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Preface 
 
The purpose of this book is to teach students how to design and implement a 
microcontroller-based digital system.  As such, it contains material that might typically 
be covered in a sequence of two courses: (1) a junior-level “microprocessor” course 
covering the basics of how a microprocessor works, how to program it to perform basic 
functions, and how to interface it to various external devices using integrated 
peripherals; and (2) a senior-level “digital system design project” course covering more 
advanced topics on microprocessor programming and interfacing, along with a series of 
practical system design considerations.  Note that a background in basic digital system 
design is a necessary prerequisite, ideally obtained during the student’s sophomore 
year.  While there are a number of reasonably good texts currently available that 
provide such an introduction, one of the best (and my long-time personal favorite) is 
John F. Wakerly’s Digital Design Principles and Practices (Third Edition), Prentice Hall, 
2000. 
 
A unique feature of Microcontroller-Based Digital System Design (sub-titled Bigger 
Bytes of Digital Wisdom, or Bigger Bytes for short) is the availability of what I refer to as 
a “Lecture Workbook”, i.e., a set of lecture slides (provided in PowerPointTM format) with 
carefully chosen portions to be annotated or completed in class.  The Lecture Workbook 
concept is based on the premise that notes taken during a classroom lecture serve 
more than mere archival of information – an encoding process occurs in the student’s 
brain as he/she writes.  By focusing this encoding process on key words or selected 
aspects of hardware/software design, the time and effort spent in class can be 
optimized.  A special set of PowerPointTM slides, which include an animated, successive 
annotation of the Lecture Workbook slides (including completed exercises), is available 
for instructor use.  (The “skeleton” slides can also be made into overhead 
transparencies and annotated “manually”, for those instructors who prefer that mode of 
presentation.)  
 
Another student- and instructor-friendly feature is the availability of an “Exercise 
Workbook” that contains a set of (full-size) printable homework problems in PDF format 
along with solutions to selected exercises.  Also included are a number of source files 
that are to be completed as part of these problems.  Individual students can print out 
selected problems and complete them in a structured, “easy-to-grade” fashion.   
 
The availability of a complete “Lab Workbook” – based on a low-cost evaluation board 
(EVB) available directly from Motorola University Support – is another feature of this 
text.  The Motorola EVBs have a small prototyping area that makes them ideal not only 
for introductory courses on microcontrollers, but also for use in senior design projects.   



 Table of Contents 
 
 
2 DESIGN OF A SIMPLE COMPUTER 
 2.1 Computer Design Basics        3 
 2.2 Simple Computer Big Picture                    5 
 2.3 Simple Computer Floor Plan                    7 
 2.4 Simple Computer Programming Example                  9 
 2.5 Simple Computer Block Diagram     15 
 2.6 Instruction Execution Tracing                  18 

3.7 Bottom-Up Implementation of Simple Computer                            24 
3.7.1 Memory       24 
3.7.2 Program Counter      28 
3.7.3 Instruction Register      30 
3.7.4 Arithmetic Logic Unit                  31 
3.7.5 Instruction Decoder and Micro-sequencer               35 

3.8 System Timing Analysis                   40 
3.9 Simple Computer Extensions                  42 

3.9.1 Input/Output Instructions     42 
3.9.2 Transfer-of-Control Instructions                 47 
3.9.3 Multiple Execute Cycle Instructions                50 
3.9.4 Stack Manipulation Instructions                 53 
3.9.5 Subroutine Linkage Instructions                 58 
3.9.6 Other Possibilities      63 

           2.10    Summary and References                   64 
 Problems         65 
 
3 INTRODUCTION TO MICROCONTROLLER ARCHITECTURE 
               AND PROGRAMMING MODEL 
 3.1 Differing World Views                    2 
 3.2 Characteristics That Distinguish Microprocessors                4 
 3.3 Taxonomy of Microprocessors                   6 
 3.4 Choosing an Education-Appropriate Microprocessor                9 
 3.5 Tools of the Trade       12 
 3.6 Motorola 68HC12 Architecture and Programming Model                           26 

3.10 Addressing Modes       30 
3.7.1 Non-Indexed Modes                  31 
3.7.2 Indexed Modes                   33 
3.7.3 Addressing Mode Summary                 38 

3.8 Motorola 68HC12 Instruction Set Overview                40 
3.8.1 Data Transfer Group Instructions    40 
3.8.2 Arithmetic Group Instructions                 46 
3.8.3 Logical Group Instructions     57 
3.8.4 Transfer-of-Control Group Instructions                64 
3.8.5 Machine Control Group Instructions                76 
3.8.6 Special Group Instructions     79 

           3.9      Summary and References                   82 
           Problems         83 

 



Microcontroller-Based Digital System Design  Chapter 2 ­ Page 1 

Preliminary Edition  ©2001 by D. G. Meyer 

CHAPTER 2 
 
 
DESIGN OF A SIMPLE COMPUTER 
 
 
Before we launch into the details associated with a relatively complex, 
contemporary microcontroller, it will be helpful for us to examine the 
design and implementation of a simple computer.  In particular, the 
overall approach – based on a top-down  specification of functionality, 
followed by a bottom-up implementation of the various functional 
blocks – will prove useful to our basic understanding of how a “real” 
microcontroller works. 
 
In Chapter 1, we reviewed a number of digital system building blocks. 
This included combinational elements such as decoders, priority 
encoders, and multiplexers as well as sequential elements such as 
latches and flip-flops. We then reviewed how these combinational and 
sequential elements can be combined to build digital systems.  We 
also reviewed how digital systems could be specified using a hardware 
description language and subsequently implemented using 
programmable logic devices (PLDs). 
 
Our purpose here is to apply this background to the design of a simple 
computer.  Before we go any further, though, some basic definitions 
are in order.  First, what is a computer?  What distinguishes computers 
from random combinations of logic or from simple “light flashing” state 
machines?  Simply stated, a computer is a device that sequentially 
executes a stored program.  The program executed is typically called 
software if it is a user-programmable (“general purpose”) computer 
system; or called firmware if it is a single-purpose, non-user-
programmable system (also referred to as a “turn-key” system).  A 
given program consists of a series of instructions that the machine 
understands. Instructions are simply bit patterns that tell the computer 
what operation to perform on specified data. That a program is stored 
implies the existence of memory. To perform the series of instructions 
stored in memory, two basic operations need to be performed. First, an 
instruction must be fetched (read) from memory.  Second, that 
instruction must be executed, e.g., two numbers are added together to 
produce a result. The memory that is used to store a program can take 
many different forms – ranging from removable media devices such as 
CD-ROMs to patterns in the metal layer of an integrated circuit. While 
the physical implementation of the memory in which the program is 

top-down, 
bottom-up 

computer 

programmable 
logic devices 

stored program 

software 
firmware 

memory 
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stored may vary, the information stored in memory is interpreted (i.e., 
fetched and executed) the same way. 
 
Given the basic definition of a computer, above, what is a 
microprocessor? Classically, it is a single-chip embodiment of the 
major functional blocks of a computer. Today, though, the term 
“microprocessor” is often applied to a wide range of single- and multi-
chip computational devices, ranging from “mainframes on a chip” (used 
in personal computers and workstations) to small dedicated controllers 
(used in a wide variety of “intelligent” devices).  They can range in 
physical size from packages with several hundred pins to packages 
with only a few pins; some examples are illustrated in Figure 2-1. They 
can range in cost from less than one dollar to hundreds of dollars. The 
simple computer we will be designing here can be implemented using 
a modest-size PLD; we could therefore rightfully call this single-chip 
embodiment of our simple computer a “microprocessor.” 
 
 
  
 
 
 
 
  
 
  
 
 
Finally, what is a microcontroller, and how does it differ from a 
microprocessor?  Typically a microcontroller integrates, in addition to a 
microprocessor, a number of peripheral devices that are commonly 
used in control-type applications onto a single integrated circuit (and 
are thus often referred to as “single-chip microcontrollers”).  Peripheral 
devices get their name from the fact that they provide interfaces with 
devices that are external (i.e., “peripheral”) to the computer. For 
example, a common series of operations often performed in control 
applications is: (1) input analog signals from sensors, (2) process them 
according to some algorithm, (3) and output analog control voltages to 
actuators.  A device that digitizes an analog input voltage is called an 
analog-to-digital (A-to-D) converter. Conversely, a device that 
produces an analog output voltage based on a digital code is called a 
digital-to-analog (D-to-A) converter.  A-to-D and D-to-A converters are 
examples of peripherals one might find integrated onto a 
microcontroller chip. 

microprocessor 

microcontroller 

peripheral  devices 

Figure 2-1  Contrasting contemporary microprocessors: (a) an 8-bit 
PIC microcontroller; (b) a 16-bit Motorola 68HC12 microcontroller; 
and (c) a 64-bit MIPS microprocessor. 

 

(a)                           (b)                             (c) 
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Other common peripherals include communication controllers, timer 
modules, and pulse-width modulation (PWM) generators.  Later, we 
will see a variety of applications for all of these integrated peripherals. 
 
2.1  Computer Design Basics 
 
How can we apply what we have learned thus far about basic digital 
system building blocks toward building a simple computer?  Basically, 
what we need is some way to structure and break down this design 
problem, because now it is a somewhat bigger than drawing a single 
state transition diagram or filling out a truth table.  We will need a 
structured approach that enables us to take a written description of the 
functions performed by our simple computer and create a high-level 
block diagram.  Based on this diagram, we can proceed to define what 
each block does, and ultimately design the circuitry required to 
implement each block. 
 
Before starting this process, though, we need to define what we mean 
by the structure of a computer.  “Architecture” is a word commonly 
used to depict the arrangement and interconnection of a computer’s 
functional blocks. While some might argue that this definition of 
computer architecture is a bit simplistic, it will serve our purposes for 
the discussion that follows. 
 
Before starting to design our simple computer, let us first consider a 
“real world” analogy: building a house.  Where is the logical place to 
start?  Probably with a “big picture” – i.e., an exterior elevation or plan 
view of the entire project.  Of course, the floor plan and exterior 
elevation are greatly influenced by the size, shape, and grade of the lot 
chosen for the house. Once we know the physical constraints dictated 
by our choice of lot, we can then begin to develop a floor plan. At this 
stage we can define the overall “functionality” of the house, i.e., the 
purpose of each room.  Once we have defined the functionality of each 
room, the next step is to determine their arrangement and 
interconnection. Once we have a working floor plan, we can begin to 
embellish it with a number of details – for example, the location and 
size of windows, the location of light fixtures and their associated wall 
switches, the location of power outlets, the routing of plumbing, etc.  
The important thing to note from this analogy is that we have described 
a top-down design process: starting with a “big picture”, and 
progressively embellishing it with layers of details.  Figure 2-2 depicts 
such a progression. 
 
 

architecture 

big picture 
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Once all the design specifications have been formulated, how would 
we proceed to build our house?  From the ground up – assuming we 
have adequate financing, of course.  We have to dig a hole first 
(perhaps analogous to going into debt), then pour a foundation, “stick-
build” the basic structure, put a roof on it, complete the exterior walls, 
and finally embellish each room with its finishing details. Note that the 
order in which this “bottom up” implementation proceeds is quite 
important – certainly one would not wish to start hanging drywall before 
the roof is in place, or run plumbing lines before the floor joists are in 
place.  Clearly, there is a structured, ordered way in which the entire 
process must take place – an approach strikingly similar to the one we 
will follow in designing our simple computer.  
 
What would be a good name for the overall process described above?  
Ignoring the financial aspects for a moment, we could aptly call it the 
top-down specification of functionality followed by bottom-up 
implementation of each basic step (or “block”).  More succinctly, we 
could call it top-down specification and bottom-up implementation.   
This is the process we will apply to the design and implementation of 
our simple computer. 
 
First, a disclaimer.  The initial machine we design will be very, very 
simple.  It will be an 8-bit machine with just a few instructions.  Further, 
there will be a single instruction format (layout of bit patterns) as well 
as a single addressing mode (way that the processor accesses 
operands in memory).   By the time we finish this “first phase” design, 
however, we will find out that even this rather simple machine is fairly 
complex in terms of implementation details.  
 
Once we have mastered our simple computer, we will then add 
“modern conveniences” such as input and output (or “I/O”), transfer of 
control instructions, stack manipulation instructions, and subroutine 

top-down 
specification 
 
bottom-up 
implementation 

instruction 
format 
 
addressing 
mode 

Figure 2-2  Top-down design of a house: (a) the “big picture”, (b) the 
floor plan, (c) details of a particular room. 
 

(a)                                      (b)                                 (c) 
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linkage instructions.  We will have the makings of a “socially 
redeeming” computer once we get done, plus have a firm footing upon 
which to understand the architecture and instruction set of a “real” 
computer. 
 
 
2.2  Simple Computer Big Picture 
 
Just as one might begin the design of a house by sketching an exterior 
elevation view, we will begin the design of our simple computer with a 
“big picture” of its control console. In the “old days” (which was actually 
not so long ago), computers had lots of lights and switches on their 
front panels. The Digital Equipment Corporation PDP-8 (the first 
commercial “minicomputer”), illustrated in Figure 2-3, was a good 
example of such a computer.  The Intellect 8 microcomputer system 
(one of the first commercially-available microprocessor development 
systems) from Intel, based on the 8008 microprocessor, was another 
example.  Frankly, these ground-breaking computer systems were a lot 
more interesting (and fun) to watch “crunch numbers” than today’s 
computers…and a lot less irritating than the “this application has 
performed an illegal function and will be shut down” message we’ve all 
become accustomed to today.   
 
 
 
 
 
 
 
 
 
 
 
Our computer’s console, then, will have some lights that indicate the 
result of the most recent computation along with some switches that 
will be used to input data. A “START” pushbutton will be included to 
get the machine into a known initial state (in preparation for “running” a 
program), and a “CLOCK” pushbutton will be included to facilitate 
debugging (as we manually clock the machine from state-to-state).  An 
“artist’s conception” of our simple computer’s console is shown in 
Figure 2-4. 
 
 

socially 
redeeming 

old days 

minicomputer

crunch numbers 

Figure 2-3   World’s first “desktop” 
minicomputer, the PDP-8. 

LED Output Port

Switch Input Port

Start Clock

Figure 2-4  Our simple 
computer console. 
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Returning to the “house analogy” for a moment, the floor plan of a 
computer is basically its instruction set and programming model.  The 
instruction set is simply the list of operations that the computer 
performs.  There are five fundamental groups (or categories) of 
machine instructions: data transfer, arithmetic, logical (or “Boolean”), 
transfer of control, and machine control.  (Some computers include a 
sixth group dedicated to specific applications, e.g., multimedia 
extensions or graphics support.)  The addressing modes that 
instructions can use to access operands in memory are also a key 
aspect of a computer’s instruction set.  
 
The programming model of a computer is the software writer’s view of 
the machine. Basically, it tells what resources are available for the 
programmer’s use, in particular, the machine’s registers.  A register is 
simply a “memory location” within the processor that can be used to 
store intermediate results and/or as an operand (or as a pointer to an 
operand) used in a computation.  
 
As alluded to above, the programming model and instruction set of our 
computer will be relatively simple.  Initially there will only be one 
register, called the accumulator (or “A” register), so-named because it 
is the register in which the result of computations accumulate.  Our 
computer will also include several condition code bits: a zero flag (ZF), 
negative flag (NF), overflow flag (VF), and carry/borrow flag (CF).  
Before we complete this chapter, we will add a stack pointer register 
and discuss the role of index registers. 
 
The instructions executed by our simple computer will be of the fixed-
length variety (i.e., all 8-bits in size, hence its designation as an “8-bit” 
computer) that consist of two fixed-length fields.  The upper 3-bits of 
each instruction will indicate the operation to be performed, and is 
therefore called the operation code field (or “opcode” field).  The lower 
5-bits will indicate the memory address in which the operand is located 
(or, a result is to be stored).  The 5-bit memory address dictates a 
maximum memory size of 25 = 32 locations.  For those who have 
become jaded by multi-megabyte programs that appear to do trivial 
things, this may not seem like much memory! Fortunately, though, it 
will be enough to illustrate basic principles of instruction execution, 
despite being too small to contain a “practical” (i.e., useful and socially 
redeeming) program. 
 
In addition to fixed-field decoding, another simplification in our initial 
design will be a single addressing mode.  An addressing mode is the 
mechanism (or “function”) used to generate what is often called the 
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effective address of an operand, i.e., the actual address in memory 
where an operand is stored.  The addressing mode our machine will 
support might aptly be called “absolute” addressing, based on the fact 
that this 5-bit field directly indicates the effective address in memory 
where the operand is stored.  It is important to note at this point that 
not all manufacturers of microprocessors agree on the names ascribed 
to certain addressing modes.  What we have just referred to as an 
“absolute” addressing mode is typically called “extended” (by Motorola) 
or “direct” (by Intel). 
 
One other bit of terminology worth mentioning before delving into the 
instruction set concerns the number of addresses a given instruction 
(or more generally, a machine) can accommodate.  Our simple 
computer here could be described as a “two address” machine, which 
means that two different locations (at two different addresses) are used 
in a given operation, e.g., ADD.  In our computer, one location will be 
the “A” register (the accumulator), and the other will be contained in 
memory.  Note that a “side-effect” of such an arrangement is that the 
result of the computation will overwrite one of the operands, here the 
value in the “A” register (the operand in memory will be unaffected).  
As one might guess, there are a lot of variations in instruction format 
and addressing capability, ranging from single-address instructions to 
three-address (or more) instructions.  
  

2.3  Simple Computer Floor Plan 
 
We are now ready to introduce the “floor plan” (instruction set) of our 
simple computer.  Note that we will initially define six of the eight 
possible instructions afforded by our 3-bit opcode field.  We will save 
the last two opcode bit patterns to define some extensions to our 
instruction set later in this chapter.  Our simple computer’s instruction 
set is given in Table 2-1. 
 
Table 2-1  Simple computer instruction set. 

Opcode Mnemonic Function Performed 
0  0  0 LDA  addr Load A with contents of location addr 
0  0  1 STA  addr Store contents of A at location addr 
0  1  0 ADD  addr Add contents of addr to contents of A 
0  1  1 SUB  addr Subtract contents of addr from contents of A 
1  0  0 AND  addr AND contents of addr with contents of A 
1  0  1 HLT Halt – Stop, discontinue execution 

 

effective 
address 

absolute 
addressing 
mode 

two-address 
machine 



Microcontroller-Based Digital System Design  Chapter 2 ­ Page 8 

Preliminary Edition  ©2001 by D. G. Meyer 

The first two instructions, “LDA” and “STA”, are examples of data 
transfer group instructions.  As their assembly mnemonics imply, these 
instructions transfer data between the “A” register (accumulator) and 
memory.  For the “load A” (LDA) instruction, the source of the data is 
memory location addr, and the destination is the “A” register. For the 
“store A” (STA) instruction, it is just the opposite: here, addr indicates 
the location in memory where the value in A (also referred to as the 
contents of A) is to be stored.   As it turns out, “load” and “store” 
instructions are the “most popular” instructions in any machine’s 
instruction set, often comprising as much as 30% of the compiled code 
for typical applications. 
 
A “shorthand” notation we will use throughout the remainder of this text 
is the use of parenthesis to indicate “the contents of” a particular 
register or memory location.  This allows us to describe what an LDA 
instruction does as simply “(A) ← (addr)” and what an STA does as 
“(addr) ← (A)”.  An important point to note in both cases is that the 
source of the data transfer – i.e., (addr) for LDA and (A) for STA – 
does not change  (or, is unaffected) as a result of the instruction 
execution. 
 
Continuing down the list of available instructions, we next find two 
arithmetic group instructions: ADD and SUB.  The ADD instruction 
performs the operation (A) ← (A) + (addr) using radix (or two’s 
complement) arithmetic, and sets the condition code bits based on the 
result obtained. (Details on radix arithmetic and condition codes can be 
found in the review material presented in Chapter 1.)  The SUB 
instruction performs the operation (A) ← (A) – (addr) and sets the 
condition code bits accordingly.  Recall that there is an important 
difference regarding how the carry flag (CF) is affected in an addition 
versus a subtraction.  Following an ADD, the carry flag is the carry out 
of the most significant (or sign) position; whereas following a SUB, the 
carry flag is the complement of the carry out of the sign position (based 
on its interpretation as a borrow).  Because of this difference between 
ADD and SUB, the CF bit is sometimes referred to as the 
“carry/borrow” flag – which is the way we will formally refer to it.  If 
what we just described seems a bit “fuzzy”, now would be a good time 
to review the material in Chapter 1. 
 
Moving down the chart, we find that our next instruction, AND, is from 
the logical (or “Boolean”) group. Because logical group instructions 
perform bit-wise operations, they are sometimes referred to as bit 
manipulation instructions. At minimum, most microprocessors worth 
their silicon generally have at least three Boolean instructions: AND, 
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OR, and NOT (many also include XOR).  Our simple computer, 
however, will just implement the first of these operations, which can be 
described using the notation (A) ← (A) ∩ (addr), where the “∩” symbol 
is used to denote the bit-wise logical AND of the two operands to 
produce the corresponding result bits. 
 
No instruction set would be complete without a way to stop the 
machine.  Our sixth (and final, for now) instruction, HLT (for “halt”) 
serves this purpose.  The HLT instruction is an example of a machine 
control group instruction.  Execution of the HLT instruction will “freeze” 
the machine at its current point in the program being executed, and 
prevent the machine from fetching or executing any additional 
instructions until it is restarted (by pressing the START pushbutton 
described previously). 
 
2.4  Simple Computer Programming Example 
 
To better understand how our simple computer operates, we will “walk 
through” the execution of a short program.  This program will exercise 
each instruction in our simple computer’s repertoire.  An important 
point to consider before proceeding is that it would be rather difficult to 
design a “simple” computer that directly interprets the instruction 
mnemonics (i.e., LDA, STA, etc.) we have defined.  Rather, it is much 
easier to design a machine that directly interprets bit patterns (0’s and 
1’s) that represent these instructions.  This means that, before we can 
place our program in memory, we must translate the instruction 
mnemonics into bit patterns (“code”) the machine understands, called 
machine code.  This translation process is called assembly, since 
machine code is created directly (“assembled”) based on instruction 
mnemonics.  As one might guess, instruction mnemonics are typically 
referred to as assembly level mnemonics, or simply assembly 
language.  A software program that translates assembly level 
mnemonics into machine code is called an assembler.  If one is 
unfortunate enough to perform the translation by hand, the process is 
called hand assembly. 
 
Fortunately, most computer programming is done at a higher level of 
abstraction, using high-level languages such as “C”.  Here, a compiler 
program is used to translate code written in high-level language into 
assembly code. An assembler program is then used to translate the 
compiler’s output into machine code for the target processor.  We will 
find, though, that a firm grasp of assembly language programming 
techniques is essential for effectively utilizing the resources integrated 
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into a modern microcontroller. Once we master assembly-level 
programming, we’ll consider how to program a microcontroller using 
“C”.  But to get there, we need to start at the “basic bit” level – so let’s 
return to the illustrative simple computer program in Table 2-2. 
 
Table 2-2   Programming example. 

Addr Instruction Comments 
00000 LDA 01011 Load A with contents of location 01011 
00001 ADD 01100 Add contents of location 01100 to A 
00010 STA 01101 Store contents of A at location 01101 
00011 LDA 01011 Load A with contents of location 01011 
00100 AND 01100 AND contents of 01100 with contents of A 
00101 STA 01110 Store contents of A at location 01110 
00110 LDA 01011 Load A with contents of location 01011 
00111 SUB 01100 Subtract contents of location 01100 from A 
01000 STA 01111 Store contents of A at location 01111 
01001 HLT Stop – discontinue execution 

 
One of the first things we need to know is where in memory our 
program needs to be located.  The logical thing to do is place our 
program at the beginning of memory, i.e., starting at location 000002.  
We can then design the circuitry that, after the START pushbutton is 
pressed, begins fetching instructions from memory at location 000002. 
Recalling that instructions are of fixed length (8 bits) and that memory 
locations are 8-bits wide, we realize that consecutive instructions will 
occupy consecutive memory locations.  We can then imagine a 
“pointer” that tells us which instruction is to be executed, and that gets 
incremented after each instruction is fetched.  Such a pointer is 
typically referred to as either an instruction pointer or a program 
counter. 

 
A “snapshot” of what our short program looks like in memory prior to 
execution is provided in Figure 2-5 (just the “first half” of memory, from 
locations 000002 to 011112 is shown). The lightly shaded part 
corresponds to the assembled machine code. Referring back to Table 
2-2, note that the first instruction (at address 000002) is load 
accumulator (LDA) with the contents of memory location 010112.  
Since the 3-bit opcode for LDA is “000”, this instruction is encoded as 
the bit pattern “000  01011” in memory. Stated another way, the 
instruction “LDA  01011” has been assembled into the machine code 
“000  01011”.  We could go through a similar “hand assembly” process 
for the rest of the instructions that comprise the program, up to and 

instruction pointer 
program counter 
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including the HLT instruction at location 010012 (note that the address 
field of this instruction is not used, and is shown here to be “00000”). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The operands used by each arithmetic (ADD, SUB) or logical (AND) 
operation will be stored at locations 010112 and 011002 (in the darker 
shaded area of Figure 2-5); note that we have initialized these two 
locations to arbitrarily chosen values.  The results of each operation 
(ADD, AND, SUB) will be stored in three consecutive locations, starting 
at location 011012.  Note that our computer’s memory will contain a mix 
of instructions and data (operands and results).   
 
 
 
 
 
 

 
 
Given that our computer only understands 0’s and 1’s rather than the 
more human-friendly assembly mnemonics, the question that begs is: 
“How is our computer able to distinguish between instructions and 
data?”  The hopefully obvious answer is: “It can’t!” Rather, it has to be 

 
No Stopping It Now 
 
What happens if the HLT instruction is omitted?  Perhaps even worse than 
“not stopping”, the computer will start executing data, which, as one might 
imagine, is not a pretty sight (or, stated less formally, causes “bits to fly all 
over the place”) and, at best, leads to very strange program behavior.  Any 
“honest” programmer (not to be confused with an honest politician), 
however, will confess that he/she has inadvertently done this “at least 
once…” 
 

executing data 

honest 
programmer 

Location Contents
00000 00001011
00001 01001100
00010 00101101
00011 00001011
00100 10001100
00101 00101110
00110 00001011
00111 01101100
01000 00101111
01001 10100000
01010
01011 10101010
01100 01010101
01101
01110
01111

Figure 2-5  Memory snapshot 
prior to program execution. 
 

 
Beam in the Bits, Scotty! 

 
One important detail we will ignore for 
the moment is how these bit patterns 
get loaded into memory.  In a later 
chapter, we’ll discuss how to write 
what’s called a “loader” program, 
which – as its name implies – does 
just that.  For now, assume Scotty (of
Star Trek fame, for those of you much 
younger than the author) has used a 
molecular beam transporter to “beam 
the bits” into memory. 
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told which locations contain instructions and which contain data.  The 
convention we will use to make this distinction is that our programs will 
always start at location 000002 and continue until they reach a “halt” 
(HLT) instruction; any locations following the HLT instruction may be 
used for data (operands or results). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
We are now ready to step through the execution of this program.  
Referring back to Table 2-2, we see that the purpose of the first three 
instructions is to add the two operands (at locations 010112 and 
011002, respectively) and store the result at location 011012.  As 
illustrated in Figure 2-6, the result obtained will be 111111112 (recall 
that this is the 8-bit representation for “–1” in two’s complement 
notation).  Also, the negative flag (NF) will be set to “1”, the carry flag 
(CF) will be cleared to “0”, the overflow flag (VF) will be cleared to “0”, 
and the zero flag (ZF) will be cleared to “0”. 
 
 
 
 

 
 
 
 

 
Self-Perpetrating Programs 
 
It is entirely possible to contrive a program that writes data into locations 
that contain instructions yet to be executed.  The name “self-modifying 
code” has been used to describe such a creation.  A self-modifying 
program, as one might guess, could prove to be excruciatingly difficult to 
debug.  In a word, don’t try this at home!  (And, don’t try to convince your 
boss that you’ve invented a new way to write “interesting” programs!). 
 

self-modifying 
code 

Location Contents
00000 00001011
00001 01001100
00010 00101101
00011 00001011
00100 10001100
00101 00101110
00110 00001011
00111 01101100
01000 00101111
01001 10100000
01010
01011 10101010
01100 01010101
01101 11111111
01110
01111

Add:
10101010
+01010101
11111111

Add

CF = 0
NF = 1
VF = 0
ZF = 0

Figure 2-6  Result after executing the first three instructions. 
 



Microcontroller-Based Digital System Design  Chapter 2 ­ Page 13 

Preliminary Edition  ©2001 by D. G. Meyer 

Again referring back to Table 2-2, we see that the purpose of the next 
three instructions is to logically AND the two operands and store the 
result at location 011102. Note that, for the AND operation, the carry 
flag (CF) and overflow flag (VF) are meaningless, and therefore should 
be unaffected by the execution of the AND instruction.  The result 
obtained, however, may be negative (in a two’s complement sense) or 
zero, so the negative flag (NF) and zero flag (ZF) should be affected.  
A snapshot of memory following execution of the three AND-related 
instructions is provided in Figure 2-7.  Note that, since the result 
obtained is 000000002, the zero flag is set to “1”. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The purpose of the next group of three instructions is to take the 
difference of the two operands at locations 010112 and 011002. 
Specifically, we are going to subtract (SUB) the operand at location 
011002 from the operand at location 010112, and place the result at 
location 011112. Recall from Chapter 1 that a radix subtraction is 
realized by forming the two’s complement of the subtrahend (here, the 
operand at location 011002) and adding it to the minuend (the operand 
at location 010112).  Further, the easiest way to generate the radix 
complement of a signed number is to add one to its diminished radix 
complement (or ones’ complement). Figure 2-8 shows what happens. 
Note that, while the result 010101012 will be stored at location 011112, 
it will be invalid because overflow has occurred (denoted by VF set to 
“1”). Note also that CF (the carry/borrow flag) is cleared to “0” due to its 
interpretation here as a borrow flag – recall that, following a subtract 
operation, CF is set to the complement of the carry out of the sign 
position (which in this case was “1”).  A borrow flag of “0” following a 

Location Contents
00000 00001011
00001 01001100
00010 00101101
00011 00001011
00100 10001100
00101 00101110
00110 00001011
00111 01101100
01000 00101111
01001 10100000
01010
01011 10101010
01100 01010101
01101 11111111
01110 00000000
01111

AND:
10101010

∩∩01010101
00000000

AND

CF = <unaffected>
NF = 0
VF = <unaffected>
ZF = 1

Figure 2-7  Result after executing the “middle” three instructions.  
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subtract operation essentially means that “no borrow is propagated 
forward.” 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Before we leave this last block of code, yet another question that 
comes to mind is: “How should error conditions like overflow be 
handled?”  As one might guess, we will need some “new” instructions 
that allow us to test the state of the various condition codes (here, VF) 
and transfer control to a different part of the program (typically called 
an “exception handler”) if an error has occurred. Before we finish this 
chapter, we will learn how to implement such “conditional transfer of 
control” instructions. 
 

 
Bumbling Borrows 
 
Perhaps the single-most issue that causes students consternation is that of 
the carry/borrow flag.  The interpretation of a “carry propagated forward” 
following an addition is no problem; but when it gets to subtraction, all “bits 
are off” (pardon the very bad pun). Here, the proper interpretation is as a 
“borrow propagated forward” to the next-most significant group of digits in 
an extended precision subtraction.  The borrow flag (still called CF), when 
set, is basically telling that next group of digits to “reduce its result by one” 
because the previous stage “has borrowed from it.”  The best real-world 
analogy that comes to mind is that of a statement from your friendly, local 
banking institution listing the service charge they have extracted from your 
account for the privilege of serving you.  The point is: since they have 
already taken the money, you need to adjust your idea of how much money 
you have left! 

Location Contents
00000 00001011
00001 01001100
00010 00101101
00011 00001011
00100 10001100
00101 00101110
00110 00001011
00111 01101100
01000 00101111
01001 10100000
01010
01011 10101010
01100 01010101
01101 11111111
01110 00000000
01111 01010101

Sub:
10101010

-01010101

Sub

10101010
10101010

+       1
1)01010101

Overflow!

CF = 0
NF = 0
VF = 1
ZF = 0

Figure 2-8   Result after executing the last group of three instructions. 
threethreenstructions.  
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The final instruction in our short program, HLT, simply tells our 
computer to “stop executing”.  Once the program has stopped, we 
could presumably look at the contents of each location to determine 
the results of the program execution.  What we should find is the 
memory image depicted in Figure 2-8 (note that memory location 
010102 was unused by our example program and may contain a 
“random” value). 
 
2.5  Simple Computer Block Diagram 
 
Now that we know how our simple computer works, we are ready to 
consider the functional blocks necessary to make it work.  Basically we 
want to build what appears to be a “big state machine” that performs 
the calculations just done by hand.  At a fundamental level, there are 
two basic steps associated with the processing of each instruction.  
The first step is to read the instruction from memory, called an 
instruction fetch cycle. The second step is to extract the opcode and 
address fields from the instruction just fetched and perform the 
operation specified by the opcode on the data located at the specified 
address; this step is referred to as an instruction execute cycle. 
 
What are the basic functional blocks, then, that are necessary to 
implement the simple computer described here?  Clearly, a memory 
unit – for storing instructions and data – is one of the major functional 
blocks necessary.  This memory unit needs to be capable of reading 
the contents of a specified location (indicated on its address lines) as 
well as writing a new value to a specified location.   
 
Another major functional block needed is one that will keep track of 
which instruction is next in line to be executed.  In our simple 
computer, the instructions are stored in consecutive memory locations, 
starting at location 000002.  What is needed is a pointer that keeps 
track of which instruction is next.  Because this block is nothing more 
than a binary counter, we will call it the program counter (PC). 
 
Once it is fetched from memory, a place is needed to temporarily 
“stage” an instruction while the opcode field is decoded and the 
address field is extracted.  We can think of this block as a place to hold 
the instruction just fetched while it is being “digested”.  While more 
creative, biologically inspired names for it are certainly possible, we will 
simply call this functional block the instruction register (IR). 

instruction  
fetch cycle 

instruction  
execute cycle  

memory unit 

program counter 
PC 

instruction register 
IR 



Microcontroller-Based Digital System Design  Chapter 2 ­ Page 16 

Preliminary Edition  ©2001 by D. G. Meyer 

 
 
Next we realize the need for a functional block that performs the 
arithmetic and logical operations we have defined in the simple 
computer’s instruction set.  Not surprisingly, this block is usually called 
an arithmetic logic unit, or simply ALU.  Note that the accumulator (“A” 
register) and condition code bits (CF, NF, VF, ZF) are part of the ALU. 
 
Finally, we realize that our simple computer needs a “manager” – a 
functional block that orchestrates the activities of all the other 
functional blocks delineated above.  This “manager” is responsible for 
indicating whether a fetch or an execute cycle is to be performed and, 
once an instruction is fetched, for decoding the opcode field of that 
instruction and telling the other blocks in the system what to do in order 
to execute it.  Because our simple computer’s “manager” controls the 
sequencing of events that, taken together, constitute the completion of 
a machine instruction, we often refer to the state machine part of the 
manager’s personality as a micro-sequencer (similar to, perhaps, but 
not to be confused with a “micro-manager”).  And because decoding 
the opcode field of the instruction is an essential part of the sequencing 
process, we award our simple computer’s manager the grand and 
glorious name: instruction decoder and micro-sequencer (IDMS).  This 
more extravagant sounding name helps prevent images of “kicking bits 
around” that might be associated with a “manager” (think baseball). 
 

arithmetic logic unit 
ALU 

micro-sequencer 

IDMS 

manager 

Figure 2-9  Simple computer core block diagram.  
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Returning to the “house” analogy for a moment, what we have just 
done is “define the rooms” of the “structure” (or system) we wish to 
build.  What we have not yet done, however, is interconnect the 
functional blocks into a working “floor plan”.  In order to do this, we 
need an understanding of the “traffic patterns” (here, of address, data, 
and control information) that need to flow among the various functional 
blocks. 
 
Starting with the memory unit, we note that a series of address lines 
tell which location is being accessed; the collection of address lines is 
referred to as the address bus.  (Recall that a bus is a set of signal 
lines that have a common purpose.) At the location in memory 
accessed, data can be read (output) or written (input); the memory’s 
data lines (and the associated data bus) must therefore be bi-
directional.  Further, control signals need to be supplied to the memory 
unit that tell whether or not it is enabled to respond (or selected), and, 
if enabled to respond, whether it should perform a read operation or a 
write operation. 
 
Next, we realize that the program counter (PC) will supply the 
instruction address to memory during a fetch cycle, and that the 
instruction register (IR) will be used to temporarily stage the instruction 
after it has been read from memory. Further, on an execute cycle, the 
IR will supply the operand address to memory, and the destination (or 
source) of the data in this transaction is the “A” register of the ALU.  
Thus, there are two potential sources of address information – the PC 
and the IR – on the address bus.  Since only one device can “talk” on 
the bus at a given instant in time, we will need to provide each of these 
functional blocks with three-state output capability – and it will be our 
“manager’s” job to keep them from talking at the same time! 
 
Further, there are two potential destinations of data read from memory.  
On a fetch cycle, an instruction destined for the IR is read from 
memory. On an execute cycle, an operand destined for the ALU is 
read from memory (alternately, data in the ALU is destined for memory 
if an STA instruction is being executed).  Again, we note the need for 
three-state buffers in all the functional blocks involved with driving the 
data bus. 
 
Putting this all together, the “core” of our simple computer is depicted 
in Figure 2-9.  Left on their own, however, these functional blocks are 
incapable of doing anything “intelligent”, let alone successfully 
executing instructions.  Hence the need for a “manager” – the 
instruction decoder and micro-sequencer – to tell each block what to 

address bus 

bi-directional 

three-state output 
capability 
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do when.  As such, the IDMS can aptly be thought of as the “heart” of 
the machine.  The simple computer augmented with an IDMS is shown 
in Figure 2-10. 
 

 
 
 
We now have a complete “floor plan” for our “house”, that we have 
specified in a top-down fashion. Before actually building it, though, let’s 
make sure we understand how the “rooms” work together. 
 
2.6  Instruction Execution Tracing 
 
To get a better idea of how the various functional blocks of our simple 
computer work in concert to process instructions, we will return to our 
short program of Table 2-2 and use a technique called instruction 
tracing to help us visualize the flow of information.  On a cycle-by-cycle 
basis, we will examine the address and data paths as well as the bit 
patterns in each register for the first three instructions of this short 
program. Recall that we used the term “micro-sequencer” because 
there is a sequence of events associated with processing an 
instruction: here, a fetch cycle followed by an execute cycle.   
 

instruction 
tracing 

Figure 2-10  Complete simple computer block diagram.  
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The instruction trace worksheet in Figure 2-11 sets the stage for this 
exercise, which shows the initial state of the machine after START is 
pressed.  Note that there are several things we will keep track of as our 
machine executes the program.  In particular, we will be monitoring 
what happens to the PC, IR, and “A” register as well as the contents of 
memory. We will also practice naming each cycle as it occurs. 

 
 
 
Recall that pressing the START pushbutton places the machine in a 
known initial state: the PC is reset to “00000” and the state counter (in 
the IDMS) is set to “fetch”.  Note that the initial state of the IR and ALU 
may be “random” and that memory is initialized to the values indicated 
(although at this point we “don’t care” what is in the unused location 
010102 or the locations where the results will be stored, 011012–
011112).  
 
During the first fetch cycle, shown in Figure 2-12, the instruction at 
memory location 000002 is read and placed in the IR. As the IR is 
being loaded with the instruction, the PC is incremented by one (i.e., 
once the fetch of the current cycle is complete, the PC is pointing to 
the next instruction to execute).  Note that the values in each register 
are those obtained after the “fetch LDA” cycle is complete.   
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Instruction Decoder 
and Micro-Sequencer

?
A register

Address

Data

Start Clock

Cycle: ________

Location Contents
00000 00001011
00001 01001100
00010 00101101
00011 00001011
00100 10001100
00101 00101110
00110 00001011
00111 01101100
01000 00101111
01001 10100000
01010
01011 10101010
01100 01010101
01101
01110
01111

CF NF VF ZF

?

00000

START

?  ?  ?  ?

Figure 2-11  Instruction trace worksheet for machine state after START 
is pressed, prior to first fetch cycle.  
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?
A register

Address

Data

Start Clock

Cycle: ________

Location Contents
00000 00001011
00001 01001100
00010 00101101
00011 00001011
00100 10001100
00101 00101110
00110 00001011
00111 01101100
01000 00101111
01001 10100000
01010
01011 10101010
01100 01010101
01101
01110
01111

CF NF VF ZF

000  01011

00000 →→ 00001

Fetch LDA

?  ?  ?  ?

Figure 2-12    Instruction trace worksheet for first fetch cycle.  
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Data

Start Clock

Cycle: ________

Location Contents
00000 00001011
00001 01001100
00010 00101101
00011 00001011
00100 10001100
00101 00101110
00110 00001011
00111 01101100
01000 00101111
01001 10100000
01010
01011 10101010
01100 01010101
01101
01110
01111

CF NF VF ZF

000  01011

00001

Exec LDA

10101010

?  1  ?  0

Figure 2-13   Instruction trace worksheet for first execute cycle.  
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Cycle: ________

Location Contents
00000 00001011
00001 01001100
00010 00101101
00011 00001011
00100 10001100
00101 00101110
00110 00001011
00111 01101100
01000 00101111
01001 10100000
01010
01011 10101010
01100 01010101
01101
01110
01111

CF NF VF ZF

Fetch ADD

010  01100

10101010

00001 →→ 00010

Figure 2-14  Instruction trace worksheet for second fetch cycle.  
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Cycle: ________

Location Contents
00000 00001011
00001 01001100
00010 00101101
00011 00001011
00100 10001100
00101 00101110
00110 00001011
00111 01101100
01000 00101111
01001 10100000
01010
01011 10101010
01100 01010101
01101
01110
01111

CF NF VF ZF

00010

Exec ADD

0  1  0  0

010  01100

11111111

Figure 2-15   Instruction trace worksheet for second execute cycle.  
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Location Contents
00000 00001011
00001 01001100
00010 00101101
00011 00001011
00100 10001100
00101 00101110
00110 00001011
00111 01101100
01000 00101111
01001 10100000
01010
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CF NF VF ZF

Fetch STA
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11111111

00010 →→ 00011

Figure 2-16  Instruction trace worksheet for third fetch cycle.  
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Location Contents 
00000 00001011 
00001 01001100 
00010 00101101 
00011 00001011 
00100 10001100 
00101 00101110 
00110 00001011 
00111 01101100 
01000 00101111 
01001 10100000 
01010  
01011 10101010 
01100 01010101 
01101 11111111 
01110  
01111  

 

CF NF VF ZF

00011

Exec STA

001  01101

11111111

Figure 2-17  Instruction trace worksheet for third execute cycle.  
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During the first execute cycle, shown in Figure 2-13, the “LDA  01011” 
instruction in the IR is executed.  When this cycle is complete, the “A” 
register contains the contents of memory location 010112, i.e., the 
value 101010102.  Note also that the NF is set to “1” and ZF is cleared 
to “0”. The “execute LDA” cycle does not, however, affect the contents 
of any memory location, nor does it change the contents of IR or PC 
(condition code bits CF and VF are also unaffected). 
 
We are now ready for the second fetch cycle (“fetch ADD”), shown in 
Figure 2-14.  Here, the instruction at memory location 000012 is 
fetched and placed into the IR, and as that occurs, the value in the PC 
is incremented by one. The results of executing the ADD instruction 
are shown in Figure 2-15.  Here, the contents of memory location 
011002 (i.e., the value 010101012) are added to the value previously 
loaded into the “A” register. A result of 111111112 is obtained, along 
with condition code bits CF = “0”, NF = “1”, ZF = “0”, and VF = “0”. 
 
This brings us to the third fetch cycle (“fetch STA”) of our tracing 
example, shown in Figure 2-16.  Here, the instruction at memory 
location 000102 is fetched and placed into the IR, and as that occurs, 
the value in the PC is incremented by one.  The results of executing 
the STA instruction are shown in Figure 2-17.  Here, the contents of 
the “A” register are stored at the memory location indicated in the 
instruction’s address field: 011012. When the “execute STA” cycle is 
complete, then, memory location 011012 contains the value 
111111112.  Note, however, that the “A” register as well as the 
condition code bits are unchanged. 
 
Several observations are in order.  First, all of our simple computer’s 
fetch cycles are identical (i.e., they are independent of the instruction 
opcode). In fact, this has to be the case, since our machine basically 
knows nothing about the instruction being fetched until it is placed in 
the IR.  Second, it may appear “strange” that our simple computer is 
incrementing the value in the PC on the same cycle that it is being 
used as a pointer to memory.  Another way to say this is that the 
increment of PC is overlapped with the fetch of the instruction. The 
reason this can happen will become apparent when we start 
implementing each functional block in the next section.  For now, 
though, suffice it to say that because each register will be implemented 
using edge-triggered flip-flops, the same clock edge that causes the IR 
to load the instruction being fetched also causes the PC to increment.  
The IR, though, will be loaded with the value on the data bus prior to 
the clock edge, while the value output by the PC (driving the address 

overlapped 



Microcontroller-Based Digital System Design  Chapter 2 ­ Page 24 

Preliminary Edition  ©2001 by D. G. Meyer 

bus) will change after the clock edge – thus facilitating the desired 
overlap.  This is an important point that we will revisit several times 
before the end of this chapter. 
 
One final suggestion before we move to the “bottom-up” phase of our 
simple computer design process.  Practice the “instruction tracing” 
process outlined in this section on other code segments to become 
more familiar with “what happens when” as each instruction is fetched 
and executed.  As we say in the education industry, this is a “good test 
question” (GTQ)! 
 
2.7  Bottom-Up Implementation of Simple Computer 
 
Armed with a thorough understanding of how our simple computer 
works, we are now ready to start building it from the bottom-up.  In 
practice, the preferred approach is to implement and test each block as 
it is designed.  Then, when we put the various functional blocks 
together, we have a much better chance of the entire system working 
“the first time”. 
 
2.7.1  Memory 
 
The block we will start with is memory.  Although most of the time we 
would simply choose a “memory chip” of appropriate size and speed, a 
knowledge of “what’s under the hood” is essential to understanding 
how the various functional blocks of our simple computer work 
together. 
 
First, some terminology.  Normally, we think of memory as an entity 
that, from the computer’s perspective, can be “read” or “written”.  In 
“read” mode, the memory unit simply outputs, on its data bus lines, the 
contents of the location indicated on its address bus inputs.  In “write” 
mode, the memory unit stores the bit pattern present on its data bus 
lines at the location indicated on its address bus inputs.  The correct 
acronym to describe such a “read/write memory” is RWM.  Despite 
valiant efforts, the name RWM never caught on.  Instead, it is more 
popular to refer to these devices as “random access memories” or 
RAMs – so-named because any (random) location can be accessed in 
the same amount of time (not because something random is read after 
a given value is written). 
 
The specific type of RAM we wish to concentrate on here is static 
RAM, or SRAM.  This is in contrast to dynamic RAM (DRAM), which 

good test 
question 

static RAM (SRAM) 
dynamic ram (DRAM)
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requires constant refreshing to retain information. (In DRAM, data is 
stored as a charge on a capacitor – since the charge dissipates over 
time, it must be periodically refreshed.)  SRAM consists of a collection 
of D latches that will retain data (without the need for refreshing) as 
long as power is applied.  Once power is turned off, however, all 
information previously stored in the SRAM is lost (this is referred to as 
a volatile memory). 
 
In addition to address and data bus connections (where, for our simple 
computer, the address bus is 5-bits wide and the data bus is 8-bits 
wide), an SRAM needs three control signals.  First, an SRAM needs an 
overall enable, typically called a “chip select” (CS) or “chip enable” 
(CE).  This enable signal is needed to differentiate among multiple 
SRAMs or, as we will see later in this chapter, between memory and 
input/output devices.  Second, an SRAM needs an output enable (OE) 
signal which, provided the SRAM is selected, turns on a series of 
three-state buffers that drive the data from the addressed location out 
onto the data bus.  Finally, an SRAM needs a write enable (WE) signal 
which, if the SRAM is selected, opens the row of latches associated 
with the addressed location and allows it to take on the value 
presented to the SRAM on the data bus. 
 
The basic building block of an SRAM is a memory cell, such as the one 
depicted in Figure 2-18, consisting of a D-latch and a three-state 
buffer. When the select (SEL) signal is asserted, the three-state buffer 
is enabled, placing the data stored in the latch on the cell’s OUT line.  
When both SEL and WR are asserted, the latch opens and accepts the 
data present on the IN line (by virtue of asserting the latch enable or 
“C” input of the D-latch).  When WR is negated, the latch closes and 
retains the new value. 
  
 
 
 
 
 
 
 
A complete SRAM can be constructed by combining an array of 
memory cells with a (large) decoder plus some additional logic.  The 
internal structure of an eight location, 4-bit wide (or, “8x4”) SRAM is 
shown in Figure 2-19.  Note that the number of address lines needed is 
log2(number_of_locations); here, log2(8) = 3.  Stated another way, the 
number of locations in an SRAM is 2n, where n is the number of 

volatile  
memory 

chip select 
(CS) 

output enable 
(OE) 

write enable 
(WE) 

Figure 2-18   SRAM cell (adapted from Wakerly).  



Microcontroller-Based Digital System Design  Chapter 2 ­ Page 26 

Preliminary Edition  ©2001 by D. G. Meyer 

address lines.  A “location” in the SRAM corresponds to a row of 
memory cells; to select a particular row, an n-to-2n binary decoder is 
needed. 
 

memory 
location 

Figure 2-19    SRAM internal structure and symbol (adapted from Wakerly).  
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In addition to a decoder, some logic is needed to “qualify” the actions  
associated with the OE and WE signals based on the assertion of CS 
(the overall chip enable).  When WE is asserted in conjunction with 
CS, the data present on the DIN pins (DIN3 – DIN0) is written at the 
location specified on the address lines (note that the operation 
completes upon negation of the WE signal).  When OE is asserted in 
conjunction with CS, the data output by a given row is routed to the 
three-state buffers that drive the external data lines. 
 
Since the read and write operations are mutually exclusive, however, 
there is usually no need for separate data input and output lines.  
Instead, the data input and output lines are tied together and 
connected to the rest of the system using a bi-directional data bus.  
Such a configuration is shown in Figure 2-20.  Note that an additional 
buffer is used to receive the incoming data during a write operation, to 
reduce the load seen by the entity driving the bus. 
 
 
 
 
 
 
 
 
 
 
 
 

 
GigaBiga Dittos 
 
The prefixes K (kilo-), M (mega-), G (giga-), and T (tera-), when referring to 
memory sizes, mean 210 = 1024 (“about one thousand”), 220 = 1,048,576 
(“about one million”), 230 = 1,073,741,824 (“about one billion”), and 240 =  
1,099,511,627,776 (“about one trillion”), respectively.  This brings up a very 
important question:  Does this means the feared “Y2K bug” is yet to occur 
(in year 2048)?  An even more important question, though, might be:  
Instead of calling a billion bytes a “gigabyte”, wouldn’t a better name be 
“bigabyte” (as in Biga (short for “Bigger”) Bytes of Digital Wisdom, the 
subtitle for this text?  

kilo-, mega-, 
giga-, tera- 

bigabyte 

bi-directional 
data bus 

Figure 2-20   SRAM bi-directional data bus (adapted from Wakerly).  
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Before moving on, a few notes concerning memory timing are in order.  
Because an SRAM read operation is a purely combinational function, 
the order in which the address and control signals (CS and OE) are 
asserted is of no consequence.  As we will see in Chapter 5, though, 
each of these signals represents a critical timing path with respect to 
receiving valid data from memory on a read cycle: tAA is the address 
access (propagation delay) time, tCS is the chip select access time, and 
tOE is the output enable access time.  When interfacing an SRAM to a 
computer, all of these “read” paths need to be analyzed. 
 
Since a “D” latch is used to store each bit of data in an SRAM, the 
timing relationship between the information on the address and data 
buses as well as the requisite control signals (CS and WE) is more 
stringent than for a read cycle.  In particular, the address information 
needs to be stable, and the chip select (CS) needs to be asserted, for 
some time (tCW) before WE is asserted (opening the set of latches 
associated with the selected location).  Also, the information supplied 
to the SRAM on the data bus must be stable tSETUP prior to the 
negation of the WE signal, and tHOLD following the negation of the WE 
signal. (These setup and hold timing parameters will be given specific 
names in Chapter 5.)  The consequence of violating the data setup or 
hold timing specifications of an SRAM, or of not asserting the WE 
control signal for a sufficient period of time, is the possibility of 
metastable behavior.  All of these “write”-related timing parameters 
need to be analyzed when interfacing an SRAM to a computer. 
 
Returning to our simple computer, we note that by simply doubling the 
“width” of the SRAM depicted in Figure 2-19 (from 4-bits to 8-bits) and 
quadrupling the “length” (from 8 locations to 32 locations), as well as 
adding the bi-directional data bus interface shown in Figure 2-20, we 
will have the exact structure of SRAM needed.  The only difference is 
the “unique” names we will use for our simple computer’s memory 
control signals: “MSL” for the memory select signal, “MOE” for the 
memory output enable, and “MWE” for the memory write enable. 
 
2.7.2  Program Counter 
 
The next functional block we wish to address is the program counter 
(PC). Basically, this is nothing more than a (5-bit) binary “up” counter 
with an asynchronous reset and three-state outputs.  The 
asynchronous reset (ARS) will be connected to the START 
pushbutton, so that the first instruction fetched is from location 000002.  
There are two other control signals needed: one that enables the PC to 
increment by one when a low-to-high (“positive edge”) of the system 
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CLOCK signal occurs, which we will call PCC; and one that turns on 
the three-state buffers that “gate” the value in the PC onto the address 
bus, which we will call POA.  Note that if PCC is negated while a 
positive CLOCK edge occurs, the program counter should simply 
retain its current state. 
 
To document the design of each functional block, we will present an 
ABEL (“Advanced Boolean Expression Language”) source file.  Those 
unfamiliar with the ABEL language and source file format should 
review the material presented on this subject in Chapter 1.  The ABEL 
source file for the program counter module is shown in Table 2-3. 
 
Table 2-3   Program counter module. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Examining the source file, we see that when PCC is negated, the next 
state is simply the current state.  When PCC is asserted, the equations 
for a synchronous 5-bit binary “up” counter determine the next state.  
Assertion of POA causes the three-state buffers associated with each 

ABEL 

PCC 
POA 

MODULE pc 
 
TITLE    'Program Counter Module' 
 
DECLARATIONS 
 
CLOCK pin; 
 
PC0..PC4 pin istype 'reg_D,buffer'; 
 
PCC pin; " PC count enable 
POA pin; " PC output on address bus tri-state enable 
ARS pin; " asynchronous reset (connected to START) 
 
EQUATIONS 
 
"       retain state   count up by 1 
PC0.d = !PCC&PC0.q # PCC&!PC0.q; 
PC1.d = !PCC&PC1.q # PCC&(PC1.q $ PC0.q); 
PC2.d = !PCC&PC2.q # PCC&(PC2.q $ (PC1.q&PC0.q)); 
PC3.d = !PCC&PC3.q # PCC&(PC3.q $ (PC2.q&PC1.q&PC0.q)); 
PC4.d = !PCC&PC4.q # PCC&(PC4.q $ (PC3.q&PC2.q&PC1.q&PC0.q)); 
 
[PC0..PC4].oe = POA; 
[PC0..PC4].ar = ARS; 
[PC0..PC4].clk = CLOCK; 
 
END 
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register bit to be enabled, and assertion of ARS causes each flip-flop 
comprising the PC to be asynchronously reset. 
 
2.7.3  Instruction Register 
 
The instruction register (IR) has a very simple mission: temporarily 
hold (“stage”) the instruction fetched from memory so that it can be 
“peeled apart” and executed.  As such, it is simply a series of D flip-
flops with two control signals.  The first control signal, which we will call 
IRL, enables the instruction register to be loaded with the instruction 
read from memory; the load should occur on the positive edge of the 
system CLOCK.  The second control signal, which we will call IRA, 
turns on the three-state buffers of the lower 5-bits of the IR, to “gate” 
the address field of the instruction onto the address bus. 
 
Table 2-4   Instruction register module. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

IRL 
 

IRA 
 

MODULE ir 
 
TITLE    'Instruction Register Module' 
 
DECLARATIONS 
 
CLOCK pin; 
 
" IR4..IR0 connected to address bus 
" IR7..IR5 supply opcode to IDMS 
 
IR0..IR7 pin istype 'reg_D,buffer'; 
DB0..DB7 pin; " data bus 
 
IRL pin; " IR load enable 
IRA pin; " IR output on address bus enable 
 
EQUATIONS 
 
"                 retain state          load           
[IR0..IR7].d = !IRL&[IR0..IR7].q # IRL&[DB0..DB7]; 
 
[IR0..IR7].clk = CLOCK; 
[IR0..IR4].oe = IRA; 
[IR5..IR7].oe = [1,1,1]; 
 
END 
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Several items in the IR module source file, shown in Table 2-4, 
deserve explanation.  First, when IRL is negated, note that the IR 
simply retains its current state.  Second, note that, unlike the PC, there 
is no need to asynchronously reset the IR when the START 
pushbutton is pressed, since its (random) initial value is of no 
consequence. Finally, note that IRA only controls the three-state 
outputs associated with the lower 5-bits of the IR, and that the three-
state buffers of the upper 3-bits (i.e., the opcode bits) are always 
enabled.  The reason the three-state buffers associated with the upper 
3-bits are always enabled is that they are connected directly to the 
IDMS module (i.e., they do not drive a bus).  Recall that the IDMS uses 
the opcode bits to determine which system control signals are asserted 
on the next cycle, when the instruction is executed.  
 
2.7.4  Arithmetic Logic Unit 
 
As mentioned earlier, the arithmetic logic unit (ALU) is so-named 
because it performs the arithmetic (add, subtract, etc.) and logical 
(“Boolean”) operations defined by the instruction set.  A “real” ALU 
performs a wide range of arithmetic and logical functions on operands 
stored in either registers or in memory.  Fortunately, our ALU is 
relatively simple: it performs four different functions on a single register 
(which we have called the accumulator, or “A” register) and sets four 
condition code bits (or flags) based on the result obtained.  As such, 
only four control signals are needed: an overall enable, which we will 
call ALE; two “function select” lines, which we will call ALX and ALY; 
and a three-state output enable for “gating” the value in the “A” register 
onto the data bus, which we will call AOE.  The data bus interface must 
be bi-directional, in order to input data supplied by memory on LDA, 
ADD, SUB, and AND operations; and to output data to memory for 
STA operations.  The condition code bits (CF, NF, VF, ZF) are output 
directly to the IDMS (we will see how these flags can be used to 
implement conditional transfer of control instructions later). 
 
The ABEL source file for the simple computer ALU is shown in Tables 
2-5, 2-6, and 2-7. Referring first to the declaration section (Tables 2-5 
and 2-6), we note that signals used for “internal” purposes are declared 
as nodes. These include the carry bits and the combinational ALU 
outputs.  In the declarations that continue in Table 2-6, the least 
significant bit carry-in (CIN) is defined as ALY.  Noting that ALY is “0” 
for ADD and “1” for SUB, we realize this is exactly what is needed to 
add one to the diminished radix complement of the subtrahend (to 
obtain the radix complement) when performing a SUB operation. 

arithmetic and 
logical operations 

ALE 
ALX 
ALY 

condition  
code bits 

nodes 



Microcontroller-Based Digital System Design  Chapter 2 ­ Page 32 

Preliminary Edition  ©2001 by D. G. Meyer 

Table 2-5   Declarations section of ALU module. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

MODULE alu 
 
TITLE 'ALU Module' 
 
"   8-bit, 4-function ALU with bi-directional data bus 
" 
"   ADD:  (Q7..Q0) <- (Q7..Q0) + DB7..DB0 
"   SUB:  (Q7..Q0) <- (Q7..Q0) - DB7..DB0 
"   LDA:  (Q7..Q0) <-  DB7..DB0 
"   AND:  (Q7..Q0) <- (Q7..Q0) & DB7..DB0 
"   OUT:  Value in Q7..Q0 output on data bus DB7..DB0 
" 
"   AOE  ALE  ALX  ALY   Function    CF  ZF  NF  VF 
"   ===  ===  ===  ===   ========    ==  ==  ==  == 
"    0    1    0    0    ADD         X   X   X   X 
"    0    1    0    1    SUB         X   X   X   X 
"    0    1    1    0    LDA         ·   X   X   · 
"    0    1    1    1    AND         ·   X   X   · 
"    1    0    d    d    OUT         ·   ·   ·   · 
"    0    0    d    d    <none>      ·   ·   ·   · 
" 
"    X -> flag affected   · -> flag not affected 
" 
"  Note: If ALE = 0, the state of all register bits should be retained 
 
DECLARATIONS 
 
CLOCK pin; 
 
" ALU control lines (enable & function select) 
ALE pin; " overall ALU enable 
AOE pin; " data bus tri-state output enable 
ALX pin; " function select 
ALY pin; 
 
" Carry equations (declare as internal nodes) 
CY0..CY7 node istype 'com'; 
 
" Combinational ALU outputs (D flip-flop inputs) 
" Used for flag generation (declare as internal nodes) 
ALU0..ALU7 node istype 'com'; 
 
" Bi-directional 8-bit data bus (also, accumulator register bits) 
DB0..DB7 pin istype 'reg_d,buffer';  
 
" Condition code register bits 
CF pin istype 'reg_d,buffer';  " carry flag 
VF pin istype 'reg_d,buffer';  " overflow flag 
NF pin istype 'reg_d,buffer';  " negative flag 
ZF pin istype 'reg_d,buffer';  " zero flag 
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Table 2-6  Continuation of ALU source file declarations section. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
Intermediate equations for the full adder outputs (used for the ADD and 
SUB) functions as well as the “logical” functions (here, LDA and AND) 
are shown in Table 2-6.  Note that the sole purpose of these 
intermediate equations is to simplify the task of writing the ALU 
equations.  One can think of these as simply “definitions” (since they 
are part of the declaration section) of “symbols” that will be used in 
“higher level” equations. 
 
The “real” equations start in Table 2-7.  First are the carry equations 
that implement a simple ripple adder/subtractor.  Next are the 
combinational equations that generate the ALU outputs based on the 
intermediate equations defined in Table 2-6.  The data bus equations 
appear next; note that if ALE is negated, the “A” register retains its 
current state.   

intermediate 
equations 

 
" Declaration of intermediate equations 
 
" Least significant bit carry-in (0 for ADD, 1 for SUB => ALY) 
CIN = ALY; 
 
" Intermediate equations for adder/subtractor SUM (S0..S7), 
" selected when ALX = 0  
 
S0 = DB0.q $ (DB0.pin $ ALY) $ CIN;  
S1 = DB1.q $ (DB1.pin $ ALY) $ CY0;  
S2 = DB2.q $ (DB2.pin $ ALY) $ CY1;  
S3 = DB3.q $ (DB3.pin $ ALY) $ CY2;  
S4 = DB4.q $ (DB4.pin $ ALY) $ CY3;  
S5 = DB5.q $ (DB5.pin $ ALY) $ CY4;  
S6 = DB6.q $ (DB6.pin $ ALY) $ CY5;  
S7 = DB7.q $ (DB7.pin $ ALY) $ CY6; 
  
" Intermediate equations for LOAD and AND,  
" selected when ALX = 1 
 
L0 = !ALY&DB0.pin # ALY&DB0.q&DB0.pin; 
L1 = !ALY&DB1.pin # ALY&DB1.q&DB1.pin; 
L2 = !ALY&DB2.pin # ALY&DB2.q&DB2.pin; 
L3 = !ALY&DB3.pin # ALY&DB3.q&DB3.pin; 
L4 = !ALY&DB4.pin # ALY&DB4.q&DB4.pin; 
L5 = !ALY&DB5.pin # ALY&DB5.q&DB5.pin; 
L6 = !ALY&DB6.pin # ALY&DB6.q&DB6.pin; 
L7 = !ALY&DB7.pin # ALY&DB7.q&DB7.pin; 
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Table 2-7   Equations section of ALU source file. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
EQUATIONS 
 
" Ripple carry equations (CY7 is COUT) 
CY0 = DB0.q&(ALY$DB0.pin) # DB0.q&CIN # (ALY$DB0.pin)&CIN; 
CY1 = DB1.q&(ALY$DB1.pin) # DB1.q&CY0 # (ALY$DB1.pin)&CY0; 
CY2 = DB2.q&(ALY$DB2.pin) # DB2.q&CY1 # (ALY$DB2.pin)&CY1; 
CY3 = DB3.q&(ALY$DB3.pin) # DB3.q&CY2 # (ALY$DB3.pin)&CY2; 
CY4 = DB4.q&(ALY$DB4.pin) # DB4.q&CY3 # (ALY$DB4.pin)&CY3; 
CY5 = DB5.q&(ALY$DB5.pin) # DB5.q&CY4 # (ALY$DB5.pin)&CY4; 
CY6 = DB6.q&(ALY$DB6.pin) # DB6.q&CY5 # (ALY$DB6.pin)&CY5; 
CY7 = DB7.q&(ALY$DB7.pin) # DB7.q&CY6 # (ALY$DB7.pin)&CY6; 
 
" Combinational ALU equations 
ALU0 = !ALX&S0 # ALX&L0; 
ALU1 = !ALX&S1 # ALX&L1; 
ALU2 = !ALX&S2 # ALX&L2; 
ALU3 = !ALX&S3 # ALX&L3; 
ALU4 = !ALX&S4 # ALX&L4; 
ALU5 = !ALX&S5 # ALX&L5; 
ALU6 = !ALX&S6 # ALX&L6; 
ALU7 = !ALX&S7 # ALX&L7; 
 
" Register bit and data bus control equations 
[DB0..DB7].d = !ALE&[DB0..DB7].q # ALE&[ALU0..ALU7]; 
 
[DB0..DB7].clk = CLOCK; 
 
[DB0..DB7].oe = AOE; 
 
" Flag register state equations 
CF.d = !ALE&CF.q # ALE&(!ALX&(CY7 $ ALY) # ALX&CF.q); 
 
CF.clk = CLOCK; 
 
ZF.d = !ALE&ZF.q # ALE&(!ALU7&!ALU6&!ALU5&!ALU4&!ALU3&!ALU2&!ALU1&!ALU0); 
 
ZF.clk = CLOCK; 
 
NF.d = !ALE&NF.q # ALE&ALU7; 
 
NF.clk = CLOCK; 
 
VF.d = !ALE&VF.q # ALE&(!ALX&(CY7 $ CY6) # ALX&VF.q); 
 
VF.clk = CLOCK; 
 
END 
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Last, but not least, are the equations that govern the four condition 
code bits.  All of these flags retain their current state if ALE is negated.  
The carry flag (CF) and overflow flag (VF) are only affected by the 
ADD and SUB instructions.  For ADD, the CF bit is set to the carry out 
of the most significant position (here, CY7); for SUB, the CF bit is 
interpreted as a borrow, and is therefore set to the complement of the 
carry out of the sign position.  The VF bit is simply the XOR of the carry 
in to the sign bit (CY6) with the carry out of the sign bit (CY7). 
 
The negative flag (NF) and zero flag (ZF) are affected by all four 
functions implemented by our ALU.  The NF bit is simply the sign bit 
(ALU7) of the result generated by the ALU, while the ZF bit is set to “1” 
if all the ALU result bits are zero. 
 
Before moving on to the final block of our simple computer design, 
there is an important practical point worth noting.  All of the functional 
blocks designed thus far – the memory, PC, IR, and ALU – can be 
independently implemented (or simulated) and tested (as well as 
debugged) before they are all “assembled together” into a completed 
computer.  Independent testing and debugging of each functional 
block, in fact, is an important aspect of the “top-down, bottom-up” 
strategy we have espoused in this chapter.   
 
2.7.5  Instruction Decoder and Micro-sequencer 
 
As described previously, there are two basic steps involved with 
“processing” each instruction, the combination of which is referred to 
as a micro-sequence.  During a fetch cycle, the instruction pointed to 
by the PC is read from memory and loaded into the IR; the PC is 
incremented by one as the instruction is loaded.  During the ensuing 
execute cycle, the instruction staged in the IR is “peeled” apart into an 
opcode field and an operand address field; the opcode field indicates 
the operation to be performed using data obtained from (or destined 
for) the memory location specified by the address field.  The functional 
block that orchestrates the sequencing of these activities is called the 
instruction decoder and micro-sequencer (IDMS). 
 
Since, in this initial version of our simple computer, there are only two 
different kinds of cycles (fetch and execute), a single flip-flop can be 
used as a state counter (SQ).  In reality, this state counter is simply a 
single-bit binary counter (i.e., it simply toggles between “0” and “1”).  
Note that the state counter must be placed in the “fetch” state when 
START is pressed; therefore, it makes sense to assign the “reset” state 
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of the SQ flip-flop (SQ=0) to the fetch cycle, and the “set” state of the 
SQ flip-flop (SQ=1) to the execute cycle. 
 
With the structure of the state counter established, the next step is to 
determine which control signals (of the functional blocks designed 
previously) need to be asserted when SQ=0 (fetch) and SQ=1 
(execute).  To accomplish this, we will need to refer back to each of the 
previous sub-sections (on the design of the individual functional 
blocks) as well as the instruction tracing worksheets completed 
previously. 
 
Referring again to Figure 2-12, we note that the following signals need 
to be asserted to complete a fetch cycle.  First, to “gate” the value in 
the PC onto the address bus, the signal POA needs to be asserted by 
the IDMS.  To read the instruction, the memory needs to be selected 
(MSL asserted) and its data bus output enabled (MOE asserted).  To 
load the instruction read from memory into the IR, the signal IRL needs 
to be asserted. Finally, to increment the PC as the instruction is 
loaded, the signal PCC needs to be asserted.  A total of five system 
control signals, therefore, needed to be asserted by the IDMS during a 
fetch cycle (when SQ=0):  POA, MSL, MOE, IRL, and PCC. 
 
The control signals that need to be asserted during an “ALU function” 
execute cycle (i.e., LDA, ADD, SUB, AND operation) can be inferred 
from Figure 2-13.  First, to “gate” the operand address staged in the IR 
onto the address bus, the signal IRA needs to be asserted by the 
IDMS.  To read the operand, the memory needs to be selected (MSL 
asserted) and its data bus output enabled (MOE asserted).  To perform 
the operation specified by the instruction opcode (supplied to the IDMS 
from the upper 3-bits of the IR), ALE needs to be asserted along with 
the prescribed combination of ALX and ALY (based on the ALU design 
documented in Table 2-5). 
 
The “store A” (STA) instruction execute cycle is similar, but notably 
different, than an “ALU function” execute cycle.  Here, the address 
supplied to memory (from the IR, upon assertion of IRA) specifies the 
destination for the data in the “A” register.  To complete the write to 
memory, it needs to be selected (MSL asserted) and write enabled 
(MWE asserted).  To “gate” the data in the “A” register onto the data 
bus, AOE needs to be asserted.  A total of four control signals need to 
be asserted, then, to execute a “store A” (STA) instruction:  IRA, MSL, 
MWE, and AOE. 
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A succinct summary of all the system control signal assertions is 
provided in Table 2-8.  Note that, for the sake of clarity, signal 
assertions are denoted using “H” (signals that are either negated or 
“don’t care” are left blank).  By way of contrast, the control signal 
negations that are effected by execution of the HLT (halt) instruction 
are denoted using “L”. 
 
Table 2-8   System control table. 

 
Decoded 

State 

 
Instruction 
Mnemonic 

M
S

L
 

M
O

E
 

M
W

E
 

P
C

C
 

P
O

A
 

IR
L

 

IR
A

 

A
O

E 

A
L

E 

A
L

X
 

A
L

Y 

S0   H H  H H H      

S1 LDA H H     H  H H  
S1 STA H  H    H H    
S1 ADD H H     H  H   
S1 SUB H H     H  H  H 
S1 AND H H     H  H H H 
S1 HLT L   L  L   L   

 
The ABEL source file for the simple computer’s IDMS module is shown 
in Tables 2-9 and 2-10.  Referring first to the declarations listed in 
Table 2-9, we find decoded opcode definitions (using the instruction 
mnemonics as pseudonyms for the corresponding opcode bit patterns) 
and decoded machine state definitions (S0 for fetch, S1 for execute).  
The purpose of defining an intermediate equation for each opcode 
combination is simply to make the job of writing the system control 
equations (that appear in Table 2-10) easier.  Perhaps if we were more 
“clever”, we might have used the name “fetch” (instead of S0) and 
“execute” (instead of S1) to help make the subsequent equations a bit 
more clear (albeit more cumbersome to write). 
 
Continuing with the IDMS equations in Table 2-10, we discover three 
basic components: the state counter, the run/stop flip-flop, and the 
system control equations.  Looking first at the state counter, we note 
that if the machine RUN enable is high (i.e., the machine is “running”), 
the state counter flip-flop merely “toggles” each time a positive CLOCK 
edge occurs.  If RUN is negated, SQ is reset to “0” (i.e., the “fetch” 
state).  Pressing the START pushbutton also resets SQ to the “fetch” 
state. 
 

run/stop 
flip-flop 
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Table 2-9  Declarations section of IDMS module. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
MODULE idms 
 
TITLE    'Instruction Decoder and Microsequencer' 
 
DECLARATIONS 
 
CLOCK pin; 
 
START pin; " asynchronous START pushbutton 
 
OP0..OP2 pin; " opcode bits (input from IR5..IR7) 
 
" State counter 
SQ node istype 'reg_D,buffer'; 
 
" RUN/HLT state 
RUN node istype 'reg_D,buffer'; 
 
" Memory control signals 
MSL,MOE,MWE pin istype 'com'; 
 
" PC control signals  
PCC,POA,ARS pin istype 'com'; 
 
" IR control signals 
IRL,IRA pin istype 'com'; 
 
" ALU control signals (not using flags yet) 
ALE,ALX,ALY,AOE pin istype 'com'; 
 
" Decoded opcode definitions 
LDA = !OP2&!OP1&!OP0;  " LDA opcode = 000 
STA = !OP2&!OP1& OP0;  " STA opcode = 001 
ADD = !OP2& OP1&!OP0;  " ADD opcode = 010 
SUB = !OP2& OP1& OP0;  " SUB opcode = 011 
AND =  OP2&!OP1&!OP0;  " AND opcode = 100 
HLT =  OP2&!OP1& OP0;  " HLT opcode = 101 
 
" Decoded state definitions 
S0 = !SQ.q; " fetch 
S1 =  SQ.q; " execute 
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Table 2-10  Equations section of IDMS module. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The run/stop flip-flop is defined next in Table 2-10.  Here we note that 
pressing the START pushbutton asynchronously sets the RUN flip-flop, 
thereby enabling our simple computer to start executing instructions. 
Once set, the RUN signal remains asserted until asynchronously reset 
through execution of an HLT instruction.  
 
We see how the RUN signal is used to enable/disable machine activity 
in the system control equations that follow.  Note that if RUN is high, 
the system control signals are asserted according to the table in Table 
2-8, as described previously. For example, MSL is asserted if a fetch 
cycle is being performed (S0 high); or, an execute cycle is being 
performed (S1 high) of an LDA instruction, an STA instruction, an ADD 
instruction, a SUB instruction, or an AND instruction. If RUN is low, 

 
EQUATIONS 
 
" State counter 
SQ.d = RUN.q&!SQ.q; " if RUN negated, resets SQ 
SQ.clk = CLOCK; 
SQ.ar = START;      " start in fetch state 
 
" Run/stop (equivalent of SR latch) 
RUN.ap = START;  " start with RUN set to 1 
RUN.clk = CLOCK; 
RUN.d = RUN.q; 
RUN.ar = S1&HLT;  " RUN is cleared when HLT executed 
 
" System control equations 
 
MSL = RUN.q&(S0 # S1&(LDA # STA # ADD # SUB # AND)); 
MOE = S0 # S1&(LDA # ADD # SUB # AND); 
MWE = S1&STA; 
ARS = START; 
PCC = RUN.q&S0; 
POA = S0; 
IRL = RUN.q&S0; 
IRA = S1&(LDA # STA # ADD # SUB # AND); 
AOE = S1&STA; 
ALE = RUN.q&S1&(LDA # ADD # SUB # AND); 
ALX = S1&(LDA # AND); 
ALY = S1&(SUB # AND); 
 
END 
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clock edges 

however, all of the pertinent system control signals are negated.  Note 
that it is only necessary to negate the system control signals 
responsible for causing the various functional blocks to change state 
(i.e., it is not necessary to negate function select signals such as ALX 
and ALY, nor is it necessary to negate three-state output enables).  
 
This completes the “bottom-up” phase of the design process for the 
initial version of our simple computer.  All of the ABEL code described 
in this section could be implemented using a single, modest-size PLD.  
The addition of a conventional memory chip would yield a working 
computer. Before augmenting the instruction set with some useful 
extensions, though, let’s take a closer look at system timing. 
 
2.8  System Timing Analysis 
 
When we designed the program counter in Section 2.7.2, there was an 
appearance of “cheating” – specifically, of using the current value in 
the PC to access an instruction in memory while, at apparently the 
same time, telling the PC to increment.  This is an issue that deserves 
further scrutiny. 
 
To gain a better understanding of the timing relationship among 
different activities within our computer, we need to understand two 
basic hardware-imposed constraints.  The first is that only one device 
(functional block) can drive a bus on a given bus cycle, i.e., “bus 
fighting” must be avoided. The second is that data can only “pass 
through” one edge-triggered flip-flop per cycle.  Thus, it is not possible 
to load a value into a register and expect to “use it” (have the value 
available on the register’s outputs) on the same cycle. 
 
Given these constraints, we are now prepared to examine in detail the 
sequence of activities that occur during a fetch cycle.  A “qualitative” 
timing diagram is provided in Figure 2-21 for this purpose (by 
qualitative we mean that we’re not interested in the exact number of 
nanoseconds between one signal assertion and another, just the fact 
that there is a delay).  Depicted in this diagram is the sequencing that 
occurs as the machine finishes an execute cycle, performs a fetch of 
the next instruction, and subsequently proceeds to execute the 
instruction just fetched.  Our focus here is on the events that constitute 
a fetch cycle. 
 
The first thing to note is that, since the functional blocks of the machine 
were designed using positive-edge-triggered flip-flops, the clock edges 
“drive” the machine from state-to-state.  Thus, a “fetch cycle” is the 

bus fighting 

qualitative 
timing diagram 
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time between the clock edge that drives the machine from the previous 
execute cycle to the current fetch cycle, and the subsequent clock 
edge that transitions the machine from the fetch cycle to an execute 
cycle.  Shortly after the first clock edge in Figure 2-21, then, the control 
signals MSL, MOE, POA, IRL, and PCC are asserted (the delay 
relative to the clock edge in generating these signals is due to the 
propagation delay of the state counter plus the delay associated with 
the system control equations – see Table 2-10).   
 

 
 
The assertion of POA causes the three-state buffers of the PC to turn 
on and drive its value onto the address bus.  The value on the address 
bus, in conjunction with the MSL and MOE signal assertions, causes 
the memory to drive the addressed instruction onto the data bus (note 
that, in most practical systems, this constitutes a substantial part of the 
cycle time).  Provided the instruction is on the data bus at least tSETUP 
(of the D flip-flop) prior to the next clock edge, it is successfully loaded 
into the IR (because the IRL signal is asserted) when that edge occurs.   
 

S0 Fetch S1   ExecutePrevious S1   Execute

IR loaded with 
instruction on 
data bus before
this point

PC incremented
after this point

Instruction

PC PC = PC+1

Instruction 
Loaded in IR

Figure 2-21   Fetch cycle event timing relationship. 
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While this may seem to be “enough” activity already, we realize that a 
related “housekeeping” activity can be accomplished on this cycle as 
well: incrementing the value in the PC, so it points to the next 
instruction (in preparation for the next fetch).  Again, based on the use 
of edge-triggered flip-flops in our design, we note that the value on the 
data bus just prior to the clock edge that loads the IR determines the 
next state of the IR.  It follows, then, that we can use that same clock 
edge to drive the PC to its next state – this is why PCC is also asserted 
during a fetch cycle.  Note that the PC state change will occur after the 
clock edge, i.e., after the instruction has been safely loaded into the IR.  
This allows us to effectively overlap the load of the IR with the 
increment of the PC on the same cycle.  We will make use of this same 
principle when we add some extensions to our machine later in this 
chapter. 
 
One might ask at this point, “Could we have delayed the increment of 
the PC until the execute cycle?”  In the initial version of our simple 
computer, it would clearly be possible: here, the “new value” in the PC 
would be available shortly after the commencement of the fetch cycle, 
thus enabling the correct instruction to be loaded into the IR (the only 
consequence might be a small amount of additional propagation delay 
for the “new” value to become stable).  When we add subroutine 
linkage instructions to our computer, however, we will find it useful to 
have the “new” value of the PC available during the first execute cycle 
(to serve as the “return address” for a “subroutine call” instruction).  In 
anticipation of this extension, we will include the increment of the PC 
as an integral part of the fetch cycle. 
 
2.9  Simple Computer Extensions 
 
When we originally designed our instruction set, we purposefully left 
two opcode bit patterns “uncommitted”.  The reason we did this was to 
provide room for expansion.  We will, then, add a “pair” of instructions 
at a time to our “base” instruction set.  The “pairs” we will add include 
input/output (IN/OUT) instructions, transfer of control instructions 
(JMP/JZF), stack manipulation instructions (PSH/POP), and subroutine 
linkage instructions (JSR/RTS). 
 
2.9.1  Input/Output Instructions 
 
When we first drew the “big picture” of our simple computer (see 
Figure 2-4), we included a switch “input port” and an LED “output port”.  
As evident from the initial version of our instruction set, we included no 

overlap 

input port 
output port 
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provision for using these.  It makes sense, then, to add instructions for 
providing our machine with the “modern convenience” of data input 
and output (“I/O”). 
 
First, we need to establish the destination that will be used for data 
input (or read) from the “outside world”, as well as the source for data 
that will be output (or written).  Given that our machine has but one 
register that participates in data transactions – namely, the “A” register 
– it is the most likely candidate to serve as the destination/source of 
data that is input/output, respectively. Thus, our new “IN” instruction 
will function in a manner similar to an LDA instruction, except the 
source of data will be the “outside world” and the address field will be 
used as a pointer to an “input device” (instead of to memory). Similarly, 
our new “OUT” instruction will function in a manner similar to an STA 
instruction, except the destination of data will be the “outside world” 
and the address field will be used as a pointer to an “output device”.  A 
name commonly used for this input/output strategy is accumulator-
mapped I/O. 
 
Second, we need to establish how data will be communicated to/from 
the ubiquitous “outside world”.  Basically, a “gateway” is needed 
between the system data bus and the external input and output 
devices, along with some new system control signals that enable a 
“read” (IOR) or a “write” (IOW) via this gateway.  Also, a means of 
decoding the I/O addresses (typically called port or device numbers) 
into individual “device selects” (or enables) is needed.  A diagram 
illustrating the placement of the “I/O block” is provided in Figure 2-22; 
an ABEL source file for a specific instance of this module is given in 
Table 2-11.  
 

port numbers 
device numbers 
I/O block 
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Figure 2-22   Block diagram of simple computer with I/O. 
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Table 2-11   Basic I/O module. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Referring to the ABEL file, we see that it contains a specific port 
address decoding equation, here for port address 000002.  When the 
pattern on the address bus matches this value, an I/O transaction via 
this port address is enabled.  If an IN instruction is being executed, 
assertion of the IOR signal (by the IDMS) causes the value on the “IN 
pins” (IN0...IN7) to be gated onto the system data bus, allowing it to be 
loaded into the “A” register.  If an OUT instruction is being executed, 
assertion of the IOW signal causes the value on the data bus (supplied 
by the “A” register) to be gated to the “OUT pins” (OUT0…OUT7). 
 
There is a limitation, however, inherent in the I/O port design shown in 
Table 2-11: the value output (when an OUT instruction is executed) is 
only “active” for a very short time (specifically, the amount of time the 
IOW signal is asserted by the IDMS).  For devices such as light 

 
MODULE io 
 
TITLE    'Input/Output Port 00000' 
 
DECLARATIONS 
 
  
DB0..DB7 pin istype 'com';   " data bus 
AD0..AD4 pin;                " address bus 
IN0..IN7 pin;                " input port 
OUT0..OUT7 pin istype 'com'; " output port 
 
IOR pin; " Input port read 
IOW pin; " Output port write 
 
" Port select equation for port address 00000 
 
PS = !AD4&!AD3&!AD2&!AD1&!AD0;  
 
EQUATIONS 
 
[DB0..DB7] = [IN0..IN7]; 
 
[DB0..DB7].oe = IOR&PS; 
 
[OUT0..OUT7] = [DB0..DB7]; 
 
[OUT0..OUT7].oe = IOW&PS; 
 
END 
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emitting diodes (LEDs), the brief assertion of IOW will not provide a 
satisfactory display. A better solution is to latch the value sent to the 
output port, and retain it until execution of a subsequent OUT 
instruction changes the value.  An I/O module that provides a latched 
output port is provided in Table 2-12.  Here, assertion of IOW in 
conjunction with the proper port address opens a transparent latch, 
which then assumes the new value sent on the data bus.  The latch 
closes (retains its value) when IOW is negated. 
 
Table 2-12  Latched I/O port. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The augmented system control table for our simple computer plus I/O 
is given in Table 2-13.  Note that there are two “new” equations (for 
IOR and IOW), along with four equations that need to be updated (for 
IRA, AOE, ALE, and ALX).  The updated system control equations are 
given in Table 2-14. 

latched  
output port 

 
MODULE iol 
 
TITLE    'Input/Output Port 00000 - With Output Latch' 
 
DECLARATIONS 
 
  
DB0..DB7 pin istype 'com';   " data bus 
AD0..AD4 pin;                " address bus 
IN0..IN7 pin;                " input port 
OUT0..OUT7 pin istype 'com'; " output port 
 
IOR pin; " Input port read 
IOW pin; " Output port write 
 
" Port select equation for port address 00000 
 
PS = !AD4&!AD3&!AD2&!AD1&!AD0;  
 
EQUATIONS 
 
[DB0..DB7] = [IN0..IN7]; 
 
[DB0..DB7].oe = IOR&PS; 
 
" Transparent latch for output port 
 
[OUT0..OUT7] = !(IOW&PS)&[OUT0..OUT7] # IOW&PS&[DB0..DB7]; 
 
END 
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Table 2-13   System control table modified for I/O. 
 

 
Decoded  

State 

 
Instruction 
Mnemonic 

M
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IR
L

 

IR
A

 

A
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A
L
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A
L

X
 

A
L
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IO
R

 

IO
W

 

S0   H H  H H H        

S1 LDA H H     H  H H    
S1 STA H  H    H H      
S1 ADD H H     H  H     
S1 SUB H H     H  H  H   
S1 AND H H     H  H H H   
S1 HLT L   L  L   L     
S1 IN       H  H H  H  
S1 OUT       H H     H 

 

 
Table 2-14   System control equations modified for I/O. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
" System control equations (IDMS) 
 
MSL = RUN.q&(S0 # S1&(LDA # STA # ADD # SUB # AND)); 
MOE = S0 # S1&(LDA # ADD # SUB # AND); 
MWE = S1&STA; 
ARS = START; 
PCC = RUN.q&S0; 
POA = S0; 
IRL = RUN.q&S0; 
IRA = S1&(LDA # STA # ADD # SUB # AND # IN # OUT); 
AOE = S1&(STA # OUT); 
ALE = RUN.q&S1&(LDA # ADD # SUB # AND # IN); 
ALX = S1&(LDA # AND # IN); 
ALY = S1&(SUB # AND); 
 
IOR = S1&IN; 
IOW = S1&OUT; 
 
END 
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2.9.2  Transfer-of-Control Instructions 
 
Any program worth the silicon it runs on typically does more than 
execute “straight line” code.  Instead, execution transfers to different 
parts of the program based on various conditions encountered.  
Generically, we refer to the instructions that allow program execution to 
“jump around” as transfer-of-control instructions. 
 
There are two basic types of transfer-of-control instructions.  If the 
address field of the instruction contains the (absolute) address in 
memory at which execution should continue, it is most often referred to 
as a “jump” instruction.  If the address field instead represents the 
(signed) “distance” the next instruction is from the transfer-of-control 
instruction, it is referred to as a “branch”.  (There is not universal 
agreement on this nomenclature, however – see sidebar.)  Jumps (or 
branches) that “always happen” are called unconditional; those that 
happen only if a certain combination of condition codes exists are 
called conditional. 
 
 
 
 
 
 
 
 
 
 
 
 
 
The addition of transfer-of-control instructions to our simple computer 
will require modifications to the PC (as well as to the IDMS).  
Specifically, we will need to provide a mechanism for loading a new 
value into the PC to implement “jump-style” instructions, or for adding a 
signed offset to the value in the PC to implement “branch-style” 
instructions.  Here we will focus on the modifications necessary to 
implement jump-style instructions. An ABEL source file for the modified 
PC is provided in Table 2-15.  Note that it is the same as the “original” 
PC (see Table 2-3), except that a “load from address bus” function 
(and associated control signal, PLA) has been added.  Recall that the 
“new value” with which the PC is to be loaded is staged in the IR, and 
can therefore be conveniently “transported” to the PC via the address 
bus. 

A Branch by Any Other Name 
 
Regrettably, there is no “universal agreement” among manufacturers of 
microcontrollers concerning the names used for the basic transfer-of-control 
instruction types.  Since this is primarily a text dealing with Motorola products, 
we will use the names they commonly use: “jump” for absolute transfer, and 
“branch” for relative transfer.  Be advised, though, that another “major 
manufacturer” (Intel) uses just the opposite designation: “branch” for absolute 
transfer, and “jump” for relative transfer.  Although the author cut his “digital 
teeth” on Intel processors, he prefers the Motorola adopted names. 

straight line code 

transfer-of-control 
instructions 

jump instruction 

branch instruction 

unconditional 
conditional 

PLA 
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Table 2-15  PC modifications to support transfer-of-control instructions. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The system control table, modified to include an “unconditional jump” 
instruction (JMP) along with a “jump if zero flag set” (JZF) instruction, 
is shown in Table 2-16.  As its name implies, the JZF instruction 
causes a transfer-of-control to the address following the opcode if the 
zero flag (ZF) is set, i.e., the result of the most recent ALU operation 

JMP 
JZF 

 
MODULE pc 
 
TITLE    'Program Counter' 
 
DECLARATIONS 
 
CLOCK pin; 
 
PC0..PC4 pin istype 'reg_D,buffer'; 
 
PCC pin; " PC count enable 
PLA pin; " PC load from address bus enable 
POA pin; " PC output on address bus tri-state enable 
ARS pin; " asynchronous reset (connected to START) 
 
" Note: Assume PCC and PLA are mutually exclusive 
 
EQUATIONS 
 
"         retain state      load          
PC0.d = !PCC&!PLA&PC0.q # PLA&PC0.pin  
"         count up by 1          
         # PCC&!PC0.q; 
PC1.d = !PCC&!PLA&PC1.q # PLA&PC1.pin  
         # PCC&(PC1.q $ PC0.q); 
PC2.d = !PCC&!PLA&PC2.q # PLA&PC2.pin  
         # PCC&(PC2.q $ (PC1.q&PC0.q)); 
PC3.d = !PCC&!PLA&PC3.q # PLA&PC3.pin  
         # PCC&(PC3.q $ (PC2.q&PC1.q&PC0.q)); 
PC4.d = !PCC&!PLA&PC4.q # PLA&PC4.pin  
         # PCC&(PC4.q $ (PC3.q&PC2.q&PC1.q&PC0.q)); 
 
[PC0..PC4].oe = POA; 
 
[PC0..PC4].ar = ARS; 
 
[PC0..PC4].clk = CLOCK; 
 
END 
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has generated a result of zero in the “A” register.  (As it turns out, this 
is a fairly “popular” condition to check in practical applications.)  If the 
condition specified by a “conditional jump” instruction (like JZF) is not 
met, however, nothing happens (often called a no operation, or “NOP”) 
– execution merely continues with the instruction that follows.  In order 
to effect the load of the jump address, the IDMS needs to know the 
state of the various condition code bits generated by the ALU.  The 
equations for IRA and PLA, then, will be a function of ZF for the new 
instructions added to the machine in Table 2-17. 
 
Table 2-16   System control table modified for transfer-of-control instructions. 

 
Table 2-17   IDMS modifications to support transfer-of-control. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Decoded 

 State 

 
Instruction 
Mnemonic 
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A
 

S0   H H  H H H       

S1 LDA H H     H  H H   
S1 STA H  H    H H     
S1 ADD H H     H  H    
S1 SUB H H     H  H  H  
S1 AND H H     H  H H H  
S1 HLT L   L  L   L    
S1 JMP       H     H 
S1 JZF       ZF     ZF 

no operation 
NOP 

 
" System control equations (IDMS) 
 
MSL = RUN.q&(S0 # S1&(LDA # STA # ADD # SUB # AND)); 
MOE = S0 # S1&(LDA # ADD # SUB # AND); 
MWE = S1&STA; 
ARS = START; 
PCC = RUN.q&S0; 
POA = S0; 
IRL = RUN.q&S0; 
IRA = S1&(LDA # STA # ADD # SUB # AND # JMP # JZF&ZF); 
AOE = S1&I1; 
ALE = RUN.q&S1&(LDA # ADD # SUB # AND); 
ALX = S1&(LDA # AND); 
ALY = S1&(SUB # AND); 
 
PLA = S1&(JMP # JZF&ZF); 
 
END 
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One could imagine, at this point, a number of other conditions that 
would be useful for determining whether or not a jump or branch 
should be “taken”.  In addition to a separate “jump on condition” 
instruction dedicated to each flag (CF, NF, VF, ZF), there are various 
Boolean combinations of these flags that are of interest as well (e.g., 
testing for “greater than” or “less than or equal to”).  All of these 
variations will be explored when we tackle the instruction set of a “real” 
microcontroller in the next chapter. 
 
2.9.3  Multiple Execute Cycle Instructions 
 
To this point, all of the instructions we originally defined or added to 
our simple computer required a single fetch cycle followed by a single 
execute cycle.  As the functions performed by an individual instruction 
become more complex, however, additional execute cycles become 
necessary. On the surface, this would appear to be a relatively 
straightforward extension, accomplished by simply adding extra bits to 
the state counter in the IDMS, along with a binary decoder to decode 
the various states.  Adding one additional bit to our original state 
counter would provide us with four possible states: a fetch state (S0), 
followed by three execute states (S1, S2, S3).   
 
The “complication” that arises is that, despite this addition, we want our 
original “single execute state” instructions to still execute in a single 
state.  Further, we want any new instructions that require two execute 
states to consume only two execute states, and new instructions that 
require all three execute states to consume exactly three execute 
states. More succinctly, we want our state counter to be able to 
accommodate variable-length execution cycles (here, from 1 to 3).   
 
One way this can be accomplished is by adding a synchronous reset 
capability to our (now 2-bit) state counter.  For this purpose, we will 
add a new signal (RST) to our system control table that, when 
asserted, causes the state counter to reset to zero when the next clock 
edge occurs. In the system control table, this signal will be asserted on 
the final execute cycle of each instruction.  For single execute cycle 
instructions (such as LDA, STA, ADD, AND, SUB), the RST signal will 
be asserted during S1 (the first execute cycle), ensuring that the next 
cycle will be a “fetch”.  For instructions requiring two execute cycles, 
the RST signal will be asserted during S2 (the second execute cycle).  
Finally, for three-execute-cycle instructions, the RST signal will be 
asserted during S3 (note that, if RST is not asserted at this point, the 

Boolean 
combinations 
of flags 

variable-length 
execution cycles 

synchronous reset 

S1 
S2 
S3 
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state counter will “wrap around” to zero automatically, thus ensuring 
that the next cycle is a “fetch” regardless). 
 
Table 2-18   IDMS modifications for multi-execute-cycle instructions 
                     (declarations section). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
MODULE idmsr 
 
TITLE 'Instruction Decoder and Microsequencer with Multi-Execution States' 
 
DECLARATIONS 
 
CLOCK pin; 
START pin;    " asynchronous START pushbutton 
OP0..OP2 pin; " opcode bits (input from IR5..IR7) 
 
" State counter 
SQA node istype 'reg_D,buffer'; " low bit of state counter 
SQB node istype 'reg_D,buffer'; " high bit of state counter 
 
" Synchronous state counter reset 
RST node istype 'com'; 
 
" RUN/HLT state 
RUN node istype 'reg_D,buffer'; 
 
" Memory control signals 
MSL,MOE,MWE pin istype 'com'; 
 
" PC control signals 
PCC,POA,ARS pin istype 'com'; 
 
" IR control signals 
IRL,IRA pin istype 'com'; 
 
" ALU control signals  
ALE,ALX,ALY,AOE pin istype 'com'; 
 
" Decoded opcode definitions 
LDA = !OP2&!OP1&!OP0;  " opcode 000 
STA = !OP2&!OP1& OP0;  " opcode 001 
ADD = !OP2& OP1&!OP0;  " opcode 010 
SUB = !OP2& OP1& OP0;  " opcode 011 
AND =  OP2&!OP1&!OP0;  " opcode 100 
HLT =  OP2&!OP1& OP0;  " opcode 101 
 
" Decoded state definitions 
S0 = !SQB&!SQA; " fetch state 
S1 = !SQB& SQA; " first execute state 
S2 =  SQB&!SQA; " second execute state 
S3 =  SQB& SQA; " third execute state 
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Table 2-19   IDMS modifications for multi-execute-cycle instructions 
                     (equations section). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The state counter modifications necessary to accommodate multiple 
execute cycles are shown in Tables 2-18 and 2-19.  Following 
conventional notation, bit “A” of the modified state counter is the least 
significant bit, and bit “B” is the most significant bit.  Note that if RUN is 
negated, or RST is asserted, the state counter is reset to “00”.  
Pressing the START pushbutton also resets the state counter to zero. 
 

 
EQUATIONS 
 
" State counter 
" if RUN negated or RST asserted, 
" state counter is reset 
SQA.d = !RST & RUN.q & !SQA.q;           
SQB.d = !RST & RUN.q & (SQB.q $ SQA.q);  
 
SQA.clk = CLOCK; 
SQB.clk = CLOCK; 
SQA.ar = START;       " start in fetch state 
SQB.ar = START;       
 
" Run/stop (equivalent of SR latch) 
RUN.ap = START;      " start with RUN set to 1 
RUN.clk = CLOCK; 
RUN.d = RUN.q; 
RUN.ar = S1&HLT;     " RUN is cleared when HLT executed 
 
" System control equations 
MSL = RUN.q&(S0 # S1&(LDA # STA # ADD # SUB # AND)); 
MOE = S0 # S1&(LDA # ADD # SUB # AND); 
MWE = S1&STA; 
ARS = START; 
PCC = RUN.q&S0; 
POA = S0; 
IRL = RUN.q&S0; 
IRA = S1&(LDA # STA # ADD # SUB # AND); 
AOE = S1&STA; 
ALE = RUN.q&S1&(LDA # ADD # SUB # AND); 
ALX = S1&(LDA # AND); 
ALY = S1&(SUB # AND); 
RST = S1&(LDA # STA # ADD # SUB # AND); 
 
END 



Microcontroller-Based Digital System Design  Chapter 2 ­ Page 53 

Preliminary Edition  ©2001 by D. G. Meyer 

In the sections that follow, we will see examples of instructions that 
require two or three execute states. The system control tables for 
these “new” instruction sets will therefore include the RST signal. 
 
2.9.4  Stack Manipulation Instructions 
 
An important “modern convenience” that most “real” computers enjoy 
is a stack mechanism.  Stacks – also referred to as last-in, first-out 
(LIFO) data structures – facilitate a number of capabilities, including 
expression evaluation, subroutine linkage, and parameter passing.  
While there are many variations on stack implementation, the most 
common strategy is to place the stack contents in the uppermost 
portion of (read/write) memory, and add a new register to the machine 
that serves as a pointer to the top item on the stack. Not surprisingly, 
this register is called the stack pointer (SP).  An augmented system 
block diagram illustrating the placement of the SP register in our 
simple computer is given in Figure 2-23. 
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Figure 2-23   Block diagram of simple computer with stack. 
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Since program “growth” (or execution direction) is toward increasing 
addresses (starting in “low” memory), it makes sense that stack growth 
should be toward decreasing addresses (starting in “high” memory).  
The stack grows as items are “pushed” onto it, which means the SP 
register must decrement as it grows; conversely, as items are “popped” 
off the stack and its size diminishes, the SP register must increment. 
 
At this point, we realize there are two possible conventions that can be 
used as a “stack pointer paradigm” – we can choose to have the SP 
register point to the top stack item, or we can choose to have it point to 
the next available location.  The most commonly used convention (and 
the one we will adopt here) is to have the SP register point to the top 
stack item.  Based on this choice, we realize that the initial value of the 
SP register needs to be one greater than the address in which the first 
stack item is placed. Because the SP register points to the top stack 
item, it must be decremented in order to allocate space for a new item 
during a “push” operation.  If the stack starts in the uppermost location 
of memory (for our simple computer, location 111112), the SP register 
should be initialized to 000002 (i.e., one greater than 111112, modulo 
25).  Stack growth and retraction based on this “conventional 
convention” is illustrated in Figure 2-24.  Note that items popped off the 
stack are merely de-allocated from the stack area, not erased. 
 
Based on an understanding of how the stack mechanism works, we 
can now consider the design of the SP register module, documented in 
Table 2-20.  The first thing we note is that the SP register is simply an 
“up/down” binary counter, with three-state output buffers and an 
asynchronous reset. The IDMS, then, needs to supply the SP register 
with four control signals: an asynchronous reset (ARS), an increment 
enable (SPI), a decrement enable (SPD), and a three-state buffer 
enable (SPA) that gates the value in the SP register onto the address 
bus. 
 
We now have all the “ingredients” available to create two new stack 
manipulation instructions: push the contents of the “A” register onto the 
stack (PSH), and pop the top stack item into the “A” register (POP).  
One possible application for such a pair of instructions is expression 
evaluation.  Here, intermediate results of a calculation can be placed 
on the stack and retrieved when needed.  For example, to evaluate the 
expression (W+X) – (Y–Z), we could first calculate the quantity (Y–Z) 
and push it onto the stack, next calculate the quantity (W+X), and 
finally pop the stack and subtract that value from our “running total”.  
Formal methods exist for transforming an arbitrarily complex, 
parenthesized expression into postfix form. 

execution  
direction 
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top stack item 
next available location 

stack manipulation 
instructions 
PSH 
POP 

postfix 

ARS 
SPI 
SPD 
SPA 



Microcontroller-Based Digital System Design  Chapter 2 ­ Page 55 

Preliminary Edition  ©2001 by D. G. Meyer 

 

<item #1> 11111

11110

11101

11100

11111
SP Register

“Top” of Memory

Addr

 
 
 
 

  

11111

11110

11101

11100

00000
SP Register

“Top” of Memory

Addr

<item #2>
<item #1> 11111

11110

11101

11100

11110
SP Register

“Top” of Memory

Addr

<item #3>
<item #2>
<item #1> 11111

11110

11101

11100

11101
SP Register

“Top” of Memory

Addr

<item #4>
<item #3>
<item #2>
<item #1> 11111

11110

11101

11100

11100
SP Register

“Top” of Memory

Addr

11111

11110

11101

11100

11101
SP Register

“Top” of Memory

Addr

<item #4>
<item #3>
<item #2>
<item #1>

11111

11110

11101

11100

11110
SP Register

“Top” of Memory

Addr

<item #4>
<item #3>
<item #2>
<item #1>

11111

11110

11101

11100

11111
SP Register

“Top” of Memory

Addr

<item #4>
<item #3>
<item #2>
<item #1>

11111

11110

11101

11100

00000
SP Register

“Top” of Memory

Addr

<item #4>
<item #3>
<item #2>
<item #1>

Figure 2-24  Illustration of stack 
growth: (a) pushing four items onto 
the stack; (b) popping these four 
items off the stack. 



Microcontroller-Based Digital System Design  Chapter 2 ­ Page 56 

Preliminary Edition  ©2001 by D. G. Meyer 

Table 2-20   Stack pointer module. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Implementation of the PSH instruction requires two execute states.  
Here, the SP register must first be decremented in order to allocate 
space for the new item (given the convention we have adopted that SP 
points to the top stack item).  After the SP has been decremented, it 
can be used as a pointer to indicate where in memory the contents of 
“A” should be stored.  
 

 
MODULE sp 
 
TITLE    'Stack Pointer' 
 
DECLARATIONS 
 
CLOCK pin; 
 
SP0..SP4 pin istype 'reg_D,buffer'; 
 
SPI pin; " SP increment enable 
SPD pin; " SP decrement enable 
SPA pin; " SP output on address bus tri-state enable 
ARS pin; " asynchronous reset (connected to START) 
 
" Note: Assume SPI and SPD are mutually exclusive 
 
EQUATIONS 
 
"         retain state      increment/decrement 
SP0.d = !SPI&!SPD&SP0.q # SPI&!SP0.q  
                        # SPD&!SP0.q; 
SP1.d = !SPI&!SPD&SP1.q # SPI&(SP1.q$SP0.q)  
                        # SPD&(SP1.q$!SP0.q); 
SP2.d = !SPI&!SPD&SP2.q # SPI&(SP2.q$(SP1.q&SP0.q))  
                        # SPD&(SP1.q$(!SP1.q&!SP0.q)); 
SP3.d = !SPI&!SPD&SP3.q # SPI&(SP3.q$(SP2.q&SP1.q&SP0.q))  
                        # SPD&(SP3.q$(!SP2.q&!SP1.q&!SP0.q)); 
SP4.d = !SPI&!SPD&SP4.q # SPI&(SP4.q$(SP3.q&SP2.q&SP1.q&SP0.q))  
                        # SPD&(SP4.q$(!SP3.q&!SP2.q&!SP1.q&!SP0.q)); 
 
[SP0..SP4].oe = SPA; 
 
[SP0..SP4].ar = ARS; 
 
[SP0..SP4].clk = CLOCK; 
 
END 
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For POP, however, the SP register is already pointing to the “right 
place”, enabling the “A” register to be loaded with the contents of that 
location on the first execute cycle.  The “bookkeeping” step of de-
allocating the item just popped off the stack (accomplished by 
incrementing the SP register) needs to follow, which at first glance 
appears to require a second execute cycle. Here, though, the same 
clock edge that is used to load the “A” register (with the value pointed 
to by the SP register) can be used to increment the SP register, since 
its value will not change until after the load has safely completed. The 
POP instruction, then, can be implemented using a single execute 
cycle.  (Note the similarity between the overlap employed here and the 
overlap of the PC increment used previously in the fetch cycle.) 
 
A modified system control table illustrating the addition of PSH and 
POP to our simple computer’s instruction set is given in Table 2-21.  
Here, only one of the instructions listed (PSH) requires a second 
execute state (S2); the remaining instructions complete in a single 
execute cycle.  Note, therefore, that RST is not asserted until the S2 
state of the PSH instruction, while for the other instructions RST is 
asserted during the S1 state.  A modified ABEL source file for the 
IDMS that corresponds to this version of our instruction set is given in 
Table 2-22. 
 
Table 2-21   System control table modifications for stack manipulation 
                     instructions. 
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Table 2-22   IDMS modifications for stack manipulation instructions. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Before adding our final set of simple computer extensions, some 
additional comments on PSH/POP are in order.  Virtually every 
computer that has a stack mechanism implements some variation of 
the basic push/pop instruction pair, typically for each “important” 
register in the machine’s architecture.  Other variations – which would 
be particularly useful for performing expression evaluation on our 
simple computer – include “pop and add” (i.e., pop the stack and add 
that item to the contents of the “A” register), “pop and subtract”, etc.  In 
fact, instructions like “pop and add” are simple variations of the “basic 
POP” instruction, and can be implemented with only minor 
modifications to the ABEL source files given. 
 
2.9.5  Subroutine Linkage Instructions 
 
Another important “modern convenience” that most computers enjoy is 
a subroutine linkage mechanism, which is the final extension to our 
simple computer we will explore in this chapter.  A very effective way to 
provide this capability is to utilize a stack.  While there are other ways 
that subroutine linkage can be implemented in practice, use of a stack 
is attractive because it: (a) allows arbitrary nesting of subroutine calls; 
(b) provides a mechanism for passing parameters to subroutines; (c) 

pop and add 
pop and subtract 

arbitrary 
nesting 
 

 
" System control equations 
 
MSL = RUN.q&(S0 # S1&(LDA # STA # ADD # SUB # AND 
       # POP) # S2&PSH); 
MOE = S0 # S1&(LDA # ADD # SUB # AND # POP); 
MWE = S1&STA # S2&PSH; 
ARS = START; 
PCC = RUN.q&S0; 
POA = S0; 
IRL = RUN.q&S0; 
IRA = S1&(LDA # STA # ADD # SUB # AND); 
AOE = S1&STA # S2&PSH; 
ALE = RUN.q&S1&(LDA # ADD # SUB # AND # POP); 
ALX = S1&(LDA # AND # POP); 
ALY = S1&(SUB # AND); 
 
SPI = S1&POP; 
SPD = S1&PSH; 
SPA = S1&POP # S2&PSH; 
 
RST = S1&(LDA # STA # ADD # SUB # AND # POP) # S2&PSH; 
 
END 
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allows recursion (the ability of a subroutine to call itself); and (d) allows 
reentrancy (the ability of a code module to be shared among quasi-
simultaneously executing tasks). 
 
The two subroutine-linkage instructions we will add to our “base” 
instruction set are “jump to subroutine” (JSR) and “return from 
subroutine (RTS).  Generically, we can simply refer to these as 
(subroutine) “call” and “return” instructions.  As can be seen from the 
“subroutine in action” illustration (Figure 2-25), one of the key things 
the “call” instruction must do is establish a “return path” to the calling 
program (hence the name “linkage”).  Placing the calling program’s 
return address on the stack affords nesting of subroutine calls (i.e., one 
subroutine calls another, which then calls another, etc.).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Note that the return address is simply the address of the instruction 
that follows  the JSR.  Recalling that the PC is automatically 
incremented as part of the fetch cycle, we realize that the desired 
return address has already been calculated.  The value in the PC 
simply needs to be pushed onto the stack when a JSR instruction is 
executed.  Conversely, when a return from subroutine (RTS) 
instruction is executed, the top stack item needs to be popped off the 
stack and placed into the PC.   
 

return address 

recursion 
reentrancy 

MAIN   start of main program

JSR   SUBA
(next instruction)

HLT    end of main program

SUBA  start of subroutine A

JSR   SUBB
(next instruction)

RTS    end of subroutine A
SUBB  start of subroutine B

RTS    end of subroutine B

Figure 2-25   Subroutine linkage in action. 
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These observations indicate that, in order to add JSR and RTS 
instructions to our machine, the PC register needs to be modified.  
Specifically, a bi-directional interface to the system data bus needs to 
be added so that the value in the PC can be pushed/popped.  Two new 
control signals need to be added to the PC for this purpose: PLD, for 
loading the PC with the value on the data bus (popped off the stack 
when an RTS instruction is executed); and POD, for gating the value in 
the PC onto the data bus (so that it can be pushed onto the stack when 
a JSR instruction is executed).  A block diagram depicting the modified 
system is given in Figure 2-26. An ABEL file for the modified PC is 
given in Table 2-23.   

 
 
 
Upon examining the block diagram of the modified system, one might 
initially be “disturbed” by the fact that the width (i.e., number of bits) of 
the PC register does not match that of data bus and/or memory – here, 
the PC register is only 5-bits wide, while the memory is 8-bits wide.  In 
practice, though, this is of no consequence – we will simply use the 
lower 5-bits of the addressed memory location to store the value of the 
PC when it is pushed onto the stack. In most “real” computers, there is 
usually a better “match” between the PC and memory width (e.g., 32-
bit address space and 32-bit wide memory). 
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Table 2-23   Modified PC for subroutine linkage. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
MODULE pcr 
 
TITLE    'Program Counter with Data Bus Interface' 
 
DECLARATIONS 
 
CLOCK pin; 
 
PC0..PC4 node istype 'reg_D,buffer'; " PC register bits 
AB0..AB4 pin; " address bus (5-bits wide) 
DB0..DB7 pin; " data bus (8-bits wide) 
 
PCC pin; " PC count enable 
PLA pin; " PC load from address bus enable 
PLD pin; " PC load from data bus enable 
POA pin; " PC output on address bus tri-state enable 
POD pin; " PC output on data bus tri-state enable 
ARS pin; " asynchronous reset (connected to START) 
 
" Note: Assume PCC, PLA, and PLD are mutually exclusive 
 
EQUATIONS 
 
"          retain state       load from AB  load from DB  
PC0.d = !PCC&!PLA&!PLD&PC0.q # PLA&AB0.pin # PLD&DB0.pin 
"          increment 
         # PCC&!PC0.q; 
PC1.d = !PCC&!PLA&!PLD&PC1.q # PLA&AB1.pin # PLD&DB1.pin 
         # PCC&(PC1.q$PC0.q); 
PC2.d = !PCC&!PLA&!PLD&PC2.q # PLA&AB2.pin # PLD&DB2.pin 
         # PCC&(PC2.q$(PC1.q&PC0.q)); 
PC3.d = !PCC&!PLA&!PLD&PC3.q # PLA&AB3.pin # PLD&DB3.pin  
         # PCC&(PC3.q$(PC2.q&PC1.q&PC0.q)); 
PC4.d = !PCC&!PLA&!PLD&PC4.q # PLA&AB4.pin # PLD&DB4.pin 
         # PCC&(PC4.q$(PC3.q&PC2.q&PC1.q&PC0.q)); 
 
[AB0..AB4] = [PC0..PC4].q; 
[DB0..DB4] = [PC0..PC4].q; 
 
" Output logic zero on upper 3-bits of data bus 
[DB5..DB7] = 0; 
 
[AB0..AB4].oe = POA; 
[DB0..DB7].oe = POD; 
 
[PC0..PC4].ar = ARS; 
[PC0..PC4].clk = CLOCK; 
 
END 
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We are now ready to outline the steps needed to execute the JSR and 
RTS instructions.  First, we realize there are two fundamental steps 
associated with performing a JSR: (a) push the return address (the 
value in the PC register) onto the stack, and (b) jump to the location 
indicated by the instruction’s address field.  Step (a) is accomplished in 
a manner similar to the PSH instruction described in Section 2.9.4: 
during the first execute cycle, the stack pointer is decremented; during 
the second execute cycle, the new item (here, the PC) is written to the 
location pointed to by the SP register.  Step (b) is accomplished the 
same way as the unconditional “jump” instruction (JMP) described in 
Section 2.9.3: the location at which execution of the subroutine is to 
commence is simply transferred from the IR to the PC via the address 
bus.  Adding it all up, we find that a total of three execute states are 
needed to perform a JSR instruction. 
 
By way of contrast, execution of an RTS instruction requires only a 
single fundamental step: pop the return address off the stack and place 
it into the PC register.  This is really not much different than the “basic 
pop” instruction (POP) described in Section 2.9.4, except here the 
destination is the PC rather than the “A” register.  Also, because RTS 
is merely a “pop PC” operation, it can be performed in a single execute 
cycle, just like the “pop A” (POP) instruction. 
 
Table 2-24   System control table modifications for subroutine linkage 
                     instructions. 
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Table 2-25  IDMS modifications for subroutine linkage instructions. 
                   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
The system control table, modified to include the new JSR and RTS 
instructions, is shown in Table 2-24.  An ABEL file for the modified 
IDMS is given in Table 2-25.  Note that, since the JSR consumes all 
three execute cycles available, it technically “doesn’t matter” whether 
or not the RST signal is asserted during S3 (since the 2-bit state 
counter will automatically “wrap around” to S0 when the next clock 
edge occurs).  It’s probably a good idea, though, to show RTS as being 
asserted on S3, just in case future extensions to the instruction set 
require a state counter with additional bits. 
 
2.9.6  Other Possibilities 
 
Having established the “basic modern conveniences” needed to 
implement a very simple computer, our imaginations could “go wild” 
thinking up new instructions and architectural extensions.  We could 
accommodate additional instructions (opcodes) by simply increasing 
the number of opcode bits (an 8-bit opcode would give us 256 

 
" System control equations 
 
MSL = RUN.q&(S0 # S1&(LDA # STA # ADD # SUB # AND 
       # RTS) # S2&JSR); 
MOE = S0 # S1&(LDA # ADD # SUB # AND # RTS); 
MWE = S1&STA # S2&JSR; 
ARS = START; 
PCC = RUN.q&S0; 
POA = S0; 
 
PLA = S3&JSR; 
POD = S2&JSR; 
PLD = S1&RTS; 
 
IRL = RUN.q&S0; 
IRA = S1&(LDA # STA # ADD # SUB # AND); 
AOE = S1&STA # S2&JSR; 
ALE = RUN.q&S1&(LDA # ADD # SUB # AND # RTS); 
ALX = S1&(LDA # AND # RTS); 
ALY = S1&(SUB # AND); 
 
SPI = S1&RTS; 
SPD = S1&JSR; 
SPA = S1&RTS # S2&JSR; 
 
RST = S1&(LDA # STA # ADD # SUB # AND # RTS) # S3&JSR; 
 
END 
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possibilities).  And we could incorporate a more reasonably-sized 
memory by simply increasing the number of address bits.  We could 
add new registers, such as an additional accumulator or an index 
register, as well as new addressing modes.  An index register could be 
used as a pointer to memory, and facilitate implementation of a variety 
of new addressing modes. The homework problems included at the 
end of this chapter will allow us to explore some useful extensions. 
 
2.10  Summary and References 
 
In this chapter we have introduced the design and implementation of a 
simple computer and progressively embellished it with a number of 
extensions.  In addition to reviewing a “top-down, bottom-up” strategy 
for designing digital systems, we have also provided a “bridge” 
between the basic digital logic design topics reviewed in Chapter 1 and 
the microcontroller-oriented topics that commence in Chapter 3. 
 
There are a number of texts that delve into the myriad of topics 
associated with computer architecture and design, written at a variety 
of levels.  One of the best (and most widely used) introductory texts is 
Patterson and Hennessey’s Computer Architecture: The Hardware-
Software Interface (Morgan Kaufmann).  Their earlier text, Computer 
Architecture: A Quantitative Approach (Morgan Kaufmann), is an 
authoritative “advanced” text on the subject, used in numerous 
graduate programs. 
 
Other highly regarded texts on computer architecture include Mano’s 
Computer Engineering Hardware Design (Prentice-Hall), Stalling’s 
Computer Organization and Architecture (Macmillan), Haye’s 
Computer Architecture and Organization, and Hamacher’s Computer 
Organization.   
 
One of the best sources for unbiased reviews of the “latest and 
greatest” microprocessors is Microprocessor Report – a subscriber-
supported periodical published by Cahners Electronics Group.  
Another excellent source of information on recent developments in 
microprocessor architecture is IEEE Micro, a publication of the IEEE 
Computer Society. 
 
For information on embedded microcontrollers and applications, Circuit 
Cellar Inc. magazine is the source of choice.  Web sites of the major 
manufacturers (Intel, Motorola, Texas Instruments, Hitatchi, etc.) 
continue to be the best sources for detailed information concerning 
specific microprocessors and microcontrollers.  
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1. Modify the section of the IDMS source file, below, to provide up to 7 execute cycles (in 
addition to a single fetch cycle).  The original ABEL file is given in Tables 2-18 and 2-19. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

MODULE idmsr 
 
TITLE 'IDMS with 7 Execution States' 
 
DECLARATIONS 
 
" State counter 
SQA node istype 'reg_D,buffer'; " low bit of state counter 
SQB node istype 'reg_D,buffer';  
SQC node istype 'reg_D,buffer'; " high bit of state counter 
 
" Synchronous state counter reset 
RST node istype 'com'; 
 
" RUN/HLT state 
RUN node istype 'reg_D,buffer'; 
 
" Decoded state definitions 
 
S0 = 
 
S1 = 
 
S2 = 
 
S3 = 
 
S4 = 
 
S5 = 
 
S6 = 
 
S7 = 
 
 
EQUATIONS 
 
" State counter 
" If RUN negated or RST asserted, state counter is reset 
 
SQA.d =  
 
SQB.d =  
 
SQC.d = 
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2. The possibility of an alternate stack convention (using the SP register as a pointer to the 

next available location) was described in Section 2.9.4.  Show how the system control 
table for the PSH and POP instructions would change if this alternate convention were 
used.  Use the minimum number of execute states possible for each instruction.   

                  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3. Given that a practical program has a balanced set of PSH and POP instructions (i.e., each 

PSH is “balanced” by a POP), are there any advantages or disadvantages inherent in the 
alternate stack convention used in Problem 2-2? 

 
 

_______________________________________________________________________ 
 
_______________________________________________________________________ 
 
_______________________________________________________________________ 

 
 

Dec. 
 State 

 
 

Instr. 
Mnem. M

S
L

 

M
O

E
 

M
W

E
 

P
C

C
 

P
O

A
 

IR
L

 

IR
A

 

A
O

E 

A
L

E 

A
L

X
 

A
L

Y 

S
P

I 

S
P

D
 

S
P

A
 

R
S

T
 

S0   H H  H H H          

S1 LDA H H     H  H H      
S1 STA H  H    H H        
S1 ADD H H     H  H       
S1 SUB H H     H  H  H     
S1 AND H H     H  H H H     
S1 HLT L   L  L   L       
S1 PSH                
S1 POP                

S2 PSH                
S2 POP                
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4. The possibility of an alternate stack convention (using the SP register as a pointer to the 
next available location) was described in Section 2.9.4.  Show how the system control 
table for the JSR and RTS instructions would change if this alternate convention were 
used. Use the minimum number of execute states possible for each instruction. 

 
 

 
 

Dec. 
State 

 
 

Instr. 
Mnem. 

M
S

L
 

M
O

E 

M
W

E 

P
C

C
 

P
O

A
 

IR
L 

IR
A

 

A
O

E 

A
LE

 

A
LX

 

A
LY

 

P
LA

 

P
O

D
 

P
LD

 

S
P

I 

S
P

D
 

S
P

A
 

R
S

T 

S0   H H  H H H             

S1 LDA H H     H  H H         
S1 STA H  H    H H           
S1 ADD H H     H  H          
S1 SUB H H     H  H  H        
S1 AND H H     H  H H H        
S1 HLT L   L  L   L          
S1 JSR                   
S1 RTS                   

S2 JSR                   
S2 RTS                   

S3 JSR                   
S3 RTS                   

 
 
 
 
5. Given that a practical program has a balanced set of JSR and RTS instructions (i.e., each 

JSR is “balanced” by a RTS), are there any advantages or disadvantages inherent in the 
alternate stack convention used in Problem 2-4? 

 
 

_______________________________________________________________________ 
 
_______________________________________________________________________ 
 
_______________________________________________________________________ 
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6. The 8-bit ALU designed in Section 2.7.4 employs a simple ripple-carry topology.  Modify 

the ABEL source file for the adder/subtractor based on the use of two 4-bit carry look-
ahead adder blocks employing a “group ripple”.  The original ABEL file is listed in Tables 
2-5, 2-6, and 2-7. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
" Declaration of intermediate equations 
" Generate functions 
 
GA[0..3] = X[0..3]&Y[0..3]; 
GB[0..3] = X[4..7]&Y[4..7]; 
 
" Propagate functions 
PA[0..3] = X[0..3]$Y[0..3]; 
PB[0..3] = X[4..7]$Y[4..7]; 
 
" Least significant bit carry-in (0 for ADD, 1 for SUB => ALY) 
CIN = ALY; 
 
EQUATIONS 
 
S0 = PA0$CIN; 
S1 = PA1$CA0; 
S2 = PA2$CA1; 
S3 = PA3$CA2; 
S4 = PB0$CA3; 
S5 = PB1$CB0; 
S6 = PB2$CB1; 
S7 = PB3$CB2; 
 
" CLA equations (two 4-bit blocks, cascaded together)  
 
CA0 =   
 
CA1 =   
 
CA2 =   
 
CA3 =   
 
 
CB0 =    
 
CB1 =   
 
CB2 =   
 
CB3 =   
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7. Part of the ABEL file for the “final version” of the program counter (PC) register used in the 

simple computer is shown below (reduced to 4 bits).  Add the equations necessary to 
complete this file, given the declarations provided.  Recall that it is interfaced to both the 
Address Bus and the Data Bus, and uses the following control signals: 
 
 PCC – program counter increment enable 
 PLA – program counter load from Address Bus enable 
 POA – program counter tri-state output enable for Address Bus 
 PLD – program counter load from Data Bus enable 
 POD – program counter tri-state output enable for Data Bus 
 ARS – program counter asynchronous reset 
 
 MODULE pc4bit 
 TITLE '4-bit Version of Program Counter' 
 
 DECLARATIONS 
 PC0..PC3 node istype 'reg'; "PC bits – declared as internal nodes 
 AB0..AB3 pin istype 'com';  "Address Bus pins 
 DB0..DB3 pin istype 'com';  "Data Bus pins 
 PCC,PLA,POA,PLD,POD,ARS,CLOCK pin;  "Control signals 
 
 EQUATIONS 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8. Assume the "simple computer" instruction set is changed to the following: 
 

OPCODE MNEMONIC FUNCTION 
000 ADD addr  Add contents of addr to contents of A register 
001 SUB addr  Subtract contents of addr from contents of A register 
010 LDA addr  Load A register with contents of location addr 
011 AND addr  AND contents of addr with contents of A register 
100 STA addr  Store contents of A register at location addr 
101 HLT  (Halt) – Stop, discontinue execution 

 
Complete the instruction trace worksheets that follow for the fetch and execute cycles of 
the program stored in memory (up to, but not including, the HLT instruction).  Note that you 
will have to disassemble the program stored in memory to determine what it is doing. 
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(Problem 8, continued)  Fetch Cycle, Instruction at 00000: 
 
Execute Cycle, Instruction at 00000: 

Memory

A
d

d
re

ss

D
at

a

PC

IR
Opcode   Address

ALU

D
at

a

Flags

Instruction Decoder
and Micro-Sequencer

A register

Address

Data

Start Clock

Location Contents
00000 01001111
00001 00001110
00010 01101101
00011 10001011
00100 00101100
00101 10001010
00110 10100000
00111
01000
01001
01010
01011
01100 11001100
01101 00001111
01110 00111100
01111 00000111

Memory

A
d

d
re

ss

D
at

a

PC

IR
Opcode   Address

ALU

D
at

a

Flags

Instruction Decoder
and Micro-Sequencer

A register

Address

Data

Start Clock

Location Contents
00000 01001111
00001 00001110
00010 01101101
00011 10001011
00100 00101100
00101 10001010
00110 10100000
00111
01000
01001
01010
01011
01100 11001100
01101 00001111
01110 00111100
01111 00000111
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(Problem 8, continued) Fetch Cycle, Instruction at 00001: 

 
Execute Cycle, Instruction at 00001: 

Memory

A
dd

re
ss

D
at

a

PC

IR
Opcode   Address

ALU

D
at

a

Flags

Instruction Decoder
and Micro-Sequencer

A register

Address

Data

Start Clock

Location Contents
00000 01001111
00001 00001110
00010 01101101
00011 10001011
00100 00101100
00101 10001010
00110 10100000
00111
01000
01001
01010
01011
01100 11001100
01101 00001111
01110 00111100
01111 00000111

Memory

A
dd

re
ss

D
at

a

PC

IR
Opcode   Address

ALU

D
at

a

Flags

Instruction Decoder
and Micro-Sequencer

A register

Address

Data

Start Clock

Location Contents
00000 01001111
00001 00001110
00010 01101101
00011 10001011
00100 00101100
00101 10001010
00110 10100000
00111
01000
01001
01010
01011
01100 11001100
01101 00001111
01110 00111100
01111 00000111
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(Problem 8, continued) Fetch Cycle, Instruction at 00010: 

 
Execute Cycle, Instruction at 00010: 

Memory

A
d

d
re

ss

D
at

a

PC

IR
Opcode   Address

ALU

D
at

a

Flags

Instruction Decoder
and Micro-Sequencer

A register

Address

Data

Start Clock

Location Contents
00000 01001111
00001 00001110
00010 01101101
00011 10001011
00100 00101100
00101 10001010
00110 10100000
00111
01000
01001
01010
01011
01100 11001100
01101 00001111
01110 00111100
01111 00000111

Memory

A
dd

re
ss

D
at

a

PC

IR
Opcode   Address

ALU

D
at

a

Flags

Instruction Decoder
and Micro-Sequencer

A register

Address

Data

Start Clock

Location Contents
00000 01001111
00001 00001110
00010 01101101
00011 10001011
00100 00101100
00101 10001010
00110 10100000
00111
01000
01001
01010
01011
01100 11001100
01101 00001111
01110 00111100
01111 00000111
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(Problem 8, continued) Fetch Cycle, Instruction at 00011: 

 
Execute Cycle, Instruction at 00011: 

Memory

A
d

d
re

ss

D
at

a

PC

IR
Opcode   Address

ALU

D
at

a

Flags

Instruction Decoder
and Micro-Sequencer

A register

Address

Data

Start Clock

Location Contents
00000 01001111
00001 00001110
00010 01101101
00011 10001011
00100 00101100
00101 10001010
00110 10100000
00111
01000
01001
01010
01011
01100 11001100
01101 00001111
01110 00111100
01111 00000111

Memory

A
d

d
re

ss

D
at

a

PC

IR
Opcode   Address

ALU

D
at

a

Flags

Instruction Decoder
and Micro-Sequencer

A register

Address

Data

Start Clock

Location Contents
00000 01001111
00001 00001110
00010 01101101
00011 10001011
00100 00101100
00101 10001010
00110 10100000
00111
01000
01001
01010
01011
01100 11001100
01101 00001111
01110 00111100
01111 00000111
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(Problem 8, continued) Fetch Cycle, Instruction at 00100: 

 
Execute Cycle, Instruction at 00100: 

Memory

A
d

d
re

ss

D
at

a

PC

IR
Opcode   Address

ALU

D
at

a

Flags

Instruction Decoder
and Micro-Sequencer

A register

Address

Data

Start Clock

Location Contents
00000 01001111
00001 00001110
00010 01101101
00011 10001011
00100 00101100
00101 10001010
00110 10100000
00111
01000
01001
01010
01011
01100 11001100
01101 00001111
01110 00111100
01111 00000111

Memory

A
dd

re
ss

D
at

a

PC

IR
Opcode   Address

ALU

D
at

a

Flags

Instruction Decoder
and Micro-Sequencer

A register

Address

Data

Start Clock

Location Contents
00000 01001111
00001 00001110
00010 01101101
00011 10001011
00100 00101100
00101 10001010
00110 10100000
00111
01000
01001
01010
01011
01100 11001100
01101 00001111
01110 00111100
01111 00000111
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(Problem 8, continued) Fetch Cycle, Instruction at 00101: 

 
Execute Cycle, Instruction at 00101: 

Memory

A
d

d
re

ss

D
at

a

PC

IR
Opcode   Address

ALU

D
at

a

Flags

Instruction Decoder
and Micro-Sequencer

A register

Address

Data

Start Clock

Location Contents
00000 01001111
00001 00001110
00010 01101101
00011 10001011
00100 00101100
00101 10001010
00110 10100000
00111
01000
01001
01010
01011
01100 11001100
01101 00001111
01110 00111100
01111 00000111

Memory

A
d

d
re

ss

D
at

a

PC

IR
Opcode   Address

ALU

D
at

a

Flags

Instruction Decoder
and Micro-Sequencer

A register

Address

Data

Start Clock

Location Contents
00000 01001111
00001 00001110
00010 01101101
00011 10001011
00100 00101100
00101 10001010
00110 10100000
00111
01000
01001
01010
01011
01100 11001100
01101 00001111
01110 00111100
01111 00000111
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9. Assume the simple computer instruction set has been changed to the following: 
 

Opcode Mnemonic Function Performed 
0  0  0 ADD  addr Add contents of addr to contents of A 
0  0  1 SUB  addr Subtract contents of addr from contents of A 
0  1  0 LDA  addr Load A with contents of location addr 
0  1  1 AND  addr AND contents of addr with contents of A 
1  0  0 STA  addr Store contents of A at location addr 
1  0  1 HLT Halt – Stop, discontinue execution 

 
        On the instruction trace worksheet, below, show the final result of executing the program  
        stored in memory up to and including the HLT instruction. 
            
            
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Memory

A
d

d
re

ss

D
at

a

PC

IR
Opcode   Address

ALU

D
at

a

Flags

Instruction Decoder
and Micro-Sequencer

A register

Address

Data

Start Clock

Location Contents
00000 01001111
00001 00001110
00010 01101101
00011 10001011
00100 00101100
00101 10001010
00110 10100000
00111
01000
01001
01010
01011
01100 11001100
01101 00001111
01110 00111100
01111 00000111
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CHAPTER 3 
 
INTRODUCTION TO MICROCONTROLLER 
ARCHITECTURE AND PROGRAMMING MODEL 
 
A good “working analogy” useful in the study of computer instruction sets 
can be gleaned from a master carpenter, such as Norm Abram of This Old 
House and New Yankee Workshop fame.  Norm would never start a 
construction project without first mastering the “tools in the toolbox” – an 
apt description of a machine’s instruction set and programming model.  He 
would not only figure out how each tool works, but also practice using it 
before starting a project that required use of that tool. Further, Norm would 
not use any woodworking tool without careful adherance to safety rules, 
e.g., wearing safety glasses and keeping protective blade guards in place.  
We need to develop a similar posture as we write programs, protecting 
ourselves from software errors that might cause “bits to fly all over the 
place” – either figuratively or literally (as we will discuss in Chapter 10 
when we consider ethical ramifications of product malfunctions induced by 
software errors).  
 
Norm would also tell us that before, say, using a compound mitre saw or a 
biscuit joiner, we should practice (and become good at) making “straight 
cuts” with a simple table saw.  Stated another way, we should master an 
instruction set and basic program structures before we “move up” to 
programming in a high-level language. Programming, like carpentry, is a 
profession skill – a skill that cannot be learned by merely reading about it 
or watching someone else do it.  The lab experiments and homework 
exercises that accompany this chapter will provide an opportunity for 
developing these skills. 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
Figure 3-1  The author’s “hero” – master carpenter Norm Abram. 
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3.1  Differing World Views 
 
A personal computer is perhaps the first thing that comes to mind when 
the word “microprocessor” is mentioned.  Thanks to commercial 
advertising on national television and the ubiquity of PCs, virtually 
everyone knows what “Intel InsideTM” means.  If there’s one thing the 
much-ballyhooed “Y2K Crisis” accomplished, though, it was to make the 
general populace aware that embedded microprocessors are literally 
everywhere.  The fundamental differences between microprocessors used 
in personal computers and those used for embedded applications are not 
universally appreciated, however.  In fact, two basic “world views” 
regarding the role of microprocessors are applicable.  What might be 
called the “general-purpose view” is that a microprocessor is an integral 
part of a machine that runs “shrink-wrapped” software (or, on which 
application programs can be written and run, most often using a high-level 
language or development tool).  The “embedded view”, by way of contrast, 
is that microprocessors (or microcontrollers) are a basic building block of 
modern digital system design – in particular, of “intelligent” products. 
 
Calling a computer “general-purpose” implies user programmability.  It 
also implies support for an operating environment that fosters such use.  
Virtually all general-purpose application programs run under a time-
sharing operating system (e.g., variants of Unix or WindowsTM), where the 
“processor’s attention” is multiplexed among muliple tasks (which is why 
these systems are sometimes referred to as multi-tasking or multi-
programming).  The amount of time it takes an application to respond to 
user input (response time or latency) is generally not considered “critical” 
in nature.  Stated another way, WindowsTM “doesn’t care” if the mouse 
pointer becomes “sluggish” in its response while the processor focuses on 
a more “important” activity, such as WordTM’s insistence on “correcting” the 
author’s colorful (and sometimes questionable) use of the English 
language. 
 
Embedded applications, on the other hand, are by definition non-user-
programmable; as such, they are often referred to as “turn-key” systems 
(i.e., turn the key “on” and they run).  Many (but not all) embedded 
applications are real time in nature – meaning they must respond within 
certain time constraints to external events (this is sometimes referred to as 
mission critical timing).  For example, when an automobile’s antilock brake 
mechanism is activated, the microcontroller in charge must immediately 
begin to pulse the brake cylinders at a periodic rate and continue to do so 
until the vehicle stops.  This task cannot be “rolled out” while the driver 
surfs the wireless web for the best buy on snowshoes. 
 
There are several reasons why the distinction between general-purpose 
and embedded applications of microprocessors is important.  First, 

personal 
computer 

general-purpose 
world view 

embedded  
world view 

user programmability 

time-sharing OS 

multi-tasking 
multi-programming 

response time 
latency 

non-user-programmable 

turn-key system 

real time 

mission critical 
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different architectural and/or organizational characteristics of 
microprocessors can make them more (or less) suited for the target 
application.  One of the most challenging tasks in embedded system 
design is matching the requirements of a target application with the 
computational and peripheral interface capabilities of a candidate 
microcontroller.  Unlike the “general-purpose” world, more (processing 
power, clock speed, I/O pins, integrated peripherals, etc.) is not 
necessarily  better – rather, it is the closeness of the “match” between 
processor capability and application requirements that is key.  Jaded by 
the impact of Moore’s Law on personal computing, this reality is hard for 
“beginning students” to comprehend and appreciate.  
 
Second, to come to the conclusion that, say, a 1.5 GHz Pentium IV is a 
“better” processor than an 8 MHz 68HC12 – without specifying the 
intended application domain – is nonsensical.  Simply stated, one would 
never use a 68HC12 as the “brains” of a personal computer and never use 
a Pentium III to control a microwave oven.  Surprising as it may sound, 
some of the 4-bit microcontrollers currently available are “plenty powerful” 
for many consumer products that come to mind, such as appliance 
controllers, garage door openers, ceiling fan controllers, answering 
machines, feature phones, TV and radio tuners, etc.  There are some 
applications, however, where the distinction is a bit less clear.  For 
example, a point-of-sale terminal could be built around either a 
microcontroller like the 68HC12 or a (low-end) Pentium microprocessor (or 
one its “x86” predecessors targeted for embedded applications).  The 
“goodness” or “badness” of a particular processor can only be evaluated in 
the context of a target application. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

A Third World View? 
 
A relatively new “world view” that is emerging (some would say being thrust 
upon us) is that the personal computer  is the “basic building block” of 
modern embedded system design.  Not a conventional desktop personal 
computer, but a “stripped down” version running an operating system 
geared toward embedded applications, like Windows CETM or variants of 
Linux.  For the point-of-sale terminal cited in the text, one could argue that 
certain forms of them look “a lot like a PC” – they have a video display, a 
keyboard, and perhaps a bar code scanner (instead of a mouse).  So, the 
argument goes, why not just use the “guts” of a PC as the basic building 
block for this device and write the application code using PC-like tools that 
run under a PC-like operating system?  Great idea for this particular 
application.  But what if a simpler, higher volume unit is needed of the “may 
I take your order” genre, where a keypad, LCD (liquid crystal display), and 
cash drawer release solenoid are the only forms of I/O?  Here it is much 
harder to justify dedicating an entire PC to each terminal.  As we say in the 
industry, some “food for thought”… 
 

more is not 
necessarily better 

Moore’s Law 

application domain 
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What, then, are the characteristics that distinguish processors targeted for 
general-purpose applications versus those targeted for embedded 
applications?    One reason we wish to address this question is to provide 
rationale for choosing the “most appropriate” processor to “cut our digital 
teeth” on.  Another reason for addressing this question is to provide a 
context for understanding why processors targeted for different 
applications are necessarily different.  The discussion which follows is 
intended to provide a basis for this understanding.  It is not, however, 
intended as a detailed presentation on the characteristics of general-
purpose systems – complete treatment of this subject alone would fill an 
entire textbook!  
 
3.2  Characteristics That Distinguish Microprocessors 
 
Processors that are primarily intended for embedded applications 
generally possess the following characteristics.  Most notably, perhaps, is 
they are often “smaller” (in terms of bit width and address space) than 
their general-purpose counterparts.  Since interrupts are a “way of life” in 
event-driven systems, a flexible interrupt structure is a key characteristic 
of control-oriented microprocessors.  And since interrupts occur frequently 
in event-driven systems, the context switching overhead must necessarily 
be low – generally implying the need for relatively small register sets.  
Because embedded systems typically involve a wide variety of interfaces, 
processors targeted for such applications typically provide a mixture of 
both digital and analog I/O on-chip.  A small amount of on-chip program 
memory (ROM) and “scratchpad” RAM are usually sufficient, since many 
embedded applications are relatively “simple” in nature.  Finally, due to the 
“real time” nature of many embedded applications, the amenability of 
assembly-level “patching” of time-critical code segments is important. 
 
General-purpose applications, run under a time-sharing operating system, 
generally require processors with completely different characteristics and 
built-in features than those used for embedded applications.  Due to the 
multi-tasking, multi-programming nature of general-purpose systems, 
support for virtual memory is typically built into the processor and its 
instruction set.  Simply put, virtual memory provides an address space for 
each program or process that is not constrained by the physical (or actual) 
memory installed in the system.  For example, even though a personal 
computer may only have 128 megabytes (MB) installed in it, a given 
program can have as much as a terabyte (240 MB) of address space 
available to it.  Coupled with protection mechanisms, virtual memory is 
implemented using a hierarchy of memory subsystems, of varying size 
and speed.  Closest to the processor – usually on-chip – is a high-speed 
cache memory (which itself may consist of more than one level).  The next 
level typically consists of comparatively slower dynamic RAM chips.  The 
highest (and slowest) level is implemented with a mass storage device, 
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such as a hard disk drive.  The “illusion” of a virtually limitless private 
address space is accomplished by loading – on an “as needed” (or 
demand) basis – portions of the application and its data set that are 
needed at a particular instant.  This demand paging process is managed 
by the time-sharing operating system:  when a block of code (or data) 
needed is not present in memory, the task is “rolled out” while the 
code/data is retrieved from the “next higher” level(s) of the memory 
hierarchy.  While this page fault is being serviced, the next task in the 
operating system’s process queue is started.   
 
Another major difference between processors targeted for general-
purpose applications and embedded applications is I/O.  For general-
pupose systems, the main form of I/O is either memory-to-memory, 
memory-to-disk, or memory-to-network.  Further, the CPU rarely “directly” 
participates in these I/O operations; instead, they are “delegated” to a 
special-purpose auxiliary processor called a direct memory access (DMA) 
controller.  To perform a block transfer, the main processor simply tells the 
DMA controller the starting addresses of the source and destination blocks 
along with the size (byte count) of the transfer.  For example, when the 
operating system wishes to update the graphics display, the DMA 
controller is told to copy the contents of the display buffer (in memory) to 
the graphics controller.  The main processor can continue to execute out 
of its on-chip cache memory while the DMA controller uses the external 
address and data buses to complete the data transfer. 
 
Because high-level language compilation can be more effectively 
optimized if a number of “general-purpose” registers are available in the 
programming model, processors targeted for general-purpose applications 
often sport large register sets (where “large” is at least eight, and in most 
cases 16 or 32).  The larger the register set, however, the greater the 
context switching overhead – thus impacting system latency.  For a time-
sharing operating system, though, the context switching overhead is of 
little consequence, since a task switch typically occurs every 5 
milliseconds (i.e., at a 200 Hz rate).  Since context switches are relatively 
infrequent (and the processing is typically not “mission critical” in nature), 
the increased overhead of saving and restoring large register sets is 
inconsequential. 
 
Also, because compilers are much better than humans at optimizing code 
targeted for large-register-set processors, assembly language patching of 
general-purpose application code is a practice that has largely been 
abandoned.  Any remaining skeptics need look no further than optimized 
MIPS code to verify this claim – trying to “patch” this kind of code usually 
does more “harm” than good! 
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One last, but very important, distinction between processors targeted for 
general-purpose versus embedded applications is the “world view” of 
interrupts.  In event-driven embedded systems, interrupts are a way of life; 
in general-purpose applications, they are viewed as more of an “irritation”, 
often (but not always) associated with something “bad” happening – e.g., 
“this program has performed an illegal operation and is being shut down”. 
 
3.3  Taxonomy of Microprocessors  
 
The taxonomy of processors depicted in Figure 3-2 helps put the variety of 
microprocessors and microcontrollers currently available into perspective.  
Within the major categories of “General Purpose” and “Embedded 
Control”, microprocessors can be further subdivided based on instruction 
set architecture and ALU bit-width.  The “classic” classifications based on 
instruction set architecture are: complex instruction set computer (CISC) 
and reduced instruction set computer (RISC).  To help understand this 
distinction, a brief “history lesson” is in order. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3-2  Taxonomy of Microprocessors. 
 
The burgeoning complexity of microprocessors in the early 1980’s gave 
rise to the “less is best” RISC mentality.  The underlying principle was that 
a “less complex” microprocessor chip could run faster – so much so that it 
could run a program several times faster than a comparable CISC 
microprocessor, despite its lack of “powerful” instructions and addressing 
modes.  Instead of implementing complex, multi-cycle instructions in 
hardware, the burden for this functionality was shifted to software.  An 
important key requisite to code optimization was restricting memory 
references to “load” and “store” instructions (hence the name load-store 
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architecture) – all other instructions (add, subtract, AND, OR, etc.) were 
restricted to operands contained in (and destined for) registers.  The chip 
real estate vacated by removing large microcode ROMs common in 
CISCs was devoted to hardware resources that would help an optimizing 
compiler, such as large register sets and “register windowing” techniques 
to facilitate subroutine linkage.  While less “compact” than a comparable 
CISC program, the simplicity afforded by fixed-field decoding and simple 
addressing modes made single-cycle execution of RISC instructions a 
possibility.  
 
To be a “true RISC” back then required adherence to some rather 
Draconian architectural tenets: no more than 40 fixed-length, fixed-field 
instructions; no more than 4 addressing modes; and strictly load-store.  
Most so-called “RISC” machines today, however, can only be identified as 
such based on the last characteristic.  Other than being load-store 
architectures, current RISC machines sport hundreds of instructions, 
numerous addressing modes, variable-length instructions, and non-fixed 
fields.  Apparently concerned by this deviance from the tenets set in place 
by the “founding fathers” of RISC, the designers of the IBM Power 
architecture suggested that the acronym be changed to stand for “reduced 
instruction set cycles”. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
While RISCs were gradually becoming more CISC-like during the late 
1980’s and early 1990’s, the world’s “most popular” CISC architecture 
(Intel x86) was adopting “RISC-like principles” in its design.  Advances in 
micro-architecture and process technology have since subsumed the 
RISC-CISC performance debate.  In essence, most contemporary 
microprocessors (including many microcontrollers) are in reality “CRISC” 
machines – complex machines with reduced instruction set cycles. 
 

High Water Mark of Complexity 
 
Microprocessors have become increasingly complex since their inception in 
the early 1970s.  Perhaps a “high water mark” of complexity was the ill-fated 
Intel iAPX 432, that company’s attempt in 1981 to introduce the world’s first 
“32-bit mainframe” microprocessor.  Not only did the iAPX 432 sport a 
sophisticated virtual memory management scheme, but it also had bit-
variable length instruction opcode and operand fields.  When Intel finally 
produced a working chip set two years later,  their competitors – which 
included Motorola, National, and Zilog – had all produced viable 16-bit 
microprocessors with an inkling of virtual memory support.  The problem for 
Intel was that the smaller competing processors were several times faster 
than the iAPX 432.  The fate of this ambitious device was unceremoniously 
doomed. 
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As one might guess, much has been written about RISC versus CISC 
tradeoffs – a number of “classic” articles on this subject are listed at the 
end of this chapter.  The brief account provided here is intended only to 
provide a context for understanding the taxonomy of microprocessors 
depicted in Figure 3-2.  Referring once again to this figure, we note that for 
general-purpose applications, 32- and 64-bit machines are the basic 
variants currently available (the earliest devices in this category were 16-
bit machines, but these are no longer considered viable for most of today’s 
time-sharing operating systems).  
 
In the embedded control domain, however, there is much greater variety, 
including a new category: digital signal processor (DSP) devices.  The 
primary characteristic that distinguishes a DSP from a “generic” 
microcontroller is the amount of hardware resources devoted to 
performing the “multiply-and-accumulate” (MAC) operation – a staple of 
most signal processing algorithms – as quickly as possible.  Here there 
are two basic categories: integer (also called fixed point), of which there 
are 16- and 24-bit variants; and floating point, most of which are 32-bit 
devices.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
CISC-style devices targeted for embedded applications range from 4- to 
32-bits wide.  Until recently, 4-bit devices of this genre were the highest 
volume parts – of all microprocessors and microcontrollers on the market.  
(Note, however, that highest volume does not imply highest profit – 
competition and small margins yield relatively small profits compared with, 
say, the “latest and greatest” microprocessors targeted for general-
purpose systems, which typically enjoy a much higher “markup”.)  Larger 
8- and 16-bit CISC microcontrollers are the current overall volume giants, 
with 32-bit devices gaining ground.  Many of the 16- and 32-bit CISC 
microprocessors targeted for embedded applications are actually “re-

24-bit Wonder 
 
In the digital world where “powers of two” rule, a 24-bit processor may seem 
a bit strange.  What numeric-oriented applications might best be served by 
24-bits of resolution?  If 16-bits is insufficent for such an application, why not 
move up to 32-bits of resolution as the next logical choice?  It turns out that 
the application – and it’s a big one – for which 24-bits “rule” is digital audio.  
So-called “CD quality” audio requires 16-bits of resolution, providing a 
theoretical dynamic range of 96 dB.  To maintain this dynamic range in the 
face of various “audio processing” algorithms (filtering, equalization, 
reverberation, etc.), “extra bits” are required to represent intermediate 
results – especially in a fixed point processor.  The 24-bits of resolution 
available in popular audio-oriented digital signal processors provide the 
number of bits necessary for CD-quality sound. 
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purposed” previous-generation devices formerly targeted for general-
purpose systems (e.g., the Intel 386EC and 486EC as well as the 
Motorola 68000EC and 68020EC devices).  Together, this “bubble” of 4- 
to 32-bit CISC devices on the taxonomy diagram represents a mammoth 
sales volume of components. 
 
RISC-style devices targeted for embedded applications range from 8- to 
64-bits wide.  One of the newer players on the block, Microchip 
Corporation, has become famous for its “PIC” line of 8-bit microcontrollers. 
This popular, wide-ranging series of devices is the closest thing to “true 
RISC” currently available: they have small instruction sets, few addressing 
modes, small on-chip memories, and simple on-chip peripherals.  Further, 
some of the PIC microcontrollers are housed in packages with as few as 8 
pins.  At the other end of the spectrum, a 64-bit MIPS RISC-style 
processor is very popular as well – anyone who has never heard of 
Nintendo 64TM either lives in Palm Beach County, or doesn’t have small 
children!  As was the case for “retired” 32-bit CISC processors, their RISC-
style counterparts have also been “re-purposed” for embedded 
applications. 
 
 
 
 
 
 
 
 
 
 
3.4  Choosing an Education-Appropriate Microprocessor 
 
At this juncture, we are equipped to choose the computing device that will 
serve as the focus of our educational venture.  Perhaps the only thing 
clear, though, is that there are a lot of choices – each with its own 
tradeoffs.  And it is here where many educators choose to take different 
paths.  Bewildered by all the tradeoffs, some simply choose to simulate a 
“synthetic” instruction set.  This approach, however, lacks the “hands on” 
feel of using a “real” device that “does something”.  Siding with familiarity, 
a significant number select the Intel “x86” architecture as the vehicle of 
choice.  A wide array of texts along with some laboratory tools have been 
developed for this purpose.   This approach, however, can unwittingly 
“rob” students of the perspective that there are other, much less powerful 
devices available that are not only less expensive, but also much better 
suited for a wide range of embedded applications. 
 

PIC microcontrollers 
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Provided they “make it past” the editor, this chapter contains a number of 
references to Palm Beach County (Florida), which readers may recall was 
made famous for its use of the stupendously complex and utterly confusing 
“butteryfly ballot” in the Election of 2000.  One thing, however, that Palm 
Beach County and the rest of Florida deserve “partial credit” for is making 
the punch card ballot an artifact of the past…at least we hope! 
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Many other educators, though – motivated by the need to equip students 
for senior design projects in the digital systems area – choose 
microcontrollers as the “introductory vehicle”.  This approach not only has 
the advantage of introducing (and reinforcing) basic concepts of computer 
architecture and machine instruction sets, but also of applying the 
hardware concepts learned in prerequisite courses to interfacing 
microcontrollers with external devices.  Further, the same microcontroller 
covered in such an introductory course can be incorporated into senior 
design projects – where students have an opportunity to further apply 
what they have learned about programming and interfacing to the design 
of a complete system.  In short, focusing on microcontrollers gives 
students a good opportunity to learn about and apply a “basic building 
block” of modern digital system design – thus the rationale for the 
approach embraced in this text. 
 
We have a “slight” problem, though: microcontrollers are not designed 
strictly with “education” in mind (and, even if one were, it would be 
impossible to reach universal agreement on its instruction set, 
programming model, and on-chip peripherals).  Rather, most have been 
designed under the influence of “marketing types” whose mission in life is 
to maximum the company’s bottom line, accomplished by making a given 
microcontroller as “universally applicable” as possible.  The unfortunate 
consequence, from an educational standpoint, is an ever-increasing 
escalation of features and operating modes one must wade through to 
learn “the basics” – details that tend to confuse and confound the learning 
process. 
 
 Accepting this dilemma (and recalling our basic mission, which is to 
introduce students not only to microcontrollers, but also to computer 
architecture and programming models), what considerations should be 
made in choosing a specific device – in particular, one that is “education 
appropriate” (and friendly)?  Some key characteristics that come to mind 
include the following: 
• straight-forward, easy-to-learn instruction set 
• relatively “powerful” (i.e., CISC-like) instruction set, since we are 

learning to program at the “assembly level” 
• enough addressing modes to make it interesting, but not so many that 

they become overwhelming or confusing 
• variety and size of on-chip memories 
• relatively few “operating modes” 
• not too many bits “wide” (8- or 16-bits ideal) – we want to be able to 

perform reasonably powerful mathematic operations (multiply and 
divide), but usually don’t need (or want) the precision (and overhead) 
afforded by floating point  

• a reasonable complement of bit manipulation instructions to facilitate 
control-oriented applications 

marketing types 

universal applicability
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• amenable to high level language compilation 
• a representative set of on-chip peripherals commonly used in control-

oriented applications 
• appropriate, in terms of complexity (ease of use) and capability, for 

senior design projects 
• fairly widespread application (design-ins) 
• quality of documentation and support available 
• commercial availability of an evaluation board and other 

hardware/software development tools (assemblers, debuggers, 
compilers) 

• in-circuit debugging support 
• family history/heritage 
• low cost 
 
The “bad news” is that no single commercial microcontroller possesses all 
the characteristics listed above.  The “good news” is that a number of 
devices currently available satisfy many of these “education appropriate” 
characteristics.  Among the author’s “personal favorites” are Motorola, 
Hitachi, and PIC devices.   Forced to choose, the Motorola 68HC12 
emerges as a leading candidate, with the MC68HC912B32 as the 
particular variant of interest. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Why the 68HC12?  It has a powerful, yet reasonably straight-forward 
instruction set; has a good complement of addressing modes; has multiple 
on-chip memories of different types (SRAM, byte-erasable EEROM, and 
Flash EEROM); is 16-bits wide, providing a good balance between 
“powerful math” and interfacing complexity; has a good set of bit 
manipulation instructions; has third-party “C” compilers available for it; has 
a great set of on-chip peripherals that are fairly easy to use; has proven 
itself in senior design projects the author has supervised; is gaining 
widespread application as the “upgrade” for its predecessor, the popular 

MC68HC912B32 

personal favorites 

68HC12 
MC68HC912B32 

The Elusive Pedagogical Microprocessor 
 
Unfortunately (for educators), microprocessors and microcontrollers are 
created with markets in mind, not students or professors.  The consequence 
of being market-driven (and, in most instances, “designed by committee”) is 
that a number of features and operating modes creep into the design of a 
product line – and tend to proliferate – as the availability of chip real estate 
increases.  That plus the desire to maintain “legacy compatibility” makes it 
virtually impossible to find a “clean, simple, yet reasonably powerful” 
microcontroller ideal for education.  The “hands on” appeal of using a “real” 
device, however, still outweighs the resignation to simply simulate a 
synthetic device – at least at this point in “digital history.”  Hopefully, the 
author will have retired before the “simplest” microcontroller available is far 
too complex to cover in a single course! 
 



Microcontroller-Based Digital System Design  Chapter 3 ­ Page 12 

Preliminary Draft  ©2001 by D. G. Meyer  

68HC11; has good, complete documentation; has an inexpensive 
evaluation board available for the particular variant of interest; has in-
circuit debugging capability; has a rich family heritage dating to the 
“humble beginnings” of microprocessors; and isn’t prohibitively expensive. 
 
The sound of whirring power tools is emanating from Norm’s New Yankee 
Workshop, so let’s start learning how to use them! 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3.5  Tools of the Trade 
 
The homework and lab exercises included with this text are based on use 
of the M68EVB912B32 Evaluation Board, shown in Figure 3-3.  The EVB 
is packaged with printed copies of all pertinent documentation, which are 
also included as PDF files on the CD-ROM that accompanies this text.  A 
disk that contains IASM12, an integrated editor and assembler program, is 
provided as well.  This program runs under DOS on any conventional 
personal computer.  The 68HC912B32 microcontroller on the EVB comes 
pre-loaded with a “debug monitor” program, called D-Bug12.  This rather 
extensive debugging utility includes an in-line assembler, which will prove 
useful as we experiment with different instructions.  All that needs to be 
added to get “up and running” are a personal computer capable of 
supporting DOS, a standard 9-pin serial port extension cable, and a 
regulated 5 VDC power supply. 
 
Another “nice feature” of the M68EVB912B32 is a protyping area that can 
be used to implement custom interfacing circuitry.  We will make use of 
this provision in Chapter 8 to complete an illustrative design project.  On 
the EVB illustrated in Figure 3-3, a standard power jack has been installed 
in the prototyping area to provide a convenient means of connecting a 
commercially available 5 VDC “wall wart” power supply.  
 

Truth in Advertising 
 
The primary focus of this text is to help students learn how to design 
microcontroller-based systems.  To accomplish this goal, it is most 
expedient to use a “real” microcontroller as a “working example.”  And it also 
makes sense, along this same vein, to focus on a single representative 
device (here, the MC68HC912B32) rather than attempt to explain the 
differences (variations) among different microcontroller family members.  
Further, there is no pretense of providing a complete technical reference or 
usage guide on this particular microcontroller – these documents are readily 
available from the manufacturer’s  web site (http://mot-sps.com). 
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Figure 3-3   Motorola M68EVB912B32 Evaluation Board with  
                    power supply jack installed in prototyping area. 
 
 
Before we delve into the details of the 68HC12 architecture and 
programming model, a few suggestions on how to make use of these 
“tools of the trade” are in order.  There are three primary tools we will be 
using throughout our initial discussion of the 68HC12 instruction set: (1) 
the integrated editor, assembler, and communication utility; (2) the EVB, 
connected to the PC via a COM port; and (3) the D-Bug12 monitor 
program, that runs on the EVB when it is powered up.  
 
First, some “helpful hints” on installing IASM12.  After copying the 
contents of the diskette supplied with M68EVB912B32 to an appropriate 
directory on the PC’s hard drive, run the program iasminst.exe.  For 
most of the options it prompts the user for, the default is fine – with some 
notable exceptions.  Most users will want a “listing file” automatically 
generated, an “object file” automatically generated, “cycle counts” shown 
in the listing file, “macros expanded” in the listing file, and “include files 
expanded” in the listing file.  Simply re-run the iasminst.exe program to 
verify or change any of these settings. 
 
Once installed, typing iasm12 in a DOS window starts the program, which 
initially comes up in “editor” mode.  To “talk” to the board, a 
communication (“COMM”) window must be opened; this is accomplished 
by pressing function key F7.  Pressing F8 several times will expand this 
window.  As its name implies, the COMM window allows us to 
communicate directly with the EVB and the monitor program (D-Bug12) it 
is running.  Upon powering up (or resetting) the EVB, the display shown in 
Figure 3-4 should be obtained.  Note that “>” is the “monitor prompt”.  
Pressing function key F10 closes the COMM window, returning IASM12 to 
its “editor” mode.  A good on-line “help” capability, replete with information 

installing 
IASM12 

Reset Button 

Prototyping Area 

COM Port 
Connector 

5 VDC Power 
Connector 

68HC912B32 
Microcontroller 

User-Installed DC 
Power Jack 

COMM window 

monitor prompt 

on-line help 



Microcontroller-Based Digital System Design  Chapter 3 ­ Page 14 

Preliminary Draft  ©2001 by D. G. Meyer  

on how to use IASM12 as well as details about the 68HC12 instruction set 
(including examples), can be accessed by pressing the F1 function key. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
Figure 3-4  IASM12 Communication Window to EVB. 
 
Once we have established communication with the EVB, we can execute 
any of the D-Bug12 monitor commands, described in Chapter 3 of the 
M68EVB912B32 Evaluation Board User’s Manual (packaged with the EVB 
and included as a PDF on the CD-ROM that accompanies this text).  This 
would be a good time to look over the various commands D-Bug12 is 
capable of executing, as well as the EVB setup and configuration 
information provided in Chapters 1 and 2 of this manual. 
 
Fortunately, we will only need to use a few of these commands to master 
the basics of the 68HC12 instruction set.  In particular, we will find the 
assembler/disassembler command (asm) and the trace command (t)  
useful in understanding the functions performed by various instructions.  
To initialize the contents of various registers and memory locations, we 
will use the register modify (rm) and memory modify (mm) commands.  
Once we start creating assembly source files, we will use the load (l) and 
go (g) commands to download and execute them on the EVB. 
 
An assembly source file is a text file containing a series of 68HC12 
assembly instructions, along with comments that describe the program’s 
operation; a “.asm” extension is used to distinguish the “source” version of 
the program file from the derivatives generated as a result of the 
“assembly process”.   Any text editor can be used to create an assembly 
source file: either the one integrated into IASM12 (which is somewhat 
cumbersome to use), or any of the standard WindowsTM editors like 
Notepad.  (Former UNIX hacks, such as the author, might prefer to use 
the DOS versions of vi or emacs instead.)   Once an assembly source file 
has been created, it can be loaded into the IASM12 editor (by pressing 
key F3) and assembled (by pressing key F4).  Provided the assembly was 
successful, the object file created (also called an “S-record” file, hence the 

F1-Help  F2-Save  F3-Load  F4-Assemble F5-Exit  F7-Comm  F9-DOS shell F10-Menu
+-------------------------------- COMM WINDOW ---------------------------------+
¦                                                                              ¦
¦D-Bug12 v2.0.2                                                                ¦
¦Copyright 1996 - 1997 Motorola Semiconductor                                  ¦
¦For Commands type "Help"                                                      ¦
¦                                                                              ¦
¦>                                                                             ¦
¦                                                                              ¦
¦                                                                              ¦
¦                                                                              ¦
¦                                                                              ¦
¦                                                                              ¦
¦                                                                              ¦
+------ F1-Help  F6-Download F7-Edit  F8,F9-Resize F10-Close window ----------
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“.s19” extension) can be downloaded to the EVB for execution.  As a 
byproduct of the assembly process, an assembled source listing file 
(“.lst”) is also created.  The listing file shows the address at which each 
instruction is located in memory, along with the object code generated – 
information that will prove invaluable when debugging a program. 
 
The first “barrier” students typically encounter is keeping track of which 
tool does what (and which one they are currently “talking to”) – since       
D-Bug12 commands to the EVB are entered through the PC’s keyboard, 
and the EVB’s response is displayed on the PC’s monitor.  This challenge 
generally manifests itself the first time students attempt to create an 
assembly source file, assemble it, view the assembled source listing, 
download the object file generated to the EVB, and attempt to execute it. 
To help us navigate through this barrier, we will “walk” our way through a 
simple example based on the “simple computer” instructions we learned 
about in Chapter 2.  We will then be prepared to test any of the 68HC12 
instructions covered in the sections of this chapter that follow. 
 
Assume we have created the assembly source file depicted in Figure 3-5, 
named test.asm, using the text editor of our choice.  All that this 
program does is load the “A” register (accumulator) with the contents of 
location 90016 in memory, add the contents of location 90116 to it, and 
stores the result back in memory location 90016.  The code that does all 
this “orginates” at location 80016 in memory – which is conveyed to the 
assembler program using the ORG pseudo-op (a pseudo-op is an 
assembler directive that provides information to the assembler program, 
but does not produce any executable code for the microcontroller).  The 
label MAIN marks the beginning of the “main program” (and therefore 
assigned the value 80016 by the assembler); it is used as a symbolic 
reference by the JMP instruction to transfer control back to the beginning 
of the instruction sequence once it completes – the astute digijock(ette) 
will recognize this as an “infinite loop”.  The END pseudo-op simply tells 
the assembler program it has reached the end of the source file.  Note that 
comments are delineated by a semicolon, and that “white space” may be 
added at will.  Also note that the assembly instructions themselves are 
case insensitive, and that the instruction fields are separated by tabs 
(although spaces will work just as well). 
 
Once this assembly source file has been created, start up IASM12 by 
typing iasm12 in response to a DOS prompt.  Press function key F3 and 
enter the assembly source file name (test.asm) followed by the ENTER 
key; the contents of the file should now be displayed on the screen.  Next, 
press function key F4 to assemble the source file; the result, indicating a 
successful assembly, is shown in Figure 3-6.  Two new files have just 
been created as a result of the assembly process: test.lst (the 

assembled source 
listing file 

pseudo-op 
assembler directive 

symbolic reference 

comments 

instruction fields 

assembly process 

case insensitive 
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assembled source listing) and test.s19 (the object file in S-record 
format).    
 
 
 
 
 
 
 
 
 
 
Figure 3-5  Asssmbly source file for  test.asm 
 
Let’s take a moment to look at each of these files to understand what they 
contain.  Press function key F3 and replace the “.asm” extension with 
“.lst” and press the ENTER key; the assembled source listing file should 
now be displayed on the screen, as shown in Figure 3-7.  The column on 
the far left indicates the address in memory at which each instruction is 
destined to be stored: LDAA at location 80016, ADDA at 80316, STAA at 
80616, and JMP at 80916.  The number in brackets, in the next column 
over, indicates the number of cycles it takes each instruction to execute 
(recall that this was one of the “options” we deliberately enabled when we 
installed IASM12).  The next column of hexadecimal numbers represent 
the machine code generated by the assembler program for each assembly 
instruction.  For example, the assembly instruction LDAA 900h represents 
the machine code consisting of opcode byte B616 followed by the two-byte 
address 090016.  The bytes B616, 0916, and 0016 are stored at locations 
80016, 80116, and 80216, respectively; thus, the next instruction (ADDA) 
starts at location 80316.  The next column is the source file line number, 
which can be used as an aid in finding and correcting source file errors.  
The remaining columns are just an “echo” of the source file contents. 
 
Appended to the end of this file is a symbol table, which is simply a list of 
each label or symbol the assembler encountered and the value that was 
assigned to it.  Note that, as the source file is being assembled, there may 
be a forward reference to a symbol defined later in the source file; 
therefore, assembly requires a two-pass process.  On the first pass, all the 
symbols are placed in the symbol table as they are referenced and 
assigned values as they are encountered; any forward references are left 
unresolved.  On the second pass, the forward references are resolved 
(“filled in”) based on the values determined at the completion of the first 
pass; if a symbol is missing or unresolved, an assembly error will occur. 
 
 
 

     
        ORG     800h    ; originate program at 
                        ;   location 800h 
MAIN    LDAA    900h    ; (A) = (900h) 
        ADDA    901h    ; (A) = (A) + (901h) 
        STAA    900h    ; (900h) = (A) 
        JMP     MAIN    ; repeat operation 
 
        END             ; end of assembly 
                        ;   source file 
 

address in memory 

number of cycles 

symbol table 

forward reference 

two-pass assembly 
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Figure 3-6  Confirmation of assembly success. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3-7  Assembled source listing file. 
 
Let’s “force” an assembly error to occur so it’s not a surprise when it 
happens in real life.  Press function key F3 and replace the “.lst” with 
“.asm”, then press ENTER; the original source file should now be on the 
screen.  Just for the experience of doing something useful with the 
IASM12 editor, use the cursor keys to move to (and subsequently change) 
the label MAIN to MAIN2; the source file should now look like Figure 3-8.  
Next, press F4 to assemble the file; note the error that occurs (the “first 
parameter” – i.e., the symbol MAIN – of the JMP instruction is “unknown”).  

     
        ORG     800h    ; originate program at 
                        ;   location 800h 
MAIN    LDAA    900h    ; (A) = (900h) 
        ADDA    901h    ; (A) = (A) + (901h) 
        STAA    900h    ; (900h) = (A) 
        JMP     MAIN    ; repeat operation 
 
        END        +-------------- ASSEMBLE ---------------+ 
                   ¦                                       ¦ 
                   ¦   Assembling : (editor)               ¦ 
                   ¦                                       ¦ 
                   ¦       Labels :  1                     ¦ 
                   ¦        Lines :  Total  Current        ¦ 
                   ¦                 11     10             ¦ 
                   ¦                                       ¦ 
                   ¦            Pass 2 : assembling        ¦ 
                   ¦         Success  :  Hit any key       ¦ 
                   +---------------------------------------+ 
 

     
 
 0800                   1          ORG     800h    ; originate program at 
                        2                          ;   location 800h 
 0800 [03] B60900       3  MAIN    LDAA    900h    ; (A) = (900h) 
 0803 [03] BB0901       4          ADDA    901h    ; (A) = (A) + (901h) 
 0806 [03] 7A0900       5          STAA    900h    ; (900h) = (A) 
 0809 [03] 060800       6          JMP     MAIN    ; repeat operation 
                        7 
 080C                   8          END             ; end of assembly 
                        9                          ;   source file 
                       10 
                       11 
 
 Symbol Table 
 
MAIN             0800 
 
 

forced error 

IASM12 editor 
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After pressing the ESC key, change the label MAIN2 back to MAIN and 
reassemble the code; assembly should now be successful. 
 
 
 
 
 
 
 
 
 
 
 
Figure 3-8   A “forced error” in an assembly source file:   
                     the label MAIN is not defined. 
 
Before we load and execute the S-record object file, let’s look at it.  Press 
F3 and replace the “.asm” extension with “.s19”, then press ENTER; the 
screen shown in Figure 3-9 should appear.  The information contained in 
this file is used by a loader program, which is part of D-Bug12 that runs on 
the EVB, to place the machine code in the 68HC12’s memory.  It stands to 
reason, then, that this file must necessarily contain both address 
information as well as opcode and operand data.  Note that the first line 
starts with the characters “S1”, while the second starts with the characters 
“S9” – hence the name “S” (for starts with) “19”.  The “1” and “9” represent 
two different kinds of records that can be contained in a Motorola “S19” 
file: a “regular” one (S1) and an “ending” one (S9).  The next pair of digits 
indicates the byte count of the line, in hexadecimal:  for the S1 record (the 
first line), it is 0F16 (or 1510), meaning that 15 bytes of information are 
contained in this record.  The next four digits represent the two-byte 
starting address at which this record will be loaded into the 
microcontroller’s memory: 080016.  The next 24 digits represent the 12 
bytes of machine code the assembler generated for this program: B60900 
corresponds to the LDAA 900h instruction, BB0901 corresponds to ADDA 
901h, A00900 corresponds to STAA 900h, and 060800 corresponds to 
JMP 800h (recall that the symbol MAIN was assigned the value 80016). 
 
 
 
 
 
Figure 3-9  The S-record file test.s19, generated by the  
                    assembler for  the source file test.asm. 
 
The value represented by the final pair of digits, D3, is called a checksum; 
it can be used by the loader program to check the integrity of the record as 

     
        ORG     800h    ; originate program at 
                        ;   location 800h 
MAIN2   LDAA    900h    ; (A) = (900h) 
        ADDA    901h    ; (A) = (A) + (901h) 
        STAA    900h    ; (900h) = (A) 
        JMP     MAIN    ; repeat operation 
 
        END             ; end of assembly 
                        ;   source file 
 

     
S10F0800B60900BB09017A0900060800D3 
S9030000FC 
 

loader program 

checksum 

S19 
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it is received.  The checksum is then calculated by summing, modulo 
25610, all of the bytes in the record except the start code (S1), and then 
taking a bit-wise (or ones’) complement of the value.  For the S1 record 
here, then, the checksum is found by summing 0F16 + 0816 + … + 0816 + 
0016 = 2C16; taking the bit-wise complement of 2C16 (001011002) yields 
D316  (110100112).  As the D-Bug12 loader program “digests” each S-
record, it sums the bytes received modulo 25610.  When the checksum is 
received, it is added to the sum of the bytes received; since, on a good 
day, these two values should be ones’ complements of each other, their 
sum should yield FF16.  This test is performed by the loader program to 
check the integrity of each record as it is received. 
  
The second S-record (that starts with S9) simply indicates the “end of file”.  
There are three bytes of information in an S9 record: the byte count 
(which, not surprisingly, is 0316) followed by a two-byte address field.  
Here the address field is 000016, but could be any value since S-record 
loader programs typically ignore this field.  The checksum byte is 
calculated the same way as described above for S1-type records.  We’ll 
have more “fun” with S-records in Chapter 4 when we write our own loader 
program! 
 
Now that we know what an S-record is and understand the information it 
contains, we’re ready to actually load one into the 68HC12 
microcontroller’s memory.  To download an S-record file (on the PC) into 
the microcontroller’s memory (on the EVB), two things must happen: (1) 
D-Bug12 needs to perform a “load” command, and (2) the IASM12 
program running on the PC needs to output the contents of the S-record 
file via the COM port connected to the EVB.  Step (1) is accomplished by 
opening a communication window (by pressing function key F7) and, in 
response to the monitor prompt, typing load.  Step (2) is accomplished by 
pressing function key F6 and typing the name of the S-reord file to be 
loaded (here, test.s19) followed by ENTER.  The contents of the S-
record file will be echoed to the IASM12 COMM window as it is sent to the 
EVB.  Pressing ENTER after the download has completed should yield a 
monitor prompt (>); if the message “BAD COMMAND” appears instead, 
something went wrong while the S-record file was being loaded.  Should 
an error occur, check the S-record file and repeat the download process 
outlined above. 
 
A quick way to check to see if an S-record file has been loaded correctly is 
to disassemble the code just loaded in the microcontroller’s memory.  This 
can be accomplished using the D-Bug12 asm (assemble/disassemble) 
command.  Since our code was loaded starting at location 80016 in 
memory, type asm 800 in response to the monitor prompt; after pressing 
the ENTER key four times in succession (once for each of the four 
instructions contained in this program), the screen shown in Figure 3-10 

download 

disassemble 

bad command 
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should appear.  Here, note that the prompt (>) has moved to the right, 
providing the opportunity to enter (and assemble in-line) a new instruction 
in place of the one indicated.  To exit the asm command, type a period (.) 
– the prompt should then move back to its “normal” position. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3-10   Use of the D-Bug12 asm command. 
 
An important limitation to note is that the asm command has no knowledge 
of the symbols used by the assembler program; thus, labels and symbols 
do not appear in the disassembled code.  Another important limitation to 
keep in mind is that, if the “wrong” starting address is used (i.e., one that 
does not correspond to an instruction boundary), incomprehensible results 
will be obtained.  This can be illustrated by disassembling the code, say, 
from location 80116 (instead of 80016) – try this to see what happens. 
 
In the exercises and lab experiments provided for this chapter, we will 
primarily be investigating the function of individual instructions – or, at 
most, two or three instructions in succession.  One way we can empirically 
test the effects of the 68HC12 instructions is to use the D-Bug12 asm 
command – here, entering the instructions we wish to test in response to 
the asm command prompt.  The other way we can test instructions or 
instruction sequences is to place them in an assembly source file, 
assemble that file, and download the object file created.  Most students 
seem to prefer the latter approach. 
 
Regardless of how the machine code has been entered into the 
microcontroller’s memory, we are now ready to initialize the contents of 
registers and memory locations in order to trace the execution of our 
program.  Using the D-Bug12 register modify (rm) command will allow us 
to intialize any of the 68HC12’s registers; the only one important here is 
the program counter.  In response to the monitor prompt, type rm followed 
by ENTER; the current value of the PC will be shown, which can be 
changed by typing a new value (here, 800).  When ENTER is pressed, the 
program counter will take on value entered and subsequently prompt the 

F1-Help  F2-Save  F3-Load  F4-Assemble F5-Exit  F7-Comm  F9-DOS shell F10-Menu
+-------------------------------- COMM WINDOW ---------------------------------+
¦                                                                              ¦
¦>asm 800                                                                      ¦
¦0800  B60900        LDAA  $0900                >                              ¦
¦0803  BB0901        ADDA  $0901                >                              ¦
¦0806  7A0900        STAA  $0900                >                              ¦
¦0809  060800        JMP   $0800                >.                             ¦
¦>                                                                             ¦
¦                                                                              ¦
¦                                                                              ¦
¦                                                                              ¦
¦                                                                              ¦
¦                                                                              ¦
+------ F1-Help  F6-Download F7-Edit  F8,F9-Resize F10-Close window -----------+
 

in-line assembly 

trace 

empirically test 
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user to update the next register in sequence (here, the stack pointer).  If 
no change is desired, simply press ENTER.  Note that the list “recycles” 
after the seven registers possible to change are displayed; this provides 
an opportunity to verify that any registers changed indeed took on the 
desired value.  To exit the rm command, simply type a period followed by 
ENTER.  The register modify sequence described above is shown in Figure 
3-11. 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3-11  Register modify sequence using D-Bug12 rm command. 
 
Our illustrative program also uses some memory locations, namely 90016 
and 90116.  Location 90016 is used to store the “running sum” of the value 
calculated by this program, and location 90116 contains the amount to add 
to the running sum each time it completes a “loop”.   We can initialize 
these locations to “suitable values” using the D-Bug12 memory modify 
(mm) command.  In response to the monitor prompt, type mm 900 
followed by ENTER; the current contents of memory location 90016 should 
be displayed.  To clear this value to zero, type 00 followed by ENTER.  The 
mm command will then display the contents of the next consecutive 
location, 90116.   For the purpose of testing our program, we would like this 
value to be one.  To do this, type 01 followed by ENTER.  For the moment, 
these are the only two locations we “care about”, so we can now exit the 
memory modify command by typing a period (.) followed by ENTER.  The 
memory modify sequence described above is illustrated in Figure 3-12.  
Note that, depending on what has previously been loaded into or run on 
the EVB, the original contents of memory will vary. 
 
We are now ready to “single step” through the execution of our program, 
one instruction at a time, using the trace (t) command.  In response to the 
monitor prompt, press t followed by ENTER; the result of executing the 
instruction pointed to by the program counter (here, at location 80016) is 
displayed, followed by a disassembly of the instruction which follows  (at 
location 80316).  Referring to Figure 3-13, we note that execution of the 
LDAA 900h instruction loaded the “A” register with the contents of 

F1-Help  F2-Save  F3-Load  F4-Assemble F5-Exit  F7-Comm  F9-DOS shell F10-Menu 
+-------------------------------- COMM WINDOW ---------------------------------+ 
¦                                                                              ¦ 
¦>rm                                                                           ¦ 
¦                                                                              ¦ 
¦PC=0000 800                                                                   ¦ 
¦SP=0A00                                                                       ¦ 
¦IX=0000                                                                       ¦ 
¦IY=0000                                                                       ¦ 
¦A=00                                                                          ¦ 
¦B=00                                                                          ¦ 
¦CCR=90                                                                        ¦ 
¦PC=0800 .                                                                     ¦ 
¦>                                                                             ¦ 
+------ F1-Help  F6-Download F7-Edit  F8,F9-Resize F10-Close window -----------+ 
 

single step 



Microcontroller-Based Digital System Design  Chapter 3 ­ Page 22 

Preliminary Draft  ©2001 by D. G. Meyer  

memory location 90016 (which, using the mm command, we initialized to 
0016).  Because the LDAA 900h instruction occupies three bytes in 
memory, the program counter is “bumped” to 80316 as a result of 
executing this instruction. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3-12  Memory modify sequence using D-Bug12 mm command. 
 
Pressing t followed by ENTER again causes the next instruction in 
sequence, ADDA 901h, to be executed.  Referring to Figure 3-14, we note 
that this instruction adds the contents of memory location 90116 (which, 
using the mm command, we initialized to 0116) to the “A” register.  Since 
the ADDA 901h instruction occupies three bytes in memory, the program 
counter is “bumped” to 80616 as a result of executing this instruction. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3-13  Result of first instruction trace using D-Bug12 t command. 
 
 
 
 
 
 
 

F1-Help  F2-Save  F3-Load  F4-Assemble F5-Exit  F7-Comm  F9-DOS shell F10-Menu
+-------------------------------- COMM WINDOW ---------------------------------+
¦>                                                                             ¦
¦>                                                                             ¦
¦>                                                                             ¦
¦>mm 900                                                                       ¦
¦0900 B7 00                                                                    ¦
¦0901 56 01                                                                    ¦
¦0902 20 .                                                                     ¦
¦>mm 900                                                                       ¦
¦0900 00                                                                       ¦
¦0901 01 .                                                                     ¦
¦>                                                                             ¦
¦>                                                                             ¦
+------ F1-Help  F6-Download F7-Edit  F8,F9-Resize F10-Close window -----------+
 

F1-Help  F2-Save  F3-Load  F4-Assemble F5-Exit  F7-Comm  F9-DOS shell F10-Menu
+-------------------------------- COMM WINDOW ---------------------------------+
¦>                                                                             ¦
¦>                                                                             ¦
¦>                                                                             ¦
¦>                                                                             ¦
¦>                                                                             ¦
¦>                                                                             ¦
¦>t                                                                            ¦
¦                                                                              ¦
¦ PC    SP    X     Y    D = A:B   CCR = SXHI NZVC                             ¦
¦0803  0A00  0000  0000     00:00        1011 0100                             ¦
¦0803  BB0901        ADDA  $0901                                               ¦
¦>                                                                             ¦
+------ F1-Help  F6-Download F7-Edit  F8,F9-Resize F10-Close window -----------+
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Figure 3-14  Result of second instruction trace. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3-15  Result of third instruction trace. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3-16  Result of fourth instruction trace. 
 
 
 

F1-Help  F2-Save  F3-Load  F4-Assemble F5-Exit  F7-Comm  F9-DOS shell F10-Menu
+-------------------------------- COMM WINDOW ---------------------------------+
¦>                                                                             ¦
¦>t                                                                            ¦
¦                                                                              ¦
¦ PC    SP    X     Y    D = A:B   CCR = SXHI NZVC                             ¦
¦0803  0A00  0000  0000     00:00        1011 0100                             ¦
¦0803  BB0901        ADDA  $0901                                               ¦
¦>t                                                                            ¦
¦                                                                              ¦
¦ PC    SP    X     Y    D = A:B   CCR = SXHI NZVC                             ¦
¦0806  0A00  0000  0000     01:00        1001 0000                             ¦
¦0806  7A0900        STAA  $0900                                               ¦
¦>                                                                             ¦
+------ F1-Help  F6-Download F7-Edit  F8,F9-Resize F10-Close window -----------+
 

F1-Help  F2-Save  F3-Load  F4-Assemble F5-Exit  F7-Comm  F9-DOS shell F10-Menu
+-------------------------------- COMM WINDOW ---------------------------------+
¦0803  BB0901        ADDA  $0901                                               ¦
¦>t                                                                            ¦
¦                                                                              ¦
¦ PC    SP    X     Y    D = A:B   CCR = SXHI NZVC                             ¦
¦0806  0A00  0000  0000     01:00        1001 0000                             ¦
¦0806  7A0900        STAA  $0900                                               ¦
¦>t                                                                            ¦
¦                                                                              ¦
¦ PC    SP    X     Y    D = A:B   CCR = SXHI NZVC                             ¦
¦0809  0A00  0000  0000     01:00        1001 0000                             ¦
¦0809  060800        JMP   $0800                                               ¦
¦>                                                                             ¦
+------ F1-Help  F6-Download F7-Edit  F8,F9-Resize F10-Close window -----------+
 

F1-Help  F2-Save  F3-Load  F4-Assemble F5-Exit  F7-Comm  F9-DOS shell F10-Menu 
+-------------------------------- COMM WINDOW ---------------------------------+ 
¦0806  7A0900        STAA  $0900                                               ¦ 
¦>t                                                                            ¦ 
¦                                                                              ¦ 
¦ PC    SP    X     Y    D = A:B   CCR = SXHI NZVC                             ¦ 
¦0809  0A00  0000  0000     01:00        1001 0000                             ¦ 
¦0809  060800        JMP   $0800                                               ¦ 
¦>t                                                                            ¦ 
¦                                                                              ¦ 
¦ PC    SP    X     Y    D = A:B   CCR = SXHI NZVC                             ¦ 
¦0800  0A00  0000  0000     01:00        1001 0000                             ¦ 
¦0800  B60900        LDAA  $0900                                               ¦ 
¦>                                                                             ¦ 
+------ F1-Help  F6-Download F7-Edit  F8,F9-Resize F10-Close window -----------+ 
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Pressing t followed by ENTER again causes the next instruction in 
sequence, STAA 900h, to be executed.  Referring to Figure 3-15, we note 
that this instruction stores the “updated” value in the “A” register at our 
“running sum” location, 90016.  Since the STAA 900h instruction occupies 
three bytes in memory, the program counter is “bumped” to 80916 as a 
result of executing this instruction. 
 
Pressing t followed by ENTER again causes the next instruction in 
sequence, JMP 800h, to be executed.  Referring to Figure 3-16, we note 
that execution of this instruction moves us back to the “top” of the “loop”, 
i.e., location 80016.  Three more t-ENTER combinations will complete a 
second iteration of the “loop”, updating the running sum to 0216. 
 
If we have large sequence of instructions that we would like to trace, 
pressing the t-ENTER combination multiple times can quickly become 
annoying.  Fortunately, the D-Bug12 trace command can be told the 
number of instructions to execute in sequence.  Say, for example, we wish 
to determine the result of executing the loop in this program five times.  
Since there are four instructions in the loop, we would need to execute a 
total of 2010 instructions to determine the final result.  This can be 
accomplished by simply typing t 20 followed by ENTER, which causes the 
trace command to automatically repeat 20 times.  The maximum “trace 
count” that can be specified this way is 25510. 
 
To continuously execute our program, we could simply use the D-Bug12 
“go” (g) command by typing g 800 after downloading the S-record file.  
Try this to see what happens.  Why is there “no further response” (or, why 
does the monitor program “appear to hang”) at this point?  Because, like 
the infamous Election of 2000, there is no prescribed, “lawful” way for the 
program to terminate – it is simply an “infinite loop”!  The only way to stop 
it is to press the (tiny) reset button on the EVB – note that doing so causes 
the monitor program to restart. 
 
This gives us an opportunity to clear up some common misconceptions 
concerning what, exactly, pressing the reset button does (its location is 
shown in Figure 3-3).  To explore this, use the rm command to view the 
register values after pressing the EVB reset button; note that they have all 
been initialized to known values.  Next, use the mm command to check the 
contents of memory locations 90016 and 90116; here we find that the 
contents of 90016 is some “random value” (since the loop executed literally 
millions of iterations between the time we started it and the time we 
stopped it), but the contents of location 90116 is still 0116.  The conclusion?  
Pressing the reset button (sometimes called performing a “hard reset”) 
places the processor’s registers in a known state, but leaves memory 
unaffected. 
 

trace count 

continuously execute 

reset button 
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What if we would like to execute a series of instructions and then just 
“stop” so we can use various monitor commands to determine what 
happened?  This can be accomplished by terminating the code sequence 
we wish to test with a software interrupt (SWI) instruction.  Here, we can 
replace the JMP 800h instruction at the end of our program with an SWI 
instruction.  To do this, we could either: (a) modify our assembly source 
file, re-assemble it, and download the object file; or, (b) use the D-Bug12 
asm command to replace the JMP instruction with an SWI instruction.    
 
Approach (b) is probably more expedient here.  Recalling that the JMP 
instruction resides at location 80916, we can replace it by typing asm 809 
and, in response to the prompt, type SWI; this is illustrated in Figure 3-17.  
After pressing ENTER, the newly inserted SWI instruction appears at 
location 80916; typing a period (.) followed by ENTER terminates the in-line 
assembly process. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3-17  Insertion of SWI instruction using asm command. 
 
Once we have inserted the SWI instruction in place of the JMP (and used 
the mm command to initialize location 90016), we can execute the entire 
program by typing g 800.  When the SWI instruction is executed, the 
contents of machine’s registers are displayed and control is returned to D-
Bug12, allowing the user to execute any monitor command.  
 
When debugging a larger program, though, what we often wish to do is 
execute our code up to a certain “problematic point” and trace from there. 
This can be accomplished either by setting a breakpoint (using the D-
Bug12 br command), or by using the “go till” (gt) command (which sets a 
temporay breakpoint).  After tracing through the “questionable code”, 
normal execution can be resumed by simply typing g in response to the 
monitor prompt. 
 

F1-Help  F2-Save  F3-Load  F4-Assemble F5-Exit  F7-Comm  F9-DOS shell F10-Menu 
+-------------------------------- COMM WINDOW ---------------------------------+ 
¦                                                                              ¦ 
¦>asm 809                                                                      ¦ 
¦0809  060800        JMP   $0800                >SWI                           ¦ 
¦                                                                              ¦ 
¦                                                                              ¦ 
¦                                                                              ¦ 
¦                                                                              ¦ 
¦                                                                              ¦ 
¦                                                                              ¦ 
¦                                                                              ¦ 
¦                                                                              ¦ 
¦                                                                              ¦ 
+------ F1-Help  F6-Download F7-Edit  F8,F9-Resize F10-Close window -----------+ 
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We are now equipped with the “tools of the trade” that will help us test and 
execute assembly language instructions as well as code segments.  With 
this as background, we are now prepared to learn the details of 68HC12 
instruction set in the sections of this chapter that follow.  From there, we 
will go on in Chapter 4 to learn program structures and assembly 
language programming techniques. 
 
3.6  Motorola 68HC12 Architecture and Programming Model 
 
In its basic form, the programming model of the Motorola 68HC12 is a 
fairly straight forward extension of the simple computer we designed in 
Chapter 2.  Like our simple computer, the 68HC12 has an 8-bit 
accumulator register (A); a program counter register (PC), here extended 
to 16-bits; and a stack pointer register (SP), also extended to 16-bits.  The 
two computers also share the same basic condition code bits: a 
carry/borrow flag (C), a negative flag (N), an overflow flag (V), and a zero 
flag (Z).  These flags function in the exact same manner as those on our 
simple computer. 
 
Unlike our simple computer, the 68HC12 has a second accumulator 
register (cleverly called “B”), which can be concatenated with the “A” 
register to form a double-byte (or “D”) accumulator.  Thus, one can view 
the 68HC12’s accumulator as either a single 16-bit entity (referred to as 
“D”), or as two 8-bit “halves”, where the A register is the high byte and the 
B register is the low byte.  There is also a “new” condition code bit, called 
the “half carry” flag (H), which is simply the carry out of the “lower half” 
(i.e., low-order 4-bits) following an ADD operation (the only time it is valid).  
In addition to the “arithmetic status” bits (H, N, Z, V, C), the so-called 
Condition Code Register (CCR) also contains three “machine control” bits: 
I and X are interrupt mask bits, and S is the stop disable bit.  An illustration 
showing the position of each flag in the CCR is provided in Figure 3-18.  
The 68HC12 also has two 16-bit index registers (called “X” and “Y”) that 
primarily serve as pointers to operands.  These “pointer registers” provide 
a number of additional ways of generating an effective address.  A 
diagrammatic view of the 68HC12 programming model is provided in 
Figure 3-19. 
 
Another salient difference between our simple computer and the 68HC12 
is that instructions can vary in length, from a single byte (8-bits) to as 
many as six bytes (48-bits).  Opcodes are either one or two bytes, which 
can be followed by a “postbyte” that provides additional information about 
the addressing mode used.  Data types supported by the 68HC12 include 
bit, byte, word (16-bit), double word (32-bit), packed BCD, and unsigned 
fractions. 
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machine control bits 
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Figure 3-18   Motorola 68HC12 Condition Code Register. 
 
 
 

SS XX H  II N  Z  V  C Condition Code 
Register (CCR)

Carry/Borrow Flag

Overflow Flag

Zero Flag

Negative Flag

IRQ Mask

Half-Carry

XIRQ Mask

Stop Disable

7       6 5       4       3       2      1 0

Holy War of Words 
 
In the “early days” of microprocessors, a hot topic of contention (at one point 
called a “holy war”) was the ordering, in memory, of multiple-byte quantities, 
such as 16-bit (“word” length) addresses and data items.  Intel, first to 
market with a commercially viable 8-bit microprocessor (the 8080), chose to 
place the lowest order byte of an address or operand in the lowest address 
at which that field was stored in memory.  Using this ordering, called low-
order-byte-first (or “little endian”) format, an instruction such as “JMP $1234” 
would be stored in memory as XX $34 $12 (where “XX” is the opcode for 
JMP), with XX stored at location addr, $34 at addr+1, and $12 at addr+2.  
Motorola – most likely just to be “different” than Intel – chose the opposite 
byte ordering for their first commercial microprocessor, the 6800, that hit the 
market six months after the debut of the 8080.  Using a high-order-byte-first 
(or “big endian”) format, a Motorola-style JMP $1234 instruction would be
stored in memory as XX $12 $34.  Many claims were made (and 
considerable ink was spilled) concerning why one byte-ordering scheme 
was “better” than the other.  Other manufacturers since them have “split” on 
the byte-ordering scheme they have chosen to use for their devices – some 
even have a control register bit that allows the programmer (or compiler) to 
select either of the two byte-ordering schemes for data items.  The original 
claims concerning which scheme was “better” are now largely moot –
especially in larger bit-width microprocessors, which generally fetch an 
entire instruction (or more) at once. 
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Figure 3-19   Motorola 68HC12 Programming Model. 
 
Besides sporting a large variety of instructions, the 68HC12 also provides 
a number of ways of generating the effective address of the operands 
used by each instruction.  Unlike our simple computer that had but a 
single (“absolute”) addressing mode, the 68HC12 can have as many as 
ten addressing mode variations that can be applied to each instruction.  
While there are on the order of 200 different instructions implemented by 
the 68HC12, the total number of variations possible when all the 
addressing modes are considered is well over 1000. 
 
Another aspect of the 68HC12’s programming model that we need to 
understand before we begin to write code is its memory map.  The 
68HC912B32, the specific 68HC12 variant we will focus on here, has 
three different types of on-chip memory: SRAM, byte-erasable EEPROM 
(electronically erasable programmable read-only memory), and flash 
EEPROM.  The relative locations of these memory modules are illustrated 
in Figure 3-20.  A typical embedded application would most likely be 
placed in the 32 KB flash EEPROM which, by default, occupies the upper 
half of the processor’s address space (locations 800016 – FFFF16).  On the 
M68EVB912B32 Evaluation Board, this area of memory is preloaded with 
the D-Bug12 (“debug monitor”) operating system.  On the EVB, then, 
execution begins at location 800016 out of reset.  (In Chapter 7, we will 
discuss how to create our own “turn key” embedded systems by loading 
our application code into the flash EEPROM.) 
 
By default, the byte-erasable EEPROM occupies locations 0D0016 – 
0FFF16 in the processor’s address space (which translates into a total of ¾ 
KB).  As its name implies, a unique feature of this non-volatile block of 
memory is that individual locations (bytes) can be erased and rewritten, 
without the need for an additional (higher) power supply voltage.  (The 
flash EEPROM, described previously, can only be “bulk” erased, and 
requires a separate (higher) supply voltage to erase and reprogram.)  
Applications that require data that is “read mostly”, such as calibration 

7 0 7 0A B

15 0X

15 0Y

15 0SP

15 0PC

D

Accumulators

Index Registers

Stack Pointer

Program Counter

memory map 

flash EEPROM 
8000 - FFFF 

byte-erasable  
EEPROM 
0D00 – 0FFF 



Microcontroller-Based Digital System Design  Chapter 3 ­ Page 29 

Preliminary Draft  ©2001 by D. G. Meyer  

parameters, can make particularly effective use of this memory block.  (In 
Chapter 7, we will see how we can dynamically change interrupt vectors 
by re-mapping them into the 68HC12’s byte-erasable memory.) 
 
The 68HC912B32’s SRAM is primarily intended for storage of temporary 
variables as well as the system stack.  This 1 KB block, that by default 
occupies locations 080016 – 0BFF16, is the area of memory in which we 
will place our “practice” code (as we progress, we will also begin to use 
the byte-erasable EEPROM, and ultimately the flash EEPROM). On the 
M68EVB912B32 Evaluation Board, the D-Bug12 monitor uses the upper 
half of SRAM (0A0016 – 0BFF16) for temporary variables, leaving a 
seemingly paltry ½ KB (080016 – 09FF16) for our “fun and enjoyment”.  To 
maximize the effectiveness of this area, the SP register is initialized by the 
D-Bug12 monitor to 0A0016.  (Note that the same stack convention utilized 
by our simple computer is employed by the 68HC12, i.e., the SP register 
points to the top stack item, and as such, the SP register needs to be 
initialized to one greater than the location of the “bottom stack item”). 
 
The questions of how to add additional (external) memory devices to a 
68HC912B32 as well as how to re-map the internal memory resources will 
be addressed in Chapter 5. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3-20   Motorola MC68HC912B32 Memory Map. 
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3.7  Addressing Modes 
 
At this point, we have what amounts to a “chicken and egg” problem: to 
understand all the variations of instruction formats possible, we need a 
firm grasp of the 68HC12 addressing modes; a good understanding of the 
addressing modes, however, can only be attained in the context of the 
68HC12’s instruction set.  To solve this dilemma, we will introduce two 
very basic data transfer group instructions as a “vehicle” for presenting the 
addressing modes.  Once the addressing modes are firmly established, 
we will move forward with the 68HC12 instruction set details. 
 
The two instructions we will introduce first are basic “load” and “store” 
accumulator instructions, similar in form and function to those of our 
simple computer.  The 68HC12 equivalent of our simple computer’s LDA 
instruction is LDAA, for load accumulator A; the equivalent of STA is 
STAA, for store accumulator A.  The “absolute” addressing mode version 
of each of these instructions requires 3 bytes (or 24-bits): an 8-bit opcode 
field followed by a 16-bit operand address field.  This can simply be 
thought of as an “expanded” version of the 3-bit opcode and 5-bit operand 
address used by our simple computer. 

 
Recall from Chapter 2 that an addressing mode is used by a computer to 
determine the effective address at which an operand is stored in memory.  
For our purposes, the effective address can be thought of as the actual (or 
absolute) location in memory at which the data is stored.  Most processors 
worth their silicon provide, at minimum, six basic addressing modes: 
 
1. Absolute (or extended/direct), so called because the operand field of 

the instruction indicates the absolute (or actual) location in memory at 
which the operand is stored.  (This is the addressing mode 
implemented on our simple computer of Chapter 2.) 

2. Register (or inherent), so called because the operands (if any) are 
contained in registers – stated another way, the “name” of the operand 
register is included (or “inherent”) in the instruction mnemonic. 

3. Immediate, so called because the operand data immediately follows 
the opcode, i.e., the data is contained in the instruction itself rather 
than some other area of memory. 

4. Relative, so called because the desired location (of either data or a 
branch target) is relative to the current value in the PC register – here 
the operand field is viewed as a signed offset that, when added to the 
current value in the PC, yields the effective address. 

5. Indexed, so called because the desired location is found using an 
index register.  With indexed addressing mode comes a whole series 
of variants that utilize different offsets (e.g., constants or registers) to 
determine the effective address. 

 chicken and egg      
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6. Indirect, so called because the initial effective address calculation 
yields the address of a (two-byte) pointer in memory, which is then 
read and used to determine the actual address in memory where the 
desired data is stored. 

 
Armed with two basic instructions (LDAA and STAA) along with an outline 
of the fundamental addressing modes supported, we can now delve into 
the details of the 68HC12 addressing mode variations.  A word of caution 
plus a suggestion, though, is in order before we start.  Technical 
documentation that describes addressing modes is often cryptic and 
couched in hard-to-follow notation.  Further, the sheer number of 
addressing mode variants possible can cause one to quickly become 
overwhelmed.  To help make our study of 68HC12 addressing modes as 
“painless” and effective as possible, we will develop a “simplified” notation 
scheme and provide several examples of each variant.  As one might 
guess, the way to learn addressing modes and the corresponding 
instruction variants is to write “real code” that uses them – a task we will 
attend to in Chapter 4.  Breaking the task of learning addressing modes 
into palatable parts, however, will help make the task tractable.  The 
notation we will use in the context of describing the 68HC12 addressing 
modes and instruction set is provided in Table 3-1. 
 
3.7.1  Non-Indexed Modes 
 
For the LDAA and STAA instructions, two basic “non-indexed” modes of 
addressing are relevant: “absolute” and immediate.  Motorola uses two 
different names for what can generically be called “absolute” addressing 
mode, depending on the area of memory space addressed.  Extended 
refers to use of a (full) 16-bit address, while direct refers to use of an 8-bit 
address (to access the machine’s register block residing in the first 256-
byte block of the address space, locations 000016 – 00FF16).  The 
Motorola adopted names for these modes are not universally used, 
however. 
 
The name immediate is almost universally used for an addressing mode in 
which the operand data “immediately follows” the opcode field.  In 
Motorola assembly code, a pound sign (#) is used to specify immediate 
addressing mode.  A common mistake is to accidentally “forget” the pound 
sign, causing the assembler program to use direct or extended addressing 
mode instead of the desired immediate mode. 
 
Examples: 
   LDAA  $FF    ;(A)←(00FFh)  direct mode    {2 bytes, 3 cycles} 
   LDAA  $100   ;(A)←(0100h)  extended mode  {3 bytes, 3 cycles} 
   LDAA  #$FF   ;(A)← FFh     immediate mode {2 bytes, 1 cycle} 
   LDAA  #1     ;(A)← 1       immediate mode {2 bytes, 1 cycle} 

indirect 
 

simplified notation 
scheme 

extended  
direct  

immediate  
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Table 3-1   Notation used to describe instructions and addressing modes. 
Notation How Used Examples 

prefix of $ 
or suffix of h 

or H 

denotes a hexadecimal (base 
16) number 

$1234 = 1234h = 1234H = 123416 

prefix of !  
or suffix of t 

or T 

denotes a decimal (base 10) 
number 

!1234 = 1234t = 1234T = 123410 

prefix of % 
or suffix of b 

or B 

denotes a binary (base 2) 
number 

%10101010 = 10101010b = 10101010B = 
101010102 

(   ) denotes the contents of a 
register or memory location 

(A) 
(0800h) 

; denotes the beginning of a 
comment 

LDAA  0800h   ; (A) = (0800h) 

: indicates the concatenation of 
two quantities 

16-bit result in (A):(B) ≡ (D) 
32-bit result in (D):(X) 

addr shorthand for the effective 
address in memory at which 
an operand is stored 

LDAA   addr     ; (A) = (addr) 

rb shorthand for a byte-length 
register, e.g., A or B 

STArb   0800h   ; (0800h) = (rb) 

rw, rwh, rwl  shorthand for a word-length 
register, e.g., X, Y, D, SP, 
where rwh denotes the high 
byte of that register and rwl 
the low byte 

LDrw  0800h   ; (rw) = (0800h):(0801h) 
                       ; -or- 
                       ; (rwh) = (0800h) 
                       ; (rwl) = (0801h) 

# indicates use of immediate 
addressing mode when used 
before a constant that 
appears in an instructions 
operand field 

LDAA  #80h    ; (A) = 80h 
LDAA  #$12    ; (A) = 12h 
LDAA  #$A5    ; (A) = A5h 
LDAA  #10101010b   ; (A) = AAh 

, indicates use of indexed 
addressing mode when 
placed between two entities 
in the operand field 

LDAA  2,X   ; (A) = ((X) + 2) 
 
STAA  D,Y  ; ((D)+(Y)) = (A) 

[   ] indicates use of indirect 
addressing mode when used 
to bracket the operand field 

STAA  [2,X]   ; (((X)+2):((X)+3)) = (A) 
LDAA  [D,Y]  ; (A) = (((D)+(Y)):((D)+(Y)+1)) 

← 
→ 

denotes an assignment or 
“copy” (the arrow points 
toward the destination) 

(A) ← (B) means load the A register with the 
contents of the B register (the contents of B 
remains the same) 

↔ denotes the exchange (or 
“swap”) of contents 

(D) ↔ (X) means exchange the contents of 
the D and X registers 

~ shorthand for number of 
instruction execution cycles 

assuming an 8 MHz bus clock, each cycle is 
125 ns (nanoseconds) 

′′ indicates a (bit-wise) 
complement 

mask′′  means the bit-wise complement of 
mask 
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3.7.2  Indexed Modes 
 
The indexed addressing modes supported by the 68HC12 are numerous 
and diverse.  X, Y, and SP are most commonly used as “index” registers, 
while A, B, and D are commonly used as “accumulator” offsets.  While at 
first seemingly overwhelming (Motorola defines ten official variants), the 
list can be condensed to a few basic categories: 
 
1. Indexed with (signed) constant offset, of which there are three 

variants: a 5-bit offset, a 9-bit offset, and a 16-bit offset. 
2. Indexed with (unsigned) accumulator offset, of which there are three 

variants: A, B, and D. 
3. Indexed with auto pre/post increment/decrement, of which there are 

four permutations (and eight possible values, ranging from 1 to 8, by 
which the indexed register can be incremented or decremented). 

4. Indexed indirect, of which there are two variants: constant (16-bit 
offset) and accumulator (D) offset.  

 
Encouraged by the realization that four categories are much easier to 
remember than ten, we can now consider the details of each. 
  
Indexed with Constant Offset 
 
The variants of this mode are all specified the same way: the signed offset 
and index register of choice (X, Y, SP, PC) are placed in the operand field 
of the instruction, separated by a comma.  The assembler program 
examines the offset specified and generates one of three different 
instruction formats.  If the offset is in the range of –1610 to +1510, the 
assembler will place the 5-bit offset within the post byte that follows the 
opcode.  A different format is used if the offset is in the range of –25610 to 
+25510: here, the most significant bit (only) of the offset is placed in the 
post byte while the lower eight bits of the offset are placed in a single-byte 
extension that follows the post byte.   
 
If a 16-bit offset is specified, the assembler places it in a two-byte 
extension that follows the post byte.  Normally we would construe this as 
an offset that ranges from –32,76810 to +32,76710.  An alternate 
interpretation, however, is also perfectly valid here: as an (unsigned) offset 
that ranges from 0 to 65,53510.  The reason this interpretation is valid is 
that the offset is added to an index register modulo 216 (i.e., it “wraps 
around”).  Thus, adding –1 (represented as FFFF16) yields the same result 
as adding 65,53510 (also represented as FFFF16), due to the “modulo 
nature” of the addition.  This “dual” interpretation of 16-bit offsets will prove 
useful when we examine table lookup in Chapter 4. 
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Instructions using indexed with constant offset addressing mode therefore 
range in size from two or three bytes (one or two opcode bytes followed by 
a post byte) up to four or five bytes (opcode byte(s), post byte, plus one or 
two extension bytes).  As one might guess, there are differences in the 
number of execution cycles associated with each variant. 
 
Examples: 
  LDAA  0,X     ;(A)←((X)+0)     5-bit offset {2 bytes, 3 cycles} 
  LDAA  2,X     ;(A)←((X)+2)     5-bit offset {2 bytes, 3 cycles} 
  LDAA  255t,Y  ;(A)←((Y)+255)   9-bit offset {3 bytes, 3 cycles} 
  LDAA  1000t,X ;(A)←((X)+1000) 16-bit offset {4 bytes, 4 cycles} 
  STAA  -1,Y    ;((Y)-1)←(A)     5-bit offset {2 bytes, 2 cycles} 
  STAA  1,SP    ;((SP)+1)←(A)    5-bit offset {2 bytes, 2 cycles} 
  STAA  100t,PC ;((PC)+100)←(A)  9-bit offset (3 bytes, 3 cycles) 
 
Note that the first example illustrates the assembly format used to specify 
“zero offset” indexed addressing (i.e., indexed addressing with no offset).  
The next-to-last example illustrates how the contents of the stack can be 
modified “in place” without pushing/popping items or disturbing the SP 
register – a “trick” we will find quite useful in passing parameters to/from 
subroutines.  The final example illustrates use of the PC as an index 
register, which allows the creation of “position independent” code (i.e., 
code that is not statically bound to a given set of memory locations).   
 
Indexed with Accumulator Offset 
 
The variants of this mode are specified the same way: the accumulator 
offset (A, B, or D) and index (X, Y, SP, PC) registers of choice are placed 
in the operand field of the instruction, separated by a comma.  The only 
“tricky” part associated with this addressing mode is the interpretation of 
the offset as an unsigned quantity, in contrast with the (signed) constant 
offset mode described previously (except for the 16-bit case, where the 
offset in the “D” register can be interpreted as either signed or unsigned, 
as described previously).  The first question that comes to mind is: Why 
did the designers of the 68HC12 choose to have the (8-bit) accumulator 
offset interpreted as unsigned (or, stated another way, as “zero-extended” 
to 16-bits before being added to the index register)?  It turns out that the 
most common application of accumulator offset indexed addressing is 
accessing elements in an array.  Since a “negative index” is often not very 
meaningful in this context, interpreting the accumulator offset as unsigned 
makes sense.  Further, a rather unpleasant “side effect” would occur if the 
offset were interpreted as being signed: incrementing a byte-length index 
past 7F16 (to 8016 and beyond) would cause a discontinuity in the 
accessing of array elements (recall that, interpreted as signed, the 8-bit 
quantity 7F16 represents +12710, while 8016 represents –12810).  Not only 
would this cause difficulty in reserving storage for an array (since some 

zero offset 

position independent 
code 

zero extended 

negative index 

accumulator offset 
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elements could potentially be stored at locations “behind” the starting 
address label), but also might cause difficulty in debugging code. 
 
Examples: 
  LDAA  A,X     ;(A)←((A)+(X))     {2 bytes, 3 cycles} 
  LDAA  B,X     ;(A)←((B)+(X))     {2 bytes, 3 cycles} 
  LDAA  D,Y     ;(A)←((D)+(Y))     {2 bytes, 3 cycles} 
  STAA  B,SP    ;((B)+(SP))←(A)    {2 bytes, 2 cycles} 
  STAA  A,PC    ;((A)+(PC))←(A)    {2 bytes, 2 cycles} 
 
Note, from the first example above, that the accumulator offset register 
and the destination of the load may be the same.  Here, the “old” value of 
the accumulator offset is used in the effective address calculation before it 
takes on its new value by virtue of being the destination of the load.  Since 
common practice is to use an accumulator offset as an array index, the 
second example – using distinct accumulator offset and destination 
registers – is often utilized. 
 
A particularly insidious problem can occur in the third example.  Recalling 
that “D” is merely a pseudonym for “A:B” (i.e., “D” is just shorthand for “A 
concatenated with B”), note that the high byte of the offset (the A register) 
is modified as a “byproduct” of the load operation.  This is fine as long as 
we don’t expect to use “D” as a 16-bit accumulator offset in a subsequent 
instruction (and still expect it to be the same value!).  
 
Indexed with Auto Pre/Post Increment/Decrement 
 
When using an index register as a pointer to elements in an array or 
characters in a string, a common operation is to “bump” that pointer either 
forward or backward in order to access the next (or previous) element.  
With this in mind, the designers of the 68HC12 endowed it with a powerful 
set of “automatic” indexed increment/decrement modes.  These modes 
are called automatic (auto) because they occur as a “side-effect” of the 
instruction being executed.  An auto increment (or decrement) of an index 
register is called a pre-increment (decrement) if the index register is 
modified prior to its use as the effective address for the operand being 
accessed.  Conversely, an auto increment (or decrement) is called a post-
increment (decrement) after its use as the effective address for the 
operand being accessed.  Four permutations are therefore possible: auto 
pre-increment, auto pre-decrement, auto post-increment, and auto post-
decrement. 
 
What makes this mode particularly powerful, though, is that the amount of 
increment/decrement can range from 1 to 8.  Thus, arrays consisting of 
byte, word (16-bit), or long (32-bit) data elements can be handled with 
equal ease. 
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Fortunately, the assembly language format for the “indexed auto” mode is 
fairly intuitive.  An integer, ranging from 1 to 8, specifies the amount of 
increment/decrement to be performed, followed by a comma and the 
desired index register with a prefix or suffix of “+” or “–”.  If a pre-increment 
or pre-decrement of the index register is to be performed, a “+” or “–” sign 
is placed before the index register name, respectively (e.g., “+X” or “–X”).  
Conversely, if a post-increment or post-decrement of the index register is 
to be performed, a “+” or “–” is placed after the index register name, 
respectively (e.g., “X+” or “X–”).  Note that, due to potentially devastating 
(and meaningless) side effects, the PC cannot be used as an index 
register in this mode; only X, Y, and SP may be used.  
 
Examples: 
  LDAA  1,X+    ;(A)←((X)),   (X)←(X)+1    <2 bytes, 3 cycles> 
  STAA  1,-X    ;(X)←(X)-1,   ((X))←(A)    <2 bytes, 2 cycles> 
  LDAA  2,+Y    ;(Y)←(Y)+2,   (A)←((Y))    <2 bytes, 3 cycles> 
  STAA  2,Y-    ;((Y))←(A),   (Y)←(Y)-2    <2 bytes, 2 cycles> 
  LDAA  1,SP+   ;(A)←((SP)),  (SP)←SP+1    <2 bytes, 3 cycles> 
  STAA  1,-SP   ;(SP)←(SP)-1, ((SP))←(A)   <2 bytes, 2 cycles> 
 
The first example illustrates the classic approach to “bumping” through an 
array or string consisting of single-byte data elements or ASCII characters.  
Taken together, the first two examples illustrate how an index register can 
be used as an “auxiliary” stack pointer (for a stack in which the pointer 
addresses the top stack item, and growth is toward decreasing 
addresses): “LDAA  1,X+” is equivalent to “popping A” off an auxiliary 
stack, while “STAA 1,–X” is equivalent to “pushing A” onto an auxiliary 
stack.  If SP is used as the index register (as shown in the last two 
examples), “LDAA  1,SP+” and “STAA  1,–SP” are equivalent to “popping 
A” off the system stack and “pushing A” onto the system stack, 
respectively. 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

auxiliary stack pointer 

Asking About ASCII 
 
A topic virtually impossible to avoid in a beginning course on 
microprocessors or microcontrollers is ASCII (pronounced “as-key”) code.  
This acronym stands for American Standard Code for Information 
Interchange, a 7-bit coding scheme for alphanumeric characters transmitted  
from keyboards or to display devices.  It was originally used in conjunction 
with mechanical teletype machines (readers who know what an “ASR33” is 
are “really old”).  Included in the coding scheme are a number of “control” 
characters, the most famous of which include: CTRL-A ($00), the ASCII null 
character; CTRL-D ($04), the end-of-transmission character; line feed 
($0A); carriage return ($0D); CTRL-H ($08), the backspace character; and 
everyone’s favorite, CTRL-G ($07), the “bell” character. 



Microcontroller-Based Digital System Design  Chapter 3 ­ Page 37 

Preliminary Draft  ©2001 by D. G. Meyer  

Indexed Indirect 
 
At first glance, indirection appears to be (at best) completely nonsensical, 
and (at worst) hopelessly confusing.  What purpose is served by an 
addressing mode that first requires a memory access to obtain a (16-bit) 
pointer, followed by a subsequent access using that pointer to obtain the 
desired operand?  After all, use of a similar kind of “indirection” in football 
is primarily intended to confuse the opposition, not “help” it!   
 
Fortunately, there are good uses for indirection that transcend football.  A 
key use is the implementation of what might generically be referred to as a 
“jump table”, i.e., a table of pointers to different subroutines (also called a 
“vector table”, since it points to “where to go”).  The basic idea is to access 
the address of the desired subroutine from a table of pointers as a function 
of an index variable, and then “go to” that routine.  Such a transfer of 
control is also referred to as an indirect jump. 
 
The 68HC12 supports two variations of indirection, which Motorola 
includes under the category of “indexed” (since they are merely “indirect” 
versions of two “conventional” indexed modes described previously).  
Indexed-indirect with constant offset is simply the indirect version of 
indexed addressing with 16-bit constant offset, and indexed-indirect with 
accumulator offset is the indirect version of indexed addressing with 16-bit 
accumulator (D) offset.  In both cases, brackets around the operand field 
signify to the assembler program that the indirect version of these indexed 
modes is specified.  Note that the pointer accessed from memory 
occupies two successive bytes, with the high byte of that pointer stored in 
the first location and the low byte stored in the next consecutive location.  
These two bytes are concatenated together to form the 16-bit pointer that 
serves as the effective address of the operand. 
 
Examples: 
  LDAA  [2,X]     ;(A)←(((X)+2):((X)+3))      {4 bytes, 6 cycles} 
  LDAA  [100t,X]  ;(A)←(((X)+100):((X)+101))  {4 bytes, 6 cycles} 
  LDAA  [1000t,X] ;(A)←(((X)+1000):((X)+1001)){4 bytes, 6 cycles} 
  STAA  [0,X]     ;(((X)+0):((X)+1))←(A)      {4 bytes, 5 cycles} 
  LDAA  [D,Y]     ;(A)←(((D)+(Y)))            {2 bytes, 6 cycles} 
  STAA  [D,Y]     ;(((D)+(Y)))←(A)            {2 bytes, 5 cycles} 
 
Note from the examples above that all the constant offset modes are four 
bytes in length (opcode bye, post byte, and two extension bytes for the 16-
bit offset), while the accumulator offset version occupies only two bytes 
(opcode byte plus post byte).  As was the case for the non-indirect 
versions of these addressing modes, valid index registers include X, Y, 
SP, and PC. 
 
 

 jump/vector table 

indirect jump 

indexed-indirect with 
accumulator offset 

indexed-indirect with 
constant offset 
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3.7.3  Addressing Mode Summary 
 
We are now equipped with the background to understand all the 
addressing mode variants possible for each 68HC12 instruction.  We have 
also begun to see the impact of the addressing mode utilized on both the 
length of the instruction in memory (byte count) as well as the total 
number of cycles needed for execution (cycle count).  A summary of all 
the 68HC12 addressing modes that generally apply to data manipulation 
instructions is provided in Table 3-2.  
 
In an effort to help our trek through the 68HC12 instruction set be a bit 
less overwhelming and somewhat more intuitive, we will use some “icons” 
to denote the addressing mode possibilities for each instruction type.  
These icons will provide a “visual” way to remember the addressing mode 
variations, in place of the somewhat obtuse “official abbreviations” 
published by Motorola (here, highlighted in blue).  We will use the “ring 
dot” symbol (�) as an icon for inherent (INH) addressing, based on the 
“self-contained” nature of this mode (a “better” name for this mode, in 
some instances, is register addressing).  For immediate (IMM) mode, we 
will use a pound sign (#) as the icon, since it is the symbol used in 
assembly language source statements to specify that mode.  Direct (DIR) 
and extended (EXT) modes are lumped together because, from a 
functional point of view, they work the same way: they allow the instruction 
to “directly dial” the address of the operand in memory.  What better icon, 
then, to represent direct (“local”) or extended (“long distance”) addressing 
modes than a telephone (℡). 
 
While there is quite a bit of variety in the indexed modes, they are all 
based on use of an index register as a pointer; given this commonality, we 
will use an “index finger” (.) icon to represent it.  In general, if a given 
68HC12 instruction supports indexed addressing, all of the variants 
(constant offset with one extension byte, constant offset with two 
extension bytes, accumulator offset, auto pre/post increment/decrement, 
etc.) are supported – with very few exceptions.  Motorola distinguishes 
among the indexed modes based on the number of extension bytes 
(beyond the postbyte) used: IDX is shorthand for modes with no extension 
bytes, IDX1 for modes with one extension byte, and IDX2 for modes with 
two extension bytes. 
 
Finally, as a natural extension to use of an “index finger” as the icon for 
indexed addressing, we will place brackets around it ([.]) to represent the 
indexed-indirect modes.  Motorola distinguishes between the two 
possibilities here based on the number of extension bytes: the “indirect 
form” of the two-extension-byte indexed mode is abbreviated [IDX2]; while 
the indirect form of the accumulator offset indexed mode (where the “D” 
register is the only possibility) is abbreviated [D,IDX]. 

intuitive icons 
 

inherent/register 
INH  �  

immediate 
IMM  #  

direct/extended 
DIR/EXT   ℡  

indexed   .  
 
 
 
 
 
 
no extension bytes   IDX 
one extension byte   IDX1 
two extension bytes  IDX2 

indexed-indirect    [.] 
 
two extension bytes [IDX2] 
  
accumulator offset  [D,IDX] 
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Table 3-2   Addressing Mode Summary for Data Manipulation Instructions. 
Icon Abbrev. Name Description Examples 
� INH Inherent/Register 

 
Operand(s) is (are) 
contained in registers; 
“inherent” means name of 
register part of instruction 
mnemonic 

DAA 

# IMM Immediate 
 
 

Operand data “immediately 
follows” opcode; pound 
sign (#) denotes use of 
immediate data 

LDAA  #$FF 
LDAA  #1 

℡ DIR/EXT Direct/Extended 
 
 

Effective address of 
operand (“absolute” 
location in memory) follows 
opcode; called “direct” if 
the address can be 
contained in a single byte, 
or “extended” if two bytes 
are required 

LDAA  $FF   ;direct 
STAA  900h  ;extended 

IDX 
IDX1 
IDX2 

Indexed with 
Constant Offset 
 

Effective address is 
determined by adding a 
(signed) constant offset (5-
bit, 8-bit, or 16-bit) to an 
index register (which may 
be X, Y, SP, or PC) 

LDAA  0,X 
STAA  1,Y 
LDAA  5,SP 
STAA  2,PC 

IDX Indexed with 
Accumulator Offset 
 

Effective address is 
determined by adding an 
(unsigned) accumulator (A, 
B, or D) to an index 
register (X, Y, SP, or PC) 

LDAA  B,X 
STAA  B,Y 
LDAA  D,X 

. 

IDX Indexed with Auto 
Pre-/Post- 
Increment or 
Decrement 
 

Effective address is 
determined by an index 
register (X, Y, or SP) that 
can be modified prior to its 
use (pre-inc/dec) or 
following its use (post-
inc/dec); the amount of 
pre/post modification 
possible ranges from 1 to 8 

STAA  1,-X  ;pre-dec 
LDAA  1,X+  ;post-inc 
STAA  8,+X  ;pre-inc 
LDAA  8,X-  ;post-dec 

[IDX2] Indexed-Indirect 
with Constant Offset 
 

Indexed with constant 
offset addressing mode is 
used to access a 16-bit 
pointer in memory, which is 
then used as the effective 
address of the operand; 
brackets denote use of 
indirection 

LDAA  [4,X] 
STAA  [2,Y] 

[.] 

[D,IDX] Indexed-Indirect 
with Accumulator 
Offset 
 

Indexed with accumulator 
(D) offset mode is used to 
access a 16-bit pointer in 
memory, which is then 
used as the effective 
address of the operand; 
brackets denote use of 
indirection 

LDAA  [D,Y] 
STAA  [D,X] 
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3.8   Motorola 68HC12 Instruction Set Overview 
 
Continuing with the “Norm” analogy introduced at the beginning of this 
chapter, the best way to view a machine’s instruction set is as a collection 
of “tools in a toolbox.”  Just as there are basic “tool types” available to a 
carpenter (e.g., saws, hammers, screwdrivers, wrenches, routers, biscuit 
joiners, etc.), so too are there basic “instruction types” available to a 
programmer.  The basic instruction types supported by most computers 
include: data transfer, arithmetic, logical, transfer-of-control, machine 
control, and  “special” (i.e., atypical instructions for specialized 
applications such as graphics or signal processing).  And just as there is a 
wide variety of different “saw group” tools (table saws, band saws, hack 
saws, etc.) available to a carpenter, there is a wide variety of “arithmetic 
group” instructions (add, subtract, multiply, divide, etc.) available to a 
programmer. 
 
Our approach, then, will be to break the 68HC12’s instruction set into the 
six major groups listed above.  Because we are already familiar with the 
addressing mode variants possible for data manipulation instructions, we 
will describe the syntax of each instruction independent of the addressing 
mode variants (the abbreviation addr will be used to denote the effective 
address).  The addressing mode possibilities for each instruction will be 
indicated using the icons (�, #, ℡, ., [.]) described in the previous 
section.  To help make the discussion a bit more tractable, we will focus 
our attention on the variants of a given instruction that are most commonly 
used – as always, the “rest of the story” (instruction cycle counts and 
“weird” but legal variants) can be obtained from the official Motorola 
documentation (see http://mot-sps.com for complete details). 
 
One disclaimer before we embark on the classifications.  Admittedly, some 
of the classifications represent a “judgment call” – for example, the “sign 
extend” instruction can be construed as either a “data transfer” instruction 
or an “arithmetic” instruction.  Remember, though, that our objective is to 
develop a framework that will help us remember the instructions based on 
function.  Returning to the “Norm” analogy for a moment, if our objective is 
to drive a nail, both a hammer and a socket wrench will “work” – the fact 
that we have classified the latter as a “wrench group” tool has no bearing 
on this utility. 
  
3.8.1    Data Transfer Group Instructions 
 
As its name implies, the function that links members of this group is 
transfer of data – which includes load, store, move, exchange, and stack 
manipulation operations.  In general, this group of instructions has a 
limited effect on the machine’s condition codes (“CC” or “flags”).  Move 
(also called “transfer”) and exchange instructions have no effect on the 

tool types 
 
instruction types 

 judgment call 
 
 
 
 framework 

transfer of data 
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condition code bits, while load and store instructions affect only the 
negative (N), zero (Z), and overflow (V) flags.  Note that the carry/borrow 
(C) flag is purposefully not affected by load and store instructions, since a 
common application of the “C” condition code bit is to propagate a carry 
(or borrow) forward in an extended precision arithmetic routine. 
 
Load (LD) and store (ST) instructions are listed in Table 3-3.  Note that all 
applicable variants of the addressing modes are supported, with the 
exception of immediate mode for stores (which would be meaningless).  
Also note that store instructions affect the condition code bits just like the 
load instructions, even though this would appear to be “unnecessary” and 
perhaps even counterintuitive (recall that the simple computer we 
designed in Chapter 2 did not affect the flags when a store was executed). 
In fact, the first time the author noted that the 68HC12 affects flags as a 
“side effect” of store instructions, he thought it was a mistake (and didn’t 
believe it until he tried it out on a “live” microcontroller)! 
 
 
Table 3-3   Data Transfer Group: Load and Store Registers. 

Description Mnemonic Operation  CC Examples Mode ~ 
LDAA  #1   # 1 
LDAA  $FF  ℡ 3 
LDAB  900h ℡ 3 
LDAA  1,X  . 3 
LDAA  B,Y  . 3 
LDAB  2,Y+   . 3 
LDAA  [0,Y]    [.] 6 

LDArb   addr 
rb = A, B 
 
addr = # ℡ . [.] 

(rb) ← (addr) 
 
 

N ← oo  
Z ← oo  
V ← 0 

LDAA  [D,X]    [.] 6 
LDD   #1 # 2 
LDS   #$A00 # 2 
LDX   900h ℡ 3 
LDY   A,X . 3 

Load 
Register 

LDrw  addr 
rw = D, X, Y, S 
 
addr = # ℡ . [.] 

(rw) ←  (addr) 
 
 

N ← oo  
Z ← oo  
V ← 0 

LDX   [D,Y] [.] 6 
STAA  $FF  ℡ 2 
STAB  900h ℡ 3 
STAA  1,X  . 2 
STAA  B,Y  . 2 
STAB  2,Y+   . 2 
STAA  [0,Y]    [.] 5 

STArb   addr 
rb = A, B 
 
addr = ℡  .  [.] 

(addr) ← (rb) 
 
 

N ← oo  
Z ← oo  
V ← 0 

STAA  [D,X]    [.] 5 
STD   900h ℡ 3 
STX   2,Y . 2 
STY   A,X . 2 
STX   [2,Y] [.] 5 

Store 
Register 

STrw   addr 
rw = D, X, Y, S 
 
addr = ℡  .  [.] 

(addr) ← (rw) 
 
 

N ← oo  
Z ← oo  
V ← 0 

STS   [D,Y] [.] 5 
 
 
 
 

load register 
LD 
 
store register 
ST 
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Load effective address (LEA), one of the 68HC12’s most non-intuitive (and 
confusing) instructions, is documented in Table 3-4.  This instruction loads 
the named index register (X, Y, or SP) with the effective address 
generated by the indexed mode specified in the operand field (note the 
absence of parenthesis around “addr” in the description).  The reason 
most thinking adults have trouble with this is that generally an effective 
address, once generated, is used to access an operand from memory; 
here, though, the effective address itself is loaded into the named index 
register.  Why (and where) would one use such a capability? 
 
A “less intimidating” way to understand what the LEA instruction does is to 
think of it as a powerful way to modify the contents of an index register – 
through the addition of a signed constant (up to 16-bits in length), an 
(unsigned) accumulator, or even an auto-increment/decrement mode.  
Any indexed addressing mode can be used to specify the modification 
desired, and any index register (X, Y, SP, PC) can serve as the “source” 
of the modification.  Note, however, that certain variants have no “socially 
redeeming value”.  For example, if the source and destination index 
registers are the same, auto post-increment/decrement does not affect 
that register’s contents (e.g., LEAX 1,X+  and LEAY 2,Y+  have no effect 
on the contents of X or Y, respectively).  This is because the effective 
address generated is based on the current value of the index register 
specified, not the “post-modified” version.   
 
Returning to the question posed above, the LEA instruction is typically 
used to add/subtract an arbitrary constant to/from an index register or, 
stated another way, to increment/decrement an index register by an 
arbitrary amount.  It is also used to initialize an index register relative to 
another (e.g., Y initialized to one greater than X).  While somewhat 
arcane, the LEA instruction will prove quite useful in many applications. 
 
Table 3-4   Data Transfer Group: Load Effective Address. 

Description Mnemonic Operation  CC Examples Mode ~ 
LEAX  2,Y . 2 
LEAY  B,X . 2 
LEAX  D,SP . 2 
LEAS  1,X+ . 2 
LEAY  2,-X . 2 
LEAS  200t,SP . 2 

Load  
Effective 
Address 

LEArw   addr 
rw = X, Y, S 
 
addr = . 

(rw) ← addr 
 
 

– 

LEAX  1000t,SP . 2 
 
 
The exchange (EXG) instruction variants are listed in Table 3-5.  Most of 
the time, this instruction is used to “swap” the contents of two like-sized 
registers.  “Mismatched” swaps are “legal”, though, and included for the 
sake of completeness (the author has yet to find a good use for this 
“feature”, however).  In a mismatched swap, the byte-register (rb) is 

load effective 
address 
 
LEA 

exchange/swap 
 
EXG 
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swapped with the low byte of the word-register (rwl), and the high byte of 
the word-register (rwh) is cleared to zero.  Note that all variations of EXG 
execute in a single cycle, occupy two bytes (an opcode byte followed by a 
post byte that indicates the registers involved), and do not affect any of the 
condition code bits.  While Motorola officially calls the addressing mode 
used by this instruction inherent, the author believes this to be a 
misnomer.  Since the registers involved are indicated by a post byte rather 
than “inherently” specified by the instruction opcode, a more accurate 
name for the addressing mode used here would be “register”. 
 
Table 3-5   Data Transfer Group: Exchange Instructions. 

Description Mnemonic Operation  CC Examples Mode ~ 
EXG  A,B � 1 EXG  rb1,rb2 

rb = A, B, CCR 
(rb1) ↔ (rb2) – 

EXG  A,CCR � 1 
EXG  D,X � 1 EXG  rw1,rw2 

rw = D, X, Y, S 
(rw1) ↔ (rw2) – 

EXG  X,Y �  1 
EXG  A,X � 1 
EXG  B,Y � 1 

EXG  rb,rw 
rb = A, B, CCR 
rw = D, X, Y, S 

$00 → (rwh) 
(rb) ↔ (rwl) 

– 

EXG  CCR,D � 1 
EXG  X,A � 1 
EXG  Y,B �  1 

Exchange 
Register 
Contents 
 

EXG  rw,rb 
rw = D, X, Y, S 
rb = A, B, CCR 

(rwh) ← $00 
(rwl) ↔ (rb) 

– 

EXG  D,CCR �  1 

 
 
What Motorola calls “transfer” (TFR) instructions – which the rest of the 
civilized world calls “move” instructions, but might more appropriately be 
called “copy” instructions – are listed in Table 3-6.  The main difficulty here 
is keeping track of which register is the source of the transfer and which is 
the destination.  Long ago (where “long” is about 30 years), someone at 
Motorola decided that the first register name in the operand field should be 
the source of the transfer and the second the destination.  (This, of 
course, was done with the primary intention of being “different than Intel”, 
that had adopted a “destination followed by source” format for their “MOV” 
instructions.)  Thus, “TFR  A,B” means transfer (or copy) the contents of 
register A to register B.  As is the case with the EXG instruction, transfers 
of mismatched size are also legal for TFR:  “byte-to-word” transfers are 
zero-extended (“padded with zeroes”), and “word-to-byte” transfers are 
merely truncated.  Also like the EXG instruction, all variants of TFR 
execute in a single cycle, occupy two bytes (an opcode byte followed by a 
post byte), and do not affect any condition code bits.  Again, even though 
Motorola officially calls the addressing mode used by the TFR instruction 
inherent, a better name would be “register”. 
 
 
 
 
 

 post byte 

register addressing 

move/copy 
registers 
 
TFR 



Microcontroller-Based Digital System Design  Chapter 3 ­ Page 44 

Preliminary Draft  ©2001 by D. G. Meyer  

Table 3-6   Data Transfer Group: Transfer (Move) Register Instructions. 
Description Mnemonic Operation  CC Examples Mode ~ 

TFR  A,B � 1 TFR  rb1,rb2 
rb = A, B, CCR 

(rb1) → (rb2) – 
TFR  A,CCR � 1 
TFR  X,D � 1 TFR  rw1,rw2 

rw = D, X, Y, S 
(rw1) → (rw2) – 

TFR  D,Y �  1 
TFR  X,A � 1 
TFR  Y,B � 1 

TFR  rw,rb 
rw = D, X, Y, S 
rb = A, B, CCR 

(rwl) → (rb) – 

TFR  X,CCR � 1 
TFR  A,X � 1 
TFR  B,Y �  1 

Transfer 
(Move) 
Register 
 

TFR  rb,rw 
rb = A, B, CCR 
rw = D, X, Y, S 

$00:(rb) → (rw) – 

TFR  CCR,D �  1 

 
 
The so-called “sign extend” (SEX) instruction, described in Table 3-7, can 
be thought of as a specialized version of a “mismatched” (byte-to-word) 
TFR.  Instead of padding the upper byte of the destination word-register 
with zeroes, the “sign extend” instruction pads it with the sign (most 
significant bit) of the source byte-register (as such, a better mnemonic for 
this operation might have been “TFRS”).  The SEX instruction can 
therefore be used to sign extend an 8-bit offset before adding it to a 16-bit 
index register.  Note that despite being a “legal” variant, sign extending the 
condition code register (CCR) makes absolutely no sense. 
 
Table 3-7   Data Transfer Group: Sign Extend Instruction. 

Description Mnemonic Operation  CC Examples Mode ~ 
Sign 
Extend 
Byte 
Register 
 

SEX  rb,rw 
rb = A, B, CCR 
rw = D, X, Y, S 

(rb) → (rwl) 
 
rwh padded 
with sign of rb 

– SEX  B,Y ��  1 

 
 
The next set of data transfer group instructions, “move memory” (MOV), is 
listed in Table 3-8.  These “new” instructions (not included in Motorola 
68xx predecessor instruction sets) provide a convenient way to transfer a 
byte or word of data from one memory location to another, replacing the 
“LD-ST” sequence previously required with a single instruction.  We will 
find them particularly useful for initializing the peripheral device registers 
(located in the first 256-byte block in the processor’s address space).  Like 
the TFR assembly mnemonic, the source operand address is listed first, 
followed by the destination address.  Source operands can be specified 
using immediate, extended, or any “short form” indexed mode (i.e., 
indexed modes that do not utilize extension bytes); destination operands 
are limited to extended and “short form” indexed modes.  A total of six 
source-destination addressing mode permutations are therefore possible; 
an example of each is given in Table 3-8.  MOV instructions can occupy 

sign extend 
SEX 

move memory 
MOV 
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as many as six bytes, and take as long as six cycles to execute; they can 
also be “tricky” to interpret, given there can be as many as four items 
(separated by commas) in the operand field.  Like the EXG and TFR 
instructions, MOV instructions do not affect any of the condition code bits. 
 
Table 3-8   Data Transfer Group: Move Memory Instructions. 

Description Mnemonic Operation  CC Examples Mode ~ 
MOVB #$FF,$900 # → ℡  4 
MOVB #2,0,X # → .  4 
MOVB $900,$901 ℡ → ℡  6 
MOVB $900,1,X ℡ → .  5 
MOVB 1,X-,$900 . → ℡  5 

MOVB  addr1,addr2 
 
addr1 = #  ℡  .  
 
addr2 = ℡  .  

(addr1) → (addr2) – 

MOVB 1,X+,2,Y+ . → .  5 
MOVW #$FFFF,$900 # → ℡  5 
MOVW #1,0,X # → .  4 
MOVW $900,$902 ℡ → ℡  6 
MOVW $900,2,X ℡ → .  5 
MOVW 2,X-,$900 . → ℡  5 

Move 
Memory 

MOVW  addr1,addr2 
 
addr1 = #  ℡  .  
 
addr2 = ℡  . 

(addr1) → (addr2) 
(addr1+1) → (addr2+1) 

– 

MOVW 2,X+,4,Y+ . → .  5 

Note: Only indexed modes (.) that employ no extension bytes (beyond the post 
byte) can be used with the move memory instructions; this implies that only short 
constant offsets (-15 to +16) are valid. 
 
The final set of data transfer instructions, listed in Table 3-9, perform 
stack-related data transfers.  In our simple computer of Chapter 2, we 
called these operations “push” and “pop” – the names for these operations 
used by virtually every other manufacturer of microprocessors…except 
Motorola.  Again, just to be “different than Intel”, Motorola chose the 
mnemonics “push” (PSH) and “pull” (PUL), respectively, for stack-related 
data transfers. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 push 
 PSH 
 
 pull (pop) 
 PUL 

Push Pulling 
 
Notable by their absence are instructions that allow the PC or SP to be 
pushed onto or pulled off the stack.  While pushing either of these registers 
onto the stack is of no consequence, pulling either of them off the stack 
would most likely cause “anomalous behavior” (i.e., cause “bits to fly all over 
the place”).  For example, if the PC could be pulled from the stack, 
execution would continue at the location specified by the top stack item –
this only makes sense if a “return address” has been placed on the stack by 
a calling program (recall the simple computer’s RTS instruction); otherwise, 
a program could quickly arrive at an “unknown location”.  A somewhat more 
insidious problem might occur if the SP could be pulled from the stack.  
Here, the location of the entire stack would change, effectively canceling all 
bets as to the stack’s current contents!  In summary, there are good reasons 
why the PC and SP are not included in the list of registers that can be 
pushed or pulled. 
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There are two basic variants of PSH and PUL: one for byte-registers (A, B, 
CCR) and another for word-registers (D, X, Y).  Note that neither SP nor 
PC can be pushed or pulled.  Note also that the same stack convention 
used by our simple computer is used here: the stack pointer (SP) points to 
the location in which the top stack item is stored (for word-length items, 
SP points to the high byte of the top stack item).  Generally, PSH and PUL 
do not affect any of the condition code bits – with the obvious exception of 
PULC, which affects all the condition code bits. 
 
Table 3-9   Data Transfer Group: Stack Manipulation Instructions. 

Description Mnemonic Operation  CC Examples Mode ~ 
PSHA � 2 

PSHB � 2 

PSHrb 
rb = A, B, C 

(SP) ← (SP) – 1 
((SP)) ← (rb) 

– 

PSHC �  2 

PSHD � 2 

PSHX �  2 

Push 
register 
onto stack 
 

PSHrw 
rw = D, X, Y 

(SP) ← (SP) – 1 
((SP)) ← (rwl) 
(SP) ← (SP) – 1 
((SP)) ← (rwh) 

– 

PSHY �  2 

PULA � 3 

PULB � 3 

PULrb 
rb = A, B, C 

(rb) ← ((SP)) 
(SP) ← (SP) + 1 

* 

PULC � 3 

PULD � 3 

PULX �  3 

Pull (pop) 
register 
from stack 

PULrw 
rw = D, X, Y 

(rwh) ← ((SP)) 
(SP) ← (SP) + 1 
(rwl) ← ((SP)) 
(SP) ← (SP) + 1 

– 

PULY �  3 

* PULC affects all the condition code bits, with the exception of X, which cannot 
be set by a software instruction once it is cleared. 
 
3.8.2    Arithmetic Group Instructions 
 
Instructions that perform an arithmetic operation (add, subtract, multiply, 
divide) are broadly classified here as belonging to the arithmetic group.  
As one might guess, most of these instructions affect all of the condition 
code bits (with a few notable exceptions). 
 
Table 3-10 lists the variations of add (ADD) and subtract (SUB) of which 
the 68HC12 is capable.  The “with carry” versions (ADC and SBC) are 
provided for implementing extended (or “infinite”) precision add or subtract 
routines; in Chapter 4, we will learn how to write such routines.  For the 
ADC instruction, the “C” bit of the condition code register is interpreted as 
a carry propagated forward, and is therefore added to the result.  For the 
SBC instruction, the “C” bit is interpreted as a borrow propagated forward, 
and is therefore subtracted from the result. The “astute digijock(ette)” will 

add 
ADD 
add with carry 
ADC 
 
subtract 
SUB 
subtract with carry 
SBC 
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realize this is equivalent to adding the complement of the “C” bit to the 
result, i.e., the way we did it in hardware. 
 
In addition to the “memory plus register” add instructions described above, 
there are two register-to-register add instructions.  As documented in 
Table 3-11, the first of these adds the contents of the two byte 
accumulators (A and B) and places the result in the A register (ABA), 
while the second adds the (zero-extended) contents of the B register to 
the X or Y register (ABX or ABY).  The ABX and ABY instructions are 
artifacts of the “original” 6800 instruction set (circa 1975).  These 
instructions have been supplanted by the “LEA” instruction (described 
previously); 68HC12 assembler programs convert ABX and ABY 
mnemonics into “LEAX  B,X” and “LEAY  B,Y” instructions, respectively. 
 
 
Table 3-10   Arithmetic Group: Add/Subtract Instructions. 

Description Mnemonic Operation  CC Examples Mode ~ 
ADDA  #1 # 1 
ADDB  $900 ℡  3 
ADDA  1,X .  3 
ADDB  A,X .  3 

ADDrb  addr 
rb = A, B 
 
addr = # ℡ .  [.] 

(rb) ← (rb) + (addr) N ← o 
Z ← o 
V ← o 
C ← o 
H ← o ADDA  [2,Y] [.] 6 

ADCA  #1 # 1 
ADCB  $900 ℡  3 
ADCA  1,X .  3 
ADCB  A,X .  3 

ADCrb  addr 
rb = A, B 
 
addr = # ℡ .  [.] 

(rb) ← (rb) + (addr) + (C) N ← o 
Z ← o 
V ← o 
C ← o 
H ← o ADCA  [2,Y] [.] 6 

ADDD  #1 # 2 
ADDD  $900 ℡  3 
ADDD  1,X .  3 

Add 
contents of 
memory 
location to 
register 
 

ADDD  addr 
 
addr = # ℡ .  [.] 

(D) ← (D) + (addr):(addr+1) N ← o 
Z ← o 
V ← o 
C ← o ADDD  [2,Y] [.] 6 

SUBA  #1 # 1 
SUBB  $900 ℡  3 
SUBA  1,X .  3 
SUBB  A,X .  3 

SUBrb  addr 
rb = A, B 
 
addr = # ℡ .  [.] 

(rb) ← (rb) – (addr) N ← o 
Z ← o 
V ← o 
C ← o 

SUBA  [2,Y] [.] 6 
SBCA  #1 # 1 
SBCB  $900 ℡  3 
SBCA  1,X .  3 
SBCB  A,X .  3 

SBCrb  addr 
rb = A, B 
 
addr = # ℡ .  [.] 

(rb) ← (rb) – (addr) – (C) N ← o 
Z ← o 
V ← o 
C ← o 

SBCA  [2,Y] [.] 6 
SUBD  #1 # 2 
SUBD  $900 ℡  3 
SUBD  1,X .  3 

Subtract 
contents of 
memory 
location 
from 
register 
 

SUBD  addr 
 
addr = # ℡ .  [.] 

(D) ← (D) – (addr):(addr+1) N ← o 
Z ← o 
V ← o 
C ← o SUBD  [2,Y] [.] 6 

 
 
 
 

add  B to A 
ABA 
 
add  B to X 
ABX 
 
add  B to Y 
ABY 
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Table 3-11   Arithmetic Group: Register-to-Register Adds. 
Description Mnemonic Operation  CC Examples Mode ~ 

ABA (A) ← (A) + (B) N ← o 
Z ← o 
V ← o 
C ← o 
H ← o 

ABA �  2 

ABX �  2 

Add 
registers 
 

ABrw 
rw = X, Y 

(rw) ← $00:(B) + (rw) – 
ABY �  2 

 
 
Note that ADD, ADC, and ABA are the only 68HC12 instructions that 
(meaningfully) affect the so-called “half carry” (H) condition code bit.  
That’s because the only instruction that uses the “H” bit is the “decimal 
adjust A (after add)” (DAA) instruction, described in Table 3-12 (note that 
an appropriate five-letter mnemonic would be “DAAAA”).  The purpose of 
this instruction is to “correct” the result of an add operation performed on 
two (packed) binary-coded decimal (BCD) operands, to produce a BCD 
result (plus a BCD carry, for extended precision applications).  “Packed 
BCD” means that two (4-bit) BCD digits are placed in a single (8-bit) byte. 
 
Table 3-12   Arithmetic Group: Decimal Adjust “A” Register. 

Description Mnemonic Operation  CC Examples Mode ~ 
Decimal Adjust A 
 

DAA 
 

decimal adjust 
the result of ADD, 
ADC, or ABA 

N ← o 
Z ← o 
V ← ? 
C ← o 

DAA � 3 

 
When a pair of packed BCD operands is added together, the “H” condition 
code bit represents the carry out of the “one’s position”, while the “C” 
condition code bit represents the carry out of the “ten’s position”.  Note 
that this often-misunderstood instruction does not “convert” binary 
operands to BCD format; instead, it simply applies a “correction” to the 
result obtained from directly adding packed BCD operands (similar in 
function to the BCD adder circuit reviewed in Chapter 1).  The action 
performed by DAA is illustrated in Figure 3-21.  Note that DAA does not 
produce a meaningful result following a subtract operation, and that the 
68HC12 does not have an instruction dedicated to performing decimal 
adjust after subtraction. 
 
Closely associated with add/subtract are instructions that can be used to 
complement the contents of a register or memory location.  The 68HC12 
provides two possibilities: a “ones’ complement” (COM) instruction and a 
“two’s complement” (NEG) instruction, documented in Table 3-13.  Both of 
these instructions support all applicable addressing modes. 
 
 
 

decimal adjust A 
DAA 

correction function 

complement 
COM 
 
negate 
NEG 
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Figure 3-21   Illustration of DAA. 
 
 
Table 3-13   Arithmetic Group: Complement. 

Description Mnemonic Operation  CC Examples Mode ~ 
COMrb 
rb = A, B 

(rb) ← $FF – (rb) N ← o 
Z ← o 
V ← 0 
C ← 1 

COMA �  1 

COM  $900 ℡  4 
COM  1,X .  3 
COM  B,X .  3 

Ones’ 
complement 
 

COM  addr 
 
addr = ℡ . [.] 

(addr) ← $FF – (addr) N ← o 
Z ← o 
V ← 0 
C ← 1 COM  [D,Y] [.] 6 

NEGrb 
rb = A, B 

(rb) ← $00 – (rb) N ← o 
Z ← o 
V ← o 
C ← o 

NEGB �  1 

NEG  $900 ℡  4 
NEG  1,X .  3 
NEG  B,X .  3 

Two’s 
complement 
 

NEG  addr 
 
addr = ℡ . [.] 

(addr) ← $00 – (addr) N ← o 
Z ← o 
V ← o 
C ← o NEG  [D,Y] [.] 6 

 
 
The manner in which these two instructions affect the condition code bits 
deserves some explanation.  For the COM instruction, the N and Z flags 
are set according to the new contents of the affected register or memory 
location.  The overflow (V) flag is cleared and, strictly for “legacy 
compatibility” reasons, the carry/borrow (C) flag is set (there is no 
compelling reason, however, for the COM instructions to affect the V and 
C bits this way).  For the NEG instruction, the two’s complement negation 
of the operand is formed by subtracting it from $00; the condition code bits 
are simply set or cleared based on the results of this subtraction. 
 

47      0100  0111
+68     +0110  1000
--- -----------
115      1010  1111

+0110
-----------

DAA      1011  0101
+0110
-----------

1 0001  0101

since L.N. > 9,
add 6 to adjust

since U.N. > 9,
add 6 to adjust

result of ADD

CF is hundred’s 
position

ten’s  one’s
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Also closely related to the subtract instructions is the “compare and test” 
subgroup, listed in Table 3-14.  The “compare” (CMP or CP) instructions 
work the same as the subtract instructions except the difference 
calculated is not stored; instead, only the condition codes (N, Z, V, C) are 
affected.  As such, compare instructions are intended for use prior to 
conditional transfer of control instructions (covered in Section 3.8.4).  It is 
important to note that the condition code bits are set or cleared based on a 
subtract operation and, in particular, that the C bit (“carry/borrow flag”) is 
interpreted as a borrow.  We will discuss the ramifications of this when we 
cover the “transfer of control” group of instructions. 
 
A somewhat more “specialized” version of compare is the “test” (TST) 
instruction, which sets or clears the condition code bits based on 
subtracting zero from a byte-register or memory location.  One might 
argue that this less general variant of compare really isn’t necessary, 
given that “TSTA” and “TSTB” are functionally equivalent to “CMPA  #0” 
and “CMPB  #0”, respectively.  Both TSTrb and CMPrb execute in a single 
cycle, although the TSTrb instructions occupy a single byte while the 
immediate mode version of CMPrb occupies two.  The “test memory” 
variant, however, is a bit more useful, since the “compare memory” 
equivalent would require loading an accumulator with zero.  An interesting 
thing to note about this subgroup is that, since zero is subtracted from the 
operand, the overflow (V) and carry (C) flags are always cleared (since 
overflow cannot occur, and there can never be a borrow).  The only 
meaningful condition code bits following a “test” instruction are N and Z. 
 
Table 3-14   Arithmetic Group: Compare/Test. 

Description Mnemonic Operation  CC Examples Mode ~ 
Compare 
Accumulators 

CBA set CCR based on 
(A) – (B) 

N ← o 
Z ← o 
V ← o 
C ← o 

CBA �  2 

CMPA  #2 # 1 
CMPB  $900 ℡  3 
CMPA  2,X .  3 

CMPrb   addr 
rb = A, B 
 
addr = # ℡ .  [.] 

set CCR based on 
(rb) – (addr) 

N ← o 
Z ← o 
V ← o 
C ← o CMPB  [2,Y] [.] 6 

CPD   #2 # 2 
CPX   $900 ℡  3 
CPY   2,X .  3 

Compare 
Register with 
Memory 

CPrw   addr 
rw = D, X, Y, S 
 
addr = # ℡ .  [.] 

set CCR based on 
(rw) – (addr):(addr+1) 

N ← o 
Z ← o 
V ← o 
C ← o  

CPS   [2,Y] [.] 6 
TSTA �  1 TSTrb    

rb = A, B 
 
 

set CCR based on 
(rb) – $00 

N ← o 
Z ← o 
V ← 0 
C ← 0 

TSTB �  1 

TST   $900 # 3 
TST   1,X .  3 

Test for Zero 

TST   addr 
 
addr =  ℡ .  [.] 

set CCR based on 
(addr) – $00 

N ← o 
Z ← o 
V ← 0 
C ← 0  

TST   [2,Y] [.] 6 

compare  
CMP 

test for zero 
TST 
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The next set of arithmetic group instructions, documented in Table 3-15, 
provide the capability to increment (INC) or decrement (DEC) the contents 
of a register or memory location.  The byte-increment/decrement subset 
affect the N, Z, and V condition code bits; the carry/borrow (C) flag is not 
affected “on purpose” to facilitate use of INC/DEC instructions as loop 
counters (or “pointer bumpers”) in extended precision arithmetic routines.  
The word-register (X, Y, SP) increment/decrement subset affects (at most) 
the Z flag (INS and DES do not affect any flags).  Recall that the LEA 
instruction provides a considerably more powerful and flexible means of 
incrementing or decrementing a word-register. 
 
Multiply and divide operations comprise the next set of arithmetic group 
instructions, listed in Tables 3-16 through 3-18.  Here there are a number 
of permutations, depending on the size of the operands (8-, 16-, or 32-
bits) and whether or not the operands are signed.  Special variants include 
a fractional divide plus a “multiply-and-accumulate”. 
 
Table 3-15   Arithmetic Group: Increment/Decrement. 

Description Mnemonic Operation  CC Examples Mode ~ 
INCr 
r = A, B 

(r) ← (r) + 1 N ← o 
Z ← o 
V ← o 

INCA �  1 

Z ← o  INX 
INY 

�  1 INrw 
rw = X, Y, S 

(rw) ← (rw) + 1 

– INS �  1 
INC  $900 ℡  4 
INC  1,X .  3 
INC  B,X .  3 

Increment 
 

INC  addr 
 
addr = ℡ . [.] 

(addr) ← (addr) + 1 N ← o 
Z ← o 
V ← o 

INC  [D,Y] [.] 6 
DECr 
r = A, B 

(r) ← (r) – 1 N ← o 
Z ← o 
V ← o 

DECB �  1 

Z ← o  DCX 
DCY 

�  1 DErw 
rw = X, Y, S 

(rw) ← (rw) – 1 

– DCS �  1 
DEC  $900 ℡  4 
DEC  1,X .  3 
DEC  B,X .  3 

Decrement 
 

DEC  addr 
 
addr = ℡ . [.] 

(addr) ← (addr) – 1 N ← o 
Z ← o 
V ← o 

DEC  [D,Y] [.] 6 
  
 
Looking first at the multiply instructions in Table 3-16, the basic multiply 
(MUL) instruction – that had its humble beginnings back in the late 1970s 
with the venerable Motorola 6809 – performs an 8-bit by 8-bit unsigned 
integer multiply.  The A and B registers are used as the source operands, 
which are overwritten with the result (high byte in A, low byte in B).  Only 
the carry flag (C) is affected by this instruction, which (if desired) can be 
used to “round” the upper byte (contained in the A register).  This rounding 
capability, which can be implemented by following the MUL instruction 

increment 
INC 
 
decrement 
DEC 

8x8-bit multiply 
MUL 
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with an “ADCA  #0” instruction (which simply adds the carry bit to the 
value in the A register), is useful in cases where the operands are 
construed as (unsigned) binary fractions.  We might wish to truncate or 
round the result if it is destined for an 8-bit digital-to-analog converter. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 3-16   Arithmetic Group: Multiply. 

Description Mnemonic Operation  CC Examples Mode ~ 
8x8 unsigned 
integer multiply 

MUL (D) ← (A) x (B) C ← o 

 
MUL �  3 

16x16 unsigned 
integer multiply 

EMUL (Y):(D) ← (D) x (Y) N ← o 
Z ← o 
C ← o  

EMUL �  3 

16x16 signed 
integer multiply 

EMULS (Y):(D) ← (D) x (Y) N ← o 
Z ← o 
C ← o 

EMULS �   3 

  
 
Table 3-17   Arithmetic Group: Multiply and Accumulate. 

Description Mnemonic Operation  CC Examples ~ 
16x16 integer 
multiply and 
accumulate 

EMACS  addr 
 
addr = special 

(addr):(addr+1):(addr+2):(addr+3) ←  
(addr):(addr+1):(addr+2):(addr+3)  + 
( ((X)) x ((Y)) ) 

N ← o 
V ← o 
Z ← o 
C ← o 

EMACS $900 13 

 
 
Recall from Chapter 1 that, for a binary fraction, the radix point is to the 
“far left”, making the most significant bit of weight 2-1 (1/2 = 0.510), the next 
most significant bit of weight 2-2 (1/4 = 0.2510), and so on.  Multiplying the 
bit pattern 10000000b (1/2) by 01000000b (1/4) yields the 16-bit result 
00100000 00000000b in (A):(B), or 1/8 (0.12510).  Here, the result could 
be truncated to the 8-bit value in the A register with no loss of precision; 
the C condition code bit is therefore cleared by the MUL instruction to 
nullify the effect of an ensuing “ADCA  #0” instruction. 
 
Consider, however, the case of multiplying the bit pattern 11111111b 
(255/256 = 0.9960937510, or “the largest possible 8-bit unsigned fraction”) 

Star ∗∗   Wars 
 
In the late 1970’s, when both Motorola and Intel were introducing their 
“second-and-a-half” generation 8-bit microprocessors (the 6809 and 8085, 
respectively), Motorola attempted to “trump” the 8085 (which beat the 6809 
to market) by adding a feature its fiercest competitor (and market dominator) 
did not have: a multiply instruction.  It’s not clear how much the much-
vaunted MUL instruction affected the 6809’s market share, but it was 
certainly a novel feature for a microprocessor of that era. 
 

largest possible 
unsigned fraction 
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by 01000000b (1/4), which yields 00111111 11000000b in (A):(B), or 
255/1024  (0.249023437510).  Here, truncating the result to the 8-bit value 
in the A register produces the result 63/256 (0.2460937510), while 
rounding the result (as described above) produces the result 01000000b 
in the A register, or (0.2510).  To enable rounding, the MUL instruction sets 
the C bit so that an ensuing “ADCA  #0” instruction can increment the 
value in the A register by one.  The “astute digijock(ette)” will recognize 
that rounding should be performed when the most significant bit of the B 
register (the lower byte of the result) is one, which is exactly how the C 
condition code bit is affected by the MUL instruction. 
 
Before leaving the MUL instruction, it is important to note that the 
operands in A and B can also be construed as simply unsigned integers.  
For example, multiplying 3210 (00010000b) by 6410 (00100000b) yields 
00000010 00000000b in (A):(B), or 204810.  For multiplication of integers, 
the C condition code bit holds “no social significance”. 
 
Continuing with the “extended” (16-bit x 16-bit) multiply instructions in 
Table 3-16, we find that they basically work the same as the “original” 
MUL instruction, but with some notable differences.  Here, the D and Y 
registers are used to contain the two 16-bit operands, while the 32-bit 
result is placed in (Y):(D).  Like the MUL instruction, EMUL and EMULS 
use the C condition code bit to facilitate rounding of binary fractions: here, 
C is set to the most significant bit of the result in the D register (i.e., the 
low-word of the result).  Unlike MUL, though, both extended multiply 
instructions affect the N and Z condition code bits.  The only difference 
between EMUL and EMULS is that the latter instruction assumes the 
operands are signed (two’s complement) integers or fractions. 
 
The 68HC12’s “multiply and accumulate” (EMACS) instruction, described 
in Table 3-17, is rarely found in “generic” micrcontrollers.  Rather, it is an 
instruction that is typically found only in so-called digital signal processor 
(DSP) chips.  The “MAC” (multiply and accumulate) operation is a staple 
of common signal processing applications such as digital filters and Fast 
Fourier Transforms (FFTs).  In the 68HC12 implementation of EMACS, 
two 16-bit signed operands (pointed to by the X and Y registers) are 
multiplied together; the 32-bit intermediate result obtained is then added to 
a 32-bit “running sum” stored in memory. 
 
The main difference between the 68HC12’s EMACS instruction and an 
equivalent that might be found on a 16-bit integer DSP chip is speed: on 
the 68HC12, execution of the EMACS instruction consumes 13 cycles; 
while on a DSP chip, the equivalent operation is typically executed in a 
single cycle.  The primary impediment to speed on the 68HC12 is lack of a 
sufficient number of registers – not only to contain the 32-bit accumulated 
result, but also to provide pointers for the operand arrays.  Short of adding 

rounding 

extended 16x16-bit 
multiply 
 
EMUL (unsigned) 
EMULS (signed) 

multiply and 
accumulate 
 
EMACS 

truncating 
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additional registers, the only solution was to use four consecutive memory 
locations as the 32-bit “accumulator”.  Given that the (starting) address of 
this 32-bit accumulator is specified using extended addressing mode and 
that the X and Y registers are used as pointers to the two operand arrays, 
there is no “conventional” addressing mode name that is applicable 
(hence the designation special). 
 
The various possibilities for performing a “divide” operation on the 68HC12 
are documented in Table 3-18.  One important thing to note, in contrasting 
this set of instructions to the “multiply” sub-group, is that integers and 
fractions are handled differently.  With that in mind, let’s examine the 
integer divide (IDIV and IDIVS) instructions first.  Here, the D register is 
used to contain a 16-bit dividend (unsigned for IDIV, signed for IDIVS) and 
the X register is used to contain a 16-bit (unsigned or signed) divisor.  The 
resulting 16-bit quotient is placed in the X register, while the 16-bit 
remainder is placed in the D register.  If a “divide-by-zero” is attempted, 
the C condition code bit is set and the quotient is set to $FFFF (the 
remainder is indeterminate).  For both IDIV and IDIVS, the Z condition 
code bit is set when a quotient of zero is generated.  IDIV and IDIVS differ, 
however, in how they affect the N and V bits.  The N bit is not affected by 
the unsigned divide (IDIV), but is affected as expected (set to the sign of 
the quotient) by the signed divide (IDIVS).  The V bit is simply cleared by 
the IDIV instruction, but is set by IDIVS if two’s complement overflow 
occurs.  An example of where two’s complement overflow occurs is 
attempting to divide the “largest negative16-bit signed integer” (-32,76810 
= $8000) by minus one ($FFFF).  Theoretically, the result +32,76810 
should be produced, but since the “largest positive 16-bit signed integer” is 
+32,76710 ($7FFF), overflow occurs.  
 
The “extended” divides (EDIV and EDIVS) are so-called because the 
dividend is extended to 32-bits; the divisor, quotient, and remainder, 
however, are limited to 16-bits.  The Y register concatenated with the D 
register is used to contain the 32-bit dividend, while the X register is used 
to contain the 16-bit divisor.  The 16-bit quotient is placed in the Y register, 
and the 16-bit remainder is placed in the D register.  EDIVS (the “signed” 
version) affects the condition code bits (N, Z, V, C) the same way IDIVS 
does, but EDIV (the “unsigned” version) differs from IDIV – primarily due 
to the disparity between the length of the dividend and quotient.  Instead, 
EDIV affects the condition code bits the same way EDIVS does, except for 
the overflow (V) bit.  Since the quotient is limited to 16-bits, an unsigned 
result exceeding 65,53510 ($FFFF) can be generated (e.g., dividing 
anything with a non-zero “upper-word” by one). 
 
 
 
 

integer 16x16-bit 
divide 
 
IDIV (unsigned) 
IDIVS (signed) 

extended 32x16-bit 
integer divide 
 
EDIV (unsigned) 
EDIVS (signed) 
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Table 3-18   Arithmetic Group: Divide. 
Description Mnemonic Operation  CC Examples Mode ~ 

16÷16 unsigned 
integer divide 

IDIV (X) ← (D) ÷ (X) 
(D) ← remainder 

V ← 0 
Z ← o 
C ← o 

IDIV �  12 

16÷16 signed 
integer divide 

IDIVS (X) ← (D) ÷ (X) 
(D) ← remainder 

N ← o 
V ← o 
Z ← o 
C ← o 

IDIVS �  12 

32÷16 unsigned 
integer divide 

EDIV (Y) ← (Y):(D) ÷ (X) 
(D) ← remainder 

N ← o 
V ← o 
Z ← o 
C ← o 

EDIV �  11 

32÷16 signed 
integer divide 

EDIVS (Y) ← (Y):(D) ÷ (X) 
(D) ← remainder 

N ← o 
V ← o 
Z ← o 
C ← o 

EDIVS �  12 

32÷16 unsigned 
fraction divide 

FDIV (X) ← (D) ÷ (X) 
(D) ← remainder 

V ← o 
Z ← o 
C ← o 

FDIV �  12 

 
The final member of the “divide” sub-group, fractional divide (FDIV), is 
also perhaps the most misunderstood.  The key is to remember that the 
two 16-bit operands are construed as unsigned binary fractions (i.e., with 
the radix point to the “far left”):  the dividend is contained in the D register, 
and the divisor is contained in the X register.  After execution, the quotient 
is placed in the X register and the remainder is placed in D.  The 
remainder can be resolved into the next-most-significant 16 fractional 
result bits through execution of another FDIV instruction.  
 
As an illustrative example, if the dividend is 1/8 ($2000) and the divisor is 
1/2 ($8000), the result will be 1/4 ($4000).  The Z condition code bit, as 
expected, is set if the quotient is zero; and, like the other 68HC12 divides, 
the C bit is set if a “divide-by-zero” is attempted.  If the divisor is less than 
or equal to the dividend, the V bit is set and the quotient is set to $FFFF 
(the remainder is indeterminate).  “Reversing” the example cited above – 
i.e., using a dividend of 1/2 ($8000) and divisor of 1/8 ($2000) – will 
produce a result of “overflow”. 
 
One last note about the “divide” sub-group: they are all “cycle hogs”, 
consuming 11-12 clock ticks to execute.  This is in contrast to the 3 cycles 
consumed by each of the various multiply instructions. 
 
The “min/max” instructions (MIN/MAX, EMIN/EMAX), listed in Table 3-19, 
constitute the final subset of arithmetic group instructions.  These 
instructions compare two unsigned operands – one of which is an 
accumulator (“A” for the 8-bit version, “D” for the 16-bit version) and the 
other of which resides in memory – and places the larger/smaller of the 
two in the named accumulator or in memory.  These instructions only use 

 fractional divide 
 FDIV 

 8-bit unsigned 
 min/max 
 MIN 
 MAX 
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the indexed and indexed-indirect addressing modes.  There are eight 
permutations, based on: the size of the operands (8- or 16-bits), whether 
the destination is memory or the accumulator, and whether a “min” or 
“max” is performed.  The condition codes (N, Z, V, C) are affected based 
on subtracting the value in memory from the named accumulator. 
 
Table 3-19   Arithmetic Group: Minimum/Maximum. 

Description Mnemonic Operation  CC Examples Mode ~ 
MINA  0,X ..   4 
MINA  2,X+ ..   4 
MINA 1000t,Y ..   5 
MINA [D,X] [.] 7 

MINA   addr 
  
addr =  . [.] 

(A) ← min {(A), (addr)} 
 
 

N ← oo  
Z ← oo  
V ← oo  
C ← oo  

MINA [2,Y] [.] 7 
MINM  0,X ..   4 
MINM  2,X+ ..   4 
MINM 1000t,Y ..   5 
MINM [D,X] [.] 7 

Unsigned 
8-bit 
Minimum 

MINM  addr 
 
addr =  . [.] 

(addr) ← min {(A), (addr)} 
 
 

N ← oo  
Z ← oo  
V ← oo  
C ← oo  

MINM [2,Y] [.] 7 
MAXA  0,X ..   4 
MAXA  2,X+ ..   4 
MAXA 1000t,Y ..   5 
MAXA [D,X] [.] 7 

MAXA   addr 
  
addr =  . [.] 

(A) ← max {(A), (addr)} 
 
 

N ← oo  
Z ← oo  
V ← oo  
C ← oo  

MAXA [2,Y] [.] 7 
MAXM  0,X ..   4 
MAXM  2,X+ ..   4 
MAXM 1000t,Y ..   5 
MAXM [D,X] [.] 7 

Unsigned 
8-bit 
Maximum 

MAXM  addr 
 
addr =  . [.] 

(addr) ← max {(A), (addr)} 
 
 

N ← oo  
Z ← oo  
V ← oo  
C ← oo  

MAXM [2,Y] [.] 7 
EMIND  0,X ..   4 
EMIND  2,X+ ..   4 
EMIND 1000t,Y ..   5 
EMIND [D,X] [.] 7 

EMIND   addr 
  
addr =  . [.] 

(D) ←  
min {(D), (addr):(addr+1)} 
 
 

N ← oo  
Z ← oo  
V ← oo  
C ← oo  

EMIND [2,Y] [.] 7 
EMINM  0,X ..   4 
EMINM  2,X+ ..   4 
EMINM 1000t,Y ..   5 
EMINM [D,X] [.] 7 

Unsigned 
16-bit 
Minimum 

EMINM  addr 
 
addr =  . [.] 

(addr):(addr+1) ←  
min {(D), (addr):(addr+1)} 
 
 

N ← oo  
Z ← oo  
V ← oo  
C ← oo  

EMINM [2,Y] [.] 7 
EMAXD  0,X ..   4 
EMAXD  2,X+ ..   4 
EMAXD 1000t,Y ..   5 
EMAXD [D,X] [.] 7 

EMAXD   addr 
  
addr =  . [.] 

(D) ←  
max {(D), (addr):(addr+1)} 
 
 

N ← oo  
Z ← oo  
V ← oo  
C ← oo  

EMAXD [2,Y] [.] 7 
EMAXM  0,X ..   4 
EMAXM  2,X+ ..   4 
EMAXM 1000t,Y ..   5 
EMAXM [D,X] [.] 7 

Unsigned 
16-bit 
Maximum 

EMAXM  addr 
 
addr =  . [.] 

(addr):(addr+1) ← 
max {(D), (addr):(addr+1)} 
 
 

N ← oo  
Z ← oo  
V ← oo  
C ← oo  

EMAXM [2,Y] [.] 7 
 
 
 

 
16-bit unsigned 
 min/max 
EMIN 
EMAX 
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In summary, the arithmetic group includes add/subtract, decimal adjust, 
complement/negate, compare/test, increment/decrement, multiply/divide, 
and min/max instructions.  While there is no “direct” support for floating 
point numbers, software libraries are available for this purpose. 
 
3.8.3    Logical Group Instructions 
 
Instructions that perform logical manipulation and testing of data – 
including AND, OR, XOR, shifts, and rotates – are members of this group.  
We will find this group of instructions particularly useful for interrogating or 
manipulating individual bits (or sets of bits) contained in peripheral device 
registers.  There is a variety of “arithmetic applications” of these 
instructions as well. 
 
Table 3-20   Logical Group: Boolean Operations. 

Description Mnemonic Operation  CC  Examples Mode ~ 
ANDA  #1   # 1 
ANDA  $FF  ℡ 3 
ANDB  900h ℡ 3 
ANDA  1,X  . 3 
ANDA  B,Y  . 3 
ANDB  2,Y+   . 3 
ANDA  [0,Y]   [.] 6 

AND ANDrb   addr 
rb = A, B  
 
addr = # ℡ . [.] 

(rb) ← (rb) ∩ (addr) 
 
 

N ← oo  
Z ← oo  
V ← 0 

ANDA  [D,X]   [.] 6 
ANDCC ANDCC  addr 

 
addr = # 

(CC) ← (CC) ∩ data all* ANDCC  #$FE # 1 

ORA  #1   # 1 
ORA  $FF  ℡ 3 
ORB  900h ℡ 3 
ORA  1,X  . 3 
ORA  B,Y  . 3 
ORB  2,Y+   . 3 
ORA  [0,Y]   [.] 6 

OR ORrb   addr 
rb = A, B  
 
addr = # ℡ . [.] 

(rb) ← (rb) ∪ (addr) 
 
 

N ← oo  
Z ← oo  
V ← 0 

ORA  [D,X]   [.] 6 
ORCC ORCC  addr 

 
addr = # 

(CC) ← (CC) ∪ data all* ORCC  #1 # 1 

EORA  #1   # 1 
EORA  $FF  ℡ 3 
EORB  900h ℡ 3 
EORA  1,X  . 3 
EORA  B,Y  . 3 
EORB  2,Y+   . 3 
EORA  [0,Y]   [.] 6 

XOR EORrb   addr 
rb = A, B 
 
addr = # ℡ . [.] 

(rb) ← (rb) ⊕ (addr) 
 
 

N ← oo  
Z ← oo  
V ← 0 

EORA  [D,X]   [.] 6 

* Any condition code bit can potentially be cleared by an ANDCC instruction or set by an 
ORCC instruction, with the exception of the “X” bit (non-maskable interrupt mask bit), 
which cannot be set by a software instruction – more on this in Chapter 5. 
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Perhaps the first subgroup of logical instructions that comes to mind is 
Boolean.  The 68HC12 implements the most useful and basic of these, 
listed in Table 3-20: AND, OR, and XOR (EOR).  These instructions 
perform a bit-wise Boolean operation on the named byte-register and 
operand in memory; the result is stored in the named register.  The 
overflow (V) flag is cleared while the negative (N) and zero (Z) flags are 
affected based on the result obtained.   
 
There are two special variants contained in this subgroup: ANDCC and 
ORCC.  These instructions provide a generic way to clear or set any of the 
condition code bits (well, almost any – the “X” bit, the non-maskable 
interrupt mask, can be cleared but cannot be set by a software instruction 
– the “machine control” portion of the CCR will be discussed in Chapter 5).  
Note that the only addressing mode available is immediate. 
 
ANDCC and ORCC can be used in place of the “vintage” (legacy) 
set/clear instructions dedicated to specific condition code register bits.  
These instructions, listed in Table 3-21, provide a “direct” means for 
setting or clearing the carry flag (C), the overflow flag (V), or the system 
interrupt mask bit (I).   
 
 
Table 3-21   Logical Group: Condition Code Bit Set/Clear. 

Description Mnemonic Operation  CC  Examples Mode ~ 
Clear C bit 
of CCR 

CLC (C) ← 0 (C) ← 0 CLC �  1 

Set C bit of 
CCR 

SEC (C) ← 1 (C) ← 1 SEC �  1 

Clear V bit 
of CCR 

CLV (V) ← 0 (V) ← 0 CLV �  1 

Set V bit of 
CCR 

SEV (V) ← 1 (V) ← 1 SEV �  1 

Clear I bit 
of CCR 

CLI (I) ← 0 (I) ← 0 CLI �  1 

Set I bit of 
CCR 

SEI (I) ← 1 (I) ← 1 SEI �  1 

 
 
The “complement and clear” sub-group, documented in Table 3-22, 
provides a means for clearing and setting byte-registers or memory 
locations (CLRA followed by COMA will set (A) to $FF).  The astute 
digijock(ette) will realize that the COM instruction was also included as a 
member of the arithmetic group.  Like Florida in the 2000 election, this one 
was “too close to call”.  (Conversely, a case could be made for calling the 
“CLR” instruction an arithmetic instruction – a “hand recount” might be 
necessary to sort this one out, or maybe just a high-priced lawyer.) 
 

 ANDCC 
ORCC 

 vintage CCR set/clear 
 instructions 

 clear 
 CLR 
 
 complement 
 COM 

Boolean operations 
AND 
OR 
EOR 
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Table 3-22   Logical Group: Byte Clear and Complement. 
Description Mnemonic Operation  CC Examples Mode ~ 

CLRrb 
rb = A, B 

(rb) ← $00 N ← 0 
Z ← 1 
V ← 0 
C ← 0 

CLRA �  1 

CLR  $900 ℡  3 
CLR  1,X .  2 
CLR  B,X .  2 

Clear 
 

CLR  addr 
 
addr = ℡ . [.] 

(addr) ← $00 N ← 0 
Z ← 1 
V ← 0 
C ← 0 CLR  [D,Y] [.] 5 

COMrb 
rb = A, B 

(rb) ← $FF – (rb) N ← o 
Z ← o 
V ← 0 
C ← 1 

COMA �  1 

COM  $900 ℡  4 
COM  1,X .  3 
COM  B,X .  3 

Complement 
 

COM  addr 
 
addr = ℡ . [.] 

(addr) ← $FF – (addr) N ← o 
Z ← o 
V ← 0 
C ← 1 COM  [D,Y] [.] 6 

 
 
Even more useful than the byte clears and sets are the bit clear and set 
instructions (BCLR and BSET), listed in Table 3-23.  These instructions 
provide a convenient, powerful means for setting or clearing individual bits 
or groups of bits within a byte.  The bit positions to be set or cleared are 
indicated by a mask pattern (that follows the address field): bits of the 
mask pattern that are “1” indicate the bits to be cleared or set by BSET 
and BCLR, respectively.  For example, execution of a “BCLR  addr,$01” 
instruction clears the bit position corresponding to the mask pattern 
00000001b, i.e., the least significant position (bit position 0).  Execution of 
a “BSET  addr,$F0” instruction sets the bit positions corresponding to the 
mask pattern 11110000b, i.e., the most significant four bits (bit positions 7 
through 4). 
 
Table 3-23   Logical Group: Bit Clear and Set. 

Description Mnemonic Operation  CC Examples Mode ~ 
BCLR $50,$FE ℡  4 
BCLR $900,$FE ℡  4 
BCLR 1,X,$01 .  4 
BCLR 2,X+,$F0 .  4 

Bit clear BCLR  addr,mask 
 
addr = ℡  .  

(addr) ←  

   (addr) ∩ mask8′ 
N ← o 
Z ← o 
V ← 0 

BCLR 1000t,Y,$02 .  6 
BSET $50,$FE ℡  4 
BSET $900,$FE ℡  4 
BSET 1,X,$01 .  4 
BSET 2,X+,$F0 .  4 

Bit set BSET  addr,mask 
 
addr = ℡  . 

(addr) ← 
   (addr) ∪ mask8 

N ← o 
Z ← o 
V ← 0 

BSET 1000t,Y,$02 .  6 

 
 
 

 bit clear 
BCLR 
 
bit set 
BSET 

 mask pattern 
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Another important tool for bit-oriented operations is the “bit test” (BIT) 
instruction, documented in Table 3-24.  This instruction is analogous to the 
TST instruction, except here the bit test is performed by ANDing the 
named byte-register with the contents of a memory location and setting   
the condition code bits accordingly.  Like the TST instruction, the result of 
the AND operation is not stored; only the condition codes are affected. 
 
Table 3-24    Logical Group: Bit Test. 

Description Mnemonic Operation  CC  Examples Mode ~ 
BITA  #1   # 1 
BITA  $FF  ℡ 3 
BITB  900h ℡ 3 
BITA  1,X  . 3 
BITA  B,Y  . 3 
BITB  2,Y+   . 3 
BITA  [0,Y]   [.] 6 

Bit test BITrb   addr 
rb = A, B  
 
addr = # ℡ . [.] 

set CCR based on 
(rb) ∩ (addr) 
 
 

N ← o 
Z ← o 
V ← 0 

BITA  [D,X]   [.] 6 

 
 
The final subgroup of logical instructions is the “shift and rotate” group.  
The first question that comes to mind is: “What’s the difference between a 
shift and a rotate?”  Shifts are generally regarded as arithmetic operations: 
a (sign-preserving) multiply-by-two (shift left) or divide-by-two (shift right).  
Rotates generally involve a “wrap-around” effect, i.e., the bit “rotated out” 
at one end gets “rotated in” at the other end.  Therefore, if an N-bit register 
is rotated N times right or N times left, it will return to its “original state”.  
This is in contrast with their “shifty” cousins, which are classically “end-off” 
shifts – i.e., bits shifted out wind up in the proverbial “bit bucket”.  An N-bit 
register shifted left arithmetically N (or more) times will be filled with 
zeroes, while that same register shifted right arithmetically N (or more) 
times will be filled with the sign of the original operand (i.e., all zeroes if 
the original value was positive, or all ones if the original value was 
negative). 
 
Starting with the rotates, the first thing to note is that these instructions 
operate on a 9-bit value consisting of the C condition code bit 
concatenated with the named register or memory location.  (Including “C” 
in the instruction mnemonics – what Intel did for similar instructions in their 
microprocessors – would have perhaps made this fact a bit easier to 
remember!)  The “proper names” for these instructions, documented in 
Table 3-25, are therefore “rotate left through carry” (ROL) and “rotate right 
through carry” (ROR).  Note that since the C-bit is construed as an integral 
part of the value being rotated, it is usually important that this flag be 
placed in a known initial state prior to a rotate; otherwise, “strange bits” 
may appear in the rotated result. 
 
 

bit test 
BIT 

sign-preserving 
arithmetic shift 

 end-off shift 
 
 bit bucket 

 9-bit rotate 
 through C 
 
ROL (left) 
ROR (right) 
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Table 3-25   Logical Group: Shift and Rotate. 
Description Mnemonic Operation  CC Examples Mode ~ 

ROLrb 
rb = A, B 

   N ← o 
Z ← o 
V ← o 
C ← o 

ROLA �  1 

ROL  $900 ℡  4 
ROL  1,X .  3 
ROL  B,X .  3 

Rotate left 
through 
carry 
 

ROL  addr 
 
addr = ℡ . [.] 

 N ← o 
Z ← o 
V ← o 
C ← o ROL  [D,Y] [.] 6 

RORrb 
rb = A, B 

 N ← o 
Z ← o 
V ← o 
C ← o 

RORA �  1 

ROR  $900 ℡  4 
ROR  1,X .  3 
ROR  B,X .  3 

Rotate right 
through 
carry 
 

ROR  addr 
 
addr = ℡ . [.] 

 N ← o 
Z ← o 
V ← o 
C ← o ROR  [D,Y] [.] 6 

ASLrb 
rb = A, B 

 ASLA �  1 

ASLrw 
rw = D 

 

N ← o 
Z ← o 
V ← o 
C ← o ASLD �  1 

ASL  $900 ℡  4 
ASL  1,X .  3 
ASL  B,X .  3 

Arithmetic 
shift left* 
 

ASL  addr 
 
addr = ℡ . [.] 

 N ← o 
Z ← o 
V ← o 
C ← o ASL  [D,Y] [.] 6 

ASRrb 
rb = A, B 

 N ← o 
Z ← o 
V ← o 
C ← o 

ASRA �  1 

ASR  $900 ℡  4 
ASR  1,X .  3 
ASR  B,X .  3 

Arithmetic 
shift right 
 

ASR  addr 
 
addr = ℡ . [.] 

 N ← o 
Z ← o 
V ← o 
C ← o ASR  [D,Y] [.] 6 

LSLrb 
rb = A, B 

 LSLA �  1 

LSLrw 
rw = D 

 

N ← o 
Z ← o 
V ← o 
C ← o 

LSLD �  1 

LSL  $900 ℡  4 
LSL  1,X .  3 
LSL  B,X .  3 

Logical shift 
left* 
 

LSL  addr 
 
addr = ℡ . [.] 

 N ← o 
Z ← o 
V ← o 
C ← o LSL  [D,Y] [.] 6 

LSRrb 
rb = A, B 

 LSRA �  1 

LSRrw 
rw = D 

 

N ← o 
Z ← o 
V ← o 
C ← o LSRD �  1 

LSR  $900 ℡  4 
LSR  1,X .  3 
LSR  B,X .  3 

Logical shift 
right 
 

LSR  addr 
 
addr = ℡ . [.] 

 N ← o 
Z ← o 
V ← o 
C ← o LSR  [D,Y] [.] 6 

*ASL and LSL instruction mnemonics generate identical machine code. 

r7 … r0
C

m7 … m0
C

r7 … r0
C

m7 … m0
C

r7 … r0C 0

a7 … a0
C 0b7 … b0

m7 … m0C 0

r7 … r0
C

m7 … m 0 C

r7 … r0C 0

a7 … a0
C 0b7 … b0

m7 … m 0C 0

r7 … r0 C0

m7 … m0 C0

a7 … a0 C0 b7 … b0
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For a rotate left through carry (ROL), the entire contents of the targeted 
register or memory location is translated left one position; the “vacated” 
low-order bit is loaded with the value that was in the C bit just prior to the 
ROL, and the C-bit is loaded with the value that rotated out of the high 
order bit.  If a series of nine ROL instructions is executed, the original 
state of the targeted register or memory location as well as the C bit will 
be restored.   
 
A rotate right through carry (ROR) works the same as ROL, except the 
contents of the targeted register or memory location is translated right one 
position.  Here, the vacated high-order bit is loaded with the value that 
was in the C bit just prior to the ROR, and the C bit is loaded with the 
value that rotated out of the low order bit.  As was the case for ROL, a 
series of nine ROR instructions yields the original state.  Note that while 
ROL and ROR affect all of the flags (N, Z, V, C), the only one of “social 
significance” is the C bit. 
 
At this point, one might properly ask: “Why was this strange ‘9-bit rotate 
through the carry bit’ implemented instead of a more intuitive 8-bit rotate 
within the targeted register or memory location?”  It turns out that a classic 
(and useful) application of the “rotate through carry” mechanism is to “pick 
off bits” and subsequently make decisions (through execution of 
conditional transfer-of-control instructions) based on the state of individual 
bits as they are encountered.  
 
Continuing with the shifts (also listed in Table 3-25), we find that an 
arithmetic shift left (ASL) translates the entire contents of the targeted 
register or memory location one position left.  Here, the “vacated” low 
order bit is filled with a zero, and the bit that shifts out of the most 
significant position is preserved in the C flag (for the purpose of 
determining whether or not “overflow” occurred).  The original contents – 
whether originally positive or negative – is thus multiplied by two, within 
the precision afforded by the targeted register or memory location.  For 
example, if the original contents of the A register is $01 (110), the result will 
be $02 (210) after one ASLA instruction is executed, $04 (410) after a 
second ASLA instruction is executed, up to a (positive) maximum of $40 
(6410) after six consecutive ASLA instructions are executed.  Here, note 
that execution of one additional ASLA instruction would produce the value 
$80, or –12810, thus changing the sign and causing “overflow” to occur.  
Conversely, if the original contents of the A register is $FF (–110), the 
result will be $FE (–210) after one ASLA instruction is executed, $FC (–410) 
after two ASLA instructions are executed, up to a maximum (in magnitude) 
of $80 (–12810) after seven consecutive ASLA instructions are executed.  
Note that the overflow (V) flag is set if there is a “disagreement” between 
the sign bit (reflected by the N flag) and the carry (C) flag, i.e., V = N ⊕ C, 

arithmetic shift 
ASL (left) 

 9-bit rotate left  
 through C 
 
ROL  

 9-bit rotate right  
 through C 
 
ROR  
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which would occur here if one more ASLA instruction were executed 
(producing a result of $00 with the C bit set). 
 
An arithmetic shift right (ASR) translates the contents of the targeted 
register or memory location one position right.  Here, the vacated high-
order bit is filled with a copy of its original value, i.e., the sign bit is 
replicated.  The bit that shifts out of the least significant position is 
preserved in the C bit, to facilitate rounding the result – which is effectively 
the original contents divided by two.  For example, if the original contents 
of the A register is $7F (+12710), the result will be $3F (+6310) after one 
ASRA instruction is executed, $1F (3110) after two ASRA instructions are 
executed, down to $01 (+110) after six ASRA instructions are executed, 
and $00 after seven (or more) ASRA instructions are executed.  (Note that 
if the result after the first ASRA, $3F, had been rounded to $40, the 
contents of the A register would not reach $00 until a total of eight or more 
ASRA instructions had been executed.) 
 
Unlike ASL, though, the overflow (V) flag has no meaning for ASR since 
the sign of the result cannot “flip” as a consequence of shifting “one too 
many” times.  For example, if the original contents of the A register is $80 
(–12810), the result will be $C0 (–6410) after one ASRA instruction is 
executed, $E0 (–3210) after two ASRA instructions are executed, down to 
$FE (–210) after six ASRA instructions are executed, and $FF (–110) after 
seven (or more) ASRA instructions are executed.  Note that, after the 
eighth ASRA instruction, the C bit is set, enabling the result to be rounded 
to $00.  In either case (i.e., rounded or not), execution of additional ASRA 
instructions will not change the contents of the A register (i.e., it will 
“freeze” at either $FF or $00). 
 
In addition to arithmetic shifts, the 68HC12 provides “logical shifts” – 
defined as “end-off” shifts with zero fill.  Thus, an arithmetic shift left and 
logical shift left (LSL) are identical – in fact, the ASL and LSL assembly 
mnemonics generate the same object code (machine instruction).  
Further, an arithmetic shift right produces the same result as a logical shift 
right (LSR) for positive operands.  Only for the case of negative operands 
will an arithmetic shift right produce a different result than a logical shift 
right.  A logical shift, then, translates the contents of the targeted register 
or memory location one position left or right; the vacated position is filled 
with a zero and the position that “shifts out” is preserved in the C bit.  
Therefore, if an N-bit register is logically shifted left or right N (or more) 
times, the resulting value will be all zeroes.  An interesting (and useful) 
variant provided for the logical shifts (and, by association, the arithmetic 
shift left) is a 16-bit shift of the double-byte (D) accumulator: LSLD and 
LSRD. 
 

arithmetic shift 
ASR (right) 

logical (zero fill) shift 
 
LSL (left) 
LSR (right) 

16-bit logical shift  
 
LSLD (left) 
LSRD (right) 



Microcontroller-Based Digital System Design  Chapter 3 ­ Page 64 

Preliminary Draft  ©2001 by D. G. Meyer  

In summary, the logical group includes Boolean, complement/clear, bit 
set/clear, bit test, and shift/rotate instructions.  Some of the instructions 
included in this group – by virtue of their “bit-oriented” nature – are 
ostensibly arithmetic, however. 
 
3.8.4    Transfer-of-Control Group Instructions 
 
As its name implies, this group includes all the 68HC12 instructions that 
facilitate transfer of control from one location of a program to another.  The 
major variants available include an unconditional jump instruction, 
conditional and unconditional branch instructions, compound test and 
branch instructions, and subroutine linkage instructions. 
 
In Chapter 2, we defined the difference between a “jump” and a “branch” 
as follows.  If the address field of the instruction contains the (absolute) 
address in memory at which execution should continue, it is usually 
referred to as a “jump” instruction.  If the address field instead represents 
the (signed) “distance” the next instruction to execute is from the transfer-
of-control instruction, it is referred to as a “branch”.  (There is not universal 
agreement on this nomenclature, however – Intel typically uses the 
opposite definitions for jump and branch.)  Jumps (or branches) that 
“always happen” are called unconditional; those that happen only if a 
certain combination of condition codes exists are called conditional. 
 
Beginning with the unconditional jump (JMP) instruction listed in Table 3-
26, we find that the 68HC12, through the variety of addressing modes 
supported, provides a very powerful transfer-of-control mechanism that 
includes use of indexed modes (for “computing” the address of the next 
instruction) and indirection (for “looking up” the address of the next 
instruction).  We will make extensive use of so-called “jump tables” in the 
programming examples that follow in Chapter 4. 
 
Table 3-26   Transfer-of-Control Group: Unconditional Jump. 

Description Mnemonic Operation  CC  Examples Mode ~ 
JMP  $900 ℡  3 
JMP  0,X .  3 
JMP  100t,Y .  3 
JMP  1000t,S .  4 
JMP  [D,Y] [.] 6 

Jump JMP  addr 
 
addr =  ℡ . [.] 

(PC) ← addr 
 
 

– 

JMP  [1000t,S] [.] 6 

 
Branch instructions – including the unconditional branch (BRA) listed in 
Table 3-27 as well as the plethora of conditional branches that follow – all 
have two forms: “short”, for which the signed offset ranges from –12810 to 
+12710; and “long”, for which the signed offset ranges from –32,76810 to 
+32,76710.  A prefix of “L” in the assembly mnemonic is used to specify the 
“long version” of a particular branch.  In general, the “short” branches 

unconditional jump 
JMP 

short unconditional 
branch 
BRA 
 
long unconditional 
branch 
LBRA 
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(unconditional and conditional) are two bytes long (one opcode byte plus 
one offset byte); the “long” branches are all four bytes in length (two 
opcode bytes plus two offset bytes).  Because the destination of the 
branch is determined “in relation” to the current location (i.e., the location 
pointed to by the PC), the addressing mode is called relative (for which we 
will use the icon�).   
 
Table 3-27   Transfer-of-Control Group: Unconditional Branch. 

Description Mnemonic Operation  CC  Examples Mode ~ 
(Short) 
Branch 

BRA  rel8 
 

(PC) ← (PC) + rel8* – BRA  label � 2 

Long 
Branch 

LBRA  rel16 (PC) ← (PC) + rel16* 
 

– LBRA label � 4 

*Calculation of the two’s complement relative offset must take into account the 
byte-length of the branch instruction.  The “short” branch (BRA) instruction 
occupies two bytes while the “long” branch (LBRA) instruction occupies four 
bytes.  Because the program counter is automatically incremented as a by-
product of the instruction fetch, the offset calculation must compensate for this. 
 
A “tricky” (and perhaps confusing) aspect of calculating the signed offset 
for a branch instruction is compensating for the PC increment that occurs 
as a byproduct of the instruction fetch.  Just as was the case for our 
simple computer in Chapter 2, the PC points to the next instruction once 
the current instruction has been fetched (and is about to be executed).  
For the “short” branches, this means that the PC has already been 
incremented by two before the offset is added; for the “long” branches, the 
value is four.  To implement the equivalent of an “infinite loop” with a BRA 
instruction (i.e., a “branch to itself”), then, an offset of –2 (or $FE) must be 
used.  For a LBRA instruction, an offset of –4 (or $FFFC) must be used to 
obtain the same result.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3-22   Comparison of short and long branch offsets. 
 

 
 0800                   1          org     800h 
                        2 
 0800 [01] 20FE         3  short   bra     short 
                        4 
 0802 [04] 1820FFFC     5  long    lbra    long 
                        6 
 0806                   7          end 
                        8 
                        9 
 
 Symbol Table 
 
LONG             0802 
SHORT            0800 
 

relative addressing 
mode icon 

� 
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Fortunately, the offset calculation usually does not need to be done “by 
hand” – assembler programs use symbols for labels and calculate the 
offset field of branch instructions automatically.  So even though a “hard” 
number (like $FE or $FFFC) could be placed in the address field of a 
branch instruction, we will virtually never do this in practice.  Instead, we 
will use the symbol label to denote the destination of the branch, as shown 
in Figure 3-22, based on the tacit assumption that an assembler program 
can calculate the relative offset much more accurately than we could ever 
do “by hand”.  This will certainly come as good news for the poll workers in 
Palm Beach County!  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 3-28   Transfer-of-Control Group: Subroutine Linkage. 

Description Mnemonic Operation  CC  Examples Mode ~ 
JSR  $20 ℡  4 
JSR  $900 ℡  4 
JSR  0,X .  4 
JSR  100t,Y .  4 
JSR  1000t,S .  5 
JSR  [D,Y] [.] 7 

Jump to 
Subroutine 

JSR  addr 
 
addr =  ℡ . [.] 

(SP) ← (SP) – 2 
((SP)) ← (PCh) 
((SP)+1) ← (PCl) 
(PC) ← addr 
 

– 

JSR  [1000t,S] [.] 7 
Branch to 
Subroutine 

BSR  rel8 
 

(SP) ← (SP) – 2 
((SP)) ← (PCh) 
((SP)+1) ← (PCl) 
(PC) ← (PC) + rel8* 

– BSR  label � 4 

Return 
from 
Subroutine 

RTS 
 

(PCh) ← ((SP)) 
(PCl) ← ((SP)+1) 
(SP) ← (SP) + 2 

– RTS �  4 

*Calculation of the two’s complement relative offset must take into account the 
byte-length of the BSR instruction, which is two bytes. 

branch offset 
calculation 

label 

The Long and Short of It 
 (Locality of Reference) 

 
A question that is sure to come to mind when studying the 68HC12 instruction 
set is: “Why are there both ‘short’ and ‘long’ branches?”  Back in the early 
1970’s when the “grandfather” of the MC68xx series was conceived, just 
“short” (unconditional and conditional) branches plus a “long” (unconditional) 
jump were included in the instruction set.  Short branches work well for a large 
percentage of applications due to the principle of locality of reference.  
According to this principle, there is a high probability that the next instruction 
will be fetched from a location relatively close to the current instruction.  For 
typical application code, the percentage of time this is true is greater than 95%.  
But on occasions when a “short” branch isn’t quite “long enough”, there is not a 
“pretty” solution.  A complete set of long (unconditional and conditional) 
branches was therefore one of the key features added when the MC6809 was 
introduced in the late 1970’s. 
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The subroutine linkage instructions provided by the 68HC12 are listed in 
Table 3-28.  In the spirit of the unconditional jump and branch described 
above, subroutines can be “called” using either a jump (JSR) or a branch 
(BSR).  Both instructions push the return address – effectively the current 
value in the PC after the JSR or BSR has been fetched – onto the stack in 
a similar fashion.  One simply follows the “push PC” operation with a jump 
to the subroutine address (JSR), while the other performs a branch using 
an 8-bit signed offset (BSR).  Like the JMP instruction, the JSR supports a 
replete set of addressing modes.  Note, however, that there is not a “long” 
version of BSR (and other than “legacy compatibility”, there is not 
compelling reason for even having the BSR itself).  The return from 
subroutine (RTS) instruction simply “pops” (uh, pulls) the return address 
off the stack and loads it into the PC, enabling program execution to 
continue at the location following the JSR or BSR that previously “called” 
the subroutine. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
We are now ready to consider the rather overwhelming collection of 
conditional branch instructions implemented on the 68HC12.  The first set 
of instructions, listed in Table 3-29, are appropriately called “simple” 
conditionals since each involves the testing of a single flag (C, Z, N, V).  
The “carry condition” (BCC/BCS) is based on the state of the C flag: 
“clear” (BCC) means that the branch is taken if the carry flag is zero, and 
“set” (BCS) means that the branch is taken if the carry flag is one.  The 
“test for equality” (BNE/BEQ) is based on taking the difference of two 
operands (using a previous CMP or TST instruction) and obtaining a result 
of zero, thus setting the Z flag – a condition we will use quite often in the 
code writing exercises ahead in Chapter 4.  The “plus/minus” test 
(BPL/BMI) is based on the state of the N flag, while the “overflow” test 
(BVC/BVS) is based on the state of the V flag.  Referring to the cycle (~) 
column, note that more cycles are required to execute a branch that is 
“taken” compared with a branch that is “not taken”.  The reason for this 
disparity is the need to “flush” and “refill” the processor’s instruction queue 
each time a transfer-of-control takes place. 

Puddle Jumping 
 
Imagine a world without long branches.  Greater than 95% of the time, not a 
problem.  But when a single byte signed offset just won’t reach, there’s no 
great solution.  Similar to a frog attempting to cross a stream via a collection 
of strategically-placed lilypads (or the author attempting to fly from his 
adopted hometown of Lafayette, Indiana, to virtually anywhere else in the 
civilized world), the only way to get from point A to point B is by “puddle 
jumping”.  For the 6800 (and, unfortunately, also the more recent 68HC11), 
this is precisely the kind of technique that must be employed.  This is “bad 
enough” when attempting to program in assembly language, but even more 
of a nightmare for a compiler! 

subroutine linkage 
 
call:  JSR/BSR 
 
return:  RTS 

instruction queue 
flush and refill 

simple conditionals 
 
      (clear/set) 
C:  BCC/BCS 
Z:   BNE/BEQ 
N:  BPL/BMI 
V:  BVC/BVS 
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Table 3-29   Transfer-of-Control Group: Simple Conditional Branches. 
Description Mnemonic Operation*  CC  Examples Mode ~** 

BCC  rel8 (PC) ← (PC) + rel8 – BCC  label � 3/1 Branch if 
carry clear  
C = 0 LBCC  rel16 (PC) ← (PC) + rel16 – LBCC label � 4/3 

BCS  rel8 (PC) ← (PC) + rel8 – BCS  label � 3/1 Branch if 
carry set  
C = 1 LBCS  rel16 (PC) ← (PC) + rel16 – LBCS label � 4/3 

BNE  rel8 (PC) ← (PC) + rel8 – BNE  label � 3/1 Branch if 
not equal 
Z = 0 LBNE  rel16 (PC) ← (PC) + rel16 – LBNE label � 4/3 

BEQ  rel8 (PC) ← (PC) + rel8 – BEQ  label � 3/1 Branch if 
equal  
Z = 1 LBEQ  rel16 (PC) ← (PC) + rel16 – LBEQ label � 4/3 

BPL  rel8 (PC) ← (PC) + rel8 – BPL  label � 3/1 Branch if 
positive 
N = 0 LBPL  rel16 (PC) ← (PC) + rel16 – LBPL label � 4/3 

BMI  rel8 (PC) ← (PC) + rel8 – BMI  label � 3/1 Branch if 
negative  
N = 1 LBMI  rel16 (PC) ← (PC) + rel16 – LBMI label � 4/3 

BVC  rel8 (PC) ← (PC) + rel8 – BVC  label � 3/1 Branch if 
overflow clear 
V = 0 LBVC  rel16 (PC) ← (PC) + rel16 – LBVC label � 4/3 

BVS  rel8 (PC) ← (PC) + rel8 – BVS  label � 3/1 Branch if 
overflow set 
V = 1 LBVS  rel16 (PC) ← (PC) + rel16 – LBVS label � 4/3 

BRN rel8 – – BRN  label � 1 Branch never 
(No-op) 

LBRN  rel16 – – LBRN label � 3 

 
*Operation performed if branch is taken.  If branch is not taken, the 
instruction effectively becomes a “no operation” (NOP).  Calculation of the 
two’s complement relative offset must take into account the byte-length of the 
branch instruction itself (2 for short, 4 for long). 
 
**The first number indicates the number of cycles consumed if the branch 
is taken; the second number indicates the number of cycles consumed if 
the branch is not taken. 
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Table 3-30   Transfer-of-Control Group: Signed Conditional Branches. 
Description Mnemonic Operation*  CC  Examples Mode ~** 

BGT  rel8 (PC) ← (PC) + rel8 – BGT  label � 3/1 Branch if 
greater than  
Z + (N ⊕ V) = 0 LBGT  rel16 (PC) ← (PC) + rel16 – LBGT label � 4/3 

BLE  rel8 (PC) ← (PC) + rel8 – BLT  label � 3/1 Branch if less 
than or equal to  
Z + (N ⊕ V) = 1 LBLE  rel16 (PC) ← (PC) + rel16 – LBLT label � 4/3 

BGE  rel8 (PC) ← (PC) + rel8 – BGE  label � 3/1 Branch if greater 
than or equal 
N ⊕ V = 0 LBGE  rel16 (PC) ← (PC) + rel16 – LBGE label � 4/3 

BLT  rel8 (PC) ← (PC) + rel8 – BLT  label � 3/1 Branch if  
less than 
N ⊕ V = 1 LBLT  rel16 (PC) ← (PC) + rel16 – LBLT label � 4/3 

 
 
Table 3-31   Transfer-of-Control Group: Unsigned Conditional Branches. 

Description Mnemonic Operation*  CC  Examples Mode ~** 
BHI  rel8 (PC) ← (PC) + rel8 – BHI  label � 3/1 Branch if 

higher than  
C + Z = 0 LBHI  rel16 (PC) ← (PC) + rel16 – LBHI label � 4/3 

BLS  rel8 (PC) ← (PC) + rel8 – BLS  label � 3/1 Branch if lower 
than or same  
C + Z = 1 LBLS  rel16 (PC) ← (PC) + rel16 – LBLS label � 4/3 

BHS  rel8 (PC) ← (PC) + rel8 – BHS  label � 3/1 Branch if higher 
than or same 
C = 0 LBHS  rel16 (PC) ← (PC) + rel16 – LBHS label � 4/3 

BLO  rel8 (PC) ← (PC) + rel8 – BLO  label � 3/1 Branch if  
lower than 
C = 1 LBLO  rel16 (PC) ← (PC) + rel16 – LBLO label � 4/3 

 
*Operation performed if branch is taken.  If branch is not taken, the 
instruction effectively becomes a “no operation” (NOP).  Calculation of the 
two’s complement relative offset must take into account the byte-length of the 
branch instruction itself (2 for short, 4 for long). 
 
**The first number indicates the number of cycles consumed if the branch 
is taken; the second number indicates the number of cycles consumed if 
the branch is not taken. 
 
Compound conditionals – so-called because they typically involve more 
than one flag – are comprised of two subsets: one that construes the 
operands as signed (listed in Table 3-30), and the other that construes 
them as unsigned (listed in Table 3-31).  Both the signed and unsigned 
conditional branches must be preceded by either a CMP or SUB 
instruction.  Recall that these instructions set or clear the flags (C, Z, N, Z) 
based on the subtraction of an operand (specified by the effective 

compound conditionals 
 
signed  - unsigned 
   BGT - BHI 
   BGE - BHS 
   BLT - BLO 
   BLE - BLS 
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address) from the named register, i.e., (register) – (address).  For 
example, the sequence “CMPA  #5” followed by “BGT  label” would cause 
a branch to the instruction at address label if (A) ≥ 510.  Stated another 
way, if the calculation (A) – 510 yields a result greater than zero, the 
branch to address label will be “taken” by the BGT instruction. 
 
Comparing identical bit patterns, however, can cause a “greater than” (the 
signed BGT or unsigned BHI) conditional branch to be taken or not taken, 
depending on the interpretation of the bit patterns as signed or unsigned.  
Consider the case of (A) = $01 with a “CMPA  $FF” instruction performed.  
Note that $FF, when interpreted as signed, is the two’s complement 
representation for –1; when interpreted as unsigned, however, $FF is the 
representation for 25510.  Because (A) is greater than –1, a subsequent 
“BGT  label” instruction would cause the branch to address label to be 
taken.  But because (A) is not greater than 25510, a subsequent “BHI  
label” instruction would not cause a branch to address label. 
 
For the compound conditional branches, it’s a bit challenging to remember 
the variety of signed and unsigned instruction mnemonics as well as the 
differences in how they work.  The “naming convention” adopted by 
Motorola is to use “greater/less than” to denote the signed conditionals, 
and “higher/lower than” to denote the unsigned conditionals.  An 
interesting aspect of how the conditionals are evaluated centers around 
the Boolean expressions used (see Tables 3-32 and 3-33).  This is a 
subject that the author confesses to “glossing over” for many years, when 
temporarily embarrassed by questions such as: “Why is Z + (N ⊕ V) = 0 
used as the Boolean expression to determine the BGT conditional?” 
 
The best way to understand where these Boolean expressions “come 
from” is to derive them based on the “2-bit” case (i.e., the simplest case 
that enumerates all the possibilities of both signed and unsigned 
comparisons).  The derivations for the signed and unsigned cases are 
given in Tables 3-32 and 3-33, respectively.  The 2-bit operands loaded in 
the named register are designated R1R0, and the 2-bit operands residing 
at the effective address in memory are designated M1M0.  The flag 
settings (C, Z, N, V) are based on performing the operation (R) – (M).  
Here’s a critical point: the SUB or CMP instruction that performs (R) – (M) 
could care less if the operands being compared are construed as signed 
or unsigned.  In fact, note that Tables 3-32 and 3-33 are basically identical 
except for interpretation of the bit patterns and resulting comparisons. 
 

conditional branch 
naming convention 
 

BGT 
BHI 
 



Microcontroller-Based Digital System Design  Chapter 3 ­ Page 71 

Preliminary Draft  ©2001 by D. G. Meyer  

Table 3-32   Derivation of Signed Comparisons. 
R1 R0 (R) M1 M0 (M) ? C Z N V 
0 0 0 0 0 0 (R) = (M) 0 1 0 0 
0 0 0 0 1 +1 (R) < (M) 1 0 1 0 
0 0 0 1 0 -2 (R) > (M) 1 0 1 1 
0 0 0 1 1 -1 (R) > (M) 1 0 0 0 
0 1 +1 0 0 0 (R) > (M) 0 0 0 0 
0 1 +1 0 1 +1 (R) = (M) 0 1 0 0 
0 1 +1 1 0 -2 (R) > (M) 1 0 1 1 
0 1 +1 1 1 -1 (R) > (M) 1 0 1 1 
1 0 -2 0 0 0 (R) < (M) 0 0 1 0 
1 0 -2 0 1 +1 (R) < (M) 0 0 0 1 
1 0 -2 1 0 -2 (R) = (M) 0 1 0 0 
1 0 -2 1 1 -1 (R) < (M) 1 0 1 0 
1 1 -1 0 0 0 (R) < (M) 0 0 1 0 
1 1 -1 0 1 +1 (R) < (M) 0 0 1 0 
1 1 -1 1 0 -2 (R) > (M) 0 0 0 0 
1 1 -1 1 1 -1 (R) = (M) 0 1 0 0 

 
 
Table 3-33   Derivation of Unsigned Comparisons. 
R1 R0 (R) M1 M0 (M) ? C Z N V 
0 0 0 0 0 0 (R) = (M) 0 1 0 0 
0 0 0 0 1 +1 (R) < (M) 1 0 1 0 
0 0 0 1 0 +2 (R) < (M) 1 0 1 1 
0 0 0 1 1 +3 (R) < (M) 1 0 0 0 
0 1 +1 0 0 0 (R) > (M) 0 0 0 0 
0 1 +1 0 1 +1 (R) = (M) 0 1 0 0 
0 1 +1 1 0 +2 (R) < (M) 1 0 1 1 
0 1 +1 1 1 +3 (R) < (M) 1 0 1 1 
1 0 +2 0 0 0 (R) > (M) 0 0 1 0 
1 0 +2 0 1 +1 (R) > (M) 0 0 0 1 
1 0 +2 1 0 +2 (R) = (M) 0 1 0 0 
1 0 +2 1 1 +3 (R) < (M) 1 0 1 0 
1 1 +3 0 0 0 (R) > (M) 0 0 1 0 
1 1 +3 0 1 +1 (R) > (M) 0 0 1 0 
1 1 +3 1 0 +2 (R) > (M) 0 0 0 0 
1 1 +3 1 1 +3 (R) = (M) 0 1 0 0 

 
 
 

Z = 1 
(R) = (M) 

N ⊕ V = 1 
(R) < (M) 

Z + (N ⊕ V) = 0 
(R) > (M) 

 

Z = 1 
(R) = (M) 

C = 1 
(R) < (M) 

C + Z = 0 
(R) > (M) 



Microcontroller-Based Digital System Design  Chapter 3 ­ Page 72 

Preliminary Draft  ©2001 by D. G. Meyer  

To derive the Boolean expression for a given conditional, the function 
defined by the corresponding shaded area can be mapped and minimized.  
For example, the BGT conditional corresponds to the dark blue portion of 
Table 3-32.  Realizing that only a subset of the 16 possible combinations 
of C-Z-N-V can occur in practice (and marking the ones that can’t occur as 
“don’t cares”), we obtain the K-map depicted in Figure 3-23.  Grouping 
zeroes provides the minimal solution for this function, which turns out to 
be the expression for the “complement” of the BGT conditional, namely 
BLE.  Here, we find that the “BLE taken condition” can be expressed by 
the function Z + N′⋅V + N⋅V′ = Z + (N ⊕ V), which is the same as saying 
the BLE “is taken” when Z + (N ⊕ V) = 1.  The “BGT taken condition”, 
then, is just the complement of this, or (Z + (N ⊕ V))′, which is the same as 
saying that the BGT “is taken” when Z + (N ⊕ V) = 0.  Don’t feel bad if this 
isn’t “instantly obvious” – it wasn’t to the author either! 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3-23   Derivation of BGT/BLE functions.    
   

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3-24   Derivation of BGE/BLT functions. 
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We can do a similar derivation for the BGE/BLT “pair” of conditionals, as 
shown in Figure 3-24.  Grouping the ones, we find the “BGE taken 
condition” to be N′⋅Z′ + N⋅Z = (N ⊕ Z)′, which is the same as saying the 
BGE “is taken” when N ⊕ Z = 0.  Conversely, we can say that the BLT “is 
taken” when the opposite condition is true, i.e., N ⊕ Z = 1. 
 
For the BHI/BLS pair – the “unsigned cousins” of the BGT/BLE pair – the 
K-map in Figure 3-25 (derived from Table 3-33) applies.  Here, grouping 
zeroes leads to the minimal function, which is simply C + Z.  Since this 
corresponds to the “complement” function (BLS), the BLS “is taken” when 
C + Z = 1; conversely, the BHI “is taken” when the function C + Z = 0. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3-25   Derivation of BHI/BLS functions. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3-26   Derivation of BHS/BLO functions. 
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Finally, for the BHS/BLO pair – the “unsigned cousins” of the BGE/BLT 
pair – the K-map in Figure 3-26 applies.  Grouping ones yields the function 
for BHS, which is simply C′.  Thus, the BHS “is taken” when C = 0, while 
the BLT “is taken” when C = 1.  As such, since BHS and BLO are merely 
tests of the carry flag, they are synonyms for (and produce the same 
opcodes as) BCC and BCS, respectively.  Fortunately, assembler 
programs accept the mnemonics BHS/BLO to prevent any confusion 
associated with trying to remember that BHS is the same as BCC, and 
that BLO is the same as BCS. 
 
The conditional branches covered thus far are primarily “legacy” 
instructions, carried over from earlier MC68xx family members.  A 
common “feature” of these legacy conditionals is that they must be 
preceded by a CMP or SUB instruction.  At some point, with more silicon 
at their disposal, microcontroller design engineers realized that the 
compare and branch operations could be combined into a single 
instruction.  The 68HC12 provides three basic types of so-called “compare 
and branch” instructions: those that branch based on bit tests (listed in 
Table 3-34), those that branch based on register tests (listed in Table 3-
35), and those that increment/decrement a register and subsequently 
branch based on a test of that register (listed in Table 3-36).  Note that, 
since all of these instructions are essentially “self-contained”, there is no 
need for them to affect any of the condition code bits. 
 
Table 3-34   Transfer-of-Control Group: Bit Test and Branch. 

Description Mnemonic Operation  CC Examples M ~ 
BRCLR $50,01,label ℡  4 
BRCLR $900,01,label ℡  5 
BRCLR 0,X,$FF,label .  4 
BRCLR 10t,X,01,label .  4 
BRCLR 100t,Y,02,label .  6 

Branch if 
bits clear 

BRCLR addr,mask8,rel8 
 
addr  =  ℡  .  

IF 
(addr) ∩ mask8 = 0 
 
THEN  
(PC) ← (PC) + rel8 
 

– 

BRCLR 1000t,S,03,label .  8 
BRSET $50,01,label ℡  4 
BRSET $900,01,label ℡  5 
BRSET 0,X,$FF,label .  4 
BRSET 10t,X,01,label .  4 
BRSET 100t,Y,02,label .  6 

Branch if 
bits set 

BRSET addr,mask8,rel8 
 
addr  =  ℡  .  

IF 
(addr)′ ∩ mask8 = 0 
 
THEN  
(PC) ← (PC) + rel8 
 

– 

BRSET 1000t,S,03,label .  8 

 
 
The first subset of these instructions, BRCLR and BRSET, test individual 
bits (or sets of bits) of a memory location and, if the test is successful, 
branch to a new location based on an 8-bit signed offset.  The bits 
participating in the test are specified by an 8-bit mask pattern, where a “1” 
in the mask pattern means that the corresponding bit position in the 
operand is tested.  For the BRCLR (“branch if bits clear”) instruction, the 
branch is taken if all the bit positions specified by the mask pattern are 
zeroes.  This is accomplished by ANDing the mask pattern with the 

legacy instructions 
 

BRCLR 
BRSET 

BHS 
BLO 
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contents of the memory location; if the result of the bit-wise AND is all 
zeroes, the branch conditional is true.  For the BRSET (“branch if bits set”) 
instruction, the branch is taken if all the bit positions specified by the mask 
pattern are ones.  This is accomplished by ANDing the mask pattern with 
the complement of the memory location contents; if the result of the bit-
wise “complement-and-AND” operation yields all zeroes, the branch is 
taken. 
 
Direct, extended, and indexed addressing modes can be used by BRSET 
and BRCLR to access the desired location in memory.  Instruction lengths 
vary from four to six bytes, with execution times as high as eight cycles.  
We will find these instructions extremely useful for performing conditional 
branches based on the state of various bits in the 68HC12’s peripheral 
device registers. 
 
The next subset of what we have broadly called “compare and branch” 
instructions combines the equivalent of a TST instruction with either a 
BEQ or BNE.  These instructions, listed in Table 3-35, are TBEQ (“test 
register and branch if zero”) and TBNE (“test register and branch if not 
zero”).   These “compound” instructions are actually a bit more powerful 
than the “simple” predecessors that inspired them: not only can they use 
any of the machine’s registers (A, B, D, X, Y, SP), but also the relative 
branch offset has been extended to 9-bits (effectively doubling the range 
of the signed offset). 
 
Table 3-35   Transfer-of-Control Group: Register Test and Branch. 

Description Mnemonic Operation  CC  Examples Mode ~ 
TBEQ  A,label � 3 Test Register 

and Branch if 
Zero 

TBEQ  r,rel9 
 
r = A,B,D,X,Y,S 

IF  (r) = 0  THEN  
(PC) ← (PC) + rel9 

– 

TBEQ  Y,label � 3 

TBNE  X,label � 3 Test Register 
and Branch if 
Not Zero 

TBNE  r,rel9 
 
r = A,B,D,X,Y,S 

IF  (r) ≠ 0  THEN  
(PC) ← (PC) + rel9 

– 

TBNE SP,label � 3 

 
 
The final subset of “compare and branch” instructions allows the named 
register to be incremented or decremented, and causes the branch to be 
taken based on whether or not the register has reached zero.  The four 
variants – IBEQ (“increment register and branch if zero”), IBNE 
(“increment register and branch if not zero”), DBEQ (‘decrement register 
and branch if zero”), and DBNE (“decrement register and branch if not 
zero”) – are listed in Table 3-36.  These instructions are quite useful in 
creating programs with simple, low overhead loop structures. 
 
 
 

TBEQ 
TBNE 

IBEQ 
IBNE 
DBEQ 
DBNE 
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It’s probably safe to say that the 68HC12 has one of the most versatile 
sets of conditional branch instructions out there – certainly more than a 
typical Palm Beach County poll worker could accurately count…especially 
the ones quoted as saying, “What should I do when I run out of hands?” 
  
Table 3-36   Transfer-of-Control Group: Increment/Decrement Register,  
                     Test, and Branch. 

Description Mnemonic Operation  CC  Examples Mode ~ 
IBEQ  A,label � 3 Inc Register 

and Branch if 
Zero 

IBEQ  r,rel9 
 
r = A,B,D,X,Y,SP 

(r) ← (r) + 1 
IF  (r) = 0  THEN  
(PC) ← (PC) + rel9 

– 

IBEQ  Y,label � 3 

IBNE  X,label � 3 Inc Register 
and Branch if 
Not Zero 

IBNE  r,rel9 
 
r = A,B,D,X,Y,SP 

(r) ← (r) + 1 
IF  (r) ≠ 0  THEN  
(PC) ← (PC) + rel9 

– 

IBNE SP,label � 3 

DBEQ  A,label � 3 Dec Register 
and Branch if 
Zero 

DBEQ  r,rel9 
 
r = A,B,D,X,Y,SP 

(r) ← (r) – 1 
IF  (r) = 0  THEN  
(PC) ← (PC) + rel9 

– 

DBEQ  Y,label � 3 

DBNE  X,label � 3 Dec Register 
and Branch if 
Not Zero 

DBNE  r,rel9 
 
r = A,B,D,X,Y,SP 

(r) ← (r) – 1 
IF  (r) ≠ 0  THEN  
(PC) ← (PC) + rel9 

– 

DBNE SP,label � 3 

 
3.8.5    Machine Control Group Instructions 
 
This group, as it turns out, might be more palatable in Palm Beach County 
than the one just completed since we can literally count its members “by 
hand” (i.e., there are fewer than ten).  The purpose and function of most of 
these instructions will not become clear until we formally introduce the 
topic of interrupts in Chapter 5.  For the sake of discussion here, an 
interrupt can be viewed as an asynchronous (or “unexpected”), hardware-
induced subroutine call.  This is in contrast to what is sometimes called an 
exception, which is also “unexpected” but typically not induced by a 
“hardware signal”.  Rather, an exception is induced by a run-time anomaly 
encountered as the program executes.  (Unfortunately, the terms 
“interrupt” and “exception” are sometimes used interchangeably – see 
sidebar.) 
 
Some examples may be helpful here.  Pressing a key on a keypad, 
requesting transmission of the next character, and signaling completion of 
a data conversion are classic examples of asynchronous “events” that 
might trigger the execution of an interrupt service routine.  Here, assertion 
of a hardware signal causes the processor to alter its fetch cycle.  Instead 
of processing the next instruction pointed to by the PC, it looks up the 
address of the routine dedicated to servicing the interrupt request (from an 
“interrupt vector table”), saves the machine state (or “context”), and 
transfers control to that routine.  In other words, the equivalent of a 
“subroutine call” takes place, along with saving the machine state, in 

interrupt 
 
exception 
 

interrupt service 
routine 
 
 
context 
 
interrupt vector 
table 



Microcontroller-Based Digital System Design  Chapter 3 ­ Page 77 

Preliminary Draft  ©2001 by D. G. Meyer  

response to a hardware signal.  Note that the machine state, which 
consists of all the program-visible registers except SP, must be saved on 
the stack so that interrupt handling occurs transparently, i.e., the 
“interrupted program” is oblivious to having been interrupted. 
 
Table 3-37   Machine Control Group. 

Description Mnemonic Operation  CC  Examples M ~ 
Return from 
Interrupt 

RTI 
 

(CCR) ← ((SP)), (SP) ← (SP) + 1, 
(D) ← ((SP)),  (SP) ← (SP) + 2, 
(X) ← ((SP)),  (SP) ← (SP) + 2, 
(Y) ← ((SP)),  (SP) ← (SP) + 2, 
(PC) ← ((SP)), (SP) ← (SP) + 2 

all1 RTI �  8/102 

Unimplemented 
Opcode Trap 

TRAP (SP) ← (SP) – 2,  ((SP)) ← (PC), 
(SP) ← (SP) – 2,  ((SP)) ← (Y), 
(SP) ← (SP) – 2,  ((SP)) ← (X), 
(SP) ← (SP) – 2,  ((SP)) ← (D), 
(SP) ← (SP) – 1,  ((SP)) ← (CCR), 
I bit of CCR ← 1, 
(PC) ←←  (Trap Vector) 

– $18 tn3 �  11 

Software 
Interrupt 

SWI 
 
 

(SP) ← (SP) – 2,  ((SP)) ← (PC), 
(SP) ← (SP) – 2,  ((SP)) ← (Y), 
(SP) ← (SP) – 2,  ((SP)) ← (X), 
(SP) ← (SP) – 2,  ((SP)) ← (D), 
(SP) ← (SP) – 1,  ((SP)) ← (CCR), 
I bit of CCR ← 1, 
(PC) ←←  (SWI Vector) 

– SWI �   9 

Enter 
Background 
Debug Mode 

BGND Like a software interrupt, but no 
registers are stacked – routines in 
the BDM ROM control operation 

– BGND �  5 

Wait for 
Interrupt 

WAI (SP) ← (SP) – 2,  ((SP)) ← (PC), 
(SP) ← (SP) – 2,  ((SP)) ← (Y), 
(SP) ← (SP) – 2,  ((SP)) ← (X), 
(SP) ← (SP) – 2,  ((SP)) ← (D), 
(SP) ← (SP) – 1,  ((SP)) ← (CCR), 
Stop CPU Clocks 

– WAI �  8/54 

Stop 
Processing 

STOP (SP) ← (SP) – 2,  ((SP)) ← (PC), 
(SP) ← (SP) – 2,  ((SP)) ← (Y), 
(SP) ← (SP) – 2,  ((SP)) ← (X), 
(SP) ← (SP) – 2,  ((SP)) ← (D), 
(SP) ← (SP) – 1,  ((SP)) ← (CCR), 
Stop All Clocks 

– STOP �  9/54 

No-operation NOP – – NOP �  1 

1 RTI affects all the condition code bits, with the exception of X, which cannot be 
set by a software instruction once it is cleared. 
2 Normal execution requires 8 cycles.  If another interrupt is pending when the 
RTI is executed, 10 cycles are consumed. 
3 Unimplemented 2-byte opcodes are those where the first opcode byte is $18 
and the second opcode byte ranges from $30 to $39 or $40 to $FF. 
4 The cycles listed correspond to entering and exiting WAI or STOP. 
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At the conclusion of an interrupt service routine, a “special” version of the 
“return” instruction is needed – one that restores the machine state in 
addition to resuming the “main-line” program at the point it was 
interrupted.  This leads us to our first Machine Control Group instruction, 
return from interrupt (RTI), listed in Table 3-37.  This instruction simply 
restores each register from the copy saved previously on the stack.  Note 
that restoring the PC causes the interrupted program to resume where it 
left off. 
 
Interrupts provide a convenient framework for constructing “real-time” (or 
“event-driven”) embedded control systems.  Stated another way, interrupts 
are a “way of life” in the design of microcontroller-based products.  This is 
in contrast to exceptions, which are typically associated with “something 
bad” happening.  Overflow, dividing by zero, or attempting to execute an 
invalid opcode are examples of exceptions. 
 
 On the 68HC12, attempting to execute an invalid opcode will cause a 
“trap” to occur.  As such, a trap can be construed as an exception.  Similar 
to an interrupt, a trap causes the processor to save its state on the stack 
and transfer control to a “trap handling” routine.  Note that the TRAP 
mnemonic, listed in Table 3-37, is not recognized by assembler programs; 
rather, it simply documents the processor’s response to an unrecognized 
(“unimplemented”) opcode.  Perhaps somewhat insidiously, TRAP can be 
used to advantage, allowing a system designer to define “new” 
instructions comprised of unused opcodes.  Here the TRAP handling 
routine would be used to emulate, in software, the processing of these 
new instructions.  An example of where this might be used is for “higher-
level” functions such as floating-point arithmetic. 
 
Sometimes it is useful to “force” an exception to occur in the normal 
software execution stream.  This is particularly useful in debugging code, 
where one might wish to temporarily “interrupt” a program (by virtue of 
hitting a “breakpoint”) to check the state of registers and/or memory 
locations.  On the 68HC12, this can be accomplished using the “software 
interrupt” (SWI) instruction, also listed in Table 3-37.  Like a TRAP, 
execution of an SWI instruction saves the machine state on the stack and 
transfers control to an SWI handling routine.  For program debugging, SWI 
instructions can be “manually” inserted in code, or “automatically” inserted 
by a “debug monitor” (e.g., Motorola’s D-Bug12).   
 
 
 
 
 
 
 

I Take Exception to Your Interrupt 
 
The distinction between interrupts and exceptions is sometimes blurred.  
While the name of the “software interrupt” (SWI) instruction aptly describes 
what it does (i.e., interrupts the normal flow of software execution), it’s really 
not an interrupt as defined earlier – rather, it is an exception. 

RTI 
 

TRAP 
 

SWI 
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In addition to the “software breakpoint” capability afforded by the SWI 
instruction, the 68HC12 has an even more powerful debugging capability, 
called background debug mode.  Here, a target microcontroller system 
running an application can be interrogated by a “pod” (a second 68HC12) 
via a single-wire serial interface.  The “pod” 68HC12, operating in “BDM 
mode”, can start or stop the target application as well as retrieve the state 
of registers or memory locations while the application is running.  
Background debug mode is commenced through execution of the BGND 
instruction, listed in Table 3-37.  Hardware-assisted debugging is now a 
common feature in many modern microprocessors and microcontrollers. 
 
The “wait” (WAI) instruction, listed next in Table 3-37, provides a means 
for allowing the processor to “pause” execution (effected by stopping the 
CPU clock) until an interrupt occurs.  When a WAI instruction is executed, 
the machine state is saved on the stack and the CPU clock is stopped (the 
clock signals provided to the on-chip peripherals continue to run, 
however).  The WAI instruction is useful in applications where the CPU, at 
a given point in a program, doesn’t have anything meaningful to do until 
an interrupt occurs. 
 
The “stop” (STOP) instruction is similar to WAI, but a bit more “drastic”.  
Like WAI, execution of a STOP instruction causes the machine state to be 
saved on the stack.  After that occurs, all the clocks are stopped (including 
those supplied to the on-chip peripherals), effectively putting the 68HC12 
in “standby” mode.  While in standby mode, the internal state is 
maintained along with the states of I/O pins; power consumption, though, 
is greatly reduced.  Asserting RESET or an interrupt input ends standby 
mode.  For STOP to be executed, the “stop disable” (S) bit in the condition 
code register must be cleared; if the S bit is set, execution of STOP simply 
consumes two cycles.  The STOP instruction is useful in battery-powered 
applications where there is a benefit from putting the processor “to sleep” 
for extended periods of inactivity to maximize battery life. 
 
The final machine control instruction listed in Table 3-37 does nothing!  
The only purpose in life for “no-operation” (NOP) is to consume an 
execution cycle, sometimes useful in so-called “delay loops”.  Examples of 
no-ops by other names include “branch never” (BRN), that also consumes 
one cycle; and “long branch never”  (LBRN), that consumes three cycles.  
Recall that some addressing mode variants of the LEA instruction also 
accomplish nothing more than consuming cycles. 
 
 3.8.6    Special Group Instructions 
 
Special, as its name implies, is used to refer to instructions that are not 
ordinarily included on “generic” microcontrollers.  Unfortunately, this 
distinction is far from absolute, given the tendency of manufacturers to 

background 
debug mode 
BDM 
 

BGND 
 

WAI 
 

STOP 
 

NOP 
 
BRN 
 
LBRN 
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continuously expand “features” based on the increasing availability of chip 
“real estate”.   
 
The 68HC12 sports several subsets of instructions that might be deemed 
“special”.  The MIN/MAX instructions and EMACS instruction, covered 
previously as part of the arithmetic group, could be called “special” since 
few “generic” microcontrollers have these capabilities.  With a bit more 
confidence, though, we could claim that the “lookup and interpolate” (TBL) 
and “fuzzy logic” instructions are indeed “special” – they are not only 
“more rare” among mainstream microcontrollers, but also fit “less nicely” 
into the broad categories of instructions previously defined.  Our special 
group, then, will consist only of these latter two subsets. 
 
The “lookup and interpolate” (TBL) instruction is documented in Table 3-
38.  This instruction, or its “extended cousin” (ETBL), can be used to 
perform a linear interpolation on values that fall between a pair of data 
entries in a lookup table stored in memory.  A lookup table is simply an 
array of values that can be used to perform data translations or 
conversions.  The TBL instruction facilitates very compact storage of 
lookup tables that are piece-wise linear. 
   
Table 3-38   Special Group: Table Lookup and Interpolate. 

Description Mnemonic Operation  CC Examples Mode ~ 
TBL   0,X .  8 
TBL   2,X+ .  8 
TBL   2,Y- .  8 
TBL  –16t,PC .  8 

TBL   addr 
  
addr =  .*  

(A) ← (addr) + 
{ (B) X {(addr+1) – (addr) } } 
 
 

N ← o 
Z ← o 
C ← ? 

TBL   15t,SP .  8 
ETBL  0,X .  10 
ETBL  2,X+ .  10 
ETBL  2,Y- .  10 
ETBL –16t,PC .  10 

Table 
Lookup 
and 
Interpolate 

ETBL  addr 
 
addr =  .*  

(D) ← (addr):(addr+1) + 
{ (B) X { (addr+2):(addr+3) – 
(addr):(addr+1) } } 
 

N ← o 
Z ← o 
C ← ? 

ETBL  15t,SP .  10 
*Only indexed modes with “short” constant offsets (requiring no extension bytes) 
can be used. 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3-27  Illustration of TBL Parameters. 
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Successful use of TBL involves a multi-step process – perhaps another 
reason for calling it “special”.  Referring to Figure 3-27, the desired “lookup 
point” (XL) is in-between (the nearest) two table entries stored in memory: 
X1 and X2.  Given these points along the X-axis, the calculations XL–X1 
and X2–X1 are then made.  Using FDIV, a binary fraction is calculated 
based on dividing XL–X1 by X2–X1; the resulting unsigned fraction is then 
placed in the B register.  The last step before executing TBL is to set an 
index register (X, Y, SP, or PC) to point to the first table entry, X1.  
Execution of TBL then produces the following result in the A register:     
(A) ← (addr) + { (B) X { (addr+1) – (addr) } }. 
 
As an example, consider the function represented by the (base 10) X-Y 
data points (1,10), (2,20), (4,50), and (5,80).  Assume the “Y” value 
corresponding to XL = 2.5 is desired.  Here, X1 = 2 and X2 = 4.  Plugging 
in the numbers, XL–X1 = 0.5 and X2–X1 = 2; therefore, (XL–X1)÷(X2–X1) 
= 0.25.  With an index register pointed to the “X1” table entry (i.e., the 
value 20) and the binary fraction 01000000b (0.2510) in the B register, TBL 
performs the following calculation: (A) = 20 + { 0.25 X { 50 – 20 } } = 20 + 7 
= 27.  Note that the intermediate value resulting from the fractional 
multiplication is not rounded, and therefore truncated to 7, yielding an 
interpolated value of 2710 in the A register as TBL’s “final answer”. 
 
Table 3-39   Special Group: Fuzzy Logic. 

Description Mnemonic Operation  CC Examples ~ 
Determine Grade 
of Membership 
 

MEM 
 

((Y)) ← grade of membership 
(Y) ← (Y) + 1 
(X) ← (X) + 4 

N ← ? 
Z ← ? 
V ← ? 
C ← ? 
H ← ? 

MEM 5 

Fuzzy Logic Rule 
Evaluation 

REV MIN – MAX rule evaluation N ← ? 
Z ← ? 
V ← 1 
C ← ? 
H ← ? 

REV * 

Fuzzy Logic Rule 
Evaluation 
(Weighted) 

REVW MIN – MAX rule evaluation with 
optional rule weighting; C bit in 
CCR selects weighted (1) or 
unweighted (0) rule evaluation 

N ← ? 
Z ← ? 
V ← 1 
C ← ? 
H ← ? 

REVW * 

Weighted 
Average 

WAV Performs weighted average 
calculations on values stored in 
memory 

N ← ? 
Z ← 1 
V ← ? 
C ← ? 
H ← ? 

WAV * 

*Number of cycles varies based on number of elements in rule list. 
 
There are, at this point, only four 68HC12 instructions that remain: those 
that support fuzzy logic.  These instructions, listed in Table 3-39, are 
MEM, which evaluates trapezoidal membership functions; REV and 
REVW, which perform unweighted or weighted MIN-MAX rule evaluation; 
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and WAV, which performs weighted average defuzzification on singleton 
output membership functions.  The actions associated with these 
instructions are relatively involved and complex compared with other 
68HC12 instructions.  To fully understand them requires a background on 
fuzzy logic.  We will illustrate their use in a programming example in the 
chapter that follows. 
 
3.9    Summary and References 
 
We began this chapter with the “Norm analogy” – that machine 
instructions available to a computer engineer are like the “tools in the 
toolbox” available to a master carpenter.  Our objective was to learn what 
tools we had in our “instruction set” toolbox along with some basics on 
how to use them.  The lab experiments and homework problems included 
with this chapter will help you learn this material.  There is no substitute for 
“hands on” practice! 
 
The authoritative reference for the material covered in this chapter is 
Motorola’s CPU12 Reference Manual.  A “soft copy” of this manual is 
included as a PDF on the CD-ROM that accompanies this text; a printed 
copy can be obtained directly from Motorola’s Literature Distribution 
Center (LDC).  A printed copy is also bundled with the M68EVB912B32 
Evaluation Board. 
 
Students who purchase the EVB will also want to become familiar with the 
material covered in the first three chapters of Motorola’s M68EVB912B32 
Evaluation Board User’s Manual.  A “soft copy” of this manual is included 
as a PDF on the CD-ROM that accompanies this text; a printed copy can 
be obtained directly from Motorola’s Literature Distribution Center (LDC).  
A printed copy is also bundled with the M68EVB912B32 Evaluation Board.  
Looking through the IASM12 User’s Guide, included as a “.doc” file on the 
IASM12 diskette bundled with the EVB, will also prove helpful. 
 
Readers interested in a more complete account of the “RISC-CISC” 
debate, summarized at the beginning of this chapter, may want to review 
several key papers written on the subject: 
• Patterson, D., “Reduced Instruction Set Computers,” Communications 

of the ACM, January 1985, pp. 8-21. 
• Colwell, R., et. al., “Computers, Complexity, and Controversy,” IEEE 

Computer, September 1985, pp. 8-19. 
• Wallich, P., “Toward Simpler, Faster Computers,” IEEE Spectrum, 

August 1985, pp. 38-45. 
 
A thorough (as well as entertaining) summary and analysis of the “byte-
ordering” debate can be found in the article, “On Holy Wars and a Plea for 
Peace”, which can be found at http://www.op.net/docs/RFCs/ien-137. 

fuzzy logic 
 
MEM 
REV 
REVW 
WAV 
 



Microcontroller-Based Digital System Design  Chapter 3 ­ Page 83 

Preliminary Draft  ©2001 by D. G. Meyer  

Problems 
 
The CD-ROM that accompanies this text includes a printable version of 
the problems that follow in PDF format.  Selected problems can be printed 
from this file and completed on the “full size” sheets produced.   
 
3-1. Disassemble the 68HC12 machine code listed below and "single step" 

through it by hand, completing the chart below.  Write the disassembled 
instructions under the Disassembled Instructions heading, clearly 
indicating the instructions associated with the specific memory contents. 
Each "step" refers to the execution of one instruction.  Assume the first 
opcode byte is at location 0800h. 

  
                Address    Contents      Disassembled Instructions 
 
       0800     86 
       0801     E2 
       0802     C6 
       0803     42 
       0804     18 
       0805     06 
       0806     86 
       0807     43 
       0808     8B 
       0809     71 
       080A     18 
       080B     07 
       080C     36 
       080D     E0 
       080E     B0 
       080F     3F 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Execution Step (PC) (A) (B) (CC) 

Initial Values 0800 00 00 90 

After Single Step 1     

After Single Step 2     

After Single Step 3     

After Single Step 4     

After Single Step 5     

After Single Step 6     

After Single Step 7     

After Single Step 8     

After Single Step 9     

After Single Step 10     
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3-2. Disassemble the 68HC12 machine code listed below and "single step" 
through it by hand, completing the chart below.  Write the disassembled 
instructions under the Disassembled Instruction heading, clearly 
indicating the instructions associated with the specific memory contents. 
Each "step" refers to the execution of one instruction.  Assume the first 
opcode byte is at location 0900h. 

  
               Address    Contents      Disassembled Instruction 
 
       0900     86 
       0901     53 
       0902     8B 
       0903     97 
       0904     18 
       0905     07 
       0906     C6 
       0907     87 
       0908     37 
       0909     AB 
       090A     80 
       090B     18 
       090C     07 
       090D     86 
       090E     19 
       090F     A0 
       0910     B0 
       0911     18 
       0912     07 
       0913     3F 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Execution Step (PC) (A) (B) (CC) 

Initial Values 0900 00 00 90 

After Single Step 1     

After Single Step 2     

After Single Step 3     

After Single Step 4     

After Single Step 5     

After Single Step 6     

After Single Step 7     

After Single Step 8     

After Single Step 9     

After Single Step 10     
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3-3. Assemble the 68HC12 instructions listed below into machine code.  Place 

the assembled machine code (corresponding with the instructions) into 
memory under the Contents heading.  Assume an ORG  0802h precedes 
the instructions listed below.  Be sure to clearly indicate how the 
instructions and memory contents correspond.  

 
      

     
Address Contents 

0800  

0801  

0802  

0803  

0804  

0805  

0806  

0807  

0808  

0809  

080A  

080B  

080C  

080D  

080E  

080F  

0810  

0811  

0812  

0813  

0814  

Instructions 
 
LDAB   #$8A 
ORAB   $0954 
LDAA   #$AB 
ABA 
STAA   $09DE 
PSHA 
PULB 
LDAA   #$02 
STAB   A,X 
SWI 
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3-4. Write a specific example of 12 additional 68HC12 addressing mode 
variations of an LDAB instruction.  Write the name of each specific 
addressing mode, the instruction byte count, and the instruction cycle 
count. 

 
 

Assembly 
Source Form 

Formal (Complete) 
Addressing Mode Name 

Motorola 
Abbreviation 

Byte 
Count 

Cycle 
Count 

LDAB   $091E Extended EXT 3 3 
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3-5. The following table shows the data initially stored in a 68HC12's memory, 
starting at location 0900h.  The initial value of the registers is also given.  
Assume the five instructions listed in parts (a) − (e) are stored elsewhere 
in memory, and executed in the order listed  (i.e., execution of a given 
instruction may affect the execution of a subsequent instruction).  
Complete the blanks for each instruction. 

 
ADDRESS CONTENTS ADDRESS CONTENTS 

0900 08 0908 67 
0901 01 0909 2E 
0902 FD 090A BC 
0903 9D 090B 9E 
0904 09 090C 43 
0905 0D 090D 24 
0906 7E 090E 09 
0907 F3 090F 02 

 
                 Initial Values:  (A) = 00,  (B) = 00, (CC) = 91, (X) = 0906,  (Y) = 0900 
 
      (a)  LDAA  2,X 
 

      (A) = _____ h    NF =  ____    Cycles = ____ 
 

       Addressing Mode = _________________________________________ 
  
      (b)  ADCA  [4,Y] 
 

      (A) = _____ h    CF =  ____    Cycles = ____ 
 

       Addressing Mode = _________________________________________ 
 
      (c)  LDAB  3,X+ 
 

      (B) = _____ h    ZF =  ____    Cycles = ____ 
 

       Addressing Mode = _________________________________________ 
  
      (d)  STAB  3,X 
 

      (B) = _____ h    VF =  ____    Cycles = ____ 
 

       Addressing Mode = _________________________________________ 
 
     (e)  EORA  2,X 
 

      (A) = _____ h    NF =  ____    Cycles = ____ 
 

       Addressing Mode = _________________________________________ 
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3-6. The following table shows the data initially stored in a 68HC12's memory, 
starting at location 0800h.  The initial value of the registers is also given.  
Assume the five instructions listed in parts (a) − (e) are stored elsewhere 
in memory, and executed in the order listed  (i.e., execution of a given 
instruction may affect the execution of a subsequent instruction).  
Complete the blanks for each instruction. 

 
ADDRESS CONTENTS ADDRESS CONTENTS 

0800 11 0808 08 
0801 22 0809 01 
0802 33 080A 08 
0803 44 080B 02 
0804 55 080C 08 
0805 66 080D 03 
0806 77 080E 08 
0807 88 080F 04 

 
Initial Values:  (A) = 00, (CC) = 91, (X) = 0804,  (Y) = 0808 

 
      (a)  ADCA  -2,X 
 

      (A) = _____ h    CF =  ____    Cycles = ____ 
 

       Addressing Mode = _________________________________________ 
  
      (b)  SBCA  [6,Y] 
 

      (A) = _____ h    CF =  ____    Cycles = ____ 
 

       Addressing Mode = __________________________________________ 
      
      (c)  LDAA  3,X 
 

      (A) = _____ h    NF =  ____    Cycles = ____ 
 

       Addressing Mode = __________________________________________ 
  
      (d)  EORA  [0,Y] 
 

      (A) = _____ h    ZF =  ____    Cycles = ____ 
 

       Addressing Mode = _________________________________________ 
 
     (e)  ANDA  1,+X 
 

      (A) = _____ h    NF =  ____    Cycles = ____ 
 

       Addressing Mode = _________________________________________ 
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3-7. The following table shows the data initially stored in a 68HC12's memory, 
starting at location 0800h.  The initial value of the registers is also given.  
Assume the five instructions listed in parts (a) − (e) are stored elsewhere 
in memory, and executed in the order listed  (i.e., execution of a given 
instruction may affect the execution of a subsequent instruction).  
Complete the blanks for each instruction. 

 
ADDRESS CONTENTS ADDRESS CONTENTS 

0800 11 0808 08 
0801 22 0809 01 
0802 33 080A 08 
0803 44 080B 02 
0804 55 080C 08 
0805 66 080D 03 
0806 77 080E 08 
0807 88 080F 04 

 
Initial Values:  (A) = 00, (CC) = 91, (X) = 0803,  (Y) = 080E 

 
      (a)  ADCA  $0805 
 

      (A) = _____ h    CF =  ____    Cycles = ____ 
 

       Addressing Mode = _________________________________________ 
  
      (b)  SBCA  #$99 
 

      (A) = _____ h    CF =  ____    Cycles = ____ 
 

       Addressing Mode = _________________________________________ 
 
      (c)  LDAA  -2,X 
 

      (A) = _____ h    NF =  ____    Cycles = ____ 
 

       Addressing Mode = _________________________________________ 
  
      (d)  ORAA  [-2,Y] 
 

      (A) = _____ h    ZF =  ____    Cycles = ____ 
 

       Addressing Mode = _________________________________________ 
 
     (e)  ANDA  2,X+ 
 

      (A) = _____ h    NF =  ____    Cycles = ____ 
 

       Addressing Mode = _________________________________________ 
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3-8. For the program listing shown below, show the contents of the PC, SP, D, 
X, and Y registers as well as the contents of the memory locations 
indicated (reserved for the stack area) after the execution of each marked 
instruction.  Initially, (CC) = 90.  Any stack locations that are “don’t cares” 
should be designated “XX”.  The assembly source file for this problem is 
available on the CD-ROM that accompanies this text. 

 
 
 
       0800                   1          ORG     $800 
       0800 [02] CD09D7       2          LDY     #$09D7 
       0803 [02] 35           3          PSHY 
       0804 [02] 0702         4          BSR     SUBR    ; *** 1 *** 
       0806 [03] 30           5          PULX            ; *** 5 *** 
       0807 [09] 3F           6          SWI 
                              7   
       0808 [03] EC82         8  SUBR    LDD     2,SP 
       080A [02] 36           9          PSHA            ; *** 2 *** 
       080B [01] 46          10          RORA 
       080C [03] EBB0        11          ADDB    1,SP+   ; *** 3 *** 
       080E [01] 55          12          ROLB 
       080F [02] 6C82        13          STD     2,SP    ; *** 4 *** 
       0811 [05] 3D          14          RTS 
       0812                  15          END 
 
 
 
Res
ults 
of 
Eac
h 
“Mar
ked” 
Instr
ucti
on 
 
 

Registers Initial After *1* After *2* After *3* After *4* After *5* 

(PC) 0800      

(SP) 0A00      

(D) 0000      

(X) 0000      

(Y) 0000      

Stack Initial After *1* After *2* After *3* After *4* After *5* 

(09FA) 00      

(09FB) 00      

(09FC) 00      

(09FD) 00      

(09FE) 00      

(09FF) 00      

(0A00) 00       
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3-9. For the program listing shown below, show the contents of the PC, SP, D, 
X, and Y registers as well as the contents of the memory locations 
indicated (reserved for the stack area) after the execution of each marked 
instruction.  Initially, (CC) = 90.  Any stack locations that are “don’t cares” 
should be designated “XX”.  The assembly source file for this problem is 
available on the CD-ROM that accompanies this text. 

 
 
        0800                   1          ORG     $800 
        0800 [02] CE9876       2          LDX     #$9876 
        0803 [02] 34           3          PSHX 
        0804 [02] 0702         4          BSR     SUBR    ; *** 1 *** 
        0806 [03] 31           5          PULY            ; *** 5 *** 
        0807 [09] 3F           6          SWI 
                               7   
        0808 [03] EC82         8  SUBR    LDD     2,SP 
        080A [01] 45           9          ROLA 
        080B [03] A682        10          LDAA    2,SP    ; *** 2 *** 
        080D [01] 55          11          ROLB            ; *** 3 *** 
        080E [01] 45          12          ROLA 
        080F [02] 6C82        13          STD     2,SP    ; *** 4 *** 
        0811 [05] 3D          14          RTS 
        0812                  15          END 
 
 

Registers Initial After *1* After *2* After *3* After *4* After *5* 

(PC) 0800      

(SP) 0A00      

(D) 0000      

(X) 0000      

(Y) 0000      

Stack Initial After *1* After *2* After *3* After *4* After *5* 

(09FA) 00      

(09FB) 00      

(09FC) 00      

(09FD) 00      

(09FE) 00      

(09FF) 00      

(0A00) 00       
 
 
Results h “Marked” Instruction 
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3-10. For the program listing shown below, show the contents of the PC, SP, D, 
X, and Y registers as well as the contents of the memory locations 
indicated (reserved for the stack area) after the execution of each marked 
instruction.  Initially, (CC) = 90.  Any stack locations that are “don’t cares” 
should be designated “XX”.  The assembly source file for this problem is 
available on the CD-ROM that accompanies this text. 

 
 
         0800                   1          ORG     $800 
         0800 [02] CEFEDC       2          LDX     #$FEDC 
         0803 [02] CD1234       3          LDY     #$1234 
         0806 [02] 34           4          PSHX 
         0807 [02] 35           5          PSHY            ; *** 1 *** 
         0808 [02] 0703         6          BSR     SUBR    ; *** 2 *** 
         080A [03] 31           7          PULY 
         080B [03] 30           8          PULX            ; *** 5 *** 
         080C [09] 3F           9          SWI 
                               10   
         080D [03] EC82        11  SUBR    LDD     2,SP 
         080F [01] 59          12          LSLD 
         0810 [02] 6C82        13          STD     2,SP    ; *** 3 *** 
         0812 [03] EC84        14          LDD     4,SP 
         0814 [01] 59          15          ASLD 
         0815 [02] 6C84        16          STD     4,SP    ; *** 4 *** 
         0817 [05] 3D          17          RTS 
         0818                  18          END 
 
 
i of Each “Marked” Instruction 

Registers Initial After *1* After *2* After *3* After *4* After *5* 

(PC) 0800      

(SP) 0A00      

(D) 0000      

(X) 0000      

(Y) 0000      

Stack Initial After *1* After *2* After *3* After *4* After *5* 

(09FA) 00      

(09FB) 00      

(09FC) 00      

(09FD) 00      

(09FE) 00      

(09FF) 00      

(0A00) 00       
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3-11. Describe the actions caused by the following lines of code, such that the 
differences among them are clear. 
• STAA  -2,X 
• STAA  2,-X 
• STAA  2,X- 

 
3-12. Describe the actions caused by the following lines of code, such that the 

differences among them are clear. 
• LDAB  3,Y- 
• LDAB  -3,Y 
• LDAB  3,-Y 

 
3-13. For each of the following lines of code, write an instruction that performs 

the equivalent function. 
• LDAB  1,SP+ 
• STAB  1,-SP 
• ASLB 

 
3-14. Show how, using LDAA and STAA instructions in conjunction with the 

68HC12’s auto increment/decrement addressing modes, the X index 
register can be used as a “software” stack pointer for implementing the 
equivalent of the “PSHA” and “PULA” instructions, here using the same 
convention as the SP register (which points to the top stack item). 

 
3-15. Show how, using LDD and STD instructions in conjunction with the 

68HC12’s auto increment/decrement addressing modes, the Y index 
register can be used as a “software” stack pointer for implementing the 
equivalent of “PSHD” and “PULD”, here using the convention that the 
software stack pointer (Y) points to the next available location. 

 
3-16. Indicate the D-Bug12 monitor command that should be used to 

accomplish each of the following operations: 
- set the serial port baud rate 
- load user program S-record object file 
- reset the 68HC12 
- modify the 68HC12 register contents 
- modify memory (SRAM) contents 
- begin execution of a user program 
- execute a single instruction and display register contents 
- set/display user breakpoints 
- clear user breakpoints 
- enter assembly instruction mnemonics line-by-line 
- display contents of memory 
- display contents of registers 
- bulk erase byte-erasable EEPROM 
- execute a user subroutine 
- set a temporary breakpoint and begin execution of a user program 

 
3-17. Provide a single-sentence explanation of the four modes in which the 

M68EVB912B32 can begin operation: EVB mode, JUMP-EE mode, POD 
mode, and BOOTLOAD mode. 
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Notes 


