Ovidiu Gheorghies

An Introduction to MetaUML

Exquisite UML Diagrams in MetaPost

Abstract

MetaUML is a GNU GPL MetaPost library for
typesetting exquisite UML (Unified Modeling
Language) diagrams. MetaUML offers a highly
customizable, object-oriented API, designed with the
ease of use in mind. This paper presents usage
examples as well as a description of MetaUML
infrastructure. This infrastructure may prove useful for
general MetaPost typesetting, providing
object-oriented replacements and enhancements to
functionalities offered by the boxes package.

Keywords
MetaPost, TeX, LaTeX, UML, class diagram, state
machine diagram, use case diagram, activity diagram

Introduction

Figure 1 presents a gallery of diagrams created by
MetaUML (Gheorghies (2005)).

The code which generates these diagrams is quite
straightforward, combining a natural object-oriented
parlance with the power of MetaPost equation solving;
for more information on MetaPost see Hobby (1992).

An UML class, for example, can be defined as fol-
lows:

Class.A("MyClass")

("attrl: int", "attr2: int")

("method1(): void", "methodl1(): void");

This piece of code creates an instance of Class,
which will be afterward identified as A. This object has
the following content properties: a name (MyClass), a
list of attributes (attrl, attr2) and a list of methods
(method1, method2). The one thing remaining before
actually drawing A is to set its location:

A.nw = (0, 0);
drawObject (4);

In A.nw we refer to the “north-west” of the class
rectangle, that is to its upper-left corner. In general,
every MetaUML object has the positioning properties
given in figure 2. These properties are used to set
where to draw a given object, whether by assigning
them absolute values, or by setting them relatively

A. Class diagram

Client «interface»
Component

= Operation()

= Add(Component)

= Remove (Component)
= GetChild(int)

NAJAAR 2005

\ Leaf \

Composite

= Operation()

= Operation()
= Add(Component)
= Remove(Component)

= GetChild(int)

B. Activity diagram

Eat something good
from the kitchen

Read a book

Listen to music
(and ignore it)

C. Use case diagram

User

Authenticate by
username, password

Authenticate user

Authenticate by

D. State machine diagram

Working

!

Query database

{ Reading commands Preparing error report }
Xerm

Processing commands

Figure 1. UML diagrams created by MetaUML.

Writing result

65

66 MAPS 33
top nw n ne
Test
@ al
height| wea a2 Ce e
& a3
] @ alongMethod() :void
bottom SW S se
width
left right

Figure 2. Positioning properties of any MetaUML object
(here a class object is depicted).

to other objects. Suppose that we have defined two
classes A and B. Then the following code would give a
conceivable positioning:

A.nw = (0,0);
B.e = A.w + (=20, 0);

After the objects are drawn, one may draw links
between them, such as inheritance or association rela-
tions between classes in class diagrams, or transitions
between states in state machine diagrams. Whichever
the purpose is, MetaUML provides a generic way of
drawing an edge in a diagram’s graph:
link (how-to-draw-information) (path-to-draw) ;

The “how to draw information” is actually an object
which defines the style of the line (e.g. solid, dashed)
and the appearance of the heads (e.g. nothing, ar-
row, diamond). One such object, called inheritance,
defines a solid path ending in a white triangle. The
path-to-draw parameter is simply a MetaPost path.
For example, the following code can be used used to
represent that class B is derived from A:

link(inheritance) (B.e -- A.w);

Note that the direction of the path is important, and
MetaUML uses it to determine the type of adornment
to attach at the link ends (if applicable). In our ex-
ample, a white triangle, denoting inheritance, points
towards the end of the path, that is towards class A.

To sum up, we present a short code and the result-
ing diagram (figure 3). This is typical for everything
else in MetaUML. The positioning of A does not need
to be explicitly set because “floating” objects are auto-
matically positioned at (0,0) by their draw method.

input metauml;
beginfig(1);
Class.A("A" O O;
Class.B("B") O O);
B.e = A.w + (=20, 0);
drawObjects(A, B);

Ovidiu Gheorghies

B_'>A

Figure 3. Example of MetaUML. Everything else works
the same.

Point
x:int
y:int

bbb

set(x:int, y:int)
getX():int
getY():int
debug() :void

bl il

Figure 4. Class usage: name, attributes, methods and
visibility markers.

link(inheritance) (B.e —— A.w);
endfig;
end

From a user’s perspective, this is all there is to
MetaUML. With a reference describing how other UML
elements are created, one can set out to typeset arbit-
rary complex diagrams.

Class Diagrams

A class is created as follows:

Class.name(class—-name)
(list-of-attributes)
(1ist-of-methods) ;

The suffix name gives a name to the Class ob-
ject (which, of course, represents an UML class).
The name of the UML class is a string given by
class-name; the attributes are given as a comma
separated list of strings, list-of-attributes; the
methods are given as a comma separated list of strings,
list-of-attributes. The list of attributes and the
list of methods may be void.

Each of the strings representing an attribute or
a method may begin with a visibility marker: “4”
for public, “#” for protected and “—” for private.
MetaUML interprets this marker and renders a graphic
stereotype in form of a lock which may be opened,
semi-closed and closed, respectively.

The following code yields the diagram in figure 4.

Class.A("Point")
("#x:int", "#y:int")
("+set(x:int, y:int)",

"+getX() :int",
"+getY() :int",
"-debug() :void") ;

drawObject (A);

An Introduction to MetaUML

«interface»
«home»

User

Figure 5. Class usage: stereotypes.

- Size:
Vector'---------- :

Figure 6. Class usage: templates.

Stereotypes
After a class is created, its stereotypes may be specified
by using the macro classStereotypes:

classStereotypes.name(list-of-stereotypes) ;

Here, name is the object name of a previously cre-
ated class and list-of-stereotypes is a comma
separated list of strings. Here is an example along with
the resulting diagram (figure 5).

Class.A("User") O ();

classStereotypes.A("<<interface>>", "<<home>>");

drawObject (4);

Parametrized Classes (Templates)

The most convenient way of typesetting a class tem-
plate in MetaUML is to use the macro ClassTemplate.
This macro creates a visual object which is appropri-
ately positioned near the class object it adorns.

ClassTemplate.name(list-of-templates)
(class-object);

The name is the name of the template object,
list-of-templates is a comma separated list of
strings and the class-object is the name of a class
object.

The code below results in the diagram from figure
6.

Class.A("Vector")) QO;
ClassTemplate.T("T", "size: int") (A);

drawObjects(A, T);

The macro Template can also be used to create a
template object, but this time the resulting object can
be positioned freely.
Template.name(list-of-templates);

Of course, one can specify both stereotypes and tem-
plate parameters for a given class.

Types of Links
In this section we enumerate the relations that can be
drawn between classes by means of MetaUML macros.

NAJAAR 2005

Suppose that we have the declared two points, A (on
the left) and B (on the right):

pair A, B;
A = (0,0);
B = (50,0);

Bidirectional association.
link(association)(A -— B);

Unidirectional association.

link(associationUni)(A -- B);
Inheritance. link(inheritance)(A -- B);

—

Aggregation. link(aggregation)(A -- B);

Unidirectional aggregation.
link(aggregationUni)(A -- B);

Composition. link(composition)(A -- B);

— ¢

Unidirectional composition.
link(compositionUni)(A -- B);

D S—

Associations

In UML an association typically has two of association
ends and may have a name specified for it. In turn,
each association end may specify a multiplicity, a role,
a visibility, an ordering. These entities are treated in
MetaUML as pictures having specific drawing inform-
ation (spacings, font).

The first method of creating association “items” is
by giving them explicit names. Having a name for an
association item comes in handy when referring to its
properties is later needed (see the non UML-compliant
diagram in figure 7). Note that the last parameter of
the macro item is an equation which uses the item
name to perform positioning.

Class.P("Person") O O);
Class.C("Company") () (); % drawing code ommited

item.aName (iAssoc) ("works for")
(aName.s = .5[P.w, C.w]);
draw aName.n -- (aName.n + (20,20));
label.urt("association name" infont "tyxtt",
aName.n + (20,20));

However, giving names to every association item
may become an annoying burden (especially when

67

68 MAPS 33
association name
Person works for Company
| — e

Figure 7. Referring to the properties of association items.

Person |employee works for employer Compa.ny
— B e —

Figure 8. Anonymous association items.

Authenticate user
by name, password

Figure 9. Usecase example.

there are many of them). Because of this, MetaUML
also allows for “anonymous items”. In this case, the
positioning is set by an equation which refers to the
anonymous item as obj (figure 8).

% P and C defined as in the previous example

item(iAssoc) ("employee") (obj.sw = P.e);
item(iAssoc) ("1..x")(obj.nw = P.e);

% other items are drawn similarly

Use Case Diagrams

Use Cases
An use case is created by the macro Usecase:

Usecase.name(list-of-lines);

The 1list-of-lines is a comma separated list of
strings. These strings are placed on top of each other,
centered and surrounded by the appropriate visual
UML notation.

Use case example (result in figure 9):

Usecase.U("Authenticate user",
"by name, password");
drawObject (U);

Actors
An actor is created by the macro Actor:

Actor.name(list-of-lines);

Here, list-of-1lines represents the actor’s name.
For convenience, the name may be given as a list
of strings which are placed on top of each other, to
provide support for the situations when the role is
quite long. Otherwise, giving a single string as an ar-
gument to the Actor constructor is perfectly fine.

Actor example (result in figure 10):

Ovidiu Gheorghies

User

Figure 10. Actor example.

Administrator

Figure 11. Actor example, accessing the “human”.

Actor.A("User");
drawObject (4);

Note that one may prefer to draw diagram relations
positioned relatively to the visual representation of an
actor (the “human”) rather than relatively to the whole
actor object (which also includes the text). Because
of that, MetaUML provides access to the “human” of
every actor object actor by means of the sub-object
actor.human. Figure 11 gives the result of the code
below:

Actor.A("Administrator");
drawObject (A);

draw objectBox(A);

draw objectBox(A.human);

Note that in MetaUML objectBox(X) is equival-
ent to X.nw —— X.ne ——- X.se —- X.sw -- cycle
for every object X.

Types of Links

Some of the types of links defined for class diagrams
(such as inheritance, association etc.) can be used with
similar semantics within use case diagrams.

Activity Diagrams

Begin and End

The begin and the end of an activity diagram can be
marked by using the macros Begin and End, respect-
ively. The constructors of these visual objects take no
parameters:

Begin.beginName;

End.endName;

Figure 12 gives the output of the code:

Begin.b;

End.e;

b.nw = (0,0);
e.nw = (20, 20);

drawObjects(b, e);

An Introduction to MetaUML

®
®

Figure 12. Begin and end in an activity diagram.

Learn MetaUML -
the MetaPost UML library

Figure 13. Activity example.

Take order

Figure 14. State example.

Activity
An activity is constructed as follows:
Activity.name(list-of-strings);

The parameter 1ist-of-strings is a comma sep-
arated list of strings. These strings are centered on
top of each other to allow for the accommodation of a
longer activity description within a reasonable space.

An example is given in figure 13

Activity.A("Learn MetaUML -",
"the MetaPost UML library");
drawObject (4);

Types of Links

In activity diagrams, transitions between activities are
needed. They are typeset as in the example below. Fig-
ure 15 shows such a transition rendered. This type of
link is also used for state machine diagrams.

link(transition) (pointA -- pointB);

State Diagrams

The constructor of a state allows for aggregated sub-
states:

State.name(state-name) (substates-1list);

The parameter state-name is a string or a list of
comma separated strings representing the state’s name
or description. The substates-list parameter is
used to specify the substates of this state as a comma
separated list of objects; this list may be void.

Figure 14 presents a simple state, rendered by the
following code:

State.s("Take order")();
drawObject(s);

NAJAAR 2005

Composite

Component

®

- J/

Figure 15. State example: composite states.

Composite States

A composite state is defined by enumerating at the
end of its constructor the inner states. Interestingly
enough, the composite state takes care of drawing the
sub-states it contains. The transitions must be drawn
after the composite state, as seen in the next example
(figure 15):

Begin.b;

End.e;

State.c("Component™") () ;
State.composite("Composite") (b, e, c);

b.midx = e.midx = c.midx;
c.top = b.bottom - 20;
e.top = c.bottom - 20;

composite.info.drawNameLine := 1;
drawObject (composite) ;

link(transition)(b.s -- c.n);
link(transition) (c.s -- e.n);

Internal Transitions
Internal transitions can be specified by using the
macro:

stateTransitions.name(list-transitions);

Identifier name gives the state object whose in-
ternal transitions are being set, and parameter
list-transitions is a comma separated string list.
Figure 16 presents the result of the code below.

State.s("An interesting state",
"which is worth mentioning") ();
stateTransitions.s(
"OnEntry / Open eyes",
"OnExit / Sleep well");
s.info.drawNameLine := 1;

drawObject(s);

69

70 MAPS 33

An interesting state
which is worth mentioning

OnEntry / Open eyes
OnExit / Sleep well

Figure 16. State example: internal transitions.

Figure 17. Link paths can be arbitrary complex in
MetaUML: the heads are properly drawn.

Special States

Similarly to the usage of Begin and End macros, one
can define history states, exit/entry point states and
terminate pseudo-states, by using the following con-
structors.

History.nameA;

ExitPoint.nameB;

EntryPoint.nameC;

Terminate.nameD;

Drawing Paths

The 1ink macro is powerful enough to draw relations
following arbitrary paths (figure 17):

za = (10,10);

zb = (80,-10);

path cool;

cool := za .. za+(20,10)
zb+(20,-40)

zb+(-10,-30) -- zb;
link(aggregationUni) (cool);

Regardless of how amusing this feature might be, it
does become a bit of a nuisance to use it in its bare
form. When typesetting UML diagrams in good style,
one generally uses rectangular paths. It is for this kind
of style that MetaUML offers extensive support, provid-
ing a “syntactic sugar” for constructs which can other-
wise be done by hand, but with some extra effort.

Manhattan Paths

The “Manhattan” path macros generate a path
between two points consisting of one horizontal and
one vertical segment. The macro pathManhattanX
generates first a horizontal segment, while the macro
pathManhattanY generates first a vertical segment. In
MetaUML it also matters the direction of a path, so you

Ovidiu Gheorghies

o

A

Figure 18. Manhattan paths.

can choose to reverse it by using rpathManhattanX
and rpathManhattanY (note the prefix “r”):

pathManhattanX(A, B)
pathManhattanY (A, B)

rpathManhattanX (A, B)
rpathManhattanY(A, B)

Figure 18 shows these macros at work:

Class.A("A") O O;
Class.B("B") O QO;

B.sw = A.ne + (10,10);
drawObjects(A, B);

link(aggregationUni)
(rpathManhattanX(A.e, B.s));

link(inheritance)
(pathManhattanY(A.n, B.w));

Stair Step Paths

These path macros generate stair-like paths between
two points. The “stair” can “rise” first in the direction
of Ox axis (pathStepX) or in the direction of Oy axis
(pathStepY). How much should a step rise is given
by an additional parameter, delta. Again, the mac-
ros prefixed with “r” reverse the direction of the path
given by their unprefixed counterparts.

pathStepX(A, B, delta)
pathStepY(A, B, delta)

rpathStepX(A, B, delta)
rpathStepY(A, B, delta)

Figure 19 shows these macros at work:
stepX:=60;
link(aggregationUni)
(pathStepX(A.e, B.e, stepX));

stepY:=20;
link(inheritance)
(pathStepY(B.n, A.n, stepY));

Horizontal and Vertical Paths

There are times when drawing horizontal or vertical
links is required, even when the objects are not prop-
erly aligned. To this aim, the following macros are use-

An Introduction to MetaUML

stepY I

A
I
i |
—»
1 stepX !
Figure 19. Stair step paths.
C
= foo: int
untilY - - -
B
A a b
I
untilX

Figure 20. Horizontal and vertical paths.

ful:

pathHorizontal (pA, untilX)
pathVertical(pA, untilY)

rpathHorizontal (pA, untilX)
rpathVertical(pA, untilY)

A path created by pathHorizonal starts from the
point pA and continues horizontally until coordinate
untilX is reached. The macro pathVertical con-
structs the path dually, working vertically. The prefix
“r” reverses the direction of the path.

Figure 20 gives an usage example:

untilX := B.left;

link(association)
(pathHorizontal(A.e, untilX));

untilY:= C.bottom;
link(association)
(pathVertical(A.n, untilY));

Direct Paths
A direct path can be created with directPath. The
call directPath(A, B) is equivalentto A -- B.

Paths between Objects

Using the constructs presented above, it is clear that
one can draw links between diagram objects, using a
code like:

link(transition) (directPath(objA.nw, objB.se));

NAJAAR 2005

Figure 21. The pathCut macro at work.

B

5%

Figure 22. Direct linking between objects with clink.

There are times however this may yield unsatisfact-
ory visual results, especially when the appearance of
the object’s corners is round. MetaUML provides the
macro pathCut whose aim is to limit a given path ex-
actly to the region outside the actual borders of the
objects it connects. The macro’s synopsis is:

pathCut (thePath) (objectA, objectB)

Here, thePath is a given MetaPost path and
objectA and objectB are two MetaUML objects. By
contract, each MetaUML object of type, say, X defines
a macro X_border which returns the path that sur-
rounds the object. Because of that, pathCut can make
the appropriate modifications to thePath.

The following code demonstrates the benefits of the
pathCut macro (figure 21):

z = A.se + (30, -10);
link(transition)
(pathCut (A, B)(A.c--z--B.c));

Direct Paths between Centers. At times is quicker to
just draw direct paths between the center of two ob-
jects, minding of course the object margins. The macro
which does this is clink:

clink (how-to-draw-information) (objA, objB);
The parameter how-to-draw-information is the
same as for the macro 1link; objA and objB are two

MetaUML objects.
Figure 22 gives the output of the following code:

clink(inheritance) (A, B);

The MetaUML Infrastructure

MetaPost is a macro language based on equation solv-
ing. Using it may seem quite tricky at first for a pro-
grammer accustomed to modern object-oriented lan-
guages. However, the great power of MetaPost con-
sists in its versatility. Indeed, it is possible to write a

71

72 MAPS 33

[yummy | _ Lcool |

Figure 23. Motivation for not using boxes: the bottom
alignment is imperfect.

system which mimics quite well object-oriented beha-
vior. Along this line, METAOBJ (Roegel (2002)) is a
library worth mentioning: it provides a high-level ob-
jects infrastructure along with a battery of predefined
objects.

Surprisingly enough, MetaUML does not use
METAOBJ. Instead it uses a custom written, light-
weight object-oriented infrastructure, provisionally
called “util”. The fact that METAOBJ’s source con-
sists of a huge file which is rather hard to follow and
understand contributed to this decision.

Another library that has some object-oriented traits
is the boxes library, which comes with the standard
MetaPost distribution. Early versions of MetaUML did
use boxes as an infrastructure, but eventually it had
to be abandoned. The main reason was that it was
difficult to achieve good visual results when stacking
texts (more on that further on). Also, it had a degree
of flexibility which became apparent to be insufficient.

Motivation

Suppose that we want to typeset two texts with their
bottom lines aligned, using boxit (figure 23):
boxit.a ("yummy");
boxit.b ("cool");
a.nw = (0,0); b.sw = a.se + (10,0);
drawboxed (a, b); % or drawunboxed(a,b)

draw a.sw -- b.se dashed evenly
withpen pencircle scaled 1.1;

Note that “yummy” looks slightly higher than “cool”:
this is unacceptable when, in an UML class diagram,
roles are placed at the ends of a horizontal association.
Regardless of default spacing being smaller in the util
library, the very same unfortunate misalignment effect
rears its ugly head (figure 24):

Picture.a("yummy");
Picture.b("cool");

% comment next line for unboxed
a.info.boxed := b.info.boxed := 1;

b.sw = a.se + (10,0);

drawObjects(a, b);

However, the strong point of util is that we have a
recourse to this problem (figure 25):

Ovidiu Gheorghies

yummy _
yummy cool

Figure 24. Misalignment occurs by default with the util
library, but this can be configured not to happen.

immy] _|cool]
yummy _ _ cool.

Figure 25. The util package provides good alignment.
iPict.ignoreNegativeBase := 1;

Picture.a("yummy");
Picture.b("cool");
% the rest the same as above
drawObjects(a, b);

The Picture Macro

We have seen previously the line
iPict.ignoreNegativeBase := 1. Who is iPict
and what is it doing in our program? MetaUML aims
at separating the “business logic” (what to draw) from
the “interface” (how to draw). In order to achieve
this, it records the “how to draw” information within
the so-called Info structures. The object iPict is an
instance of PictureInfo structure, which has the
following properties (or attributes):

left, right, top, bottom
ignoreNegativeBase
boxed, borderColor

The first four attributes specify how much space
should be left around the actual item to be drawn.
The marvelous effect of ignoreNegativeBase has
just been shown (off) while the last two attributes
control whether the border should be drawn (when
boxed=1) and if drawn, in which color.

There’s one more thing: the font to typeset the text
in. This is specified in a FontInfo structure which has
two attributes: the font name and the font scale. This
information is kept within the PictureInfo structure
as a contained attribute iFont. Both FontInfo and
PictureInfo have “copy constructors” which can be
used to make copies. We have already the effect of
these copy constructors at work, when we used:

Picture.a("yummy");
a.info.boxed := 1;

A copy of the default info for a picture, iPict, has
been made within the object a and can be accessed as
a.info. Having a copy of the info in each object may
seem like an overkill, but it allows for a fine grained
control of the drawing mode of each individual object.

An Introduction to MetaUML

yummy

cool

Figure 26. Having predefined configurations yields short,
convenient code.

This feature comes in very handy when working with a
large number of settings, as it is the case for MetaUML.
Let us imagine for a moment that we have two types
of text to write: one with a small font and a small mar-
gin and one with a big font and a big margin. We could
in theory configure each individual object or set back
and forth global parameters, but this is far for conveni-
ent. It is preferable to have two sets of settings and
specify them explicitly when they are needed. The fol-
lowing code could be placed somewhere in a configur-
ation file and loaded before any beginfig macro:

PictureInfoCopy.iBig(iPict);
iBig.left := iBig.right := 20;
iBig.top := 10;

iBig.bottom := 1;

iBig.boxed := 1;
iBig.ignoreNegativeBase := 1;
iBig.iFont.name := defaultfont;
iBig.iFont.scale := 3;

PictureInfoCopy.iSmall(iPict);
iSmall.boxed := 1;

iSmall.borderColor := green;

Below is an usage example of these definitions
(result in figure 26). Note the name of the macro:
EPicture. The prefix comes form “explicit” and it’s
used to acknowledge that the “how to draw” informa-
tion is set explicitly, as opposed to the Picture macro
where the info member defaults to iPict.

EPicture.a(iBig) ("yummy") ;
EPicture.b(iSmall) ("cool");
% you can still modify a.info and b.info

b.sw = a.se + (10,0);

drawObjects(a, b);

Stacking Objects
It is possible to stack objects, much in the style of
setboxjoin from boxes library (figure 27).

Picture.a0("yummy") ;
Picture.al("cool");
Picture.a2("fool");

setObjectJoin(pa.sw = pb.nw);

NAJAAR 2005

Umm
cool
fool

Figure 27. Stacking objects.

(@) ?
ol =
o

yummy

Figure 28. Grouping objects.

joinObjects(scantokens listArray(a)(3));
drawObjects(scantokens listArray(a)(3));
% or drawObjects (a0, al, a2);

The 1istArray macro provides here a shortcut for
writing a0, al, a2. This macro is particularly use-
ful for generic code which does not know beforehand
the number of elements to be drawn. Having to write
the scantokens keyword is admittedly a nuisance, but
this is required.

The Group Macro

It is possible to group objects in MetaUML. This fea-
ture is the cornerstone of MetaUML, allowing for the
easy development of complex objects, such as compos-
ite stats in state machine diagrams.

Similarly to the macro Picture, the structure
GroupInfo is used for specifying group properties;
its default instantiation is iGroup. Furthermore, the
macro EGroup explicitely sets the layout information.
Figure 28 results from the code below:
iGroup.left:=20;
iGroup.right:=15;
iGroup.boxed:=1;
iPicture.boxed:=1;

Picture.a("yummy") ;
Picture.b("cool");
Picture.c("fool");

a.nw + (20,20); % A
a.nw + (15, 40); % B

b.nw =

c.nw

Group.g(a, b, c);
g.nw = (10,10); % C

drawObject(g);

Note that after some objects are grouped, they can
all be drawn by invoking the drawObject macro solely
on the group that aggregates them. Another import-
ant remark is that it is necessary only to set the relat-
ive positioning of objects within a group (line A and

73

74 MAPS 33

bar: int

nicely-centered

Figure 29. An example of a picture stack.

B); afterward, one can simply “move” the group to a
given position (line C), and all the contained objects
will move along.

The PictureStack Macro

The PictureStack macro is a syntactic sugar for a set
of pictures, stacked according to predefined equations
and grouped together (figure 29).

iStack.boxed := 1;

iStack.iPict.boxed := 1;

PictureStack.myStack("foo",
"bar: int" infont "tyxtt",
"nicely-centered" infont defaultfont,
"nice") ("vcenter");

drawObject (myStack) ;

Note the last parameter of the macro
PictureStack, here vcenter. It is used to gen-
erate appropriate equations based on a descriptive
name. The spacing between individual picture objects
is set by the field iStack.spacing. Currently, the fol-
lowing alignment names are defined: vleft, vright,
vcenter, vleftbase, vrightbase, vcenterbase.
All these names refer to vertical alignment (the prefix
“v”); alignment can be at left, right or centered. The
variants having the suffix “base” align the pictures so
that iStack.spacing refer to the distance between
the bottom lines of the pictures. The unsuffixed vari-
ants use iStack.spacing as the distance between
one’s bottom line and the next’s top line.

The “base” alignment is particularly useful for
stacking text, since it offers better visual appearance
when iPict.ignoreNegativeBase is set to 1.

Components Design

Each MetaUML component (e.g. Picture,
PictureStack, Class) is designed according to
an established pattern. This section gives more insight
on this.

In order to draw a component, one must know the
following information:

O what to draw, or what are the elements of a
component.
O how to draw, or how are the elements positioned

Ovidiu Gheorghies

in relation to each other within the component
O where to draw

For example, in order to draw a picture object we
must know, respectively:

O what is the text or the native picture that needs to
be drawn

O what are the margins that should be left around
the contents

O where is the picture to be drawn

Why do we bother with these questions? Why don’t
we just simply draw the picture component as soon
as it was created and get it over with? That is, why
doesn’t the following code just work?

Picture.pict("foo");

Well, although we have the answer to question 1
(what to draw), we still need to have question 3
answered. The code below becomes thus a necessity
(actually, you are not forced to specify the positioning
of an object, because its draw method positions it to
(0,0) by default):

% question 1: what to draw
Picture.pict("foo");

% question 3: where to draw
pict.nw = (10,10);

% now we can draw
drawObject (pict);

How about question 2, how to draw? By default,
this problem is addressed behind the scenes by the
component. This means, for the Picture object, that
a native picture is created from the given string, and
around that picture certain margins are placed, by
means of MetaPost equations. (The margins come in
handy when one wants to quickly place Picture ob-
jects near others, so that the result doesn’t look too
cluttered.) If these equations were defined within the
Picture constructor, then an usability problem would
have appeared, because it wouldn’t have been possible
to modify the margins, as in the code below:

% question 1: what to draw
Picture.pict("foo");

% question 2: how to draw
pict.info.left := 10;
pict.info.boxed := 1;

% question 3: where to draw
pict.nw = (0,0);

An Introduction to MetaUML

% now we can draw
drawObject (pict) ;

To allow for this type of code, the equations that
define the layout of the Picture object (here, what
the margins are) must be defined somewhere after
the constructor. This is done by a macro called
Picture_layout. This macro defines all the equa-
tions which link the “what to draw” information to the
“how to draw” information (which in our case is taken
from the info member, a copy of iPict). Neverthe-
less, notice that Picture_layouts is not explicitly in-
voked. To the user’s great relief, this is taken care of
automatically within the Picture_draw macro.

There are times however, when explicitly invoking
a macro like Picture_layout becomes a necessity.
This is because, by contract, it is only after the layout
macro is invoked that the final dimensions (width,
height) of an object are definitely and permanently
known. Imagine that we have a component whose job
is to surround in a red-filled rectangle some other ob-
jects. This component needs to know what the dimen-
sions of the contained objects are, in order to be able to
set its own dimensions. At drawing time, the contained
objects must not have been drawn already, because the
red rectangle of the container would overwrite them.
Therefore, the whole pseudo-code would be:

Create objects ol, o2, . ok;

Create container c(ol, 02, ., ok);
Optional: modify info-s for ol, o2, . ok;
Optional: modify info for c;

layout c, requiring layout of ol, o2, . ok;

establish where to draw c;
draw red rectangle defined by c;

draw components ol, 02, ...ok within c

Note that an object mustn’t be laid out more than
once, because otherwise inconsistent or superfluous
equations would arise. To enforce this, by contract,
any object must keep record of whether its layout
method has already been invoked, and if the answer
is affirmative, subsequent invocations of the layout
macro would do nothing. It is very important to men-
tion that after the layout macro is invoked over an
object, modifying the info member of that object has
no subsequent effect, since the layout equations are
declared and interpreted only once.

Notes on the Implementation of Links

MetaUML considers edges in diagram graphs as links.
A link is composed of a path and the heads (possible
none, one or two). For example, an association has no
heads, and one must simply draw along the path with
a solid pen. An unidirectional aggregation has a solid
path and two heads: one is an arrow and the other is

NAJAAR 2005

AB the path specified by the user
JAA’| | iLink.widthA
IBB’/| | iLink.widthB

Figure 30. Details on how a link is drawn by MetaUML.

a diamond. So the template algorithm for drawing a
link is:

0. Reserve space for heads

1. Draw the path (except for the heads)

2. Draw head 1

3. Draw head 2

Each of the UML link types define how the drawing
should be done, in each of the cases (1, 2 and 3). Con-
sider the link type of unidirectional composition. Its
“class” is declared as:

vardef CompositionUniInfo@# =

LinkInfoQ#;

Q#widthA = defaultRelationHeadWidth;
O#heightA = defaultRelationHeadHeight;
Q#drawMethodA = "drawArrow";

Q#widthB = defaultRelationHeadWidth;
Q@#heightB = defaultRelationHeadHeight;
@#drawMethodB = "drawDiamondBlack";

Q#drawMethod = "drawLine";
enddef;

Using this definition, the actual description is cre-
ated like this:

CompositionUniInfo.compositionUni;

As shown previously, is is the macro 1ink which
performs the actual drawing, using the link descrip-
tion information which is given as parameter (gener-
ally called iLink). For example, we can use:

link(aggregationUni) ((0,0)--(40,0));

Let us see now the inner workings of macro link.
Its definition is:

vardef link(text iLink) (expr myPath)=
LinkStructure.ls(myPath,
ilink.widthA, iLink.widthB);
drawLinkStructure(ls) (iLink) ;
enddef;

First, space is reserved for heads, by “shortening”
the given path myPath by iLink.widthA at the be-
ginning and by iLink.widthB at the end. After that,
the shortened path is drawn with the “method” given
by iLink.drawMethod and the heads with the “meth-
ods” iLink.drawMethodA and iLink.drawMethodB,

75

76 MAPS 33

respectively (figure 30).

Object Definitions: Easier generic_declare

In MetaPost if somebody wants to define something re-
sembling a class, say Person, he would do something
like this:

vardef Person@#(expr _name, _age)=
% ©@# prefix can be seen as ‘this‘ pointer
string Q#name;
numeric Q#age;

O@#name := _name;
Q#age := _age;
enddef;

This allows for the creation of instances (or objects)
of class Person by using declarations like:

Person.personA;
Person.personB;

However, if one also wants to able able to create
indexed arrays of persons, such as Person. studentO,
Person.student1 etc., the definition of class Person
must read:

vardef Person@#(expr _name, _age)=
_ str Q#;
generic_declare(string) _n.name;
generic_declare(numeric) _n.age;

n_ :=

@#name := _name;
Q#age := _age;
enddef;

This construction is rather inelegant. MetaUML of-
fers alternative macros to achieve the same effect, un-
cluttering the code by removing the need for the unaes-
thetic _n_ and _n.
vardef Person@#(expr _name, _age)=

attributes (Q#) ;

var (string) name;

var (numeric) age;

@#name := _name;
Q#age := _age;
enddef;

Customization in MetaUML: Examples

We have seen that in MetaUML the “how to draw”
information is memorized into the so-called “Info”
structures. For example, the default way in which a
Picture object is to be drawn is recorded into an in-
stance of PictureInfo, named iPict. In this sec-
tion we present a case study involving the custom-
ization of Class objects. The customization of any
other MetaUML objects works similarly. Here we can-

Ovidiu Gheorghies

Figure 31. Changing the default settings for all classes.

not possibly present all the customization options for
all kinds of MetaUML objects: this would take too long.
Nevertheless, an interested reader can refer to the top
of the appropriate MetaUML library file, where Info
structures are defined. For example, class diagram re-
lated definitions are in metauml_class.mp, activity
diagram definitions are in metauml_activity.mp etc.

Global settings

Let us assume that we do not particularly like the
default foreground color of all classes, and wish to
change it so something yellowish. In this scenario, one
would most likely want to change the appropriate field
in iClass:

:= (.9, .9, 0);
After this, the following code produces the result in
figure 31:

Class.A("A") O QO;
Class.B("B") OO}
Class.C("C") O O;

iClass.foreColor

B.w
C.n

A.e + (20,0);
.5[A.se, B.sw] + (0, -10);

drawObjects(A, B, C);

Individual settings

When one wants to make modifications to the settings
of one particular Class objects, another strategy is
more appropriate. How about having class C stand out
with a light blue foreground color, a bigger font size
for the class name and a blue border (figure 32)?

iPict.foreColor := (.9, .9, 0);
Class.A("A") O O;
Class.B("B") O O;
Class.C("C") OO}
C.info.foreColor := (.9, .7, .7);
C.info.borderColor := green;
C.info.iName.iFont.scale := 2;

% positioning code ommited
drawObjects(A, B, C);

As an aside, note that for each Class object its info
member is created as a copy of iClass: the actual

An Introduction to MetaUML

C

Figure 32. Individual customization of a class object.

drawing is performed using this copied information.
Because of that, one can modify the inf o member after
the object has been created and still get the desired res-
ults.

Another thing worth mentioning is that the
ClassInfo structure contains the iName member,
which is an instance of PictureInfo. In our ex-
ample we do not want to modify the spacings around
the Picture object, but the characteristics of the
font its contents is typeset into. To do that, we
modify the iName.iFont member, which by default
is a copy of iFont (an instance of FontInfo, defined
in util_picture.mp). If, for example, we want to
change the font the class name is rendered into, we
would set the attribute iName.iFont .name to a string
representing a font name on our system (as used with
the MetaPost infont operator).

Predefined settings

The third usage scenario is perhaps more interesting.
Suppose that we have two types of classes which we
want to draw differently. Making the setting adjust-
ments for each individual class object would soon be-
come a nuisance. MetaUMLs solution consists in the
ability of using predefined “how to draw” Info objects.
Let us create such objects:

ClassInfoCopy.iHome (iClass) ;

iHome.foreColor := (0, .9, .9);
ClassInfo.iRemote;
iRemote.foreColor .9, 0);

= (.9,
iRemote.borderColor := green;

Object iHome is a copy of iClass (as it might have
been set at the time of the macro call). Object iRemote
is created just as iClass is originally created. We can
now use these Info objects to easily set the “how to
draw” information for classes. The result is depicted
in figure 33, please note the “E” prefix in EClass:

EClass.A(iHome) ("UserHome") () O);
EClass.B(iRemote) ("UserRemote") () ();
EClass.C(iHome) ("CartHome") () ();
EClass.D(iRemote) ("CartRemote") () ();

NAJAAR 2005

UserHome UserRemote

CartHome CartRemote

Figure 33. Using predefined settings.

Foo

a: int
b: int

foo()
bar()

gar()

bbb

b b b

Figure 34. Extreme customization of a class. You may
want not to do this, after all.

Extreme customization

When another font (or font size) is used, one may also
want to modify the spacings between the attributes’
and methods’ baselines. Figure 34 is the result of the
(unlikely) code:

Class.A("Foo")

("a: int", "b: int")

("fooO)", "bar(", "gar(0");
A.info.iAttributeStack.iPict.iFont.scale := 0.8;
.info.iAttributeStack.top := 10;
A.info.iAttributeStack.spacing := 11;

=

A.info.iMethodStack.iPict.iFont.scale := 2;
A.info.iMethodStack.spacing := 17;
A.info.iMethodStack.bottom := 10;

drawObject (A);

Both iAttributeStack and iMethodStack are in-
stances of PictureStackInfo, which is used to con-
trol the display of PictureStack objects.

Conclusions

MetaUML is a GNU GPL library for typesetting UML
diagrams, particularly useful in a TeX or LaTeX en-
vironment; see Knuth (1986), Lamport (1994). It
provides an easy to use, human readable API.

The code of a diagram typeset in MetaUML ap-
pears clearer (at least to the author of this paper) than
the corresponding code in uml.sty, pst-uml.sty,
umldoc or even XMI; see Gjelstad (2001), Diamantini
(1998), Palmer (1999), OMG (2003). It is the next
best thing to using a visual tool, while having the free-

77

78 MAPS 33

dom of not becoming technologically dependent of any
particular visual tool.

The util infrastructure of MetaUML offers means
of defining and using “objects”, which may recommend
it for other typesetting projects, unrelated to UML. We
mention here a few of its benefits: the ability to stack
and align text in a visually pleasing way; a fine degree
of control of how elements are laid out; the ability to
group objects while having access to the properties of
inner elements; a design pattern and syntactic sugar
for writing modern-looking, reusable MetaPost code.

With this infrastructure in place, it should be pos-
sible to extend MetaUML until it offers complete UML
2.0 support.

References
Roegel, D. (2002). The METAOBJ tutorial
and reference manual. Available from

www.loria.fr/ roegel/TeX/momanual.pdf.

Knuth, D. E. (1986). The TgXbook. Addison-Wesley
Publishing Company.

Ovidiu Gheorghies

Faculty of Computer Science
“Al. 1. Cuza” University of lasi
Romania

ogh@info.uaic.ro

Ovidiu Gheorghies

Lamport, L. (1994). LalgX a Document Preparation Sys-
tem. Addison-Wesley Publishing Company, 2nd edi-
tion.

Gheorghies, O. (2005). MetaUML: Tutorial,
Reference and Test Suite. Available from
http://metauml.sourceforge.net.

Hobby, J. (1992) A User’s Manual for MetaPost. Avail-
able from http://www.tug.org/tutorials/mp/.

Gjelstad, E. (2001). uml.sty 0.09.09. Available from
http://heim.ifi.uio.no/“ellefg/uml.sty/.

Diamantini, M. (1998). Interface utilisateur
du package pst-uml. Available from
http://perce.de/LaTeX/pst-uml/.

Palmer, D. (1999). The umldoc UML Doc-
umentation Package. Available from
http://www.charvolant.org/ elements/.

XML Metadata
Available from

Object Management Group (2003).
Interchange (XMI) Specification.
http://www.omg.org/.

