
C Programming User’s Manual

 Kirtipur Valley Institute [014332509]

C - Basic Introduction

C is a general-purpose high level language that was originally developed by Dennis Ritchie for the
Unix operating system. It was first implemented on the Digital Equipment Corporation PDP-11
computer in 1972.

The Unix operating system and virtually all Unix applications are written in the C language. C has now

become a widely used professional language for various reasons.

• Easy to learn

• Structured language

• It produces efficient programs.

• It can handle low-level activities.

• It can be compiled on a variety of computers.

Facts about C

• C was invented to write an operating system called UNIX.

• C is a successor of B language which was introduced around 1970

• The language was formalized in 1988 by the American National Standard Institute (ANSI).

• By 1973 UNIX OS was almost totally written in C.

• Today C is the most widely used System Programming Language.

• Most of the state of the art software have been implemented using C

Why to use C ?

C was initially used for system development work, in particular the programs that make-up the

operating system. C was adopted as a system development language because it produces code that runs

nearly as fast as code written in assembly language. Some examples of the use of C might be:

• Operating Systems

• Language Compilers

• Assemblers

• Text Editors

• Print Spoolers

• Network Drivers

• Modern Programs

• Data Bases

• Language Interpreters

• Utilities

C Compilers

When you write any program in C language then to run that program you need to compile that program
using a C Compiler which converts your program into a language understandable by a computer. This
is called machine language (ie. binary format). So before proceeding, make sure you have C Compiler
available at your computer. Some examples of C compilers are Turbo C and Borland C.

C - Program Structure

A C program basically has the following form:

 Preprocessor Commands

 Functions

 Variables

 Statements & Expressions

 www.valleyui.com –Rabin Rai (www.click2solution.com)

 Comments

Preprocessor Commands: These commands tells the compiler to do preprocessing before doing actual

compilation. Like #include <stdio.h> is a preprocessor command which tells a C compiler to include

stdio.h file before going to actual compilation. You will learn more about C Preprocessors in C

Preprocessors session.

Functions: are main building blocks of any C Program. Every C Program will have one or more

functions and there is one mandatory function which is called main() function. This function is prefixed

with keyword int which means this function returns an integer value when it exits. This integer value is

retured using return statement.

The C Programming language provides a set of built-in functions. printf() is a C built-in function which

is used to print anything on the screen.

Variables: Variables are used to hold numbers, strings and complex data for manipulation.

Statements & Expressions : Expressions combine variables and constants to create new values.

Statements are expressions, assignments, function calls, or control flow statements which make up C

programs.

Comments: are used to give additional useful information inside a C Program. All the comments will

be put inside /*...*/ as given in the example above. A comment can span through multiple lines.

Note the followings

• C is a case sensitive programming language. It means in C printf and Printf will have

different meanings.

• C has a free-form line structure. End of each C statement must be marked with a

semicolon.

• Multiple statements can be one the same line.

• White Spaces (ie tab space and space bar) are ignored.

• Statements can continue over multiple lines.

Data Types in C

A C language programmer has to tell the system before-hand, the type of numbers or characters he is

using in his program. These are data types. There are many data types in C language. A C programmer

has to use appropriate data type as per his requirement.

Primary data type

All C Compilers accept the following fundamental data types

1. Integer int

2. Character char

3. Floating Point float

4. Double precision floating

point

double

5. Void void

Integer Type :

Integers are whole numbers with a machine dependent range of values. A good programming language

as to support the programmer by giving a control on a range of numbers and storage space. C has 3

classes of integer storage namely short int, int and long int. All of these data types have signed and

unsigned forms. A short int requires half the space than normal integer values. Unsigned numbers are

always positive and consume all the bits for the magnitude of the number. The long and unsigned

integers are used to declare a longer range of values.

C Programming User’s Manual

 Kirtipur Valley Institute [014332509]

Floating Point Types :

Floating point number represents a real number with 6 digits precision. Floating point numbers are

denoted by the keyword float. When the accuracy of the floating point number is insufficient, we can

use the double to define the number. The double is same as float but with longer precision. To extend

the precision further we can use long double which consumes 80 bits of memory space.

Void Type :

Using void data type, we can specify the type of a function. It is a good practice to avoid functions that

does not return any values to the calling function.

Character Type :

A single character can be defined as a defined as a character type of data. Characters are usually stored

in 8 bits of internal storage. The qualifier signed or unsigned can be explicitly applied to char. While

unsigned characters have values between 0 and 255, signed characters have values from –128 to 127.

Size and Range of Data Types on 16 bit machine.

TYPE

SIZE

(Bits)

Range

Char or Signed Char 8 -128 to 127

Unsigned Char 8 0 to 255

Int or Signed int 16 -32768 to 32767

Unsigned int 16 0 to 65535

Short int or Signed short

int

8 -128 to 127

Unsigned short int 8 0 to 255

Long int or signed long int 32 -2147483648 to

2147483647

Unsigned long int 32 0 to 4294967295

Float 32 3.4 e-38 to 3.4 e+38

Double 64 1.7e-308 to 1.7e+308

Long Double 80 3.4 e-4932 to 3.4 e+4932

Declaration of Variables

Every variable used in the program should be declared to the compiler. The declaration does two

things.

1. Tells the compiler the variables name.

2. Specifies what type of data the variable will hold.

The general format of any declaration

datatype v1, v2, v3, ……….. vn;

Where v1, v2, v3 are variable names. Variables are separated by commas. A declaration statement must

end with a semicolon.

Example:

Int sum;

 www.valleyui.com –Rabin Rai (www.click2solution.com)

Int number, salary;

Double average, mean;

Datatype Keyword Equivalent

Character

char

Unsigned Character

unsigned char

Signed Character

signed char

Signed Integer

signed int (or) int

Signed Short Integer

signed short int (or) short int (or) short

Signed Long Integer

signed long int (or) long int (or) long

UnSigned Integer

unsigned int (or) unsigned

UnSigned Short Integer

unsigned short int (or) unsigned short

UnSigned Long Integer

unsigned long int (or) unsigned long

Floating Point

float

Double Precision Floating Point

double

Extended Double Precision Floating Point

long double

User defined type declaration

In C language a user can define an identifier that represents an existing data type. The user defined

datatype identifier can later be used to declare variables. The general syntax is

typedef type identifier;

here type represents existing data type and „identifier‟ refers to the „row‟ name given to the data type.

Example:

typedef int salary;

typedef float average;

Here salary symbolizes int and average symbolizes float. They can be later used to declare variables as

follows:

Units dept1, dept2;

Average section1, section2;

Therefore dept1 and dept2 are indirectly declared as integer datatype and section1 and section2 are

indirectly float data type.

The second type of user defined datatype is enumerated data type which is defined as follows.

C Programming User’s Manual

 Kirtipur Valley Institute [014332509]

Enum identifier {value1, value2 …. Value n};

The identifier is a user defined enumerated datatype which can be used to declare variables that have

one of the values enclosed within the braces. After the definition we can declare variables to be of this

„new‟ type as below.

enum identifier V1, V2, V3, ……… Vn

The enumerated variables V1, V2, ….. Vn can have only one of the values value1, value2 ….. value n

Example 1:

enum day {Monday, Tuesday, …. Sunday};

enum day week_st, week end; week_st =

Monday; week_end = Friday; if(wk_st ==

Tuesday) week_en = Saturday;

Example 2:

#include <stdio.h>

int main() {

 enum {RED=5, YELLOW, GREEN=4, BLUE};

 printf("RED = %d\n", RED);

printf("YELLOW = %d\n", YELLOW);

printf("GREEN = %d\n", GREEN);

printf("BLUE = %d\n", BLUE); return

0;

}

This will produce following results

 RED = 5

 YELLOW = 6

 GREEN = 4

 BLUE = 5

C Programming - Constants and Variables

Instructions in C language are formed using syntax and keywords. It is necessary to strictly follow C

language Syntax rules. Any instructions that mis-matches with C language Syntax generates an error

while compiling the program. All programs must confirm to rules pre-defined in C Language.

Keywords as special words which are exclusively used by C language, each keyword has its own

meaning and relevance hence, Keywords should not be used either as Variable or Constant names.

Character Set

The character set in C Language can be grouped into the following categories.

1. Letters

2. Digits

3. Special Characters

4. White Spaces

 www.valleyui.com –Rabin Rai (www.click2solution.com)

White Spaces are ignored by the compiler until they are a part of string constant. White Space may be

used to separate words, but are strictly prohibited while using between characters of keywords or

identifiers.

C Character-Set Table

Letters Upper Case A to Z

Digits 0 to 9

Lower Case a to z

 .

Special Characters

, .

; :

?

'

"

!

|

/

\

~

- $

%

Comma

Period

Semicolon

Colon

Question Mark

Aphostrophe

Quotation Marks

Exclaimation Mark

Vertical Bar

Slash

Backslash

Tilde

Underscore

Dollar Sign

Percentage Sign

&

^

*

-

+

<

>

(

)

[

]

{

}

Ampersand

Caret

Asterisk

Minus Sign

Plus Sign

Opening Angle (Less than sign)

Closing Angle (Greater than sign)

Left Parenthesis

Right Parenthesis

Left Bracket

Right Bracket

Left Brace

Right Bracket

.Number Sign

White

Space

1. Blank Space

2. Horizontal Tab

3. Carriage Return

4. New Line

5. Form Feed

Keywords and Identifiers

Every word in C language is a keyword or an identifier. Keywords in C language cannot be used as a

variable name. They are specifically used by the compiler for its own purpose and they serve as

building blocks of a c program.

The following are the Keyword set of C language.

auto else register union

break enum return unsigned

case extern short void

char float signed volatile

const for size of while

continue goto static

default if struct

C Programming User’s Manual

 Kirtipur Valley Institute [014332509]

do int switch

double long typedef

some compilers may have additional keywords listed in C manual.

Identifiers refers to the name of user-defined variables, array and functions. A variable should be

essentially a sequence of letters and or digits and the variable name should begin with a character.

Both uppercase and lowercase letters are permitted. The underscore character is also permitted in

identifiers.

The identifiers must conform to the following rules.

1. First character must be an alphabet (or underscore)

2. Identifier names must consists of only letters, digits and underscore.

3. An identifier name should have less than 31 characters.

4. Any standard C language keyword cannot be used as a variable name.

5. An identifier should not contain a space.

Constants

A constant value is the one which does not change during the execution of a program. C supports

several types of constants.

1. Integer Constants

2. Real Constants

3. Single Character Constants

4. String Constants

Integer Constants

An integer constant is a sequence of digits. There are 3 types of integers namely decimal integer, octal

integers and hexadecimal integer.

Decimal Integers consists of a set of digits 0 to 9 preceded by an optional + or - sign. Spaces, commas

and non digit characters are not permitted between digits. Example for valid decimal integer constants

are

123

-31

0

562321

+ 78

Some examples for invalid integer constants are

15 750

20,000

Rs. 1000

Octal Integers constant consists of any combination of digits from 0 through 7 with a O at the

beginning. Some examples of octal integers are

O26

O

 www.valleyui.com –Rabin Rai (www.click2solution.com)

O347

O676

Hexadecimal integer constant is preceded by OX or Ox, they may contain alphabets from A to F or a

to f. The alphabets A to F refers to 10 to 15 in decimal digits. Example of valid hexadecimal integers

are

OX2

OX8C

OXbcd

Ox

Real Constants

Real Constants consists of a fractional part in their representation. Integer constants are inadequate to

represent quantities that vary continuously. These quantities are represented by numbers containing

fractional parts like 26.082. Example of real constants are

0.0026

-0.97

435.29

+487.0

Real Numbers can also be represented by exponential notation. The general form for exponential

notation is mantissa exponent. The mantissa is either a real number expressed in decimal notation or an

integer. The exponent is an integer number with an optional plus or minus sign.

A Single Character constant represent a single character which is enclosed in a pair of quotation

symbols.

Example for character constants are

'5'

'x'

';'

' '

All character constants have an equivalent integer value which are called ASCII Values.

String Constants

A string constant is a set of characters enclosed in double quotation marks. The characters in a string

constant sequence may be a alphabet, number, special character and blank space. Example of string

constants are

"SUMANT"

"1234"

"God Bless"

"!.....?"

Backslash Character Constants [Escape Sequences]

Backslash character constants are special characters used in output functions. Although they contain

two characters they represent only one character. Given below is the table of escape sequence and their

meanings.

Constant Meaning

'\a' Audible Alert (Bell)

C Programming User’s Manual

 Kirtipur Valley Institute [014332509]

'\b' Backspace

'\f' Formfeed

'\n' New Line

'\r' Carriage Return

'\t' Horizontal tab

'\v' Vertical Tab

'\'' Single Quote

'\"' Double Quote

'\?' Question Mark

'\\' Back Slash

'\0' Null

Variables

A variable is a value that can change any time. It is a memory location used to store a data value. A

variable name should be carefully chosen by the programmer so that its use is reflected in a useful way

in the entire program. Variable names are case sensitive. Example of variable names are

Sun

number

Salary

Emp_name

average1

Any variable declared in a program should confirm to the following

1. They must always begin with a letter, although some systems permit underscore as the first

character.

2. The length of a variable must not be more than 8 characters.

3. White space is not allowed and

4. A variable should not be a Keyword

5. It should not contain any special characters.

Examples of Invalid Variable names are

123

(area)

6th

%abc

Operators
An operator is a symbol which helps the user to command the computer to do a certain mathematical or

logical manipulations. Operators are used in C language program to operate on data and variables. C

has a rich set of operators which can be classified as

1. Arithmetic operators

2. Relational Operators

3. Logical Operators

4. Assignment Operators

5. Unary Operators

6. Conditional Operators

7. Bitwise Operators

8. Special Operators

1. Arithmetic Operators

All the basic arithmetic operations can be carried out in C. All the operators have almost the same

meaning as in other languages. Both unary and binary operations are available in C language. Unary

operations operate on a singe operand, therefore the number 5 when operated by unary – will have the

value –5.

Arithmetic Operators

Operator Meaning

+ Addition or Unary Plus

– Subtraction or Unary Minus

* Multiplication

/ Division

% Modulus Operator

Examples of arithmetic operators are

x + y x - y -x + y a * b + c -a * b

etc.,

here a, b, c, x, y are known as operands. The modulus operator is a special operator in C language

which evaluates the remainder of the operands after division. Example

#include //include header file stdio.h

void main() //tell the compiler the start of the program

{

int numb1, num2, sum, sub, mul, div, mod; //declaration of variables scanf

(“%d %d”, &num1, &num2); //inputs the operands

sum = num1+num2; //addition of numbers and storing in sum.

printf(“\n Thu sum is = %d”, sum); //display the output

sub = num1-num2; //subtraction of numbers and storing in sub.

printf(“\n Thu difference is = %d”, sub); //display the output

mul = num1*num2; //multiplication of numbers and storing in mul.

printf(“\n Thu product is = %d”, mul); //display the output

div = num1/num2; //division of numbers and storing in div.

printf(“\n Thu division is = %d”, div); //display the output

mod = num1%num2; //modulus of numbers and storing in mod.

printf(“\n Thu modulus is = %d”, mod); //display the output }

Integer Arithmetic

When an arithmetic operation is performed on two whole numbers or integers than such an operation is

called as integer arithmetic. It always gives an integer as the result. Let x = 27 and y = 5 be 2 integer

numbers. Then the integer operation leads to the following results.

x + y = 32

x – y = 22

x * y = 115

x % y = 2

x / y = 5

In integer division the fractional part is truncated.

Floating point arithmetic

When an arithmetic operation is preformed on two real numbers or fraction numbers such an operation

is called floating point arithmetic. The floating point results can be truncated according to the properties

requirement. The remainder operator is not applicable for floating point arithmetic operands.

Let x = 14.0 and y = 4.0 then

x + y = 18.0

x – y = 10.0

x * y = 56.0

x / y = 3.50

Mixed mode arithmetic

When one of the operand is real and other is an integer and if the arithmetic operation is carried out on

these 2 operands then it is called as mixed mode arithmetic. If any one operand is of real type then the

result will always be real thus 15/10.0 = 1.5

2. Relational Operators

Often it is required to compare the relationship between operands and bring out a decision and program

accordingly. This is when the relational operator come into picture. C supports the following relational

operators.

Operator Meaning

< is less than

<= is less than or equal to

> is greater than

>= is greater than or equal to

= = is equal to

!= is not equal to

It is required to compare the marks of 2 students, salary of 2 persons, we can compare them using

relational operators.

A simple relational expression contains only one relational operator and takes the following form.

exp1 relational operator exp2

Where exp1 and exp2 are expressions, which may be simple constants, variables or combination of

them. Given below is a list of examples of relational expressions and evaluated values.

6.5 <= 25 TRUE -65 >

0 FALSE

10 < 7 + 5 TRUE

Relational expressions are used in decision making statements of C language such as if, while and for

statements to decide the course of action of a running program.

3. Logical Operators

C has the following logical operators, they compare or evaluate logical and relational expressions.

Operator Meaning

&&

Logical

AND

||

Logical OR

!

Logical NOT

Logical AND (&&)

This operator is used to evaluate 2 conditions or expressions with relational operators simultaneously. If

both the expressions to the left and to the right of the logical operator is true then the whole compound

expression is true.

Example a > b

&& x = = 10

The expression to the left is a > b and that on the right is x == 10 the whole expression is true only if

both expressions are true i.e., if a is greater than b and x is equal to 10.

Logical OR (||)

The logical OR is used to combine 2 expressions or the condition evaluates to true if any one of the 2

expressions is true.

Example

a < m || a < n

The expression evaluates to true if any one of them is true or if both of them are true. It evaluates to true

if a is less than either m or n and when a is less than both m and n.

Logical NOT (!)

The logical not operator takes single expression and evaluates to true if the expression is false and

evaluates to false if the expression is true. In other words it just reverses the value of the expression.

For example

! (x >= y) the NOT expression evaluates to true only if the value of x is neither greater than or equal to

y

4. Assignment Operators

The Assignment Operator evaluates an expression on the right of the expression and substitutes it to the

value or variable on the left of the expression.

Example

x = a + b

Here the value of a + b is evaluated and substituted to the variable x. In

addition, C has a set of shorthand assignment operators of the form.

var oper = exp;

Here var is a variable, exp is an expression and oper is a C binary arithmetic operator. The operator

oper = is known as shorthand assignment operator

Example

x + = 1 is same as x = x + 1

The commonly used shorthand assignment operators are as follows

Shorthand assignment operators

Statement with

simple

assignment operator

Statement with

shorthand

operator

a = a + 1 a += 1

a = a – 1 a -= 1

a = a * (n+1) a *= (n+1)

a = a / (n+1) a /= (n+1)

a = a % b a %= b

Example for using shorthand assignment operator

#define N 100 //creates a variable N with constant value 100

#define A 2 //creates a variable A with constant value 2

main() //start of the program

{ int a; //variable a

declaration a = A; //assigns

value 2 to a

while (a < N) //while value of a is less than N

{ //evaluate or do the following printf(“%d

\n”,a); //print the current value of a a *= a;

//shorthand form of a = a * a

} //end of the loop

} //end of the program

Output

2

4

16

5. Unary Operators

The increment and decrement operators are one of the unary operators which are very useful in C

language. They are extensively used in for and while loops. The syntax of the operators is given below

1. ++ variable name

2. variable name++

3. – –variable name

4. variable name– –

The increment operator ++ adds the value 1 to the current value of operand and the decrement operator

– – subtracts the value 1 from the current value of operand. ++variable name and variable name++

mean the same thing when they form statements independently, they behave differently when they are

used in expression on the right hand side of an assignment statement. Consider the following m = 5;

y = ++m; (prefix)

In this case the value of y and m would be 6

Suppose if we rewrite the above statement as

m = 5;

y = m++; (post fix)

Then the value of y will be 5 and that of m will be 6. A prefix operator first adds 1 to the operand and

then the result is assigned to the variable on the left. On the other hand, a postfix operator first assigns

the value to the variable on the left and then increments the operand.

6. Conditional or Ternary Operator

The conditional operator consists of 2 symbols the question mark (?) and the colon (:)

The syntax for a ternary operator is as follows exp1

? exp2 : exp3

The ternary operator works as follows exp1 is evaluated first. If the expression is true then exp2 is

evaluated & its value becomes the value of the expression. If exp1 is false, exp3 is evaluated and its

value becomes the value of the expression. Note that only one of the expression is evaluated.

For example

a = 10; b =

15;

x = (a > b) ? a : b

Here x will be assigned to the value of b. The condition follows that the expression is false therefore b

is assigned to x.

/* Example : to find the maximum value using conditional operator)

#include

void main() //start of the program

{

int i,j,larger; //declaration of variables

printf (“Input 2 integers : ”); //ask the user to input 2 numbers scanf(“%d

%d”,&i, &j); //take the number from standard input and store it larger = i > j ? i

: j; //evaluation using ternary operator printf(“The largest of two numbers is %d

\n”, larger); // print the largest number } // end of the program

Output

Input 2 integers : 34 45

The largest of two numbers is 45

7. Bitwise Operators

C has a distinction of supporting special operators known as bitwise operators for manipulation data at

bit level. A bitwise operator operates on each bit of data. Those operators are used for testing,

complementing or shifting bits to the right on left. Bitwise operators may not be applied to a float or

double.

Operator Meaning

& Bitwise AND

| Bitwise OR

^ Bitwise Exclusive

<< Shift left

>> Shift right

8. Special Operators

C supports some special operators of interest such as comma operator, size of operator, pointer

operators (& and *) and member selection operators (. and ->). The size of and the comma operators are

discussed here. The remaining operators are discussed in forth coming chapters.

The Comma Operator

The comma operator can be used to link related expressions together. A comma-linked list of

expressions are evaluated left to right and value of right most expression is the value of the combined

expression.

For example the statement value

= (x = 10, y = 5, x + y);

First assigns 10 to x and 5 to y and finally assigns 15 to value. Since comma has the lowest precedence

in operators the parenthesis is necessary. Some examples of comma operator are In for loops:

for (n=1, m=10; n <=m; n++,m++)

In while loops

While (c=getchar(), c != „10‟)

Exchanging values t

= x, x = y, y = t;

The sizeof Operator

The operator size of gives the size of the data type or variable in terms of bytes occupied in the

memory. The operand may be a variable, a constant or a data type qualifier. Example m =

sizeof (sum); n = sizeof (long int); k = sizeof (235L);

The size of operator is normally used to determine the lengths of arrays and structures when their sizes

are not known to the programmer. It is also used to allocate memory space dynamically to variables

during the execution of the program.

Example program that employs different kinds of operators. The results of their evaluation are also

shown in comparison

main() //start of program

{

int a, b, c, d; //declaration of variables a = 15; b = 10; c =

++a-b; //assign values to variables printf (“a = %d, b = %d,

c = %d\n”, a,b,c); //print the values d=b++ + a;

printf (“a = %d, b = %d, d = %d\n, a,b,d);

printf (“a / b = %d\n, a / b); printf

(“a %% b = %d\n, a % b); printf

(“a *= b = %d\n, a *= b); printf

(“%d\n, (c > d) ? 1 : 0); printf

(“%d\n, (c < d) ? 1 : 0);

}

Notice the way the increment operator ++ works when used in an expression. In the statement c = ++a –

b; new value a = 16 is used thus giving value 6 to C. That is a is incremented by 1 before using in

expression.

However in the statement d = b++ + a; The old value b = 10 is used in the expression. Here b is

incremented after it is used in the expression.

We can print the character % by placing it immediately after another % character in the control string.

This is illustrated by the statement.

printf(“a %% b = %d\n”, a%b);

This program also illustrates that the expression

c > d ? 1 : 0

Assumes the value 0 when c is less than d and 1 when c is greater than d.

C Expressions

Arithmetic Expressions

An expression is a combination of variables constants and operators written according to the syntax of

C language. In C every expression evaluates to a value i.e., every expression results in some value of a

certain type that can be assigned to a variable. Some examples of C expressions are shown in the table

given below.

Algebraic

Expression

C Expression

a x b – c a * b – c

(m + n) (x + y) (m + n) * (x + y)

(ab / c) a * b / c

3x
2
 +2x + 1 3*x*x+2*x+1

(x / y) + c x / y + c

Evaluation of Expressions

Expressions are evaluated using an assignment statement of the form

Variable = expression;

Variable is any valid C variable name. When the statement is encountered, the expression is evaluated

first and then replaces the previous value of the variable on the left hand side. All variables used in the

expression must be assigned values before evaluation is attempted.

Example of evaluation statements are

x = a * b – c

y = b / c * a

z = a – b / c + d;

The following program illustrates the effect of presence of parenthesis in expressions.

main ()

{

float a, b, c x, y, z;

a = 9; b = 12; c =

3;

x = a – b / 3 + c * 2 – 1; y =

a – b / (3 + c) * (2 – 1); z =

a – (b / (3 + c) * 2) – 1;

printf (“x = %fn”,x); printf

(“y = %fn”,y); printf (“z =

%fn”,z);

}

output x

= 10.00 y

= 7.00 z

= 4.00

Precedence in Arithmetic Operators

An arithmetic expression without parenthesis will be evaluated from left to right using the rules of

precedence of operators. There are two distinct priority levels of arithmetic operators in C.

High priority * / %

Low priority + -

Rules for evaluation of expression

• First parenthesized sub expression left to right are evaluated.

• If parenthesis are nested, the evaluation begins with the innermost sub expression.

• The precedence rule is applied in determining the order of application of operators in evaluating sub

expressions.

• The associability rule is applied when two or more operators of the same precedence level appear in

the sub expression.

• Arithmetic expressions are evaluated from left to right using the rules of precedence.

• When Parenthesis are used, the expressions within parenthesis assume highest priority.

Operator precedence and associativity

Each operator in C has a precedence associated with it. The precedence is used to determine how an

expression involving more than one operator is evaluated. There are distinct levels of precedence and

an operator may belong to one of these levels. The operators of higher precedence are evaluated first.

The operators of same precedence are evaluated from right to left or from left to right depending on the

level. This is known as associativity property of an operator.

The table given below gives the precedence of each operator.

Category Operator Associativity

Postfix () [] -> . ++ - - Left to right

Unary + - ! ~ ++ - - (type) * & sizeof Right to left

Multiplicative * / % Left to right

Additive + - Left to right

Shift << >> Left to right

Relational < <= > >= Left to right

Equality == != Left to right

Bitwise AND & Left to right

Bitwise XOR ^ Left to right

Bitwise OR | Left to right

Logical AND && Left to right

Logical OR || Left to right

Conditional ?: Right to left

Assignment = += -= *= /= %= >>= <<= &= ^= |= Right to left

Comma , Left to right

Input Output Operations

Introduction

One of the essential operations performed in a C language programs is to provide input values to the

program and output the data produced by the program to a standard output device. We can assign

values to variable through assignment statements such as x = 5 a = 0 ; and so on. Another method is to

use the Input then scanf() which can be used to read data from a key board. For outputting results we

have used extensively the function printf() which sends results out to a terminal. There exists several

functions in „C‟ language that can carry out input output operations. These functions are collectively

known as standard Input/Output Library. Each program that uses standard input / out put function must

contain the statement.

include < stdio.h >

at the beginning.

Single character input output:

The basic operation done in input output is to read a characters from the standard input device such as

the keyboard and to output or writing it to the output unit usually the screen. The getchar function can

be used to read a character from the standard input device. The scanf can also be used to achieve the

function. The getchar has the following form.

Variable name = getchar():

Variable name is a valid „C‟ variable, that has been declared already and that possess the type char.

Example program :

include < stdio.h > // assigns stdio-h header file to your program

void main () // Indicates the starting point of the program.

{

char C, // variable declaration

printf (“Type one character:”) ; // message to user C

= getchar () ; // get a character from key board and

Stores it in variable C.

Printf (” The character you typed is = %c”, C) ; // output

} // Statement which displays value of C on // Standard

screen.

The putchar function which in analogus to getchar function can be used for writing characters one at a

time to the output terminal. The general form is

putchar (variable name);

Where variable is a valid C type variable that has already been declared Ex:-

putchar ();

Displays the value stored in variable C to the standard screen.

Program shows the use of getchar function in an interactive environment.

#include < stdio.h > // Inserts stdio.h header file into the Pgm

void main () // Beginning of main function.

{

char in; // character declaration of variable in.

printf (” please enter one character”); // message to user in

= getchar () ; // assign the keyboard input value to in.

putchar (in); // out put „in‟ value to standard screen.

}

String input and output:

The gets function relieves the string from standard input device while put S outputs the string to the

standard output device. A strong is an array or set of characters.

The function gets accepts the name of the string as a parameter, and fills the string with characters that

are input from the keyboard till newline character is encountered. (That is till we press the enter key).

All the end function gets appends a null terminator as must be done to any string and returns.

The puts function displays the contents stored in its parameter on the standard screen.

The standard form of the gets function is gets

(str)

Here str is a string variable.

The standard form for the puts character is puts

(str)

Where str is a string variable.

Example program (Involving both gets and puts)

include < stdio.h >

Void main ()

{ char s [80]; printf (“Type a string less than 80

characters:”); gets (s); printf (“The string types

is:”); puts(s);

}

Formatted Input For Scanf:

The formatted input refers to input data that has been arranged in a particular format. Input values are

generally taken by using the scanf function. The scanf function has the general form.

Scanf (“control string”, arg1, arg2, arg3 ………….argn);

The format field is specified by the control string and the arguments arg1, arg2,

…………….argn specifies the addrss of location where address is to be stored.

The control string specifies the field format which includes format specifications and optional number

specifying field width and the conversion character % and also blanks, tabs and newlines.

The Blanks tabs and newlines are ignored by compiler. The conversion character % is followed by the

type of data that is to be assigned to variable of the assignment. The field width specifier is optional.

The general format for reading a integer number is

% x d

Here percent sign (%) denotes that a specifier for conversion follows and x is an integer number which

specifies the width of the field of the number that is being read. The data type character d indicates that

the number should be read in integer mode.

 Example :

scanf (“%d %d”, &sum1, &sum2);

If the values input are 175 and 1342 here value 175 is assigned to sum1 and 1342 to sum 2. Suppose

the input data was follows 1342 and 175.

The number 134 will be assigned to sum1 and sum2 has the value 2 because of %3d the number 1342

will be cut to 134 and the remaining part is assigned to second variable sum2. If floating point numbers

are assigned then the decimal or fractional part is skipped by the computer.

To read the long integer data type we can use conversion specifier % ld & % hd for short integer.

Input specifications for real number:

Field specifications are not to be use while representing a real number therefore real numbers are

specified in a straight forward manner using % f specifier.

The general format of specifying a real number input is

Scanf (% f “, &variable);

Example:

Scanf (“%f %f % f”, &a, &b, &c);

With the input data

321.76, 4.321, 678 The values

321.76 is assigned to a , 4.321 to b & 678 to C.

If the number input is a double data type then the format specifier should be % lf instead of %f.

Input specifications for a character.

Single character or strings can be input by using the character specifiers. The

general format is

% xc or %xs

Where C and S represents character and string respectively and x represents the field width. The

address operator need not be specified while we input strings.

Example :

Scanf (“%C %15C”, &ch, nname):

Here suppose the input given is a, Robert then a is assigned to ch and name will be assigned to Robert.

Printing One Line:

printf();

The most simple output statement can be produced in C‟ Language by using printf statement. It allows

you to display information required to the user and also prints the variables we can also format the

output and provide text labels. The simple statement such as

Printf (“Enter 2 numbers”);

Prompts the message enclosed in the quotation to be displayed.

A simple program to illustrate the use of printf statement:-

#include < stdio.h >

main () {

printf (“Hello!”);

printf (“Welcome to the world of Engineering!”);

}

Output:

Hello! Welcome to the world of Engineering.

Both the messages appear in the output as if a single statement. If you wish to print the second message

to the beginning of next line, a new line character must be placed inside the quotation marks. For

Example :

printf (“Hello!\n); OR printf (“\n Welcome to the

world of Engineering”);

Conversion Strings and Specifiers:

The printf () function is quite flexible. It allows a variable number of arguments, labels and

sophisticated formatting of output. The general form of the printf () function is

Syntax

Printf (“conversion string”, variable list);

The conversion string includes all the text labels, escape character and conversion specifiers required

for the desired output. The variable includes all the variable to be printed in order they are to be

printed. There must be a conversion specifies after each variable.

Specifier Meaning

%c – Print a character

%d – Print a Integer

%i – Print a Integer

%e – Print float value in exponential form.

%f – Print float value

%g – Print using %e or %f whichever is smaller

%o – Print octal value

%s – Print a string

%x – Print a hexadecimal integer (Unsigned) using lower case a – f

%X – Print a hexadecimal integer (Unsigned) using upper case A – F

%a – Print a unsigned integer.

%p – Print a pointer value

%hx – Print hex short

%lo – Print an octal long

%ld – Print a long integer

C Programming: Decision Making

Branching

The C language programs presented until now follows a sequential form of execution of statements.

Many times it is required to alter the flow of the sequence of instructions. C language provides

statements that can alter the flow of a sequence of instructions. These statements are called control

statements. These statements help to jump from one part of the program to another. The control transfer

may be conditional or unconditional.

if Statement:

The simplest form of the control statement is the If statement. It is very frequently used in decision

making and allowing the flow of program execution.

The if structure has the following syntax

if (condition) statement;

The statement is any valid C‟ language statement and the condition is any valid C‟ language expression,

frequently logical operators are used in the condition statement. The condition part should not end with

a semicolon, since the condition and statement should be put together as a single statement. The

command says if the condition is true then perform the following statement or If the condition is fake

the computer skips the statement and moves on to the next instruction in the program. Example

program

include <stdio.h> //Include the stdio.h file void

main () // start of the program

{

 int numbers // declare the variables printf ("Type a number:")

// message to the user scanf ("%d", &number) // read the number

from standard input if (number < 0) // check whether the number

is a negative number number = -number // if it is negative then

convert it into positive printf ("The absolute value is %d \n",

number) // print the value }

The above program checks the value of the input number to see if it is less than zero. If it is then the

following program statement which negates the value of the number is executed. If the value of the

number is not less than zero, we do not want to negate it then this statement is automatically skipped.

The absolute number is then displayed by the program, and program execution ends.

The If else construct:

The syntax of the If else construct is as follows:-

The if else is actually just on extension of the general format of if statement. If the result of the

condition is true, then program statement 1 is executed, otherwise program statement 2 will be

executed. If any case either program statement 1 is executed or program statement 2 is executed but not

both when writing programs this else statement is so frequently required that almost all programming

languages provide a special construct to handle this situation.

#include <stdio.h> //include the stdio.h header file in your program

void main () // start of the main

 {

 int num // declare variable num as integer printf ("Enter the

number") // message to the user scanf ("%d", &num) // read

the input number from keyboard if (num < 0) // check

whether number is less than zero

 printf ("The number is negative") // if it is less than zero then it is negative

else // else statement

 printf ("The number is positive") // if it is more than zero then the given number is positive

}

In the above program the If statement checks whether the given number is less than 0. If it is less than

zero then it is negative therefore the condition becomes true then the statement The number is negative

is executed. If the number is not less than zero the If else construct skips the first statement and prints

the second statement declaring that the number is positive.

Compound Relational tests:

C language provides the mechanisms necessary to perform compound relational tests. A compound

relational test is simple one or more simple relational tests joined together by either the logical AND or

the logical OR operators. These operators are represented by the character pairs && // respectively. The

compound operators can be used to form complex expressions in C.

Syntax

a> if (condition1 && condition2 && condition3) b>
if (condition1 || condition2 || condition3)

The syntax in the statement „a‟ represents a complex if statement which combines different conditions

using the and operator in this case if all the conditions are true only then the whole statement is

considered to be true. Even if one condition is false the whole if statement is considered to be false.

The statement „b‟ uses the logical operator or (||) to group different expression to be checked. In this

case if any one of the expression if found to be true the whole expression considered to be true, we can

also uses the mixed expressions using logical operators and and or together.

Nested if Statement

The if statement may itself contain another if statement is known as nested if statement.

Syntax:

if (condition1)

if (condition2)

statement-1;

else

statement-2;

else

statement-3;

The if statement may be nested as deeply as you need to nest it. One block of code will only be

executed if two conditions are true. Condition 1 is tested first and then condition 2 is tested. The second

if condition is nested in the first. The second if condition is tested only when the first condition is true

else the program flow will skip to the corresponding else statement.

#include <stdio.h> //Includes stdio.h file to your program void

main () // start of the program

{

 int year, rem_4, rem_100, rem_400 // variable declaration

printf ("Enter the year to be tested") // message for user

scanf ("%d", &year) // Read the year from standard input.

rem_4 = year % 4 //find the remainder of year by 4

rem_100 = year % 100 //find the remainder of year by 100

rem_400 = year % 400 //find the remainder of year by 400

if ((rem_4 == 0 && rem_100 != 0) rem_400 == 0)

//apply if condition 5 check whether remainder is zero

printf ("It is a leap year. \n") // print true condition else

 printf ("No. It is not a leap year. \n") //print the false condition

}

The above program checks whether the given year is a leap year or not. The year given is divided by

4,100 and 400 respectively and its remainder is collected in the variables rem_4, rem_100 and

rem_400. A if condition statements checks whether the remainders are zero. If remainder is zero then

the year is a leap year. Here either the year – y 400 is to be zero or both the year – 4 and year – by 100

has to be zero, then the year is a leap year.

The ELSE If Ladder

When a series of many conditions have to be checked we may use the ladder else if statement which

takes the following general form.

if (condition1)
statement – 1; else
if (condition2)
statement2; else if
(condition3)
statement3; else if
(condition)
statement n; else
 default statement; statement-

x;

This construct is known as if else construct or ladder. The conditions are evaluated from the top of the

ladder to downwards. As soon on the true condition is found, the statement associated with it is

executed and the control is transferred to the statement – x (skipping the rest of the ladder. When all the

condition becomes false, the final else containing the default statement will be executed.

/* Example program using If else ladder to grade the student according to the following rules.

Marks Grade

70 to 100

60 to 69

50 to 59

40 to 49

0 to 39

DISTINCTION

IST CLASS

IIND CLASS

PASS CLASS

FAIL

#include <stdio.h> //include the standard stdio.h header file void

main () //start the function main

{

 int marks //variable declaration

 printf ("Enter marks\n") //message to the user scanf

("%d", &marks) //read and store the input marks.

 if (marks <= 100 && marks >= 70) //check whether marks is less than 100 or greater than 70

 printf ("\n Distinction") //print Distinction if condition is True else

if (marks >= 60) //else if the previous condition fails Check

printf("\n First class") //whether marks is > 60 if true print Statement

else if (marks >= 50) //else if marks is greater than 50 print printf

("\n second class") //Second class

 else if (marks >= 35) //else if marks is greater than 35 print

printf ("\n pass class") //pass class else

 printf ("Fail") //If all condition fail apply default condition print Fail }

The above program checks a series of conditions. The program begins from the first if statement and

then checks the series of conditions it stops the execution of remaining if statements whenever a

condition becomes true.

In the first If condition statement it checks whether the input value is lesser than 100 and greater than

70. If both conditions are true it prints distinction. Instead if the condition fails then the program control

is transferred to the next if statement through the else statement and now it checks whether the next

condition given is whether the marks value is greater than 60 If the condition is true it prints first class

and comes out of the If else chain to the end of the program on the other hand if this condition also fails

the control is transferred to next if statements program execution continues till the end of the loop and

executes the default else statement fails and stops the program.

The Switch Statement:

Unlike the If statement which allows a selection of two alternatives the switch statement allows a

program to select one statement for execution out of a set of alternatives. During the execution of the

switch statement only one of the possible statements will be executed the remaining statements will be

skipped. The usage of multiple If else statement increases the complexity of the program since when

the number of If else statements increase it affects the readability of the program and makes it difficult

to follow the program. The switch statement removes these disadvantages by using a simple and

straight forward approach.

The general format of the Switch Statement is :

Switch (expression)

{

Case case-label-1;

Case case-label-2;

Case case-label-n;

………………

Case default

}

When the switch statement is executed the control expression is evaluated first and the value is

compared with the case label values in the given order. If the label matches with the value of the

expression then the control is transferred directly to the group of statements which follow the label. If

none of the statements matches then the statement against the default is executed. The default statement

is optional in switch statement in case if any default statement is not given and if none of the condition

matches then no action takes place in this case the control transfers to the next statement of the if else

statement. Example:

#include <stdio.h>

void main ()

{

 int num1, num2, result

char operator

 printf ("Enter two numbers")

 scanf ("%d %d", &num1, &num2)

printf ("Enter an operator")

 scanf ("%c", &operator)

 switch (operator)

 { case

'+':

 result = num1 + num2

break case '-':

 result = num1 - num2

 break

case '*':

 result = num1 * num2

 break

case '/':

 if (num2 != 0)

result = num1 / num2

else {

 printf ("warning : division by zero \n")

result = 0

 }

break

default:

 printf ("\n unknown operator")

 result = 0

break

 }

 printf ("%d", result)

}

In the above program the break statement is need after the case statement to break out of the loop and

prevent the program from executing other cases.

The GOTO statement:

The goto statement is simple statement used to transfer the program control unconditionally from one

statement to another statement. Although it might not be essential to use the goto statement in a highly

structured language like C, there may be occasions when the use of goto is desirable.

Syntax

a> b> goto label; label:

………… …………

………… …………

………… …………
Label: goto label; Statement;

The goto requires a label in order to identify the place where the branch is to be made. A label is a valid

variable name followed by a colon.

The label is placed immediately before the statement where the control is to be transformed. A program

may contain several goto statements that transferred to the same place when a program. The label must

be unique. Control can be transferred out of or within a compound statement, and control can be

transferred to the beginning of a compound statement. However the control cannot be transferred into a

compound statement. The goto statement is discouraged in C, because it alters the sequential flow of

logic that is the characteristic of C language.

Sample Code

1. #include <stdio.h> //include stdio.h header file to your program

2. main () //start of main

3. {

4. int n, sum = 0, i = 0 // variable declaration

5. printf ("Enter a number") // message to the user

6. scanf ("%d", &n) //Read and store the number

7. loop: i++ //Label of goto statement

8. sum += i //the sum value in stored and I is added to sum

9. if (i < n) goto loop //If value of I is less than n pass control to loop

10. printf ("\n sum of %d natural numbers = %d", n, sum)

11. //print the sum of the numbers & value of n

12. }

Looping

During looping a set of statements are executed until some conditions for termination of the loop is

encountered. A program loop therefore consists of two segments one known as body of the loop and

other is the control statement. The control statement tests certain conditions and then directs the

repeated execution of the statements contained in the body of the loop.

In looping process in general would include the following four steps

1. Setting and initialization of a counter

2. Exertion of the statements in the loop

3. Test for a specified conditions for the execution of the loop

4. Incrementing the counter

The test may be either to determine whether the loop has repeated the specified number of times or to

determine whether the particular condition has been met.

The While Statement:

The simplest of all looping structure in C is the while statement. The general format of the while

statement is:

while (test condition)

{

body of the loop

}

Here the given test condition is evaluated and if the condition is true then the body of the loop is

executed. After the execution of the body, the test condition is once again evaluated and if it is true, the

body is executed once again. This process of repeated execution of the body continues until the test

condition finally becomes false and the control is transferred out of the loop. On exit, the program

continues with the statements immediately after the body of the loop. The body of the loop may have

one or more statements. The braces are needed only if the body contained two are more statements

Example program for generating „N‟ Natural numbers using while loop:

include < stdio.h > //include the stdio.h file

void main() // Start of your program

{

int n, i=0; //Declare and initialize the variables

printf(“Enter the upper limit number”); //Message to the user

scanf(“%d”, &n); //read and store the number while(I < = n)

// While statement with condition

{ // Body of the loop

printf(“\t%d”,I); // print the value of i I++;

increment I to the next natural number.

}

}

In the above program the looping concept is used to generate n natural numbers. Here n and I are

declared as integer variables and I is initialized to value zero. A message is given to the user to enter the

natural number till where he wants to generate the numbers. The entered number is read and stored by

the scanf statement. The while loop then checks whether the value of I is less than n i.e., the user

entered number if it is true then the control enters the loop body and prints the value of I using the

printf statement and increments the value of I to the next natural number this process repeats till the

value of I becomes equal to or greater than the number given by the user.

The Do while statement:

The do while loop is also a kind of loop, which is similar to the while loop in contrast to while loop, the

do while loop tests at the bottom of the loop after executing the body of the loop. Since the body of the

loop is executed first and then the loop condition is checked we can be assured that the body of the loop

is executed at least once.

The syntax of the do while loop is:

Do

{ statement;

}

while(expression);

Here the statement is executed, then expression is evaluated. If the condition expression is true then the

body is executed again and this process continues till the conditional expression becomes false. When

the expression becomes false. When the expression becomes false the loop terminates.

To realize the usefulness of the do while construct consider the following problem. The user must be

prompted to press Y or N. In reality the user can press any key other than y or n. IN such case the

message must be shown again and the user should be allowed to enter one of the two keys, clearly this

is a loop construct. Also it has to be executed at least once. The following program illustrates the

solution.

/* Program to illustrate the do while loop*/

#include < stdio.h > //include stdio.h file to your program void

main() // start of your program

{

char inchar; // declaration of the character do

// start of the do loop

{

printf(“Input Y or N”); //message for the user scanf(“%c”,

&inchar); // read and store the character

} while(inchar!=‟y‟ && inchar != „n‟); //while loop

ends if(inchar==‟y‟) // checks whther entered character

is y printf(“you pressed u\n”); // message for the user

else printf(“You pressed n\n”); } //end of for loop

The Break Statement:

Sometimes while executing a loop it becomes desirable to skip a part of the loop or quit the loop as

soon as certain condition occurs, for example consider searching a particular number in a set of 100

numbers as soon as the search number is found it is desirable to terminate the loop. C language permits

a jump from one statement to another within a loop as well as to jump out of the loop. The break

statement allows us to accomplish this task. A break statement provides an early exit from for, while,

do and switch constructs. A break causes the innermost enclosing loop or switch to be exited

immediately.

Example program to illustrate the use of break statement.

/* A program to find the average of the marks*/

#include < stdio.h > //include the stdio.h file to your program void

main() // Start of the program

{

int I, num=0; //declare the variables and initialize float

sum=0,average; //declare the variables and initialize

printf(“Input the marks, -1 to end\n”); // Message to the user

while(1) // While loop starts

{ scanf(“%d”,&I); // read and store the input

number if(I==-1) // check whether input number is

-1 break; //if number –1 is input skip the loop

sum+=I; //else add the value of I to sum num++ //

increment num value by 1 }} end of the program

Continue statement:

During loop operations it may be necessary to skip a part of the body of the loop under certain

conditions. Like the break statement C supports similar statement called continue statement. The

continue statement causes the loop to be continued with the next iteration after skipping any statement

in between. The continue with the next iteration the format of the continue statement is simply:

Continue;

Consider the following program that finds the sum of five positive integers. If a negative number is

entered, the sum is not performed since the remaining part of the loop is skipped using continue

statement.

#include < stdio.h > //Include stdio.h file

void main() //start of the program

{

int I=1, num, sum=0; // declare and initialize the variables for

(I = 0; I < 5; I++) // for loop

{

printf(“Enter the integer”); //Message to the user

scanf(“%I”, &num); //read and store the number if(num

< 0) //check whether the number is less than zero

{ printf(“You have entered a negative number”); // message to the

user continue; // starts with the beginning of the loop

} // end of for loop

sum+=num; // add and store sum to num

} printf(“The sum of positive numbers entered = %d”,sum); // print thte

sum.

} // end of the program.

For Loop:

The for loop provides a more concise loop control structure. The general form of the for loop is:

for (initialization; test condition; increment)

{

body of the loop

}

When the control enters for loop the variables used in for loop is initialized with the starting value such

as I=0,count=0. The value which was initialized is then checked with the given test condition. The test

condition is a relational expression, such as I < 5 that checks whether the given condition is satisfied or

not if the given condition is satisfied the control enters the body of the loop or else it will exit the loop.

The body of the loop is entered only if the test condition is satisfied and after the completion of the

execution of the loop the control is transferred back to the increment part of the loop. The control

variable is incremented using an assignment statement such as I=I+1 or simply I++ and the new value

of the control variable is again tested to check whether it satisfies the loop condition. If the value of the

control variable satisfies then the body of the loop is again executed. The process goes on till the

control variable fails to satisfy the condition.

Additional features of the for loop:

We can include multiple expressions in any of the fields of for loop provided that we separate such

expressions by commas. For example in the for statement that begins

For(I = 0; j = 0; I < 10, j=j-10)

Sets up two index variables I and j the former initialized to zero and the latter to 100 before the loop

begins. Each time after the body of the loop is executed, the value of I will be incremented by 1 while

the value of j is decremented by 10.

Just as the need may arise to include more than one expression in a particular field of the for statement,

so too may the need arise to omit on or more fields from the for statement. This can be done simply by

omitting the desired filed, but by marking its place with a semicolon. The init_expression field can

simply be “left blank” in such a case as long as the semicolon is still included:

For(;j!=100;++j)

The above statement might be used if j were already set to some initial value before the loop was

entered. A for loop that has its looping condition field omitted effectively sets up an infinite loop, that

is a loop that theoretically will be executed for ever.

For loop example program:

/* The following is an example that finds the sum of the first fifteen positive natural numbers*/

#include < stdio.h > //Include stdio.h file

void main() //start main program

{ int I; //declare variable int sum=0,sum_of_squares=0;

//declare and initialize variable.

for(I=0;I < = 30; I+=2) //for loop

{

sum+=I; //add the value of I and store it to sum

sum_of_squares+=I*I; //find the square value and add it to sum_of_squares

} //end of for loop printf(“Sum of first 15 positive even

numbers=%d\n”,sum); //Print sum printf(“Sum of their

squares=%d\n”,sum_of_squares); //print sum_of_square }

Arrays :

The C language provides a capability that enables the user to define a set of ordered data items known

as an array.

Suppose we had a set of grades that we wished to read into the computer and suppose we wished to

perform some operations on these grades, we will quickly realize that we cannot perform such an

operation until each and every grade has been entered since it would be quite a tedious task to declare

each and every student grade as a variable especially since there may be a very large number.

In C we can define variable called grades, which represents not a single value of grade but a entire set

of grades. Each element of the set can then be referenced by means of a number called as index number

or subscript.

Declaration of arrays:

Like any other variable arrays must be declared before they are used. The general form of declaration

is:

type variable-name[50];

The type specifies the type of the elements that will be contained in the array, such as int float or char

and the size indicates the maximum number of elements that can be stored inside the array for ex:

float height[50];

Declares the height to be an array containing 50 real elements. Any subscripts 0 to 49 are valid. In C the

array elements index or subscript begins with number zero. So height [0] refers to the first element of

the array. (For this reason, it is easier to think of it as referring to element number zero, rather than as

referring to the first element).

As individual array element can be used anywhere that a normal variable with a statement such as G

= grade [50];

The statement assigns the value stored in the 50th index of the array to the variable g.

More generally if i is declared to be an integer variable, then the statement g=grades [i];

Will take the value contained in the element number i of the grades array to assign it to g. so if I were

equal to 7 when the above statement is executed, then the value of grades [7] would get assigned to g.

A value stored into an element in the array simply by specifying the array element on the left hand side

of the equals sign. In the statement grades [100]=95;

The value 95 is stored into the element number 100 of the grades array.

The ability to represent a collection of related data items by a single array enables us to develop concise
and efficient programs. For example we can very easily sequence through the elements in the array by
varying the value of the variable that is used as a subscript into the array. So the for loop for(i=0;i <

100;++i); sum = sum + grades [i];

Will sequence through the first 100 elements of the array grades (elements 0 to 99) and will add the

values of each grade into sum. When the for loop is finished, the variable sum will then contain the

total of first 100 values of the grades array (Assuming sum were set to zero before the loop was

entered) Just as variables arrays must also be declared before they are used. The declaration of an array

involves the type of the element that will be contained in the array such as int, float, char as well as

maximum number of elements that will be stored inside the array. The C system needs this latter

information in order to determine how much memory space to reserve for the particular array.

The declaration int values[10]; would reserve enough space for an array called values that could hold

up to 10 integers. Refer to the below given picture to conceptualize the reserved storage space.

values[0]

values[1]

values[2]

values[3]

values[4]

values[5]

values[6]

values[7]

values[8]

values[9]

Initialization of arrays:

We can initialize the elements in the array in the same way as the ordinary variables when they are

declared. The general form of initialization off arrays is:

type array_name[size]={list of values};

The values in the list care separated by commas, for example the statement int

number[3]={0,0,0};

Will declare the array size as a array of size 3 and will assign zero to each element if the number of

values in the list is less than the number of elements, then only that many elements are initialized. The

remaining elements will be set to zero automatically.

In the declaration of an array the size may be omitted, in such cases the compiler allocates enough

space for all initialized elements. For example the statement int counter[]={1,1,1,1};

Will declare the array to contain four elements with initial values 1. this approach works fine as long as

we initialize every element in the array.

Complete the given points:

Accessing the array elements:

(i) Assigning values to array elements: (ii)

Displaying the array elements: ...

/* Program to count the no of positive and negative numbers*/

#include< stdio.h > void

main()

{

int a[50],n,count_neg=0,count_pos=0,I; printf(“Enter

the size of the array\n”); scanf(“%d”,&n);

printf(“Enter the elements of the array\n”);

for I=0;I < n;I++) scanf(“%d”,&a[I]);

for(I=0;I < n;I++)

{ if(a[I] <

0)

count_neg++;

else count_pos++;

}

printf(“There are %d negative numbers in the array\n”,count_neg);

printf(“There are %d positive numbers in the array\n”,count_pos);

}

Multi dimensional Arrays:

Often there is a need to store and manipulate two dimensional data structure such as matrices & tables.

Here the array has two subscripts. One subscript denotes the row & the other the column. The

declaration of two dimension arrays is as follows:

data_type array_name[row_size][column_size]; int

m[10][20]

Here m is declared as a matrix having 10 rows(numbered from 0 to 9) and 20 columns(numbered 0

through 19). The first element of the matrix is m[0][0] and the last row last column is m[9][19]

Elements of multi dimension arrays:

A 2 dimensional array marks [4][3] is shown below figure. The first element is given by marks [0][0]

contains 35.5 & second element is marks [0][1] and contains 40.5 and so on.

marks

[0][0]

35.5

Marks

[0][1]

40.5

Marks

[0][2]

45.5

marks

[1][0]

50.5

Marks

[1][1]

55.5

Marks

[1][2]

60.5

marks

[2][0]

Marks

[2][1]

Marks

[2][2]

marks

[3][0]

Marks

[3][1]

Marks

[3][2]

Initialization of multidimensional arrays:

Like the one dimension arrays, 2 dimension arrays may be initialized by following their declaration

with a list of initial values enclosed in braces

Example:

int table[2][3]={0,0,01,1,1};

Initializes the elements of first row to zero and second row to 1. The initialization is done row by row.

The above statement can be equivalently written as int table[2][3]={{0,0,0},{1,1,1}}

By surrounding the elements of each row by braces.

C allows arrays of three or more dimensions. The compiler determines the maximum number of

dimension. The general form of a multidimensional array declaration is:

date_type array_name[s1][s2][s3]…..[sn]; Where

s is the size of the i
th
 dimension. Some examples are:

int survey[3][5][12]; float

table[5][4][5][3];

Survey is a 3 dimensional array declared to contain 180 integer elements. Similarly table is a four

dimensional array containing 300 elements of floating point type.

Assignment:

Give an example program to add two matrices & store the results in the 3rd matrix .

Structure

Arrays are used to store large set of data and manipulate them but the disadvantage is that all
the elements stored in an array are to be of the same data type. If we need to use a collection of

different data type items it is not possible using an array. When we require using a collection of
different data items of different data types we can use a structure. Structure is a method of
grouping data of different types. A structure is a convenient method of handling a group of
related data items of different data types.

Structure decleration: General format:
struct tag_name

{

data type member1; data type member2;

…

…

Example:
struct lib_books
{ char title[20];
char author[15];
int pages; float
price;

};

}

the keyword struct declares a structure to holds the details of four fields namely title, author
pages and price. These are members of the structures. Each member may belong to different or
same data type. The tag name can be used to define objects that have the tag names structure.
The structure we just declared is not a variable by itself but a template for the structure.

We can declare structure variables using the tag name any where in the program. For example
the statement,

struct lib_books book1,book2,book3;

declares book1,book2,book3 as variables of type struct lib_books each declaration has four
elements of the structure lib_books. The complete structure declaration might look like this

struct lib_books
{

char title[20];
char author[15];

int pages; float
price;

};

struct lib_books, book1, book2, book3;

structures do not occupy any memory until it is associated with the structure variable such as
book1. the template is terminated with a semicolon. While the entire declaration is considered
as a statement, each member is declared independently for its name and type in a separate
statement inside the template. The tag name such as lib_books can be used to declare structure
variables of its data type later in the program.

We can also combine both template declaration and variables declaration in one statement, the
declaration

struct lib_books

{ char title[20];
char author[15];
int pages;

float price;

} book1,book2,book3;

is valid. The use of tag name is optional for example
struct {

…

…

…

} book1, book2, book3 ;

declares book1,book2,book3 as structure variables representing 3 books but does not include a
tag name for use in the declaration.

A structure is usually defines before main along with macro definitions. In such cases the
structure assumes global status and all the functions can access the structure.

Giving values to members:

As mentioned earlier the members themselves are not variables they should be linked to
structure variables in order to make them meaningful members. The link between a member
and a variable is established using the member operator „.‟ Which is known as dot operator or
period operator.

For example:

Book1.price

Is the variable representing the price of book1 and can be treated like any other ordinary
variable. We can use scanf statement to assign values like

scanf(“%s”,book1.file);
scanf(“%d”,& book1.pages);

Or we can assign variables to the members of book1

strcpy(book1.title,”basic”);
strcpy(book1.author,”Balagurusamy”); book1.pages=250;

book1.price=28.50;

Assignment to Students:

Explain how to access array elements and to display those elements under two topics : (i)
Accessing array elements (ii) displaying array elements.

Functions and structures:

We can pass structures as arguments to functions. Unlike array names however, which always
point to the start of the array, structure names are not pointers. As a result, when we change
structure parameter inside a function, we don‟t effect its corresponding argument.

Passing structure to elements to functions:

A structure may be passed into a function as individual member or a separate variable. A
program example to display the contents of a structure passing the individual elements to a
function is shown below.

#include<stdio.h>
#include<conio.h>
void fun(float,int); void
main()

{ struct
student{ float
marks; int id;
};

struct student s1={67.5,14};
fun(s1.marks,s1.id); getch(); }
void fun(float marks,int id) {
printf("\nMarks:%f",marks);
printf("\nID:%d",id);

}

It can be realized that to pass individual elements would become more tedious as the number of

structure elements go on increasing a better way would be to pass the entire structure variable
at a time.

Passing entire structure to functions:

In case of structures having to having numerous structure elements passing these individual
elements would be a tedious task. In such cases we may pass whole structure to a function as
shown below:

include stdio.h>

{ int emp_id; char
name[25]; char
department[10]; float
salary; }; void main()

{ static struct employee emp1= { 12, “sadanand”, “computer”, 7500.00 };

/*sending entire employee structure*/ display(emp1);

}

/*function to pass entire structure variable*/

display(empf)

struct employee empf

{

printf(“%d%s,%s,%f”, empf.empid,empf.name,empf.department,empf.salary);

}

Arrays of structure:

It is possible to define a array of structures for example if we are maintaining information of all
the students in the college and if 100 students are studying in the college. We need to use an
array than single variables. We can define an array of structures as shown in the following
example:

structure information

{ int id_no; char name[20]; char
address[20]; char
combination[3]; int age;

} student[100];

An array of structures can be assigned initial values just as any other array can. Remember that
each element is a structure that must be assigned corresponding initial values as illustrated
below.

#include< stdio.h > void
main()

{ struct info { int

id_no; char
name[20]; char
address[20]; char
combination[3];

int age; };

struct info std[100]; int I,n; printf(“Enter the number of
students”); scanf(“%d”,&n); for(I=0;I < n;I++) {
printf(“ Enter Id_no,name address combination age\m”);

scanf("%d%s%s%s%d”,&std[I].id_no,std[I].name,std[I].address,std[I].combination,&std[I] .ag
e);} printf(“\n Student information”); for (I=0;I< n;I++) {

printf(“%d%s%s%s%d\n”,

std[I].id_no,std[I].name,std[I].address,std[I].combination,std[I].age); }}

Structure within a structure:

A structure may be defined as a member of another structure. In such structures the declaration
of the embedded structure must appear before the declarations of other structures.

struct date int id_no;

{ char name[20];

int day; char address[20];

int month; char combination[3]; int year; int age; }; structure
date def; struct student structure date doa;

{ }oldstudent, newstudent;

the structure student contains another structure date as its one of its members.

Union:

Unions like structure contain members whose individual data types may differ from one
another. However the members that compose a union all share the same storage area within the
computers memory where as each member within a structure is assigned its own unique
storage area. Thus unions are used to observe memory. They are useful for application
involving multiple members, where values need not be assigned to all the members at any one
time. Like structures union can be declared using the keyword union as follows:

union item

{ int m;
float p;
char c;
} code;

this declares a variable code of type union item. The union contains three members each with a
different data type. However we can use only one of them at a time. This is because if only one
location is allocated for union variable irrespective of size. The compiler allocates a piece of
storage that is large enough to access a union member we can use the same syntax that we use
to access structure members. That is

code.m code.p

code.c

are all valid member variables. During accessing we should make sure that we are accessing
the member whose value is currently stored.
For example a statement such as

code.m=456; code.p=456.78;

printf(“%d”,code.m);

More on Structure:

typedef Keyword

There is an easier way to define structs or you could "alias" types you create. For example:

typedef struct{ char
firstName[20]; char
lastName[20]; char
SSN[10]; float gpa;
}student;

Now you can use student directly to define variables of student type without using struct
keyword. Following is the example: student student_a;

You can use typedef for non-structs:

 typedef long int *pint32;

 pint32 x, y, z;

x, y and z are all pointers to long ints

Functions:

The basic philosophy of function is divide and conquer by which a complicated tasks are successively

divided into simpler and more manageable tasks which can be easily handled. A program can be

divided into smaller subprograms that can be developed and tested successfully.

A function is a complete and independent program which is used (or invoked) by the main program or

other subprograms. A subprogram receives values called arguments from a calling program, performs

calculations and returns the results to the calling program.

There are many advantages in using functions in a program they are:

1. It facilitates top down modular programming. In this programming style, the high level logic of the

overall problem is solved first while the details of each lower level functions is addressed later.

2. The length of the source program can be reduced by using functions at appropriate places. This

factor is critical with microcomputers where memory space is limited.

3. It is easy to locate and isolate a faulty function for further investigation.

4. A function may be used by many other programs this means that a c programmer can build on what

others have already done, instead of starting over from scratch.

5. A program can be used to avoid rewriting the same sequence of code at two or more locations in a

program. This is especially useful if the code involved is long or complicated.

6. Programming teams does a large percentage of programming. If the program is divided into

subprograms, each subprogram can be written by one or two team members of the team rather than

having the whole team to work on the complex program

We already know that C support the use of library functions and use defined functions. The library

functions are used to carry out a number of commonly used operations or calculations. The user-

defined functions are written by the programmer to carry out various individual tasks.

Function definition:

[data type] function name (argument list)

argument declaration;

{

local variable declarations;

statements; [return

expression] }

Example :

mul(a,b)

int a,b; {

int y;

y=a+b;

return y;

}

When the value of y which is the addition of the values of a and b. the last two statements ie, y=a+b;

can be combined as

return(y) return(a+b);

Types of functions:

A function may belong to any one of the following categories:

1. Functions with no arguments and no return values.

2. Functions with arguments and no return values.

3. Functions with arguments and return values.

Functions with no arguments and no return values:

Let us consider the following program

/* Program to illustrate a function with no argument and no return values*/

#include

main() {

staetemtn1();

starline();

statement2();

starline();

}

/*function to print a message*/

statement1()

{ printf(“\n Sample subprogram

output”);

}

statement2()

{

printf(“\n Sample subprogram output two”);

}

starline()

{

int a;

for (a=1;a<60;a++)

printf(“%c”,‟*‟);

printf(“\n”); }

In the above example there is no data transfer between the calling function and the called function.

When a function has no arguments it does not receive any data from the calling function. Similarly

when it does not return value the calling function does not receive any data from the called function. A

function that does not return any value cannot be used in an expression it can be used only as

independent statement.

Functions with arguments but no return values:

The nature of data communication between the calling function and the arguments to the called

function and the called function does not return any values to the calling function this shown in

example below:

Consider the following:

Function calls containing appropriate arguments. For example the function call

value (500,0.12,5)

Would send the values 500,0.12 and 5 to the function value (p, r, n) and assign values 500 to p, 0.12 to

r and 5 to n. the values 500,0.12 and 5 are the actual arguments which become the values of the formal

arguments inside the called function.

Both the arguments actual and formal should match in number type and order. The values of actual

arguments are assigned to formal arguments on a one to one basis starting with the first argument as

shown below:

main()

{

function1(a1,a2,a3……an)

}

function1(f1,f2,f3….fn);

{

function body;

}

here a1,a2,a3 are actual arguments and f1,f2,f3 are formal arguments.

The no of formal arguments and actual arguments must be matching to each other suppose if actual

arguments are more than the formal arguments, the extra actual arguments are discarded. If the number

of actual arguments are less than the formal arguments then the unmatched formal arguments are

initialized to some garbage values. In both cases no error message will be generated.

The formal arguments may be valid variable names, the actual arguments may be variable names

expressions or constants. The values used in actual arguments must be assigned values before the

function call is made.

When a function call is made only a copy of the values actual arguments is passed to the called

function. What occurs inside the functions will have no effect on the variables used in the actual

argument list.

Let us consider the following program

/*Program to find the largest of two numbers using function*/

#include

main() { int a,b; printf(“Enter

the two numbers”);

scanf(“%d%d”,&a,&b);

largest(a,b)

}

/*Function to find the largest of two numbers*/ largest(int

a, int b)

{

if(a>b)

printf(“Largest element=%d”,a); else

printf(“Largest element=%d”,b);

}

in the above program we could make the calling function to read the data from the terminal and pass it

on to the called function. But function does not return any value.

Functions with arguments and return values:

The function of the type Arguments with return values will send arguments from the calling function to

the called function and expects the result to be returned back from the called function back to the

calling function.

To assure a high degree of portability between programs a function should generally be coded without

involving any input output operations. For example different programs may require different output

formats for displaying the results. Theses shortcomings can be overcome by handing over the result of

a function to its calling function where the returned value can be used as required by the program.

Recursion:

Recursive function is a function that calls itself. When a function calls another function and that second

function calls the third function then this kind of a function is called nesting of functions. But a

recursive function is the function that calls itself repeatedly.

An example program to find out factorial of a given number using Recursion:

int fact(int); void main()

{ int n,

fac;

clrscr();

printf("Enter the value of n");

scanf("%d",&n);

fac=fact(n);

printf("The factorial of %d is %d",n,fac);

getch(); }

int fact(int n)

{if(n= =1)

return(1);

else

return fact(n-1)*n;

}

Functions and arrays:

We can pass an entire array of values into a function just as we pass indiviual variables. In this task it is

essential to list the name of the array along with functions arguments without any subscripts and the

size of the array as arguments

For example:

Largest(a,n); will pass all the elements contained in the array a of size n. the called function expecting

this call must be appropriately defined. The largest function header might look like:

float smallest(array,size);

float array[]; int size;

The function smallest is defined to take two arguments, the name of the array and the size of the array

to specify the number of elements in the array. The declaration of the formal argument array is made as

follows:

float array[];

The above declaration indicates to compiler that the arguments array is an array of numbers. It is not

necessary to declare size of the array here. While dealing with array arguments we should remember

one major distinction. If a function changes the value the value of an array elements then these changes

will be made to the original array that passed to the function. When the entire array is passed as an

argument, the contents of the array are not copied into the formal parameter array instead information

about the address of the array elements are passed on to the function. Therefore any changes introduced

to array elements are truly reflected in the original array in the calling function.

Global and local variables

A local variable is one that is declared inside a function and can only be used by that function. If you

declare a variable outside all functions then it is a global variable and can be used by all functions in a

program. #include<stdio.h>

// Global variables

int a; int

b; int

Add() {

 return a + b;

} int

main()

{

 int answer; // Local variable

a = 5;

b = 7; answer = Add();

printf("%d\n",answer);

 return 0;

}

Call by Value and Call by reference

The arguments passed to function can be of two types namely

1. Values passed / Call by Value

2. Address passed / Call by reference

The first type refers to call by value and the second type refers to call by reference. For

instance consider program1

main()

{

int x=50, y=70;

interchange(x,y);

printf(“x=%d y=%d”,x,y);

}

interchange(x1,y1)

int x1,y1;

{

int z1;

z1=x1;

x1=y1;

y1=z1;

printf(“x1=%d y1=%d”,x1,y1);

}

Here the value to function interchange is passed by value.

Consider program2

main()

{

int x=50, y=70;

interchange(&x,&y);

printf(“x=%d y=%d”,x,y);

}

interchange(x1,y1) int

*x1,*y1;

{

int z1; z1=*x1; *x1=*y1;

*y1=z1; printf(“*x=%d

*y=%d”,x1,y1);

}

Here the function is called by reference. In other words address is passed by using symbol & and the

value is accessed by using symbol *.

The main difference between them can be seen by analyzing the output of program1 and program2.

The output of program1 that is call by value is

x1=70 y1=50

x=50 y=70

But the output of program2 that is call by reference is

*x=70 *y=50

x=70 y=50

This is because in case of call by value the value is passed to function named as interchange and there

the value got interchanged and got printed as x1=70 y1=50

and again since no values are returned back and therefore original values of x and y as in main function

namely x=50 y=70 got printed.

Pointer:

In c a pointer is a variable that points to or references a memory location in which data is stored. Each

memory cell in the computer has an address that can be used to access that location so a pointer

variable points to a memory location we can access and change the contents of this memory location

via the pointer.

Pointer declaration:

A pointer is a variable that contains the memory location of another variable. The syntax is as shown

below. You start by specifying the type of data stored in the location identified by the pointer. The

asterisk tells the compiler that you are creating a pointer variable. Finally you give the name of the

variable.

type * variable name

Example:

int *ptr; float

*string;

Address operator:

Once we declare a pointer variable we must point it to something we can do this by assigning to the

pointer the address of the variable you want to point as in the following example:

ptr=#

This places the address where num is stores into the variable ptr. If num is stored in memory 21260

address then the variable ptr has the value 21260.

/* A program to illustrate pointer declaration*/

main() { int *ptr; int sum; sum=45; ptr=∑

printf (“\n Sum is %d\n”, sum); printf

(“\n The sum pointer is %d”, ptr); }

We will get the same result by assigning the address of num to a regular(non pointer) variable. The

benefit is that we can also refer to the pointer variable as *ptr the asterisk tells to the computer that we

are not interested in the value 21260 but in the value stored in that memory location. While the value of

pointer is 21260 the value of sum is 45 however we can assign a value to the pointer * ptr as in

*ptr=45. This means place the value 45 in the memory address pointer by the variable ptr. Since the

pointer contains the address 21260 the value 45 is placed in that memory location. And since this is the

location of the variable num the value also becomes 45. this shows how we can change the value of

pointer directly using a pointer and the indirection pointer.

/* Program to display the contents of the variable their address using pointer variable*/

include< stdio.h > cptr=&ch;

{ floptr=&x;

int num, *intptr; printf(“Num %d stored at address float x, *floptr;

%u\n”,*intptr,intptr); char ch, *cptr; printf(“Value %f stored at address

num=123; %u\n”,*floptr,floptr);

x=12.34; printf(“Character %c stored at address ch=‟a‟; %u\n”,*cptr,cptr);

intptr=&x; }

Pointer expressions & pointer arithmetic:

Like other variables pointer variables can be used in expressions. For example if p1 and p2 are properly

declared and initialized pointers, then the following statements are valid.

y=*p1**p2;

sum=sum+*p1;

z= 5* - *p2/p1;

*p2= *p2 + 10;

C allows us to add integers to or subtract integers from pointers as well as to subtract one pointer from

the other. We can also use short hand operators with the pointers p1+=; sum+=*p2; etc., we can also

compare pointers by using relational operators the expressions such as p1 >p2 , p1==p2 and p1!=p2 are

allowed.

/*Program to illustrate the pointer expression and pointer arithmetic*/

#include< stdio.h > main() { int

ptr1,ptr2; int a,b,x,y,z; a=30;b=6;

ptr1=&a; ptr2=&b; x=*ptr1+

ptr2 –6; y=6- *ptr1/ *ptr2 +30;

printf(“\nAddress of a +%u”,ptr1);

printf(“\nAddress of b %u”,ptr2);

printf(“\na=%d, b=%d”,a,b);

printf(“\nx=%d,y=%d”,x,y);

ptr1=ptr1 + 70;

ptr2= ptr2;

printf(“\na=%d, b=%d”,a,b);

}

Pointers and function:

The pointer are very much used in a function declaration. Sometimes only with a pointer a complex

function can be easily represented and success. The usage of the pointers in a function definition may

be classified into two groups. 1. Call by reference

2. Call by value.

Call by value:

We have seen that a function is invoked there will be a link established between the formal and actual

parameters. A temporary storage is created where the value of actual parameters is stored. The formal

parameters picks up its value from storage area the mechanism of data transfer between actual and

formal parameters allows the actual parameters mechanism of data transfer is referred as call by value.

The corresponding formal parameter represents a local variable in the called function. The current value

of corresponding actual parameter becomes the initial value of formal parameter. The value of formal

parameter may be changed in the body of the actual parameter. The value of formal parameter may be

changed in the body of the subprogram by assignment or input statements. This will not change the

value of actual parameters.

/* Include< stdio.h >

void main()

{

int x,y;

x=20;

y=30;

printf(“\n Value of a and b before function call =%d %d”,a,b); fncn(x,y);

printf(“\n Value of a and b after function call =%d %d”,a,b); }

fncn(p,q)

int p,q;

{

p=p+p;

q=q+q;

}

Call by Reference:

When we pass address to a function the parameters receiving the address should be pointers. The

process of calling a function by using pointers to pass the address of the variable is known as call by

reference. The function which is called by reference can change the values of the variable used in the

call.

/* example of call by reference*?

/* Include< stdio.h >

void main()

{ int x,y; x=20; y=30; printf(“\n Value of a and b before

function call =%d %d”,a,b); fncn(&x,&y); printf(“\n Value of

a and b after function call =%d %d”,a,b); }

fncn(p,q)

int p,q;

{

*p=*p+*p;

*q=*q+*q;

}

Pointer to arrays:

an array is actually very much like pointer. We can declare the arrays first element as a[0] or as int *a

because a[0] is an address and *a is also an address the form of declaration is equivalent. The difference

is pointer is a variable and can appear on the left of the assignment operator that is lvalue. The array

name is constant and cannot appear as the left side of assignment operator.

/* A program to display the contents of array using pointer*/

main() { int a[100]; int i,j,n;

printf(“\nEnter the elements of the array\n”);

scanf(“%d”,&n);

printf(“Enter the array elements”);

for(I=0;I< n;I++) scanf(“%d”,&a[I]);

printf(“Array element are”); for(ptr=a,ptr<

(a+n);ptr++)

printf(“Value of a[%d]=%d stored at address %u”,j+=,*ptr,ptr);

}

Strings are characters arrays and here last element is \0 arrays and pointers to char arrays can be used to

perform a number of string functions.

Pointers and structures:

We know the name of an array stands for the address of its zeroth element the same concept applies for

names of arrays of structures. Suppose item is an array variable of struct type. Consider the following

declaration:

struct products

{ char

name[30]; int

manufac; float

net;

item[2],*ptr;

this statement declares item as array of two elements, each type struct products and ptr as a pointer data

objects of type struct products, the

assignment ptr=item;

would assign the address of zeroth element to product[0]. Its members can be accessed by using the

following notation.

ptr- >name; ptr-

>manufac; ptr-

>net;

The symbol - > is called arrow pointer and is made up of minus sign and greater than sign. Note that

ptr- > is simple another way of writing product[0].

When the pointer is incremented by one it is made to pint to next record ie item[1]. The following

statement will print the values of members of all the elements of the product array.

for(ptr=item; ptr< item+2;ptr++)

printf(“%s%d%f\n”,ptr- >name,ptr- >manufac,ptr- >net);

We could also use the notation

(*ptr).number

to access the member number. The parenthesis around ptr are necessary because the member operator

„.‟ Has a higher precedence than the operator *.

Dynamic memory allocation:

In programming we may come across situations where we may have to deal with data, which is

dynamic in nature. The number of data items may change during the executions of a program. The

number of customers in a queue can increase or decrease during the process at any time. When the list

grows we need to allocate more memory space to accommodate additional data items. Such situations

can be handled move easily by using dynamic techniques. Dynamic data items at run time, thus

optimizing file usage of storage space.

The process of allocating memory at run time is known as dynamic memory allocation. Although c

does not inherently have this facility there are four library routines which allow this function.

Many languages permit a programmer to specify an array size at run time. Such languages have the

ability to calculate and assign during executions, the memory space required by the variables in the

program. But c inherently does not have this facility but supports with memory management functions,

which can be used to allocate and free memory during the program execution. The following functions

are used in c for purpose of memory management.

Function

Task

malloc

Allocates memory requests size of bytes and returns a pointer to the Ist byte of allocated

space

calloc

Allocates space for an array of elements initializes them to zero and returns a pointer to

the memory

free Frees previously allocated space

realloc Modifies the size of previously allocated space.

Memory allocations process:

According to the conceptual view the program instructions and global and static variable in a permanent

storage area and local area variables are stored in stacks. The memory space that is located between

these two regions in available for dynamic allocation during the execution of the program. The free

memory region is called the heap. The size of heap keeps changing when program is executed due to

creation and death of variables that are local for functions and blocks. Therefore it is possible to

encounter memory overflow during dynamic allocation process. In such situations, the memory

allocation functions mentioned above will return a null pointer.

Allocating a block of memory:

A block mf memory may be allocated using the function malloc. The malloc function reserves a block

of memory of specified size and returns a pointer of type void. This means that we can assign it to any

type of pointer. It takes the following form: ptr=(cast_type*)malloc(byte_size); ptr is a pointer of

type cast-type the malloc returns a pointer (of cast type) to an area of memory with size byte-size.

Example:

x=(int*)malloc(100*sizeof(int));

On successful execution of this statement a memory equivalent to 100 times the area of int bytes is

reserved and the address of the first byte of memory allocated is assigned to the pointer x of type int

Allocating multiple blocks of memory:

Calloc is another memory allocation function that is normally used to request multiple blocks of storage

each of the same size and then sets all bytes to zero. The general form of calloc is:

ptr=(cast_ype*) calloc(n,elem_size);

The above statement allocates contiguous space for n blocks each size of elements size bytes. All bytes

are initialized to zero and a pointer to the first byte of the allocated region is returned. If there is not

enough space a null pointer is returned.

Releasing the used space:

Compile time storage of a variable is allocated and released by the system in accordance with its

storage class. With the dynamic runtime allocation, it is our responsibility to release the space when it

is not required. The release of storage space becomes important when the storage is limited. When we

no longer need the data we stored in a block of memory and we do not intend to use that block for

storing any other information, we may release that block of memory for future use, using the free

function.

free(ptr);

ptr is a pointer that has been created by using malloc or calloc.

To alter the size of allocated memory:

The memory allocated by using calloc or malloc might be insufficient or excess sometimes in both the

situations we can change the memory size already allocated with the help of the function realloc. This

process is called reallocation of memory. The general statement of reallocation of memory is :

ptr=realloc(ptr,newsize);

This function allocates new memory space of size newsize to the pointer variable ptr ans returns a
pointer to the first byte of the memory block. The allocated new block may be or may not be at the
same region.

/*Example program for reallocation*/

#include< stdio.h >

#include< stdlib.h >

define NULL 0

main() {

char *buffer;

/*Allocating memory*/

if((buffer=(char *) malloc(10))==NULL)

{

printf(“Malloc failed\n”);

exit(1);

}

printf(“Buffer of size %d created \n,_msize(buffer));

strcpy(buffer,”Kathmandu”);

printf(“\nBuffer contains:%s\n”,buffer);

/*Reallocation*/

if((buffer=(char *)realloc(buffer,15))==NULL)

{

printf(“Reallocation failed\n”);

exit(1);

}

printf(“\nBuffer size modified.\n”);

printf(“\nBuffer still contains: %s\n”,buffer);

strcpy(buffer,”Hastinapur”);

printf(“\nBuffer now contains:%s\n”,buffer);

/*freeing memory*/

free(buffer); }

File Handling in C:

C supports a number of functions that have the ability to perform basic file operations, which include:

1. Naming a file

2. Opening a file

3. Reading from a file

4. Writing data into a file

5. Closing a file

File operation functions in C:

Function Name Operation

fopen() Creates a new file for use

Opens a new existing file for use

fclose Closes a file which has been opened for use

getc() Reads a character from a file

putc() Writes a character to a file

fprintf() Writes a set of data values to a file

fscanf() Reads a set of data values from a file

getw() Reads a integer from a file

putw() Writes an integer to the file

fseek() Sets the position to a desired point in the file

ftell() Gives the current position in the file

rewind() Sets the position to the beginning of the file

Defining and opening a file:

If we want to store data in a file into the secondary memory, we must specify certain things about the

file to the operating system. They include the fielname, data structure, purpose.

The general format of the function used for opening a file is

FILE *fp;

fp=fopen(“filename”,”mode”);

The first statement declares the variable fp as a pointer to the data type FILE. As stated earlier, File is a

structure that is defined in the I/O Library. The second statement opens the file named filename and

assigns an identifier to the FILE type pointer fp. This pointer, which contains all the information about

the file, is subsequently used as a communication link between the system and the program. The

second statement also specifies the purpose of opening the file. The mode does this job.

w - open for writing (file need not exist) a - open for

appending (file need not exist) r+ - open for reading

and writing, start at beginning w+ - open for reading

and writing (overwrite file) a+ - open for reading and

writing (append if file exists)

Consider the following statements:

FILE *p1, *p2;

p1=fopen(“data”,”r”);

p2=fopen(“results”,”w”);

In these statements the p1 and p2 are created and assigned to open the files data and results respectively

the file data is opened for reading and result is opened for writing. In case the results file already exists,

its contents are deleted and the files are opened as a new file. If data file does not exist error will occur.

Closing a file:

The input output library supports the function to close a file; it is in the following format.

fclose(file_pointer);

A file must be closed as soon as all operations on it have been completed. This would close the file

associated with the file pointer.

Observe the following program.

….

FILE *p1 *p2; p1=fopen

(“Input”,”w”); p2=fopen

(“Output”,”r”); ….

…

fclose(p1);

fclose(p2)

The above program opens two files and closes them after all operations on them are completed, once a

file is closed its file pointer can be reversed on other file.

The getc and putc functions are analogous to getchar and putchar functions and handle one character at

a time. The putc function writes the character contained in character variable c to the file associated

with the pointer fp1. ex putc(c,fp1); similarly getc function is used to read a character from a file that

has been open in read mode. c=getc(fp2).

The program shown below displays use of a file operations. The data enter through the keyboard and

the program writes it. Character by character, to the file input. The end of the data is indicated by

entering an EOF character, which is control-z. the file input is closed at this signal.

#include< stdio.h > main()

{ file *f1; printf(“Data

input output”);

f1=fopen(“Input”,”w”); /*Open the file Input*/

while((c=getchar())!=EOF) /*get a character from key board*/

putc(c,f1); /*write a character to input*/

fclose(f1); /*close the file input*/

printf(“\nData output\n”);

f1=fopen(“INPUT”,”r”); /*Reopen the file input*/

while((c=getc(f1))!=EOF) printf(“%c”,c);

fclose(f1); }

The getw and putw functions:

These are integer-oriented functions. They are similar to get c and putc functions and are used to read

and write integer values. These functions would be usefull when we deal with only integer data. The

general forms of getw and putw are:

putw(integer,fp);

getw(fp);

/*Example program for using getw and putw functions*/

#include< stdio.h >

main()

{

FILE *f1,*f2,*f3;

int number I;

printf(“Contents of the data file\n\n”);

f1=fopen(“DATA”,”W”); for(I=1;I<

30;I++)

{

scanf(“%d”,&number);

if(number==-1) break;

putw(number,f1);

} fclose(f1);

f1=fopen(“DATA”,”r”);

f2=fopen(“ODD”,”w”);

f3=fopen(“EVEN”,”w”);

while((number=getw(f1))!=EOF)/* Read from data file*/

{

if(number%2==0)

putw(number,f3);/*Write to even file*/

else

putw(number,f2);/*write to odd file*/

} fclose(f1); fclose(f2);

fclose(f3);

f2=fopen(“ODD”,”r”);

f3=fopen(“EVEN”,”r”);

printf(“\n\nContents of the odd file\n\n”);

while(number=getw(f2))!=EOF)

printf(“%d%d”,number);

printf(“\n\nContents of the even file”);

while(number=getw(f3))!=EOF)

printf(“%d”,number);

fclose(f2);

fclose(f3);

}

The fprintf & fscanf functions:

The fprintf and scanf functions are identical to printf and scanf functions except that they work on files.

The first argument of theses functions is a file pointer which specifies the file to be used. The general

form of fprintf is

fprintf(fp,”control string”, list);

Where fp id a file pointer associated with a file that has been opened for writing. The control string is

file output specifications list may include variable, constant and string.

fprintf(f1,%s%d%f”,name,age,7.5);

Here name is an array variable of type char and age is an int variable

The general format of fscanf is

fscanf(fp,”controlstring”,list);

This statement would cause the reading of items in the control string.

Example:

fscanf(f2,”5s%d”,item,&quantity”);

Like scanf, fscanf also returns the number of items that are successfully read.

/*Program to handle mixed data types*/

#include< stdio.h >

main()

{

FILE *fp; int num,qty,I; float price,value;

char item[10],filename[10]; printf(“Input

filename”); scanf(“%s”,filename);

fp=fopen(filename,”w”); printf(“Input

inventory data\n\n”0; printf(“Item namem

number price quantity\n”); for I=1;I< =3;I++)

{

fscanf(stdin,”%s%d%f%d”,item,&number,&price,&quality);

fprintf(fp,”%s%d%f%d”,itemnumber,price,quality);

} fclose (fp);

fprintf(stdout,”\n\n”);

fp=fopen(filename,”r”);

printf(“Item name number price quantity value”);

for(I=1;I< =3;I++)

{

fscanf(fp,”%s%d%f%d”,item,&number,&prince,&quality);

value=price*quantity”);

fprintf(“stdout,”%s%d%f%d%d\n”,item,number,price,quantity,value);

}

fclose(fp);

}

C Graphics

If all pictures are built by concept of pixel then wondering how each picture differ that is how some

picture appear more brighter while some other have a shady effect. All this is by the concept or

technically terminology called as resolution.

So let‟s have an insight on this important terminology.

 Resolution is the number of rows that appear from top to bottom of a screen and in turn the number of

pixels or pixel elements that appear from left to right on each scan line. Based on this resolution only

the effect of picture appears on screen. In other words greater the resolution greater will be the clarity

of picture. This is because greater the number of dots greater will be sharpness of picture. That is

resolution value is directly proportional to clarity of picture.

 There are generally two modes available namely text and graphics. In a graphics mode we have

generally the following adapters namely CGA called as Color Graphics Adapter, EGA and VGA. Each

adapter differs in the way of generating colors and also in the number of colors produced by each

adapter. Pixel being a picture element when we consider the graphics mode each pixel has a color

associated with it. But the way these colors are used depends on adapters because each adapter differs

in the way they handle colors and also in the number of colors supported.

 Having known about adapters now let us start knowing on how to start switching to graphics mode

from text mode in other words how to start using pixel and resolution concepts.

This is done by a function called intigraph ().This intigraph () takes in it 2 main arguments as input

namely gd and gm.

 In this gd has the number of mode which has the best resolution. This is very vital for graphics since

the best resolution only gives a sharper picture as we have seen before. This value is obtained by using

the function called as getgraphmode () in C graphics. The other argument gm gives insight about the

monitor used, the corresponding resolution of that, the colors that are available since this varies based

on adapters supported. This value is obtained by using the function named as getmodename () in C

graphics.

 Graphics function in C and Pixel concept in that

There are numerous graphics functions available in c. But let us see some to have an understanding of

how and where a pixel is placed in each when each of the graphics function gets invoked.

 Function:
putpixel(x, y, color)

Purpose:

The functionality of this function is it put a pixel or in other words a dot at position x, y given in

inputted argument. Here one must understand that the whole screen is imagined as a graph. In other

words the pixel at the top left hand corner of the screen represents the value (0, 0).

Here the color is the integer value associated with colors and when specified the picture element or the

dot is placed with the appropriate color associated with that integer value.

 Function: Line(x1,

y1, x2, y2)

Purpose:

The functionality of this function is to draw a line from (x1,y1) to (x2,y2).Here also the coordinates are

passed taking the pixel (0,0) at the top left hand corner of the screen as the origin. And also one must

note that the line formed is by using number of pixels placed near each other.

Function: getpixel(x,

y) Purpose:

This function when invoked gets the color of the pixel specified. The color got will be the integer value

associated with that color and hence the function gets an integer value as return value.

So the smallest element on the graphics display screen is a pixel or a dot and the pixels are used in this

way to place images in graphics screen in C language.

Some Examples of C graphics:
// Drawing a Circle

#include<graphics.h> void main()

{int gd= DETECT, gm;

initgraph(&gd,&gm,"c:\\tc\\bgi");

circle(200,100,10);

setcolor(WHITE);

getch();

 closegraph();

 }

//Drawing Lines

#include<graphics.h> void main()

{int gd= DETECT, gm;

initgraph(&gd,&gm,"c:\\tc\\bgi");

line(90,70,60,100);

line(200,100,150,300);

setcolor(WHITE);

 getch();

 closegraph();

 }

// Drawing rectangle

#include<graphics.h>

void main() {int gd= DETECT,

gm;

initgraph(&gd,&gm,"c:\\tc\\bgi");

rectangle(200,100,150,300);

setcolor(WHITE);

 getch();

 closegraph();

 }

//Constructing Triangle

#include<graphics.h>

void main() {int gd= DETECT,

gm;

initgraph(&gd,&gm,"c:\\tc\\bgi");

line(200,100,10,20);line(10,20,50,60);line(50,60,200,100);

setcolor(WHITE);

 getch();

closegraph();

 }

