# PowerPlex<sup>®</sup> 5C Matrix Standards, 310

Instructions for Use of Product **DG5640** 



Printed 10/15 TMD050

# **PowerPlex® 5C Matrix Standards, 310**

|    | All technical literature is available at: www.promega.com/protocols/<br>Visit the web site to verify that you are using the most current version of this Technical Bulletin.<br>E-mail Promega Technical Services if you have questions on use of this system:genetic@promega.com |    |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 1. | Description                                                                                                                                                                                                                                                                       | 1  |
| 2. | Product Components and Storage Conditions                                                                                                                                                                                                                                         | 2  |
| 3. | Detection of Matrix Fragments Using the ABI PRISM® 310 Genetic Analyzer,                                                                                                                                                                                                          |    |
|    | GeneMapper <sup>®</sup> ID or GeneMapper <sup>®</sup> ID-X Software, and POP-4 <sup>®</sup> Polymer                                                                                                                                                                               | 2  |
|    | 3.A. Instrument Preparation                                                                                                                                                                                                                                                       | 3  |
|    | 3.B. Matrix Sample Preparation                                                                                                                                                                                                                                                    | 3  |
|    | 3.C. Capillary Electrophoresis and Detection                                                                                                                                                                                                                                      | 4  |
|    | 3.D. Matrix Generation for the ABI PRISM® 310 Genetic Analyzer                                                                                                                                                                                                                    | 4  |
| 4. | Detection of Matrix Fragments Using the ABI PRISM® 310 Genetic Analyzer,                                                                                                                                                                                                          |    |
|    | GeneMapper <sup>®</sup> ID or GeneMapper <sup>®</sup> ID-X Software, and POP-6 <sup>®</sup> Polymer                                                                                                                                                                               | 6  |
|    | 4.A. Instrument Preparation                                                                                                                                                                                                                                                       | 7  |
|    | 4.B. Matrix Sample Preparation                                                                                                                                                                                                                                                    | 9  |
|    | 4.C. Capillary Electrophoresis and Detection                                                                                                                                                                                                                                      | 9  |
|    | 4.D. Matrix Generation for the ABI PRISM® 310 Genetic Analyzer                                                                                                                                                                                                                    | 9  |
| 5. | Troubleshooting                                                                                                                                                                                                                                                                   | 10 |
| 6. | Related Products                                                                                                                                                                                                                                                                  | 12 |

# 1. Description

Proper generation of a matrix file is critical to evaluate multicolor STR data with the ABI PRISM<sup>®</sup> 310 Genetic Analyzer. To prepare a matrix, five standards are analyzed using the same capillary electrophoresis (CE) conditions that are used for samples and allelic ladders. The PowerPlex<sup>®</sup> 5-Dye Matrix Standards, 310<sup>(a)</sup>, consists of DNA fragments labeled with five different fluorescent dyes. One tube contains DNA fragments labeled with fluorescein, one tube contains DNA fragments labeled with JOE, one tube contains DNA fragments labeled with TMR-ET, one tube contains DNA fragments labeled with CXR-ET, and one tube contains DNA fragments labeled with WEN. The PowerPlex<sup>®</sup> 5-Dye Matrix Standards, 310, can be used with any of the 5-dye Promega STR amplification systems. Use the Fluorescein Matrix, JOE Matrix, TMR-ET Matrix, CXR-ET Matrix and WEN Matrix for the blue, green, yellow, red and orange standards, respectively.

A matrix must be generated for each individual instrument. A new matrix should be run after major maintenance on the system, such as changing the laser, calibrating or replacing the CCD camera or changing the polymer type or capillary array. We also recommend that you generate a new matrix after the instrument is moved to a new location. In some instances, a software upgrade may necessitate generation of a new matrix. Individual labs should determine the frequency of matrix generation.

Protocols to operate the fluorescence-detection instrumentation should be obtained from the manufacturer.



### 2. Product Components and Storage Conditions

| PRODUCT                                         | SIZE            | CAT.#  |
|-------------------------------------------------|-----------------|--------|
| PowerPlex <sup>®</sup> 5C Matrix Standards, 310 | 50µl (each dye) | DG5640 |

Not For Medical Diagnostic Use. Includes:

- 50µl Fluorescein Matrix, 5-Dye (310)
- 50µl JOE Matrix, 5-Dye (310)
- 50µl TMR-ET Matrix, 5-Dye (310)
- 50µl CXR-ET Matrix, 5-Dye (310)
- 50µl WEN Matrix, 5-Dye (310)

**Storage Conditions:** Upon receipt, store all components at  $-30^{\circ}$ C to  $-10^{\circ}$ C in a nonfrost-free freezer, protected from light. Do not store reagents in the freezer door, where the temperature can fluctuate. We strongly recommend that you store the PowerPlex<sup>®</sup> 5C Matrix Standard with the post-amplification reagents. The fragments in the matrix standards are light-sensitive and must be stored in the dark.

Use these matrix standards once, and then discard them.

Additional product information and ordering information for accessory components and related products are available upon request from Promega or at: **www.promega.com** 

# 3. Detection of Matrix Fragments Using the ABI PRISM<sup>®</sup> 310 Genetic Analyzer, GeneMapper<sup>®</sup> *ID* or GeneMapper<sup>®</sup> *ID*-X Software, and POP-4<sup>®</sup> Polymer

#### Materials to Be Supplied by the User

- 95°C dry heating block, water bath or thermal cycler
- crushed ice or ice-water bath
- 310 capillaries, 47cm × 50µm
- performance optimized polymer 4 (POP-4<sup>®</sup> polymer; see note below)
- 10X genetic analyzer buffer
- sample tubes and septa
- aerosol-resistant pipette tips
- Hi-Di<sup>™</sup> formamide (Applied Biosystems Cat.# 4311320)

The quality of formamide is critical. Use Hi-Di<sup>™</sup> formamide. Freeze formamide in aliquots at −20°C. Multiple freeze-thaw cycles or long-term storage at 4°C can cause breakdown of formamide. Poor-quality formamide can contain ions that compete with DNA during injection, which results in lower peak heights and reduced sensitivity. A longer injection time may not increase the signal.

Formamide is an irritant and a teratogen; avoid inhalation and contact with skin. Read the warning label, and take the necessary precautions when handling this substance. Always wear gloves and safety glasses when working with formamide.

**Note:** When using the PowerPlex<sup>®</sup> ESI 16 and 17 Pro Systems (Cat.# DC6770, DC6771, DC7780, DC7781) and PowerPlex<sup>®</sup> ESI 16 and 17 Fast Systems (Cat.# DC1620, DC1621, DC1720, DC1721), the use of performance optimized polymer 6 (POP-6<sup>®</sup>) might be necessary to resolve the 17.3 and 18 alleles and 18.3 and 19 alleles in the D12S391 allelic ladder and the 11.3 and 12 alleles in the D2S441 allelic ladder. See Section 4.

# **3.A. Instrument Preparation**

Refer to the *ABI PRISM® 310 Genetic Analyzer User's Manual* for instructions on cleaning the pump block, installing the capillary, calibrating the autosampler and adding polymer to the syringe.

- 1. Open the ABI PRISM<sup>®</sup> 310 Data Collection Software, Version 3.1.0.
- 2. To preheat the ABI PRISM<sup>®</sup> 310 Genetic Analyzer to 60°C, select "Manual Control" in the Window menu. In the Function menu, select "Temperature Set". Set Value to "60.0", and then select "Execute". Close the Manual Control screen.
- 3. In the File menu, select "New" to open the Create New menu. Open a GeneScan<sup>®</sup> sample sheet (either "48-Tube" or "96-Tube").
- 4. In the upper right corner of the sample sheet, change "4 Dyes" to "5 Dyes". Enter the appropriate sample information in the Sample Name field. Matrix sample names should be descriptive; for example, add the color to the sample name. Label tubes with the corresponding sample names.
- 5. To save the sample sheet, select "Save As" in the File menu. Assign a name to the file, and save to the Sample Sheet folder. Close the file.
- 6. In the File menu, select "New" to open the Create New menu.
- 7. Open the GeneScan<sup>®</sup> injection list.
- 8. Select the sample sheet (i.e., the .gss file) that was created in Step 5.
- 9. Choose the GS STR POP4 (1mL) G5v2.md5 module from the drop-down menu.

The settings should be:

| 3 seconds  |
|------------|
| 15.0kV     |
| 15.0kV     |
| 60°C       |
| 28 minutes |
|            |

**Note:** The injection time may need to be increased or decreased, depending on instrument sensitivity. Peak heights of 1,000–4,000RFU are optimal for matrix generation.

10. Select "none" for the matrix file.

#### 3.B. Matrix Sample Preparation

- 1. Thaw the matrix standards on ice. For each matrix standard, vortex the tube for 5–10 seconds to mix, and then add 2µl of matrix standard to 25µl of Hi-Di<sup>™</sup> formamide.
- 2. Denature each sample for 3 minutes at 95°C, and immediately chill on crushed ice or in an ice-water bath for 3 minutes. Denature samples just prior to loading.
- 3. Place tubes in the appropriate autosampler tray (48-tube or 96-well).
- 4. Place the autosampler tray in the instrument, and close the instrument doors.



### 3.C. Capillary Electrophoresis and Detection

- 1. After loading the sample tray and closing the doors, select "Run" to start the capillary electrophoresis system.
- 2. Monitor the electrophoresis by observing the raw data and status windows.

Each sample will take approximately 40 minutes for syringe pumping, sample injection and electrophoresis. **Note:** The matrix files that are created will be .fsa files. After the run is finished, save or transfer the .fsa files to a secure location where they can be opened in a GeneMapper<sup>®</sup> project.

# 3.D. Matrix Generation for the ABI PRISM® 310 Genetic Analyzer

- 1. Open a new GeneMapper<sup>®</sup> project. To add matrix sample files to the new project, select "Add Samples to Project" in the File menu for GeneMapper<sup>®</sup> *ID* software or the Edit menu for GeneMapper<sup>®</sup> *ID*-X software. Choose the appropriate run folder containing the .fsa files from Section 3.C. Highlight the run folder, and select "Add To List" then "Add".
- 2. To open the raw data for a specific matrix sample file, locate "Project" in the upper left corner of the screen, and double-click on the run folder to reveal the .fsa files.
- 3. Choose a single .fsa file to observe the raw data. While viewing the raw data, move the cursor to the region that is to the right of the primer peak and to the left of at least five peaks. Choose a region in a flat part of the baseline. An example of WEN raw data is shown in Figure 1.



**Figure 1. WEN Matrix raw data.** The WEN Matrix standard was analyzed using an ABI PRISM<sup>®</sup> 310 Genetic Analyzer and POP-4<sup>®</sup> polymer. GeneMapper<sup>®</sup> *ID* software was used to view the raw data.

<sup>4</sup> Promega Corporation · 2800 Woods Hollow Road · Madison, WI 53711-5399 USA · Toll Free in USA 800-356-9526 · 608-274-4330 · Fax 608-277-2516 TMD050 · Printed 10/15 www.promega.com

4. Record the data point value found at the lower left portion of the screen for use in Step 6. Repeat this step for each matrix standard.

| Dye Color | <b>Corresponding Matrix</b> | "Start At" Value |
|-----------|-----------------------------|------------------|
| Blue      | Fluorescein Matrix          |                  |
| Green     | JOE Matrix                  |                  |
| Yellow    | TMR-ET Matrix               |                  |
| Red       | CXR-ET Matrix               |                  |
| Orange    | WEN Matrix                  |                  |

- 5. To create a new matrix, select "GeneMapper Manager" in the Tools menu. Select the Matrices tab and then "New".
- 6. Define the new matrix in the Matrix Editor (Figure 2).

**Note:** The Matrix Name, "Start At" values and Matrix Result values shown in Figure 2 are instrument-specific and will change depending on your instrument and whether you are using POP-4<sup>®</sup> or POP-6<sup>®</sup> polymer.

- a. Assign a matrix name in the Matrix Name field.
- b. Set Number of Dyes to "5".
- c. To select each matrix standard sample file, click on the dye color for each matrix (B for fluorescein, G for JOE, Y for TMR-ET, R for CXR-ET and O for WEN). Navigate to the .fsa sample file that corresponds to that dye, and double-click on it to add the sample file. Repeat this step for each matrix standard.
  Note: To find the .fsa files in the default location, go to: "My Computer", "AB SW8DATA (D:)", "Applied Bio", "310" and then "Runs", and locate the correct run folder.
- d. Enter the data point value recorded from Step 4 in the "Start at" field. Repeat this step for each matrix standard.
- e. Click on the Create button. The Matrix Result should give a value of 1.000 when comparing a dye to itself. Typically, all other values will be less than 1.000 except for the value indicated in red in Figure 2.

Select "OK", and the matrix will be created in the Matrices tab of the GeneMapper<sup>®</sup> Manager. Select "Done".

| P Matrix Editor                                             |                                          |                |        |        |                |  |
|-------------------------------------------------------------|------------------------------------------|----------------|--------|--------|----------------|--|
| Matrix Description<br>Matrix Name: WEN_5_dye_310            |                                          |                |        |        |                |  |
| Security Group: Bins and Panels                             |                                          |                |        |        |                |  |
| -Matrix S                                                   | ettings                                  |                |        |        |                |  |
| Select th                                                   | e Matrix Standar                         | d Sample File: |        | Numbe  | r of Dyes: 互 👻 |  |
| В                                                           | FAM3-26-15-1-0                           | 2 PM.fsa       |        | Sta    | art At: 3573   |  |
| G                                                           | JOE3-26-15-12-                           | 27 PM.fsa      |        | Sta    | art At: 3550   |  |
| Y                                                           | TMR3-26-15-11                            | -53 AM.fsa     |        | Sta    | art At: 3545   |  |
| R                                                           | R CXR3-26-15-11-18 AM.fsa Start At: 3559 |                |        |        |                |  |
| O WEN3-26-15-10-32 AM. fsa Start At: 3735<br>Points: 100000 |                                          |                |        |        |                |  |
| Creat                                                       | e                                        |                |        |        |                |  |
| Matrix R                                                    | esult                                    |                |        |        |                |  |
|                                                             | В                                        | G              | Y      | R      | 0              |  |
| В                                                           | 1.0000                                   | 0.2221         | 0.0183 | 0.0200 | 0.0023         |  |
| G                                                           | 0.9429                                   | 1.0000         | 0.1926 | 0.0196 | 0.0105         |  |
| Y                                                           | 0.5454                                   | 0.6678         | 1.0000 | 0.0708 | 0.0219         |  |
| R                                                           | 0.4783                                   | 0.6454         | 1.3464 | 1.0000 | 0.0205         |  |
| 0                                                           | 0.0483                                   | 0.0641         | 0.1716 | 0.1745 | 1.0000         |  |
| OK Cancel Help                                              |                                          |                |        |        |                |  |

#### Figure 2. The Matrix Editor.

4. Detection of Matrix Fragments Using the ABI PRISM<sup>®</sup> 310 Genetic Analyzer, GeneMapper<sup>®</sup> *ID* or GeneMapper<sup>®</sup> *ID*-X Software, and POP-6<sup>®</sup> Polymer

3300TA

#### Materials to Be Supplied by the User

- 95°C dry heating block, water bath or thermal cycler
- crushed ice or ice-water bath
- \* 310 capillaries,  $47 \text{cm} \times 50 \mu \text{m}$
- performance optimized polymer 6 (POP-6<sup>®</sup> polymer; see note below)
- 10X genetic analyzer buffer
- sample tubes and septa
- aerosol-resistant pipette tips
- Hi-Di<sup>™</sup> formamide (Applied Biosystems Cat.# 4311320)



The quality of formamide is critical. Use Hi-Di<sup>™</sup> formamide. Freeze formamide in aliquots at −20°C. Multiple freeze-thaw cycles or long-term storage at 4°C can cause breakdown of formamide. Poor-quality formamide can contain ions that compete with DNA during injection, which results in lower peak heights and reduced sensitivity. A longer injection time may not increase the signal.

Formamide is an irritant and a teratogen; avoid inhalation and contact with skin. Read the warning label, and take the necessary precautions when handling this substance. Always wear gloves and safety glasses when working with formamide.

6 Promega Corporation · 2800 Woods Hollow Road · Madison, WI 53711-5399 USA · Toll Free in USA 800-356-9526 · 608-274-4330 · Fax 608-277-2516 TMD050 · Printed 10/15 **www.promega.com**  **Note:** When using the PowerPlex<sup>®</sup> ESI 16 and 17 Pro Systems (Cat.# DC6770, DC6771, DC7780, DC7781) and PowerPlex<sup>®</sup> ESI 16 and 17 Fast Systems (Cat.# DC1620, DC1621, DC1720, DC1721), the use of POP-6<sup>®</sup> polymer might be necessary to resolve the 17.3 and 18 alleles and 18.3 and 19 alleles in the D12S391 allelic ladder and the 11.3 and 12 alleles in the D2S441 allelic ladder.

# 4.A. Instrument Preparation

Refer to the *ABI PRISM® 310 Genetic Analyzer User's Manual* for instructions on cleaning the pump block, installing the capillary, calibrating the autosampler and adding polymer to the syringe.

- 1. Open the ABI PRISM<sup>®</sup> 310 Data Collection Software, Version 3.1.0.
- 2. To preheat the ABI PRISM<sup>®</sup> 310 Genetic Analyzer to 60°C, select "Manual Control" in the Window menu. In the Function menu, select "Temperature Set". Set Value to "60.0", and then select "Execute".
- 3. It is necessary to create a module for use with POP-6<sup>®</sup> polymer at the first use. This module can be saved and used for subsequent runs. To make and save a module for use with POP-6<sup>®</sup> polymer, choose the GS STR POP4 (1mL) G5v2.md5 module using the drop-down menu under "Module".
- 4. Click on the folded page icon (Figure 3).



#### Figure 3. The Manual Control screen.

5. Change the Collection Time to "50" and Syringe Pump Time to "360" (Figure 4). Select "Save Copy In".



Figure 4. Changing the collection time and syringe pump time.



#### 4.A. Instrument Preparation (continued)

6. Save the new module in the Modules folder. Change the file name to "GS STR POP6 (1mL) G5v2.md5", and select "Save" (Figure 5).

| 🛃 Save                                                                                |                                                                                             |                                                                                                                                                                                                 |        |
|---------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| Save <u>i</u> n:                                                                      | Modules                                                                                     | - 1                                                                                                                                                                                             | * ==   |
| GS Templat<br>GS Templat<br>GS Templat<br>P4RapidSet<br>P4StdSeq(1<br>GS Seq Fill Cap | e (1 mL) A.md4<br>e (1 mL) C.md4<br>e (1 mL) D.md4<br>q(1mL)E.md4<br>mL)E.md4<br>illary.md4 | Seq Fill Capillary.md5     Seq POP6 (1 mL) A.md4     Seq POP6 (1 mL) E.md4     Seq POP6 (1 mL) E.md4     Seq POP6 Rapid (1 mL) A.md4     Seq POP6 Rapid (1 mL) E.md4     Seq Run (250 uL) A.md4 |        |
| •                                                                                     |                                                                                             |                                                                                                                                                                                                 | F      |
| File <u>n</u> ame:                                                                    | GS STR POP6 (1 mL) G5v                                                                      | /2.md5                                                                                                                                                                                          | Save   |
| Files of type:                                                                        | All Files                                                                                   | <b>~</b>                                                                                                                                                                                        | Cancel |

#### Figure 5. The Save screen.

- 7. In the File menu, select "New" to open the Create New menu. Open a GeneScan<sup>®</sup> sample sheet (either "48-Tube" or "96-Tube").
- 8. In the upper right corner of the sample sheet, change "4 Dyes" to "5 Dyes". Enter the appropriate sample information in the Sample Name field. Matrix sample names should be descriptive; for example, add the color to the sample name. Label tubes with the corresponding sample names.
- 9. To save the sample sheet, select "Save As" in the File menu. Assign a name to the file, and save to the Sample Sheet folder. Close the file.
- 10. In the File menu, select "New" to open the Create New menu.
- 11. Open the GeneScan<sup>®</sup> injection list.
- 12. Select the sample sheet (i.e., the .gss file) that was created in Step 9.
- 13. Choose the GS STR POP6 (1mL) G5v2.md5 module created in Step 6 using the drop-down menu.

The settings should be:

| Injection Time:    | 3 seconds  |
|--------------------|------------|
| Injection Voltage: | 15.0kV     |
| Run Voltage:       | 15.0kV     |
| Run Temperature:   | 60°C       |
| Run Time:          | 50 minutes |

**Note:** The injection time may need to be increased or decreased, depending on instrument sensitivity. Peak heights of 1,000–4,000RFU are optimal for matrix generation.

14. Select "none" for the matrix file.

### 4.B. Matrix Sample Preparation

- 1. Thaw the matrix standards. For each matrix standard, vortex the tube for 5–10 seconds to mix, and then add 2µl of matrix standard to 25µl of Hi-Di<sup>™</sup> formamide.
- 2. Denature each sample for 3 minutes at 95°C, and immediately chill on crushed ice or in an ice-water bath for 3 minutes. Denature samples just prior to loading.
- 3. Place tubes in the appropriate autosampler tray (48-tube or 96-tube).
- 4. Place the autosampler tray in the instrument, and close the instrument doors.

# 4.C. Capillary Electrophoresis and Detection

- 1. After loading the sample tray and closing the doors, select "Run" to start the capillary electrophoresis system.
- 2. Monitor the electrophoresis by observing the raw data and status windows.

Each sample will take approximately 60 minutes for syringe pumping, sample injection and electrophoresis. **Note:** The matrix files that are created will be .fsa files. After the run is finished, save or transfer the .fsa files to a secure location where they can be opened in a GeneMapper<sup>®</sup> project.

# 4.D. Matrix Generation for the ABI PRISM® 310 Genetic Analyzer

- 1. Open a new GeneMapper<sup>®</sup> project. To add matrix sample files to the new project, select "Add Samples to Project" in the File menu for GeneMapper<sup>®</sup> *ID* software or the Edit menu for GeneMapper<sup>®</sup> *ID*-X software. Choose the appropriate run folder containing the .fsa files from Section 4.C. Highlight the run folder, and select "Add To List" and then "Add".
- 2. To open the raw data for a specific matrix sample file, locate "Project" in the upper left corner of the screen, and double-click on the run folder to reveal the .fsa files.
- 3. Choose a single .fsa file to observe the raw data. While reviewing the raw data, move the cursor to the region that is to the right of the primer peak and to the left of at least five peaks. Choose a region in the flat part of the baseline.
- 4. Record the data point value found at the lower left portion of the screen for use in Step 6. Repeat this step for each matrix standard.

| Dye Color | <b>Corresponding Matrix</b> | "Start At" Value |
|-----------|-----------------------------|------------------|
| Blue      | Fluorescein Matrix          |                  |
| Green     | JOE Matrix                  |                  |
| Yellow    | TMR-ET Matrix               |                  |
| Red       | CXR-ET Matrix               |                  |
| Orange    | WEN Matrix                  |                  |

5. To create a new matrix, select "GeneMapper Manager" in the Tools menu. Select the Matrices tab and then "New".



# 4.D. Matrix Generation for the ABI PRISM® 310 Genetic Analyzer (continued)

6. Define the new matrix in the Matrix Editor (Figure 2).

**Note:** The Matrix Name, "Start At" values and Matrix Result values shown in Figure 2 are instrument-specific and will change depending on your instrument and whether you are using POP-4<sup>®</sup> or POP-6<sup>®</sup> polymer.

- a. Assign a matrix name in the Matrix Name field.
- b. Set Number of Dyes to "5".
- c. To select each matrix standard sample file, click on the dye color for each matrix (B for fluorescein, G for JOE, Y for TMR-ET, R for CXR-ET and O for WEN). Navigate to the .fsa sample file that corresponds to that dye, and double-click on it to add the sample file. Repeat this step for each matrix standard.

**Note:** To find the .fsa files in the default location, go to: "My Computer", "AB SW8DATA (D:)", "Applied Bio", "310" and then "Runs", and locate the correct run folder.

- d. Enter the data point value recorded from Step 4 in the "Start at" field. Repeat this step for each matrix standard.
- e. Click on the Create button. The Matrix Result should give a value of 1.000 when comparing a dye to itself. Typically, all other values will be less than 1.000 except for the value indicated in red in Figure 2.

Select "OK", and the matrix will be created in the Matrices tab of the GeneMapper® Manager. Select "Done".

#### 5. Troubleshooting

For questions not addressed here, please contact your local Promega Branch Office or Distributor. Contact information available at: **www.promega.com**. E-mail: **genetic@promega.com** 

| Symptoms                                                | Causes and Comments                                                                                                                                                                                                                                                      |
|---------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Unable to generate a matrix due to faint<br>or no peaks | Peak heights were too low. Peak heights should be<br>1,000–4,000RFU for the ABI PRISM® 310 Genetic Analyzer.<br>To increase peak heights, increase the injection time or loading<br>volume.                                                                              |
|                                                         | Poor capillary electrophoresis (CE) injection. Re-inject the sample. Check the syringe for leakage. Check the laser power.                                                                                                                                               |
|                                                         | Poor-quality formamide was used. Use only fresh Hi-Di™<br>formamide.                                                                                                                                                                                                     |
|                                                         | Samples were degraded due to improper storage. Store matrix standards at $-30^{\circ}$ C to $-10^{\circ}$ C, protected from light. Do not store in the freezer door or in a frost-free freezer. We recommend using these matrix standards once and then discarding them. |
|                                                         | Samples were not denatured. Heat-denature samples, and immediately chill on crushed ice or in an ice-water bath before loading the capillary. Denature samples just prior to loading.                                                                                    |



| Symptoms                                                                             | Causes and Comments                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
|--------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Peak heights too high                                                                | Peak heights were above 4,000RFU. To decrease peak heights, decrease the injection time or loading volume.                                                                                                                                                                                                                                                                                                                                    |  |  |
| Poor-quality matrix (extra peaks visible<br>in one or all of the color channels)     | CE-related artifacts ("spikes"). Minor voltage changes or urea<br>crystals passing by the laser can cause "spikes" or unexpected<br>peaks. Spikes sometimes appear in one color but often are easily<br>identified by their presence in more than one color. Re-inject the<br>samples to confirm.                                                                                                                                             |  |  |
|                                                                                      | CE-related artifacts (contaminants). Contaminants in the water<br>used with the ABI PRISM <sup>®</sup> 310 Genetic Analyzer and for<br>diluting the 10X genetic analyzer buffer can generate peaks in<br>the fluorescein and JOE dye channels. Use autoclaved water to<br>clean the pump block and prepare sample dilutions. Change<br>vials, and wash the buffer reservoir.                                                                  |  |  |
| Extra peaks in the CXR-ET dye channels                                               | Extra peaks may appear in the CXR-ET dye channels but do not affect matrix quality.                                                                                                                                                                                                                                                                                                                                                           |  |  |
| Poor-quality matrix (elevated baseline<br>and/or inverted peaks in analyzed samples) | Matrix used was generated on another instrument. A matrix must be generated for each instrument.                                                                                                                                                                                                                                                                                                                                              |  |  |
|                                                                                      | Wrong dye was used. Generate the matrix using the same dyes as those in the samples.                                                                                                                                                                                                                                                                                                                                                          |  |  |
|                                                                                      | Oversubtraction of signal occurred because signal was saturated.<br>When generating a matrix, avoid choosing samples with peak<br>heights that are higher than the recommended RFU values, as<br>this can result in a matrix that causes inverted peaks or elevated<br>baseline. Analyzed sample results may be improved by diluting<br>matrix samples in water before preparing them for use.<br>Alternatively, decrease the injection time. |  |  |
| Inverted peaks in matrix baseline                                                    | Inappropriate or no "Start At" value was entered. The "Start At" value entered in Sections 3.D or 4.D should be chosen in a region with a flat baseline.                                                                                                                                                                                                                                                                                      |  |  |
|                                                                                      | Wrong colors were assigned to the dyes. Confirm the dye and color selection:                                                                                                                                                                                                                                                                                                                                                                  |  |  |
|                                                                                      | Fluorescein: Blue                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
|                                                                                      | JOE: Green                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
|                                                                                      | TMR-ET: Yellow                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|                                                                                      | CXR-ET: Red                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
|                                                                                      | WEN Orange                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |



# 5. Troubleshooting (continued)

| Symptoms                              | Causes and Comments                                              |
|---------------------------------------|------------------------------------------------------------------|
| Previously generated matrix no longer | Changes to or aging of instrument components. Instrument         |
| performs optimally                    | sensitivity can change if the instrument is moved or recently    |
|                                       | serviced (replacement or realignment of the laser, CCD camera,   |
|                                       | power supply or mirrors). The sensitivity also can change over   |
|                                       | time due to aging of the instrument. These changes can result in |
|                                       | poor matrix performance. Generate a new matrix.                  |

# 6. Related Products

| Product                                   | Size                     | Cat.#  |
|-------------------------------------------|--------------------------|--------|
| PowerPlex <sup>®</sup> Fusion System      | 200 reactions            | DC2402 |
|                                           | 800 reactions            | DC2408 |
| PowerPlex <sup>®</sup> Y23 System         | 50 reactions             | DC2305 |
|                                           | 200 reactions            | DC2320 |
| PowerPlex <sup>®</sup> 21 System          | 200 reactions            | DC8902 |
|                                           | $4 \times 200$ reactions | DC8942 |
| PowerPlex <sup>®</sup> 18D System         | 200 reactions            | DC1802 |
|                                           | 800 reactions            | DC1808 |
| PowerPlex <sup>®</sup> ESX 16 Fast System | 100 reactions            | DC1611 |
|                                           | 400 reactions            | DC1610 |
| PowerPlex <sup>®</sup> ESX 17 Fast System | 100 reactions            | DC1711 |
|                                           | 400 reactions            | DC1710 |
| PowerPlex <sup>®</sup> ESI 16 Fast System | 100 reactions            | DC1621 |
|                                           | 400 reactions            | DC1620 |
| PowerPlex <sup>®</sup> ESI 17 Fast System | 100 reactions            | DC1721 |
|                                           | 400 reactions            | DC1720 |
| PowerPlex <sup>®</sup> ESX 16 System      | 100 reactions            | DC6711 |
|                                           | 400 reactions            | DC6710 |
| PowerPlex <sup>®</sup> ESX 17 System      | 100 reactions            | DC6721 |
|                                           | 400 reactions            | DC6720 |
| PowerPlex® ESI 16 System                  | 100 reactions            | DC6771 |
|                                           | 400 reactions            | DC6770 |
| PowerPlex <sup>®</sup> ESI 17 Pro System  | 100 reactions            | DC7781 |
|                                           | 400 reactions            | DC7780 |
|                                           |                          |        |

Not for Medical Diagnostic Use.

12 Promega Corporation · 2800 Woods Hollow Road · Madison, WI 53711-5399 USA · Toll Free in USA 800-356-9526 · 608-274-4330 · Fax 608-277-2516 TMD050 · Printed 10/15 www.promega.com

<sup>(a)</sup>TMR-ET, CXR-ET and WEN dyes are proprietary.

© 2015 Promega Corporation. All Rights Reserved.

PowerPlex is a registered trademark of Promega Corporation.

ABI PRISM and GeneMapper are registered trademarks of Applied Biosystems. GeneScan is a registered trademark of Eurofins Genescan Holding GmbH. Hi-Di is a trademark of Applera Corporation. POP-4 and POP-6 are registered trademarks of Life Technologies Corporation.

Products may be covered by pending or issued patents or may have certain limitations. Please visit our Web site for more information.

All prices and specifications are subject to change without prior notice.

Product claims are subject to change. Please contact Promega Technical Services or access the Promega online catalog for the most up-to-date information on Promega products.