
ModelSim®
Xilinx Edition II

Command Reference
V e r s i o n 5 . 7 g

P u b l i s h e d : 1 8 / J u n / 0 3
T h e w o r l d ’ s m o s t p o p u l a r H D L s i m u l a t o r

ii

Mod
ModelSim is produced by Model Technology™, a Mentor Graphics Corporation
company. Copying, duplication, or other reproduction is prohibited without the
written consent of Model Technology.

The information in this manual is subject to change without notice and does not
represent a commitment on the part of Model Technology. The program described
in this manual is furnished under a license agreement and may not be used or
copied except in accordance with the terms of the agreement. The online
documentation provided with this product may be printed by the end-user. The
number of copies that may be printed is limited to the number of licenses
purchased.

ModelSim is a registered trademark and Signal Spy, TraceX, ChaseX and Model
Technology are trademarks of Mentor Graphics Corporation. PostScript is a
registered trademark of Adobe Systems Incorporated. UNIX is a registered
trademark of AT&T in the USA and other countries. FLEXlm is a trademark of
Globetrotter Software, Inc. IBM, AT, and PC are registered trademarks, AIX and
RISC System/6000 are trademarks of International Business Machines
Corporation. Windows, Microsoft, and MS-DOS are registered trademarks of
Microsoft Corporation. OSF/Motif is a trademark of the Open Software Foundation,
Inc. in the USA and other countries. SPARC is a registered trademark and
SPARCstation is a trademark of SPARC International, Inc. Sun Microsystems is a
registered trademark, and Sun, SunOS and OpenWindows are trademarks of Sun
Microsystems, Inc. All other trademarks and registered trademarks are the
properties of their respective holders.

Copyright © 1990 -2003, Model Technology, a Mentor Graphics Corporation
company. All rights reserved. Confidential. Online documentation may be printed
by licensed customers of Model Technology and Mentor Graphics for internal
business purposes only.

ModelSim support

Support for ModelSim is available from your FPGA vendor. See the About
ModelSim dialog box (accessed via the Help menu) for contact information.
elSim Command Reference

 CR-3
Table of Contents
Syntax and conventions (CR-5)

Documentation conventions CR-6

Command return values CR-7

Command shortcuts CR-7

Command history shortcuts CR-7

Numbering conventions CR-8

File and directory pathnames CR-9

HDL item names CR-10

Wildcard characters CR-13

ModelSim variables CR-13

Simulation time units CR-14

Comments in argument files CR-14

GUI_expression_format CR-15

Commands (CR-23)

Command reference table CR-24

abort CR-30

add dataflow CR-31

add list CR-32

add wave CR-35

alias CR-39

batch_mode CR-40

bd CR-41

bookmark add wave CR-42

bookmark delete wave CR-43

bookmark goto wave CR-44

bookmark list wave CR-45

bp CR-46

cd CR-49

change CR-50

configure CR-51

dataset alias CR-55

dataset clear CR-56

dataset close CR-57

dataset info CR-58

dataset list CR-59

dataset open CR-60

dataset rename CR-61

dataset save CR-62

dataset snapshot CR-63

delete CR-65

describe CR-66

disablebp CR-67

do CR-68

drivers CR-69

dumplog64 CR-70

echo CR-71

edit CR-72

enablebp CR-73

environment CR-74

examine CR-75

exit CR-78

find CR-79

force CR-82

help CR-85

history CR-86

log CR-87

lshift CR-89

lsublist CR-90

modelsim CR-91

noforce CR-92

nolog CR-93

notepad CR-95

noview CR-96

nowhen CR-97

onbreak CR-98

onElabError CR-99

onerror CR-100

pause CR-101

precision CR-102

printenv CR-103

project CR-104

pwd CR-105
ModelSim Command Reference

CR-4 Table of Contents

Model
quietly CR-106

quit CR-107

radix CR-108

report CR-109

restart CR-111

resume CR-113

run CR-114

searchlog CR-116

shift CR-118

show CR-119

simstats CR-120

status CR-121

step CR-122

stop CR-123

tb CR-124

transcript CR-125

transcript file CR-126

tssi2mti CR-127

vcd add CR-128

vcd checkpoint CR-129

vcd comment CR-130

vcd dumpports CR-131

vcd dumpportsall CR-133

vcd dumpportsflush CR-134

vcd dumpportslimit CR-135

vcd dumpportsoff CR-136

vcd dumpportson CR-137

vcd file CR-138

vcd files CR-140

vcd flush CR-142

vcd limit CR-143

vcd off CR-144

vcd on CR-145

vcd2wlf CR-146

vcom CR-147

vdel CR-153

vdir CR-154

verror CR-155

vgencomp CR-156

view CR-158

virtual count CR-160

virtual define CR-161

virtual delete CR-162

virtual describe CR-163

virtual expand CR-164

virtual function CR-165

virtual hide CR-168

virtual log CR-169

virtual nohide CR-171

virtual nolog CR-172

virtual region CR-174

virtual save CR-175

virtual show CR-176

virtual signal CR-177

virtual type CR-180

vlib CR-182

vlog CR-183

vmake CR-189

vmap CR-191

vsim CR-192

vsim<info> CR-206

vsource CR-207

when CR-208

where CR-213

wlf2log CR-214

wlfman CR-216

wlfrecover CR-218

write format CR-219

write list CR-221

write preferences CR-222

write report CR-223

write transcript CR-224

write tssi CR-225

write wave CR-227

Index (CR-229)
Sim Command Reference

 CR-5
Syntax and conventions

Chapter contents
Documentation conventions CR-6

Command return values CR-7

Command shortcuts CR-7

Command history shortcuts CR-7

Numbering conventions CR-8

File and directory pathnames CR-9

HDL item names CR-10

Wildcard characters CR-13

ModelSim variables CR-13

Simulation time units CR-14

Comments in argument files CR-14

GUI_expression_format CR-15
ModelSim Command Reference

CR-6 Syntax and conventions

Model
Documentation conventions

This manual uses the following conventions to define ModelSim command syntax.

Syntax notation Description

< > angled brackets surrounding a syntax item indicate a user-
defined argument; do not enter the brackets in commands

[] square brackets generally indicate an optional item; if the
brackets surround several words, all must be entered as a group;
the brackets are not entereda

a. One exception to this rule is when you are using Verilog syntax to designate
an array slice. For example,

add wave {vector1[4:0]}

The square brackets in this case denote an index. The braces prevent the Tcl interpreter
from treating the text within the square brackets as a Tcl command.

{ } braces indicate that the enclosed expression contains one or
more spaces yet should be treated as a single argument, or that
the expression contains square brackets for an index; for either
situation, the braces are entered

... an ellipsis indicates items that may appear more than once; the
ellipsis itself does not appear in commands

| the vertical bar indicates a choice between items on either side
of it; do not include the bar in the command

monospaced type monospaced type is used in command examples

#
--

comments included with commands are preceded by the number
sign (#) or by two hyphens (--); useful for adding comments to
DO files (macros)

Note: Neither the prompt at the beginning of a line nor the <Enter> key that ends a line
is shown in the command examples.
Sim Command Reference

Command return values CR-7
Command return values

All simulator commands are invoked using Tcl. For most commands that write information
to the Main window, that information is also available as a Tcl result. By using command
substitution the results can be made available to another command or assigned to a Tcl
variable. For example:

set aluinputs [find -in alu/*]

sets variable “aluinputs” to the result of the find command (CR-79).

Command shortcuts

• You may abbreviate command syntax, but there’s a catch — the minimum number of
characters required to execute a command are those that make it unique. Remember, as
we add new commands some of the old shortcuts may not work.

• Multiple commands may be entered on one line if they are separated by semi-colons (;).
For example:

ModelSim> vlog -nodebug=ports level3.v level2.v ; vlog -nodebug top.v

The return value of the last function executed is the only one printed to the transcript.
This may cause some unexpected behavior in certain circumstances. Consider this
example:

vsim -c -do "run 20 ; simstats ; quit -f" top

You probably expect the simstats results to display in the Transcript window, but they
will not, because the last command is quit -f. To see the return values of intermediate
commands, you must explicitly print the results. For example:

vsim -do "run 20 ; echo [simstats]; quit -f" -c top

Command history shortcuts

The simulator command history may be reviewed, or commands may be reused, with these
shortcuts at the ModelSim/VSIM prompt:

Shortcut Description

up and down arrows scrolls through the command history with the keyboard arrows

click on prompt left-click once on a previous ModelSim or VSIM prompt in the
transcript to copy the command typed at that prompt to the active
cursor

history shows the last few commands (up to 50 are kept)
ModelSim Command Reference

CR-8 Syntax and conventions

Model
Numbering conventions

Numbers in ModelSim can be expressed in either VHDL or Verilog style. Two styles can
be used for VHDL numbers, one for Verilog.

VHDL numbering conventions

The first of two VHDL number styles is:

[-] [radix #] value [#]

Examples

16#FFca23#
2#11111110
-23749

The second VHDL number style is:

base "value"

Examples

B"11111110"
X"FFca23"

Element Description

- indicates a negative number; optional

radix can be any base in the range 2 through 16 (2, 8, 10, or 16); by default,
numbers are assumed to be decimal; optional

value specifies the numeric value, expressed in the specified radix; required

is a delimiter between the radix and the value; the first # sign is
required if a radix is used, the second is always optional

Note: A ‘-’ can also be used to designate a "don’t care" element when you search for a
signal in the List or Wave window. If you want the ‘-’ to be read as a "don’t care"
element, rather than a negative sign, be sure to enclose the number in double quotes. For
instance, you would type "-0110--" as opposed to -0110--. If you don’t include the
double quotes, ModelSim will read the ‘-’ as a negative sign.

Element Description

base specifies the base; binary: B, octal: O, hex: X; required

value specifies digits in the appropriate base with optional underscore
separators; default is decimal; required
Sim Command Reference

File and directory pathnames CR-9
Verilog numbering conventions

Verilog numbers are expressed in the style:

[-] [size] [base] value

Examples

’b11111110 8’b11111110
’Hffca23 21’H1fca23
-23749

File and directory pathnames

Several ModelSim commands have arguments that point to files or directories. For
example, the -y argument to vlog specifies the Verilog source library directory to search for
undefined modules. Spaces in file pathnames must be escaped or the entire path must be
enclosed in quotes. For example:

vlog top.v -y C:/Documents\ and\ Settings/mcarnes/simprims

or

vlog top.v -y "C:/Documents and Settings/mcarnes/simprims"

Element Description

- indicates a negative number; optional

size the number of bits in the number; optional

base specifies the base; binary: ‘b or ‘B, octal: ‘o or ‘O, decimal: ‘d or ‘D,
hex: ‘h or ‘H; optional

value specifies digits in the appropriate base with optional underscore
separators; default is decimal, required

Note: A ‘-’ can also be used to designate a "don’t care" element when you search for a
signal in the List or Wave windows. If you want the ‘-’ to be read as a "don’t care"
element, rather than a negative sign, be sure to enclose the number in double quotes. For
instance, you would type "-0110--" as opposed to 7'b-0110--. If you don’t include the
double quotes, ModelSim will read the ‘-’ as a negative sign.
ModelSim Command Reference

CR-10 Syntax and conventions

Model
HDL item names

VHDL and Verilog items are organized hierarchically. Each of the following HDL items
creates a new level in the hierarchy:

• VHDL
component instantiation statement, block statement, and package

• Verilog
module instantiation, named fork, named begin, task and function

Item name syntax

The syntax for specifying item names in ModelSim is as follows:

[<datasetName><datasetSeparator>][<pathSeparator>][<hierarchicalPath>]<item
Name>[<elementSelection>]

where

datasetName

is the logical name of the WLF file in which the item exists. The currently active
simulation is the “sim” dataset. Any loaded WLF file is referred to by the logical name
specified when the WLF file was loaded. See Chapter 7 - WLF files (datasets) and
virtuals for more information.

datasetSeparator

is the character used to terminate the dataset name. The default is ’:’, though a different
character (other than ’\’) may be specified as the dataset separator via the
DatasetSeparator (UM-353) variable in the modelsim.ini file. The default is ':'. This
character must be different than the pathSeparator character.

pathSeparator

is the character used to separate hierarchical item names. Normally, '/' is used for VHDL
and '.' is used for Verilog, although other characters (except '\') may be specified via the
PathSeparator (UM-355) variable in the modelsim.ini file. This character must be different
than the datasetSeparator.

hierarchicalPath

is a set of instance names each separated by a path separator.

itemName

is the name of an object in a design.

elementSelection

indicates some combination of the following:

Array indexing - Single array elements are specified using either parentheses "()" or
square brackets "[]" around a single number.

Array slicing - Slices (or part-selects) of arrays are specified using either parentheses "()"
or square brackets "[]" around a range specification. A range is two numbers separated
by one of the following: " to ", " downto ", ":".

Record field selection - A record field is specified using a period "." followed by the
name of the field.
Sim Command Reference

HDL item names CR-11
Specifying names

We distinguish between four "types" of item names: simple, relative, fully-rooted, and
absolute.

A simple name does not contain any hierarchy. It is simply the name of an item (e.g., clk or
data[3:0]) in the current context.

A relative name does not start with a path separator and may or may not include a dataset
name or a hierarchical path (e.g., u1/data or view:clk). A relative name is relative to the
current context in the current or specified dataset.

A fully-rooted name starts with a path separator and includes a hierarchical path to an item
(e.g., /top/u1/clk).There is a special case of a fully-rooted name where the top-level design
unit name can be unspecified (e.g., /u1/clk). In this case, the first top-level instance in the
design is assumed.

An absolute name is an exactly specified hierarchical name containing a dataset name and
a fully rooted name (e.g., sim:/top/u1/clk).

The current dataset is used when accessing items where a dataset name is not specified as
part of the name. The current dataset is determined by the dataset currently selected in the
Structure window or by the last dataset specified in an environment command (CR-74).

The current context in the current or specified dataset is used when accessing items with
relative or simple names. The current context is either the current process, if any, or the
current instance if there is no current process or the current process is not in the current
instance. The situation of the current process not being in the current instance can occur,
for example, by selecting a different instance in the Structure tab or by using the
environment command (CR-74) to set the current context to a different instance.

Here are some examples of item names and what they specify:

Syntax Description

clk specifies the item clk in the current context

/top/clk specifies the item clk in the top-level design unit.

/top/block1/u2/clk specifies the item clk, two levels down from the
top-level design unit

block1/u2/clk specifies the item clk, two levels down from the
current context

array_sig[4] specifies an index of an array item

{array_sig(1 to 10)} specifies a slice of an array item in VHDL syntax

{mysignal[31:0]} specifies a slice of an array item in Verilog syntax

record_sig.field specifies a field of a record
ModelSim Command Reference

CR-12 Syntax and conventions

Model
Environment variables and pathnames

You can substitute environment variables for pathnames in any argument that requires a
pathname. For example:

vlog -v $lib_path/und1

Assuming you have defined $lib_path on your system, vlog will locate the source library
file und1 and search it for undefined modules. See "Environment variables" (UM-345) for
more information.

Name case sensitivity

Name case sensitivity is different for VHDL and Verilog. VHDL names are not case
sensitive except for extended identifiers in VHDL 1076-1993. In contrast, all Verilog
names are case sensitive.

Names in ModelSim commands are case sensitive when matched against case sensitive
identifiers, otherwise they are not case sensitive.

Extended identifiers

The following are supported formats for extended identifiers for any command that takes
an identifier.

{\ext ident!\ } # Note trailing space.

\\ext\ ident\!\\ # All non-alpha characters escaped

Note: Environment variable expansion does not occur in files that are referenced via the
-f argument to vcom, vlog, or vsim.
Sim Command Reference

Wildcard characters CR-13
Wildcard characters

Wildcard characters can be used in HDL item names in some simulator commands.
Conventions for wildcards are as follows:

The WildcardFilter Tcl preference variable filters matching items for the add wave, add
log, add list, and find commands.

ModelSim variables

Several variables are available to control simulation, provide simulator state feedback, or
modify the appearance of the ModelSim GUI. To take effect, some variables, such as
environment variables, must be set prior to simulation.

ModelSim variables can be referenced in simulator commands by preceding the name of
the variable with the dollar sign ($) character. ModelSim uses global Tcl variables for
simulator state variables, simulator control variables, simulator preference variables, and
user-defined variables (see "Preference variables located in Tcl files" (UM-360) for more
information).

See Appendix A - ModelSim variables in the User’s Manual for more information on
variables.

Variable settings report

The report command (CR-109) returns a list of current settings for either the simulator state,
or simulator control variables.

Syntax Description

* matches any sequence of characters

? matches any single character

[] matches any one of the enclosed characters; a
hyphen can be used to specify a range (for
example, a-z, A-Z, 0-9); can be used only with
the find command (CR-79)

Note: A wildcard character will never match a path separator. For example, /dut/* will
match /dut/siga and /dut/clk. However, /dut* won’t match either of those.
ModelSim Command Reference

http://www.model.com/resources/pref_variables/get_records_test.asp?Category=All

CR-14 Syntax and conventions

Model
Simulation time units

You can specify the time unit for delays in all simulator commands that have time
arguments. For example:

force clk 1 50 ns, 1 100 ns -repeat 1 us
run 2 ms

Note that all the time units in a ModelSim command need not be the same.

Unless you specify otherwise as in the examples above, simulation time is always
expressed using the resolution units that are specified by the UserTimeUnit variable. See
UserTimeUnit (UM-356).

By default, the specified time units are assumed to be relative to the current time unless the
value is preceded by the character @, which signifies an absolute time specification.

Comments in argument files
Argument files may be loaded with the -f <filename> argument of the vcom, vlog, and
vsim commands. The -f <filename> argument specifies a file that contains more command
line arguments.

Comments within the argument files follow these rules:

• All text in a line beginning with // to its end is treated as a comment.

• All text bracketed by /* ... */ is treated as a comment.

Also, program arguments can be placed on separate lines in the argument file, with the
newline characters treated as space characters. There is no need to put '\' at the end of each
line.

DOS pathnames require a backslash (\), but ModelSim will accept either a backslash or the
forward slash (/).

You can change this behavior so that backslashes on comment lines are used for extended
identifiers, but then you can only use forward slashes when you need pathname delimiters.
To do this, "uncomment" the following line in the modelsim.ini file and set its value to zero.

BackslashesArePathnameDelimiters = 0

This will allow command lines that can reference signals, variables, and design unit names
that use extended identifiers; for example:

examine \clock 2x\

Note: VHDL93 uses backslashes to denote extended identifiers. By default
ModelSim PE/PLUS uses backslashes as pathname separators. Therefore it cannot
recognize extended identifiers.
Sim Command Reference

GUI_expression_format CR-15
GUI_expression_format

The GUI_expression_format is an option of several simulator commands that operate
within the ModelSim GUI environment. The commands that use the expression format are:

configure (CR-51), examine (CR-75), searchlog (CR-116), virtual function (CR-165), and
virtual signal (CR-177)

Expression typing

GUI expressions are typed. The supported types consist of six scalar types and two array
types.

Scalar types

The scalar types are as follows: boolean, integer, real, time (64-bit integer), enumeration,
and signal state. Signal states are represented by the nine VHDL std_logic states: ’U’ ’X’
’0’ ’1’ ’Z’ ’H’ ’L’ ’W’ and ’-’. Verilog states 0, 1, x, and z are mapped into these states and
the Verilog strengths are ignored. Conversion is done automatically when referencing
Verilog nets or registers.

Array types

The array types supported are signed and unsigned arrays of signal states. This would
correspond to the VHDL std_logic_array type. Verilog registers are automatically
converted to these array types. The array type can be treated as either UNSIGNED or
SIGNED, as in the IEEE std_logic_arith package. Normally, referencing a signal array
causes it to be treated as UNSIGNED by the expression evaluator; to cause it to be treated
as SIGNED, use casting as described below. Numeric operations supported on arrays are
performed by the expression evaluator via ModelSim’s built-in numeric_standard (and
similar) package routines. The expression evaluator selects the appropriate numeric routine
based on SIGNED or UNSIGNED properties of the array arguments and the result.

The enumeration types supported are any VHDL enumerated type. Enumeration literals
may be used in the expression as long as some variable of that enumeration type is
referenced in the expression. This is useful for sub-expressions of the form:

(/memory/state == reading)
ModelSim Command Reference

CR-16 Syntax and conventions

Model
Signal and subelement naming conventions

ModelSim supports naming conventions for VHDL and Verilog signal pathnames, VHDL
array indexing, Verilog bit selection, VHDL subrange specification, and Verilog part
selection.

Examples in Verilog and VHDL syntax:

top.chip.vlogsig
/top/chip/vhdlsig
vlogsig[3]
vhdlsig(9)
vlogsig[5:2]
vhdlsig(5 downto 2)

Concatenation of signals or subelements

Elements in the concatenation that are arrays are expanded so that each element in the array
becomes a top-level element of the concatenation. But for elements in the concatenation
that are records, the entire record becomes one top-level element in the result. To specify
that the records be broken down so that their subelements become top-level elements in the
concatenation, use the concat_flatten directive. Currently we do not support leaving full
arrays as elements in the result. (Please let us know if you need that option.)

If the elements being concatenated are of incompatible base type, a VHDL-style record will
be created. The record object can be expanded in the Signals and Wave windows just like
an array of compatible type elements.

Concatenation syntax for VHDL

<signalOrSliceName1> & <signalOrSliceName2> & ...

Concatenation syntax for Verilog

&{<signalOrSliceName1>, <signalOrSliceName2>, ... }
&{<count>{<signalOrSliceName1>}, <signalOrSliceName2>, ... }

Note that the concatenation syntax begins with "&{" rather than just "{". Repetition
multipliers are supported, as illustrated in the second line. The repetition element itself may
be an arbitrary concatenation subexpression.

Concatenation directives

The concatenation directive (as illustrated below) can be used to constrain the resulting
array range of a concatenation or influence how compound objects are treated. By default,
the concatenation will be created with descending index range from (n-1) downto 0, where
n is the number of elements in the array. The concat_range directive completely specifies
the index range. The concat_ascending directive specifies that the index start at zero and
increment upwards. The concat_flatten directive flattens the signal structure hierarchy.
The concat_sort_wild_ascending directive gathers signals by name in ascending order
(the default is descending).

(concat_range 31:0)<concatenationExpr> # Verilog syntax
(concat_range (31:0))<concatenationExpr> # Also Verilog syntax
(concat_range (31 downto 0))<concatenationExpr> # VHDL syntax
(concat_ascending) <concatenationExpr>
(concat_flatten) <concatenationExpr> # no hierarchy
(concat_sort_wild_ascending) <concatenationExpr>
Sim Command Reference

GUI_expression_format CR-17
Examples

&{ "mybusbasename*" }

Gathers all signals in the current context whose names begin with "mybusbasename",
sorts those names in descending order, and creates a bus with index range (n-1) downto
0, where n is the number of matching signals found. (Note that it currently does not derive
the index name from the tail of the one-bit signal name.)

(concat_range 13:4)&{ "mybusbasename*" }

Specifies the index range to be 13 downto 4, with the signals gathered by name in
descending order.

(concat_ascending)&{ "mybusbasename*" }

Specifies an ascending range of 0 to n-1, with the signals gathered by name in descending
order.

(concat_ascending)((concat_sort_wild_ascending)&{"mybusbasename*" })

Specifies an ascending range of 0 to n-1, with the signals gathered by name in ascending
order.

VHDL record field support

Arbitrarily-nested arrays and records are supported, but operators will only operate on one
field at a time. That is, the expression {a == b} where a and b are records with multiple
fields, is not supported. This would have to be expressed as:

{(a.f1 == b.f1) && (a.f2 == b.f2)...}

Examples:

vhdlsig.field1
vhdlsig.field1.subfield1
vhdlsig.(5).field3
vhdlsig.field4(3 downto 0)

Grouping and precedence

Operator precedence generally follows that of the C language, but we recommend liberal
use of parentheses.
ModelSim Command Reference

CR-18 Syntax and conventions

Model
Expression syntax

GUI expressions generally follow C-language syntax, with both VHDL-specific and
Verilog-specific conventions supported. These expressions are not parsed by the Tcl parser,
and so do not support general Tcl; parentheses should be used rather than curly braces.
Procedure calls are not supported.

A GUI expression can include the following elements: Tcl macros, constants, array
constants, variables, array variables, signal attributes, operators and casting.

Tcl macros

Macros are useful for pre-defined constants or for entire expressions that have been
previously saved. The substitution is done only once, when the expression is first parsed.
Macro syntax is:

$<name>

Substitutes the string value of the Tcl global variable <name>.

Constants

Array constants, expressed in any of the following formats

Type Values

boolean value true false TRUE FALSE

integer [0-9]+

real number <int>|([<int>].<int>[exp]) where the optional [exp] is: (e|E)[+|-][0-
9]+

time integer or real optionally followed by time unit

enumeration VHDL user-defined enumeration literal

single bit constants expressed as any of the following:
0 1 x X z Z U H L W ’U’ ’X’ ’0’ ’1’ ’Z’ ’H’ ’L’ ’W’ ’-’ 1’b0 1’b1

Type Values

VHDL # notation <int>#<alphanum>[#]
Example: 16#abc123#

VHDL bitstring "(U|X|0|1|Z|L|H|W|-)*"
Example: "11010X11"

VLOG notation [-][<int>]’(b|B|o|O|d|D|h|H) <alphanum>
(where <alphanum> includes 0-9, a-f, A-F and ’-’)
Example: 12’hc91 (This is the preferred notation because it removes
the ambiguity about the number of bits.)

Based notation 0x..., 0X..., 0o..., 0O..., 0b..., OB...
ModelSim automatically zero fills unspecified upper bits.
Sim Command Reference

GUI_expression_format CR-19
Variables

Array variables

Signal attributes

<name>’event
<name>’rising
<name>’falling
<name>’delayed()
<name>’hasX

The ’delayed attribute lets you assign a delay to a VHDL signal. To assign a delay to a
signal in Verilog, use “#” notation in a sub-expression (e.g., #-10 /top/signalA).

The hasX attribute lets you search for signals, nets, or registers that contains an X
(unknown) value.

See "Examples" (CR-21) below for further details on ’delayed and ’hasX.

Variable Type

Name of a signal The name may be a simple name, a VHDL or VLOG style extended
identifier, or a VHDL or VLOG style path. The signal must be one
of the following types:
-- VHDL signal of type INTEGER, REAL or TIME
-- VHDL signal of type std_logic or bit
-- VHDL signal of type user-defined enumeration
-- VLOG net, VLOG register, VLOG integer, or VLOG real

NOW Returns the value of time at the current location in the WLF file as
the WLF file is being scanned (not the most recent simulation time).

Variable Type

Name of a signal -- VHDL signals of type bit_vector or std_logic_vector
-- VLOG register
-- VLOG net array
A subrange or index may be specified in either VHDL or VLOG
syntax. Examples: mysignal(1 to 5), mysignal[1:5], mysignal (4),
mysignal [4]
ModelSim Command Reference

CR-20 Syntax and conventions

Model
Operators

Operator Description Operator Description

&& boolean and sll/SLL shift left logical

|| boolean or sla/SLA shift left arithmetic

! boolean not srl/SRL shift right logical

== equal sra/SRA shift right
arithmetic

!= not equal ror/ROR rotate right

=== exact equal rol/ROL rotate left

!== exact not equal + arithmetic add

< less than - arithmetic subtract

<= less than or equal * arithmetic multiply

> greater than / arithmetic divide

>= greater than or equal mod/MOD arithmetic modulus

not/NOT or ~ unary bitwise
inversion

rem/REM arithmetic
remainder

and/AND/& bitwise and |<vector_expr> OR reduction

nand/NAND bitwise nand ^<vector_expr> XOR reduction

or/OR/| bitwise or

nor/NOR bitwise nor

xor/XOR bitwise xor

xnor/XNOR bitwise xnor

Note: Arithmetic operators use the std_logic_arith package.
Sim Command Reference

GUI_expression_format CR-21
Casting

Examples

/top/bus & $bit_mask

This expression takes the bitwise AND function of signal /top/bus and the array constant
contained in the global Tcl variable bit_mask.

clk’event && (/top/xyz == 16’hffae)

This expression evaluates to a boolean true when signal clk changes and signal /top/xyz
is equal to hex ffae; otherwise is false.

clk’rising && (mystate == reading) && (/top/u3/addr == 32’habcd1234)

Evaluates to a boolean true when signal clk just changed from low to high and signal
mystate is the enumeration reading and signal /top/u3/addr is equal to the specified 32-bit
hex constant; otherwise is false.

(/top/u3/addr and 32’hff000000) == 32’hac000000

Evaluates to a boolean true when the upper 8 bits of the 32-bit signal /top/u3/adder equals
hex ac.

/top/signalA'delayed(10ns)

This expression returns /top/signalA delayed by 10 ns.

/top/signalA'delayed(10 ns) && /top/signalB

This expression takes the logical AND of a delayed /top/signalA with the undelayed
/top/signalB.

virtual function { (#-10 /top/signalA) && /top/signalB}
mySignalB_AND_DelayedSignalA

This evaluates /top/signalA at 10 simulation time steps before the current time, and takes
the logical AND of the result with the current value of /top/signalB. The ’#’ notation uses
positive numbers for looking into the future, and negative numbers for delay. This
notation does not support the use of time units.

Casting Description

(bool) convert to boolean

(boolean) convert to boolean

(int) convert to integer

(integer) convert to integer

(real) convert to real

(time) convert to 64-bit integer

(std_logic) convert to 9-state signal value

(signed) convert to signed vector

(unsigned) convert to unsigned vector

(std_logic_vector) convert to unsigned vector
ModelSim Command Reference

CR-22 Syntax and conventions

Model
((NOW > 23 us) && (NOW < 54 us)) && clk’rising && (mode == writing)

Evaluates to a boolean true when WLF file time is between 23 and 54 microseconds, clk
just changed from low to high, and signal mode is enumeration writing.

searchlog -expr {dbus'hasX} {0 ns} dbus

Searches for an ’X’ in dbus. This is equivalent to the expression: {dbus(0) == ’x’ ||
dbus(1) == ’x’} This makes it possible to search for X values without having to write
a type specific literal.
Sim Command Reference

 CR-23
Commands

Chapter contents
Command reference table CR-24

The commands here are entered either in macro files or on the command line of the Main
window. Some commands are automatically entered on the command line when you use
the ModelSim graphical user interface.

Note that in addition to the simulation commands documented in this section, you can use
the Tcl commands described in the Tcl man pages (use the Main window menu selection:
Help > Tcl Man Pages).

Note: ModelSim commands are case sensitive. Type them as they are shown in this
reference.
ModelSim Command Reference

CR-24 Commands

Model
Command reference table

The following table provides a brief description of each ModelSim command. Command
details, arguments and examples can be found at the page numbers given in the Command
name column.

Command name Action

abort (CR-30) halts the execution of a macro file interrupted by a breakpoint or error

add dataflow (CR-31) adds the specified item to the Dataflow window

add list (CR-32) lists VHDL signals and variables, and Verilog nets and registers, and their
values in the List window

add log also known as the log command; see log (CR-87)

add wave (CR-35) adds VHDL signals and variables, and Verilog nets and registers to the Wave
window

alias (CR-39) creates a new Tcl procedure that evaluates the specified commands

batch_mode (CR-40) returns a 1 if ModelSim is operating in batch mode, otherwise returns a 0

bd (CR-41) deletes a breakpoint

bookmark add wave (CR-42) adds a bookmark to the specified Wave window

bookmark delete wave (CR-43) deletes bookmarks from the specified Wave window

bookmark goto wave (CR-44) zooms and scrolls a Wave window using the specified bookmark

bookmark list wave (CR-45) displays a list of available bookmarks

bp (CR-46) sets a breakpoint

cd (CR-49) changes the ModelSim local directory to the specified directory

change (CR-50) modifies the value of a VHDL variable or Verilog register variable

configure (CR-51) invokes the List or Wave widget configure command for the current default
List or Wave window

dataset alias (CR-55) assigns an additional name to a dataset

dataset clear (CR-56) clears the current simulation WLF file

dataset close (CR-57) closes a dataset

dataset info (CR-58) reports information about the specified dataset

dataset list (CR-59) lists the open dataset(s)

dataset open (CR-60) opens a dataset and references it by a logical name

dataset rename (CR-61) changes the logical name of an opened dataset

dataset save (CR-62) saves data from the current WLF file to a specified file
Sim Command Reference

Command reference table CR-25
dataset snapshot (CR-63) saves data from the current WLF file at a specified interval

delete (CR-65) removes HDL items from either the List or Wave window

describe (CR-66) displays information about the specified HDL item

disablebp (CR-67) turns off breakpoints and when commands

do (CR-68) executes commands contained in a macro file

drivers (CR-69) displays in the Main window the current value and scheduled future values
for all the drivers of a specified VHDL signal or Verilog net

dumplog64 (CR-70) dumps the contents of the vsim.wlf file in a readable format

echo (CR-71) displays a specified message in the Main window

edit (CR-72) invokes the editor specified by the EDITOR environment variable

enablebp (CR-73) turns on breakpoints and when commands turned off by the disablebp
command (CR-67)

environment (CR-74) displays or changes the current dataset and region environment

examine (CR-75) examines one or more HDL items, and displays current values (or the values
at a specified previous time) in the Main window

exit (CR-78) exits the simulator and the ModelSim application

find (CR-79) displays the full pathnames of all HDL items in the design whose names
match the name specification you provide

force (CR-82) allows you to apply stimulus to VHDL signals and Verilog nets and registers,
interactively

help (CR-85) displays in the Main window a brief description and syntax for the specified
command

history (CR-86) lists the commands executed during the current session

log (CR-87) creates a wave log format (WLF) file containing simulation data for all HDL
items whose names match the provided specifications

lshift (CR-89) takes a Tcl list as argument and shifts it in-place one place to the left,
eliminating the 0th element

lsublist (CR-90) returns a sublist of the specified Tcl list that matches the specified Tcl glob
pattern

modelsim (CR-91) starts the ModelSim GUI without prompting you to load a design; valid only
for Windows platforms

noforce (CR-92) removes the effect of any active force (CR-82) commands on the selected
HDL items

nolog (CR-93) suspends writing of data to the WLF file for the specified signals

Command name Action
ModelSim Command Reference

CR-26 Commands

Model
notepad (CR-95) opens a simple text editor

noview (CR-96) closes a window in the ModelSim GUI

nowhen (CR-97) deactivates selected when (CR-208) commands

onbreak (CR-98) specifies command(s) to be executed when running a macro that encounters
a breakpoint in the source code

onElabError (CR-99) specifies one or more commands to be executed when an error is encountered
during elaboration

onerror (CR-100) specifies one or more commands to be executed when a running macro
encounters an error

pause (CR-101) interrupts the execution of a macro

precision (CR-102) determines how real numbers display in the GUI

printenv (CR-103) echoes to the Main window the current names and values of all environment
variables

project (CR-104) performs common operations on new projects

pwd (CR-105) displays the current directory path in the Main window

quietly (CR-106) turns off transcript echoing for the specified command

quit (CR-107) exits the simulator

radix (CR-108) specifies the default radix to be used

report (CR-109) displays the value of all simulator control variables, or the value of any
simulator state variables relevant to the current simulation

restart (CR-111) reloads the design elements and resets the simulation time to zero

resume (CR-113) resumes execution of a macro file after a pause command (CR-101), or a
breakpoint

run (CR-114) advances the simulation by the specified number of timesteps

searchlog (CR-116) searches one or more of the currently open logfiles for a specified condition

shift (CR-118) shifts macro parameter values down one place

show (CR-119) lists HDL items and subregions visible from the current environment

simstats (CR-120) reports performance-related statistics about active simulations

status (CR-121) lists all currently interrupted macros

step (CR-122) steps to the next HDL statement

stop (CR-123) stops simulation in batch files; used with the when command (CR-208)

tb (CR-124) displays a stack trace for the current process in the Main window

Command name Action
Sim Command Reference

Command reference table CR-27
transcript (CR-125) controls echoing of commands executed in a macro file; also works at top
level in batch mode

transcript file (CR-126) sets or queries the pathname for the transcript file

tssi2mti (CR-127) converts a vector file in Fluence Technology (formerly TSSI) Standard
Events Format into a sequence of force (CR-82) and run (CR-114) commands

vcd add (CR-128) adds the specified items to the VCD file

vcd checkpoint (CR-129) dumps the current values of all VCD variables to the VCD file

vcd comment (CR-130) inserts the specified comment in the VCD file

vcd dumpports (CR-131) creates a VCD file that captures port driver data

vcd dumpportsall (CR-133) creates a checkpoint in the VCD file that shows the current value of all
selected ports

vcd dumpportsflush (CR-134) flushes the VCD buffer to the VCD file

vcd dumpportslimit (CR-135) specifies the maximum size of the VCD file

vcd dumpportsoff (CR-136) turns off VCD dumping and records all dumped port values as x

vcd dumpportson (CR-137) turns on VCD dumping and records the current value of all selected ports

vcd file (CR-138) specifies the filename and state mapping for the VCD file created by a vcd
add command (CR-128)

vcd files (CR-140) specifies the filename and state mapping for the VCD file created by a vcd
add command (CR-128); supports multiple VCD files

vcd flush (CR-142) flushes the contents of the VCD file buffer to the VCD file

vcd limit (CR-143) specifies the maximum size of the VCD file

vcd off (CR-144) turns off VCD dumping and records all VCD variable values as x

vcd on (CR-145) turns on VCD dumping and records the current values of all VCD variables

vcd2wlf (CR-146) translates VCD files into WLF files

vcom (CR-147) compiles VHDL design units

vdel (CR-153) deletes a design unit from a specified library

vdir (CR-154) lists the contents of a design library

verror (CR-155) prints a detailed description of a message number

vgencomp (CR-156) writes a Verilog module’s equivalent VHDL component declaration to
standard output

view (CR-158) opens a ModelSim window and brings it to the front of the display

Command name Action
ModelSim Command Reference

CR-28 Commands

Model
virtual count (CR-160) counts the number of currently defined virtuals that were not read in using a
macro file

virtual define (CR-161) prints the definition of the virtual signal or function in the form of a command
that can be used to re-create the object

virtual delete (CR-162) removes the matching virtuals

virtual describe (CR-163) prints a complete description of the data type of one or more virtual signals

virtual expand (CR-164) produces a list of all the non-virtual objects contained in the virtual signal(s)

virtual function (CR-165) creates a new signal that consists of logical operations on existing signals and
simulation time

virtual hide (CR-168) sets a flag in the specified real or virtual signals so that the signals do not
appear in the Signals window

virtual log (CR-169) causes the sim-mode dependent signals of the specified virtual signals to be
logged by the simulator

virtual nohide (CR-171) resets the flag set by a virtual hide command

virtual nolog (CR-172) stops the logging of the specified virtual signals

virtual region (CR-174) creates a new user-defined design hierarchy region

virtual save (CR-175) saves the definitions of virtuals to a file

virtual show (CR-176) lists the full path names of all the virtuals explicitly defined

virtual signal (CR-177) creates a new signal that consists of concatenations of signals and
subelements

virtual type (CR-180) creates a new enumerated type

vlib (CR-182) creates a design library

vlog (CR-183) compiles Verilog design units

vmake (CR-189) creates a makefile that can be used to reconstruct the specified library

vmap (CR-191) defines a mapping between a logical library name and a directory by
modifying the modelsim.ini file

vsim (CR-192) loads a new design into the simulator

vsim<info> (CR-206) returns information about the current vsim executable

vsource (CR-207) specifies an alternative file to use for the current source file

when (CR-208) instructs ModelSim to perform actions when the specified conditions are met

where (CR-213) displays information about the system environment

wlf2log (CR-214) translates a ModelSim WLF file(vsim.wlf) to a QuickSim II logfile

Command name Action
Sim Command Reference

Command reference table CR-29
wlfman (CR-216) outputs information about or new WLF file from existing WLF file

wlfrecover (CR-218) attempts to repair incomplete WLF files

write format (CR-219) records the names and display options in a file of the HDL items currently
being displayed in the List or Wave window

write list (CR-221) records the contents of the List window in a list output file

write preferences (CR-222) saves the current GUI preference settings to a Tcl preference file

write report (CR-223) prints a summary of the design being simulated

write transcript (CR-224) writes the contents of the Main window transcript to the specified file

write tssi (CR-225) records the contents of the List window in a “TSSI format” file

write wave (CR-227) records the contents of theWave window in PostScript format

Command name Action
ModelSim Command Reference

CR-30 Commands

Model
abort

The abort command halts the execution of a macro file interrupted by a breakpoint or error.
When macros are nested, you may choose to abort the last macro only, abort a specified
number of nesting levels, or abort all macros. The abort command may be used within a
macro to return early.

Syntax

abort
[<n> | all]

Arguments

<n> | all

An integer giving the number of nested macro levels to abort; all aborts all levels.
Optional. Default is 1.

See also

onbreak (CR-98), onElabError (CR-99), onerror (CR-100)
Sim Command Reference

add dataflow CR-31
add dataflow

The add dataflow command adds the specified process, signal, net, or register to the
Dataflow window. Wildcards are allowed.

Syntax

add dataflow

<item> [-window <wname>]

<item>

Specifies a process, signal, net, or register that you want to add to the Dataflow window.
Required. Multiple items separated by spaces may be specified. Wildcards are allowed.
(Note that the WildcardFilter Tcl preference variable identifies types to ignore when
matching items with wildcard patterns.)

-window <wname>

Adds the items to the specified Dataflow window <wname> (e.g., dataflow2). Optional.
Used to specify a particular window when multiple instances of that window type exist.
Selects an existing window; does not create a new window. Use the view command (CR-

158) with the -new option to create a new window.

See also

Dataflow window (UM-158)
ModelSim Command Reference

http://www.model.com/resources/pref_variables/get_records_test.asp?Category=All

CR-32 Commands

Model
add list

The add list command lists VHDL signals and variables and Verilog nets and registers in
the List window, along with their associated values. User-defined buses may also be added
for either language.

If no port mode is specified, add list will display all items in the selected region with names
matching the item name specification.

Limitations: VHDL variables and Verilog memories can be listed using the variable’s full
name only (no wildcards).

Syntax

add list
[-allowconstants] [-in] [-inout] [-internal]
[[<item_name> | {<item_name> {sig1 sig2 sig3 ...}}] ...] ...
[-label <name>] [-nodelta] [-notrigger | -trigger] [-out] [-ports]
[-<radix>] [-recursive] [-width <n>]

Arguments

-allowconstants

For use with wildcard searches. Specifies that constants matching the wildcard search
should be added to the List window. Optional. By default, constants are ignored because
they do not change.

-in

For use with wildcard searches. Specifies that the scope of the search is to include ports
of mode IN if they match the item_name specification. Optional.

-inout

For use with wildcard searches. Specifies that the scope of the search is to include ports
of mode INOUT if they match the item_name specification. Optional.

-internal

For use with wildcard searches. Specifies that the scope of the search is to include
internal items (non-port items) if they match the item_name specification. VHDL
variables are not selected. Optional.

<item_name>

Specifies the name of the item to be listed. Optional. Wildcard characters are allowed.
(Note that the WildcardFilter Tcl preference variable identifies types to ignore when
matching items with wildcard patterns.) Variables may be added if preceded by the
process name. For example,

add list myproc/int1

{<item_name> {sig1 sig2 sig3 ...}}

Creates a user-defined bus in place of item_name; ‘sigi’ are signals to be concatenated
within the user-defined bus. Optional. Specified items may be either scalars or various
sized arrays as long as they have the same element enumeration type.
Sim Command Reference

http://www.model.com/resources/pref_variables/get_records_test.asp?Category=All

add list CR-33
-label <name>

Specifies an alternative signal name to be displayed as a column heading in the listing.
Optional. This alternative name is not valid in a force (CR-82) or examine (CR-75)
command; however, it can be used in a searchlog command (CR-116) with the list option.

-nodelta

Specifies that the delta column not be displayed when adding signals to the List window.
Optional. Identical to configure list -delta none.

-notrigger

Specifies that items are to be listed, but does not cause the List window to be updated
when the item changes. Optional.

-out

For use with wildcard searches. Specifies that the scope of the search is to include ports
of mode OUT if they match the item_name specification. Optional.

-ports

For use with wildcard searches. Specifies that the scope of the search is to include all
ports. Optional. Has the same effect as specifying -in, -out, and -inout together.

-<radix>

Specifies the radix for the items that follow in the command. Optional. Valid entries (or
any unique abbreviations) are: binary, ascii character, unsigned decimal, octal, hex,
symbolic, and default. If no radix is specified for an enumerated type, the default
representation is used. You can change the default radix for the current simulation using
the radix command (CR-108). You can change the default radix permanently by editing
the DefaultRadix (UM-353) variable in the modelsim.ini file.

If you specify a radix for an array of a VHDL enumerated type, ModelSim converts each
signal value to 1, 0, Z, or X.

-recursive

For use with wildcard searches. Specifies that the scope of the search is to descend
recursively into subregions. Optional; if omitted, the search is limited to the selected
region.

-trigger

Specifies that items are to be listed and causes the List window to be updated when the
items change. Optional. Default.

-width <n>

Specifies the column width in characters. Optional.
ModelSim Command Reference

CR-34 Commands

Model
Examples

add list -r /*

Lists all items in the design.

add list *

Lists all items in the region.

add list -in *

Lists all input ports in the region.

add list a -label sig /top/lower/sig {array_sig(9 to 23)}

Displays a List window containing three columns headed a, sig, and array_sig(9 to 23).

add list clk -notrigger a b c d

Lists clk, a, b, c, and d only when clk changes.

config list -strobeperiod {100 ns} -strobestart {0 ns} -usestrobe 1
add list -notrigger clk a b c d

Lists clk, a, b, c, and d every 100 ns.

add list -hex {mybus {msb {opcode(8 downto 1)} data}}

Creates a user-defined bus named "mybus" consisting of three signals; the bus is
displayed in hex.

add list vec1 -hex vec2 -dec vec3 vec4

Lists the item vec1 using symbolic values, lists vec2 in hexadecimal, and lists vec3 and
vec4 in decimal.

See also

add wave (CR-35), log (CR-87), "Extended identifiers" (CR-12)
Sim Command Reference

add wave CR-35
add wave

The add wave command adds VHDL signals and variables and Verilog nets and registers
to the Wave window. It also allows specification of user-defined buses.

If no port mode is specified, add wave will display all items in the selected region with
names matching the item name specification.

Limitations: VHDL variables and Verilog memories can be listed using the variable’s full
name only (no wildcards).

Syntax

add wave

[-allowconstants] [-color <standard_color_name>] [-expand <signal_name>]

[-<format>] [-height <pixels>] [-in] [-inout] [-internal]

[[-divider <divider_name>...] | [<item_name> | {<item_name> {sig1 sig2 sig3

...}}] ...] [-label <name>] [-noupdate] [-offset <offset>] [-out] [-ports]

[-<radix>] [-recursive] [-scale <scale>]

Arguments

-allowconstants

For use with wildcard searches. Specifies that constants matching the wildcard search
should be added to the Wave window. Optional. By default, constants are ignored
because they do not change.

-color <standard_color_name>

Specifies the color used to display a waveform. Optional. These are the standard
X Window color names, or rgb value (e.g., #357f77); enclose 2-word names (“light
blue”) in quotes.

-divider <divider_name>

Adds a divider with the specified name. Optional. You can specify one or more names.
All names listed after -divider are taken to be names.

-expand <signal_name>

Causes a compound signal to be expanded immediately, but only one level down.
Optional. The <signal_name> is required, and may include wildcards.

-<format>

Specifies the display format of the items:

literal
logic
analog-step
analog-interpolated
analog-backstep

Optional. Literal waveforms are displayed as a box containing the item value. Logic
signals may be U, X, 0, 1, Z, W, L, H, or ‘-’.

 Analog signals are sized by -scale and by -offset. Analog-step changes to the new time
before plotting the new Y. Analog-interpolated draws a diagonal line. Analog-backstep
plots the new Y before moving to the new time. See "Editing and formatting HDL items
in the Wave window" (UM-228).
ModelSim Command Reference

CR-36 Commands

Model
-height <pixels>

Specifies the height (in pixels) of the waveform. Optional.

-in

For use with wildcard searches. Specifies that the scope of the search is to include ports
of mode IN if they match the item_name specification. Optional.

-inout

For use with wildcard searches. Specifies that the scope of the search is to include ports
of mode INOUT if they match the item_name specification. Optional.

-internal

For use with wildcard searches. Specifies that the scope of the search is to include
internal items (non-port items) if they match the item_name specification. Optional.

<item_name>

Specifies the names of HDL items to be included in the Wave window display. Optional.
Wildcard characters are allowed. Note that the WildcardFilter Tcl preference variable
identifies types to ignore when matching items with wildcard patterns. Variables may be
added if preceded by the process name. For example,

add wave myproc/int1

{<item_name> {sig1 sig2 sig3 ...}}

Creates a user-defined bus with the name <item_name>; ‘sigi’ are signals to be
concatenated within the user-defined bus. Optional.

-label <name>

Specifies an alternative name for the signal being added to the Wave window. Optional.
For example,

add wave -label c clock

adds the clock signal, labeled as "c", to the Wave window.

This alternative name is not valid in a force (CR-82) or examine (CR-75) command;
however, it can be used in a searchlog command (CR-116) with the wave option.

-noupdate

Prevents the Wave window from updating when a series of add wave commands are
executed in series. Optional.

-offset <offset>

Modifies an analog waveform’s position on the display. Optional. The offset value is part
of the wave positioning equation (see -scale below).

-out

For use with wildcard searches. Specifies that the scope of the search is to include ports
of mode OUT if they match the item_name specification. Optional.

-ports

For use with wildcard searches. Specifies that the scope of the listing is to include ports
of modes IN, OUT, or INOUT. Optional.

Note: You can also select Tools > Combine Signals (Wave window) to create a
user-defined bus.
Sim Command Reference

http://www.model.com/resources/pref_variables/get_records_test.asp?Category=All

add wave CR-37
-<radix>

Specifies the radix for the items that follow in the command. Optional.

Valid entries (or any unique abbreviations) are: binary, ascii character, unsigned decimal,
octal, hex, symbolic, and default. If no radix is specified for an enumerated type, the
default representation is used. You can change the default radix for the current simulation
using the radix command (CR-108). You can change the default radix permanently by
editing the DefaultRadix (UM-353) variable in the modelsim.ini file.

If you specify a radix for an array of a VHDL enumerated type, ModelSim converts each
signal value to 1, 0, Z, or X.

-recursive

For use with wildcard searches. Specifies that the scope of the search is to descend
recursively into subregions. Optional; if omitted, the search is limited to the selected
region.

-scale <scale>

Scales analog waveforms. Optional. The scale value is part of the wave positioning
equation shown below.

The position and size of the waveform is given by:

(signal_value + <offset>) * <scale>

If signal_value + <offset> = 0, the waveform will be aligned with its name. The <scale>
value determines the height of the waveform, 0 being a flat line.

Examples

add wave -logic -color gold out2

Displays an item named out2. The item is specified as being a logic item presented in
gold.

add wave -hex {address {a_7 a_6 a_5 a_4 a_3 a_2 a_1 a_0}}

Displays a user-defined, hex formatted bus named address.

add wave -r /*

Waves all items in the design.

add wave *

Waves all items in the region.

add wave -in *

Waves all input ports in the region.
ModelSim Command Reference

CR-38 Commands

Model
add wave -hex {mybus {scalar1 vector1 scalar2}

Creates a user-defined bus named "mybus" consisting of three signals. Scalar1 and
scalar2 are of type std_logic and vector1 is of type std_logic_vector (7 downto 1). The
bus is displayed in hex.

Slices and arrays may be added to the bus using either VHDL or Verilog syntax. For
example:

add wave {vector3(1)}

add wave {vector3[1]}

add wave {vector3(4 downto 0)}

add wave {vector3[4:0]}

add wave vec1 -hex vec2 -dec vec3 vec4

Adds the item vec1 to the Wave window using symbolic values, adds vec2 in
hexadecimal, and adds vec3 and vec4 in decimal.

See also

add list (CR-32), log (CR-87), "Extended identifiers" (CR-12), "Concatenation directives"
(CR-16)
Sim Command Reference

alias CR-39
alias

The alias command displays or creates user-defined aliases. Any arguments passed on
invocation of the alias will be passed through to the specified commands. Returns nothing.
Existing ModelSim commands (e.g., run, env, etc.) cannot be aliased.

Syntax

alias

[<name> ["<cmds>"]]

Arguments

<name>

Specifies the new procedure name to be used when invoking the commands.

"<cmds>"

Specifies the command or commands to be evaluated when the alias is invoked.

Examples

alias

Lists all aliases currently defined.

alias <name>

Lists the alias definition for the specified name if one exists.

alias <name>

Lists the alias definition for the specified name if one exists.

alias myquit "write list ./mylist.save; quit -f"

Creates a Tcl procedure, "myquit", that when executed, writes the contents of the List
window to the file mylist.save by invoking write list (CR-221), and quits ModelSim by
invoking quit (CR-107).
ModelSim Command Reference

CR-40 Commands

Model
batch_mode

The batch_mode command returns a 1 if ModelSim is operating in batch mode, otherwise
it returns a 0. It is typically used as a condition in an if statement.

Syntax

batch_mode

Arguments

None

Examples

Some GUI commands do not exist in batch mode. If you want to write a script that will
work in or out of batch mode, you can use the batch_mode command to determine which
command to use. For example:

if [batch_mode] {

log /*

} else {

add wave /*

}

See also

"Running command-line and batch-mode simulations" (UM-388)
Sim Command Reference

bd CR-41
bd

The bd command deletes a breakpoint. You must specify a filename and line number or a
specific breakpoint id#. You may specify multiple filename/line number pairs and id#s.

Syntax

bd
<filename> <line_number> | <id#>

Arguments

<filename>

Specifies the name of the source file in which the breakpoint is to be deleted. Required if
an id# is not specified. The filename must match the one used previously to set the
breakpoint, including whether a full pathname or a relative name was used.

<line_number>

Specifies the line number of the breakpoint to be deleted. Required if an id# is not
specified.

<id#>

Specifies the id number of the breakpoint to be deleted. Required if a filename and line
number are not specified. If you are deleting a C breakpoint, the id# will have a "c" prefix.

Examples

bd alu.vhd 127

Deletes the breakpoint at line 127 in the source file named alu.vhd.

bd 5

Deletes the breakpoint with id# 5.

bd 6 alu.vhd 234

Deletes the breakpoint with id# 6 and the breakpoint at line 234 in the source file named
alu.vhd.

See also

bp (CR-46), onbreak (CR-98), Chapter 13 - C Debug
ModelSim Command Reference

CR-42 Commands

Model
bookmark add wave

The bookmark add wave command creates a named reference to a specific zoom range
and scroll position in the specified Wave window. Bookmarks are saved in the wave format
file and are restored when the format file is read (see write format command (CR-219)).

Syntax

bookmark add wave
<label> <zoomrange> <topindex>

Arguments

<label>

Specifies the name for the bookmark. Required.

<zoomrange>

Specifies a list of two times with optional units. Required. These two times must be
enclosed in braces ({}) or quotation marks ("").

<topindex>

Specifies the vertical scroll position of the window. Required. The number identifies
which item the window should be scrolled to. For example, specifying 20 means the
Wave window will be scrolled down to show the 20th item.

Examples

bookmark add wave foo {{10 ns} {1000 ns}} 20

Adds a bookmark named "foo" to the current default Wave window. The bookmark
marks a zoom range from 10ns to 1000ns and a scroll position of the 20th item in the
window.

See also

bookmark delete wave (CR-43), bookmark goto wave (CR-44), bookmark list wave (CR-

45), write format (CR-219)
Sim Command Reference

bookmark delete wave CR-43
bookmark delete wave

The bookmark delete wave command deletes bookmarks from the specified Wave
window.

Syntax

bookmark delete wave
<label> [-all]

Arguments

<label>

Specifies the name of the bookmark to delete. Required unless the -all switch is used.

-all

Specifies that all bookmarks in the window be deleted. Optional.

Examples

bookmark delete wave foo

Deletes the bookmark named "foo" from the current default Wave window.

bookmark delete wave -all -window wave1

Deletes all bookmarks from the Wave window named "wave1".

See also

bookmark add wave (CR-42), bookmark goto wave (CR-44), bookmark list wave (CR-45),
write format (CR-219)
ModelSim Command Reference

CR-44 Commands

Model
bookmark goto wave

The bookmark goto wave command zooms and scrolls a Wave window using the
specified bookmark.

Syntax

bookmark goto wave
<label>

Arguments

<label>

Specifies the bookmark to go to. Required.

See also

bookmark add wave (CR-42), bookmark delete wave (CR-43), bookmark list wave (CR-

45), write format (CR-219)
Sim Command Reference

bookmark list wave CR-45
bookmark list wave

The bookmark list wave command displays a list of available bookmarks in the Main
window transcript.

Syntax

bookmark list wave

Arguments

See also

bookmark add wave (CR-42), bookmark delete wave (CR-43), bookmark goto wave (CR-

44), write format (CR-219)
ModelSim Command Reference

CR-46 Commands

Model
bp

The bp or breakpoint command either sets a file-line breakpoint or returns a list of currently
set breakpoints. A set breakpoint affects every instance in the design unless the
-inst <region> argument is used.

Syntax

bp

<filename> <line_number>

[-id <id#>] [-inst <region>] [-disable] [-cond {<condition_expression>}]

[{<command>...}] | [-query <filename> [<line_number> [line_number]]]

Arguments

<filename>

Specifies the name of the source file in which to set the breakpoint. Required if you are
setting HDL breakpoints.

<line_number>

Specifies the line number at which the breakpoint is to be set. Required if you are setting
HDL breakpoints.

-id <id#>

Attempts to assign this id number to the breakpoint. Optional. If the id number you
specify is already used, ModelSim will return an error.

-inst <region>

Sets the breakpoint so it applies only to the specified region. Optional.

-disable

Sets the breakpoint in a disabled state. Optional. You can enable the breakpoint later
using the enablebp command (CR-73). By default, breakpoints are enabled when they are
set.

-cond {<condition_expression>}

Specifies condition(s) that determine whether the breakpoint is hit. Optional. If the
condition is true, the simulation stops at the breakpoint. If false, the simulation bypasses
the breakpoint.

The condition can be an expression with these operators:

Note: Ids for breakpoints are assigned from the same pool as those used for the when
command (CR-208). So, even if you haven’t used an id number for a breakpoint, it’s
possible it is used for a when command.

 Name Operator

equals ==, =

not equal !=, /=

AND &&, AND
Sim Command Reference

bp CR-47
The operands may be item names, signame’event, or constants. Subexpressions in
parentheses are permitted. The command will be executed when the expression is
evaluated as TRUE or 1.

The formal BNF syntax is:

condition ::= Name | { expression }

expression ::= expression AND relation
| expression OR relation

 | relation

relation ::= Name = Literal
| Name /= Literal
| Name ’ EVENT
| (expression)

Literal ::= '<char>' | “<bitstring>” | <bitstring>

The "=" operator can occur only between a Name and a Literal. This means that you
cannot compare the value of two signals; i.e., Name = Name is not possible.

{<command>...}

Specifies one or more commands that are to be executed at the breakpoint. Optional.
Multiple commands must be separated by semicolons (;) or placed on multiple lines. The
entire command must be placed in curly braces.

Any commands that follow a run (CR-114) or step (CR-122) command will be ignored. A
run or step command terminates the breakpoint sequence. This applies if macros are
used within the bp command string as well. A resume (CR-113) command should not be
used.

If many commands are needed after the breakpoint, they can be placed in a macro file.

-query <filename> [<line_number> [line_number]]

Returns information about the breakpoints set in the specified file. The information
returned varies depending on which arguments you specify. See the examples below for
details.

OR ||, OR

 Name Operator
ModelSim Command Reference

CR-48 Commands

Model
Examples

bp

Lists all existing breakpoints in the design, including the source file names, line numbers,
breakpoint id#s, and any commands that have been assigned to breakpoints.

bp alu.vhd 147

Sets a breakpoint in the source file alu.vhd at line 147.

bp alu.vhd 147 {do macro.do}

Executes the macro.do macro file after the breakpoint.

bp -disable test.vhd 22 {echo [exa var1]; echo [exa var2]}

Sets a breakpoint at line 22 of the file test.vhd and examines the values of the two
variables var1 and var2. This breakpoint is initially disabled. It can be enabled with the
enablebp command (CR-73).

bp test.vhd 14 {if {$now /= 100} then {cont}}

Sets a breakpoint in every instantiation of the file test.vhd at line 14. When that
breakpoint is executed, the command is run. This command causes the simulator to
continue if the current simulation time is not 100.

bp -query testadd.vhd

Lists the line number and enabled/disabled status (1 = enabled, 0 = disabled) of all
breakpoints in testadd.vhd.

bp -query testadd.vhd 48

Lists details about the breakpoint on line 48. The output comprises six pieces of
information: the first item (0 or 1) designates whether a breakpoint exists on the
line (1 = exists, 0 = doesn’t exist); the second item is always 1; the third item is the file
name in the compiled source; the fourth item is the breakpoint line number; the fifth item
is the breakpoint id; and the sixth item (0 or 1) designates whether the breakpoint is
enabled (1) or disabled (0).

bp -query testadd.vhd 2 59

Lists all executable lines in testadd.vhd between lines 2 and 59.

See also

add dataflow (CR-31), bd (CR-41), disablebp (CR-67), enablebp (CR-73), onbreak (CR-98),
when (CR-208)

Note: Any breakpoints set in VHDL code and called by either resolution functions or
functions that appear in a port map are ignored.
Sim Command Reference

cd CR-49
cd

The cd command changes the ModelSim local directory to the specified directory. This
command cannot be executed while a simulation is in progress. Also, executing a cd
command will close the current project.

Syntax

cd

[<dir>]

Arguments

<dir>

The directory to which to change. Optional. If no directory is specified, ModelSim
changes to your home directory.
ModelSim Command Reference

CR-50 Commands

Model
change

The change command modifies the value of a VHDL variable or Verilog register variable.

Syntax

change
<variable> <value>

Arguments

<variable>

Specifies the name of a variable. Required. HDL variable names must specify a scalar
type or a one-dimensional array of character enumeration. You may also specify a record
subelement, an indexed array, a sliced array, or a bit or slice of a register, as long as the
type is one of the above.

<value>

Defines a value for the variable. Required. The specified value must be appropriate for
the type of the variable.

Examples

change count 16#FFFF

Changes the value of the variable count to the hexadecimal value FFFF.

change rega[16] 0

Changes the value of rega that is specified by the index (i.e., 16).

change foo[20:22] 011

Changes the value of foo that is specified by the slice (i.e., 20:22).

See also

force (CR-82)
Sim Command Reference

configure CR-51
configure

The configure (config) command invokes the List or Wave widget configure command for
the current default List or Wave window. To change the default window, use the view
command (CR-158).

Syntax

configure
list|wave [<option> <value>]

[-delta [all | collapse | none]] [-gateduration [<duration_open>]]
[-gateexpr [<expression>]] [-usegating [<value>]]
[-strobeperiod [<period>]] [-strobestart [<start_time>]]
[-usesignaltriggers [<value>]] [-usestrobe [<value>]]

[-childrowmargin [<pixels>]] [-cursorlockcolor [<color>]]
[-gridcolor [<color>]] [-griddelta [<pixels>]] [-gridoffset [<time>]]
[-gridperiod [<time>]] [-namecolwidth [<width>]] [-rowmargin [<pixels>]]
[-signalnamewidth [<value>]] [-timecolor [<color>]]
[-timeline [<value>]] [-valuecolwidth [<width>]] [-vectorcolor [<color>]]
[-waveselectcolor [<color>] [-waveselectenable [<value>]]

Description

The command works in three modes:

• without options or values it returns a list of all attributes and their current values

• with just an option argument (without a value) it returns the current value of that attribute

• with one or more option-value pairs it changes the values of the specified attributes to the
new values

The returned information has five fields for each attribute: the command-line switch, the
Tk widget resource name, the Tk class name, the default value, and the current value.

Arguments

list|wave

Specifies either the List or Wave widget to configure. Required.

<option> <value>

-bg <color>

Specifies the window background color. Optional.

-fg <color>

Specifies the window foreground color. Optional.

-selectbackground <color>

Specifies the window background color when selected. Optional.

-selectforeground <color>

Specifies the window foreground color when selected. Optional.

-font

Specifies the font used in the widget. Optional.
ModelSim Command Reference

CR-52 Commands

Model
-height <pixels>

Specifies the height in pixels of each row. Optional.

Arguments, List window only

-delta [all | collapse | none]

The all option displays a new line for each time step on which items change; collapse
displays the final value for each time step; and none turns off the display of the delta
column. To use -delta, -usesignaltriggers must be set to 1 (on). Optional.

-gateduration [<duration_open>]

The duration for gating to remain open beyond when -gateexpr (below) becomes false,
expressed in x number of timescale units. Extends gating beyond the back edge (the last
list row in which the expression evaluates to true). Optional. The default value for normal
synchronous gating is zero. If -gateduration is set to a non-zero value, a simulation value
will be displayed after the gate expression becomes false (if you don’t want the values
displayed, set -gateduration to zero).

-gateexpr [<expression>]

Specifies the expression for trigger gating. Optional. (Use the -usegating argument to
enable trigger gating.) The expression is evaluated when the List window would
normally have displayed a row of data.

-usegating [<value>]

Enables triggers to be gated on (a value of 1) or off (a value of 0) by an overriding
expression. Default is off. Optional. (Use the -gatexpr argument to specify the
expression.) See "Setting List window display properties" (UM-184) for additional
information on using gating with triggers.

-strobeperiod [<period>]

Specifies the period of the list strobe. (When using a time unit, the time value and unit
must be placed in curly braces.) Optional.

-strobestart [<start_time>]

Specifies the start time of the list strobe. Optional.

-usesignaltriggers [<value>]

If 1, uses signals as triggers; if 0, not. Optional.

-usestrobe [<value>]

If 1, uses the strobe to trigger; if 0, not. Optional.
Sim Command Reference

configure CR-53
Arguments, Wave window only

-childrowmargin [<pixels>]

Specifies the distance in pixels between child signals. Optional.

-cursorlockcolor [<color>]

Specifies the color of a locked cursor. Default is red.

-gridcolor [<color>]

Specifies the background grid color; the default is grey50. Optional.

-griddelta [<pixels>]

Specifies the closest (in pixels) two grid lines can be drawn before intermediate lines will
be removed. Optional. Default is 40.

-gridoffset [<time>]

Specifies the time (in user time units) of the first grid line. Optional. Default is 0.

-gridperiod [<time>]

Specifies the time (in user time units) between subsequent grid lines. Optional. Default
is 1.

-namecolwidth [<width>]

Specifies in pixels the width of the name column. Optional.

-rowmargin [<pixels>]

Specifies the distance in pixels between top-level signals.

-signalnamewidth [<value>]

Controls the number of hierarchical regions displayed as part of a signal name shown in
the pathname pane. Optional. Default of 0 displays the full path. 1 displays only the leaf
path element, 2 displays the last two path elements, and so on.

-timecolor [<color>]

Specifies the time axis color; the default is green. Optional.

-timeline [<value>]

Specifies whether the horizontal axis displays simulation time (default) or grid period
count. Default is zero. When set to 1, the grid period count is displayed.

-valuecolwidth [<width>]

Specifies in pixels the width of the value column.

-vectorcolor [<color>]

Specifies the vector waveform color; the default is #b3ffb3. Optional.

-waveselectcolor [<color>]

Specifies the background highlight color of a selected waveform. Default is gray30.

-waveselectenable [<value>]

Specifies whether the waveform background highlights when an item is selected. The
default of 1 enables highlighting; 0 disables highlighting.
ModelSim Command Reference

CR-54 Commands

Model
Examples

config list -strobeperiod

Displays the current value of the strobeperiod attribute.

config list -strobeperiod {50 ns} -strobestart 0 -usestrobe 1

Sets the strobe waveform and turns it on.

config wave -vectorcolor blue

Sets the wave vector color to blue.

config wave -signalnamewidth 1

Sets the display in the current Wave window to show only the leaf path of each signal.

See also

view (CR-158), "Preference variables located in Tcl files" (UM-360)
Sim Command Reference

dataset alias CR-55
dataset alias

The dataset alias command assigns an additional name (alias) to a dataset. The dataset can
then be referenced by that alias. A dataset can have any number of aliases, but all dataset
names and aliases must be unique.

Syntax

dataset alias
<dataset_name> [<alias_name>]

Arguments

<dataset_name>

Specifies the name of the dataset to which to assign the alias. Required.

<alias_name>

Specifies the alias name to assign to the dataset. Optional. If you don’t specify an
alias_name, ModelSim lists current aliases for the specified dataset_name.

See also

dataset list (CR-59), dataset open (CR-60), dataset save (CR-62)
ModelSim Command Reference

CR-56 Commands

Model
dataset clear

The dataset clear command removes all event data from the current simulation WLF file
while keeping all currently logged signals logged. Subsequent run commands will continue
to accumulate data in the WLF file.

Syntax

dataset clear

Example

add wave *
run 100000ns
dataset clear
run 100000ns

Clears data in the WLF file from time 0ns to 100000ns, then logs data into the WLF file
from time 100000ns to 200000ns.

See also

"WLF files (datasets)" (UM-126), log (CR-87)
Sim Command Reference

dataset close CR-57
dataset close

The dataset close command closes an active dataset. To open a dataset, use the dataset
open command.

Syntax

dataset close
<logicalname> | [-all]

Arguments

<logicalname>

Specifies the logical name of the dataset or alias you wish to close. Required if -all isn’t
used.

-all

Closes all open datasets including the simulation. Optional.

See also

dataset open (CR-60)
ModelSim Command Reference

CR-58 Commands

Model
dataset info

The dataset info command reports a variety of information about a dataset.

Syntax

dataset info
<option> <dataset_name>

Arguments

<option>

Identifies what information you want reported. Required. Only one option per command
is allowed. The current options include:

name - Returns the actual name of the dataset. Useful for identifying the real dataset name
of an alias.

file - Returns the name of the WLF file associated with the dataset.

exists - Returns "1" if the dataset exists; "0" if it doesn’t.

<dataset_name>

Specifies the name of the dataset or alias for which you want information. Required.

See also

dataset alias (CR-55), dataset list (CR-59), dataset open (CR-60)
Sim Command Reference

dataset list CR-59
dataset list

The dataset list command lists all active datasets.

Syntax

dataset list
-long

Arguments

-long

Lists the filename corresponding to each dataset’s or alias’ logical name. Optional.

See also

dataset alias (CR-55), dataset save (CR-62)
ModelSim Command Reference

CR-60 Commands

Model
dataset open

The dataset open command opens a WLF file (representing a prior simulation) and assigns
it the logical name that you specify. To close a dataset, use dataset close.

Syntax

dataset open
<filename> [<logicalname>]

Arguments

<filename>

Specifies the WLF file to open as a view-mode dataset. Required.

<logicalname>

Specifies the logical name for the dataset. Optional. This is a prefix that will identify the
dataset in the current session. By default the dataset prefix will be the name of the
specified WLF file.

Examples

dataset open last.wlf test

Opens the dataset file last.wlf and assigns it the logical name test.

See also

dataset alias (CR-55), dataset list (CR-59), dataset save (CR-62), vsim (CR-192) -view option
Sim Command Reference

dataset rename CR-61
dataset rename

The dataset rename command changes the logical name of a dataset to the new name you
specify.

Syntax

dataset rename
<logicalname> <newlogicalname>

Arguments

<logicalname>

Specifies the existing logical name of the dataset. Required.

<newlogicalname>

Specifies the new logical name for the dataset. Required.

Examples

dataset rename test test2

Renames the dataset file "test" to "test2".

See also

dataset alias (CR-55), dataset list (CR-59), dataset open (CR-60)
ModelSim Command Reference

CR-62 Commands

Model
dataset save

The dataset save command writes data from the current simulation to the specified file.
This lets you save simulation data while the simulation is still in progress.

Syntax

dataset save
<logicalname> <newlogicalname>

Arguments

<datasetname>

Specifies the name of the dataset you want to save. Required.

<filename>

Specifies the name of the file to save. Required.

Examples

dataset save sim gold.wlf

Saves all current log data in the sim dataset to the file "gold.wlf".

See also

dataset snapshot (CR-63)
Sim Command Reference

dataset snapshot CR-63
dataset snapshot

The dataset snapshot command saves data from the current WLF file (vsim.wlf by default)
at a specified interval. This lets you take sequential or cumulative "snapshots" of your
simulation data.

Syntax

dataset snapshot
[-dir <directory>] [-disable] [-enable] [-file <filename>] [-filemode
overwrite | increment] [-mode cumulative | sequential] [-report] [-reset]
-size <file size> | -time <simulation time>

Arguments

-dir <directory>

Specifies a directory into which the files should be saved. Optional. Default is to save into
the directory where ModelSim is writing the current WLF file.

-disable

Turns snapshotting off. Optional. All other options are ignored if you specify -disable.

-enable

Turns snapshotting on. Optional. Default.

-file <filename>

Specifies the name of the file to save. Optional. Default is "vsim_snapshot". ".wlf" will
be appended to the file and possibly an incrementing suffix if -filemode is set to
"increment".

-filemode overwrite | increment

Specifies whether to overwrite the snapshot file each time a snapshot occurs. Optional.
Default is "overwrite". If you specify "increment", a new file is created for each snapshot.
An incrementing suffix (0 to n) is added to each new file (e.g., vsim_snapshot_0.wlf).

-mode cumulative | sequential

Specifies whether to keep all data from the time signals are first logged. Optional. Default
is "cumulative". If you specify "sequential", the current WLF file is cleared every time a
snapshot is taken. See the examples for further details.

-report

Lists current snapshot settings in the Main window transcript. Optional. All other options
are ignored if you specify -report.

-reset

Resets values back to defaults. Optional. The behavior is to reset to default, then apply
remainder of arguments on command line. See examples below. If specified by itself
without any other arguments, -reset disables dataset snapshot.

-size <file size>

Specifies that a snapshot occurs based on WLF file size. You must specify either -size or
-time. See examples below.

-time <simulation time>

Specifies that a snapshot occurs based on simulation time. You must specify either -time
or -size. See examples below.
ModelSim Command Reference

CR-64 Commands

Model
Examples

dataset snapshot -size 10

Creates the file vsim_snapshot.wlf that is written to every time the current WLF file
reaches a multiple of 10 MB (i.e., at 10 MB, 20 MB, 30 MB, etc.).

dataset snapshot -size 10 -mode sequential

Similar to the previous example but in this case the current WLF file is cleared every time
it reaches 10 MB.

dataset snapshot -time 1000000 -file gold.wlf -mode sequential -filemode
increment

Assuming simulator time units are ps, this command saves a file called "gold_n.wlf"
every 1000000 ps. If you ran for 3000000 ps, you’d have three files: gold_0.wlf with data
from 0 to 1000000 ps, gold_1.wlf with data from 1000001 to 2000000, and gold_2.wlf
with data from 2000001 to 3000000.

dataset snapshot -reset -time 10000

Enables snapshotting with time=10000 and default mode (cumulative) and default
filemode (overwrite).

See also

dataset save (CR-62)

Note: Because this example uses "sequential" mode, if you ran the simulation for
3500000 ps, the resulting vsim.wlf (the default log file) file will contain data only from
3000001 to 3500000 ps.
Sim Command Reference

delete CR-65
delete

The delete command removes HDL items from either the List or Wave window.

Syntax

delete
list|wave [-window <wname>] <item_name>

Arguments

list|wave

Specifies the target window for the delete command. Required.

-window <wname>

Specifies the name of the List or Wave window to target for the delete command (the
view command (CR-158) allows you to create more than one List or Wave window).
Optional. If no window is specified the default window is used; the default window is
determined by the most recent invocation of the view command (CR-158).

<item_name>

Specifies the name of an item. Required. Must match an item name used in an add list
(CR-32) or add wave (CR-35) command. Multiple item names may be specified. Wildcard
characters are allowed.

Examples

delete list -window list2 vec2

Removes the item vec2 from the list2 window.

See also

add list (CR-32), add wave (CR-35), and "Wildcard characters" (CR-13)
ModelSim Command Reference

CR-66 Commands

Model
describe

The describe command displays information about the specified HDL item. The
description is displayed in the Main window (UM-145). The following kinds of items can be
described:

• VHDL
signals, variables, and constants

• Verilog
nets and registers

VHDL signals and Verilog nets and registers may be specified as hierarchical names.
VHDL variables and constants can be described only when visible from the current process
that is either selected in the Process window or is the currently executing process (at a
breakpoint for example).

Syntax

describe
<name>

Arguments

<name>

The name of an HDL item for which you want a description.
Sim Command Reference

disablebp CR-67
disablebp

The disablebp command turns off breakpoints and when commands. To turn the
breakpoints or when statements back on again, use the enablebp command.

Syntax

disablebp

[<id#>]

Arguments

<id#>

Specifies a breakpoint or when command id to disable. Optional. If you don’t specify an
id#, all breakpoints are disabled.

See also

bd (CR-41), bp (CR-46), enablebp command (CR-73), onbreak (CR-98), resume (CR-113),
when (CR-208)
ModelSim Command Reference

CR-68 Commands

Model
do

The do command executes commands contained in a macro file. A macro file can have any
name and extension. An error encountered during the execution of a macro file causes its
execution to be interrupted, unless an onerror command (CR-100), onbreak command (CR-

98), or the OnErrorDefaultAction Tcl variable has specified the resume command (CR-113).

Syntax

do
<filename> [<parameter_value>]

Arguments

<filename>

Specifies the name of the macro file to be executed. Required. The name can be a
pathname or a relative file name.

Pathnames are relative to the current working directory if the do command is executed
from the command line. If the do command is executed from another macro file,
pathnames are relative to the directory of the calling macro file. This allows groups of
macro files to be moved to another directory and still work.

<parameter_value>

Specifies values that are to be passed to the corresponding parameters $1 through $9 in
the macro file. Optional. Multiple parameter values must be separated by spaces.

If you want to make the parameters optional (i.e., specify fewer parameter values than
the number of parameters actually used in the macro), you must use the argc (UM-362)
simulator state variable in the macro. See "Making macro parameters optional" (UM-340).

Note that there is no limit on the number of parameters that can be passed to macros, but
only nine values are visible at one time. You can use the shift command (CR-118) to see
the other parameters.

Examples

do macros/stimulus 100

This command executes the file macros/stimulus, passing the parameter value 100 to $1
in the macro file.

do testfile design.vhd 127

If the macro file testfile contains the line bp $1 $2, this command would place a
breakpoint in the source file named design.vhd at line 127.

See also

Chapter 12 - Tcl and macros (DO files) (UM-323), "Running command-line and batch-mode
simulations" (UM-388), "Using a startup file" (UM-358), DOPATH (UM-345)
Sim Command Reference

drivers CR-69
drivers

The drivers command displays in the Main window the current value and scheduled future
values for all the drivers of a specified VHDL signal or Verilog net. The driver list is
expressed relative to the top-most design signal/net connected to the specified signal/net. If
the signal/net is a record or array, each subelement is displayed individually. This
command reveals the operation of transport and inertial delays and assists in debugging
models.

Syntax

drivers
<item_name>

Arguments

<item_name>

Specifies the name of the signal or net whose values are to be shown. Required. All signal
or net types are valid. Multiple names and wildcards are accepted.
ModelSim Command Reference

CR-70 Commands

Model
dumplog64

The dumplog64 command dumps the contents of the specified WLF file in a readable
format to stdout. The WLF file cannot be opened for writing in a simulation when you use
this command.

The dumplog64 command cannot be used in a DO file.

Syntax

dumplog64
<filename>

Arguments

<filename>

The name of the WLF file to be read. Required.
Sim Command Reference

echo CR-71
echo

The echo command displays a specified message in the Main window.

Syntax

echo
[<text_string>]

Arguments

<text_string>

Specifies the message text to be displayed. Optional. If the text string is surrounded by
quotes, blank spaces are displayed as entered. If quotes are omitted, two or more adjacent
blank spaces are compressed into one space.

Examples

echo “The time is $now ns.”

If the current time is 1000 ns, this command produces the message:

The time is 1000 ns.

If the quotes are omitted, all blank spaces of two or more are compressed into one space.

echo The time is $now ns.

If the current time is 1000ns, this command produces the message:

The time is 1000 ns.

echo can also use command substitution, such as:

echo The hex value of counter is [examine -hex counter].

If the current value of counter is 21 (15 hex), this command produces:

The hex value of counter is 15.
ModelSim Command Reference

CR-72 Commands

Model
edit

The edit command invokes the editor specified by the EDITOR environment variable.

Syntax

edit
[<filename>]

Arguments

<filename>

Specifies the name of the file to edit. Optional. If the <filename> is omitted, the editor
opens the current source file. If you specify a non-existent filename, it will open a new
file.

See also

notepad (CR-95), and the EDITOR (UM-345) environment variable
Sim Command Reference

enablebp CR-73
enablebp

The enablebp command turns on breakpoints and when commands that were previously
disabled.

Syntax

enablebp

[<id#>]

Arguments

<id#>

Specifies a breakpoint or when statement id to enable. Optional. If you don’t specify an
id#, all breakpoints are enabled.

See also

bd (CR-41), bp (CR-46), disablebp command (CR-67), onbreak (CR-98), resume (CR-113),
when (CR-208)
ModelSim Command Reference

CR-74 Commands

Model
environment

The environment, or env command, allows you to display or change the current dataset
and region/signal environment.

Syntax

environment
[-dataset] [-nodataset] [[<dataset_prefix>] [<pathname>]]

Arguments

-dataset

Displays the specified environment pathname with a dataset prefix. Optional. Dataset
prefixes are displayed by default if more than one dataset is open during a simulation
session.

-nodataset

Displays the specified environment pathname without a dataset prefix. Optional.

<dataset_prefix>

Changes all unlocked windows to the specified dataset context. Optional. The prefix is
the logical name of the dataset followed by a colon (e.g., "sim:"). If the <pathname>
argument is specified as well, it will change the environment to that specified context. If
<pathname> is omitted, the environment reflects the previously set context. If you don’t
specify a dataset prefix, then the current dataset is used.

<pathname>

Specifies the pathname to which the current region/signal environment is to be changed.
Optional. If omitted the command causes the pathname of the current region/signal
environment to be displayed.

Multiple levels of a pathname must be separated by the character specified in the
PathSeparator (UM-355). A single path separator character can be entered to indicate the
top level. Two dots (..) can be entered to move up one level.

Examples

env

Displays the pathname of the current region/signal environment.

env -dataset test

Changes all unlocked windows to the context of the "test" dataset.

env test:/top/foo

Changes all unlocked windows to the context "test: /top/foo".

env blk1/u2

Moves down two levels in the design hierarchy.

env /

Moves to the top level of the design hierarchy.
Sim Command Reference

examine CR-75
examine

The examine, or exa command, examines one or more HDL items, and displays current
values (or the values at a specified previous time) in the Main window (UM-145).

 The following items can be examined:

• VHDL
signals, shared variables, process variables, constants, and generics

• Verilog
nets, registers, and variables

To display a previous value, specify the desired time using the -time option.

Virtual signals and functions may also be examined within the GUI (actual signals are
examined in the kernel).

The following rules are used by the examine command to locate an HDL item:

• If the name does not include a dataset name, then the current dataset is used.

• If the name does not start with a path separator, then the current context is used.

• If the name is a path separator followed by a name that is not the name of a top-level
design unit, then the first top-level design unit in the design is used.

• For a relative name containing a hierarchical path, if the first item name cannot be found
in the current context, then an upward search is done up to the top of the design hierarchy
to look for a matching item name.

• If no items of the specified name can be found in the specified context, then an upward
search is done to look for a matching item in any visible enclosing scope up to an instance
boundary. If at least one match is found within a given context, no (more) upward
searching is done; therefore, some items that may be visible from a given context will not
be found when wildcards are used if they are within a higher enclosing scope.

• The wildcards '*' and '?' can be used at any level of a name except in the dataset name and
inside of a slice specification.

• A wildcard character will never match a path separator. For example, /dut/* will match
/dut/siga and /dut/clk. However, /dut* won’t match either of those.

See "HDL item names" (CR-10) for more information on specifying names.

Syntax

examine
[-delta <delta>] [-env <path>] [-in] [-out] [-inout] [-internal] [-ports]
[-name] [-<radix>] [-time <time>] [-value] <name>...
ModelSim Command Reference

CR-76 Commands

Model
Arguments

-delta <delta>

Specifies a simulation cycle at the specified time from which to fetch the value. Optional.
The default is to use the last delta of the time step. The items to be examined must be
logged via the add list, add wave, or log command in order for the examine command to
be able to return a value for a requested delta. This option can be used only with items
that have been logged via the add list, add wave, or log command.

-env <path>

Specifies a path to look for a signal name. Optional.

-in

Specifies that <name> include ports of mode IN. Optional.

-out

Specifies that <name> include ports of mode OUT. Optional.

-inout

Specifies that <name> include ports of mode INOUT. Optional.

-internal

Specifies that <name> include internal (non-port) signals. Optional.

-ports

Specifies that <name> include all ports. Optional. Has the same effect as specifying -in,
-inout, and -out together.

-name

Displays signal name(s) along with the value(s). Optional. Default is -value behavior
(see below).

-<radix>

Specifies the radix for the items that follow in the command. Valid entries (or any unique
abbreviations) are: binary, ascii character, unsigned decimal, octal, hex, symbolic, and
default. If no radix is specified for an enumerated type, the default representation is used.
You can change the default radix for the current simulation using the radix command
(CR-108). You can change the default radix permanently by editing the DefaultRadix (UM-

353) variable in the modelsim.ini file.
Sim Command Reference

examine CR-77
-time <time>

Specifies the time value between 0 and $now for which to examine the items. Optional.
The items to be examined must be logged via the add list, add wave, or log command in
order for the examine command to be able to return a value for a requested time. This
option can be used only with items that have been logged via the add list, add wave, or
log command.

If the <time> field uses a unit, the value and unit must be placed in curly braces. For
example, the following are equivalent for ps resolution:

exa -time {3.6 ns} signal_a
exa -time 3600 signal_a

-value

Returns value(s) as a curly-braces separated Tcl list. Default. Use to toggle off a previous
use of -name.

<name>...

Specifies the name of any HDL item. Required. All item types are allowed, except those
of the type file. Multiple names and wildcards are accepted. Spaces, square brackets, and
extended identifiers require curly braces; see examples below for more details. To
examine a VHDL variable you can add a process label to the name. For example (make
certain to use two underscore characters):

exa line__36/i

Examples

examine {rega[16]}

Returns the value of rega that is specified by the index (i.e., 16). Note that you must use
curly braces when examining subelements.

examine {foo[20:22]}

Returns the value of foo specified by the slice (i.e., 20:22). Note the curly braces.

examine {/top/\My extended id\ }

Note that when specifying an item that contains an extended identifier as the last part of
the name, there must be a space after the closing ’\’ and before the closing ’}’.

See also

"HDL item names" (CR-10), "Wildcard characters" (CR-13),
ModelSim Command Reference

CR-78 Commands

Model
exit

The exit command exits the simulator and the ModelSim application.

Syntax

exit
[-force]

Argument

-force

Quits without asking for confirmation. Optional; if this argument is omitted, ModelSim
asks you for confirmation before exiting.

Note: If you want to stop the simulation using a when command (CR-208), you must use
a stop command (CR-123) within your when statement. DO NOT use an exit command
or a quit command (CR-107). The stop command acts like a breakpoint at the time it is
evaluated.
Sim Command Reference

find CR-79
find

The find command locates items in the design whose names match the name specification
you provide. You must specify the type of item you want to find. When searching for nets
and signals, the find command returns the full pathname of all nets, signals, registers,
variables, and named events that match the name specification.

When searching for nets and signals, the order in which arguments are specified is
unimportant. When searching for virtuals, however, all optional arguments must be
specified before any item names.

The following rules are used by the find command to locate an item:

• If the name does not include a dataset name, then the current dataset is used.

• If the name does not start with a path separator, then the current context is used.

• If the name is a path separator followed by a name that is not the name of a top-level
design unit, then the first top-level design unit in the design is used.

• For a relative name containing a hierarchical path, if the first item name cannot be found
in the current context, then an upward search is done up to the top of the design hierarchy
to look for a matching item name.

• If no items of the specified name can be found in the specified context, then an upward
search is done to look for a matching item in any visible enclosing scope up to an instance
boundary. If at least one match is found within a given context, no (more) upward
searching is done; therefore, some items that may be visible from a given context will not
be found when wildcards are used if they are within a higher enclosing scope.

• The wildcards '*' and '?' can be used at any level of a name except in the dataset name and
inside of a slice specification. Square bracket ’[]’ wildcards can also be used.

• A wildcard character will never match a path separator. For example, /dut/* will match
/dut/siga and /dut/clk. However, /dut* won’t match either of those.

• Because square brackets are wildcards in the find command, only parentheses ’()’ can be
used to index or slice arrays.

• The WildcardFilter Tcl preference variable is used by the find command to exclude the
specified types of objects when performing the search.

See "HDL item names" (CR-10) for more information on specifying names.

Syntax

find nets | signals
[-in] [-inout] [-internal] <item_name> ... [-nofilter] [-out] [-ports]
[-recursive]

find virtuals
[-kind <kind>] [-unsaved] <item_name> ...

find classes
[<class_name>]

find objects
[-class <class_name>] [-isa <class_name>] [<object_name>]
ModelSim Command Reference

http://www.model.com/resources/pref_variables/get_records_test.asp?Category=All

CR-80 Commands

Model
Arguments for nets and signals

-in

Specifies that the scope of the search is to include ports of mode IN. Optional.

-inout

Specifies that the scope of the search is to include ports of mode INOUT. Optional.

-internal

Specifies that the scope of the search is to include internal items. Optional.

<item_name> ...

Specifies the net or signal for which you want to search. Required. Multiple nets and
signals and wildcard characters are allowed. Wildcard characters are accepted for
primary names only. Wildcards in index and record filed names are not supported.
Spaces, square brackets, and extended identifiers require special syntax; see the
examples below for more details.

-nofilter

Specifies that the WildcardFilter Tcl preference variable be ignored when finding
signals or nets. Optional.

-out

Specifies that the scope of the search is to include ports of mode OUT. Optional.

-ports

Specifies that the scope of the search is to include all ports. Optional. Has the same effect
as specifying -in, -out, and -inout together.

-recursive

Specifies that the scope of the search is to descend recursively into subregions. Optional.
If omitted, the search is limited to the selected region.

Arguments for virtuals

-kind <kind>

Specifies the kind of virtual object for which you want to search. Optional. <kind> can
be one of designs, explicits, functions, implicits, or signals.

-unsaved

Specifies that ModelSim find only virtuals that have not been saved to a format file.

<item_name> ...

Specifies the virtual object for which you want to search. Required. Multiple virtuals and
wildcard characters are allowed.

Arguments for classes

<class_name>

Specifies the incrTcl class for which you want to search. Optional. Wildcard characters
are allowed. The options for class_name include nets, objects, signals, and virtuals. If you
do not specify a class name, the command returns all classes in the current namespace
context. See "incrTcl commands" in the Tcl Man Pages for more information.
Sim Command Reference

http://www.model.com/resources/pref_variables/get_records_test.asp?Category=All

find CR-81
Arguments for objects

-class <class_name>

Restricts the search to objects whose most-specific class is class_name. Optional.

-isa <class_name>

Restricts the search to those objects that have class_name anywhere in their heritage.
Optional.

<object_name>

Specifies the incrTcl object for which you want to search. Optional. Wildcard characters
are allowed. If you do not specify an object name, the command returns all objects in the
current namespace context. See "incrTcl commands" in the Tcl Man Pages for more
information.

Examples

find signals -r /*

Finds all signals in the entire design.

find nets -in /top/xy*

Finds all input signals in region /top that begin with the letters "xy".

find signals -r u1/u2/cl*

Finds all signals in the design hierarchy at or below the region <current_context>/u1/u2
whose names begin with "cl".

find signals {s[1]}

Finds a signal named s1. Note that you must enclose the item in curly braces because of
the square bracket wildcard characters.

find signals {s[123]}

Finds signals s1, s2, or s3.

find signals s(1)

Finds the element of signal s that is indexed by the value 1. Note that the find command
uses parentheses, not square brackets, to specify a subelement index.

find signals {/top/data(3 downto 0)}

Finds a 4-bit array named data. Note that you must use curly braces due to the spaces in
the array name.

find signals {/top/\My extended id\ }

Note that when specifying an item that contains an extended identifier as the last part of
the name, there must be a space after the closing ’\’ and before the closing ’}’.

See also

"HDL item names" (CR-10), "Wildcard characters" (CR-13)
ModelSim Command Reference

CR-82 Commands

Model
force

The force command allows you to apply stimulus interactively to VHDL signals and
Verilog nets. Since force commands (like all commands) can be included in a macro file,
it is possible to create complex sequences of stimuli.

You can force Virtual signals (UM-133) if the number of bits corresponds to the signal value.
You cannot force virtual functions. In VHDL and mixed models, you cannot force an input
port that is mapped at a higher level or that has a conversion function on the input.

You cannot force Verilog registers or variables – reg, integer, time, real (or realtime). These
must be changed. See the change command (CR-50).

Syntax

force
[-freeze | -drive | -deposit] [-cancel <time>] [-repeat <time>] <item_name>
<value> [<time>] [, <value> <time> ...]

Arguments

-freeze

Freezes the item at the specified value until it is forced again or until it is unforced with
a noforce command (CR-92). Optional.

-drive

Attaches a driver to the item and drives the specified value until the item is forced again
or until it is unforced with a noforce command (CR-92). Optional.

This option is illegal for unresolved signals.

-deposit

Sets the item to the specified value. The value remains until there is a subsequent driver
transaction, or until the item is forced again, or until it is unforced with a noforce
command (CR-92). Optional.

If one of the -freeze, -drive, or -deposit options is not used, then -freeze is the default
for unresolved items and -drive is the default for resolved items.

If you prefer -freeze as the default for resolved and unresolved VHDL signals, change
the default force kind in the DefaultForceKind (UM-353) preference variable.

-cancel <time>

Cancels the force command at the specified <time>. The time is relative to the current
time unless an absolute time is specified by preceding the value with the character @.
Cancellation occurs at the last simulation delta cycle of a time unit. A value of zero
cancels the force at the end of the current time period. Optional.

-repeat <time>

Repeats the force command, where <time> is the time at which to start repeating the
cycle. The time is relative to the current time. A repeating force command will force a
value before other non-repeating force commands that occur in the same time step.
Optional.
Sim Command Reference

force CR-83
<item_name>

Specifies the name of the HDL item to be forced. Required. A wildcard is permitted only
if it matches one item. See "HDL item names" (CR-10) for the full syntax of an item name.
The item name must specify a scalar type or a one-dimensional array of character
enumeration. You may also specify a record subelement, an indexed array, or a sliced
array, as long as the type is one of the above. Required.

<value>

Specifies the value to which the item is to be forced. The specified value must be
appropriate for the type. Required.

A VHDL one-dimensional array of character enumeration can be forced as a sequence of
character literals or as a based number with a radix of 2, 8, 10 or 16. For example, the
following values are equivalent for a signal of type bit_vector (0 to 3):

<time>

Specifies the time to which the value is to be applied. The time is relative to the current
time unless an absolute time is specified by preceding the value with the character @. If
the time units are not specified, then the default is the resolution units selected at
simulation start-up. Optional.

A zero-delay force command causes the change to occur in the current (rather than the
next) simulation delta cycle.

Value Description

1111 character literal sequence

2#1111 binary radix

10#15 decimal radix

16#F hexadecimal radix

Note: For based numbers in VHDL, ModelSim translates each 1 or 0 to the appropriate
value for the number’s enumerated type. The translation is controlled by the translation
table in the pref.tcl file. If ModelSim cannot find a translation for 0 or 1, it uses the left
bound of the signal type (type’left) for that value.
ModelSim Command Reference

CR-84 Commands

Model
Examples

force input1 0

Forces input1 to 0 at the current simulator time.

force bus1 01XZ 100 ns

Forces bus1 to 01XZ at 100 nanoseconds after the current simulator time.

force bus1 16#f @200

Forces bus1 to 16#F at the absolute time 200 measured in the resolution units selected at
simulation start-up.

force input1 1 10, 0 20 -r 100

Forces input1 to 1 at 10 time units after the current simulation time and to 0 at 20 time
units after the current simulation time. This cycle repeats starting at 100 time units after
the current simulation time, so the next transition is to 1 at 100 time units after the current
simulation time.

force input1 1 10 ns, 0 {20 ns} -r 100ns

Similar to the previous example, but also specifies the time units. Time unit expressions
preceding the "-r" must be placed in curly braces.

force s 1 0, 0 100 -repeat 200 -cancel 1000

Forces signal s to alternate between values 1 and 0 every 100 time units until time 1000.
Cancellation occurs at the last simulation delta cycle of a time unit. So,

force s 1 0 -cancel 0

will force signal s to 1 for the duration of the current time period.

when {/mydut/siga = 10#1} {
force -deposit /mydut/siga 10#85

}

Forces siga to decimal value 85 whenever the value on the signal is 1.

See also

noforce (CR-92), change (CR-50)

Note: You can configure defaults for the force command by setting the
DefaultForceKind variable in the modelsim.ini file. See "Force command defaults" (UM-

359).
Sim Command Reference

help CR-85
help

The help command displays in the Main window a brief description and syntax for the
specified command.

Syntax

help
[<command> | <topic>]

Arguments

<command>

Specifies the command for which you want help. The entry is case and space sensitive.
Optional.

<topic>

Specifies a topic for which you want help. The entry is case and space sensitive. Optional.
Specify one of the following six topics:

Topic Description

commands Lists all available commands and topics

debugging Lists debugging commands

execution Lists commands that control execution of
your simulation.

Tcl Lists all available Tcl commands.

Tk Lists all available Tk commands

incrTCL Lists all available incrTCL commands
ModelSim Command Reference

CR-86 Commands

Model
history

The history command lists the commands you have executed during the current session.
History is a Tcl command. For more information, consult the Tcl Man Pages.

Syntax

history
[clear] [keep <value>]

Arguments

clear

Clears the history buffer. Optional.

keep <value>

Specifies the number of executed commands to keep in the history buffer. Optional. The
default is 50.
Sim Command Reference

log CR-87
log

The log command creates a wave log format (WLF) file containing simulation data for all
HDL items whose names match the provided specifications. Items (VHDL signals and
variables, and Verilog nets and registers) that are displayed using the add list (CR-32) and
add wave (CR-35) commands are automatically recorded in the WLF file. The log is stored
in a WLF file (formerly a WAV file) in the working directory. By default the file is named
vsim.wlf. You can change the default name using the -wlf option of the vsim (CR-192)
command.

If no port mode is specified, the WLF file contains data for all items in the selected region
whose names match the item name specification.

The WLF file is the source of data for the List and Wave windows. An item that has been
logged and is subsequently added to the List or Wave window will have its complete
history back to the start of logging available for listing and waving.

Limitations: Verilog memories and VHDL variables can be logged using the variable’s full
name only (no wildcards).

Syntax

log
[-flush] [-howmany] [-in] [-inout] [-internal] [-out] [-ports]
[-recursive] <item_name> ...

Arguments

-flush

Adds region data to the WLF file after each individual log command. Optional. Default
is to add region data to the log file only when a command that advances simulation time
is executed (e.g., run, step, etc.) or when you quit the simulation.

-howmany

Returns an integer indicating the number of signals found. Optional.

-in

Specifies that the WLF file is to include data for ports of mode IN whose names match
the specification. Optional.

-inout

Specifies that the WLF file is to include data for ports of mode INOUT whose names
match the specification. Optional.

-internal

Specifies that the WLF file is to include data for internal items whose names match the
specification. Optional.

-out

Specifies that the WLF file is to include data for ports of mode OUT whose names match
the specification. Optional.

-ports

Specifies that the scope of the search is to include all ports. Optional.
ModelSim Command Reference

CR-88 Commands

Model
-recursive

Specifies that the scope of the search is to descend recursively into subregions. Optional;
if omitted, the search is limited to the selected region.

<item_name>

Specifies the item name which you want to log. Required. Multiple item names may be
specified. Wildcard characters are allowed. (Note that the WildcardFilter Tcl preference
variable identifies types to ignore when matching items with wildcard patterns.)

Examples

log -r /*

Logs all items in the design.

log -out *

Logs all output ports in the current design unit.

See also

add list (CR-32), add wave (CR-35), nolog (CR-93), and "Wildcard characters" (CR-13)

Note: The log command is also known as the "add log" command.
Sim Command Reference

http://www.model.com/resources/pref_variables/get_records_test.asp?Category=All

lshift CR-89
lshift

The lshift command takes a Tcl list as an argument and shifts it in-place, one place to the
left, eliminating the 0th element. The number of shift places may also be specified. Returns
nothing.

Syntax

lshift
<list> [<amount>]

Arguments

<list>

Specifies the Tcl list to target with lshift. Required.

<amount>

Specifies the number of places to shift. Optional. Default is 1.

Examples
proc myfunc args {

 # throws away the first two arguments

 lshift args 2

 ...

 }

See also

See the Tcl man pages (Help > Tcl Man Pages) for details.
ModelSim Command Reference

CR-90 Commands

Model
lsublist

The lsublist command returns a sublist of the specified Tcl list that matches the specified
Tcl glob pattern.

Syntax

lsublist
<list> <pattern>

Arguments

<list>

Specifies the Tcl list to target with lsublist. Required.

<pattern>

Specifies the pattern to match within the <list> using Tcl glob-style matching. Required.

Examples

In the example below, variable ‘t’ returns "structure signals source".
set window_names "structure signals variables process source wave list
dataflow"

set t [lsublist $window_names s*]

See also

The set command is a Tcl command. See the Tcl man pages (Help > Tcl Man Pages) for
details.
Sim Command Reference

modelsim CR-91
modelsim

The modelsim command starts the ModelSim GUI without prompting you to load a design.
This command may be invoked in one of three ways:

from the DOS prompt
from a ModelSim shortcut
from the Windows Start > Run menu

To use modelsim arguments with a shortcut, add them to the target line of the shortcut’s
properties. (Arguments work on the DOS command line too, of course.)

The simulator may be invoked from either the MODELSIM prompt after the GUI starts or
from a DO file called by modelsim.

Syntax

modelsim
[-do <macrofile>] [-project <project file>]

Arguments

-do <macrofile>

Specifies the DO file to execute when modelsim is invoked. Optional.

-project <project file>

Specifies the modelsim.ini file to load for this session. Optional.

See also

vsim (CR-192), do (CR-68), and "Using a startup file" (UM-358)

Note: In addition to the macro called by this argument, if a DO file is specified by the
STARTUP variable in modelsim.ini, it will be called when the vsim command (CR-192)
is invoked.
ModelSim Command Reference

CR-92 Commands

Model
noforce

The noforce command removes the effect of any active force (CR-82) commands on the
selected HDL items. The noforce command also causes the item’s value to be re-evaluated.

Syntax

noforce
<item_name> ...

Arguments

<item_name>

Specifies the name of a item. Required. Must match an item name used in a previous
force command (CR-82). Multiple item names may be specified. Wildcard characters are
allowed.

See also

force (CR-82) and "Wildcard characters" (CR-13)
Sim Command Reference

nolog CR-93
nolog

The nolog command suspends writing of data to the wave log format (WLF) file for the
specified signals. A flag is written into the WLF file for each signal turned off, and the GUI
displays "-No Data-" for the signal(s) until logging (for the signal(s)) is turned back on.

Logging can be turned back on by issuing another log command (CR-87) or by doing a nolog
-reset.

Because use of the nolog command adds new information to the WLF file, WLF files
created when using the nolog command cannot be read by older versions of the simulator.
If you are using dumplog64.c, you will need to get an updated version.

Syntax

nolog
[-all] | [-reset] | [-recursive] [-in] [-out] [-inout] [-ports]
[-internal] [-howmany] <item_name> ...

Arguments

-all

Turns off logging for all signals currently logged. Optional. Must be used alone without
other arguments.

-reset

Turns logging back on for all signals unlogged. Optional. Must be used alone without
other arguments.

-recursive

Specifies that the scope of the search is to descend recursively into subregions. Optional.
If omitted, the search is limited to the selected region.

-in

Specifies that the WLF file is to turn off logging for ports of mode IN whose names match
the specification. Optional.

-out

Specifies that the WLF file is to turn off logging for ports of mode OUT whose names
match the specification. Optional.

-inout

Specifies that the WLF file is to turn off logging for ports of mode INOUT whose names
match the specification. Optional.

-ports

Specifies that the scope of the search is to turn off logging for all ports. Optional.

-internal

Specifies that the WLF file is to turn off logging for internal items whose names match
the specification. Optional.

-howmany

Returns an integer indicating the number of signals found. Optional.
ModelSim Command Reference

CR-94 Commands

Model
<item_name>

Specifies the item name which you want to unlog. Required. Multiple item names may
be specified. Wildcard characters are allowed.

Examples

nolog -r /*

Unlogs all items in the design.

nolog -out *

Unlogs all output ports in the current design unit.

See also

add list (CR-32), add wave (CR-35), log (CR-87)
Sim Command Reference

notepad CR-95
notepad

The notepad command opens a simple text editor. It may be used to view and edit ASCII
files or create new files. This mode can be changed from the Notepad Edit menu. See
"Mouse and keyboard shortcuts" (UM-156) for a list of editing shortcuts.

Returns nothing.

Syntax

notepad
[<filename>] [-r | -edit]

Arguments

<filename>

Name of the file to be displayed. Optional.

-r | -edit

Selects the notepad editing mode: -r for read-only, and -edit for edit mode. Optional. Edit
mode is the default.
ModelSim Command Reference

CR-96 Commands

Model
noview

The noview command closes a window in the ModelSim GUI. To open a window, use the
view command.

Syntax

noview
[*] <window_name>...

Arguments

*
Wildcards can be used, for example: l* (List window), s* (Signal, Source, and Structure
windows), even * alone (all windows). Optional.

<window_name>...

Specifies the ModelSim window type to close. Multiple window types may be used; at
least one type (or wildcard) is required. Available window types are:

dataflow, list, process, signals, source, structure, variables, and wave

Examples

noview wave1

Closes the Wave window named "wave1".

noview l*

Closes all List windows.

noview s*

Closes all Structure, Signals, and Source windows.

See also

view (CR-158)
Sim Command Reference

nowhen CR-97
nowhen

The nowhen command deactivates selected when (CR-208) commands.

Syntax

nowhen
[<label>]

Arguments

<label>

Specifies an individual when command. Optional. Wildcards may be used to select more
than one when command.

Examples

when -label 99 b {echo “b changed”}
…
nowhen 99

This nowhen command deactivates the when (CR-208) command labeled 99.

nowhen *

This nowhen command deactivates all when (CR-208) commands.
ModelSim Command Reference

CR-98 Commands

Model
onbreak

The onbreak command is used within a macro. It specifies one or more commands to be
executed when running a macro that encounters a breakpoint in the source code. Using the
onbreak command without arguments will return the current onbreak command string.
Use an empty string to change the onbreak command back to its default behavior (i.e.,
onbreak ""). In that case, the macro will be interrupted after a breakpoint occurs (after any
associated bp command (CR-46) string is executed).

onbreak commands can contain macro calls.

Syntax

onbreak
{[<command> [; <command>] ...]}

Arguments

<command>

Any command can be used as an argument to onbreak. If you want to use more than one
command, use a semicolon to separate the commands, or place them on multiple lines.
The entire command string must be placed in curly braces. It is an error to execute any
commands within an onbreak command string following a run (CR-114), run -continue,
or step (CR-122) command. This restriction applies to any macros or Tcl procedures used
in the onbreak command string. Optional.

Examples

onbreak {exa data ; cont}

Examine the value of the HDL item data when a breakpoint is encountered. Then
continue the run command (CR-114).

onbreak {resume}

Resume execution of the macro file on encountering a breakpoint.

See also

abort (CR-30), bd (CR-41), bp (CR-46), do (CR-68), onerror (CR-100), resume (CR-113),
status (CR-121)
Sim Command Reference

onElabError CR-99
onElabError

The onElabError command specifies one or more commands to be executed when an error
is encountered during elaboration. The command is used by placing it within the
modelsim.tcl file or a macro. During initial design load onElabError may be invoked from
within the modelsim.tcl file; during a simulation restart onElabError may be invoked from
a macro.

Use the onElabError command without arguments to return to a prompt.

Syntax

onElabError
{[<command> [; <command>] ...]}

Arguments

<command>

Any command can be used as an argument to onElabError. If you want to use more than
one command, use a semicolon to separate the commands, or place them on multiple
lines. The entire command string must be placed in curly braces. Optional.

See also

do (CR-68)
ModelSim Command Reference

CR-100 Commands

Model
onerror

The onerror command is used within a macro; it specifies one or more commands to be
executed when a running macro encounters an error. Using the onerror command without
arguments will return the current onerror command string. Use an empty string to change
the onerror command back to its default behavior (i.e., onerror ""). Use onerror with a
resume command (CR-113) to allow an error message to be printed without halting the
execution of the macro file.

Syntax

onerror
{[<command> [; <command>] ...]}

Arguments

<command>

Any command can be used as an argument to onerror. If you want to use more than one
command, use a semicolon to separate the commands, or place them on multiple lines.
The entire command string must be placed in curly braces. Optional.

Example

onerror {quit -f}

Forces the simulator to quit if an error is encountered while the macro is running.

See also

abort (CR-30), do (CR-68), onbreak (CR-98), resume (CR-113), status (CR-121)

Note: You can also set the global OnErrorDefaultAction Tcl variable in the pref.tcl file
to dictate what action ModelSim takes when an error occurs. The onerror command is
invoked only when an error occurs in the macro file that contains the onerror command.
Conversely, OnErrorDefaultAction will run even if the macro does not contain a local
onerror command. This can be useful when you run a series of macros from one script,
and you want the same behavior across all macros.
Sim Command Reference

pause CR-101
pause

The pause command placed within a macro interrupts the execution of that macro.

Syntax

pause

Arguments

None.

Description

When you execute a macro and that macro gets interrupted, the prompt will change to:

VSIM (pause)7>

This “pause” prompt reminds you that a macro has been interrupted.

When a macro is paused, you may invoke another macro, and if that one gets interrupted,
you may even invoke another — up to a nesting level of 50 macros.

If the status of nested macros gets confusing, use the status command (CR-121). It will show
you which macros are interrupted, at what line number, and show you the interrupted
command.

To resume the execution of the macro, use the resume command (CR-113). To abort the
execution of a macro use the abort command (CR-30).

See also

abort (CR-30), do (CR-68), resume (CR-113), run (CR-114)
ModelSim Command Reference

CR-102 Commands

Model
precision

The precision command determines how real numbers display in the graphic interface
(e.g., Signals, Wave, Variables, and List windows). It does not affect the internal
representation of a real number and therefore precision values over 17 are not allowed.

Syntax

precision
[<digits>[#]]

Arguments

<digits>[#]

Specifies the number of digits to display. Optional. Trailing zeros are not displayed
unless you append the ’#’ sign. See examples for more details.

Examples

precision 4

Results in 4 digits of precision. For example:

1.234 or 6543

precision 8#

Results in 8 digits of precision including trailing zeros. For example:

1.2345600 or 6543.2100

precision 8

Results in 8 digits of precision but doesn’t print trailing zeros. For example:

1.23456 or 6543.21
Sim Command Reference

printenv CR-103
printenv

The printenv command echoes to the Main window the current names and values of all
environment variables. If variable names are given as arguments, prints only the names and
values of the specified variables. Returns nothing. All results go to the Main window.

Syntax

printenv
[<digits>[#]]

Arguments

<var>...

Specifies the name(s) of the environment variable(s) to print. Optional.

Examples

printenv

Prints all environment variable names and their current values. For example,

CC = gcc
DISPLAY = srl:0.0
...

printenv USER HOME

Prints the specified environment variables:

USER = vince
HOME = /scratch/srl/vince
ModelSim Command Reference

CR-104 Commands

Model
project

The project commands are used to perform common operations on projects. Use this
command outside of a simulation session.

Syntax

project
[addfile <filename>] | [close] | [compileall] | [delete <project>] | [env]
| [history] | [new <home_dir> <proj_name> [<defaultlibrary>]
[<use_current>]] | [open <project>] | [removefile <filename>]

Arguments

addfile <filename>

Adds the specified file to the current open project. Optional.

close

Closes the current project. Optional.

compileall

Compiles all files in the current project. Optional.

delete <project>

Deletes a specified project file. Optional.

env

Returns the current project file. Optional.

history

Lists a history of manipulated projects. Optional.

new <home_dir> <proj_name> [<defaultlibrary>] [<use_current>]

Creates a new project under a specified home directory with a specified name and
optionally a default library. Optional. If use_current is set to 1, then ModelSim uses the
current modelsim.ini file when creating the project rather than the default.

open <project>

Opens a specified project file, making it the current project. Changes the current working
directory to the project’s directory. Optional.

removefile <filename>

Removes the specified file from the current project. Optional.

Examples

vsim> project open /user/george/design/test3/test3.mpf

Makes /user/george/design/test3 the current project and changes the current working
directory to /user/george/design/test3.

vsim> project compile all

Executes current project library build scripts.
Sim Command Reference

pwd CR-105
pwd

The Tcl pwd command displays the current directory path in the Main window.

Syntax

pwd

Arguments

None.
ModelSim Command Reference

CR-106 Commands

Model
quietly

The quietly command turns off transcript echoing for the specified command.

Syntax

quietly
<command>

Arguments

<command>

Specifies the command for which to disable transcript echoing. Required. Any results
normally echoed by the specified command will not be written to the Main window
transcript. To disable echoing for all commands use the transcript command (CR-125)
with the -quietly option.

See also

transcript (CR-125)
Sim Command Reference

quit CR-107
quit

The quit command exits the simulator.

Syntax

quit

Arguments

-f or -force

Quits without asking for confirmation. Optional; if this argument is omitted, ModelSim
asks you for confirmation before exiting. (The -f and -force arguments are equivalent.)

-sim

Unloads the current design in the simulator without exiting ModelSim. All files opened
by the simulation will be closed including the WLF file (vsim.wlf).

Note: If you want to stop the simulation using a when command (CR-208), you must use
a stop command (CR-123) within your when statement. DO NOT use an exit command
(CR-78) or a quit command. The stop command acts like a breakpoint at the time it is
evaluated.
ModelSim Command Reference

CR-108 Commands

Model
radix

The radix command specifies the default radix to be used for the current simulation. The
command can be used at any time. The specified radix is used for all commands (force (CR-

82), examine (CR-75), change (CR-50), etc.) as well as for displayed values in the Signals,
Variables, Dataflow, List, and Wave windows. You can change the default radix
permanently by editing the DefaultRadix (UM-353) variable in the modelsim.ini file.

Syntax

radix
[-symbolic | -binary | -octal | -decimal | -hexadecimal |
-unsigned | -ascii]

Arguments

Entries may be truncated to any length. For example, -symbolic could be expressed as
-s or -sy, etc. Optional.

Also, -signed may be used as an alias for -decimal. The -unsigned radix will display as
unsigned decimal. The -ascii radix will display a Verilog item as a string equivalent using
8 bit character encoding.

If no arguments are used, the command returns the current default radix.
Sim Command Reference

report CR-109
report

The report command displays the value of all simulator control variables, or the value of
any simulator state variables relevant to the current simulation.

Syntax

report
simulator control | simulator state

Arguments

simulator control

Displays the current values for all simulator control variables.

simulator state

Displays the simulator state variables relevant to the current simulation.

Examples

report simulator control

Displays all simulator control variables.

UserTimeUnit = ns
RunLength = 100
IterationLimit = 5000
BreakOnAssertion = 3
DefaultForceKind = default
IgnoreNote = 0
IgnoreWarning = 0
IgnoreError = 0
IgnoreFailure = 0
CheckpointCompressMode = 1
NumericStdNoWarnings = 0
StdArithNoWarnings = 0
PathSeparator = /
DefaultRadix = symbolic
DelayFileOpen = 0

report simulator state

Displays all simulator state variables. Only the variables that relate to the design being
simulated are displayed:

now = 0.0
delta = 0
library = work
entity = type_clocks
architecture = full
resolution = 1ns
ModelSim Command Reference

CR-110 Commands

Model
Viewing preference variables

Preference variables have more to do with the way things look (but not entirely) rather than
controlling the simulator. You can view preference variables from the Preferences dialog
box. Select the Tools > Edit Preferences.

See also

"Preference variables located in INI files" (UM-349), and "Preference variables located in
Tcl files" (UM-360)
Sim Command Reference

restart CR-111
restart

The restart command reloads the design elements and resets the simulation time to zero.
Only design elements that have changed are reloaded. (Note that SDF files are always
reread during a restart.) Shared libraries are handled as follows during a restart:

• Shared libraries that implement VHDL foreign architectures only are reloaded at each
restart when the architecture is elaborated (unless the -keeploaded option to the vsim
command (CR-192) is used).

• Shared libraries loaded from the command line (-foreign and -pli options) and from the
Veriuser entry in the modelsim.ini file are reloaded.

• Shared libraries that implement VHDL foreign subprograms remain loaded (they are not
reloaded) even if they also contain code for a foreign architecture.

To handle restarts with Verilog PLI applications, you need to define a Verilog user-defined
task or function, and register a misctf class of callback. See Chapter 6 - Verilog PLI / VPI
for more information on the Verilog PLI.

Syntax

restart
[-force] [-nobreakpoint] [-nolist] [-nolog] [-nowave]

Arguments

-force

Specifies that the simulation will be restarted without requiring confirmation in a popup
window. Optional.

-nobreakpoint

Specifies that all breakpoints will be removed when the simulation is restarted. Optional.
The default is for all breakpoints to be reinstalled after the simulation is restarted.

-nolist

Specifies that the current List window environment will not be maintained after the
simulation is restarted. Optional. The default is for all currently listed HDL items and
their formats to be maintained.

-nolog

Specifies that the current logging environment will not be maintained after the
simulation is restarted. Optional. The default is for all currently logged items to continue
to be logged.

-nowave

Specifies that the current Wave window environment will not be maintained after the
simulation is restarted. Optional. The default is for all items displayed in the Wave
window to remain in the window with the same format.

Note: You can configure defaults for the restart command by setting the
DefaultRestartOptions variable in the modelsim.ini file. See "Restart command
defaults" (UM-359).
ModelSim Command Reference

CR-112 Commands

Model
See also

vsim (CR-192)
Sim Command Reference

resume CR-113
resume

The resume command is used to resume execution of a macro file after a pause command
(CR-101), or a breakpoint. It may be input manually or placed in an onbreak (CR-98)
command string. (Placing a resume command in a bp (CR-46) command string does not
have this effect.) The resume command can also be used in an onerror (CR-100) command
string to allow an error message to be printed without halting the execution of the macro
file.

Syntax

resume

Arguments

None.

See also

abort (CR-30), do (CR-68), onbreak (CR-98), onerror (CR-100), pause (CR-101)
ModelSim Command Reference

CR-114 Commands

Model
run

The run command advances the simulation by the specified number of timesteps.

Syntax

run
[<timesteps>[<time_units>]] | -all | -continue | -next | -step | -over

Arguments

<timesteps>[<time_units>]

Specifies the number of timesteps for the simulation to run. The number may be
fractional, or may be specified absolute by preceding the value with the character @.
Optional. In addition, optional <time_units> may be specified as:

fs, ps, ns, us, ms, or sec

The default <timesteps> and <time_units> specifications can be changed during a
ModelSim session by selecting Simulate > Simulation Options (Main window). See
"Setting default simulation options" (UM-263). Time steps and time units may also be set
with the RunLength (UM-355) and UserTimeUnit (UM-356) variables in the modelsim.ini
file.

-all

Causes the simulator to run the current simulation forever, or until it hits a breakpoint or
specified break event. Optional.

-continue

Continues the last simulation run after a step (CR-122) command, step -over command or
a breakpoint. A run -continue command may be input manually or used as the last
command in a bp (CR-46) command string. Optional.

-next

Causes the simulator to run to the next event time. Optional.

-step

Steps the simulator to the next HDL statement. Optional.

-over

Specifies that VHDL procedures, functions and Verilog tasks are to be executed but
treated as simple statements instead of entered and traced line by line. Optional.
Sim Command Reference

run CR-115
Examples

run 1000

Advances the simulator 1000 timesteps.

run 10.4 ms

Advances the simulator the appropriate number of timesteps corresponding to 10.4
milliseconds.

run @8000

Advances the simulator to timestep 8000.

See also

step (CR-122)
ModelSim Command Reference

CR-116 Commands

Model
searchlog

The searchlog command searches one or more of the currently open logfiles for a specified
condition. It can be used to search for rising or falling edges, for signals equal to a specified
value, or for when a generalized expression becomes true.

Syntax

searchlog
[-count <n>] [-deltas] [-env <path>] [-expr {<expr>}] [-reverse]
[-rising | -falling | -anyedge] [-startDelta <num>] <startTime>
[-value <string>] <pattern>

If at least one match is found, it returns the time (and optionally delta) at which the last
match occurred and the number of matches found, in a Tcl list:

{{<time>} <matchCount>}

where <time> is in the format <number> <unit>. If the -deltas option is specified, the
delta of the last match is also returned:

{{<time>} <delta> <matchCount>}

If no matches are found, a TCL_ERROR is returned. If one or more matches are found,
but less than the number requested, it is not considered an error condition, and the time
of the farthest match is returned, with the count of the matches found.

Arguments

-count <n>

Specifies to search for the <n>-th occurrence of the match condition, where <n> is a
positive integer. Optional.

-deltas

Indicates to test for match on simulation delta cycles. Otherwise, matches are only tested
for at the end of each simulation time step. Optional.

-env <path>

Provides a design region in which to look for the signal names. Optional.

-expr {<expr>}

Specifies a general expression of signal values and simulation time. Optional. searchlog
will search until the expression evaluates to true. The expression must have a boolean
result type. See "GUI_expression_format" (CR-15) for the format of the expression.

-reverse

Specifies to search backwards in time from <startTime>. Optional.

-rising | -falling | -anyedge

Specifies an edge to look for on a scalar signal. Optional. This option is ignored for
compound signals. If no options are specified, the default is -anyedge.

-startDelta <num>

Indicates a simulation delta cycle on which to start. Optional.
Sim Command Reference

searchlog CR-117
<startTime>

Specifies the simulation time at which to start the search. Required. The time may be
specified as an integer number of simulation units, or as {<num> <timeUnit>}, where
<num> can be integer or with a decimal point, and <timeUnit> is one of the standard
VHDL time units (fs, ps, ns, us, ms, sec).

-value <string>

Specifies to search until a single scalar or compound signal takes on this value. Optional.

<pattern>

Specifies one or more signal names or wildcard patterns of signal names to search on.
Required unless the -expr argument is used.

See also

virtual signal (CR-177), virtual log (CR-169), virtual nolog (CR-172)
ModelSim Command Reference

CR-118 Commands

Model
shift

The shift command shifts macro parameter values left one place, so that the value of
parameter $2 is assigned to parameter $1, the value of parameter $3 is assigned to $2, etc.
The previous value of $1 is discarded.

The shift command and macro parameters are used in macro files. If a macro file requires
more than nine parameters, they can be accessed using the shift command.

To determine the current number of macro parameters, use the argc (UM-362) variable.

Syntax

shift

Arguments

None.

Description

For a macro file containing nine macro parameters defined as $1 to $9, one shift command
shifts all parameter values one place to the left. If more than nine parameters are named,
the value of the tenth parameter becomes the value of $9 and can be accessed from within
the macro file.

See also

do (CR-68)
Sim Command Reference

show CR-119
show

The show command lists HDL items and subregions visible from the current environment.
The items listed include:

• VHDL
signals and instances

• Verilog
nets, registers, tasks, functions, instances and memories

The show command returns formatted results to stdout. To eliminate formatting (to use the
output in a Tcl script), use the Show command instead.

Syntax

show
[-all] [<pathname>]

Arguments

-all

Display all names at and below the specified path recursively. Optional.

<pathname>

Specifies the pathname of the environment for which you want the items and subregions
to be listed. Optional; if omitted, the current environment is assumed.

Examples

show

Lists the names of all the items and subregion environments visible in the current
environment.

show /uut

Lists the names of all the items and subregions visible in the environment named /uut.

show sub_region

Lists the names of all the items and subregions visible in the environment named
sub_region which is directly visible in the current environment.

See also

find (CR-79)
ModelSim Command Reference

CR-120 Commands

Model
simstats

The simstats command returns performance-related statistics about the simulation.

If executed without arguments, the command returns a list of pairs like the following:

{memory 57376} {{working set} 56152} {time 0} {{cpu time} 0} {context 0} /
{{page faults} 0}

See the arguments below for descriptions of each pair.

Syntax

simstats
[memory | working | time | cpu | context | faults]

Arguments

memory

Returns the amount of virtual memory that the OS has allocated for vsim. Optional.

working

Returns the portion of allocated virtual memory that is currently being used by all vsim
processes. Optional. If this number exceeds memory size, you will encounter
performance degradation.

time

Returns the cumulative "wall clock time" of the run commands. Optional.

cpu

Returns the cumulative processor time of the run commands. Optional. Processor time
differs from wall clock time in that processor time is only counted when the cpu is
actually running vsim. If vsim is swapped out for another process, cpu time does not
increase.

context

Returns the number of context swaps (vsim being swapped out for another process) that
have occurred during the run commands. Optional.

faults

Returns the number of page faults that have occurred during the run commands.
Optional.

Note: Some of the values may not be available on all platforms and other values may be
approximates. Different operating systems report these numbers differently.
Sim Command Reference

status CR-121
status

The status command lists summary information about currently interrupted macros. If
invoked without arguments, the command lists the filename of each interrupted macro, the
line number at which it was interrupted, and prints the command itself. It also displays any
onbreak (CR-98) or onerror (CR-100) commands that have been defined for each
interrupted macro.

Syntax

status
[file | line]

Arguments

file

Reports the file pathname of the current macro.

line

Reports the line number of the current macro.

Examples

The transcript below contains examples of resume (CR-113), and status commands.

VSIM (pause) 4> status
Macro resume_test.do at line 3 (Current macro)
command executing: “pause”
is Interrupted
ONBREAK commands: “resume”
Macro startup.do at line 34
command executing: “run 1000"
processing BREAKPOINT
is Interrupted
ONBREAK commands: “resume”
VSIM (pause) 5> resume
Resuming execution of macro resume_test.do at line 4

See also

abort (CR-30), do (CR-68), pause (CR-101), resume (CR-113)
ModelSim Command Reference

CR-122 Commands

Model
step

The step command steps to the next HDL statement. Current values of local HDL variables
may be observed at this time using the Variables window. VHDL procedures and functions
and Verilog tasks and functions can optionally be skipped over. When a wait statement or
end of process is encountered, time advances to the next scheduled activity. The Process
and Source windows will then be updated to reflect the next activity.

Syntax

step
[-over] [<n>]

Arguments

-over

Specifies that VHDL procedures and functions and Verilog tasks and functions should
be executed but treated as simple statements instead of entered and traced line by line.
Optional.

<n>

Any integer. Optional. Will execute ‘n’ steps before returning.

See also

run (CR-114)
Sim Command Reference

stop CR-123
stop

The stop command is used with the when command (CR-208) to stop simulation in batch
files. The stop command has the same effect as hitting a breakpoint. The stop command
may be placed anywhere within the body of the when command.

Syntax

stop

Arguments

None.

Use the run command (CR-114) with the -continue option to continue the simulation run,
or the resume command (CR-113) to continue macro execution. If you want macro
execution to resume automatically, put the resume command at the top of your macro file:

onbreak {resume}

See also

bp (CR-46), resume (CR-113), run (CR-114), when (CR-208)

Note: If you want to stop the simulation using a when command (CR-208), you must use
a stop command within your when statement. DO NOT use an exit command (CR-78) or
a quit command (CR-107). The stop command acts like a breakpoint at the time it is
evaluated.
ModelSim Command Reference

CR-124 Commands

Model
tb

The tb (traceback) command displays a stack trace for the current process in the Main
window. This lists the sequence of HDL function calls that have been entered to arrive at
the current state for the active process.

Syntax

tb
Sim Command Reference

transcript CR-125
transcript

The transcript command controls echoing of commands executed in a macro file; it also
works at top level in batch mode. If no option is specified, the current setting is reported.

Syntax

transcript
[<filename> | off | -q | quietly]

Arguments

on

Specifies that commands in a macro file will be echoed to the Main window as they are
executed. Optional.

off

Specifies that commands in a macro file will not be echoed to the Main window as they
are executed. Optional.

-q

Returns "0" if transcripting is turned off or "1" if transcripting is turned on. Useful in a
Tcl conditional expression. Optional.

quietly

Turns off the transcript echo for all commands. To turn off echoing for individual
commands see the quietly command (CR-106). Optional.

Examples

transcript on

Commands within a macro file will be echoed to the Main window as they are executed.

transcript

If issued immediately after the previous example, the message:

Macro transcripting is turned on.

appears in the Main window.

See also

echo (CR-71)
ModelSim Command Reference

CR-126 Commands

Model
transcript file

The transcript file command sets or queries the pathname for the transcript file. You can
use this command to clear a transcript in batch mode or to limit the size of a transcript file.
It offers an alternative to setting the PrefMain(file) Tcl preference variable.

Syntax

transcript file
[<filename>]

Arguments

<filename>

Specifies the full path and filename for the transcript file. Optional. If you specify a new
file, the existing transcript file is closed and a new transcript file opened. If you specify
an empty string (""), the existing file is closed and no new file is opened. If you don’t
specify this argument, the current setting is returned.

Examples

transcript file ""

Closes the current transcript file and stops writing data to the file. This is a method for
reducing the size of your transcript.

transcript file ""
run 1 ms
transcript file transcript
run 1 ms

This series of commands results in the transcript containing only data from the second
millisecond of the simulation. The first transcript file command closes the transcript so
no data is being written to it. The second transcript file command opens a new transcript
and records data from 1 ms to 2 ms.

See also

"Transcript" (UM-147)
Sim Command Reference

tssi2mti CR-127
tssi2mti

The tssi2mti command is used to convert a vector file in Fluence Technology (formerly
TSSI) Standard Events Format into a sequence of force (CR-82) and run (CR-114)
commands. The stimulus is written to the standard output.

The source code for tssi2mti is provided in the file tssi2mti.c in the examples directory.

Syntax

tssi2mti
<signal_definition_file> [<sef_vector_file>]

Arguments

<signal_definition_file>

Specifies the name of the Fluence Technology signal definition file describing the format
and content of the vectors. Required.

<sef_vector_file>

Specifies the name of the file containing vectors to be converted. If none is specified,
standard input is used. Optional.

Examples

tssi2mti trigger.def trigger.sef > trigger.do

The command will produce a do file named trigger.do from the signal definition file
trigger.def and the vector file trigger.sef.

tssi2mti trigger.def < trigger.sef > trigger.do

This example is exactly the same as the previous one, but uses the standard input instead.

See also

force (CR-82), run (CR-114), write tssi (CR-225)
ModelSim Command Reference

CR-128 Commands

Model
vcd add

The vcd add command adds the specified items to a VCD file. The allowed items are
Verilog nets and variables and VHDL signals of type bit, bit_vector, std_logic, and
std_logic_vector (other types are silently ignored).

All vcd add commands must be executed at the same simulation time. The specified items
are added to the VCD header and their subsequent value changes are recorded in the
specified VCD file.

By default all port driver changes and internal variable changes are captured in the file. You
can filter the output using arguments detailed below.

Related Verilog tasks: $dumpvars, $fdumpvars

Syntax

vcd add
[-r] [-in] [-out] [-inout] [-internal] [-ports] [-file <filename>]
<item_name>

Arguments

-r

Specifies that signal and port selection occurs recursively into subregions. Optional. If
omitted, included signals and ports are limited to the current region.

-in

Includes only port driver changes from ports of mode IN. Optional.

-out

Includes only port driver changes from ports of mode OUT. Optional.

-inout

Includes only port driver changes from ports of mode INOUT. Optional.

-internal

Includes only internal variable or signal changes. Excludes port driver changes. Optional.

-ports

Includes only port driver changes. Excludes internal variable or signal changes. Optional.

-file <filename>

Specifies the name of the VCD file. This option should be used only when you have
created multiple VCD files using the vcd files command (CR-140).

<item_name>

Specifies the Verilog or VHDL item to add to the VCD file. Required. Multiple items
may be specified by separating names with spaces. Wildcards are accepted.

See also

See Chapter 11 - Value Change Dump (VCD) Files for more information on VCD files.
Verilog tasks are documented in the IEEE 1364 standard.
Sim Command Reference

vcd checkpoint CR-129
vcd checkpoint

The vcd checkpoint command dumps the current values of all VCD variables to the
specified VCD file. While simulating, only value changes are dumped.

Related Verilog tasks: $dumpall, $fdumpall

Syntax

vcd checkpoint
[<filename>]

Arguments

<filename>

Specifies the name of the VCD file. Optional. If omitted the command is executed on the
file designated by the vcd file command (CR-138) or "dump.vcd" if vcd file was not
invoked.

See also

See Chapter 11 - Value Change Dump (VCD) Files for more information on VCD files.
ModelSim Command Reference

CR-130 Commands

Model
vcd comment

The vcd comment command inserts the specified comment in the specified VCD file.

Syntax

vcd comment
<comment string> [<filename>]

Arguments

<comment string>

Comment to be included in the VCD file. Required. Must be quoted by double quotation
marks or curly braces.

<filename>

Specifies the name of the VCD file. Optional. If omitted the command is executed on the
file designated by the vcd file command (CR-138) or "dump.vcd" if vcd file was not
invoked.

See also

See Chapter 11 - Value Change Dump (VCD) Files for more information on VCD files.
Sim Command Reference

vcd dumpports CR-131
vcd dumpports

The vcd dumpports command creates a VCD file that includes port driver data.

By default all port driver changes and internal variable changes are captured in the file. You
can filter the output using arguments detailed below.

Related Verilog task: $dumpports

Syntax

vcd dumpports
[-direction] [-file <filename>] [-in] [-inout] [-out] [-unique]
<item_name>

Arguments

-direction

Affects both VHDL and Verilog ports. Optional. Specifies that the port/variable type
recorded in the VCD header for VHDL and Verilog ports shall be one of the following:

in, out, inout, internal, ports (includes in, out, and inout); the default is all ports

-file <filename>

Specifies the path and name of a VCD file to create. Optional. Defaults to the current
working directory and the filename dumpports.vcd. Multiple filenames can be opened
during a single simulation.

-in

Includes ports of mode IN. Optional.

-inout

Includes ports of mode INOUT. Optional.

-out

Includes ports of mode OUT. Optional.

-unique

Generates unique vcd variable names for ports, even if those ports are connected to the
same collapsed net. Optional.

<item_name>

Specifies the Verilog or VHDL item to add to the VCD file. Required. Multiple items
may be specified by separating names with spaces. Wildcards are accepted.

Note: The -direction argument is obsolete in ModelSim versions 5.5c and later. It is
supported only for backwards compatibility with an NEC flow. See http://
www.model.com/products/documentation/resim_vcd.pdf for information regarding its
use in earlier versions.
ModelSim Command Reference

http://www.model.com/products/documentation/resim_vcd.pdf
http://www.model.com/products/documentation/resim_vcd.pdf

CR-132 Commands

Model
Examples

vcd dumpports -in -file counter.vcd /test_counter/dut/*

Creates a VCD file named counter.vcd of all IN ports in the region /test_counter/dut/.

vcd dumpports -file addern.vcd /testbench/uut/*
vsim -vcdstim addern.vcd addern -gn=8 -do "add wave /*; run 1000"

These two commands resimulate a design from a VCD file. See "Resimulating a design
from a VCD file" (UM-315) for further details.
Sim Command Reference

vcd dumpportsall CR-133
vcd dumpportsall

The vcd dumpportsall command creates a checkpoint in the VCD file which shows the
value of all selected ports at that time in the simulation, regardless of whether the port
values have changed since the last timestep.

Related Verilog task: $dumpportsall

Syntax

vcd dumpportsall
[<filename>]

Arguments

<filename>

Specifies the name of the VCD file. Optional. If omitted the command is executed on all
open VCD files.

See also

See Chapter 11 - Value Change Dump (VCD) Files for more information on VCD files.
ModelSim Command Reference

CR-134 Commands

Model
vcd dumpportsflush

The vcd dumpportsflush command flushes the contents of the VCD file buffer to the
specified VCD file.

Related Verilog task: $dumpportsflush

Syntax

vcd dumpportsflush
[<filename>]

Arguments

<filename>

Specifies the name of the VCD file. Optional. If omitted the command is executed on all
open VCD files.

See also

See Chapter 11 - Value Change Dump (VCD) Files for more information on VCD files.
Sim Command Reference

vcd dumpportslimit CR-135
vcd dumpportslimit

The vcd dumpportslimit command specifies the maximum size of the VCD file (by
default, limited to available disk space). When the size of the file exceeds the limit, a
comment is appended to the file and VCD dumping is disabled.

Related Verilog task: $dumpportslimit

Syntax

vcd dumpportslimit
<dumplimit> [<filename>]

Arguments

<dumplimit>

Specifies the maximum VCD file size in bytes. Required.

<filename>

Specifies the name of the VCD file. Optional. If omitted the command is executed on all
open VCD files.

See also

See Chapter 11 - Value Change Dump (VCD) Files for more information on VCD files.
ModelSim Command Reference

CR-136 Commands

Model
vcd dumpportsoff

The vcd dumpportsoff command turns off VCD dumping and records all dumped port
values as x.

Related Verilog task: $dumpportsoff

Syntax

vcd dumpportsoff
[<filename>]

Arguments

<filename>

Specifies the name of the VCD file. Optional. If omitted the command is executed on all
open VCD files.

See also

See Chapter 11 - Value Change Dump (VCD) Files for more information on VCD files.
Sim Command Reference

vcd dumpportson CR-137
vcd dumpportson

The vcd dumpportson command turns on VCD dumping and records the current values of
all selected ports. This command is typically used to resume dumping after invoking vcd
dumpportsoff.

Related Verilog task: $dumpportson

Syntax

vcd dumpportson
[<filename>]

Arguments

<filename>

Specifies the name of the VCD file. Optional. If omitted the command is executed on all
open VCD files.

See also

See Chapter 11 - Value Change Dump (VCD) Files for more information on VCD files.
ModelSim Command Reference

CR-138 Commands

Model
vcd file

The vcd file command specifies the filename and state mapping for the VCD file created
by a vcd add command (CR-128). The vcd file command is optional. If used, it must be
issued before any vcd add commands.

Related Verilog task: $dumpfile

Syntax

vcd file
[-direction] [-dumpports] [<filename>] [-map <mapping pairs>] [-nomap]

Arguments

-direction

Affects only VHDL ports. Optional. It specifies that the port/variable type recorded in
the VCD header for VHDL ports shall be one of the following:

in, out, inout, internal, ports (includes in, out, and inout); the default is all ports

-dumpports

Capture detailed port driver data for Verilog ports and VHDL std_logic ports. Optional.
This option works only on ports, and subsequent vcd add command (CR-128) will accept
only qualifying ports (silently ignoring all other specified items).

<filename>

Specifies the name of the VCD file that is created (the default is dump.vcd). Optional.

-map <mapping pairs>

Affects only VHDL signals of type std_logic. Optional. It allows you to override the
default mappings. The mapping is specified as a list of character pairs. The first character
in a pair must be one of the std_logic characters UX01ZWLH- and the second character
is the character you wish to be recorded in the VCD file. For example, to map L and H
to z:

vcd file -map "L z H z"

Note that the quotes in the example above are a Tcl convention for command strings that
include spaces.

Note: vcd file is included for backward compatibility. Use the vcd files command (CR-

140) if you want to use multiple VCD files during a single simulation.

Note: The -direction argument is obsolete in ModelSim versions 5.5c and later. It is
supported only for backwards compatibility with an NEC flow. See http://
www.model.com/products/documentation/resim_vcd.pdf for information regarding its
use in earlier versions.
Sim Command Reference

http://www.model.com/products/documentation/resim_vcd.pdf
http://www.model.com/products/documentation/resim_vcd.pdf

vcd file CR-139
-nomap

Affects only VHDL signals of type std_logic. Optional. It specifies that the values
recorded in the VCD file shall use the std_logic enumeration characters of UX01ZWLH-.
This option results in a non-standard VCD file because VCD values are limited to the
four state character set of x01z. By default, the std_logic characters are mapped as
follows.

See also

See Chapter 11 - Value Change Dump (VCD) Files for more information on VCD files.
Verilog tasks are documented in the IEEE 1364 standard.
ModelSim Command Reference

CR-140 Commands

Model
vcd files

The vcd files command specifies a filename and state mapping for a VCD file created by a
vcd add command (CR-128). The vcd files command is optional. If used, it must be issued
before any vcd add commands.

Related Verilog task: $fdumpfile

Syntax

vcd files
[-direction] <filename> [-map <mapping pairs>] [-nomap]

Arguments

-direction

Affects both VHDL and Verilog ports. Optional. It specifies that the port/variable type
recorded in the VCD header for VHDL and Verilog ports shall be one of the following:

in, out, inout, internal, ports (includes in, out, and inout); the default is all ports

<filename>

Specifies the name of a VCD file to create. Required. Multiple files can be opened during
a single simulation.

-map <mapping pairs>

Affects only VHDL signals of type std_logic. Optional. It allows you to override the
default mappings. The mapping is specified as a list of character pairs. The first character
in a pair must be one of the std_logic characters UX01ZWLH- and the second character
is the character you wish to be recorded in the VCD file. For example, to map L and H
to z:

vcd files -map "L z H z"

Note that the quotes in the example above are a Tcl convention for command strings that
include spaces.

-nomap

Affects only VHDL signals of type std_logic. Optional. It specifies that the values
recorded in the VCD file shall use the std_logic enumeration characters of UX01ZWLH-.
This option results in a non-standard VCD file because VCD values are limited to the
four state character set of x01z. By default, the std_logic characters are mapped as
follows.

Note: The -direction argument is obsolete in ModelSim versions 5.5c and later. It is
supported only for backwards compatibility with an NEC flow. See http://
www.model.com/products/documentation/resim_vcd.pdf for information regarding its
use in earlier versions.
Sim Command Reference

http://www.model.com/products/documentation/resim_vcd.pdf
http://www.model.com/products/documentation/resim_vcd.pdf

vcd files CR-141
Examples

The following example shows how to "mask" outputs from a vcd file until a certain time
after the start of the simulation. The example uses two vcd files and the vcd on (CR-145) and
vcd off (CR-144) commands to accomplish this task.

vcd files in_inout.vcd
vcd files output.vcd
vcd add -in -inout -file in_inout.vcd /*
vcd add -out -file output.vcd /*
vcd off output.vcd
run 1us
vcd on output.vcd
run -all

See also

See Chapter 11 - Value Change Dump (VCD) Files for more information on VCD files.
Verilog tasks are documented in the IEEE 1364 standard.
ModelSim Command Reference

CR-142 Commands

Model
vcd flush

The vcd flush command flushes the contents of the VCD file buffer to the specified VCD
file. This command is useful if you want to create a complete vcd file without ending your
current simulation.

Related Verilog tasks: $dumpflush, $fdumpflush

Syntax

vcd flush

[<filename>]

Arguments

<filename>

Specifies the name of the VCD file. Optional. If omitted the command is executed on the
file designated by the vcd file command (CR-138) or dump.vcd if vcd file was not
invoked.

See also

See Chapter 11 - Value Change Dump (VCD) Files for more information on VCD files.
Verilog tasks are documented in the IEEE 1364 standard.
Sim Command Reference

vcd limit CR-143
vcd limit

The vcd limit command specifies the maximum size of a VCD file (by default, limited to
available disk space). When the size of the file exceeds the limit, a comment is appended
to the file and VCD dumping is disabled.

Related Verilog tasks: $dumplimit, $fdumplimit

Syntax

vcd limit
<filesize> [<filename>]

Arguments

<filesize>

Specifies the maximum VCD file size in bytes. Required.

<filename>

Specifies the name of the VCD file. Optional. If omitted the command is executed on the
file designated by the vcd file command (CR-138) or dump.vcd if vcd file was not
invoked.

See also

See Chapter 11 - Value Change Dump (VCD) Files for more information on VCD files.
Verilog tasks are documented in the IEEE 1364 standard.
ModelSim Command Reference

CR-144 Commands

Model
vcd off

The vcd off command turns off VCD dumping to the specified file and records all VCD
variable values as x.

Related Verilog tasks: $dumpoff, $fdumpoff

Syntax

vcd off

[<filename>]

Arguments

<filename>

Specifies the name of the VCD file. Optional. If omitted the command is executed on the
file designated by the vcd file command (CR-138) or dump.vcd if vcd file was not
invoked.

See also

See Chapter 11 - Value Change Dump (VCD) Files for more information on VCD files.
Verilog tasks are documented in the IEEE 1364 standard.
Sim Command Reference

vcd on CR-145
vcd on

The vcd on command turns on VCD dumping to the specified file and records the current
values of all VCD variables. By default, vcd on is automatically performed at the end of
the simulation time that the vcd add (CR-128) commands are performed.

Related Verilog tasks: $dumpon, $fdumpon

Syntax

vcd on

[<filename>]

Arguments

<filename>

Specifies the name of the VCD file. Optional. If omitted the command is executed on the
file designated by the vcd file command (CR-138) or dump.vcd if vcd file was not
invoked.

See also

See Chapter 11 - Value Change Dump (VCD) Files for more information on VCD files.
Verilog system tasks are documented in the IEEE 1364 standard.
ModelSim Command Reference

CR-146 Commands

Model
vcd2wlf

vcd2wlf is a utility that translates a VCD (Value Change Dump) file into a WLF file that
can be displayed in ModelSim using the vsim -view argument.

Syntax

vcd2wlf

[-splitio] [-splitio_in_ext <extension>] [-splitio_out_ext <extension>]

<vcd filename> <wlf filename>

Arguments

-splitio

Specifies extended VCD port values be split into their corresponding input and output
components by creating 2 signals instead of just 1 in the resulting .wlf file. Optional. By
default the new input-component signal keeps the same name as the original port name
while the output-component name is the original name with a "__o" appended to it.

-splitio_in_ext <extension>

Specifies an extension to add to input-component signal names created by using
-splitio. Optional.

-splitio_out_ext <extension>

Specifies an extension to add to output-component signal names created by using
-splitio. Optional.

<vcd filename>

Specifies the name of the VCD file you want to translate into a WLF file. Required.

<wlf filename>

Specifies the name of the output WLF file. Required.
Sim Command Reference

vcom CR-147
vcom

The vcom command is used to invoke VCOM, the Model Technology VHDL compiler.
Use VCOM to compile VHDL source code into a specified working library (or to the work
library by default).

This command may be invoked from within ModelSim or from the operating system
command prompt. This command may also be invoked during simulation.

Compiled libraries are version dependent. For example you cannot use a library compiled
with 5.5 in a simulation using 5.6 vsim.

Syntax

vcom
[-87] [-93] [+acc[=<spec>][+<entity>[(architecture)]]] [-check_synthesis]
[-debugVA] [-defercheck] [-explicit] [-f <filename>]
[-force_refresh] [-help] [-ignoredefaultbinding] [-ignorevitalerrors]
[-just abcep] [-skip abcep] [-line <number>] [-no1164]
[-noaccel <package_name>] [-nocasestaticerror] [-nocheck]
[-noindexcheck] [-nologo] [-nonstddriverinit]
[-noothersstaticerror] [-norangecheck] [-novital] [-novitalcheck]
[-nowarn <number>] [-O0] [-pedanticerrors]
[-performdefaultbinding] [-quiet] [-rangecheck] [-refresh] [-s] [-source]
[-time] [-version]
[-work <library_name>] <filename>

Arguments

-87

Disables support for VHDL 1076-1993. This is the VCOM default. Optional. See
additional discussion in the examples. Note that the default can be changed with the
modelsim.ini file; see "Preference variables located in INI files" (UM-349).

-93

Specifies that the simulator is to support VHDL 1076-1993. Optional. Default is -87. See
additional discussion in the examples.

+acc[=<spec>][+<entity>[(architecture)]]

Enables access to design objects that would otherwise become unavailable due to
optimizations. Optional. Note that using this option may reduce optimizations.

<spec> currently has only one choice:

v–Enable access to variables, constants, and aliases in processes that would otherwise be
merged due to optimizations.

<entity> and (<architecture>) specify the design unit(s) in which to allow the access. If
(<architecture>) is not specified, then all architectures of a given <entity> are enabled
for access.

-check_synthesis

Turns on limited synthesis rule compliance checking. Specifically, it checks to see that
signals read by a process are in the sensitivity list. Optional. The checks understand only
combinational logic, not clocked logic. Edit the CheckSynthesis (UM-350) variable in the
modelsim.ini file to set a permanent default.
ModelSim Command Reference

CR-148 Commands

Model
-debugVA

Prints a confirmation if a VITAL cell was optimized, or an explanation of why it was not,
during VITAL level-1 acceleration. Optional.

-defercheck

Defers until run-time all compile-time range checking on constant index and slice
expressions . As a result, index and slice expressions with invalid constant ranges that are
never evaluated will not cause compiler error messages to be issued. Optional.

-explicit

Directs the compiler to resolve ambiguous function overloading by favoring the explicit
function definition over the implicit function definition. Optional. Strictly speaking, this
behavior does not match the VHDL standard. However, the majority of EDA tools
choose explicit operators over implicit operators. Using this switch makes ModelSim
compatible with common industry practice.

-f <filename>

Specifies a file with more command line arguments. Optional. Allows complex argument
strings to be reused without retyping. Environment variable expansion (for example in a
pathname) does not occur in -f files.

-force_refresh

Forces the refresh of a module. Optional. When the compiler refreshes a design unit, it
checks each dependency to ensure its source has not been changed and recompiled. If a
dependency has been changed and recompiled, the compiler will not refresh the
dependent design unit (unless you use -force_refresh). To avoid potential errors or
mismatches caused by the dependency recompilation, you should recompile the
dependent design unit’s source rather than use this switch.

-help

Displays the command’s options and arguments. Optional.

-ignoredefaultbinding

Instructs the compiler not to generate a default binding during compilation. Optional.
You must explicitly bind all components in the design to use this switch.

-ignorevitalerrors

Directs the compiler to ignore VITAL compliance errors. Optional. The compiler still
reports that VITAL errors exist, but it will not stop the compilation. You should exercise
caution in using this switch; as part of accelerating VITAL packages, we assume that
compliance checking has passed.
Sim Command Reference

vcom CR-149
-just abcep

Directs the compiler to “just” include:
a - architectures

b - bodies

c - configurations

e - entities

p - packages

Any combination in any order can be used, but one choice is required if you use this
optional switch.

-skip abcep

Directs the compiler to skip all:
a - architectures

b - bodies

c - configurations

e - entities

p - packages

Any combination in any order can be used, but one choice is required if you use this
optional switch.

-line <number>

Starts the compiler on the specified line in the VHDL source file. Optional. By default,
the compiler starts at the beginning of the file.

-no1164

Causes the source files to be compiled without taking advantage of the built-in version
of the IEEE std_logic_1164 package. Optional. This will typically result in longer
simulation times for VHDL programs that use variables and signals of type std_logic.

-noaccel <package_name>

Turns off acceleration of the specified package in the source code using that package.

-nocasestaticerror

Suppresses case static warnings. Optional. VHDL standards require that case alternative
choices be static at compile time. However, some expressions which are globally static
are allowed. This switch prevents the compiler from warning on such expressions. If the
-pedanticerrors switch is specified, this switch is ignored.

-nocheck

Disables index and range checks. Optional. You can disable these individually using the
-noindexcheck and -norangecheck arguments, respectively.

-noindexcheck

Disables checking on indexing expressions to determine whether indices are within
declared array bounds. Optional.

-nologo

Disables startup banner. Optional.

-nonstddriverinit

Forces ModelSim to match pre-5.7c behavior in initializing drivers in a particular case.
Optional. Prior to 5.7c, VHDL ports of mode out or inout could have incorrectly
initialized drivers if the port did not have an explicit initialization value and the actual
connect to the port had explicit initial values. Depending on a number of factors,
Modelsim could incorrectly use the actual signal's initial value when initializing lower
ModelSim Command Reference

CR-150 Commands

Model
level drivers. Note that the argument does not cause all lower-level drivers to use the
actual signal’s initial value; it only does this in the specific cases where older versions
used the actual signal’s initial value.

-noothersstaticerror

Disables warnings that result from array aggregates with multiple choices having
"others" clauses that are not locally static. Optional. If the -pedanticerrors switch is
specified, this switch is ignored.

-norangecheck

Disables run time range checking. In some designs, this results in a 2X speed increase.
Range checking is enabled by default or, once disabled, can be enabled using
-rangecheck. See "Range and index checking" (UM-51) for additional information.

-novital

Causes vcom to use VHDL code for VITAL procedures rather than the accelerated and
optimized timing and primitive packages built into the simulator kernel. Optional.
Allows breakpoints to be set in the VITAL behavior process and permits single stepping
through the VITAL procedures to debug your model. Also all of the VITAL data can be
viewed in the variables or signals windows.

-novitalcheck

Disables VITAL 2000 compliance checking if you are using VITAL 2.2b. Optional.

-nowarn <number>

Selectively disables an individual warning message. Optional. Multiple -nowarn
switches are allowed. Warnings may be disabled for all compiles via the Main window
Options > Compile Options menu command or the modelsim.ini file (see the "[vcom]
VHDL compiler control variables" (UM-350)).

The warning message numbers are:

1 = unbound component
2 = process without a wait statement
3 = null range
4 = no space in time literal
5 = multiple drivers on unresolved signal
6 = compliance checks
7 = optimization messages
9 = signal value used in expression evaluated at elaboration

-O0

Lower the optimization to a minimum with -O0 (capital oh zero). Optional. Use this to
work around bugs, increase your debugging visibility on a specific cell, or when you
want to place breakpoints on source lines that have been optimized out.

-pedanticerrors

Forces ModelSim to error (rather than warn) on two conditions: 1) when a choice in a
case statement is not a locally static expression; 2) when an array aggregate with multiple
choices doesn’t have a locally static "others" choice. Optional. This argument overrides
-nocasestaticerror and -noothersstaticerror (see above).

-performdefaultbinding
Enables default binding when it has been disabled via the
RequireConfigForAllDefaultBinding option in the modelsim.ini file. Optional.

-quiet

Disable 'loading' messages. Optional.
Sim Command Reference

vcom CR-151
-rangecheck

Enables run time range checking. Default. Range checking can be disabled using the
-norangecheck argument. See "Range and index checking" (UM-51) for additional
information.

-refresh

Regenerates a library image. Optional. By default, the work library is updated; use -work
<library> to update a different library. See vcom "Examples" (CR-152) for more
information.

-s

Instructs the compiler not to load the standard package. Optional. This argument should
only be used if you are compiling the standard package itself.

-source

Displays the associated line of source code before each error message that is generated
during compilation. Optional; by default, only the error message is displayed.

-time

Reports the "wall clock time" vcom takes to compile the design. Optional. Note that if
many processes are running on the same system, wall clock time may differ greatly from
the actual "cpu time" spent on vcom.

-version

Returns the version of the compiler as used by the licensing tools, such as "Model
Technology ModelSim SE vcom 5.5 Compiler 2000.01 Jan 29 2000".

-work <library_name>

Specifies a logical name or pathname of a library that is to be mapped to the logical
library work. Optional; by default, the compiled design units are added to the work
library. The specified pathname overrides the pathname specified for work in the project
file.

<filename>

Specifies the name of a file containing the VHDL source to be compiled. One filename
is required; multiple filenames can be entered separated by spaces or wildcards may be
used (e.g., *.vhd).

If no filenames are given, a dialog box pops up allowing you to graphically select the
options and enter a filename.
ModelSim Command Reference

CR-152 Commands

Model
Examples

vcom example.vhd

Compiles the VHDL source code contained in the file example.vhd.

vcom -87 o_units1.vhd o_units2.vhd
vcom -93 n_unit91.vhd n_unit92.vhd

ModelSim supports designs that use elements conforming to both the 1993 and the 1987
standards. Compile the design units separately using the appropriate switches.

Note that in the example above, the -87 switch on the first line is redundant since the
VCOM default is to compile to the 1987 standard.

vcom -noaccel numeric_std example.vhd

When compiling source that uses the numeric_std package, this command turns off
acceleration of the numeric_std package, located in the ieee library.

vcom -explicit example.vhd

Although it is not obvious, the = operator is overloaded in the std_logic_1164 package.
All enumeration data types in VHDL get an “implicit” definition for the = operator. So
while there is no explicit = operator, there is an implicit one. This implicit declaration can
be hidden by an explicit declaration of = in the same package (LRM Section 10.3).
However, if another version of the = operator is declared in a different package than that
containing the enumeration declaration, and both operators become visible through use
clauses, neither can be used without explicit naming.

ARITHMETIC.”=”(left, right)

To eliminate that inconvenience, the VCOM command has the -explicit option that
allows the explicit = operator to hide the implicit one. Allowing the explicit declaration
to hide the implicit declaration is what most VHDL users expect.

vcom -work mylib -refresh

The -work option specifies mylib as the library to regenerate. -refresh rebuilds the
library image without using source code, allowing models delivered as compiled libraries
without source code to be rebuilt for a specific release of ModelSim (4.6 and later only).
Sim Command Reference

vdel CR-153
vdel

The vdel command deletes a design unit from a specified library.

Syntax

vdel
[-help] [-verbose] [-lib <library_name>] [-all | <design_unit>
[<arch_name>]]

Arguments

-help

Displays the command’s options and arguments. Optional.

-verbose

Displays progress messages. Optional.

-lib <library_name>

Specifies the logical name or pathname of the library that holds the design unit to be
deleted. Optional; by default, the design unit is deleted from the work library.

-all

Deletes an entire library. Optional. BE CAREFUL! Libraries cannot be recovered once
deleted, and you are not prompted for confirmation.

<design_unit>

Specifies the entity, package, configuration, or module to be deleted. Required unless -all
is used.

<arch_name>

Specifies the name of an architecture to be deleted. Optional; if omitted, all of the
architectures for the specified entity are deleted. Invalid for a configuration or a package.

Examples

vdel -all

Deletes the work library.

vdel -lib synopsys -all

Deletes the synopsys library.

vdel xor

Deletes the entity named xor and all its architectures from the work library.

vdel xor behavior

Deletes the architecture named behavior of the entity xor from the work library.

vdel base

Deletes the package named base from the work library.
ModelSim Command Reference

CR-154 Commands

Model
vdir

The vdir command selectively lists the contents of a design library.

This command can also be used to check compatibility of a vendor library. If vdir cannot
read a vendor-supplied library, the library may not be ModelSim compatible.

Syntax

vdir
[-help] [-l] [-r] [-lib <library_name>] [<design_unit>]

Arguments

-help

Displays the command’s options and arguments. Optional.

-l

Prints the version of vcom or vlog that each design unit was compiled under. Also prints
the object-code version number that indicates which versions of vcom/vlog and
ModelSim are compatible. This example was printed by vdir -l for the counter module
in the work library:

MODULE counter

Verilog Version: OzO;ZAVlR1jO;>KYTg2kY2

Source directory: ..\examples\projects\mixed

Source modified time: 944001078

Source file: ../examples/projects/verilog/counter.v

Opcode format: 5.4 Beta 4; VLOG EE Object version 17

Version number: e:VQh7zF_VJYN9MbEXUG_3

Optimized Verilog design root: 1

Language standard: 1

-r

Prints architecture information for each entity in the output.

-lib <library_name>

Specifies the logical name or the pathname of the library to be listed. Optional. By
default, the contents of the work library are listed.

<design_unit>

Indicates the design unit to search for within the specified library. If the design unit is a
VHDL entity, its architectures are listed. Optional. By default, all entities,
configurations, modules, and packages in the specified library are listed.

Example

vdir -lib design my_asic

Lists the architectures associated with the entity named my_asic that reside in the HDL
design library called design.
Sim Command Reference

verror CR-155
verror

The verror command prints a detailed description about a message number. It may also
point to additional documentation related to the error.

Syntax

verror
<msgNum>...

Arguments

<msgNum>

Specifies the message number of a ModelSim message. Required. This number can be
obtained from messages that have the format:

** <Level>: ([<Tool>-[<Group>-]]<MsgNum>) <FormattedMsg>

Example

Say you see the following message in the transcript:

** Error (vsim-3601) foo.v(22): Too many Verilog port connections.

You would type:

verror 3061

and receive the following output:

Message # 3061:

Too many Verilog ports were specified in a mixed VHDL/Verilog instantiation.
Verify that the correct VHDL/Verilog connection is being made and that the
number of ports matches.

[DOC: ModelSim User’s Manual - Mixed VHDL and Verilog Designs Chapter]
ModelSim Command Reference

CR-156 Commands

Model
vgencomp

Once a Verilog module is compiled into a library, you can use the vgencomp command to
write its equivalent VHDL component declaration to standard output. Optional switches
allow you to generate bit or vl_logic port types; std_logic port types are generated by
default.

Syntax

vgencomp
[-help] [-lib <library_name>] [-b] [-s] [-v] <module_name>

Arguments

-help

Displays the command’s options and arguments. Optional.

-lib <library_name>

Specifies the pathname of the working library. If not specified, the default library work
is used. Optional.

-b

Causes vgencomp to generate bit port types. Optional.

-s

Used for the explicit declaration of default std_logic port types. Optional.

-v

Causes vgencomp to generate vl_logic port types. Optional.

<module_name>

Specifies the name of the Verilog module to be accessed. Required.

Examples

This example uses a Verilog module that is compiled into the work library. The module
begins as Verilog source code:

module top(i1, o1, o2, io1);
parameter width = 8;
parameter delay = 4.5;
parameter filename = "file.in";

input i1;
output [7:0] o1;
output [4:7] o2;
inout [width-1:0] io1;

endmodule

After compiling, vgencomp is invoked on the compiled module:

vgencomp top

and writes the following to stdout:

component top

 generic(
Sim Command Reference

vgencomp CR-157
width : integer := 8;
delay : real := 4.500000;
filename : string := "file.in"

);
port(

i1 : in std_logic;
o1 : out std_logic_vector(7 downto 0);
o2 : out std_logic_vector(4 to 7);
io1 : inout std_logic_vector
);

end component;
ModelSim Command Reference

CR-158 Commands

Model
view

The view command will open a ModelSim window and bring that window to the front of
the display.

To remove a window, use the noview command (CR-96).

Syntax

view
[*] [-height <n>] [-icon] [-title {New Window Title} <window_type>] [-width
<n>] [-x <n>] [-y <n>] <window_type>...

Arguments

*
Specifies that all windows be opened. Optional.

-height <n>

Specifies the window height in pixels. Optional.

-icon

Toggles the view between window and icon. Optional.

-title {New Window Title} <window_type>

Specifies the window title of the designated window. Curly braces are only needed for
titles that include spaces. Double quotes can be used in place of braces, for example
"New Window Title". If the new window title does not include spaces, no braces or
quotes are needed. For example: -title new_wave wave assigns the title new_wave to the
Wave window.

-width <n>

Specifies the window width in pixels. Optional.

<window_type>...

Specifies the ModelSim window type to view. Required. You do no need to type the full
type (see examples below); implicit wildcards are accepted; multiple window types may
be used. Available window types are:

dataflow, list, process, signals, source, structure, variables, wave

-x <n>

Specifies the window upper-left-hand x-coordinate in pixels. Optional.

-y <n>

Specifies the window upper-left-hand y-coordinate in pixels. Optional.
Sim Command Reference

view CR-159
Examples

view d

Opens the Dataflow window.

view si pr

Opens the Signals and Process windows.

view s

Opens the Signals, Source, and Structure windows.

view -title {My Wave Window} wave

Opens a new wave window with My Wave Window as its title.

See also

noview (CR-96)
ModelSim Command Reference

CR-160 Commands

Model
virtual count

The virtual count command counts the number of currently defined virtuals that were not
read in using a macro file.

Syntax

virtual count
[-kind <kind>]

Arguments

-kind <kind>

Specifies a subset of virtuals to look at. Optional. <kind> can be any of the following:
signals, functions, designs, implicits, and explicits. Unique abbreviations are accepted.

-unsaved

Specifies that the count include only those virtuals that have not been saved. Optional.

See also

virtual define (CR-161), virtual save (CR-175), virtual show (CR-176), "Virtual Objects
(User-defined buses, and more)" (UM-133)
Sim Command Reference

virtual define CR-161
virtual define

The virtual define command prints to the Main window the definition of the virtual signal
or function in the form of a command that can be used to re-create the object.

Syntax

virtual define
[-kind <kind>] <pathname>

Arguments

-kind <kind>

Specifies a subset of virtuals to look at. Optional. <kind> can be any of the following:
signals, functions, designs, implicits, and explicits. Unique abbreviations are accepted.

<pathname>

Specifies the path to the virtual(s) for which you want definitions. Required. Wildcards
can be used.

Examples

virtual define -kind explicits *

Shows the definitions of all the virtuals you have explicitly created.

See also

virtual describe (CR-163), virtual show (CR-176), "Virtual Objects (User-defined buses,
and more)" (UM-133)
ModelSim Command Reference

CR-162 Commands

Model
virtual delete

The virtual delete command removes the matching virtuals.

Syntax

virtual delete
[-kind <kind>] <pathname>

Arguments

-kind <kind>

Specifies a subset of virtuals to look at. Optional. <kind> can be any of the following:
signals, functions, designs, implicits, and explicits. Unique abbreviations are accepted.

<pathname>

Specifies the path to the virtual(s) you want to delete. Required. Wildcards can be used.

Examples

virtual delete -kind explicits *

Deletes all of the virtuals you have explicitly created.

See also

virtual signal (CR-177), virtual function (CR-165), "Virtual Objects (User-defined buses,
and more)" (UM-133)
Sim Command Reference

virtual describe CR-163
virtual describe

The virtual describe command prints to the Main window a complete description of the
data type of one or more virtual signals. Similar to the existing describe command.

Syntax

virtual describe
[-kind <kind>] <pathname>

Arguments

-kind <kind>

Specifies a subset of virtuals to look at. Optional. <kind> can be any of the following:
signals, functions, designs, implicits, and explicits. Unique abbreviations are accepted.

<pathname>

Specifies the path to the virtual(s) for which you want descriptions. Required. Wildcards
can be used.

Examples

virtual describe -kind explicits *

Describes the data type of all virtuals you have explicitly created.

See also

virtual define (CR-161), virtual show (CR-176), "Virtual Objects (User-defined buses, and
more)" (UM-133)
ModelSim Command Reference

CR-164 Commands

Model
virtual expand

The virtual expand command produces a list of all the non-virtual objects contained in the
specified virtual signal(s). This can be used to create a list of arguments for a command that
does not accept or understand virtual signals.

Syntax

virtual expand
[-base] <pathname>

Arguments

-base

Causes the root signal parent to be output in place of a subelement. Optional. For
example:

vcd add [virtual expand -base myVirtualSignal]

the resulting command after substitution would be:

vcd add signala signalb signalc

<pathname>

Specifies the path to the signals and virtual signals to expand. Required. Wildcards can
be used. Any number of paths can be specified.

Examples

vcd add [virtual expand myVirtualSignal]

Adds the elements of a virtual signal to the VCD file.

In the Tcl language, the square brackets specify that the enclosed command should be
executed first ("virtual expand ..."), then the result substituted into the surrounding
command. So if myVirtualSignal is a concatenation of signala, signalb.rec1 and signalc(5
downto 3), the resulting command after substitution would be:

vcd add signala signalb.rec1 {signalc(5 downto 3)}

The slice of signalc is quoted in curly braces, because it contains spaces.

See also

virtual signal (CR-177), "Virtual Objects (User-defined buses, and more)" (UM-133)
Sim Command Reference

virtual function CR-165
virtual function

The virtual function command creates a new signal, known only by the GUI (not the
kernel), that consists of logical operations on existing signals and simulation time, as
described in <expressionString>. It cannot handle bit selects and slices of Verilog
registers. Please see "Syntax and conventions" (CR-5) for more details on syntax.

If the virtual function references more than a single scalar signal, it will display as an
expandable object in the Wave and Signals windows. The children correspond to the inputs
of the virtual function. This allows the function to be "expanded" in the Wave window to
see the values of each of the input waveforms, which could be useful when using virtual
functions to compare two signal values.

Virtual functions can also be used to gate the List window display.

Syntax

virtual function
[-env <path>] [-install <path>] [-implicit] [-delay <time>]
{<expressionString>} <name>

Arguments

Arguments for virtual function are the same as those for virtual signal, except for the
contents of the expression string.

-env <path>

Specifies a hierarchical context for the signal names in <expressionString> so they don’t
all have to be full paths. Optional.

-install <path>

Causes the newly-created signal to become a child of the specified region. If -install is
not specified, the newly-created signal becomes a child of the nearest common ancestor
of all objects appearing in <expressionString>. If the expression references more than
one WLF file (dataset), the virtual signal will automatically be placed in region
virtuals:/Functions. Optional.

-implicit

Used internally to create virtuals that are automatically saved with the List or Wave
format. Optional.

-delay <time>

Specifies a value by which the virtual function will be delayed. Optional. You can use
negative values to look forward in time. If units are specified, the <time> option must be
enclosed in curly braces. See the examples below for more details.

{<expressionString>}

A text string expression in the MTI GUI expression format. Required. See
"GUI_expression_format" (CR-15) for more information.

<name>

The name you define for the virtual signal. Required. Case is ignored unless installed in
a Verilog region. Use alpha, numeric, and underscore characters only, unless you are
using VHDL extended identifier notation. If using VHDL extended identifier notation,
<name> needs to be quoted with double quotes or with curly braces.
ModelSim Command Reference

CR-166 Commands

Model
Examples

virtual function { not /chip/section1/clk } clk_n

Creates a signal /chip/section1/clk_n that is the inverse of /chip/section1/clk.

virtual function -install /chip { (std_logic_vector) chip.vlog.rega }
rega_slv

Creates a std_logic_vector equivalent of a verilog register rega and installs it as /chip/
rega_slv.

virtual function { /chip/addr[11:0] == 0xfab } addr_eq_fab

Creates a boolean signal /chip/addr_eq_fab that is true when /chip/addr[11:0] is equal
to hex "fab", and false otherwise. It is acceptable to mix VHDL signal path notation with
Verilog part-select notation.

virtual function { gate:/chip/siga XOR rtl:/chip/siga) } siga_diff

Creates a signal that is high only during times when signal /chip/siga of the gate-level
version of the design does not match /chip/siga of the rtl version of the design. Because
there is no common design region for the inputs to the expression, siga_diff is installed
in region virtuals:/Functions. The virtual function siga_diff can be added to the Wave
window, and when expanded will show the two original signals that are being compared.

virtual function -delay {10 ns} {/top/signalA AND /top/signalB} myDelayAandB

Creates a virtual signal consisting of the logical "AND" function of /top/signalA with
/top/signalB, and delays it by 10 ns.

virtual function { | (gate:/chip/outbus XOR rtl:/chip/outbus) } outbus_diff

Creates a one-bit signal outbus_diff which is non-zero during times when any bit of /chip/
outbus in the gate-level version doesn’t match the corresponding bit in the rtl version.

This expression uses the "OR-reduction" operator, which takes the logical OR of all the
bits of the vector argument.

Commands fully compatible with virtual functions

Commands not currently compatible with virtual functions

add dataflow (CR-31) add log /log (CR-87) add wave (CR-35)

delete (CR-65) describe (CR-66) ("virtual describe" is a
little faster)

examine (CR-75)

find (CR-79) restart (CR-111) searchlog (CR-116)

 show (CR-119)

drivers (CR-69) force (CR-82) noforce (CR-92)

 vcd add (CR-128) when (CR-208)
Sim Command Reference

virtual function CR-167
See also

virtual count (CR-160) virtual define (CR-161) virtual delete (CR-162)

virtual describe (CR-163) virtual expand (CR-164) virtual hide (CR-168)

virtual log (CR-169) virtual nohide (CR-171) virtual nolog (CR-172)

virtual region (CR-174) virtual save (CR-175) virtual show (CR-176)

virtual signal (CR-177) virtual type (CR-180) Virtual Objects (User-defined
buses, and more) (UM-133)
ModelSim Command Reference

CR-168 Commands

Model
virtual hide

The virtual hide command sets a flag in the specified real or virtual signals, so those
signals do not appear in the Signals window. This is used when you want to replace an
expanded bus with a user-defined bus. You make the signals reappear using the virtual
nohide command.

Syntax

virtual hide
[-kind <kind>]|[-region <path>] <pattern>

Arguments

-kind <kind>

Specifies a subset of virtuals to look at. Optional. <kind> can be any of the following:
signals, functions, designs, implicits, and explicits. Unique abbreviations are accepted.

-region <path>

Used in place of -kind to specify a region of design space in which to look for the signal
names. Optional.

<pattern>

Indicates which signal names or wildcard patterns should be used in finding the signals
to hide. Required. Any number of names or wildcard patterns may be used.

See also

virtual nohide (CR-171), "Virtual Objects (User-defined buses, and more)" (UM-133)
Sim Command Reference

virtual log CR-169
virtual log

The virtual log command causes the simulation-mode dependent signals of the specified
virtual signals to be logged by the kernel. If wildcard patterns are used, it will also log any
normal signals found, unless the -only option is used. You unlog the signals using the
virtual nolog command.

Syntax

virtual log
[-kind <kind>]|[-region <path>] [-recursive] [-only] [-in] [-out] [-inout]
[-internal] [-ports] <pattern>

Arguments

-kind <kind>

Specifies a subset of virtuals to look at. Optional. <kind> can be any of the following:
signals, functions, designs, implicits, and explicits. Unique abbreviations are accepted.

-region <path>

Used in place of -kind to specify a region of design space in which to look for signals to
log. Optional.

-recursive

Specifies that the scope of the search is to descend recursively into subregions. Optional.
If omitted, the search is limited to the selected region.

-only

Can be used with a wildcard to specify that only virtual signals (as opposed to all signals)
found by the wildcard should be logged. Optional.

-in

Specifies that the kernal log data for ports of mode IN whose names match the
specification. Optional.

-out

Specifies that the kernel log data for ports of mode OUT whose names match the
specification. Optional.

-inout

Specifies that the kernel log data for ports of mode INOUT whose names match the
specification. Optional.

-internal

Specifies that the kernel log data for internal items whose names match the specification.
Optional.

-ports

Specifies that the kernel log data for all ports. Optional.

<pattern>

Indicates which signal names or wildcard patterns should be used in finding the signals
to log. Required. Any number of names or wildcard patterns may be used.
ModelSim Command Reference

CR-170 Commands

Model
See also

virtual nolog (CR-172), "Virtual Objects (User-defined buses, and more)" (UM-133)
Sim Command Reference

virtual nohide CR-171
virtual nohide

The virtual nohide command reverses the effect of a virtual hide command. It resets the
flag in the specified real or virtual signals, so those signals reappear in the Signals window.

Syntax

virtual nohide
[-kind <kind>]|[-region <path>] <pattern>

Arguments

-kind <kind>

Specifies a subset of virtuals to look at. Optional. <kind> can be any of the following:
signals, functions, designs, implicits, and explicits. Unique abbreviations are accepted.

-region <path>

Used in place of -kind to specify a region of design space in which to look for the signal
names. Optional.

<pattern>

Indicates which signal names or wildcard patterns should be used in finding the signals
to expose. Required. Any number of names or wildcard patterns may be used.

See also

virtual hide (CR-168), "Virtual Objects (User-defined buses, and more)" (UM-133)
ModelSim Command Reference

CR-172 Commands

Model
virtual nolog

The virtual nolog command reverses the effect of a virtual log command. It causes the
simulation-dependent signals of the specified virtual signals to be excluded ("unlogged")
by the kernel. If wildcard patterns are used, it will also unlog any normal signals found,
unless the -only option is used.

Syntax

virtual nolog
[-kind <kind>]|[-region <path>] [-recursive] [-only] [-in] [-out] [-inout]
[-internal] [-ports] <pattern>

Arguments

-kind <kind>

Specifies a subset of virtuals to look at. Optional. <kind> can be any of the following:
signals, functions, designs, implicits, and explicits. Unique abbreviations are accepted.

-region <path>

Used in place of -kind to specify a region of design space in which to look for signals to
unlog. Optional.

-recursive

Specifies that the scope of the search is to descend recursively into subregions. Optional.
If omitted, the search is limited to the selected region.

-only

Can be used with a wildcard to specify that only virtual signals (as opposed to all signals)
found by the wildcard should be unlogged. Optional.

-in

Specifies that the kernel exclude data for ports of mode IN whose names match the
specification. Optional.

-out

Specifies that the kernel exclude data for ports of mode OUT whose names match the
specification. Optional.

-inout

Specifies that the kernel exclude data for ports of mode INOUT whose names match the
specification. Optional.

-internal

Specifies that the kernel exclude data for internal items whose names match the
specification. Optional.

-ports

Specifies that the kernel exclude data for all ports. Optional.

<pattern>

Indicates which signal names or wildcard pattern should be used in finding the signals to
unlog. Required. Any number of names or wildcard patterns may be used.
Sim Command Reference

virtual nolog CR-173
See also

virtual log (CR-169), "Virtual Objects (User-defined buses, and more)" (UM-133)
ModelSim Command Reference

CR-174 Commands

Model
virtual region

The virtual region command creates a new user-defined design hierarchy region.

Syntax

virtual region
<parentPath> <regionName>

Arguments

<parentPath>

The full path to the region that will become the parent of the new region. Required.

<regionName>

The name you want for the new region. Required.

See also

virtual function (CR-165), virtual signal (CR-177), "Virtual Objects (User-defined buses,
and more)" (UM-133)

Note: Virtual regions cannot be used in the when (CR-208) command.
Sim Command Reference

virtual save CR-175
virtual save

The virtual save command saves the definitions of virtuals to a file.

Syntax

virtual save
[-kind <kind>] [-append] [<filename>]

Arguments

-kind <kind>

Specifies a subset of virtuals to look at. Optional. <kind> can be any of the following:
signals, functions, designs, implicits, and explicits. Unique abbreviations are accepted.

-append

Specifies to save only virtuals that are not already saved or weren’t read in from a macro
file. These unsaved virtuals are then appended to the specified or default file. Optional.

<filename>

Used for writing the virtual definitions. Optional. If you don’t specify <filename>, the
default virtual filename (virtuals.do) will be used. You can specify a different default in
the pref.tcl file.

See also

virtual count (CR-160), "Virtual Objects (User-defined buses, and more)" (UM-133)
ModelSim Command Reference

CR-176 Commands

Model
virtual show

The virtual show command lists the full path names of all explicitly defined virtuals.

Syntax

virtual show
[-kind <kind>]

Arguments

-kind <kind>

Specifies a subset of virtuals to look at. Optional. <kind> can be any of the following:
signals, functions, designs, implicits, and explicits. Unique abbreviations are accepted.

See also

virtual define (CR-161), virtual describe (CR-163), "Virtual Objects (User-defined buses,
and more)" (UM-133)
Sim Command Reference

virtual signal CR-177
virtual signal

The virtual signal command creates a new signal, known only by the GUI (not the kernel),
that consists of concatenations of signals and subelements as specified in
<expressionString>. It cannot handle bit selects and slices of Verilog registers. Please see
"Syntax and conventions" (CR-5) for more details on syntax.

Syntax

virtual signal
[-env <path>] [-install <path>] [-implicit] [-delay <time>]
{<expressionString>} <name>

Arguments

-env <path>

Specifies a hierarchical context for the signal names in <expressionString>, so they
don’t all have to be full paths. Optional.

-install <path>

Causes the newly-created signal to become a child of the specified region. If -install is
not specified, the newly-created signal becomes a child of the nearest common ancestor
of all objects appearing in <expressionString>. If the expression references more than
one WLF file (dataset), the virtual signal will automatically be placed in region virtuals:/
Signals. Optional.

-implicit

Used internally to create virtuals that are automatically saved with the List or Wave
format. Optional.

-delay <time>

Specifies a value by which the virtual signal will be delayed. Optional. You can use
negative values to look forward in time. If units are specified, the <time> option must be
enclosed in curly braces. See the examples below for more details.

{<expressionString>}

A text string expression in the MTI GUI expression format that defines the signal and
subelement concatenation. Can also be a literal constant or computed subexpression.
Required. For details on syntax, please see "Syntax and conventions" (CR-5).

<name>

The name you define for the virtual signal. Required. Case is ignored unless installed in
a Verilog region. Use alpha, numeric, and underscore characters only, unless you are
using VHDL extended identifier notation. If using VHDL extended identifier notation,
<name> needs to be quoted with double quotes or with curly braces.
ModelSim Command Reference

CR-178 Commands

Model
Examples

virtual signal -env sim:/chip/alu { (concat_range (4 downto 0))(a_04 & a_03
& a_02 & a_01 & a_00) } a

Reconstructs a bus sim:/chip/alu/a(4 downto 0), using VHDL notation, assuming that
a_ii are scalars all of the same type.

virtual signal -env sim:chip.alu { (concat_range [4:0])&{a_04, a_03, a_02,
a_01, a_00} } a

Reconstructs a bus sim:chip.alu.a[4:0], using Verilog notation. Note that the
concatenation notation starts with "&{" rather than "{".

virtual signal -install sim:/testbench { /chipa/alu/a(19 downto 13) &
/chipa/decode/inst & /chipa/mode } stuff

Creates a signal sim:/testbench/stuff which is a record type with three fields
corresponding to the three specified signals. The example assumes /chipa/mode is of type
integer, /chipa/alu/a is of type std_logic_vector, and /chipa/decode/inst is a user-defined
enumeration.

virtual signal -delay {10 ps} {/top/signalA} myDelayedSignalA

Creates a virtual signal that is the same as /top/signalA except it is delayed by 10 ps.

virtual signal { chip.instruction[23:21] } address_mode

Creates a three-bit signal, chip.address_mode, as an alias to the specified bits.

virtual signal {a & b & c & 3’b000} myextendedbus

Concatenates signals a, b, and c with the literal constant ’000’.

virtual signal {num & "000"} fullbus
add wave -unsigned fullbus

Adds three missing bits to the bus num, creates a virtual signal fullbus, and then adds that
signal to the wave window.

virtual signal { num31 & num30 & num29 & ... & num4 & num3 & "000" } fullbus
add wave -unsigned fullbus

Reconstructs a bus that was fragmented by synthesis and is missing the lower three bits.
Note that you would have to type in the actual bit names (i.e. num28, num27, etc.)
represented by the ... in the syntax above.

virtual signal {(aold == anew) & (bold == bnew)} myequalityvector

Creates a two-bit signal (with an enumerated type) based on the results of the
subexpressions. For example, if aold equals anew, then the first bit is true (1).
Alternatively, if bold does not equal c, the second bit is false (0). Each subexpression is
evaluated independently.
Sim Command Reference

virtual signal CR-179
Commands fully compatible with virtual signals

Commands compatible with virtual signals using [virtual expand <signal>]

Commands not currently compatible with virtual signals

when (CR-208)

See also

add list (CR-32) add log / log (CR-87) add wave (CR-35)

delete (CR-65) describe (CR-66) ("virtual describe"
is a little faster)

examine (CR-75)

find (CR-79) force (CR-82)/noforce (CR-92) restart (CR-111)

searchlog (CR-116) show (CR-119)

drivers (CR-69) vcd add (CR-128)

virtual count (CR-160) virtual define (CR-161) virtual delete (CR-162)

virtual describe (CR-163) virtual expand (CR-164) virtual function (CR-165)

virtual hide (CR-168) virtual log (CR-169) virtual nohide (CR-171)

virtual nolog (CR-172) virtual region (CR-174) virtual save (CR-175)

virtual show (CR-176) virtual type (CR-180) Virtual Objects (User-defined
buses, and more) (UM-133)
ModelSim Command Reference

CR-180 Commands

Model
virtual type

The virtual type command creates a new enumerated type, known only by the GUI, not the
kernel. Virtual types are used to convert signal values to character strings. The command
works with signed integer values up to 64 bits.

Syntax

virtual type
[-delete <name>] {<list_of_strings>} <name>

Arguments

-delete <name>

Deletes a previously defined virtual type. <name> is the name you gave the virtual type
when you originally defined it. Optional.

{<list_of_strings>}

A list of values and their associated character strings. Required. Values can be expressed
in decimal or based notation. Three kinds of based notation are supported: Verilog,
VHDL, and C-language styles. The values are interpreted without regard to the size of
the bus to be mapped. Bus widths up to 64 bits are supported.

There is currently no restriction on the contents of each string, but if strings contain
spaces they would need to be quoted, and if they contain characters treated specially by
Tcl (square brackets, curly braces, backslashes...), they would need to be quoted with
curly braces.

See the examples below for further syntax.

<name>

The user-defined name of the virtual type. Required. Case is not ignored. Use alpha,
numeric, and underscore characters only, unless you are using VHDL extended identifier
notation. If using VHDL extended identifier notation, <name> needs to be quoted with
double quotes or with curly braces.

Examples

virtual type {state0 state1 state2 state3} mystateType
virtual function {(mystateType)mysignal} myConvertedSignal
add wave myConvertedSignal

Using positional notation, associates each string with an enumeration index, starting at
zero and increasing by one in the positive direction.When myConvertedSignal is
displayed in the Wave, List or Signals window, the string "state0" will appear when
mysignal == 0, "state1" when mysignal == 1, "state2" when
mysignal == 2, etc.
Sim Command Reference

virtual type CR-181
virtual type {{0 NULL_STATE} {1 st1} {2 st2} {0x04 st3} {16’h08 st4} \
{’h10 st5} {16#20 st6} {0b01000000 st7} {0x80 st8} \
{default BAD_STATE}} myMappedType

virtual function {(myMappedType)mybus} myConvertedBus
add wave myConvertedBus

Uses sparse mapping of bus values to alphanumeric strings for an 8-bit, one-hot
encoding. It shows the variety of syntax that can be used for values. The value "default"
has special meaning and corresponds to any value not explicitly specified.

virtual type -delete mystateType

Deletes the virtual type "mystateType".

See also

virtual function (CR-165), "Virtual Objects (User-defined buses, and more)" (UM-133)

Note: Virtual types cannot be used in the when (CR-208) command.
ModelSim Command Reference

CR-182 Commands

Model
vlib

The vlib command creates a design library. You must use vlib rather than operating system
commands to create a library directory or index file. If the specified library already exists
as a valid ModelSim library, the vlib command will exit with a warning message without
touching the library.

Syntax

vlib
[-archive [-compact <percent>]] [-help] [-dos | -short | -unix | -long]
<name>

Arguments

-archive [-compact <percent>]

Causes design units that are compiled into the created library to be stored in archives
rather than in subdirectories. Optional. See "Archives" (UM-39) for more details.

You may optionally specify a decimal number between 0 and 1 that denotes the allowed
percentage of wasted space before archives are compacted. By default archives are
compacted when 50% (.5) of their space is wasted. See an example below.

-help

Displays the command’s options and arguments. Optional.

-dos

Specifies that subdirectories in a library have names that are compatible with DOS. Not
recommended if you use the vmake (CR-189) utility. Optional.

-short

Interchangeable with the -dos argument. Optional.

-unix

Specifies that subdirectories in a library may have long file names that are NOT
compatible with DOS. Optional. Default for ModelSim SE.

-long

Interchangeable with the -unix argument. Optional.

<name>

Specifies the pathname or archive name of the library to be created. Required.

Examples

vlib design

Creates the design library design. You can define a logical name for the library using the
vmap command (CR-191) or by adding a line to the library section of the modelsim.ini file
that is located in the same directory.

vlib -archive -compact .3 uut

Creates the design library uut and specifies that any design units compiled in to the
library are created as archives. Also specifies that each archive be compacted when 30%
of the its space is wasted.
Sim Command Reference

vlog CR-183
vlog

The vlog command is used to invoke VLOG, the Model Technology Verilog compiler. Use
vlog to compile Verilog source code into a specified working library (or to the work library
by default).

vlog may be invoked from within ModelSim or from the operating system command
prompt. It may also be invoked during simulation.

Compiled libraries are version dependent. For example you cannot use a library compiled
with 5.5 in a simulation using 5.6 vsim.

Syntax

vlog
[-93] [-help] [-compat] [-compile_uselibs[=<directory_name>]]
[+define+<macro_name>[=<macro_text>]] [+delay_mode_distributed]
[+delay_mode_path] [+delay_mode_unit] [+delay_mode_zero] [-f <filename>]
[-hazards] [+incdir+<directory>] [-incr] [+libext+<suffix>] [+librescan]
[-line <number>] [-lint] [+maxdelays] [+mindelays] [-noincr] [+nolibcell]
[-nologo] [+nospecify] [+notimingchecks] [+nowarn<CODE>] [-O0] [-quiet] [-
R [<simargs>]] [-refresh] [-source] [-time] [+typdelays] [-u] [-v
<library_file>] [-version] [-vlog95compat] [-work <library_name>]
[-y <library_directory>] <filename>

Arguments

-93

Specifies that the VHDL interface to Verilog modules use VHDL 1076-1993 extended
identifiers to preserve case in Verilog identifiers that contain uppercase letters.

-help

Displays the command’s options and arguments. Optional.

-compat

Disables optimizations that result in different event ordering than Verilog-XL. Optional.

ModelSim Verilog generally duplicates Verilog-XL event ordering, but there are cases
where it is inefficient to do so. Using this option does not help you find event order
dependencies, but it allows you to ignore them. Keep in mind that this option does not
account for all event order discrepancies, and that using this option may degrade
performance. See "Event ordering in Verilog designs" (UM-80) for additional information.

-compile_uselibs[=<directory_name>]

Locates source files specified in a ‘uselib directive (see "Verilog-XL `uselib compiler
directive" (UM-75)), compiles those files into automatically created libraries, and updates
the modelsim.ini file with the logical mappings to the new libraries. Optional. If a
directory_name is not specified, ModelSim uses the name specified in the
MTI_USELIB_DIR environment variable. If that variable is not set, ModelSim creates
the directory mti_uselibs in the current working directory.

+define+<macro_name>[=<macro_text>]

Allows you to define a macro from the command line that is equivalent to the following
compiler directive:

‘define <macro_name> <macro_text>
ModelSim Command Reference

CR-184 Commands

Model
Optional. Multiple +define options are allowed on the command line. A command line
macro overrides a macro of the same name defined with the ‘define compiler directive.

+delay_mode_distributed

Disables path delays in favor of distributed delays. Optional. See "Delay modes" (UM-88)
for details.

+delay_mode_path

Sets distributed delays to zero in favor of using path delays. Optional. See "Delay modes"
(UM-88) for details.

+delay_mode_unit

Sets path delays to zero and non-zero distributed delays to one time unit. Optional. See
"Delay modes" (UM-88) for details.

+delay_mode_zero

Sets path delays and distributed delays to zero. Optional. See "Delay modes" (UM-88) for
details.

-f <filename>

Specifies a file with more command line arguments. Optional. Allows complex
arguments to be reused without retyping. Nesting of -f options is allowed. Environment
variable expansion (for example in a pathname) does not occur in -f files.

-hazards

Detects event order hazards involving simultaneous reading and writing of the same
register in concurrently executing processes. Optional. You must also specify this
argument when you simulate the design with vsim (CR-192). See "Hazard detection" (UM-

83) for more details.

+incdir+<directory>

Specifies directories to search for files included with ‘include compiler directives.
Optional. By default, the current directory is searched first and then the directories
specified by the +incdir options in the order they appear on the command line. You may
specify multiple +incdir options as well as multiple directories separated by "+" in a
single +incdir option.

-incr

Performs an incremental compile. Optional. Compiles only code that has changed. For
example, if you change only one module in a file containing several modules, only the
changed module will be recompiled. Note however that if the compile options change,
all modules are recompiled regardless if you use -incr or not. May be used with -fast.

+libext+<suffix>

Works in conjunction with the -y option. Specifies file extensions for the files in a source
library directory. Optional. By default the compiler searches for files without extensions.
If you specify the +libext option, then the compiler will search for a file with the suffix
appended to an unresolved name. You may specify only one +libext option, but it may
contain multiple suffixes separated by "+". The extensions are tried in the order they
appear in the +libext option.

Important: Enabling -hazards implicitly enables the -compat argument. As a result,
using this argument may affect your simulation results.
Sim Command Reference

vlog CR-185
+librescan

Scans libraries in command-line order for all unresolved modules. Optional.

-line <number>

Starts the compiler on the specified line in the Verilog source file. Optional. By default,
the compiler starts at the beginning of the file.

-lint

Instructs ModelSim to perform three lint-style checks: 1) warn when Module ports are
NULL; 2) warn when assigning to an input port; 3) warn when referencing undeclared
variables/nets in an instantiation. The warnings are reported as WARNING[8]. Can also
be enabled using the Show_Lint variable in the modelsim.ini file.

+maxdelays

Selects maximum delays from the "min:typ:max" expressions. Optional. If preferred,
you can defer delay selection until simulation time by specifying the same option to the
simulator.

+mindelays

Selects minimum delays from the "min:typ:max" expressions. Optional. If preferred, you
can defer delay selection until simulation time by specifying the same option to the
simulator.

-noincr

Disables incremental compile previously turned on with -incr. Optional.

+nolibcell

By default all modules compiled from a source library are treated as though they contain
a ‘celldefine compiler directive. This option disables this default. The ‘celldefine
directive only affects the PLI access routines acc_next_cell and acc_next_cell_load.
Optional.

-nologo

Disables the startup banner. Optional.

+nospecify

Disables specify path delays and timing checks. Optional.

+notimingchecks

Removes all timing check entries from the design as it is parsed. Optional.

+nowarn<CODE>

Disables warning messages in the category specified by <CODE>. Optional. Warnings
that can be disabled include the <CODE> name in square brackets in the warning
message. For example,

** WARNING: (vsim-3017) test.v(2): [TFMPC] - Too few port connections.
Expected <m>, found <n>.

This warning message can be disabled with the +nowarnTFMPC option.

-O0

Lower the optimization to a minimum with -O0 (capital oh zero). Optional. Use this to
work around bugs, increase your debugging visibility on a specific cell, or when you
want to place breakpoints on source lines that have been optimized out.

-quiet

Disables ’loading’ messages. Optional.
ModelSim Command Reference

CR-186 Commands

Model
-R [<simargs>]

Instructs the compiler to invoke the simulator (vsim (CR-192)) after compiling the design.
The compiler automatically determines which top-level modules are to be simulated. The
command line arguments following -R are passed to the simulator, not the compiler.
Place the -R option at the end of the command line or terminate the simulator command
line arguments with a single "-" character to differentiate them from compiler command
line arguments.

The -R option is not a Verilog-XL option, but it is used by ModelSim to combine the
compile and simulate phases together as you may be used to doing with Verilog-XL. It
is not recommended that you regularly use this option because you will incur the
unnecessary overhead of compiling your design for each simulation run. Mainly, it is
provided to ease the transition to ModelSim.

-refresh

Regenerates a library image. Optional. By default, the work library is updated; use -work
<library_name> to update a different library. See vlog examples for more information.

-source

Displays the associated line of source code before each error message that is generated
during compilation. Optional; by default, only the error message is displayed.

-time

Reports the "wall clock time" vlog takes to compile the design. Optional. Note that if
many processes are running on the same system, wall clock time may differ greatly from
the actual "cpu time" spent on vlog.

+typdelays

Selects typical delays from the "min:typ:max" expressions. Default. If preferred, you can
defer delay selection until simulation time by specifying the same option to the simulator.

-u

Converts regular Verilog identifiers to uppercase. Allows case insensitivity for module
names. Optional.

-v <library_file>

Specifies a source library file containing module and UDP definitions. Optional. See
"Verilog-XL compatible compiler arguments" (UM-74) for more information.

After all explicit filenames on the vlog command line have been processed, the compiler
uses the -v option to find and compile any modules that were referenced but not yet
defined. Modules and UDPs within the file are compiled only if they match previously
unresolved references. Multiple -v options are allowed. See additional discussion in the
examples.

-version

Returns the version of the compiler as used by the licensing tools, such as "Model
Technology ModelSim SE vlog 5.5 Compiler 2000.01 Jan 28 2000".

-vlog95compat

Some requirements in Verilog 2001 conflict with requirements in the 1995 LRM. Use of
this argument ensures that code that was valid according to the 1995 LRM can still be
compiled. Optional. Edit the vlog95compat (UM-351) variable in the modelsim.ini file to
set a permanent default.
Sim Command Reference

vlog CR-187
-work <library_name>

Specifies a logical name or pathname of a library that is to be mapped to the logical
library work. Optional; by default, the compiled design units are added to the work
library. The specified pathname overrides the pathname specified for work in the project
file.

-y <library_directory>

Specifies a source library directory containing module and UDP definitions. Optional.
See "Verilog-XL compatible compiler arguments" (UM-74) for more information.

After all explicit filenames on the vlog command line have been processed, the compiler
uses the -y option to find and compile any modules that were referenced but not yet
defined. Files within this directory are compiled only if the file names match the names
of previously unresolved references. Multiple -y options are allowed. You will need to
specify a file suffix by using -y in conjunction with the +libext+<suffix> option if your
filenames differ from your module names. See additional discussion in the examples.

<filename>

Specifies the name of the Verilog source code file to compile. One filename is required.
Multiple filenames can be entered separated by spaces. Wildcards can be used.

Examples

vlog example.vlg

Compiles the Verilog source code contained in the file example.vlg.

vlog -L work -L libA -L libB top.v

This command demonstrates how to compile hierarchical modules organized into
separate libraries that have sub-module names that overlap among the libraries. Assume
you have a top-level module top that instantiates module modA from library libA and
module modB from library libB. Furthermore, modA and modB both instantiate modules
named cellA, but the definition of cellA compiled into libA is different from that compiled
into libB. In this case, you can’t just specify -L libA - L libB because instantiations of
cellA from modB resolve to the libA version of cellA. See "Library usage" (UM-72) for
further information.

vlog top.v -v und1

After compiling top.v, vlog will scan the file und1 for modules or primitives referenced
but undefined in top.v. Only referenced definitions will be compiled.

vlog top.v +libext+.v+.u -y vlog_lib

After compiling top.v, vlog will scan the vlog_lib library for files with modules with the
same name as primitives referenced, but undefined in top.v. The use of +libext+.v+.u
implies filenames with a .v or .u suffix (any combination of suffixes may be used). Only
referenced definitions will be compiled.

Important: Any -y arguments that follow a -refresh argument on a vlog command line
are ignored. Any -y arguments that come before the -refresh argument on a vlog
command line are processed.
ModelSim Command Reference

CR-188 Commands

Model
vlog -work mylib -refresh

The -work option specifies mylib as the library to regenerate. -refresh rebuilds the
library image without using source code, allowing models delivered as compiled libraries
without source code to be rebuilt for a specific release of ModelSim (4.6 and later only).

If your library contains VHDL design units be sure to regenerate the library with the
vcom command (CR-147) using the -refresh option as well. See "Regenerating your
design libraries" (UM-47) for more information.

vlog module1.v -u -O0 -incr

The -incr option determines whether or not the module source or compile options have
changed as module1 is parsed. If no change is found, the code generation phase is
skipped. Differences in compile options are determined by comparing the compiler
options stored in the _info file with the compiler options given. They must match exactly.
Sim Command Reference

vmake CR-189
vmake

The vmake utility allows you to use a Windows MAKE program to maintain libraries. You
run vmake on a compiled design library, and the utility outputs a makefile. You can then
run the makefile with a version of MAKE (not supplied with ModelSim) to reconstruct the
library. A MAKE program is included with Microsoft Visual C/C++, as well as many other
program development environments.

After running the vmake utility, MAKE recompiles only the design units (and their
dependencies) that have changed. You run vmake only once; then you can simply run
MAKE to rebuild your design. If you add new design units or delete old ones, you should
re-run vmake to generate a new makefile.

The vmake utility ignores library objects compiled with -nodebug.

This command must be invoked from the Windows/DOS prompt.

Syntax

vmake
[-fullsrcpath] [-help] [<library_name>] [><makefile>]

Arguments

-fullsrcpath

Produces complete source file paths within generated makefiles. Optional. By default
source file paths are relative to the directory in which compiles originally occurred. This
argument makes it possible to copy and evaluate generated makefiles within directories
that are different from where compiles originally occurred.

-help

Displays the command’s options and arguments. Optional.

<library_name>

Specifies the library name; if none is specified, then work is assumed. Optional.

><makefile>

Specifies the makefile name. Optional.
ModelSim Command Reference

CR-190 Commands

Model
Examples

Here is an example of how to use vmake and MAKE on your work library:

C:\MIXEDHDL> vmake >makefile

Edit an HDL source file within the work library then enter:

C:\MIXEDHDL> make

Your design gets recompiled for you. You can change the design again and re-run MAKE
to recompile additional changes.

You can also run vmake on libraries other than work. For example,

C:\MIXEDHDL> vmake mylib >mylib.mak

To rebuild mylib, specify its makefile when you run MAKE:

C:\MIXEDHDL> make -f mylib.mak
Sim Command Reference

vmap CR-191
vmap

The vmap command defines a mapping between a logical library name and a directory by
modifying the modelsim.ini file. With no arguments, vmap reads the appropriate
modelsim.ini file(s) and prints the current logical library to physical directory mappings.
Returns nothing.

Syntax

vmap
[-help] [-c] [-del] [<logical_name>] [<path>]

Arguments

-help

Displays the command’s options and arguments. Optional.

-c

Copies the default modelsim.ini file from the ModelSim installation directory to the
current directory. Optional.

-del

Deletes the mapping specified by <logical_name> from the current project file. Optional.

<logical_name>

Specifies the logical name of the library to be mapped. Optional.

<path>

Specifies the pathname of the directory to which the library is to be mapped. Optional. If
omitted, the command displays the mapping of the specified logical name.

Note: This argument is intended only for making a copy of the default modelsim.ini file
to the current directory. Do not use it while making your library mappings or the
mappings may end up in the incorrect copy of the modelsim.ini.
ModelSim Command Reference

CR-192 Commands

Model
vsim

The vsim command is used to invoke the VSIM simulator, or to view the results of a
previous simulation run (when invoked with the -view switch). You can specify a
configuration, an entity/architecture pair, or a module for simulation. If a configuration is
specified, it is invalid to specify an architecture. With no options, vsim brings up the Load
Design dialog box, allowing you to specify the design and options; the Load Design dialog
box will not be presented if you specify any options. During elaboration vsim determines
if the source has been modified since the last compile.

This command may be used in batch mode from the Windows command prompt. See "Tips
and techniques" (UM-387) for more information on the VSIM batch mode.

To manually interrupt design elaboration use the Break key.

The vsim command may also be invoked from the command line within ModelSim with
most of the options shown below (all except the vsim -c and -restore options).

Syntax

vsim
[-assertfile <filename>] [-c] [-do “<command_string>” | <macro_file_name>]
[+dumpports+direction] [+dumpports+unique] [-f <filename>] [-
g<Name>=<Value> ...] [-G<Name>=<Value> ...] [-gui]
[-help] [-i] [-keeploaded] [-keeploadedrestart]
[-keepstdout] [-l <filename>] [-multisource_delay min | max |
latest][+multisource_int_delays]
[+no_notifier][+no_tchk_msg] [+notimingchecks] [-quiet]

[-sdfmin | -sdftyp | -sdfmax[@<delayScale>] [<instance>=]<sdf_filename>]
[-sdfmaxerrors <n>] [-sdfnoerror] [-sdfnowarn] [+sdf_verbose]
[-t [<multiplier>]<time_unit>]
[-tag <string>] [-title <title>][-trace_foreign <int>]
[-vcdstim <filename>] [-version] [-view [<dataset_name>=]<WLF_filename>]
[-wlf <filename>] [-wlfcompress] [-wlfnocompress] [-wlfslim <size>]
[-wlftlim <duration>]

[-absentisempty] [-nocollapse] [-nofileshare]
[-noglitch] [+no_glitch_msg] [-std_input <filename>]
[-std_output <filename>] [-strictvital] [-vital2.2b]

[+alt_path_delays] [-extend_tcheck_data_limit <percent>]
[-extend_tcheck_ref_limit <percent>]
[-hazards] [+int_delays] [-L <library_name> ...] [-Lf <library_name> ...]
[+maxdelays] [+mindelays] [+no_cancelled_e_msg] [+no_neg_tchk]
[+no_notifier] [+no_path_edge] [+no_pulse_msg] [+no_show_cancelled_e]
[+no_tchk_msg] [+nosdferror] [+nosdfwarn] [+nospecify] [+nowarn<CODE>]
[+ntc_warn] [-pli "<object list>"][+<plusarg>]
[+pulse_e/<percent>] [+pulse_e_style_ondetect] [+pulse_e_style_onevent]
[+pulse_int_e/<percent>] [+pulse_int_r/<percent>] [+pulse_r/<percent>]
[+sdf_nocheck_celltype] [+show_cancelled_e] [+transport_int_delays]
[+transport_path_delays] [+typdelays]
[-v2k_int_delays]

[<library_name>.<design_unit>]
Sim Command Reference

vsim CR-193
VSIM arguments are grouped alphabetically by language:

• Arguments, VHDL and Verilog (CR-193)

• Arguments, VHDL (CR-199)

• Arguments, Verilog (CR-200)

• Arguments, object (CR-204)

Arguments, VHDL and Verilog

-assertfile <filename>

Designates an alternative file for recording assertion messages. Optional. By default
assertion messages are output to the file specified by the TranscriptFile variable in the
modelsim.ini file (see "Creating a transcript file" (UM-357)).

-c

Specifies that the simulator is to be run in command line mode. Optional. Also see for
more information.

-do “<command_string>” | <macro_file_name>

Instructs VSIM to use the command(s) specified by <command_string> or the macro
file named by <macro_file_name> rather than the startup file specified in the .ini file, if
any. Optional. Multiple commands should be separated by semi-colons (;).

+dumpports+direction

Modifies the format of extended VCD files to contain direction information. Optional.

+dumpports+unique

Generates unique vcd variable names for ports in a VCD file, even if those ports are
connected to the same collapsed net. Optional.

-f <filename>

Specifies a file with more command line arguments. Optional. Allows complex argument
strings to be reused without retyping. Environment variable expansion (for example in a
pathname) does not occur in -f files.

-g<Name>=<Value> ...

Assigns a value to all specified VHDL generics and Verilog parameters that have not
received explicit values in generic maps, instantiations, or via defparams (such as top-
level generics/parameters and generics/parameters that would otherwise receive their
default values). Optional. Note there is no space between -g and <Name>=<Value>.

Name is the name of the generic/parameter, exactly as it appears in the VHDL source
(case is ignored). Value is an appropriate value for the declared data type of a VHDL
generic or any legal value for a Verilog parameter. Make sure the Value you specify for
a VHDL generic is appropriate for VHDL declared data types. VHDL type mismatches
will cause the specification to be ignored (including no error messages).

No spaces are allowed anywhere in the specification, except within quotes when
specifying a string value. Multiple -g options are allowed, one for each generic/
parameter.

Name may be prefixed with a relative or absolute hierarchical path to select generics in
an instance-specific manner. For example,

Specifying -g/top/u1/tpd=20ns on the command line would affect only the tpd generic
on the /top/u1 instance, assigning it a value of 20ns.
ModelSim Command Reference

CR-194 Commands

Model
Specifying -gu1/tpd=20ns affects the tpd generic on all instances named u1.

Specifying -gtpd=20ns affects all generics named tpd.

If more than one -g option selects a given generic the most explicit specification takes
precedence. For example,

vsim -g/top/ram/u1/tpd_hl=10ns -gtpd_hl=15ns top

This command sets tpd_hl to 10ns for the /top/ram/u1 instance. However, all other tpd_hl
generics on other instances will be set to 15ns.

Limitation: In general, generics/parameters of composite type (arrays and records)
cannot be set from the command line. However, you can set string arrays, std_logic
vectors, and bit vectors if they can be set using a quoted string. For example,

-gstrgen="This is a string"
-gslv="01001110"

The quotation marks must make it into vsim as part of the string because the type of the
value must be determinable outside of any context. Therefore, when entering this
command from a shell, put a forward tick around the string. For example:

-gstrgen=’"This is a string"’

If working within the ModelSim GUI, you would enter the command as follows:

{-gstrgen="This is a string"}

-G<Name>=<Value> ...

Same as -g (see above) except that it will also override generics/parameters that received
explicit values in generic maps, instantiations, or via defparams. Optional. Note there is
no space between -G and <Name>=<Value>.

-gui

Starts the ModelSim GUI without loading a design. Optional.

-help

Displays the command’s options and arguments. Optional.

-i

Specifies that the simulator is to be run in interactive mode. Optional.

-keeploaded

Prevents the simulator from unloading/reloading any FLI/PLI/VPI shared libraries when
it restarts or loads a new design. Optional. The shared libraries will remain loaded at their
current positions. User application code in the shared libraries must reset its internal state
during a restart in order for this to work effectively.

Note: When you compile Verilog code with -fast (see vlog (CR-183)), all parameter
values are set at compile time. Therefore, the -g option has no effect on these parameters.
Sim Command Reference

vsim CR-195
-keeploadedrestart

Prevents the simulator from unloading/reloading any FLI/PLI/VPI shared libraries
during a restart. Optional. The shared libraries will remain loaded at their current
positions. User application code in the shared libraries must reset its internal state during
a restart in order for this to work effectively.

We recommend using this option if you’ll be doing warm restores after a restart and the
user application code has set callbacks in the simulator. Otherwise, the callback function
pointers might not be valid if the shared library is loaded into a new position.

-keepstdout

For use with foreign programs. Instructs the simulator to not redirect the stdout stream to
the Main window. Optional.

-l <filename>

Saves the contents of the "Main window" (UM-145) transcript to <filename>. Optional.
Default is transcript. Can also be specified using the .ini (see "Creating a transcript file"
(UM-357)) file or the.tcl preference file.

-multisource_delay min | max | latest

Controls the handling of multiple PORT or INTERCONNECT constructs that terminate
at the same port. Optional. By default, the Module Input Port Delay (MIPD) is set to the
max value encountered in the SDF file. Alternatively, you may choose the min or latest
of the values. If you have a Verilog design and want to model multiple interconnect paths
independently, use the +multisource_int_delays argument.

+multisource_int_delays

Enables multisource interconnect delay with pulse handling and transport delay
behavior. Optional. Use this argument when you have interconnect data in your SDF file
and you want the delay on each interconnect path modeled independently. Pulse handling
is configured using the +pulse_int_e and +pulse_int_r switches (described below).

+no_notifier

Disables the toggling of the notifier register argument of all timing check system tasks.
Optional. By default, the notifier is toggled when there is a timing check violation, and
the notifier usually causes a UDP to propagate an X. This argument suppresses X
propagation in both Verilog and VITAL for the entire design.

+no_tchk_msg

Disables error messages issued by timing check system tasks when timing check
violations occur. Optional. Notifier registers are still toggled and may result in the
propagation of Xs for timing check violations..

+notimingchecks

Disables Verilog and VITAL timing checks for faster simulation. Optional. By default,
Verilog timing check system tasks ($setup, $hold,...) in specify blocks are enabled. For
VITAL, the timing check default is controlled by the ASIC or FPGA vendor, but most
default to enabled.

-quiet

Disable 'loading' messages during batch-mode simulation. Optional.
ModelSim Command Reference

CR-196 Commands

Model
-sdfmin | -sdftyp | -sdfmax[@<delayScale>] [<instance>=]<sdf_filename>

Annotates VITAL or Verilog cells in the specified SDF file (a Standard Delay Format
file) with minimum, typical, or maximum timing. Optional.

The optional argument @<delayScale> scales all values by the specified value. For
example, if you specify -sdfmax@1.5..., all maximum values in the SDF file will be
scaled to 150% of their original value.

The use of [<instance>=] with <sdf_filename> is also optional; it is used when the
backannotation is not being done at the top level. See "Specifying SDF files for
simulation" (UM-298).

-sdfmaxerrors <n>

Controls the number of Verilog SDF missing instance messages that will be emitted
before terminating vsim. Optional. <n> is the maximum number of missing instance
error messages to be emitted. The default number is 5.

-sdfnoerror

Errors issued by the SDF annotator while loading the design prevent the simulation from
continuing, whereas warnings do not. Changes SDF errors to warnings so that the
simulation can continue. Optional.

-sdfnowarn

Disables warnings from the SDF reader. Optional. See Chapter 4 - VHDL simulation for
an additional discussion of SDF.

+sdf_verbose

Turns on the verbose mode during SDF annotation. The Main window provides detailed
warnings and summaries of the current annotation. Optional.
Sim Command Reference

vsim CR-197
-t [<multiplier>]<time_unit>

Specifies the simulator time resolution. Optional. <time_unit> must be one of the
following:

fs, ps, ns, us, ms, sec

The default is 1ps; the optional <multiplier> may be 1, 10 or 100. Note that there is no
space between the multiplier and the unit (i.e., 10fs, not 10 fs).

If you omit the -t argument, the default time resolution depends on design type: in a
Verilog design with ‘timescale directives, the minimum time precision is used (see
"Simulator resolution limit" (UM-78) for further details); in Verilog designs without any
timescale directives, or in a VHDL or mixed design, the value specified for the
Resolution (UM-355) variable in the modelsim.ini file is used.

Once you’ve begun simulation, you can determine the current simulator resolution by
invoking the report command (CR-109) with the simulator state option.

-tag <string>

Specifies a string tag to append to foreign trace filenames. Optional. Used with the
-trace_foreign <int> option. Used when running multiple traces in the same directory.

-title <title>

Specifies the title to appear for the ModelSim Main window. Optional. If omitted the
current ModelSim version is the window title. Useful when running multiple
simultaneous simulations. Text strings with spaces must be in quotes (e.g., "my title").

-trace_foreign <int>

Creates two kinds of foreign interface traces: a log of what functions were called, with
the value of the arguments, and the results returned; and a set of C-language files to
replay what the foreign interface side did.

The purpose of the logfile is to aid the debugging of your PLI/VPI code. The primary
purpose of the replay facility is to send the replay file to MTI support for debugging co-
simulation problems, or debugging problems for which it is impractical to send thePLI/
VPI code.

-vcdstim <filename>

Resimulates a design from a VCD file. Optional. The VCD file must have been created
in a previous ModelSim simulation using the vcd dumpports command (CR-131). See
"Resimulating a design from a VCD file" (UM-315) for more information.

-version

Returns the version of the simulator as used by the licensing tools, such as "Model
Technology ModelSim SE vsim 5.5 Simulator 2000.01 Jan 28 2000".

-view [<dataset_name>=]<WLF_filename>

Specifies a wave log format (WLF) file for vsim to read. Allows you to use VSIM to view
the results from an earlier simulation. The Structure, Signals, Wave, and List windows
can be opened to look at the results stored in the WLF file (other ModelSim windows will
not show any information when you are viewing a dataset). See additional discussion in
"Examples" (CR-205).

-wlf <filename>

Specifies the name of the wave log format (WLF) file to create. The default is vsim.wlf.
Optional.
ModelSim Command Reference

CR-198 Commands

Model
-wlfcompress

Creates compressed WLF files. Default. Use -wlfnocompress to turn off compression.

-wlfnocompress

Causes VSIM to create uncompressed WLF files. Optional. Beginning with version 5.5,
WLF files are compressed by default in order to reduce file size. This may slow
simulation speed by one to two percent. You may want to disable compression to speed
up simulation or if you are experiencing problems with faulty data in the resulting WLF
file. This option may also be specified with the WLFCompress (UM-356) variable in the
modelsim.ini file.

-wlfslim <size>

Specifies a size restriction in megabytes for the event portion of the WLF file. Optional.
The default is infinite size (0). The <size> must be an integer.

Note that a WLF file contains event, header, and symbol portions. The size restriction is
placed on the event portion only. When ModelSim exits, the entire header and symbol
portion of the WLF file is written. Consequently, the resulting file will be larger than the
size specified with -wlfslim.

If used in conjunction with -wlftlim, the more restrictive of the limits will take effect.

This option may also be specified with the WLFSizeLimit (UM-356) variable in the
modelsim.ini file.

-wlftlim <duration>

Specifies the duration of simulation time for WLF file recording. Optional. The default
is infinite time (0). The <duration> is an integer of simulation time at the current
resolution; you can optionally specify the resolution if you place curly braces around the
specification. For example,

{5000 ns}

sets the duration at nanoseconds regardless of the current simulator resolution.

The time range begins at current simulation time and moves back in simulation time for
the specified duration. For example,

vsim -wlftlim 5000

writes at least the last 5000ns of the current simulation to the WLF file (the current
simulation resolution in this case is ns).

If used in conjunction with -wlfslim, the more restrictive of the limits will take effect.

This option may also be specified with the WLFTimeLimit (UM-356) variable in the
modelsim.ini file.

Note: The -wlfslim and -wlftlim switches were designed to help users limit WLF file
sizes for long or heavily logged simulations. When small values are used for these
switches, the values may be overridden by the internal granularity limits of the WLF file
format.
Sim Command Reference

vsim CR-199
Arguments, VHDL

-absentisempty

Causes VHDL files opened for read that target non-existent files to be treated as empty,
rather than ModelSim issuing fatal error messages. Optional.

-nocollapse

Disables the optimization of internal port map connections. Optional.

-nofileshare

By default ModelSim shares a file descriptor for all VHDL files opened for write or
append that have identical names. The -nofileshare switch turns off file descriptor
sharing. Optional.

-noglitch

Disables VITAL glitch generation. Optional.

See Chapter 4 - VHDL simulation for additional discussion of VITAL.

+no_glitch_msg

Disable VITAL glitch error messages. Optional.

-std_input <filename>

Specifies the file to use for the VHDL TextIO STD_INPUT file. Optional.

-std_output <filename>

Specifies the file to use for the VHDL TextIO STD_OUTPUT file. Optional.

-strictvital

Exactly match the VITAL package ordering for messages and delta cycles. Optional.
Useful for eliminating delta cycle differences caused by optimizations not addressed in
the VITAL LRM. Using this argument negatively impacts simulator performance.

-vital2.2b

Selects SDF mapping for VITAL 2.2b (default is VITAL 2000). Optional.
ModelSim Command Reference

CR-200 Commands

Model
Arguments, Verilog

+alt_path_delays

Configures path delays to operate in inertial mode by default. Optional. In inertial mode,
a pending output transition is cancelled when a new output transition is scheduled. The
result is that an output may have no more than one pending transition at a time, and that
pulses narrower than the delay are filtered. The delay is selected based on the transition
from the cancelled pending value of the net to the new pending value. The
+alt_path_delays option modifies the inertial mode such that a delay is based on a
transition from the current output value rather than the cancelled pending value of the net.
This option has no effect in transport mode (see +pulse_e/<percent> and
+pulse_r/<percent>).

-extend_tcheck_data_limit <percent>

-extend_tcheck_ref_limit <percent>

Causes a one-time extension of qualifying data or reference limits in an attempt to
provide a delay net delay solution prior to any limit zeroing. A limit qualifies if it bounds
a violation region which does not overlap a related violation region.

<percent> is the maximum percent of limit relaxation. See "Extending check limits
without zeroing" (UM-85) for an example of how to calculate the percentage.

-hazards

Enables event order hazard checking in Verilog modules. Optional. You must also
specify this argument when you compile your design with vlog (CR-183). See "Hazard
detection" (UM-83) for more details.

+int_delays

Optimizes annotation of interconnect delays for designs that have been compiled using
-fast (see vlog command (CR-183)). Optional. This argument causes vsim to insert
"placeholder" delay elements at optimized cell inputs, resulting in faster backannotation
of interconnect delay from an SDF file.

-L <library_name> ...

Specifies the library to search for design units instantiated from Verilog. See "Library
usage" (UM-72) for more information. If multiple libraries are specified, each must be
preceded by the -L option. Libraries are searched in the order in which they appear on
the command line.

-Lf <library_name> ...

Same as -L but libraries are searched before ‘uselib directives. See "Library usage" (UM-

72) for more information. Optional.

+maxdelays

Selects the maximum value in min:typ:max expressions. Optional. The default is the
typical value. Has no effect if you specified the min:typ:max selection at compile time.

+mindelays

Selects the minimum value in min:typ:max expressions. Optional. The default is the
typical value. Has no effect if you specified the min:typ:max selection at compile time.

Important: Enabling -hazards implicitly enables the -compat argument. As a result,
using this argument may affect your simulation results.
Sim Command Reference

vsim CR-201
+no_cancelled_e_msg

Disables negative pulse warning messages. Optional. By default vsim issues a warning
and then filters negative pulses on specify path delays. You can drive an X for a negative
pulse using +show_cancelled_e.

+no_neg_tchk

Disables negative timing check limits by setting them to zero. Optional. By default
negative timing check limits are enabled. This is just the opposite of Verilog-XL, where
negative timing check limits are disabled by default, and they are enabled with the
+neg_tchk option.

+no_notifier

Disables the toggling of the notifier register argument of all timing check system tasks.
Optional. By default, the notifier is toggled when there is a timing check violation, and
the notifier usually causes a UDP to propagate an X. This argument suppresses X
propagation on timing violations for the entire design.

+no_path_edge

Causes ModelSim to ignore the input edge specified in a path delay. Optional. The result
of this argument is that all edges on the input are considered when selecting the output
delay. Verilog-XL always ignores the input edges on path delays.

+no_pulse_msg

Disables the warning message for specify path pulse errors. Optional. A path pulse error
occurs when a pulse propagated through a path delay falls between the pulse rejection
limit and pulse error limit set with the +pulse_r and +pulse_e options. A path pulse error
results in a warning message, and the pulse is propagated as an X. The +no_pulse_msg
option disables the warning message, but the X is still propagated.

+no_show_cancelled_e

Filters negative pulses on specify path delays so they don’t show on the output. Default.
Use +show_cancelled_e to drive a pulse error state.

+no_tchk_msg

Disables error messages issued by timing check system tasks when timing check
violations occur. Optional. Notifier registers are still toggled and may result in the
propagation of Xs for timing check violations.

+nosdferror

Errors issued by the SDF annotator while loading the design prevent the simulation from
continuing, whereas warnings do not. Changes SDF errors to warnings so that the
simulation can continue. Optional.

+nosdfwarn

Disables warnings from the SDF annotator. Optional.

+nospecify

Disables specify path delays and timing checks. Optional.
ModelSim Command Reference

CR-202 Commands

Model
+nowarn<CODE>

Disables warning messages in the category specified by <CODE>. Optional. Warnings
that can be disabled include the <CODE> name in square brackets in the warning
message. For example:

** WARNING: (vsim-3017) test.v(2): [TFMPC] - Too few port connections.
Expected <m>, found <n>.

This warning message can be disabled with +nowarnTFMPC.

+ntc_warn

Enables warning messages from the negative timing constraint algorithm. Optional. By
default, these warnings are disabled.

This algorithm attempts to find a set of delays for the timing check delayed net arguments
such that all negative limits can be converted to non-negative limits with respect to the
delayed nets. If there is no solution for this set of limits, then the algorithm sets one of
the negative limits to zero and recalculates the delays. This process is repeated until a
solution is found. A warning message is issued for each negative limit set to zero.

-pli "<object list>"

Loads a space-separated list of PLI shared objects. Optional. The list must be quoted if it
contains more than one object. This is an alternative to specifying PLI objects in the
Veriuser entry in the modelsim.ini file, see "Preference variables located in INI files"
(UM-349). You can use environment variables as part of the path.

+<plusarg>

Arguments preceded with "+" are accessible by the Verilog PLI routine
mc_scan_plusargs(). Optional.

+pulse_e/<percent>

Controls how pulses are propagated through specify path delays, where <percent> is a
number between 0 and 100 that specifies the error limit as a percentage of the path delay.
Optional.

A pulse greater than or equal to the error limit propagates to the output in transport mode
(transport mode allows multiple pending transitions on an output). A pulse less than the
error limit and greater than or equal to the rejection limit (see +pulse_r/<percent>)
propagates to the output as an X. If the rejection limit is not specified, then it defaults to
the error limit. For example, consider a path delay of 10 along with a +pulse_e/80 option.
The error limit is 80% of 10 and the rejection limit defaults to 80% of 10. This results in
the propagation of pulses greater than or equal to 8, while all other pulses are filtered.
Note that you can force specify path delays to operate in transport mode by using the
+pulse_e/0 option.

+pulse_e_style_ondetect

Selects the "on detect" style of propagating pulse errors (see +pulse_e). Optional. A
pulse error propagates to the output as an X, and the "on detect" style is to schedule the
X immediately, as soon as it has been detected that a pulse error has occurred. "on event"
style is the default for propagating pulse errors (see +pulse_e_style_onevent).

+pulse_e_style_onevent

Selects the "on event" style of propagating pulse errors (see +pulse_e). Default. A pulse
error propagates to the output as an X, and the "on event" style is to schedule the X to
occur at the same time and for the same duration that the pulse would have occurred if it
had propagated through normally.
Sim Command Reference

vsim CR-203
+pulse_int_e/<percent>

Analogous to +pulse_e, except it applies to interconnect delays only. Optional. Used in
conjunction with +multisource_int_delays (see above).

+pulse_int_r/<percent>

Analogous to +pulse_r, except it applies to interconnect delays only. Optional. Used in
conjunction with +multisource_int_delays (see above).

+pulse_r/<percent>

Controls how pulses are propagated through specify path delays, where <percent> is a
number between 0 and 100 that specifies the rejection limit as a percentage of the path
delay. Optional.

A pulse less than the rejection limit is suppressed from propagating to the output. If the
error limit is not specified by +pulse_e then it defaults to the rejection limit.

+sdf_nocheck_celltype

Disables error check for mismatch between the CELLTYPE name in the SDF file and the
module or primitive name for the CELL instance. It is an error if the names do not match.
Optional.

+show_cancelled_e

Drives a pulse error state (’X’) for the duration of a negative pulse on a specify path
delay. Optional. By default ModelSim filters negative pulses.

+transport_int_delays

Selects transport mode with pulse control for single-source nets (one interconnect path).
Optional. By default interconnect delays operate in inertial mode (pulses smaller than the
delay are filtered). In transport mode, narrow pulses are propagated through interconnect
delays. This option works independently from +multisource_int_delays.

+transport_path_delays

Selects transport mode for path delays. Optional. By default, path delays operate in
inertial mode (pulses smaller than the delay are filtered). In transport mode, narrow
pulses are propagated through path delays. Note that this option affects path delays only,
and not primitives. Primitives always operate in inertial delay mode.

+typdelays

Selects the typical value in min:typ:max expressions. Default. Has no effect if you
specified the min:typ:max selection at compile time.

-v2k_int_delays

Causes interconnect delay to be visible at the load module port per the IEEE 1364-2001
spec. Optional. By default ModelSim annotates INTERCONNECT delays in a manner
compatible with Verilog-XL. If you have $sdf_annotate() calls in your design that are not
getting executed, add the Verilog task $sdf_done() after your last $sdf_annotate() to
remove any zero-delay MIPDs that may have been created (see "ModelSim Verilog
system tasks" (UM-95) for more information). May be used in tandem with
+multisource_int_delays argument (see above).
ModelSim Command Reference

CR-204 Commands

Model
Arguments, object

The object arguments may be a <library_name>.<design_unit>, .mpf file, .wlf file, or a text
file. If no object specification is made, VSIM will open the Load a Design dialog box.
Multiple design units may be specified for Verilog modules and mixed VHDL/Verilog
configurations.

<library_name>.<design_unit>

Specifies a library and associated design unit; multiple library/design unit specifications
can be made. Optional. If no library is specified, the work library is used. Environment
variables can be used. <design_unit> may be one of the following:

<MPF_file_name>

Opens the specified project. Optional.

<WLF_file_name>

Opens the specified dataset. Optional.

<text_file_name>

Opens the specified text file in a Source window. Optional.

<configuration> Specifies the VHDL configuration to simulate.

<module> ... Specifies the name of one or more top-level Verilog
modules to be simulated. Optional.

<entity> [<architecture>] Specifies the name of the top-level VHDL entity to be
simulated. Optional. The entity may have an
architecture optionally specified; if omitted the last
architecture compiled for the specified entity is
simulated. An entity is not valid if a configuration is
specified.
Sim Command Reference

vsim CR-205
Examples

vsim -gedge=’"low high"’ -gVCC=4.75 cpu

Invokes vsim on the entity cpu and assigns values to the generic parameters edge and
VCC. If working within the ModelSim GUI, you would enter the command as follows:

vsim {-gedge="low high"} -gVCC=4.75 cpu

vsim -view test=sim2.wlf

Instructs ModelSim to view the results of a previous simulation run stored in the WLF
file sim2.wlf. The simulation is displayed as a dataset named "test". Use the -wlf option
to specify the name of the WLF file to create if you plan to create many files for later
viewing. For example:

vsim -wlf my_design.i01 my_asic structure
vsim -wlf my_design.i02 my_asic structure

vsim -sdfmin /top/u1=myasic.sdf

Annotates instance /top/u1 using the minimum timing from the SDF file myasic.sdf.

Use multiple switches to annotate multiple instances:

vsim -sdfmin /top/u1=sdf1 -sdfmin /top/u2=sdf2 top

vsim ’mylib.top(only)’ gatelib.cache_set

This example searches the libraries mylib for top(only) and gatelib for cache_set. If the
design units are not found, the search continues to the work library. Specification of the
architecture (only) is optional.

vsim -do "set PrefMain(forceQuit) 1; run -all" work.test_counter

Invokes vsim on test_counter and instructs the simulator to run until a break event and
quit when it encounters a $finish task.
ModelSim Command Reference

CR-206 Commands

Model
vsim<info>

The vsim<info> commands return information about the current vsim executable.

vsimAuth

Returns the authorization level (PE/SE, VHDL/Verilog/PLUS).

vsimDate

Returns the date the executable was built, such as "Apr 10 2000".

vsimId

Returns the identifying string, such as "ModelSim 5.4".

vsimVersion

Returns the version as used by the licensing tools, such as "1999.04".

vsimVersionString

Returns the full vsim version string.

This same information can be obtained using the -version argument of the vsim command
(CR-192).
Sim Command Reference

vsource CR-207
vsource

The vsource command specifies an alternative file to use for the current source file. This
command is used when the current source file has been moved. The alternative source
mapping exists for the current simulation only.

Syntax

vsource
[<filename>]

Arguments

<filename>

Specifies a relative or full pathname. Optional. If filename is omitted the source file for
the current design context is displayed.

Examples
vsource design.vhd
vsource /old/design.vhd
ModelSim Command Reference

CR-208 Commands

Model
when

The when command instructs ModelSim to perform actions when the specified conditions
are met. For example, you can use the when command to break on a signal value or at a
specific simulator time (see "Time-based breakpoints" (CR-212)). Conditions can include
the following HDL items: VHDL signals, and Verilog nets and registers. Use the nowhen
command (CR-97) to deactivate when commands.

The when command uses a when_condition_expression to determine whether or not to
perform the action. The when_condition_expression uses a simple restricted language
(that is not related to Tcl), which permits only four operators and operands that may be
either HDL item names, signame’event, or constants. ModelSim evaluates the condition
every time any item in the condition changes, hence the restrictions.

With no arguments, when will list the currently active when statements and their labels
(explicit or implicit).

Syntax

when
[[-label <label>] [-id <id#>] {<when_condition_expression>} {<command>}]

Arguments

-label <label>

Used to identify individual when commands. Optional.

-id <id#>

Attempts to assign this id number to the when command. Optional. If the id number you
specify is already used, ModelSim will return an error.

{<when_condition_expression>}

Specifies the conditions to be met for the specified <command> to be executed.
Required. The condition is evaluated in the simulator kernal and can be an item name, in
which case the curly braces can be omitted. The command will be executed when the
item changes value. The condition can be an expression with these operators:

Note: Virtual signals, functions, regions, types, etc. cannot be used in the when
command. Neither can simulator state variables other than $now.

Note: Ids for when commands are assigned from the same pool as those used for the bp
command (CR-46). So, even if you haven’t used an id number for a when command, it’s
possible it is used for a breakpoint.

 Name Operator

equals ==, =

not equal !=, /=

greater than >
Sim Command Reference

when CR-209
The operands may be item names, signame’event, or constants. Subexpressions in
parentheses are permitted. The command will be executed when the expression is
evaluated as TRUE or 1.

The formal BNF syntax is:

condition ::= Name | { expression }

expression ::= expression AND relation
| expression OR relation

 | relation

relation ::= Name = Literal
| Name /= Literal
| Name ’ EVENT
| (expression)

Literal ::= '<char>' | “<bitstring>” | <bitstring>

The "=" operator can occur only between a Name and a Literal. This means that you
cannot compare the value of two signals, i.e., Name = Name is not possible.

Tcl variables can be used in the condition expression but you must replace the curly
braces ({}) with double quotes (""). This works like a macro substitution where the Tcl
variables are evaluated once and the result is then evaluated as the when condition.
Condition_expressions are evaluated in the vsim kernel, which knows nothing about Tcl
variables. That’s why the condition_expression must be evaluated in the GUI before it is
sent to the vsim kernel. See below for an example of using a Tcl variable.

The ">", "<", ">=", and "<=" operators are the standard ones for vector types, not the
overloaded operators in the std_logic_1164 package. This may cause unexpected results
when comparing items that contain values other than 1 and 0. ModelSim does a lexical
comparison (position number) for values other than 1 and 0. For example:

0000 < 1111 ## This evaluates to true
H000 < 1111 ## This evaluates to false
001X >= 0010 ## This also evaluates to false

less than <

greater than or
equal

>=

less than or equal <=

AND &&, AND

OR ||, OR

 Name Operator
ModelSim Command Reference

CR-210 Commands

Model
{<command>}

The command(s) for this argument are evaluated by the Tcl interpreter within the
ModelSim GUI. Any ModelSim or Tcl command or series of commands are valid with
one exception—the run command (CR-114) cannot be used with the when command.
Required. The command sequence usually contains a stop command (CR-123) that sets a
flag to break the simulation run after the command sequence is completed. Multiple-line
commands can be used.

Examples

The when command below instructs the simulator to display the value of item c in binary
format when there is a clock event, the clock is 1, and the value of b is 01100111. Finally,
the command tells ModelSim to stop.

when -label when1 {clk’event and clk=’1’ and b = “01100111”} {
echo “Signal c is [exa -bin c]"
stop}

The commands below show an example of using a Tcl variable within a when command.
Note that the curly braces ({}) have been replaced with double quotes ("").

set clkb_path /tb/ps/dprb_0/udprb/ucar_reg/uint_ram/clkb;

when -label when1 "$clkb_path'event and $clkb_path ='1'" {
echo "Detected Clk edge at path $clkb_path"

}

This next example uses the Tcl set command (UM-329) to disable arithmetic package
warnings at time 0. Note that the time unit (ns in this case) would vary depending on your
simulation resolution.

when {$now = @1ns } {set NumericStdNoWarnings 1}
run -all

The when command below is labeled a and will cause ModelSim to echo the message “b
changed” whenever the value of the item b changes.

when -label a b {echo “b changed”}

The multi-line when command below does not use a label and has two conditions. When
the conditions are met, an echo (CR-71) and a stop (CR-123) command will be executed.

when {b = 1
 and c /= 0 } {
 echo “b is 1 and c is not 0”
 stop

}

Note: If you want to stop the simulation using a when command, you must use a stop
command (CR-123) within your when statement. DO NOT use an exit command (CR-78)
or a quit command. The stop command acts like a breakpoint at the time it is evaluated.
See "Ending the simulation with the stop command" (CR-211) for examples.
Sim Command Reference

when CR-211
In the example below, for the declaration "wire [15:0] a;", the when command will
activate when the selected bits match a 7:

when {a(3:1) = 3’h7} {echo "matched at time" $now}

If you encounter a vectored net caused by compiling with -fast, use the ’event qualifier to
prevent the command from falsely evaluating when unrelated bits of ’a’ change:

when {a(3:1) = 3’h7 and a(3:1)’event} {echo "matched at time" $now}

The first when command below sets up a trigger for the falling edge of RESET. When this
happens, a second when command is executed which sets up a trigger to occur 200us after
the current time.

force SIGA 1
when {RESET’falling} {

when {$now == 200us} {
noforce SIGA

}
}
run -all

Ending the simulation with the stop command

Batch mode simulations are often structured as "run until condition X is true," rather than
"run for X time" simulations. The multi-line when command below sets a done condition
and executes an echo (CR-71) and a stop (CR-123) command when the condition is reached.

The simulation will not stop (even if a quit -f command is used) unless a stop command is
executed. To exit the simulation and quit ModelSim, use an approach like the following:

onbreak {resume}
when {/done_condition == ’1’} {

echo "End condition reached"
if [batch_mode] {

set DoneConditionReached 1
stop

}
}
run 1000 us
if {$DoneConditionReached == 1} {

quit -f
}

Here’s another example that stops 100ns after a signal transition:

when {a = 1} {
If the 100ns delay is already set then let it go.
if {[when -label a_100] == ""} {

when -label a_100 { $now = 100 } {
delete this breakpoint then stop
nowhen a_100
stop

}
}

}

ModelSim Command Reference

CR-212

Model
Time-based breakpoints

You can build time-based breakpoints into a when statement with the following syntax.

For absolute time (indicated by @) use:

when {$now = @1750ns} {stop}

You can also use:

when {errorFlag = ’1’ OR $now = 2ms} {stop}

This example adds 2ms to the simulation time at which the when statement is first
evaluated, then stops.

You can also use variables, as shown in the following example:

set time 1000
when "\$now = $time" {stop}

The quotes instruct Tcl to expand the variables before calling the command. So, the when
command sees:

when "$now = 1000" stop

Note that "$now" has the $ escaped. This prevents Tcl from expanding the variable,
because if it did, you would get:

when "0 = 1000" stop

See also

bp (CR-46), disablebp (CR-67), enablebp (CR-73), nowhen (CR-97)
Sim Command Reference

where CR-213
where

The where command displays information about the system environment. This command
is useful for debugging problems where ModelSim cannot find the required libraries or
support files.

Syntax

where

Arguments

None.

Description

The where command displays two system settings:

current directory

This is the current directory that ModelSim was invoked from, or was specified on the
ModelSim command line.

current project file

This is the initialization file ModelSim is using. All library mappings are taken from here.
Window positions, and other parameters are taken from the modelsim.tcl file.
ModelSim Command Reference

CR-214 Commands

Model
wlf2log

The wlf2log command translates a ModelSim WLF file (vsim.wlf) to a QuickSim II logfile.
The command reads the vsim.wlf WLF file generated by the add list, add wave, or log
commands in the simulator and converts it to the QuickSim II logfile format.

Syntax

wlf2log
[-bits] [-fullname] [-help] [-inout] [-input] [-internal]
[-l <instance_path>] [-lower] [-o <outfile>] [-output] [-quiet] <wlffile>

Arguments

-bits

Forces vector nets to be split into 1-bit wide nets in the log file. Optional.

-fullname

Shows the full hierarchical pathname when displaying signal names. Optional.

-help

Displays a list of command options with a brief description for each. Optional.

-inout

Lists only the inout ports. Optional. This may be combined with the -input, -output, or
-internal switches.

-input

Lists only the input ports. Optional. This may be combined with the -output, -inout, or
-internal switches.

-internal

Lists only the internal signals. Optional. This may be combined with the -input, -output,
or -inout switches.

-l <instance_path>

Lists the signals at or below the specified HDL instance path within the design hierarchy.
Optional.

-lower

Shows all logged signals in the hierarchy. Optional. When invoked without the -lower
switch, only the top-level signals are displayed.

-o <outfile>

Directs the output to be written to the file specified by <outfile>. Optional. The default
destination for the logfile is standard out.

-output

Lists only the output ports. Optional. This may be combined with the -input, -inout, or
-internal switches.

Important: This command should be invoked only after you have stopped the
simulation using quit -sim or dataset close sim.
Sim Command Reference

wlf2log CR-215
-quiet

Disables error message reporting. Optional.

<wlffile>

Specifies the ModelSim WLF file that you are converting. Required.
ModelSim Command Reference

CR-216 Commands

Model
wlfman

The wlfman command allows you to get information about and manipulate WLF files. The
command performs three functions depending on which mode you use.

• wlfman info generates file information, resolution, versions, etc.

• wlfman items generates a list of HDL items (i.e., signals) from the source WLF file and
outputs it to stdout. When redirected to a file, the output is called an item-list-file, and it
can be read in by wlfman filter. The item_list_file is a list of items, one per line.
Comments start with a '#' and continue to the end of the line. Wildcards are legal in the
leaf portion of the name. Here is an example:

/top/foo # signal foo
/top/u1/* # all signals under u1
/top/u1 # same as line above
-r /top/u2 # recursively, all signals under u2

Note that you can produce these files from scratch but be careful with syntax. wlfman
items always creates a legal item_list_file.

• wlfman filter reads in a WLF file and optionally an item_list_file and writes out another
WLF file containing filtered information from those sources. You determine the filtered
information with the arguments you specify.

Syntax

wlfman info
<wlffile>

wlfman items
[-n] [-v] <wlffile>

wlfman filter
[-b <time>] [-e <time>] [-f <item-list-file>] [-r <item>] [-s <symbol>]
[-t <resolution>] <sourcewlffile> <outwlffile>

Arguments for wlfman info

<wlffile>

Specifies the WLF file from which you want information. Required.

Arguments for wlfman items

-n

Lists regions only (no signals). Optional.

-v

Produces "verbose" output that lists item type next to each item. Optional.

<wlffile>

Specifies the WLF file from which you want item information. Required.
Sim Command Reference

wlfman CR-217
Arguments for wlfman filter

-b <time>

Specifies the simulation time at which you want to begin reading information from the
source WLF file. Optional. By default the output includes the entire time that is recorded
in the source WLF file.

-e <time>

Specifies the simulation time at which you want to end reading information from the
source WLF file. Optional.

-f <item-list-file>

Specifies an item-list-file created by wlfman items to include in the output WLF file.
Optional.

-r <item>

Specifies an item (region) to recursively include in the output. If <item> is a signal, the
output would be the same as using -s. Optional.

-s <symbol>

Specifies an item to include in the output. Optional. By default all items are output.

-t <resolution>

Specifies the time resolution of the new WLF file. Optional. By default the resolution is
the same as the source WLF file.

<sourcewlffile>

Specifies the source WLF file from which you want items. Required.

<outwlffile>

Specifies the name of the output WLF file. Required. The output WLF file will contain
all items specified by -f <item-list-file>, -r <item>, and -s <item>. Output WLF files are
always written in the latest WLF version regardless of the source WLF file version.

See also

Chapter 7 - WLF files (datasets) and virtuals
ModelSim Command Reference

CR-218 Commands

Model
wlfrecover

The wlfrecover tool attempts to "repair" WLF files that are incomplete due to a crash or
the file being copied prior to completion of the simulation. The tool works only on WLF
files created by ModelSim versions 5.6 or later. You can run the tool from the VSIM
prompt or from a shell.

Syntax

wlfrecover
<filename> [-force] [-q]

Arguments

<filename>

Specifies the WLF file to repair. Required.

-force

Disregards file locking and attempts to repair the file. Required for PCs.

-q

Hides all messages unless there is an error while repairing the file. Optional.
Sim Command Reference

write format CR-219
write format

The write format command records the names and display options of the HDL items
currently being displayed in the List or Wave window. The file created is primarily a list of
add list (CR-32)or add wave (CR-35) commands, though a few other commands are included
(see "Output" below). This file may be invoked with the do command (CR-68) to recreate
the List or Wave window format on a subsequent simulation run.

When you load a wave or list format file, ModelSim verifies the existence of the datasets
required by the format file. ModelSim displays an error message if the requisite datasets do
not all exist. To force the execution of the wave or list format file even if all datasets are
not present, use the -force switch with your do command. For example:

 VSIM> do wave.do -force

Note that this will result in error messages for signals referencing nonexistent datasets.
Also, -force is recognized by the format file not the do command.

Syntax

write format
list | wave <filename>

Arguments

list | wave

Specifies that the contents of either the List or the Wave window are to be recorded.
Required.

<filename>

Specifies the name of the output file where the data is to be written. Required.

Examples

write format list alu_list.do

Saves the current data in the List window in a file named alu_list.do.

write format wave alu_wave.do

Saves the current data in the Wave window in a file named alu_wave.do.

Output

Below is an example of a saved Wave window format file.

onerror {resume}
quietly WaveActivateNextPane {} 0
add wave -noupdate -format Logic /cntr_struct/ld
add wave -noupdate -format Logic /cntr_struct/rst
add wave -noupdate -format Logic /cntr_struct/clk
add wave -noupdate -format Literal /cntr_struct/d
add wave -noupdate -format Literal /cntr_struct/q
TreeUpdate [SetDefaultTree]
quietly WaveActivateNextPane
add wave -noupdate -format Logic /cntr_struct/p1
add wave -noupdate -format Logic /cntr_struct/p2
add wave -noupdate -format Logic /cntr_struct/p3
TreeUpdate [SetDefaultTree]
ModelSim Command Reference

CR-220 Commands

Model
WaveRestoreCursors {0 ns}
WaveRestoreZoom {0 ns} {1 us}
configure wave -namecolwidth 150
configure wave -valuecolwidth 100
configure wave -signalnamewidth 0
configure wave -justifyvalue left

In the example above, five signals are added with the -noupdate argument to the default
window pane. The TreeUpdate command then refreshes all five waveforms. The second
WaveActivateNextPane command creates a second pane which contains three signals.The
WaveRestoreCursors command restores any cursors you set during the original
simulation, and the WaveRestoreZoom command restores the Zoom range you set. These
four commands are used only in saved Wave format files; therefore, they are not
documented elsewhere.

See also

add list (CR-32), add wave (CR-35)
Sim Command Reference

write list CR-221
write list

The write list command records the contents of the List window in a list output file. This
file contains simulation data for all HDL items displayed in the List window: VHDL signals
and variables and Verilog nets and registers.

Syntax

write list
[-events] <filename>

Arguments

-events

Specifies to write print-on-change format. Optional. Default is tabular format.

<filename>

Specifies the name of the output file where the data is to be written. Required.

Examples

write list alu.lst

Saves the current data in the List window in a file named alu.lst.

See also

write tssi (CR-225)
ModelSim Command Reference

CR-222 Commands

Model
write preferences

The write preferences command saves the current GUI preference settings to a Tcl
preference file. Settings saved include current window locations and sizes; Wave, Signals
and Variables window column widths; Wave, Signals and Variables window value
justification; and Wave window signal name width.

Syntax

write preferences
<preference file name>

Arguments

<preference file name>

Specifies the name for the preference file. Optional. If the file is named modelsim.tcl,
ModelSim will read the file each time vsim is invoked. To use a preference file other than
modelsim.tcl you must specify the alternative file name with the MODELSIM_TCL
(UM-346) environment variable.

See also

You can modify variables by editing the preference file with the ModelSim notepad (CR-

95):

notepad <preference file name>
Sim Command Reference

write report CR-223
write report

The write report command prints a summary of the design being simulated including a list
of all design units (VHDL configurations, entities, and packages and Verilog modules)
with the names of their source files.

Syntax

write report
[[<filename>] [-l | -s]] | [-tcl]

Arguments

<filename>

Specifies the name of the output file where the data is to be written. Optional. If the
<filename> is omitted, the report is written to the Main window transcript.

-l

Generates more detailed information about the design. Default.

-s

Generates a short list of design information. Optional.

-tcl

Generates a Tcl list of design unit information. Optional. This argument cannot be used
with a filename.

Examples

write report alu.rep

Saves information about the current design in a file named alu.rep.
ModelSim Command Reference

CR-224 Commands

Model
write transcript

The write transcript command writes the contents of the Main window Transcript to the
specified file. The resulting file can be used to replay the transcribed commands as a DO
file (macro).

The command cannot be used in batch mode. In batch mode use the standard "Transcript"
(UM-147) file or redirect std out.

Syntax

write transcript
[<filename>]

Arguments

<filename>

Specifies the name of the output file where the data is to be written. Optional. If the
<filename> is omitted, the transcript is written to a file named transcript.

See also

do (CR-68)
Sim Command Reference

write tssi CR-225
write tssi

The write tssi command records the contents of the List window in a "TSSI format" file.
The file contains simulation data for all HDL items displayed in the List window that can
be converted to TSSI format (VHDL signals and Verilog nets). A signal definition file is
also generated.

The List window needs to be using symbolic radix in order for write tssi to produce useful
output.

Syntax

write tssi
<filename>

Arguments

<filename>

Specifies the name of the output file where the data is to be written. Required.

Description

“TSSI format” is documented in the Fluence TDS Software System, Chapter 2 of Volume
I, Getting Started, R11.1, dated November 15, 1999. In that document, TSSI format is
called Standard Events Format (SEF).

If the <filename> has a file extension (e.g., listfile.lst), then the definition file is given the
same file name with the extension .def (e.g., listfile.def). The values in the listfile are
produced in the same order that they appear in the List window. The directionality is
determined from the port type if the item is a port, otherwise it is assumed to be
bidirectional (mode INOUT).

Items that can be converted to SEF are VHDL enumerations with 255 or fewer elements
and Verilog nets. The enumeration values U, X, 0, 1, Z, W, L, H and - (the enumeration
values defined in the IEEE Standard 1164 std_ulogic enumeration) are converted to SEF
values according to the table below. Other values are converted to a question mark (?) and
cause an error message. Though the write tssi command was developed for use with
std_ulogic, any signal which uses only the values defined for std_ulogic (including the
VHDL standard type bit) will be converted.

std_ulogic State
Characters

SEF State Characters

Input Output Bidirectional

U N X ?

X N X ?

0 D L 0

1 U H 1

Z Z T F
ModelSim Command Reference

CR-226 Commands

Model
Bidirectional logic values are not converted because only the resolved value is available.
The Fluence (TSSI) TDS ASCII In Converter and ASCII Out Converter can be used to
resolve the directionality of the signal and to determine the proper forcing or expected value
on the port. Lowercase values x, z, w, l and h are converted to the same values as the
corresponding capitalized values. Any other values will cause an error message to be
generated the first time an invalid value is detected on a signal, and the value will be
converted to a question mark (?).

See also

tssi2mti (CR-127)

W N X ?

L D L 0

H U H 1

- N X ?

Note: The TDS ASCII In Converter and ASCII Out Converter are part of the TDS
software from Fluence Technology. ModelSim outputs a vector file, and Fluence’s tools
determine whether the bidirectional signals are driving or not.

std_ulogic State
Characters

SEF State Characters

Input Output Bidirectional
Sim Command Reference

write wave CR-227
write wave

The write wave command records the contents of the Wave window in PostScript format.
The output file can then be printed on a PostScript printer.

Syntax

write wave
[-width <real_num>] [-height <real_num>]
[-margin <real_num>] [-start <time>] [-end <time>] [-perpage <time>]
[-landscape] [-portrait] <filename>

Arguments

-width <real_num>

Specifies the paper width in inches. Optional. Default is 8.5.

-height <real_num>

Specifies the paper height in inches. Optional. Default is 11.0.

-margin <real_num>

Specifies the margin in inches. Optional. Default is 0.5.

-start <time>

Specifies the start time (on the waveform time scale) to be written. Optional.

-end <time>

Specifies the end time (on the waveform time scale) to be written. Optional.

-perpage <time>

Specifies the time width per page of output. Optional.

-landscape

Use landscape (horizontal) orientation. Optional. This is the default orientation.

-portrait

Use portrait (vertical) orientation. Optional. The default is landscape (horizontal).

<filename>

Specifies the name of the PostScript output file. Required.

Examples

write wave alu.ps

Saves the current data in the Wave window in a file named alu.ps.
ModelSim Command Reference

CR-228 Commands

Model
write wave -start 600ns -end 800ns -perpage 100ns top.ps

Writes two separate pages to top.ps as indicated in the illustration (the actual PostScript
print out will show all items listed in the Wave window, not just the portion in view):

To make the job of creating a PostScript waveform output file easier, use the File > Print
Postscript menu selection in the Wave window. See "Saving waveforms" (UM-242) for
more information.

– page 1 starts at 600 ns
– page 2 ends at 800 ns

100 ns per page

start finish
Sim Command Reference

 CR-229
Index
CR = Command Reference, UM = User’s Manual
Symbols

+typdelays CR-186
.so, shared object file

loading PLI/VPI C applications UM-105
loading PLI/VPI C++ applications UM-106

’hasX, hasX CR-19

Numerics

1076, IEEE Std UM-14
1364, IEEE Std UM-14, UM-68
64-bit time

now variable UM-363
Tcl time commands UM-333

A

abort command CR-30
absolute time, using @ CR-14
ACC routines UM-116
accelerated packages UM-47
add list command CR-32
add wave command CR-35
alias command CR-39
annotating interconnect delays, v2k_int_delays CR-203
architecture simulator state variable UM-362
archives

described UM-39
archives, library CR-182
argc simulator state variable UM-362
arguments

passing to a DO file UM-339
arithmetic package warnings, disabling UM-358
arrays

indexes CR-10
slices CR-10

AssertFile .ini file variable UM-351
AssertionFormat .ini file variable UM-352
AssertionFormatBreak .ini file variable UM-352
AssertionFormatError .ini file variable UM-352
AssertionFormatFail .ini file variable UM-353
AssertionFormatFatal .ini file variable UM-353
AssertionFormatNote .ini file variable UM-352
AssertionFormatWarning .ini file variable UM-352
assertions

configuring from the GUI UM-264

locating file and line number UM-390
messages, turning off UM-358
selecting severity that stops simulation UM-264
setting format of messages UM-352
testing for using a DO file UM-390

attributes, of signals, using in expressions CR-19

B

bad magic number error message UM-127
balloon dialog, toggling on/off UM-232
base (radix), specifying in List window UM-182
batch_mode command CR-40
batch-mode simulations UM-388

halting CR-211
bd (breakpoint delete) command CR-41
binding, VHDL, default UM-45
blocking assignments UM-82
bookmark add wave command CR-42
bookmark delete wave command CR-43
bookmark goto wave command CR-44
bookmark list wave command CR-45
bookmarks UM-238
bp (breakpoint) command CR-46
break

on assertion UM-264
on signal value CR-208
stop simulation run UM-155, UM-205

BreakOnAssertion .ini file variable UM-353
breakpoints

conditional CR-208, UM-198
continuing simulation after CR-114
deleting CR-41, UM-206, UM-267
listing CR-46
setting CR-46, UM-206
signal breakpoints (when statements) CR-208, UM-

198
Source window, viewing in UM-200
time-based UM-198

in when statements CR-212
.bsm file UM-174
buffered/unbuffered output UM-356
busses

RTL-level, reconstructing UM-134
user-defined CR-36, UM-183, UM-226
ModelSim Command Reference

CR-230 Index

Model
C

C applications
compiling and linking UM-105

C++ applications
compiling and linking UM-106

case choice, must be locally static CR-149
case sensitivity

VHDL vs. Verilog CR-12
causality, tracing in Dataflow window UM-168
cd (change directory) command CR-49
cell libraries UM-88
cells

hiding in Dataflow window UM-175, UM-176
change command CR-50
chasing X UM-169
-check_synthesis argument CR-147
CheckpointCompressMode .ini file variable UM-353
CheckSynthesis .ini file variable UM-350
clock change, sampling signals at UM-391
combining signals, busses CR-36, UM-183, UM-226
command history UM-151
CommandHistory .ini file variable UM-353
command-line mode UM-388
commands

abort CR-30
add list CR-32
add wave CR-35
alias CR-39
batch_mode CR-40
bd (breakpoint delete) CR-41
bookmark add wave CR-42
bookmark delete wave CR-43
bookmark goto wave CR-44
bookmark list wave CR-45
bp (breakpoint) CR-46
cd (change directory) CR-49
change CR-50
configure CR-51
dataset alias CR-55
dataset clear CR-56
dataset close CR-57
dataset info CR-58
dataset list CR-59
dataset open CR-60
dataset rename CR-61, CR-62
dataset snapshot CR-63
delete CR-65
describe CR-66
disablebp CR-67
do CR-68

drivers CR-69
dumplog64 CR-70
echo CR-71
edit CR-72
enablebp CR-73
environment CR-74
examine CR-75
exit CR-78
find CR-79
force CR-82
graphic interface commands UM-276
help CR-85
history CR-86
log CR-87
lshift CR-89
lsublist CR-90
modelsim CR-91
noforce CR-92
nolog CR-93
notation conventions CR-6
notepad CR-95
noview CR-96
nowhen CR-97
onbreak CR-98
onElabError CR-99
onerror CR-100
pause CR-101
printenv CR-102, CR-103
pwd CR-105
quietly CR-106
quit CR-107
radix CR-108
report CR-109
restart CR-111
resume CR-113
run CR-114
searchlog CR-116
shift CR-118
show CR-119
status CR-121
step CR-122
stop CR-123
system UM-331
tb (traceback) CR-124
transcript CR-125
transcript file CR-126
TreeUpdate CR-220
tssi2mti CR-127
variables referenced in CR-13
vcd add CR-128
vcd checkpoint CR-129
Sim Command Reference

 CR-231
vcd comment CR-130
vcd dumpports CR-131
vcd dumpportsall CR-133
vcd dumpportsflush CR-134
vcd dumpportslimit CR-135
vcd dumpportsoff CR-136
vcd dumpportson CR-137
vcd file CR-138
vcd files CR-140
vcd flush CR-142
vcd limit CR-143
vcd off CR-144
vcd on CR-145
vcom CR-147
vdel CR-153
vdir CR-154
verror CR-155
vgencomp CR-156
view CR-158
virtual count CR-160
virtual define CR-161
virtual delete CR-162
virtual describe CR-163
virtual expand CR-164
virtual function CR-165
virtual hide CR-168
virtual log CR-169
virtual nohide CR-171
virtual nolog CR-172
virtual region CR-174
virtual save CR-175
virtual show CR-176
virtual signal CR-177
virtual type CR-180
vlib CR-182
vlog CR-183
vmake CR-189
vmap CR-191
vsim CR-192
VSIM Tcl commands UM-332
vsimDate CR-206
vsimId CR-206
vsimVersion CR-206
WaveActivateNextPane CR-220
WaveRestoreCursors CR-220
WaveRestoreZoom CR-220
when CR-208
where CR-213
wlf2log CR-214
wlfman CR-216
wlfrecover CR-218

write format CR-219
write list CR-221
write preferences CR-222
write report CR-223
write transcript CR-224
write tssi CR-225
write wave CR-227

comment characters in VSIM commands CR-6
compare simulations UM-125
compatibility, of vendor libraries CR-154
compile history UM-27
compile order

auto generate UM-28
changing UM-28

compiler directives UM-96
IEEE Std 1364-2000 UM-96
XL compatible compiler directives UM-97

compiling
changing order in the GUI UM-28
compile history UM-27
default options, setting UM-249
graphic interface, with the UM-247
grouping files UM-29
options, in projects UM-34
order, changing in projects UM-28
range checking in VHDL CR-151, UM-51
source errors, locating UM-248
Verilog CR-183, UM-69

incremental compilation UM-70
XL ’uselib compiler directive UM-75
XL compatible options UM-74

VHDL CR-147, UM-50
at a specified line number CR-149
selected design units (-just eapbc) CR-149
standard package (-s) CR-151

VITAL packages UM-61
component, default binding rules UM-45
concatenation

directives CR-16
of signals CR-16, CR-177

ConcurrentFileLimit .ini file variable UM-353
conditional breakpoints CR-208, UM-198
configuration simulator state variable UM-362
configurations, simulating CR-192
configure command CR-51
connectivity, exploring UM-165
constants

in case statements CR-149
values of, displaying CR-66, CR-75

context menus
described UM-142
ModelSim Command Reference

CR-232 Index

Model
Library tab UM-42
Project tab UM-27
Structure pages UM-210

convert real to time UM-65
convert time to real UM-64
cursors

link to Dataflow window UM-159
locking UM-236
measuring time with UM-236
naming UM-235
trace events with UM-168
Wave window UM-235

customizing
via preference variables UM-360

D

deltas
explained UM-53

Dataflow window UM-158
automatic cell hiding UM-175, UM-176
options UM-175, UM-176
pan UM-167
zoom UM-167
see also windows, Dataflow window

dataflow.bsm file UM-174
dataset alias command CR-55
Dataset Browser UM-129
dataset clear command CR-56
dataset close command CR-57
dataset info command CR-58
dataset list command CR-59
dataset open command CR-60
dataset rename command CR-61, CR-62
Dataset Snapshot UM-131
dataset snapshot command CR-63
datasets UM-125

environment command, specifying with CR-74
managing UM-129
restrict dataset prefix display UM-130
simulator resolution UM-126

DatasetSeparator .ini file variable UM-353
declarations, hiding implicit with explicit CR-152
default binding rules UM-45
default compile options UM-249
default editor, changing UM-345
DefaultForceKind .ini file variable UM-353
DefaultRadix .ini file variable UM-353
DefaultRestartOptions variable UM-354, UM-359
defaults

restoring UM-345
window arrangement UM-142

+define+ CR-183
delay

delta delays UM-53
infinite zero-delay loops, detecting UM-396
interconnect CR-195
modes for Verilog models UM-88
SDF files UM-297
stimulus delay, specifying UM-196

+delay_mode_distributed CR-184
+delay_mode_path CR-184
+delay_mode_unit CR-184
+delay_mode_zero CR-184
’delayed CR-19
DelayFileOpen .ini file variable UM-354
delete command CR-65
deleting library contents UM-41
delta simulator state variable UM-362
deltas

collapsing in the List window UM-185
hiding in the List window CR-52, UM-185
infinite zero-delay loops UM-396
referencing simulator iteration

as a simulator state variable UM-362
dependencies, checking CR-154
dependent design units UM-50
describe command CR-66
descriptions of HDL items UM-206
design hierarchy, viewing in Structure window UM-208
design library

creating UM-40
logical name, assigning UM-43
mapping search rules UM-44
resource type UM-38
VHDL design units UM-50
working type UM-38

design units UM-38
hierarchy of, viewing UM-143
report of units simulated CR-223
Verilog

adding to a library CR-183
directories

mapping libraries CR-191
moving libraries UM-44

disablebp command CR-67
distributed delay mode UM-89
dividers

adding from command line CR-35
Wave window UM-224

DLL files, loading UM-105, UM-106
Sim Command Reference

 CR-233
do command CR-68
DO files (macros) CR-68

error handling UM-341
executing at startup UM-345, UM-355
parameters, passing to UM-339
Tcl source command UM-342

DOPATH environment variable UM-345
drivers

Dataflow Window UM-165
show in Dataflow window UM-227
Wave window UM-227

drivers command CR-69
drivers, multiple on unresolved signal UM-250
dump files, viewing in ModelSim CR-146
dumplog64 command CR-70
dumpports tasks, VCD files UM-312

E

echo command CR-71
edit command CR-72
Editing

in notepad windows UM-156, UM-369
in the Main window UM-156, UM-369
in the Source window UM-156, UM-369

EDITOR environment variable UM-345
editor, default, changing UM-345
elaboration, interrupting CR-192
embedded wave viewer UM-166
enablebp command CR-73
ENDFILE function UM-58
ENDLINE function UM-58
entities

default binding rules UM-45
entities, specifying for simulation CR-204
entity simulator state variable UM-362
enumerated types UM-394

user defined CR-180
environment command CR-74
environment variables UM-345

reading into Verilog code CR-183
referencing from ModelSim command line UM-348
referencing with VHDL FILE variable UM-348
setting in Windows UM-347
specifying library locations in modelsim.ini file

UM-349
specifying UNIX editor CR-72
state of CR-103
transcript file, specifying location of UM-356
using in pathnames CR-12

using with location mapping UM-397
variable substitution using Tcl UM-331

environment, displaying or changing pathname CR-74
errors

bad magic number UM-127
during compilation, locating UM-248
getting details about messages CR-155
onerror command CR-100

event order
changing in Verilog CR-183
in Verilog simulation UM-80

event queues UM-80
events, tracing UM-168
examine command CR-75
examine tooltip

toggling on/off UM-232
exit command CR-78
expand net UM-165
Explicit .ini file variable UM-350
Expression Builder UM-271

configuring a List trigger with UM-392
extended identifiers CR-14

syntax in commands CR-12

F

-f CR-184
file I/O

TextIO package UM-55
VCD files UM-311

file-line breakpoints UM-206
files, grouping for compile UM-29
filtering signals in Signals window UM-194
find command CR-79
finding

cursors in the Wave window UM-236
marker in the List window UM-187
names and values UM-141

folders, in projects UM-32
force command CR-82

defaults UM-359
format file

List window CR-219
Wave window CR-219, UM-217

FPGA libraries, importing UM-48

G

GenerateFormat .ini file variable UM-354
generics
ModelSim Command Reference

CR-234 Index

Model
assigning or overriding values with -g and -G CR-
193

examining generic values CR-75
limitation on assigning composite types CR-194

get_resolution() VHDL function UM-62
glitches

disabling generation
from command line CR-199
from GUI UM-257

graphic interface UM-137
grouping files for compile UM-29
GUI preferences, saving UM-360
GUI_expression_format CR-15

GUI expression builder UM-271
syntax CR-18

H

’hasX CR-19
Hazard .ini file variable (VLOG) UM-351
hazards

-hazards argument to vlog CR-184
-hazards argument to vsim CR-200
limitations on detection UM-83

HDL item UM-16
help command CR-85
hierarchy

forcing signals in UM-63
referencing signals in UM-63
releasing signals in UM-63
viewing signal names without UM-231

history
of commands

shortcuts for reuse CR-7, UM-368
of compiles UM-27

history command CR-86
HOME environment variable UM-345

I

I/O
TextIO package UM-55
VCD files UM-311

ieee .ini file variable UM-349
IEEE libraries UM-47
IEEE Std 1076 UM-14
IEEE Std 1364 UM-14, UM-68
IgnoreError .ini file variable UM-354
IgnoreFailure .ini file variable UM-354
IgnoreNote .ini file variable UM-354

IgnoreVitalErrors .ini file variable UM-350
IgnoreWarning .ini file variable UM-354
implicit operator, hiding with vcom -explicit CR-152
importing FPGA libraries UM-48
+incdir+ CR-184
incremental compilation

automatic UM-71
manual UM-71
with Verilog UM-70

index checking UM-51
init_signal_spy UM-63
init_usertfs function UM-101
initial dialog box, turning on/off UM-344
interconnect delays CR-195, UM-308

annotating per Verilog 2001 CR-203
internal signals, adding to a VCD file CR-128
item_list_file, WLF files CR-216
iteration_limit, infinite zero-delay loops UM-396
IterationLimit .ini file variable UM-354

K

keyboard shortcuts
List window UM-189, UM-367
Main window UM-156, UM-369
Source window UM-369
Wave window UM-240, UM-366

L

language templates UM-273
libraries

archives CR-182
dependencies, checking CR-154
design libraries, creating CR-182, UM-40
design library types UM-38
design units UM-38
group use, setting up UM-389
IEEE UM-47
importing FPGA libraries UM-48
including precompiled modules UM-259
listing contents CR-154
mapping

from the command line UM-43
from the GUI UM-43
hierarchically UM-357
search rules UM-44

modelsim_lib UM-62
moving UM-44
multiple libraries with common modules UM-73
Sim Command Reference

 CR-235
naming UM-43
predefined UM-46
refreshing library images CR-151, CR-186, UM-47
resource libraries UM-38
std library UM-46
Synopsys UM-47
vendor supplied, compatibility of CR-154
Verilog CR-200, UM-72
VHDL library clause UM-45
working libraries UM-38
working with contents of UM-41

library simulator state variable UM-362
License variable in .ini file UM-355
licensing

License variable in .ini file UM-355
lint-style checks CR-185
List window UM-177

adding items to CR-32
setting triggers UM-392
see also windows, List window

LM_LICENSE_FILE environment variable UM-345
location maps, referencing source files UM-397
log command CR-87
log file

log command CR-87
nolog command CR-93
overview UM-125
QuickSim II format CR-214
redirecting with -l CR-195
virtual log command CR-169
virtual nolog command CR-172
see also WLF files

lshift command CR-89
lsublist command CR-90

M

MacroNestingLevel simulator state variable UM-362
macros (DO files) UM-339

breakpoints, executing at CR-47
creating from a saved transcript UM-147
depth of nesting, simulator state variable UM-362
error handling UM-341
executing CR-68
forcing signals, nets, or registers CR-82
parameters

as a simulator state variable (n) UM-362
passing CR-68, UM-339
total number passed UM-362

relative directories CR-68

shifting parameter values CR-118
startup macros UM-358

Main window UM-145
see also windows, Main window

mapping
libraries

from the command line UM-43
hierarchically UM-357

symbols
Dataflow window UM-174

mapping libraries, library mapping UM-43
math_complex package UM-47
math_real package UM-47
+maxdelays CR-185
mc_scan_plusargs, PLI routine CR-202
memory

modeling in VHDL UM-400
menus

Dataflow window UM-159
List window UM-179
Main window UM-148
Process window UM-191
Signals window UM-193
Source window UM-201
Structure window UM-209
tearing off or pinning menus UM-142
Variables window UM-213
Wave window UM-218

messages
bad magic number UM-127
echoing CR-71
getting more information CR-155
loading, disbling with -quiet CR-150, CR-185
redirecting UM-356
suppressing warnings from arithmetic packages

UM-358
turning off assertion messages UM-358

MGC_LOCATION_MAP variable UM-345
+mindelays CR-185
mnemonics, assigning to signal values CR-180
MODEL_TECH environment variable UM-345
MODEL_TECH_TCL environment variable UM-345
modeling memory in VHDL UM-400
ModelSim

commands CR-23–CR-215
modelsim command CR-91
MODELSIM environment variable UM-346
modelsim.ini

default to VHDL93 UM-359
delay file opening with UM-359
environment variables in UM-357
ModelSim Command Reference

CR-236 Index

Model
force command default, setting UM-359
hierarchical library mapping UM-357
opening VHDL files UM-359
restart command defaults, setting UM-359
startup file, specifying with UM-358
transcript file created from UM-357
turning off arithmetic package warnings UM-358
turning off assertion messages UM-358

modelsim.tcl file UM-360
modelsim_lib UM-62

path to UM-349
MODELSIM_TCL environment variable UM-346
Modified field, Project tab UM-26
modules

handling multiple, common names UM-73
mouse shortcuts

Main window UM-156, UM-369
Source window UM-369
Wave window UM-240, UM-366

.mpf file UM-18
loading from the command line UM-35

mti_cosim_trace environment variable UM-346
MTI_TF_LIMIT environment variable UM-346
multiple drivers on unresolved signal UM-250
multiple simulations UM-125
multi-source interconnect delays CR-195

N

n simulator state variable UM-362
name case sensitivity, VHDL vs. Verilog CR-12
Name field

Project tab UM-26
negative pulses

driving an error state CR-203
negative timing

$setuphold/$recovery UM-93
algorithm for calculating delays UM-84
check limits UM-84
extending check limits CR-200

nets
adding to the Wave and List windows UM-196
Dataflow window, displaying in UM-158
drivers of, displaying CR-69
stimulus CR-82
values of

displaying in Signals window UM-192
examining CR-75
forcing UM-195
saving as binary log file UM-196

waveforms, viewing UM-215
next and previous edges, finding UM-241, UM-367
Nlview widget Symlib format UM-174
no space in time literal UM-250
NoCaseStaticError .ini file variable UM-350
NoDebug .ini file variable (VCOM) UM-350
NoDebug .ini file variable (VLOG) UM-351
noforce command CR-92
NoIndexCheck .ini file variable UM-350
+nolibcell CR-185
nolog command CR-93
NOMMAP environment variable UM-346
non-blocking assignments UM-82
NoOthersStaticError .ini file variable UM-350
NoRangeCheck .ini file variable UM-350
notepad command CR-95
Notepad windows, text editing UM-156, UM-369
-notrigger argument UM-391
noview command CR-96
NoVital .ini file variable UM-350
NoVitalCheck .ini file variable UM-350
Now simulator state variable UM-362
now simulator state variable UM-362
+nowarn<CODE> CR-185
nowhen command CR-97
numeric_bit package UM-47
numeric_std package UM-47

disabling warning messages UM-358
NumericStdNoWarnings .ini file variable UM-355

O

onbreak command CR-98
onElabError command CR-99
onerror command CR-100
optimize for std_logic_1164 UM-251
Optimize_1164 .ini file variable UM-350
OptionFile entry in project files UM-253
order of events

changing in Verilog CR-183
ordering files for compile UM-28
organizing projects with folders UM-32
others .ini file variable UM-350

P

packages
standard UM-46
textio UM-46
util UM-62
Sim Command Reference

 CR-237
VITAL 1995 UM-60
VITAL 2000 UM-60

page setup
Dataflow window UM-173
Wave window UM-245

pan, Dataflow window UM-167
parameters

making optional UM-340
using with macros CR-68, UM-339

path delay mode UM-89
pathnames

in VSIM commands CR-10
spaces in CR-9

PathSeparator .ini file variable UM-355
pause command CR-101
PedanticErrors .ini file variable UM-350
PLI

specifying which apps to load UM-102
Veriuser entry UM-102

PLI/VPI UM-100
tracing UM-121

PLIOBJS environment variable UM-102, UM-346
popup

toggling waveform popup on/off UM-232
port driver data, capturing UM-320
Postscript

saving a waveform in UM-242
saving the Dataflow display in UM-171

precedence of variables UM-362
precision, simulator resolution UM-78
pref.tcl file UM-360
preference variables

.ini files, located in UM-349
editing UM-360
saving UM-360
Tcl files, located in UM-360

preferences, saving UM-360
primitives, symbols in Dataflow window UM-174
printenv command CR-102, CR-103
Process window UM-190

see also windows, Process window
processes

values and pathnames in Variables window UM-
212

without wait statements UM-250
Programming Language Interface UM-100
project context menus UM-27
project tab

information in UM-26
sorting UM-26

projects UM-17

accessing from the command line UM-35
adding files to UM-21
benefits UM-18
compile order UM-28

changing UM-28
compiler options in UM-34
compiling files UM-24
context menu UM-27
creating UM-20
creating simulation configurations UM-30
differences with earlier versions UM-19
folders in UM-32
grouping files in UM-29
loading a design UM-25
MODELSIM environment variable UM-346
override mapping for work directory with vcom CR-

151
override mapping for work directory with vlog CR-

187
overview UM-18

propagation, preventing X propagation CR-195
pulse error state CR-203
pwd command CR-105

Q

QuickSim II logfile format CR-214
Quiet .ini file variable

VCOM UM-350
Quiet .ini file variable (VLOG) UM-351
quietly command CR-106
quit command CR-107

R

race condition, problems with event order UM-80
radix

changing in Signals, Variables, Dataflow, List, and
Wave windows CR-108

character strings, displaying CR-180
default, DefaultRadix variable UM-353
of signals being examined CR-76
of signals in Wave window CR-37
specifying in List window UM-182

radix command CR-108
range checking UM-51

disabling CR-150
enabling CR-151

readers and drivers UM-165
real type, converting to time UM-65
ModelSim Command Reference

CR-238 Index

Model
reconstruct RTL-level design busses UM-134
record field selection, syntax CR-10
records, values of, changing UM-212
$recovery UM-93
redirecting messages, TranscriptFile UM-356
refreshing library images CR-151, CR-186, UM-47
registers

adding to the Wave and List windows UM-196
values of

displaying in Signals window UM-192
saving as binary log file UM-196

waveforms, viewing UM-215
report

simulator control UM-344
simulator state UM-344

report command CR-109
reporting

compile history UM-27
variable settings CR-13

RequireConfigForAllDefaultBinding variable UM-350
resolution

returning as a real UM-62
specifying with -t argument CR-197
verilog simulation UM-78
VHDL simulation UM-52

Resolution .ini file variable UM-355
resolution simulator state variable UM-362
resource libraries UM-45
restart command CR-111

defaults UM-359
in GUI UM-150
toolbar button UM-154, UM-205, UM-223

restoring defaults UM-345
results, saving simulations UM-125
resume command CR-113
RTL-level design busses

reconstructing UM-134
run command CR-114
RunLength .ini file variable UM-355

S

saving
simulation options in a project UM-30
waveforms UM-125

scope, setting region environment CR-74
SDF

controlling missing instance messages CR-196
disabling timing checks UM-308
errors and warnings UM-299

instance specification UM-298
interconnect delays UM-308
mixed VHDL and Verilog designs UM-308
specification with the GUI UM-299
troubleshooting UM-309
Verilog

$sdf_annotate system task UM-302
optional conditions UM-307
optional edge specifications UM-306
rounded timing values UM-307
SDF to Verilog construct matching UM-303

VHDL
resolving errors UM-301
SDF to VHDL generic matching UM-300

$sdf_done UM-95
search libraries CR-200, UM-259
searching

in the source window UM-206
in the Structure window UM-211
List window

signal values, transitions, and names UM-186
values and names UM-141
Verilog libraries UM-72
Wave window

signal values, edges and names UM-234
searchlog command CR-116
$setuphold UM-93
shared objects

loading FLI applications
see ModelSim FLI Reference manual

loading PLI/VPI C applications UM-105
loading PLI/VPI C++ applications UM-106

shift command CR-118
Shortcuts

text editing UM-156, UM-369
shortcuts

command history CR-7, UM-368
command line caveat CR-7, UM-368
List window UM-189, UM-367
Main window UM-369
Main windows UM-156
Source window UM-369
Wave window UM-240, UM-366

show command CR-119
show drivers

Dataflow window UM-165
Wave window UM-227

show source lines with errors UM-250
Show_BadOptionWarning .ini file variable UM-351
Show_Lint .ini file variable (VLOG) UM-351
Show_source .ini file variable
Sim Command Reference

 CR-239
VCOM UM-350
Show_source .ini file variable (VLOG) UM-351
Show_VitalChecksWarning .ini file variable UM-350
Show_Warning1 .ini file variable UM-351
Show_Warning2 .ini file variable UM-351
Show_Warning3 .ini file variable UM-351
Show_Warning4 .ini file variable UM-351
Show_Warning5 .ini file variable UM-351
Signal Spy UM-63
signal_force UM-63
signal_release UM-63
signals

adding to a WLF file UM-196
adding to the Wave and List windows UM-196
alternative names in the List window (-label) CR-33
alternative names in the Wave window (-label) CR-

36
applying stimulus to UM-195
attributes of, using in expressions CR-19
breakpoints CR-208, UM-198
combining into a user-defined bus CR-36, UM-183,

UM-226
Dataflow window, displaying in UM-158
drivers of, displaying CR-69
environment of, displaying CR-74
filtering in the Signals window UM-194
finding CR-79
force time, specifying CR-83
hierarchy

referencing in UM-63
releasing in UM-63

log file, creating CR-87
names of, viewing without hierarchy UM-231
pathnames in VSIM commands CR-10
radix

specifying for examine CR-76
specifying in List window CR-33
specifying in Wave window CR-37

sampling at a clock change UM-391
states of, displaying as mnemonics CR-180
stimulus CR-82
transitions, searching for UM-237
types, selecting which to view UM-194
unresolved, multiple drivers on UM-250
values of

converting to strings UM-394
displaying in Signals window UM-192
examining CR-75
forcing anywhere in the hierarchy UM-63
replacing with text CR-180
saving as binary log file UM-196

waveforms, viewing UM-215
Signals window UM-192

see also windows, Signals window
simulating

command-line mode UM-388
comparing simulations UM-125
default run length UM-264
delays, specifying time units for CR-14
design unit, specifying CR-192
graphic interface to UM-254
iteration limit UM-264
saving dataflow display as a Postscript file UM-171
saving options in a project UM-30
saving simulations CR-87, CR-197, UM-125, UM-

389
saving waveform as a Postscript file UM-242
stepping through a simulation CR-122
stimulus, applying to signals and nets UM-195
stopping simulation in batch mode CR-211
time resolution UM-255
Verilog UM-77

delay modes UM-88
hazard detection UM-83
resolution limit UM-78
XL compatible simulator options UM-87

VHDL UM-52
viewing results in List window UM-177
VITAL packages UM-61

Simulation Configuration
creating UM-30

simulations
event order in UM-80
saving results CR-62, CR-63, UM-125
saving results at intervals UM-131

simulator resolution
returning as a real UM-62
Verilog UM-78
VHDL UM-52
vsim -t argument CR-197
when comparing datasets UM-126

simulator state variables UM-362
simulator version CR-197, CR-206
simultaneous events in Verilog

changing order CR-183
sizetf callback function UM-112
so, shared object file

loading PLI/VPI C applications UM-105
loading PLI/VPI C++ applications UM-106

software version UM-153
sorting

HDL items in GUI windows UM-141
ModelSim Command Reference

CR-240 Index

Model
source directory, setting from source window UM-201
source errors, locating during compilation UM-248
source files, referencing with location maps UM-397
source libraries

arguments supporting UM-74
source lines with errors

showing UM-250
spaces in pathnames CR-9
specify path delays CR-203
standards supported UM-14
startup

alternate to startup.do (vsim -do) CR-193
macro in the modelsim.ini file UM-355
macros UM-358
using a startup file UM-358

Startup .ini file variable UM-355
state variables UM-362
status bar

Main window UM-156
status command CR-121
Status field

Project tab UM-26
std .ini file variable UM-349
std_arith package

disabling warning messages UM-358
std_developerskit .ini file variable UM-349
std_logic_arith package UM-47
std_logic_signed package UM-47
std_logic_textio UM-47
std_logic_unsigned package UM-47
StdArithNoWarnings .ini file variable UM-355
STDOUT environment variable UM-346
step command CR-122
stimulus

applying to signals and nets UM-195
stop command CR-123
Structure window UM-208

see also windows, Structure window
symbol mapping

Dataflow window UM-174
symbolic constants, displaying CR-180
symbolic names, assigning to signal values CR-180
synopsys .ini file variable UM-349
Synopsys libraries UM-47
synthesis

rule compliance checking CR-147, UM-251, UM-
350

system calls
VCD UM-312
Verilog UM-90

system commands UM-331

system tasks
ModelSim Verilog UM-95
VCD UM-312
Verilog UM-90
Verilog-XL compatible UM-93

T

tab stops, in the Source window UM-207
tb command CR-124
Tcl UM-323–UM-334

command separator UM-330
command substitution UM-329
command syntax UM-326
evaluation order UM-330
Man Pages in Help menu UM-153
preference variables UM-360
relational expression evaluation UM-330
time commands UM-333
variable

in when commands CR-209
substitution UM-331

VSIM Tcl commands UM-332
temp files, VSOUT UM-348
text and command syntax UM-16
Text editing UM-156, UM-369
TextIO package

alternative I/O files UM-59
containing hexadecimal numbers UM-58
dangling pointers UM-58
ENDFILE function UM-58
ENDLINE function UM-58
file declaration UM-55
implementation issues UM-57
providing stimulus UM-59
standard input UM-56
standard output UM-56
WRITE procedure UM-57
WRITE_STRING procedure UM-57

TF routines UM-118
TFMPC

disabling warning CR-202
time

absolute, using @ CR-14
simulation time units CR-14
time resolution as a simulator state variable UM-362

time literal, missing space UM-250
time resolution

in Verilog UM-78
in VHDL UM-52
Sim Command Reference

 CR-241
setting
with the GUI UM-255
with vsim command CR-197

time type, converting to real UM-64
time, time units, simulation time CR-14
time-based breakpoints UM-198
timescale directive warning, disabling CR-202
timing

$setuphold/$recovery UM-93
annotation UM-297
disabling checks CR-185, UM-308
disabling checks for entire design CR-195
negative check limits

described UM-84
extending CR-200

title, Main window, changing CR-197
to_real VHDL function UM-64
to_time VHDL function UM-65
toggling waveform popup on/off UM-232
toolbar

Dataflow window UM-162
Main window UM-154
Wave window UM-221

tooltip, toggling waveform popup UM-232
tracing

events UM-168
source of unknown UM-169

transcript
file name, specifed in modelsim.ini UM-357
redirecting with -l CR-195
reducing file size CR-126
saving UM-147
TranscriptFile variable in .ini file UM-356
using as a DO file UM-147

transcript command CR-125
transcript file command CR-126
tree windows

VHDL and Verilog items in UM-143
viewing the design hierarchy UM-144

TreeUpdate command CR-220
triggers, in the List window UM-392
triggers, in the List window, setting UM-185
TSCALE, disabling warning CR-202
TSSI CR-225

in VCD files UM-320
tssi2mti command CR-127
type

converting real to time UM-65
converting time to real UM-64

Type field, Project tab UM-26

U

-u CR-186
unbound component UM-250
UnbufferedOutput .ini file variable UM-356
unit delay mode UM-89
unknowns, tracing UM-169
unresolved signals, multiple drivers on UM-250
use 1076-1993 language standard UM-249
use clause, specifying a library UM-46
use explicit declarations only UM-250
user-defined bus CR-36, UM-133, UM-183, UM-226
UserTimeUnit .ini file variable UM-356
util package UM-62

V

-v CR-186
v2k_int_delays CR-203
values

describe HDL items CR-66
examine HDL item values CR-75
of HDL items UM-206
replacing signal values with strings CR-180

variable settings report CR-13
variables

adding to the Wave and List windows UM-196
describing CR-66
environment variables UM-345
LM_LICENSE_FILE UM-345
personal preferences UM-344
precedence between .ini and .tcl UM-362
setting environment variables UM-345
simulator state variables

current settings report UM-344
iteration number UM-362
name of entity or module as a variable UM-362
resolution UM-362
simulation time UM-362

value of
changing from command line CR-50
changing with the GUI UM-212
examining CR-75

values of
displaying in Signals window UM-192
saving as binary log file UM-196

Variables window UM-212
see also windows, Variables window

vcd add command CR-128
vcd checkpoint command CR-129
ModelSim Command Reference

CR-242 Index

Model
vcd comment command CR-130
vcd dumpports command CR-131
vcd dumpportsall command CR-133
vcd dumpportsflush command CR-134
vcd dumpportslimit command CR-135
vcd dumpportsoff command CR-136
vcd dumpportson command CR-137
vcd file command CR-138
VCD files UM-311

adding items to the file CR-128
capturing port driver data CR-131, UM-320
case sensitivity UM-314
converting to WLF files CR-146
creating CR-128, UM-314
dumping variable values CR-129
dumpports tasks UM-312
flushing the buffer contents CR-142
from VHDL source to VCD output UM-317
inserting comments CR-130
internal signals, adding CR-128
specifying maximum file size CR-143
specifying name of CR-140
specifying the file name CR-138
state mapping CR-138, CR-140
supported TSSI states UM-320
turn off VCD dumping CR-144
turn on VCD dumping CR-145
VCD system tasks UM-312
viewing files from another tool CR-146

vcd files command CR-140
vcd flush command CR-142
vcd limit command CR-143
vcd off command CR-144
vcd on command CR-145
vcd2wlf command CR-146
vcom command CR-147
vdel command CR-153
vdir command CR-154
vector elements, initializing CR-50
vendor libraries, compatibility of CR-154
Vera, see Vera documentation
Verilog

ACC routines UM-116
capturing port driver data with -dumpports CR-138,

UM-320
cell libraries UM-88
compiler directives UM-96
compiling and linking PLI C applications UM-105
compiling and linking PLI C++ applications UM-

106
compiling design units UM-69

compiling with XL ’uselib compiler directive UM-
75

creating a design library UM-69
event order in simulation UM-80
language templates UM-273
library usage UM-72
SDF annotation UM-302
sdf_annotate system task UM-302
simulating UM-77

delay modes UM-88
XL compatible options UM-87

simulation hazard detection UM-83
simulation resolution limit UM-78
source code viewing UM-200
standards UM-14
system tasks UM-90
TF routines UM-118
XL compatible compiler options UM-74
XL compatible routines UM-120
XL compatible system tasks UM-93

verilog .ini file variable UM-349
Verilog 2001

current implementation UM-14, UM-68
disabling support CR-186

Verilog PLI/VPI ??–UM-123
compiling and linking PLI/VPI C applications UM-

105
compiling and linking PLI/VPI C++ applications

UM-106
debugging PLI/VPI code UM-121
PLI callback reason argument UM-110
PLI support for VHDL objects UM-115
registering PLI applications UM-101
registering VPI applications UM-103
specifying the PLI/VPI file to load UM-107

Verilog-XL
compatibility with UM-67, UM-99

Veriuser .ini file variable UM-102, UM-356
Veriuser, specifying PLI applications UM-102
veriuser.c file UM-114
verror command CR-155
version

obtaining via Help menu UM-153
obtaining with vsim command CR-197
obtaining with vsim<info> commands CR-206

vgencomp command CR-156
VHDL

delay file opening UM-359
dependency checking UM-50
field naming syntax CR-10
file opening delay UM-359
Sim Command Reference

 CR-243
language templates UM-273
library clause UM-45
object support in PLI UM-115
simulating UM-52
source code viewing UM-200
standards UM-14
timing check disabling UM-52
VITAL package UM-47

VHDL utilities UM-62, UM-63
get_resolution() UM-62
to_real() UM-64
to_time() UM-65

VHDL93 .ini file variable UM-351
view command CR-158
viewing

design hierarchy UM-143
library contents UM-41
waveforms CR-197, UM-125

virtual count commands CR-160
virtual define command CR-161
virtual delete command CR-162
virtual describe command CR-163
virtual expand commands CR-164
virtual function command CR-165
virtual hide command CR-168, UM-134
virtual log command CR-169
virtual nohide command CR-171
virtual nolog command CR-172
virtual objects UM-133

virtual functions UM-134
virtual regions UM-135
virtual signals UM-133
virtual types UM-135

virtual region command CR-174, UM-135
virtual regions

reconstruct the RTL hierarchy in gate-level design
UM-135

virtual save command CR-175, UM-134
virtual show command CR-176
virtual signal command CR-177, UM-133
virtual signals

reconstruct RTL-level design busses UM-134
reconstruct the original RTL hierarchy UM-134
virtual hide command UM-134

virtual type command CR-180
VITAL

compiling and simulating with accelerated VITAL
packages UM-61

disabling optimizations for debugging UM-61
specification and source code UM-60
VITAL packages UM-60

vital95 .ini file variable UM-349
vlib command CR-182
vlog command CR-183
vlog.opt file UM-253
vlog95compat .ini file variable UM-351
vmake command CR-189
vmap command CR-191
VPI, registering applications UM-103
VPI/PLI UM-100

compiling and linking C applications UM-105
compiling and linking C++ applications UM-106

vsim build date and version CR-206
vsim command CR-192
VSOUT temp file UM-348

W

WARNING[8], -lint argument to vlog CR-185
warnings

disabling at time 0 UM-358
locating file and line number UM-390
suppressing VCOM warning messages CR-150
suppressing VLOG warning messages CR-185
suppressing VSIM warning messages CR-202
turning off warnings from arithmetic packages UM-

358
wave format file UM-217
wave log format (WLF) file CR-197, UM-125

of binary signal values CR-87
see also WLF files

wave viewer, Dataflow window UM-166
Wave window UM-215

in the Dataflow window UM-166
toggling waveform popup on/off UM-232
see also windows, Wave window

wave, adding CR-35
WaveActivateNextPane command CR-220
waveform logfile

log command CR-87
overview UM-125
see also WLF files

waveform popup UM-232
waveforms UM-125

saving and viewing CR-87, UM-126
saving and viewing in batch mode UM-389
viewing UM-215

WaveRestoreCursors command CR-220
WaveRestoreZoom command CR-220
WaveSignalNameWidth .ini file variable UM-356
welcome dialog, turning on/off UM-344
ModelSim Command Reference

CR-244 Index

Model
when command CR-208
when statement

setting signal breakpoints UM-198
time-based breakpoints CR-212

where command CR-213
wildcard characters

for pattern matching in simulator commands CR-13
Windows

Main window
text editing UM-156, UM-369

Source window
text editing UM-156, UM-369

windows
Dataflow window UM-158

toolbar UM-162
zooming UM-167

finding HDL item names in UM-141
List window UM-177

adding HDL items UM-178
adding signals with a WLF file UM-196
display properties of UM-184
formatting HDL items UM-181
output file CR-221
saving data to a file UM-188
saving the format of CR-219
setting triggers UM-185, UM-392
time markers UM-141

Main window UM-145
status bar UM-156
time and delta display UM-156
toolbar UM-154

opening
from command line CR-158
with the GUI UM-149

Process window UM-190
displaying active processes UM-190
specifying next process to be executed UM-190
viewing processing in the region UM-190

saving position and size UM-142
searching for HDL item values in UM-141
Signals window UM-192

VHDL and Verilog items viewed in UM-192
Source window

setting tab stops UM-207
Structure window UM-208

selecting items to view in Signals window UM-
192

VHDL and Verilog items viewed in UM-208
viewing design hierarchy UM-208

Variables window UM-212
VHDL and Verilog items viewed in UM-212

Wave window UM-215
adding HDL items to UM-217
adding signals with a WLF file UM-196
cursor measurements UM-236
display properties UM-231
display range (zoom), changing UM-237
format file, saving UM-217
path elements, changing CR-53, UM-356
time cursors UM-235
zooming UM-237

WLF files
adding items to UM-196
creating from VCD CR-146
filtering, combining CR-216
limiting size CR-198
log command CR-87
overview UM-126
repairing CR-218
saving CR-62, CR-63, UM-127
saving at intervals UM-131
specifying name CR-197
using in batch mode UM-389

wlf2log command CR-214
wlfman command CR-216
wlfrecover command CR-218
work library UM-38
workspace UM-146
write format command CR-219
write list command CR-221
write preferences command CR-222
write report command CR-223
write transcript command CR-224
write tssi command CR-225
write wave command CR-227

X

X
tracing unknowns UM-169

X propagation
disabling for entire design CR-195

Y

-y CR-187

Z

zero delay elements UM-53
Sim Command Reference

 CR-245
zero delay mode UM-89
zero-delay loop, infinite UM-396
zero-delay oscillation UM-396
zero-delay race condition UM-80
zoom

Dataflow window UM-167
from Wave toolbar buttons UM-237
saving range with bookmarks UM-238
with the mouse UM-238
ModelSim Command Reference

CR-246

Model
Sim Command Reference

	Bookcase
	Command Reference
	Table of Contents
	Syntax and conventions
	Documentation conventions
	Command return values
	Command shortcuts
	Command history shortcuts
	Numbering conventions
	VHDL numbering conventions
	Verilog numbering conventions

	File and directory pathnames
	HDL item names
	Item name syntax
	Specifying names
	Environment variables and pathnames
	Name case sensitivity
	Extended identifiers

	Wildcard characters
	ModelSim variables
	Variable settings report

	Simulation time units
	Comments in argument files
	GUI_expression_format
	Expression typing
	Signal and subelement naming conventions
	Concatenation of signals or subelements
	VHDL record field support
	Grouping and precedence
	Expression syntax

	Commands
	Command reference table
	abort
	add dataflow
	add list
	add wave
	alias
	batch_mode
	bd
	bookmark add wave
	bookmark delete wave
	bookmark goto wave
	bookmark list wave
	bp
	cd
	change
	configure
	dataset alias
	dataset clear
	dataset close
	dataset info
	dataset list
	dataset open
	dataset rename
	dataset save
	dataset snapshot
	delete
	describe
	disablebp
	do
	drivers
	dumplog64
	echo
	edit
	enablebp
	environment
	examine
	exit
	find
	force
	help
	history
	log
	lshift
	lsublist
	modelsim
	noforce
	nolog
	notepad
	noview
	nowhen
	onbreak
	onElabError
	onerror
	pause
	precision
	printenv
	project
	pwd
	quietly
	quit
	radix
	report
	restart
	resume
	run
	searchlog
	shift
	show
	simstats
	status
	step
	stop
	tb
	transcript
	transcript file
	tssi2mti
	vcd add
	vcd checkpoint
	vcd comment
	vcd dumpports
	vcd dumpportsall
	vcd dumpportsflush
	vcd dumpportslimit
	vcd dumpportsoff
	vcd dumpportson
	vcd file
	vcd files
	vcd flush
	vcd limit
	vcd off
	vcd on
	vcd2wlf
	vcom
	vdel
	vdir
	verror
	vgencomp
	view
	virtual count
	virtual define
	virtual delete
	virtual describe
	virtual expand
	virtual function
	virtual hide
	virtual log
	virtual nohide
	virtual nolog
	virtual region
	virtual save
	virtual show
	virtual signal
	virtual type
	vlib
	vlog
	vmake
	vmap
	vsim
	vsim<info>
	vsource
	when
	where
	wlf2log
	wlfman
	wlfrecover
	write format
	write list
	write preferences
	write report
	write transcript
	write tssi
	write wave

	Index
	Symbols
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

