasks wants to wait for another to pass a value. To wait until a value is set
and also to receive the value you can use:

String value = requestor.checkPointWait("mycheckpoint");

This call passively waits (possibly indefinitely) until a value is set to the checkpoint. There is also a
variant of this method that takes another argument specifying a timeout, after which the call will throw
an exception. Another method called checkPointGet can be used to retrieve the current value of a
checkpoint without waiting.
Checkpoints initially do not have any value, and once a value is set, it cannot be changed. They work
as a proper synchronization primitive, and setting a value is an atomic operation. The semantics don’t
change if you start waiting before or after the value is set.
Another provided synchronization primitive is a latch. Latches work best for implementing rendez-vous
synchronization. A latch provides a method to set an integer value:

requestor.latchSet("mylatch", 5);

Another task can then call an atomic method to decrease the value of the latch:

requestor.latchCountDown("mylatch");

You can then wait until the value reaches zero:

requestor.latchWait("mylatch");

All operations on latches are atomic and the waiting is passive. Latches has to be created (by the set
method) before calling the count down or wait operation.

2.5.8 Benchmark API

Writing a benchmark’s generator task is similar to writing an ordinary task in the sense that you have to
write a subclass, package it and run it on a Host Runtime. However, the benchmark API is different,
because the purpose of the benchmark is to provide long-running code that will eventually generate new
task contexts.
To create a benchmark, subclass the abstract Benchmark17 class and implement appropriate methods.
The main method to implement is the generateTaskContext which is called periodically by EverBEEN
Benchmark API and it is expected to return a newly generated task context. This context is then
submitted and run. When the context finishes, this method is called again. The loop ends whenever the
method returns null.
This approach is chosen to cover several possible use cases. When the benchmark does not have data for
a new task context, it can simply block until it is possible to create a new context. On the other hand,
the benchmark cannot overhaul the cluster by submitting too many contexts. Instead, it’s up to the
cluster to call the generateTaskContext method whenever it seems fit.
For creating task contexts you should use the provided ContextBuilder18 class. This supports loading a
task context from a XML file, modifying it and setting values of properties inside the context descriptor.
If you have a prepared .tcd file with a context descriptor, a sample benchmark that will indefinitely
generate this context can look like this:

17http://everbeen.cz/javadoc/everBeen/cz/cuni/mff/d3s/been/benchmarkapi/Benchmark.html
18http://everbeen.cz/javadoc/everBeen/cz/cuni/mff/d3s/been/benchmarkapi/ContextBuilder.html

http://everbeen.cz/javadoc/everBeen/cz/cuni/mff/d3s/been/benchmarkapi/Benchmark.html
http://everbeen.cz/javadoc/everBeen/cz/cuni/mff/d3s/been/benchmarkapi/ContextBuilder.html

CHAPTER 2. EVERBEEN USER GUIDE 37

package my.sample.benchmark;

import cz.cuni.mff.d3s.been.benchmarkapi.Benchmark;
import cz.cuni.mff.d3s.been.benchmarkapi.BenchmarkException;
import cz.cuni.mff.d3s.been.benchmarkapi.ContextBuilder;
import cz.cuni.mff.d3s.been.core.task.TaskContextDescriptor;
import cz.cuni.mff.d3s.been.core.task.TaskContextState;

public class HelloWorldBenchmark extends Benchmark {
@Override
public TaskContextDescriptor generateTaskContext() throws BenchmarkException {

ContextBuilder contextBuilder =
ContextBuilder.createFromResource(HelloWorldBenchmark.class, "context.tcd.xml");

TaskContextDescriptor taskContextDescriptor = contextBuilder.build();
return taskContextDescriptor;

}

@Override
public void onResubmit() { }

@Override
public void onTaskContextFinished(String s, TaskContextState taskContextState) { }

}

Notice the methods onResubmit and onTaskContextFinished which are used as notifications for the
benchmark. You can use these methods for whatever error handling or logging you need.

You are supposed to implement the logic for generating the contexts. When your benchmark is done and
it will not generate any more contexts, return null from the generateTaskContext method.

2.5.9 Creating Task Contexts

The preferred way of creating task contexts is to use the ContextBuilder class to load a XML file
representing the context descriptor from a resource. This class also provides various methods for
modifying the context descriptor and the contained tasks.

You can add tasks into the context via the addTask method, these tasks can be created using the
newEmptyTask method. The context descriptor can also provide task templates which can be used to
create tasks.

Preferably you should create the whole descriptor in the XML file and only use the setProperty method
to set the parameters to the task contexts. When the descriptor is ready call the build method to
generate object representation of the descriptor which can be returned to the framwork.

2.5.10 Resubmitting and Benchmark Storage

Benchmarks are supposed to be long-running and EverBEEN provides a mechanism to keep benchmarks
running even after a failure occurs. When a generator task exits with an error (e.g. power outage), it will
get resubmitted and the benchmark will continue. To support this behavior, you should use the provided
benchmark key-value storage for the internal state of the benchmark and avoid using instance variables.

The Benchmark abstract class provides methods storageGet and storageSet which will use the cluster
storage for the benchmark state. This storage will be restored whenever the generator task is resubmitted.
The implementation of a benchmark that uses this storage can look like this:

@Override
public TaskContextDescriptor generateTaskContext() throws BenchmarkException {

int currentRun = Integer.parseInt(this.storageGet("i", "0"));

CHAPTER 2. EVERBEEN USER GUIDE 38

TaskContextDescriptor taskContextDescriptor;
if (currentRun < 5) {

// generate a regular context
taskContextDescriptor = ...;

} else {
// we're done
taskContextDescriptor = null;

}

currentRun++;
this.storageSet("i", Integer.toString(currentRun));

return taskContextDescriptor;
}

2.5.11 Evaluators

EverBEEN provides a special task type called evaluator. The purpose of such a task is to query the
stored results, perform statistical analyses and return an interpretation of the data that can be shown
back to the user via the Web Interface. Evaluators are again tasks and they can be run manually (as a
single task) or within a benchmark or a context. It’s up to the user when and how to run an evaluator.

To create an evaluator, subclass the abstract class Evaluator19 and implement the method evaluate.
This method is supposed to return an EvaluatorResult20 object which will be stored through the
persistence layer. The object holds a byte array of data and its MIME type. EverBEEN supports a few
MIME types which can be displayed in the Web Interface, e.g. a JPEG image.

An evaluator needs to retrieve data from the persistence layer, and it can do so using the provided
ResultFacade interface. This object is available as an instance method on the Task superclass. Queries
can be build using the QueryBuilder object which supports various conditions and query parameters. A
simple query that will retrieve a collection of results can have this form:

Query query = new QueryBuilder().on(...).with(...).fetch();
Collection<MyResult> data = results.query(query, MyResult.class);

For an example of a simple evaluator that output a plot chart with the measured data and error intervals,
see the sample nginx-benchmark.

2.6 BPKs and Software repository

2.6.1 Been package (BPK)

Been package, shortly BPK, contains binaries and descriptors needed to run tasks, task contexts and
benchmarks. Each package has its own unique identifier structured in a way resembling identifiers used
by Maven. The identifier consists of three parts:

1. Group ID — A universally unique identifier for a BPK. It is a good practice to use a fully-qualified
package name to distinguish it from other BPK packages with a similar name (eg. cz.been.example).

2. Bpk ID — The identifier of the BPK that is unique within the group given by the group ID.
3. Version — The current version of the BPK.

BPK package is represented by a single file with a *.bpk suffix. In fact the bpk file is a zip file with a
predefined structure described below.

19http://everbeen.cz/javadoc/everBeen/cz/cuni/mff/d3s/been/taskapi/Evaluator.html
20http://everbeen.cz/javadoc/everBeen/cz/cuni/mff/d3s/been/evaluators/EvaluatorResult.html

http://everbeen.cz/javadoc/everBeen/cz/cuni/mff/d3s/been/taskapi/Evaluator.html
http://everbeen.cz/javadoc/everBeen/cz/cuni/mff/d3s/been/evaluators/EvaluatorResult.html

CHAPTER 2. EVERBEEN USER GUIDE 39

package.bpk
___ config.xml
___ files/
___ lib/
___ tcds/
___ tds/

1. config.xml file — Main configuration of the BPK. It consists of two main sections:

• metaInf section — specifies unique identifier of the BPK.
• runtime section — specifies runtime type. Been supports two runtime types - JavaRuntime

and NativeRuntime.
– JavaRuntime — defines tasks written in JVM based language (e.g. Java, Scala, Groovy).

The name of the jar with the implementation is required.
– NativeRuntime — defines tasks written in other languages. This type requires the name

of the executable to be used.

Following examples show valid descriptors for java and native runtimes.

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<ns2:bpkConfiguration xmlns:ns2="http://been.d3s.mff.cuni.cz/bpk/config">

<ns2:metaInf>
<groupId>fully-quallified.group.id</groupId>
<bpkId>bpkId</bpkId>
<version>3.0.0-EXAMPLE-ALPHA</version>

</ns2:metaInf>

<ns2:runtime xsi:type="ns2:JavaRuntime"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<jarFile>packed_jar_with_tasks.jar</jarFile>
</ns2:runtime>

</ns2:bpkConfiguration>

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<ns2:bpkConfiguration xmlns:ns2="http://been.d3s.mff.cuni.cz/bpk/config">

<ns2:metaInf>
<groupId>fully-quallified.group.id</groupId>
<bpkId>bpkId</bpkId>
<version>3.0.0-EXAMPLE-ALPHA</version>

</ns2:metaInf>

<ns2:runtime xsi:type="ns2:NativeRuntime"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<binary>name_of_executable</binary>
</ns2:runtime>

</ns2:bpkConfiguration>

2. files/ directory — contains executable and library files. In the case of the JavaRuntime it must
contain an appropriate .jar file, NativeRuntime must place its executable and library files there.

3. lib/ directory — JavaRuntimes can place additional jars which will be added to the classpath
of a task once running on a Host Runtime.

4. tcds/ directory — contains Task Context descriptors.

CHAPTER 2. EVERBEEN USER GUIDE 40

5. tds/ directory — must contain at least one Task descriptor.

When a task is started, lib/, files/, tds/ and tcds/ directories are copied into the working directory of the
task.

Even though it is possible to create a BPK “by hand”, this is not recommended. The standard way of
assembling a BPK file is to use the Been Bpk Plugin for Maven which does all the hard work.

Note: You can see additional XML elements (not mentioned above) in context.xml file generated by
Been Bpk Plugin for Maven and you can also find definitions of these elements in corresponding *.xsd
file, but these elements are not used by the current version of EverBEEN.

2.6.2 Software repository

The main purpose of the software repository is to store BPKs for future use. The Software Repository is
implemented as a service which can be started on an arbitrary EverBEEN node.

2.6.3 BPK versioning

Software repository does not allow re-uploading of BPKs with the same groupId, bpkId and version. If
you want to re-upload a BPK, you have to change its version. The reason for this limitation is simple —
it prevents inconsistencies and unpredictable behavior caused by version mismatches.

To facilitate the development of new tasks and benchmarks BPKs can be created with version suffixed
by ‘-SNAPSHOT’. Such versions of BPKs can be re-uploaded to the Software Repository. Also Host
Runtimes will download such versions instead of using cached packages. It is not recommended to use
‘-SNAPSHOT’ in a production environment.

2.7 Persistence layer

EverBEEN persistence layer serves as a bridge between EverBEEN distributed memory and a database
of choice, rather than a direct storage component. This enables EverBEEN to run without a persistence
layer, at the cost of heap space and a risk of data loss in case of an unexpected cluster-wide shutdown.
EverBEEN doesn’t need a persistence layer per se at any given point in time. User tasks, however, might
attempt to work with previously acquired results. Such attempts will result in task-scope failures if the
persistence layer is not running. Log archives, too, will be made unavailable if the persistence layer is
offline.

2.7.1 Characteristics

An overview of the main characteristics of EverBEEN’s persistence layer follows.

2.7.1.1 Bridging

The EverBEEN persistence layer doesn’t offer any means of storing objects. It only functions as an
abstract access layer to an existing storage component (e.g. a database). EverBEEN comes with a default
implementation of this bridge for the MongoDB database, but it is possible to port it to a different
database (see extension point notes for more details). The user is responsible for setting up, running and
maintaining the actual storage software.

CHAPTER 2. EVERBEEN USER GUIDE 41

2.7.1.2 Eventual persistence

As mentioned above, object-persisting commands (result stores, logging) do not, by themselves, execute
insertions into the persistence layer. They submit objects into EverBEEN’s distributed memory. When
a persistence layer node is running, it continually drains this distributed memory, enacting the actual
persistence of drained objects. This offers the advantage of being able to pursue persisting operations
even in case the persistence layer is currently unavailable.

The downside of the bridging approach is that persisted objects might not find their way into the actual
persistence layer immediately. It also means that should a cluster-wide shutdown occur while some
objects are still in the shared memory, these objects will get lost. All that can be guaranteed is that
submitted objects will eventually be persisted, provided that some data nodes and a persistence layer are
running. Experience shows that the transport of objects through the cluster and to the persistence layer
is a matter of fractions of a second.

2.7.1.3 Scalability

As mentioned above, EverBEEN does not strictly rely on the existence of a persistence node for running
user code, only to present the required data to the user. That being said, EverBEEN can also run multiple
persistence nodes. In such case, it is the user’s responsibility to set up these nodes in a way that makes
sense.

While running multiple nodes, please keep in mind that these storage components will be draining the
shared data structures concurrently and independently. It is entirely possible to setup EverBEEN to
run two persistence nodes on two completely separate databases, but it will probably not result in any
sensibly expectable behavior, as potentially related data will be scattered randomly across two isolated
database instances.

Generally speaking, having multiple persistence layer nodes is only useful if you:

• Have highly limited resources for each persistence node and wish to load-balance accesses to the
same database.

• Have a synchronization/sharding strategy set up.

Additional use-cases may arise if you decide to write your own database adapter. In that case, consult
the extension point for more detail.

2.7.1.4 Automatic cleanup

To prevent superfluous information from clogging the data storage, the persistence layer runs a Janitor
component that performs database cleanup on a regular basis. The idea is to clean all old data for failed
jobs and all metadata for successful jobs after a certain lifecycle period has passed. For lifecycle period
and cleanup frequency adjustment, see the 2.8.1.5 (janitor configuration) section.

2.7.2 Components

A brief description of components that contribute to forming the EverBEEN persistence layer follows.

2.7.2.1 Object Repository

It goes without saying that EverBEEN needs some place to store all the data your tasks will produce.
That’s what the Object Repository does. Each time a task issues a command to submit a result, or logs
a message, this information gets dispatched to the cluster, along with the associated object. The Object
Repository provides a functional endpoint for this information. It effectively concentrates distributed
data to its intended destination (a database, most likely). In addition, the Object Repository is also in
charge of dispatching requested user data back.

CHAPTER 2. EVERBEEN USER GUIDE 42

2.7.2.2 Storage

The Storage component supplies a database connector implementation. All communication between the
Object Repository and the database is done through the Storage API.

The Storage component gets loaded dynamically by the Object Repository at startup. If you want to use
a different database than MongoDB, this is the component you’ll be replacing (potentially along with the
MapStore component).

2.7.2.3 MapStore

Where the ObjectRepository stores user data, the MapStore is used to map EverBEEN cluster memory
to a persistent storage, which enables EverBEEN to preserve job state memory through cluster-wide
restarts. The MapStore runs on all DATA nodes.

2.8 EverBEEN configuration

Configuration of the framework is done through a single, standard property file. The configuration is
propagated to all services, each service uses a subset of the options.

A user property file is supplied to EverBEEN by the -cf [file|URL] (or --config-file) command
line option. The value can be either a file or a URL pointing to the file. Using configuration by specifying
a URL simplifies deployment in large environments, by reducing the need to distribute the file among the
machines on which the framework runs.

To check the values in effect use -dc (or --dump-config) command line option (possibly along with the
-cf option). It prints the configuration which will be used — the output provides a basic configuration
file (options with default value are commented out with #).

Default configuration values are supplied, before you change any of them, consult documentation and
make sure you understand the implications.

2.8.1 Configuration options

A detailed description of available configuration options of the EverBEEN framework follows. The default
value for each configuration option is provided.

2.8.1.1 Cluster Configuration

Cluster configuration describes how nodes will form a cluster and how the cluster will behave. The
configuration is directly mapped to Hazelcast configuration. These options are applicable only to DATA
nodes.

It is essential that all cluster nodes use the same configuration for these options, otherwise they may not
form a cluster.

been.cluster.group=dev
Group to which the nodes belong. Nodes whose group settings differ will not form a cluster

been.cluster.password=dev-pass
Password for the group. Nodes whose group password settings differ will not form a cluster

been.cluster.join=multicast
Manages how nodes form the cluster. Two values are possible: multicast which implies only
been.cluster.multicast.* options will be used, and tcp which implies only been.cluster.tcp.members
option will be used.

CHAPTER 2. EVERBEEN USER GUIDE 43

been.cluster.multicast.group=224.2.2.3
Specifies the multicast group to use.

been.cluster.multicast.port=54327
Specifies the multicast port to use.

been.cluster.tcp.members=localhost:5701
Semicolon separated list of [ip|host][:port] nodes to connect to.

been.cluster.port=5701
The port on which the node will listen.

been.cluster.interfaces=
Semicolon separated list of interfaces Hazelcast should bind to, the ‘*’ wildcard can be used, e.g.
10.0.1.*.

been.cluster.preferIPv4Stack=true
Whether to prefer the IPv4 stack over IPv6.

been.cluster.backup.count=1
The number of backups the cluster should keep.

been.cluster.logging=false
Enables/Disables logging of Hazelcast messages. Note that Hazalcast log messages are not persisted as
other service logs.

been.cluster.mapstore.use=true
Wheather to use MapStore to persist cluster runtime information.

been.cluster.mapstore.write.delay=0
Delay in seconds with which to write to the MapStore. 0 means write-through, values bigger than zero
mean write-back. Certain Map Store implementations will be more efficient in write-back mode.

been.cluster.mapstore.factory=cz.cuni.mff.d3s.been.mapstore.mongodb.MongoMapStoreFactory
Implementation of MapStore, must be on the classpath when starting a node.

been.cluster.socket.bind.any=true
Whether to bind to local interfaces.

2.8.1.2 Cluster Client Configuration

Cluster client configuration options are used when a node is connected to the cluster in NATIVE client
mode. Cluster Configuration options are ignored in that case.

been.cluster.client.members=localhost:5701
Semicolon separated list of ‘[ip|host][:port] cluster members to connect to. At least one member must be
available.

been.cluster.client.timeout=120
Inactivity timeout in seconds. The client will disconnect after the timeout.

2.8.1.3 Task Manager Configuration

Task Manager configuration options are used to tune the Task Manager. Use with care!

been.tm.benchmark.resubmit.maximum-allowed=10
Maximum number of resubmits of a failed benchmark task the Task Manager will allow.

been.tm.scanner.period=30
Period in second of the Task Manager’s local key scanner.

been.tm.scanner.delay=15
Initial delay in seconds of the Task Manager’s local key scanner.

CHAPTER 2. EVERBEEN USER GUIDE 44

2.8.1.4 Cluster Persistence Configuration

Configuration for the persistence transport layer. See chapter 2.7 (Persistence) for more details.

been.cluster.persistence.query-timeout=10
The timeout for queries into the persistence layer.

been.cluster.persistence.query-processing-timeout=5
The timeout for a query’s processing time in the persistence layer. Processing time includes the trip the
data has to make back to the requesting host.

2.8.1.5 Persistence Janitor Configuration

Configuration for the persistence layer janitor component. See 2.7 (Persistence) for more details.

been.objectrepository.janitor.finished-longevity=168
Number of hours objects with a FINISHED status stay persistent.

been.objectrepository.janitor.failed-longevity=96
Number of hours objects with a FAILED status stay persistent.

been.objectrepository.janitor.service-log-longevity=168
Number of hours EverBEEN service logs stay persistent.

been.objectrepository.janitor.load-sample-longevity=168
Number of hours EverBEEN node load monitor samples stay persistent. If set to 0, load sample cleanup
will be disabled.

been.objectrepository.janitor.cleanup-interval=10
Period in minutes of janitor cleanup checks.

2.8.1.6 Monitoring Configuration

Host Runtime monitoring configuration options.

been.monitoring.interval=5000
Interval of Host Runtime system monitoring samples, in milliseconds.

2.8.1.7 Host Runtime Configuration

Host Runtime configuration options.

hostruntime.tasks.max=15
Maximum number of tasks per Host Runtime.

hostruntime.tasks.memory.threshold=90
Host Runtime memory threshold in percent. If the threshold is reached no other task will be run on the
Host Runtime. The value must be between 20% - 100&. The threshold is compared to the value of ‘(free
memory/available memory)*100’.

hostruntime.wrkdir.name=.HostRuntime
Relative path to the Host Runtime working directory.

hostruntime.tasks.wrkdir.maxHistory=4
Maximum number of task working directories a Host Runtime will keep. When this number is exceeded
at the boot of a Host Runtime service, the oldest existing directory is deleted.

CHAPTER 2. EVERBEEN USER GUIDE 45

2.8.1.8 MapStore Configuration

MapStore configuration options.

been.cluster.mapstore.db.hostname=localhost
Host name (full connection string including port). If no port is specified, default port is used.

been.cluster.mapstore.db.dbname=BEEN_MAPSTORE
Name of the database instance to use.

been.cluster.mapstore.db.username=null
User name to use to connect to the database.

been.cluster.mapstore.db.password=null
Password to use to connect to the database.

2.8.1.9 Mongo Storage Configuration

Configuration options for the MongoDB based Object Storage.

mongodb.hostname=localhost
Host name (full connection string including port). If no port is specified, default port is used.

mongodb.dbname=BEEN
Name of the database instance to use.

mongodb.username=null
User name to use to connect to the database.

mongodb.password=null
Password to use to connect to the database.

2.8.1.10 Software Repository Configuration

swrepository.port=8000
Port on which the Software Repository should listen for requests.

2.8.1.11 File System Based Store Configuration

hostruntime.swcache.folder=.swcache
Caching directory for downloaded software on Host Runtimes, relative to the working directory of a node.

swrepository.persistence.folder=.swrepository
Default storage directory for Software Repository server, relative to the working directory of a node.

2.9 EverBEEN best practices

To avoid potential problems please keep in mind the following recommendations:

• Read the documentation.
• Check network and firewall settings.
• Do not run EverBEEN instances with shared working directory.
• Use provided tools (such as the bpk-maven-plugin).
• Start with fewer DATA nodes, use NATIVE nodes to run the Host Runtime service.
• MongoDB instance is needed to properly use the framework.
• If a host has more network interfaces, configure the one(s) you want to use. See 2.8.1.1 (Cluster

Configuration).
• If writing a task or benchmark see provided examples.

CHAPTER 2. EVERBEEN USER GUIDE 46

2.10 EverBEEN extension points

As mentioned above, EverBEEN comes with a default persistence solution for MongoDB. We realize,
however, that this might not be the ideal use-case for everyone. Therefore, the MongoDB persistence
layer is fully replaceable if you provide your own database connector implementation.

There are two persistence components you might want to override - the Storage and the MapStore.

If your goal is to relocate EverBEEN user data (benchmark results, logs etc.) to your own database
and don’t mind running a MongoDB as well for EverBEEN service data, you will be fine just overriding
the Storage. If you want to port the entire EverBEEN’s persistence layer, you will have to reimplement
MapStore as well.

2.10.1 Storage extension

As declared above, the Storage component is fully replaceable by an implementation different from the
default MongoDB adapter. However, we would like to avoid letting you plunge into this extension point
override without the necessary guidelines and warnings.

2.10.1.1 Override warning

The issue with Storage implementation is that the persistence layer is designed to be completely devoid
of any type knowledge. The reason for this is that Storage is used to persist and retrieve objects from
user tasks. Should the Storage have any RTTI knowledge of the objects it works with, imagine what
problems could arise when two tasks using two different versions of the same objects attempted to use
the same Storage.

To avoid this, the Storage only receives the object JSON and some information about the object’s
placement. This being said, the Storage still needs to perform efficient querying based on some attributes
of the objects it stores.

This is generally not an issue with NoSQL databases or document-oriented stores, but it can be quite hard
if you use a traditional ORM. The ORM approach additionally presents the aforementioned class version
problem, which you would need to solve. If you choose ORM be prepared to run into the following:

• EverBEEN classes - You will probably need to map some of these in your ORM.
• User types - You will likely need to share a user-type library with your co-developers to aggree on

permitted result objects.
• User type versions - Should the version of this user-type library change, you will need to restart

the Storage before running any new tasks on EverBEEN. Restarting EverBEEN will likely result in
malfunction of tasks using an older version of the user-type library.

2.10.1.2 Override implementation overview

It is highly recommended that you use Apache Maven21 to build your implementation. Extension without
Maven is possible, but will not be covered in this booklet. Additionally, you will need git22 to check out
EverBEEN sources.

Once both Maven and git are ready, you will need to check out the EverBEEN project and install the
artifacts to your local repository:

git clone git@github.com:ever-been/everBeen.git
mvn install

You will need to import two EverBEEN modules to provide a Storage implementation, as follows:
21http://maven.apache.org/
22http://git-scm.com/

http://maven.apache.org/
http://git-scm.com/

CHAPTER 2. EVERBEEN USER GUIDE 47

<dependency>
<groupId>cz.cuni.mff.d3s.been</groupId>
<artifactId>core-data</artifactId>
<version>${been.version}</version>

</dependency>

<dependency>
<groupId>cz.cuni.mff.d3s.been</groupId>
<artifactId>storage</artifactId>
<version>${been.version}</version>

</dependency>

Then create a been.version property in your Maven module that corresponds to the EverBEEN version
you checked out and installed.

Now that you have your project set up, you can start working on the implementation. To replace the
Storage implementation, you will need to implement the following:

• Storage23 — the main interface providing the actual store management
• StorageBuilder24 — an instantiation/configuration tool for your Storage implementation
• SuccessAction<EntityCarrier>25 — an isolated action capable of persisting objects

Additionally, you will need to create a META-INF/services folder in the jar with your implementation,
and place a file named cz.cuni.mff.d3s.been.storage.StorageBuilder in it. You will need to put a
single line in that file, containing the full class name of your StorageBuilder implementation.

We also strongly recommend that you implement these as well:

• QueryRedactorFactory26 (along with QueryRedactor27 implementations)
• QueryExecutorFactory28 (along with QueryExecutor29 implementations)

The general idea is to implement the Storage component and to provide the StorageBuilder service,
which configures and instantiates your Storage implementation. The META-INF/services entry
is for the ServiceLoader EverBEEN uses to recognize your StorageBuilder implementation on the
classpath. EverBEEN will then pass the Properties from the been.conf file (see 2.8 (configuration)) to
your StorageBuilder. That way, you can use the common property file to configure your Storage.

The Storage interface is the main gateway between the Object Repository and the database. When
overriding the Storage, there will be two major use-cases you will have to implement: the asynchronous
persist and the synchronous query.

2.10.1.3 Asynchronous persist

All persist requests in EverBEEN are funneled through the Storage#store method. You will receive two
parameters in this method:

entityId The entityId is meant to determine the location of the stored entity. For example, if you’re
writing an SQL adapter, it should determine the table where the entity will be stored. For more
information on the entityId, see section 2.10.1.6 persistent object info.

JSON A serialized JSON representation of the object to be stored.
23http://www.everbeen.cz/javadoc/everBeen/cz/cuni/mff/d3s/been/storage/Storage.html
24http://www.everbeen.cz/javadoc/everBeen/cz/cuni/mff/d3s/been/storage/StorageBuilder.html
25http://www.everbeen.cz/javadoc/everBeen/cz/cuni/mff/d3s/been/persistence/SuccessAction.html
26http://www.everbeen.cz/javadoc/everBeen/cz/cuni/mff/d3s/been/storage/QueryRedactorFactory.html
27http://www.everbeen.cz/javadoc/everBeen/cz/cuni/mff/d3s/been/persistence/QueryRedactor.html
28http://www.everbeen.cz/javadoc/everBeen/cz/cuni/mff/d3s/been/storage/QueryExecutorFactory.html
29http://www.everbeen.cz/javadoc/everBeen/cz/cuni/mff/d3s/been/storage/QueryExecutor.html

http://www.everbeen.cz/javadoc/everBeen/cz/cuni/mff/d3s/been/storage/Storage.html
http://www.everbeen.cz/javadoc/everBeen/cz/cuni/mff/d3s/been/storage/StorageBuilder.html
http://www.everbeen.cz/javadoc/everBeen/cz/cuni/mff/d3s/been/persistence/SuccessAction.html
http://www.everbeen.cz/javadoc/everBeen/cz/cuni/mff/d3s/been/storage/QueryRedactorFactory.html
http://www.everbeen.cz/javadoc/everBeen/cz/cuni/mff/d3s/been/persistence/QueryRedactor.html
http://www.everbeen.cz/javadoc/everBeen/cz/cuni/mff/d3s/been/storage/QueryExecutorFactory.html
http://www.everbeen.cz/javadoc/everBeen/cz/cuni/mff/d3s/been/storage/QueryExecutor.html

CHAPTER 2. EVERBEEN USER GUIDE 48

Generally, you will need to decide where to put the object based on its entityId and then somehow map
and store it using its JSON.

The Storage#store method is asynchronous. It doesn’t return any outcome information, but always
throws a DAOException when the persist attempt fails. This informs the ObjectRepository that the
operation failed and an action to prevent data loss must be taken.

2.10.1.4 Query / Answer

The other type of requests supported by Storage are queries. They are synchronous and a Query is
always answered with a QueryAnswer. In order to support queries, you could implement all the querying
mechanics by yourself (if you wish to do that, see the 2.5.6 (Task API) for more details), but this is
unnecessary. The QueryTranslator30 adapter is designed to help you interpret queries without having
to iterate through the entire query structure.

The preferred way of interpreting queries is to create a QueryRedactor31 implementation (or several, in
fact). The QueryRedactor class is designed to help you construct database-specific query interpretations
using callbacks. This way, you instantiate the QueryTranslator, call its interpret method passing in
your instance of the QueryRedactor and the QueryTranslator calls the appropriate methods on your
QueryRedactor. Once configured, your QueryRedactor can be used to assemble and perform the expected
query. There are additional interfaces that can help you in the process (QueryRedactorFactory32,
QueryExecutor33 and QueryExecutorFactory34).

Once you execute the query, you will need to synthesize a QueryAnswer35, which you can do using
QueryAnswerFactory36. If there is data associated with the result of the query, you need to create a data
answer using QueryAnswerFactory#fetched(...). The other QueryAnswerFactory methods are used
to indicate the query status. See the method in-code comments for more details about available answer
types.

2.10.1.5 Auxiliary methods

In addition to persisting and querying, the Storage interface features auxiliary methods you will need to
implement.

• createPersistAction— returns an instance of your implementation of SuccessAction\<EntityCarrier\>37;
its perform method is presumed to call your Storage#store() implementation.

• isConnected — a situation may occur when the Object Repository is running, but the database it
uses is not; this simple method is designed to help EverBEEN detect such a situation by returning
false should the database connection drop.

• isIdle — a database usage heuristics function that helps the Object Repository janitor detect
cleanup windows (to interfere less with user data processing).

2.10.1.6 General persistent object info

Although the Storage doesn’t implicitly know any RTTI about the object it’s working with, there are
some safe assumptions you can make based on the entityId that comes with the object.

The entityId is composed of kind and group. The kind is supposed to represent what the persisted object
actually is (e.g. a log message). The following kinds are currently recognized by EverBEEN:

• log - log messages and host load monitoring
30http://www.everbeen.cz/javadoc/everBeen/cz/cuni/mff/d3s/been/persistence/QueryTranslator.html
31http://www.everbeen.cz/javadoc/everBeen/cz/cuni/mff/d3s/been/persistence/QueryRedactor.html
32http://www.everbeen.cz/javadoc/everBeen/cz/cuni/mff/d3s/been/storage/QueryRedactorFactory.html
33http://www.everbeen.cz/javadoc/everBeen/cz/cuni/mff/d3s/been/storage/QueryExecutor.html
34http://www.everbeen.cz/javadoc/everBeen/cz/cuni/mff/d3s/been/storage/QueryExecutorFactory.html
35http://www.everbeen.cz/javadoc/everBeen/cz/cuni/mff/d3s/been/persistence/QueryAnswer.html
36http://www.everbeen.cz/javadoc/everBeen/cz/cuni/mff/d3s/been/persistence/QueryAnswerFactory.html
37http://www.everbeen.cz/javadoc/everBeen/cz/cuni/mff/d3s/been/persistence/SuccessAction.html

http://www.everbeen.cz/javadoc/everBeen/cz/cuni/mff/d3s/been/persistence/QueryTranslator.html
http://www.everbeen.cz/javadoc/everBeen/cz/cuni/mff/d3s/been/persistence/QueryRedactor.html
http://www.everbeen.cz/javadoc/everBeen/cz/cuni/mff/d3s/been/storage/QueryRedactorFactory.html
http://www.everbeen.cz/javadoc/everBeen/cz/cuni/mff/d3s/been/storage/QueryExecutor.html
http://www.everbeen.cz/javadoc/everBeen/cz/cuni/mff/d3s/been/storage/QueryExecutorFactory.html
http://www.everbeen.cz/javadoc/everBeen/cz/cuni/mff/d3s/been/persistence/QueryAnswer.html
http://www.everbeen.cz/javadoc/everBeen/cz/cuni/mff/d3s/been/persistence/QueryAnswerFactory.html
http://www.everbeen.cz/javadoc/everBeen/cz/cuni/mff/d3s/been/persistence/SuccessAction.html

CHAPTER 2. EVERBEEN USER GUIDE 49

• result - stored task results
• descriptor - task/context configuration; used to store run-time parameters of a task or context
• named-descriptor - task/context configuration; user-stored configuration templates for task or

context runs
• evaluation - output of evaluations performed on task results; these objects contain serialized

BLOBs - see Chapter 2.5.11 (Evaluators) for more detail
• outcome - meta-information about the state and outcome of jobs in EverBEEN; these are used in

automatic cleanup

The group is supposed to provide a more granular grouping of objects and depends entirely on the object’s
kind.

If you need more detail on objects that you can encounter, be sure to also read the next section, which
denotes where various EverBEEN classes can be expected and what entityIds can carry user types.

2.10.1.7 The ORM special

If you are really hell-bent on creating an ORM implementation of the Storage, your module will need to
know several extra EverBEEN classes to be able to perform the mapping. The following table covers
their entityIds, their meaning and the dependencies you will need to get them.

kind group meaning class module

log task message logged by a task TaskLogMessage38 core-data

log service message logged by a service ServiceLogMessage39 core-data

log monitoring host monitoring sample MonitorSample40 core-data

descriptor task task runtime configuration TaskDescriptor41 core-data

descriptor context task context runtime configuration TaskContextDescriptor42 core-data

named-descriptor task saved task configuration TaskDescriptor core-data

named-descriptor context saved task context configuration TaskContextDescriptor core-data

result * task result user class extending Result43 n/a (results)

evaluation * task result evaluation EvaluatorResult44 results

outcome task task state service records PersistentTaskState45 persistence

outcome context task context state service records PersistentContextState46 persistence

Thus, if you need to infer the knowledge of the runtime type of all these classes to your module, you need
to add the following to Maven dependencies:

<dependency>
<groupId>cz.cuni.mff.d3s.been</groupId>
<artifactId>persistence</artifactId>
<version>${been.version}</version>

</dependency>
38http://www.everbeen.cz/javadoc/everBeen/cz/cuni/mff/d3s/been/logging/TaskLogMessage.html
39http://www.everbeen.cz/javadoc/everBeen/cz/cuni/mff/d3s/been/logging/ServiceLogMessage.html
40http://www.everbeen.cz/javadoc/everBeen/cz/cuni/mff/d3s/been/core/ri/MonitorSample.html
41http://www.everbeen.cz/javadoc/everBeen/cz/cuni/mff/d3s/been/core/task/TaskDescriptor.html
42http://www.everbeen.cz/javadoc/everBeen/cz/cuni/mff/d3s/been/core/task/TaskContextDescriptor.html
43http://www.everbeen.cz/javadoc/everBeen/cz/cuni/mff/d3s/been/results/Result.html
44http://www.everbeen.cz/javadoc/everBeen/cz/cuni/mff/d3s/been/evaluators/EvaluatorResult.html
45http://www.everbeen.cz/javadoc/everBeen/cz/cuni/mff/d3s/been/persistence/task/PersistentTaskState.html
46http://www.everbeen.cz/javadoc/everBeen/cz/cuni/mff/d3s/been/persistence/task/PersistentContextState.html

http://www.everbeen.cz/javadoc/everBeen/cz/cuni/mff/d3s/been/logging/TaskLogMessage.html
http://www.everbeen.cz/javadoc/everBeen/cz/cuni/mff/d3s/been/logging/ServiceLogMessage.html
http://www.everbeen.cz/javadoc/everBeen/cz/cuni/mff/d3s/been/core/ri/MonitorSample.html
http://www.everbeen.cz/javadoc/everBeen/cz/cuni/mff/d3s/been/core/task/TaskDescriptor.html
http://www.everbeen.cz/javadoc/everBeen/cz/cuni/mff/d3s/been/core/task/TaskContextDescriptor.html
http://www.everbeen.cz/javadoc/everBeen/cz/cuni/mff/d3s/been/results/Result.html
http://www.everbeen.cz/javadoc/everBeen/cz/cuni/mff/d3s/been/evaluators/EvaluatorResult.html
http://www.everbeen.cz/javadoc/everBeen/cz/cuni/mff/d3s/been/persistence/task/PersistentTaskState.html
http://www.everbeen.cz/javadoc/everBeen/cz/cuni/mff/d3s/been/persistence/task/PersistentContextState.html

CHAPTER 2. EVERBEEN USER GUIDE 50

<dependency>
<groupId>cz.cuni.mff.d3s.been</groupId>
<artifactId>results</artifactId>
<version>${been.version}</version>

</dependency>

Additionally, you will probably need to inject a dependency containing your pre-defined result types
(Result extenders used by your benchmarks). As mentioned before, you will need to be very careful about
the versioning of this module.

2.10.1.8 Replacing the Storage implementation

After you implement your own Storage back-end, you need to sew it back into EverBEEN. EverBEEN
is bundled using the Maven Assembly Plugin47, which unpacks EverBEEN modules along with their
dependencies, combines their class files and creates the ultimate jar. That means that to actually swap
the Storage implementation, you will need to rebuild EverBEEN with some modifications.

First, build your Storage module using mvn install. That will deploy your artifact to the local Maven
repository, where EverBEEN can see it. For further reference, let’s assume your storage artifact identifier
is my.group:my-storage:2.3.4.

Then, you will need to rebuild EverBEEN using your Storage module instead of the default one. For
that, you will need a deployment project. This project will use pom packaging and will only contain
the pom.xml with instructions for Maven Assembly Plugin. Because writing the assembly descriptor is
tedious, we have created the pom for you as a quick starter:

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0

http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<groupId>my.group</groupId>
<artifactId>my-been-flavor</artifactId>
<version>1.0.0</version>
<packaging>pom</packaging>

<properties>
<been.version>3.0.0</been.version>

</properties>

<dependencies>
<dependency>

<groupId>cz.cuni.mff.d3s.been</groupId>
<artifactId>node</artifactId>
<version>${been.version}</version>

<exclusions>
<exclusion>

<groupId>cz.cuni.mff.d3s.been</groupId>
<artifactId>mongo-storage</artifactId>

</exclusion>
</exclusions>

</dependency>

<dependency>
47http://maven.apache.org/plugins/maven-assembly-plugin/

http://maven.apache.org/plugins/maven-assembly-plugin/

CHAPTER 2. EVERBEEN USER GUIDE 51

<groupId>my.group</groupId>
<artifactId>my-storage</artifactId>
<version>2.3.4</version>

</dependency>
</dependencies>

<build>
<plugins>

<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-assembly-plugin</artifactId>
<version>2.4</version>

<configuration>
<finalName>myBeenFlavor</finalName>
<appendAssemblyId>false</appendAssemblyId>
<archive>

<manifest>
<mainClass>cz.cuni.mff.d3s.been.node.Runner</mainClass>

</manifest>
</archive>
<descriptorRefs>

<descriptorRef>jar-with-dependencies</descriptorRef>
</descriptorRefs>

</configuration>
</plugin>

</plugins>
</build>

</project>

Just to explain what’s going on above:

• your deployment project has the cz.cuni.mff.d3s.been:node artifact as its dependency; this is
the artifact into which we funnel all the runnable EverBEEN modules, so you will have the entire
EverBEEN portfolio into your assembly just by linking that module

• however, in that dependency, you specify that the cz.cuni.mff.d3s.been:mongo-storage artifact
should be excluded; that is the artifact containing the default MongoDB implementation of Storage

• then, your deployment project links the my.group:my-storage:2.3.4 which you installed earlier
in your maven repository; that means your Storage implementation will be placed in the assembly

• finally, there’s the assembly plugin configuration, saying that a jar file named myBeenFlavor.jar
should be deployed into the target folder of your deployment project, assembling classes from all
dependencies, with cz.cuni.mff.d3s.been.node.Runner for main class

Finally, you will need to create your assembly, which can be done by invoking mvn assembly:assembly
in the root of your deployment project
This will result in a runnable EverBEEN node jar, with cz.cuni.mff.d3s.been:mongo-storage ex-
cluded, with my.group:my-storage:2.3.4 included on the classpath, which will cause Object Repository
to see your implementation instead of the default one.

2.10.2 MapStore extension

EverBEEN uses the MapStore to maintain persistent knowledge about the state of your tasks (and other
jobs). You only need to override the default MongoDB implementation if you need to get rid of MongoDB
completely.
The EverBEEN MapStore is a direct bridge between Hazelcast (the technology EverBEEN uses for
clustering) and a persistence layer, so overriding it is pretty straightforward. You need to do the following:

CHAPTER 2. EVERBEEN USER GUIDE 52

• Implement the Hazelcast MapStore48 interface — see above for links.
• Implement the Hazelcast MapStoreFactory49 interface — again, see above for the link. Do

not get confused by the fact that MapStoreFactory returns a MapLoader instance. The MapStore
extends the MapLoader with storing methods, which you will need, so you need to to return an
instance of your MapStore implementation in YourMapStoreFactory#newMapStore().

• Configure EverBEEN to use your MapStore — in the been.conf (or any other EverBEEN
config file you are using), you need to set the been.cluster.mapstore.factory property to the
fully qualified class name of your MapStoreFactory implementation.

• Get your package on the EverBEEN classpath — Make sure to use the same MapStore
implementation on all EverBEEN cluster nodes otherwise you might end up with your job status
data being partitioned across multiple completely different databases.

48http://www.hazelcast.com/docs/2.5/javadoc/com/hazelcast/core/MapStore.html
49http://www.hazelcast.com/docs/2.5/javadoc/com/hazelcast/core/MapStoreFactory.html

http://www.hazelcast.com/docs/2.5/javadoc/com/hazelcast/core/MapStore.html
http://www.hazelcast.com/docs/2.5/javadoc/com/hazelcast/core/MapStoreFactory.html

Chapter 3

EverBEEN developer documentation

3.1 Design goals

The original goal of the EverBEEN project (as stated in the former assignment1) was mainly to cleanup
the existing WillBEEN2 project and replace the RMI3 framework by a more robust networking solution.

However, feedback from previous attempts of deployment in the corporate sector showed that framework
stability was not the only issue. The tools for easy creation of WillBEEN jobs were lacking at best, and
we experienced the reported difficulties in WillBEEN deployment first-hand. Furthermore, experience
showed that some advanced features of WillBEEN (namely the Results Repository) had poor real-case
use. Jiří Täuber’s master thesis4, aimed at analyzing real case WillBEEN deployment, clearly marks
these issues as a major factor of WillBEEN’s failure in a production environment.

These findings made us focus not only on a complete reimplementation of WillBEEN, but also on the
user perspective of EverBEEN deployment and regression benchmarking in general. As a result, we set
up several goals which we tried to stand up to during EverBEEN design and development.

3.1.1 Scalability, Redundancy, Reliability

As we were deciding which networking technology EverBEEN will use, we were driven to make EverBEEN
as robust as possible in face of network failures and OS freezes. The choice of Hazelcast as a networking
technology took this idea to new heights, enabling us to build EverBEEN as a truly distributed system,
rather than just a network of interconnected nodes.

As a result, we decentralized all the decision-making in EverBEEN. Decisions are made on the basis of
distributed shared memory and as long as multiple data nodes are running, there is no single point of
failure. The failure of a single partaking host was seen as an eventuality, rather than an unrecoverable
error, and was counted with from the start of EverBEEN development, as was the case of a temporary
disconnection of the persistence layer.

3.1.2 Modularity

Modularity was the first code characteristic we noted as lacking in WillBEEN. Although some pseudo-
modules were present, the entire codebase was compiled together, leading to frequent cross-references in the
project. Not only does this pose an issue with code maintainability, but it also makes component overrides
very demanding in terms of the user’s knowledge of the entire system. With the aid of modern building
tools (mostly Apache Maven), we made EverBEEN a modular project where component overriding is
possible.

1http://ksvi.mff.cuni.cz/~holan/SWP/zadani/ebeen.txt
2http://been.ow2.org/
3http://docs.oracle.com/javase/7/docs/technotes/guides/rmi/index.html
4https://is.cuni.cz/webapps/zzp/detail/78663/4417375

53

http://ksvi.mff.cuni.cz/~holan/SWP/zadani/ebeen.txt
http://been.ow2.org/
http://docs.oracle.com/javase/7/docs/technotes/guides/rmi/index.html
https://is.cuni.cz/webapps/zzp/detail/78663/4417375

CHAPTER 3. EVERBEEN DEVELOPER DOCUMENTATION 54

In reaction to previous problems with WillBEEN’s result storage, we specifically interfaced the Object
Repository (formerly Results Repository) database connector out of the project, thus making it easily
replaceable if need be (see 2.10 extension points for a guide).

3.1.3 Ease of use

When we started attempts at refactoring the WillBEEN code, we were told that it took tens to hundreds
hours to deploy WillBEEN and get some basic benchmarks working. We saw this quantity of time as
unacceptable, hence the major focus of our work was on making the EverBEEN project easier to use.

First, we decided to completely invert the way EverBEEN services are programmed. WillBEEN services
were tailored to work with each other, compiled together, but launched separately. In EverBEEN,
we developed services separately, and only fused them together in the final assembly step. Thus, the
communication between services only happens on the basis of a small common codebase containing
relevant protocol objects. As opposed to WillBEEN, the order in which EverBEEN services are launched
is not critical to the correct function of the cluster. We believe this considerably simplifies EverBEEN
deployment, and reduces the study time necessary to make a benchmark run.

Second, we decided to simplify the process of task creation as much as possible. The decisions we had to
make to see this goal through were particularly difficult, as simplification directly opposes the generality
the rest of the framework had to offer. We came to a similar conclusion as WillBEEN authors did, and
picked one technology we fully support — Java in combination with Apache Maven. As arbitrary as this
decision may seem, it comes with huge benefits — the user can have a simple EverBEEN task up and
running within minutes.

3.2 Decision timeline

June 2012
We took over the codebase of WillBEEN and started working on a new incarnation of the project, called
EverBEEN.

July 2012
We decided to use Apache Maven as the build system instead of Apache Ant and to split the project into
several modules.

August 2012
Attempts to “mavenize” the project discovered a lot of mutual dependencies among apparently independent
parts of the codebase.
We started to consider various communication middleware frameworks as a replacement for RMI.

September 2012
SLF4J is chosen as a logging framework and Logback as the basic logging backend. We decided to unify
all existing logging mechanisms.

October 2012
We started to implement a basic re-implementation of the project using the Hazelcast middleware, which
was chosen as the best alternative from various other candidates, such as JMS and JGroups. Hazelcast
offers a great combination of both scalability and decentralization which matched the project’s goals best.

November 2012
Attempts to refactor the existing RMI-based code incrementally and switch to Hazelcast were catastrophic
and we decided to actually rewrite the project from scratch instead.
Current use of One-Jar plugin was dropped in favor of Maven Assembly plugin.
We chose Sigar to be used as the implementation of hardware detectors.

December 2012
We acknowledged that it is impossible to create a high-level API independent on the low-level transport
and communication protocol. We decided to make Hazelcast an integral dependency of EverBEEN.

CHAPTER 3. EVERBEEN DEVELOPER DOCUMENTATION 55

February 2013
We decided to implement the Software Repository component as a HTTP server with a RESTful API.
This allows us to reuse existing libraries for HTTP communication and achieve correct streaming of large
file transfers.

March 2013
For the purposes of both inter- and intra-process communication, we chose 0MQ.
We decided to use JSON as a transport format for various inter-component communication, with Jackson
as a serialization library. The (de-)serialization is easier and more flexible than XML.

April 2013
MongoDB is to be used as the default storage engine. Nevertheless, the persistence layer is to be
implemented with a universal interface that would allow any other common database storage to be used
instead. Also, MongoDB has a lot of features5 that fit the EverBEEN use case.
The web interface will be written in Java using the Tapestry5 web framework. This will allow us to reuse
existing data structures and classes and will take less time to write than pure JSP.

May 2013
The API for user-written benchmarks is settled to be a special form of task that will be called by
EverBEEN and will generate task contexts on demand.

June 2013
We agreed to open-source the project on GitHub under the LGPL license.

July 2013
The API for evaluators and presentation of results in the web interface is settled.

August 2013
We chose the Markdown language and Pandoc6 for writing the project documentation.

3.3 EverBEEN architecture

Unlike its predecessor, WillBEEN7, EverBEEN was designed as a fully distributed application from the
start. Despite the differences in the design process and the overall system architecture, we tried to stick
to the time-proven concept of the original BEEN8 as much as possible. The EverBEEN architecture is
best explained on figure 3.1.

3.3.1 Cluster

Key characteristic of EverBEEN is its clustered (distributed) nature. EverBEEN is designed to be run on
an open network of interconnected nodes (EverBEEN JVM processes, presumably on different computers).
These nodes serve as a platform for launching user code or EverBEEN services.

3.3.2 Services

Probably the most notable fact in the above schema is the presence of clustered services, namely:

• Software Repository — Handles user code package distribution.
• Host Runtime — Runs user code.
• Object Repository — Stores user code outputs.
• User Interface — Generates cluster control-flow, display cluster state.
5http://www.youtube.com/watch?v=b2F-DItXtZs
6http://johnmacfarlane.net/pandoc/
7http://been.ow2.org/
8http://d3s.mff.cuni.cz/publications/download/Submitted_1404_BEEN.pdf

http://www.youtube.com/watch?v=b2F-DItXtZs
http://johnmacfarlane.net/pandoc/
http://been.ow2.org/
http://d3s.mff.cuni.cz/publications/download/Submitted_1404_BEEN.pdf

CHAPTER 3. EVERBEEN DEVELOPER DOCUMENTATION 56

Figure 3.1: EverBEEN architecture

These services are run on EverBEEN cluster nodes, by configuring the node at launch time. While
EverBEEN relies on the eventual availability of its services, it remains oblivious to their actual location,
as long as they’re reachable within the cluster. The only exception to this is the Software Repository,
which emits its location to the cluster to provide software packages via a simple HTTP protocol.

However, the overview of EverBEEN services would not be complete without Task Manager, not seen on
this diagram. The Task Manager is a component responsible for all the house-keeping around scheduling
user code execution. As such, it plays an essential role in the EverBEEN coordination. This led us to
make its decision-making process decentralized and ensure that multiple Task Manager instances could
co-exist in the cluster. The Task Manager is run on every DATA node, which represents a transparent
fail-over strategy in case one of the multiple data nodes has to terminate.

3.3.3 Native Nodes, Data Nodes

As mentioned above, EverBEEN is based around the idea of cluster nodes. Because it may be in the best
interest to limit unnecessary load on nodes running EverBEEN services, we enabled EverBEEN nodes to
run in two modes:

Data Nodes
Nodes running in this mode fully participate in cluster-wide data sharing. All data nodes run a Task
Manager instance. These nodes add extra redundancy, but need to perform additional house-keeping,
which increases the load they generate.

Native Nodes
Low-profile nodes that run without a Task Manager instance. Nodes running in this mode have access to
all shared data, but are not responsible for any shared objects. They bring no additional redundancy, but
generate less load and are more suitable for running EverBEEN services.

3.3.4 User code

Another factor that needs to be taken into consideration is the execution of user code in cooperation with
the system. For security reasons, user code is always launched in a separate process in EverBEEN. As

CHAPTER 3. EVERBEEN DEVELOPER DOCUMENTATION 57

opposed to a thread-based solution, this approach offers better memory management and error handling.
Moreover, it alleviates the restriction of user logic to JVM code.

3.3.5 User code zone

The clear separation of user and framework code zones is one of the major features introduced with
EverBEEN. The motivation for this division is the absence of RTTI in system processes. WillBEEN’s
handling of user types involved these:

• Forcing the user to describe the data he persists using a Java-based meta-language.
• Class bytecode generation based on meta-language description.
• ORM mapping of so generaged classes using the Hibernate9 framework.

This approach to persistence leads to several problems:

• To enact the ORM mapping, the generated class must be loaded. Once that happens, it cannot be
unloaded using conventional means.

• Having multiple versions of meta-language description for the same ORM binding leads to conflicts
(both classpath and SQL table).

• The user is forced to duplicate the definition of his data structures, which gives more room for
errors.

In order to avoid this kind of hassle, we strove to rid the EverBEEN framework of all knowledge of user
types, which ultimately leads to the code zone division discussed above.

3.3.6 User Interface

The EverBEEN cluster is controlled through a web interface, deployable to standard Java Servlet
containers. To communicate with EverBEEN, it connects to the cluster as a native node, and issues
commands through a facade called BeenApi. In that sense, the web interface component is both a client
(cluster scope) and a server (user scope). Any number of web interface instances can run on an EverBEEN
cluster.

3.4 Principal features

There are several EverBEEN features we are particularly proud of, mostly because we believe them to be
a good match to the project goals assigned to us at the beginning of the project, or the design goals we
set up ourselves when considering the deficiencies of previous project incarnations.

Scalability
Adding nodes to the EverBEEN cluster transparently increases the scale of benchmarks you can perform.
There is no master node to bottleneck the decision-making even if you create a large cluster. The
assumed (although untested) advantage of using MongoDB is its sharding ability, which should provide a
database back-end scaling strategy implicitly compatible with EverBEEN.

Easy deployment
Deploying EverBEEN can be as simple as installing a database and running a few executable jars with
a few command-line options. No shady deployment scripts. No installation. Just pure Java, with a
database adapter and a synoptic front-end webapp to go with. Configuration is concentrated into one file,
which you can load from a URL to quicken mass reconfiguration.

9http://www.hibernate.org/

http://www.hibernate.org/

CHAPTER 3. EVERBEEN DEVELOPER DOCUMENTATION 58

Easy measures
If you use Java, creating a simple EverBEEN task is a matter of minutes, rather than hours. All you
need is a pom file (for Apache Maven), one method override and a task descriptor. Once you have that,
the bpk-maven-plugin will bundle your BPK with a simple mvn package. Once your BPK gets more
complex, you can create task descriptor and context descriptor templates, which you can then tweak
from the web interface before you run them. Once you get familiar with tasks and task contexts, creating
a benchmark is easy, because you just need to write a task that creates task contexts, except that you can
comfortably modify the context XML using Java-to-XML bindings.

User type transparency
For Java tasks, support for user result types is reduced to extending one class. Once you do that, your
result objects are serialized, stored, queried and de-serialized without you needing to do any extra work -
the Task API does it for you. If you happen to update your task code and change a result class’s version
(add a field, for example), you won’t get into trouble if you apply a minimum of caution.

Extensibility
EverBEEN is modular and therefor extensible. If you don’t like MongoDB, you can port EverBEEN
completely to a different database by implementing two modules and creating one descriptor. Substituting
the default LOGBack implementation for another slf4j implementation is fairly easy, too. Other possible
extensions are in store for the future.

Maintainable code
Using modular design, modern technologies and flexible programming techniques, we managed to shrink
the core EverBEEN codebase to under 70,000 lines of code while preserving most of the original project’s
functionality. Compared to over 160,000 lines of WillBEEN code, we have created an easily maintainable
piece of software without sacrificing important features.

3.5 EverBEEN services

EverBEEN services are functional bundles run on cluster nodes in addition to the common core bundle.
They are configured ‘per-node’ at boot time and define the node’s role in the cluster.

3.5.1 Host Runtime

The Host Runtime is the service responsible for managing running tasks. It also functions as a gateway
between its tasks and the rest of the framework.

The service was completely rewritten since the code quality was poor. The rewrite enabled the EverBEEN
team to do necessary refactoring as well as to introduce libraries, such as Apache Commons Exec producing
more modular and maintainable code.

Even though the service was completely rewritten, its purpose and basic functions remain similar to
previous BEEN versions.

A Host Runtime can run on any type of EverBEEN node. It makes sense to run it on a NATIVE node in
order to avoid costs associated with running a DATA node. Typically, deployment will have a few DATA
nodes and as many NATIVE nodes with Host Runtime instances as needed.

Available configuration options are listed in the chapter 2.8 Configuration.

3.5.1.1 Host Runtime overview

Responsibilities of a Host Runtime include

• Task environment setup (working directory, environment properties, command line etc.).
• Downloading packages from the Software Repository (on a task’s behalf).
• Running and managing a task (spawning a process, changing task’s state, exit code, etc.).
• Mediating data transfer between tasks and the rest of the framework (logs, results, etc.).

CHAPTER 3. EVERBEEN DEVELOPER DOCUMENTATION 59

• Cleanup after tasks.
• Monitoring the host it runs on.

Each Host Runtime manages only its own tasks – it remains oblivious to the rest.

The implementation can be found in the host-runtime module within the cz.cuni.mff.d3s.been.hostruntime
package.

3.5.1.2 Local task management

The Host Runtime interacts with the rest of the framework primarily by listening for messages (HostRun-
timeMessageListener10 through a distributed topic. Messages contain requests which are dispatched to
appropriate message handlers (ProcessManager11).

A task begins its life on a Host Runtime with incoming RunTaskMessage12 message. The Host Runtime
can either accept the task or return it to the Task Manager. In former case a complete environment is
prepared and a new process is spawned (TaskProcess13). This process includes:

• Downloading task BPK (SoftwareResolver14)
• Creating a working directory and unpacking the BPK into it (ProcessManager)
• Preparing environment properties and command line (CmdLineBuilderFactory15)

The task is supervised in a separate thread, waiting for the task to either finish or be aborted by a user
generated request. Task state changes are propagated through the TaskEntry16 structure associated with
the given task through TaskHandle17.

3.5.1.3 Interaction with tasks

Any communication between a task and the rest of the framework is mediated by the task’s Host Runtime.
This includes:

• Logs, output from standard output and standard error (TaskLogHandler18)
• Results, result queries
• Task context related operations (Checkpoints, latches, etc.)

The communication protocol is based on 0MQ and messages are encoded in JSON. This allows imple-
menting the Task API in different languages. The EverBEEN project currently implements extensive
support for JVM based languages.

The output a of task is dispatched to the appropriate destination through Hazelcast distributed structures.
The Host Runtime routes this information to its correct destination, but is otherwise oblivious to how
such data is actually processed.

3.5.1.4 Task protocol

Follows overview of the protocol between Host Runtime and a task.

As was mentioned above the protocol is based on 0MQ with messages encoded in JSON format.
10http://www.everbeen.cz/javadoc/everBeen/cz/cuni/mff/d3s/been/hostruntime/HostRuntimeMessageListener.html
11http://www.everbeen.cz/javadoc/everBeen/cz/cuni/mff/d3s/been/hostruntime/ProcessManager.html
12http://www.everbeen.cz/javadoc/everBeen/cz/cuni/mff/d3s/been/core/protocol/messages/RunTaskMessage.html
13http://www.everbeen.cz/javadoc/everBeen/cz/cuni/mff/d3s/been/hostruntime/task/TaskProcess.html
14http://www.everbeen.cz/javadoc/everBeen/cz/cuni/mff/d3s/been/hostruntime/SoftwareResolver.html
15http://www.everbeen.cz/javadoc/everBeen/cz/cuni/mff/d3s/been/hostruntime/task/CmdLineBuilderFactory.html
16http://www.everbeen.cz/javadoc/everBeen/cz/cuni/mff/d3s/been/core/task/TaskEntry.html
17http://www.everbeen.cz/javadoc/everBeen/cz/cuni/mff/d3s/been/hostruntime/task/TaskHandle.html
18http://www.everbeen.cz/javadoc/everBeen/cz/cuni/mff/d3s/been/hostruntime/tasklogs/TaskLogHandler.html

http://www.everbeen.cz/javadoc/everBeen/cz/cuni/mff/d3s/been/hostruntime/HostRuntimeMessageListener.html
http://www.everbeen.cz/javadoc/everBeen/cz/cuni/mff/d3s/been/hostruntime/ProcessManager.html
http://www.everbeen.cz/javadoc/everBeen/cz/cuni/mff/d3s/been/core/protocol/messages/RunTaskMessage.html
http://www.everbeen.cz/javadoc/everBeen/cz/cuni/mff/d3s/been/hostruntime/task/TaskProcess.html
http://www.everbeen.cz/javadoc/everBeen/cz/cuni/mff/d3s/been/hostruntime/SoftwareResolver.html
http://www.everbeen.cz/javadoc/everBeen/cz/cuni/mff/d3s/been/hostruntime/task/CmdLineBuilderFactory.html
http://www.everbeen.cz/javadoc/everBeen/cz/cuni/mff/d3s/been/core/task/TaskEntry.html
http://www.everbeen.cz/javadoc/everBeen/cz/cuni/mff/d3s/been/hostruntime/task/TaskHandle.html
http://www.everbeen.cz/javadoc/everBeen/cz/cuni/mff/d3s/been/hostruntime/tasklogs/TaskLogHandler.html

CHAPTER 3. EVERBEEN DEVELOPER DOCUMENTATION 60

A task must send appropriate messages through 0MQ ports in order to communicate with its Host
Runtime. Connection details are passed as environment properties upon task process spawning. Names of
these environment properties are specified in NamedSockets19. Message serialization to JSON is handled
in the Task API – the current implementation uses the Jackson library to serialize/deserialize messages
from/to Plain Old Java Objects.
There are currently four types of messages recognized by the framework. For the sake of brevity, Java
implementation classes are mentioned here. If the need for different implementation of the TASK API
arises the message format can be inferred from their direct mapping to JSON.
Log Messages - TaskLogs - LogMessage

Example message:

LOG_MESSAGE#{
"created":1378147630541,
"taskId":"4b7c3169-7a30-4ca7-8ac1-ebb973ac0b4d",
"contextId":"16f50281-0bb5-44d8-ab33-eea33e895b31",
"benchmarkId":"",
"message":{

"name":"com.example.been.ExampleTask",
"level":1,
"message":"Mae govannen!",
"errorTrace":null,
"threadName":"main"

}
}

Notice that there currently is LOG_MESSAGE# before the actual message.
Check Points - TaskCheckpoints - CheckpointRequest20

Examples of CheckPoint messages:
The first example shows the “Check Point Get” message:

{
"selector":"checkpoint",
"value":null,
"timeout":0,
"type":"GET",
"taskId":"272028b5-9cba-4730-b672-385469efa7e3",
"taskContextId":"ebbae46a-ad8f-4653-9225-49df327cb90e"

}

The format is the same for all types of CheckPoint messages:

selector
name of the requested entity

value
string representation of value to be passed, applicable according to message type, e.g. value of a
CheckPoint to set

timeout
timeout in milliseconds of the request if applicable, zero means infinity

type
defines type of the request, supported types are to be found in CheckpointRequestType21

19http://www.everbeen.cz/javadoc/everBeen/cz/cuni/mff/d3s/been/socketworks/NamedSockets.html
20http://www.everbeen.cz/javadoc/everBeen/cz/cuni/mff/d3s/been/task/checkpoints/CheckpointRequest.html
21http://www.everbeen.cz/javadoc/everBeen/cz/cuni/mff/d3s/been/task/checkpoints/CheckpointRequestType.html

http://www.everbeen.cz/javadoc/everBeen/cz/cuni/mff/d3s/been/socketworks/NamedSockets.html
http://www.everbeen.cz/javadoc/everBeen/cz/cuni/mff/d3s/been/task/checkpoints/CheckpointRequest.html
http://www.everbeen.cz/javadoc/everBeen/cz/cuni/mff/d3s/been/task/checkpoints/CheckpointRequestType.html

CHAPTER 3. EVERBEEN DEVELOPER DOCUMENTATION 61

taskId
taskId of the requesting task

taskContextId : task context id of the requesting entity

The response might look like this:

{
"replyType":"OK",
"value":"42"

}

replyType
it’s either OK if operation succeeded or ERROR otherwise

value
value returned from the operation, in case of ERROR reason why the operation failed

Here is the request for Count Down Latch wait with 1s timeout:

{
"selector":"example-latch",
"value":null,
"timeout":1000,
"type":"LATCH_WAIT",
"taskId":"272028b5-9cba-4730-b672-385469efa7e3",
"taskContextId":"ebbae46a-ad8f-4653-9225-49df327cb90e"

}

And the reply after the timeout occurred:

{
"replyType":"ERROR",
"value":"TIMEOUT"

}

See CheckpointController22 implementation details of other operations.

Results - TaskResults - Result23 along with EntityID24 wrapped in EntityCarrier25

Let us use following example result in Java:

public class ExampleResult extends Result {
public int data;
public String name;

/** Results must have non-parametric constructor.*/
public ExampleResult() {}

}

Example result corresponding to the Java class:
22http://www.everbeen.cz/javadoc/everBeen/cz/cuni/mff/d3s/been/taskapi/CheckpointController.html
23http://www.everbeen.cz/javadoc/everBeen/cz/cuni/mff/d3s/been/results/Result.html
24http://www.everbeen.cz/javadoc/everBeen/cz/cuni/mff/d3s/been/core/persistence/EntityID.html
25http://www.everbeen.cz/javadoc/everBeen/cz/cuni/mff/d3s/been/core/persistence/EntityCarrier.html

http://www.everbeen.cz/javadoc/everBeen/cz/cuni/mff/d3s/been/taskapi/CheckpointController.html
http://www.everbeen.cz/javadoc/everBeen/cz/cuni/mff/d3s/been/results/Result.html
http://www.everbeen.cz/javadoc/everBeen/cz/cuni/mff/d3s/been/core/persistence/EntityID.html
http://www.everbeen.cz/javadoc/everBeen/cz/cuni/mff/d3s/been/core/persistence/EntityCarrier.html

CHAPTER 3. EVERBEEN DEVELOPER DOCUMENTATION 62

{
"created":1378149926777,
"taskId":"1dc48ac8-8a7f-42aa-a57c-f38b8c449864",
"contextId":"762187bb-448e-42ba-9c3e-421091553c58",
"benchmarkId":"",
"data":47

}

created
is time when the result was created (UNIX time)

taskId, contextId, benchmarkId : are IDs of the task

data
corresponds to the result’s data field

Result queries - TaskResultQueries - FetchQuery26

Queries are a little complicated - since they allow filtering and selecting of data.

Example of a query

Query query = new ResultQueryBuilder().on(GROUP_ID).with("taskId", getId()).with("name",
"Name42").retrieving("data").fetch();

The query is translated into

{
"@class":"cz.cuni.mff.d3s.been.persistence.FetchQuery",
"id":"1ad39fd6-172a-47c7-908e-4acc1bb66414",
"entityID":{

"kind":"result",
"group":"example-data"

}, "selectors":{
"taskId":{

"@class":"cz.cuni.mff.d3s.been.persistence.EqAttributeFilter",
"values":{

"@eq":"e1df89e9-b893-4099-ad21-f1eb5291a48b"
}

},"name":{
"@class":"cz.cuni.mff.d3s.been.persistence.EqAttributeFilter",
"values":{

"@eq":"Name42"
}

}
},
"mappings":["data"]

}

The @class fields are a bit unfortunate since they refer to Java implementation classes. We acknowledge
this as awkward, yet necessary – the Jackson deserializer to recognize the proper runtime type for
unmarshalling.

The details of note are:

• The specification of EntityID27

26http://www.everbeen.cz/javadoc/everBeen/cz/cuni/mff/d3s/been/persistence/FetchQuery.html
27http://www.everbeen.cz/javadoc/everBeen/cz/cuni/mff/d3s/been/core/persistence/EntityID.html

http://www.everbeen.cz/javadoc/everBeen/cz/cuni/mff/d3s/been/persistence/FetchQuery.html
http://www.everbeen.cz/javadoc/everBeen/cz/cuni/mff/d3s/been/core/persistence/EntityID.html

CHAPTER 3. EVERBEEN DEVELOPER DOCUMENTATION 63

• Selectors which filter fields
• Mappings which select which fields to fetch.

The mappings field is a JSON array of attribute names that should be retrieved from the persistence
layer. The resulting data will only contain these fields. This feature is primarily intended for saving
network traffic by limiting queries to minimal necessary information.

The selectors field is a JSON map containing filters identified by retrieved object attribute names. The
filters can be any of the following:

@class expected attributes meaning

EqAttributeFilter @eq v == @eq

NotEqAttributeFilter @eq v != @eq

PatternAttributeFilter @like v matches the pattern in @like

IntervalAttributeFilter @lo v >= @lo

@hi v < @hi

@lo, @hi @lo <= v < @hi

In the above table, v represents the value of the filtered attribute. All the mentioned classes are taken from
the cz.cuni.mff.d3s.been.persistence package, so their fully qualified name needs to be prefixed
accordingly. For the sake of implementation simplicity, the number of filters is limited to one per attribute.

Results might look something like this:

{
"@class":"cz.cuni.mff.d3s.been.persistence.DataQueryAnswer",
"status":"OK",
"objects":[

"{ \"data\" : 42}"
]

}

Notice that object is an array of returned entities.

3.5.1.5 Host Runtime monitoring

Monitoring samples are taken through the Sigar library which uses native libraries to gather system
information. The period of sampling is configurable. Samples are persisted through the Object Repository.

In case Sigar native library is not available for a platform (as is currently the case for FreeBSD 8 and
later) Java fallback is provided. The Java implementation does not supply as much information as Sigar
does (the striking example is information about system free memory which cannot be obtained, as far as
we know, directly from Java standard libraries).

3.5.2 Task Manager

The Task Manager is at the heart of the EverBEEN framework, its responsibilities include:

• task scheduling
• context scheduling
• benchmark scheduling
• context state changes

CHAPTER 3. EVERBEEN DEVELOPER DOCUMENTATION 64

• detection and correction of error states (benchmark failures, Host Runtimes failures, etc.)

Main characteristic:

• event-driven
• distributed
• redundant (in default configuration)

3.5.2.1 Distributed approach to scheduling

The most important characteristic of the Task Manger is that the computation is event-driven and
distributed among the DATA nodes. The implication from such approach is that there is no central
authority, bottleneck or single point of failure. If a data node disconnects (or crashes), its responsibilities
(along with related data) are transparently taken over by the rest of the cluster.
Distributed architecture is the major difference from previous versions of the BEEN framework.

3.5.2.2 Implementation

The implementation of the Task Manager is heavily dependent on Hazelcast distributed data structures
and its semantics, especially the com.hazelcast.core.IMap28.

3.5.2.3 Workflow

The basic event-based work flow:

1. Receive asynchronous Hazelcast event
2. Generate appropriate message describing the event
3. Generate appropriate action from the message
4. Execute the action

Internal message handling is also message-driven, based on the 0MQ library, somewhat resembling the Actor
model. The advantage resides in separating message reception and deserialization from actual handling
logic. Internal messages are executed in one thread, which also removes the need for explicit locking and
synchronization (which happens, but is not responsibility of the Task Manager developer). A more detailed
description of the message/action is a part of the source code and associated JavaDoc29, and can be found
in the cz.cuni.mff.d3s.been.manager.msg and cz.cuni.mff.d3s.been.manager.action packages.

3.5.2.4 Data ownership

An important concept to remember is that an instance of the Task Manager only handles entries it owns
whenever possible (e.g. task entries). Data ownership means that the object in question is stored in local
memory and the node is responsible for it. The design of Task Manager takes advantage of the locality
and most operations are local with regard to data ownership. This approach is highly desirable for the
Task Manger to scale.

3.5.2.5 Main distributed structures

• BEEN_MAP_TASKS - map containing runtime task information
• BEEN_MAP_TASK_CONTEXTS - map containing runtime context information
• BEEN_MAP_BENCHMARKS - map containing runtime context information

These distributed data structures are also backed by the MapStore (enabled by default).
28http://www.hazelcast.com/javadoc/com/hazelcast/core/IMap.html
29http://www.everbeen.cz/javadoc/everBeen/index.html

http://www.hazelcast.com/javadoc/com/hazelcast/core/IMap.html
http://www.everbeen.cz/javadoc/everBeen/index.html

CHAPTER 3. EVERBEEN DEVELOPER DOCUMENTATION 65

3.5.2.6 Task scheduling

The following section discusses task states, which are described in detail in section 2.2.2 (Basic concepts)
of the user manual.

The Task Manager is responsible for scheduling tasks, which boils down to finding a Host Runtime on
which the task can run. The description of possible restrictions can be found in the 3.5.1 Host Runtime
section.

A distributed query30 is used to find suitable Host Runtimes, spreading the load among DATA nodes.

An appropriate Host Runtime is also chosen based on Host Runtime utilization, less loaded Host Runtimes
are preferred. Among equal hosts a Host Runtime is chosen randomly.

The lifecycle of a task is commenced by inserting a TaskEntry31 in SUBMITTED state into the task map
under a random key. Inserting a new entry to the map causes an event which is handled by the owner
of the key — the Task Manager responsible for the key. The event is converted to a NewTaskMessage32

object and sent to the processing thread. The handling logic is separated in order not to block the
Hazelcast service threads. In this regard, message handling is serialized on the particular node. The
message then generates ScheduleTaskAction33, which is responsible for figuring out what to do. Several
things might happen

• the task cannot be run because it’s waiting on another task, the state is changed to WAITING
• the task cannot be run because there is no suitable Host Runtime for it, the state is changed to

WAITING
• the task can be scheduled on a chosen Host Runtime, the state is changed to SCHEDULED and

the runtime is notified.

If the task is accepted the chosen Host Runtime is responsible for the task until it finishes or fails.

WAITING tasks remain under the responsibility of the Task Manager, which can try to reschedule when an
event occurs, e.g.:

• another tasks is removed from a Host Runtime
• a new Host Runtime is connected

3.5.2.7 Benchmark Scheduling

Benchmark tasks are scheduled in the same fashion as other tasks. The main difference is that if a
benchmark task fails (host failure, programming error, etc.), the framework can re-schedule the task on a
different Host Runtime.

A problem can arise from re-scheduling an incorrectly written benchmark which fails too often. There is
a configuration option which limits how many re-submits are allowed for a benchmark task.

3.5.2.8 Context Handling

Contexts are not scheduled as an entity on Host Runtimes, as they are mere containers for related tasks.
The Task Manager handles detection of contexts state changes. The state of a contexts is decided from
the states of its tasks.

Possible task context states:

• WAITING – for future use
• RUNNING – contained tasks are running, scheduled or waiting to be scheduled

30http://hazelcast.com/docs/2.6/manual/single_html/#MapQuery
31http://www.everbeen.cz/javadoc/everBeen/cz/cuni/mff/d3s/been/core/task/TaskEntry.html
32http://www.everbeen.cz/javadoc/everBeen/cz/cuni/mff/d3s/been/manager/msg/NewTaskMessage.html
33http://www.everbeen.cz/javadoc/everBeen/cz/cuni/mff/d3s/been/manager/action/ScheduleTaskAction.html

http://hazelcast.com/docs/2.6/manual/single_html/#MapQuery
http://www.everbeen.cz/javadoc/everBeen/cz/cuni/mff/d3s/been/core/task/TaskEntry.html
http://www.everbeen.cz/javadoc/everBeen/cz/cuni/mff/d3s/been/manager/msg/NewTaskMessage.html
http://www.everbeen.cz/javadoc/everBeen/cz/cuni/mff/d3s/been/manager/action/ScheduleTaskAction.html

CHAPTER 3. EVERBEEN DEVELOPER DOCUMENTATION 66

• FINISHED – all contained tasks finished without an error
• FAILED – at least one task from the context failed

Future improvements may include heuristics for scheduling contexts as an entity (i.e. detection that the
context can not be scheduled at the moment), which is difficult because of the distributed nature of
scheduling – any information gathered might be obsolete by the time it is read.

3.5.2.9 Handling exceptional events

The current Hazelcast implementation (as of version 2.6) has one limitation. When a key migrates34 the
new owner does not receive any event (com.hazelcast.partition.MigrationListener35 is not very
useful in this regard, since it does not contain enough information). This might be a problem, for example
when a node crashes and an event of type “new task added” is lost. To mitigate the problem the Task
Manager periodically scans (LocalKeyScanner36) its local keys looking for irregularities. If an anomaly
is found, a message is created to remedy the problem.

There are several situations where similar problems might arise:

• Host Runtime failure
• Key migration
• Cluster restart

Note that the LocalKeyScanner solution is mainly a safety net – most of the time the framework will
receive an event on which it can react appropriately (e.g. Host Runtime failed).

In the case of cluster restart, there might be stale tasks which do not run anymore. In such cases, the
task state information loaded from the MapStore will be inconsistent. Such situation are recognized and
corrected by the scan.

3.5.2.10 Hazelcast events

These are main sources of cluster-wide events, received from Hazelcast:

• Task Events – in LocalTaskListener37

• Host Runtime events – in LocalRuntimeListener38

• Contexts events – in LocalContextListener39

3.5.2.11 Locking

Certain EverBEEN objects are possibly concurrently modified by different services (and possibly different
nodes). One of such objects is the TaskEntry, which is accessed by both a Task Manager and a Host
Runtime. Unfortunately, such cases must be be resolved through the usage of distributed Hazelcast
locks. Such locking is costly, so we tried to avoid it on performance critical paths. Moreover, the number
of parties trying to obtain the lock is never high. In the case of TaskEntry, concurrent accesses are
attempted by one Host Runtime and at most two Task Manager instances (two in case of a key migration),
and the locks are owned by the task’s current Task Manager.

The recently released Hazelcast 3.0 introduced the Entry Processor40 feature that could help improve
throughput, should the need arise.

34http://hazelcast.com/docs/2.5/manual/single_html/#InternalsDistributedMap
35http://www.hazelcast.com/javadoc/com/hazelcast/partition/MigrationListener.html
36http://www.everbeen.cz/javadoc/everBeen/cz/cuni/mff/d3s/been/manager/LocalKeyScanner.html
37http://www.everbeen.cz/javadoc/everBeen/cz/cuni/mff/d3s/been/manager/LocalTaskListener.html
38http://www.everbeen.cz/javadoc/everBeen/cz/cuni/mff/d3s/been/manager/LocalRuntimeListener.html
39http://www.everbeen.cz/javadoc/everBeen/cz/cuni/mff/d3s/been/manager/LocalContextListener.html
40http://hazelcast.com/docs/3.0/manual/single_html/#MapEntryProcessor

http://hazelcast.com/docs/2.5/manual/single_html/#InternalsDistributedMap
http://www.hazelcast.com/javadoc/com/hazelcast/partition/MigrationListener.html
http://www.everbeen.cz/javadoc/everBeen/cz/cuni/mff/d3s/been/manager/LocalKeyScanner.html
http://www.everbeen.cz/javadoc/everBeen/cz/cuni/mff/d3s/been/manager/LocalTaskListener.html
http://www.everbeen.cz/javadoc/everBeen/cz/cuni/mff/d3s/been/manager/LocalRuntimeListener.html
http://www.everbeen.cz/javadoc/everBeen/cz/cuni/mff/d3s/been/manager/LocalContextListener.html
http://hazelcast.com/docs/3.0/manual/single_html/#MapEntryProcessor

CHAPTER 3. EVERBEEN DEVELOPER DOCUMENTATION 67

3.5.3 Software Repository

From user perspective, the Software Repository is a black box performing storage and retrieval of
standalone BPK packages with task, task context and benchmark definitions. All user interaction with the
Software Repository is mediated by the Web Interface. From a developer’s perspective, the architecture
of the Software Repository is based on file system storage and a very simple HTTP protocol.

3.5.3.1 HTTP

The Software Repository HTTP protocol supports the following actions:

• get /bpk - download BPK from software repository

– request header: Bpk-Identifier, value: cz.cuni.mff.d3s.been.bpk.BpkIdentifier41

(JSON), unique identifier of the BPK to be downloaded
– valid response status codes: 2XX
– response body: binary content of the requested BPK file

• put /bpk - upload BPK to software repository

– request header: Bpk-Identifier, value: BpkIdentifier (JSON), unique identifier uploaded
BPK

– request body: binary content of the uploaded BPK file
– valid response status codes: 2XX

• get /bpklist - list all BPKs stored in the Software Repository

– valid response status codes: 2XX
– response body: List<BpkIdentifier> (JSON)

• get /tdlist - list all task descriptors42 for a BPK stored in the Software Repository (identified by
given BpkIdentifier)

– request header: Bpk-Identifier, value: BpkIdentifier (JSON), unique identifier of the BPK
for which the list of available descriptors should be returned

– valid response status codes: 2XX
– response body: Map<String, TaskDescriptor> (JSON), the map key set are task descriptor

file names

• get /tcdlist - list all task context descriptors43 for BPK stored in Software Repository (identified
by given BpkIdentifier)

– request header: Bpk-Identifier, value: BpkIdentifier (JSON), unique identifier of the BPK
for which the list of available descriptors should be returned

– valid response status codes: 2XX
– response body: Map<String, TaskContextDescriptor> (JSON), the map key set are task

context descriptor file names

If response is marked with an invalid status code, the standard HTTP response reason phrase will contain
the reason of the failure. We chose the HTTP protocol for BPK transport, because it is better suited for
large file transfers.

For JSON serialization and deserialization we use the ObjectMapper provided by the Jackson library.
41http://www.everbeen.cz/javadoc/everBeen/cz/cuni/mff/d3s/been/bpk/BpkIdentifier.html
42http://www.everbeen.cz/javadoc/everBeen/cz/cuni/mff/d3s/been/core/task/TaskDescriptor.html
43http://www.everbeen.cz/javadoc/everBeen/cz/cuni/mff/d3s/been/core/task/TaskContextDescriptor.html

http://www.everbeen.cz/javadoc/everBeen/cz/cuni/mff/d3s/been/bpk/BpkIdentifier.html
http://www.everbeen.cz/javadoc/everBeen/cz/cuni/mff/d3s/been/core/task/TaskDescriptor.html
http://www.everbeen.cz/javadoc/everBeen/cz/cuni/mff/d3s/been/core/task/TaskContextDescriptor.html

CHAPTER 3. EVERBEEN DEVELOPER DOCUMENTATION 68

3.5.3.2 File system structure

Software Repository stores uploaded BPKs in the bpks subdirectory of its configurable working directory
root. Each uploaded BPK is stored on the following path:

{groupId}/{bpkId}/{version}/{bpkId}-{version}.bpk

• {groupId} stands for the fully qualified groupId of BPK with dots substitued by slashes
• {bpkId} stands for the bpkId the BPK
• {version} stands for BPK version

To clarify, here is an example of Software Repository directory structure:

SR working directory (WD):
e.g. /home/been/swrepository on Linux systems
e.g. C:\been\swrepository on Windows systems

BPK store directory:
{WD}/bpks

uploaded example BPK 1:
filename: example.bpk
groupId: cz.cuni.mff.d3s.been.example
bpkId: example-bpk
version: 1.1.beta-02

uploaded example BPK 2:
filename: alpmexa.bpk
groupId: cz.cuni.mff.d3s.been.example
bpkId: alpmexa-bpk
version: 0.1-SNAPSHOT

example BPK 1 will be stored in:
{WD}/bpks/cz/cuni/mff/d3s/been/example/example-bpk/

1.1.beta-02/example-bpk-1.1.beta-02.bpk

example BPK 2 will be stored in:
{WD}/bpks/cz/cuni/mff/d3s/been/example/alpmexa-bpk/0.1-SNAPSHOT/

alpmexa-bpk-0.1-SNAPSHOT.bpk

Some limitations:

• Software repository does not support BPK overwriting (uploading a BPK with the same groupId,
bpkId and version as a BPK already present in the Software Repository). The only exception to
this rule are BPKs with a version string suffixed by -SNAPSHOT (e.g. 1.0.0-SNAPSHOT).

• You have to start software repository on node visible for all other nodes and on port which is not
blocked by the host’s firewall.

• The Software Repository listens on the primary network interface selected by Hazelcast for cluster
communication. We realize this might inconvenience you if you are running EverBEEN on atypical
networks, and intend to add some configuration options to let you specify desired behavior manually.

• There is an artifacts folder in the Software Repository working directory root. This is because
Software Repository implements uploading and downloading Maven artifacts, in addition to BPKs,
but the feature has not yet been integrated into the rest of EverBEEN, and is staged for future
development.

CHAPTER 3. EVERBEEN DEVELOPER DOCUMENTATION 69

3.5.3.3 Software Repository client

Because some BPKs can be used multiple times on single Host Runtime, each host runtime has its own
software repository cache. This cache uses the same file system structure as Software Repository does,
and transparently reuses downloaded BPK bundles to save bandwidth and I/O resources.

3.5.4 Object Repository

The purpose of the Object Repository is to service user data persistence. While the actual persistence and
querying code is isolated from the Object Repository by the Storage44 interface and is database-dependent
(the default MongoDB implementation can be found in the mongo-storage module), the Object Repository
operates without any knowledge of user types or concrete database storage implementation. The main
portion of its work is to communicate with the rest of the EverBEEN cluster, collect objects sent by other
nodes for persistence, collect queries from other nodes and dispatch answers. The communication with
the rest of the cluster is realized through shared queues and maps (distributed cluster-wide memory).

The Object Repository also features a Janitor sub-service, which is responsible for cleaning up old data
once it is deemed unnecessary. The Janitor works on its local Storage instance and therefore doesn’t
partake in any cluster-wide activities.

3.5.4.1 Queue drains

As mentioned above, the Object Repository’s communication with the rest of the EverBEEN cluster is
mostly based on distributed queues. The Object Repository continuously drains these queues using special
consumer threads (spawned dynamically based on load-balancing heuristics). This idea is revisited in
both persist requests and querying.

3.5.4.2 Persist request queue

The object persisting mechanism is simple:

• A node serializes its object o (Entity45) into JSON. Let’s call the resulting string ojson.
• The node creates an special wrapper (EntityCarrier46) which combines the serialized object with

a destination id (EntityID47) - let’s call the specific id instance oid.
• The wrapper, containing both ojson and oid, gets submitted into a distributed queue.
• A few moments later, an Object Repository drains the wrapper from the distributed queue.
• The repository unpacks the wrapper and passes both ojson and oid to its Storage implementation.
• The locating conventions of the Storage implementation are transparent to the Object Repository.

If the Storage implementation refuses to store ojson for any reason, the Object Repository resubmits the
wrapper, containing ojson and oid, back to the shared queue to prevent data loss.

From the above principle, it is obvious that multiple Object Repository instances can operate concurrently,
without a negative impact on data integrity or performance. The condition is, however, that all of the
Object Repository instances be accessing either the same database, or that the databases so accessed have
a full data-sharing policy of their own.

Persist requests in EverBEEN are asynchronous, and no notification is sent back after a persist is done.
Although this approach may limit the user’s knowledge about the current state of his data, it comes
at a considerable advantage: The shared memory can function as a buffer through Object Repository
disconnects. This enables a hassle-free means of reconfiguring the Object Repository if need be.

44http://www.everbeen.cz/javadoc/everBeen/cz/cuni/mff/d3s/been/storage/Storage.html
45http://www.everbeen.cz/javadoc/everBeen/cz/cuni/mff/d3s/been/core/persistence/Entity.html
46http://www.everbeen.cz/javadoc/everBeen/cz/cuni/mff/d3s/been/core/persistence/EntityCarrier.html
47http://www.everbeen.cz/javadoc/everBeen/cz/cuni/mff/d3s/been/core/persistence/EntityID.html

http://www.everbeen.cz/javadoc/everBeen/cz/cuni/mff/d3s/been/storage/Storage.html
http://www.everbeen.cz/javadoc/everBeen/cz/cuni/mff/d3s/been/core/persistence/Entity.html
http://www.everbeen.cz/javadoc/everBeen/cz/cuni/mff/d3s/been/core/persistence/EntityCarrier.html
http://www.everbeen.cz/javadoc/everBeen/cz/cuni/mff/d3s/been/core/persistence/EntityID.html

CHAPTER 3. EVERBEEN DEVELOPER DOCUMENTATION 70

3.5.4.3 Query queue & Answer map

A similar approach regarding queues is taken for persistence layer queries. Just as serialized persistent
objects do, queries get submitted to a distributed queue, where they wait for the Object Repository to
process them. However, queries naturally need to provide an answer to the requesting party, so an object
needs to be sent back. This is realized through a distributed map with listeners. To facilitate control flow
for the requesting party, we made the query calls synchronous. The querying process is as follows:

• The requesting party creates a query.
• If the requesting party is a task, the query is serialized, sent to the corresponding Host Runtime

and deserialized. The Host Runtime becomes the new requesting party while the task blocks in
wait for an answer from the Host Runtime.

• The requesting party registers a listener on the query’s ID in the distributed answer map.
• The requesting party submits the query to the distributed query queue.
• The requesting party blocks in wait for the answer to its query.
• Once the answer appears in the distributed answer map, the requesting party picks it up, removes

it from the answer map and resumes processing.

Of course, such blocking behavior is prone to potential infinite waits in various corner-cases. To prevent
that from happening, queries are subject to two types of timeout:

Query timeout
The requesting party only waits for this period of time for an answer to appear in the distributed answer
map. If the answer doesn’t appear in time, the requesting party attempts to cancel the query altogether
by withdrawing it from the distributed query queue to prevent clotting the answer map with unused
answers.

Processing timeout
If the answer doesn’t appear in time, but the query can not be withdrawn from the distributed queue, it
is assumed that an Object Repository instance has picked the query up, but did not yet process it. In
such case, the requesting party waits for the processing timeout duration to give the Object Repository
time to process the request. If the Object Repository responds within that interval, the answer it provided
is returned normally. If the processing timeout is hit instead, a special timeout answer is returned instead.

Both of these timeouts are implemented on the client side to ensure that the requesting party always gets
a valid answer or a timeout, even in case of unpredictable situations. Clearly, the maximum waiting time
before the requesting party is guaranteed to receive an answer is total_timeout = query_timeout +
processing_timeout.

For cases when the total_timeout is systematically being hit (as unlikely as they may be), there is a
local eviction policy on answers submitted to the map, with TTL = 5 * total_timeout. That means
answers submitted to the distributed answer map will be automatically deleted once the TTL expires.

3.5.4.4 Janitor

Every instance of Object Repository has its own Janitor thread that periodically checks the Storage for
old objects and removes them. To enable this kind of cleanup, EverBEEN stores some service entries
about task and context states, which are deleted once the cleanup of all other entries related to that task
or context has been performed. The cleanup rules are as follows:

• EverBEEN features two configurable TTL properties:

– been.objectrepository.janitor.finished-longevity
– been.objectrepository.janitor.failed-longevity

• For successfully finished tasks and contexts past finished longevity, configurations (descriptors),
results and evaluations thereof are kept, but service information (logs) are deleted

CHAPTER 3. EVERBEEN DEVELOPER DOCUMENTATION 71

• For failed tasks and contexts past failed longevity, all entries are deleted

All of these deletes are implemented using queries similar to DELETE FROM xyz AS o WHERE
o.att=’abcd’, so even if multiple instances of Janitor are running and they all attempt to perform
cleanup after the same task or context, the deletes do not result in failures.

There is a hypothetical case when the Janitor component performs a sweep which successfully deletes
leftover information about a task or context and is followed by a persist of leftover data for that same
task (context). This would mean that the late persisted object will never be deleted. It would take the
following for this case to occur:

• Both the initial and terminal states of the task (context) get persisted, but some leftover data
doesn’t. That can happen due to a persist queue reorder (potentially due to a temporary Storage
failure resulting in a requeue).

• Object Repository gets disconnected after the initial and terminal state has been drained, but before
the late persisted object has been drained.

• Object Repository doesn’t get reconnected for at least
been.objectrepository.janitor.finished-longevity
(or been.objectrepository.janitor.failed-longevity, depending on the terminal state of the
task/context), but keeps running (or gets restarted with a bad network configuration).

This case is not handled, mainly because the default values for both longevities are in the order of days,
and it would take the user not noticing an invalid cluster configuration for this long.

3.5.5 Map Store

MapStore allows EverBEEN to persist runtime information, which allows for a state restore after a
cluster-wide restart or crash.

3.5.5.1 Role of the MapStore

EverBEEN runtime information (such as task, context and benchmark states) are persisted through the
MapStore. This adds overhead to working with the distributed objects, but allows restoring of the state
after a cluster restart, providing a user with more concise experience.

The implementation is build atop of Hazelcast Map Store - mechanism for storing/loading of Hazelcast
distributed objects to/from a persistence layer. The EverBEEN team implemented a mapping to
MongoDB.

The main advantage of using the MapStore is transparent and easy access to Hazelcast distributed
structures with the ability to persist them - no explicit actions are needed.

3.5.5.2 Difference between the MapStore and the Object repository

Both mechanism are used to persist objects - the difference is in the type of objects being persisted. The
Object Repository stores user generated information, whereas the MapStore handles (mainly) EverBEEN
runtime information, which is essential for proper framework functioning.

The difference is also in level of transparency for users. Object persistence happens on behalf of an
explicit user request, while MapStore works “behind the scene”.

3.5.5.3 Extension point

Porting the MapStore adapter to a different persistence layer (such as a relational database) is relatively
easy. By implementing the com.hazelcast.core.MapStore interface and specifying the implementation
class at runtime.

CHAPTER 3. EVERBEEN DEVELOPER DOCUMENTATION 72

3.5.5.4 Configuration

The MapStore layer can be configured to accommodate different needs:

• specify connection options (hostname, user, etc.)
• enable/disable
• change implementation
• write-through and write-back modes

Detailed description of configuration can be found in section 2.8 MapStore Configuration.

3.5.6 Web Interface

The EverBEEN web interface is a sophisticated utility able to monitor and control the EverBEEN
cluster. It is not actually a real service but rather a standalone client. Nevertheless it is an indispensable
part of the framework. Its implementation is based on the Tapestry548 framework and its extension,
Tapestry5-jquery49. Describing the principles and conventions of Tapestry framework is not a part of the
EverBEEN documentation but can be found on the official site of the framework. We would, however,
like to include some information which could be helpful for Web Interface extenders.

3.5.6.1 Dependency Injection

Tapestry uses its own implementation of dependency injection called Tapestry IoC (Inversion of Control).
This container is responsible for managing dependencies among pages, components, services and other
parts of the application. Tapestry has several of its own services and we added two more:

• The BeenApiService is the most important, because it is in charge of cluster connection.
• The LiveFeedService handles communication with web browsers through web sockets.

These services are fully integrated to the Tapestry web application life cycle and can be injected to pages
and components through standard Tapestry annotations.

3.5.6.2 Pages and Components

All pages are inherited from the base Page class. This class contains an injected instance of
BeenApiService, from which you can obtain an instance of BeenApi50. The BeenApi enables you to
manage the whole EverBEEN cluster. The global EverBEEN layout is defined by the Layout component.
And all JavaScript and CSS resources can be found in the src/main/webapp subdirectory of the
web-interface module.

3.5.6.3 Connecting WI to the cluster

Web interface is connected to the cluster using Hazelcast native client. It means that the Web Interface
does not store any data and does not own (manage) any Hazelcast shared objects.

3.6 Modular approach

From the start, EverBEEN was developped as a modular project, and we backed our decision by Apache
Maven51 as EverBEEN’s building tool from day one. The major benefit of this decision is easier code
maintenance in the future, and cleaner code in general.

48http://tapestry.apache.org/
49http://tapestry5-jquery.com/
50http://www.everbeen.cz/javadoc/everBeen/cz/cuni/mff/d3s/been/api/BeenApi.html
51http://maven.apache.org/

http://tapestry.apache.org/
http://tapestry5-jquery.com/
http://www.everbeen.cz/javadoc/everBeen/cz/cuni/mff/d3s/been/api/BeenApi.html
http://maven.apache.org/

CHAPTER 3. EVERBEEN DEVELOPER DOCUMENTATION 73

3.6.1 Module overview

EverBEEN’s modules can be categorized as follows.

3.6.1.1 Service modules

A subset of EverBEEN’s modules corresponds exactly to the set of former WillBEEN services. The main
motivation for such separation is to bar any potential in-code dependencies between services. That takes
any cross service bug propagation (common with the use of RMI) out of the equation, making EverBEEN
much less error-prone.

host-runtime
Lends an EverBEEN node the ability to run tasks and benchmarks. Keeps track of the node’s hardware,
OS and load. Handles all the house-keeping around task processes.

object-repository
Makes this node a bridge between EverBEEN and a persistence layer. Also gives the node the ability to
handle persistence layer requests, run persistence layer cleanup etc.

software-repository-server
Enables the node to store and distribute BPK bundles (packages with user software). Needed for
EverBEEN to be able to run tasks. At most one should be present in the EverBEEN cluster at any time.

task-manager
Enable task planning on this node. All DATA nodes run this service.

web-interface
A Java container (e.g. Apache Tomcat52 webapp able of connecting to the EverBEEN cluster. Serves as
the GUI component of the system.

3.6.1.2 Internal API modules

Most of the places where EverBEEN bridges with a major piece of third-party technology are separated
by an internal API.

been-api
A general interface that covers interaction between the user and EverBEEN. All operations done through
the GUI (web interface) go through the been API.

mapstore
Not an API ‘per se’, this module contains the definition of EverBEEN configuration properties related to
the Hazelcast mapstore implementation used for EverBEEN service data storage.

storage
Generic persistence layer interface that covers user object storage and retrieval.

service-logger
Simple protocol that covers EverBEEN node log message submission to the cluster. Enables persistent
storage of EverBEEN log messages and unified access to the logs of all cluster nodes.

software-repository-store
Persistence layer interface for storing user software bundles. Used by the Software Repository service as
persistence and by the Host Runtime service as a cache.

52http://tomcat.apache.org/

http://tomcat.apache.org/

CHAPTER 3. EVERBEEN DEVELOPER DOCUMENTATION 74

3.6.1.3 Internal API default implementations

Of course, implementations of the internal API modules are extracted to separate modules as well. None
of these are hardcoded to EverBEEN. Various means are used instead to inject the implementations at
runtime.

logback-appender
A Logback appender53 that pushes local log messages back to the cluster via the interface provided by
service-logger.

mongo-storage
MongoDB implementation of the storage module.

mongodb-mapstore
MongoDB implementation of the Hazelcast MapStore54 and MapStoreFactory55

software-repository-fsbasedstore
File system based implementation of the software-repository-store module.

3.6.1.4 System modules

Some of EverBEEN’s modules provide additional functionality to existing EverBEEN components, and
therefore do not quite make the case for an internal API.

core-cluster
Covers clustering mechanics (e.g. connection, data sharing etc.) and distributed data structure naming
conventions.

debug-assistant
Enables task and benchmark JPDA support (remote debugging).

detectors
Performs hardware and OS detection on the host running the Host Runtime. Enables load monitoring.

service-logger-handler
Listens for log messages on the protocol defined in service-logger and pushes them into the cluster.

socketworks-clients
The client-side bundle for EverBEEN socket messaging. Used mainly in task-api and benchmark-api
to communicate with host-runtime.

socketworks-servers
The server-side bundle for EverBEEN socket messaging. Used mainly in host-runtime to handle
requests from task-api and benchmark-api.

software-repository-client
Client for the software-repository-server, used by host-runtime to fetch software bundles needed
to run a task.

3.6.1.5 Protocol object modules

As mentioned before, EverBEEN services do not communicate directly. Instead, they do so by placing
well-known object into well-known data structures within cluster-wide shared memory. These modules
contain the definitions of types transfered between services.

bpk-conventions
Contains constants and utility methods for the BPK bundle format.

53http://logback.qos.ch/manual/appenders.html
54http://www.hazelcast.com/javadoc/com/hazelcast/core/MapStore.html
55http://www.hazelcast.com/javadoc/com/hazelcast/core/MapStoreFactory.html

http://logback.qos.ch/manual/appenders.html
http://www.hazelcast.com/javadoc/com/hazelcast/core/MapStore.html
http://www.hazelcast.com/javadoc/com/hazelcast/core/MapStoreFactory.html

CHAPTER 3. EVERBEEN DEVELOPER DOCUMENTATION 75

checkpoints
Provides special request types for checkpoint state communication (checkpoints are a task synchronization
primitive).

core-data
Basic EverBEEN objects. Contains protocol classes known to nearly all EverBEEN components. Most of
these classes are defined using XSDs, which are then compiled to Java using the xjc compiler.

core-protocol
Defines a task control-flow protocol, used by the Task Manager to transmit commands regarding tasks to
Host Runtimes.

persistence
Persistent EverBEEN objects. Mostly XSD-defined classes for well-known persistable objects.

results
Contains definitions of persistent objects that represent task outputs.

software-repository
Constants defining conventions for the communication between software-repository-client and
software-repository-server.

3.6.1.6 User API modules

The EverBEEN environment expects to run user code. Therefore, some modules need to provide a
separate API which enables the user-programmed runtime to interact with the system.

benchmark-api
User API for benchmark generation.

bpk-plugin
An Apache Maven plugin that aids the user in assembling task and benchmark software bundles BPK.

task-api
User API for task creation.

3.6.1.7 Utility modules

As virtually any project, even EverBEEN has its own flavor of utilities.

util
The regular bundle of ubiquitous utility methods and classes.

xsd-catalog-resolver
Mild hack of the com.sun.org.apache.xml.internal.resolver.tools.CatalogResolver class. En-
ables XSD imports from jar files, which is broken in the default implementation. Necessary for JAXB
Maven plugins to be able to resolve inheritance.

xsd-export
In-package support for the xsd-catalog-resolver. Helps find the package resources (XSDs) and hands
them to the resolver.

3.6.1.8 Deployment modules

Some EverBEEN modules were created with the sole purpose of deploying existing modules in some
particular way.

node
Defines a configurable runnable class that launches an EverBEEN node, along with services specified
using command-line options.

CHAPTER 3. EVERBEEN DEVELOPER DOCUMENTATION 76

node-deploy
Helps assemble the node package along with all dependencies (service modules etc.) into an executable
jar file.

web-interface-standalone
Provides support for the web-interface to be run in an embedded java container, in addition to manual
deployment to a java container.

mongo-storage-standalone
Instantiates the MongoDB storage implementation over a MongoDB instance deployed at runtime. Used
for mongo-storage module testing.

3.6.1.9 Debugging tools

EverBEEN features a pair of modules that provide command-line debugging tools.

client-shell
An interactive command-line client for EverBEEN. Intended a command-line alternative to web-interface.
Still in incubation phase.

client-submitter
An executable jar designed to quickly connect to the EverBEEN cluster and submit a task. Useful for
debugging task code.

3.7 Used technologies

Follows overview of used technologies in EverBEEN.

3.7.1 Hazelcast

Hazelcast56 is the most important third-party framework used by our project. It is a highly scalable and
configurable in-memory data grid. We chose the framework mostly because :

• provides automatic memory load ballancing between connected nodes
• provides failover data redundancy
• provides atomic acces to objects stored in the cluster
• provides SQL selectors for filtering stored data
• is highly scalable and configurable
• is fast and tested by many developers

We use the Community edition, which is open-source but has some (minor) limitations:

• All data are stored on the JVM heap of connected nodes - this may cause OutOfMemory problems
when storing big amounts of data. In enterprise edition the off-heap technology can be used.

• Hazelcast Management Center (web console) is restricted to two nodes maximum.
• The Community Edition does not contain cluster security features.

56http://www.hazelcast.com/

http://www.hazelcast.com/

CHAPTER 3. EVERBEEN DEVELOPER DOCUMENTATION 77

3.7.2 0MQ

0MQ57 is a message passing library which can also act as a concurrency framework. It supports many
advanced features. Best source to learn more about the library is the official 0MQ Guide58:

The EverBEEN team chose the library as the primary communication technology between a Host Runtime
and its tasks, especially because of:

• focus on message passing
• multi-platform support
• ease-of-use compared to plain sockets
• extensive list of language bindings
• support for different message passing patters
• extensive documentation

We decided to use the Pure Java implementation of libzmq59 because of easier integration with the project
without the need to either compile the C library for each supported platform or add external dependency
on it.

As an experiment the Task Manager internal communication has been implemented on top of the library
as well using the inter-process communication protocol, somewhat resembling the Actor concurrency
model.

3.7.3 Apache Maven

Apache Maven60 is a software project management and comprehension tool. Based on the concept of a
project object model (POM), Maven can manage a project’s build, reporting and documentation from a
central piece of information.

3.7.4 Apache Commons

Instead of re-inventing the wheel once more our team decided to use time-proven Apache Commons61 set
of libraries for various purposes.

3.7.5 Apache HTTP Core/Components

Apache HTTP components62 is a library focused on HTTP and associated protocols. The Software
Repository server and client is based on this library.

3.7.6 Jackson

Jackson63 is a fast, zero-dependency, lightweight and powerful Java library for processing JSON data.

3.7.7 JAXB

JAXB - Java XML Binding is standard which specifies how to map Java classes to XML representations.
We use Maven 2 JAXB 2.x Plugin64 which generates Java classes from XSDs.

57http://zeromq.org/
58http://zguide.zeromq.org/
59https://github.com/zeromq/jeromq
60http://maven.apache.org/
61http://commons.apache.org
62http://hc.apache.org/
63http://jackson.codehaus.org/
64https://java.net/projects/maven-jaxb2-plugin/pages/Home

http://zeromq.org/
http://zguide.zeromq.org/
https://github.com/zeromq/jeromq
http://maven.apache.org/
http://commons.apache.org
http://hc.apache.org/
http://jackson.codehaus.org/
https://java.net/projects/maven-jaxb2-plugin/pages/Home

CHAPTER 3. EVERBEEN DEVELOPER DOCUMENTATION 78

3.7.8 Logback (logging implementarion)

Logback65 is Java logging framework. It is intended as a successor to the popular “log4j” project.
EverBEEN uses it as the logging mechanism.

3.7.9 MongoDB

MongoDB66 is a cross-platform document-oriented database system which classifies as a “NoSQL” database.
Persistence layer backend of EverBEEN is built on top of it.

3.7.10 SLF4J (logging interface)

The Simple Logging Facade for Java (SLF4J67) serves as a simple facade or abstraction for various
logging frameworks (e.g. java.util.logging, logback, log4j) allowing the end user to plug in the desired
logging framework at deployment time. The SLF4J is extensively used in EverBEEN as the logging
facade.

3.7.11 Tapestry5

Apache Tapestry68 is an open-source framework for creating dynamic, robust, highly scalable web
applications in Java or other JVM languages. Tapestry complements and builds upon the standard Java
Servlet API, and so it works in any servlet container or application server. The Web Interface is build on
top of it.

3.7.12 Twitter Bootstrap

Twitter Bootstrap69 is sleek, intuitive, and powerful front-end framework for faster and easier web
development. Used in EverBEEN for the Web Interface design.

3.8 Current limitations and future work

The EverBEEN project, as any big project, has some limitations and opportunities for improvement.
This chapter summarizes them and suggests possible directions which might be explored in future.

Support for non JVM-based tasks
The EverBEEN framework is fully capable of running non-JVM based tasks, such as scripts and binaries.
What is missing is fully integrated environment for such tasks in the form of native Task API. The
implementation of a native Task API should be straight forward. The protocol is described in the Host
Runtime documentation. Preliminary work has begun on support for scripts, in form of a Python script -
due to time constraints the support is in incubator phase. On the other hand the integration and support
for JVM-based tasks is so extensive that most tasks can be easily implemented in it (including running of
native binaries, commands and scripts).

BPK and artifact dependencies
Currently BPKs are created as self-contained. The original plan was to resolve dependencies as part of
the task initialization process (similar to the Maven way of resolving and downloading dependencies).
The success of the bpk-maven-plugin pushed such feature more or less aside as it was deemed not
necessary at the moment. Implementation of such feature could reduce size of BPKs and decrease
network usage (which is currently of no concern, since BPKs are relatively small).

65http://logback.qos.ch/
66http://www.mongodb.org/
67http://www.slf4j.org/
68http://tapestry.apache.org/
69http://getbootstrap.com

http://logback.qos.ch/
http://www.mongodb.org/
http://www.slf4j.org/
http://tapestry.apache.org/
http://getbootstrap.com

CHAPTER 3. EVERBEEN DEVELOPER DOCUMENTATION 79

Command-line client
The command line client introduced in the WillBEEN project is not supported. The so called bcmd client
and its accompanied service were sophisticated pieces of code. Porting the code to current architecture
would amount to time consuming work which we lacked. The client could be for example implemented in
Java using the BEEN API (the same API the Web Interface uses). Preliminary work has been done in
this area (client-shell module) - the code is in incubator phase. While interesting feature, real use
case should also be presented.

Results triggers are not supported
We feel that the removal of Result triggers introduced in WillBEEN is for the better. The fundamental
problem with triggers was that there was no way how to debug/test them - the same problem as with the
old Benchmark Manager API. In EverBEEN evaluators are normal tasks which can be run through the
Benchmark API. If there is a real use case, triggers could be implemented using Hazelcast events.

Support for big files
Because the architecture of the EverBEEN framework depends on in-memory storage of data, transferring
of big files is not recommended. We assume that benchmarking will be done in controlled environment,
where the deployment of a network file system is not a problem if need be. Recently released version 3.0
of Hazelcast contains features which might be useful in implementing such feature. Or a separate service
could be implemented - in which case we opt for the usage of network file system.

Database backend for the Software Repository
Interesting improvement might be adding database backend for the Software Repository. The feature is
on the wish list but due to lack of time and resources was not implemented. The Software Repository
was designed to easily change backends.

Decentralized Software Repository
Currently the Software Repository is centralized service. It might be interesting to explore new features
in recently released Hazalcast 3.070 to allow cluster wide file distribution.

70http://hazelcast.com/docs/3.0/manual/single_html/

http://hazelcast.com/docs/3.0/manual/single_html/

	Introduction to EverBEEN
	Foreword
	Related works

	Case study
	Regression benchmarking
	Pull-oriented benchmarking
	Push-oriented benchmarking

	Target audience
	Project history
	BEEN
	WillBEEN
	State of WillBEEN in 2012
	EverBEEN

	Project Goals
	Overview
	Goals
	How we met the goals

	Project Output
	Distributed nature of EverBEEN
	EverBEEN's Support for Regression Benchmarking

	The EverBEEN team
	Contributions

	Glossary

	EverBEEN user guide
	EverBEEN requirements
	Basic concepts
	BEEN services
	Tasks
	Contexts
	Benchmarks
	Results
	Evaluators
	Node types

	Deployment process
	Running EverBEEN
	Node directory structure
	Limitations

	Web Interface
	Connecting to the cluster
	Cluster overview
	Package listing and package uploading
	Cluster information and service logs
	Runtimes
	Benchmarks and tasks
	Submitting a new task, task context or benchmark
	Listing tasks and task contexts
	Task, task context and benchmark detail
	Displaying logs from tasks
	Listing and displaying evaluator results
	Debugging tasks
	Handling web interface errors

	Task and Benchmark API
	Maven Plugin and Packaging
	Descriptor Format
	Task API
	Task Properties
	Persisting Results
	Querying Results
	Checkpoints and Latches
	Benchmark API
	Creating Task Contexts
	Resubmitting and Benchmark Storage
	Evaluators

	BPKs and Software repository
	Been package (BPK)
	Software repository
	BPK versioning

	Persistence layer
	Characteristics
	Components

	EverBEEN configuration
	Configuration options

	EverBEEN best practices
	EverBEEN extension points
	Storage extension
	MapStore extension

	EverBEEN developer documentation
	Design goals
	Scalability, Redundancy, Reliability
	Modularity
	Ease of use

	Decision timeline
	EverBEEN architecture
	Cluster
	Services
	Native Nodes, Data Nodes
	User code
	User code zone
	User Interface

	Principal features
	EverBEEN services
	Host Runtime
	Task Manager
	Software Repository
	Object Repository
	Map Store
	Web Interface

	Modular approach
	Module overview

	Used technologies
	Hazelcast
	0MQ
	Apache Maven
	Apache Commons
	Apache HTTP Core/Components
	Jackson
	JAXB
	Logback (logging implementarion)
	MongoDB
	SLF4J (logging interface)
	Tapestry5
	Twitter Bootstrap

	Current limitations and future work

