

aerospace
climate control
electromechanical
filtration
fluid & gas handling
hydraulics
pneumatics
process control
sealing & shielding

Icount PDOnline Particle Detector

The Icount Particle Detector from Parker represents the most up-to-date technology in solid particle detection.

The design dynamics, attention to detail, and small size of the permanently mounted, on-line particle detector brings a truly innovative product to all industry. The laser based, leading-edge technology is a cost effective market solution to fluid management and contamination control.

Features and benefits of the Icount PD include:

- Independent monitoring of system contamination trends.
- Early warning LED or digital display indicators for Low, Medium and High contamination levels.
- Moisture % RH LED indicator (optional).
- Cost effective solution in prolonging fluid life and reducing machine downtime.
- Visual indicators with power and alarm output warnings.

- Continuous performance for dependable analysis.
- Hydraulic, phosphate ester & fuel fluid compatible construction.
- Self diagnostic software.
- Fully PC/PLC integration technology such as:
 RS232 and 0-5 Volt, 4-20mA.

Typical Applications

Mobile Equipment

- Earth Moving Machinery
- Harvesting
- Forestry
- Agriculture

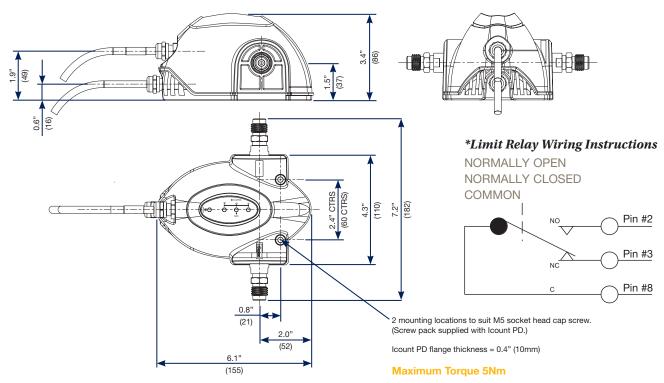
Industrial Equipment

- Production Plants
- Fluid Transfers
- Pulp & Paper
- Refineries

Power Generation

- Wind Turbines
- Gearboxes
- Lubrication Systems

Maintenance


- Test Rigs
- Flushing Stands

Features and Benefits

Diagnostic self check start-up time	5 seconds					
Measurement period	5 to 180 seconds					
Reporting interval through RS232	0 to 3600 seconds					
Digital LED display update time	Every second					
Limit relay output	Changes occur +/- 1 ISO code at set limit (Hysteresis ON)					
Elimit rolay output	or customer set (Hysteresis OFF)					
4-20mA output signal	Continuous					
Principle of operation	Laser diode optical detection of actual particulates					
Reporting codes	ISO 7 – 21, NAS 0 – 12, (AS 00 – 12 contact Parker)					
Tioporting codes	Icount will also report less than ISO 7, subject to the statistical uncertainty					
	defined in ISO4406:1999, which is shown in the RS232, reporting results					
	as appropriate e.g ">6"					
Calibration	By recognized on-line methods, confirmed by the relevant International					
	Standards Organization procedures					
Calibration recommendation	12 months					
Performance	+/- 1 ISO Code (dependant on stability of flow)					
Reproducibility / Repeatability	Better than 1 ISO Code					
Power requirement	Regulated 9 to 40Vdc					
Maximum current draw	150mA					
Hydraulic connection	M16 x 2 hydraulic test points (5/8" BSF for aggressive version)					
Flow range through the device	40 to 140 ml/min (optimum flow = 60ml/min)					
Online flow range via System 20	Size 0 = 6 to 25 l/min - (optimum flow = 15 l/min)					
Inline Sensors	Size 1 = 24 to 100 l/min - (optimum flow = 70 l/min)					
	Size 2 = 170 to 380 l/min - (optimum flow = 250 l/min)					
Required differential pressure						
across Inline Sensors	5.8 psi (0.4 bar) minimum					
Viscosity range	10 to 500 cSt					
Temperature	Operating environment: -20°C to +60°C (-4°F to +140°F)					
	Storage: -40°C to +80°C (-40°F to +176°F)					
	Operating fluid: 0°C to +85°C (+32°F to +185°F)					
Working pressure	2 to 420 bar (30 to 6,000 PSI)					
Moisture sensor calibration	±5% RH (over compensated temperature range of +10°C to +80°C)					
Operating humidity range	5% RH to 100% RH					
Moisture sensor stability	±0.2% RH typical at 50% RH in one year					
Certification	IP66 rated					
	EMC/RFI – EN61000-6-2:2001					
	EN61000-6-3:2001					
Materials	User friendly construction					
	Stainless Steel hydraulic block					
Dimensions	Viton seals					
Dimensions	7.2" x 6.1" x 3.4" (182mm x 155mm x 86mm)					
Weight	2.9 lbs. (1.3 kg)					

Dimensions / Installation Details

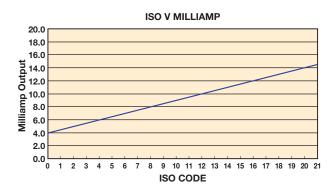
M12 Communication Cable: Wiring Configuration

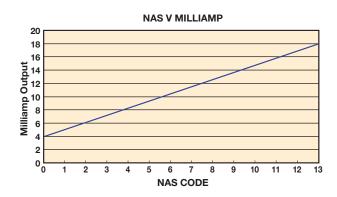
	4-20mA	0-5V/0-3V
Pin	option connections	option connections
1	NOT USED	NOT USED
2	RS232 Ground (pin 5**)	RS232 Ground (pin 5**)
3	Channel A, ISO 4µm (c)*	Channel A, ISO 4µm (c)*
4	Channel B, ISO 6µm (c)* or NAS (if selected)	Channel B, ISO 6µm (c)* or NAS (if selected)
5	RS232 Receive (Pin 3**)	RS232 Receive (Pin 3**)
6	RS232 Transmit (Pin 2**)	RS232 Transmit (Pin 2**)
7	Moisture sensor channel (if fitted)	Moisture sensor channel (if fitted)
8	Channel C, ISO 14µm (c)*	Channel C, ISO 14µm (c)*

Note: It is the responsibility of the end user to ensure that the cable's braided screen is terminated to a suitable earth bonding point.

- * Optional refer to the Icount PD part number specifier section in the manual.
- ** A standard USB serial adaptor can be used with the recommended 9-way D-type connector to convert RS232 to USB.

*M12 Limit Relay & Alarm Levels: Wiring Configuration


Pin	Current loop option connections	0-5V/0-3V option connections
1	Product supply 9-40Vdc	Product supply 9-40Vdc
2	4-20mA supply 12-20Vdc	0-5 / 0-3V supply 12-24Vdc
3	Relay (Normally Closed)*** (if fitted)	Relay (Normally Closed)*** (if fitted)
4	Relay (Normally Open)*** (if fitted)	Relay (Normally Open)*** (if fitted)
5	NOT USED	NOT USED
6	NOT USED	0-5 / 0-3V supply 0Vdc
7	Main supply 0Vdc	Product supply 0Vdc
8	Relay (Common)*** (if fitted)	Relay (Common)*** (if fitted)


Note: If the moisture sensor is fitted without either option, then the output is RS232.

Parker recommends that the mating M12 connector cables are screened. These cables are available from Parker through the ordering information section.

*** Optional – refer to ordering information section.

Variable mA output settings

The following table can be used to equate the analogue output to an ISO or NAS Code.

Example: ISO code 12 is equal to 10mA.

mA	ISO					
4.0	0					
4.5	1					
5.0	2					
5.5	3					
6.0	4					
6.5	5					
7.0	6					
7.5	7					
8.0	8					
8.5	9					
9.0	10					
9.5	11					
10.0	12					
10.5	13					
11.0	14					
11.5	15					
12.0	16					
12.5	17					
13.0	18					
13.5	19					
14.0	20					
14.5	21					
15.0	**					
15.5	**					
16.0	**					
16.5	**					
17.0	**					
17.5	**					
18.0	**					
18.5	**					
19.0	OVERRANGE					
19.5	OVERRANGE					
20.0	ERROR					

mA	NAS					
4	00					
5	0					
6	1					
7	2					
8	3					
9	4					
10	5					
11	6					
12	7					
13	8					
14	9					
15	10					
16	11					
17	12					
18	**					
19	**					
20	ERROR					

4-20mA output settings

ISO Setting

mA current = (ISO Code / 2) +4 eg. 10mA = (ISO 12 / 2) +4

ISO Code = (mA current - 4) *2 eg. ISO 12 = (10mA -4) *2

NAS Setting

mA current = NAS Code +5 eg. 15mA = NAS 10 +5

NAS Code = mA current -5 eg. NAS 10 = 15mA - 5

Variable voltage output settings

The variable voltage output option has the capability of two different voltage ranges: a 0-5Vdc range as standard, and a user-selectable 0-3Vdc range. The full list of

commands on how to change the voltage output is available from Parker.

The following tables can be used to relate the analog output to an ISO or NAS code.

For example, in a 0-5Vdc range, ISO code 16 is eaual to an output of 3.5Vdc. In a 0-3Vdc range, ISO code 8 is equal to an output of 1.0Vdc.

Table relating ISO codes to voltage output

ISO	Err	0	1	2	3	4	5	6	7	8	9	10	11	> 1
0-5Vdc	<0.2	0.3	0.5	0.7	0.9	1.1	1.3	1.5	1.7	1.9	2.1	2.3	2.5	
0-3Vdc	<0.15	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0	1.1	1.2	1.3	
\triangleright	ISO	12	13	14	15	16	17	18	19	20	21	22	E	rr
cont.	0-5Vdc	2.7	2.9	3.1	3.3	3.5	3.7	3.9	4.1	4.3	4.5	4.7	>4	4.8
	0-3Vdc	1.4	1.5	1.6	1.7	1.8	1.9	2.0	2.1	2.2	2.3	2.4	×2	.45

Table relating NAS codes to voltage output

ISO	Err	00	0	1	2	3	4	5	6	7	8	9	10	11	12	Err
0-5Vdc	< 0.4	0.6	0.9	1.2	1.5	1.8	2.1	2.4	2.7	3.0	3.3	3.6	3.9	4.2	4.5	>4.6
0-3Vdc	<0.2	N.S.	0.3	0.5	0.7	0.9	1.1	1.3	1.5	1.7	1.9	2.1	2.3	2.5	2.7	>2.8

Display parameters (ISO 4406/NAS 1638)

Digital display indication

The digital display will show the actual measured codes, the channel (μ) size and the user defineable limits. Note that the channel size and limits will alternate between the two.

The moisture sensor reading (%RH) will also be shown - if the moisture sensor option is fitted.

The order of trigger for both of the codes and moisture sensor option

- Solid digit(s) = code(s) that are at or below the set point (limit)
- Flashing digit(s) = code(s) that are above the set point (limit)

The display for ISO4406 and NAS1638 are identical. The ISO

LED display indication

The LED display uses 3 sets of LED for the indication of ISO 4406 and NAS1638 code figures. Individual code lights will trigger based on the customer settings.

The order of trigger will be:

- Solid green = one ISO code, or better, below the set point (limit)
- Blinking green = ISO code at the set point (limit)
- Solid red = one ISO code above the set point (limit)
- Blinking red = two ISO codes, or more, above the set point (limit)

Error detection

In the unlikely event of an error occurring, the digital display on the Icount PD will simply display the actual error code only - i.e. ERROR 13 (a full list of error codes is detailed in the Icount PD user manual).

Moisture sensor output settings

The moisture sensor is an option that can be included when specifying the Icount PD. The moisture sensor reports on the saturation levels of the fluid passing through the Icount PD sensing cell. The output is a linear scale, reporting within the range of 5% saturation to 100% saturation.

Saturation	4-20mA	0-3Vdc	0-5Vdc
5%	4.8	0.15	0.25
25%	8	0.75	1.25
50%	12	1.50	2.50
75%	16	2.25	3.75
100%	20	3.00	5.00

Auxilliary Flow Device

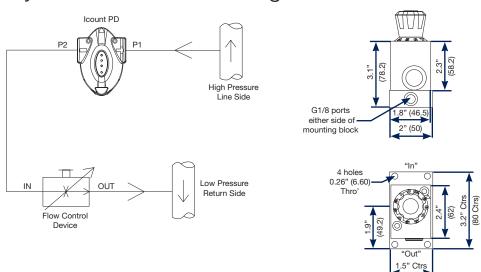
The pressure compensated, flow control device (Part Number S840074) has been developed to give the Icount PD user greater flexibility. The flow control device will enable testing where flow ranges are outside the Icount PD specifications (40 – 140 ml/min), or where pipe diameters do not allow the Icount PD to be installed.

The flow control device fits onto the downstream (outlet) side of the Icount PD, connecting through a manifold block, via a self-sealing quick connection test point and is fitted with a differential pressure valve. This flow control device automatically compensates for pressure and viscosity changes, while maintaining its setting even as the workload changes.

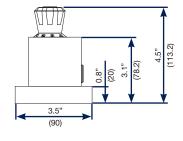
Simply position the valve to match the viscosity of the oil you are testing.

The chart below can be used to determine the valve position:

Valve Position	cSt Range
3	up to 100
3.8	90 - 200
4.2	190 - 320
5	310 - 500


Example:

If the fluid you wish to analyse has a viscosity of 50cSt under normal operating conditions then the control knob on the Flow Control Device should be set to valve position '3.'


The flow device will now automatically control the flow rate through the IcountPD to within its working range of 40-140ml/min.

Note: The flow control device will still operate correctly even with the high pressure side at 200bar and the return back to an open system of 0 bar (DP = 200bar).

Hydraulic Connection Diagram

	(55.5 0)
Actuator	Manual flow rate adjustable via control knob
Mounting type	4 off mounting holes to suit M6 screws (not supplied)
Mounting position	Any
Weight	3.7 lb. (1.7 kg)
Fluid temperature	+41°F to +176°F (+5°C to +80°C)
Ambient storage temperature	-4°F to +104°F (-20°C to +40°C)
Viscosity range	20cSt to 500cSt (if lower than 20cSt, contact Parker)
Differential pressure range	5 to 315 bar
Maximum pressure	315 bar
Flow direction	IN to OUT flow control function
Port thread detail	1/8" BSPP (test points not supplied)
Internal seals	Viton

Communication Options

The IcountPD may be configured using the Icount PD Setup Utility. For more direct control of the device using its communications protocol, you may also use the Microsoft Windows® HyperTerminal program (this program is not currently supplied with the Windows Vista™ operating system).

Communication protocol

The communication protocol for the serial communication link is to be used with Microsoft Windows HyperTerminal. The settings are as follows:

Baud rate	.9600
Data bits	8
Parity	.None
Stop bits	.1
Flow control	

The commands used with this product are made up of Set, Read and Start/Stop commands.

- Set commands allow the value or values of parameters to be set
- Read commands allow the value or values of parameters to be read
- Start/Stop allows the user to start and stop tests

All commands are sent in ASCII characters, and the protocol accepts both upper and lower case characters as the examples below:

SDF SdF

Note: A full list of commands is detailed in the user manual.

Ordering Information

Key	Fluid Type	Calibration	Display	Limit Relay	Communication	Moisture Sensor	Cable Connector Kit
IPD	1 Mineral	1 ACFTD	2 LED	2 Yes	2 RS232/4-20mA	1 No	10 Deutsch DT series connector
	2 Aggressive	2 MTD	3 LCD		3 RS232/0-5V	2 Yes	30 M12, 8-pin plug connector*
	3 Aviation fuel	3 AS4059					
	Hazardous areas						
	4 Aviation fuel						
	Non Hazardous areas						Part Number

Part Number	
Mineral	Aggressive
B.84.224	B.84.827
B.94.802	B.94.801
B.84.730	B.84.828
P.653109 (M16)	P.843081 (5/8 BSF)
P.653110 (M16)	P.853008 (5/8 BSF)
P.653512 (M16)	P.853005 (5/8 BSF)
SPS2021	SPS2026
S840074	Contact Factory
B.84.829	B.84.829
Contact Factory	Contact Factory
	Mineral B.84.224 B.94.802 B.84.730 P.653109 (M16) P.653110 (M16) P.653512 (M16) SPS2021 S840074 B.84.829

^{*}M12 Cable kit consists of two 5 meter cables to enable all output options (Communications cable and Relay/Power Supply cable)

© 2008 Parker Hannifin Corporation

Bulletin 2300-425 03/2008

Parker Hannifin Corporation

Hydraulic Filter Division (USA)
16810 Fulton County Road #2
Metamora, OH 43540 USA
phone 419 644 4311
fax 419 644 6205
email hydraulicfilter@parker.com
www.parker.com/hydraulicfilter