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Abstract

The purpose of this work is to explore the recognition of norms in multi-agent
societies through the use of plan-recognition. In particular the project proposes
to verify the e�ectiveness of some techniques in recognizing prohibitions in an
environment without full observability.

Following a description of our approach, we will describe a simulation, imple-
mented in Java, in which some selected procedures presented in the �rst back-
ground section will be modi�ed to �t in the presented environment (a simpli�ed
road network). Later tests on the prototype will be conducted to compare the
plan recognition approach with another one, namely a violation identi�cation
approach.
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Introduction

Norm Learning is a recent area of research in Arti�cial Intelligence. A norm
could be seen as a list of constraints or rules de�ned by an environment or,
more generally, by a multi-agent system. Norms are not part of the agent's
architecture and often have to be identi�ed by an agent before he can act in an
proper way for the system. Similarly to what has been stated in [19], the ex-
pected behaviour of agents in an environment is described by means of an (not
always) explicit speci�cation of norms. According to the de�nition given by the
researchers involved in the NorMAS 2007, �A normative multi-agent system is
a multi-agent system organized by means of mechanisms to represent, commu-
nicate, distribute, detect, create, modify and enforce norms, and mechanisms
to deliberate about norms and detect norm violation and ful�llment� [13]. An
interesting research area in this context is Norm Learning, namely the study
of the learning mechanics that lead an agent to the discovery of new norms in
an environment. Norms are essential to allow di�erent kinds of agents to inte-
ract properly in the same environment and Norm Learning is essential to allow
agents to adapt in a new environment already populated by other agents.

In a similar context (more generally in a multi-agent system) some agents
could be interested in observing the actions of some other agents in the environ-
ment. The observing agents could be representative of some entities that do not
know about a new environment or the observed agents themselves and want to
learn more about all of this. Plan recognition is the task of recognizing the
whole plan, or the whole sequence (past and future) of actions of one or more
observed agents. Intention recognition is related to this topic, but consists of
recognizing just the �nal goal of the observed entities. Plan recognition, instead
of Norm Learning, has a long history and has developed in this last decade ef-
fective solutions to the problem. Considering that the real challenging e�ort is
to learn norms (only) by observing agent's behaviour in a selected environment,
an interesting and still unexplored area could be the use of plan-recognition
techniques to infer norms. This project aims to explore this research area by
implementing and evaluating an interesting Norm-Learning technique based on
Plan Recognition.

The work we present will �rst review, in the Background Section, some of the
most important works appearing in Plan Recognition and in Norm Learning.
Then, in Section 2, we will describe a Java-based simulation of a road network.
This environment is useful because it de�nes a potentially big plan library.
Moreover if we map plan library's states into graph's nodes and state-transitions
into graph's arcs, this environment can be adapted to a lot of situations. In
our test-program we developed two norm learning procedures: one is based
on a recent and e�ective plan recognition technique, the other is based on the
detection of an agent's norm violation. In this work we evaluate the plan-
recognition algorithm in inferring norms under many conditions and we compare
it with violation-based norm identi�cation. The test's results will be shown and
commented in the Section 3.

Finally we will describe some possible future work in Section 4.
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1 Background

This section provides the background for all work described in the report. This
will be useful to understand the reasons behind the project. Some of the most
interesting norm and plan recognition theories will be presented and then some
of them will be the starting point for the next sections.

1.1 Plan Recognition

The observing agent, whose task is to recognize other agents' plan, could be
interacting with the observed agents and, on the other hand, the observed agents
could be aware of the observer. Cohen, et al. [1] and Geib [2] distinguished three
classes of plan recognition problems.

keyhole case: The observed agents don't care about the observing agent or are
not aware of it. The observed agents will never act against the observer
or aim to hide their actions.

intended case: The observed agents are aware of the observing agent and act
to help the observing agent in recognizing their action. A communication
system (signals for example) is required. The observing agent could have
an active role in the environment, in particular giving some help back to
the observed ones to make them reach their goal more easily.

adversarial case: The observed agents are aware of the observing agent and
hostile to them. They will/could act to hide their action or, more generally
aim to make plan recognition more di�cult.

Two assumptions are normally made when considering plan recognition.
The �rst assumption is that every observed agent acts to achieve a goal.

However an active agent could have partial or erroneous knowledge of some
actions' result, so he could execute one or more actions which do not lead to its
real goal and make the plan-recognition more di�cult.

Secondly there is a plan library that is shared between the observing agents
and the observer. A plan library speci�es all the actions necessary to achieve
one or more goals and the conditions which have to be satis�ed in order to start
and complete every action. Commonly the observer agent has full knowledge
of the plan library [3]. However the observed agents could have only partial
knowledge of it.

The observer, depending on his capabilities, can have full observability of
the environment and (consequently) of the sequence of actions of the observed
agent, but usually a third assumption is adopted, namely the unambiguous
recognition of the observed agent's individual actions. This last assumption is
not realistic but is useful in a simulated environment where most (or all) of the
e�ort is put on the study of the plan recognition component.
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Plan-Recognition techniques

One of the �rst and most popular techniques appearing in the plan/intention
recognition literature is abduction. This is a reasoning process based on the
�A�rming the consequent� fallacy which consists in asserting the validity of A
starting from the rule �if A, then B� and from the validity of B. Obviously this
could be seen as a form of �guess� and it could result in wrong conclusions.
Moreover abduction usually provides more than one hypotheses explaining an
observation in a context where the observer agent is supposed to choose just one,
or a few, of them. Clearly the observer's chosen plan is among all the hypothesis
provided by the abductive reasoning. The choice among multiple hypotheses
could be done by a global or local criteria. A global criteria needs a form of
universal ranking for every hypothesis1. Local criterias are based on di�erent
evaluation metrics which are associated with the rules of the background theory
of the agent.

While a large number of plan recognizer algorithms have been proposed
[4, 5, 7, 6, 8, 9, 10], (see Appendix C for further details) mostly based on a
combination of abductive and probability reasoning, in this work we focus on
the Symbolic Plan Recognizer, described next.

The Symbolic Plan Recognizer

In 2005 Dorit Avrahami-Zilberbrand and Gal A. Kaminka [11] introduced an ef-
�cient plan-recognition system based on a tree-representation of the plan library.
This was shown to be faster than all of the algorithms previously presented. Fur-
thermore this recognizer attempts to keep the current observations consistent
with the history of the observed actions, avoiding a-priori inconsistent plans.

The plan-library is modeled as a tree-like structure (single-root directed
acyclic connected graph). Every node corresponds to a state or a �plan-step�
except for the root-node which has no particular meaning (in the paper it is
called the top-level plans node). Edges could be of two types: vertical edges
decompose plan-steps into sub-steps, sequential edges de�ne a temporal order
among all of the plan-step nodes. At any given time, the active agent is assumed
to be executing a root-to-leaf path. Note that cyclic plans are allowed2 but the
graph must remain hierarchically acyclic. Figure 1 (taken from [11]) gives a
simple example of such a structure. The top-level plans, in this particular case,
are defend, attack and score. The node score is linked by a sequential edge to
attack which means that an acting agent can choose the plan score only if he
chose before the plan attack. A path which could be chosen by the agent is root
-> defend -> position -> turn -> with ball. Note that �turn� has two vertical
children in the graph: with ball and without ball. This means that when the
turn plan-step is detected, the ball's position is (has to be) clearly known. In
the described system an agent can interrupt its plan. For example, while it is
executing root -> defend -> position -> turn with ball -> clear -> position,

1A simple example is to assign a probability to every hypothesis based on its frequency.
2plans made by repeated plan-steps
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it can interrupt the plan and choose another one, like root -> attack -> etc,
starting from the root node.

Figure 1: example of a SPR Plan Library

The �rst step of the plan recognition is always action recognition, namely the
matching of a set of observations to the corresponding set of possible plan-steps.

More interesting is the second phase. After the initial matching, the observer-
agent is provided with some possible plan-steps which refer to the actual set of
observations. Every plan-step found could be part of more than one of top-level
plans which is being executed by the actor. However not every plan is com-
patible with the past set of observations, that's why a consistency checking is
required (at any given time, only one top-level plan can be executed). This is
made by the CSQ (Current State Query) which is reported below.
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CSQ (Algorithm 1) calls, for every node which appears in the observations
set at time t (Matching resultsM), the �PropagateUp� procedure. PropagateUp
(Algorithm 2) traverses the graph from the current node v to the root of the
graph by its ancestors (line 4) and uses time-stamps to tag nodes in the library
that are consistent with the current and previous observations. PropagateUp
assumes that the calls to it have been made in order of increasing (vertical)
depth. This allows an assumption (line 5) that matching parents are already
tagged or do not have any associated observable features. Moreover, for every
scanned node, it checks if the current node is temporally consistent with the rest
of the graph (line 6). A node at time t is temporally consistent with the rest of
the graph if one of these conditions holds:

� The current node was tagged also at t - 1 (self-cycle is allowed); or

� the current node follows a sequential edge from a node tagged at t - 1 ; or

� the current node is a �rst child, that is there is no sequential edge leading
to it (plans interruption is allowed)

If a particular node w, is temporally consistent, then the algorithm tags it with
t (lines 7 and 8) and repeats the same inspection with its parent, up until
the root (line 9). Otherwise all the tags put on the nodes traversed in the
process (including the initial one, v) are removed (lines 15, 16 and 17): a node
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is temporally consistent only if all of its parents are (this could be seen as the
fourth condition).

Finally CSQ removes the tags from the hierarchically inconsistent nodes
from M, which are the nodes without any (vertical) child tagged.

SPR seems to �t in a fully observable environment where keyhole plan-
recognition is performed. Thanks to its simplicity3, and to the fact that it is
almost independent from other plan-recognition theories, Symbolic Plan Recog-
nition can be used in lots of situation and can be integrated in other more
complex techniques. For example later work extends the symbolic plan recog-
nizer with the addition of an utility function for the observer [12].

1.2 Norm-Identi�cation

Norm-Identi�cation or Norm Learning could be done through passive learning
which consists in listening to some advice provided by a normative entity, or
through active learning. Active learning, as suggested by Hamada et al. [14],
can be divided in three categories:

1. Experiential learning: the agent involved in the learning process is
active and can violate norms. At every violation the environment (or
other agents) �punish� the agent. The agent should infer the norms from
the rewards or sanctions resulting from its actions.

2. Observational learning: the agent involved in the learning process is
not necessarily active (in the sense that it �acts� in the environment)
but has to deduce norms by observing the actions and reactions of the
active agents in the system. Notice that this particular kind of Norm-
identi�cation is very close to Plan-Recognition

3. Communication-based learning: the agent involved in the learning
process is active in the sense that it has to send and receive messages
or signals to the other agents in the system in order to learn (or simply
memorize) norms. Although it is considered an active-learning technique,
communication-based learning itself is close to passive learning. After
�asking the question� the agent has to �listen to the answer�.

Hybrid methods are obviously possible and could give better results as veri-
�ed by Bastin Tony Roy Savarimuthu's work [15]. There he compared three
approaches to norm-identi�cation in a simple example, using an experiential
learning approach; a combination of experiential learning and observation learn-
ing4; and a combination of all three. Not unexpectedly, the second approach
performed better than the �rst, and the third was sightly better than the second.

Related to this, [16] describes an observation and communication learning
approach without full observability of the environment. The observer agent,
through observational learning, creates a set of candidate norms which will be

3authors call it �lazy-commitment� plan recognition.
4making use of association rule mining

10



later veri�ed through an exchange of simple messages with the other agents. The
observer is also provided with a utility-function which could make the agent
violate a recognized norm. This aspect and the communication component
are not relevant to our work because we concentrate on observational learning
approaches. Every time an agent violates a norm by performing an action
or a sequence of actions which are forbidden in the system, another agent, if
it is geographically close to the violating one, can sanction it. The observer
agent, which sees this event, starts its reasoning invoking the Candidate Norm
Inference (CNI) algorithm which is shown below.
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Algorithm 3: Every time the norm inference algorithm is invoked, namely
when the observer notices a violation in the environment, Algorithm 4, 5
and 6 are called to infer norms.

Algorithm 4: the input is an Event Sequence (ES), the sequence of events
which precede the invocation of the norm inference component (Algo-
rithm 1), and a parameter (Windows Size,WS) which corresponds to the
number of (recent) events, previous to the Special Event, which will be
taken into consideration. Special events are violation-events. One of them
could be, for example, an agent which yells at or punishes another agent.
The output is the Event Episode List (EEL), a list of all the sequences of
events which could have activated the special event. The algorithm scans
the history and looks for all of the special events in it. For every Special
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Event (line 2), the observer stores the last n events, where n is equal to
WS, which precede the special event in a list which represents a potential
prohibited sequence of actions (line 3). This list is later put into the Event
Episode List (line 4).

Algorithm 5: the input is a EEL, the Unique Event Set (UES), the set of
all possible distinct events in the environment, and the Norm Pruning
Threshold (NPT), a number. The procedure inserts every new (unique)
event found from the EEL in the UES (lines 1, 2 and 3). Note that it is
inserted only if it is not a �Special Event� (i.e. an event that will activate
the norm inference component5). Then the Occurrence Probability (which
could be the frequency), OC, of every Unique Event (line 6) is calculated
(line 7). If the OC of an UE is greater or equal than NPT (line 8), it will
be removed later from every Event Episode (EE) (line 9 and lines from 12
to 15). The meaning of this choice is intuitively to discard every frequent
event from the list of the possible norm violations.

Algorithm 6: One of the main, and most interesting, assumption of the orig-
inal paper is that a violation could be due not only to a single event, but
also a particular sequence of events. Algorithm 5 is therefore insu�cient
to complete the norm inference. Algorithm 4 is a modi�ed version of the
well known WINEPI algorithm [17] used in Data Mining to �nd �frequent�
temporal sequences/sub-sequences. The output is all of the events, or the
sequence of events, with length at most equal to WS, which could be a
violation of that particular norm-based system. This particular algorithm
can be object of study for future works. However we will not show it
in detail because our work deals only with single-event prohibitions. For
further details the reader is referred to [16].

1.3 Norm Identi�cation and Plan Recognition

A di�erent approach to norm recognition involving plan recognition [18] is per-
haps one of the �rst to do this, describing a simple, plan-recognition based, algo-
rithm to �nd out norms or, more in detail, prohibited or obligated states/actions.
The approach operates in a partially observable domain and there is the strong
assumption that every observed agent never violates a norm. The main idea is
this: the observing agent creates some possible plans, without knowing norms,
then detects the actors' plans with a plan recognition algorithm. The di�erences
between the detected plan and the alternative plans made by the observer could
correspond to some prohibitions/obligations which the observer is not yet aware
of. The pseudo-code of the algorithm is reported below in Algorithm 7. The
�traces� correspond to the recognized actions by the observer.

5for example, the sanctioning action.
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Initially the norm detection algorithm creates several empty sets of states
(line 2 and 3): potProhib (potentially prohibited states), notProhib (states which
are allowed for sure) and notOblig (states which are not obliged). It also creates
the potOblig (states which are potentially obliged) which is initialized as the set
of all the possible states of the plan library. For all the observed traces (line 4),
the observer uses the plan-recognition component to detect (only) one possible
plan (line 5). Then the planning component is called (line 7): the observer with
its knowledge plans one or more alternative paths towards the same goal (line
6) as the detected. The AltPlans set is initialized with all of these alternative
plans. The set posStates is then created (line 8): all of the states of all of the
possible alternative plans go into this list. Intuitively if no acting agent violates
a norm then the states from their recognized plans have to be allowed: the
states of the detected plan are added to notProhib (line 9). Now if a state is
in the posStates but it is not in notProhib, maybe the reason could be that the
mentioned state is forbidden: all of the states which belong to posStates but
are not in notProhib are added to potProhib (line 10). Finally all of the states,
which have not been visited by actors during the plan, are removed from the
potentially obligated states set (potOblig) (line 11).

In [18] few results are presented. It is only stated that the procedure detects
some false positives, but �as the number of traces increased, these false positives
vanished�. Plan Recognition, in this work, is implicitly supposed to be perfect.
In our experiment we will extend this work and see how Algorithm 7 performs
with a Plan-Recognizer which may commit mistakes.
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2 Experiment report

This section will show and explain the software which has been later used to
test the Norm Learning algorithms. After describing the multi-agent environ-
ment, and its java-simulation, two di�erent norm-identi�cation methods will be
adapted and then (third section) evaluated.

The prototype attempts to recreate two of the norm-inferring works, pre-
sented in the previous section, with their ideal assumptions but in a more uni-
versal and realistic system, namely a system with a large plan-library, with
partial observability. Because of these new initial conditions, we modify some
features of the original approaches.

2.1 The environment

For the project we need a basic environment where we can easily represent an
agent's state and an agent's state-transition. In this case a plan can be de�ned
as a path made of state-transitions which links a (initial) state to another one
(destination) and a norm as an obliged or forbidden state-transition. Therefore
we choose a directed graph with a set of nodes and a set of (oriented) arcs. All
of the arcs have the same cost, which is equal to 1 for simplicity. So we de�ne
the optimal path or plan from a node to another as the path with the lowest
number of arcs. Norms in these experiments are limited to prohibitions which
are represented by forbidden arcs (forbidden state transitions). The observed
agents are free to roam on this map. Their plan is simple: they decide on a
node destination (di�erent from their initial position) and �nd a path to reach
it. After having gone to the �nal node, agents stay inactive for a while (�rest�)
and then they restart the process again.

The observer agent is inactive and has to �nd forbidden arcs only by observ-
ing actors' behaviour. Note that the plan library, that determines which nodes
can be reached from a particular node, is shared between the actors and the
observer. Put another way, the observer (with the exception of the forbidden
arcs) and actors are completely aware of the road network. The observer may
not have full observability of the agents' moves, i.e. he could see and record
only some positions of the observed agents during their trip.

We are working in a keyhole plan-recognition system, similar to most of
the works presented in the previous section.

Moreover the action-recognition component is ignored6. This last assump-
tion allows our work to be adapted to almost every situation. In fact every
node corresponds to a state of a particular agent and every arc can represent an
action (or a set of actions) that leads to that state-transition. A simple example
is shown in Figure 2.

6in other terms, there is the assumption that actions are recognized unambiguously
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Figure 2: example of a (possible) conversion from a generic plan library to an
oriented graph

For the project we created a graph, shown below in Figure 3, with 16 nodes
and 30 arcs.

Figure 3: the environment (a road network)

All the 30 arcs are always allowed, but the prototype randomly generate 5
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prohibited arcs every time it starts.

2.2 Implementation choices

We implement the project in Java7. In this work we will just evaluate the e�ec-
tiveness of the algorithms in recognizing norms, and not their time-performance.
Therefore language is not crucial and we choose Java due to the author's familia-
rity. We use also the Jason plugin to model the observed agents (actors). Jason
is a java-based interpreter for an extended version of AgentSpeak(L)8. Its use in
this work is due to its usefulness in modeling simple multiagent systems. Note
that all norm-identi�cation and plan-recognition algorithms are implemented
exclusively in Java.

The graph-environment is a set of integers, which represents nodes, and a
set of OrientedArcs. OrientedArc is a class made for this project which models
an oriented arc of the graph. It is made of a tuple of integers and of a boolean
(isAllowed) which indicates if this arc is prohibited or not.

The environment is populated by 4 agents: 3 actors and the observer agent.
Every actor calls the randPlan method at the beginning. The procedure selects
a random destination, di�erent from the starting node, and then plans a path
towards it. This is done by calling a modi�ed version of the A* search: the path
from the starting node to the destination may be not the optimal one, namely
the path with less arcs. When a actor reaches its destination, it calls the rest
method and waits.

The observer is an entity which cannot move and is made of 3 Observa-
tionTowers and a CognitiveCentre. Each ObservationTower is a thread which
just follows all the actors' movements, recording the list of nodes touched by
the actor during its trip in an array. We have an ObservationTower for every
observed agent.

Once all the agents have called the rest procedure, the CognitiveCentre is
activated. This thread gets the (partial) data (the list with some of the agents'
moves) taken from the three ObservationTowers as input and tries to detect
prohibited arcs. At the end of the process, CognitiveCentre is paused, the 3
agents awake, and the system restarts and behaves in the same way again.
Note that there is a simpli�cation: the CognitiveCentre and the 3 actors should
be temporally concurrent to make the simulation more realistic. However this
compromise doesn't ruin the main task of the work in our view.

The �nal program runs as a Plan-Recognition prototype, where a Plan-
Recognition approach is implemented and tested, and as a Violation based pro-
totype, where a Violation-Identi�cation approach is implemented and tested.
Both approaches are tested on the same environment, including actors, but
under some di�erent assumptions. We will describe them in detail next.

7Java Development Kit v6 with Eclipse IDE
8for further information: http://jason.sourceforge.net/wp/
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2.3 Plan-recognition based prototype

In our simulated environment we assume that actors never violate a norm,
namely they never traverse a prohibited arc. This assumption make our system
closer to the one described in [18]. Moreover it guarantees that if the plan-
recognition component makes no mistake (the base case), there will never be
false negatives (prohibited arc recognized as allowed) .

In the Plan-recognition based model, CognitiveCentre discovers norms with
a modi�ed version of the �Norm detection algorithm� shown in Subsection 1.3.
Having a look again at the pseudo-code it is clear that we need a planning and
a plan-recognition algorithm. Figure 4 shows the architectural diagram of the
Plan-recognition based prototype.
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Figure 4: Plan-Recognition based prototype
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Plan-recognition is performed by 3 PlanRecognizer threads. We have one
PlanRecognizer for each ObservationTower, and so one for each actor. Plan-
Recognizers, as for ObservationTowers, run in parallel to actors. However a
PlanRecognizer, instead of its ObservationTower, can record only some of the
moves performed by the observed actor. For this purpose we use a variable
parameter, called waitThreshold. A PlanRecognizer records the actor's node
position every waitThreshold/3 moves. So, for example, if waitThreshold is
equal to 3, PlanRecognizer records actor's position every move; this means that
PlanRecognizer makes no mistakes9 and we are in the base case.

The PlanRecognizer threads recognize actors' plans by making use of a mod-
i�ed version of the Symbolic Plan Recognizer (SPR), described in Subsection
1.1. Note that the changes made to the original code are due to the di�erent,
and more complex, system described in this work. First of all we have to tran-
slate the graph into a plan-library as seen in the Figure 1 of the �Symbolic Plan
Recognizer�, but this means storing in the PlanRecognizer a huge and redundant
structure which speci�es all the possible plans (with every possible destinations)
for every starting node. Therefore we preferred to create a partial structure dy-
namically, depending on the agent's initial position and on the number of its
moves. The plan library implemented in our code is made of PlanLibNode ob-
jects. PlanLibNode intuitively models a SPR plan library node. Following the
terminology of the SPR work, every PlanLibNode have a reference to a verti-
cal parent (another PlanLibNode), a reference to a sequential parent (idem), a
reference to a list of vertical children (i.e. an arraylist of PlanLibNodes) and
a reference to a list of sequential children (idem). Every plan library structure
stored in the PlanRecognizer has one root, which is a PlanLibNode without
neither sequential nor vertical parents. PlanLibNodes also contain a name and
a tag �eld.

When the system starts, a PlanRecognizer immediately calls the initPlan
method. The procedure records the agent's initial position, and looks for all
of its neighbours, namely the nodes connected with the starting one by an arc.
The initial plan-library graph is created: the root is called with the number of
the starting node, and the �rst vertical level (root's children) corresponds to
the neighbours of the starting node. Then this partial graph is extended by 2
levels: we look for all the neighbours of the neighbours of the root, and so on.
An example of an initial plan-library graph, made for an agent whose starting
position is 0 in Figure 3, is shown in Figure 5. Note that the root PlanLibNode
is called �0� and after the �rst level (populated by PlanLibNodes 1 and 15),
only sequential edges are used: this method partially di�ers from the original
structure but doesn't a�ect the algorithm's �nal result.

9the system becomes fully observable
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Figure 5: an example of our plan-library

With the completion of initPlan, PlanRecognizer waits (on a semaphore).
ObservationTower has the duty to reactivate it every waitThreshold/3 or if the
actor reaches its �nal destination. When PlanRecognizer wakes up, it checks
the number of moves performed by the actor, which is provided by the Observa-
tionTower, and records the agent's current position (its position when Observa-
tionTower activated it). At this point if the number of moves is greater than or
equal to plan-library levels, extendPlan is called. This method simply extends
the library by 3 levels. Having done all of this, the thread scans the list of the
PlanLibNodes at level l, where l is equal to the recorded number of moves10: if
one or more nodes are named with the same number as the current position, it
is tagged with t. A value t is equal to 1 at the �rst iteration and is incremented
by one every time ObservationTower activates its PlanRecognizer. The tag in
the system intuitively represents the temporal information as shown in [11].

If t is 1, then possible plans are built by �nding (and reversing) all the paths
from the tagged nodes to the root. Otherwise, the method propagateUp is
called, which checks temporal consistency in a similar manner to that described

10Note that if we couldn't use the �recorded number of moves� information, the number
of possible plans would have been much larger: this simpli�cation reduces the di�culty in
adapting the SPR approach to our environment.
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in Section 1.1: propagateUp traverses the tree-like structure from every tagged
node; when it �nds a tagged ancestor of that node checks its tag. If the tag is t
- 1, then the current node is temporally consistent, so the algorithm will simply
select the next tagged node of level l. If the tag is less than t - 1, or there are
no more tagged nodes up until the root, then the current node is temporally
inconsistent: the tag is removed from it and the next tagged node of level l is
selected. As previously seen, new possible plans can be detected by �nding all
the paths from tagged nodes to root node.

It is important to note one of the main di�erences from the original Symbolic
Plan Recognizer algorithm: now a node is temporally consistent if one of these
two conditions holds:

� it is tagged with �1�; or

� it is tagged with t > 1 and there exists an ancestor which has been tagged
with t - 1

This di�erent de�nition is due to the fact that there is no full observability
of the actors' moves: instead of what we have described in Section 1.1, the
observer cannot record the agent's moves at every step. Therefore if a node is
tagged with t, it is not necessary that its sequential parent has the previous tag.
However we have to be sure that the current tagged node is part of a started
plan, which means that the PlanRecognizer has recorded, at t-1, another node
which is part of the same plan. Note also that here there is no real distinction
between sequential and vertical edges. Vertical edges connects the root to its
neighbours and sequential edges are used for everything else. This use is not
faithful to the original work but does not a�ect the �nal results. If a node is
not temporally consistent, the tag is removed from it. So neither the �pruned�
node will be used to build the possible recognized plans nor its ancestors unless
one, or more, of these are part of temporally consistent plans. Figure 6 should
make the whole process clearer for the reader.
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Figure 6: an example of the temporal consistency checking

In the example waitThreshold is equal to 6. Initially ObservationTower �nds
its followed actor in position 0 (of the graph shown in Figure 3) and the partial
plan-library is created by the Plan-Recognizer. After 2 moves, PlanRecognizer
wakes up, for the �rst time, the actor is seen to be in 5. The 2nd level of the
graph is populated by these PlnaLibNodes: 5, 2 and 10. Node 5 is tagged with 1
and the only possible path is [0, 1, 5]. Then, after 4 moves, the PlanRecognizer
wakes up again and �nds (through its ObservationTower) the actor in 4: there
are two nodes named as �4� at level 4 of the library and they are both tagged
with 2. The value of t this time is greater than 1, so PropagateUp procedure is
called for the two tagged nodes. The path [0, 1, 5, 9, 4] is temporally consistent
because there is a PlanLibNode tagged with 2 - 1 (Node 5). The other possible
path ([0, 1, 2, 3, 4]) is not temporally consistent because from Node 3 to the root
0 there isn't any tagged node. So this path will be discarded by the algorithm,
namely PropagateUp will remove the tag 2 from the PlanLibNode 4 which is
child of PlanLibNode 3.

At the end of the consistency check procedure, all of the possible plans
are saved11 for the CognitiveCentre and then PlanRecognizer becomes inactive
(waits on a semaphore) again.

11note that they could change in the next reactivation of the PlanRecognizer
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The Cognitive Centre

CognitiveCentre thread wakes up immediately after all of the actors have called
the rest procedure. Once active, CognitiveCentre uses the data stored by Plan-
Recognizer threads in a similar way to what has been shown in Subsection 1.3.
For every actor, the centre owns a list of ArrayLists which contain the possible
paths (or plans) of the actors. Looking at the code shown in 1.3, the reader
should notice that the algorithm requires only one recognized plan: considering
that CognitiveCentre has no other useful information, it has to choose randomly
one possible recognized plan for every actor. CognitiveCentre also needs its own
planning system. Having chosen one plan for the agent, the thread selects the
�rst node of the plan (the starting position) and the last node (the destination).
Then it plans its own path using the A* algorithm, including the prohibited
arcs.

Now, similar to the original algorithm, the planning system's path speci�es
all of the arcs which are potentially prohibited. The recognized path instead
speci�es all of the arcs which are not prohibited thanks to the assumption that
no actor will ever violate norms. So we create the possibleArcs ArrayList and
we insert into it the arcs from the planning system's path. Then we add to
the notProhibitedArcs ArrayList, initialized at the creation of the Cognitive
Centre, the arcs from the detected plans by PlanRecognizers. The potentialPro-
hibitions ArrayList, which is created at the beginning as the notProhibitedArcs
set, is updated by adding the arcs from possibleArcs and then by removing the
notProhibited arcs from the resulting set. Note that notProhibitedArcs and po-
tentialProhibitions are created once and then updated every time the Cognitive-
Centre is activated, but possibleArcs is created from scratch at every iteration
of the algorithm.

After the update of the potentialProhibitions, CognitiveCentre send a signal
to the 3 resting actors12 so they can start again.

2.3.1 Time Complexity

We have so far not discussed the time complexity of our algorithms, but will
provide a brief examination of this within the current section, evaluating the
time complexity of the PlanRecognizer and CognitiveCentre's main methods.

At every iteration (i.e. every time PlanRecognizer is activated by its Ob-
servationTower) PlanRecognizer scans all the PlanLibNodes at level l, where l
is equal to the current number of moves. In order to compute the number of
them, we must examine the structure of the Plan Library. The Plan Library
can be represented as a tree-like structure, where the Root node stores agent's
initial position in the graph and each tree node has as many children as the
number of the neighbours of the graph's node stored in it (look at initPlan and
extendPlan methods). If N is the number of graph's nodes, every node has at
most O(N) neighbours. Thus we can claim that if the Plan Library has l levels,
the number of its nodes is O(Nl). Now we have to evaluate the work which

12sending a signal to their semaphores
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is done in each node of the graph. Two methods are identi�ed as potentially
time-demanding: propagateUp and adjacencyNode, which is the one that locates
a node's neighbours. The adjacencyNode method's current implementation is
somewhat naive: it scans all the graph's arcs in order to �nd one or more which
connect the selected node to another one. If A is the number of arcs in the
graph, adjacencyNode's time complexity is equal to A.

The propagateUp method traverses the graph from a tagged node (at level
equal to l) up until the root in the worst case. This path, which is repeated
by each tagged node, is O(l). If t is the number of tagged nodes at level l,
propagateUp's time complexity is O(t l). Thanks to a signi�cant amount of tests
we can claim that the number of tagged nodes for which propagateUp reach the
root is much smaller than the number of the graph's nodes or arcs and can be
treated as a constant. So propagateUp's time complexity is simply O(l) with this
approximation. Overall the run-time complexity of PlanRecognizer is O(Nl(A
+ l )). It is important to note that the maximum value of l is more than or
equal to the length of the �nal agent's path detected by the observer. This one
is much smaller than the size of the graph in the average case but in the worst
case it is O(min{N,A}), or, in other terms, if the graph size is denoted with
G, it is O(G). Therefore the worst case time complexity of PlanRecognizer is
O(GG), which is extremely ine�cient. Luckily, at least in the model described
in this work, the worst case is also the rarest one13.

CognitiveCentre simply works with a list of paths and plans the optimal path
using the A* algorithm. In particular CognitiveCentre calls A* with heuristic
function equal to zero. Considering that the arc's cost is equal to one, A*
behaves like a breadth-�rst search algorithm on a graph with time complexity
O( N + A ). As for the remaining work, referred to the lists' editing, it can be
easily shown that its time complexity is O(min{N,A}2). Overall the run-time
complexity of CognitiveCentre is O((N+A)c), where c is a constant.

13In all our experiments, this bound was never encountered
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2.4 Violation based prototype

In the Violation-based prototype, the environment and the actors are modi�ed
in order to recreate a similar system to the one described in [16] (see subsection
1.2). Figure 7 shows the architectural diagram of the Violation based prototype.
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Figure 7: Violation based prototype
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Instead of what has been seen in 2.3, moving agents are supposed to some-
time violate norms and a violation system has to make the observer aware of
these events. When an actor plans the path towards its destination, the rand-
Plan procedure includes prohibited arcs14 in the �nal path with probability 1/2
or simply plans as seen before with probability 1/2. When an actor goes through
a prohibited arc, a violation-event occurs. This activates the NormIdenti�er
thread that has the purpose of deducing norms starting from the last and the
previous violations. After doing that, NormIdenti�er waits on a semaphore for
the next violation.

As seen in the Plan Recognizer based prototype, when an actor reaches its
destination, it calls the rest procedure. When all of the 3 agents are resting,
SupportThread is activated in order to send a signal to them so they can restart.
Note that, in the previous subsection, CognitiveCentre had the same job as is
done here by NormIdenti�er (norm recognition) and by SupportThread (system
reset). Note also that even if the probability for an agent of making a plan
which ignores prohibited arcs is 1/2, the probability of making a plan which
INCLUDES one or more prohibited arcs is di�erent (less). In fact a prohibited
arc could be discarded in the plan because it is not convenient.

The NormIdenti�er

The NormIdenti�er implements the algorithm seen in the Section 1.2. Here a
prohibition is only a single arc, so there aren't, in our environment, forbidden
sequences of arcs15. For this reason NormIdenti�er is inspired by algorithm
1,2 and 3 of the Candidate Norm Inference procedure: that is the only basic
approach to recognize norms through an agent's single-event violation. When a
prohibited arc is crossed, the violation activates the NormIdenti�er. Similarly
to what is done in [16], the identi�er thread doesn't have full observability of
the agent's moves: in this case, when NormIdenti�er is activated, it only knows
that a violation has occurred recently, but it can't know a-priori which agent is
responsible.

Once activated, NormIndenti�er scans all the (previous or simultaneous to
the violation) moves' history: every detected arc is put on a list (HashTable)
and associated with the number of times that it has been used. Then if the
scanned arc belongs to the last WS 16 visited arcs of a particular actor, where
WS is here called windowSizeHistory, it is inserted in the prohArcs ArrayList.
After this �rst phase, pruning work is performed. NormIdenti�er checks the
number associated with every arc in prohArcs: if that number divided by the
number of total moves is greater than or equal to prohibitedArcThreshold, which
corresponds to the Norm Pruning Threshold seen in Algorithm 5, the current
arc is removed from the prohArcs list. The resulting ArrayList contains all of
the potential single-arc prohibitions. The NormIdenti�er, at this point, waits
on a semaphore for the next violation.

14it ignores norms
15This could be a good starting point for future work.
16see subsection 1.2
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2.4.1 Time Complexity

NormIdenti�er's time complexity is simple to evaluate and it is directly con-
nected with the insert and �nd methods in a (Java) HashTable and an Ar-
rayList. All of them run in linear time in the worst case. Due to at least one
loop in the code, it can be easily claimed that the worst case run-time complexity
of NormIdenti�er is O(A2), where A is the number of the graph's arcs.
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3 Test result

In this section we will show the e�ectiveness of these two approaches in di�erent
cases. Note that the two approaches utilize di�erent assumption (for example
in the �rst one, actors must not violate norms, in the second one, actors are
sometime expected to violate norms). Future works could expand our proto-
type through additional tests to provide a more realistic comparison between
approaches. For now we will establish if and in which partial-observability con-
ditions, (symbolic) plan-recognition could be useful to infer norms under ideal
conditions and if it could beat a basic violation-based norm-identi�cation work-
ing under ideal assumptions.

Every test is made up of 40 iterations. In each iteration, the system generates
5 prohibited arcs and runs until the CognitiveCentre or SupportThread �nds
out that the total number of moves is greater than or equal to 400. This number
has been chosen because in early tests with the plan-recognition based prototype
in its base case, the CognitiveCentre nearly always took less than 400 moves to
correctly identify all of the prohibited arcs.

3.1 Plan-recognition based prototype

3.1.1 Base case: waitThreshold = 3

Here we will show the result of the plan-recognition based prototype with wait-
Threshold equal to 3. This means that PlanRecognizer threads wakes up after
every move of the observed actor. The reader should notice that in this particu-
lar situation, plan-recognition is pointless because it is equivalent to an observing
entity which records the whole actor's path. We can deduce a-priori that in the
base case there will never be false negatives. A false negative is a prohibited arc
which is recognized as a permitted one. This will never happen here because
if all of the used and allowed arcs (plan-steps) are successfully recognized, only
them will be inserted in the notProhibitedArcs set. However if an arc is never
used by actors, it could be represented as a false positive by being inserted in
the potentialProhibitions set.

Results are shown below in the Table 1. The �Recognized arcs� column
is composed by suming the �Successfully rec.� column with �false negative�.
�Mistakes� is the result of the sum of the �false positive� column with �false
negative�.
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TABLE 1: waitThreshold = 3
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As seen in the table the number of successfully recognized is almost perfect
(5) at every iteration. Moreover the number of false positives is low, 0 on average
and not more than 2. As expected there are no false negatives.

An interesting fact is that the false positives are almost always the same
arcs. They underline a phenomenon which could have been intuitively predicted
but which was not mentioned in [18]. Arcs which are not convenient for the
(experienced) actors in a system will likely never detected as allowed by a new
agent in the system unless it tries the unused arc.

3.1.2 waitThreshold = 6

PlanRecognizer threads now wake up after every 2 moves of their observed
actors. This case is the �rst one where the PlanRecognizer algorithm is really
useful and the �rst one, at the same time, which points out the real �aw of
our basic plan-recognizer approach. Let us show this with a simple example
referring to Figure 3. The system generates (9, 13) as a prohibited arc, and an
actor's starting position is 9. This actor wants to go in 11, so it chooses this
path: [9, 10, 11] using the allowed arcs (9, 10) and then (10, 11). Considering
that its PlanRecognizer wakes up every 2 moves, the actor is seen in 9 as initial
position and, after 2 moves, it is seen in 11. Now from the observer point of
view two paths are possible and temporally consistent: [9, 10, 11] and [9, 13,
11]. The choice between these two possible plans is random. If the second path
is chosen, the NormIdenti�er will put, in the notProhibitedArcs set, the arc (13,
11), which is allowed, and the arc (9, 13) which is forbidden. This generates
a false negative. Notice that the NormIdenti�er algorithm behaves in a greedy
way with the notProhibitedArcs set: once an arc is put into this set, it will be
never removed from it. This suggests a �aw of the Norm-Identi�cation approach
which will be examined later. Results of this test are shown in the Table 2.
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TABLE 2: waitThreshold = 6
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As expected, the number of recognized forbidden arcs is more or less the
same as the previous situation. However some of them are now identi�ed as
allowed: we have some false negatives. Their number is still low as for the
number of total mistakes at every iteration.

3.1.3 waitThreshold = 9

PlanRecognizer threads now wake up every 3 moves of their observed actors.
We expect a higher number of false negatives for the reasons explained before.
Results are shown in the Table 3.
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TABLE 3: waitThreshold = 9
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The number of recognized arc is still near 5 as before and the number of
false positives is still low (lower than before). However the number of false
positives heavily increased from the previous case and so did the number of
total mistakes. Now they are 3.75 on average (11% of all the arcs). Moreover
the number of successfully recognized arcs is now really low (1.4 on average
against 3.7 previously). It is clear that our algorithm got worse by increasing
the WT from 6 to 9. Looking deeply at the table we could deduce that the
result, which mostly happens, is this: 2 successfully recognized arcs, 0 false
positives and 3 false negatives.

3.1.4 waitThreshold = 12

PlanRecognizer threads now wake up every 4 moves of their observed actors, or
at their last move before resting. Results are show in Table 4.

36



TABLE 4: waitThreshold = 12
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Performance is now very poor. The number of false positives is low, but the
number of false negatives is almost 5 and, consequently, the number of success-
fully recognized arcs is mostly 0 or 1. The �average� result, which happens for
most times, is 5 false negatives, 0 false positives, 0 successfully recognized arcs.
We can say that we reached the �rst worst-performance (at least looking at
the number of false negatives) case and therefore do not increase waitThreshold
further.

3.2 Violation based prototype

Using this approach, we can vary 2 parameters in our tests. windowSizeHistory
represents the number of moves before a violation-event which are examined by
the NormIdenti�er. We identify the base case as windowSizeHistory equal to
2: this case simulate the situation where the observer wakes up immediately
after a violation and so can take into consideration only the last move (or 2
moves) of every agent. We saw that with WS equal to 1, the observer's number
of (successfully or not) recognized prohibited arcs was low (1 or 2). This is due
to the fact that the observer's awakening is not always coincident with the last
violation.

prohibitedArcThreshold is a value which establishes if the arc examined has
to be detected as potentially forbidden or not. We encountered di�culties in
deciding which value could give better results, so we decided to start by setting
it to 1 divided by number of total Arcs (35), i.e. 0.029.

3.2.1 Base case: windowSizeHistory = 2

In this case we will start by putting the prohibitedArcThreshold equal to 0.029
(in the original paper, the NormPruningThreshold was 1/2) and see how the
algorithm behaves with these parameters. Results are shown in Table 5.
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TABLE 5: windowSizeHistory = 2, prohibitedArcThreshold = 1 / 35
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The number of recognized arcs is less than before, but all of them are cor-
rectly identi�ed as prohibited. The real problem is that there are a high number
of false positive. More generally the algorithm, with this prohibitedArcThresh-
old value, recognizes almost the 30 % of the arcs as prohibited. Connected with
this, we have an average of almost 11 mistakes. To overcome this, the prohib-
itedArcThreshold parameter should be modi�ed but we were unable to �nd an
appropriate value. We can only deduce that the actual value is too high because
the pruning procedure (see 2.4) takes place only a few times.

We decided to �help� the algorithm by varying prohibitedArcThreshold dur-
ing execution: after pruning, the NormIdenti�er thread checks if the size of the
prohArcs set is more than or equal to 7. If it is, prohibitedArcThreshold is
reduced by 0.01 (if it is more than or equal to 0.01). Instead, if prohArcs' size is
less than 2, then the parameter is increased by 0.01. This modi�cation is naive
and actually helps our original algorithm because the observer shouldn't know
a-priori the real number of the prohibited arcs. Note that in the original work
[16] the NormPruningThreshold was �xed. The results of this trial are shown
in the next table (Table 6).
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TABLE 6: windowSizeHistory = 2,
prohibitedArcThreshold = variable
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The modi�ed algorithm now decreases the number of false positives, however
the number of false negatives is higher than before, and higher, on average, than
the number of successfully recognized arcs. More generally the results, and the
number of total mistakes, are now unpredictable.

It is pointless to increase the windowSizeHistory because this would result in
additional false positives, but the number of false negatives and of successfully
recognized arcs would essentially remain the same. Note that the number of
recognized arcs is already high in the base case.
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4 Conclusions and future works

With our project we wanted to evaluate a norm-identi�cation approach based on
a basic (symbolic) plan-recognizer and to compare it with another observational
approach, namely a violation-based norm-identi�er. One interest in our work is
to look at the size of the plan library which is de�nitely bigger than most of all
the project presented before ours.

We summarize the results shown in the last section in the next series of
graphs. Every column reports average values.
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The violation-based norm-identi�er seems to work well when the number of
possible single events is low (2 or 3). In the original work the observer didn't
have full observability of the environment, however the actor could only move,
eat and litter in the system. In our system this approach performs poorly even
in its base case and even if the observer is provided with the estimated number
of the prohibited arcs via dynamically adapting the prohibitedArcThreshold pa-
rameter. Intuitively if an arc is used with a low frequency, it is not necessary
prohibited, but could just not be convenient for all of the agents in the environ-
ment. On the other hand if an arc has medium-high frequency, the arc could
be prohibited but convenient for the actors. The problem is that the observer
has no information about how to choose a good value of prohibitedArcThresh-
old. Future work, maybe involving multi-arc norms (for example: prohibited
sequences of allowed arcs), should avoid any use of this approach, at least if
used alone, because of its unsatisfactory performance with single-arc norms.

Regarding the plan-recognizer based prototype, it works very well in its base
case and still behaves �ne with the waitThreshold equal to 6. However, if we
increase the parameter to 9, its performance starts to degrade. The number of
false positives is always low, but if we set waitThreshold equal to 12, the number
of false negatives is almost 5. This norm-identi�er algorithm therefore appears
good but is still immature for a partially observable environment. Its main �aw
is that it relies completely on the plan-recognition component: if a prohibited
arc appears at least once in a recognized path, after a plan-recognizer mistake,
it will be inserted in the notProhib set and it will never be removed from it.
Overcoming this issue is a topic for future works, allowing the agents to operate
in a more general environment where norms can be violated. Moreover the
symbolic plan recognizer should be extended: a ranking system (maybe based
on a probabilistic approach) between the temporary consistent paths is needed
in order to avoid a random choice between them.

Our work suggests that Plan-recognition can be used for norm-identi�cation
via plan libraries in partially observable environments, and is also a better choice
than other observational approaches. Graph-based environments like ours are
a simple but challenging test-bed for any future systems. Finally note that our
directed graph is not provided with di�erent costs for its arcs and that there
are not any forms of sanction after a norm violation. The introduction of these
features can be a future extension of our environment.
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5 Di�culties Encountered

In this last Section we will explain all of the main di�culties which have been
found during the experience reported.

The author was not able to �nd in literature a precise and common de�nition
of what a �norm� is in multi-agent systems. That's why we decided to give our
own de�nition (in the Introduction) of norms trying to make it compatible with
the other de�nitions found in the works read.

It has been necessary to read many texts about Plan Recognition in order
to write the Background Section. Most of them show procedures or algorithms
which didn't �t with the environment described in Subsection 2.1 or simply were
hard to implement in the languages known by the author. Moreover we didn't
know how to add an utility function to the observer and to the actors in our
environment, so we decided to focus on the basic SPR and to leave its extension,
shown in [12], for future works.

During the code implementation, it has been di�cult to make all the Threads
(PlanRecognizers, ObservationTowers, etc..) temporally concurrent and to make
them work in a satisfactory way. Thus we decided to partially interleave Threads'
execution as it is explained in Subsection 2.2. We strongly believe that this sim-
pli�cation doesn't go against our �nal goal (the evaluation of Norm-Learning
approaches).

Our program makes use of concurrent programming and, in particular, of
Semaphores for Thread's synchronization. As consequence of this lots of (syn-
chronization) bugs have been found during the coding and much time has been
spent �xing them.

Finally we didn't encounter any particular problems in running the described
tests with the �nal version of the software.
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6 Appendix A: User Manual

This section explains how to run the program described in Section 3. The �nal
package includes the running jar, streetModel.jar, and its con�guration �le,
streetModel.CFG. We will �rst explain how to run properly the provided
software and, in Section 6, we will show the reader how to install it properly.

6.1 The Con�guration File

Before running streetModel.jar, the con�guration �le has to be modi�ed in order
to conduct tests in the desired way. The con�guration �le, streetModel.CFG,
can be opened by a text editor: Figure 8 shows how it looks like (if opened by
Microsoft NotePad). The test described in Subsection 3.1.2 has been done by
setting the con�guration �le as it is shown in Figure 8.

Figure 8: the �streetModel.CFG� con�guration �le

The user is expected to modify only the integer values in the lines starting
with �#�. Below is the description of all the parameters in the settings �le.

mode: It can be �1� or �2�. If it is 1, streetModel.jar will execute the Plan-
recognition based prototype described in Subsection 2.3. Otherwise, street-
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Model.jar will execute the Violation based prototype described in Subsec-
tion 2.4. Default value is equal to 1.

windowSizeHistory: This parameter has been described in Subsection 2.4
referring to the Violation based prototype. Default value is equal to 3.

waitThreshold: This parameter has been described in Subsection 2.3 referring
to the Plan-recognition based prototype. Default value is equal to 6.

prohibArcToAdd: It indicates the number of prohibited arcs that are gener-
ated by the system at every iteration. Note that all our tests have been
conducted by setting prohibArcToAdd equal to 5. Default value is equal
to 5.

maxNumberOfMoves: CognitiveCentre (in the Plan-recognition prototype)
or SupportThread (in the Violation based prototype) has to give the signal
to actors, when they are resting, in order that they restart. Before doing
that, it checks if the total number of moves is greater than or equal to the
value of maxNumberOfMoves. If it is, the system is reset: new prohibited
arcs take place of the old ones and all the observer's threads are recreated
from scratch. Note that all our tests have been conducted by setting
maxNumberOfMoves equal to 400. Default value is equal to 400.

DEBUG_MODE: It can be �0� or �1�. If it is 1, more debugging messages
will be shown in the program during its execution. The recommended
value is 0. Default value is equal to 1.

6.2 The Jar File

After modifying properly the con�guration �le, the user can run the program by
double-clicking streetModel.jar. The Jar �le and the con�guration �le have to
be in the same directory in order to work properly. An example of an execution
of the software is shown below in Figure 9. The �Stop� button is used to quit the
program and the �Pause� button is used to suspend the application. Once the
�Pause� button is pressed, it will be replaced by the �Continue� button which
can be used to resume the application. It is not recommended the use of the
other buttons.
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Figure 9: �streetModel.jar� running

If the application is not able �nd the con�guration �le, the program will
display an error message and default values (see Section 6.1) will be used. Every
time the program resets the system, it saves the results of the �nished iteration
in the �le �Tests_Result_X.txt�, where �X� is the iteration's number, if the
Plan-Recognition based prototype is running. Otherwise it saves the results in
the �le �Tests_Result_Violation_X.txt�.
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7 Appendix B: Maintenance Manual

7.1 System requirements

The program requires a system with Java Runtime Environment 6, or later,
installed to run. The JRE can be downloaded from

http://www.java.com/en/download/manual.jsp.
Our software has been tested only on a PC with Microsoft Windows XP. It is

believed that the software should work also in other operating systems provided
with JRE.

7.2 Installation

To install the program extract the 2 �les (streetModel.CFG and street-
Model.jar) from the archive streetModel_Bin.zip. After the JRE is in-
stalled, the program can be run by double-clicking on streetModel.jar or from
a command line as follows:

java =jar streetModel.jar

7.3 Using streetModel

An user manual for the software is provided in the document 'User Manual'
which is provided in Appendix A of the report.

7.4 Building streetModel

The source code is provided by the archive streetModel_Src.zip. Extract the
directory �streetModel� from it. The project contained can be compiled using
the modi�ed version of jEdit available from http://sourceforge.net/projects/jason/.
To run it in Windows, extract the directory �Jason-x.y.z� from the downloaded
archive, where �x.y.z� is the number of the release version, and then open the
�le �jason.bat� which can be found in the directory �Jason-x.y.z\ bin�. Once
jEdit is running, open a saved project (File -> Open) and open the �le �street-
Model.mas2j� which can be found in the extracted directory �streetModel�. To
compile the project and make it a runnable Jar, go to �Plugin -> Jason ->
Create an executable Jar�. This will save an executable Jar of the project in
the directory of the source code.

This is the only procedure to build the project. It is not possible for now to
create a working Jar of a Jason/Java project with any other IDEs.

7.5 Running streetModel in Eclipse

Even if Eclipse IDE is not able to create an executable Jar of our project,
it is possible to use the IDE to open the source code and to run it. To do
that follow the instructions available from http://jason.sourceforge.net/mini-
tutorial/eclipse-plugin/.
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7.6 Source Code File List

The source code can be found in the directory �streetModel� provided by the
archive streetModel_Src.zip. A full listing of �les is included in Table 7.

53



File Name Directory Description

StreetEnv.java streetModel\src\java
Implements the environment and the
actors' actions as shown in Subsection

2.1 and 2.2

OrientedArc.java streetModel\src\java
De�nes the class OrientedArc which

represents an oriented arc in the graph

ObservationTower.java streetModel\src\java
De�nes the Thread class

ObservationTower as shown in
Subsection 2.1 and 2.2

PlanLibNode.java streetModel\src\java
De�nes the class PlanLibNode which
represents a plan library node as

shown in Subsection 2.3

PlanRecognizer.java streetModel\src\java
De�nes the Thread class

PlanRecognizer as shown in
Subsection 2.3

CognitiveCentre.java streetModel\src\java
De�nes the Thread class

CognitiveCentre as shown in
Subsection 2.3

NormIdenti�er.java streetModel\src\java
De�nes the Thread class

NormIdenti�er as shown in Subsection
2.4

SupportThread.java streetModel\src\java
De�nes the Thread class

SupportThread as shown in Subsection
2.4

Con�g.java streetModel\src\java

Contains a list of parameters whose
default values are replaced by the

values found in the con�guration �le
streetModel.CFG

initial_agent.asl streetModel\src\asl
De�nes the plan of the �rst actor as
shown in Subsection 2.1 and 2.2. All

the actors are equivalent

agent1.asl streetModel\src\asl
De�nes the plan of the second actor as

shown in Subsection 2.1 and 2.2

agent2.asl streetModel\src\asl
De�nes the plan of the third actor as
shown in Subsection 2.1 and 2.2

streetModel.mas2j streetModel

De�nes the essential attributes of the
project. See

http://jason.sourceforge.net/mini-
tutorial/getting-started/ for further

details.

TABLE 7: Source Code File List
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The �les not included in the list are non-modi�able con�guration �les which
are not relevant.

7.7 Known Bugs and Issues

The Jar �le sometime stops to work unexpectedly when all of the actors in the
system call the rest procedure (see Section 2 for further details).

7.8 Future improvements

Some Future improvements to the project and the provided application are
included in the main report (Section 4). Here, simple operational improvements
of the software will be proposed:

� Fix the bugs shown in Subsection 7.7.

� Improve the GUI of the application making it more user friendly: a graph-
ical representation of the environment and of the actors' moves should be
added.

� Make the user able to add or remove nodes and arcs to the environment.

55



8 Appendix C: Some Plan-Recognition Techniques

In this section we brie�y describe some additional works on plan recognition
which we considered implementing. They are not directly connected to the
project as we settled on the SPR approach.

K. Myers [4] makes use of abductive reasoning in a intended case of intention
recognition. The observer, a help/planning system, has to help the observed
agent, the user, who has partial knowledge of the plan library, to reach his
�nal goal. Every goal could be divided in sub-goals (necessary to reach the
upper level goal) and every sub-goal could be divided into other sub-goals in a
recursive way. The user can provide a goal or some subgoals to the help-system.
In the �rst case the plan-recognition system is not involved but in the second
the observer has to choose �rst one or more top-level plans applying abduction
multiple times (abductive chain) starting from one subgoal. If the result of the
abductive chain is a set of many top-level goals, a choice strategy is needed.
However Myers doesn't suggest one. Myers' work has been reused recently by
Jarvis and Lunt [5, 6] and applied to the adversarial case17. Here goals and
subgoals become �actions� and �subactions�, the subactions have to be executed
in a particular order, the plan library is represented in the form of a template
library and notions relating to the frequency of the action and accuracy of
the observation are introduced. Before starting to apply the abductive chain,
subactions are �ltered by accuracy and frequency (the action is discarded if it
has a high frequency or if its observation has a low accuracy) and then the same
process, seen in the original Myers' work, takes place.

Mulder and Voorbraak [7] also used the abductive reasoning to �tactical�18

intention recognition, which is de facto adversarial intention recognition applied
to military examples. Given a set of observations the agent seeks a plan or a
set of plans that includes the observed actions.

In recent work probability has been largely used as a form of global criteria
to choose among the possible abductive results. Demolombe and Fernandez
[8] assume full visibility of the actions of the observed agents, but in the envi-
ronment an agent is allowed to reach a goal by interleaving actions which are
necessary for the plan, called �explicit� actions, with other actions that are nei-
ther prohibited by the plan nor useful to it, called �tolerated� actions. Every
goal is reached through an ordered list of explicit actions. After the matching
of the �rst action with the observations' set, the probability of the plan/goal is
increased if the next matched action corresponds to an expected explicit action.
It is instead decreased if it corresponds to a tolerated action and decreased by a
greater value if it corresponds to a prohibited action for that plan. At the end
of this modi�ed abductive process the plan and goal with greatest probability
is chosen.

Charniak and Goldman [9] introduced a Bayesian network plan recognizer
in 1993; this technique is still used and combined with the abductive reasoning.
Pereira and Anh [10] represents the plan library as a Bayesian network of causes,

17terrorist intention recognition
18as called by the authors
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intentions and actions. Every cause gives rise to one or more intention (with a
certain probability) and every intention gives rise to one or more action. Every
action has a pre-speci�ed probability, every intention is exclusive and there is
partial visibility of the environment. This class of recognizers was described and
embedded in a keyhole type domain.
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