
ibm.com/redbooks

Accelerating IBM WebSphere
Application Server Performance
with Versant enJin

Sanjiv Chhabria
Versant Solution Team

Improve data access by more
than 50 times

Speed transaction throughput by
10 times

Eliminate object-to-relational
mapping code

Front cover

Accelerating IBM WebSphere Application Server
Performance with Versant enJin

November 2002

International Technical Support Organization

SG24-6561-00

© Copyright International Business Machines Corporation 2002. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP
Schedule Contract with IBM Corp.

First Edition (November 2002)

This edition applies to Versant enJin 2.1.0/2.2.3 and WebSphere Studio Application Developer
4.0.2 on Windows NT 4.0 (SP 6).

Note: Before using this information and the product it supports, read the information in
“Notices” on page v.

Contents

Notices . v
Trademarks .vi

Preface . vii
The team that wrote this redbook. viii
Become a published author . viii
Comments welcome. ix

Part 1. Introduction to Versant enJin . 1

Chapter 1. Overview of enJin . 3
1.1 Overview . 4
1.2 Architecture . 6
1.3 Benefits . 7

1.3.1 Ease of development . 7
1.3.2 Time-to-market . 7
1.3.3 Scalability . 8
1.3.4 Performance . 8
1.3.5 Availability . 8
1.3.6 Transparent data distribution . 8

1.4 Key features . 8
1.4.1 Persistence for Java objects and EJBs. 8
1.4.2 JavaServer pages and servlet support . 9
1.4.3 Data replication . 9
1.4.4 Active data management . 10
1.4.5 XML interchange . 10
1.4.6 Hot-standby for e-business transactions . 10
1.4.7 Integration with existing technology . 10
1.4.8 GUI tools . 10

Chapter 2. Key concepts. 13
2.1 enJin’s transparent Java language interface. 14

2.1.1 Overview . 14
2.1.2 Architecture . 15
2.1.3 JVI operations . 16

2.2 Class enhancement. 37
2.2.1 Overview . 37
2.2.2 Running the enhancer. 38

2.3 Persistence categorization . 41
© Copyright IBM Corp. 2002. All rights reserved. iii

2.3.1 Persistence categories . 41
2.3.2 How to choose a persistence category . 42

2.4 Versant enterprise container . 43
2.4.1 Session manager . 43
2.4.2 Transaction management . 44
2.4.3 Helper classes. 45

Part 2. Developing an enJin application . 47

Chapter 3. Developing applications with Versant enJin 49
3.1 Installation, configuration of Versant tools. 51
3.2 Introduction to the enJin tools and user interface 51

Chapter 4. Session managed persistence . 53
4.1 Outline of the example . 54
4.2 Running the example . 54

4.2.1 Import the jar file . 55
4.2.2 Implementation of enJin session managed persistence 61
4.2.3 Categorize the persistent class . 64
4.2.4 Create the database . 68
4.2.5 Deploying and testing the application . 70
4.2.6 View the results in the database . 78

Part 3. The benchmarking project . 81

Chapter 5. Benchmark methodology. 83
5.1 Benchmark application . 84

5.1.1 Business domain model . 86
5.1.2 Interactions measured by the benchmark tests 88

5.2 Performance metrics . 90
5.3 WebSphere deployment configurations . 90
5.4 Other runtime parameters . 92
5.5 Hardware configuration . 92

Chapter 6. Benchmark results . 95
6.1 Response time and application server throughput 97
6.2 Resource utilization . 100

6.2.1 CPU utilization. 101
6.2.2 Memory utilization . 102

6.3 Scalability . 103

Appendix A. Versant WebSphere Consulting Practice 105

Index . 107
iv Accelerating IBM WebSphere Application Server Performance with Versant enJin

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area.
Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product, program, or service that
does not infringe any IBM intellectual property right may be used instead. However, it is the user's
responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document.
The furnishing of this document does not give you any license to these patents. You can send license
inquiries, in writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer
of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may
make improvements and/or changes in the product(s) and/or the program(s) described in this publication at
any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any
manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the
materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm
the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on
the capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:
This information contains sample application programs in source language, which illustrates programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the
sample programs are written. These examples have not been thoroughly tested under all conditions. IBM,
therefore, cannot guarantee or imply reliability, serviceability, or function of these programs. You may copy,
modify, and distribute these sample programs in any form without payment to IBM for the purposes of
developing, using, marketing, or distributing application programs conforming to IBM's application
programming interfaces.
© Copyright IBM Corp. 2002. All rights reserved. v

Trademarks
The following terms are trademarks of the International Business Machines Corporation in the United States,
other countries, or both:

Balance®
DB2®
IBM®
Netfinity®
Perform™

Redbooks™
SP™
VisualAge®
WebSphere®
IBM eServer™

Redbooks (logo)™
VisualAge®
WebSphere®

The following terms are trademarks of International Business Machines Corporation and Lotus Development
Corporation in the United States, other countries, or both:

Lotus® Word Pro®

The following terms are trademarks of other companies:

Versant and enJin are trademarks or registered trademarks of the Versant Corporation in the United States
and/or other countries

ActionMedia, LANDesk, MMX, Pentium and ProShare are trademarks of Intel Corporation in the United
States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the
United States, other countries, or both.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Sun
Microsystems, Inc. in the United States, other countries, or both.

C-bus is a trademark of Corollary, Inc. in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

SET, SET Secure Electronic Transaction, and the SET Logo are trademarks owned by SET Secure
Electronic Transaction LLC.

Other company, product, and service names may be trademarks or service marks of others.
vi Accelerating IBM WebSphere Application Server Performance with Versant enJin

Preface

Application servers have become the choice technology for companies building
Web-based distributed e-business applications. Although this has proven to be
successful in a number of areas, many organizations still struggle with several
performance bottlenecks. Using IBM WebSphere and Versant enJin provides a
framework for a solution that addresses some of these challenges - especially
the complex object-oriented models of enterprise applications

Versant enJin integrates seamlessly with IBM WebSphere and provides the
performance and scalability you need to accelerate your e-business transactions.

The integration of Versant enJin with IBM WebSphere can result in up to 50 times
improvement in the performance of your e-business application. This is done by
elimination of mapping objects to and from the relational world. In addition, enJin
also enables you to get your products to the market faster by eradicating the
need to know or develop in any language other than Java - no SQL, no JDBC or
relational database programming.

Versant enJin is a flexible infrastructure platform that persists Java objects and
EJBs within the middle-tier without overloading your existing database systems.
enJin gives you J2EE capabilities, combined with a transparent Java object
persistence implementation. It gives you the performance and scalability you
need to accelerate your e-business transactions across the Internet. Use Versant
enJin with IBM WebSphere Application Server to increase system throughput,
time-to-market, and transactional response time.

This IBM Redbook is an in-depth guide for implementation of Versant enJin
Session Bean Persistence methodology, development and deployment of your
J2EE applications using IBM WebSphere Application Server.

It describes in detail the benchmarking project that was a joint undertaking with
IBM and Versant. In the latter part of the book you will learn about the
benchmarking project that was conducted at the IBM Silicon Valley Laboratory in
San Jose, California, in cooperation with the IBM High Volume Web Sites team.

In Part 1 we will describe and familiarize the reader with the methodology used in
developing J2EE applications using Versant enJin, as well as provide information
about enJin that will enable your team to fully understand the components,
architecture, benefits, and features of enJin.

In Part 2 you will learn how to implement the methodology in developing and
deploying a typical J2EE application using IBM WebSphere and enJin. This will
© Copyright IBM Corp. 2002. All rights reserved. vii

be done building and deploying a fully developed typical EJB Application using
Session Managed Persistence. This will be done using WebSphere Studio
Application Developer. A downloadable JAR file will allow you to run and explore
the example rapidly. In presenting the example that we use, you will learn the
same methodology that resulted in the performance that we accomplished in the
benchmarking project, and you will be able to utilize the same principles for your
own example.

In Part 3 we will share with the user the details of the benchmarking project that
was done - including the methodology, the application architecture, the
performance metrics, and hardware configuration. The final part of this section is
dedicated to present the users with the test results and analysis, as well as a
summary of the project.

The team that wrote this redbook
This redbook was produced by a team of Versant specialists from around the
world working with the IBM International Technical Support Organization, San
Jose Center.

Sanjiv Chhabria is a technical writer at Versant Corporation. His experience
includes writing technical and user manuals and has developed the
documentation suite for Versant enJin. His previous experience includes writing
user manuals, data modeling, and writing applications for small businesses. His
current area of expertise includes application servers and EJB.

Thanks to the following people for their contributions to this project:

� The team at Versant without whose contributions this book would not have
been possible.

� Tom Miura, Executive Vice President and Chief Operating Officer, Versant
Corporation, Fremont, California

� Joe DeCarlo, Manager, IBM International Technical Support Organization,
San Jose, California

Become a published author
Join us for a two- to six-week residency program! Help write an IBM Redbook
dealing with specific products or solutions, while getting hands-on experience
with leading-edge technologies. You'll team with IBM technical professionals,
Business Partners and/or customers.
viii Accelerating IBM WebSphere Application Server Performance with Versant enJin

Your efforts will help increase product acceptance and customer satisfaction. As
a bonus, you'll develop a network of contacts in IBM development labs, and
increase your productivity and marketability.

Find out more about the residency program, browse the residency index, and
apply online at:

ibm.com/redbooks/residencies.html

Comments welcome
Your comments are important to us!

We want our Redbooks to be as helpful as possible. Send us your comments
about this or other Redbooks in one of the following ways:

� Use the online Contact us review redbook form found at:

ibm.com/redbooks

� Send your comments in an Internet note to:

redbook@us.ibm.com

� Mail your comments to:

IBM Corporation, International Technical Support Organization
Dept. 1WLB Building 80-E2254
650 Harry Road
San Jose, California 95120-6099
 Preface ix

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/
http://www.ibm.com/redbooks/
http://www.ibm.com/redbooks/
http://www.redbooks.ibm.com/contacts.html

x Accelerating IBM WebSphere Application Server Performance with Versant enJin

Part 1 Introduction to
Versant enJin

In this part we will describe and familiarize the reader with the methodology used
in developing J2EE applications using Versant enJin as well as provide
information about enJin that will enable your team to fully understand the
components, architecture, benefits and features of enJin.

Part 1
© Copyright IBM Corp. 2002 1

2 Accelerating IBM WebSphere Application Server Performance with Versant enJin

Chapter 1. Overview of enJin

Versant enJin is a scalable, robust, infrastructure platform offering advanced
object management for Application Servers. Versant enJin provides core
object-management services of persistence, and intra-tier replication that are
essential in building Java middle-tier applications. The platform is ideal for
applications that have complex object models and require high performance,
scalability, and fault-tolerance.

Versant Corporation's enJin provides a middle-tier object cache, which allows
J2EE applications to access enterprise data without having to synchronously
store or retrieve this data from a relational database during every transaction. So,
within each business transaction, the user does not need to wait for the
information to be retrieved from or propagated to backend systems, before the
application can respond to the user's request. For this reason Versant calls its
enJin product a transaction accelerator.

enJin however, does not merely provide a copy of relational data in each
application server. Instead, enJin transparently replaces the persistence and
transaction management capabilities of its host application server, in order to
provide transparent state management of objects such as Entity Beans without
the developer having to write enJin-specific code. This object cache is built upon
Versant's sixth generation object-oriented database technology (the Versant
ODBMS), and so provides a robust object caching facility with well-proven
persistence capabilities.

1

© Copyright IBM Corp. 2002 3

A simple in-memory caching mechanism would lose committed data if the
application server failed, or would become inconsistent between application
servers within a cluster. Since enJin is built upon the persistence mechanisms of
an enterprise class ODBMS, however, all committed data is stored in a persistent
object cache, which is able to survive server crashes. enJin also overcomes any
possibility of data inconsistency between application servers in a cluster, by
maintaining cached objects both in an application server in-memory cache (for
maximum performance), as well as a shared cache accessible to all application
servers, so that cached data is guaranteed to be consistent between all
application server instances.

Specific topics covered in this section include:

� An overview of Versant enJin
� Architecture of enJin
� Benefits of using enJin
� Key features

1.1 Overview
As application servers have become the platform of choice to build Web-based,
distributed e-business applications, customers may find their traditional relational
database a performance bottleneck. Whether you are a global enterprise with
vast stores of legacy data, or an Internet startup, the performance issue can
hamper your ability to remain competitive in the new economy.

Versant enJin provides the additional performance and scalability you need to
accelerate your e-business transactions across the Internet. Versant enJin is a
flexible infrastructure platform that seamlessly persists Java objects and
Enterprise JavaBeans (EJB) within the middle-tier, without otherwise overloading
your existing database systems. And your company can count on the reliability of
Versant enJin with its fault-tolerant architecture and support for high availability
and clustered environments.

For global enterprises, a key challenge is to propagate the business transaction
from the application server or middle-tier to the back-end line of business
system, which is typically a relational database. The line of business system has
no built-in ability to handle the complexities of the object-oriented models
deployed in the application server. Therefore, an impedance mismatch occurs in
moving from one model to the other. A direct impact, aside from the
development, testing and maintenance overhead imposed, is the effect on
performance. Reconstituting an object from relational tables will involve n-way
joins and sorting, a time consuming process not in line with today's real-time
processing requirements.
4 Accelerating IBM WebSphere Application Server Performance with Versant enJin

Next-generation Web applications such as B2B exchanges, aggregated portals,
and wireless workforce applications also require a robust and highly performing
infrastructure. These applications have the ambitious goal of providing
differentiated user experiences while aggregating information from a variety of
disparate sources. They also use the Internet to integrate information from
several sources such as internal applications, partner applications and third party
services.

To meet these challenges and support the emerging requirements we now need
a set of middle-tier services that help the application developer rapidly implement
Web-based applications that are reliable, robust, and scalable. Middle-tier
solutions are being used today to manage transactions, security, and data
access, greatly reducing the programming burden on application developers. But
to be successful, your company needs to support the following advanced
middle-tier services:

� Content management
� Workflow
� Personalization
� Real-time analysis
� Publish-subscribe

Versant's approach, unique in the industry, manages these middle-tier services
by separating the back-end data, typically stored in a relational database, from
the middle-tier. Versant calls data found only in the middle-tier intermediate data
to support the application logic running there. Examples include:

� Business intelligence data, data captured in the middle-tier and used to
provide personalized marketing.

� Meta data, data that describes how to interact with back-end systems and
legacy databases.

� Workflow data, data that describes business rules and the state of ongoing
business processes.

� Session data, data that is relevant only to the on-going interaction with an
e-business application, for example, shopping cart data.

While many tools exist for managing business data, intermediate data is often
created in an inefficient and ad hoc manner. And while in-memory caching
solutions provide an object layer on top of an existing relational database, they
lack the agility needed to scale and develop new applications rapidly. Versant
enJin lets developers isolate the transactional load to the middle-tier and
alleviates the impact of the Internet on business logic. Additionally, Versant enJin
automatically propagates the business transaction to the relational database
upon completion or through rules-based policies. The upshot is increased
 Chapter 1. Overview of enJin 5

flexibility and scalability without compromising robustness or reliability.
Customers can realize up to 50 times application performance improvements
and can speed time-to-market by up to 40% reduction in development time
frames.

1.2 Architecture
As illustrated in Figure 1-1, enJin exists in the middle tier in conjunction with the
business logic provided by Session and Entity Beans running within a J2EE
Application Server environment. When Session or Entity Beans read data, they
simply read the objects from the in-memory cache running within the same
application server - and this data is guaranteed to be consistent with the object
caches of all other application servers within the cluster, by virtue of the
synchronization mechanism between the in-memory cache and the shared
persistent object cache. Similarly, when a Session or Entity Bean updates an
object, it is transparently updated to the in-memory object cache, and within the
boundaries of the transaction, is updated to the shared persistent cache - this
guarantees the integrity of the transaction.

Figure 1-1 enJin architecture
6 Accelerating IBM WebSphere Application Server Performance with Versant enJin

A variety of approaches can be used to update the relational database tier, but
typically the backend is not touched until a business transaction is completed.

Since the object to relational updates are performed asynchronously, the
processing time required to do this work of backend updates is not incurred
within the context of a user's transaction, but rather, it is delayed until after the
application server has responded to the user's request. This enables response
times to be dramatically improved. Furthermore, since the resources within the
application server do not have to be locked waiting for the enterprise information
systems to be updated, these resources can be freed more quickly, and can be
utilized for other transactions more quickly. This faster freeing up of application
server resources also enables the throughput to be greatly improved. All of these
performance gains come primarily from the delaying of the object to relational
translation work and reading and writing to the enterprise back end systems -
and these gains are made without sacrificing any transactional integrity. Versant's
Persistent Object Cache guarantees the ACID properties of the transactions:
atomicity, concurrency, isolation, and durability are all maintained.

1.3 Benefits
What follows is a list of the benefits of Versant Corporation’s enJin solution.

1.3.1 Ease of development
enJin allows you to leverage its transparent object persistence capabilities. It
allows developers to use Bean or Container Managed Persistence, JavaServer
pages or servlets. You can define complex data models without the need for
mapping code. In addition, as enJin allows the developer to utilize its resource
and connection pooling capabilities for integrated connections and transaction
management.

1.3.2 Time-to-market
With enJin, the development effort can focus on modelling of business objects.
Due to it's transparent object persistence capabilities, there can be up to a 40%
reduction in development time, since there is object sharing and reuse, and the
resultant significantly less code that is required.
 Chapter 1. Overview of enJin 7

1.3.3 Scalability
enJin's enables caching of data within the application server environment. This
can reduce the load on existing business systems and allows for 1000's of
concurrent users accessing common data. EnJin scales way beyond the
limitations of simple in-memory caching solutions, and is able to handle
hundreds of gigabytes of data.

1.3.4 Performance
enJin significantly reduces response and wait times by de-coupling completion of
transactions form back-end systems. It is advanced navigational access
mechanism, allows traversing from one object to another, eliminating the use of
expensive joins.

1.3.5 Availability
enJin's proven technology is a result of over 500 years of development effort. It
provides support for application clustering, synchronization of data between
multiple application servers, and fault tolerance with automatic failover and
recovery.

1.3.6 Transparent data distribution
enJin enables seamless distribution of data in the middle-tier, which can be
partitioned over multiple machines allowing developers to harness additional
hardware for successful deployment and scaling. Multiple sharing of enJin by
application servers allows concurrent access to shared data facilities and
workload-balancing.

1.4 Key features
What follows are key features of Versant Corporation’s enJin solution.

1.4.1 Persistence for Java objects and EJBs
Persistence for Java objects, bean management, and container management is a
key feature of the enJin solution.
8 Accelerating IBM WebSphere Application Server Performance with Versant enJin

Java persistence
Seamless persistence for Java objects has accelerated the development of
e-business applications by over 40% when compared to traditional JDBC-based
development. Versant enJin provides Object Data Management Group (ODMG)
compliant APIs and in the future will also support Sun Microsystem's Java Data
Objects (JDO) APIs. Versant enJin provides transparent persistence for Java
objects without any changes to the class model; Java objects are stored and
shared between applications, as is, without any mapping to/from a relational data
model.

EJB persistence
For integration with leading EJB Application Servers, Versant enJin supports
both Bean Managed Persistence (BMP) and Container Managed Persistence
(CMP) in accordance with the EJB 1.1 specification. This enables programmers
to take full advantage of Versant enJin's high performance object storage without
having to explicitly manage database connections, transactions, or persistence.
In the future, Versant enJin will support the Java Transaction API (JTA) to ensure
co-ordination of transactions with other compliant data sources.

1.4.2 JavaServer pages and servlet support
A key component of today's e-business application is to provide highly
customized information and presentation to end-users. enJin integrates
seamlessly with the Web components of the J2EE standard and provides
compliant APIs to fully leverage the functionality of building Web-based
applications that serve dynamic content and allow access to seamless
persistence to your Java objects.

1.4.3 Data replication
Increasingly, as e-business applications are deployed to multiple sites and data
centers, the ability to replicate data is crucial. This is true for performance
reasons, as well as to provide for high-availability of service. Support for
intra-tier replication is achieved using Versant enJin's asynchronous replication
capability. This capability provides an open framework for master-slave or
peer-to-peer replication between multiple instances of enJin located over a LAN
or a WAN. The flexible configuration allows batch or transactional replication
driven automatically or explicitly via API, and supports conflict detection and
resolution in the case of duplicate updates.
 Chapter 1. Overview of enJin 9

1.4.4 Active data management
You often need the ability to build solutions that are able to react to changes.
Versant enJin provides an automatic notification capability that you can use to
register interest in changes to your Java objects, and automatically receive
notification as these changes happen. This capability is at the core of enJin's
data replication feature, and is available to you to develop your own event-driven
solutions.

1.4.5 XML interchange
The ability to handle XML data is vital to many e-business applications, Versant
enJin supports conversion to and from Java objects stored in the middle-tier and
XML. XML documents can be generated from object graphs and object graphs
can be generated from XML documents. This capability can be used to exchange
information with different and disparate sources and/or provide a means of
simplifying manipulation of complex XML documents by first converting them to
objects.

1.4.6 Hot-standby for e-business transactions
Today's e-businesses require 100% uptime. Versant enJin can be used in
conjunction with application server clustering and/or hardware clustering and
high availability solutions. In addition to this enJin offers a fault tolerant capability
that provides automatic fail-over and recovery. This means that Internet
transactions continue to run, uninterrupted, even in the event of a major system
failure. On recovery enJin performs an automatic re-synchronization before
recommencing normal fault tolerant operation.

1.4.7 Integration with existing technology
Versant enJin supports today's heterogeneous enterprise ensuring preservation
of investment as platform and technology choices change. Versant enJin
integrates with IBM's WebSphere and BEA's WebLogic Application Servers and
in addition can work with any Java application server using its generic integration
framework. Versant enJin runs on Microsoft and all major UNIX platforms.

1.4.8 GUI tools
Your learning curve associated with utilizing enJin's powerful utilities is minimal.
We provide a set of GUI tools that can be used from the Developer Console with
enJin or allows you to develop your application using the leading IDE's (Jbuider
and WSAD) simply by point and click. These include:
10 Accelerating IBM WebSphere Application Server Performance with Versant enJin

� Persistent Tool - which allows you to specify the classes you want to mark as
persistent and access transparently

� Class Enhancement

� Easy-to-use wizards that allow you to implement enJin specific code.

� DBAdministrator - allowing you to create, delete, and perform a number of
database operations

� DBInspector - allowing you to inspect the contents of your database
 Chapter 1. Overview of enJin 11

12 Accelerating IBM WebSphere Application Server Performance with Versant enJin

Chapter 2. Key concepts

Versant enJin is a powerful and comprehensive transaction accelerator. With the
integrated Java and EJB development and runtime environment that is provided,
building high-performance, scalable, and robust enterprise applications need not
take the hundreds of man-years that developers were used to. enJin provides the
platform for you to do this with up to 40% less code and 50 times better
performance.

enJin readily integrates with leading application servers like IBM WebSphere,
thereby providing a complete solution-in-a-box for your component-based
development and deployment.

enJin leverages the proven abilities of Versant's object database to handle Java
objects, data complexity, and transactions throughout the middle tier. enJin's
object-relational mapping can provide direct access to relational data where
required, and coupled with replication techniques can be used to propagate
business transactions near-synchronously or asynchronously depending on the
need.

As a new user we can understand your excitement in deciding to use enJin. But
before you start developing with enJin, there are some concepts that we feel you
need to familiarize yourself with, so that you have a good understanding of what
happens behind the scenes. These concepts are integral to your success with
using enJin. The remaining of this chapter will cover these concepts, some that
you may already be familiar with, and some that may be new to you - the unique
features of enJin.

2

© Copyright IBM Corp. 2002 13

The topics covered in this chapter include:

� enJin’s transparent Java language interface
� Class enhancement
� Persistence categorization
� Versant enterprise container

2.1 enJin’s transparent Java language interface
enJin's Java Versant Interface (JVI) provides complete transparent persistence
for Java objects without any changes in the Java class model. Java objects are
stored and shared between applications without mapping. In addition, JVI
provides a rich interface allowing developers to take full advantage of the
performance benefits of enJin's object management capabilities.

Topics included in this section include:

� Overview of JVI
� Architecture of JVI
� JVI operations

2.1.1 Overview
JVI combines the features of the Java programming language and the enJin's
Versant Object Database to provide efficient, easy-to-use storage of persistent
objects.

It is built on Java, a language whose flexibility and performance has proven
valuable on all levels of complex two and three-tier applications. JVI embraces
the Java philosophy, providing persistence that fits naturally in the Java language.

All JVI programs are written using pure Java syntax and semantics. No special
keywords have been added to the language, and no awkward interface is
needed to access persistent objects.

Objects of nearly any Java class can be stored and accessed persistently. Most
kinds of objects can be stored, including elemental values, such as strings and
integers, and Java references to other objects. With JVI, you can access the
fields of a persistent object directly in the application without writing tedious data
mapping routines.

Java has built-in support for multiple threads of execution working
simultaneously in an application. JVI allows each thread to operate in shared or
independent transactions.
14 Accelerating IBM WebSphere Application Server Performance with Versant enJin

JVI is tightly integrated with the enJin's Versant object database with a
comprehensive set of features that includes:

� High-performance, fully transactional object storage, access, and query

� An advanced 2-tier architecture with full caching of objects on both client and
server. All cache synchronization occurs automatically at transaction
boundaries.

� Sophisticated locking models including standard and optimistic locking

� Event notifications (such as creation, deletion, and modification)

� Fault-tolerant data replication with online fail-over operation

� Support for rich object models including class inheritance and direct object
references

2.1.2 Architecture
What follows is a brief overview of the JVI architecture.

Bindings
The JVI Transparent binding unifies the Java language with the Versant object
database. It allows applications to be written in a very natural way, where some of
the Java objects are completely persistent and transactional. Persistent Java
classes do not use any special syntax or conventions; instead you declare
classes to be persistent using a special tool, the enhancer. Your Java program
can use a persistent object just like any other Java object. For example, you can
call its methods; read and write its fields, use object references and collections;
and let other, possibly persistent, objects reference it.

Balanced client-server network architecture
JVI is an application interface to the Versant object database, whose structure
consists of multiple servers connecting to remote application clients. The Versant
client library caches objects, providing fast object access and navigation within
the application server, while queries can be executed at the server using the
Versant Query Language (VQL). Unlike a relational database system, the server
will not ship an object to the client if the object is already contained in the object
cache.

Database access with transparent bindings
Transparent binding helps to solve this problem of writing laborious mapping
code by merging the Java and database object spaces. With transparent binding,
persistent objects are seen in the application as regular Java objects. JVI
automatically manages the reading, writing, and locking of persistent objects as
they are accessed by the application.
 Chapter 2. Key concepts 15

2.1.3 JVI operations
This section of the document will demonstrate the ease of using enJin's
transparent object management into your applications. The complete transparent
persistence for Java objects makes object management effortless. If you are
familiar with object-oriented development and Java, you can immediately start to
use the power of enJin to enhance your application performance. In this section
we will build a simple application through which you will learn how to use enJin
to:

� First steps
� Create persistent objects
� Read (accessing) persistent objects
� Update (to write changes) persistent objects
� Delete persistent objects

First steps
Prior to proceeding with enJin's JVI operations there are two concepts that we
would like to introduce, as both of these concepts are unique to enJin, these will
provide a foundation that will facilitate comprehension of enJin's Transparent
Java Interface.

This section will cover:

� The TransSession class
� Locking

The TransSession class
enJin provides the TransSession class to encapsulate a connection with the
Versant object database, similar to what you may have experienced with JDBC
while establishing connectivity with your relational database except, the
TransSession class does much more. It is not the intention of this document, to
coach users on how to be experts at using enJin's Java Versant Interface, and in
this instance, the TransSession class. However, to be able to leverage the
transparency provided by enJin, users do need to have to some knowledge
about this class and its methods. A brief introduction to this class and its methods
are presented below. For more details, please refer to the JVI User’s Manual,
which can be found in the <ENJIN_ROOT>/ doc/jvi directory.

This class embodies the Transparent Session concept and provides methods
that allow application programs to interact with the Object Database. Listed
below are the methods that we will be using in subsequent sections, as well as
some that we will not use, but may be useful to you when using enJin.

makePersistent:
public void makePersistent(java.lang.Object obj)
16 Accelerating IBM WebSphere Application Server Performance with Versant enJin

Makes an object persistent (after commit).

makeRoot:
public void makeRoot(java.lang.String rootName, java.lang.Object obj)
Associates an object with a unique name and makes the object persistent (after
commit)

findRoot:
public java.lang.Object findRoot(java.lang.String rootName)
Returns the object with the given root name (after commit)

deleteRoot:
public void deleteRoot(java.lang.String rootName)
Deletes the named root association (after commit)

deleteObject:
public void deleteObject(java.lang.Object obj)
Deletes a persistent object (after commit).

endSession:
public void endSession()
Ends the current session and implicitly commits the current transaction.

commit:
public void commit()

This commits the current transaction and implicitly starts a new one. This method
commits all object modifications within the session and releases any related
locks held by this transaction. An object modification could be an update of any
field of an existing persistent object, or an update or creation of a persistent
object.

Objects explicitly made persistent through the makePersistent() method call, or
those deleted through the deleteObject() method call would also become
committed.

Locking
enJin provides several options for locking. Locks provide guarantees that allow
multiple processes to access the same objects at the same time in a cooperative,
controlled, and predictable manner. There are two types of locking models:
optimistic and pessimistic. Pessimistic locking is the default locking model in
enJin.

This section will provide a brief description on both models. For a more detailed
description, please see your ODB documentation provided in your installation of
enJin:

� Types of locks
 Chapter 2. Key concepts 17

� Pessimistic locking
� Optimistic locking

Types of locks
Two types of locks are used for concurrency control.

A read lock (RLOCK) is a shared lock and any number of applications can read
the same object at the same time.

A write lock (WLOCK) is an exclusive lock and only one application is allowed to
write an object at a time.

Read and Write locks will block each other. A read lock will block a request for a
write lock and the request will be queued until all the read locks are released. A
write lock will block a request for a read lock and will be queued until the write
lock is released. Of course, a read lock will not block any other request for a read
lock.

Pessimistic locking
As mentioned earlier, this is the default locking model with enJin. When an object
is first read into cache a default lock (typically a read lock) is placed on the
object. When it is first modified the lock is implicitly upgraded to a write lock. With
pessimistic locking locks are held for the duration of the transaction and only
released after a transaction is committed or aborted.

Optimistic locking
The default pessimistic locking model is appropriate under most circumstances,
however, suppose you have the following scenarios:

� You want to read a large number of objects over a long period of time, but
update only a few.

� But holding locks on all the objects could interfere with the work of others.

For situations such as these, enJin provides optimistic locking that allows you to
work with objects without holding locks.

For a more detailed description, please see your ODB Documentation provided
in your installation of enJin.
18 Accelerating IBM WebSphere Application Server Performance with Versant enJin

Creating persistent objects
Persistent objects created with the transparent binding are cached in Java
memory. To create a Java class for persistent objects, first write the .java source
code file as usual. Note that there is no special syntax necessary when defining
the classes. No changes are necessary to allow objects of this class to be stored
in the Versant object database. These changes are done automatically for you in
the enhancement process.

Our first example will use a Person class, which is included in the
<ENJIN_ROOT>/examples/JVI/tutorial/trans directory. To indicate that instances
of Person are persistent objects, a corresponding line will be added to the
configuration file that is read during the enhancement process. Enhancement will
be described in greater detail in the section on Class Enhancement.

Using the command line to create the database
There are two steps to creating the database using the command line.

Make the Object Manager Directory
Before creating a new Object Database you must create a subdirectory for it
under the VERSANT root database directory. To create the database directory
for the Object Manager tutdb, run the makedb utility:

makedb tutdb

This creates a subdirectory, owned by you, under the VERSANT root database
directory. To see the location of this root directory, use the oscp utility:

oscp -d

In addition, the makedb utility creates front end and backend profiles; we will not
be using these profiles in the tutorial. Consult your VERSANT Database
Administration Manual for more information on database profiles.

Create the Object Manager
To create the Object Manager, use the createdb utility:

createdb tutdb

Note: This and the subsequent examples requires enJin's object database in
which to store objects. Thus, our first step is to create this. The name of the
database is arbitrary; we will use the name tutdb. This can be easily changed,
since all of the examples take the database name as a command-line
parameter. Creating a new Versant Object Manager can be accomplished in
two ways:

� Using the command line
� Using WSAD IDE (with the enJin's Integrated tools)
 Chapter 2. Key concepts 19

This creates the database data volumes and log files in the database directory
tutdb.

Using the WSAD IDE to Create the database
To create the database, run the DBAdministrator tool by either clicking the
DBAdministrator icon, or select enJin DatabaseTools>DBAdministrator, as
shown in Figure 2-1.

Figure 2-1 DBAdministrator

Doing so, launches a new window as shown in Figure 2-2. Simply select File ->
Create Database, and this will display a new dialogue box.
20 Accelerating IBM WebSphere Application Server Performance with Versant enJin

Figure 2-2 Create database

Please perform the steps in sequential order as demonstrated in Figure 2-3, and
you will have a database where the objects that you create will be stored. Ensure
that the server on which you to create your database has been selected.
 Chapter 2. Key concepts 21

Figure 2-3 Create database steps

Now that we have a database to store persistent objects, you will experience the
ease, and speed with which you can make objects persistent. To create a
persistent Person object, we simply construct a new TransSession object and
call the TransSession.makePersistent() method.

For example:

import com.Versant.trans.*;
public class CreatePerson
{
 public static void main (String[] args)
 {
 if (args.length != 3) {
 System.out.println
 ("Usage: java CreatePerson <database> <name> <age>");
22 Accelerating IBM WebSphere Application Server Performance with Versant enJin

 System.exit (1);
 }
 String database = args [0];
 String name = args [1];
 int age = Integer.parseInt (args[2]);
 TransSession session = new TransSession (database);

 Person person = new Person (name, age);
 session.makePersistent(person);

 session.endSession();
 }
}

The example demonstrated above makes a persistent object using the following
process:

1. Importing the JVI TransSession class. To import this class into the
namespace of the application program, use the Java import directive. This
class is located in the package com.Versant.trans.

2. Before any persistent objects can be created, you must connect to the
Versant Object Manager by starting an Object Manager session. Starting an
Object Manager session initiates enJin processes that allow you to access
the enJin Object Manager. You can then use enJin Object Manager methods
and persistent objects only within the session. In the Transparent binding,
starting an Object Manager session is achieved by creating a new instance of
the TransSession class. The constructor for this class takes the name of the
Object Manager as a parameter.

For more information on the available options when starting a session, see
the reference to the TransSession class in the JVI User Manual. Starting a
session also implicitly starts a transaction. All changes to persistent objects
are written to the Object Manager only if the transaction successfully
commits.

3. Since the Person class will be designated as a persistent class in the
configuration file, no special code must be written to create persistent Person
objects. Simply invoke the new operator as usual. The
TransSession.makePersistent method causes the given object to be stored
persistently in enJin's Versant Object Manager.

4. Ending the session causes the active transaction to commit. To commit a
transaction without ending the session, use the TransSession.commit()
method.

5. To compile the classes of an enJin application, simply invoke the Java
compiler as usual. No special action needs to be taken. However, it is
 Chapter 2. Key concepts 23

necessary to correctly set the environment variable CLASSPATH, so that the
enJin classes can be accessed by the compiler.

These classes are located in the enjin.jar file in the ENJIN_ROOT\lib directory.
Add the enjin.jar file to your CLASSPATH environment variable. In addition, it is
necessary to add the directory containing the Java source files to your
CLASSPATH. This can be done by including the current directory, represented by
a single period.

The exact method for setting CLASSPATH depends on the system being used.
Please refer to your Java documentation for correctly setting CLASSPATH.

To compile the two Java classes: javac Person.java CreatePerson.java

A configuration file, usually named config.jvi, controls the behavior of the
enhancer. This file specifies the persistence category of each of the classes that
are being enhanced. The configuration file for the example application above
would look as follows:

c Person

The letter "c" indicates that instances of the Person class are categorized as
Persistent Capable. This means that Person objects can be stored in the Versant
Object Manager, and the enhancer will modify the Person class so that
persistence is possible.

The enhancer looks for .class files in a directory and deposits modified .class
files after the process of enhancement. You have the option of storing your
enhanced .class files in a separate directory (example: an input directory for your
non-enhanced .class files, and an output directory for your enhanced .class
files).

For this example, we have used input and output directories.

The input and output directories for the tutorial examples can be found in your
JVI installation as the:

� enJin\examples\jvi\tutorial\trans\in
� enJin\examples\jvi\tutorial\trans\out

Note: The process of enhancement is explained in more detail later in this
chapter. However, for the purpose of this section, we will demonstrate
enhancement of the .class Person and CreatePerson files we have just
compiled on the next page.
24 Accelerating IBM WebSphere Application Server Performance with Versant enJin

The enhancer is itself a Java application. Assuming the CLASSPATH is set as
described above in the section on compilation and that you have a subdirectory
named out, run the enhancer:

java com.Versant.Enhance -config config.vj -in in -out out -verbose

The -verbose flag causes the enhancer to indicate the persistence category of
each class, and to display status information as the enhancement process
proceeds.

If separate directories for enhanced classes are not required, enJin can simply
perform the enhancement in place, and overwrites the non-enhanced classes
and replaces them with the enhanced .class files. The method of invoking the
enhancer can be simply executed with the following command:

java com.Versant.Enhance

Now that you have some exposure to the knowledge, of how enJin makes
objects persistent, it is time to run the simple application we have developed. In
subsequent parts of this chapter, you will continue to explore the transparency
that enJin provides.

To run the application after having enhanced the .class files, simply invoke the
Java interpreter as usual. However, it is very important to include the directory
containing the enhanced .class files in the CLASSPATH. Failure to do so will
result in run-time errors. Since your CLASSPATH contains the current directory
(represented by "."), this can be accomplished simply using the command:

cd tutorial/trans/out/

In addition, since the JVI libraries are implemented using native methods
(functions written in the C language), the operating system must be able to locate
the enJin's JVI dynamic-link libraries. These are located in the enJin\bin
subdirectory of your enJin installation. On Unix machines, the enJin\lib directory
is normally added to your LD_LIBRARY_PATH environment variable. On
Windows machines, this directory is added to your PATH.

To execute the CreatePerson application:

java CreatePerson tutdb Bob 28

The above command adds a single Person object to the tutdb Object Manager,
with name Bob and age 28. This can be seen using the db2tty utility or by using
the DB Inspector by selecting Start > Programs > enJin > DB Inspector:

db2tty -d tutdb -i Person
 Chapter 2. Key concepts 25

Reading persistent objects
The transparent binding seamlessly inter-operates with the Versant Object
Manager. Persistent objects are automatically fetched and locked as your
application accesses them, by traversing object references or using the
VERSANT query mechanism. All access to persistent objects occurs within an
enJin transaction, so that changes to an object can be atomically committed or
rolled back.

Both queries and navigation can be used to read objects. Queries are select
statements similar to SQL statements used with relational databases. Navigation
is following the references from one object to another object. In both cases, you
can retrieve your destination object. However, they have different strengths and
weaknesses. In general, enJin has the best flexibility and performance if you use
queries mostly for finding starting objects and then use navigation (traverse the
references) to retrieve relevant objects from the object graph.

 This section will cover:

� Finding objects
� Object navigation

FInding objects
In this section you will learn how to locate your objects. This is a good way to find
a starting point into your object graph. In the next section you will be able to use
navigation to then traverse to other objects. This combination that enJin provides
can dramatically improve performance and provides greater flexibility when
building applications.

There are two basic ways of finding existing objects in the Object Manager:

� Finding objects with roots
� Finding objects with queries

Once a persistent object has been found by either of these two methods, its
fields can be read and modified and its methods can be invoked. Any changes
made will be written back to the Object Manager at the transaction commit.

Finding objects with roots
A root is a persistent object that has been given a name. This name can be used
to find the object later. A root name is a bit like a file name, although the system
of roots in enJin's JVI is much simpler than a true file system. In particular, there
is one space for root names in each database.

Root names should be applied to only a relatively small number of objects in a
database. Many database applications have complex, connected graphs of
objects; a root provides a simple entry point into these graphs.
26 Accelerating IBM WebSphere Application Server Performance with Versant enJin

There are three fundamental root operations:

� Making a new root by giving an object a name
� Finding an object with a given root name
� Deleting a root name

First let's make a new root by giving a name to an object. The following example
application, CreatePersonWithRoot, creates a new Person object and gives it a
root name:

import com.Versant.trans.*;

public class CreatePersonWithRoot
{
 public static void main (String[] args)
 {
 if (args.length != 4) {
 System.out.println ("Usage: java CreatePersonWithRoot" +
 "<database> <name> <age> <root>");
 System.exit (1);
 }
 String database = args [0];
 String name = args [1];
 int age = Integer.parseInt (args[2]);
 String root = args [3];
 TransSession session = new TransSession (database);

 Person person = new Person (name, age);
 session.makeRoot (root, person);

 session.endSession ();
 }
}

This application is exactly like the previous CreatePerson program, except that it
calls the TransSession.makeRoot method instead of makePersistent(). This
allows us to give the object a root name, which is taken from the command line.

To run this application, go through the same steps as described in the previous
part of the tutorial. Compile the .java source file:

javac CreatePersonWithRoot.java

Enhance the .class file and put output in subdirectory out:

java com.Versant.Enhance -config config.jvi -in in -out out -verbose

Run the application:

java CreatePersonWithRoot tutdb Mary 43 mary_root
 Chapter 2. Key concepts 27

This creates a persistent Person object identified by the root name mary_root.
This root name can be used to subsequently retrieve the object, using the
TransSession.findRoot method.

The findRoot() method returns an instance of Object, so a typecast must be used
to recover the actual type, Person. If no root has the given root name, then
findRoot() throws an exception.

Please proceed to the next page for the demonstration of findRoot() method.

The following program illustrates the use of findRoot():

import com.Versant.trans.*;

public class FindPersonWithRoot
{
 public static void main (String[] args)
 {
 if (args.length != 2) {
 System.out.println
 ("Usage: java FindPersonWithRoot <database> <root>");
 System.exit (1);
 }
 String database = args [0];
 String root = args [1];
 TransSession session = new TransSession (database);

 Person person = (Person) session.findRoot (root);
 System.out.println ("Found " + person);

 session.endSession ();
 }
}

Now compile, enhance, and run the FindPersonWithRoot application.

Compile the .java source file:

javac FindPersonWithRoot.java

Enhance the .class file:

java com.Versant.Enhance -config config.vj -in in -out out -verbose

Run the application:

java FindPersonWithRoot tutdb mary_root

Running the application gives the output:

Found Person: Mary age: 43
28 Accelerating IBM WebSphere Application Server Performance with Versant enJin

Deleting a root is just as effortless -simply, use the TransSession.deleteRoot()
method, to delete an associated root name .

The following program illustrates the use of deleteRoot():

import com.Versant.trans.*;

public class DeletePersonWithRoot
{
 public static void main (String[] args)
 {
 if (args.length != 2) {
 System.out.println
 ("Usage: java DeletePersonWithRoot <database> <root>");
 System.exit (1);
 }

 String database = args [0];
 String root = args [1];

 TransSession session = new TransSession (database);

 session.deleteRoot (root);

 session.endSession ();
 }
}

Finding objects with queries
enJin provides a query language, VQL (Versant Query Language), to search for
persistent objects that match certain criteria. VQL is a language that is very
similar to the SQL that is used to query relational databases. enJin supports
simple VQL queries. These queries can be used to find objects that have been
stored using the Object Manager.

The purpose of this section is to introduce you to using VQL to access objects.
For more information on using VQL with enJin, see the VQL section in the
J/VERSANT Interface Users Manual

Transparent JVI expresses VQL queries by creating a VQLQuery object. The
constructor accepts a query string argument.

Some values, such as arrays and strings, are difficult or impossible to express in
VQL. To solve this problem, use substitution parameters. A substitution
parameter is written as "$1", "$2", and so on, in the query string. You can then
substitute the values with the bind() method on the VQLQuery object.
 Chapter 2. Key concepts 29

To find the objects that satisfy your query string, invoke the execute() method on
the VQLQuery object.

Using a VQL query requires four steps:

1. Create a com.Versant.trans.VQLQuery object, passing the query string to the
constructor. The basic syntax of a SELECT statement in VQL is as follows:

"SELECT SELFOID FROM [class] WHERE [attribute] [operator] [value]"

2. Bind arguments to the substitution parameters ($1, $2, and so on) in the
query string. If the query does not have substitution parameters, then skip this
step.

3. Invoke the VQLQuery.execute() method. This method returns an object that
implements the com.Versant.trans.VEnumeration interface.

4. Use the Enumeration.hasMoreElements() and Enumeration.nextElement()
methods to obtain all of the objects that satisfy the query.

The example shown below demonstrates the finding the Person objects we
created earlier to using a VQLQuery object:

import com.Versant.trans.*;
import java.util.*;

public class FindPersonWithVQL
{
 public static void main (String[] args)
 {
 if (args.length != 1) {
 System.out.println
 ("Usage: java FindPersonWithVQL <database>");
 System.exit (1);
 }
 String database = args [0];
 TransSession session = new TransSession (database);

 VQLQuery query=new VQLQuery (session, "select selfoid from Person");
 Enumeration e = query.execute();

 if (!e.hasMoreElements()) {
 System.out.println ("No Person objects were found.");
 } else {
 while (e.hasMoreElements()) {
 Person person = (Person) e.nextElement ();
 System.out.println ("Found " + person);
 }
 }
 session.endSession ();
 }
30 Accelerating IBM WebSphere Application Server Performance with Versant enJin

}

The following program finds all Person objects located in a database.

Compile, enhance, and run this application using steps similar to those shown
previously.

Compile the .java source file:

javac FindPersonWithVQL.java

Enhance the .class file:

java com.Versant.Enhance -config config.vj -in in -out out -verbose

Run the application:

java FindPersonWithVQL tutdb

Running the application gives the following output:

Found Person: Bob age: 28
Found Person: Mary age: 43

Object navigation
Navigation retrieves objects by traversing object references. Starting with an
object obtained prior to navigation that contains a reference, the referenced
object is retrieved based on its unique object ID that was assigned by the Object
Manager.

Rather than retrieving all objects with queries or only by using navigation, a
combination of the two, with a predominance of navigation, is the best
combination for flexibility and performance.

References are extremely easy to use. You simply define your classes in exactly
the same way that you would when writing a normal, application. The enhancer
takes care of all of the work of converting references to links and fetching objects
from the Object Manager when they are accessed.

To illustrate how links work in enJin, we will use simple Employee and
Department classes. The Employee class contains a reference to the
Department class: each employee belongs to one department. Similarly, the
Department class contains a reference to the Employee class: one employee
manages each department.

The source code for the employee is as follows:

public class Employee extends Person
{
 Department department;
 Chapter 2. Key concepts 31

 double salary;

 Employee (String aName, int anAge, double aSalary)
 {
 super (aName, anAge);
 salary = aSalary;
 }

 public String toString ()
 {
 return "Employee: " + name + " age: " + age +
 " salary: " + salary + " " + department;
 }
}

Next, we will define the Department class:

public class Department
{
 String name;
 Employee manager;
 Department (String aName, Employee aManager)
 {
 name = aName;
 manager = aManager;
 }
 public String toString ()
 {
 return "Department: " + name + " manager: " +
 (manager == null ? "nobody" : manager.name();
 }
}

Now let us create an application that creates some employee objects, and stores
them in the Object Manager:

import com.Versant.trans.*;

public class AddEmployees
{
 public static void main (String[] args)
 {
 if (args.length != 1) {
 System.out.println
 ("Usage: java AddEmployees <database>");
 System.exit (1);
 }
 String database = args [0];
32 Accelerating IBM WebSphere Application Server Performance with Versant enJin

 TransSession session = new TransSession (database);

 Employee the_boss = new Employee("The Boss", 42, 110000);
 Employee jane_jones = new Employee("Jane Jones", 24, 80000);
 Employee john_doe = new Employee("John Doe", 25, 75000);
 Employee lois_line = new Employee("Lois Line", 36, 70000);

 Department engineering = new Department("Engineering", the_boss);
 Department marketing = new Department ("Marketing", lois_line);

 the_boss.department = engineering;
 jane_jones.department = engineering;
 john_doe .department = marketing;
 lois_line .department = marketing;

 session.makePersistent (the_boss);
 session.makePersistent (jane_jones);
 session.makePersistent (john_doe);
 session.makePersistent (lois_line);
 session.endSession ();
 }
}

The next steps are identical, such as compile and update the configuration file,
and enhance and run the program.

Compile the .java source file:

javac Employee.java Department.java AddEmployees.java

Update the configuration file tutorial/trans/config.vj:

p Employee
p Department

Enhance the .class file:

java com.Versant.Enhance -config config.vj -in in -out out -verbose

Run the application:

java AddEmployees tutdb

Running the application will add four Employee objects to the Object Manager.
To see that the four objects exist, you can use the db2tty utility:

db2tty-d tutdb -I Employee

You will now be able to witness traversing of objects using references by running
the FindPersonWithVQL application that we created in the earlier section. This
application will also find these employee objects:
 Chapter 2. Key concepts 33

Java FindPersonWithVQL tutdb

Running the application will display the following output:

Found Person: Bob age: 29
Found Employee: The Boss age: 42 salary: 11000.0 Department: Engineering
manager: The Boss
Found Employee: Jane Jones age: 24 salary: 80000.0 Department: Engineering
manager: The Boss
Found Employee: John Doe age: 25 salary: 75000.0 Department: Marketing manager:
Lois Line
Found Employee: Lois Line age: 36 salary: 70000.0 Department: Marketing
manager: Lois Line

Since the Employee class extends Person, these Employee objects are also
Person objects. This is why the VQL query above matched the Employee objects
as well.

Updating persistent objects
You will notice that the transparency of enJin makes changes to objects that
have been created effortless. The example illustrated below shows how to
modify persistent objects.

Like the previous program, it finds all person objects. This time, however, instead
of simply displaying the contents of the object, the age of each Person object is
increased by one, since we are all getting older every year.

import com.Versant.trans.*;
import java.util.*;

public class IncreaseAge
{
 public static void main (String[] args)
 {
 if (args.length != 1) {
 System.out.println
 ("Usage: java IncreaseAge <database>");
 System.exit (1);
 }
 String database = args [0];
 TransSession session = new TransSession (database);

 VQLQuery query = new VQLQuery(session, "select selfoid from Person");
 Enumeration e = query.execute ();

 if (!e.hasMoreElements()) {
 System.out.println ("No Person objects were found.");
 } else {
 while (e.hasMoreElements()) {
34 Accelerating IBM WebSphere Application Server Performance with Versant enJin

 Person person = (Person) e.nextElement ();
 person.age++;
 System.out.println ("Increasing " + person.name+
 "'s age to " + person.age);
 }
 }

 session.endSession ();
 }
}

Now do the usual such as compile, update the configuration file, enhance, and
run.

Compile the .java source file:

javac IncreaseAge.java

Update the configuration file tutorial/trans/config.vj:

a IncreaseAge

Enhance the .class file:

java com.Versant.Enhance -config config.vj -in in -out out -verbose

Run the application:

java IncreaseAge tutdb

This shows the following output:

Increasing Bob's age to 29
Increasing Mary's age to 44

You can now use the FindPersonWithVQL program to in fact verify that the ages
have indeed increased.

Deleting persistent objects
You will continue to exploit the Transparency of enJin to delete objects. This task
is just as effortless as creating, reading or updating objects.

Note: You may have noticed in this instance we are categorizing the class as
persistence aware. This is necessary since we have accessing public
attributes. This, however, is not necessary, but if you do choose to engage in
similar programming practices, you will be able to access these attributes by
classifying your class as persistent aware. For more details on Persistence
Categorization please refer to your JVI User’s Manual.
 Chapter 2. Key concepts 35

Persistent objects in the Versant Object Manager remain in the Object Manager
until explicitly deleted. To delete objects from the Object Manager, use the
TransSession.deleteObject method. The following program will delete an object
with a given root name.

import com.Versant.trans.*;

public class DeletePersonWithRoot
{
 public static void main (String[] args)
 {
 if (args.length != 2) {
 System.out.println
 ("Usage: java DeletePersonWithRoot <database> <root>");
 System.exit (1);
 }

 String database = args [0];
 String root = args [1];

 TransSession session = new TransSession (database);

 Person person = (Person) session.findRoot (root);
 session.deleteObject (person);

 session.deleteRoot (root);
 session.endSession ();
 }
}

Java does not support a delete operation for dynamically allocated objects.
Instead, Java relies on garbage collection to rid memory of unreferenced objects.
However, enJin does not use garbage collection since all objects are reachable
via a query. The deleteObject method deletes the persistent object from the
Object Manager only, not from memory. To permanently delete an object, each
object must be explicitly deleted this way. After deletion, the object in memory
should not be accessed. The object will be deleted from the Object Manager at
transaction commit.

Deleting an object is not the same as deleting a root: deleting a root simply
removes the root name associated with the object and does not delete the object
from its database.

Now compile, enhance, and run this program as we have been doing earlier.

Compile the .java source file:

javac DeletePersonWithRoot.java

Enhance the .class file:
36 Accelerating IBM WebSphere Application Server Performance with Versant enJin

java com.Versant.Enhance -config config.vj -in in -out out -verbose

Run the application:

java DeletePersonWithRoot tutdb mary_root

Running the same program a second time generates an exception because the
object was deleted and the root name removed.

2.2 Class enhancement
Enhancement is where the magic of the JVI transparency takes place. The
enhancer is a tool that post-processes Java class files by modifying the classes
after they are compiled so that your Java objects can be managed in the Object
Manager.

To get a true understanding of the process of enhancement, we will discuss the
following topics:

� Overview - This will describe what happens when you enhance.
� Running the Enhancer

2.2.1 Overview
The enhancer is termed a postprocessor, because it manipulates Java.class files,
not .java source files. The enhancer accepts Java class files as input and
produces modified class files as output. enJin's JVI uses the enhancer to achieve
transparent object management. The process of enhancement is represented in
Figure 2-4.
 Chapter 2. Key concepts 37

Figure 2-4 Enhancement process

The enhancer makes several changes to the class files, depending on the
specifications in a configuration file. (For an explanation of this configuration file,
see 2.3, “Persistence categorization” on page 41.) These class file changes
include:

� Code is generated to automatically define the schema for the class.

� Code is generated to read and write the persistent objects to and from the
Object Manger.

� Code that accesses (gets and puts) fields of an object is modified to first
perform additional checks.

� When a field of an object is read or modified, the object is fetched from the
Object Manager lazily.

� When a field of an object is modified, the object is marked dirty. Changes will
then be written to the Object Manager when the transaction is committed.

The objects are re-rooted to extend a common base class. This base class is an
internal detail of the implementation of Transparent JVI, and should not have a
direct affect.

2.2.2 Running the enhancer
The enhancer can be invoked as a separate standalone utility in the following
way.
38 Accelerating IBM WebSphere Application Server Performance with Versant enJin

You can explicitly enhance your application classes using the standalone
enhancer utility. This utility is the Java application com.Versant.Enhance. When
this application is executed, it does the following:

� Reads the configuration file specified on the command line

� Reads each class file (or collection of class files within a directory) specified
on the command line

� Enhances each class file, using the information given in the configuration file

The enhancer can place modified class files in a separate directory, or it can
enhance class files in-place. The optional -out flag is used to tell the enhancer
where to place the modified class files. For example, when using the -out option,
consider an application whose classes are contained in the mycorp.myapp
package. The directory structure might look as follows:

myrootdir/myconfigfile
myrootdir/in/mycorp/myapp/Main.java
myrootdir/in/mycorp/myapp/Main.class
myrootdir/in/mycorp/myapp/MyObject.java
myrootdir/in/mycorp/myapp/MyObject.class
myrootdir/out/

Invoke the enhancer utility as follows:

Cdmyrootdir/
java com.Versant.Enhance -in in -out out -config myconfigfile

These arguments instruct the Enhance application to look for classes in the in
directory, modify them according to the settings in myconfigfile, and deposit them
in the out directory. This will cause the following directories and files to be
created:

myrootdir/out/mycorp/myapp/Main.class
myrootdir/out/mycorp/myapp/MyObject.class
myrootdir/out/mycorp/myapp/MyObject_Pickler_Vj.class

Note the newly created "MyObject_Pickler_Vj" class. Creation of this class
depends on the configuration file (in fact, the pickler class will only be created if
the class is categorized as "c" or "p"). See the section "Persistence
Categorization" for more information.

Alternatively, class files can be modified in-place. This means that the enhanced
class files replace the original class files. To use in-place enhancement, omit the
-out flag. When using in-place enhancement, separate in and out directories are
not necessary. For instance, the directory structure for the mycorp.myapp would
simply be as follows:

myrootdir/myconfigfile
myrootdir/mycorp/myapp/Main.java
 Chapter 2. Key concepts 39

myrootdir/mycorp/myapp/Main.class
myrootdir/mycorp/myapp/MyObject.java
myrootdir/mycorp/myapp/MyObject.class

Then the enhancer can be invoked in the following manner:

cd myrootdir/
java com.Versant.Enhance -config myconfigfile .

Note the "." at the end of the command line. This tells the enhancer to examine
all classes in the current directory. It is not possible to enhance a class more than
once. The enhancer places a special marker inside the class file, so that it can
determine whether a class has already been enhanced. If a class file has already
been enhanced, then it will not be modified.

As an example, consider the following classes:

class PersistentCapable {
int x;
}
class NotPersistent {
int foo (PersistentCapable pc) {
return pc.x;
}
}

The following would not work correctly:

javac PersistentCapable.java
java com.Versant.Enhance PersistentCapable.class
javac NotPersistent.java

Here, the PersistentCapable class has been enhanced in-place. Now, when
NotPersistent is compiled, a compilation error will result because the field "x" has
been changed to private. (The access control is changed to prevent unenhanced
persistent aware classes from accidentally accessing the fields of a persistent
object at run-time. By making the field private, this situation can result in an
IllegalAccessError instead of silently giving invalid results.)

Important: A persistent class is changed in such a way that other classes that
refer to the fields of the persistent class will no longer compile correctly when
using in-place enhancement. Hence, it is necessary to compile all of these
classes simultaneously to ensure correct compilation.
40 Accelerating IBM WebSphere Application Server Performance with Versant enJin

Instead, you should do this:

javac PersistentCapable.java NotPersistent.java
java com.Versant.Enhance PersistentCapable.class \
NotPersistent.class

For more information on the enhancer, including command-line arguments and
the syntax of the configuration file, see the description of com.Versant.Enhance
in the JVI User Manual.

2.3 Persistence categorization
Each class in enJin's has a persistence category. A persistence category
describes the Object Manager-related capabilities of the class. For example, can
objects be stored in the Object Manager? If so, when do the objects become
persistent? A persistence category also determines the modifications the
enhancer must make to the class file for a class.

A configuration file is used to specify the persistence category for each class.
Each line of the configuration file contains a category specifier and a class name
pattern. When the enhancer encounters a class, it looks for the first matching
pattern in the configuration file and gives the class the category specified for that
pattern.

In this section we will discuss:

� Persistence categories
� How to choose a persistence category

2.3.1 Persistence categories
Transparent JVI has five persistence categories. Table 2-1 demonstrates two of
these. For the purposes of your applications, these two categories will suffice.
For a more detailed explanation of this concept, and to learn about the other
three categories, please refer to your JVI User Manual.

Table 2-1 Persistence categories

Persistence Category Description

"c", Persistent Capable Objects of classes that are Persistent
Capable can become persistent either
explicitly or implicitly.
Persistent Capable objects that have not
yet become persistent are called transient.
 Chapter 2. Key concepts 41

2.3.2 How to choose a persistence category
Choosing the correct persistence category for each of the classes in your enJin
application is an important part of the development process. To properly
categorize your classes, it is helpful to have an understanding of how the classes
will function within your application, as well as what changes the enhancer will
make to these classes.

Persistent capable
You should assign a class the Persistent Capable category if you want instances
of that class to be stored in the Object Manager as independent persistent
objects. A Persistent Capable object can be either transient or persistent. A
transient object behaves essentially as it would have before the enhancer
modifies the class. A persistent object, however, is considered a First Class
Object. It takes advantage of the changes made by the enhancer to enable the
object to be stored in the Object Manager. For example:

� The Versant Object Manager assigns each persistent object a unique object
identity, its LOID.

� The enhancer generates additional methods that automatically read and write
the object when the attributes of the object are read or changed.

Not persistent aware
The enhancer does not modify a Not Persistent Aware class. Classes that do not
directly manipulate persistent objects can be categorized as Not Persistent
Aware. For example, all standard Java classes are categorized as Not Persistent
Aware by default. In general, third-party classes that do not access the fields of
persistent objects can be given the "n" category.

"n" Not Persistent Aware The enhancer does not modify classes
that are Not Persistent Aware.
The methods of Not Persistent Aware
classes cannot directly access the fields of
an FCO.
The methods of Not Persistent Aware
classes can call methods on an FCO.

Persistence Category Description
42 Accelerating IBM WebSphere Application Server Performance with Versant enJin

2.4 Versant enterprise container
Versant Enterprise Container (VEC) is the integration of enJin's JVI with your
Application Server. It provides transaction management, concurrency control,
and persistence for entity beans in the Versant Object Manager, or allows you to
use enJin's transparent object management capabilities directly from your
SessionBeans.

You will be exposed to several of the functions of VEC when you begin to build
your EJB Applications in the subsequent chapters.

Specific topics covered in this section include:

� Session manager
� Transaction management
� Helper classes

2.4.1 Session manager
enJin's VEC Session Manager maintains and manages one or more Object
Manager session pools. A session pool is a collection of Object Manager
sessions of a particular session type. An enJin session is similar in concept to a
JDBC connection with the key differences that enJin sessions cache objects and
they can be connected to several Versant Object Managers.

In the default configuration the Session Manager simplifies the job of managing
instances of the TransSession class - instead of explicitly creating a
TransSession, you request one from the pool.

The Session Manager provides:

� Session Pooling
 Chapter 2. Key concepts 43

� Default shared and exclusive session types (also allows for custom session
types)

� Load balancing within a session pool

� Automatic cache management for the Versant Object Manager sessions

A session pool can consist of any combination of the following types of Object
Manager sessions as shown in Table 2-2.

Table 2-2 Session pool

2.4.2 Transaction management
Transaction Management is yet another feature that enJin offers that makes it
easier and faster for developers to build applications.

As mentioned earlier in the document, it is beyond the scope of this document to
expose all of the functions of enJin. The purpose of the section below is to
expose the user to some of the features of enJin's VEC, such as:

� enJin provides automatic transaction management based on the transaction
property specified in the deployment descriptor.

� Association of every Entity Bean with an object stored in the Object Manager
when the bean is activated. When a transaction completes (commits or
aborts), the Object Manager object is released from the enJin session.

Session Description

Read only/shared Used for read only operation.
These sessions are not exclusively bound
to a transaction. These are typically used
to process non-transaction, read-only
methods.

Read-write/exclusive Used for Read and Write operations.
Only one transaction can use this type of
session for the duration of a transaction.
As sessions are shared resources, once
the transaction completes any client for a
subsequent transaction can use the
session. This type of session would
typically be used for transactional
methods. This is the default session type.

Custom You can create a class that implements
any kind of session supported by enJin
JVI.
44 Accelerating IBM WebSphere Application Server Performance with Versant enJin

� A shared-session is typically used to handle non-transactional requests or to
handle methods that only read data (are not mutators). As commits are
disabled for shared-sessions, in order to manage memory over a span of
multiple transactions, enJin automatically releases objects from the
shared-session based on a user configurable parameter.

� There is no requirement that the user create a shared-session pool. Even
non-transactional methods (such as finder methods) can be executed in
exclusive sessions. For non-transactional user methods, it is up to the user to
ensure that the method does not mutate the state of an entity bean or a
persistent object.

� enJin generates a call to get a session from the session pool in the
EntityBean Implementation class before any method on the bean is invoked. If
the bean method is transactional, the get-session will ensure that the same
exclusive session is returned to the user for all calls made in the same
transaction. After the method has been executed, the session is released.

� As an optimization, enJin attempts to get the same session from the session
pool across multiple transactions. The same is true when invoking a
non-transactional method after a transaction method.

2.4.3 Helper classes
The purpose of this section is to introduce you to the concept of Helper classes.
enJin has been designed to augment your abilities to develop enterprise
applications. To augment your application performance and to accelerate the
development process, enJin's VEC provides Helper classes.

The Helper classes do a lot of the work in the background for you. All you actually
have to do is make the calls to these Helper classes. By using these Helper
classes provided in enJin, you can leverage your current knowledge to start the
process of development immediately. You need not be an expert at using either
Versant enJin's Object Manager or a seasoned JVI user.

To explain the intricacies of these classes is beyond the scope of this document.
Please review the accompanying documentation with your enJin installation.

enJin provides two Helper classes:

� ClassEntityBeanHelper
� ClassSessionBeanHelper

ClassEntityBeanHelper
This class is the helper class to manage the session context. BMP beans can
use this class to implement EJB methods to:
 Chapter 2. Key concepts 45

� Allow the user to quickly develop bean-managed entity beans and session
beans that access persistent objects managed by enJin.

� Makes it easy for EJB developers to store and query BMP entity beans by:

– Managing the session context
– Implement EJB methods (ejbLoad, ejbStore, ejbRemove and ejbCreate)

ClassSessionBeanHelper
Helper class that may be used by SessionBeans to handle the persistence of
objects The three scenarios for using this class could be:

� When the SessionBean methods are being executed using container
managed transaction.

� When the SessionBean method being executed is non-transactional

� When the SessionBean method being executed is using a user transaction

Now that you know about yet another of enJin's unique features, you are ready to
start building an Enterprise Application the enJin way.
46 Accelerating IBM WebSphere Application Server Performance with Versant enJin

Part 2 Developing an enJin
application

In this part you will learn how to implement a methodology for developing and
deploying a typical J2EE application using IBM WebSphere and enJin. This will
be done building and deploying a fully developed typical EJB application using
Session Managed Persistence. This will be done using WebSphere Studio
Application Developer. A downloadable JAR file will allow you to run and explore
the example rapidly. In presenting the example that we use, you will learn the
same methodology that resulted in the performance that we accomplished in the
benchmarking project, and you will be able to utilize the same principles for your
own example.

Part 2
© Copyright IBM Corp. 2002 47

48 Accelerating IBM WebSphere Application Server Performance with Versant enJin

Chapter 3. Developing applications
with Versant enJin

3

© Copyright IBM Corp. 2002 49

Versant works with leading vendors to simplify the development and speed
performance of applications using enJin. Versant has integrated tools for enJin
with WebSphere Studio Application Developer. The integration of tools makes it
easy and fast to use the enJin application accelerator in J2EE applications built
using WebSphere Studio Application Developer (WSAD). enJin provides
transparent persistence for Java objects in JSPs, servlets, sessions (SMP) and
for BMP Enterprise Java Beans (EJBs). enJin lets you minimize tedious,
error-prone, and rigid mapping of Java objects. Use enJin's transparent
persistence instead of JDBC code. Get faster development, faster performance
at run time, and greatly increased ability to evolve your application as
requirements change by using enJin.

This chapter will introduce users to the integration of the tools with WSAD.
Specific topics in this chapter include:

� Installation and configuration of Versant Integrated Tools
� Introduction to the enJin tools an User Interface
� Invoking the tools

Note: Please download the enJin WSAD integration from the URL identified
below. This guide assumes that WebSphere Studio Application Developer as
well as Versant enJin 2.2.3 for IBM WebSphere 4.0 for Windows NT is
installed on your machine. To download a trial version of Versant enJin,
please visit:

http://www.versant.com/products/download/index.cfm

Please note, if you are using WSAD to develop and test your J2EE
Applications, you do not need to have WebSphere Application Server installed
on your machine.
50 Accelerating IBM WebSphere Application Server Performance with Versant enJin

http://www.versant.com/products/download/index.cfm

3.1 Installation, configuration of Versant tools
Before you can use the enJin tools integrated with WSAD, the user must make
sure that WSAD is configured to use enJin's IDE Toolkit. This is done as follows.

Unzip the downloaded zip file. Its contents include:

� wsadscript.bat
� enJinTools.jar
� infoset.xml, infosetAction.xml, infosetConcepts.xml, infosetTopics.xml,

plugin.xml
� Icons directory
� Examples directory
� doc.zip
� ReadMe.html

Please run wsadscript.bat as follows, where <WSAD INSTALL_DIR> is the
location of your WSAD Install directory.

wsadscript <WSAD INSTALL_DIR>

This will create a directory (com.versant.enJinTools_1_0_0) in the <WSAD
INSTALL_DIR>\plugins directory and will place all the aforementioned files in this
directory.

The next time you launch WSAD, you will have the integrated enJin tools
accessible from the IDE.

Subsequent to the above step, when brought up with the uenJin IDE Toolkit, you
will notice, a new menu item (enJin Database Tools), two new buttons with enJin
icons, an enJin console. With this integration that we have provided is also
included a Template Generator that will enable developers to rapidly enJinify
Applications utilizing Servlets and Bean Managed Persistence.

Utilization of these tools as well as developing your J2EE applications that
leverage the power of enJin are described in subsequent sections.

3.2 Introduction to the enJin tools and user interface
After running the script that we have provided, the next time you launch the
WSAD IDE, direct your attention to the toolbar. You will notice a new menu item
enJin Database Tools, which are also represented as buttons on the toolbar as
displayed in Figure 3-3.
 Chapter 3. Developing applications with Versant enJin 51

Figure 3-1 enJin interface

� The DBAdministrator can be invoked either by using the menu item enJin
Database Tools -> DBAdministrator, or by simply clicking the button. You
may use it to create, delete, and perform other operations on the databases.

� The DBInspector can be invoked either by using the menu item enJin
Database Tools -> DBInspector, or by simply clicking the button. You will
use view the database contents.

In addition, there are three other powerful tools that you will use while developing
with enJin. These are:

� Persistence Tool - Used to mark the persistence category of classes. Upon
categorization of your classes, another tool automatically gets invoked, and
result is that your classes are now enhanced.

� enJin Wizards - You may use this to generate templates for applications using
servlets or Bean Managed Persistence.
52 Accelerating IBM WebSphere Application Server Performance with Versant enJin

Chapter 4. Session managed
persistence

This approach is a powerful design approach. It gives the developer the full
flexibility while using enJin's transparency, while allowing the IBM WebSphere to
manage resources thereby leveraging enJin features such as session pooling
and load balancing.

You can use enJin's transparent Java language interface (JVI) to store and
access persistent objects from Session Beans. The persistent data in your
application can be directly stored in the enJin database using the object model
that you create. Once the java classes that represent persistent objects have
been created, you can develop the EJB interfaces using session beans.

The helper classes give you an easy way to tie in with the application server
session pooling and transaction management functionality, and allow you to work
with objects just as you would in any Java program and use of enJin's APIs for
transparent object persistence.

In this chapter, we will demonstrate the process of developing an EJB Application
using Session Managed Persistence. You will notice that for most parts, if you
are familiar with the J2EE standards, enJinizing your applications is not much
different. You will however, be able to develop your applications faster, and will
notice an improvement in the performance.

4

© Copyright IBM Corp. 2002 53

Since we used SMP in the benchmarking project to measure the performance,
we have chosen to focus demonstration of this method of persistence. You may
also use enJin and leverage its powerful features to implement Bean Managed
Persistence, Java server pages, and servlets.

On the CD accompanying this Redbook, we have included a jar file which
contains the source Java classes that demonstrate SMP.

Topics covered in this chapter include:

� The outline of the example
� Running the example

4.1 Outline of the example
This is a HRApplication, which allows a human resource manager to enter and
retrieve employee and department information. When a request is submitted, it
calls ManagerServlet, which invokes the appropriate bean method. This
application provides the following functionalities :

� CREATE New Department - Creates a new department

� CREATE New Employee - Creates a new employee. The department of the
employee needs to be specified. If the specified department does not exist,
then a new department is also created.

� REMOVE Department - Removes the specified department

� FIND Employees - Finds all employees of the specified department

� FIND All Employees - Finds all the employees in all departments

This example demonstrates a SessionBean directly accessing the persistent
objects. It illustrates a SessionBean using SessionBean helper classes and Java
Versant Interface (JVI) to access the persistent objects. This SessionBean
accesses the persistent objects directly and provides the required interfaces by
the client. Since the SessionBean accesses the persistent entities directly, it
provides a much faster execution when compared to accessing entity beans,
which has high overheads of locating and accessing beans.

4.2 Running the example
Upon completion of this section, you will successfully build, deploy, and test a
typical EJB (Session Managed Persistence) Application. This means, you will
utilize and witness the features of enJin, as well as learn about specific enJin
implementation.
54 Accelerating IBM WebSphere Application Server Performance with Versant enJin

The six steps are as follows:

1. Import the jar file.
2. Implementation of Session Managed Persistence.
3. Categorize the persistent classes.
4. Create the database.
5. Deploy and test the application.
6. View the results in the database.

4.2.1 Import the jar file
Launch your WSAD IDE. Rather than having to write every line of code, the JAR
file that we have provided you with has all of the necessary Java files that you will
need for running the example.

From the WSAD IDE, select File -> Import as shown in Figure 4-1.

Figure 4-1 WSAD IDE
 Chapter 4. Session managed persistence 55

This will bring up the Import dialog box as shown in Figure 4-2. There are several
steps to successfully importing the example. The first step involves, selecting the
resource that you would like to import. From this dialog box, select EJB JAR as
shown in Figure 4-2, and select Next.

Figure 4-2 Import select

Upon selecting Next, a new dialog box (as shown in Figure 4-3) will appear
representing the second step of the import process. Here you will be asked to
provide the location of the EJB JAR file which can be found at:

http://www.versant.com/developer/redbook
56 Accelerating IBM WebSphere Application Server Performance with Versant enJin

http://www.versant.com/developer/redbook

Figure 4-3 EJB import

Select the Browse button and locate enjinSMP.jar as shown in Figure 4-4.
 Chapter 4. Session managed persistence 57

Figure 4-4 EJB import open

Provide a name (we will use enjinSessionManagedEJB) in the text box titled EJB
Project and Enterprise Application project name (we will use
enjinSessionManagedEAR.). The dialog box when completed will appear as
shown in Figure 4-5.
58 Accelerating IBM WebSphere Application Server Performance with Versant enJin

.

Figure 4-5 EJB import

Select Next after completing the fields as shown above.

Figure 4-6 shows the dialog box that appears allows the user to select specific
files that they would like to select. Since all of the Java files within enjinSMP.jar
are required, simply select the radio button titled All Files and then select Next.
 Chapter 4. Session managed persistence 59

Figure 4-6 Import selection

The next step allows the user to establish if there are any module dependencies.
Since there are none for the project that we have been building thus far, simply
select Next.

The final dialog box will now appear. This allows the user to specify the source
and output folders, as well as the Java classpath in the appropriate order.

Ensure you are in the Libraries tab as shown in Figure 4-7. Select the Add
External JARs button, and locate enjin.jar, which can be found at
<ENJIN_ROOT>\lib\enjin.jar, and then select Finish.
60 Accelerating IBM WebSphere Application Server Performance with Versant enJin

Figure 4-7 Java build settings

At this point you will have a fully developed enterprise application with enJin
Session Bean Implementation.

Prior to proceeding to the next step in running this application, let us examine
what is involved in using this powerful approach.

4.2.2 Implementation of enJin session managed persistence
The process for development using this approach is no different from traditional
SessionBean development. When you examine the code in any of the classes,
you may notice that there is nothing different from what would normally appear in
these classes. The only difference is in the HRManagerBean.java code. The
steps required for implementation of Session Bean Persistence the enJin way
involves the following.
 Chapter 4. Session managed persistence 61

Configure the datasource and poolname
The VEC configuration file (vec-config.xml) is an XML file that is used to specify
the session pool properties and other properties such as logging level. This
configuration file is used by the VEC Startup class to initialize Versant session
pools during WebSphere startup.

A Versant session is similar in concept to a JDBC connection, with the key
differences being that Versant sessions cache objects and a Versant session can
be connected to several Versant databases.

The following are the parameters for initializing VEC Session Pools:

� Datasource name
� Session pool name
� Initial number of sessions
� Maximum number of sessions

A sample vec-config.xml file is displayed below:

\ <!DOCTYPE vec-config (View Source for full doctype...)>
<vec-config>
 <log-level>debug</log-level>
<session-pool>
 <pool-name>ejbPool</pool-name>
 <data-source>ejbdb</data-source>
 </session-pool>
</vec-config>

For our example we have used ejbdb and ejbPool. You may choose to specify
the initial number of sessions as well as the maximum number of sessions in the
pool.

Declare a static variable of type SessionBeanHelper
Versant enJin provides a helper class
com.versant.ejb.generic.SessionBeanHelper that makes it easy for non-expert
users of enJin API's to take advantage of enJin's object management capabilities
and handle the persistence of objects.

In your Bean class declare a static variable (say helper) of type
SessionBeanHelper as follows:

static SessionBeanHelper helper = null;

Initialize the SessionBeanHelper
Instantiate the class in your setSessionContext method as follows:

public void setSessionContext(SessionContext ctx)
 throws RemoteException
62 Accelerating IBM WebSphere Application Server Performance with Versant enJin

 {
 say("setSessionContext called");
 _ctx = ctx;
 helper = SessionBeanHelper.GetInstance(this, POOLNAME);
 say("setSessionContext :" + " got SessionHelper.");
 }

The instantiation of this class makes the coding of the business methods that
need to be executed within Versant transactions effortless.

Write the code for your business logic
For transactional business methods that need to access enJin objects, add this
call at the beginning of each business method, in every method of the session
bean, you can get hold of a session bean helper using the call:

Transession session= helper.getSession(this);

The session is accessed from the pool that was initialized at the startup of the
application server. This session bean helper maintains a reference to the enJin
session that has been assigned to the current transaction.

This method below creates instances of the Department object.

public void createDepartment(String depName)
 throws Exception
 {

say ("Session Bean->createDepartment called");

 try {
 TransSession session = helper.getSession (this);
 Department currentDepartment = new Department(depName);
 session.makePersistent (currentDepartment);
 } catch (Exception e) {
 say("Exception in creation of Department!!!");
 throw e;
 }

For non-transactional methods, vejbPreMethod must be invoked, which basically
does the same job as getSession, but returns
com.versant.ejb.common.VEJBSessionContext. To get hold of an enJin session
(TransSession), for doing database operations, getTransSession method can be
invoked on VEJBSessionContext. You can get the session referenced by the
session helper by:

VEJBSessionContext sc= helper.vejbPreMethod(this);
TransSession session = sc.getTransSession();

Every vejbPreMethod should be followed by a vejbPostMethod in order to
release the session back to the pool.
 Chapter 4. Session managed persistence 63

helper.vejbPostMethod(sc,this);

The vejbPostMethod should be invoked in the finally block of the bean's methods
to ensure that the resources used are released even if an exception is
encountered in the processing of the method.

4.2.3 Categorize the persistent class
Once the class files are created, the Persistence Tool can be used to mark the
persistence category of each class. The basic persistence categories are: Not
Persistent and Persistence Capable. There are other, more advanced
persistence categories that may be used under certain circumstances and
include, Persistence Aware, Persistent Always, or Transparent Dirty Owned. For
details on these categories, and appropriate use of each of them, please refer to
the Java Versant Interface Usage Manual, which may be accessed directly from
your enJin installation <ENJIN_ROOT>\doc\jvi\usage\html\frame.html or from
our Web site, at:

http://www.versant.com /developer/_docs/vds/jvi/doc/index.html

In this section, we will merely demonstrate the utilization of the enJin Persistent
tool.

The enJin Persistence tool can be invoked by selecting the project we have
created in the navigator view and by right clicking once the project has been
selected as shown in Figure 4-8.
64 Accelerating IBM WebSphere Application Server Performance with Versant enJin

http://www.versant.com /developer/_docs/vds/jvi/doc/index.html

Figure 4-8 enJin Persistence Tool

You will now see the basic enJin Persistence Tool dialog box, which allows you to
categorize your classes in the basic categories as shown below.

The basic screen presents two options: Not Persistent or Persistent. The basic
screen's Persistent option maps to the Persistent Capable option in the
Advanced screen (as well as in Versant's categorization system).

This categorization will suffice for the project we have been building thus far.
Simply select the Department and Employee class and move them to the
Persistent section by using the arrows, as shown in Figure 4-9.
 Chapter 4. Session managed persistence 65

Figure 4-9 Persistence Tool

The other classes, are automatically categorized as Not Persistent. Click OK
after the categorization.

Upon identifying the categories of your classes and clicking OK, the Persistence
Tool generates a config.jvi file, which is then used as the input in the next step.
For the purpose of this example, save this file in the same default directory. You
will now notice that the warning regarding the enhancer not being executed has
disappeared. This is because, upon categorization, the config.jvi file gets
generated, and the enhancer utility gets automatically executed.

If you select the enJin Console window, you will see the categorization of the
classes as seen in Figure 4-10.
66 Accelerating IBM WebSphere Application Server Performance with Versant enJin

Figure 4-10 enJin console

Also, in the Navigator view, as shown in Figure 4-11, you will notice two new
class files as seen below: Department_Pickler_Vj and Employee_Pickler_Vj -
These are used by the Versant system to provide transparency of access and
updates to persistent objects.

Figure 4-11 Navigator
 Chapter 4. Session managed persistence 67

The next step involves creating a database, where the objects that you have
identified that are persistent will be stored.

You are just a few minutes away from deploying and testing your application.

4.2.4 Create the database
To create the database, run the DBAdministrator tool by either clicking the
DBAdministrator icon, or select enJin DatabaseTools -> DBAdministrator as
shown in Figure 4-12.

Figure 4-12 enJin Database Tools

Doing so, launches a new window, as seen in Figure 4-13. Select File -> Create
Database, and this will display a new dialogue box.
68 Accelerating IBM WebSphere Application Server Performance with Versant enJin

Figure 4-13 Database create

Please perform the steps in sequential order as demonstrated, and you will have
a database where the objects that you create will be stored, as shown in Figure
4-14. Ensure that the server on which you to create your database has been
selected.
 Chapter 4. Session managed persistence 69

Figure 4-14 Create Database panel

4.2.5 Deploying and testing the application
Within the WSAD environment deployment and testing your application is
relatively effortless. You are just a few clicks away from running the Session
Managed Example we have provided with Versant enJin.

Without further comment, let us commence the process of deployment and
testing.

There are four steps involved in this process. They include:

1. Deploy code.
2. Modify server configuration file.

Note: To eliminate any error please restrict the name of your database to
ejbdb. This will allow the example that we have provided to be deployed and
run without any error.
70 Accelerating IBM WebSphere Application Server Performance with Versant enJin

3. Run on server.
4. Test application.

Deploy code
Select the project we have been building in the navigator view. Right-click with
the project selected, and select Generate from the choices presented. Upon
doing so, you will be presented with three choices: select Deploy and RMIC Tie
code as shown in Figure 4-15.

Figure 4-15 Deploy code

This brings up another dialog box that allows you to select the bean you want to
deploy. Select HRManager, as depicted in Figure 4-16.
 Chapter 4. Session managed persistence 71

Figure 4-16 Generate

Select Finish. Upon doing so, WSAD performs numerous tasks for you behind
the scenes. The work that WSAD does allows you to now run and test your
application.

Modify server configuration file
You will need to add the following within the servers tag to your server-cfg.xml file
for successful deployment. This must be done prior to running the
HRManagerBean on the server.

<customServices
xmi:id=" enJinStartupPool_1" enable="true" externalConfigURL="
<wsadtoolszip_dir>\examples\vec-config.xml "
classname="com.versant.ejb.websphere.VECInitializer"
displayName="VEC Startup Pool" classpath="<ENJIN_ROOT>/lib/enjin.jar"/>
72 Accelerating IBM WebSphere Application Server Performance with Versant enJin

If you do not have an instance of the server, you will have to create one. One way
of doing this is by running the server and then stopping it. This can be done by
from the J2EE view, by right-clicking after the bean had been selected from the
project, and selecting Run on Server as shown in Figure 4-17.

Figure 4-17 Run on Server

Note: Please ensure that you specify the configuration for your installation of
enJin. For example, if you have installed enJin on your D drive, substitute
<ENJIN_ROOT> with d:/enjin. Similarly, < wsadtoolszip_dir > refers to the
directory where downloaded zip file contents have been placed.
 Chapter 4. Session managed persistence 73

Upon doing so, WSAD will automatically change your perspective to the server
perspective. Of course, you will not be successful in running the application since
you have not configured your server yet. Select the Server Control Panel tab, and
select the Server Instance that has just been created. Now, right-click with the
instance selected, and select the Stop option.

Run on server
You are now ready to run your application on the server. To do this, please
ensure that you are in the J2EE view, select the HRMangerBean that we have
been building, right-click and select Run on Server, as shown in Figure 4-18.

Figure 4-18 Run on Server

A test client will now appear upon successful deployment on the server. Please
proceed to view the test client, as well as view the actual testing.
74 Accelerating IBM WebSphere Application Server Performance with Versant enJin

Testing the application
You will now be presented with a test an EJB Test client with which you can test
your application, as shown in Figure 4-19. There are several steps involved in
proceeding. We will step through each of these:

The first screen informs you that a constructor has not been selected.

1. Expand the HRManager and click on HRManager create() as the constructor.

Figure 4-19 EJB test

2. Upon doing so, the right pane of your test client changes as displayed below.
Click on the Invoke button as shown in Figure 4-20.
 Chapter 4. Session managed persistence 75

Figure 4-20 EJB test

3. Upon invoking the method, in the Parameters pane, a Work with Object button
will appear as shown in Figure 4-21. Please click this button.
76 Accelerating IBM WebSphere Application Server Performance with Versant enJin

Figure 4-21 EJB test

You will now notice that References pane, on the left side of your screen will have
changed. Upon expanding the HRManager, you will be able to call upon the
methods. Of course, the first method would be to CreateDepartment, in which
you can then add employees (newEmployees). Enter a department name, and
click the Invoke button again.

You will see in the Results pane (as shown in Figure 4-22) showing that the
method was created successfully. You may now add other departments,
employees, or execute any of the other methods that are visible in the EJB
References pane.
 Chapter 4. Session managed persistence 77

Figure 4-22 EJB test

In the lower half of the Parameters pane in the test client, you will notice that the
method was created successfully. You may now add other departments,
employees, or execute any of the other methods that are visible in the EJB
References pane.

4.2.6 View the results in the database
Till now you have experienced the ease of development, deployment, and testing
with the enJin tools integrated with WSAD. To continue to allow you to have the
same ease with viewing the results of your EJB applications, enJin provides
powerful database utilities. You have already used the DBAdmin to create a
database. Now you will use the other DB tool, the DBInspector, which can be
launched either by clicking the DBInspector icon, or selecting enJin Database
Tools -> DBInspector as shown in Figure 4-23.
78 Accelerating IBM WebSphere Application Server Performance with Versant enJin

Figure 4-23 enJin database inspector

This will launch the DBInspector tool, with a list of databases as seen in Figure
4-24. Select the database we have created for this example (ejbdb) and select
OK.

Figure 4-24 Database list

A connection will be made to the database, and you will be able to view the
department we have just created. Simply double-click the class (in this case
examples.ejb.SessionManaged.Department), and you will see the department
we just created (Marketing) as shown in Figure 4-25.
 Chapter 4. Session managed persistence 79

Figure 4-25 Database example

You can now continue to test your application. Create as many departments and
employees as you like.
80 Accelerating IBM WebSphere Application Server Performance with Versant enJin

Part 3 The benchmarking
project

In this part we will share with the user the details of the benchmarking project
that was done, including the methodology, the application architecture, the
performance metrics, and hardware configuration. The final part of this section is
dedicated to present the users with the test results and analysis, as well as a
summary of the project.

Part 3
© Copyright IBM Corp. 2002 81

82 Accelerating IBM WebSphere Application Server Performance with Versant enJin

Chapter 5. Benchmark methodology

The benchmark testing was performed using IBM's WebSphere Application
Server and DB2 RDBMS, but since the performance bottleneck that enJin
overcomes is merely the latency between middle-tier business objects and
back-end tier relational data, these performance benefits apply equally well to all
enterprise-class J2EE platforms.

This chapter is dedicated to describing in detail the methodology of the
benchmark project. Specific topics that will be covered include:

� The Benchmark Application
� Performance metrics
� WebSphere configuration
� Hardware configuration

5

© Copyright IBM Corp. 2002 83

5.1 Benchmark application
The trade management application used for the benchmarking project was
designed to reflect the performance metrics is intended to model the basic
services required of a common financial application that manages account
positions on investment. The basic use cases surround a theoretical company
representing a brokerage whose employees manage corporate 401K plans. A
particular employee of the brokerage will act as the custodian of several
corporate portfolios, and make trades to change the position of the corporation
within several market segments.

In order to provide performance measures that would be able to accurately
reflect the performance characteristics of real-world applications, a stock trading
application was designed and implemented for the benchmark tests. This trade
management application was intended to model the basic services required for a
common financial application - managing account positions on investments.

Based on the application architectures shown in Figure 5-1, two separate
implementations of this application were developed: one for the baseline
WebSphere-RDBMS architecture, and another separate implementation for the
WebSphere-enJin-RDBMS architecture.
84 Accelerating IBM WebSphere Application Server Performance with Versant enJin

Figure 5-1 Application architecture

The representation above shows both the standard benchmark architecture, as
well as the architecture enhanced by adding Versant's enJin. The standard
architecture provided the baseline for measuring performance improvements due
to the use of enJin's object caching facilities.

As can be seen in Configuration 1, the standard architecture consisted of IBM
WebSphere Application Server running on a machine being served requests by
IBM's HTTP server. WebSphere was configured to run both a servlet engine, as
well as an EJB Container running several session and entity beans. The entity
beans had their persistent state managed via Bean Managed Persistence code,
and this persistent state was maintained in a DB2 relational database (RDBMS)
on a separate machine. In order to take round-trip performance measurements,
a third machine accessed the Web server and made HTTP requests for certain
test actions to be made. This test client was run within the LoadRunner test
harness package.
 Chapter 5. Benchmark methodology 85

Configuration 2 shows that Versant enJin (the enJin Object Manager) has been
added to WebSphere's EJB Container. In this enJin-based test architecture,
Versant's enJin takes over coordination of all of the persistence and transaction
management services from WebSphere's EJB Container, therefore, reads and
writes are made to the objects in the persistent store provided by the enJin object
server. This persistent state could then in turn be asynchronously propagated to
a DB2 RDBMS, but since the asynchronous mechanism of updating such
enterprise data stores does not happen in real time, these updates do not affect
round-trip benchmark times, and so it was decided to simplify the benchmarking
process and leave these updates out of the tests. Of course, since such updates
can be configured to occur asynchronously, the performance times detailed in
this document apply equally to a configuration where updates are propagated
from Versant enJin to a DB2 relational database.

The baseline architecture was implemented by an independent IBM business
partner using J2EE standards, IBM best-practices for implementing WebSphere
applications, and using bean-managed persistence techniques in order to gain
the best performance for the baseline implementation. The enJin-based
implementation was completed by Versant staff using best-practices for J2EE
and WebSphere, as well as best-practices for enJin-based development. This
included the use of session-managed persistence techniques in order to optimize
enJin performance.

5.1.1 Business domain model
The object model (shown in Figure 5-2) shows that users are managers of stock
trading accounts. The users that this application models, are fund managers for
corporate stock trading accounts. Each account contains all of the portfolios that
are managed on behalf of a particular company by one of the fund manager
users. Each stock trading account is composed of a number of portfolios, each of
which represent the composition of a set of stock positions for a particular
industry or market segment. A position represents a holding of shares, each
share, option or other type of stock entity being modeled as a stock Instrument.
Each position is also composed of a history of trades, and each instrument or
stock is composed of a single specific current price quote. The dotted line boxes
shown in the diagram represent the grouping of business objects into
course-grained entity beans, producing a set of four entity beans for the
application - user, instrument, account, and company entities.
86 Accelerating IBM WebSphere Application Server Performance with Versant enJin

Figure 5-2 Object model

This object model was used as the basis of both implementations of the stock
trading application used for the present benchmarking tests. The application is
comprised of a number of different functions, some of which are administrative in
nature and allow the pre-population of stock data, as well the viewing of current
data in the system. For the purposes of obtaining a clear and concise set of
benchmarks though, two particular functions within the application were focused
upon. These functions were designed to examine the differences in performance
characteristics between the traditional EJB-RDBMS architecture versus the
enhanced enJin-based architecture, when these two implementations were
exposed to various operational complexities. More precisely, two application
functions were designed so that performance could be examined for:

� A simple operation
� A complex operation

By testing the enJin based and traditional implementations under these differing
conditions, it was possible to determine the performance characteristics of the
two approaches in the context of different application requirements. These two
operations were:
 Chapter 5. Benchmark methodology 87

� New trade (simple)
� New portfolio (complex)

The new trade transaction is a fairly simple operation, since it merely involves the
alteration of one of the positions within an account, and the addition of a new
trade entry. In contrast, the new portfolio operation involves the creation of a new
portfolio, a new position, a new trade, and an association between the position
and a stock Instrument, and so provides a more complex set of interactions to be
tested. Therefore, performance characteristics of applications of differing
complexities could be examined by benchmarking these two particular
operations within the stock trading application.

5.1.2 Interactions measured by the benchmark tests
Figure 5-3 shows a high-level view of the interactions within a single end-to-end
test run of the application for the baseline architecture. As shown, the standard
J2EE architecture was used for the application flow, using EJBs, JSPs, and
servlets to provide a model-view-controller architecture.

Figure 5-3 Interactions
88 Accelerating IBM WebSphere Application Server Performance with Versant enJin

The collaboration diagrams shown represent a simplified view of the interactions
that were measured for the purposes of these benchmarks - these diagrams
represent the baseline architecture, where the enJin object caching service was
not used. Value objects, data access objects, Helper classes, and
container-generated classes have been omitted in order to provide a clear
overview of the interactions that were measured.

The first of the diagrams shows the new trade use case - the simple transaction
condition. In this interaction, the LoadRunner test-harness makes a request on
the TradeServlet, which takes parameters present in the HTTP request, and
builds a trade value-object (a simple JavaBean) encapsulating the data to be
used for creation of the new trade. The type of the value object created is
determined by a parameter of the HTTP post request, which informs the servlet
of which of the use cases to execute - here the NewTrade use case. The trade
servlet then looks up the trader stateless session bean, and invokes the
newTrade(Trade) method of the session bean's interface, passing the newly
created instance of the trade object. The trader session bean then invokes one of
the finder methods of the account entity bean's home interface, (based on
information in the trade value object) in order to locate the appropriate entity
bean to be updated.

The trader session bean then invokes the addTrade(Trade) method, passing the
trade value object. The entity bean uses a Data Access Object Helper class,
which uses SQL and JDBC to flatten the object and save it to the RDBMS. The
flow of control then returns to the servlet, which forwards to a Java server page to
generate an HTML response.

The new portfolio use case has similar interactions; they simply create different
value objects, and invoke different methods of the trader session bean and
account entity bean. The primary difference between the two scenarios in terms
of complexity, is contained entirely within the entity bean's access to the
database. Both scenarios use the same fairly simple and very standard J2EE
sequence of interactions. They merely differ in regards to the complexity and
number of objects that are updated, and so, differ in the complexity of the
JDBC/SQL calls required to implement the updates.

For the enJin-based implementation, the two use cases have similar interactions.
When using enJin however, rather than having the trader session bean invoke
methods on an entity bean, and the entity bean persist the object via a Data
Access Object Helper class, the enJin architecture instead treats the value
objects as persistence-capable classes themselves, and so is able to bypass the
entity bean and data access object layers. This Session Bean Managed
Persistence approach allows us to persist the objects directly to the enJin object
cache, using enJin's Java Versant Interface (JVI) API. This requires no SQL
update statement to map the objects to relational tables. Java methods in enJin's
 Chapter 5. Benchmark methodology 89

Java API are simply invoked to tell enJin to persist the entire object as an object.
All other aspects of the interactions are the same. The trader session bean
returns control back to the trader servlet, which then forwards control to a trade
results Java server page, which then generates an HTML response to be
returned to the LoadRunner client.

5.2 Performance metrics
So, for the baseline application, this sequence of interactions was the basis of all
measurements taken. The round-trip response times detailed in the benchmark
results represent all of the interactions above, from the LoadRunner test harness
making a request upon the servlet controller, through to the EJB execution, back
to the JSP generating an HTML page, and it being received by the LoadRunner
test harness.

The measures of throughput are also based purely upon this measure.
Throughput is measured in terms of the average number of transactions per
second that the WebSphere platform can handle in either the baseline or enJin
scenarios. Essentially, what this measures is the number of client requests that
can be completely processed and replied to in a given second on average. It is
important to emphasize that this is an average measure, so that even if the
average response time is more than 1 second, if, say, 50 of the above
interactions can be processed and responded to within 5 seconds, then the
average throughput measure will be 10 transactions per second.

In addition to response times and throughput, CPU utilization and memory use
were measured for each of these test conditions. This allowed for the estimation
of the resources both used and available to the WebSphere platform to handle
greater workloads.

5.3 WebSphere deployment configurations
The following list shows all of the parameters that were used to configure the
EJBs, servlets, and JSPs for both the baseline test runs as well as the enJin test
runs. Since WebSphere provides a vast array of configuration parameters for
application tuning, only the primary configuration options, as well as all of the
properties, which may have had any impact on performance have been shown.

DB2 Datasource
� JDBC Driver - com.ibm.db2.jdbc.app.DB2Driver (type 2 JDBC Driver)
� Minimum pool size - 10
� Maximum pool size - 500
90 Accelerating IBM WebSphere Application Server Performance with Versant enJin

� Connection timeout - 180 milliseconds
� Idle timeout - 1800 milliseconds
� Orphan timeout - 1800 milliseconds

Application Server (running within WebSphere)
� Tracing - none
� Object level tracing enabled - False
� Debugging enabled - False
� Transaction timeout - 2 minutes
� Transaction inactivity timeout - 1 minute
� Thread pool size - 20
� Security enabled - False
� EJB container

– Cache size - 2 MB
– Trader <Session Bean>

• State Management: Stateless
• JNDI Home Name - com/versant/benchmarkbmp/ejb/Trader
• Minimum Pool Size - 2
• Maximum Pool Size - 100
• Transaction Attributes:TX_NOT_SUPPORTED (all methods of remote

interface)
• Transaction Isolation: SERIALIZABLE (for all methods of remote

interface)

– Account <Entity Bean>

• JNDI home name - com/versant/benchmarkbmp/ejb/AccountWrapper
• Find for update - False
• Minimum pool size - 2
• Maximum pool size - 100
• DB exclusive access - False
• Transaction attributes: TX_REQUIRED (for all methods of remote

interface)
• Transaction Isolation: READ_COMMITTED (all methods of remote

interface)
• Read only methods: none used

– Servlet engine

• Maximum connections - 100
• Transport type - OSE (Open Servlet Engine)
• OSE transport - INET Sockets (since running on SunOS)

– Web application

• Auto reload - True
• Reload interval - 9 seconds
• Shared context - False
 Chapter 5. Benchmark methodology 91

– TraderServlet <Servlet>

• Code - versant.benchmark.servlets.Controller
• Load at startup - True
• Debug mode - False

– JSP 1.1 Compiler <Servlet>

• Code - org.apache.jasper.runtime.JspServlet
• Load at startup - True
• Debug mode - False

– Session manager

• Enable sessions - True
• Enable URL Rewriting - False
• Enable cookies - True
• Shared context - False

All of the configuration parameters shown above were kept the same between
both the baseline architecture, as well as the enJin-based test architecture. All of
the WebSphere configuration parameters not shown have little or no impact on
the performance characteristics of the test application, but were also kept the
same between both the baseline and enJin deployments in order to ensure
accurate benchmarking.

5.4 Other runtime parameters
Before running any of the benchmark tests, the application database was
pre-configured with data for 500 different users as well as other context data
including companies, accounts, and other related information. This context data
totaled approximately 10 MB of pre-test data.

5.5 Hardware configuration
The hardware configuration is as follows:

LoadRunner Client:
� IBM Netfinity 8500R

– 4 x PIII Xeon 550Mhz
– 2560 MB SDRAM ECC
– 10/100 Mbps Ethernet
– Microsoft Windows NT 4.0 Service Pack 6
– LoadRunner 6.5 client software
92 Accelerating IBM WebSphere Application Server Performance with Versant enJin

Web & WebSphere Server:
� Sun Ultra 80:

– 4 x UltraSparc-II 450 Mhz,
– 4MB Level 2 cache
– 4096 MB RAM
– 10/100 Mbps Ethernet
– SunOS 5.8
– IBM HTTP Server v1.3.19
– IBM WebSphere Application Server Advanced Edition v3.5.3
– Versant enJin 2.1

DB2 RDBMS Server:
� Sun Ultra 80:

– 4 x UltraSparc-II 450 Mhz,
– 4MB Level 2 Cache
– 4096 MB RAM
– 10/100 Mbps Ethernet
– SunOS 5.8
– IBM DB2 6.1 fixpack6
– Versant enJin 2.1

Network:
� All machines on 100 Mb/s switched fast Ethernet
 Chapter 5. Benchmark methodology 93

94 Accelerating IBM WebSphere Application Server Performance with Versant enJin

Chapter 6. Benchmark results

Versant's enJin provides a unique way of managing such new demands by
providing facilities for high-speed persistence of intermediate application data,
which may not need to be stored in backend systems, as well as persistence of
middle-tier-only data. However, enJin also provides a middle-tier object cache for
information that is stored in backend enterprise information systems such as
relational databases: a cache which provides tremendous performance
advantages. This object cache provides transaction integrity and persistence
capabilities to ensure consistency between data that is stored in this cache and
the data contained in backend information systems. It also ensures the integrity
of transactions in cases of server failures, and ensures consistency between
multiple caches in an environment of clustered J2EE application servers.

As shown by the benchmarks presented within this chapter, the addition of
Versant's enJin to a standard Enterprise JavaBeans, servlets, and Java server
pages application provides the following performance benefits:

� Elimination of between 77% and 89% of the delay between a user making a
request and receiving the response. In other words, application response
times that are up to 9.6 times faster.

� The ability to handle between 3.6 and 8.5 times the number of concurrent
transactions per second.

6

© Copyright IBM Corp. 2002 95

Moreover, these performance benefits are obtained while actually using fewer
CPU resources, and equivalent memory resources. With enJin's dramatic
performance and throughput gains with zero additional resource requirements,
the return on an investment in enJin for a J2EE-based application is easily
shown to be on the order of 53-61% savings in hardware and software platform
costs alone, based on very conservative estimates. Depending on the scale of an
application's deployment, these savings are likely to translate into platform cost
reductions anywhere between $175,000 for modest deployments, to around
$675,000+ in savings for enterprise scale deployment topologies.

The following metrics were metrics were evaluated in this project:

� Mean Response Time - Time taken from LoadRunner making an HTTP
request to LoadRunner receiving an HTML reply for that particular request

� Throughput in mean number of transactions per second - Average number of
round-trip interactions that could be responded to within 1 second.

� Mean CPU utilization - Average CPU activity for each of the 4 processors in
the WebSphere Application Server machine, as well as each of the 4
processors in the Data Server machine.

� Mean Memory Utilization - Average amount of memory used by the
WebSphere Application Server and database server machines.

The subsequent section will detail the results of the project. Specifics that will be
discussed include:

� Response-Time performance and application server throughput
� Resource Utilization
� Scalability
96 Accelerating IBM WebSphere Application Server Performance with Versant enJin

6.1 Response time and application server throughput
The first set of measures taken (as shown in Figure 6-1) used LoadRunner to
execute requests using a single thread, 2 concurrent threads, 3 concurrent
threads, and so forth, up to 10 concurrent LoadRunner threads making requests
upon the application in each of the baseline and enJin conditions. Each of these
LoadRunner threads was simply a concurrently running test-harness, which
when aggregated, simulated the demand that would be expected from between
10 and 400 concurrent users, depending on the test condition. Each test harness
thread waited until it had received an HTML response before making a new
request.

Figure 6-1 Response times for simple (new trade) transactions

As the chart in Figure 6-1 shows, as the amount of workload placed on the
baseline WebSphere implementation grew, response times began to suffer,
slowing down from 320 milliseconds with 1 test harness thread, to 900
milliseconds with 10 concurrent threads. In contrast, the implementation which
used enJin's object cache had far better response times, averaging a mere 70
milliseconds with a single test harness thread, to 160 milliseconds with 10
concurrent test harnesses. So, not only did the architecture using enJin's object
cache give much better response times, but it also showed much more stable
response time performance as workload increased.
 Chapter 6. Benchmark results 97

In addition to producing much faster response times, due to the nature of the
LoadRunner test-harness which waits for a response from a previous request
before making a subsequent request, enJin actually achieved these better
response times under a greater load than the baseline architecture. Table 6-1
shows the average number of transactions completed per second for the same
test runs as shown in the Figure 6-1 previously.

Table 6-1 Throughput as measured by transactions per second

So, not only did enJin perform much better than the baseline condition in respect
of response times, but it was producing these better response times under much
greater workload.

The results (shown in Table 6-1) illustrate enJin's performance characteristics for
a simple application scenario.

In order to gauge performance under more complex application demands, the
above measures were repeated for the complex transaction condition, such as a
request to add a new portfolio. These results are shown in Figure 6-2.

Figure 6-2 Response times for complex (new portfolio) transactions

Threads 1 2 3 4 5 6 7 8 9 10

Baseline 2.87 5.14 7.12 8.04 9.86 10.18 10.74 10.83 10.82 10.45

enJin 10.46 20.06 28.70 36.31 44.12 47.70 50.02 48.74 50.69 49.77
98 Accelerating IBM WebSphere Application Server Performance with Versant enJin

Figure 6-2 shows the response time performance gains are even greater for
more complex application scenarios, and again enJin's performance was more
stable as workload increased. enJin was 9.6 times faster for a single test harness
thread (190 milliseconds versus 1820 milliseconds) and 6.2 times faster with 10
concurrent test harness threads (600 milliseconds versus 3730 milliseconds).

Again, these response time gains were made even though enJin was responding
to many more requests - up to 8.3 times as many requests - as shown in Table
6-2.

Table 6-2 Throughput as measured by transactions per second for complex

So, for both Simple and Complex transactions, adding enJin to a standard
WebSphere J2EE application can cut response times by as much as 89%, while
simultaneously improving the number of requests that can be serviced by as
much 755% (both of these estimates taken from complex-1 thread condition).

All of the response time data presented above is purely for round-trip response
times - in other words, the response times that an end-user will experience. In
order to get a better picture of the internal performance differences, log timings
were also taken at key points within the internal application execution, in order to
isolate just the data access times. Figure 6-3 shows the performance of the
baseline and enJin enhanced implementations at the point where enJin actually
targets its performance optimizations; the time taken within the application just to
access the persistent store.

Threads 1 2 3 4 5 6 7 8 9

Baseline 0.53 0.98 1.33 1.58 1.81 2.04 2.19 2.3 2.34

enJin 4.53 8.29 10.82 12.42 13.49 14.00 14.15 14.16 13.54
 Chapter 6. Benchmark results 99

Figure 6-3 Internal timing of data access component of round-trip transaction times

As shown in Figure 6-3, when the data access component of response times is
isolated from all of the other activities within a full round-trip execution of a
transaction, the performance benefits of enJin are highlighted even further. This
data is taken from the complex transaction executions, for the same test runs as
shown in Figure 6-2.

Comparing just the data access times then, enJin cuts between 96.4% and
97.4% of the data access latency for complex transactions. Similar data was
found for simple transactions (not shown), where data access times within the
application were cut by between 90.4% and 94.4% when comparing enJin to the
baseline RDBMS-only architecture. So at a minimum, data access latency within
an applications execution is only 9.6% the amount of time needed for an update
or query to a relational database, and may be as little as 2.6% the time taken to
query or update a relational database, rather than query or update enJin's object
cache (and have the relational database updated asynchronously).

6.2 Resource utilization
In addition to measuring improvements in response times and transaction
throughput, utilization statistics for application server and database server
resources were also collected. This data was captured in order to determine
what effect, if any, would occur in regards to the availability of system resources.
100 Accelerating IBM WebSphere Application Server Performance with Versant enJin

Does enJin place a greater burden on system resources, or does it actually free
up system resources because transactions are executed so much more quickly?
CPU utilization and available system memory were measured to investigate
enJin's resource utilization characteristics.

6.2.1 CPU utilization
Figure 6-4 displays CPU utilization for simple and complex transaction
conditions, for the same test runs as presented in the analysis of response times
and throughput.

Figure 6-4 CPU utilization for simple (new trade) and complex (new portfolio) transactions

In Figure 6-4 we can see in the simple transaction scenario that enJin uses
slightly more application server CPU time than the baseline in some conditions,
but overall, there was no significant difference, with the 10 threads condition
actually using marginally less CPU time with enJin. For the data server machine
however, much less processor time was used in the enJin condition, since we
were not performing updates to the RDBMS in real time. The complex
transaction scenario, however, shows that for both the application server and
data server, fewer CPU cycles were needed to service the complex transaction
requests when using enJin rather than the baseline architecture.
 Chapter 6. Benchmark results 101

So again, we can see from Figure 6-4 that even though the enJin-based
architecture was servicing between 4 and 9 times as many requests, and
responding to each of these requests much faster than the baseline WebSphere
architecture (as shown in Figure 5-1), it produced this performance improvement
while actually using generally fewer application server and data server CPU
cycles.

6.2.2 Memory utilization
Figure 6-5 displays memory utilization for the same test runs as presented
above:

Figure 6-5 Memory utilization for simple (New Trade) and complex (New Portfolio) transactions

Figure 6-5 showing the simple and complex transactions clearly show that
memory utilization was not at all a factor in the benchmark results. The scales for
Figure 6-5 range from 3 GB to 4 GB of in-use memory, and so the slight
differences that can be seen are visible primarily due to the expanded scale. For
both the application server and data server, memory use ranged from 3.31 to
3.43 Gigabytes with a mere 3% variation. So, the use of enJin requires no
additional memory resources when compared to a traditional architecture.
102 Accelerating IBM WebSphere Application Server Performance with Versant enJin

6.3 Scalability
The benchmarks show that by adding enJin to the WebSphere platform we can
achieve much faster response times, and much higher throughput. The
application server spends fewer CPU resources executing each transaction, and
so it can make itself available for further work more quickly.

This does not actually make our application more scalable; the application's
scalability is still guaranteed by WebSphere's ability to cluster many application
servers to share increased workloads as user demands increase. Even though
enJin's performance characteristics do not make our application more scalable,
they do provide our application the ability to scale to meet a given demand with
fewer resources.
 Chapter 6. Benchmark results 103

104 Accelerating IBM WebSphere Application Server Performance with Versant enJin

Appendix A. Versant WebSphere
Consulting Practice

Versant's core competency in object-oriented applications and expertise in Java
for the application server has lead to a strategic partnership with IBM to deliver
WebSphere Consulting Services. The Versant WebSphere Consulting Practice
consists of WebSphere experts in EJB application architecture, WebSphere
back-end developers, VisualAge for Java consultants, and WebSphere systems
administration experts. Through this consulting practice, Versant supports IBM's
explosive growth in the application server business by helping their customers
design, architect, implement and roll-out WebSphere applications.

Some examples of the type of WebSphere Java application projects where these
consultants help our clients:

� Application architecture/design

� Object-oriented analysis and design

� e-business application development using Java 2 technologies such as EJB,
JSP, and Servlet technologies

� WebSphere performance and tuning consulting

� Application project management

� VisualAge for Java mentoring

� WebSphere deployment

A

© Copyright IBM Corp. 2002 105

� WebSphere installation, setup, and systems administration

� Managing roll-out of WebSphere systems for production implementation

For more information please see the following URL for the WebSphere
consulting practice at Versant is:

http://www.versant.com/services/profservices/index.html
106 Accelerating IBM WebSphere Application Server Performance with Versant enJin

http://www.versant.com/services/profservices/index.html

Index

A
Active data management 10
Application architecture 85
Application Server (running within WebSphere) 91
Architecture 6
Availability 8

B
Balanced client-server network architecture 15
Benchmark application 84
Benchmark methodology 83
Benchmark results 95
benchmarking project IBM Silicon Valley Laboratory
vii
Benefits 7
Bindings 15
Business domain model 86

C
caching of data 8
Categorize the persistent class 64
Class Enhancement 37
ClassEntityBeanHelper 45
ClassSessionBeanHelper 46
complex application scenarios 99
Configure the datasource and poolname 62
CPU utilization 101
CPU utilization for simple (New Trade) and complex
(New Portfolio) transactions 101
Create database 21, 70
Create database steps 22
Create the database 68
Create the Object Manager 19
Creating persistent objects 19
cut response times 99

D
data access latency 100
Data replication 9
Database access with transparent bindings 15
Database create 69
Database example 80
© Copyright IBM Corp. 2002. All rights reserved.
Database list 79
DB2 RDBMS Server 93
DBAdministrator 20
Declare a static variable of type SessionBeanHelper
62
de-coupling 8
default locking model 18
Deleting persistent objects 35
Deploy code 71
Deploying and testing the application 70
Developing applications with Versant enJin 49

E
Ease of development 7
EJB import 57, 59
EJB import open 58
EJB persistence 9
EJB test 75–78
Elimination of delay 95
Enhancement process 38
enJin architecture 6
enJin console 67
enJin database inspector 79
enJin database tool 68
enJin IDE Toolkit 51
enJin interface 52
enJin persistence tool 65
enJin's Java Versant Interface (JVI) 14
enJin's performance characteristics 98
enJin's Versant Object Database 15
enJin’s transparent Java language interface 14
Enterprise Java Beans (EJBs) 50

F
FInding objects 26
Finding Objects with Queries 29
Finding objects with roots 26

G
Generate 72
GUI tools 10
 107

H
Hardware configuration 92
Helper classes 45
Hot-standby for e-business transactions 10
How to choose a persistence category 42
HRApplication 54

I
IBM High Volume Web Sites team. vii
Implementation of enJin session managed persis-
tence 61
Import select 56
Import selection 60
Import the jar file 55
Initialize the SessionBeanHelper 62
Installation and configuration of Versant integrated
tools 51
Integration with existing technology 10
Interactions 88
Interactions measured by the benchmark tests 88
Internal timing of data access component of
round-trip transaction times 100
Introduction to the enJin tools and user interface 51

J
Java build settings 61
Java persistence 9
JavaServer pages and servlet support 9
JVI operations 16
JVI transparency 37

K
Key concepts 13
Key features 8

L
LoadRunner Client 92
Locking 17

M
manage middle-tier services 5
Mean CPU utilization 96
Mean Memory Utilization 96
Mean Number of Transactions per Second 96
Mean Response Time 96
Memory utilization 102

Memory utilization for simple (New Trade) and com-
plex (New Portfolio) transactions 102
Modify server configuration file 72

N
Navigator 67
Network 93
Not persistent aware 42

O
Object Manager Directory 19
Object model 87
Object navigation 31
Optimistic locking 18
Other runtime parameters 92
Overview of enJin 3

P
Performance 8
performance benefits 95
Performance metrics 90
Persistence categories 41
Persistence categorization 41
persistence for Java objects 50
Persistence for Java objects and EJBs 8
Persistence tool 66
Persistent capable 42
Pessimistic locking 18

R
Reading persistent objects 26
Redbooks Web site

Contact us ix
Resource Utilization 96
Resource utilization 100
response time gains 99
Response time performance and application server
throughput 97
Response times for complex (New Portfolio) trans-
actions 98
Response times for simple (New Trade) transac-
tions 97
Response-Time Performance and Application Serv-
er Throughput 96
Run on server 73–74
Running the enhancer 38
108 Accelerating IBM WebSphere Application Server Performance with Versant enJin

S
Scalability 8, 103
scale of application’s deployment 96
separate back-end data 5
Session managed persistence 53
Session manager 43
simple application scenario 98

T
Testing the application 75
The TransSession class 16
Time-to-market 7
Transaction management 44
Transparent data distribution 8
TransSession class 16
Types of locks 18

U
Updating persistent objects 34
Using the command line to create the database 19
Using the WSAD IDE to Create the database 20

V
Versant enterprise container 43
Versant Object Manager 36
Versant Query Language (VQL) 15
Versant WebSphere Consulting Practice 105
View the results in the database 78

W
Web & WebSphere Server 93
WebSphere deployment configurations 90
WebSphere experts in EJB application architecture
105
WebSphere Studio Application Developer (WSAD)
50
Write the code for your business logic 63
WSAD IDE 55

X
XML interchange 10
 Index 109

110 Accelerating IBM WebSphere Application Server Performance with Versant enJin

(0.2”spine)
0.17”<->0.473”

90<->249 pages

Accelerating IBM
 W

ebSphere Application Server Perform
ance w

ith Versant enJin

®

SG24-6561-00 ISBN 0738425109

INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE

IBM Redbooks are developed by
the IBM International Technical
Support Organization. Experts
from IBM, Customers and
Partners from around the world
create timely technical
information based on realistic
scenarios. Specific
recommendations are provided
to help you implement IT
solutions more effectively in
your environment.

For more information:
ibm.com/redbooks

Accelerating IBM WebSphere
Application Server Performance
with Versant enJin

Improve data access
by more than 50
times

Speed transaction
throughput by 10
times

Eliminate
object-to-relational
mapping code

This IBM Redbook is an in-depth guide for implementation of
Versant enJin methodologies and practices for development
and deployment of your J2EE applications using IBM
WebSphere Application Server.

Versant enJin is a flexible infrastructure platform that persists
Java objects and EJBs within the middle-tier without
overloading your existing database systems.

Details of the benchmarking project that was a joint
undertaking with IBM and Versant conducted at the IBM
Silicon Valley Lab in San Jose are covered.

Part 1 describes the methodology used in developing J2EE
applications using Versant enJin.

Part 2 covers how to implement the methodology into
developing and deploying a typical J2EE application using IBM
WebSphere and enJin.

Part 3 describes the details of the benchmarking project that
was done including the methodology, the application
architecture, the performance metrics, and hardware
configuration.

Back cover

	Front cover
	Contents
	Notices
	Trademarks

	Preface
	The team that wrote this redbook
	Become a published author
	Comments welcome

	Part 1 Introduction to Versant enJin
	Chapter 1. Overview of enJin
	1.1 Overview
	1.2 Architecture
	1.3 Benefits
	1.3.1 Ease of development
	1.3.2 Time-to-market
	1.3.3 Scalability
	1.3.4 Performance
	1.3.5 Availability
	1.3.6 Transparent data distribution

	1.4 Key features
	1.4.1 Persistence for Java objects and EJBs
	1.4.2 JavaServer pages and servlet support
	1.4.3 Data replication
	1.4.4 Active data management
	1.4.5 XML interchange
	1.4.6 Hot-standby for e-business transactions
	1.4.7 Integration with existing technology
	1.4.8 GUI tools

	Chapter 2. Key concepts
	2.1 enJin’s transparent Java language interface
	2.1.1 Overview
	2.1.2 Architecture
	2.1.3 JVI operations

	2.2 Class enhancement
	2.2.1 Overview
	2.2.2 Running the enhancer

	2.3 Persistence categorization
	2.3.1 Persistence categories
	2.3.2 How to choose a persistence category

	2.4 Versant enterprise container
	2.4.1 Session manager
	2.4.2 Transaction management
	2.4.3 Helper classes

	Part 2 Developing an enJin application
	Chapter 3. Developing applications with Versant enJin
	3.1 Installation, configuration of Versant tools
	3.2 Introduction to the enJin tools and user interface

	Chapter 4. Session managed persistence
	4.1 Outline of the example
	4.2 Running the example
	4.2.1 Import the jar file
	4.2.2 Implementation of enJin session managed persistence
	4.2.3 Categorize the persistent class
	4.2.4 Create the database
	4.2.5 Deploying and testing the application
	4.2.6 View the results in the database

	Part 3 The benchmarking project
	Chapter 5. Benchmark methodology
	5.1 Benchmark application
	5.1.1 Business domain model
	5.1.2 Interactions measured by the benchmark tests

	5.2 Performance metrics
	5.3 WebSphere deployment configurations
	5.4 Other runtime parameters
	5.5 Hardware configuration

	Chapter 6. Benchmark results
	6.1 Response time and application server throughput
	6.2 Resource utilization
	6.2.1 CPU utilization
	6.2.2 Memory utilization

	6.3 Scalability

	Appendix A. Versant WebSphere Consulting Practice
	Index
	Back cover

