Model Sim-

Xilinx Edition 1l

Command Reference

Version 5.7¢9

Published: 18/Jun/03

The world’s most popular HDL simulator

ModelSim is produced by Model Technology™, a Mentor Graphics Corporation
company. Copying, duplication, or other reproduction is prohibited without the
written consent of Model Technology.

The information in this manual is subject to change without notice and does not
represent a commitment on the part of Model Technology. The program described
in this manual is furnished under a license agreement and may not be used or
copied except in accordance with the terms of the agreement. The online
documentation provided with this product may be printed by the end-user. The
number of copies that may be printed is limited to the number of licenses
purchased.

ModelSim is a registered trademark and Signal Spy, TraceX, ChaseX and Model
Technology are trademarks of Mentor Graphics Corporation. PostScript is a
registered trademark of Adobe Systems Incorporated. UNIX is a registered
trademark of AT&T in the USA and other countries. FLEXIm is a trademark of
Globetrotter Software, Inc. IBM, AT, and PC are registered trademarks, AIX and
RISC System/6000 are trademarks of International Business Machines
Corporation. Windows, Microsoft, and MS-DOS are registered trademarks of
Microsoft Corporation. OSF/Moatif is a trademark of the Open Software Foundation,
Inc. in the USA and other countries. SPARC is a registered trademark and
SPARCSstation is a trademark of SPARC International, Inc. Sun Microsystems is a
registered trademark, and Sun, SunOS and OpenWindows are trademarks of Sun
Microsystems, Inc. All other trademarks and registered trademarks are the
properties of their respective holders.

Copyright © 1990 -2003, Model Technology, a Mentor Graphics Corporation
company. All rights reserved. Confidential. Online documentation may be printed
by licensed customers of Model Technology and Mentor Graphics for internal
business purposes only.

ModelSim support

Support for ModelSim is available from your FPGA vendor. See the About
ModelSim dialog box (accessed via the Help menu) for contact information.

ModelSim Command Reference

CR-3

Table of Contents

Syntax and conventions (CR-5) dataset open CR-60

Documentation conventions CR-6
Command return values CR-7
Command shortcuts CR-7
Command history shortcuts CR-7
Numbering conventions CR-8

File and directory pathnames CR-9
HDL item names CR-10

Wildcard characters CR-13
ModelSim variables CR-13
Simulation time units CR-14
Comments in argument files CR-14
GUI_expression_format CR-15

Commands (CR-23)

Command reference table CR-24
abort CR-30

add dataflow CR-31

add list CR-32

add wave CR-35

alias CR-39

batch_mode CR-40

bd CR-41

bookmark add wave CR-42
bookmark delete wave CR-43
bookmark goto wave CR-44
bookmark list wave CR-45
bp CR-46

cd CR-49

change CR-50

configure CR-51

dataset alias CR-55

dataset clear CR-56

dataset close CR-57

dataset info CR-58

dataset list CR-59

dataset rename CR-61
dataset save CR-62
dataset snapshot CR-63
delete CR-65
describe CR-66
disablebp CR-67
do CR-68

drivers CR-69
dumplog64 CR-70
echo CR-71

edit CR-72
enablebp CR-73
environment CR-74
examine CR-75
exit CR-78

find CR-79

force CR-82

help CR-85

history CR-86

log CR-87

Ishift CR-89
Isublist CR-90
modelsim CR-91
noforce CR-92
nolog CR-93
notepad CR-95
noview CR-96
nowhen CR-97
onbreak CR-98
onElabError CR-99
onerror CR-100
pause CR-101
precision CR-102
printenv CR-103
project CR-104
pwd CR-105

ModelSim Command Reference

Table of Contents

quietly CR-106

quit CR-107

radix CR-108

report CR-109

restart CR-111

resume CR-113

run CR-114

searchlog CR-116

shift CR-118

show CR-119

simstats CR-120

status CR-121

step CR-122

stop CR-123

tb CR-124

transcript CR-125
transcript file CR-126
tssi2mti CR-127

ved add CR-128

vcd checkpoint CR-129
vced comment CR-130
vcd dumpports CR-131
vcd dumpportsall CR-133
vcd dumpportsflush CR-134
ved dumpportslimit CR-135
ved dumpportsoff CR-136
vcd dumpportson CR-137
vcd file CR-138

ved files CR-140

vcd flush CR-142

vcd limit CR-143

vcd off CR-144

vcd on CR-145

ved2wlf CR-146

vcom CR-147

vdel CR-153

vdir CR-154

verror CR-155

ModelSim Command Reference

vgencomp CR-156
view CR-158

virtual count CR-160
virtual define CR-161
virtual delete CR-162
virtual describe CR-163
virtual expand CR-164
virtual function CR-165
virtual hide CR-168
virtual log CR-169
virtual nohide CR-171
virtual nolog CR-172
virtual region CR-174
virtual save CR-175
virtual show CR-176
virtual signal CR-177
virtual type CR-180
vlib CR-182

viog CR-183

vmake CR-189

vmap CR-191

vsim CR-192
vsm<info> CR-206
vsource CR-207

when CR-208

where CR-213

wlif2log CR-214
wlfman CR-216
wlfrecover CR-218
write format CR-219
write list CR-221

write preferences CR-222
write report CR-223
write transcript CR-224
write tssi CR-225
write wave CR-227

Index (CR-229)

CR-5

Syntax and conventions

Chapter contents

Documentation conventions CR-6
Command returnvalues CR7
Command shortcuts CR7
Command history shortcuts CR7
Numbering conventions CR8
Fileand directory pathnames CR9
HDL itemnamesCRI10
Wildcard charactersCRI13
ModelSmvarigblesCRI13
SimulationtimeunitsCR14
Commentsin argument filesCR14
GUI_expression formatCRI15

ModelSim Command Reference

CR-6

Syntax and conventions

Documentation conventions

This manual uses the following conventions to define Model Sim command syntax.

Syntax notation

Description

< >

angled brackets surrounding a syntax item indicate a user-
defined argument; do not enter the brackets in commands

[]

sguare brackets generally indicate an optional item; if the
brackets surround several words, all must be entered asagroup;
the brackets are not entered®

{1}

braces indicate that the enclosed expression contains one or
more spaces yet should be treated as a single argument, or that
the expression contains square brackets for an index; for either
situation, the braces are entered

an elipsisindicates items that may appear more than once; the
elipsisitself does not appear in commands

the vertical bar indicates a choice between items on either side
of it; do not include the bar in the command

nonospaced type

monospaced type is used in command examples

#

commentsincluded with commands are preceded by the number
sign (#) or by two hyphens (--); useful for adding comments to
DO files (macros)

a

One exception to this rule is when you are using Verilog syntax to designate

an array dlice. For example,

add wave {vectorl[4:0]}

The square bracketsin this case denote an index. The braces prevent the Tcl interpreter
from treating the text within the square brackets as a Tcl command.

P Note: Neither the prompt at the beginning of aline nor the <Enter> key that endsaline
is shown in the command examples.

ModelSim Command Reference

Command return values

Command return values

All simulator commands areinvoked using Tcl. For most commandsthat writeinformation
to the Main window, that information is also available as a Tcl result. By using command
substitution the results can be made available to another command or assigned to a Tcl
variable. For example:

set aluinputs [find -in alu/*]

sets variable “aluinputs’ to the result of the find command (CR-79).

Command shortcuts

 You may abbreviate command syntax, but there's a catch — the minimum number of
characters required to execute a command are those that make it unique. Remember, as
we add new commands some of the old shortcuts may not work.

 Multiple commands may be entered on onelineif they are separated by semi-colons (;).
For example:

Model Si n> vl og - nodebug=ports level3.v level2.v ; vlog -nodebug top.v
The return value of the last function executed is the only one printed to the transcript.

This may cause some unexpected behavior in certain circumstances. Consider this
example:

vsim-c -do "run 20 ; sinmstats ; quit -f" top
Y ou probably expect the simstats results to display in the Transcript window, but they

will not, because the last command is quit -f. To see the return values of intermediate
commands, you must explicitly print the results. For example:

vsim-do "run 20 ; echo [simstats]; quit -f" -c top

Command history shortcuts

The simulator command history may be reviewed, or commands may be reused, with these
shortcuts at the Model Sim/VSIM prompt:

Shortcut Description

up and down arrows scrolls through the command history with the keyboard arrows

click on prompt left-click once on a previous ModelSim or VSIM prompt in the
transcript to copy the command typed at that prompt tothe active
cursor

history shows the last few commands (up to 50 are kept)

CR-7

ModelSim Command Reference

CR-8 Syntax and conventions

Numbering conventions

Numbersin Model Sim can be expressed in either VHDL or Verilog style. Two styles can
be used for VHDL numbers, one for Verilog.

VHDL numbering conventions

Thefirst of two VHDL number stylesis:
[-1 radix #] value [#]

Element Description

- indicates a negative number; optional

radix can be any base in the range 2 through 16 (2, 8, 10, or 16); by defaullt,
numbers are assumed to be decimal; optional

value specifies the numeric value, expressed in the specified radix; required

isadeimiter between the radix and the value; thefirst # signis

required if aradix is used, the second is always optional

P Note: A ‘-’ can also be used to designate a"don’t care" element when you search for a
signal inthe List or Wave window. If you want the ‘-’ to be read asa"don’t care"
element, rather than a negative sign, be sureto enclose the number in double quotes. For
instance, you would type "-0110--" as opposed to -0110--. If you don’t include the
double quotes, Model Sim will read the ‘-’ as a negative sign.

Examples

16#FFca23#
2#11111110
-23749

The second VHDL number styleis:

base "val ue"

Element Description

base specifies the base; binary: B, octal: O, hex: X; required

value specifies digitsin the appropriate base with optional underscore
separators; default is decimal; required

Examples

B"11111110"
X' FFca23"

ModelSim Command Reference

File and directory pathnames CR-9

Verilog numbering conventions
Verilog numbers are expressed in the style:

[-1 size] [base] value

Element Description

- indicates a negative number; optional

size the number of bits in the number; optional

base specifies the base; binary: ‘b or ‘B, octa: ‘o or ‘O, decimal: ‘d or ‘D,
hex: “h or ‘H; optional

value specifies digitsin the appropriate base with optional underscore
separators; default is decimal, required

P Note: A ‘-’ can also be used to designate a"don’t care" element when you search for a
signal in the List or Wave windows. If you want the ‘-’ to beread asa"don’t care"
element, rather than anegative sign, be sureto enclose the number in double quotes. For
instance, you would type "-0110--" as opposed to 7'b-0110--. If you don’t include the
double quotes, Model Sim will read the ‘-’ as a negative sign.

Examples
"b11111110 8 b11111110
" Hf f ca23 21’ H1f ca23
- 23749

File and directory pathnames

Several Model Sim commands have arguments that point to files or directories. For
example, the-y argument to vlog specifiesthe Verilog source library directory to search for
undefined modules. Spaces in file pathnames must be escaped or the entire path must be
enclosed in quotes. For example:

vlog top.v -y C:/Docunents\ and\ Settings/ntarnes/sinprins

or

vlog top.v -y "C://Docunents and Settings/ntarnes/sinprins"

ModelSim Command Reference

CR-10 Syntax and conventions

HDL item names

VHDL and Verilog items are organized hierarchically. Each of the following HDL items
creates anew level in the hierarchy:

* VHDL
component instantiation statement, block statement, and package

* Verilog
modul e instantiation, named fork, named begin, task and function

[tem name syntax

The syntax for specifying item namesin ModelSim is as follows:

[<dat aset Nane><dat aset Separ at or >] [<pat hSepar at or >] [<hi er ar chi cal Pat h>] <i tem
Name>[<el ement Sel ecti on>]

where

dat aset Nane
isthe logical name of the WLF filein which the item exists. The currently active
simulation isthe “sim” dataset. Any loaded WLF file isreferred to by the logical name
specified when the WLF file was |oaded. See Chapter 7 - WLF files (datasets) and
virtuals for more information.

dat aset Separ at or
isthe character used to terminate the dataset name. The default is’:’, though a different
character (other than ’\") may be specified as the dataset separator viathe
DatasetSeparator (UM-353) variablein the modelsim.ini file. The default is':'. This
character must be different than the pathSeparator character.

pat hSepar at or
isthe character used to separate hierarchical item names. Normally, '/* is used for VHDL
and'."isused for Verilog, although other characters (except '\') may be specified viathe
PathSeparator (UM-355) variablein the modelsim.ini file. This character must be different
than the datasetSeparator.

hi erarchi cal Path
isaset of instance names each separated by a path separator.

i t emName
is the name of an object in adesign.

el enent Sel ecti on
indi cates some combination of the following;:

Array indexing - Single array elements are specified using either parentheses"()" or
square brackets "[]" around a single number.

Array dicing - Slices (or part-selects) of arraysare specified using either parentheses " ()"
or square brackets "[]" around arange specification. A range is two numbers separated
by one of thefollowing: " to ", " downto ", ":".

Record field selection - A record field is specified using a period "." followed by the
name of the field.

ModelSim Command Reference

HDL item names CR-11

Specifying names

We distinguish between four "types’ of item names: simple, relative, fully-rooted, and
absolute.

A simple name does not contain any hierarchy. It issimply the name of anitem (e.g., clk or
data[3:0]) in the current context.

A relative name does not start with a path separator and may or may not include a dataset
name or a hierarchical path (e.g., ul/data or view:clk). A relative name isrelative to the
current context in the current or specified dataset.

A fully-rooted name starts with a path separator and includes a hierarchical path to anitem
(e.g., top/ul/clk).Thereis a special case of afully-rooted name where the top-level design
unit name can be unspecified (e.g., /ul/clk). In this case, the first top-level instance in the
designis assumed.

An absolute name is an exactly specified hierarchical name containing a dataset name and
afully rooted name (e.g., sim:/top/ul/clK).

The current dataset is used when accessing items where a dataset name is not specified as
part of the name. The current dataset is determined by the dataset currently selected in the
Structure window or by the last dataset specified in an environment command (CR-74).

The current context in the current or specified dataset is used when accessing items with
relative or simple names. The current context is either the current process, if any, or the
current instance if there is no current process or the current process is not in the current
instance. The situation of the current process not being in the current instance can occur,
for example, by selecting adifferent instance in the Structure tab or by using the
environment command (CR-74) to set the current context to a different instance.

Here are some examples of item names and what they specify:

Syntax Description

clk specifies the item clk in the current context
ltop/clk specifies the item clk in the top-level design unit.
/top/block1/u2/clk specifiesthe item clk, two levels down from the

top-level design unit

block1/u2/clk specifies the item clk, two levels down from the
current context

array_sig[4] specifies an index of an array item

{array_sig(1to 10)} specifiesadiceof an array item in VHDL syntax

{mysignal[31:0]} specifiesadice of an array item in Verilog syntax

record_sig.field specifiesafield of arecord

ModelSim Command Reference

CR-12 Syntax and conventions

Environment variables and pathnames

Y ou can substitute environment variables for pathnamesin any argument that requires a
pathname. For example:

vlog -v $lib_path/undl

Assuming you have defined $lib_path on your system, vliog will locate the source library
file undl and search it for undefined modules. See "Environment variables' (UM-345) for
more information.

P Note: Environment variable expansion does not occur in filesthat are referenced viathe
-f argument to vcom, vlog, or vsim.

Name case sensitivity

Name case sensitivity is different for VHDL and Verilog. VHDL names are not case
sensitive except for extended identifiersin VHDL 1076-1993. In contrast, all Verilog
names are case sensitive.

Names in Model Sim commands are case sensitive when matched against case sensitive
identifiers, otherwise they are not case sensitive.

Extended identifiers

The following are supported formats for extended identifiers for any command that takes

an identifier.
{\ext ident!\ } # Note trailing space.
\\ext\ ident\!\\ # Al non-al pha characters escaped

ModelSim Command Reference

Wildcard characters

Wildcard characters CR-13

Wildcard characters can be used in HDL item names in some simulator commands.
Conventions for wildcards are as follows:

Syntax

Description

*

matches any sequence of characters

?

matches any single character

(]

matches any one of the enclosed characters; a
hyphen can be used to specify arange (for
example, a-z, A-Z, 0-9); can be used only with

the find command (CR-79)

The WildcardFilter Tcl preference variable filters matching items for the add wave, add
log, add list, and find commands.

P Note: A wildcard character will never match a path separator. For example, /dut/* will
match /dut/siga and /dut/clk. However, /dut* won't match either of those.

ModelSim variables

Severa variables are available to control simulation, provide simulator state feedback, or
modify the appearance of the Model Sim GUI. To take effect, some variables, such as
environment variables, must be set prior to simulation.

Model Sim variables can be referenced in simulator commands by preceding the name of
the variable with the dollar sign ($) character. Model Sim uses global Tcl variables for
simulator state variables, simulator control variables, simulator preference variables, and
user-defined variables (see "Preference variables located in Tcl files' (UM-360) for more

information).

See Appendix A - ModelSmvariables in the User’s Manual for more information on

variables.

Variable settings report

Thereport command (CR-109) returnsalist of current settingsfor either the simul ator state,

or simulator control variables.

ModelSim Command Reference

http://www.model.com/resources/pref_variables/get_records_test.asp?Category=All

CR-14 Syntax and conventions

Simulation time units

Y ou can specify the time unit for delaysin all simulator commands that have time
arguments. For example:

force clk 1 50 ns, 1 100 ns -repeat 1 us
run 2 ns

Note that al the time unitsin a Model Sim command need not be the same.

Unless you specify otherwise asin the examples above, smulation time is aways
expressed using the resolution units that are specified by the UserTimeUnit variable. See
UserTimeUnit (UM-356).

By default, the specified time units are assumed to be rel ative to the current time unlessthe
valueis preceded by the character @, which signifies an absolute time specification.

Comments in argument files

Argument files may be loaded with the -f <filename> argument of the vcom, vlog, and
vsim commands. The -f <filename> argument specifiesafilethat contains more command
line arguments.

Comments within the argument files follow these rules:
* All text in aline beginning with // to its end is treated as a comment.
* All text bracketed by /* ... */ istreated as a comment.

Also, program arguments can be placed on separate lines in the argument file, with the
newline characterstreated as space characters. Thereisno need to put '\' at the end of each
line.

DOS pathnames require a backslash (\), but Model Sim will accept either abackslash or the
forward slash (/).

P Note: VHDL93 uses backslashes to denote extended identifiers. By default
Model Sim PE/PLUS uses backslashes as pathname separators. Therefore it cannot
recognize extended identifiers.

Y ou can change this behavior so that backsl ashes on comment lines are used for extended
identifiers, but then you can only use forward slashes when you need pathname delimiters.
Todothis, "uncomment" thefollowing linein the modelsim.ini file and set itsvalueto zero.

Backsl ashesAr ePat hnaneDel inmters = 0

Thiswill allow command linesthat can reference signals, variables, and design unit names
that use extended identifiers; for example:

exam ne \cl ock 2x\

ModelSim Command Reference

GUI_expression_format CR-15

GUI_expression_format

The GUI_expression_format is an option of several simulator commands that operate
withinthe Model Sim GUI environment. The commands that use the expression format are:

configur e (CR-51), examine (CR-75), sear chlog (CR-116), virtual function (CR-165), and
virtual signal (CR-177)

Expression typing

GUI expressions are typed. The supported types consist of six scalar types and two array
types.

Scalar types

The scalar types are as follows: boolean, integer, real, time (64-bit integer), enumeration,
and signal state. Signal states are represented by the nine VHDL std_logic states. 'U’ ' X’
‘0’12 'H 'L "W and’-'. Verilog states 0, 1, X, and z are mapped into these states and
the Verilog strengths are ignored. Conversion is done automatically when referencing
Verilog nets or registers.

Array types

The array types supported are signed and unsigned arrays of signal states. Thiswould
correspond to the VHDL std _logic_array type. Verilog registers are automatically
converted to these array types. The array type can be treated as either UNSIGNED or
SIGNED, asin the |IEEE std_logic_arith package. Normally, referencing a signal array
causesit to be treated as UNSIGNED by the expression evaluator; to cause it to be treated
as SIGNED, use casting as described below. Numeric operations supported on arrays are
performed by the expression evaluator via Model Sim’ s built-in numeric_standard (and
similar) package routines. The expression eval uator sel ectsthe appropriate numeric routine
based on SIGNED or UNSIGNED properties of the array arguments and the result.

The enumeration types supported are any VHDL enumerated type. Enumeration literals
may be used in the expression as long as some variable of that enumeration typeis
referenced in the expression. Thisis useful for sub-expressions of the form:

(/ menory/ state == readi ng)

ModelSim Command Reference

CR-16

Syntax and conventions

Signal and subelement naming conventions

Model Sim supports naming conventions for VHDL and Verilog signal pathnames, VHDL
array indexing, Verilog bit selection, VHDL subrange specification, and Verilog part
selection.

Examplesin Verilog and VHDL syntax:

top. chi p.vlogsig
/top/ chi p/ vhdl sig
vl ogsi g[3]

vhdl si g(9)

vl ogsi g[5: 2]

vhdl si g(5 downto 2)

Concatenation of signals or subelements

Elementsin the concatenation that are arrays are expanded so that each element inthe array
becomes a top-level element of the concatenation. But for elements in the concatenation
that are records, the entire record becomes one top-level element in the result. To specify
that the records be broken down so that their subel ements become top-level elementsinthe
concatenation, use the concat_flatten directive. Currently we do not support leaving full
arrays as elementsin the result. (Please let us know if you need that option.)

If the el ements being concatenated are of incompatible basetype, aVHDL-style record will
be created. The record object can be expanded in the Signals and Wave windows just like
an array of compatible type elements.

Concatenation syntax for VHDL
<signal O Sli ceNanmel> & <signal OrSliceName2> & ...

Concatenation syntax for Verilog

&{ <signal O Sl i ceNanel>, <signal O SliceName2>, ... }
&{ <count >{<si gnal Or Sl i ceNamel1>}, <signal O SliceNane2>, ... }

Note that the concatenation syntax begins with "&{" rather than just "{". Repetition
multipliersare supported, asillustrated in the second line. Therepetition element itself may
be an arbitrary concatenation subexpression.

Concatenation directives

The concatenation directive (asillustrated below) can be used to constrain the resulting
array range of aconcatenation or influence how compound objects are treated. By defaullt,
the concatenation will be created with descending index range from (n-1) downto 0, where
n isthe number of elementsin the array. The concat_range directive completely specifies
theindex range. The concat_ascending directive specifies that the index start at zero and
increment upwards. The concat_flatten directive flattens the signal structure hierarchy.
The concat_sort_wild_ascending directive gathers signals by name in ascending order
(the default is descending).

(concat _range 31:0)<concatenati onExpr> # Veril og syntax
(concat _range (31:0))<concatenationExpr> # Al so Verilog syntax
(concat _range (31 downto 0))<concatenati onExpr> # VHDL syntax
(concat _ascendi ng) <concat enati onExpr>

(concat _flatten) <concatenati onExpr> # no hierarchy

(concat _sort_w | d_ascendi ng) <concat enati onExpr >

ModelSim Command Reference

GUI_expression_format CR-17

Examples
& "nybusbasename*" }

Gathers all signalsin the current context whose names begin with "mybusbasename”,
sorts those names in descending order, and creates a bus with index range (n-1) downto
0, wherenisthe number of matching signalsfound. (Notethat it currently does not derive
the index name from the tail of the one-bit signal name.)

(concat _range 13:4) & "nybusbasename*" }

Specifies the index range to be 13 downto 4, with the signals gathered by namein
descending order.

(concat _ascendi ng) & "mybusbasename*" }

Specifiesan ascending range of 0to n-1, with the signals gathered by namein descending
order.

(concat _ascendi ng) ((concat _sort _wi | d_ascendi ng) & " nybusbasenanme*" })

Specifies an ascending range of 0 to n-1, with the signals gathered by namein ascending
order.

VHDL record field support

Arbitrarily-nested arrays and records are supported, but operators will only operate on one
field at atime. That is, the expression {a == b} where a and b are records with multiple
fields, is not supported. Thiswould have to be expressed as:

{(a.f1 ==Db.f1) && (a.f2 == b.f2)...}

Examples:

vhdl sig.fieldl

vhdl sig. fiel dl. subfieldl
vhdl sig. (5).field3

vhdl sig.fiel d4(3 downto 0)

Grouping and precedence

Operator precedence generally follows that of the C language, but we recommend liberal
use of parentheses.

ModelSim Command Reference

CR-18 Syntax and conventions

Expression syntax

GUI expressions generally follow C-language syntax, with both VHDL-specific and

V eril og-specific conventions supported. These expressionsare not parsed by the Tcl parser,
and so do not support general Tcl; parentheses should be used rather than curly braces.
Procedure calls are not supported.

A GUI expression can include the following elements: Tcl macros, constants, array
constants, variables, array variables, signal attributes, operators and casting.
Tcl macros

Macros are useful for pre-defined constants or for entire expressions that have been
previously saved. The substitution is done only once, when the expression isfirst parsed.
Macro syntax is:

$<nane>

Substitutes the string value of the Tcl globa variable <name>.

Constants

Type Values

boolean value true false TRUE FALSE

integer [0-9]+

real number <int>|([<int>].<int>[exp]) where the optional [exp] is. (€|E)[+|-][O-
9]+

time integer or real optionally followed by time unit

enumeration VHDL user-defined enumeration literal

single hit constants expressed as any of the following:
01xXzZUHLW'U'X" '0"'1’Z"'H 'L’ "W’ '~ 1'b0 1'b1

Array constants, expressed in any of the following formats

Type Values

VHDL # notation <int>#<al phanum>[#]
Example: 16#abc123#

VHDL bitstring "(UIX[OLIZ|L[HW]-)*"
Example: "11010X 11"

VLOG notation [-1[<int>]’ (b|B|o|O|d|D|h|H) <al phanum>

(where <alphanum> includes 0-9, a-f, A-Fand ’-")

Example: 12' hc91 (Thisisthe preferred notation becauseit removes
the ambiguity about the number of bits.)

Based notation ox..., 0X..., 0o..., 00..., Ob..., OB...
Model Sim automatically zero fills unspecified upper bits.

ModelSim Command Reference

GUI_expression_format

Variables

Variable Type

of the following types:

-- VHDL signal of type INTEGER, REAL or TIME

-- VHDL signal of type std logic or bit

-- VHDL signal of type user-defined enumeration

-- VLOG net, VLOG register, VLOG integer, or VLOG red

Name of asignal The name may beasimple name, aVHDL or VLOG style extended
identifier, or aVHDL or VLOG style path. The signal must be one

NOW Returns the value of time at the current location in the WLF file as
the WLF fileis being scanned (not the most recent simulation time).

Array variables

Variable Type

Name of asignal -- VHDL signals of type bit_vector or std_logic_vector
-- VLOG register
-- VLOG net array

A subrange or index may be specified in either VHDL or VLOG
syntax. Examples: mysignal (1 to 5), mysignal[1:5], mysignal (4),
mysignal [4]

Signal attributes

<name>’ event
<name>'rising
<name>'falling
<name>’ delayed()
<name>’ hasX

The'delayed attribute lets you assign adelay toa VHDL signal. To assign adelay to a
signa in Verilog, use “#" notation in a sub-expression (e.g., #-10 /top/signal A).

The hasX attribute lets you search for signals, nets, or registers that contains an X
(unknown) value.

See "Examples’ (CR-21) below for further details on ' delayed and 'hasX.

CR-19

ModelSim Command Reference

CR-20 Syntax and conventions

Operators

Operator Description Operator Description

&& boolean and sll/SLL shift left logical

Il boolean or slalSLA shift left arithmetic

! boolean not srl/SRL shift right logical

== equal sralSRA shift right

arithmetic

I= not equal ror/ROR rotate right

=== exact equal rol/ROL rotate left

== exact not equal + arithmetic add

< less than - arithmetic subtract

<= less than or equal * arithmetic multiply

> greater than / arithmetic divide

>= greater than or equal mod/MOD arithmetic modulus

not/NOT or ~ unary bitwise rem/REM arithmetic
inversion remainder

and/AND/& bitwise and [<vector_expr> OR reduction

nand/NAND bitwise nand A<vector_expr> XOR reduction

or/OR/| bitwise or

nor/NOR bitwise nor

xor/XOR bitwise xor

xnor/XNOR bitwise xnor

P Note: Arithmetic operators use the std_logic_arith package.

ModelSim Command Reference

GUI_expression_format

Casting
Casting Description
(bool) convert to boolean
(bool ean) convert to boolean
(int) convert to integer
(integer) convert to integer
(redl) convert to rea
(time) convert to 64-bit integer
(std_logic) convert to 9-state signal value
(signed) convert to signed vector
(unsigned) convert to unsigned vector
(std_logic_vector) convert to unsigned vector

Examples

/top/bus & $bit_mask
This expression takes the bitwise AND function of signal /top/bus and the array constant
contained in the global Tcl variable bit_mask.

clk’ event && (/top/xyz == 16" hffae)
This expression evaluates to a boolean true when signal clk changes and signal /top/xyz
isequal to hex ffag; otherwiseisfalse.

clk’rising & (nystate == reading) && (/top/u3/addr == 32’ habcd1234)
Evaluates to a boolean true when signal clk just changed from low to high and signal
mystateisthe enumeration reading and signal /top/u3/addr isequal to the specified 32-bit
hex constant; otherwise isfalse.

(/top/u3/addr and 32' hff000000) == 32’ hac000000
Evaluatesto aboolean true when the upper 8 bits of the 32-hit signal /top/u3/adder equals
hex ac.

/ t op/ si gnal A" del ayed(10ns)
This expression returns /top/signal A delayed by 10 ns.

/top/ signal A" del ayed(10 ns) && /top/signal B
This expression takes the logical AND of a delayed /top/signal A with the undelayed
/top/signal B.

virtual function { (#-10 /top/signal A) && /top/signal B}
nySi gnal B_AND_Del ayedSi gnal A

Thisevaluates/top/signal A at 10 simulation time steps before the current time, and takes
thelogical AND of theresult with the current value of /top/signal B. The '#' notation uses
positive numbers for looking into the future, and negative numbers for delay. This
notation does not support the use of time units.

CR-21

ModelSim Command Reference

CR-22 Syntax and conventions

((NOW > 23 us) && (NOW< 54 us)) & & clk'rising & (npde == writing)
Evaluates to a boolean true when WLF file time is between 23 and 54 microseconds, clk
just changed from low to high, and signal mode is enumeration writing.

searchl og -expr {dbus' hasX} {0 ns} dbus
Searchesfor an’ X’ in dbus. Thisis equivalent to the expression: {dbus(0) == "X ||
dbus(1) == 'x} Thismakesit possible to search for X valueswithout having to write
atype specific literdl.

ModelSim Command Reference

CR-23

Commands

Chapter contents

Command referencetableCR24

The commands here are entered either in macro files or on the command line of the Main
window. Some commands are automatically entered on the command line when you use
the Model Sim graphical user interface.

Note that in addition to the simulation commands documented in this section, you can use
the Tcl commands described in the Tcl man pages (use the Main window menu selection:
Help > Tcl Man Pages).

P Note: Model Sim commands are case sensitive. Type them as they are shown in this
reference.

ModelSim Command Reference

Commands

Command reference table

The following table provides a brief description of each Model Sim command. Command
details, arguments and examples can be found at the page numbers given in the Command

name column.

Command name

Action

abort (CR-30)

halts the execution of a macro file interrupted by a breakpoint or error

add dataflow (CR-31)

adds the specified item to the Dataflow window

add list (CR-32) lists VHDL signals and variables, and Verilog nets and registers, and their
valuesin the List window
add log also known as the log command; see log (CR-87)

add wave (CR-35)

adds VHDL signalsand variables, and Verilog nets and registersto the Wave
window

alias (CR-39)

creates anew Tcl procedure that eval uates the specified commands

batch_mode (CR-40)

returnsa 1l if ModelSim is operating in batch mode, otherwise returns a0

bd (CR-41)

deletes a breakpoint

bookmark add wave (CR-42)

adds a bookmark to the specified Wave window

bookmark delete wave (CR-43)

del etes bookmarks from the specified Wave window

bookmark goto wave (CR-44)

zooms and scrolls a Wave window using the specified bookmark

bookmark list wave (CR-45)

displays alist of available bookmarks

bp (CR-46)

sets a breakpoint

cd (CR-49)

changes the Model Sim local directory to the specified directory

change (CR-50)

modifies the value of a VHDL variable or Verilog register variable

configure (CR-51)

invokes the List or Wave widget configure command for the current default
List or Wave window

dataset alias (CR-55)

assigns an additional name to a dataset

dataset clear (CR-56)

clears the current simulation WLF file

dataset close (CR-57)

closes a dataset

dataset info (CR-58)

reports information about the specified dataset

dataset list (CR-59)

lists the open dataset(s)

dataset open (CR-60)

opens adataset and referencesit by alogical name

dataset rename (CR-61)

changes the logical name of an opened dataset

dataset save (CR-62)

ModelSim Command Reference

saves data from the current WLF file to a specified file

Command reference table

Command name

Action

dataset snapshot (CR-63)

saves data from the current WLF file at a specified interval

delete (CR-65)

removes HDL items from either the List or Wave window

describe (CR-66)

displays information about the specified HDL item

disablebp (CR-67)

turns off breakpoints and when commands

do (CR-68)

executes commands contained in amacro file

drivers (CR-69)

displays in the Main window the current value and scheduled future values
for all the drivers of a specified VHDL signal or Verilog net

dumplog64 (CR-70)

dumps the contents of the vsim.wif file in a readable format

echo (CR-71) displays a specified message in the Main window
edit (CR-72) invokes the editor specified by the EDITOR environment variable
enablebp (CR-73) turns on breakpoints and when commands turned off by the disablebp

command (CR-67)

environment (CR-74)

displays or changes the current dataset and region environment

examine (CR-75)

examines one or more HDL items, and displays current values (or the values
at a specified previous time) in the Main window

exit (CR-78)

exits the simulator and the Model Sim application

find (CR-79)

displays the full pathnames of all HDL items in the design whose names
match the name specification you provide

force (CR-82)

allowsyouto apply stimulusto VHDL signalsand Verilog nets and registers,
interactively

help (Cr-85)

displaysin the Main window a brief description and syntax for the specified
command

history (CR-86)

lists the commands executed during the current session

log (CR-87) creates awave log format (WLF) file containing simulation datafor all HDL
items whose names match the provided specifications

Ishift (CR-89) takesa Tdl list as argument and shifts it in-place one place to the | eft,
eliminating the Oth element

Isublist (CR-90) returns a sublist of the specified Tcl list that matches the specified Tcl glob

pattern

modelsim (CR-91)

starts the Model Sim GUI without prompting you to load a design; valid only
for Windows platforms

noforce (CR-92)

removes the effect of any active for ce (CR-82) commands on the selected
HDL items

nolog (CR-93)

suspends writing of datato the WLF file for the specified signals

CR-25

ModelSim Command Reference

Commands

Command name

Action

notepad (CR-95)

opens asimple text editor

noview (CR-96)

closes awindow in the Model Sim GUI

nowhen (CR-97)

deactivates selected when (CR-208) commands

onbreak (CR-98)

specifies command(s) to be executed when running a macro that encounters
abreakpoint in the source code

onElabError (CR-99)

specifies one or more commands to be executed when an error isencountered
during elaboration

onerror (CR-100)

specifies one or more commands to be executed when a running macro
encounters an error

pause (CR-101)

interrupts the execution of a macro

precision (CR-102)

determines how real numbers display in the GUI

printenv (CR-103)

echoes to the Main window the current names and values of all environment
variables

project (CR-104)

performs common operations on new projects

pwd (CR-105)

displays the current directory path in the Main window

quietly (CR-106)

turns off transcript echoing for the specified command

quit (CR-107)

exits the ssimulator

radix (CR-108)

specifies the default radix to be used

report (CR-109)

displays the value of all simulator control variables, or the value of any
simulator state variables relevant to the current simulation

restart (CR-111)

reloads the design elements and resets the simulation time to zero

resume (CR-113)

resumes execution of a macro file after a pause command (CR-101), or a
breakpoint

run (CR-114)

advances the simulation by the specified number of timesteps

searchlog (CR-116)

searches one or more of the currently open logfiles for a specified condition

shift (CR-118)

shifts macro parameter values down one place

show (CR-119)

lists HDL items and subregions visible from the current environment

simstats (CR-120)

reports performance-rel ated statistics about active simulations

status (CR-121)

listsal currently interrupted macros

step (CR-122)

steps to the next HDL statement

Stop (CR-123)

stops simulation in batch files; used with the when command (CR-208)

tb (CR-124)

ModelSim Command Reference

displays astack trace for the current process in the Main window

Command reference table

Command name

Action

transcript (CR-125)

controls echoing of commands executed in amacro file; also works at top
level in batch mode

transcript file (CR-126)

sets or queries the pathname for the transcript file

tssi2mti (CR-127)

converts avector file in Fluence Technology (formerly TSSI) Standard
Events Format into a sequence of for ce (CR-82) and run (CR-114) commands

vcd add (CR-128)

adds the specified itemsto the VCD file

vcd checkpoint (CR-129)

dumps the current values of all VCD variablesto the VCD file

vced comment (CR-130)

inserts the specified comment in the VCD file

ved dumpports (CR-131)

creates a VCD file that captures port driver data

vcd dumpportsall (CR-133)

creates a checkpoint in the VCD file that shows the current value of all
selected ports

ved dumpportsflush (CR-134)

flushes the VCD buffer to the VCD file

ved dumpportslimit (CR-135)

specifies the maximum size of the VCD file

vcd dumpportsoff (CR-136)

turns off VCD dumping and records all dumped port values as x

ved dumpportson (CR-137)

turns on VCD dumping and records the current value of all selected ports

vcd file (CR-138)

specifies the filename and state mapping for the VCD file created by avced
add command (CR-128)

vcd files (CR-140)

specifies the filename and state mapping for the VCD file created by avcd
add command (CR-128); supports multiple VCD files

vcd flush (CR-142)

flushes the contents of the VCD file buffer to the VCD file

ved limit (CR-143)

specifies the maximum size of the VCD file

vcd off (CR-144)

turns off VCD dumping and records al VCD variable values as x

vcd on (CR-145)

turns on VCD dumping and records the current values of all VCD variables

ved2wilf (CR-146)

translates VCD filesinto WLF files

VCOM (CR-147)

compiles VHDL design units

vdel (CR-153)

deletes adesign unit from a specified library

vdir (CR-154)

lists the contents of a design library

VEITor (CR-155)

prints a detailed description of a message number

vgencomp (CR-156)

writes a Verilog modul€' s equivalent VHDL component declaration to
standard output

View (CR-158)

opens aModel Sim window and bringsit to the front of the display

CR-27

ModelSim Command Reference

Commands

Command name

Action

virtual count (CR-160)

counts the number of currently defined virtual s that were not read in using a
macro file

virtual define (CR-161)

printsthe definition of thevirtual signal or function intheform of acommand
that can be used to re-create the object

virtual delete (CR-162)

removes the matching virtuals

virtual describe (CR-163)

prints a complete description of the data type of one or more virtual signals

virtual expand (CR-164)

produces alist of all the non-virtual objects contained in the virtual signal(s)

virtual function (CR-165)

createsanew signal that consists of logical operationson existing signalsand
simulation time

virtual hide (CR-168)

sets aflag in the specified real or virtual signals so that the signals do not
appear in the Signals window

virtual log (CR-169)

causes the sim-mode dependent signals of the specified virtual signalsto be
logged by the simulator

virtual nohide (CR-171)

resets the flag set by avirtual hide command

virtual nolog (CR-172)

stops the logging of the specified virtual signals

virtual region (CR-174)

creates a new user-defined design hierarchy region

virtual save (CR-175)

saves the definitions of virtualsto afile

virtual show (CR-176)

lists the full path names of all the virtuals explicitly defined

virtual signal (CR-177)

creates anew signal that consists of concatenations of signals and
subelements

virtual type (CR-180)

creates a new enumerated type

vlib (CR-182)

creates adesign library

vlog (CR-183)

compiles Verilog design units

vmake (CR-189)

creates a makefile that can be used to reconstruct the specified library

vmap (CR-191)

defines a mapping between alogical library name and a directory by
modifying the modelsim.ini file

vSim (CR-192)

loads a new design into the simulator

vsim<info> (CR-206)

returns information about the current vsim executable

vsource (CR-207)

specifies an adternative file to use for the current source file

when (CR-208)

instructs Model Sim to perform actions when the specified conditions are met

where (CR-213)

displays information about the system environment

wlif2log (CR-214)

ModelSim Command Reference

translates a Model Sim WLF file(vsimwif) to a QuickSim I1 logfile

Command reference table

Command name

Action

wlfman (CR-216)

outputs information about or new WLF file from existing WLF file

wlfrecover (CR-218)

attempts to repair incomplete WLF files

write format (CR-219)

records the names and display options in afile of the HDL items currently
being displayed in the List or Wave window

write list (CR-221)

records the contents of the List window in alist output file

write preferences (CR-222)

saves the current GUI preference settingsto a Tcl preferencefile

write report (CR-223)

prints asummary of the design being simulated

write transcript (CR-224)

writes the contents of the Main window transcript to the specified file

write tssi (CR-225)

records the contents of the List window in a“TSSI format” file

write wave (CR-227)

records the contents of theWave window in PostScript format

CR-29

ModelSim Command Reference

CR-30 Commands

abort

Syntax

Arguments

See also

Theabort command haltsthe execution of amacro fileinterrupted by abreakpoint or error.
When macros are nested, you may choose to abort the last macro only, abort a specified
number of nesting levels, or abort all macros. The abort command may be used within a
macro to return early.

abort
[<n> | all]

<n> | al
An integer giving the number of nested macro levelsto abort; all aborts all levels.
Optional. Default is 1.

onbreak (CR-98), onElabError (CR-99), onerror (CR-100)

ModelSim Command Reference

add dataflow = CR-31

add dataflow

The add dataflow command adds the specified process, signal, net, or register to the
Dataflow window. Wildcards are allowed.

Syntax
add dat af | ow
<itenp [-w ndow <wnane>]
<itemp
Specifiesaprocess, signal, net, or register that you want to add to the Dataflow window.
Required. Multiple items separated by spaces may be specified. Wildcards are allowed.
(Note that the Wildcar dFilter Tcl preference variable identifies types to ignore when
matching items with wildcard patterns.)
-wi ndow <wnane>
Addsthe itemsto the specified Dataflow window <wname> (e.g., dataflow2). Optional.
Used to specify a particular window when multiple instances of that window type exist.
Selects an existing window; does not create a new window. Use the view command (CR-
158) with the -new option to create a new window.
See also

Dataflow window (UM-158)

ModelSim Command Reference

http://www.model.com/resources/pref_variables/get_records_test.asp?Category=All

CR-32 Commands

add list
The add list command lists VHDL signals and variables and Verilog nets and registersin
the List window, along with their associated values. User-defined buses may also be added
for either language.
If no port modeis specified, add list will display all itemsin the selected region with names
matching the item name specification.
Limitations: VHDL variables and V erilog memories can be listed using the variable’ s full
name only (no wildcards).
Syntax
add |i st
[-allowconstants] [-in] [-inout] [-internal]
[[<itemnanme> | {<itemnane> {sigl sig2 sig3 ...}}] ...] ...
[-1abel <nane>] [-nodelta] [-notrigger | -trigger] [-out] [-ports]
[-<radi x>] [-recursive] [-wi dth <n>]
Arguments

-al | owconst ant s
For use with wildcard searches. Specifiesthat constants matching the wildcard search
should be added to the List window. Optional. By default, constants are ignored because
they do not change.

-in
For use with wildcard searches. Specifiesthat the scope of the search isto include ports
of mode IN if they match theitem_name specification. Optional.

-i nout
For use with wildcard searches. Specifiesthat the scope of the search isto include ports
of mode INOUT if they match theitem_name specification. Optional.

-interna
For use with wildcard searches. Specifiesthat the scope of the search isto include
internal items (non-port items) if they match the item_name specification. VHDL
variables are not selected. Optional.

<i tem nanme>
Specifies the name of theitem to be listed. Optional. Wildcard characters are allowed.
(Note that the Wildcar dFilter Tcl preference variable identifies types to ignore when
matching items with wildcard patterns.) Variables may be added if preceded by the
process hame. For example,

add list nyproc/intl
{<item name> {sigl sig2 sig3 ...}}
Creates a user-defined busin place of item_name; ‘sigi’ are signals to be concatenated

within the user-defined bus. Optional. Specified items may be either scalars or various
sized arrays as long as they have the same element enumeration type.

ModelSim Command Reference

http://www.model.com/resources/pref_variables/get_records_test.asp?Category=All

add list CR-33

-1 abel <nane>

Specifies an alternative signal name to be displayed as a column heading in the listing.
Optional. This alternative nameis not valid in afor ce (CR-82) or examine (CR-75)
command; however, it can be used in asear chlog command (CR-116) with thelist option.

-nodel ta
Specifies that the delta column not be displayed when adding signalsto the List window.
Optional. Identical to configurelist -delta none.

-notrigger
Specifies that items are to be listed, but does not cause the List window to be updated
when the item changes. Optional.

- out
For use with wildcard searches. Specifies that the scope of the search isto include ports
of mode OUT if they match theitem_name specification. Optional.

-ports
For use with wildcard searches. Specifies that the scope of the search isto include all
ports. Optional. Has the same effect as specifying -in, -out, and -inout together.

- <radi x>
Specifiesthe radix for the items that follow in the command. Optional. Valid entries (or
any unique abbreviations) are: binary, ascii character, unsigned decimal, octal, hex,
symbolic, and default. If no radix is specified for an enumerated type, the default
representation is used. Y ou can change the default radix for the current simulation using
the radix command (CR-108). Y ou can change the default radix permanently by editing
the DefaultRadix (UM-353) variable in the modelsim.ini file.

If you specify aradix for an array of aVHDL enumerated type, Model Sim converts each
signal valueto 1, 0, Z, or X.

-recursive
For use with wildcard searches. Specifies that the scope of the search isto descend
recursively into subregions. Optional; if omitted, the search is limited to the selected
region.

-trigger
Specifies that items are to be listed and causes the List window to be updated when the
items change. Optional. Defaullt.

-wi dth <n>
Specifies the column width in characters. Optional.

ModelSim Command Reference

CR-34

Commands

Examples

See also

add list -r /*
Listsall itemsin the design.

add list *
Listsall itemsin the region.

add list -in *
Listsall input portsin the region.

add list a -label sig /top/lower/sig {array_sig(9 to 23)}
DisplaysaList window containing three columns headed a, sig, and array_sig(9 to 23).

add list clk -notrigger a b c d
Listsclk, a, b, ¢, and d only when clk changes.

config list -strobeperiod {100 ns} -strobestart {0 ns} -usestrobe 1
add list -notrigger clk abc d

Listsclk, a, b, ¢, and d every 100 ns.

add list -hex {mybus {msb {opcode(8 downto 1)} data}}
Creates a user-defined bus named "mybus’ consisting of three signals; the busis
displayed in hex.

add list vecl -hex vec2 -dec vec3 vec4d
Lists the item vecl using symbolic values, lists vec2 in hexadecimal, and lists vec3 and
vecd in decimal.

add wave (CR-35), log (CR-87), "Extended identifiers' (CR-12)

ModelSim Command Reference

add wave

Syntax

Arguments

add wave

The add wave command adds VHDL signals and variables and Verilog nets and registers
to the Wave window. It also allows specification of user-defined buses.

If no port mode is specified, add wave will display al itemsin the selected region with
names matching the item name specification.

Limitations: VHDL variables and V erilog memories can be listed using the variable’ s full
name only (no wildcards).

add wave
[-al l owconstants] [-col or <standard_col or_nane>] [-expand <signal _nane>]
[-<format>] [-height <pixels>] [-in] [-inout] [-internal]
[[-divider <divider_nanme>...] | [<item name>| {<item nane> {sigl sig2 sig3
...}}] -..]1 [-label <nane>] [-noupdate] [-offset <offset>] [-out] [-ports]
[-<radi x>] [-recursive] [-scale <scal e>]

-al l owconst ants

For use with wildcard searches. Specifies that constants matching the wildcard search
should be added to the Wave window. Optional. By default, constants are ignored
because they do not change.

-col or <standard_col or _name>

Specifies the color used to display a waveform. Optional. These are the standard
X Window color names, or rgb value (e.g., #357f77); enclose 2-word names (“light
blue”) in quotes.

-di vi der <di vi der _name>

Adds adivider with the specified name. Optional. Y ou can specify one or more names.
All names listed after -divider are taken to be names.

-expand <signal _nane>

Causes a compound signal to be expanded immediately, but only one level down.
Optional. The <signal_name> is required, and may include wildcards.

-<format >

Specifies the display format of the items:

literal

I ogic

anal og- st ep

anal og-i nt erpol at ed
anal og- backst ep

Optional. Literal waveforms are displayed as a box containing the item value. Logic
signalsmay beU, X,0,1,Z, W, L,H, or‘-.

Analog signals are sized by -scale and by -offset. Analog-step changes to the new time
before plotting the new Y. Analog-interpolated draws a diagonal line. Anal og-backstep
plotsthe new Y before moving to the new time. See"Editing and formatting HDL items
in the Wave window" (UM-228).

CR-35

ModelSim Command Reference

CR-36 Commands

- hei ght <pi xel s>
Specifies the height (in pixels) of the waveform. Optional.

-in
For use with wildcard searches. Specifies that the scope of the search isto include ports
of mode IN if they match the item_name specification. Optional.

-i nout
For use with wildcard searches. Specifies that the scope of the search isto include ports
of mode INOUT if they match the item_name specification. Optional.

-interna
For use with wildcard searches. Specifies that the scope of the searchisto include
internal items (non-port items) if they match the item_name specification. Optional.

<i tem nanme>
Specifiesthe names of HDL itemsto beincluded in the Wave window display. Optional.
Wildcard characters are allowed. Note that the Wildcar dFilter Tcl preference variable
identifies typesto ignore when matching itemswith wildcard patterns. Variables may be
added if preceded by the process name. For example,

add wave nyproc/intl

{<item name> {sigl sig2 sig3 ...}}
Creates a user-defined bus with the name <item_name>; ‘sigi’ are signalsto be
concatenated within the user-defined bus. Optional.

P Note: You can aso select Tools > Combine Signals (Wave window) to create a
user-defined bus.

-1 abel <nane>
Specifies an alternative name for the signal being added to the Wave window. Optional.
For example,

add wave -label c clock
adds the clock signal, labeled as "'c", to the Wave window.

This alternative name is not valid in afor ce (CR-82) or examine (CR-75) command,;
however, it can be used in a sear chlog command (CR-116) with the wave option.

- noupdat e
Prevents the Wave window from updating when a series of add wave commands are
executed in series. Optional.

-of fset <of fset>
Modifies an analog waveform’ s position on thedisplay. Optional. The offset valueis part
of the wave positioning equation (see -scale below).

- out
For use with wildcard searches. Specifies that the scope of the search isto include ports
of mode OUT if they match the item_name specification. Optional.

-ports
For use with wildcard searches. Specifies that the scope of thelisting isto include ports
of modes IN, OUT, or INOUT. Optional.

ModelSim Command Reference

http://www.model.com/resources/pref_variables/get_records_test.asp?Category=All

Examples

add wave

- <radi x>
Specifies the radix for the items that follow in the command. Optional.

Valid entries (or any unique abbreviations) are: binary, ascii character, unsigned decimal,
octal, hex, symbolic, and default. If no radix is specified for an enumerated type, the
default representationisused. Y ou can changethe default radix for the current simulation
using the radix command (CR-108). Y ou can change the default radix permanently by
editing the DefaultRadix (Um-353) variable in the modelsim.ini file.

If you specify aradix for an array of aVHDL enumerated type, Model Sim convertseach
signal valueto 1, 0, Z, or X.

-recursive

For use with wildcard searches. Specifies that the scope of the search isto descend
recursively into subregions. Optional; if omitted, the search islimited to the selected
region.

-scal e <scal e>
Scales analog waveforms. Optional. The scale value is part of the wave positioning
equation shown below.

The position and size of the waveform is given by:
(signal _value + <offset>) * <scal e>

If signal_value+ <offset> = 0, thewaveformwill bealigned withitsname. The<scale>
value determines the height of the waveform, 0 being aflat line.

add wave -logic -color gold out2
Displays an item named out2. The item is specified as being alogic item presented in
gold.

add wave -hex {address {a_7 a_6 a_5 a_4 a_3 a_2 a_1 a_0}}
Displays a user-defined, hex formatted bus named address.

add wave -r /*
Waves dl itemsin the design.

add wave *
Waves all itemsin the region.

add wave -in *
Waves all input portsin the region.

CR-37

ModelSim Command Reference

CR-38 Commands

add wave -hex {mybus {scalarl vectorl scal ar2}
Creates a user-defined bus named "mybus" consisting of three signals. Scalar1 and
scalar2 are of type std_logic and vector1 is of type std_logic vector (7 downto 1). The
busis displayed in hex.
Slices and arrays may be added to the bus using either VHDL or Verilog syntax. For
example:
add wave {vector3(1)}
add wave {vector3[1]}
add wave {vector3(4 downto 0)}
add wave {vector3[4:0]}

add wave vecl -hex vec2 -dec vec3 vec4

Adds the item vecl to the Wave window using symbolic values, adds vec2 in
hexadecimal, and adds vec3 and vec4 in decimal.

See also

add list (CR-32), log (CR-87), "Extended identifiers’ (CR-12), "Concatenation directives’
(CR-16)

ModelSim Command Reference

alias

Syntax

Arguments

Examples

alias

The alias command displays or creates user-defined aliases. Any arguments passed on
invocation of the aliaswill be passed through to the specified commands. Returns nothing.
Existing Model Sim commands (e.g., run, env, etc.) cannot be aliased.

alias
[<nanme> ["<cnds>"]]

<nane>
Specifies the new procedure name to be used when invoking the commands.

"<cnds>"
Specifies the command or commands to be evaluated when the aliasis invoked.

alias
Listsall aliases currently defined.

al i as <nanme>
Liststhe alias definition for the specified name if one exists.

al i as <nanme>
Liststhe alias definition for the specified name if one exists.

alias nyquit "wite list ./nylist.save; quit -f"
Createsa Tcl procedure, "myquit”, that when executed, writes the contents of the List
window to the file mylist.save by invoking writelist (CR-221), and quits Model Sim by
invoking quit (CR-107).

CR-39

ModelSim Command Reference

CR-40 Commands

batch_mode

Thebatch_mode command returnsa 1 if Model Sim is operating in batch mode, otherwise
itreturnsaO. Itistypically used as a condition in an if statement.

Syntax
bat ch_node
Arguments
None
Examples
Some GUI commands do not exist in batch mode. If you want to write a script that will
work in or out of batch mode, you can use the batch_mode command to determine which
command to use. For example:
i f [batch_node] {
log /*
} else {
add wave /*
}
See also

"Running command-line and batch-mode simulations” (UM-388)

ModelSim Command Reference

bd

Syntax

Arguments

Examples

See also

bd

The bd command del etes a breakpoint. Y ou must specify afilename and line number or a
specific breakpoint id#. Y ou may specify multiple filename/line number pairs and id#s.

bd
<filename> <line_nunber> | <id#>

<fil ename>
Specifies the name of the sourcefilein which the breakpoint isto be deleted. Required if
an id# is not specified. The filename must match the one used previously to set the
breakpoint, including whether a full pathname or a relative name was used.

<l i ne_nunber >
Specifies the line number of the breakpoint to be deleted. Required if an id# is not
specified.

<i d#>
Specifies the id number of the breakpoint to be deleted. Required if afilename and line
number are not specified. If you aredeleting aC breakpoint, theid# will havea'c" prefix.

bd al u.vhd 127
Deletes the breakpoint at line 127 in the source file named alu.vhd.

bd 5
Deletes the breakpoint with id# 5.

bd 6 alu.vhd 234
Deletes the breakpoint with id# 6 and the breakpoint at line 234 in the sourcefile named
alu.vhd.

bp (CR-46), onbreak (CR-98), Chapter 13 - C Debug

CR-41

ModelSim Command Reference

CR-42 Commands

bookmark add wave

The bookmark add wave command creates a named reference to a specific zoom range
and scroll position in the specified Wave window. Bookmarks are saved in the wave format
file and are restored when the format file is read (see write format command (CR-219)).

Syntax

bookmar k add wave
<l abel > <zoonr ange> <t opi ndex>

Arguments

<l abel >
Specifies the name for the bookmark. Required.

<zoonr ange>
Specifies alist of two times with optional units. Required. These two times must be
enclosed in braces ({}) or quotation marks ("").

<t opi ndex>
Specifies the vertical scroll position of the window. Required. The number identifies
which item the window should be scrolled to. For example, specifying 20 means the
Wave window will be scrolled down to show the 20th item.

Examples

bookmark add wave foo {{10 ns} {1000 ns}} 20
Adds a bookmark named "foo" to the current default Wave window. The bookmark
marks a zoom range from 10ns to 1000ns and a scroll position of the 20th item in the
window.

See also

bookmark delete wave (CR-43), bookmark goto wave (CR-44), bookmark list wave (CR-
45), write format (CR-219)

ModelSim Command Reference

bookmark delete wave

bookmark delete wave

Syntax

Arguments

Examples

See also

The bookmark delete wave command del etes bookmarks from the specified Wave
window.

bookmar k del ete wave
<l abel> [-all]

<l abel >
Specifies the name of the bookmark to delete. Required unless the -all switch is used.

-all
Specifies that all bookmarks in the window be deleted. Optional.

bookmar k del ete wave foo
Deletes the bookmark named "foo" from the current default Wave window.

bookmark del ete wave -all -w ndow wavel
Deletes all bookmarks from the Wave window named "wavel".

bookmark add wave (CR-42), bookmar k goto wave (CR-44), bookmark list wave (CR-45),
writeformat (CR-219)

CR-43

ModelSim Command Reference

CR-44 Commands

bookmark goto wave

The bookmark goto wave command zooms and scrolls a Wave window using the
specified bookmark.

Syntax
bookmar k goto wave
<l abel >
Arguments
<l abel >
Specifies the bookmark to go to. Required.
See also

bookmark add wave (CR-42), bookmark delete wave (CR-43), bookmark list wave (CR-
45), write format (CR-219)

ModelSim Command Reference

bookmark list wave CR-45

bookmark list wave

The bookmark list wave command displays alist of available bookmarksin the Main
window transcript.

Syntax

bookmark |ist wave

Arguments

See also

bookmark add wave (CR-42), bookmark delete wave (CR-43), bookmark goto wave (CR-
44), write format (CR-219)

ModelSim Command Reference

CR-46 Commands

bp

The bp or breakpoint command either setsafile-linebreakpoint or returnsalist of currently
set breakpoints. A set breakpoint affects every instance in the design unless the
-inst <region> argument is used.

Syntax
bp
<fil ename> <l ine_nunber>
[-id <id#>] [-inst <region>] [-disable] [-cond {<condition_expression>}]
[{<command>...}] | [-query <filename> [<line_nunber> [line_nunber]]]
Arguments

<fil ename>
Specifies the name of the source file in which to set the breakpoint. Required if you are
setting HDL breakpoints.

<l i ne_nunber >
Specifiestheline number at which the breakpoint isto be set. Required if you are setting
HDL breakpoints.

-id <id#>
Attempts to assign this id number to the breakpoint. Optional. If the id number you
specify isalready used, ModelSim will return an error.

P Note: Idsfor breakpoints are assigned from the same pool as those used for the when
command (CR-208). So, even if you haven’t used an id number for a breakpoint, it's
possibleit is used for awhen command.

-inst <region>

Sets the breakpoint so it applies only to the specified region. Optional.

-di sabl e
Sets the breakpoint in a disabled state. Optional. Y ou can enable the breakpoint later
using the enablebp command (CR-73). By default, breakpoints are enabled when they are
Set.

-cond {<condition_expression>}
Specifies condition(s) that determine whether the breakpoint is hit. Optional. If the
condition istrue, the simulation stops at the breakpoint. If false, the simulation bypasses
the breakpoint.

The condition can be an expression with these operators:

Name Operator
equals ==, =
not equal I=, /=
AND &&, AND

ModelSim Command Reference

bp CR-47

Name Operator

OR I, OR

The operands may be item names, signame’ event, or constants. Subexpressionsin
parentheses are permitted. The command will be executed when the expressionis
evaluated as TRUE or 1.

The formal BNF syntax is:

condition ::= Name | { expression }

expression ::= expression AND rel ation
| expression OR relation
| relation

relation ::= Nane = Literal

Nane /= Literal
Name ' EVENT
(expression)

Literal ::= '<char>' | “<bitstring>" | <bitstring>

The"=" operator can occur only between a Name and a Literal. This means that you
cannot compare the value of two signals; i.e., Name = Name is not possible.

{<command>. ..}
Specifies one or more commands that are to be executed at the breakpoint. Optional.
Muultiple commands must be separated by semicolons (;) or placed on multiplelines. The
entire command must be placed in curly braces.

Any commands that follow arun (CR-114) or step (CR-122) command will beignored. A
run or step command terminates the breakpoint sequence. This appliesif macros are
used within the bp command string aswell. A resume (CR-113) command should not be
used.

If many commands are needed after the breakpoint, they can be placed in amacro file.
-query <filename> [<line_nunber> [line_nunber]]
Returns information about the breakpoints set in the specified file. The information

returned varies depending on which arguments you specify. See the examples below for
details.

ModelSim Command Reference

CR-48

Commands

Examples

See also

bp
Listsall existing breakpointsin the design, including the source file names, line numbers,
breakpoint id#s, and any commands that have been assigned to breakpoints.

bp al u.vhd 147
Sets a breakpoint in the source file alu.vhd at line 147.

bp al u.vhd 147 {do nmcro. do}
Executes the macro.do macro file after the breakpoint.

bp -disable test.vhd 22 {echo [exa varl]; echo [exa var2]}
Sets a breakpoint at line 22 of the file test.vhd and examines the values of the two
variablesvarl and var2. This breakpoint isinitialy disabled. It can be enabled with the
enablebp command (CR-73).

bp test.vhd 14 {if {$now /= 100} then {cont}}
Sets a breakpoint in every instantiation of the file test.vhd at line 14. When that
breakpoint is executed, the command is run. This command causes the simulator to
continue if the current simulation time is not 100.

bp -query testadd.vhd
Lists the line number and enabled/disabled status (1 = enabled, 0 = disabled) of al
breakpoints in testadd.vhd.

bp -query testadd.vhd 48
Lists details about the breakpoint on line 48. The output comprises six pieces of
information: the first item (0 or 1) designates whether a breakpoint exists on the
line (1 = exists, 0 = doesn't exist); the second item is always 1; the third item is thefile
namein the compiled source; thefourth item isthe breakpoint line number; thefifth item
isthe breakpoint id; and the sixth item (O or 1) designates whether the breakpoint is
enabled (1) or disabled (0).

bp -query testadd.vhd 2 59
Lists all executable linesin testadd.vhd between lines 2 and 59.

P Note: Any breakpoints setin VHDL code and called by either resolution functions or
functions that appear in a port map are ignored.

add dataflow (CR-31), bd (CR-41), disablebp (CR-67), enablebp (CR-73), onbreak (CR-98),
when (CR-208)

ModelSim Command Reference

cd CR-49

cd

The cd command changes the ModelSim local directory to the specified directory. This
command cannot be executed while asimulation isin progress. Also, executing acd
command will close the current project.
Syntax
cd
[<dir>]
Arguments

<dir>
The directory to which to change. Optional. If no directory is specified, ModelSim
changes to your home directory.

ModelSim Command Reference

CR-50

Commands

change

Syntax

Arguments

Examples

See also

The change command modifiesthe value of aVHDL variable or Verilog register variable.

change
<vari abl e> <val ue>

<vari abl e>
Specifies the name of avariable. Required. HDL variable names must specify ascalar
type or aone-dimensional array of character enumeration. Y ou may also specify arecord
subelement, an indexed array, adliced array, or abit or slice of aregister, aslong asthe
typeis one of the above.

<val ue>
Defines avalue for the variable. Required. The specified value must be appropriate for
the type of the variable.

change count 16#FFFF
Changes the value of the variable count to the hexadecimal value FFFF.

change rega[16] O
Changes the value of rega that is specified by the index (i.e., 16).

change foo[20: 22] 011
Changes the value of foo that is specified by the slice (i.e., 20:22).

force (CR-82)

ModelSim Command Reference

configure CR-51

configure
The configur e (config) command invokesthe List or Wave widget configure command for
the current default List or Wave window. To change the default window, use the view
command (CR-158).
Syntax
configure
l'ist|wave [<option> <val ue>]
[-delta [all | collapse | none]] [-gateduration [<duration_open>]]
[- gateexpr [<expression>]] [-usegating [<val ue>]]
[-strobeperiod [<period>]] [-strobestart [<start_time>]]
[-usesignaltriggers [<value>]] [-usestrobe [<val ue>]]
[-childrowrargin [<pixels>]] [-cursorlockcol or [<col or>]]
[-gridcolor [<color>]] [-griddelta [<pixels>]] [-gridoffset [<tine>]]
[-gridperiod [<tine>]] [-nanmecolwi dth [<width>]] [-rowrargin [<pixels>]]
[-signal namewi dth [<value>]] [-tinecolor [<color>]]
[-tineline [<value>]] [-valuecolw dth [<wi dth>]] [-vectorcolor [<col or>]]
[-wavesel ectcol or [<col or>] [-wavesel ectenable [<val ue>]]
Description
The command works in three modes:
« without options or valuesit returns alist of all attributes and their current values
* with just an option argument (without avalue) it returnsthe current value of that attribute
* with one or more option-value pairsit changes the values of the specified attributesto the
new values
The returned information has five fields for each attribute: the command-line switch, the
Tk widget resource name, the Tk class name, the default value, and the current value.
Arguments

list|wave
Specifies either the List or Wave widget to configure. Required.

<option> <val ue>

-bg <col or>
Specifies the window background color. Optional.

-fg <col or>
Specifies the window foreground color. Optional.

- sel ect background <col or>
Specifies the window background color when selected. Optional.

-sel ectforeground <col or>
Specifies the window foreground color when selected. Optional.

-font

Specifies the font used in the widget. Optional.

ModelSim Command Reference

CR-52 Commands

- hei ght <pi xel s>
Specifies the height in pixels of each row. Optional.

Arguments, List window only

-delta [all | collapse | none]
The all option displays a new line for each time step on which items change; collapse
displaysthe final value for each time step; and none turns off the display of the delta
column. To use -delta, -usesignaltrigger s must be set to 1 (on). Optional.

-gateduration [<duration_open>]
The duration for gating to remain open beyond when -gateexpr (below) becomes false,
expressed in x number of timescale units. Extends gating beyond the back edge (the last
list row inwhich the expression evaluatesto true). Optional . The default valuefor normal
synchronousgatingiszero. If -gatedur ation isset to anon-zero value, asimulation value
will be displayed after the gate expression becomes false (if you don’t want the values
displayed, set -gatedur ation to zero).

- gat eexpr [<expression>]
Specifies the expression for trigger gating. Optional. (Use the -usegating argument to
enable trigger gating.) The expression is evaluated when the List window would
normally have displayed arow of data.

-usegating [<val ue>]
Enables triggers to be gated on (a value of 1) or off (avalue of 0) by an overriding
expression. Default is off. Optional. (Use the -gatexpr argument to specify the
expression.) See "Setting List window display properties’ (UM-184) for additional
information on using gating with triggers.

-strobeperiod [<period>]
Specifies the period of the list strobe. (When using a time unit, the time value and unit
must be placed in curly braces.) Optional.

-strobestart [<start_tine>]
Specifies the start time of the list strobe. Optional.

-usesignal triggers [<val ue>]
If 1, uses signals as triggers; if 0, not. Optional.

-usestrobe [<val ue>]

If 1, uses the strobe to trigger; if 0, not. Optional.

ModelSim Command Reference

configure

Arguments, Wave window only

-chil drowrargi n [<pi xel s>]
Specifies the distance in pixels between child signals. Optional.

-cursorl ockcol or [<col or>]
Specifies the color of alocked cursor. Default is red.

-gridcol or [<col or>]

Specifies the background grid color; the default is grey50. Optional.

-griddelta [<pixel s>]
Specifiestheclosest (in pixels) two grid lines can be drawn before intermediate lineswill
be removed. Optional. Default is 40.

-gridoffset [<tinme>]
Specifies the time (in user time units) of thefirst grid line. Optional. Default is 0.

-gridperiod [<tinme>]
Specifies the time (in user time units) between subsequent grid lines. Optional. Default
isl.

-nanecol wi dt h [<wi dt h>]
Specifiesin pixels the width of the name column. Optional.

-rownmar gi n [<pi xel s>]
Specifies the distance in pixels between top-level signals.

-signal nanewi dth [<val ue>]
Controls the number of hierarchical regions displayed as part of asignal name shownin
the pathname pane. Optional. Default of 0 displaysthe full path. 1 displays only the |eaf
path element, 2 displays the last two path elements, and so on.

-tinmecol or [<col or>]
Specifies the time axis color; the default is green. Optional.

-tineline [<val ue>]
Specifies whether the horizontal axis displays simulation time (default) or grid period
count. Default is zero. When set to 1, the grid period count is displayed.

-val uecol wi dt h [<wi dt h>]
Specifies in pixels the width of the value column.

-vectorcol or [<col or>]
Specifies the vector waveform color; the default is #b3ffb3. Optional.

-wavesel ect col or [<col or>]

Specifies the background highlight color of a selected waveform. Default is gray30.

-wavesel ect enabl e [<val ue>]
Specifies whether the waveform background highlights when an item is selected. The
default of 1 enables highlighting; O disables highlighting.

CR-53

ModelSim Command Reference

CR-54 Commands

Examples
config list -strobeperiod
Displays the current value of the strobeperiod attribute.
config list -strobeperiod {50 ns} -strobestart 0O -usestrobe 1
Sets the strobe waveform and turnsit on.
config wave -vectorcol or blue
Sets the wave vector color to blue.
config wave -signal namewi dth 1
Sets the display in the current Wave window to show only the leaf path of each signal.
See also

view (CR-158), "Preference variables located in Tcl files" (UM-360)

ModelSim Command Reference

dataset alias

dataset alias

Syntax

Arguments

See also

Thedataset alias command assigns an additional name (alias) to adataset. The dataset can
then be referenced by that alias. A dataset can have any number of aliases, but all dataset
names and aliases must be unique.

dataset alias
<dat aset _nane> [<al i as_nane>]

<dat aset _nane>
Specifies the name of the dataset to which to assign the alias. Required.

<al i as_nanme>
Specifies the alias name to assign to the dataset. Optional. If you don’t specify an
alias_name, Model Sim lists current aliases for the specified dataset_name.

dataset list (CR-59), dataset open (CR-60), dataset save (CR-62)

CR-55

ModelSim Command Reference

CR-56 Commands

dataset clear

The dataset clear command removes all event data from the current simulation WLF file
whilekeeping all currently logged signalslogged. Subsequent run commandswill continue
to accumul ate datain the WLF file.

Syntax

dat aset cl ear

Example

add wave *

run 100000ns
dat aset cl ear
run 100000ns

Clears datain the WLF file from time Ons to 100000ns, then logs datainto the WLF file
from time 100000ns to 200000ns.

See also
"WLF files (datasets)" (UM-126), log (CR-87)

ModelSim Command Reference

dataset close = CR-57

dataset close

The dataset close command closes an active dataset. To open a dataset, use the dataset
open command.

Syntax
dat aset cl ose
<l ogi calnane> | [-all]
Arguments
<l ogi cal nane>
Specifiesthe logical name of the dataset or alias you wish to close. Required if -all isn’t
used.
-all
Closes all open datasets including the ssimulation. Optional.
See also

dataset open (CR-60)

ModelSim Command Reference

CR-58 Commands

dataset info

The dataset info command reports a variety of information about a dataset.

Syntax
dataset info
<option> <dat aset _nane>
Arguments
<option>
| dentifies what information you want reported. Required. Only one option per command
isalowed. The current optionsinclude:
nane - Returnsthe actual name of the dataset. Useful for identifying thereal dataset name
of an aias.
fil e - Returns the name of the WLF file associated with the dataset.
exi sts - Returns"1" if the dataset exists; "0" if it doesn’t.
<dat aset _nane>
Specifies the name of the dataset or alias for which you want information. Required.
See also

dataset alias (CR-55), dataset list (CR-59), dataset open (CR-60)

ModelSim Command Reference

dataset list CR-59

dataset list

The dataset list command lists all active datasets.

Syntax
dat aset |ist
-l ong
Arguments
-1 ong
Lists the filename corresponding to each dataset’s or alias’ logical name. Optional.
See also

dataset alias (CR-55), dataset save (CR-62)

ModelSim Command Reference

CR-60 Commands

dataset open

Syntax

Arguments

Examples

See also

Thedataset open command opensaWLFfile (representing aprior simulation) and assigns
it the logical name that you specify. To close a dataset, use dataset close.

dat aset open
<fil ename> [<l ogi cal nane>]

<fil ename>
Specifies the WLF file to open as a view-mode dataset. Required.

<l ogi cal nane>
Specifiesthelogical namefor the dataset. Optional. Thisisaprefix that will identify the
dataset in the current session. By default the dataset prefix will be the name of the
specified WLF file.

dat aset open last.wf test
Opens the dataset file last.wif and assigns it the logical hame test.

dataset alias (CR-55), dataset list (CR-59), dataset save (CR-62), VSim (CR-192) -vView option

ModelSim Command Reference

dataset rename

dataset rename

Syntax

Arguments

Examples

See also

The dataset rename command changes the logical name of a dataset to the new name you
specify.

dat aset renane
<l ogi cal nanme> <new ogi cal nane>

<l ogi cal nane>

Specifies the existing logical name of the dataset. Required.

<new ogi cal nanme>
Specifies the new logical name for the dataset. Required.

dat aset renane test test2
Renames the dataset file "test” to "test2".

dataset alias (CR-55), dataset list (CR-59), dataset open (CR-60)

CR-61

ModelSim Command Reference

CR-62 Commands

dataset save

The dataset save command writes data from the current simulation to the specified file.
This lets you save simulation data while the simulation is still in progress.

Syntax
dat aset save
<l ogi cal nanme> <new ogi cal nane>
Arguments
<dat aset nane>
Specifies the name of the dataset you want to save. Required.
<fil ename>
Specifies the name of the file to save. Required.
Examples
dat aset save simgold. w f
Saves all current log datain the sim dataset to the file "gold.wif".
See also

dataset snapshot (CR-63)

ModelSim Command Reference

dataset snapshot

dataset snapshot

Syntax

Arguments

Thedataset snapshot command saves datafrom the current WLF file (vsim.wif by default)
at aspecified interval. This lets you take sequential or cumulative "snapshots" of your
simulation data.

dat aset snapshot

[-dir <directory>] [-disable] [-enable] [-file <filenane>] [-fil enpde
overwrite | increnent] [-node cunul ative | sequential] [-report] [-reset]
-size <file size>| -tine <sinulation tinme>

-dir <directory>
Specifiesadirectory into which thefiles should be saved. Optional. Defaultisto saveinto
the directory where Model Sim is writing the current WLF file.

-di sabl e
Turns snapshotting off. Optional. All other options are ignored if you specify -disable.

-enabl e
Turns snapshotting on. Optional. Default.

-file <fil enanme>

Specifies the name of the file to save. Optional. Default is"vsim_snapshot". ".wif" will
be appended to the file and possibly an incrementing suffix if -filemodeis set to
"increment".

-filenmode overwite | increnent

Specifies whether to overwrite the snapshot file each time a snapshot occurs. Optional .
Defaultis"overwrite". If you specify "increment”, anew fileis created for each snapshot.
An incrementing suffix (0 to n) is added to each new file (e.g., vsim_snapshot_0.wif).

-nmode cunul ative | sequentia

Specifieswhether to keep al datafrom thetime signalsarefirst logged. Optional . Default

is"cumulative". If you specify "sequential”, the current WLF fileis cleared every time a
snapshot is taken. See the examples for further details.

-report

Listscurrent snapshot settingsin the Main window transcript. Optional. All other options
areignored if you specify -report.

-reset

Resets values back to defaults. Optional. The behavior is to reset to default, then apply
remainder of arguments on command line. See examples below. If specified by itself
without any other arguments, -reset disables dataset snapshot.

-size <file size>

Specifiesthat a snapshot occurs based on WLF file size. Y ou must specify either -size or
-time. See examples below.

-time <simulation tine>

Specifiesthat asnapshot occurs based on simulation time. Y ou must specify either -time
or -size. See examples below.

CR-63

ModelSim Command Reference

CR-64

Commands

Examples

See also

dat aset snapshot -size 10
Creates the file vsim_snapshot.wif that is written to every time the current WLF file
reaches amultiple of 10 MB (i.e., at 10 MB, 20 MB, 30 MB, etc.).

dat aset snapshot -size 10 -npde sequenti al
Similar to the previous example but in this case the current WL fileis cleared every time
it reaches 10 MB.

dat aset snapshot -time 1000000 -file gold.w f -npode sequential -filenode
i ncrenent

Assuming simulator time units are ps, this command saves afile called "gold_n.wlIf"
every 1000000 ps. If you ran for 3000000 ps, you' d havethreefiles: gold_0.wif with data
from O to 1000000 ps, gold _1.wif with data from 1000001 to 2000000, and gold_2.wif
with data from 2000001 to 3000000.

P Note: Because this example uses "sequentia” mode, if you ran the simulation for
3500000 ps, the resulting vsim.wif (the default log file) file will contain data only from
3000001 to 3500000 ps.

dat aset snapshot -reset -tinme 10000
Enables snapshotting with time=10000 and default mode (cumulative) and default
filemode (overwrite).

dataset save (CR-62)

ModelSim Command Reference

delete

Syntax

Arguments

Examples

See also

delete

The delete command removes HDL items from either the List or Wave window.

delete
list|wave [-w ndow <wnanme>] <item nanme>

list|wave
Specifies the target window for the delete command. Required.

-w ndow <wnane>
Specifies the name of the List or Wave window to target for the delete command (the
view command (CR-158) allows you to create more than one List or Wave window).
Optional. If no window is specified the default window is used; the default window is
determined by the most recent invocation of the view command (CR-158).

<i tem nanme>
Specifies the name of an item. Required. Must match an item name used in an add list
(CR-32) or add wave (CR-35) command. Multiple item names may be specified. Wildcard
characters are allowed.

delete list -window list2 vec2
Removes the item vec2 from the list2 window.

add list (CR-32), add wave (CR-35), and "Wildcard characters' (CR-13)

CR-65

ModelSim Command Reference

CR-66 Commands

describe

The describe command displays information about the specified HDL item. The
description isdisplayed in the Main window (Um-145). The following kinds of items can be
described:

* VHDL
signals, variables, and constants

* Verilog
nets and registers

VHDL signals and Verilog nets and registers may be specified as hierarchical names.
VHDL variables and constants can be described only when visible from the current process
that is either selected in the Process window or is the currently executing process (at a
breakpoint for example€).

Syntax

descri be
<name>

Arguments

<nane>
The name of an HDL item for which you want a description.

ModelSim Command Reference

disablebp CR-67

disablebp

The disablebp command turns off breakpoints and when commands. To turn the
breakpoints or when statements back on again, use the enablebp command.

Syntax
di sabl ebp
[<i d#>]
Arguments
<i d#>
Specifies abreakpoint or when command id to disable. Optional. If you don’t specify an
id#, al breakpoints are disabled.
See also

bd (CR-41), bp (CR-46), enablebp command (CR-73), onbreak (CR-98), resume (CR-113),
when (CR-208)

ModelSim Command Reference

CR-68 Commands

do

The do command executes commands contained in amacro file. A macro file can have any
name and extension. An error encountered during the execution of a macro file causesits
execution to beinterrupted, unless an onerror command (CR-100), onbreak command (CR-
98), or the OnErrorDefaultAction Tcl variable has specified ther esume command (CR-113).

Syntax

do
<fil ename> [<paraneter_val ue>]

Arguments

<fil ename>
Specifies the name of the macro file to be executed. Required. The name can be a
pathname or arelative file name.

Pathnames are rel ative to the current working directory if the do command is executed
from the command line. If the do command is executed from another macro file,
pathnames are relative to the directory of the calling macro file. This allows groups of
macro files to be moved to another directory and still work.

<par anet er _val ue>
Specifies values that are to be passed to the corresponding parameters $1 through $9 in
the macro file. Optional. Multiple parameter values must be separated by spaces.

If you want to make the parameters optional (i.e., specify fewer parameter values than
the number of parameters actually used in the macro), you must use the argc (UM-362)
simulator state variablein the macro. See"Making macro parameters optional" (UM-340).

Note that there is no limit on the number of parametersthat can be passed to macros, but
only nine values are visible at one time. Y ou can use the shift command (CR-118) to see
the other parameters.

Examples

do nmacros/stimulus 100
This command executes the file macros/stimulus, passing the parameter value 100 to $1
in the macro file.

do testfile design.vhd 127
If the macro file testfile contains the line bp $1 $2, this command would place a
breakpoint in the source file named design.vhd at line 127.

See also

Chapter 12 - Tcl and macros (DO files) (Um-323), "Running command-line and batch-mode
simulations’ (UM-388), "Using a startup file" (UM-358), DOPATH (UM-345)

ModelSim Command Reference

drivers CR-69

drivers

Thedriverscommand displaysin the Main window the current value and scheduled future
valuesfor all the drivers of aspecified VHDL signal or Verilog net. The driver list is
expressed rel ative to the top-most design signal/net connected to the specified signal/net. If
the signal/net is arecord or array, each subelement is displayed individually. This
command reveal s the operation of transport and inertial delays and assistsin debugging
models.

Syntax

drivers
<i tem nane>

Arguments

<i tem nanme>
Specifiesthe name of the signal or net whose values areto be shown. Required. All signal
or net types are valid. Multiple names and wildcards are accepted.

ModelSim Command Reference

CR-70 Commands

dumplog64

The dumplog64 command dumps the contents of the specified WLF filein areadable
format to stdout. The WLF file cannot be opened for writing in a simulation when you use
this command.

The dumplog64 command cannot be used in aDO file.

Syntax

dunpl 0g64
<fil ename>

Arguments

<fil ename>

The name of the WLF file to be read. Required.

ModelSim Command Reference

echo

Syntax

Arguments

Examples

echo

The echo command displays a specified message in the Main window.

echo
[<text_string>]

<text _string>
Specifies the message text to be displayed. Optional. If the text string is surrounded by
quotes, blank spaces are displayed as entered. If quotes are omitted, two or more adjacent
blank spaces are compressed into one space.

echo “The tinme is $now ns.”
If the current time is 1000 ns, this command produces the message:

The time is 1000 ns.

If the quotes are omitted, all blank spaces of two or more are compressed into one space.
echo The tinme is $now ns.

If the current time is 1000ns, this command produces the message:

The time is 1000 ns.
echo can also use command substitution, such as:
echo The hex val ue of counter is [exam ne -hex counter].

If the current value of counter is 21 (15 hex), this command produces:

The hex val ue of counter is 15

CR-71

ModelSim Command Reference

CR-72 Commands

edit
The edit command invokes the editor specified by the EDITOR environment variable.
Syntax
edit
[<fil ename>]
Arguments
<fil ename>
Specifies the name of thefile to edit. Optional. If the <filename> is omitted, the editor
opens the current sourcefile. If you specify a non-existent filename, it will open anew
file
See also

notepad (CR-95), and the EDITOR (UM-345) environment variable

ModelSim Command Reference

enablebp CR-73

enablebp
The enablebp command turns on breakpoints and when commands that were previously
disabled.
Syntax
enabl ebp
[<i d#>]
Arguments
<i d#>
Specifies abreakpoint or when statement id to enable. Optional. If you don’t specify an
id#, al breakpoints are enabled.
See also

bd (CR-41), bp (CR-46), disablebp command (CR-67), onbreak (CR-98), resume (CR-113),
when (CR-208)

ModelSim Command Reference

CR-74 Commands

environment

The environment, or env command, allows you to display or change the current dataset
and region/signal environment.

Syntax

envi ronment
[-dataset] [-nodataset] [[<dataset_prefix>] [<pathnane>]]

Arguments

- dat aset
Displays the specified environment pathname with a dataset prefix. Optional. Dataset
prefixes are displayed by default if more than one dataset is open during asimulation
session.

- nodat aset
Displays the specified environment pathname without a dataset prefix. Optional.

<dat aset _prefi x>
Changes all unlocked windows to the specified dataset context. Optional. The prefix is
the logical name of the dataset followed by acolon (e.g., "sim:"). If the <pat hname>
argument is specified aswell, it will change the environment to that specified context. If
<pat hnane> is omitted, the environment reflects the previously set context. If you don’t
specify adataset prefix, then the current dataset is used.

<pat hnanme>
Specifies the pathname to which the current region/signal environment isto be changed.
Optional. If omitted the command causes the pathname of the current region/signal
environment to be displayed.

Multiple levels of a pathname must be separated by the character specified in the
PathSeparator (UM-355). A single path separator character can be entered to indicate the
top level. Two dots (..) can be entered to move up one level.

Examples

env
Displays the pathname of the current region/signal environment.

env -dataset test
Changes al unlocked windows to the context of the "test" dataset.

env test:/top/foo
Changes all unlocked windows to the context "test: /top/foo".

env bl k1/u2
Moves down two levelsin the design hierarchy.

env /
Movesto the top level of the design hierarchy.

ModelSim Command Reference

examine CR-75

examine

The examine, or exa command, examines one or more HDL items, and displays current
values (or the values at a specified previous time) in the Main window (UM-145).

The following items can be examined:

* VHDL
signals, shared variables, process variables, constants, and generics

* Verilog
nets, registers, and variables

To display aprevious value, specify the desired time using the -time option.

Virtual signals and functions may also be examined within the GUI (actual signals are
examined in the kernel).

The following rules are used by the examine command to locate an HDL item:
« If the name does not include a dataset name, then the current dataset is used.
« If the name does not start with a path separator, then the current context is used.

* If the name is a path separator followed by aname that is not the name of atop-level
design unit, then the first top-level design unit in the design is used.

* For arelative name containing a hierarchical path, if the first item name cannot be found
inthe current context, then an upward search is done up to the top of the design hierarchy
to look for amatching item name.

« If no items of the specified name can be found in the specified context, then an upward
searchisdoneto look for amatching itemin any visible enclosing scope up to an instance
boundary. If at least one match isfound within a given context, no (more) upward
searching isdone; therefore, someitemsthat may be visible from agiven context will not
be found when wildcards are used if they are within a higher enclosing scope.

» Thewildcards ™" and'? can be used at any level of aname except in the dataset name and
inside of a slice specification.

A wildcard character will never match a path separator. For example, /dut/* will match
/dut/siga and /dut/clk. However, /dut* won’t match either of those.

See"HDL item names" (CR-10) for more information on specifying names.

Syntax
exam ne

[-delta <delta>] [-env <path>] [-in] [-out] [-inout] [-internal] [-ports]
[-nane] [-<radix>] [-time <time>] [-value] <nane>...

ModelSim Command Reference

CR-76

Commands

Arguments

-delta <delta>

Specifiesasimulation cycle at the specified timefrom which to fetch the value. Optional.
The default isto use the last delta of the time step. The items to be examined must be
logged viathe add list, add wave, or log command in order for the examine command to
be able to return avalue for arequested delta. This option can be used only with items
that have been logged viathe add list, add wave, or log command.

-env <pat h>

Specifies apath to look for asignal name. Optional.

-in

Specifies that <nane> include ports of mode IN. Optional.

-out

Specifies that <nare> include ports of mode OUT. Optional.

-inout

Specifies that <nane> include ports of mode INOUT. Optional.

-internal

Specifies that <nane> include internal (non-port) signals. Optional.

-ports

Specifies that <nane> include al ports. Optional. Has the same effect as specifying -in,
-inout, and -out together.

- nane

Displays signal name(s) along with the value(s). Optional . Default is -value behavior
(see below).

- <radi x>

Specifiestheradix for theitemsthat follow in the command. Valid entries (or any unique
abbreviations) are: binary, ascii character, unsigned decimal, octal, hex, symbolic, and
default. If no radix is specified for an enumerated type, the default representation is used.
Y ou can change the default radix for the current simulation using the radix command
(CR-108). Y ou can change the default radix permanently by editing the DefaultRadix (UM-
353) variable in the modelsim.ini file.

ModelSim Command Reference

examine CR-77

-tine <tinme>
Specifies the time value between 0 and $now for which to examine theitems. Optional.
Theitemsto be examined must be logged viathe add list, add wave, or log command in
order for the examine command to be able to return a value for arequested time. This
option can be used only with items that have been logged viathe add list, add wave, or
log command.

If the <time> field uses a unit, the value and unit must be placed in curly braces. For
example, the following are equivalent for ps resol ution:

exa -time {3.6 ns} signal_a
exa -time 3600 signal _a

-val ue
Returnsvalue(s) asacurly-braces separated Tcl list. Default. Useto toggle off aprevious
use of -name.

<nane>. ..
Specifiesthe name of any HDL item. Required. All item types are all owed, except those
of thetypefile. Multiple names and wildcards are accepted. Spaces, square brackets, and
extended identifiers require curly braces; see examples below for more details. To
examine aVHDL variable you can add a process |abel to the name. For example (make
certain to use two underscore characters):

exa line__36/i

Examples
exam ne {rega[16]}
Returnsthe value of rega that is specified by theindex (i.e., 16). Note that you must use
curly braces when examining subelements.
exam ne {foo[20:22]}
Returns the value of foo specified by the slice (i.e., 20:22). Note the curly braces.
exam ne {/top/\My extended id\ }
Note that when specifying an item that contains an extended identifier asthe last part of
the name, there must be a space after the closing '\" and before the closing 7} .
See also

"HDL item names" (CR-10), "Wildcard characters’ (CR-13),

ModelSim Command Reference

CR-78 Commands

exit
The exit command exits the ssmulator and the Model Sim application.
Syntax
exit
[-force]
Argument
-force

Quits without asking for confirmation. Optional; if this argument is omitted, ModelSim
asks you for confirmation before exiting.

P Note: If you want to stop the simulation using awhen command (CR-208), you must use
astop command (CR-123) within your when statement. DO NOT use an exit command
or aquit command (CR-107). The stop command acts like a breakpoint at thetimeitis

evaluated.

ModelSim Command Reference

find CR-79

find

Thefind command locates items in the design whose names match the name specification
you provide. Y ou must specify the type of item you want to find. When searching for nets
and signals, the find command returns the full pathname of all nets, signals, registers,
variables, and named events that match the name specification.

When searching for nets and signals, the order in which arguments are specified is
unimportant. When searching for virtuals, however, all optional arguments must be
specified before any item names.

The following rules are used by the find command to locate an item:
* If the name does not include a dataset name, then the current dataset is used.
« If the name does not start with a path separator, then the current context is used.

« If the name is a path separator followed by a namethat is not the name of atop-level
design unit, then the first top-level design unit in the design is used.

« For arelative name containing a hierarchical path, if the first item name cannot be found
inthe current context, then an upward search is done up to the top of the design hierarchy
to look for amatching item name.

« If no items of the specified name can be found in the specified context, then an upward
searchisdoneto look for amatching itemin any visible enclosing scope up to an instance
boundary. If at least one match isfound within a given context, no (more) upward
searching isdone; therefore, someitemsthat may be visible from agiven context will not
be found when wildcards are used if they are within a higher enclosing scope.

» Thewildcards ™" and'? can be used at any level of aname except in the dataset name and
inside of a dlice specification. Square bracket '[]" wildcards can also be used.

» A wildcard character will never match a path separator. For example, /dut/* will match
/dut/siga and /dut/clk. However, /dut* won’t match either of those.

* Because sguare brackets are wildcardsin the find command, only parentheses’ ()’ can be
used to index or dlice arrays.

» TheWildcardFilter Tcl preference variableis used by the find command to exclude the
specified types of objects when performing the search.

See "HDL item names" (CR-10) for more information on specifying names.

Syntax
find nets | signals
[-in] [-inout] [-internal] <itemname> ... [-nofilter] [-out] [-ports]
[-recursive]

find virtuals
[-kind <kind>] [-unsaved] <itemname> ...

find classes
[<cl ass_nane>]

find objects
[-class <class_nane>] [-isa <class_nane>] [<object_nane>]

ModelSim Command Reference

http://www.model.com/resources/pref_variables/get_records_test.asp?Category=All

CR-80 Commands

Arguments for nets and signals

-in
Specifies that the scope of the search isto include ports of mode IN. Optional.

-inout
Specifies that the scope of the search is to include ports of mode INOUT. Optional.

-interna
Specifies that the scope of the search isto include internal items. Optional.

<itemname> ...
Specifies the net or signal for which you want to search. Required. Multiple nets and
signals and wildcard characters are allowed. Wildcard characters are accepted for
primary names only. Wildcardsin index and record filed names are not supported.
Spaces, square brackets, and extended identifiers require special syntax; seethe
exampl es below for more details.

-nofilter
Specifies that the Wildcar dFilter Tcl preference variable be ignored when finding
signals or nets. Optional.

-out
Specifies that the scope of the search isto include ports of mode OUT. Optional.

-ports

Specifiesthat the scope of the searchistoincludeall ports. Optional. Has the same effect

as specifying -in, -out, and -inout together.

-recursive
Specifiesthat the scope of the search isto descend recursively into subregions. Optional .
If omitted, the search is limited to the selected region.

Arguments for virtuals

- ki nd <ki nd>
Specifiesthe kind of virtual object for which you want to search. Optional. <kind> can
be one of designs, explicits, functions, implicits, or signals.

-unsaved
Specifies that Model Sim find only virtuals that have not been saved to aformat file.

<item nanme> ...
Specifiesthe virtual object for which you want to search. Required. Multiple virtualsand
wildcard characters are allowed.

Arguments for classes

<cl ass_nane>

Specifiesthe incrTcl class for which you want to search. Optional. Wildcard characters
areallowed. Theoptionsfor class nameinclude nets, objects, signals, and virtuals. If you
do not specify a class name, the command returns all classes in the current namespace
context. See"incrTcl commands” in the Tcl Man Pages for more information.

ModelSim Command Reference

http://www.model.com/resources/pref_variables/get_records_test.asp?Category=All

find CR-81

Arguments for objects

-cl ass <cl ass_name>
Restricts the search to objects whose most-specific classis class_name. Optional.

-isa <cl ass_nanme>
Restricts the search to those objects that have class name anywherein their heritage.
Optional.

<obj ect _nane>
SpecifiestheincrTcl object for which you want to search. Optional. Wildcard characters
are alowed. If you do not specify an object name, the command returns all objectsin the
current namespace context. See "incrTcl commands' in the Tcl Man Pages for more
information.

Examples

find signals -r /*
Finds all signalsin the entire design.

find nets -in /top/xy*
Finds al input signals in region /top that begin with the letters "xy".

find signals -r ul/u2/cl*
Findsall signalsinthe design hierarchy at or below the region <current_context>/ul/u2
whose names begin with "cl".

find signals {s[1]}
Finds asignal named s1. Note that you must enclose the item in curly braces because of
the square bracket wildcard characters.

find signals {s[123]}
Finds signals sl, s2, or s3.

find signals s(1)
Finds the element of signal sthat isindexed by the value 1. Note that the find command
uses parentheses, not square brackets, to specify a subelement index.

find signals {/top/data(3 downto 0)}
Finds a4-bit array named data. Note that you must use curly braces due to the spacesin
the array name.

find signals {/top/\My extended id\ }
Note that when specifying an item that contains an extended identifier as the last part of
the name, there must be a space after the closing '\’ and before the closing '} ".

See also

"HDL item names" (CR-10), "Wildcard characters' (CR-13)

ModelSim Command Reference

CR-82 Commands

force

The for ce command allows you to apply stimulus interactively to VHDL signals and
Verilog nets. Since for ce commands (like all commands) can be included in a macro file,
itis possible to create complex sequences of stimuli.

Y ou canforce Virtual signals (um-133) if the number of bitscorrespondsto the signal value.
Y ou cannot force virtual functions. In VHDL and mixed models, you cannot force an input
port that is mapped at a higher level or that has a conversion function on the input.

Y ou cannot force Verilog registersor variables—reg, integer, time, real (or realtime). These
must be changed. See the change command (CR-50).

Syntax

force
[-freeze | -drive | -deposit] [-cancel <time>] [-repeat <tinme>] <item name>
<val ue> [<tine>] [, <value> <tine> ...]

Arguments

-freeze
Freezes the item at the specified value until it isforced again or until it is unforced with
anofor ce command (CR-92). Optional.

-drive
Attaches adriver to the item and drives the specified value until the item isforced again
or until it is unforced with anofor ce command (CR-92). Optional.

Thisoptionisillega for unresolved signals.

- deposi t
Sets the item to the specified value. The value remains until thereis a subsequent driver
transaction, or until the item isforced again, or until it is unforced with anoforce
command (CR-92). Optional.

If one of the -freeze, -drive, or -deposit optionsis not used, then -freeze is the default
for unresolved items and -driveis the default for resolved items.

If you prefer -fr eeze as the default for resolved and unresolved VHDL signals, change
the default force kind in the DefaultForceKind (Um-353) preference variable.

-cancel <tine>
Cancels the for ce command at the specified <time>. Thetimeis relative to the current
time unless an absolute time is specified by preceding the value with the character @.
Cancellation occurs at the last simulation delta cycle of atime unit. A value of zero
cancels the force at the end of the current time period. Optional.

-repeat <tine>
Repeats the for ce command, where <time> is the time at which to start repeating the
cycle. Thetimeisrelative to the current time. A repeating for ce command will force a
value before other non-repeating for ce commands that occur in the same time step.
Optional.

ModelSim Command Reference

force CR-83

<i tem nanme>
Specifiesthe name of the HDL item to beforced. Required. A wildcard is permitted only
if it matchesoneitem. See"HDL item names" (CR-10) for the full syntax of anitem name.
The item name must specify a scalar type or aone-dimensional array of character
enumeration. Y ou may also specify arecord subelement, an indexed array, or asliced
array, as long asthe typeis one of the above. Required.

<val ue>
Specifies the value to which the item is to be forced. The specified value must be

appropriate for the type. Required.

A VHDL one-dimensional array of character enumeration can be forced as a sequence of
character literals or as a based number with aradix of 2, 8, 10 or 16. For example, the
following values are equivalent for asignal of type bit_vector (0 to 3):

Value Description

1111 character literal sequence
2#1111 binary radix

10#15 decimal radix

16#F hexadecimal radix

P Note: For based numbersin VHDL, Model Sim translates each 1 or 0 to the appropriate
value for the number’ s enumerated type. The translation is controlled by the translation
tablein the pref.tcl file. If Model Sim cannot find atranslation for O or 1, it uses the left
bound of the signal type (type'left) for that value.

<time>
Specifies the time to which the value is to be applied. Thetimeis relative to the current
time unless an absolute time is specified by preceding the value with the character @. If
the time units are not specified, then the default is the resolution units selected at
simulation start-up. Optional.

A zero-delay force command causes the change to occur in the current (rather than the
next) simulation delta cycle.

ModelSim Command Reference

CR-84

Commands

Examples

See also

force inputl O
Forcesinputl to O at the current simulator time.

force busl 01XZ 100 ns
Forces busl to 01XZ at 100 nanoseconds after the current simulator time.

force busl 16#f @00
Forces busl to 16#F at the absol ute time 200 measured in the resol ution units selected at
simulation start-up.

force inputl 1 10, 0 20 -r 100
Forcesinputl to 1 at 10 time units after the current simulation time and to 0 at 20 time
units after the current simulation time. This cycle repeats starting at 100 time units after
the current simulation time, so the next transition isto 1 at 100 time units after the current
simulation time.

force inputl 1 10 ns, O {20 ns} -r 100ns
Similar to the previous example, but a so specifies the time units. Time unit expressions
preceding the "-r" must be placed in curly braces.

force s 1 0, 0 100 -repeat 200 -cancel 1000
Forces signal sto alternate between values 1 and 0 every 100 time units until time 1000.
Cancellation occurs at the last simulation delta cycle of atime unit. So,

force s 1 0 -cancel 0

will force signal sto 1 for the duration of the current time period.

when {/mydut/siga = 10#1} {
force -deposit /nydut/siga 10#85

Forces siga to decimal value 85 whenever the value on the signal is 1.

nofor ce (CR-92), change (CR-50)

P Note: You can configure defaults for the force command by setting the
DefaultForceKind variablein the modelsim.ini file. See " Force command defaults' (Um-
359).

ModelSim Command Reference

help

Syntax

Arguments

help CR-85

The help command displays in the Main window a brief description and syntax for the
specified command.

hel p

[<conmand> | <t opi c>]

<conmand>

Specifies the command for which you want help. The entry is case and space sensitive.

Optional.

<t opi c>

Specifiesatopic for which you want help. The entry iscase and space sensitive. Optional.
Specify one of the following six topics:

Topic Description

commands Lists al available commands and topics

debugging Lists debugging commands

execution Lists commands that control execution of
your simulation.

Tcl Listsall available Tcl commands.

Tk Lists al available Tk commands

incrTCL Lists all available incrTCL commands

ModelSim Command Reference

CR-86 Commands

history
The history command lists the commands you have executed during the current session.
History isa Tcl command. For more information, consult the Tcl Man Pages.
Syntax
hi story
[clear] [keep <val ue>]
Arguments

cl ear
Clears the history buffer. Optional.

keep <val ue>
Specifies the number of executed commands to keep in the history buffer. Optional. The
default is 50.

ModelSim Command Reference

Syntax

Arguments

log

Thelog command creates awave log format (WLF) file containing simulation data for all
HDL items whose names match the provided specifications. Items (VHDL signals and
variables, and Verilog nets and registers) that are displayed using the add list (CR-32) and
add wave (CR-35) commands are automatically recorded in the WLF file. Thelog is stored
inaWLFfile (formerly aWAYV file) in the working directory. By default thefileis named
vsim.wif. Y ou can change the default name using the -wlf option of the vaim (CR-192)
command.

If no port mode is specified, the WLF file contains data for all itemsin the selected region
whose names match the item name specification.

The WLF fileis the source of data for the List and Wave windows. An item that has been
logged and is subsequently added to the List or Wave window will have its compl ete
history back to the start of logging available for listing and waving.

Limitations: Verilog memoriesand VHDL variables can belogged using the variable' sfull
name only (no wildcards).

| og
[-flush] [-howmany] [-in] [-inout] [-internal] [-out] [-ports]
[-recursive] <itemnanme> ..

-flush

Adds region datato the WLF file after each individual log command. Optional. Default
isto add region datato the log file only when a command that advances simulation time
is executed (e.g., run, step, etc.) or when you quit the simulation.

- howmany

Returns an integer indicating the number of signals found. Optional.

-in

Specifies that the WLF fileisto include data for ports of mode IN whose names match
the specification. Optional.

-inout

Specifies that the WLF file isto include data for ports of mode INOUT whose names
match the specification. Optional.

-interna

Specifies that the WLF fileisto include data for internal items whose names match the
specification. Optional.

-out

Specifiesthat the WLFfileistoinclude datafor ports of mode OUT whose names match
the specification. Optional.

-ports

Specifies that the scope of the search isto include al ports. Optional.

CR-87

ModelSim Command Reference

CR-88 Commands

-recursive
Specifiesthat the scope of the search isto descend recursively into subregions. Optional;
if omitted, the search islimited to the selected region.

<i tem nanme>
Specifies the item name which you want to log. Required. Multiple item names may be
specified. Wildcard charactersare allowed. (Notethat theWildcar dFilter Tcl preference
variable identifies types to ignore when matching items with wildcard patterns.)

Examples
log -r /*
Logsall itemsin the design.
log -out *
Logsal output ports in the current design unit.
See also

add list (CR-32), add wave (CR-35), holog (CR-93), and "Wildcard characters’ (CR-13)

P Note: Thelog command is also known as the "add log" command.

ModelSim Command Reference

http://www.model.com/resources/pref_variables/get_records_test.asp?Category=All

Ishift CR-89

Ishift

The Ishift command takes a Tcl list as an argument and shifts it in-place, one place to the
| eft, eliminating the Oth element. The number of shift places may also be specified. Returns

nothing.
Syntax
| shift
<l'ist> [<anount >]
Arguments
<list>
Specifies the Tcl list to target with Ishift. Required.
<anount >
Specifies the number of places to shift. Optional. Default is 1.
Examples
proc nyfunc args {
throws away the first two argunents
Ishift args 2
}
See also

See the Tcl man pages (Help > Tcl Man Pages) for details.

ModelSim Command Reference

CR-90 Commands

Isublist

Syntax

Arguments

Examples

See also

Thelsublist command returns a sublist of the specified Tcl list that matches the specified
Tcl glob pattern.

| subli st
<list> <pattern>

<list>

Specifies the Tcl list to target with Isublist. Required.

<pattern>
Specifies the pattern to match within the <list> using Tcl glob-style matching. Required.

In the example below, variable ‘t’ returns "structure signals source".
set wi ndow _nanmes "structure signals variables process source wave |i st
dat af | ow'

set t [lsublist $w ndow _names s*]

The set command isa Tcl command. See the Tcl man pages (Help > Tcl Man Pages) for
details.

ModelSim Command Reference

modelsim

Syntax

Arguments

See also

modelsim

Themodelsim command startsthe Model Sim GUI without prompting you to load adesign.
This command may be invoked in one of three ways:

from the DOS prompt
from a Model Sim shortcut
from the Windows Start > Run menu

To use modelsim arguments with a shortcut, add them to the target line of the shortcut’s
properties. (Arguments work on the DOS command line too, of course.)

The simulator may be invoked from either the MODEL SIM prompt after the GUI starts or
from aDO file called by modelsim.

nodel si m
[-do <macrofile>] [-project <project file>]

-do <macrofil e>
Specifies the DO file to execute when modelsim isinvoked. Optional.

P Note: In addition to the macro called by this argument, if aDO file is specified by the
STARTUP variablein modelsim.ini, it will be called when the vsim command (CR-192)
isinvoked.

-project <project file>
Specifies the modelsim.ini file to load for this session. Optional.

vsim (CR-192), do (CR-68), and "Using a startup file" (UM-358)

CR-91

ModelSim Command Reference

CR-92 Commands

noforce

Syntax

Arguments

See also

The nofor ce command removes the effect of any active for ce (CR-82) commands on the
selected HDL items. The nofor ce command also causestheitem’ svalueto be re-evaluated.

nof orce
<itemnane> ...

<i tem nanme>
Specifies the name of aitem. Required. Must match an item name used in a previous
for ce command (CR-82). Multiple item names may be specified. Wildcard characters are
allowed.

for ce (CR-82) and "Wildcard characters' (CR-13)

ModelSim Command Reference

nolog

Syntax

Arguments

nolog

The nolog command suspends writing of data to the wave log format (WLF) file for the
specified signals. A flag iswritten into the WL filefor each signal turned off, and the GUI
displays "-No Data-" for the signal(s) until logging (for the signal(s)) is turned back on.

L ogging can beturned back on by issuing another |og command (CR-87) or by doing anolog
-reset.

Because use of the nolog command adds new information to the WLF file, WLF files
created when using the nolog command cannot be read by older versions of the simulator.
If you are using dumplog64.c, you will need to get an updated version.

nol og
[-all] | [-reset] | [-recursive] [-in] [-out] [-inout] [-ports]
[-internal] [-howrany] <item nane> ...

-al

Turns off logging for all signals currently logged. Optional. Must be used a one without
other arguments.

-reset

Turns logging back on for all signals unlogged. Optional. Must be used alone without
other arguments.

-recursive

Specifiesthat the scope of the search isto descend recursively into subregions. Optional .
If omitted, the search is limited to the selected region.

-in

Specifiesthat the WLF fileisto turn off logging for ports of mode IN whose names match
the specification. Optional.

-out

Specifies that the WLF fileisto turn off logging for ports of mode OUT whose names
match the specification. Optional.

-inout

Specifiesthat the WLF fileisto turn off logging for ports of mode INOUT whose names
match the specification. Optional.

-ports

Specifies that the scope of the search isto turn off logging for all ports. Optional.

-interna

Specifies that the WLF fileisto turn off logging for internal items whose hames match
the specification. Optional.

- howmany

Returns an integer indicating the number of signals found. Optional.

CR-93

ModelSim Command Reference

CR-94 Commands

<i tem nanme>
Specifies the item name which you want to unlog. Required. Multiple item names may
be specified. Wildcard characters are allowed.

Examples
nolog -r /*
Unlogs all itemsin the design.
nol og -out *
Unlogs all output portsin the current design unit.
See also

add list (CR-32), add wave (CR-35), log (CR-87)

ModelSim Command Reference

notepad CR-95

notepad
The notepad command opens asimple text editor. It may be used to view and edit ASCI|
files or create new files. This mode can be changed from the Notepad Edit menu. See
"Mouse and keyboard shortcuts' (Um-156) for alist of editing shortcuts.
Returns nothing.
Syntax
not epad
[<filename>] [-r | -edit]
Arguments

<fil ename>

Name of the file to be displayed. Optional.

-r | -edit
Selectsthe notepad editing mode: -r for read-only, and -edit for edit mode. Optional. Edit
mode is the defaullt.

ModelSim Command Reference

CR-96 Commands

noview

Syntax

Arguments

Examples

See also

The noview command closes awindow in the Model Sim GUI. To open awindow, use the
view command.

novi ew
[*] <wi ndow_nane>. ..

*

Wildcards can be used, for example: I* (List window), s* (Signal, Source, and Structure
windows), even * alone (all windows). Optional.

<wi ndow_nane>. ..
Specifies the Model Sim window type to close. Multiple window types may be used; at
least one type (or wildcard) is required. Available window types are:

dataflow, |ist, process, signals, source, structure, variables, and wave

novi ew wavel
Closes the Wave window named "wavel".

novi ew | *
Closes al List windows.

novi ew s*
Closes all Structure, Signals, and Source windows.

View (CR-158)

ModelSim Command Reference

nowhen CR-97

nowhen
The nowhen command deactivates selected when (CR-208) commands.
Syntax
nowhen
[<l abel >]
Arguments
<l abel >
Specifies anindividual when command. Optional. Wildcards may be used to select more
than one when command.
Examples

when -1 abel 99 b {echo “b changed”}

wahen 99
This nowhen command deactivates the when (CR-208) command labeled 99.

nowhen *
This nowhen command deactivates all when (CR-208) commands.

ModelSim Command Reference

CR-98 Commands

onbreak

The onbreak command is used within a macro. It specifies one or more commands to be
executed when running a macro that encounters a breakpoint in the source code. Using the
onbreak command without arguments will return the current onbreak command string.
Use an empty string to change the onbreak command back to its default behavior (i.e.,
onbreak ""). In that case, the macro will be interrupted after a breakpoint occurs (after any
associated bp command (CR-46) string is executed).

onbreak commands can contain macro calls.

Syntax

onbr eak
{[<command> [; <command>] ...]}

Arguments

<comand>
Any command can be used as an argument to onbr eak. If you want to use more than one
command, use a semicolon to separate the commands, or place them on multiple lines.
The entire command string must be placed in curly braces. It is an error to execute any
commandswithin an onbr eak command string following arun (CR-114), run -continue,
or step (CR-122) command. Thisrestriction appliesto any macros or Tcl procedures used
in the onbreak command string. Optional.

Examples

onbreak {exa data ; cont}
Examine the value of the HDL item data when a breakpoint is encountered. Then
continue the run command (CR-114).

onbreak {resune}
Resume execution of the macro file on encountering a breakpoint.

See also

abort (CR-30), bd (CR-41), bp (CR-46), dO (CR-68), Onerror (CR-100), resume (CR-113),
status (CR-121)

ModelSim Command Reference

onElabError

onElabError

Syntax

Arguments

See also

TheonElabError command specifiesone or more commandsto be executed when an error
is encountered during elaboration. The command is used by placing it within the
modelsim.tcl fileor amacro. During initial designload onElabError may beinvoked from
within the modelsim.tcl file; during asimulation restart onElabError may beinvoked from
amacro.

Use the onElabError command without arguments to return to a prompt.

onEl abError
{[<command> [; <command>] ...]}

<comand>
Any command can be used asan argument to onElabError. If you want to use morethan
one command, use a semicolon to separate the commands, or place them on multiple
lines. The entire command string must be placed in curly braces. Optional.

do (CR-68)

CR-99

ModelSim Command Reference

CR-100 Commands

onerror

Syntax

Arguments

Example

See also

The onerror command is used within a macro; it specifies one or more commands to be
executed when arunning macro encounters an error. Using the onerror command without
arguments will return the current onerror command string. Use an empty string to change
the onerror command back to its default behavior (i.e., onerror ""). Use onerror with a
resume command (CR-113) to allow an error message to be printed without halting the
execution of the macro file.

onerror
{[<command> [; <command>] ...]}

<comand>
Any command can be used as an argument to onerror. If you want to use more than one
command, use a semicolon to separate the commands, or place them on multiple lines.
The entire command string must be placed in curly braces. Optional.

onerror {quit -f}
Forces the simulator to quit if an error is encountered while the macro is running.

abort (CR-30), do (CR-68), onbreak (CR-98), resume (CR-113), status (CR-121)

P Note: Youcanalso settheglobal OnError DefaultAction Tcl variablein thepref.tcl file
to dictate what action Model Sim takes when an error occurs. The onerror command is
invoked only when an error occursin the macro file that contains the onerror command.
Conversely, OnError DefaultAction will run even if the macro does not contain alocal
onerror command. This can be useful when you run a series of macros from one script,
and you want the same behavior across all macros.

ModelSim Command Reference

pause

Syntax

Arguments

Description

See also

pause

The pause command placed within a macro interrupts the execution of that macro.

pause

None.

When you execute a macro and that macro gets interrupted, the prompt will change to:
VSI M (pause) 7>
This “pause” prompt reminds you that a macro has been interrupted.

When amacro is paused, you may invoke another macro, and if that one gets interrupted,
you may even invoke another — up to a nesting level of 50 macros.

If the status of nested macros gets confusing, use the statuscommand (CR-121). It will show
you which macros are interrupted, at what line number, and show you the interrupted
command.

To resume the execution of the macro, use the resume command (CR-113). To abort the
execution of amacro use the abort command (CR-30).

abort (CR-30), do (CR-68), resume (CR-113), run (CR-114)

CR-101

ModelSim Command Reference

CR-102 Commands

precision
The precision command determines how real numbers display in the graphic interface
(e.g., Signals, Wave, Variables, and List windows). It does not affect the internal
representation of areal number and therefore precision values over 17 are not allowed.
Syntax
preci sion
[<digits>][#]]
Arguments
<di gi t s>[#]
Specifies the number of digits to display. Optional. Trailing zeros are not displayed
unless you append the '# sign. See examples for more details.
Examples

precision 4
Results in 4 digits of precision. For example:

1.234 or 6543

precision 8#
Resultsin 8 digits of precision including trailing zeros. For example:

1. 2345600 or 6543. 2100

precision 8
Resultsin 8 digits of precision but doesn’t print trailing zeros. For example:

1.23456 or 6543.21

ModelSim Command Reference

printenv CR-103

printenv
The printenv command echoes to the Main window the current names and values of all
environment variables. If variable names are given as arguments, prints only the namesand
values of the specified variables. Returns nothing. All results go to the Main window.
Syntax
printenv
[<digits>][#]]
Arguments
<var>. ..
Specifies the name(s) of the environment variable(s) to print. Optional.
Examples

printenv
Prints all environment variable names and their current values. For example,

CC = gcc
DI SPLAY = srl:0.0

printenv USER HOVE
Prints the specified environment variables:

USER
HOVE

vi nce
/'scratch/srl/vince

ModelSim Command Reference

CR-104 Commands

project

Syntax

Arguments

Examples

The project commands are used to perform common operations on projects. Use this
command outside of a simulation session.

proj ect
[addfile <filename>] | [close] | [conpileall] | [delete <project>] | [env]
| [history] | [new <hone_dir> <proj_nanme> [<defaul tlibrary>]
[<use_current>]] | [open <project>] | [renovefile <filenane>]

addfile <fil ename>
Adds the specified file to the current open project. Optional.

cl ose
Closes the current project. Optional.

conpi | eal
Compiles al filesin the current project. Optional.

del ete <project>

Deletes a specified project file. Optional.

env
Returns the current project file. Optional.

hi story
Lists a history of manipulated projects. Optional.

new <home_dir> <proj _nanme> [<defaul tlibrary>] [<use_current>]
Creates a new project under a specified home directory with a specified name and
optionally adefault library. Optional. If use_current is set to 1, then Model Sim uses the
current modelsim.ini file when creating the project rather than the default.

open <proj ect>
Opensaspecified project file, making it the current project. Changesthe current working
directory to the project’s directory. Optional .

renovefile <filenane>
Removes the specified file from the current project. Optional.

vsi > project open /user/georgel/ design/test3/test3. nmpf
Makes /user/geor ge/design/test3 the current project and changes the current working
directory to /user/george/design/test3.

vsi nm> project conpile al
Executes current project library build scripts.

ModelSim Command Reference

pwd CR-105

pwd

The Tcl pwd command displays the current directory path in the Main window.
Syntax

pwd
Arguments

None.

ModelSim Command Reference

CR-106 Commands

quietly

The quietly command turns off transcript echoing for the specified command.

Syntax
quietly
<conmand>
Arguments

<command>
Specifies the command for which to disable transcript echoing. Required. Any results
normally echoed by the specified command will not be written to the Main window
transcript. To disable echoing for all commands use the transcript command (CR-125)
with the -quietly option.

See also

transcript (CR-125)

ModelSim Command Reference

quit CR-107

quit

The quit command exits the ssmulator.
Syntax

qui t
Arguments

-f or -force
Quits without asking for confirmation. Optional; if this argument is omitted, ModelSim

asks you for confirmation before exiting. (The -f and -force arguments are equivalent.)
-sim

Unloads the current design in the simulator without exiting ModelSim. All files opened

by the simulation will be closed including the WLF file (vsim.wif).

P Note: If you want to stop the simulation using awhen command (CR-208), you must use
astop command (CR-123) within your when statement. DO NOT use an exit command
(CR-78) or aquit command. The stop command acts like a breakpoint at thetime it is

evaluated.

ModelSim Command Reference

CR-108 Commands

radix

Theradix command specifies the default radix to be used for the current simulation. The
command can be used at any time. The specified radix is used for all commands (for ce (CR-
82), examine (CR-75), change (CR-50), etc.) aswell as for displayed valuesin the Signals,
Variables, Dataflow, List, and Wave windows. Y ou can change the default radix
permanently by editing the DefaultRadix (Um-353) variable in the modelsim.ini file.

Syntax

radi x
[-synbolic | -binary | -octal | -decinal | -hexadecimal |
-unsigned | -ascii]

Arguments

Entries may be truncated to any length. For example, -symbolic could be expressed as
-sor -sy, etc. Optional.

Also, -signed may be used as an aliasfor -decimal. The -unsigned radix will display as
unsigned decimal. The-ascii radix will display aVerilog item asastring equivalent using
8 bit character encoding.

If no arguments are used, the command returns the current default radix.

ModelSim Command Reference

report

Syntax

Arguments

Examples

report

Thereport command displays the value of all simulator control variables, or the value of

any simulator state variables relevant to the current simulation.

report
sinul ator control | sinulator state

simul ator control
Displays the current values for all simulator control variables.

sinmul ator state
Displays the simul ator state variables relevant to the current ssmulation.

report simulator control
Displays all smulator control variables.

UserTi neUnit = ns
RunLength = 100
IterationLimt = 5000
BreakOnAssertion = 3

Def aul t ForceKi nd = defaul t
I gnoreNote = 0
I gnoreWarni ng =
I gnoreError = 0
I gnoreFailure 0
Checkpoi nt Conpr essWbde =
Nuneri cSt dNoWar ni ngs = 0
St dAri t hNoWarnings = 0
Pat hSeparator =/

Def aul t Radi x = synbolic
Del ayFi |l eOpen = 0

0

1

HFHFHBFHFHEHEHFEEHRRR

report sinulator state

Displays all simulator state variables. Only the variables that relate to the design being

simulated are displayed:

now = 0.0

delta =0

library = work
entity = type_cl ocks
architecture = full
resolution = 1ns

H*HHHHH

CR-109

ModelSim Command Reference

CR-110 Commands

Viewing preference variables

Preference variables have moreto do with the way thingslook (but not entirely) rather than
controlling the simulator. Y ou can view preference variables from the Preferences dialog
box. Select the Tools > Edit Preferences.

See also

"Preference variables located in INI files" (UM-349), and "Preference variables located in
Tcl files' (UM-360)

ModelSim Command Reference

restart

Syntax

Arguments

restart

Therestart command rel oads the design elements and resets the simulation time to zero.
Only design elements that have changed are rel oaded. (Note that SDF files are always
reread during arestart.) Shared libraries are handled as follows during a restart:

« Shared libraries that implement VHDL foreign architectures only are rel oaded at each
restart when the architecture is elaborated (unless the -keeploaded option to the vsim
command (CR-192) is used).

* Shared libraries |oaded from the command line (-foreign and -pli options) and from the
Veriuser entry in the modelsim.ini file are reloaded.

* Shared librariesthat implement VHDL foreign subprograms remain loaded (they are not
reloaded) even if they also contain code for aforeign architecture.

To handlerestartswith Verilog PLI applications, you need to define aV erilog user-defined
task or function, and register a misctf class of callback. See Chapter 6 - Verilog PLI / VPI
for more information on the Verilog PLI.

restart
[-force] [-nobreakpoint] [-nolist] [-nolog] [-nowave]

-force
Specifies that the simulation will be restarted without requiring confirmation in a popup
window. Optional.

- nobr eakpoi nt
Specifiesthat all breakpointswill be removed when the simulation isrestarted. Optional .
The default isfor all breakpoints to be reinstalled after the simulation is restarted.

-nol i st
Specifies that the current List window environment will not be maintained after the
simulation is restarted. Optional. The default isfor al currently listed HDL items and
their formats to be maintained.

-nol og
Specifies that the current logging environment will not be maintained after the
simulationisrestarted. Optional. The default isfor all currently logged itemsto continue
to be logged.

-nowave
Specifies that the current Wave window environment will not be maintained after the
simulation is restarted. Optional. The default isfor al items displayed in the Wave
window to remain in the window with the same format.

P Note: You can configure defaults for the restart command by setting the
DefaultRestartOptions variable in the modelsim.ini file. See "Restart command
defaults" (UM-359).

CR-111

ModelSim Command Reference

CR-112 Commands

See also

vSim (CR-192)

ModelSim Command Reference

resume CR-113

resume
The resume command is used to resume execution of amacro file after apause command
(CR-101), or a breakpoint. It may be input manually or placed in an onbreak (CR-98)
command string. (Placing aresume command in abp (CR-46) command string does not
have thiseffect.) The resume command can also be used in an onerror (CR-100) command
string to allow an error message to be printed without halting the execution of the macro
file

Syntax
resune

Arguments
None.

See also

abort (CR-30), do (CR-68), onbreak (CR-98), onerror (CR-100), pause (CR-101)

ModelSim Command Reference

CR-114 Commands

run
The run command advances the simulation by the specified number of timesteps.
Syntax
run
[<tinesteps>[<time_units>]] | -all | -continue | -next | -step | -over
Arguments

<tinesteps>[<time_units>]
Specifies the number of timesteps for the simulation to run. The number may be
fractional, or may be specified absolute by preceding the value with the character @.
Optional. In addition, optional <time_units> may be specified as:

fs, ps, ns, us, ms, or sec

The default <timesteps> and <time_units> specifications can be changed during a
ModelSim session by selecting Simulate > Simulation Options (Main window). See
" Setting default simulation options’ (UM-263). Time steps and time units may al so be set
with the RunL ength (UM-355) and UserTimeUnit (UM-356) variablesin the modelsim.ini
file.

-al
Causes the simulator to run the current simulation forever, or until it hits abreakpoint or

specified break event. Optional.

-continue
Continuesthelast simulation run after astep (CR-122) command, step -over command or
abreakpoint. A run -continue command may be input manually or used as the last
command in abp (CR-46) command string. Optional.

- next
Causes the simulator to run to the next event time. Optional.

-step
Steps the simulator to the next HDL statement. Optional .

-over
Specifiesthat VHDL procedures, functions and Verilog tasks are to be executed but
treated as simple statements instead of entered and traced line by line. Optional.

ModelSim Command Reference

run CR-115

Examples

run 1000
Advances the simulator 1000 timesteps.

run 10.4 ns
Advances the simulator the appropriate number of timesteps corresponding to 10.4
milliseconds.

run @000
Advances the simulator to timestep 8000.

See also
step (CR-122)

ModelSim Command Reference

CR-116 Commands

searchlog

The sear chlog command searches one or more of the currently open logfilesfor aspecified
condition. It can be used to search for rising or falling edges, for signals equal to aspecified
value, or for when a generalized expression becomes true.

Syntax

sear chl og
[-count <n>] [-deltas] [-env <path>] [-expr {<expr>}] [-reverse]
[-rising | -falling | -anyedge] [-startDelta <nunp] <startTi me>
[-value <string>] <pattern>
If at least one match isfound, it returns the time (and optionally delta) at which the last
match occurred and the number of matches found, inaTcl list:

{{<tinme>} <matchCount >}

where <time> isin the format <number> <unit>. If the -deltas option is specified, the
delta of the last match is also returned:

{{<time>} <delta> <matchCount >}

If no matches arefound, a TCL_ERROR isreturned. If one or more matches are found,
but less than the number requested, it is not considered an error condition, and the time
of the farthest match is returned, with the count of the matches found.

Arguments

-count <n>
Specifies to search for the <n>-th occurrence of the match condition, where <n>isa
positive integer. Optional.

-deltas
Indicatesto test for match on simulation delta cycles. Otherwise, matchesare only tested
for at the end of each simulation time step. Optional.

-env <pat h>
Provides a design region in which to look for the signal names. Optional.

-expr {<expr>}
Specifiesageneral expression of signa values and simulation time. Optional. sear chlog
will search until the expression evaluates to true. The expression must have a boolean
result type. See "GUI_expression_format" (CR-15) for the format of the expression.

-reverse
Specifies to search backwards in time from <startTime>. Optional.

-rising | -falling | -anyedge
Specifies an edge to look for on a scalar signal. Optional. This option isignored for
compound signals. If no options are specified, the default is -anyedge.

-startDelta <nunmp
Indicates a simulation delta cycle on which to start. Optional.

ModelSim Command Reference

searchlog

<startTi me>
Specifies the simulation time at which to start the search. Required. The time may be
specified as an integer number of simulation units, or as { <num> <timeUnit>}, where
<num> can be integer or with a decimal point, and <timeUnit> is one of the standard
VHDL time units (fs, ps, ns, us, ms, sec).

-val ue <string>
Specifiesto search until asingle scalar or compound signal takes on thisvalue. Optional.

<pattern>
Specifies one or more signal names or wildcard patterns of signal namesto search on.
Required unless the -expr argument is used.
See also

virtual signal (CR-177), virtual log (CR-169), virtual nolog (CR-172)

CR-117

ModelSim Command Reference

CR-118 Commands

shift

Syntax

Arguments

Description

See also

The shift command shifts macro parameter values | eft one place, so that the value of
parameter $2 is assigned to parameter $1, the value of parameter $3 is assigned to $2, etc.
The previous value of $1 is discarded.

The shift command and macro parameters are used in macro files. If amacro file requires
more than nine parameters, they can be accessed using the shift command.

To determine the current number of macro parameters, use the argc (UM-362) variable.

shift

None.

For amacro file containing nine macro parameters defined as $1 to $9, one shift command
shiftsall parameter values one place to the left. If more than nine parameters are named,
the value of the tenth parameter becomes the value of $9 and can be accessed from within
the macrofile.

do (CR-68)

ModelSim Command Reference

show

Syntax

Arguments

Examples

See also

show

The show command lists HDL items and subregions visible from the current environment.
The itemslisted include:

* VHDL
signals and instances

* Verilog
nets, registers, tasks, functions, instances and memories

The show command returns formatted resultsto stdout. To eliminate formatting (to use the
output in a Tcl script), use the Show command instead.

show
[-all] [<pathnanme>]

-all

Display all names at and below the specified path recursively. Optional .

<pat hname>
Specifies the pathname of the environment for which you want the items and subregions
to be listed. Optional; if omitted, the current environment is assumed.

show
Lists the names of all the items and subregion environments visible in the current
environment.

show / uut
Lists the names of all the items and subregions visible in the environment named /uut.

show sub_regi on
Lists the names of all the items and subregions visiblein the environment named
sub_region which isdirectly visible in the current environment.

find (CR-79)

CR-119

ModelSim Command Reference

CR-120 Commands

simstats
The simstats command returns performance-related statistics about the simulation.
If executed without arguments, the command returns alist of pairs like the following:
{menory 57376} {{working set} 56152} {tinme 0} {{cpu tine} O} {context 0} /
{{page faults} 0}
See the arguments below for descriptions of each pair.
P Note: Some of the values may not be available on al platforms and other values may be
approximates. Different operating systems report these numbers differently.
Syntax
sinstats
[memory | working | time | cpu | context | faults]
Arguments

nenory
Returns the amount of virtual memory that the OS has allocated for vsim. Optional.

wor ki ng
Returns the portion of allocated virtual memory that is currently being used by all vem
processes. Optional. If this number exceeds memory size, you will encounter
performance degradation.

tinme
Returns the cumulative "wall clock time" of the run commands. Optional.

cpu
Returns the cumulative processor time of the run commands. Optional. Processor time
differs from wall clock timein that processor time is only counted when the cpu is

actually running vaim. If vsim is swapped out for another process, cpu time does not
increase.

cont ext
Returns the number of context swaps (vsim being swapped out for another process) that
have occurred during the run commands. Optional.

faults
Returns the number of page faults that have occurred during the run commands.
Optional.

ModelSim Command Reference

status CR-121

status

The status command lists summary information about currently interrupted macros. If
invoked without arguments, the command lists the filename of each interrupted macro, the
line number at which it was interrupted, and prints the command itself. It also displays any
onbreak (CR-98) or onerror (CR-100) commands that have been defined for each
interrupted macro.

Syntax

st at us
[file | line]

Arguments

file
Reports the file pathname of the current macro.

l'ine
Reports the line number of the current macro.

Examples

The transcript below contains examples of resume (CR-113), and status commands.

VSI M (pause) 4> status
Macro resune_test.do at line 3 (Current macro)
command executing: “pause”
is Interrupted
ONBREAK commands: “resunge”
Macro startup.do at line 34
comand executing: “run 1000"
processi ng BREAKPO NT
is Interrupted
ONBREAK commands: “resune”
VSI M (pause) 5> resune
Resum ng execution of macro resunme_test.do at line 4

HOHH R HH R R

See also

abort (CR-30), do (CR-68), pause (CR-101), resume (CR-113)

ModelSim Command Reference

CR-122 Commands

step

Syntax

Arguments

See also

The step command stepsto the next HDL statement. Current values of local HDL variables
may be observed at thistime using the Variableswindow. VHDL procedures and functions
and Verilog tasks and functions can optionally be skipped over. When await statement or
end of process is encountered, time advances to the next scheduled activity. The Process
and Source windows will then be updated to reflect the next activity.

step
[-over] [<n>]

-over
Specifies that VHDL procedures and functions and Verilog tasks and functions should
be executed but treated as simple statements instead of entered and traced line by line.
Optional.

<n>

Any integer. Optional. Will execute ‘n’ steps before returning.

run (CR-114)

ModelSim Command Reference

stop

Syntax

Arguments

See also

stop

The stop command is used with the when command (CR-208) to stop simulation in batch
files. The stop command has the same effect as hitting a breakpoint. The stop command
may be placed anywhere within the body of the when command.

st op

None.

Use the run command (CR-114) with the -continue option to continue the simulation run,
or the resume command (CR-113) to continue macro execution. If you want macro
execution to resume automatically, put the resume command at the top of your macro file:

onbreak {resune}

P Note: If you want to stop the simulation using awhen command (CR-208), you must use
astop command within your when statement. DO NOT use an exit command (CR-78) or
aquit command (CR-107). The stop command acts like a breakpoint at thetimeit is
evaluated.

bp (CR-46), resume (CR-113), run (CR-114), when (CR-208)

CR-123

ModelSim Command Reference

CR-124 Commands

th

Thetb (traceback) command displays a stack trace for the current processin the Main
window. Thislists the sequence of HDL function calls that have been entered to arrive at
the current state for the active process.

Syntax

tb

ModelSim Command Reference

transcript

Syntax

Arguments

Examples

See also

transcript

The transcript command controls echoing of commands executed in amacro file; it also
works at top level in batch mode. If no option is specified, the current setting is reported.

transcri pt
[<filename> | off | -g | quietly]

on
Specifies that commands in amacro file will be echoed to the Main window as they are
executed. Optional.

of f
Specifies that commands in amacro file will not be echoed to the Main window as they
are executed. Optional.

-q
Returns "0" if transcripting is turned off or "1" if transcripting is turned on. Useful ina
Tcl conditional expression. Optional.

quietly
Turns off the transcript echo for all commands. To turn off echoing for individual
commands see the quietly command (CR-106). Optional.

transcript on
Commands within amacro file will be echoed to the Main window as they are executed.

transcri pt
If issued immediately after the previous example, the message:

Macro transcripting is turned on.

appears in the Main window.

echo (CR-71)

CR-125

ModelSim Command Reference

CR-126 Commands

transcript file

Thetranscript file command sets or queries the pathname for the transcript file. You can
use this command to clear atranscript in batch mode or to limit the size of atranscript file.
It offers an alternative to setting the PrefMain(file) Tcl preference variable.

Syntax
transcript file
[<fil ename>]
Arguments
<fil ename>
Specifiesthefull path and filename for the transcript file. Optional. If you specify anew
file, the existing transcript file is closed and a new transcript file opened. If you specify
an empty string (""), the existing file is closed and no new file is opened. If you don't
specify this argument, the current setting is returned.
Examples
transcript file ""
Closes the current transcript file and stops writing data to the file. Thisis a method for
reducing the size of your transcript.
transcript file ""
run 1 ms
transcript file transcript
run 1 ms
This series of commands resultsin the transcript containing only data from the second
millisecond of the simulation. Thefirst transcript file command closes the transcript so
no dataisbeing written to it. The second transcript file command opens anew transcript
and records datafrom 1 msto 2 ms.
See also

"Transcript" (UM-147)

ModelSim Command Reference

tssi2mti

Syntax

Arguments

Examples

See also

tssi2mti

The tssi2mti command is used to convert a vector file in Fluence Technology (formerly
TSSI) Standard Events Format into a sequence of for ce (CR-82) and run (CR-114)
commands. The stimulus is written to the standard output.

The source code for tssi2mti is provided in the file tssi2mti.c in the examples directory.

tssi2nti
<signal _definition_file> [<sef_vector_file>]

<signal _definition_file>
Specifiesthe name of the Fluence Technol ogy signal definition file describing the format
and content of the vectors. Required.

<sef _vector_file>
Specifies the name of the file containing vectors to be converted. If noneis specified,
standard input is used. Optional.

tssi2nti trigger.def trigger.sef > trigger.do
The command will produce ado file named trigger.do from the signal definition file
trigger.def and the vector file trigger.sef.

tssi2nti trigger.def < trigger.sef > trigger.do
Thisexampleis exactly the same as the previous one, but uses the standard input instead.

force (CR-82), run (CR-114), write tssi (CR-225)

CR-127

ModelSim Command Reference

CR-128 Commands

vcd add

The ved add command adds the specified itemsto a VCD file. The allowed items are
Verilog nets and variables and VHDL signals of type bit, bit_vector, std_|logic, and
std_logic_vector (other types are silently ignored).

All ved add commands must be executed at the same simulation time. The specified items
are added to the VCD header and their subsequent value changes are recorded in the
specified VCD file.

By default all port driver changesand internal variable changesare capturedinthefile. You
can filter the output using arguments detailed below.

Related Verilog tasks: $dumpvars, $fdumpvars

Syntax

vcd add
[-r] [-in] [-out] [-inout] [-internal] [-ports] [-file <filename>]
<i tem nane>

Arguments

-r
Specifies that signal and port selection occurs recursively into subregions. Optional. If
omitted, included signals and ports are limited to the current region.

-in
Includes only port driver changes from ports of mode IN. Optional.

- out
Includes only port driver changes from ports of mode OUT. Optional.

-i nout
Includes only port driver changes from ports of mode INOUT. Optional.

-interna
Includesonly internal variable or signal changes. Excludes port driver changes. Optional.

-ports
Includes only port driver changes. Excludesinternal variable or signal changes. Optional.

-file <fil ename>
Specifies the name of the VCD file. This option should be used only when you have
created multiple VCD files using the ved files command (CR-140).

<i tem nane>
Specifies the Verilog or VHDL item to add to the VCD file. Required. Multipleitems
may be specified by separating names with spaces. Wildcards are accepted.

See also

See Chapter 11 - Value Change Dump (VCD) Filesfor more information on VCD files.
Verilog tasks are documented in the |EEE 1364 standard.

ModelSim Command Reference

vcd checkpoint CR-129

vcd checkpoint

The ved checkpoint command dumps the current values of all VCD variablesto the
specified VCD file. While simulating, only value changes are dumped.

Related Verilog tasks: $dumpall, $fdumpall

Syntax
vcd checkpoi nt
[<fil ename>]
Arguments
<fil ename>
Specifiesthe name of the VCD file. Optional. If omitted the command is executed on the
file designated by the vcd file command (CR-138) or "dump.ved"” if ved file was not
invoked.
See also

See Chapter 11 - Value Change Dump (VCD) Filesfor more information on VCD files.

ModelSim Command Reference

CR-130 Commands

vcd comment

The ved comment command inserts the specified comment in the specified VCD file.

Syntax

vced conmment
<coment string> [<fil enane>]

Arguments

<comment string>
Comment to beincluded inthe VCD file. Required. Must be quoted by double quotation
marks or curly braces.

<fil ename>
Specifies the name of the VCD file. Optional. If omitted the command is executed on the
file designated by the vcd file command (CR-138) or "dump.ved" if ved file was not
invoked.
See also

See Chapter 11 - Value Change Dump (VCD) Filesfor more information on VCD files.

ModelSim Command Reference

vcd dumpports

vcd dumpports

Syntax

Arguments

The ved dumpports command creates a VvV CD file that includes port driver data.

By default all port driver changesand internal variable changesare capturedinthefile. Y ou
can filter the output using arguments detailed below.

Related Verilog task: $dumpports

vcd dunpports
[-direction] [-file <filename>] [-in] [-inout] [-out] [-unique]
<i t em nane>

-direction
Affects both VHDL and Verilog ports. Optional. Specifies that the port/variable type
recorded in the VCD header for VHDL and Verilog ports shall be one of the following:

in, out, inout, internal, ports (includesin, out, and inout); the default isall ports

P Note: The -direction argument is obsolete in Model Sim versions 5.5¢ and later. It is
supported only for backwards compatibility with an NEC flow. See http://
www.model .com/products/documentation/resim_ved.pdf for information regarding its
usein earlier versions.

-file <fil ename>
Specifies the path and name of aVCD fileto create. Optional. Defaults to the current
working directory and the filename dumpports.vcd. Multiple filenames can be opened
during asingle simulation.

-in
Includes ports of mode IN. Optional.

-inout

Includes ports of mode INOUT. Optional.

-out

Includes ports of mode OUT. Optional.

- uni que
Generates unique ved variable names for ports, even if those ports are connected to the
same collapsed net. Optional.

<i tem nanme>
Specifies the Verilog or VHDL item to add to the VCD file. Required. Multipleitems
may be specified by separating names with spaces. Wildcards are accepted.

CR-131

ModelSim Command Reference

http://www.model.com/products/documentation/resim_vcd.pdf
http://www.model.com/products/documentation/resim_vcd.pdf

CR-132 Commands

Examples

vcd dumpports -in -file counter.vecd /test_counter/dut/*
Creates a VCD file named counter.ved of all IN portsin the region /test_counter/dut/.

vcd dunmpports -file addern.vcd /testbench/uut/*
vsim -vcdsti m addern. ved addern -gn=8 -do "add wave /*; run 1000"

These two commands resimulate a design from aVCD file. See "Resimulating a design
fromaVCD file" (um-315) for further details.

ModelSim Command Reference

vcd dumpportsall CR-133

vcd dumpportsall

The ved dumpportsall command creates a checkpoint in the VCD file which shows the
value of all selected ports at that time in the smulation, regardless of whether the port
values have changed since the last timestep.

Related Verilog task: $dumpportsall

Syntax
vcd dunpportsall
[<fil ename>]
Arguments
<fil ename>
Specifies the name of the VCD file. Optional. If omitted the command is executed on all
open VCD files.
See also

See Chapter 11 - Value Change Dump (VCD) Filesfor more information on VCD files.

ModelSim Command Reference

CR-134 Commands

vcd dumpportsflush

The ved dumpportsflush command flushes the contents of the VCD file buffer to the
specified VCD file.

Related Verilog task: $dumpportsflush

Syntax
vcd dunpportsflush
[<fil ename>]
Arguments
<fil ename>
Specifies the name of the VCD file. Optional. If omitted the command is executed on all
open VCD files.
See also

See Chapter 11 - Value Change Dump (VCD) Filesfor more information on VCD files.

ModelSim Command Reference

vcd dumpportslimit

vcd dumpportslimit

Syntax

Arguments

See also

The ved dumpportslimit command specifies the maximum size of the VCD file (by
default, limited to available disk space). When the size of the file exceeds the limit, a
comment is appended to the file and VCD dumping is disabled.

Related Verilog task: $dumpportdlimit

vcd dunpportslimt
<dunplimt> [<fil ename>]

<dunplimt>
Specifies the maximum VCD file size in bytes. Required.

<fil ename>
Specifies the name of the VCD file. Optional. If omitted the command is executed on all
open VCD files.

See Chapter 11 - Value Change Dump (VCD) Filesfor more information on VCD files.

CR-135

ModelSim Command Reference

CR-136 Commands

vcd dumpportsoff

The ved dumpportsoff command turns off VCD dumping and records all dumped port
values as x.

Related Verilog task: $dumpportsoff

Syntax
vcd dunpport sof f
[<fil ename>]
Arguments
<fil ename>
Specifies the name of the VCD file. Optional. If omitted the command is executed on all
open VCD files.
See also

See Chapter 11 - Value Change Dump (VCD) Filesfor more information on VCD files.

ModelSim Command Reference

vcd dumpportson CR-137

vcd dumpportson

Theved dumppor tson command turnson V CD dumping and records the current val ues of
all selected ports. This command istypically used to resume dumping after invoking ved
dumpportsoff.

Related Verilog task: $dumpportson

Syntax
vcd dunpportson
[<fil ename>]
Arguments
<fil ename>
Specifies the name of the VCD file. Optional. If omitted the command is executed on all
open VCD files.
See also

See Chapter 11 - Value Change Dump (VCD) Filesfor more information on VCD files.

ModelSim Command Reference

CR-138 Commands

vcd file
The vcd file command specifies the filename and state mapping for the VCD file created
by aved add command (CR-128). The ved file command is optional. If used, it must be
issued before any ved add commands.
Related Verilog task: $dumpfile
P Note: ved fileisincluded for backward compatibility. Use the ved files command (CR-
140) if you want to use multiple VCD files during a single simulation.
Syntax
ved file
[-direction] [-dunpports] [<filenanme>] [-map <mapping pairs>] [-nonmap]
Arguments
-direction

Affects only VHDL ports. Optional. It specifies that the port/variable type recorded in
the VCD header for VHDL ports shall be one of the following:

in, out, inout, internal, ports (includes in, out, and inout); the default isall ports

P Note: The-direction argument is obsolete in Model Sim versions 5.5¢ and later. It is
supported only for backwards compatibility with an NEC flow. See http://
www.model.com/products/documentation/resim_vcd.pdf for information regarding its
usein earlier versions.

- dunpports
Capture detailed port driver datafor Verilog portsand VHDL std_logic ports. Optional.
This option works only on ports, and subsequent ved add command (CR-128) will accept
only qualifying ports (silently ignoring al other specified items).

<fil enanme>

Specifies the name of the VCD file that is created (the default is dump.ved). Optional.

-map <mapping pairs>
Affectsonly VHDL signals of type std_logic. Optional. It allows you to override the
default mappings. The mapping isspecified asalist of character pairs. Thefirst character
inapair must be one of the std_logic characters UX01ZWLH- and the second character
is the character you wish to be recorded in the VCD file. For example, to map L and H
toz

ved file -map "L z H z"

Note that the quotesin the example above area Tcl convention for command strings that
include spaces.

ModelSim Command Reference

http://www.model.com/products/documentation/resim_vcd.pdf
http://www.model.com/products/documentation/resim_vcd.pdf

vcd file CR-139

- nomap
Affects only VHDL signals of type std _logic. Optional. It specifies that the values
recordedintheV CD file shall usethe std_|ogic enumeration characters of UX01ZWLH-.
This option results in a non-standard VV CD file because VCD values are limited to the
four state character set of x01z. By default, the std_logic characters are mapped as

follows.

See also

See Chapter 11 - Value Change Dump (VCD) Filesfor more information on VCD files.
Verilog tasks are documented in the | EEE 1364 standard.

ModelSim Command Reference

CR-140 Commands

vcd files

The ved files command specifies afilename and state mapping for aVCD file created by a
vcd add command (CR-128). The ved files command isoptional. If used, it must be issued
before any ved add commands.

Related Verilog task: $fdumpfile

Syntax

ved files
[-direction] <filename> [-map <nmapping pairs>] [-nonap]

Arguments

-direction
Affects both VHDL and Verilog ports. Optional. It specifies that the port/variable type
recorded in the VCD header for VHDL and Verilog ports shall be one of the following;:

in, out, inout, internal, ports (includes in, out, and inout); the default is all ports

P Note: The-direction argument is obsolete in Model Sim versions 5.5¢ and later. It is
supported only for backwards compatibility with an NEC flow. See http://
www.model.com/products/documentation/resim_vcd.pdf for information regarding its
usein earlier versions.

<fil ename>
Specifiesthe name of aV CD fileto create. Required. Multiplefiles can be opened during
asingle simulation.

-map <mapping pairs>
Affectsonly VHDL signals of type std_logic. Optional. It allows you to override the
default mappings. The mapping isspecified asalist of character pairs. Thefirst character
inapair must be one of the std_logic characters UX01ZWLH- and the second character
is the character you wish to be recorded in the VCD file. For example, to map L and H
toz

ved files -map "L z H z"

Note that the quotesin the example above are a Tcl convention for command strings that
include spaces.

- nomap
Affectsonly VHDL signals of type std_logic. Optional. It specifies that the values
recordedintheV CD file shall usethe std_|ogic enumeration characters of UX01ZWLH-.
This option resultsin a non-standard VCD file because VCD values are limited to the
four state character set of x01z. By default, the std_logic characters are mapped as
follows.

ModelSim Command Reference

http://www.model.com/products/documentation/resim_vcd.pdf
http://www.model.com/products/documentation/resim_vcd.pdf

Examples

See also

vcd files

The following example shows how to "mask" outputs from avcd file until a certain time
after the start of the simulation. The example usestwo ved filesand the ved on (CR-145) and
vcd off (CR-144) commands to accomplish this task.

vcd
vcd
vcd
vcd
vcd
run
vcd
run

files in_inout.vcd

files output.ved

add -in -inout -file in_inout.vecd /*
add -out -file output.ved /*

of f out put.ved

lus

on out put.vcd

-al

See Chapter 11 - Value Change Dump (VCD) Filesfor more information on VCD files.
Verilog tasks are documented in the | EEE 1364 standard.

CR-141

ModelSim Command Reference

CR-142 Commands

vcd flush

Syntax

Arguments

See also

The ved flush command flushes the contents of the VCD file buffer to the specified VCD
file. This command isuseful if you want to create a complete ved file without ending your
current simulation.

Related Verilog tasks: $dumpflush, $fdumpflush

vced flush
[<fil ename>]

<fil ename>
Specifiesthe name of the VCD file. Optional. If omitted the command is executed on the
file designated by the vcd file command (CR-138) or dump.ved if ved file was not
invoked.

See Chapter 11 - Value Change Dump (VCD) Filesfor more information on VCD files.
Verilog tasks are documented in the |EEE 1364 standard.

ModelSim Command Reference

ved limit

Syntax

Arguments

See also

ved limit

The ved limit command specifies the maximum size of aVCD file (by default, limited to
available disk space). When the size of the file exceeds the limit, a comment is appended
tothefileand VCD dumping is disabled.

Related Verilog tasks: $dumplimit, $fdumplimit

ved limt
<filesize> [<fil enane>]

<filesize>
Specifies the maximum VCD file size in bytes. Required.

<fil ename>
Specifiesthe name of the VCD file. Optional. If omitted the command is executed on the
file designated by the vcd file command (CR-138) or dump.ved if ved file was not
invoked.

See Chapter 11 - Value Change Dump (VCD) Filesfor more information on VCD files.
Verilog tasks are documented in the | EEE 1364 standard.

CR-143

ModelSim Command Reference

CR-144 Commands

vcd off

Syntax

Arguments

See also

The ved off command turns off VCD dumping to the specified file and records all VCD
variable values as x.

Related Verilog tasks: $dumpoff, $fdumpoff

vced of f
[<fil ename>]

<fil ename>
Specifiesthe name of the VCD file. Optional. If omitted the command is executed on the
file designated by the vcd file command (CR-138) or dump.ved if ved file was not
invoked.

See Chapter 11 - Value Change Dump (VCD) Filesfor more information on VCD files.
Verilog tasks are documented in the |EEE 1364 standard.

ModelSim Command Reference

vcd on

Syntax

Arguments

See also

vcd on

The ved on command turns on VCD dumping to the specified file and records the current
values of al VCD variables. By default, ved on is automatically performed at the end of
the simulation time that the ved add (CR-128) commands are performed.

Related Verilog tasks: $dumpon, $fdumpon

vcd on
[<fil ename>]

<fil ename>
Specifiesthe name of the VCD file. Optional. If omitted the command is executed on the
file designated by the vcd file command (CR-138) or dump.ved if ved file was not
invoked.

See Chapter 11 - Value Change Dump (VCD) Filesfor more information on VCD files.
Verilog system tasks are documented in the |EEE 1364 standard.

CR-145

ModelSim Command Reference

CR-146 Commands

vcd2wlif
ved2wilf is autility that translates a VCD (Value Change Dump) file into aWLF file that
can be displayed in Model Sim using the veim -view argument.
Syntax
ved2w f
[-splitio] [-splitio_in_ext <extension>] [-splitio_out_ext <extension>]
<vcd filenane> <w f fil enane>
Arguments

-splitio
Specifies extended VCD port values be split into their corresponding input and output
components by creating 2 signalsinstead of just 1 in the resulting .wlf file. Optional. By
default the new input-component signal keeps the same name as the original port name
while the output-component name is the original name witha"__o0" appended to it.

-splitio_in_ext <extension>
Specifies an extension to add to input-component signal names created by using
-splitio. Optional.

-splitio_out_ext <extension>
Specifies an extension to add to output-component signal names created by using
-splitio. Optional.

<vcd fil ename>
Specifies the name of the VCD file you want to translate into a WLF file. Required.

<w f filename>
Specifies the name of the output WLF file. Required.

ModelSim Command Reference

vcom

Syntax

Arguments

vcom

The vcom command is used to invoke VCOM, the Model Technology VHDL compiler.
Use VCOM to compile VHDL source code into a specified working library (or to thework
library by default).

This command may be invoked from within Model Sim or from the operating system
command prompt. This command may also be invoked during simulation.

Compiled libraries are version dependent. For example you cannot use alibrary compiled
with 5.5 in asimulation using 5.6 vsim.

vcom
[-87] [-93] [+acc[=<spec>][+<entity>[(architecture)]]] [-check_synthesis]
[-debugVA] [-defercheck] [-explicit] [-f <filenanme>]
[-force_refresh] [-help] [-ignoredefaultbinding] [-ignorevitalerrors]
[-just abcep] [-skip abcep] [-line <nunber>] [-no0ll64]
[-noaccel <package_nanme>] [-nocasestaticerror] [-nocheck]
[- noi ndexcheck] [-nologo] [-nonstddriverinit]
[-noothersstaticerror] [-norangecheck] [-novital] [-novital check]
[-nowarn <nunber>] [-00] [-pedanticerrors]
[- perforndefaul tbinding] [-quiet] [-rangecheck] [-refresh] [-s] [-source]
[-tine] [-version]
[

-87

-work <library_nane>] <filenanme>

Disables support for VHDL 1076-1993. Thisis the VCOM default. Optional. See
additional discussion in the examples. Note that the default can be changed with the
modelsim.ini file; see "Preference variables located in INI files' (UMm-349).

-93

Specifiesthat the simulator isto support VHDL 1076-1993. Optional. Defaultis-87. See
additional discussion in the examples.

+acc[=<spec>] [+<entity>[(architecture)]]
Enables access to design objects that would otherwise become unavailable due to
optimizations. Optional. Note that using this option may reduce optimizations.

<spec> currently has only one choice:

v—Enable accessto variables, constants, and aliasesin processes that would otherwise be
merged due to optimizations.

<entity> and (<ar chitectur e>) specify the design unit(s) in which to allow the access. If
(<architecture>) is not specified, then all architectures of a given <entity> are enabled
for access.

-check_synt hesi s

Turns on limited synthesis rule compliance checking. Specifically, it checks to see that

signalsread by aprocess arein the sensitivity list. Optional. The checks understand only
combinational logic, not clocked logic. Edit the CheckSynthesis (UM-350) variable in the
modelsim.ini file to set a permanent default.

CR-147

ModelSim Command Reference

CR-148 Commands

- debugVA

Printsaconfirmationif aVITAL cell was optimized, or an explanation of why it was not,
during VITAL level-1 acceleration. Optional.

- def ercheck

Defers until run-time all compile-time range checking on constant index and slice
expressions. Asaresult, index and slice expressionswith invalid constant rangesthat are
never evaluated will not cause compiler error messages to be issued. Optional.

-explicit

Directs the compiler to resolve ambiguous function overloading by favoring the explicit
function definition over theimplicit function definition. Optional. Strictly speaking, this
behavior does not match the VHDL standard. However, the majority of EDA tools
choose explicit operators over implicit operators. Using this switch makes ModelSim
compatible with common industry practice.

-f <fil ename>

Specifiesafilewith more command line arguments. Optional. Allows complex argument
strings to be reused without retyping. Environment variable expansion (for exampleina
pathname) does not occur in -f files.

-force_refresh

Forces the refresh of amodule. Optional. When the compiler refreshes adesign unit, it
checks each dependency to ensure its source has not been changed and recompiled. If a
dependency has been changed and recompiled, the compiler will not refresh the
dependent design unit (unless you use -for ce refresh). To avoid potential errors or
mismatches caused by the dependency recompilation, you should recompile the
dependent design unit’s source rather than use this switch.

-help

Displays the command’ s options and arguments. Optional.

-i gnor edef aul t bi ndi ng

Instructs the compiler not to generate a default binding during compilation. Optional.
Y ou must explicitly bind all components in the design to use this switch.

-ignorevitalerrors

Directs the compiler to ignore VITAL compliance errors. Optional. The compiler still
reportsthat VITAL errorsexist, but it will not stop the compilation. Y ou should exercise
caution in using this switch; as part of accelerating VITAL packages, we assume that
compliance checking has passed.

ModelSim Command Reference

vcom CR-149

-just abcep
Directs the compiler to “just” include:
a - architectures
b - bodies
c - configurations
e - entities
p - packages
Any combination in any order can be used, but one choice isrequired if you use this
optional switch.

-skip abcep
Directs the compiler to skip all:
a - architectures
b - bodies
c - configurations
e - entities
p - packages
Any combination in any order can be used, but one choice isrequired if you use this
optional switch.

-line <nunber>
Starts the compiler on the specified linein the VHDL source file. Optional. By default,
the compiler starts at the beginning of thefile.

-noll64
Causes the source files to be compiled without taking advantage of the built-in version
of the IEEE std_logic_1164 package. Optional. Thiswill typically result in longer
simulation times for VHDL programs that use variables and signals of type std_logic.

-noaccel <package_name>
Turns off accel eration of the specified package in the source code using that package.

-nocasestaticerror
Suppresses case static warnings. Optional. VHDL standards require that case alternative
choices be static at compile time. However, some expressions which are globally static
are allowed. This switch prevents the compiler from warning on such expressions. If the
-pedanticerrors switch is specified, this switch isignored.

-nocheck
Disablesindex and range checks. Optional. Y ou can disable these individually using the
-noindexcheck and -norangecheck arguments, respectively.

- noi ndexcheck
Disables checking on indexing expressions to determine whether indices are within
declared array bounds. Optional.

- nol ogo
Disables startup banner. Optional.

-nonstddriverinit
Forces Model Sim to match pre-5.7c¢ behavior in initializing driversin a particular case.
Optional. Prior to 5.7c, VHDL ports of mode out or inout could have incorrectly
initialized driversif the port did not have an explicit initialization value and the actual
connect to the port had explicit initial values. Depending on a number of factors,
Modelsim could incorrectly use the actual signa'sinitial value when initializing lower

ModelSim Command Reference

CR-150 Commands

level drivers. Note that the argument does not cause all lower-level driversto use the
actual signal’sinitial value; it only does thisin the specific cases where older versions
used the actual signal’sinitial value.

-noot hersstaticerror

Disables warnings that result from array aggregates with multiple choices having
"others' clausesthat are not locally static. Optional. If the -pedanticerrors switch is
specified, this switch is ignored.

- nor angecheck

Disables run time range checking. In some designs, this resultsin a 2X speed increase.
Range checking is enabled by default or, once disabled, can be enabled using
-rangecheck. See "Range and index checking" (um-51) for additional information.

-novita

Causes vcom to use VHDL code for VITAL procedures rather than the accel erated and
optimized timing and primitive packages built into the simulator kernel. Optional.
Allows breakpointsto be set inthe VITAL behavior process and permits single stepping
through the VITAL procedures to debug your model. Also all of the VITAL datacan be
viewed in the variables or signals windows.

-novi t al check

Disables VITAL 2000 compliance checking if you areusing VITAL 2.2b. Optional.

-nowar n <nunber >

Selectively disables an individual warning message. Optional. Multiple -nowarn
switches are allowed. Warnings may be disabled for all compiles viathe Main window
Options > Compile Options menu command or the modelsim.ini file (see the "[vcom]
VHDL compiler control variables' (UM-350)).

The warning message numbers are:

1 = unbound conponent

process w thout a wait statement

nul | range

no space intime litera

mul tiple drivers on unresol ved signa

conpl i ance checks

optim zation nmessages

signal value used in expression evaluated at el aboration

O~NOOOOPM~WN

-Q0

Lower the optimization to a minimum with -OO0 (capital oh zero). Optional. Use thisto
work around bugs, increase your debugging visibility on a specific cell, or when you
want to place breakpoints on source lines that have been optimized out.

-pedanticerrors

Forces Model Sim to error (rather than warn) on two conditions: 1) when achoicein a
case statement isnot alocally static expression; 2) when an array aggregate with multiple
choices doesn’'t have alocally static "others' choice. Optional. This argument overrides
-nocasestaticerror and -noother sstaticerror (see above).

- per f or ndef aul t bi ndi ng

Enables default binding when it has been disabled viathe
RequireConfigFor AllDefaultBinding option in the modelsim.ini file. Optional.

- qui et

Disable 'loading' messages. Optional.

ModelSim Command Reference

vcom

-rangecheck
Enables run time range checking. Default. Range checking can be disabled using the
-norangecheck argument. See "Range and index checking" (um-51) for additional
information.

-refresh
Regeneratesalibrary image. Optional. By default, thework library isupdated; use -wor k
<library> to update adifferent library. See vcom "Examples' (CR-152) for more
information.

-S
Instructsthe compiler not to load the standar d package. Optional. Thisargument should
only be used if you are compiling the standard package itself.

-source
Displays the associated line of source code before each error message that is generated
during compilation. Optional; by default, only the error message is displayed.

-tine
Reports the "wall clock time" vcom takes to compile the design. Optional. Note that if
many processes are running on the same system, wall clock time may differ greatly from
the actual "cpu time" spent on vcom.

-version
Returns the version of the compiler as used by the licensing tools, such as"Model
Technology Model Sim SE vecom 5.5 Compiler 2000.01 Jan 29 2000".

-work <library_nane>
Specifies alogical name or pathname of alibrary that is to be mapped to the logical
library work. Optional; by default, the compiled design units are added to the work
library. The specified pathname overrides the pathname specified for work in the project
file

<fil ename>
Specifies the name of afile containing the VHDL source to be compiled. One filename
isrequired; multiple filenames can be entered separated by spaces or wildcards may be
used (e.g., *.vhd).

If no filenames are given, a dialog box pops up alowing you to graphically select the
options and enter afilename.

CR-151

ModelSim Command Reference

CR-152 Commands

Examples

vcom exanpl e. vhd
Compiles the VHDL source code contained in the file example.vhd.

vcom -87 o_unitsl.vhd o_units2.vhd
vcom -93 n_uni t91. vhd n_uni t92. vhd

Model Sim supports designs that use elements conforming to both the 1993 and the 1987
standards. Compile the design units separately using the appropriate switches.

Note that in the example above, the -87 switch on the first line is redundant since the
VVCOM default is to compile to the 1987 standard.

vcom - noaccel nuneric_std exanple.vhd
When compiling source that uses the numeric_std package, this command turns off
acceleration of the numeric_std package, located in the ieeelibrary.

vcom -explicit exanple.vhd

Although it is not obvious, the = operator is overloaded in the std_logic 1164 package.
All enumeration datatypesin VHDL get an “implicit” definition for the = operator. So
whilethereisno explicit = operator, thereisanimplicit one. Thisimplicit declaration can
be hidden by an explicit declaration of = in the same package (LRM Section 10.3).
However, if another version of the = operator is declared in adifferent package than that
containing the enumeration declaration, and both operators become visible through use
clauses, neither can be used without explicit naming.

ARI THVETI C.”=" (1 eft, right)

To eliminate that inconvenience, the VCOM command has the -explicit option that
allows the explicit = operator to hide the implicit one. Allowing the explicit declaration
to hide the implicit declaration is what most VHDL users expect.

vcom -work nylib -refresh
The -work option specifiesmylib as the library to regenerate. -r efr esh rebuilds the
library image without using source code, allowing model sdelivered as compiled libraries
without source code to be rebuilt for a specific release of ModelSim (4.6 and later only).

ModelSim Command Reference

vdel CR-153

vdel

The vdel command deletes a design unit from a specified library.

Syntax

vdel
[-help] [-verbose] [-lib <library_name>] [-all | <design_unit>
[<arch_name>]]

Arguments

-help
Displays the command’ s options and arguments. Optional.

-verbose

Displays progress messages. Optional.

-lib <library_name>
Specifiesthe logical name or pathname of the library that holds the design unit to be
deleted. Optional; by default, the design unit is deleted from the work library.

-al
Deletes an entire library. Optional. BE CAREFUL! Libraries cannot be recovered once
deleted, and you are not prompted for confirmation.

<desi gn_unit>
Specifiesthe entity, package, configuration, or moduleto be del eted. Required unless-all
is used.

<ar ch_nanme>
Specifies the name of an architecture to be deleted. Optional; if omitted, al of the
architecturesfor the specified entity are deleted. Invalid for a configuration or a package.

Examples

vdel -al
Deletesthework library.

vdel -lib synopsys -al

Deletes the synopsys library.

vdel xor
Deletes the entity named xor and al its architectures from the work library.

vdel xor behavior
Deletes the architecture named behavior of the entity xor from the work library.

vdel base
Deletes the package named base from the work library.

ModelSim Command Reference

CR-154 Commands

vdir

The vdir command selectively lists the contents of a design library.

This command can also be used to check compatibility of avendor library. If vdir cannot
read a vendor-supplied library, the library may not be Model Sim compatible.

Syntax

vdir
[-help] [-1] [-r] [-1ib <library_name>] [<design_unit>]

Arguments

-help
Displays the command’ s options and arguments. Optional.

-1
Prints the version of vcom or vlog that each design unit was compiled under. Also prints
the object-code version number that indicates which versions of vcom/vlog and
ModelSim are compatible. This example was printed by vdir -l for the counter module
inthework library:

MODULE count er

Verilog Version: OzO ZAVI Rlj O, >KYTg2kY2

Source directory: ..\exanples\projects\n xed

Source nodified time: 944001078

Source file: ../exanples/projects/verilog/counter.v
Opcode format: 5.4 Beta 4; VLOG EE (bject version 17
Ver si on nunber: e:VGh7zF_VIYNOMEXUG 3

Optim zed Verilog design root: 1

Language standard: 1

I+

H OH O O OH R OB R

-r
Prints architecture information for each entity in the output.

-lib <library_name>
Specifies the logical name or the pathname of the library to be listed. Optional. By
default, the contents of the work library arelisted.

<desi gn_unit>
Indicates the design unit to search for within the specified library. If the design unitisa
VHDL entity, its architectures are listed. Optional. By default, all entities,
configurations, modules, and packages in the specified library are listed.

Example
vdir -lib design ny_asic

Lists the architectures associated with the entity named my_asic that residein the HDL
design library called design.

ModelSim Command Reference

verror

Syntax

Arguments

Example

verror

The verror command prints a detailed description about a message number. It may also
point to additional documentation related to the error.

verror
<msgNune. . .

<nsgNunp
Specifies the message number of aModel Sim message. Required. This number can be
obtained from messages that have the format:

** <|_evel>: ([<Tool>-[<Group>-]]<MsgNum>) <FormattedM sg>

Say you see the following message in the transcript:

** Error (vsim3601) foo.v(22): Too nany Veril og port connections

Y ou would type:

verror 3061

and receive the following outpuit:

Message # 3061:
Too many Verilog ports were specified in a nmxed VHDL/ Veril og i nstantiati on
Verify that the correct VHDL/ Verilog connection is being made and that the

nunber of ports matches

[DOC: Mbdel Sim User’s Manual - M xed VHDL and Veril og Designs Chapter]

CR-155

ModelSim Command Reference

CR-156 Commands

vgencomp

Once aVerilog moduleiscompiled into alibrary, you can use the vgencomp command to
write its equivalent VHDL component declaration to standard output. Optional switches
allow you to generate bit or vl_logic port types; std_logic port types are generated by
default.

Syntax

vgenconp
[-help] [-lib <library_nane>] [-b] [-s] [-v] <nodul e_name>

Arguments

-help
Displays the command’ s options and arguments. Optional.

-lib <library_name>
Specifies the pathname of the working library. If not specified, the default library work
isused. Optional.

-b
Causes vgencomp to generate bit port types. Optional.

-s
Used for the explicit declaration of default std_logic port types. Optional.

-V
Causes vgencomp to generate vl_logic port types. Optional.

<nmodul e_nane>

Specifies the name of the Verilog module to be accessed. Required.

Examples

This example uses a Verilog module that is compiled into the work library. The module
begins as Verilog source code:

nodul e top(il, ol, 02, iol);
paranmeter width = 8;
paraneter delay = 4.5;
parameter filename = "file.in";

input i1;

output [7:0] o1l;

output [4:7] 02;

inout [width-1:0] iol;
endnodul e

After compiling, vgencomp isinvoked on the compiled module;

vgenconp top

and writes the following to stdout:

conponent top

generi c(

ModelSim Command Reference

wi dt h

del ay

filenane

)

port (

il

ol

02

iol

)

end conponent;

vgencomp CR-157

integer := 8;

real = 4.500000;
string := "file.in"
in std_| ogic;

out std_l ogic_vector (7 downto 0);
out std_logic_vector(4 to 7);
i nout std_l ogi c_vector

ModelSim Command Reference

CR-158 Commands

view
The view command will open a Model Sim window and bring that window to the front of
the display.
To remove awindow, use the noview command (CR-96).
Syntax
Vi ew
[*] [-height <n>] [-icon] [-title {NewWndow Title} <wi ndow_ type>] [-wi dth
<n>] [-x <n>] [-y <n>] <wi ndow_ type>...
Arguments

Specifies that all windows be opened. Optional.

-hei ght <n>
Specifies the window height in pixels. Optional.

-icon
Toggles the view between window and icon. Optional .

-title {New Wndow Title} <w ndow_type>
Specifies the window title of the designated window. Curly braces are only needed for
titles that include spaces. Double quotes can be used in place of braces, for example
"New Window Title". If the new window title does not include spaces, no braces or
guotes are needed. For example: -title new_wave wave assigns the title new_wave to the
Wave window.

-wi dth <n>
Specifies the window width in pixels. Optional.

<wi ndow_t ype>. ..
Specifiesthe Model Sim window type to view. Required. Y ou do no need to type the full
type (see examples below); implicit wildcards are accepted; multiple window types may
be used. Available window types are:

dataflow, list, process, signals, source, structure, variables, wave

-X <n>

Specifies the window upper-left-hand x-coordinate in pixels. Optional.

-y <n>

Specifies the window upper-left-hand y-coordinate in pixels. Optional.

ModelSim Command Reference

Examples

See also

view d
Opens the Dataflow window.

view si pr
Opens the Signals and Process windows.

view s
Opens the Signals, Source, and Structure windows.

view -title {M/ Wave W ndow} wave

Opens a new wave window with My Wave Window asiitstitle.

noview (CR-96)

view CR-159

ModelSim Command Reference

CR-160 Commands

virtual count

Thevirtual count command counts the number of currently defined virtuals that were not
read in using amacro file.
Syntax

virtual count
[-kind <kind>]

Arguments

-kind <ki nd>
Specifies asubset of virtualsto look at. Optional. <kind> can be any of the following:
signals, functions, designs, implicits, and explicits. Unique abbreviations are accepted.

-unsaved
Specifies that the count include only those virtuals that have not been saved. Optional.

See also

virtual define (CR-161), virtual save (CR-175), virtual show (CR-176), "Virtua Objects
(User-defined buses, and more)" (UM-133)

ModelSim Command Reference

virtual define

virtual define

Syntax

Arguments

Examples

See also

Thevirtual define command prints to the Main window the definition of the virtual signal
or function in the form of a command that can be used to re-create the object.

virtual define
[-kind <kind>] <pathname>

-kind <ki nd>
Specifies asubset of virtualsto look at. Optional. <kind> can be any of the following:
signals, functions, designs, implicits, and explicits. Unique abbreviations are accepted.

<pat hname>
Specifies the path to the virtual (s) for which you want definitions. Required. Wildcards
can be used.

virtual define -kind explicits *
Shows the definitions of all the virtuals you have explicitly created.

virtual describe (CR-163), virtual show (CR-176), "Virtual Objects (User-defined buses,
and more)" (UM-133)

CR-161

ModelSim Command Reference

CR-162 Commands

virtual delete

The virtual delete command removes the matching virtuals.

Syntax
virtual delete
[-kind <kind>] <pathname>
Arguments
-kind <kind>
Specifies asubset of virtualsto look at. Optional. <kind> can be any of the following:
signals, functions, designs, implicits, and explicits. Unique abbreviations are accepted.
<pat hnanme>
Specifies the path to the virtual (s) you want to delete. Required. Wildcards can be used.
Examples
virtual delete -kind explicits *
Deletes all of the virtuals you have explicitly created.
See also

virtual signal (CR-177), virtual function (CR-165), "Virtual Objects (User-defined buses,
and more)" (UM-133)

ModelSim Command Reference

virtual describe

virtual describe

Syntax

Arguments

Examples

See also

The virtual describe command prints to the Main window a complete description of the
data type of one or more virtual signals. Similar to the existing describe command.

virtual describe
[-kind <kind>] <pathname>

-kind <ki nd>
Specifies asubset of virtualsto look at. Optional. <kind> can be any of the following:
signals, functions, designs, implicits, and explicits. Unique abbreviations are accepted.

<pat hname>
Specifiesthe path to the virtual (s) for which you want descriptions. Required. Wildcards
can be used.

virtual describe -kind explicits *
Describes the data type of all virtuals you have explicitly created.

virtual define (Cr-161), virtual show (CR-176), "Virtual Objects (User-defined buses, and
more)" (UM-133)

CR-163

ModelSim Command Reference

CR-164 Commands

virtual expand

Thevirtual expand command producesalist of al the non-virtual objects contained inthe
specified virtual signal(s). Thiscan be used to create alist of argumentsfor acommand that
does not accept or understand virtual signals.

Syntax

virtual expand
[- base] <pat hname>

Arguments

- base
Causes the root signal parent to be output in place of a subelement. Optional. For
example:

vcd add [virtual expand -base nyVirtual Signal]
the resulting command after substitution would be;
vcd add signala signalb signalc

<pat hnanme>
Specifies the path to the signals and virtual signals to expand. Required. Wildcards can
be used. Any number of paths can be specified.

Examples

vcd add [virtual expand nyVirtual Signal]
Adds the elements of avirtual signa to the VCD file.

In the Tcl language, the square brackets specify that the enclosed command should be
executed first ("virtual expand ..."), then the result substituted into the surrounding
command. Soif myVirtual Signal isaconcatenation of signala, signalb.rec1 and signalc(5
downto 3), the resulting command after substitution would be:

vcd add signala signalb.recl {signalc(5 downto 3)}

The dlice of signalc is quoted in curly braces, because it contains spaces.

See also
virtual signal (CR-177), "Virtual Objects (User-defined buses, and more)" (UM-133)

ModelSim Command Reference

virtual function

virtual function

Syntax

Arguments

The virtual function command creates a new signal, known only by the GUI (not the
kernel), that consists of logical operations on existing signals and simulation time, as
described in <expressionString>. It cannot handle bit selects and slices of Verilog
registers. Please see "Syntax and conventions' (CR-5) for more details on syntax.

If the virtual function references more than asingle scalar signal, it will display asan
expandable object in the Wave and Signalswindows. The children correspond to the inputs
of the virtua function. This allows the function to be "expanded” in the Wave window to
see the values of each of the input waveforms, which could be useful when using virtual
functions to compare two signal values.

Virtual functions can also be used to gate the List window display.

virtual function
[-env <path>] [-install <path>] [-inplicit] [-delay <tinme>]
{<expressionString>} <nane>

Argumentsfor virtual function are the same as those for virtual signal, except for the
contents of the expression string.

-env <pat h>
Specifiesahierarchical context for the signal namesin <expr essionString> so they don't
all have to be full paths. Optional.

-install <path>
Causes the newly-created signal to become a child of the specified region. If -install is
not specified, the newly-created signal becomes a child of the nearest common ancestor
of all objects appearing in <expressionString>. If the expression references more than
one WLF file (dataset), the virtual signal will automatically be placed in region
virtuals:/Functions. Optional.

-inplicit
Used internally to create virtuals that are automatically saved with the List or Wave
format. Optional.

-delay <tine>
Specifies avalue by which the virtual function will be delayed. Optional. Y ou can use
negative valuesto look forward in time. If units are specified, the <time> option must be
enclosed in curly braces. See the examples below for more details.

{<expressionString>}
A text string expression in the MT1 GUI expression format. Required. See
"GUI_expression_format" (CR-15) for more information.

<nane>
The name you define for the virtual signal. Required. Caseisignored unlessinstalled in
aVerilog region. Use alpha, numeric, and underscore characters only, unless you are
using VHDL extended identifier notation. If using VHDL extended identifier notation,
<name> needs to be quoted with double quotes or with curly braces.

CR-165

ModelSim Command Reference

CR-166 Commands

Examples

virtual function { not /chip/sectionl/clk } clk_n
Creates asignal /chip/section1/clk_n that isthe inverse of /chip/sectionl/clk.

virtual function -install /chip { (std_logic_vector) chip.vlog.rega }
rega_slv

Createsastd logic_vector equivalent of averilog register rega and installs it as/chip/
rega sv.

virtual function { /chip/addr[11:0] == Oxfab } addr_eq_fab
Creates a boolean signal /chip/addr_eq fab that is true when /chip/addr[11:0] is equal
to hex "fab", and false otherwise. It is acceptable to mix VHDL signal path notation with
Verilog part-select notation.

virtual function { gate:/chip/siga XOR rtl:/chip/siga) } siga diff
Creates asignal that is high only during times when signal /chip/siga of the gate-level
version of the design does not match /chip/siga of the rtl version of the design. Because
there is no common design region for the inputs to the expression, siga_diff isinstalled
in region virtuals./Functions. The virtual function siga_diff can be added to the Wave
window, and when expanded will show the two original signalsthat are being compared.

virtual function -delay {10 ns} {/top/signal A AND /top/signal B} nmyDel ayAandB
Creates avirtual signal consisting of thelogical "AND" function of /top/signal A with
[top/signal B, and delaysit by 10 ns.

virtual function { | (gate:/chip/outbus XOR rtl:/chip/outbus) } outbus_diff
Createsaone-bit signal outbus_diff whichisnon-zero during timeswhen any bit of /chip/
outbus in the gate-level version doesn’t match the corresponding bit in the rtl version.

This expression uses the "OR-reduction” operator, which takes the logical OR of all the
bits of the vector argument.

Commands fully compatible with virtual functions

add dataflow (CR-31)

add log /log (CR-87) add wave (CR-35)

delete (CR-65)

describe (CR-66) ("virtual describe" isa | examine (CR-75)
little faster)

find (CR-79)

restart (CR-111) searchlog (CR-116)

show (CR-119)

Commands not

currently compatible with virtual functions

drivers (CR-69)

force (CR-82) noforce (CR-92)

ved add (CR-128)

when (CR-208)

ModelSim Command Reference

See also

virtual function CR-167

virtual count (CR-160)

virtual define (CR-161)

virtual delete (CR-162)

virtual describe (CR-163)

virtual expand (CR-164)

virtual hide (CR-168)

virtual log (CR-169)

virtual nohide (CR-171)

virtual nolog (CR-172)

virtual region (CR-174)

virtual save (CR-175)

virtual show (CR-176)

virtual signal (CR-177)

virtual type (CR-180)

Virtual Objects (User-defined
buses, and more) (UM-133)

ModelSim Command Reference

CR-168 Commands

virtual hide

The virtual hide command sets a flag in the specified real or virtual signals, so those
signals do not appear in the Signals window. Thisis used when you want to replace an

expanded bus with a user-defined bus. Y ou make the signal's reappear using the virtual
nohide command.

Syntax
virtual hide
[-kind <kind>]|[-region <path>] <pattern>
Arguments
-kind <kind>
Specifies asubset of virtualsto look at. Optional. <kind> can be any of the following:
signals, functions, designs, implicits, and explicits. Unique abbreviations are accepted.
-regi on <path>
Used in place of -kind to specify aregion of design space in which to look for the signal
names. Optional.
<pattern>
Indicates which signal names or wildcard patterns should be used in finding the signals
to hide. Required. Any number of names or wildcard patterns may be used.
See also

virtual nohide (Cr-171), "Virtual Objects (User-defined buses, and more)" (Um-133)

ModelSim Command Reference

virtual log

virtual log
The virtual log command causes the simulation-mode dependent signal's of the specified
virtual signalsto belogged by the kernel. If wildcard patterns are used, it will also log any
normal signals found, unless the -only option is used. Y ou unlog the signals using the
virtual nolog command.
Syntax
virtual |og
[-kind <kind>]|[-region <path>] [-recursive] [-only] [-in] [-out] [-inout]
[-internal] [-ports] <pattern>
Arguments
-kind <kind>

Specifies asubset of virtualsto look at. Optional. <kind> can be any of the following:
signals, functions, designs, implicits, and explicits. Unique abbreviations are accepted.

-regi on <path>
Used in place of -kind to specify aregion of design space in which to look for signalsto
log. Optional.

-recursive
Specifiesthat the scope of the search isto descend recursively into subregions. Optional .
If omitted, the search is limited to the selected region.

-only
Can be used with awildcard to specify that only virtual signals (as opposedto all signals)
found by the wildcard should be logged. Optional.

-in
Specifies that the kernal 1og data for ports of mode IN whose names match the
specification. Optional.

- out
Specifies that the kernel 1og data for ports of mode OUT whose names match the
specification. Optional.

-inout
Specifies that the kernel 1og data for ports of mode INOUT whose names match the
specification. Optional.

-interna
Specifiesthat the kernel log datafor internal itemswhose names match the specification.
Optional.

-ports

Specifies that the kernel log data for all ports. Optional.

<pattern>
Indicates which signal names or wildcard patterns should be used in finding the signals
to log. Required. Any number of names or wildcard patterns may be used.

CR-169

ModelSim Command Reference

CR-170 Commands

See also

virtual nolog (CR-172), "Virtual Objects (User-defined buses, and more)" (UM-133)

ModelSim Command Reference

virtual nohide

virtual nohide

The virtual nohide command reverses the effect of avirtual hide command. It resets the
flag in the specified real or virtual signals, so those signals reappear in the Signals window.

Syntax
virtual nohide
[-kind <kind>]|[-region <path>] <pattern>
Arguments

-kind <ki nd>
Specifies asubset of virtualsto look at. Optional. <kind> can be any of the following:
signals, functions, designs, implicits, and explicits. Unique abbreviations are accepted.

-regi on <path>
Used in place of -kind to specify aregion of design space in which to look for the signal
names. Optional.

<pattern>
Indicates which signal names or wildcard patterns should be used in finding the signals
to expose. Required. Any number of names or wildcard patterns may be used.
See also

virtual hide (Cr-168), "Virtual Objects (User-defined buses, and more)" (UM-133)

CR-171

ModelSim Command Reference

CR-172 Commands

virtual nolog

Syntax

Arguments

The virtual nolog command reverses the effect of avirtual log command. It causes the
simulation-dependent signals of the specified virtual signalsto be excluded ("unlogged")
by the kernel. If wildcard patterns are used, it will also unlog any normal signals found,
unless the -only option is used.

virtual nol og

[-kind <kind>]|[-region <path>] [-recursive] [-only] [-in] [-out] [-inout]
[-internal] [-ports] <pattern>
-kind <kind>

Specifies asubset of virtualsto look at. Optional. <kind> can be any of the following:
signals, functions, designs, implicits, and explicits. Unique abbreviations are accepted.

-regi on <path>
Used in place of -kind to specify aregion of design space in which to look for signalsto
unlog. Optional.

-recursive
Specifiesthat the scope of the search isto descend recursively into subregions. Optional .
If omitted, the search is limited to the selected region.

-only
Can be used with awildcard to specify that only virtual signals (asopposed to all signals)
found by the wildcard should be unlogged. Optional.

-in
Specifies that the kernel exclude datafor ports of mode IN whose names match the
specification. Optional.

-out
Specifies that the kernel exclude data for ports of mode OUT whose names match the
specification. Optional.

-inout
Specifiesthat the kernel exclude datafor ports of mode INOUT whose names match the
specification. Optional.

-interna
Specifies that the kernel exclude data for internal items whose names match the
specification. Optional.

-ports
Specifies that the kernel exclude datafor al ports. Optional.

<pattern>
Indicates which signal names or wildcard pattern should be used in finding the signalsto
unlog. Reguired. Any number of names or wildcard patterns may be used.

ModelSim Command Reference

virtual nolog CR-173

See also

virtual log (CR-169), "Virtual Objects (User-defined buses, and more)" (UM-133)

ModelSim Command Reference

CR-174 Commands

virtual region

The virtual region command creates a new user-defined design hierarchy region.

Syntax
virtual region
<par ent Pat h> <r egi onNanme>
Arguments
<par ent Pat h>
The full path to the region that will become the parent of the new region. Required.
<r egi onNanme>
The name you want for the new region. Required.
See also

virtual function (CR-165), virtual signal (CR-177), "Virtual Objects (User-defined buses,
and more)" (UM-133)

P Note: Virtual regions cannot be used in the when (CR-208) command.

ModelSim Command Reference

virtual save

virtual save

The virtual save command saves the definitions of virtualsto afile.

Syntax
virtual save
[-kind <kind>] [-append] [<filenanme>]
Arguments
-kind <kind>
Specifies asubset of virtualsto look at. Optional. <kind> can be any of the following:
signals, functions, designs, implicits, and explicits. Unique abbreviations are accepted.
- append
Specifiesto save only virtualsthat are not already saved or weren't read in from amacro
file. These unsaved virtuals are then appended to the specified or default file. Optional.
<fil ename>
Used for writing the virtual definitions. Optional. If you don’'t specify <filename>, the
default virtual filename (virtuals.do) will be used. Y ou can specify adifferent default in
the pref.tcl file.
See also

virtual count (Cr-160), "Virtual Objects (User-defined buses, and more)" (UM-133)

CR-175

ModelSim Command Reference

CR-176 Commands

virtual show

The virtual show command lists the full path names of al explicitly defined virtuals.

Syntax
virtual show
[-kind <kind>]
Arguments
-kind <ki nd>
Specifies asubset of virtualsto look at. Optional. <kind> can be any of the following:
signals, functions, designs, implicits, and explicits. Unique abbreviations are accepted.
See also

virtual define (CR-161), virtual describe (CR-163), "Virtual Objects (User-defined buses,
and more)" (UM-133)

ModelSim Command Reference

virtual signal

virtual signal

Syntax

Arguments

Thevirtual signal command createsanew signal, known only by the GUI (not the kernel),
that consists of concatenations of signals and subelements as specified in
<expressionString>. It cannot handle bit selects and slices of Verilog registers. Please see
"Syntax and conventions' (CR-5) for more details on syntax.

virtual signa
[-env <path>] [-install <path>] [-inplicit] [-delay <tinme>]
{<expressionString>} <nane>

-env <pat h>
Specifies ahierarchical context for the signal namesin <expressionString>, so they
don't all have to be full paths. Optional.

-install <path>
Causes the newly-created signal to become a child of the specified region. If -install is
not specified, the newly-created signal becomes a child of the nearest common ancestor
of all objects appearing in <expressionString>. If the expression references more than
one WLF file (dataset), the virtual signal will automatically be placed in region virtuas:/
Signals. Optional.

-inplicit
Used internally to create virtuals that are automatically saved with the List or Wave
format. Optional.

-delay <tine>
Specifies avalue by which the virtual signa will be delayed. Optional. Y ou can use
negative valuesto look forward in time. If units are specified, the <time> option must be
enclosed in curly braces. See the examples below for more details.

{<expressionString>}
A text string expression in the MTI GUI expression format that defines the signal and
subelement concatenation. Can also be aliteral constant or computed subexpression.
Required. For details on syntax, please see " Syntax and conventions’ (CR-5).

<nane>
The name you define for the virtual signal. Required. Caseisignored unlessinstalled in
aVerilog region. Use alpha, numeric, and underscore characters only, unless you are
using VHDL extended identifier notation. If using VHDL extended identifier notation,
<name> needs to be quoted with double quotes or with curly braces.

CR-177

ModelSim Command Reference

CR-178 Commands

Examples

virtual signal -env sim/chip/alu { (concat_range (4 downto 0))(a_04 & a_03
& a_02 & a_01 &a_00) } a

Reconstructs a bus sim:/chip/alu/a(4 downto 0), using VHDL notation, assuming that
a ii arescalarsall of the same type.

virtual signal -env simchip.alu { (concat_range [4:0])& a_04, a_03, a_02
a_01, a_ 00} } a

Reconstructs a bus sim:chip.alu.a[4:0], using Verilog notation. Note that the
concatenation notation starts with "&{" rather than "{".

virtual signal -install sim/testbench { /chipa/alu/a(19 dowmto 13) &
/ chi pa/ decode/inst & /chipa/mde } stuff

Creates asignal sim:/testbench/stuff which isarecord type with three fields
corresponding to the three specified signals. The exampl e assumes/chipa/modeisof type
integer, /chipa/alu/aisof typestd _logic_vector, and /chipa/decode/inst is a user-defined
enumeration.

virtual signal -delay {10 ps} {/top/signal A} nyDel ayedSi gnal A
Createsavirtual signal that is the same as/top/signal A except it is delayed by 10 ps.

virtual signal { chip.instruction[23:21] } address_npde
Creates athree-bit signal, chip.address_mode, as an dlias to the specified bits.

virtual signal {a &b & ¢ & 3'b000} nyextendedbus
Concatenates signals a, b, and ¢ with the literal constant '000’.

virtual signal {num & "000"} fullbus
add wave -unsigned full bus

Addsthree missing bitsto the bus num, creates avirtual signal fullbus, and then addsthat
signal to the wave window.

virtual signal { nun8l & nunB0 & nunR9 & ... & nun¥ & nunB & "000" } fullbus
add wave -unsigned full bus

Reconstructs a bus that was fragmented by synthesis and is missing the lower three bits.
Note that you would have to type in the actual bit names (i.e. num28, num27, etc.)
represented by the ... in the syntax above.

virtual signal {(aold == anew) & (bold == bnew)} nyequalityvector
Creates atwo-bit signal (with an enumerated type) based on the results of the
subexpressions. For example, if aold equals anew, then the first bit istrue (1).
Alternatively, if bold does not equal ¢, the second bit isfalse (0). Each subexpressionis
evaluated independently.

ModelSim Command Reference

Commands fully compatible with virtual signals

virtual signal

add list (CR-32)

add log / log (CR-87)

add wave (CR-35)

delete (CR-65)

describe (CR-66) ("virtual describe"
isalittle faster)

examine (CR-75)

find (CR-79)

force (CR-82)/noforce (CR-92)

restart (CR-111)

searchlog (CR-116)

show (CR-119)

Commands compatible with virtual signals using [virtual expand <signal>]

drivers (CR-69)

ved add (CR-128)

Commands not currently compatible with virtual signals

when (CR-208)

See also

virtual count (CR-160)

virtual define (CR-161)

virtual delete (CR-162)

virtual describe (CR-163)

virtual expand (CR-164)

virtual function (CR-165)

virtual hide (CR-168)

virtual log (CR-169)

virtual nohide (CR-171)

virtual nolog (CR-172)

virtual region (CR-174)

virtual save (CR-175)

virtual show (CR-176)

virtual type (CR-180)

Virtual Objects (User-defined
buses, and more) (UM-133)

CR-179

ModelSim Command Reference

CR-180 Commands

virtual type

Thevirtual type command creates anew enumerated type, known only by the GUI, not the
kernel. Virtual types are used to convert signal values to character strings. The command
works with signed integer values up to 64 bits.

Syntax

virtual type
[-delete <nane>] {<list_of_strings>} <name>

Arguments

-del ete <nane>
Deletes aprevioudly defined virtual type. <name> is the name you gave the virtual type
when you originally defined it. Optional.

{<l'ist_of _strings>}
A list of valuesand their associated character strings. Required. V alues can be expressed
in decimal or based notation. Three kinds of based notation are supported: Verilog,
VHDL, and C-language styles. The values are interpreted without regard to the size of
the bus to be mapped. Bus widths up to 64 bits are supported.

Thereis currently no restriction on the contents of each string, but if strings contain
spaces they would need to be quoted, and if they contain characters treated specially by
Tcl (square brackets, curly braces, backslashes...), they would need to be quoted with
curly braces.

See the examples below for further syntax.

<nane>
The user-defined name of the virtual type. Required. Caseis not ignored. Use apha,
numeric, and underscore charactersonly, unlessyou are using VHDL extended identifier
notation. If using VHDL extended identifier notation, <name> needs to be quoted with
double quotes or with curly braces.

Examples

virtual type {stateO statel state2 state3} nystateType

virtual function {(nmystateType)nysignal} nyConvertedSi gnal

add wave nyConvert edSi gnal
Using positional notation, associates each string with an enumeration index, starting at
zero and increasing by onein the positive direction.When myConvertedSignal is
displayed in the Wave, List or Signals window, the string "state0" will appear when
mysignal == 0, "statel" when mysignal == 1, "state2" when
mysignal == 2, etc.

ModelSim Command Reference

See also

virtual type

virtual type {{O NULL_STATE} {1 st1} {2 st2} {0x04 st3} {16'h08 st4} \
{’h10 st5} {16#20 st6} {0b01000000 st7} {0x80 st8} \
{default BAD STATE}} nyMappedType
virtual function {(myMappedType)mybus} myConvertedBus
add wave nyConvert edBus
Uses sparse mapping of bus values to alphanumeric strings for an 8-hit, one-hot
encoding. It showsthe variety of syntax that can be used for values. The value "default"
has special meaning and corresponds to any value not explicitly specified.

virtual type -delete nmystateType
Deletes the virtual type "mystateType".

virtual function (CRr-165), "Virtual Objects (User-defined buses, and more)" (UM-133)

P Note: Virtual types cannot be used in the when (CR-208) command.

CR-181

ModelSim Command Reference

CR-182 Commands

vlib

Thevlib command createsadesign library. Y ou must use vlib rather than operating system
commands to create alibrary directory or index file. If the specified library already exists
asavalid ModelSim library, the vlib command will exit with awarning message without
touching the library.

Syntax
vlib
[-archive [-conmpact <percent>]] [-help] [-dos | -short | -unix | -long]
<nane>
Arguments
-archive [-conpact <percent>]
Causes design units that are compiled into the created library to be stored in archives
rather than in subdirectories. Optional. See"Archives' (UM-39) for more details.
Y ou may optionally specify adecimal number between 0 and 1 that denotes the allowed
percentage of wasted space before archives are compacted. By default archives are
compacted when 50% (.5) of their space is wasted. See an example below.
-help
Displays the command’ s options and arguments. Optional.
-dos
Specifies that subdirectoriesin alibrary have names that are compatible with DOS. Not
recommended if you use the vmake (CR-189) utility. Optional.
-short
Interchangeable with the -dos argument. Optional.
- uni x
Specifies that subdirectoriesin alibrary may have long file names that are NOT
compatible with DOS. Optional. Default for ModelSim SE.
-1 ong
Interchangeabl e with the -unix argument. Optional.
<nane>
Specifies the pathname or archive name of the library to be created. Required.
Examples

vlib design
Createsthe design library design. Y ou can define alogical name for thelibrary using the
vmap command (CR-191) or by adding alineto thelibrary section of the modelsim.ini file
that is located in the same directory.

vlib -archive -compact .3 uut
Creates the design library uut and specifies that any design units compiled in to the
library are created as archives. Also specifiesthat each archive be compacted when 30%
of the its space is wasted.

ModelSim Command Reference

viog

Syntax

Arguments

vlog CR-183

Thevlog command isused to invoke VLOG, the Model Technology Verilog compiler. Use
vlog to compileVerilog source code into aspecified working library (or to thework library
by default).

vlog may be invoked from within Model Sim or from the operating system command
prompt. It may also beinvoked during simulation.

Compiled libraries are version dependent. For example you cannot use alibrary compiled
with 5.5 in asimulation using 5.6 vsim.

vl og
[-93] [-help] [-conpat] [-conpile_uselibs[=<directory_name>]]
[+def i ne+<macr o_nane>[=<macro_t ext >]] [+del ay_npde_di stri but ed]
[+del ay_node_pat h] [+del ay_node_unit] [+del ay_node_zero] [-f <fil ename>]
[-hazards] [+incdir+<directory>] [-incr] [+libext+<suffix>] [+librescan]
[-line <nunmber>] [-lint] [+maxdel ays] [+m ndel ays] [-noincr] [+nolibcell]
[-nol ogo] [+nospecify] [+notim ngchecks] [+nowarn<CODE>] [-Q0] [-quiet] [-
R [<simargs>]] [-refresh] [-source] [-tine] [+typdelays] [-u] [-Vv
<library_file>] [-version] [-vlog95conpat] [-work <library_nanme>]
[-y <library_directory>] <filenane>

-93
Specifies that the VHDL interface to Verilog modules use VHDL 1076-1993 extended
identifiersto preserve case in Verilog identifiers that contain uppercase |etters.

-help
Displays the command’ s options and arguments. Optional.

- conpat
Disables optimizations that result in different event ordering than Verilog-XL. Optional.

ModelSim Verilog generally duplicates Verilog-XL event ordering, but there are cases
where it isinefficient to do so. Using this option does not help you find event order
dependencies, but it allows you to ignore them. Keep in mind that this option does not
account for all event order discrepancies, and that using this option may degrade
performance. See"Event orderingin Verilog designs' (um-80) for additional information.

-conpi |l e_usel i bs[=<di rect ory_nane>]
L ocates source files specified in a‘ uselib directive (see "Verilog-XL “uselib compiler
directive' (Um-75)), compilesthose filesinto automatically created libraries, and updates
the modelsim.ini file with the logical mappings to the new libraries. Optional. If a
directory_nameis not specified, Model Sim uses the name specified in the
MTI_USELIB_DIR environment variable. If that variable is not set, Model Sim creates
the directory mti_uselibs in the current working directory.

+def i ne+<nmacr o_nane>[=<nmcr o_t ext >]
Allows you to define a macro from the command line that is equivalent to the following
compiler directive:

‘define <macro_nanme> <macro_text>

ModelSim Command Reference

CR-184

Commands

Optional. Multiple +define options are allowed on the command line. A command line
macro overrides a macro of the same name defined with the ‘ define compiler directive.

+del ay_node_di stri but ed
Disables path delaysin favor of distributed delays. Optional. See"Delay modes' (UM-88)
for details.

+del ay_node_pat h
Setsdistributed delaysto zero infavor of using path delays. Optional. See"Delay modes”
(UM-88) for details.

+del ay_node_uni t
Sets path delays to zero and non-zero distributed delays to one time unit. Optional. See
"Delay modes' (UM-88) for details.

+del ay_node_zero
Sets path delays and distributed delaysto zero. Optional. See "Delay modes' (UM-88) for
details.

-f <fil ename>
Specifies afile with more command line arguments. Optional. Allows complex
arguments to be reused without retyping. Nesting of -f optionsis alowed. Environment
variable expansion (for example in a pathname) does not occur in -f files.

-hazards
Detects event order hazards involving simultaneous reading and writing of the same
register in concurrently executing processes. Optional. Y ou must aso specify this
argument when you simulate the design with vsim (CR-192). See "Hazard detection" (UM-
83) for more details.

A mportant: Enabling -hazardsimplicitly enables the -compat argument. As aresult,
using this argument may affect your simulation resullts.

+i ncdi r +<di rectory>
Specifies directories to search for files included with ‘include compiler directives.
Optional. By default, the current directory is searched first and then the directories
specified by the +incdir optionsin the order they appear on the command line. Y ou may
specify multiple +incdir options as well as multiple directories separated by "+" ina
single +incdir option.

-l ncr
Performs an incremental compile. Optional. Compiles only code that has changed. For
example, if you change only one module in afile containing several modules, only the
changed module will be recompiled. Note however that if the compile options change,
all modules are recompiled regardiessif you use -incr or not. May be used with -fast.

+l i bext +<suf fi x>
Worksin conjunction with the-y option. Specifiesfile extensionsfor thefilesin asource
library directory. Optional. By default the compiler searchesfor fileswithout extensions.
If you specify the +libext option, then the compiler will search for afile with the suffix
appended to an unresolved name. Y ou may specify only one +libext option, but it may
contain multiple suffixes separated by "+". The extensions are tried in the order they
appear in the +libext option.

ModelSim Command Reference

vlog

+l i brescan
Scans libraries in command-line order for all unresolved modules. Optional.

-line <nunber>
Starts the compiler on the specified line in the Verilog source file. Optional. By defaullt,
the compiler starts at the beginning of thefile.

-lint
Instructs Model Sim to perform three lint-style checks: 1) warn when Module ports are
NULL; 2) warn when assigning to an input port; 3) warn when referencing undeclared
variables/netsin an instantiation. The warnings are reported asWARNINGI[8]. Can also
be enabled using the Show_Lint variable in the modelsim.ini file.

+maxdel ays
Selects maximum delays from the "min:typ:max" expressions. Optional. If preferred,
you can defer delay selection until simulation time by specifying the same option to the
simulator.

+m ndel ays
Sel ects minimum delaysfrom the "min:typ:max" expressions. Optional. If preferred, you
can defer delay selection until simulation time by specifying the same option to the
simulator.

- noi ncr
Disablesincremental compile previously turned on with -incr. Optional.

+nol i bcel
By default all modules compiled from asourcelibrary are treated as though they contain
a‘celldefine compiler directive. This option disables this default. The ‘ celldefine
directive only affectsthe PLI accessroutines acc_next_cell and acc_next_cell _load.
Optional.

- nol ogo
Disables the startup banner. Optional.

+nospeci fy

Disables specify path delays and timing checks. Optional.

+not i m ngchecks
Removes all timing check entries from the design asiit is parsed. Optional.

+nowar n<CODE>
Disables warning messages in the category specified by <CODE>. Optional. Warnings
that can be disabled include the <CODE> name in square brackets in the warning
message. For example,

** WARNI NG (vsim3017) test.v(2): [TFMPC] - Too few port connections
Expected <mp, found <n>

This warning message can be disabled with the +nowarnTFM PC option.

-0
Lower the optimization to a minimum with -O0 (capital oh zero). Optional. Use thisto
work around bugs, increase your debugging visibility on a specific cell, or when you
want to place breakpoints on source lines that have been optimized out.

- qui et

Disables loading’ messages. Optional.

CR-185

ModelSim Command Reference

CR-186 Commands

-R [<si margs>]
Instructsthe compiler to invoke the ssimulator (vsim (CR-192)) after compiling the design.
The compiler automatically determineswhich top-level modulesareto besimulated. The
command line arguments following -R are passed to the simulator, not the compiler.
Place the -R option at the end of the command line or terminate the simulator command
line arguments with asingle"-" character to differentiate them from compiler command
line arguments.

The -R option isnot a Verilog-XL option, but it is used by Model Sim to combine the
compile and simulate phases together as you may be used to doing with Verilog-XL. It
is not recommended that you regularly use this option because you will incur the
unnecessary overhead of compiling your design for each simulation run. Mainly, itis
provided to ease the transition to Model Sim.

-refresh
Regeneratesalibrary image. Optional. By default, thework library isupdated; use -wor k
<library_name> to update a different library. See vlog examples for more information.

-source
Displays the associated line of source code before each error message that is generated
during compilation. Optional; by default, only the error message is displayed.

-tine
Reports the "wall clock time" vlog takes to compile the design. Optional. Note that if
many processes are running on the same system, wall clock time may differ greatly from
the actual "cpu time" spent on viog.

+t ypdel ays
Selectstypical delaysfrom the"min:typ:max" expressions. Default. If preferred, you can
defer delay selection until simulation time by specifying the same option to the simulator.

-u
Converts regular Verilog identifiers to uppercase. Allows case insensitivity for module
names. Optional.

-v <library_file>
Specifies asource library file containing module and UDP definitions. Optional. See
"Verilog-XL compatible compiler arguments' (Um-74) for more information.

After al explicit filenames on the viog command line have been processed, the compiler
uses the -v option to find and compile any modules that were referenced but not yet
defined. Modules and UDPs within the file are compiled only if they match previously
unresolved references. Multiple -v options are allowed. See additional discussion in the
examples.

-version
Returns the version of the compiler as used by the licensing tools, such as"Model
Technology ModelSim SE vlog 5.5 Compiler 2000.01 Jan 28 2000".

-vl og95conpat
Some requirementsin Verilog 2001 conflict with requirementsin the 1995 L RM. Use of
this argument ensures that code that was valid according to the 1995 LRM can still be
compiled. Optional. Edit the viog95compat (UM-351) variable in the modelsim.ini file to
set a permanent default.

ModelSim Command Reference

Examples

vlog CR-187

-work <library_nane>
Specifies alogical name or pathname of alibrary that is to be mapped to the logical
library work. Optional; by default, the compiled design units are added to the work
library. The specified pathname overrides the pathname specified for work in the project
file

-y <library_directory>
Specifies asource library directory containing module and UDP definitions. Optional.
See "Verilog-XL compatible compiler arguments' (UM-74) for more information.

After al explicit filenames on the viog command line have been processed, the compiler
uses the -y option to find and compile any modules that were referenced but not yet
defined. Files within this directory are compiled only if the file names match the names
of previously unresolved references. Multiple -y options are allowed. Y ou will need to
specify afile suffix by using -y in conjunction with the +libext+<suffix> option if your
filenames differ from your module names. See additional discussion in the examples.

A 'mportant: Any -y argumentsthat follow a-refresh argument on avlog command line
areignored. Any -y arguments that come before the -r efr esh argument on aviog
command line are processed.

<fil ename>
Specifies the name of the Verilog source code file to compile. Onefilenameisrequired.
Multiple filenames can be entered separated by spaces. Wildcards can be used.

vl og exanple.vlg
Compiles the Verilog source code contained in the file example.vig.

viog -L work -L ibA -L IibB top.v
This command demonstrates how to compile hierarchical modules organized into
separate libraries that have sub-module names that overlap among the libraries. Assume
you have atop-level module top that instantiates module modA from library libA and
module modB from library libB. Furthermore, modA and modB both instantiate modules
named cell A, but the definition of cell Acompiledinto libAisdifferent from that compiled
into libB. In this case, you can't just specify -L libA - L libB because instantiations of
cell A from modB resolve to the libA version of cellA. See"Library usage" (um-72) for
further information.

vlog top.v -v undl
After compiling top.v, vlog will scan the file und1 for modules or primitives referenced
but undefined in top.v. Only referenced definitions will be compiled.

vlog top.v +libext+.v+.u -y vliog_lib
After compiling top.v, viog will scan thevlog_lib library for files with modules with the
same name as primitives referenced, but undefined in top.v. The use of +libext+.v+.u
implies filenameswith a.v or .u suffix (any combination of suffixes may be used). Only
referenced definitions will be compiled.

ModelSim Command Reference

CR-188 Commands

viog -work nylib -refresh
The -work option specifiesmylib as the library to regenerate. -r efr esh rebuilds the
library image without using source code, allowing model sdelivered ascompiled libraries
without source code to be rebuilt for a specific release of ModelSim (4.6 and later only).

If your library contains VHDL design units be sure to regenerate the library with the
vcom command (CR-147) using the -r efr esh option as well. See "Regenerating your
design libraries' (Um-47) for more information.

vl og nmodulel.v -u -Q0 -incr
The -incr option determines whether or not the module source or compile options have
changed as modulel is parsed. If no change is found, the code generation phase is
skipped. Differences in compile options are determined by comparing the compiler
options stored in the_info file with the compiler options given. They must match exactly.

ModelSim Command Reference

vmake CR-189

vmake

Thevmake utility allowsyou to use aWindows MAKE program to maintain libraries. Y ou
run vmake on acompiled design library, and the utility outputs a makefile. Y ou can then
run the makefile with aversion of MAKE (not supplied with Model Sim) to reconstruct the
library. A MAKE program isincluded with Microsoft Visual C/C++, aswell asmany other
program development environments.

After running the vmake utility, MAKE recompiles only the design units (and their
dependencies) that have changed. Y ou run vmake only once; then you can ssimply run
MAKE to rebuild your design. If you add new design units or delete old ones, you should
re-run vmake to generate a new makefile.

The vmake utility ignores library objects compiled with - nodebug.
This command must be invoked from the Windows/DOS prompt.

Syntax

vimeke
[-fullsrcpath] [-help] [<library_name>] [><makefil e>]

Arguments

-fullsrcpath
Produces complete source file paths within generated makefiles. Optional. By default
source file paths are relative to the directory in which compiles originally occurred. This
argument makes it possible to copy and evaluate generated makefiles within directories
that are different from where compiles originally occurred.

-help
Displays the command’ s options and arguments. Optional.

<library_nane>
Specifies the library name; if none is specified, then work is assumed. Optional.

><makefil e>
Specifies the makefile name. Optional.

ModelSim Command Reference

CR-190 Commands

Examples

Hereis an example of how to use vmake and MAKE on your work library:

C.\M XEDHDL> vmake >makefile
Edit an HDL source file within the work library then enter:

C:\M XEDHDL> make

Y our design gets recompiled for you. Y ou can change the design again and re-run MAKE
to recompile additional changes.

Y ou can al'so run vmake on libraries other than work. For example,

C.\M XEDHDL> vmake nylib >nylib. mak
To rebuild mylib, specify its makefile when you run MAKE:

C:\ M XEDHDL> meke -f mylib. mak

ModelSim Command Reference

vmap

vmap
The vmap command defines a mapping between alogical library name and a directory by
modifying the modelsim.ini file. With no arguments, vmap reads the appropriate
modelsim.ini file(s) and prints the current logical library to physical directory mappings.
Returns nothing.

Syntax
vmap

[-help] [-c] [-del] [<logical_nane>] [<path>]

Arguments

-help

Displays the command’ s options and arguments. Optional.

c

Copies the default modelsim.ini file from the Model Sim installation directory to the
current directory. Optional.

P Note: Thisargument isintended only for making acopy of the default modelsim.ini file
to the current directory. Do not use it while making your library mappings or the
mappings may end up in the incorrect copy of the modelsim.ini.

- del

Deletes the mapping specified by <logica_name> from the current project file. Optional.
<l ogi cal _nane>

Specifies the logical name of the library to be mapped. Optional.
<pat h>

Specifies the pathname of the directory to which thelibrary isto be mapped. Optional. If
omitted, the command displays the mapping of the specified logical name.

CR-191

ModelSim Command Reference

CR-192 Commands

VSim

Syntax

The vsim command is used to invoke the VSIM simulator, or to view the results of a
previous simulation run (when invoked with the -view switch). Y ou can specify a
configuration, an entity/architecture pair, or amodule for simulation. If aconfigurationis
specified, it isinvalid to specify an architecture. With no options, vsim brings up the L oad
Design dialog box, allowing you to specify the design and options; the Load Design dialog
box will not be presented if you specify any options. During elaboration vsim determines
if the source has been modified since the last compile.

This command may be used in batch mode from the Windows command prompt. See"Tips
and techniques’ (Um-387) for more information on the VSIM batch mode.

To manually interrupt design elabor ation use the Break key.

The vsim command may also be invoked from the command line within Model Sim with
most of the options shown below (all except the veim -c and -r estor e options).

vsim

[-assertfile <filenane>] [-c] [-do “<comuand_string>" | <macro_fil e_nanme>]
[+dunppor t s+di rection] [+dunpports+unique] [-f <filename>] [-
g<Nanme>=<Val ue> ...] [-GName>=<Value> ...] [-gui]

[-help] [-i] [-keepl oaded] [-keepl oadedrestart]

[-keepstdout] [-] <filenane>] [-nultisource_delay min | max |
latest][+mul tisource_int_del ays]

[+no_notifier][+no_tchk_nsg] [+notim ngchecks] [-quiet]

[-sdfmin | -sdftyp | -sdfmax[@del ayScal e>] [<instance>=]<sdf_fil enanme>]
[-sdf maxerrors <n>] [-sdfnoerror] [-sdfnowarn] [+sdf_verbose]

[-t [<nultiplier>]<time_unit>]

[-tag <string>] [-title <title>][-trace_foreign <int>]

[-vecdstim <filenane>] [-version] [-view [<dataset_nanme>=] <W.F _fil enanme>]
[-Wf <filename>] [-w fconpress] [-w fnoconpress] [-w fslim <size>]

[-W ftlim<duration>]

[-absentisenpty] [-nocollapse] [-nofileshare]
[-noglitch] [+no_glitch_nsg] [-std_input <filename>]
[-std_output <filename>] [-strictvital] [-vital 2.2b]

[+al t _path_del ays] [-extend_tcheck_data_limt <percent>]
[-extend_tcheck_ref _limt <percent>]

[-hazards] [+int_delays] [-L <library_name> ...] [-Lf <library_name> ...]
[+maxdel ays] [+m ndel ays] [+no_cancel | ed_e_mnsg] [+no_neg_t chk]
[+no_notifier] [+no_path_edge] [+no_pul se_nsg] [+no_show cancel |l ed_e]
[+no_tchk_nsg] [+nosdferror] [+nosdfwarn] [+nospecify] [+nowar n<CODE>]
[+ntc_warn] [-pli "<object |ist>"][+<plusarg>]

[+pul se_e/ <percent>] [+pul se_e_style_ondetect] [+pul se_e_style_onevent]
[+pul se_i nt _e/ <percent>] [+pul se_int_r/<percent>] [+pul se_r/<percent>]
[+sdf _nocheck_cel I type] [+show_cancelled_e] [+transport_int_del ays]
[+transport _pat h_del ays] [+typdel ays]

[-v2k_i nt_del ays]

[<library_nane>. <desi gn_unit >]

ModelSim Command Reference

vsim CR-193

VSIM arguments are grouped al phabetically by language:
« Arguments, VHDL and Verilog (CR-193)

¢ Arguments, VHDL (CR-199)

» Arguments, Verilog (CR-200)

« Arguments, object (CR-204)

Arguments, VHDL and Verilog

-assertfile <fil ename>
Designates an alternative file for recording assertion messages. Optional. By default
assertion messages are output to the file specified by the TranscriptFile variable in the
modelsim.ini file (see "Creating atranscript file" (UM-357)).

-C
Specifies that the simulator is to be run in command line mode. Optional. Also see for
more information.

-do “<command_string>" | <macro_file_name>
Instructs VSIM to use the command(s) specified by <command_string> or the macro
filenamed by <macro_file_name> rather than the startup file specified in the..ini file, if
any. Optional. Multiple commands should be separated by semi-colons (;).

+dunpport s+di rection
Modifies the format of extended VCD files to contain direction information. Optional.

+dunppor t s+uni que
Generates unique ved variable names for portsin aVCD file, even if those ports are
connected to the same collapsed net. Optional.

-f <fil ename>
Specifiesafilewith more command line arguments. Optional. Allows complex argument
strings to be reused without retyping. Environment variable expansion (for examplein a
pathname) does not occur in -f files.

- g<Name>=<Val ue> ..
Assignsavalueto all specified VHDL generics and Verilog parameters that have not
received explicit values in generic maps, instantiations, or via defparams (such as top-
level generics/parameters and generics/parameters that would otherwise receive their
default values). Optional. Note there is no space between -g and <Name>=<Value>.

Name s the name of the generic/parameter, exactly asit appearsin the VHDL source
(caseisignored). Valueis an appropriate value for the declared data type of aVHDL
generic or any legal valuefor aVerilog parameter. Make sure the Value you specify for
aVHDL genericis appropriate for VHDL declared data types. VHDL type mismatches
will cause the specification to be ignored (including no error messages).

No spaces are alowed anywhere in the specification, except within quotes when
specifying a string value. Multiple -g options are allowed, one for each generic/
parameter.

Name may be prefixed with arelative or absolute hierarchical path to select genericsin
an instance-specific manner. For example,

Specifying - g/ t op/ ul/ t pd=20ns on the command line would affect only thetpd generic
on the /top/ul instance, assigning it a value of 20ns.

ModelSim Command Reference

CR-194 Commands

Specifying - gul/ t pd=20ns affects the tpd generic on all instances named ul.
Specifying - gt pd=20ns affects all generics named tpd.

If more than one -g option selects a given generic the most explicit specification takes
precedence. For example,

vsim -g/top/ramul/tpd_hl =10ns -gtpd_hl =15ns top

Thiscommand setstpd_hl to 10nsfor the/top/ram/ul instance. However, all other tpd_hl
generics on other instances will be set to 15ns.

Limitation: In general, generics/parameters of composite type (arrays and records)
cannot be set from the command line. However, you can set string arrays, std_logic
vectors, and bit vectorsif they can be set using a quoted string. For example,

-gstrgen="This is a string"
-gslv="01001110"

The quotation marks must makeit into vsim as part of the string because the type of the
value must be determinable outside of any context. Therefore, when entering this
command from a shell, put aforward tick around the string. For example:

-gstrgen=""This is a string"

If working within the Model Sim GUI, you would enter the command as follows:
{-gstrgen="This is a string"}

P Note: When you compile Verilog code with -fast (see viog (CR-183)), all parameter
values are set at compiletime. Therefore, the -g option has no effect on these parameters.

- GXNane>=<Val ue> ..
Same as-g (see above) except that it will also override generics/parametersthat received
explicit values in generic maps, instantiations, or via defparams. Optional. Note thereis
no space between -G and <Name>=<Value>.

-gu
Starts the Model Sim GUI without loading a design. Optional.

-help
Displays the command’ s options and arguments. Optional.

-i
Specifies that the simulator isto be run in interactive mode. Optional.

- keepl oaded
Prevents the simulator from unloading/reloading any FLI/PLI/VPI shared librarieswhen
it restarts or loadsanew design. Optional. The shared librarieswill remain loaded at their
current positions. User application codeinthe shared libraries must reset itsinternal state
during arestart in order for thisto work effectively.

ModelSim Command Reference

vsim CR-195

- keepl oadedrestart
Prevents the simulator from unloading/reloading any FLI/PLI/VPI shared libraries
during arestart. Optional. The shared libraries will remain loaded at their current
positions. User application codein the shared libraries must reset itsinternal state during
arestart in order for thisto work effectively.

We recommend using this option if you' Il be doing warm restores after arestart and the
user application code has set callbacksin the simulator. Otherwise, the callback function
pointers might not be valid if the shared library isloaded into a new position.

- keepst dout
For use with foreign programs. Instructs the simulator to not redirect the stdout stream to
the Main window. Optional.

-1 <fil enane>
Saves the contents of the "Main window" (UM-145) transcript to <filename>. Optional.
Default istranscript. Can also be specified using the .ini (see"Creating atranscript file"
(uM-357)) file or the.tcl preferencefile.

-multisource_delay min | max | |atest
Controlsthe handling of multiple PORT or INTERCONNECT constructs that terminate
at the same port. Optional. By default, the Module Input Port Delay (MIPD) is set to the
max value encountered in the SDFfile. Alternatively, you may choose the min or latest
of thevalues. If you have aVerilog design and want to model multipleinterconnect paths
independently, usethe +nul ti sour ce_i nt _del ays argument.

+mul ti source_i nt _del ays
Enables multisource interconnect delay with pulse handling and transport delay
behavior. Optional. Use this argument when you have interconnect datain your SDFfile
and you want the delay on each interconnect path model ed independently. Pulse handling
is configured using the +pulse int_e and +pulse_int_r switches (described below).

+no_notifier
Disables the toggling of the notifier register argument of all timing check system tasks.
Optional. By default, the notifier is toggled when there is a timing check violation, and
the notifier usually causes a UDP to propagate an X. This argument suppresses X
propagation in both Verilog and VITAL for the entire design.

+no_t chk_nsg
Disables error messages issued by timing check system tasks when timing check
violations occur. Optional. Natifier registers are till toggled and may result in the
propagation of Xs for timing check violations..

+not i m ngchecks
Disables Verilog and VITAL timing checks for faster simulation. Optional. By defaullt,
Verilog timing check system tasks ($setup, $hold,...) in specify blocks are enabled. For
VITAL, the timing check default is controlled by the ASIC or FPGA vendor, but most
default to enabled.

- qui et

Disable 'loading' messages during batch-mode simulation. Optional.

ModelSim Command Reference

CR-196 Commands

-sdfmin | -sdftyp | -sdf max[@del ayScal e>] [<instance>=]<sdf_fil ename>
Annotates VITAL or Verilog cellsin the specified SDF file (a Standard Delay Format
file) with minimum, typical, or maximum timing. Optional.

The optional argument @<delayScale> scales all values by the specified value. For
example, if you specify -sdfmax@1.5..., all maximum valuesin the SDF file will be
scaled to 150% of their original value.

The use of [<instance>=] with <sdf filename> is also optional; it is used when the
backannotation is not being done at the top level. See " Specifying SDF files for
simulation" (UM-298).

- sdf maxerrors <n>
Controls the number of Verilog SDF missing instance messages that will be emitted
before terminating vsim. Optional. <n> is the maximum number of missing instance
error messages to be emitted. The default number is 5.

- sdf noerror
Errorsissued by the SDF annotator whileloading the design prevent the simulation from
continuing, whereas warnings do not. Changes SDF errors to warnings so that the
simulation can continue. Optional.

- sdf nowar n
Disables warnings from the SDF reader. Optional. See Chapter 4 - VHDL simulation for
an additional discussion of SDF.

+sdf _verbose
Turns on the verbose mode during SDF annotation. The Main window provides detailed
warnings and summaries of the current annotation. Optional.

ModelSim Command Reference

vsim

-t [<multiplier>]<tinme_unit>
Specifies the simulator time resolution. Optional. <time_unit> must be one of the
following:

fs, ps, ns, us, ms, sec

The default is 1ps; the optional <multiplier> may be 1, 10 or 100. Note that thereis no
space between the multiplier and the unit (i.e., 10fs, not 10 fs).

If you omit the -t argument, the default time resolution depends on design type: ina
Verilog design with ‘timescale directives, the minimum time precision is used (see
"Simulator resolution limit" (uM-78) for further details); in Verilog designs without any
timescale directives, or inaVHDL or mixed design, the value specified for the
Resolution (Um-355) variable in the modelsim.ini fileis used.

Once you' ve begun simulation, you can determine the current simulator resolution by
invoking the report command (CR-109) with the simulator state option.

-tag <string>
Specifies astring tag to append to foreign trace filenames. Optional. Used with the
-trace_foreign <int> option. Used when running multiple traces in the same directory.

-title <title>
Specifies the title to appear for the Model Sim Main window. Optional. If omitted the
current Model Sim version is the window title. Useful when running multiple
simultaneous simulations. Text strings with spaces must be in quotes (e.g., "my title").

-trace_foreign <int>
Creates two kinds of foreign interface traces: alog of what functions were called, with
the value of the arguments, and the results returned; and a set of C-language filesto
replay what the foreign interface side did.

The purpose of the logfileisto aid the debugging of your PLI/VPI code. The primary
purpose of the replay facility isto send the replay file to MTI support for debugging co-
simulation problems, or debugging problems for which it isimpractical to send thePLI/
VPI code.

-vedstim <fil ename>
Resimulates adesign from a VCD file. Optional. The VCD file must have been created
in a previous Model Sim simulation using the ved dumpports command (CR-131). See
"Resimulating adesign from aVVCD fil€" (UM-315) for more information.

-version
Returns the version of the simulator as used by the licensing tools, such as "Model
Technology Model Sim SE vsim 5.5 Simulator 2000.01 Jan 28 2000".

-vi ew [<dat aset _nane>=] <W.F_fi | ename>
Specifiesawavelog format (WLF) filefor veim toread. Allowsyouto useVSIM toview
the results from an earlier smulation. The Structure, Signals, Wave, and List windows
can be opened tolook at theresults stored inthe WL F file (other M odel Sim windows will
not show any information when you are viewing a dataset). See additional discussionin
"Examples’ (CR-205).

-w f <fil ename>
Specifies the name of the wave log format (WLF) file to create. The default is vsim.wif.
Optional.

CR-197

ModelSim Command Reference

CR-198 Commands

-w f conpress
Creates compressed WLF files. Default. Use -wlfnocompr ess to turn off compression.

-w f noconpress
Causes VSIM to create uncompressed WLF files. Optional. Beginning with version 5.5,
WLF files are compressed by default in order to reduce file size. This may slow
simul ation speed by one to two percent. Y ou may want to disable compression to speed
up simulation or if you are experiencing problems with faulty datain the resulting WLF
file. This option may also be specified with the WL FCompress (Um-356) variable in the
modelsim.ini file.

-w fslim<size>
Specifies asize restriction in megabytes for the event portion of the WLF file. Optional.
The default isinfinite size (0). The <size> must be an integer.

Note that a WLF file contains event, header, and symbol portions. The sizerestrictionis
placed on the event portion only. When Model Sim exits, the entire header and symbol
portion of the WLF fileiswritten. Consequently, the resulting file will be larger than the
size specified with -wlifdim.

If used in conjunction with -wlIftlim, the more restrictive of the limits will take effect.
This option may also be specified with the WLFSizeLimit (Um-356) variable in the
modelsim.ini file.

-wi ftlim<duration>
Specifies the duration of simulation time for WLF file recording. Optional. The default
isinfinite time (0). The <duration> isan integer of simulation time at the current
resolution; you can optionally specify the resolution if you place curly braces around the
specification. For example,

{5000 ns}

sets the duration at nanoseconds regardless of the current simulator resol ution.

Thetime range begins at current simulation time and moves back in simulation time for
the specified duration. For example,

vsim -wlftlim 5000

writes at |least the last 5000ns of the current simulation to the WLF file (the current
simulation resolution in this case is ns).

If used in conjunction with -wlfdlim, the more restrictive of the limits will take effect.

This option may also be specified with the WLFTimeLimit (Um-356) variable in the
modelsim.ini file.

P Note: The-wlfslim and -wiftlim switches were designed to help userslimit WLF file
sizesfor long or heavily logged simulations. When small values are used for these
switches, the values may be overridden by the internal granularity limits of the WLF file
format.

ModelSim Command Reference

vsim

Arguments, VHDL

-absenti senpty
Causes VHDL files opened for read that target non-existent files to be treated as empty,
rather than Model Sim issuing fatal error messages. Optional .

-nocol | apse
Disables the optimization of internal port map connections. Optional.

-nofil eshare
By default Model Sim shares afile descriptor for all VHDL files opened for write or
append that have identical names. The -nofileshare switch turns off file descriptor
sharing. Optional.

-noglitch
Disables VITAL glitch generation. Optional.

See Chapter 4 - VHDL simulation for additional discussion of VITAL.

+no_glitch_nsg

Disable VITAL glitch error messages. Optional.

-std_i nput <filenane>
Specifies the file to use for the VHDL TextlO STD_INPUT file. Optional.

-std_out put <fil ename>

Specifies thefile to use for the VHDL TextlO STD_OUTPUT file. Optional.

-strictvita
Exactly match the VITAL package ordering for messages and delta cycles. Optional.
Useful for eliminating delta cycle differences caused by optimizations not addressed in
the VITAL LRM. Using this argument negatively impacts simulator performance.

-vital 2. 2b
Selects SDF mapping for VITAL 2.2b (default is VITAL 2000). Optional.

CR-199

ModelSim Command Reference

CR-200 Commands

Arguments, Verilog

+al t _pat h_del ays
Configures path delaysto operatein inertial mode by default. Optional. Ininertial mode,
a pending output transition is cancelled when a new output transition is scheduled. The
result is that an output may have no more than one pending transition at atime, and that
pulses narrower than the delay arefiltered. The delay is selected based on the transition
from the cancelled pending value of the net to the new pending value. The
+alt_path_delays option modifies the inertial mode such that a delay is based on a
transition from the current output val ue rather than the cancelled pending value of the net.
This option has no effect in transport mode (see +pulse_e/<per cent> and
+pulse_r/<percent>).

-extend_tcheck_data_limt <percent>

-extend_tcheck_ref _|imt <percent>
Causes a one-time extension of qualifying data or reference limitsin an attempt to
provide adelay net delay solution prior to any limit zeroing. A limit qualifiesif it bounds
aviolation region which does not overlap arelated violation region.

<per cent > is the maximum percent of limit relaxation. See "Extending check limits
without zeroing" (Um-85) for an example of how to calculate the percentage.

-hazards
Enables event order hazard checking in Verilog modules. Optional. Y ou must also
specify this argument when you compile your design with vlog (CR-183). See "Hazard
detection” (UM-83) for more details.

A mportant: Enabling -hazardsimplicitly enables the -compat argument. As aresult,
using this argument may affect your simulation results.

+i nt _del ays
Optimizes annotation of interconnect delays for designs that have been compiled using
-fast (see vlog command (CR-183)). Optional. This argument causes vsim to insert
"placeholder” delay elements at optimized cell inputs, resulting in faster backannotation
of interconnect delay from an SDF file.

-L <library_name> ..
Specifies the library to search for design units instantiated from Verilog. See"Library
usage" (UM-72) for more information. If multiple libraries are specified, each must be
preceded by the -L option. Libraries are searched in the order in which they appear on
the command line.

-Lf <library_name> ..
Same as-L but libraries are searched before ‘uselib directives. See "Library usage" (UM-
72) for more information. Optional.

+maxdel ays
Selects the maximum value in min:typ:max expressions. Optional. The default isthe
typical value. Has no effect if you specified the min:typ:max selection at compile time.

+m ndel ays
Selects the minimum value in min:typ:max expressions. Optional. The default isthe
typical value. Has no effect if you specified the min:typ:max selection at compile time.

ModelSim Command Reference

vsim

+no_cancel | ed_e_nsg
Disables negative pulse warning messages. Optional. By default vsim issues awarning
and then filters negative pul ses on specify path delays. Y ou can drivean X for anegative
pulse using +show_cancelled_e.

+no_neg_t chk
Disables negative timing check limits by setting them to zero. Optional. By default
negative timing check limits are enabled. Thisisjust the opposite of Verilog-XL, where
negative timing check limits are disabled by default, and they are enabled with the
+neg_tchk option.

+no_notifier
Disables the toggling of the notifier register argument of all timing check system tasks.
Optional. By default, the notifier is toggled when there is a timing check violation, and
the notifier usually causes a UDP to propagate an X. This argument suppresses X
propagation on timing violations for the entire design.

+no_pat h_edge
Causes Model Sim to ignore the input edge specified in apath delay. Optional. The result
of thisargument is that all edges on the input are considered when sel ecting the output
delay. Verilog-XL dwaysignores the input edges on path delays.

+no_pul se_nsg
Disables the warning message for specify path pulse errors. Optional. A path pulse error
occurs when a pulse propagated through a path delay falls between the pulse rejection
limit and pulse error limit set with the +pulse r and +pulse_eoptions. A path pulse error
results in awarning message, and the pulseis propagated as an X. The +no_pulse msg
option disables the warning message, but the X is still propagated.

+no_show_cancel | ed_e
Filters negative pul ses on specify path delays so they don’t show on the output. Defaullt.
Use +show_cancelled_eto drive apulse error state.

+no_t chk_nsg
Disables error messages issued by timing check system tasks when timing check
violations occur. Optional. Natifier registers are still toggled and may result in the
propagation of Xs for timing check violations.

+nosdf error
Errorsissued by the SDF annotator whileloading the design prevent the simulation from
continuing, whereas warnings do not. Changes SDF errors to warnings so that the
simulation can continue. Optional.

+nosdf war n
Disables warnings from the SDF annotator. Optional.

+nospeci fy

Disables specify path delays and timing checks. Optional.

CR-201

ModelSim Command Reference

CR-202 Commands

+nowar n<CODE>

Disables warning messages in the category specified by <CODE>. Optional. Warnings
that can be disabled include the <CODE> name in square brackets in the warning
message. For example:

** WARNI NG (vsim3017) test.v(2): [TFMPC] - Too few port connections
Expected <mp, found <n>

This warning message can be disabled with +nowarnTFM PC.

+nt c_warn

Enables warning messages from the negative timing constraint algorithm. Optional. By
default, these warnings are disabled.

Thisagorithm attemptsto find aset of delaysfor thetiming check delayed net arguments
such that all negative limits can be converted to non-negative limits with respect to the
delayed nets. If thereis no solution for this set of limits, then the al gorithm sets one of
the negative limits to zero and recal cul ates the delays. This processis repeated until a
solution isfound. A warning message isissued for each negative limit set to zero.

-pli "<object list>"

L oads a space-separated list of PLI shared objects. Optional. Thelist must be quoted if it
contains more than one object. Thisis an aternative to specifying PLI objectsin the
Veriuser entry in the modelsim.ini file, see "Preference variables located in INI files'
(UM-349). Y ou can use environment variables as part of the path.

+<pl usar g>

Arguments preceded with "+" are accessible by the Verilog PLI routine
mc_scan_plusargs(). Optional.

+pul se_e/ <percent >

Controls how pulses are propagated through specify path delays, where <percent>isa
number between 0 and 100 that specifiesthe error limit as a percentage of the path delay.
Optional.

A pulse greater than or equal to the error limit propagatesto the output in transport mode
(transport mode allows multiple pending transitions on an output). A pulse less than the
error limit and greater than or equal to the rejection limit (see +pulse_r/<percent>)
propagates to the output as an X. If the rejection limit is not specified, then it defaultsto
theerror limit. For example, consider apath delay of 10 along with a+pulse_e/80 option.
The error limit is 80% of 10 and the rejection limit defaults to 80% of 10. Thisresultsin
the propagation of pulses greater than or equal to 8, while al other pulses are filtered.
Note that you can force specify path delays to operate in transport mode by using the
+pulse_e/0 option.

+pul se_e_styl e_ondet ect

Selects the "on detect" style of propagating pulse errors (see +pulse_€). Optional. A
pulse error propagates to the output as an X, and the "on detect" style isto schedule the
X immediately, as soon asit has been detected that a pul se error has occurred. "on event”
style isthe default for propagating pulse errors (see +pulse_e style onevent).

+pul se_e_styl e_onevent

Selectsthe "on event” style of propagating pulse errors (see +pulse_e). Default. A pulse
error propagates to the output as an X, and the "on event" styleis to schedule the X to
occur at the same time and for the same duration that the pulse would have occurred if it
had propagated through normally.

ModelSim Command Reference

vsim

+pul se_i nt _e/ <percent >
Analogous to +pulse_e, except it appliesto interconnect delays only. Optional. Used in
conjunction with +multisour ce_int_delays (see above).

+pul se_int_r/<percent>
Analogous to +pulse_r, except it appliesto interconnect delays only. Optional. Used in
conjunction with +multisour ce_int_delays (see above).

+pul se_r/ <percent >
Controls how pulses are propagated through specify path delays, where <percent>isa
number between 0 and 100 that specifies the rejection limit as a percentage of the path
delay. Optional.

A pulse less than the rejection limit is suppressed from propagating to the output. If the
error limit is not specified by +pulse_e then it defaultsto the rejection limit.

+sdf _nocheck_cel | type
Disableserror check for mismatch betweenthe CELLTY PE nameinthe SDFfileand the
modul e or primitive namefor the CELL instance. Itisan error if the names do not match.
Optional.

+show_cancel | ed_e
Drives apulse error state (' X") for the duration of a negative pulse on a specify path
delay. Optional. By default Model Sim filters negative pulses.

+transport _i nt _del ays
Selects transport mode with pulse control for single-source nets (one interconnect path).
Optional. By default interconnect delays operatein inertial mode (pulses smaller than the
delay arefiltered). In transport mode, narrow pul ses are propagated through interconnect
delays. This option works independently from +multisource int_delays.

+transport _pat h_del ays
Selects transport mode for path delays. Optional. By default, path delays operate in
inertial mode (pulses smaller than the delay are filtered). In transport mode, narrow
pulses are propagated through path delays. Note that this option affects path delaysonly,
and not primitives. Primitives always operate in inertial delay mode.

+t ypdel ays
Selects the typical value in min:typ:max expressions. Default. Has no effect if you
specified the min:typ:max selection at compile time.

-v2k_i nt _del ays
Causes interconnect delay to be visible at the load module port per the IEEE 1364-2001
spec. Optional. By default Model Sim annotates INTERCONNECT delays in a manner
compatiblewith Verilog-XL. If you have $sdf _annotate() callsin your design that are not
getting executed, add the Verilog task $sdf_done() after your last $sdf _annotate() to
remove any zero-delay MIPDs that may have been created (see "ModelSim Verilog
system tasks' (UM-95) for more information). May be used in tandem with
+multisource int_delays argument (see above).

CR-203

ModelSim Command Reference

CR-204 Commands

Arguments, object

The object arguments may bea<library_name>.<design_unit>, .mpf file, .wif file, or atext
file. If no object specification is made, VSIM will open the Load a Design dialog box.
Multiple design units may be specified for Verilog modules and mixed VHDL/Verilog
configurations.

<li brary_nanme>. <desi gn_uni t>
Specifiesalibrary and associated design unit; multiple library/design unit specifications
can be made. Optional. If no library is specified, the work library is used. Environment
variables can be used. <design_unit> may be one of the following:

<configuration> Specifies the VHDL configuration to simulate.

<modul e> . .. Specifies the name of one or more top-level Verilog
modules to be simulated. Optional.

<entity> [<architecture>] Specifiesthe name of thetop-level VHDL entity to be
simulated. Optional. The entity may have an
architecture optionally specified; if omitted the last
architecture compiled for the specified entity is
simulated. An entity isnot valid if aconfigurationis
specified.

<MPF_fil e_name>

Opens the specified project. Optional.

<W.F_fil e_name>

Opens the specified dataset. Optional.

<text_fil e_name>
Opens the specified text file in a Source window. Optional.

ModelSim Command Reference

Examples

vsim

vsi m - gedge=""Il ow hi gh"’ -gVCC=4.75 cpu
Invokes vsim on the entity cpu and assigns values to the generic parameters edge and
VCC. If working within the Model Sim GUI, you would enter the command as follows:

vsi m {-gedge="1 ow hi gh"} -gVCC=4.75 cpu

vsim-view test=sin2. W f
Instructs Model Sim to view the results of a previous simulation run stored in the WLF
file sim2.wif. The simulation is displayed as a dataset named "test". Use the -wlIf option
to specify the name of the WLF file to create if you plan to create many files for later
viewing. For example:

vsim-wf ny_design.iOl my_asic structure
vsim-w f ny_design.i02 my_asic structure

vsim -sdf mi n /top/ul=nyasic. sdf
Annotates instance /top/ul using the minimum timing from the SDF file myasic.sdf.

Use multiple switches to annotate multiple instances:
vsim-sdfmn /top/ul=sdfl -sdfmn /top/u2=sdf2 top

vsim ' mylib.top(only)’ gatelib.cache_set
This example searches the libraries mylib for top(only) and gatelib for cache_set. If the
design units are not found, the search continuesto the work library. Specification of the
architecture (only) is optional .

vsim-do "set PrefMain(forceQuit) 1; run -all" work.test_counter
Invokesvsim on test_counter and instructs the simulator to run until a break event and
quit when it encounters a $finish task.

CR-205

ModelSim Command Reference

CR-206 Commands

vsim<info>

The vsim<info> commands return information about the current vsim executable.

vsi mAut h
Returns the authorization level (PE/SE, VHDL/Verilog/PLUS).

vsi nDat e
Returns the date the executable was built, such as"Apr 10 2000".

vsimd
Returns the identifying string, such as"ModelSim 5.4".

vsi nVer si on
Returns the version as used by the licensing tools, such as "1999.04".

vsi nVersionString
Returns the full vsim version string.

This sameinformation can be obtained using the -version argument of the vsim command
(CR-192).

ModelSim Command Reference

vsource CR-207

vsource
The vsour ce command specifies an alternative file to use for the current sourcefile. This
command is used when the current source file has been moved. The alternative source
mapping exists for the current simulation only.
Syntax
vsource
[<fil ename>]
Arguments
<fil ename>
Specifies arelative or full pathname. Optional. If filename is omitted the source file for
the current design context is displayed.
Examples

vsour ce design.vhd
vsource /ol d/ desi gn. vhd

ModelSim Command Reference

CR-208 Commands

when

The when command instructs Model Sim to perform actions when the specified conditions
are met. For example, you can use the when command to break on asignal value or at a
specific simulator time (see " Time-based breakpoints' (CR-212)). Conditions can include
thefollowing HDL items: VHDL signals, and Verilog nets and registers. Use the nowhen
command (CR-97) to deactivate when commands.

The when command uses awhen_condition_expression to determine whether or not to
perform the action. The when_condition_expression uses a simple restricted language
(that is not related to Tcl), which permits only four operators and operands that may be
either HDL item names, signame’ event, or constants. Model Sim eval uates the condition
every time any item in the condition changes, hence the restrictions.

With no arguments, when will list the currently active when statements and their labels
(explicit or implicit).

P Note: Virtual signals, functions, regions, types, etc. cannot be used in the when
command. Neither can simulator state variables other than $now.

Syntax

when
[[-1abel <label>] [-id <id#>] {<when_condition_expression>} {<commuand>}]

Arguments

-1 abel <l abel >
Used to identify individual when commands. Optional.

-id <id#>
Attempts to assign thisid number to the when command. Optional. If theid number you
specify isaready used, ModelSim will return an error.

P Note: Idsfor when commands are assigned from the same pool as those used for the bp
command (CR-46). So, even if you haven't used an id number for awhen command, it’s
possibleit is used for a breakpoint.

{<when_condi ti on_expressi on>}
Specifies the conditions to be met for the specified <command> to be executed.
Required. The conditionis evaluated in the simulator kernal and can be anitem name, in
which case the curly braces can be omitted. The command will be executed when the
item changes value. The condition can be an expression with these operators:

Name Operator
equals ==, =

not equal I=, /=
greater than >

ModelSim Command Reference

when CR-209

Name Operator
less than <
greater than or >=
equal

less than or equal <=

AND &&, AND

OR [, OR

The operands may be item names, signame’ event, or constants. Subexpressionsin
parentheses are permitted. The command will be executed when the expressionis
evaluated as TRUE or 1.

The formal BNF syntax is:

condition ::= Name | { expression }

expression ::= expression AND rel ati on
| expression OR relation
| relation

relation ::= Nane = Literal

Nane /= Literal
Name ' EVENT
(expression)

Literal ::= '<char>' | “<bitstring>" | <bitstring>

The"=" operator can occur only between a Name and a Literal. This means that you
cannot compare the value of two signals, i.e., Name = Nameis not possible.

Tcl variables can be used in the condition expression but you must replace the curly
braces ({}) with double quotes (""). This works like a macro substitution where the Tcl
variables are evaluated once and the result is then evaluated as the when condition.
Condition_expressions are evaluated in the vsim kernel, which knows nothing about Tcl
variables. That'swhy the condition_expression must be evaluated in the GUI beforeitis
sent to the vsim kernel. See below for an example of using a Tcl variable.

The">","<",">=" and "<=" operators are the standard ones for vector types, not the
overloaded operatorsin the std_logic_1164 package. This may cause unexpected results
when comparing items that contain values other than 1 and 0. Model Sim does alexical
comparison (position number) for values other than 1 and 0. For example:

0000 < 1111 ## This evaluates to true

HOOO0 < 1111 ## This evaluates to false
001X >= 0010 ## This also evaluates to false

ModelSim Command Reference

CR-210 Commands

Examples

{<command>}
The command(s) for this argument are evaluated by the Tcl interpreter within the
ModelSim GUI. Any ModelSim or Tcl command or series of commands are valid with
one exception—the run command (CR-114) cannot be used with the when command.
Required. The command sequence usually contains astop command (CR-123) that setsa
flag to break the simulation run after the command sequence is completed. Multiple-line
commands can be used.

P Note: If you want to stop the simulation using awhen command, you must use a stop
command (CR-123) within your when statement. DO NOT use an exit command (CR-78)
or aquit command. The stop command acts like abreakpoint at thetimeit is evaluated.
See "Ending the simulation with the stop command" (CR-211) for examples.

The when command below instructs the simulator to display the value of item ¢ in binary
format when thereis a clock event, the clock is 1, and the value of b is01100111. Finally,
the command tells Model Sim to stop.
when -1 abel whenl {clk’event and clk="1" and b = “01100111"} {
echo “Signal ¢ is [exa -bin c]"
st op}

The commands bel ow show an example of using a Tcl variable within awhen command.
Note that the curly braces ({}) have been replaced with double quotes ("").

set cl kb_path /tb/ps/dprb_0/udprb/ucar_reg/uint_ranclkb

when -l abel whenl "$cl kb_path' event and $clkb_path ="1"" {
echo "Detected Ok edge at path $cl kb_pat h"

}

This next example usesthe Tcl set command (UM-329) to disable arithmetic package
warnings at time 0. Note that the time unit (nsin this case) would vary depending on your
simulation resolution.

when {$now = @ns } {set NumericStdNoWarnings 1}
run -al

The when command below islabeled a and will cause Model Sim to echo the message “b
changed” whenever the value of theitem b changes.

when -1 abel a b {echo “b changed”}

The multi-line when command below does not use a label and has two conditions. When
the conditions are met, an echo (CR-71) and a stop (CR-123) command will be executed.

when {b = 1
and ¢ /=0 1} {
echo “bis 1 and ¢ is not 0"
st op

ModelSim Command Reference

when

In the example below, for the declaration "wire [15:0] a;", thewhen command will
activate when the selected bits match a 7;

when {a(3:1) = 3" h7} {echo "matched at time" $now}

If you encounter a vectored net caused by compiling with -fast, use the’ event qualifier to
prevent the command from falsely evaluating when unrelated bits of 'a’ change:

when {a(3:1) = 3'h7 and a(3:1)' event} {echo "matched at tinme" $now}

The first when command below sets up atrigger for the falling edge of RESET. When this
happens, a second when command is executed which sets up atrigger to occur 200us after
the current time.

force SIGA 1
when {RESET falling} {
when {$now == 200us} {
nof orce S| GA
}
}

run -al

Ending the simulation with the stop command

Batch mode simulations are often structured as "run until condition X istrue,” rather than
"run for X time" simulations. The multi-line when command bel ow sets a done condition
and executes an echo (CR-71) and a stop (CR-123) command when the condition is reached.

The simulation will not stop (even if aquit -f command is used) unlessastop command is
executed. To exit the simulation and quit Model Sim, use an approach like the following:

onbreak {resune}
when {/done_condition == "1"} {
echo "End condition reached"
i f [batch_node] {
set DoneConditionReached 1

stop
}
}
run 1000 us
i f {$DoneConditionReached == 1} ({
quit -f
}

Here's another example that stops 100ns after a signal transition:

when {a = 1} {
|f the 100ns delay is already set then let it go
if {[when -label a_100] == ""} {
when -1 abel a_100 { $now = 100 } {
delete this breakpoint then stop
nowhen a_100
stop
}
}
}

CR-211

ModelSim Command Reference

CR-212

Time-based breakpoints
Y ou can build time-based breakpoints into awhen statement with the following syntax.

For absolute time (indicated by @) use:
when {$now = @ 750ns} {stop}

You can a'so use:

when {errorFlag = ' 1" OR $now = 2ns} {stop}
This example adds 2ms to the simulation time at which the when statement is first
evaluated, then stops.

Y ou can also use variables, as shown in the following example:

set time 1000
when "\ $now = $tine" {stop}

The quotesinstruct Tcl to expand the variables before calling the command. So, the when
command sees:

when "$now = 1000" stop

Note that "$now" has the $ escaped. This prevents Tcl from expanding the variable,
because if it did, you would get:

when "0 = 1000" stop

See also
bp (CRrR-46), disablebp (CR-67), enablebp (CR-73), nowhen (CR-97)

ModelSim Command Reference

where CR-213

where
The where command displays information about the system environment. This command
isuseful for debugging problems where Model Sim cannot find the required libraries or
support files.

Syntax
wher e

Arguments
None.

Description

The where command displays two system settings:

current directory
Thisis the current directory that Model Sim was invoked from, or was specified on the
ModelSim command line.

current project file
Thisistheinitialization fileModel Simisusing. All library mappingsaretaken from here.
Window positions, and other parameters are taken from the modelsim.tcl file.

ModelSim Command Reference

CR-214 Commands

wlf2log

Syntax

Arguments

Thewlf2log command translatesaModel Sim WLF file (vsim.wif) toaQuickSim I logfile.
The command reads the veim.wif WLF file generated by the add list, add wave, or log
commands in the simulator and convertsit to the QuickSim Il logfile format.

A mportant: Thiscommand should be invoked only after you have stopped the
simulation using quit -sim or dataset close sim.

w f 2] og

[-bits] [-fullname] [-help] [-inout] [-input] [-internal]

[-1 <instance_path>] [-lower] [-0 <outfile>] [-output] [-quiet] <wlffile>
-bits

Forces vector netsto be split into 1-bit wide netsin the log file. Optional.

-ful l name
Shows the full hierarchical pathname when displaying signal names. Optional.

-help
Displaysalist of command options with a brief description for each. Optional.

-i nout
Lists only the inout ports. Optional. This may be combined with the -input, -output, or
-internal switches.

-i nput
Lists only the input ports. Optional. This may be combined with the -output, -inout, or
-internal switches.

-interna
Listsonly theinternal signals. Optional. This may be combined with the -input, -output,
or -inout switches.

-1 <instance_pat h>

Liststhesignalsat or below the specified HDL instance path within the design hierarchy.
Optional.

- | owner

Shows all logged signals in the hierarchy. Optional. When invoked without the -lower
switch, only the top-level signals are displayed.

-0 <outfile>

Directs the output to be written to the file specified by <outfile>. Optional. The default
destination for the logfile is standard out.

- out put

Lists only the output ports. Optional. This may be combined with the -input, -inout, or
-internal switches.

ModelSim Command Reference

wif2log CR-215

- qui et

Disables error message reporting. Optional.

< ffile>
Specifies the Model Sim WLF file that you are converting. Required.

ModelSim Command Reference

CR-216 Commands

wlfman

Syntax

Thewlfman command allowsyou to get information about and manipulate WLFfiles. The
command performs three functions depending on which mode you use.

» wlfman info generates file information, resolution, versions, etc.

» wifman items generates alist of HDL items (i.e., signals) from the source WLF file and
outputs it to stdout. When redirected to afile, the output is called an item-list-file, and it
can be read in by wifman filter. Theitem_list fileisalist of items, one per line.
Comments start with a'# and continue to the end of the line. Wildcards are legal in the
leaf portion of the name. Here is an example:

/top/foo # signal foo
/top/ull* # all signals under ul
/top/ul # same as |ine above

-r /top/u2 # recursively, all signals under u2

Note that you can produce these files from scratch but be careful with syntax. wifman
items aways creates alegal item_list_file.

» wifman filter readsin aWLF file and optionally anitem_list_file and writes out another
WLF file containing filtered information from those sources. Y ou determine the filtered
information with the arguments you specify.

w frman info
< ffile>

w fman itens
[-n] [-v] <wiffile>

w fman filter
[-b <time>] [-e <tine>] [-f <itemlist-file>] [-r <itenmp] [-s <synbol >]
[-t <resolution>] <sourcewl ffile> <outwlffile>

Arguments for wifman info

<wffile>
Specifies the WLF file from which you want information. Required.

Arguments for wifman items

-n
Listsregionsonly (no signals). Optional.

-V
Produces "verbose" output that lists item type next to each item. Optional.

<wffile>
Specifies the WLF file from which you want item information. Required.

ModelSim Command Reference

wlfman

Arguments for wifman filter

-b <time>
Specifies the simulation time at which you want to begin reading information from the
source WL Ffile. Optional. By default the output includes the entire timethat isrecorded
in the source WLFfile.

-e <time>
Specifies the simulation time at which you want to end reading information from the
source WLF file. Optional.

-f <itemlist-file>
Specifies an item-list-file created by wifman itemsto include in the output WLF file.
Optional.

-r <itenmp
Specifies an item (region) to recursively include in the output. If <item> isasignal, the
output would be the same as using -s. Optional.

-s <synbol >
Specifies an item to include in the output. Optional. By default all items are outpuit.

-t <resolution>
Specifies the time resol ution of the new WLF file. Optional. By default the resolution is
the same as the source WLF file.

<sourcew ffile>
Specifies the source WLF file from which you want items. Required.

<outw ffile>
Specifies the name of the output WLF file. Required. The output WLF file will contain
all itemsspecified by -f <item-list-file>, -r <item>, and -s<item>. Output WLFfilesare
always written in the latest WLF version regardless of the source WLF file version.

See also
Chapter 7 - WLF files (datasets) and virtuals

CR-217

ModelSim Command Reference

CR-218 Commands

wlfrecover
The wifrecover tool attemptsto "repair" WLF filesthat are incomplete due to a crash or
the file being copied prior to completion of the simulation. The tool works only on WLF
files created by ModelSim versions 5.6 or later. Y ou can run the tool from the VSIM
prompt or from a shell.

Syntax
wl frecover

<filename> [-force] [-(q]
Arguments

<fil ename>

Specifies the WLF file to repair. Required.

-force
Disregards file locking and attempts to repair the file. Required for PCs.

-q
Hides all messages unlessthereis an error while repairing the file. Optional.

ModelSim Command Reference

write format

write format

Syntax

Arguments

Examples

Output

The write format command records the names and display options of the HDL items
currently being displayed in the List or Wave window. Thefilecreated is primarily alist of
add list (CrR-32)or add wave (CR-35) commands, though afew other commandsareincluded
(see"Output” below). Thisfile may be invoked with the do command (CR-68) to recreate
the List or Wave window format on a subsequent simulation run.

When you load awave or list format file, Model Sim verifies the existence of the datasets
required by theformat file. Model Sim displays an error messageif the requisite datasets do
not al exist. To force the execution of the wave or list format file even if all datasets are
not present, use the -for ce switch with your do command. For example:

VSI M> do wave.do -force

Note that thiswill result in error messages for signals referencing nonexistent datasets.
Also, -forceis recognized by the format file not the do command.

wite format
list | wave <fil enane>

list | wave
Specifies that the contents of either the List or the Wave window are to be recorded.
Required.

<fil ename>
Specifies the name of the output file where the datais to be written. Required.

wite format list alu_list.do
Saves the current datain the List window in afile named alu_list.do.

wite format wave al u_wave. do
Saves the current data in the Wave window in afile named alu_wave.do.

Below is an example of a saved Wave window format file.

onerror {resune}

qui etly WaveActivat eNext Pane {} O

add wave -noupdate -format Logic /cntr_struct/ld
add wave -noupdate -format Logic /cntr_struct/rst
add wave -noupdate -format Logic /cntr_struct/clk
add wave -noupdate -format Literal /cntr_struct/d
add wave -noupdate -format Literal /cntr_struct/q
TreeUpdat e [Set Def aul t Tr ee]

qui ety WaveActi vat eNext Pane

add wave -noupdate -format Logic /cntr_struct/pl
add wave -noupdate -format Logic /cntr_struct/p2
add wave -noupdate -format Logic /cntr_struct/p3
TreeUpdat e [Set Def aul t Tr ee]

CR-219

ModelSim Command Reference

CR-220 Commands

WaveRest oreCursors {0 ns}
WaveRest oreZoom {0 ns} {1 us}
configure wave -nanecol wi dth 150
configure wave -val uecol wi dth 100
configure wave -signal nanewi dth 0
configure wave -justifyvalue left

In the example above, five signals are added with the -noupdate argument to the default
window pane. The TreeUpdate command then refreshes all five waveforms. The second
WaveA ctivateNextPane command creates asecond panewhich containsthreesignals.The
WaveRestor eCur sor s command restores any cursors you set during the original
simulation, and the WaveRestor eZoom command restores the Zoom range you set. These
four commands are used only in saved Wave format files; therefore, they are not
documented elsewhere.

See also

add list (Cr-32), add wave (CR-35)

ModelSim Command Reference

write list

Syntax

Arguments

Examples

See also

write list

Thewritelist command records the contents of the List window in alist output file. This
filecontainssimulation datafor all HDL itemsdisplayedinthe List window: VHDL signals
and variables and Verilog nets and registers.

wite |ist
[-events] <filename>

-events
Specifies to write print-on-change format. Optional. Default is tabular format.

<fil ename>
Specifies the name of the output file where the datais to be written. Required.

wite list alu.lst
Saves the current datain the List window in afile named alu.lst.

writetss (CR-225)

CR-221

ModelSim Command Reference

CR-222 Commands

write preferences

The write prefer ences command saves the current GUI preference settingsto a Tcl
preference file. Settings saved include current window locations and sizes; Wave, Signals
and Variables window column widths; Wave, Signals and Variables window value
justification; and Wave window signal name width.

Syntax

wite preferences
<preference file nanme>

Arguments

<preference file name>
Specifies the name for the preference file. Optional. If the file is named modelsim.tcl,
ModelSim will read thefile eachtimevsimisinvoked. To use apreferencefile other than
modelsim.tcl you must specify the alternative file name with the MODEL SIM_TCL
(UM-346) environment variable.

See also

Y ou can modify variables by editing the preference file with the Model Sim notepad (CRr-
95):

not epad <preference file name>

ModelSim Command Reference

write report

write report

Thewritereport command printsasummary of the design being smulated including alist
of al design units (VHDL configurations, entities, and packages and V erilog modul es)
with the names of their sourcefiles.

Syntax
wite report
[[<filename>] [-] | -s]] | [-tcl]
Arguments
<fil ename>
Specifies the name of the output file where the datais to be written. Optional. If the
<filename> is omitted, the report is written to the Main window transcript.
-1
Generates more detailed information about the design. Defaullt.
-S
Generates a short list of design information. Optional.
-tel
Generates aTcl list of design unit information. Optional. This argument cannot be used
with afilename.
Examples

wite report alu.rep
Saves information about the current design in afile named alu.rep.

CR-223

ModelSim Command Reference

CR-224 Commands

write transcript

Thewritetranscript command writes the contents of the Main window Transcript to the
specified file. The resulting file can be used to replay the transcribed commands asa DO
file (macro).

The command cannot be used in batch mode. In batch mode use the standard " Transcript"
(UM-147) file or redirect std out.

Syntax
wite transcript
[<fil ename>]
Arguments
<fil ename>
Specifies the name of the output file where the datais to be written. Optional. If the
<filename> is omitted, the transcript is written to a file named transcript.
See also

do (CR-68)

ModelSim Command Reference

write tssi

Syntax

Arguments

Description

write tssi

Thewritetssi command records the contents of the List window in a"TSS| format" file.
Thefile contains simulation data for all HDL items displayed in the List window that can
be converted to TSSI format (VHDL signals and Verilog nets). A signal definition fileis
also generated.

The List window needsto be using symbolic radix in order for writetssi to produce useful
output.

wite tss
<fil ename>

<fil ename>
Specifies the name of the output file where the datais to be written. Required.

“TSSI format” is documented in the Fluence TDS Software System, Chapter 2 of Volume
I, Getting Started, R11.1, dated November 15, 1999. In that document, TSS| format is
called Standard Events Format (SEF).

If the <filename> has a file extension (e.g., listfile.lst), then the definition file is given the
same file name with the extension .def (e.g., listfile.def). The valuesin thelistfile are
produced in the same order that they appear in the List window. The directionality is
determined from the port typeif the item is aport, otherwise it is assumed to be
bidirectional (mode INOUT).

Items that can be converted to SEF are VHDL enumerations with 255 or fewer elements
and Verilog nets. The enumeration values U, X, 0,1,Z, W, L, H and - (the enumeration
values defined in the |IEEE Standard 1164 std_ulogic enumeration) are converted to SEF
values according to the table below. Other values are converted to a question mark (?) and
cause an error message. Though the write tss command was devel oped for use with
std_ulogic, any signal which uses only the values defined for std_ulogic (including the
VHDL standard type bit) will be converted.

std_ulogic State SEF State Characters
Characters L .
Input Output Bidirectional

U N X ?

X N X ?

0 D L 0

1 U H 1

z Z T F

CR-225

ModelSim Command Reference

CR-226 Commands

std_ulogic State SEF State Characters

Characters —)
Input Output Bidirectional

w N X ?

L D L 0

H 0] H 1

- N X ?

Bidirectional logic values are not converted because only the resolved value is available.
The Fluence (TSSI) TDS ASCII In Converter and ASCII Out Converter can be used to
resolvethedirectionality of the signal and to determinethe proper forcing or expected value
on the port. Lowercase values x, z, w, | and h are converted to the same values as the
corresponding capitalized values. Any other values will cause an error message to be
generated the first time an invalid value is detected on a signal, and the value will be

converted to a question mark (?).

P Note: The TDS ASCII In Converter and ASCII Out Converter are part of the TDS
software from Fluence Technology. Model Sim outputs a vector file, and Fluence’ stools

determine whether the bidirectional signals are driving or not.

See also

tssi2mti (CR-127)

ModelSim Command Reference

write wave

write wave

The write wave command records the contents of the Wave window in PostScript format.
The output file can then be printed on a PostScript printer.

Syntax

wite wave
[-width <real _nunm®] [-height <real _nunp]
[-margin <real _nunp] [-start <tine>] [-end <tine>] [-perpage <tine>]
[-landscape] [-portrait] <filenane>

Arguments

-wi dth <real _nunp

Specifies the paper width in inches. Optional. Default is 8.5.

- hei ght <real _nunm>

Specifies the paper height in inches. Optional. Default is 11.0.

-margin <real _nunm>
Specifies the margin in inches. Optional. Default is 0.5.

-start <time>
Specifies the start time (on the waveform time scale) to be written. Optional.

-end <tinme>
Specifies the end time (on the waveform time scale) to be written. Optional.

- per page <time>
Specifies the time width per page of output. Optional.

-l andscape
Use landscape (horizontal) orientation. Optional. Thisis the default orientation.

-portrait
Use portrait (vertical) orientation. Optional. The default is landscape (horizontal).

<fil enanme>

Specifies the name of the PostScript output file. Required.

Examples

wite wave al u.ps
Saves the current data in the Wave window in afile named alu.ps.

CR-227

ModelSim Command Reference

CR-228 Commands

wite wave -start 600ns -end 800ns -perpage 100ns top. ps
Writes two separate pages to top.ps asindicated in theillustration (the actual PostScript
print out will show all items listed in the Wave window, not just the portion in view):

— page 1 starts at 600 ns
ave - default — page 2 ends at 800 ns
File Edit Cursor Zoom Prop ‘wWindow

= rintwave | L BE K KB e ‘100 ns per page

[

[00000011

[

EEEEEEEEE

-

[
=

<]

540 nz bo 853 ns

start finish

To makethejob of creating a PostScript waveform output file easier, usethe File > Print
Postscript menu selection in the Wave window. See "Saving waveforms' (um-242) for
more information.

ModelSim Command Reference

CR-229

ABCDEFGHIJKLMNOPORSTUVWXY Z

Index

CR = Command Reference, UM = User’s Manual
Symbols

+typdelays CR-186
.80, shared object file
loading PLI/VPI C applications UM-105
loading PL1/VPI C++ applications UM-106
"hasX, hasX CR-19

Numerics

1076, |EEE Std UM-14
1364, |IEEE Std UM-14, UM-68
64-bit time

now variable UM-363

Tcl time commands UM-333

A

abort command CR-30
absolute time, using @ CR-14
ACC routines UM-116
accelerated packages UM-47
add list command CR-32
add wave command CR-35
alias command CR-39
annotating interconnect delays, v2k_int_delays CR-203
architecture simulator state variable UM-362
archives

described UM-39
archives, library CR-182
argc simulator state variable UM-362
arguments

passing to aDO file UM-339
arithmetic package warnings, disabling UM-358
arrays

indexes CR-10

dlices CR-10
AssertFile .ini file variable UM-351
AssertionFormat .ini file variable UM-352
AssertionFormatBreak .ini file variable UM-352
AssertionFormatError .ini file variable UM-352
AssertionFormatFail .ini file variable UM-353
AssertionFormatFatal .ini file variable UM-353
AssertionFormatNote .ini file variable UM-352
AssertionFormatWarning .ini file variable UM-352
assertions

configuring from the GUI UM-264

locating file and line number UM-390
messages, turning off UM-358
selecting severity that stops simulation UM-264
setting format of messages UM-352
testing for using a DO file UM-390

attributes, of signals, using in expressions CR-19

B

bad magic number error message UM-127
balloon dialog, toggling on/off UM-232
base (radix), specifying in List window UM-182
batch mode command CR-40
batch-mode simulations UM-388
halting CR-211
bd (breakpoint delete) command CR-41
binding, VHDL, default UM-45
blocking assignments UM-82
bookmark add wave command CR-42
bookmark delete wave command CR-43
bookmark goto wave command CR-44
bookmark list wave command CR-45
bookmarks UM-238
bp (breakpoint) command CR-46
break
on assertion UM-264
on signal value CR-208
stop simulation run UM-155, UM-205
BreakOnAssertion .ini file variable UM-353
breakpoints
conditional CR-208, UM-198
continuing simulation after CR-114
deleting CR-41, UM-206, UM-267
listing CR-46
setting CR-46, UM-206
signal breakpoints (when statements) CR-208, UM-
198
Source window, viewing in UM-200
time-based UM-198
in when statements CR-212
bsmfile UM-174
buffered/unbuffered output UM-356
busses
RTL-level, reconstructing UM-134
user-defined CR-36, UM-183, UM-226

ModelSim Command Reference

CR-230

Index
ABCDEFGHIJKLMNOPORSTUVWXYZ
C drivers CR-69
dumplog64 CR-70
C applications echo CR-71
compiling and linking UM-105 edit CR-72
C++ applications enablebp CR-73

compiling and linking UM-106
case choice, must be locally static CR-149
case sensitivity

VHDL vs. Verilog CR-12
causality, tracing in Dataflow window UM-168
cd (change directory) command CR-49
cell libraries UM-88
cells

hiding in Dataflow window UM-175, UM-176
change command CR-50
chasing X UM-169
-check_synthesis argument CR-147
CheckpointCompressMode .ini file variable UM-353
CheckSynthesis .ini file variable UM-350
clock change, sampling signals at UM-391
combining signals, busses CR-36, UM-183, UM-226
command history UM-151
CommandHistory .ini file variable UM-353
command-line mode UM-388
commands

abort CR-30

add list CR-32

add wave CR-35

alias CR-39

batch_mode CR-40

bd (breakpoint delete) CR-41

bookmark add wave CR-42

bookmark delete wave CR-43

bookmark goto wave CR-44

bookmark list wave CR-45

bp (breakpoint) CR-46

cd (change directory) CR-49

change CR-50

configure CR-51

dataset alias CR-55

dataset clear CR-56

dataset close CR-57

dataset info CR-58

dataset list CR-59

dataset open CR-60

dataset rename CR-61, CR-62

dataset snapshot CR-63

delete CR-65

describe CR-66

disablebp CR-67

do CR-68

ModelSim Command Reference

environment CR-74
examine CR-75

exit CR-78

find CR-79

force CR-82

graphic interface commands UM-276
help CR-85

history CR-86

log CR-87

Ishift CR-89

Isublist CR-90
modelsim CR-91
noforce CR-92

nolog CR-93

notation conventions CR-6
notepad CR-95

noview CR-96

nowhen CR-97
onbreak CR-98
onElabError CR-99
onerror CR-100

pause CR-101

printenv CR-102, CR-103
pwd CR-105

quietly CR-106

quit CR-107

radix CR-108

report CR-109

restart CR-111

resume CR-113

run CR-114

searchlog CR-116

shift CR-118

show CR-119

status CR-121

step CR-122

stop CR-123

system UM-331

tb (traceback) CR-124
transcript CR-125
transcript file CR-126
TreeUpdate CR-220
tssi2mti CR-127
variables referenced in CR-13
ved add CR-128

ved checkpoint CR-129

CR-231

ABCDEFGHIJKLMNOPORSTUVWXY Z

ved comment CR-130
vcd dumpports CR-131
vcd dumpportsall CR-133
vcd dumpportsflush CR-134
vcd dumpportsimit CR-135
vcd dumpportsoff CR-136
vcd dumpportson CR-137
vcd file CR-138

vcd files CR-140

vcd flush CR-142

ved limit CR-143

vcd off CR-144

vcd on CR-145

vcom CR-147

vdel CR-153

vdir CR-154

verror CR-155

vgencomp CR-156

view CR-158

virtual count CR-160
virtual define CR-161
virtual delete CR-162
virtual describe CR-163
virtual expand CR-164
virtual function CR-165
virtual hide CR-168
virtual log CR-169
virtual nohide CR-171
virtual nolog CR-172
virtual region CR-174
virtual save CR-175
virtual show CR-176
virtual signal CR-177
virtual type CR-180

vlib CR-182

vlog CR-183

vmake CR-189

vmap CR-191

vsim CR-192

VSIM Tcl commands UM-332

vsimDate CR-206
vsimld CR-206
vsimVersion CR-206

WaveA ctivateNextPane CR-220

WaveRestoreCursors CR-220
WaveRestoreZoom CR-220
when CR-208

where CR-213

wlf2log CR-214

wlfman CR-216

wlfrecover CR-218

write format CR-219
writelist CR-221
write preferences CR-222
write report CR-223
write transcript CR-224
writetssi CR-225
write wave CR-227
comment charactersin VSIM commands CR-6
compare simulations UM-125
compatibility, of vendor libraries CR-154
compile history UM-27
compile order
auto generate UM-28
changing UM-28
compiler directives UM-96
|EEE Std 1364-2000 UM-96
XL compatible compiler directives UM-97
compiling
changing order in the GUI UM-28
compile history UM-27
default options, setting UM-249
graphic interface, with the UM-247
grouping files UM-29
options, in projects UM-34
order, changing in projects UM-28
range checking in VHDL CR-151, UM-51
source errors, locating UM-248
Verilog CR-183, UM-69
incremental compilation UM-70
XL "usdlib compiler directive UM-75
XL compatible options UM-74
VHDL CR-147, UM-50
at a specified line number CR-149
selected design units (-just eapbc) CR-149
standard package (-s) CR-151
VITAL packages UM-61
component, default binding rules UM-45
concatenation
directives CR-16
of signals CR-16, CR-177
ConcurrentFileLimit .ini file variable UM-353
conditional breakpoints CR-208, UM-198
configuration simulator state variable UM-362
configurations, simulating CR-192
configure command CR-51
connectivity, exploring UM-165
constants
in case statements CR-149
values of, displaying CR-66, CR-75
context menus
described UM-142

ModelSim Command Reference

CR-232

Index

ABCDEFGHIJKLMNOPORSTUVWXY Z

Library tab UM-42
Project tab UM-27
Structure pages UM-210
convert real to time UM-65
convert time to real UM-64
Cursors
link to Dataflow window UM-159
locking UM-236
measuring time with UM-236
naming UM-235
trace events with UM-168
Wave window UM-235
customizing
via preference variables UM-360

D

deltas
explained UM-53
Dataflow window UM-158
automatic cell hiding UM-175, UM-176
options UM-175, UM-176
pan UM-167
zoom UM-167
see also windows, Dataflow window
dataflow.bsm file UM-174
dataset alias command CR-55
Dataset Browser UM-129
dataset clear command CR-56
dataset close command CR-57
dataset info command CR-58
dataset list command CR-59
dataset open command CR-60
dataset rename command CR-61, CR-62
Dataset Snapshot UM-131
dataset snapshot command CR-63
datasets UM-125
environment command, specifying with CR-74
managing UM-129
restrict dataset prefix display UM-130
simulator resolution UM-126
DatasetSeparator .ini file variable UM-353
declarations, hiding implicit with explicit CR-152
default binding rules UM-45
default compile options UM-249
default editor, changing UM-345
DefaultForceKind .ini file variable UM-353
DefaultRadix .ini file variable UM-353
DefaultRestartOptions variable UM-354, UM-359
defaults

ModelSim Command Reference

restoring UM-345

window arrangement UM-142
+definet CR-183
delay

delta delays UM-53

infinite zero-delay loops, detecting UM-396

interconnect CR-195
modes for Verilog models UM-88
SDF files UM-297
stimulus delay, specifying UM-196
+delay_mode distributed CR-184
+delay_mode path CR-184
+delay_mode _unit CR-184
+delay_mode zero CR-184
"delayed CR-19
DelayFileOpen .ini file variable UM-354
delete command CR-65
deleting library contents UM-41
delta simulator state variable UM-362
deltas
collapsing in the List window UM-185
hiding in the List window CR-52, UM-185
infinite zero-delay loops UM-396
referencing simulator iteration
as asimulator state variable UM-362
dependencies, checking CR-154
dependent design units UM-50
describe command CR-66
descriptions of HDL items UM-206

design hierarchy, viewing in Structure window UM-208

design library
creating UM-40
logical name, assigning UM-43
mapping search rules UM-44
resource type UM-38
VHDL design units UM-50
working type UM-38
design units UM-38
hierarchy of, viewing UM-143
report of units ssimulated CR-223
Verilog
adding to alibrary CR-183
directories
mapping libraries CR-191
moving libraries UM-44
disablebp command CR-67
distributed delay mode UM-89
dividers
adding from command line CR-35
Wave window UM-224
DLL files, loading UM-105, UM-106

CR-233

ABCDEFGHIJKLMNOPORSTUVWXY Z

do command CR-68
DO files (macros) CR-68
error handling UM-341
executing at startup UM-345, UM-355
parameters, passing to UM-339
Tcl source command UM-342
DOPATH environment variable UM-345
drivers
Dataflow Window UM-165
show in Dataflow window UM-227
Wave window UM-227
drivers command CR-69
drivers, multiple on unresolved signal UM-250
dump files, viewing in ModelSim CR-146
dumplog64 command CR-70
dumpports tasks, VCD files UM-312

E

echo command CR-71
edit command CR-72
Editing
in notepad windows UM-156, UM-369
in the Main window UM-156, UM-369
in the Source window UM-156, UM-369
EDITOR environment variable UM-345
editor, default, changing UM-345
elaboration, interrupting CR-192
embedded wave viewer UM-166
enablebp command CR-73
ENDFILE function UM-58
ENDLINE function UM-58
entities
default binding rules UM-45
entities, specifying for simulation CR-204
entity simulator state variable UM-362
enumerated types UM-394
user defined CR-180
environment command CR-74
environment variables UM-345
reading into Verilog code CR-183
referencing from Model Sim command line UM-348
referencing with VHDL FILE variable UM-348
setting in Windows UM-347
specifying library locations in modelsim.ini file
UM-349
specifying UNIX editor CR-72
state of CR-103
transcript file, specifying location of UM-356
using in pathnames CR-12

using with location mapping UM-397
variable substitution using Tcl UM-331
environment, displaying or changing pathname CR-74
errors
bad magic number UM-127
during compilation, locating UM-248
getting details about messages CR-155
onerror command CR-100
event order
changing in Verilog CR-183
in Verilog smulation UM-80
event queues UM-80
events, tracing UM-168
examine command CR-75
examine tooltip
toggling on/off UM-232
exit command CR-78
expand net UM-165
Explicit .ini file variable UM-350
Expression Builder UM-271
configuring a List trigger with UM-392
extended identifiers CR-14
syntax in commands CR-12

F

-f CR-184
filel/O
TextlO package UM-55
VCD files UM-311
file-line breakpoints UM-206
files, grouping for compile UM-29
filtering signalsin Signals window UM-194
find command CR-79
finding
cursors in the Wave window UM-236
marker in the List window UM-187
names and values UM-141
folders, in projects UM-32
force command CR-82
defaults UM-359
format file
List window CR-219
Wave window CR-219, UM-217
FPGA libraries, importing UM-48

G

GenerateFormat .ini file variable UM-354
generics

ModelSim Command Reference

CR-234

Index

ABCDEFGHIJKLMNOPORSTUVWXY Z

assigning or overriding values with -g and -G CR-
193

examining generic values CR-75

limitation on assigning composite types CR-194

get_resolution() VHDL function UM-62
glitches
disabling generation
from command line CR-199
from GUI UM-257
graphic interface UM-137
grouping files for compile UM-29
GUI preferences, saving UM-360
GUI_expression_format CR-15
GUI expression builder UM-271
syntax CR-18

H

"hasX CR-19
Hazard .ini file variable (VLOG) UM-351
hazards
-hazards argument to viog CR-184
-hazards argument to vsim CR-200
limitations on detection UM-83
HDL item UM-16
help command CR-85
hierarchy
forcing signalsin UM-63
referencing signalsin UM-63
releasing signalsin UM-63
viewing signal names without UM-231
history
of commands
shortcuts for reuse CR-7, UM-368
of compiles UM-27
history command CR-86
HOME environment variable UM-345

110

TextlO package UM-55

VCD files UM-311
ieee..ini file variable UM-349
|EEE libraries UM-47
|EEE Std 1076 UM-14
|EEE Std 1364 UM-14, UM-68
IgnoreError .ini file variable UM-354
IgnoreFailure .ini file variable UM-354
IgnoreNote .ini file variable UM-354

ModelSim Command Reference

IgnoreVitalErrors .ini file variable UM-350
IgnoreWarning .ini file variable UM-354

implicit operator, hiding with vcom -explicit CR-152

importing FPGA libraries UM-48
+incdir+ CR-184
incremental compilation
automatic UM-71
manua UM-71
with Verilog UM-70
index checking UM-51
init_signal_spy UM-63
init_usertfs function UM-101
initial dialog box, turning on/off UM-344
interconnect delays CR-195, UM-308
annotating per Verilog 2001 CR-203
internal signals, adding to aVCD file CR-128
item_list file, WLF files CR-216
iteration_limit, infinite zero-delay loops UM-396
[terationLimit .ini file variable UM-354

K

keyboard shortcuts
List window UM-189, UM-367
Main window UM-156, UM-369
Source window UM-369
Wave window UM-240, UM-366

L

language templates UM-273
libraries
archives CR-182
dependencies, checking CR-154
design libraries, creating CR-182, UM-40
design library types UM-38
design units UM-38
group use, setting up UM-389
IEEE UM-47
importing FPGA libraries UM-48
including precompiled modules UM-259
listing contents CR-154
mapping
from the command line UM-43
from the GUI UM-43
hierarchically UM-357
search rules UM-44
modelsim_lib UM-62
moving UM-44

multiple libraries with common modules UM-73

CR-235

ABCDEFGHIJKLMNOPORSTUVWXY Z

naming UM-43

predefined UM-46

refreshing library images CR-151, CR-186, UM-47

resource libraries UM-38

std library UM-46

Synopsys UM-47

vendor supplied, compatibility of CR-154

Verilog CR-200, UM-72

VHDL library clause UM-45

working libraries UM-38

working with contents of UM-41
library simulator state variable UM-362
License variablein .ini file UM-355
licensing

Licensevariablein .ini file UM-355
lint-style checks CR-185
List window UM-177

adding itemsto CR-32

setting triggers UM-392

see also windows, List window
LM_LICENSE_FILE environment variable UM-345
location maps, referencing source files UM-397
log command CR-87
log file

log command CR-87

nolog command CR-93

overview UM-125

QuickSim Il format CR-214

redirecting with -1 CR-195

virtual log command CR-169

virtual nolog command CR-172

see also WLF files
Ishift command CR-89
Isublist command CR-90

M

MacroNestingL evel simulator state variable UM-362
macros (DO files) UM-339
breakpoints, executing at CR-47
creating from a saved transcript UM-147
depth of nesting, simulator state variable UM-362
error handling UM-341
executing CR-68
forcing signals, nets, or registers CR-82
parameters
as asimulator state variable (n) UM-362
passing CR-68, UM-339
total number passed UM-362
relative directories CR-68

shifting parameter values CR-118
startup macros UM-358
Main window UM-145
see also windows, Main window
mapping
libraries
from the command line UM-43
hierarchically UM-357
symbols
Dataflow window UM-174
mapping libraries, library mapping UM-43
math_complex package UM-47
math_real package UM-47
+maxdelays CR-185
mc_scan_plusargs, PLI routine CR-202
memory
modeling in VHDL UM-400
menus
Dataflow window UM-159
List window UM-179
Main window UM-148
Process window UM-191
Signals window UM-193
Source window UM-201
Structure window UM-209
tearing off or pinning menus UM-142
Variables window UM-213
Wave window UM-218
messages
bad magic number UM-127
echoing CR-71
getting more information CR-155
loading, disbling with -quiet CR-150, CR-185
redirecting UM-356
suppressing warnings from arithmetic packages
UM-358
turning off assertion messages UM-358
MGC _LOCATION_MAP variable UM-345
+mindelays CR-185
mnemonics, assigning to signal values CR-180
MODEL_TECH environment variable UM-345
MODEL_TECH_TCL environment variable UM-345
modeling memory in VHDL UM-400
ModelSim
commands CR-23—CR-215
modelsim command CR-91
MODELSIM environment variable UM-346
modelsim.ini
default to VHDL 93 UM-359
delay file opening with UM-359
environment variablesin UM-357

ModelSim Command Reference

CR-236

Index

ABCDEFGHIJKLMNOPORSTUVWXY Z

force command default, setting UM-359
hierarchical library mapping UM-357
opening VHDL files UM-359
restart command defaults, setting UM-359
startup file, specifying with UM-358
transcript file created from UM-357
turning off arithmetic package warnings UM-358
turning off assertion messages UM-358
modelsim.tcl file UM-360
modelsim_lib UM-62
path to UM-349
MODELSIM_TCL environment variable UM-346
Modified field, Project tab UM-26
modules
handling multiple, common names UM-73
mouse shortcuts
Main window UM-156, UM-369
Source window UM-369
Wave window UM-240, UM-366
.mpf file UM-18
loading from the command line UM-35
mti_cosim_trace environment variable UM-346
MTI_TF_LIMIT environment variable UM-346
multiple drivers on unresolved signal UM-250
multiple simulations UM-125
multi-source interconnect delays CR-195

N

n simulator state variable UM-362
name case sensitivity, VHDL vs. Verilog CR-12
Namefield
Project tab UM-26
negative pulses
driving an error state CR-203
negative timing
$setuphol d/$recovery UM-93
algorithm for calculating delays UM-84
check limits UM-84
extending check limits CR-200
nets
adding to the Wave and List windows UM-196
Dataflow window, displaying in UM-158
drivers of, displaying CR-69
stimulus CR-82
values of
displaying in Signals window UM-192
examining CR-75
forcing UM-195
saving as binary log file UM-196

ModelSim Command Reference

waveforms, viewing UM-215
next and previous edges, finding UM-241, UM-367
Nlview widget Symlib format UM-174
no space in time literal UM-250
NoCaseStaticError .ini file variable UM-350
NoDebug .ini file variable (VCOM) UM-350
NoDebug .ini file variable (VLOG) UM-351
noforce command CR-92
NolndexCheck .ini file variable UM-350
+nolibcell CR-185
nolog command CR-93
NOMMAP environment variable UM-346
non-blocking assignments UM-82
NoOthersStaticError .ini file variable UM-350
NoRangeCheck .ini file variable UM-350
notepad command CR-95
Notepad windows, text editing UM-156, UM-369
-notrigger argument UM-391
noview command CR-96
NoVitd .ini file variable UM-350
NoVitalCheck .ini file variable UM-350
Now simulator state variable UM-362
now simulator state variable UM-362
+nowarn<CODE> CR-185
nowhen command CR-97
numeric_bit package UM-47
numeric_std package UM-47

disabling warning messages UM-358
NumericStdNoWarnings .ini file variable UM-355

O

onbreak command CR-98
onElabError command CR-99
onerror command CR-100
optimize for std_logic_1164 UM-251
Optimize 1164 .ini file variable UM-350
OptionFile entry in project files UM-253
order of events

changing in Verilog CR-183
ordering files for compile UM-28
organizing projects with folders UM-32
others .ini file variable UM-350

P

packages
standard UM-46
textio UM-46
util UM-62

ABCDEFGHIJKLMNOPORSTUVWXY Z

VITAL 1995 UM-60

VITAL 2000 UM-60
page setup

Dataflow window UM-173

Wave window UM-245
pan, Dataflow window UM-167
parameters

making optional UM-340

using with macros CR-68, UM-339
path delay mode UM-89
pathnames

inVSIM commands CR-10

spacesin CR-9
PathSeparator .ini file variable UM-355
pause command CR-101
PedanticErrors .ini file variable UM-350
PLI

specifying which apps to load UM-102

Veriuser entry UM-102
PLI/VPI UM-100

tracing UM-121
PLIOBJS environment variable UM-102, UM-346
popup

toggling waveform popup on/off UM-232
port driver data, capturing UM-320
Postscript

saving awaveform in UM-242

saving the Dataflow display in UM-171
precedence of variables UM-362
precision, simulator resolution UM-78
pref.tcl file UM-360
preference variables

.ini files, located in UM-349

editing UM-360

saving UM-360

Tcl files, located in UM-360
preferences, saving UM-360
primitives, symbolsin Dataflow window UM-174
printenv command CR-102, CR-103
Process window UM-190

see also windows, Process window
processes

values and pathnamesin Variables window UM-

212

without wait statements UM-250
Programming Language Interface UM-100
project context menus UM-27
project tab

information in UM-26

sorting UM-26
projects UM-17

accessing from the command line UM-35
adding filesto UM-21
benefits UM-18
compile order UM-28
changing UM-28
compiler optionsin UM-34
compiling files UM-24
context menu UM-27
creating UM-20
creating simulation configurations UM-30
differences with earlier versions UM-19
foldersin UM-32
grouping filesin UM-29
loading adesign UM-25
MODELSIM environment variable UM-346
override mapping for work directory with vcom CR-
151
override mapping for work directory with viog CR-
187
overview UM-18
propagation, preventing X propagation CR-195
pulse error state CR-203
pwd command CR-105

Q

QuickSim Il logfile format CR-214
Quiet .ini filevariable

VCOM UM-350
Quiet .ini file variable (VLOG) UM-351
quietly command CR-106
quit command CR-107

R

race condition, problems with event order UM-80
radix
changing in Signals, Variables, Dataflow, List, and
Wave windows CR-108
character strings, displaying CR-180
default, DefaultRadix variable UM-353
of signals being examined CR-76
of signalsin Wave window CR-37
specifying in List window UM-182
radix command CR-108
range checking UM-51
disabling CR-150
enabling CR-151
readers and drivers UM-165
real type, converting to time UM-65

CR-237

ModelSim Command Reference

CR-238

Index

ABCDEFGHIJKLMNOPORSTUVWXY Z

reconstruct RTL-level design busses UM-134
record field selection, syntax CR-10
records, values of, changing UM-212
$recovery UM-93
redirecting messages, TranscriptFile UM-356
refreshing library images CR-151, CR-186, UM-47
registers
adding to the Wave and List windows UM-196
values of
displaying in Signals window UM-192
saving as binary log file UM-196
waveforms, viewing UM-215
report
simulator control UM-344
simulator state UM-344
report command CR-109
reporting
compile history UM-27
variable settings CR-13

RequireConfigForAllDefaul tBinding variable UM-350

resolution
returning asareal UM-62
specifying with -t argument CR-197
verilog simulation UM-78
VHDL simulation UM-52
Resolution .ini file variable UM-355
resolution simulator state variable UM-362
resource libraries UM-45
restart command CR-111
defaults UM-359
in GUI UM-150
toolbar button UM-154, UM-205, UM-223
restoring defaults UM-345
results, saving simulations UM-125
resume command CR-113
RTL-level design busses
reconstructing UM-134
run command CR-114
RunLength .ini file variable UM-355

S

saving
simulation optionsin a project UM-30
waveforms UM-125

scope, setting region environment CR-74

SDF
controlling missing instance messages CR-196
disabling timing checks UM-308
errors and warnings UM-299

ModelSim Command Reference

instance specification UM-298
interconnect delays UM-308
mixed VHDL and Verilog designs UM-308
specification with the GUI UM-299
troubleshooting UM-309
Verilog
$sdf_annotate system task UM-302
optional conditions UM-307
optional edge specifications UM-306
rounded timing values UM-307
SDF to Verilog construct matching UM-303
VHDL
resolving errors UM-301
SDF to VHDL generic matching UM-300
$sdf _done UM-95
search libraries CR-200, UM-259
searching
in the source window UM-206
in the Structure window UM-211
List window
signal values, transitions, and names UM-186
values and names UM-141
Verilog libraries UM-72
Wave window
signal values, edges and names UM-234
searchlog command CR-116
$setuphold UM-93
shared objects
loading FLI applications
see ModelSim FLI Reference manual
loading PLI/VPI C applications UM-105
loading PLI/VPI C++ applications UM-106
shift command CR-118
Shortcuts
text editing UM-156, UM-369
shortcuts
command history CR-7, UM-368
command line caveat CR-7, UM-368
List window UM-189, UM-367
Main window UM-369
Main windows UM-156
Source window UM-369
Wave window UM-240, UM-366
show command CR-119
show drivers
Dataflow window UM-165
Wave window UM-227
show source lines with errors UM-250
Show_BadOptionWarning .ini file variable UM-351
Show_Lint .ini filevariable (VLOG) UM-351
Show_source .ini file variable

ABCDEFGHIJKLMNOPORSTUVWXY Z

VCOM UM-350
Show_source .ini file variable (VLOG) UM-351
Show_VitalChecksWarning .ini file variable UM-350
Show_Warningl .ini file variable UM-351
Show_Warning2 .ini file variable UM-351
Show_Warning3 .ini file variable UM-351
Show_Warning4 .ini file variable UM-351
Show_Warning5 .ini file variable UM-351
Signal Spy UM-63
signal_force UM-63
signal_release UM-63
signals
adding to aWLF file UM-196
adding to the Wave and List windows UM-196
alternative namesin the List window (-label) CR-33
alternative namesin the Wave window (-label) CR-
36
applying stimulusto UM-195
attributes of, using in expressions CR-19
breakpoints CR-208, UM-198
combining into auser-defined bus CR-36, UM-183,
UM-226
Dataflow window, displaying in UM-158
drivers of, displaying CR-69
environment of, displaying CR-74
filtering in the Signals window UM-194
finding CR-79
force time, specifying CR-83
hierarchy
referencing in UM-63
releasing in UM-63
log file, creating CR-87
names of, viewing without hierarchy UM-231
pathnamesin VSIM commands CR-10
radix
specifying for examine CR-76
specifying in List window CR-33
specifying in Wave window CR-37
sampling at a clock change UM-391
states of, displaying as mnemonics CR-180
stimulus CR-82
transitions, searching for UM-237
types, selecting which to view UM-194
unresolved, multiple drivers on UM-250
values of
converting to strings UM-394
displaying in Signals window UM-192
examining CR-75
forcing anywhere in the hierarchy UM-63
replacing with text CR-180
saving as binary log file UM-196

waveforms, viewing UM-215
Signals window UM-192
see also windows, Signals window
simulating
command-line mode UM-388
comparing simulations UM-125
default run length UM-264
delays, specifying time unitsfor CR-14
design unit, specifying CR-192
graphic interface to UM-254
iteration limit UM-264
saving dataflow display as a Postscript file UM-171
saving optionsin a project UM-30
saving simulations CR-87, CR-197, UM-125, UM-
389
saving waveform as a Postscript file UM-242
stepping through a simulation CR-122
stimulus, applying to signals and nets UM-195
stopping simulation in batch mode CR-211
time resolution UM-255
Verilog UM-77
delay modes UM-88
hazard detection UM-83
resolution limit UM-78
XL compatible simulator options UM-87
VHDL UM-52
viewing resultsin List window UM-177
VITAL packages UM-61
Simulation Configuration
creating UM-30
simulations
event order in UM-80
saving results CR-62, CR-63, UM-125
saving results at intervals UM-131
simulator resolution
returning asareal UM-62
Verilog UM-78
VHDL UM-52
vsim -t argument CR-197
when comparing datasets UM-126
simulator state variables UM-362
simulator version CR-197, CR-206
simultaneous eventsin Verilog
changing order CR-183
sizetf callback function UM-112
so, shared object file
loading PLI/VPI C applications UM-105
loading PLI/VPI C++ applications UM-106
software version UM-153
sorting
HDL itemsin GUI windows UM-141

CR-239

ModelSim Command Reference

CR-240 Index

ABCDEFGHIJKLMNOPORSTUVWXY Z

source directory, setting from source window UM-201 system tasks

source errors, locating during compilation UM-248 ModelSim Verilog UM-95
source files, referencing with location maps UM-397 VCD UM-312
source libraries Verilog UM-90

arguments supporting UM-74 Verilog-XL compatible UM-93

source lines with errors
showing UM-250

spacesin pathnames CR-9

specify path delays CR-203

standards supported UM-14

startup
alternate to startup.do (vsim -do) CR-193
macro in the modelsim.ini file UM-355
macros UM-358
using a startup file UM-358

Startup .ini file variable UM-355

state variables UM-362

status bar

T

tab stops, in the Source window UM-207

tb command CR-124

Tcl UM-323-UM-334
command separator UM-330
command substitution UM-329
command syntax UM-326
evaluation order UM-330
Man Pagesin Help menu UM-153
preference variables UM-360

Main window UM-156 relational expression evaluation UM-330

status command CR-121 Sgieagloemmands UM-333
Statusfield .
Project tab UM-26 in when commands CR-209

o : substitution UM-331
:g .Iarrl:tfr:ISa\(lzig\gagle o9 VSIM Tcl commands UM-332
"~ disabling warning messages UM-358 temp files, VSOUT UM-348
std_developerskit .ini file variable UM-349 text and command syntax UM-16
std_logic_arith package UM-47 Text editing UM-156, UM-369

L TextlO package
std_logic_signed package UM-47) .
std_logic_textio UM-47 aternative I/O files UM-59

std_logic_unsigned package UM-47 containing hexadecimal numbers UM-58

StdArithNowWarnings .ini file variable UM-355 dangling pointers UM-58

STDOUT environment variable UM-346 EHBE 'l-\IEEZUHC“'OH LLJJI\I\/lISSE;
step command CR-122 unction -

simulus file declaration UM-55

applying to signals and nets UM-195 'F)T(f\lliegﬁgt;ti'rﬂzlﬁumugg'w
stop command CR-123))
Structure window UM-208 standard input UM-56

see also windows, Structure window \S;tvalgﬁ_?r; ;gtg’etgugeMdeG 57
symbol mapping)

Dataflow window UM-174 WRITE_STRING procedure UM-57

symbolic constants, displaying CR-180 $E'\r/losgn6 UM-118
symbolic names, assigning to signal values CR-180 disabli ing CR-202
synopsys .ini file variable UM-349 1Sabling warning ==

. . time
nopsys libraries UM-47 .
ynopsy absolute, using @ CR-14

e, imulation ti its CR-14
rule compliance checking CR-147, UM-251, UM- simulation time units CR- _
350 timeresolution asasimulator state variable UM-362
system calls time literal, missing space UM-250
VCD UM-312 ti me.resol L!tlon
Verilog UM-90 inVerilog UM-78

system commands UM-331 inVHDL UM-52

ModelSim Command Reference

ABCDEFGHIJKLMNOPORSTUVWXY Z

setting
with the GUI UM-255
with vsim command CR-197
time type, converting to real UM-64
time, time units, smulation time CR-14
time-based breakpoints UM-198
timescale directive warning, disabling CR-202
timing
$setuphol d/$recovery UM-93
annotation UM-297
disabling checks CR-185, UM-308
disabling checks for entire design CR-195
negative check limits
described UM-84
extending CR-200
title, Main window, changing CR-197
to_real VHDL function UM-64
to_time VHDL function UM-65
toggling waveform popup on/off UM-232
toolbar
Dataflow window UM-162
Main window UM-154
Wave window UM-221
tooltip, toggling waveform popup UM-232
tracing
events UM-168
source of unknown UM-169
transcript
file name, specifed in modelsim.ini UM-357
redirecting with -1 CR-195
reducing file size CR-126
saving UM-147
TranscriptFile variablein .ini file UM-356
using asaDO file UM-147
transcript command CR-125
transcript file command CR-126
tree windows
VHDL and Verilog itemsin UM-143
viewing the design hierarchy UM-144
TreeUpdate command CR-220
triggers, in the List window UM-392
triggers, in the List window, setting UM-185
TSCALE, disabling warning CR-202
TSSI CR-225
in VCD files UM-320
tssi2mti command CR-127
type
converting real to time UM-65
converting time to real UM-64
Typefield, Project tab UM-26

U

-u CR-186

unbound component UM-250
UnbufferedOutput .ini file variable UM-356
unit delay mode UM-89

unknowns, tracing UM-169

unresolved signals, multiple drivers on UM-250
use 1076-1993 language standard UM-249

use clause, specifying alibrary UM-46

use explicit declarations only UM-250

user-defined bus CR-36, UM-133, UM-183, UM-226

UserTimeUnit .ini file variable UM-356
util package UM-62

Vv

-v CR-186
v2k_int_delays CR-203
values
describe HDL items CR-66
examine HDL item values CR-75
of HDL items UM-206
replacing signal values with strings CR-180
variable settings report CR-13
variables

adding to the Wave and List windows UM-196

describing CR-66
environment variables UM-345
LM_LICENSE_FILE UM-345
personal preferences UM-344
precedence between .ini and .tcl UM-362
setting environment variables UM-345
simulator state variables
current settings report UM-344
iteration number UM-362

name of entity or module as avariable UM-362

resolution UM-362
simulation time UM-362
value of
changing from command line CR-50
changing with the GUI UM-212
examining CR-75
values of
displaying in Signals window UM-192
saving as hinary log file UM-196
Variables window UM-212
see also windows, Variables window
ved add command CR-128
ved checkpoint command CR-129

CR-241

ModelSim Command Reference

CR-242

Index

ABCDEFGHIJKLMNOPORSTUVWXY Z

ved comment command CR-130
vcd dumpports command CR-131
vcd dumpportsall command CR-133
vcd dumpportsflush command CR-134
vcd dumpportdimit command CR-135
vcd dumpportsoff command CR-136
vcd dumpportson command CR-137
ved file command CR-138
VCD files UM-311
adding itemsto the file CR-128
capturing port driver data CR-131, UM-320
case sensitivity UM-314
converting to WLF files CR-146
creating CR-128, UM-314
dumping variable values CR-129
dumpports tasks UM-312
flushing the buffer contents CR-142
from VHDL source to VCD output UM-317
inserting comments CR-130
internal signals, adding CR-128
specifying maximum file size CR-143
specifying name of CR-140
specifying the file name CR-138
state mapping CR-138, CR-140
supported TSS| states UM-320
turn off VCD dumping CR-144
turn on VCD dumping CR-145
VCD system tasks UM-312
viewing files from another tool CR-146
vcd files command CR-140
ved flush command CR-142
vcd limit command CR-143
ved off command CR-144
ved on command CR-145
ved2wlf command CR-146
vcom command CR-147
vdel command CR-153
vdir command CR-154
vector elements, initializing CR-50
vendor libraries, compatibility of CR-154
Vera, see Veradocumentation
Verilog
ACC routines UM-116
capturing port driver datawith -dumpports CR-138,
UM-320
cell libraries UM-88
compiler directives UM-96
compiling and linking PL1 C applications UM-105
compiling and linking PL1 C++ applications UM-
106
compiling design units UM-69

ModelSim Command Reference

compiling with XL "uselib compiler directive UM-
75
creating adesign library UM-69
event order in simulation UM-80
language templates UM-273
library usage UM-72
SDF annotation UM-302
sdf _annotate system task UM-302
simulating UM-77
delay modes UM-88
XL compatible options UM-87
simulation hazard detection UM-83
simulation resolution limit UM-78
source code viewing UM-200
standards UM-14
system tasks UM-90
TF routines UM-118
XL compatible compiler options UM-74
XL compatible routines UM-120
XL compatible system tasks UM-93
verilog .ini file variable UM-349
Verilog 2001
current implementation UM-14, UM-68
disabling support CR-186
Verilog PLI/VPI ?77—-UM-123
compiling and linking PLI/VPI C applications UM-
105
compiling and linking PLI/VPI C++ applications
UM-106
debugging PLI/VPI code UM-121
PLI callback reason argument UM-110
PLI support for VHDL objects UM-115
registering PL1 applications UM-101
registering VP! applications UM-103
specifying the PLI/VPI file to load UM-107
Verilog-XL
compatibility with UM-67, UM-99
Veriuser .ini file variable UM-102, UM-356
Veriuser, specifying PLI applications UM-102
veriuser.c file UM-114
verror command CR-155
version
obtaining via Help menu UM-153
obtaining with vaim command CR-197
obtaining with vaim<info> commands CR-206
vgencomp command CR-156
VHDL
delay file opening UM-359
dependency checking UM-50
field naming syntax CR-10
file opening delay UM-359

CR-243

ABCDEFGHIJKLMNOPORSTUVWXY Z

language templates UM-273
library clause UM-45
object support in PLI UM-115
simulating UM-52
source code viewing UM-200
standards UM-14
timing check disabling UM-52
VITAL package UM-47
VHDL utilities UM-62, UM-63
get_resolution() UM-62
to_red() UM-64
to_time() UM-65
VHDL93.ini file variable UM-351
view command CR-158
viewing
design hierarchy UM-143
library contents UM-41
waveforms CR-197, UM-125
virtual count commands CR-160
virtual define command CR-161
virtual delete command CR-162
virtual describe command CR-163
virtual expand commands CR-164
virtual function command CR-165
virtual hide command CR-168, UM-134
virtual log command CR-169
virtual nohide command CR-171
virtual nolog command CR-172
virtual objects UM-133
virtual functions UM-134
virtual regions UM-135
virtual signals UM-133
virtual types UM-135
virtual region command CR-174, UM-135
virtual regions
reconstruct the RTL hierarchy in gate-level design
UM-135
virtual save command CR-175, UM-134
virtual show command CR-176
virtual signal command CR-177, UM-133
virtual signals
reconstruct RTL-level design busses UM-134
reconstruct the original RTL hierarchy UM-134
virtual hide command UM-134
virtual type command CR-180
VITAL
compiling and simulating with accelerated VITAL
packages UM-61
disabling optimizations for debugging UM-61
specification and source code UM-60
VITAL packages UM-60

vital95 .ini file variable UM-349

vlib command CR-182

vlog command CR-183

vlog.opt file UM-253

vlog95compat .ini file variable UM-351

vmake command CR-189

vmap command CR-191

VP, registering applications UM-103

VPI/PLI UM-100
compiling and linking C applications UM-105
compiling and linking C++ applications UM-106

vsim build date and version CR-206

vsaim command CR-192

VSOUT temp file UM-348

W

WARNING[8], -lint argument to viog CR-185
warnings
disabling at time 0 UM-358
locating file and line number UM-390
suppressing VCOM warning messages CR-150
suppressing VLOG warning messages CR-185
suppressing VSIM warning messages CR-202
turning off warnings from arithmetic packages UM-
358
wave format file UM-217
wave log format (WLF) file CR-197, UM-125
of binary signal values CR-87
see also WLFfiles
wave viewer, Dataflow window UM-166
Wave window UM-215
in the Dataflow window UM-166
toggling waveform popup on/off UM-232
see also windows, Wave window
wave, adding CR-35
WaveA ctivateNextPane command CR-220
waveform logfile
log command CR-87
overview UM-125
see also WLFfiles
waveform popup UM-232
waveforms UM-125
saving and viewing CR-87, UM-126
saving and viewing in batch mode UM-389
viewing UM-215
WaveRestoreCursors command CR-220
WaveRestoreZoom command CR-220
WaveSignalNameWidth .ini file variable UM-356
welcome dialog, turning on/off UM-344

ModelSim Command Reference

CR-244 Index

ABCDEFGHIJKLMNOPORSTUVWXY Z

Wave window UM-215
adding HDL itemsto UM-217
adding signals with aWLF file UM-196
cursor measurements UM-236
display properties UM-231

when command CR-208
when statement
setting signal breakpoints UM-198
time-based breakpoints CR-212
where command CR-213
wildcard characters

for pattern matching in simulator commands CR-13

Windows

Main window

text editing UM-156, UM-369
Source window

text editing UM-156, UM-369

windows

Dataflow window UM-158
toolbar UM-162
zooming UM-167
finding HDL item namesin UM-141
List window UM-177
adding HDL items UM-178
adding signals with a WLF file UM-196
display properties of UM-184
formatting HDL items UM-181
output file CR-221
saving datato afile UM-188
saving the format of CR-219
setting triggers UM-185, UM-392
time markers UM-141
Main window UM-145
status bar UM-156
time and delta display UM-156
toolbar UM-154
opening
from command line CR-158
with the GUI UM-149
Process window UM-190
displaying active processes UM-190
specifying next process to be executed UM-190
viewing processing in the region UM-190
saving position and size UM-142
searching for HDL item valuesin UM-141
Signals window UM-192
VHDL and Verilog items viewed in UM-192
Source window
Setting tab stops UM-207
Structure window UM-208
selecting itemsto view in Signalswindow UM-
192
VHDL and Verilog items viewed in UM-208
viewing design hierarchy UM-208
Variables window UM-212
VHDL and Verilog items viewed in UM-212

ModelSim Command Reference

display range (zoom), changing UM-237
format file, saving UM-217
path elements, changing CR-53, UM-356
time cursors UM-235
zooming UM-237
WLF files
adding itemsto UM-196
creating from VCD CR-146
filtering, combining CR-216
limiting size CR-198
log command CR-87
overview UM-126
repairing CR-218
saving CR-62, CR-63, UM-127
saving at intervals UM-131
specifying name CR-197
using in batch mode UM-389
wlf2log command CR-214
wlfman command CR-216
wlifrecover command CR-218
work library UM-38
workspace UM-146
write format command CR-219
write list command CR-221
write preferences command CR-222
write report command CR-223
write transcript command CR-224
write tssi command CR-225
write wave command CR-227

X

X
tracing unknowns UM-169
X propagation
disabling for entire design CR-195

Y

-y CR-187

Z

zero delay elements UM-53

CR-245

ABCDEFGHIJKLMNOPORSTUVWXYZ

zero delay mode UM-89
zero-delay loop, infinite UM-396
zero-delay oscillation UM-396
zero-delay race condition UM-80
zoom
Dataflow window UM-167
from Wave toolbar buttons UM-237
saving range with bookmarks UM-238
with the mouse UM-238

ModelSim Command Reference

CR-246

ModelSim Command Reference

	Bookcase
	Command Reference
	Table of Contents
	Syntax and conventions
	Documentation conventions
	Command return values
	Command shortcuts
	Command history shortcuts
	Numbering conventions
	VHDL numbering conventions
	Verilog numbering conventions

	File and directory pathnames
	HDL item names
	Item name syntax
	Specifying names
	Environment variables and pathnames
	Name case sensitivity
	Extended identifiers

	Wildcard characters
	ModelSim variables
	Variable settings report

	Simulation time units
	Comments in argument files
	GUI_expression_format
	Expression typing
	Signal and subelement naming conventions
	Concatenation of signals or subelements
	VHDL record field support
	Grouping and precedence
	Expression syntax

	Commands
	Command reference table
	abort
	add dataflow
	add list
	add wave
	alias
	batch_mode
	bd
	bookmark add wave
	bookmark delete wave
	bookmark goto wave
	bookmark list wave
	bp
	cd
	change
	configure
	dataset alias
	dataset clear
	dataset close
	dataset info
	dataset list
	dataset open
	dataset rename
	dataset save
	dataset snapshot
	delete
	describe
	disablebp
	do
	drivers
	dumplog64
	echo
	edit
	enablebp
	environment
	examine
	exit
	find
	force
	help
	history
	log
	lshift
	lsublist
	modelsim
	noforce
	nolog
	notepad
	noview
	nowhen
	onbreak
	onElabError
	onerror
	pause
	precision
	printenv
	project
	pwd
	quietly
	quit
	radix
	report
	restart
	resume
	run
	searchlog
	shift
	show
	simstats
	status
	step
	stop
	tb
	transcript
	transcript file
	tssi2mti
	vcd add
	vcd checkpoint
	vcd comment
	vcd dumpports
	vcd dumpportsall
	vcd dumpportsflush
	vcd dumpportslimit
	vcd dumpportsoff
	vcd dumpportson
	vcd file
	vcd files
	vcd flush
	vcd limit
	vcd off
	vcd on
	vcd2wlf
	vcom
	vdel
	vdir
	verror
	vgencomp
	view
	virtual count
	virtual define
	virtual delete
	virtual describe
	virtual expand
	virtual function
	virtual hide
	virtual log
	virtual nohide
	virtual nolog
	virtual region
	virtual save
	virtual show
	virtual signal
	virtual type
	vlib
	vlog
	vmake
	vmap
	vsim
	vsim<info>
	vsource
	when
	where
	wlf2log
	wlfman
	wlfrecover
	write format
	write list
	write preferences
	write report
	write transcript
	write tssi
	write wave

	Index
	Symbols
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

