
Hugs 98

A functional programming system based on Haskell 98

User Manual

Mark P. Jones
Oregon Graduate Institute

P.O. Box 91000
Portland, OR 97006

USA

John C. Peterson
Department of Computer Science

Yale University
New Haven, CT, 06520-8285

USA

Revised version: September 10, 1999

Contents

1 Introduction 1

2 A technical summary of Hugs 98 3

3 Hugs for beginners 5
3.1 Expressions . 5
3.2 Commands . 7
3.3 Programs . 7

4 Starting Hugs 10
4.1 Environment options . 11
4.2 Options . 12

- Set search path . 13
- Set editor . 13
- Print statistics . 14
- Print type after evaluation . 15
- Terminate on error . 15
- Garbage collector notification 16
- Literate modules . 17
- Display dots while loading . 18
- Display nothing while loading 19
- List files loaded . 19
- Detailed kind errors . 19
- Use “show” to display results . 20
- Import chasing . 21
- Set heap size . 23
- Set prompt . 24
- Set repeat string . 24
- Set preprocessor string . 24
- Set constraint cutoff limit . 25

5 Hugs commands 26
5.1 Basic commands . 26

- Evaluate expression . 26
- View or change settings . 28
- Shell escape . 29
- List commands . 30

i

- Change module . 30
- Change directory . 30
- Force a garbage collection . 31
- Exit the interpreter . 31

5.2 Loading and editing modules and projects 31
- Load definitions from module 31
- Load additional files . 32
- Repeat last load command . 32
- Load project . 32
- Edit file . 34
- Find definition . 34

5.3 Finding information about the system 35
- List names . 35
- Print type of expression . 36
- Display information about names 36
- Display names defined in modules 39
- Display Hugs version . 39

6 Library overview 40
6.1 Standard Libraries . 40
6.2 The Hugs-GHC Extension Libraries 40
6.3 Portable Libraries . 41
6.4 Hugs-Specific Libraries . 43

7 An overview of Hugs extensions 45
7.1 Type class extensions . 46

7.1.1 Multiple parameter classes 46
7.1.2 More flexible instance declarations 51
7.1.3 Overlapping instances . 52
7.1.4 More flexible contexts . 53

7.2 Extensible records: Trex . 53
7.2.1 Basic concepts . 54
7.2.2 Extensibility . 57

7.3 Other type system extensions . 60
7.3.1 Enhanced polymorphic recursion 60
7.3.2 Rank 2 polymorphism . 60
7.3.3 Type annotations in patterns 63
7.3.4 Existential types . 64
7.3.5 Restricted type synonyms 65

7.4 Implicit parameters . 67

8 Other Hugs programs 69

ii

8.1 Stand-alone program execution 69
8.2 Hugs for Windows . 70

9 Conformance with Haskell 98 71
9.1 Haskell 98 features not in Hugs 71
9.2 Libraries . 72
9.3 Haskell 98 extensions . 73

10 Pointers to further information 74

References 77

iii

Copyright and License

The Hugs 98 system is Copyright c©Mark P Jones, Alastair Reid, the Yale Haskell
Group, and the Oregon Graduate Institute of Science and Technology, 1994-1999,
All rights reserved. It is distributed as free software under the following license.

Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:

- Redistributions of source code must retain the above copyright notice, this list
of conditions and the following disclaimer.

- Redistributions in binary form must reproduce the above copyright notice, this
list of conditions and the following disclaimer in the documentation and/or other
materials provided with the distribution.

- Neither name of the copyright holders nor the names of its contributors may be
used to endorse or promote products derived from this software without specific
prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
THE CONTRIBUTORS ”AS IS” AND ANY EXPRESS OR IMPLIED WAR-
RANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WAR-
RANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
HOLDERS OR THE CONTRIBUTORS BE LIABLE FOR ANY DIRECT, IN-
DIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THE-
ORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
THE POSSIBILITY OF SUCH DAMAGE.

iv

1. Introduction

Hugs 98 is a functional programming system based on Haskell 98, the de facto
standard for non-strict functional programming languages. This manual should
give you all the information that you need to start using Hugs. However, it is not
a tutorial on either functional programming in general or on Haskell in particular.

The first two sections provide introductory material:

• Section 2: A brief technical summary of the main features of Hugs 98, and
the ways that it differs from previous releases.

• Section 3: A short tutorial on the concepts that you need to understand to
be able to use Hugs.

The remaining sections provide reference material, including:

• Section 4: A summary of the command line syntax, environment variables,
and command line options used by Hugs.

• Section 5: A summary of commands that can be used within the interpreter.

• Section 6: An overview of the Hugs libraries.

• Section 7: A description of Hugs extensions.

• Section 8: Information about other ways of running Hugs programs.

• Section 9: A list of differences between Hugs 98 and standard Haskell.

• Section 10: Pointers to further information.

Whether you are a beginner or a seasoned old-timer, we hope that you will enjoy
working with Hugs, and that, if you will pardon the pun, you will use it to
embrace functional programming!

1

Acknowledgements: The development of Hugs has benefited considerably from
the feedback, suggestions, and bug reports provided by its users. There are too
many people to name here, but thanks are due for all of their contributions. A
special thank you also to our friends and colleagues at OGI, Yale, and elsewhere,
for their input to the current release.

2

2. A technical summary of Hugs 98

Hugs 98 provides an almost complete implementation of Haskell 98 [9], including:

• Lazy evaluation, higher order functions, and pattern matching.

• A wide range of built-in types, from characters to bignums, and lists to
functions, with comprehensive facilities for defining new datatypes and type
synonyms.

• An advanced polymorphic type system with type and constructor class
overloading.

• All of the features of the Haskell 98 expression and pattern syntax in-
cluding lambda, case, conditional and let expressions, list comprehensions,
do-notation, operator sections, and wildcard, irrefutable and ‘as’ patterns.

• An implementation of the main Haskell 98 primitives for monadic I/O, with
support for simple interactive programs, access to text files, handle-based
I/O, and exception handling.

• An almost complete implementation of the Haskell module system. The
primary omission is that mutually recursive modules are not yet supported.

Hugs 98 also supports a number of advanced and experimental extensions in-
cluding multi-parameter classes, extensible records, rank-2 polymorphism, exis-
tentials, scoped type variables, and restricted type synonyms. By default, these
features can only be used if Hugs is started with the -98 command line flag. (See
Section 7 for details.)

Hugs is implemented as an interpreter that provides:

• A relatively small, portable system that can be used on a range of different
machines, from home computers, to Unix workstations.

• A read-eval-print loop for displaying the value of each expression that is
entered into the interpreter.

• Fast loading, type checking, and compilation of Haskell programs, with
facilities for automatic loading of imported modules.

3

• Integration with an external editor, chosen by the user, to allow for rapid
development, and for location of errors.

• Modest browsing facilities that can be used to find information about the
operations and types that are available.

Hugs is a successor to Gofer — an experimental functional programming system
that was first released in September 1991 — and users of Gofer will see much that
is familiar in Hugs. However, Hugs offers much greater compatibility with the
Haskell standard; indeed, the name Hugs was originally chosen as a mnemonic
for the “Haskell users’ Gofer system.”

There have been many modifications and enhancements to Hugs since its first
release on Valentines day, February 14, in 1995. Some of the most obvious im-
provements include:

• Full support for new Haskell 98 features, including the labelled field syntax,
do-notation, newtype, strictness annotations in datatypes, the Eval class,
ISO character set, etc.

• Support for Haskell modules, and a growing collection of library modules,
that includes facilities for Win32 programming.

• User interface enhancements, particularly the import chasing and search
path features, which were motivated by a greater emphasis on the role of
libraries in Haskell 1.3 and later versions of the language.

• Small improvements in runtime performance, and more reliable space usage,
thanks to the use of non-conservative garbage collection during program
execution.

• A graphical user interface for the Hugs systems that runs on the Windows
operating system.

There have also been a number of other enhancements, and fixes for bugs in
previous releases.

4

3. Hugs for beginners

This section covers the basics that you need to understand to start using Hugs.
Most of the points discussed here will be familiar to anyone with experience of
previous versions of Hugs or Gofer. To begin with, we need to start the inter-
preter; the usual way to do this is by using the command hugs, which produces
a startup banner something like the following1:

__ __ __ __ ____ ___ ___
|| || || || || || ||__ Hugs 98: Based on the Haskell 98 standard
||___|| ||__|| ||__|| __|| Copyright (c) 1994-1999
||---|| ___|| World Wide Web: http://haskell.org/hugs
|| || Report bugs to: hugs-bugs@haskell.org
|| || Version: September 1999 ___

Haskell 98 mode: Restart with command line option -98 to enable extensions

Reading file "/Hugs/lib/Prelude.hs":

Hugs session for:
/Hugs/lib/Prelude.hs
Type :? for help
Prelude>

The file /Hugs/lib/Prelude.hs mentioned here contains standard definitions
that are loaded into Hugs each time that the interpreter is started; the filename
will vary from one installation to the next2. You may notice a pause while the
interpreter is initialized and the prelude definitions are loaded into the system.

3.1 Expressions

In essence, using Hugs is just like using a calculator; the interpreter simply eval-
uates each expression that is entered, printing the results as it goes.

Prelude> (2+3)*8
40

1On Windows 95/NT, the installation procedure normally adds Hugs to the start menu.
You can also start the interpreter by double clicking on a .hs or .lhs file.

2If Hugs does not load correctly, and complains that it cannot find the prelude, then Hugs
has not been installed correctly and you should look at the installation instructions.

5

Prelude> sum [1..10]
55
Prelude>

The Prelude> characters at the begining of the first, third and fifth lines here form
the Hugs prompt. This indicates that the system is ready to accept input from
the user, and that it will use definitions from the Prelude module to evaluate each
expression that is entered; The Hugs prelude is a special module that contains
definitions for the built-in operations of Haskell, such as +, *, and sum. In response
to the first prompt, the user entered the expression (2+3)*8, which was evaluated
to produce the result 40. In response to the second prompt, the user typed the
expression sum [1..10]. The notation [1..10] represents the list of integers
between 1 and 10 inclusive, and sum is a prelude function that calculates the sum
of a list of numbers. So the result obtained by Hugs is:

1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 = 55.

In fact, we could have typed this sum directly into Hugs:

Prelude> 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10
55
Prelude>

Unlike many calculators, however, Hugs is not limited to working with num-
bers; expressions can involve many different types of value, including numbers,
booleans, characters, strings, lists, functions, and user-defined datatypes. Some
of these are illustrated in the following example:

Prelude> (not True) || False
False
Prelude> reverse "Hugs is cool"
"looc si sguH"
Prelude> filter even [1..10]
[2, 4, 6, 8, 10]
Prelude> take 10 fibs where fibs = 0:1:zipWith (+) fibs (tail fibs)
[0, 1, 1, 2, 3, 5, 8, 13, 21, 34]
Prelude>

You cannot create new definitions at the command prompt—these must be placed
in files and loaded, as described later. The definition of fib in the last example
above is local to that expression and will not be remembered for later use. Also,
the expressions entered must fit on a single line.

Hugs even allows whole programs to be used as values in calculations. For exam-
ple, putStr "hello, " is a simple program that outputs the string "hello, ".

6

Combining this with a similar program to print the string "world", gives:

Prelude> putStr "hello, " >> putStr "world"
hello, world
Prelude>

Just as there are standard operations for dealing with numbers, so there are
standard operations for dealing with programs. For example, the >> operator
used here constructs a new program from the programs supplied as its operands,
running one after the other. Normally, Hugs just prints the value of each ex-
pression entered. But, as this example shows, if the expression evaluates to a
program, then Hugs will run it instead. Hugs distinguishes programs from other
expressions by looking at the type of the expression entered. For example, the
expression putStr "world" has type IO (), which identifies it as a program to
be executed rather than a value to be printed.

3.2 Commands

Each line that you enter in response to the Hugs prompt is treated as a command
to the interpreter. For example, when you enter an expression into Hugs, it is
treated as a command to evaluate that expression, and to display the result.
There are two commands that are particularly worth remembering:

• :q exits the interpreter. On most systems, you can also terminate Hugs by
typing the end-of-file character.

• :? prints a list of all the commands, which can be useful if you forget the
name of the command that you want to use.

Like most other commands in Hugs, these commands both start with a colon, :.
The full set of Hugs commands is described in Section 5.

Note that the interrupt key (control-C or control-Break on most systems) can be
used to abandon the process of compiling files or evaluating expressions. When
the interrupt is detected, Hugs prints {Interrupted!} and returns to the prompt
so that further commands can be entered.

3.3 Programs

Functions like sum, >> and take, used in the examples above, are all defined in the
Hugs prelude; you can actually do quite a lot using just the types and operations
provided by the prelude. But, in general, you will also want to define new types

7

and operations, storing them in modules that can be loaded and used by Hugs. A
module is simply a collection of definitions stored in a file. For example, suppose
we enter the following module:

module Fact where
fact :: Integer -> Integer
fact n = product [1..n]

into a file called Fact.hs. (By convention, Hugs modules are stored in files ending
with the characters .hs. The file name should match the name of the module it
contains.) The product function used here is also defined in the prelude, and can
be used to calculate the product of a list of numbers, just as you might use sum

to calculate the corresponding sum. So the line above defines a function fact

that takes an argument n and calculates its factorial. In standard mathematical
notation, fact n = n!, which is usually defined by an equation:

n! = 1 * 2 * ... * (n-1) * n

Once you become familiar with the notation, you will see that the Hugs definition
is really very similar to this informal, mathematical version: the factorial of a
number n is the product of the numbers from 1 to n.

Before we can use this definition in a Hugs session, we have to load Fact.hs into
the interpreter. One of the simplest ways to do this uses the :load command:

Prelude> :load fact.hs
Reading file "fact.hs":

Hugs session for:
/Hugs/lib/Prelude.hs
Fact.hs
Fact>

Notice the list of filenames displayed after Hugs session for:; this tells you
which module files are currently being used by Hugs, the first of which is always
the standard prelude. The prompt is now Fact and evaluation will take place
within this new module. We can start to use the fact function that we have
defined:

Fact> fact 6
720
Fact> fact 6 + fact 7
5760
Fact> fact 7 ‘div‘ fact 6
7
Fact>

8

As another example, the standard formula for the number of different ways of
choosing r objects from a collection of n objects is n!/(r!(n− r)!). A simple and
direct (but otherwise not particularly good) definition for this function in Hugs
is as follows:

comb n r = fact n ‘div‘ (fact r * fact (n-r))

One way to use this function is to include its definition as part of an expression
entered in directly to Hugs:

Fact> comb 5 2 where comb n r = fact n ‘div‘ (fact r * fact (n-r))
10
Fact>

The definition of comb here is local to this expression. If we want to use comb

several times, then it would be sensible to add its definition to the file Fact.hs.
Once this has been done, and the Fact.hs file has been reloaded, then we can
use the comb function like any other built-in operator:

Fact> :reload
Reading file "fact.hs":

Hugs session for:
/Hugs/lib/Prelude.hs
Fact.hs
Fact> comb 5 2
10
Fact>

9

4. Starting Hugs

On Unix machines, the Hugs interpreter is usually started with a command line
of the form:

hugs [option | file] ...

On Windows 95/NT, Hugs may be started by selecting it from the start menu
or by double clicking on a file with the .hs or .lhs extension. (This manual
assumes that Hugs has already been successfully installed on your system.)

Hugs uses options to set system parameters. These options are distinguished by a
leading + or - and are used to customize the behaviour of the interpreter. When
Hugs starts, the interpreter performs the following tasks:

• Options in the environment are processed. The variable HUGSFLAGS holds
these options. On Windows 95/NT, the registry is also queried for Hugs
option settings.

• Command line options are processed.

• Internal data structures are initialized. In particular, the heap is initialized,
and its size is fixed at this point; if you want to run the interpreter with a
heap size other than the default, then this must be specified using options
on the command line, in the environment or in the registry.

• The prelude file is loaded. The interpreter will look for the prelude file
on the path specified by the -P option. If the prelude, located in the file
Prelude.hs, cannot be found in one of the path directories or in the current
directory, then Hugs will terminate; Hugs will not run without the prelude
file.

• Program files specified on the command line are loaded. The effect of a
command hugs f1 ... fn is the same as starting up Hugs with the hugs

command and then typing :load f1 ... fn. In particular, the interpreter
will not terminate if a problem occurs while it is trying to load one of the
specified files, but it will abort the attempted load command.

The environment variables and command line options used by Hugs are described
in the following sections.

10

4.1 Environment options

Before options on the command line are processed, initial option values are set
from the environment. On Windows 95/NT, these settings are added to the reg-
istry during setup. On other systems, the initial settings are determined by the
HUGSFLAGS environment variable. The syntax used in this case is the same as on
the command line: options are single letters, preceeded by + or -, and sometimes
followed by a value. Option settings are separated by spaces; option values con-
taining spaces are encoded using Haskell string syntax. The environment should
be set up before the interpreter is used so that the search path is correctly defined
to include the prelude. The built-in defaults, however, may allow Hugs to be run
without any help from the environment on some systems.

It is usually more convenient to save preferred option settings in the environ-
ment rather than specifying them on the command line; they will then be used
automatically each time the interpreter is started. The method for setting these
options depends on the machine and operating system that you are using, and on
the way that the Hugs system was installed. The following examples show some
typical settings for Unix machines and PCs:

• The method for setting HUGSFLAGS on a Unix machine depends on the choice
of shell. For example, a C-shell user might add something like the following
to their .cshrc file:

set HUGSFLAGS -P/usr/Hugs/lib:/usr/Hugs/libhugs -E"vi +%d %s"

The P option is used to set the search path and the E is used to set the editor.
The string quotes are necessary for the value of the E option becauses it
contains spaces. The setting for the path assumes that the system has been
installed in /usr/local/Hugs and will need to be modified accordingly if a
different directory was chosen. The editor specified here is vi, which allows
the user to specify a startup line number by preceding it with a + character.
The settings are easily changed to accommodate other editors.

If you are installing Hugs for the benefit of several different users, then
you should probably use a script file that sets appropriate values for the
environment variables, and then invokes the interpreter:

#!/bin/sh
HUGSFLAGS=/usr/Hugs/lib:/usr/Hugs/libhugs -E"vi +%d %s" +s
export HUGSFLAGS
exec /usr/local/bin/hugs $*

One advantage of this approach is that individual users do not have to
worry about setting the environment variables themselves. In addition to

11

the E and P options, other options—such as +s in this example—can be set.
It is easy for more advanced users to copy and customize a script like this
to suit their own needs.

• Users of DOS or Windows 3.1 might add the following line to autoexec.bat:

set HUGSFLAGS=-P\hugs\lib;\hugs\libhugs -E"vi +%%d %%s"

The setting for the path assumes that the system has been installed in
a top-level hugs directory, and will need to be modified accordingly if a
different directory was chosen. In a similar way, the setting for the editor
will only work if you have installed the editor program, in this case vi, that
it refers to.

• On Windows 95/NT, the setup program initializes the environment, and
this can be changed subsequently (on these systems only) by using either the
:set command or a registry editor. The InstallShield script that performs
the installation initializes the path using the installation directory; other
directories can be added using -P. Installed options are stored under the
HKEY_LOCAL_MACHINE key; changes to these options using :set are placed
under HKEY_CURRENT_USER so that different users do not alter each other’s
options.

For completeness, we should also mention the other environment variables that
are used by Hugs:

• The SHELL variable on a Unix machine, or the COMSPEC variable on a DOS
machine, determines which shell is used by the :! command.

• The EDITOR variable is used to try and locate an editor if no editor option
has been set. Note, however, that this variable does not normally provide
the extra information that is needed to be able to start the editor at a
specific line in the input file.

4.2 Options

The behaviour of the interpreter, particularly the read-eval-print loop, can be
customized using options. For example, you might use:

hugs -i +g +h30K

to start the interpreter with the i option (import chasing) disabled, the g option
(garbage collector messages) enabled, and with a heap of thirty thousand cells.

12

As this example suggests, many of the options are toggles, meaning that they
can either be switched on (by preceding the option with a + character) or off
(by using a - character). Options may also be grouped together. For example,
hugs +stf -le is equivalent to hugs +s +t +f -l -e.

Option settings can be specified in a number of different ways—the HUGSFLAGS

environment variable, the Windows registry, the command line, and the :set

command—but the same syntax is used in each case. To avoid any confusion
with filenames entered on the command line, option settings must always begin
with a leading + or - character. However, in some cases—the h, p, r, P, and
E options—the choice is not significant. With the exception of the heap size
option, h, all options can be changed while the interpreter is running using the
:set command. The same command can be used (without any arguments) to
display a summary of the available options and to inspect their current settings.

The complete set of Hugs options is described in the sections below. The only
omission here is the -98 and +98 options that are used to set the Haskell 98
compatability mode. These are discussed in Section 7.

Set search path -P〈path〉

The -P〈path〉 option changes the Hugs search path to the specified 〈path〉. The
search path is usually initialized in the environment and should always include
the directory containing the Hugs prelude and the standard libraries. When an
unknown module is imported, Hugs searches for a file with the same name as the
module along this path. The current directory is always searched before the path
is used. Directory names should be separated by colons or, on Windows/DOS
machines, by semicolons. Empty components in the path refer to the prior value
of the path. For example, setting the path to dir: (dir; on Windows/DOS)
would add dir to the front of the current path. Within the path, {Hugs} refers
to the directory containing the Hugs libraries so one might use a path such as
{Hugs}/lib:{Hugs}/lib/hugs.

Set editor -E〈cmd〉

A -E〈cmd〉 option can be used to change the editor string to the specified 〈cmd〉
while the interpreter is running. The editor string is usually initialized from the
environment when the interpreter starts running.

Any occurrences of %d and %s in the editor option are replaced by the start line
number and the name of the file to be edited, respectively, when the editor is
invoked. If specified, the line number parameter is used to let the interpreter

13

start the editor at the line where an error was detected, or, in the case of the
:find command, where a specified variable was defined.

Other editors can be selected. For example, you can use the following value to
configure Hugs to use emacs:

-E"emacs +%d %s"

More commonly, emacsclient or gnuclient is used to avoid starting a new
emacs with every edit.

On Windows/DOS, you can use -Eedit for the standard DOS editor, or -Enotepad
for the Windows notepad editor. However, neither edit or notepad allow you to
specify a start line number, so you may prefer to install a different editor.

Print statistics +s,-s

Normally, Hugs just shows the result of evaluating each expression:

Prelude> map (\x -> x*x) [1..10]
[1, 4, 9, 16, 25, 36, 49, 64, 81, 100]
Prelude> [1..]
[1, 2, 3, 4, {Interrupted!}
Prelude>

With the +s option, the interpreter will also display statistics about the total
number of reductions and cells; the former gives a measure of the work done,
while the latter gives an indication of the amount of memory used. For example:

Prelude> :set +s
Prelude> map (\x -> x*x) [1..10]
[1, 4, 9, 16, 25, 36, 49, 64, 81, 100]
(248 reductions, 429 cells)
Prelude> [1..]
[1, 2, 3, 4, {Interrupted!}
(18 reductions, 54 cells)
Prelude>

Note that the statistics produced by +s are an extremely crude measure of the
behaviour of a program, and can easily be misinterpreted. For example:

• The fact that one expression requires more reductions than another does
not necessarily mean that the first is slower; some reductions require much
more work than others, and it may be that the average cost of reductions
in the first expression is much lower than the average for the second.

14

• The cell count does not give any information about residency, which is the
number of cells that are being used at any given time. For example, it
does not distinguish between computations that run in constant space and
computations with residency proportional to the size of the input.

One reasonable use of the statistics produced by +s would be to observe general
trends in the behaviour of a single algorithm with variations in its input.

Print type after evaluation +t,-t

With the +t option, the interpreter will display both the result and type of each
expression entered at the Hugs prompt:

Prelude> :set +t
Prelude> map (\x -> x*x) [1..10]
[1, 4, 9, 16, 25, 36, 49, 64, 81, 100] :: [Int]
Prelude> not True
False :: Bool
Prelude> \x -> x
<<function>> :: a -> a
Prelude>

Note that the interpreter will not display the type of an expression if its evaluation
is interrupted or fails with a run-time error. In addition, the interpreter will not
print the type, IO (), of a program in the IO monad; the interpreter treats these
as a special case, giving the programmer more control over the output that is
produced.

Terminate on error +f,-f

In normal use, the evaluation of an expression is abandoned completely if a run-
time error occurs, such as a failed pattern match or an attempt to divide by zero.
For example:

Prelude> [1 ‘div‘ 0]
[
Program error: {primDivInt 1 0}

Prelude> [1 ‘div‘ 0, 2]
[
Program error: {primDivInt 1 0}

Prelude>

This is often useful during program development because it means that errors are
detected as soon as they occur. However, technically speaking, the two expres-

15

sions above have different meanings; the first is a singleton list, while the second
has two elements. Unfortunately, the output produced by Hugs does not allow
us to distinguish between the values.

The -f option can be used to make the Hugs printing option a little more accurate;
this should normally be combined with -u because the built-in printer is better
than the user-defined show functions at recovering from evaluation errors. With
these settings, if the interpreter encounters an irreducible subexpression, then it
prints the expression between a matching pair of braces and attempts to continue
with the evaluation of other parts of the original expression. For the examples
above, we get:

Prelude> :set -u -f
Prelude> [1 ‘div‘ 0] -- value is [bottom]
[{primDivInt 1 0}]
Prelude> [1 ‘div‘ 0, 2]
[{primDivInt 1 0}, 2] -- value is [bottom, 2]
Prelude>

Reading an expression in braces as bottom, ⊥, the output produced here shows
the correct values, according to the semantics of Haskell. Of course, it is not
possible to detect all occurrences of bottom like this, such as those produced by
a nonterminating computation:

Prelude> last [1..]
^C{Interrupted!} -- nothing printed until interrupted

Prelude>

Note that the basic method of evaluation is the same with both the +f and
-f options; all that changes is the way that the printing mechanism deals with
certain kinds of runtime error.

Garbage collector notification +g,-g

It is sometimes useful to monitor uses of the garbage collector, and to determine
how many cells are recovered with each collection. If the +g option is set, then
the interpreter will print a message of the form {{Gc:num}} each time that the
garbage collector is invoked. The number after the colon indicates the total
number of cells that are recovered.

16

As a simple application, we can use garbage collector messages to observe that
an attempt to sum an infinite list, although non-terminating, will at least run in
constant space:

Prelude> :set +g
Prelude> sum [1..]
{{Gc:95763}}{{Gc:95760}}{{Gc:95760}}{{Gc:95760}}{Interrupted!}

Prelude>

Garbage collector messages may be printed at almost any stage in a computation
(or indeed while loading, type checking or compiling a file of definitions). For this
reason, it is often best to turn garbage collector messages off (using :set -g, for
example) if they are not required.

Literate modules +l,-l,+e,-e

Like most programming languages, Hugs usually treats source file input as a
sequence of lines in which program text is the norm, and comments play a sec-
ondary role. In Hugs, as in Haskell, comments are introduced by the character
sequences -- and {- ... -}.

An alternative approach, using an idea described by Knuth as “literate program-
ming,” gives more emphasis to comments and documentation, with additional
characters needed to distinguish program text from comments. Hugs supports a
form of literate programming based on an idea due to Richard Bird and originally
implemented as part of the functional programming language Orwell.

In a Hugs literate module, program lines are marked by a > character in the
first column; any other line is treated as a program comment. This makes it
particularly easy to write a document which is both an executable Hugs module
and, at the same time, without need for any preprocessing, suitable for use with
document preparation software such as LATEX.

Hugs will treat any input file with a name ending in .hs as a normal module and
any input file with a name ending in .lhs as a literate module. If the -l option is
selected, then any other file loaded into Hugs will be treated as a normal module.
Conversely, if +l is selected, then these files will be treated as literate modules.

The effect of using literate modules can be thought of as applying a preproces-
sor to each input file that is loaded into Hugs. This has a particularly simple
definition in Hugs:

illiterate :: String -> String
illiterate cs = unlines [" " ++ xs | (’>’:xs) <- lines cs]

17

The system of literate modules that was used in Orwell is a little more complicated
than this and requires the programmer to adopt two further conventions in an
attempt to catch simple errors in literate modules:

• Every input file must contain at least one line whose first character is >.
This prevents modules with no definitions (because the programmer has
forgotten to use the > character to mark definitions) from being accepted.

• Lines containing definitions must be separated from comment lines by one
or more blank lines (i.e., lines containing only space and tab characters).
This is useful for catching programs where the leading > character has been
omitted from one or more lines in the definition of a function. For example:

> map f [] = []
map f (x:xs) = f x : map f xs

would be treated as an error.

Hugs will report on errors of this kind whenever the -e option is enabled (the
default setting).

The Haskell Report defines a second style of literate programming in which code
is surrounded by \begin{code} and \end{code}. See Appendix C of the Haskell
Report for more information about literate programming in Haskell.

Display dots while loading +.,-.

As Hugs loads each file into the interpreter, it prints a short sequence of messages
to indicate progress through the various stages of parsing the module, dependency
analysis, type checking, and compilation. With the default setting, -., the in-
terpreter prints the name of each stage, backspacing over it to erase it from the
screen when the stage is complete. If you are fortunate enough to be using a fast
machine, you may not always see the individual words as they flash past. After
loading a file, your screen will typically look something like this:

Prelude> :l Array
Reading file "/Hugs/lib/Array.hs":

Hugs session for:
/Hugs/lib/Prelude.hs
/Hugs/lib/Array.hs
Prelude>

On some systems, the use of backspace characters to erase a line may not work
properly—for example, if you try to run Hugs from within emacs. In this case,

18

you may prefer to use the +. setting which prints a separate line for each stage,
with a row of dots to indicate progress:

Prelude> :load Array
Reading file "/Hugs/lib/Array.hs":
Parsing..
Dependency analysis..
Type checking..
Compiling..

Hugs session for:
/Hugs/lib/Prelude.hs
/Hugs/lib/Array.hs
Prelude>

This setting can also be useful on very slow machines where the growing line of
dots provides confirmation that the interpreter is making progress through the
various stages involved in loading a file. You should note, however, that the
mechanisms used to display the rows of dots can add a substantial overhead to
the time that it takes to load files; in one experiment, a particular program took
nearly five times longer to load when the +. option was used. In this case, users
might prefer to use the -q option described below.

Display nothing while loading +q,-q

The +q (quiet) option supresses the messages used to indicate progress while
Hugs is loading files. If this option is turned off using the -q, then the format of
output messages is determined by the current +. or -. setting.

List files loaded +w,-w

By default, Hugs prints a complete list of all the files that have been loaded into
the system after every successful load or reload command. The -w option can
be used to turn this feature off. Note that the :info command, without any
arguments, can also be used to list the names of currently loaded files.

Detailed kind errors +k,-k

Haskell uses a system of kinds to ensure that type expressions are well-formed:
for example, to make sure that each type constructor is applied to the appropriate
number of arguments. For example, the following program:

module Main where
data Tree a = Leaf a | Tree a :^: Tree a
type Example = Tree Int Bool

19

will cause an error:

ERROR "Main.hs" (line 3): Illegal type "Tree Int Bool" in
constructor application

The problem here is that Tree is a unary constructor of kind * -> *, but the
definition of Example uses it as a binary constructor with at least two arguments,
and hence expecting a kind of the form (* -> * -> k), for some kind k.

By default, Hugs reports problems like this with a simple message like the one
shown above. However, if the +k option is selected, then the interpreter will print
a more detailed version of the error message, including details about the kinds of
the type expressions that are involved:

ERROR "Main.hs" (line 3): Kind error in constructor application
*** expression : Tree Int Bool
*** constructor : Tree
*** kind : * -> *
*** does not match : * -> a -> b

In addition, if the +k option is used, then Hugs will also include information
about kinds in the information produced by the :info command:

Prelude> :info Tree
-- type constructor with kind * -> *
data Tree a

-- constructors:
Leaf :: a -> Tree a
(:^:) :: Tree a -> Tree a -> Tree a

-- instances:
instance Eval (Tree a)

Prelude>

Use “show” to display results +u,-u

In normal use, Hugs displays the value of each expression entered into the inter-
preter by applying the standard prelude function:

show :: Show a => a -> String

to it and displaying the resulting string of characters. This approach works
well for any value whose type is an instance of the standard Show class; for

20

example, the prelude defines instances of Show for all of the built-in datatypes. It
is also easy for users to extend the class with new datatypes, either by providing
a handwritten instance declaration, or by requesting an automatically derived
instance as part of the datatype definition, as in:

data Rainbow = Red | Orange | Yellow | Green | Blue | Indigo | Violet
deriving Show

The advantage of using show is that it allows programmers to display the results
of evaluations in whatever form is most convenient for users—which is not always
the same as the way in which the values are represented.

This is probably all that most users will ever need. However, there are some cir-
cumstances where it is not convenient, for example, for certain kinds of debugging
or for work with datatypes that are not instances of Show. In these situations,
the -u option can be used to prevent the use of show. In its place, Hugs will use
a built-in printing mechanism that works for all datatypes, and uses the repre-
sentation of a value to determine what gets printed. At any point, the default
printing mechanism can be restored by setting +u.

Import chasing +i,-i

Import chasing is a simple, but flexible mechanism for dealing with programs
that involve multiple modules. It works in a natural way, using the information
in import statements at the beginning of modules, and is particularly useful for
large programs, or for programs that use standard Hugs libraries.

For example, consider a module Demo.hs that requires the facilities provided
by the STArray library. This dependency might be reflected by including the
following import statement at the beginning of Demo.hs:

import STArray

Now, if we try to load this module into Hugs, then the system will automatically
search for the STArray library and load it into Hugs, before Demo.hs is loaded.
In fact, the STArray library module also begins with some import statements:

import ST
import Array

So, Hugs will actually load the ST and Array libraries first, then the STArray

library, and only then will it try to read the rest of Demo.hs:

Prelude> :load Demo
Reading file "Demo.hs":

21

Reading file "/hugs/libhugs/STArray.hs":
Reading file "/hugs/libhugs/ST.hs":
Reading file "/hugs/lib/Array.hs":
Reading file "/hugs/libhugs/STArray.hs":
Reading file "Demo.hs":
Demo>

Initially, the interpreter reads only the first part of any module loaded into the
system, upto and including any import statements. Only one module is allowed
in each file; files with no module declaration are assumed to declare the Main

module. If there are no imports, or if the modules specified as imports have
already been loaded, then the system carries on and loads the module as normal.
On the other hand, if the module includes import statements for modules that
have not already been loaded, then the interpreter postpones the task of reading
the current module until all of the specified imports have been successfully loaded.
This explains why Demo.hs and STArray.hs are read twice in the example above;
first to determine which imports are required, and then to read in the rest of the
file once the necessary imports have been loaded.

The list of directories and filenames that Hugs tries in an attempt to locate the
source for a module Mod named in an import statement can be specified by:

[(dir,"Mod"++suf) | dir <- [d] ++ path ++ [""],
suf <- ["", ".hs", ".lhs"]]

The search starts in the directory d where the file containing the import statement
was found, then tries each of the directories in the current path (as defined by
the -P option), represented here by path, and ends with "", which gives a search
relative to the current directory. The fact that the search starts in d is particularly
important because it means that you can load a multi-file program into Hugs
without having to change to the directory where its source code is located. For
example, suppose that /tmp contains the files, A.hs, B.hs, and C.hs, that B

imports A, and that C imports B. Now, regardless of the current working directory,
you can load the whole program with the command :load /tmp/C; the import
in C will be taken as a reference to /tmp/B.hs, while the import in that file will
be taken as a reference to /tmp/A.hs.

Import chasing is often very useful, but you should also be aware of its limitations:

• Mutually recursive modules are not supported; if A imports B, then B must
not import A, either directly or indirectly through another one of its imports.

• Import chasing assumes a direct mapping from module names to the names
of the files that they are stored in. If A imports B, then the code for B must

22

be in a file called either B, B.hs, or B.lhs, and must be located in one of
the directories specified above.

On rare occasions, it is useful to specify a particular pathname as the target
for an import statement; Hugs allows string literals to be used as module
identifiers for this purpose:

import "../TypeChecker/Types.hs"

Note, however, that this is a nonstandard feature of Hugs, and that it is not
valid Haskell syntax. You should also be aware that Hugs uses the names
of files in deciding whether a particular import has already been loaded, so
you should avoid situations where a single file is referred to by more than
one name. For example, you should not assume that Hugs will be able to
determine whether Demo.hs and ./Demo.hs are references to the same file.

Import chasing is usually enabled by default (setting +i), but it can also be
disabled using the -i option.

Set heap size -h〈size〉

A -h〈size〉 option can be used to request a particular heap size for the interpreter—
the total number of cells that are available at any one time—when Hugs is first
loaded. The request will only be honoured if it falls within a certain range, which
depends on the machine, and the version of Hugs that is used. The 〈size〉 param-
eter may include a K or k suffix, which acts as a multiplier by 1,000. For example,
either of the following commands:

hugs -h25000
hugs -h25K

will usually start the Hugs interpreter with a heap of 25,000 cells. Cells are
generally 8 bytes wide (except on the 16 bit Hugs running on DOS) and Hugs
allocates a single heap. Note that the heap is used to hold an intermediate
(parsed) form of each module while it is being read, type checked and compiled.
It follows that, the larger the module, the larger the heap required to enable that
module to be loaded into Hugs. In practice, most large programs are written
(and loaded) as a number of separate modules which means that this does not
usually cause problems.

Unlike all of the other options described here, the heap size setting cannot be
changed from within the interpreter using a :set command. However, on Window
95/NT, changing the heap size with :set will affect the next running of Hugs
since it saves all options in the registry.

23

Set prompt -p〈string〉

A -p〈str〉 option can be used to change the prompt to the specified string, 〈str〉:

Prelude> :set -p"Hugs> "
Hugs> :set -p"? "
?

Note that you will need to use quotes around the prompt string if you want to
include spaces or special characters. Any %s in the prompt will be replaced by
the current module name. The default prompt is "%s> ".

Set repeat string -r〈string〉

Hugs allows the user to recall the last expression entered into the interpreter by
typing the characters $$ as part of the next expression:

Prelude> map (1+) [1..10]
[2, 3, 4, 5, 6, 7, 8, 9, 10, 11]
Prelude> filter even $$
[2, 4, 6, 8, 10]
Prelude>

A -r〈str〉 option can be used to change the repeat string—the symbol used to
recall the last expression—to 〈str〉. For example, users of Standard ML might be
more comfortable using:

Prelude> :set -rit
Prelude> 6 * 7
42
Prelude> it + it
84
Prelude>

Another reason to change the repeat string is to avoid clashes with uses of the
same symbol in a particular program; for example, if $$ is defined as an operator
in a program.

Note that the repeat string must be a valid Haskell identifier or symbol, although
it will always be parsed as an identifier. If the repeat string is set to a value
that is neither an identifier or symbol (for example, -r0), then the repeat last
expression facility will be disabled.

Set preprocessor string -F〈cmd〉

Although it is not needed very often, there are sometimes applications where

24

it useful to arrange for input files to be preprocessed before they are passed to
the Hugs interpreter. This might be used, for example, to make use of filters
to support conditional compilation, language extensions, literate programming
systems, or format conversion. The -F option can be used to set a particular
command string cmd as the name for a preprocessor. If set, then for any source
file, say file.hs, that the user tries to load into Hugs, the interpreter will use
the output from the command cmd file.hs instead of the contents of the file
file.hs itself.

Note that the -F option is system dependent, and is not supported on all plat-
forms.

Set constraint cutoff limit -c〈num〉

The -c parameter controls the complexity of constraint satisfaction searches in
the Hugs type checker. This is a technical mechanism to ensure that type checking
terminates, and can safely be ignored by most users. However, in programs
that make significant use of complex type class hierarchies, it may sometimes
be necessary to increase the setting for the -c option to enable the Hugs type
checker to explore a larger search space.

The usual default for this setting is 40, which corresponds to the command line
option -c40, and we have not yet seen any examples of valid Hugs programs that
are rejected with this setting. (It is possible to construct artificial programs that
do require higher values, but such examples are pathological and they do not
seem to appear in practice.) There is no practical benefit in choosing a lower
value for this parameter. Note that, if the value used is too low, then Hugs will
not be able to load some standard files and libraries, including the prelude.

25

5. Hugs commands

Hugs provides a number of commands that can be used to evaluate expressions,
to load files, and to inspect or modify the behaviour of the system while the
interpreter is running. Almost all of the commands in Hugs begin with the :

character, followed by a short command word. For convenience, all but the first
letter of a command may be omitted. For example, :l, :s and :q can be used
as abbreviations for the :load, :set and :quit commands, respectively.

Most Hugs commands take arguments, separated from the command itself, and
from one another, by spaces. The Haskell syntax for string constants can be
used to enter parts of arguments that contain spaces, newlines, or other special
characters. For example, the command:

:load My File

will be treated as a command to load two files, My and File. Any of the following
commands can be used to load a single file, My File, whose name includes an
embedded space:

:load "My File"
:load "My\SPFile"
:load "My\ \ File"
:load My" "File

You may wish to study the lexical syntax of Haskell strings to understand some
of these examples. In practice, filenames do not usually include spaces or special
characters and can be entered without surrounding quotes, as in:

:load fact.hs

The full set of Hugs commands is described in the following sections.

5.1 Basic commands

Evaluate expression 〈expr〉

To evaluate an expression, the user simply enters it at the Hugs prompt. This
is treated as a special case, without the leading colon that is required for other

26

commands. The expression must fit on a single line; there is no way to continue
an expression onto the next line of input to the interpreter. The actual behaviour
of the evaluator depends on the type of 〈expr〉:

• If 〈expr〉 has type IO t, for some type t, then it will be treated as a program
using the I/O facilities provided by the Haskell IO monad. Any final result
produced by the computation will be discarded.

Prelude> putStr "Hello, world"
Hello, world
Prelude>

• In any other case, the value produced by the expression is converted to a
string by applying the show function from the standard prelude, and the
interpreter uses this to print the result.

Prelude> "Hello" ++ ", " ++ "world"
"Hello, world"
Prelude>

Unlike some previous versions of Hugs, there is no special treatment for
values of type String; to display a string without the enclosing quotes
and special escapes, you should turn it into a program using the putStr

function, as shown above.

The interpreter will not evaluate an expression that contains a syntax error, a
type error, or a reference to an undefined variable:

Prelude> sum [1..)
ERROR: Syntax error in expression (unexpected ‘)’)
Prelude> sum ’a’
ERROR: Type error in application
*** expression : sum ’a’
*** term : ’a’
*** type : Char
*** does not match : [a]
Prelude> sum [1..n]
ERROR: Undefined variable "n"
Prelude>

Another common problem occurs if there is no show function for the expression
entered—that is, if its type is not an instance of the Show class. For example,
suppose that a module defines a type T without a Show instance:

module Test where
data T = A | B

27

With just these definitions, any attempt to evaluate an expression of type T will
cause an error:

Test> A
ERROR: Cannot find "show" function for:
*** expression : A
*** of type : T
Test>

To avoid problems like this, you will need to add an instance of the Show class
to your program. One of the simplest ways to do that is to request a derived
instance of Show as part of the datatype definition, as in:

module Test where
data T = A | B deriving Show

Once this has been loaded, Hugs will evaluate and display values of type T:

Test> A
A
Test> take 5 (cycle [A,B])
[A, B, A, B, A]
Test>

You should also note that the behaviour of the evaluator can be changed while
the interpreter is running by using the :set command to modify option settings.

View or change settings :set [〈options〉]

Without any arguments, the :set command displays a list of the options and their
current settings. The following output shows the settings on a typical machine:

Prelude> :set
TOGGLES: groups begin with +/- to turn options on/off resp.
s Print no. reductions/cells after eval
t Print type after evaluation
f Terminate evaluation on first error
g Print no. cells recovered after gc
l Literate modules as default
e Warn about errors in literate modules
. Print dots to show progress
q Print nothing to show progress
w Always show which modules are loaded
k Show kind errors in full
u Use "show" to display results
i Chase imports while loading modules

28

OTHER OPTIONS: (leading + or - makes no difference)
hnum Set heap size (cannot be changed within Hugs)
pstr Set prompt string to str
rstr Set repeat last expression string to str
Pstr Set search path for modules to str
Estr Use editor setting given by str
cnum Set constraint cutoff limit
Fstr Set preprocessor filter to str

Current settings: +fewkui -stgl.q -h250000 -p"%s> " -r$$ -c40
Search path : -P{Hugs}\lib;{Hugs}\lib\hugs;{Hugs}\lib\exts
Editor setting : -E"vi +%d %s"
Preprocessor : -F
Compatibility : Haskell 98 (+98)
Prelude>

Refer to Section 4.2 for more detailed descriptions of each of these option settings.

The :set command can also be used to change options by supplying the required
settings as arguments. For example:

Prelude> :set +st
Prelude> 1 + 3
4 :: Int
(4 reductions, 4 cells)
Prelude>

On Windows 95/NT, all option settings are written out to the registry when a
:set command is executed, and will be used by subsequent executions of Hugs.

Shell escape :![〈command〉]

A :!〈cmd〉 command can be used to execute the system command 〈cmd〉 without
leaving the Hugs interpreter. For example, :!ls (or :!dir on DOS machines)
can be used to list the contents of the current directory. For convenience, the :!

command can be abbreviated to a single ! character.

The :! command, without any arguments, starts a new shell:

• On a Unix machine, the SHELL environment variable is used to determine
which shell to use; the default is /bin/sh.

• On an DOS machine, the COMSPEC environment variable is used to determine
which shell to use; this is usually COMMAND.COM.

Most shells provide an exit command to terminate the shell and return to Hugs.

29

List commands :?

The :? command displays the following summary of all Hugs commands:

Prelude> :?
LIST OF COMMANDS: Any command may be abbreviated to :c where
c is the first character in the full name.

:load <filenames> load modules from specified files
:load clear all files except prelude
:also <filenames> read additional modules
:reload repeat last load command
:project <filename> use project file
:edit <filename> edit file
:edit edit last module
:module <module> set module for evaluating expressions
<expr> evaluate expression
:type <expr> print type of expression
:? display this list of commands
:set <options> set command line options
:set help on command line options
:names [pat] list names currently in scope
:info <names> describe named objects
:browse <modules> browse names defined in <modules>
:find <name> edit module containing definition of name
:!command shell escape
:cd dir change directory
:gc force garbage collection
:version print Hugs version
:quit exit Hugs interpreter
Prelude>

Change module :module 〈module〉

A :module 〈module〉 command changes the current module to one given by
〈module〉. This is the module in which evaluation takes place and in which ob-
jects named in commands are resolved. The specified module must be part of the
current program. If no module is specified, then the last module to be loaded is
assumed. (Note that the name of the current module is usually displayed as part
of the Hugs prompt.)

Change directory :cd 〈directory〉

A :cd 〈dir〉 command changes the current working directory to the path given
by 〈dir〉. If no path is specified, then the command is ignored.

30

Force a garbage collection :gc

A :gc command can be used to force a garbage collection of the interpreter heap,
and to print the number of unused cells obtained as a result:

Prelude> :gc
Garbage collection recovered 95766 cells
Prelude>

Exit the interpreter :quit

The :quit command terminates the current Hugs session.

5.2 Loading and editing modules and projects

Load definitions from module :load [〈filename〉 ...]

The :load command removes any previously loaded modules, and then attempts
to load the definitions from each of the listed files, one after the other. If one of
these files contains an error, then the load process is suspended and a suitable
error message will be displayed. Once the problem has been corrected, the load
process can be restarted using a :reload command. On some systems, the load
process will be restarted automatically after a :edit command. (The exception
occurs on Windows 95/NT because of the way that the interpreter and editor are
executed as independent processes.)

If no file names are specified, the :load command just removes any previously
loaded definitions, leaving just the definitions provided by the prelude.

The :load command uses the list of directories specified by the current path to
search for module files. We can specify the list of directory and filename pairs,
in the order that they are searched, using a Haskell list comprehension:

[(dir,file++suf) | dir <- [""] ++ path, suf <- ["", ".hs", ".lhs"]]

The file mentioned here is the name of the module file that was entered by the
user, while path is the current Hugs search path. The search starts with the
directory "", which usually represents a search relative to the current working
directory. So, the very first filename that the system tries to load is exactly the
same filename entered by the user. However, if the named file cannot be accessed,
then the system will try adding a .hs suffix, and then a .lhs suffix, and then it
will repeat the process for each directory in the path, until either a suitable file
has been located, or, otherwise, until all of the possible choices have been tried.

31

For example, this means that you do not have to type the .hs suffix to load a
file Demo.hs from the current directory, provided that you do not already have
a Demo file in the same directory. In the same way, it is not usually necesary to
include the full pathname for one of the standard Hugs libraries. For example,
provided that you do not have an Array, Array.hs, or Array.lhs file in the
current working directory, you can load the standard Array library by typing
just :load Array.

Load additional files :also [〈filename〉 ...]

The :also command can be used to load module files, without removing any that
have previously been loaded. (However, if any of the previously modules have
been modified since they were last read, then they will be reloaded automatically
before the additional files are read.)

If successful, a command of the form :load f1 .. fn is equivalent to the se-
quence of commands:

:load
:also f1
.
.

:also fn

In particular, :also uses the same mechanisms as :load to search for modules.

Repeat last load command :reload

The :reload command can be used to repeat the last load command. If none
of the previously loaded files has been modified since the last time that it was
loaded, then :reload will not have any effect. However, if one of the modules
has been modified, then it will be reloaded. Note that modules are loaded in a
specific order, with the possibility that later modules may import earlier ones.
To allow for this, if one module has been reloaded, then all subsequent modules
will also be reloaded.

This feature is particularly useful in a windowing environment. If the interpreter
is running in one window, then :reload can be used to force the interpreter to
take account of changes made by editing modules in other windows.

Load project :project [〈project file〉]

Project files were originally introduced to ease the task of working with programs
whose source code was spread over several files, all of which had to be loaded at

32

the same time. The facilities for import chasing usually provide a much better
way to deal with multiple file projects, but the current release of Hugs does still
support the use of project files.

The :project command takes a single argument; the name of a text file contain-
ing a list of file names, separated from one another by whitespace (which may
include spaces, newlines, or Haskell-style comments). For example, the following
is a valid project file:

{- A simple project file, Demo.prj -}
Types -- datatype definitions
Basics -- basic operations
Main -- the main program

If we load this into Hugs with a command :project Demo.prj, then the inter-
preter will read the project file and then try to load each of the named files. In
this particular case, the overall effect is, essentially, the same as that of:

:load Types Basics Main

Once a project file has been selected, the :project command (without any argu-
ments) can be used to force Hugs to reread both the project file and the module
files that it lists. This might be useful if, for example, the project file itself has
been modified since it was first read.

Project file names may also be specified on the command line when the interpreter
is invoked by preceding the project file name with a single + character. Note that
there must be at least one space on each side of the +. Standard command line
options can also be used at the same time, but additional filename arguments
will be ignored. Starting Hugs with a command of the form hugs + Demo.prj is
equivalent to starting Hugs without any arguments and then giving the command
:p Demo.prj.

The :project command uses the same mechanisms as :load to locate the files
mentioned in a project file, but it will not use the current path to locate the
project file itself; you must specify a full pathname.

As has already been said, import chasing usually provides a much better way to
deal with multiple file programs than the old project file system. The big ad-
vantage of import chasing is that dependencies between modules are documented
within individual modules, leaving the system free to determine the order in
which the files should be loaded. For example, if the Main module in the exam-
ple above actually needs the definitions in Types and Basics, then this will be
documented by import statements, and the whole program could be loaded with
a single :load Main command.

33

Edit file :edit [〈file〉]

The :edit command starts an editor program to modify or view a module file.
On Windows 95/NT, the editor and interpreter are executed as independent
processes. On other systems, the current Hugs session will be suspended while
the editor is running. Then, when the editor terminates, the Hugs session will
be resumed and any files that have been changed will be reloaded automatically.
The -E option should be used to configure Hugs to your preferred choice of editor.

If no filename is specified, then Hugs uses the name of the last file that it tried to
load. This allows the :edit command to integrate smoothly with the facilities
for loading files.

For example, suppose that you want to load four files, f1.hs, f2.hs, f3.hs and
f4.hs into the interpreter, but the file f3.hs contains an error of some kind. If
you give the command:

:load f1 f2 f3 f4

then Hugs will successfully load f1.hs and f2.hs, but will abort the load com-
mand when it encounters the error in f3.hs, printing an error message to describe
the problem that occured. Now, if you use the command:

:edit

then Hugs will start up the editor with the cursor positioned at the relevant line
of f3.hs (whenever this is possible) so that the error can be corrected and the
changes saved in f3.hs. When you close down the editor and return to Hugs, the
interpreter will automatically attempt to reload f3.hs and then, if successful, go
on to load the next file, f4.hs. So, after just two commands in Hugs, the error in
f3.hs has been corrected and all four of the files listed on the original command
line have been loaded into the interpreter, ready for use.

Find definition :find 〈name〉

The :find 〈name〉 command starts up the editor at the definition of a type
constructor or function, specified by the argument 〈name〉, in one of the files cur-
rently loaded into Hugs. Note that Hugs must be configured with an appropriate
editor for this to work properly. There are four possibilities:

• If there is a type constructor with the specified name, then the cursor will
be positioned at the first line in the definition of that type constructor.

• If the name is defined by a function or variable binding, then the cursor will

34

be positioned at the first line in the definition of the function or variable
(ignoring any type declaration, if present).

• If the name is a constructor function or a selector function associated with
a particular datatype, then the cursor will be positioned at the first line in
the definition of the corresponding datatype definition.

• If the name represents an internal Hugs function, then the cursor will be
positioned at the beginning of the standard prelude file.

Note that names of infix operators should be given without any enclosing them
in parentheses. Thus :f !! starts an editor on the standard prelude at the first
line in the definition of (!!). If a given name could be interpreted both as a type
constructor and as a value constructor, then the former is assumed.

5.3 Finding information about the system

List names :names [〈pattern〉 ...]

The :names command can be used to list the names of variables and functions
whose definitions are currently loaded into the interpreter. Without any argu-
ments, :names produces a list of all names known to the system; the names are
listed in alphabetical order.

The :names command can also accept one or more pattern strings, limiting the
list of names that will be printed to those matching one or more of the given
pattern strings:

Prelude> :n fold*
foldl foldl’ foldl1 foldr foldr1
(5 names listed)
Prelude>

Each pattern string consists of a string of characters and may use standard wild-
card syntax: * (matches anything), ? (matches any single character), \c (matches
exactly the character c) and ranges of characters of the form [a-zA-Z], etc. For
example:

Prelude> :n *map* *[Ff]ile ?
$ % * + - . / : < > appendFile map mapM mapM_ readFile writeFile ^
(17 names listed)
Prelude>

35

Print type of expression :type 〈expr〉

The :type command can be used to print the type of an expression without
evaluating it. For example:

Prelude> :t "hello, world"
"hello, world" :: String
Prelude> :t putStr "hello, world"
putStr "hello, world" :: IO ()
Prelude> :t sum [1..10]
sum (enumFromTo 1 10) :: (Num a, Enum a) => a
Prelude>

Note that Hugs displays the most general type that can be inferred for each
expression. For example, compare the type inferred for sum [1..10] above with
the type printed by the evaluator (using :set +t):

Prelude> :set +t
Prelude> sum [1..10]
55 :: Int
Prelude>

The difference is explained by the fact that the evaluator uses the Haskell default
mechanism to instantiate the type variable a in the most general type to the type
Int, avoiding an error with unresolved overloading.

Display information about names :info [〈name〉 ...]

The :info command is useful for obtaining information about the files, classes,
types and values that are currently loaded.

If there are no arguments, then :info prints a list of all the files that are currently
loaded into the interpreter.

Prelude> :info
Hugs session for:
/Hugs/lib/Prelude.hs
Demo.hs
Prelude>

If there are arguments, then Hugs treats each one as a name, and displays in-
formation about any corresponding type constructor, class, or function. The
following examples show the the kind of output that you can expect:

• Datatypes: The system displays the name of the datatype, the names and
types of any constructors or selectors, and a summary of related instance

36

declarations:

Prelude> :info Either
-- type constructor
data Either a b

-- constructors:
Left :: a -> Either a b
Right :: b -> Either a b

-- instances:
instance (Eq b, Eq a) => Eq (Either a b)
instance (Ord b, Ord a) => Ord (Either a b)
instance (Read b, Read a) => Read (Either a b)
instance (Show b, Show a) => Show (Either a b)
instance Eval (Either a b)

Prelude>

Newtypes are dealt with in exactly the same way. For a simple example of
a datatype with selectors, the output produced for a Time datatype:

data Time = MkTime { hours, mins, secs :: Int }

is as follows:

Time> :info Time
-- type constructor
data Time

-- constructors:
MkTime :: Int -> Int -> Int -> Time

-- selectors:
hours :: Time -> Int
mins :: Time -> Int
secs :: Time -> Int

-- instances:

instance Eval Time

Time>

• Type synonyms: The system displays the name and expansion:

Prelude> :info String
-- type constructor
type String = [Char]

Prelude>

37

The expansion is not included in the output if the synonym is restricted.

• Type classes: The system lists the name, superclasses, members, and in-
stance declarations for the specified class:

Prelude> :info Num
-- type class
class (Eq a, Show a, Eval a) => Num a where
(+) :: a -> a -> a
(-) :: a -> a -> a
(*) :: a -> a -> a
negate :: a -> a
abs :: a -> a
signum :: a -> a
fromInteger :: Integer -> a
fromInt :: Int -> a

-- instances:
instance Num Int
instance Num Integer
instance Num Float
instance Num Double
instance Integral a => Num (Ratio a)

Prelude>

• Other values: For example, named functions and individual constructor,
selector, and member functions are displayed with their name and type:

Time> :info . : hours min
(.) :: (a -> b) -> (c -> a) -> c -> b

(:) :: a -> [a] -> [a] -- data constructor

hours :: Time -> Int -- selector function

min :: Ord a => a -> a -> a -- class member

Time>

As the last example shows, the :info command can take several arguments and
prints out information about each in turn. A warning message is displayed if
there are no known references to an argument:

Prelude> :info (:)
Unknown reference ‘(:)’
Prelude>

38

This illustrates that the arguments are treated as textual names for operators,
not syntactic expressions (for example, identifiers). The type of the (:) operator
can be obtained using the command :info : as above. There is no provision for
including wildcard characters of any form in the arguments of :info commands.

If a particular argument can be interpreted as, for example, both a constructor
function, and a type constructor, depending on context, then the output for both
possibilities will be displayed.

Display names defined in modules :browse [〈module〉 ...]

The :browse command can be used to display the list of functions that are
exported from the named modules:

List> :browse Maybe
module Maybe where
mapMaybe :: (a -> Maybe b) -> [a] -> [b]
catMaybes :: [Maybe a] -> [a]
listToMaybe :: [a] -> Maybe a
maybeToList :: Maybe a -> [a]
fromMaybe :: a -> Maybe a -> a
fromJust :: Maybe a -> a
isNothing :: Maybe a -> Bool
isJust :: Maybe a -> Bool
List>

Only the names of currently loaded modules will be recognized.

Display Hugs version :version

The :version command is used to display the version of the Hugs interpreter:

Prelude> :version
-- Hugs Version September 1999
Prelude>

This is the same information that is displayed in the Hugs startup banner.

39

6. Library overview

Haskell 98 places much greater emphasis on the use of libraries than early versions
of the language. Following that lead, the Hugs 98 distribution includes most of the
official libraries defined in the Haskell Library Report [10]. The distribution also
includes a number of unofficial libraries, which fall into two categories: portable
libraries, which are implemented using standard Haskell or widely implemented
Haskell extensions; and Hugs-specific libraries, which use features that are not
available in other Haskell implementations.

All that you need to do to use libraries is to import them using an import

declaration. For example:

module MandlebrotSet where
import Array
import Complex
...

Of course, this assumes that HUGSPATH has been set to point to the directories
where the libraries are stored (Section 4.1), and that import chasing is enabled.
The default search path includes the directories containing both the standard
and unofficial libraries.

6.1 Standard Libraries

The Hugs 98 distribution includes the following standard libraries: Array, Char,
Complex, IO, Ix, List, Locale, Maybe, Monad, Numeric, Prelude, Random, Ratio,
and System. The libraries Directory, Time, and CPUTime, are not currently sup-
ported. The library report [10] contains full descriptions of all of theses standard
libraries. Differences between the library report and the libraries supplied with
Hugs are described in Section 9.

6.2 The Hugs-GHC Extension Libraries

Hugs and GHC provide a common set of libraries to aid portability; detailed spec-
ifications for these libraries are described elsewhere [12]. The Hugs-GHC modules
included in the current distribution include Addr, Bits, Channel, ChannelVar,

40

Concurrent, Dynamic, Foreign, IOExts, Int, GetOpt, NumExts, Pretty, ST,
LazyST, Weak, and Word. The Exception and Stable libraries are not currently
supported. Note that the ST and LazyST libraries cannot be used when the in-
terpreter is running in Haskell 98 mode; the type for runST requires support for
rank-2 polymorphism, which is only available in Hugs mode. (See Section 7.3.2
for further details.)

The specifications and implementations of all of these libraries are still evolving,
and are subject to change.

6.3 Portable Libraries

These libraries are not part of the Haskell standard but can be ported to most
Haskell systems.

• ListUtils This module provides list functions that were removed from the
Prelude in the move from Haskell 1.2 to Haskell 1.3.

module ListUtils where

sums, products :: Num a => [a] -> [a]
subsequences :: [a] -> [[a]]
permutations :: [a] -> [[a]]

• ParseLib This module provides a library of parser combinators, as de-
scribed in the paper on Monadic Parser Combinators by Graham Hutton
and Erik Meijer [5].

• Interact: This library provides facilities for writing simple interactive pro-
grams.

module Interact where

type Interact = String -> String

end :: Interact
readChar, peekChar :: Interact -> (Char -> Interact) -> Interact
pressAnyKey :: Interact -> Interact
unreadChar :: Char -> Interact -> Interact
writeChar :: Char -> Interact -> Interact
writeStr :: String -> Interact -> Interact
ringBell :: Interact -> Interact
readLine :: String -> (String -> Interact) -> Interact

An expression e of type Interact can be executed as a program by evalu-
ating run e.

41

• AnsiScreen This library defines some basic ANSI escape seqences for ter-
minal control.

module AnsiScreen where

type Pos = (Int,Int)

at :: Pos -> String -> String
highlight :: String -> String
goto :: Int -> Int -> String
home :: String
cls :: String

The definitions in this module will need to be adapted to work with termi-
nals that do not support ANSI escape sequences.

• AnsiInteract This library includes both Interact and AnsiScreen, and
also contains further support for screen oriented interactive I/O.

module AnsiInteract(module AnsiInteract,
module Interact,
module AnsiScreen) where

import AnsiScreen
import Interact

clearScreen :: Interact -> Interact
writeAt :: Pos -> String -> Interact -> Interact
moveTo :: Pos -> Interact -> Interact
readAt :: Pos -> -- start coords

Int -> -- max input length
(String -> Interact) -> -- continuation
Interact

defReadAt :: Pos -> -- start coords
Int -> -- max input length
String -> -- default value
(String -> Interact) -> -- continuation
Interact

promptReadAt :: Pos -> -- start coords
Int -> -- max input length
String -> -- prompt
(String -> Interact) -> -- continuation
Interact

defPromptReadAt :: Pos -> -- start coords
Int -> -- max input length
String -> -- prompt
String -> -- default value
(String -> Interact) -> -- continuation
Interact

42

6.4 Hugs-Specific Libraries

These libraries provide several non-standard facilities for Hugs programmers.
Other Haskell implementations may provide similar features, but this is not
guaranteed, and there may be significant differences in organization, naming,
semantics, or functionality.

• Number This library defines a numeric datatype of fixed width integers
(whatever Int supplies). However, unlike the built-in Int type, overflows
are detected and cause a run-time error. To ensure that all integer arith-
metic in a given module includes overflow protection you must include a
default declaration for Number.

module Number where
data Number -- fixed width integers
instance Eq Number -- class instances
instance Ord Number
instance Show Number
instance Enum Number
instance Num Number
instance Bounded Number
instance Real Number
instance Ix Number
instance Integral Number

This library cannot be used when Hugs is running in Haskell 98 mode
because it requires features that are only supported in full Hugs mode.

• IOExtensions This module provides non-standard extensions to the IO

monad.

module IOExtensions where

readBinaryFile :: FilePath -> IO String
writeBinaryFile :: FilePath -> String -> IO ()
appendBinaryFile :: FilePath -> String -> IO ()
openBinaryFile :: FilePath -> IOMode -> IO Handle

getCh :: IO Char
argv :: [String]

• Trace: This library provides a single function, that can sometimes be useful
for debugging:

module Trace where
trace :: String -> a -> a
traceShow :: Show a => String -> a -> a

43

When called, trace prints the string in its first argument, and then returns
the second argument as its result. The traceShow function is a variant
of trace that generates its output message by concatenating the supplied
String argument with the result of applying show to its value argument.
These functions are not referentially transparent, and should only be used
for debugging, or for monitoring execution. You should also be warned
that, unless you understand some of the details about the way that Hugs
programs are executed, results obtained using trace can be rather con-
fusing. For example, the messages may not appear in the order that you
expect. Even ignoring the output that they produce, adding calls to trace

can change the semantics of your program. Consider this a warning!

• Trex This library supports Trex extensible records. These can only be
used when Hugs is compiled with Trex support using the -enable-TREX

configuration option. Trex is described in more details in Section 7.2.

• HugsInternals This library provides primitives for accessing Hugs inter-
nals; for example, they provide the means with which to implement sim-
ple error-recovery and debugging facilities in Haskell. They should be re-
garded as an experimental feature and may not be supported in future
versions of Hugs. They can only be used if hugs was configured with the
--enable-internal-prims flag.

• GenericPrint This library provides a “generic” (or “polymorphic”) print
function in Haskell, that works in essentially the same way as Hugs’ builtin
printer when the -u option is used. The module HugsInternals is required.

• CVHAssert This library provides a simple implementation of Cordy Hall’s
assertions for performance debugging. These primitives are an experimental
feature that may be removed in future versions of Hugs. They can only be
used if hugs was configured with the --enable-internal-prims flag.

• Win32 This library contains Haskell versions for many of the functions in
the Microsoft Win32 library. It is only available on Windows 95/NT. The
--with-plugins configuration option must be used in conjunction with
this and the other Microsoft libraries.

Other libraries included in the standard distribution, but not further documented
here are Sequence, Pretty, HugsDynamic, HugsLibs, StdLibs, and OldWeak.

44

7. An overview of Hugs extensions

The Hugs interpreter can be run in two different modes.

• Haskell 98 mode: This should be used for the highest level of compatibil-
ity with the Haskell 98 standard; known deviations from the standard are
documented in Section 9. In this mode, any attempt to use Hugs specific
extensions should trigger an error message. Although there are some fairly
substantial differences between Haskell 1.4 and Haskell 98, our experience
is that most programs written for Haskell 1.4 or earlier will need only minor
modifications before they can be loaded and used from Hugs in Haskell 98
mode. Note, however, that some of the demo programs included in the
standard Hugs distribution will not work in Haskell 98 mode.

• Hugs mode: This enables a number of advanced Hugs features such as
type system extensions, restricted type synonyms, etc. Most of these fea-
tures are described in more detail in the following sections. The underlying
core language remains as in Haskell 98 mode: For example, the member
function of the Functor class is still called fmap, there is no Eval class,
fixity declarations can appear anywhere that a type signature is permitted,
comprehension syntax is still restricted to lists, and so on.

The choice between the two modes is made when the interpreter is started, and it
is (by design) not possible to change mode without exiting and restarting Hugs.
The default mode is usually Haskell 98; this can also be set explicitly by starting
Hugs with the command line option +98. To select the Hugs mode, you should
start the interpreter with the command line option -98. The mode in which
the interpreter is running is displayed as part of the startup banner, and is also
included in the information produced by using the :set command without any
arguments. The intention here is that beginners will get Haskell 98 mode by
default, while more experienced users will be able to set up alias, batch or script
files, or file associations, etc. to provide simple ways of invoking the interpreter in
either mode. On Win 32 machines, for example, one can set up file associations
so that you can right click on a .hs or .lhs file and get a choice of loading the
file into either a Haskell 98 or Hugs mode session.

The remainder of this section sketches some of the extensions that are currently
supported when the interpreter is running in Hugs mode.

45

7.1 Type class extensions

In Hugs mode, several of the Haskell 98 restrictions on type classes are relaxed.
This allows the use of multiple parameter classes, and more flexible forms of
instance declarations.

7.1.1 Multiple parameter classes

Haskell 98 allows only one type argument to be specified for any given type class.
As a result, each type class corresponds to a set of types. For example, a class
constraint Eq t tells us that the type t is assumed or required to be an instance of
the class Eq, and the class Eq itself corresponds to the set of all equality types. In
Hugs mode, this restriction is relaxed so that programmers can also define classes
with multiple parameters, each of which corresponds to a multi-place relation on
types.

Multiple parameter type classes seem to have many potentially interesting ap-
plications [11]. However, some practical attempts to use them have failed as a
result of frustrating ambiguity problems. This occurs because the mechanisms
that are used to resolve overloading are not aggressive enough. Or, to put it an-
other way, the type relations that are defined by a collection of class and instance
declarations are often too general for practical applications, where programmers
might expect stronger dependencies between parameters. In the rest of this sec-
tion we will describe these problems in more detail. We will also describe the
mechanisms introduced in the September 1999 release of Hugs that allow pro-
grammers to declare explicit dependencies between parameters, avoiding these
difficulties in many cases, and making multiple parameter classes more useful for
some important practical applications.

Ambiguity problems

During the past ten years, many Haskell users have looked into the possibility of
building a library for collection types, using a multiple parameter type class that
looks something like the following:

class Collects e ce where
empty :: ce
insert :: e -> ce -> ce
member :: e -> ce -> Bool

The type variable e used here represents the element type, while ce is the type of
the container itself. Within this framework, we might want to define instances of
this class for lists or characteristic functions (both of which can be used to rep-

46

resent collections of any equality type), bit sets (which can be used to represent
collections of characters), or hash tables (which can be used to represent any col-
lection whose elements have a hash function). Omitting standard implementation
details, this would lead to the following declarations:

instance Eq e => Collects e [e] where ...
instance Eq e => Collects e (e -> Bool) where ...
instance Collects Char BitSet where ...
instance (Hashable e, Collects a ce)

=> Collects e (Array Int ce) where ...

All this looks quite promising; we have a class and a range of interesting im-
plementations. Unfortunately, there are some serious problems with the class
declaration. First, the empty function has an ambiguous type:

empty :: Collects e ce => ce

By ‘ambiguous’ we mean that there is a type variable e that appears on the left
of the => symbol, but not on the right. The problem with this is that, according
to the theoretical foundations of Haskell overloading, we cannot guarantee a well-
defined semantics for any term with an ambiguous type. For this reason, Hugs
rejects any attempt to define or use such terms:

ERROR: Ambiguous type signature in class declaration
*** ambiguous type : Collects a b => b
*** assigned to : empty

We can sidestep this specific problem by removing the empty member from
the class declaration. However, although the remaining members, insert and
member, do not have ambiguous types, we still run into problems when we try to
use them. For example, consider the following two functions:

f x y = insert x . insert y
g = f True ’a’

for which Hugs infers the following types:

f :: (Collects a c, Collects b c) => a -> b -> c -> c
g :: (Collects Bool c, Collects Char c) => c -> c

Notice that the type for f allows the two parameters x and y to be assigned
different types, even though it attempts to insert each of the two values, one
after the other, into the same collection. If we’re trying to model collections that
contain only one type of value, then this is clearly an inaccurate type. Worse
still, the definition for g is accepted, without causing a type error. As a result,
the error in this code will not be flagged at the point where it appears. Instead,

47

it will show up only when we try to use g, which might even be in a different
module.

An attempt to use constructor classes

Faced with the problems described above, some Haskell programmers might be
tempted to use something like the following version of the class declaration:

class Collects e c where
empty :: c e
insert :: e -> c e -> c e
member :: e -> c e -> Bool

The key difference here is that we abstract over the type constructor c that is
used to form the collection type c e, and not over that collection type itself,
represented by ce in the original class declaration. This avoids the immediate
problems that we mentioned above:

• empty has type Collects e c => c e, which is not ambiguous.

• The function f from the previous section has a more accurate type:

f :: (Collects e c) => e -> e -> c e -> c e

• The function g from the previous section is now rejected with a type error
as we would hope because the type of f does not allow the two arguments
to have different types.

This, then, is an example of a multiple parameter class that does actually work
quite well in practice, without ambiguity problems.

There is, however, a catch. This version of the Collects class is nowhere near
as general as the original class seemed to be: only one of the four instances
in Section 7.1.1 can be used with this version of Collects because only one of
them—the instance for lists—has a collection type that can be written in the
form c e, for some type constructor c, and element type e.

Adding dependencies

To get a more useful version of the Collects class, Hugs provides a mechanism
that allows programmers to specify dependencies between the parameters of a
multiple parameter class1.

1For readers with an interest in theoretical foundations and previous work: The use of
dependency information can be seen both as a generalization of the proposal for ‘parametric

48

To start with an abstract example, consider a declaration such as:

class C a b where ...

which tells us simply that C can be thought of as a binary relation on types
(or type constructors, depending on the kinds of a and b). Extra clauses can
be included in the definition of classes to add information about dependencies
between parameters, as in the following examples:

class D a b | a -> b where ...
class E a b | a -> b, b -> a where ...

The notation a -> b used here between the | and where symbols—not to be con-
fused with a function type—indicates that the a parameter uniquely determines
the b parameter, and might be read as “a determines b.” Thus D is not just a
relation, but actually a (partial) function. Similarly, from the two dependencies
that are included in the definition of E, we can see that E represents a (partial)
one-one mapping between types.

More generally, dependencies take the form x1 ... xn -> y1 ... ym, where x1,
. . . , xn, and y1, . . . , yn are type variables with n> 0 and m≥ 0, meaning that the
y parameters are uniquely determined by the x parameters. Spaces can be used as
separators if more than one variable appears on any single side of a dependency,
as in t -> a b. Note that a class may be annotated with multiple dependencies
using commas as separators, as in the definition of E above. Some dependencies
that we can write in this notation are redundant, and will be rejected by Hugs
because they don’t serve any useful purpose, and may instead indicate an error
in the program. Examples of dependencies like this include a -> a, a -> a a,
a ->, etc. There can also be some redundancy if multiple dependencies are given,
as in a->b, b->c, a->c, and in which some subset implies the remaining depen-
dencies. Examples like this are not treated as errors. Note that dependencies
appear only in class declarations, and not in any other part of the language. In
particular, the syntax for instance declarations, class constraints, and types is
completely unchanged.

By including dependencies in a class declaration, we provide a mechanism for
the programmer to specify each multiple parameter class more precisely. The
compiler, on the other hand, is responsible for ensuring that the set of instances
that are in scope at any given point in the program is consistent with any declared
dependencies. For example, the following pair of instance declarations cannot

type classes’ that was put forward by Chen, Hudak, and Odersky [2], or as a special case of the
later framework for improvement [7] of qualified types. The underlying ideas are also discussed
in a more theoretical and abstract setting in a manuscript [8], where they are identified as one
point in a general design space for systems of implicit parameterization.

49

appear together in the same scope because they violate the dependency for D,
even though either one on its own would be acceptable:

instance D Bool Int where ...
instance D Bool Char where ...

Note also that the following declaration is not allowed, even by itself:

instance D [a] b where ...

The problem here is that this instance would allow one particular choice of [a] to
be associated with more than one choice for b, which contradicts the dependency
specified in the definition of D. More generally, this means that, in any instance
of the form:

instance D t s where ...

for some particular types t and s, the only variables that can appear in s are the
ones that appear in t, and hence, if the type t is known, then s will be uniquely
determined.

The benefit of including dependency information is that it allows us to define
more general multiple parameter classes, without ambiguity problems, and with
the benefit of more accurate types. To illustrate this, we return to the collection
class example, and annotate the original definition from Section 7.1.1 with a
simple dependency:

class Collects e ce | ce -> e where
empty :: ce
insert :: e -> ce -> ce
member :: e -> ce -> Bool

The dependency ce -> e here specifies that the type e of elements is uniquely de-
termined by the type of the collection ce. Note that both parameters of Collects
are of kind *; there are no constructor classes here. Note too that all of the in-
stances of Collects that we gave in Section 7.1.1 can be used together with this
new definition.

What about the ambiguity problems that we encountered with the original def-
inition? The empty function still has type Collects e ce => ce, but it is no
longer necessary to regard that as an ambiguous type: Although the variable e

does not appear on the right of the => symbol, the dependency for class Collects
tells us that it is uniquely determined by ce, which does appear on the right of
the => symbol. Hence the context in which empty is used can still give enough
information to determine types for both ce and e, without ambiguity. More gen-

50

erally, we need only regard a type as ambiguous if it contains a variable on the
left of the => that is not uniquely determined (either directly or indirectly) by
the variables on the right.

Dependencies also help to produce more accurate types for user defined func-
tions, and hence to provide earlier detection of errors, and less cluttered types
for programmers to work with. Recall the previous definition for a function f:

f x y = insert x y = insert x . insert y

for which we originally obtained a type:

f :: (Collects a c, Collects b c) => a -> b -> c -> c

Given the dependency information that we have for Collects, however, we can
deduce that a and b must be equal because they both appear as the second
parameter in a Collects constraint with the same first parameter c. Hence we
can infer a shorter and more accurate type for f:

f :: (Collects a c) => a -> a -> c -> c

In a similar way, the earlier definition of g will now be flagged as a type error.

Although we have given only a few examples here, it should be clear that the
addition of dependency information can help to make multiple parameter classes
more useful in practice, avoiding ambiguity problems, and allowing more general
sets of instance declarations.

7.1.2 More flexible instance declarations

Hugs mode does not place any syntactic restrictions on the form of type expression
or class constraints that can be used in an instance declaration. (Apart from
the normal restrictions to ensure that such type expressions are well-formed, of
course.) For example, the following definitions are all acceptable:

instance (Eq [Tree a], Eq a) => Eq (Tree a) where ...
instance Eq a => Eq (Bool -> a) where ...
instance Num a => Num (String,[a]) where ...

Compare this with the restrictions of Haskell 98, which allow only variables (resp.
‘simple’ types) as the arguments of classes on the left (resp. right) hand side of
the => sign. The price for this extra flexibility is that it is possible to code up
arbitrarily complex instance entailments, which means that checking entailments,
and hence calculating principal types, is, in the general case, undecidable. The
setting for the -c option, described in Section 4.2, will cause the type checker

51

to fail if the complexity of checking of entailments rises above a certain level.
Usually, this results from examples that would otherwise cause the type checker
to go into an infinite loop.

It is possible that some syntactic restrictions on instance declarations might be
introduced at some point in the future in a way that will offer much of the
flexibility of the current approach, but in a way that guarantees decidability.

7.1.3 Overlapping instances

The command line option +o can be used to enable support for overlapping in-
stance declarations, provided that one of each overlapping pair is strictly more
specific than the other. This facility has been introduced in a way that does
not compromise the coherence of the type system. However, its semantics differs
slightly from the semantics of overlapping instances in Gofer, so users may some-
times be surprised with the results. This is why we have decided to allow this
feature to be turned on or off by a command line option (the default is off). If
practical experience with overlapping instances is positive then we may change
the current default, or even remove the option.

If the command line option +m is selected, then a lazier form of overlapping
instances is supported, which we refer to as ‘multi instance resolution.’ The main
idea is to omit the normal tests for overlapping instances, but to generate an error
message if the type checker can find more than one way to resolve overloading
for a particular instance of the class. For example, with the +m option selected,
then the two instance declarations in the following program are accepted, even
though they have overlapping (in fact, identical) constraints on the right of the
=> symbol:

class Numeric a where describe :: a -> String

instance Integral a => Numeric a where describe n = "Integral"
instance Floating a => Numeric a where describe n = "Floating"

As it turns out, these instances do not cause any problems in practice because
they can be distinguished by the contexts on the left of the => symbol; no standard
type is an instance of both the Integral and the Floating classes:

Main> describe (23::Int)
"Integral"
Main> describe (23::Float)
"Floating"
Main>

Note that this experimental feature may not be supported in future releases.

52

7.1.4 More flexible contexts

Haskell 98 allows only class constraints of the form C (a t1 ... tn) to appear
in the context of any declared or inferred type, where C is a class, a is a variable,
and t1, . . . , tn are arbitrary types (n ≥ 0). Class constraints of this form are
sometimes characterized as being in head normal form. In many practical cases,
we have n = 0, corresponding to class constraints of the form C a.

In Hugs mode, these restrictions are relaxed, and any type, whether in head nor-
mal form or not, is permitted to appear in a context. For example, the principal
type of an expression (\x -> x==[]) is Eq [a] => [a] -> Bool, reflecting the
fact that the equality function is used to compare lists of type [a]. In previous
versions of Hugs, and in Haskell 98, an inferred type of Eq a => [a] -> Bool

would have been produced for this term. The latter type can still be used if
an explicit type signature is provided for the term, assuming that an instance
declaration of the form:

instance Eq a => Eq [a] where ...

is in scope. For example, the following program is valid:

f :: Eq a => [a] -> Bool
f x = x==[]

Note that contexts are not reduced by default because this gives more general
types (and potentially more efficient handling of overloading).

7.2 Extensible records: Trex

Hugs supports a flexible system of extensible records, sometimes referred to as
“Trex”. The theoretical foundations for this, and a comparison with related
work, is provided in a report by Gaster and Jones [3]. This section provides some
background details for anybody wishing to experiment with the implementation
of extensible records that is supported in the current distribution of Hugs. Please
note that support for this extension in any particular build of the Hugs system is
determined by a compile-time setting. If the version of Hugs that you are using
was built without including support for extensible records, then you will not be
able to use the features described here.

The current implementation does not use our prefered syntax for record opera-
tions; too many of the symbols that we would like to have used are already used
in conflicting ways elsewhere in the syntax of Haskell 98.

53

7.2.1 Basic concepts

In essence, records are just collections of values, each of which is associated with
a particular label. For example:

(a = True, b = "Hello", c = 12::Int)

is a record with three components: an a field, containing a boolean value, a b

field containing a string, and a c field containing the number 12. The order in
which the fields are listed is not significant, so the same record value could also
be written as:

(c = 12::Int, a = True, b = "Hello")

These examples show simple ways to construct record values. We can also inspect
the values held in a record using selector functions. These are written with a #

character, followed immediately by the name of a field. For example:

Prelude> #a (a = True, b = "Hello", c = 12::Int)
True
Prelude> #b (a = True, b = "Hello", c = 12::Int)
"Hello"
Prelude> #c (a = True, b = "Hello", c = 12::Int)
12
Prelude>

Note, howevever, that there is a conflict here with the syntax of Haskell 98 that
you should be aware of if you are running in Hugs mode with an infix operator #
and with support for records enabled. Under these circumstances, an expression
of the form f#g will parse as f (#g) — the application of a function f to a
selector function #g — and not as f # g — the application of an infix # operator
to two arguments f and g. To obtain the second of these interpretations, there
must be at least one space between the # and g tokens.

Record values can also be inspected by using pattern matching, with a syntax
that mirrors the notation used for constructing a record. For example:

Prelude> (\(a=x, c=y, b=_) -> (y,x)) (a = True, b = "Hello", c = 12::Int)
(12,True)
Prelude>

The order of fields in a record pattern is significant because it determines the
order—from left to right—in which they are matched. In the following ex-
ample, an attempt to match the pattern (a=[x], b=True) against the record

54

(b=undefined, a=[]), fails because [x] does not match the empty list, but a
match against (a=[2],b=True) succeeds, binding x to 2:

Prelude> [x | (a=[x], b=True) <- [(b=undefined, a=[]), (a=[2],b=True)]]
[2]
Prelude>

Changing the order of the fields in the pattern to (b=True, a=[x]) forces match-
ing to start with the b component. But the first element in the list of records
used above has undefined in its b component, so now the evaluation produces a
run-time error message:

Prelude> [x | (b=True, a=[x]) <- [(b=undefined, a=[]), (a=[2],b=True)]]

Program error: {undefined}

Prelude>

Although Hugs lets you work with record values, it does not, by default, allow
you to print them. More accurately, it does not automatically provide instances
of the Show class for record values. So a simple attempt to print a record value
will result in an error like the following:

Prelude> (a = True, b = "Hello", c = 12::Int)
ERROR: Cannot find "show" function for:
*** expression : (a=True, b="Hello", c=12)
*** of type : Rec (a::Bool, b::[Char], c::Int)

Prelude>

The problem here occurs because Hugs attempts to display the record by applying
the show function to it, and no version of show has been defined. If you do
want to be able to display record values, then you should load or import the
Trex module—which is usually included in the lib/hugs directory of the Hugs
distribution:

Prelude> :load Trex
Trex> (a = True, b = "Hello", c = 12::Int)
(a=True, b="Hello", c=12)
Trex> (c = 12::Int, a = True, b = "Hello")
(a=True, b="Hello", c=12)
Trex>

Note that the fields are always displayed with their labels in alphabetical order.
The fact that the fields appear in a specific (but, frankly, arbitrary) order is very
important—show is a normal function, so its output must be uniquely determined
by its input, and not by the way in which that input value is written. The records

55

used in the example above have exactly the same value, so we expect exactly the
same output for each.

In a similar way, it is sometimes useful to test whether two records are equal
by using the == operator. Any program that requires this feature can obtain the
necessary instances of the Eq class by importing the Trex library, as shown above.

Of course, like all other values in Haskell, records have types, and these are written
using expressions of the form Rec r where Rec is a built-in type constructor and
r represents a ‘row’ that associates labels with types. For example:

Trex> :t (c = 12::Int, a = True, b = "Hello")
(a=True, b="Hello", c=12) :: Rec (a::Bool, b::[Char], c::Int)
Trex>

The type here tells us, unsurprisingly, that the record (a=True,b="Hello",c=12)

has three components: an a field containing a Bool, a b field containing a String,
and a c field of type Int. As with record values themselves, the order of the
components in a row is not significant:

Trex> (a=True, b="Hello", c=12) :: Rec (b::String, c::Int, a::Bool)
(a=True, b="Hello", c=12)
Trex>

However, the type of a record must be an accurate reflection of the fields that
appear in the corresponding value. The following example produces an error
because the specified type does not list all of the fields in the record value:

Trex> (a=True, b="Hello", c=12) :: Rec (b::String, c::Int)

ERROR: Type error in type signature expression
*** term : (a=True, b="Hello", c=12)
*** type : Rec (a::Bool, b::[Char], c::a)
*** does not match : Rec (b::String, c::Int)
*** because : field mismatch

Trex>

Notice that Trex does not allow the kind of subtyping on record values that
would allow a record like (a=True, b="Hello", c=12) to be treated implicitly
as having type Rec (b::String, c::Int), simply by ‘forgetting’ about the a

field. Finding an elegant, efficient, and tractable way to support this kind of
implicit coercion in a way that integrates properly with other aspects of the
Hugs type system remains an interesting problem for future research.

56

7.2.2 Extensibility

An important property of the Trex system is that the same label name can appear
in many different record types, and potentially with a different value type in each
case. However, all of the features that we have seen so far deal with records
of some fixed ‘shape’, where the set of labels and the type of values associated
with each one are fixed, and there is no apparent relationship between records
of different type. In fact, all record values and record types in Trex are built-up
incrementally, starting from an empty record and extending it with additional
fields, one at a time. It is for this reason that Trex values are often referred to
as extensible records.

In the simplest case, any given record r can be extended with a new field labelled
l, provided that r does not already include an l field. For example, we can con-
struct (a=True, b="Hello") by extending (a = True) with a field b="Hello":

Trex> (b = "Hello" | (a = True))
(a=True, b="Hello")
Trex>

Alternatively, we can construct the same result by extending (b = "Hello")

with a field a=True:

Trex> (a = True | (b = "Hello"))
(a=True, b="Hello")
Trex>

The syntax of the current implementation allows us to add several new fields at
a time (the corresponding syntax for pattern matching is also supported):

Trex> (a=True, b="Hello", c=12::Int | (b1="World"))
(a=True, b="Hello", b1="World", c=12)
Trex>

On the other hand, a record cannot be extended with a field of the same name,
even if it has a different type. The following examples illustrate this:

Trex> (a=True | (a=False))
ERROR: Repeated label "a" in record (a=True, a=False)

Trex> (a=True | r) where r = (a=12::Int)
ERROR: (a::Int) already includes a "a" field

Trex>

Notice that Hugs produced two different kinds of error message here. In the
first case, the presence of a repeated label was detected syntactically. In the

57

second example, the problem was detected using information about the type of
the record r.

Much the same syntax can be used in patterns to decompose record values:

Trex> (\(b=bval | r) -> (bval,r)) (a=True, b="Hello")
("Hello",(a=True))
Trex>

In the previous examples, we saw how a record could be extended with new fields.
As this example shows, we can use pattern matching to do the reverse operation,
removing fields from a record.

We can also use pattern matching to understand how selector functions like #a,
#b, and so on are implemented. For example, the selector #x is equivalent to the
function (\ (x=value | _) -> value). A selector function like this is poly-
morphic in the sense that it can be used with any record containing an x field,
regardless of the type associated with that particular component, or of any other
fields that the record might contain:

Trex> (\(x=value | _) -> value) (x=True, b="Hello")
True
Trex> (\(x=value | _) -> value) (name="Hugs", age=2, x="None")
"None"
Trex>

To understand how this works, it is useful to look at the type that Hugs assigns
to this particular selector function:

Trex> :type (\(x=value | _) -> value)
\(x=value | _) -> value :: r\x => Rec (x::a | r) -> a
Trex>

There are two important pieces of notation here that deserve further explanation:

• Rec (x::a | r) is the type of a record with an x component of type a.
The row variable r represents the rest of the row; that is, it represents
any other fields in the record apart from x. This syntax—for record type
extension—was chosen to mirror the syntax that we have already seen in
the examples above for record value extension.

• The constraint r\x tells us that the type on the right of the => symbol is
only valid if “r lacks x,” that is, if r is a row that does not contain an x

field. If you are already familiar with Haskell type classes, then you may
like to think of \x as a kind of class constraint, written with postfix syntax,
whose instances are precisely the rows without an x field.

58

For example, if we apply our selector function to a record (x=True,b="Hello")

of type Rec (b::String, x::Bool), then we instantiate the variables a and r

in the type above to Bool and (b::String), respectively.

In fact, the built-in selector functions have exactly the same type as the user-
defined selector shown above:

Prelude> :type #x
#x :: b\x => Rec (x::a | b) -> a
Prelude>

The row constraints that we see here can also occur in the type of any func-
tion that operates on record values if the types of those records are not fully
determined at compile-time. For example, given the following definition:

average r = (#x r + #y r) / 2

Hugs infers a principal type of the form:

average :: (Fractional a, b\y, b\x) => Rec (y::a, x::a | b) -> a

However, any of the following, more specific types could be specified in a type
declaration for the average function:

average :: (Fractional a) => Rec (x::a, y::a) -> a
average :: (r\x, r\y) => Rec (x::Double, y::Double | r) -> Double
average :: Rec (x::Double, y::Double) -> Double
average :: Rec (x::Double, y::Double, z::Bool) -> Double

Each of these types is an instance of the principal type given above.

These examples show an important difference between the system of records
described here, and the record facilities provided by SML. In particular, SML
prohibits definitions that involve records for which the complete set of fields
cannot be determined at compile-time. So, the SML equivalent of the average

function described above would be rejected because there is no way to determine
if the record r will have any fields other than x or y. SML programmers usually
avoid such problems by giving a type annotation that completely specifies the
structure of the record. But, of course, if a definition is limited in this way, then
it also less flexible.

With the current implementation of our type system, there is an advantage to
knowing the full type of a record at compile-time because it allows the compiler
to generate more efficient code. However, unlike SML, the type system also
offers the extra flexibility of polymorphism and extensibility over records if that
is needed.

59

7.3 Other type system extensions

In this section, we describe several other type system extensions that are currently
available in Hugs mode.

7.3.1 Enhanced polymorphic recursion

As required by the Haskell 98 report, Hugs supports full polymorphic recursion,
even for functions with overloaded types. This means that Hugs will accept
definitions like the following:

p :: Eq a => a -> Bool
p x = x==x && p [x]

(Note that the type signature here is not optional.) In fact, Hugs goes further
than is implied by the Haskell 98 report by using programmer supplied type
signatures to reduce type checking dependencies within individual binding groups.
For example, the following definitions are acceptable, even though there is no
explicit type signature for the function q:

p :: Eq a => a -> Bool
p x = x==x && q [x]

q x = x==x && p [x]

This is made possible by the observation that we can calculate a type for q,
without needing to calculate the type of p at the same time because the type of
p is already specified.

7.3.2 Rank 2 polymorphism

Hugs provides a facility that allows the definition of functions that take poly-
morphic arguments. This includes functions defined at the top-level, in local
definitions, in class members, and in primitive declarations. In addition, Hugs
allows the definition of datatypes with polymorphic and qualified types. The
following examples illustrate the syntax that is used:

amazed :: (forall a. a -> a) -> (Bool,Char)
amazed i = (i True, i ’a’)

twice :: (forall b. b -> f b) -> a -> f (f a)
twice f = f . f

60

There are a number of important points to note here.

• In Hugs mode, forall is a reserved word.

• Quantified variables may be of any kind, including * (types) or * -> *

(unary type constructors), as in the examples above.

• Variables quantified in a forall type must appear in the scope of the
quantifier. Unused quantified variables would serve no useful purpose, and
are perhaps most likely to occur as the result of mispelling a variable name.

• Nested quantifiers are not allowed, and quantifiers can only appear in the
types of function arguments, not in the results.

• A function can only take polymorphic arguments if an explicit type signa-
ture is provided for that function. Any call to such a function must have at
least as many arguments as are needed to include the rightmost argument
with a quantified type. For example, neither of the functions amazed or
twice defined above can be partially applied.

• It is not necessary for all polymorphic arguments to appear at the beginning
of a type signature. For example, the following type signature is valid:

eg :: Int -> (forall a. [a] -> [a]) -> Int -> [Int]

However, as a consequence of the rules given above, the eg function defined
here must always be applied to at least two arguments, even though the
first of these does not have a polymorphic type.

• In the definition of a function, there must be at least as many arguments on
the left hand side of the definition as are needed to included the rightmost
argument with a quantified type. Only variables (or a wildcard, _) can be
used as arguments on the left hand side of a function definition where a
value of polymorphic type is expected.

• Arbitrary expressions can be used for polymorphic arguments in a function
call, provided that they can be assigned the necessary polymorphic type.
For example, all of the following expressions are valid calls to the amazed

function defined above:

amazed (let i x = x in i)
amazed (\x -> x)
amazed (id . id . id . id)
amazed (id id id id id)

61

A similar syntax can be used to include polymorphic components in datatypes,
as illustrated by the following examples:

data Monad1 m = MkMonad1 {
unit1 :: (forall a. a -> m a),
bind1 :: (forall a b. m a -> (a -> m b) -> m b)
}

data Monad2 m = MkMonad2 (forall a. a -> m a)
(forall a b. m a -> (a -> m b) -> m b)

listMonad1 = MkMonad1 {unit1 = \x->[x],
bind1 = \x f -> concat (map f x)}

listMonad2 = MkMonad1 (\x->[x]) (\x f -> concat (map f x))

In this case, MkMonad1 and MkMonad2 have types:

(forall b. b -> m b) -> (forall b c. m b -> (b->m c) -> m c) -> Monad1 m
(forall b. b -> m b) -> (forall b c. m b -> (b->m c) -> m c) -> Monad2 m

respectively, while listMonad1 and listMonad2 have types:

Monad1 []
Monad2 []

Note that an expression like (MkMonad2 (\x->[x])) will not be allowed because,
by the rules above, the constructor MkMonad2 can only be used when both argu-
ments are provided. An attempt to correct this problem by eta-expansion, such
as (\b -> MkMonad2 (\x->[x]) b), will also fail because the new variable, b,
that this introduces is now lambda-bound and hence the type that we obtain for
it will not be as general as the MkMonad2 constructor requires. We can, however,
use an auxiliary function with an explicit type signature to achieve the desired
effect:

halfListMonad :: (forall a b. [a] -> (a -> [b]) -> [b]) -> Monad2 []
halfListMonad b = MkMonad2 (\x -> [x]) b

In the current implementation, the named update syntax for Haskell datatypes
(in expressions like exp{field=newValue}) cannot be used with datatypes that
include polymorphic components.

The runST primitive that is used in work with lazy state threads is now handled
using the facilities described here to define it as a function:

runST :: (forall s. ST s a) -> a

62

As a result, it is no longer necessary to build the ST type into the interpreter; to
make use of these facilities, a program should instead import the ST library (or it’s
lazier variant, LazyST). A further consequence of this is that the ST and LazyST

libraries cannot be used when Hugs is running in Haskell 98 mode, because that
prevents the definition and use of values like runST that require rank 2 types.

7.3.3 Type annotations in patterns

Hugs allows patterns of the form (pat :: type) to be used as type anno-
tations (in the style of Standard ML). To allow effective type inference, the
type specified here must be a monotype (no forall part or class constraints
are allowed), but it may include variables, which, with one exception noted
below, have the same scope as the patterns in which they appear. For ex-
ample, the term \(x::Int) -> x has type Int -> Int, while the expression
\(x::a) (xs::[a]) -> xs ++ [x] has type a -> [a] -> [a]. Use of this fea-
ture is subject to the following rules:

• It is an error for a variable to be used in a type where a more specific type
is inferred. For example, (\(x::a) -> not x) is not a valid expression.

• It is an error for distinct variables to be used where the types concerned
are the same. For example, the expression (\(x::a) (y::b) -> [x,y])

is not valid.

• Type variables bound in a pattern may be used in type signatures or further
pattern type annotations within the scope of the binding. For example:

f (x::a) = let g :: a -> [a]
g y = [x,y]

in g x

In current versions of Haskell, there is no way to write a type for the local
function g in this example because of the convention that free type variables
are implicitly bound by a universal quantifier. In this example, the variable
is instead bound in the pattern (x::a) and so the type assigned to g is
actually monomorphic.

• Type signatures do not introduce bindings for type variables, but may in-
volve type variables bound in an enclosing scope. For example, there is no
direct relation between the variable t appearing in the type signature and
the variable t appearing in the pattern annotation in the following code:

pair :: t -> s -> (t,s)
pair x (y::t) = (x,y::t)

63

The explanation for this is that the type signature for pair (which might,
in practice, be separated from the definition) is not in the scope of the
binding of the variables x and y.

• In the current implementation, pattern type annotations that include vari-
ables are allowed on the left hand side of a pattern binding, but scope only
over the right hand side of the binding.

7.3.4 Existential types

Hugs supports a form of existential types in datatype definitions in the style
originally suggested by Perry and by Läufer. Existentially quantified type vari-
ables must be bound by an explicit forall construct preceding the name of the
constructor in which the existentially quantified variables appear. The appar-
ently counterintuitive use of forall to capture existentially quantified variables
becomes clearer when we look at an example:

data Appl = forall a. MkAppl (a -> Int) a (a -> a)

and consider that the MkAppl constructor defined here does indeed have a fully
polymorphic type:

MkAppl :: (a -> Int) -> a -> (a -> a) -> Appl.

Because the variable a does not appear in the result type, the choice of a in any
particular use of MkAppl will be hidden. As a result, when a MkAppl constructor
is used in a pattern match, we must be careful that the hidden type does not
‘escape’ into the result type or into the enclosing assumptions. For example, the
following definitions are acceptable:

good1 (MkAppl f x i) = f x
good2 (MkAppl f x i) = map f (iterate i x)

but the next two definitions are not:

bad1 (MkAppl f x i) = x
bad3 y = let g (MkAppl f x i) = length [x,y] + 1 in True

The facilities for type annotations in patterns that were described in Section 7.3.3
can be used in conjunction with existentials, as in the example:

good (MkAppl f (x::a) i) = map f (iterate i x :: [a])

In this case, the typing annotations are redundant, although they do still provide
potentially useful information for the programmer.

64

A datatype whose definition involves existentially quantified variables cannot
use the standard Haskell mechanisms for deriving instances of standard classes
like Eq and Show. If instances of these classes are required, then they must be
provided explicitly by the programmer. It is possible, however, to attach type
class constraints to existentially quantified variables in a datatype definition. For
example, we can define a type of “show”able values using the definition:

data Showable = forall a. Show a => MkShowable a

This will mean that all of the operations of the specified classes, in this case
just Show, are available when a value of this type is unpacked during pattern
matching. For example, this can be put to good use to define a simple instance
of Show for the Showable datatype:

instance Show Showable where
show (MkShowable x) = show x

This definition can now be used in examples like the following:

Main> map show [MkShowable 3, MkShowable True, MkShowable ’a’]
["3", "True", "’a’"]
Main>

7.3.5 Restricted type synonyms

Hugs supports the use of restricted type synonyms, first introduced in Gofer, and
similar to the mechanisms for defining abstract datatypes that were provided in
several earlier languages. The purpose of a restricted type synonym is to restrict
the expansion of a type synonym to a particular set of functions. Outside of
the selected group of functions, the synonym constructor behaves like a standard
datatype. More precisely, a restricted type synonym definition is a top level
declaration of the form:

type T a1 ... am = rhs in f1, ..., fn

where T is a new type constructor name and rhs is a type expression typically
involving some of the (distinct) type variables a1, ..., am. The major difference
with a normal type synonym definition is that the expansion of the type synonym
can only be used within the binding group of one of the functions f1, . . . , fn (all
of which must be defined by top-level definitions in the module containing the
restricted type synonym definition). In the definition of any other value, T is
treated as if it had been introduced by a definition of the form:

data T a1 ... am = ...

65

For a simple example of this, consider the following definition of a datatype of
stacks in terms of the standard list type:

type Stack a = [a] in emptyStack, push, pop, top, isEmpty

emptyStack :: Stack a
emptyStack = []

push :: a -> Stack a -> Stack a
push = (:)

pop :: Stack a -> Stack a
pop [] = error "pop: empty stack"
pop (_:xs) = xs

top :: Stack a -> a
top [] = error "top: empty stack"
top (x:_) = x

isEmpty :: Stack a -> Bool
isEmpty = null

The type signatures here are particularly important. For example, because
emptyStack is mentioned in the definition of the restricted type synonym Stack,
the definition of emptyStack is type correct. The declared type for emptyStack

is Stack a which can be expanded to [a], agreeing with the type for the empty
list []. However, in an expression outside the binding group of these functions,
the Stack a type is quite distinct from the [a] type:

? emptyStack ++ [1]
ERROR: Type error in application
*** Expression : emptyStack ++ [1]
*** Term : emptyStack
*** Type : Stack b
*** Does not match : [a]
?

The binding group of a value is to the set of values whose definitions are in the
same mutually recursive group of bindings. In particular, this does not extend
to class and instance declarations so we can define instances such as:

instance Eq a => Eq (Stack a) where
s1 == s2 | isEmpty s1 = isEmpty s2

| isEmpty s2 = isEmpty s1
| otherwise = top s1 == top s2 && pop s1 == pop s2

As a convenience, Hugs allows the type signatures of functions mentioned in the

66

type synonym declaration to be specified within the definition. Thus the above
example could also have been written as:

type Stack a = [a] in
emptyStack :: Stack a,
push :: a -> Stack a -> Stack a,
pop :: Stack a -> Stack a,
top :: Stack a -> a,
isEmpty :: Stack a -> Bool

emptyStack = []
...

If a type signature is included as part of the definition of a restricted type syn-
onym, then the declaration should not be repeated elsewhere in the module; Hugs
will reject any attempt to do this by complaining about a repeated type signature.

7.4 Implicit parameters

Hugs supports an experimental implementation of Implicit Parameters, which
provides a technique for introducing dynamic binding of variables into a language
with a Hindley-Milner based type system. This is based on as-yet-unpublished
work by Jeff Lewis, Erik Meijer and Mark Shields. The prototype implementa-
tion, and much of the following description, was provided by Jeff Lewis.

A variable is called dynamically bound when it is bound by the calling context of
a function and statically bound when bound by the callee’s context. In Haskell,
all variables are statically bound. Dynamic binding of variables is a notion that
goes back to Lisp, but was later discarded in more modern incarnations, such as
Scheme. Dynamic binding can be very confusing in an untyped language, and
unfortunately, typed languages, in particular Hindley-Milner typed languages like
Haskell, only support static scoping of variables.

However, by a simple extension to the type class system of Haskell, we can sup-
port dynamic binding. Basically, we express the use of a dynamically bound
variable as a constraint on the type. These constraints lead to types of the form
(?x::t’) => t, which says “this function uses a dynamically-bound variable ?x

of type t’”. For example, the following expresses the type of a sort function,
implicitly parameterized by a comparison function named cmp.

sort :: (?cmp :: a -> a -> Bool) => [a] -> [a]

The dynamic binding constraints are just a new form of predicate in the type
class system.

67

An implicit parameter is introduced by the special form ?x, where x is any valid
identifier. Use if this construct also introduces new dynamic binding constraints.
For example, the following definition shows how we can define an implicitly pa-
rameterized sort function in terms of an explicitly parameterized sortBy func-
tion:

sortBy :: (a -> a -> Bool) -> [a] -> [a]

sort :: (?cmp :: a -> a -> Bool) => [a] -> [a]
sort = sortBy ?cmp

Dynamic binding constraints behave just like other type class constraints in that
they are automatically propagated. Thus, when a function is used, its implicit
parameters are inherited by the function that called it. For example, our sort

function might be used to pick out the least value in a list:

least :: (?cmp :: a -> a -> Bool) => [a] -> a
least xs = fst (sort xs)

Without lifting a finger, the ?cmp parameter is propagated to become a parameter
of least as well. With explicit parameters, the default is that parameters must
always be explicit propagated. With implicit parameters, the default is to always
propagate them.

However, an implicit parameter differs from other type class constraints in the
following way: All uses of a particular implicit parameter must have the same
type. This means that the type of (?x, ?x) is (?x::a) => (a, a), and not
(?x::a, ?x::b) => (a, b), as would be the case for type class constraints.

An implicit parameter is bound using an expression of the form e with binds,
or equivalently as dlet binds in e, where both with and dlet (dynamic let)
are new keywords. These forms bind the implicit parameters arising in the body,
not the free variables as a let or where would do. For example, we define the
min function by binding cmp.

min :: [a] -> a
min = least with ?cmp = (<=)

Syntactically, the binds part of a with or dlet construct must be a collection of
simple bindings to variables (no function-style bindings, and no type signatures);
these bindings are neither polymorphic or recursive.

68

8. Other Hugs programs

The Hugs interpreter is available in two other guises: a stand-alone system that
executes programs in a ‘load and go’ style, without the surrounding command
system; and a Windows user interface, layered on top of the basic Hugs system.

8.1 Stand-alone program execution

Once a program has been developed and debugged, the Hugs command loop can
be eliminated and the program can be executed immediately without any com-
mand to run it. A slightly modified version of the interpreter called runhugs loads
the literate program specified as its first argument and runs main in module Main.
Unlike the standard Hugs system, runhugs makes command arguments available
to the running Hugs system. The first argument, specifying the program, is
removed from the argument list.

On Unix systems, executable programs may be created by placing runhugs in
the first line of an executable file, like so:

#!/hugs/runhugs

> module Main where
> main = putStr "Hello, World\n"

Because runHugs uses literate Haskell only, the line starting with #! is viewed
as a comment. Stand-alone programs can import other modules using import
chasing—these modules need not be literate. The runhugs program uses the
same environment variables to set Hugs options as the standard Hugs systems.
However, runhugs does not set options from the command line; all command
line options are passed into the executing Hugs program. The stand-alone Hugs
program may return an exit code.

On Windows 95/NT, runhugs is invoked using a separate file extension that is set
up to call runhugs rather than hugs. Installation sets up the .hsx extension for
this purpose. A .hsx program will run when it is clicked on; a console window
will appear if the program writes to standard output or reads from standard
input. This window is closed immedately upon exiting the program. There is no
way to pass parameters to the .hsx program when it is double-clicked. Windows

69

95/NT can also use runhugs to open files of a given type; this involves setting the
“open” command for the file type to call runhugs, passing it the Haskell program
to run and the file being opened. The online documentation has some examples
of this.

8.2 Hugs for Windows

Hugs for Windows (winhugs) offers a GUI front-end to the Hugs interpreter
on Microsoft Windows platforms. The user interface features a scrolling console
window that mimics the normal Hugs interface, together with a menu and toolbar
that provide additional facilities for browsing Haskell programs. Most of the
additional features are self-explanatory, although short descriptions of menu and
toolbar choices are displayed in a status line. Hugs for Windows uses the same
command line options and environment/registry variables as Hugs. It also stores
options in a .ini file.

The Hugs for Windows front-end is useful for beginners, but is not compatible
with the Win32 libraries or with programs that use them, such as Conal Elliot’s
Fran system or Paul Hudak’s Graphics library. In addition, the current imple-
mentation uses a compute-intensive polling process to detect certain events, and
this can incur a fairly substantial performance penalty. For these reasons, the
Hugs for Windows front-end is not recommended for work on large projects.

70

9. Conformance with Haskell 98

A number of Haskell 98 features are not yet implemented in Hugs 98. All known
differences between the specification and implementation are described in this
section, although there are bound to be some unintentional omissions.

9.1 Haskell 98 features not in Hugs

• Mutually recursive modules are not supported.

• Some library functions have been moved into the Prelude. This is necessary
because the Prelude and the standard libraries, as defined in the Haskell 98
report, are mutually recursive. This mutual recursion has been avoided by
moving the following functions into the Prelude:

– From Ix: Ix(range, index, inRange, rangeSize).
– From Char: isAscii, isControl, isPrint, isSpace, isUpper, isLower,

isAlpha, isDigit, isOctDigit, isHexDigit, isAlphanum, digitToInt,
intToDigit, toUpper, toLower, ord, and chr.

– From Ratio: Ratio, Rational, (%), numerator, denominator, and
approxRational.

• Derived Read instances do not work for some infix constructors. If an infix
constructor has left associativity and the type appears recursively on the
left side of the constructor, then the read instance will loop.

• Hugs does not allow the use of qualified names in instance declarations.

• Hugs does not use the Unicode character set yet. Characters are currently
drawn from the ISO Latin-1 set.

• Two adjacent dashes -- start a one line comment; for strictly technical
reasons, the change from Haskell 1.4 to Haskell 98 to use maximal munch
for such comments has not yet been implemented.

• The floating point printer is not exactly as defined in the report. The
printed form of a floating point number may re-read as a slightly different
number.

71

• Derived instances for large tuples are not supplied. Instances for tuples
larger than 5 (3 in the 16 bit PC system) are not in the Prelude.

• When using getArgs, only the stand-alone system passes arguments to the
executing program. The interactive system always uses an empty argument
list when runnning a program.

• The syntax of sections is slightly different. For example, the Haskell ex-
pression (2*3+) must instead be written as ((2*3)+).

• Instead of IO.hIsEOF, hugs provides IO.hugsHIsEOF. Whereas hIsEOF should
tell you if the next call of hGetChar would raise an EOF error; hugsHIsEOF
tells you if the last call of hGetCHar raised an EOF error (the same as ANSI
C’s feof).

• We ignore entity lists in qualified imports (but unqualified imports are
treated correctly). For example, you can write:

import qualified Prelude (foo)

even though foo is not exported from the Prelude and you can write:

module M() where
import qualified Prelude () -- import nothing
x = Prelude.length "abcd"

• The Double type is implemented as a single precision float (this isn’t for-
bidden by the standard but it is unusual).

9.2 Libraries

The following libraries are not yet available: Directory, Time, CPUTime, Bit,
Nat, and Signed.

In the IO library, these functions are not defined: handlePosn, ReadWriteMode
hFileSize, hIsEOF, isEOF, hSetBuffering, hGetBuffering, hSeek, hIsSeekable,
hReady, and hLookahead. The following non-standard functions are exported:

hugsGetCh :: IO Char -- getchar without echoing to screen
hugsHIsEOF :: Handle -> IO Bool
-- same semantics as C’s "feof" (different from Haskell’s hIsEOF)

hugsIsEOF :: IO Bool
-- same semantics as C’s "feof(stdin)"

hPutStrLn :: String -> IO ()
-- corresponds to Prelude.putStrLn

72

9.3 Haskell 98 extensions

In addition to the features described in Section 7, Hugs 98 supports some modest
extensions to the Haskell language.

• Import declarations may specify a file name instead of a module name.

• The T(..) syntax is allowed for type synonyms in import and export lists.

73

10. Pointers to further information

Hugs

The full distribution for Hugs is available on the World Wide Web from:

http://haskell.org/hugs.

The distribution includes source code, demo programs, library files, user docu-
mentation, and precompiled binaries for common platforms.

There is a mailing list for Hugs users at hugs-users@haskell.org, and another
for bug reports at hugs-bugs@haskell.org. Admin requests (for example, to
subscribe or unsubscribe) should be sent to majordomo@haskell.org. For more
detailed instructions, just send a message to this address with help in the body.
An overview of nearly all Haskell related resources can be found at

http://haskell.org.

Functional programming

The usenet newsgroup comp.lang.functional provides a forum for general dis-
cussion about functional programming languages. A list of frequently asked ques-
tions (FAQs), and their answers, is available from:

http://www.cs.nott.ac.uk/Department/Staff/gmh/faq.html.

The FAQ list contains many pointers to other functional programming resources
around the world.

Further reading

As we said at the very beginning, this manual is not intended as a tutorial on
either functional programming in general, or Haskell in particular. For these
things, our first recommendations would be for the Introduction to Functional

74

http://haskell.org/hugs
http://haskell.org
http://www.cs.nott.ac.uk/Department/Staff/gmh/faq.html

Programming by Bird and Wadler [1], and the Gentle Introduction to Haskell by
Hudak, Peterson and Fasel [4], respectively. Note, however, that there are several
other good textbooks dealing either with Haskell or related languages.

For those with an interest in the implementation of Hugs, the report about the
implementation of Gofer [6], Hugs’ predecessor, should be a useful starting point.

75

Bibliography
[1] R. Bird and P. Wadler. Introduction to functional programming. Prentice

Hall, 1988.

[2] K. Chen, P. Hudak, and M. Odersky. Parametric type classes (extended
abstract). In ACM conference on LISP and Functional Programming, San
Francisco, CA, June 1992.

[3] B. R. Gaster and M. P. Jones. A polymorphic type system for extensi-
ble records and variants. Technical Report NOTTCS-TR-96-3, Computer
Science, University of Nottingham, November 1996.

[4] P. Hudak and J. Fasel. A gentle introduction to Haskell. ACM SIGPLAN No-
tices, 27(5), May 1992. Also available as Research Report YALEU/DCS/RR-
901, Yale University, Department of Computer Science, April 1992.

[5] G. Hutton and E. Meijer. Monadic parser combinators. Available from
http://www.cs.nott.ac.uk/Department/Staff/gmh/bib.html, 1996.

[6] M. Jones. The implementation of the Gofer functional programming sys-
tem. Research Report YALEU/DCS/RR-1030, Yale University, New Haven,
Connecticut, USA, May 1994. Available on the World-Wide Web from
http://www.cse.ogi.edu/~mpj/pubs.html.

[7] M. P. Jones. Simplifying and improving qualified types. In International
Conference on Functional Programming Languages and Computer Architec-
ture, pages 160–169, June 1995.

[8] M. P. Jones. Exploring the design space for type-based implicit parameteri-
zation. July 1999.

[9] S. Peyton Jones and J. Hughes (editors). Report on the Programming Lan-
guage Haskell 98, A Non-strict Purely Functional Language, February 1999.
Available from http://www.haskell.org/definition/.

[10] S. Peyton Jones and J. Hughes (editors). Standard libraries for the
Haskell 98 programming language, February 1999. Available from
http://www.haskell.org/definition/.

[11] S. Peyton Jones, M. Jones, and E. Meijer. Type classes: Ex-
ploring the design space. In Proceedings of the Second Haskell

76

Workshop, Amsterdam, June 1997. Available on the web from
http://www.cse.ogi.edu/~mpj/pubs/multi.html.

[12] The Hugs/GHC Team. The Hugs-GHC Extension Libraries, January 1999.
Available from http://www.haskell.org/libraries/.

77

Index

options
+.,-., 18
+e,-e, 17
+f,-f, 15
+g,-g, 16
+i,-i, 21
+k,-k, 19
+l,-l, 17
+q,-q, 19
+s,-s, 14
+t,-t, 15
+u,-u, 16, 20
+w,-w, 19
-F, 24
-P, 13
-c, 25
-h, 23
-p, 24
-r, 24

commands, 7, 26
:!, 29
:?, 7, 30
:also, 32
:browse, 39
:cd, 30
:edit, 31, 34
:find, 34
:gc, 31
:info, 36
:load, 31–34
:module, 30
:names, 35
:project, 32
:quit, 7, 31
:reload, 31, 32
:set, 13, 23, 28
:type, 36

:version, 39

emacs editor, 14, 18
evaluator, 26

garbage collection, 4, 16, 31
Gofer, 4, 75

Haskell, 3
Haskell98, 1
heap size, 10, 13, 23
HUGSPATH, 40

import chasing, 4, 21, 33, 40
interrupt key, 7
IO monad, 3, 15, 27

libraries, 40
AnsiInteract, 42
AnsiScreen, 42
Array, 21, 32
IOExtensions, 43
Interact, 41
ListUtils, 41
Number, 43
ParseLib, 41
STArray, 21
ST, 21
Trace, 43
Trex, 44
Win32, 44

modules, 17, 31
literate, 17

options, 12, 28, 33
+t,-t, 36
-E, 13
-P, 10
-h, 13

prelude, 5, 7, 8, 10, 27, 31, 35

78

prompt, 6, 24, 26

vi editor, 11

79

	Introduction
	A technical summary of Hugs 98
	Hugs for beginners
	Expressions
	Commands
	Programs

	Starting Hugs
	Environment options
	Options

	Hugs commands
	Basic commands
	Loading and editing modules and projects
	Finding information about the system

	Library overview
	Standard Libraries
	The Hugs-GHC Extension Libraries
	Portable Libraries
	Hugs-Specific Libraries

	An overview of Hugs extensions
	Type class extensions
	Multiple parameter classes
	More flexible instance declarations
	Overlapping instances
	More flexible contexts

	Extensible records: Trex
	Basic concepts
	Extensibility

	Other type system extensions
	Enhanced polymorphic recursion
	Rank 2 polymorphism
	Type annotations in patterns
	Existential types
	Restricted type synonyms

	Implicit parameters

	Other Hugs programs
	Stand-alone program execution
	Hugs for Windows

	Conformance with Haskell 98
	Haskell 98 features not in Hugs
	Libraries
	Haskell 98 extensions

	Pointers to further information

