
ILOG OPL Studio 3.7

Studio User’s Manual

September 2003

Copyright © 1987-2003, by ILOG S.A. All rights reserved.

ILOG, the ILOG design, CPLEX, and all other logos and product and service names of ILOG are registered trademarks or trademarks of ILOG in France,
the U.S. and/or other countries.

JavaTM and all Java-based marks are either trademarks or registered trademarks of Sun Microsystems, Inc. in the United States and other countries.
Microsoft, Windows, and Windows NT are either trademarks or registered trademarks of Microsoft Corporation in the U.S. and other countries.

All other brand, product and company names are trademarks or registered trademarks of their respective holders.

C O N T E N T S
Contents

Studio User’s Manual

Preface Before You Begin . 11

About ILOG OPL Studio .11

What You Need to Know .12

What This Manual Contains .12

Notation Used in This Manual. .13

Related Documentation .13

Where to Get More Information .14

Users’ Mailing List .15

Web Site. .15

Licensing Requirements .15

Chapter 1 Overview of ILOG OPL Studio . 17

Launching ILOG OPL Studio. .18

Launching an OPL Script in Batch Mode .19

Batch Mode for OPL Models .19

Other Command Line Options .19

Japanese Localization .20

ILOG OPL Studio Main Window .22

Menu Bar Commands .25
I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L 3

C O N T E N T S
Tool Bar Buttons .31

Execution Tool Bar Buttons .32

Dockable GUI Elements. .33

ILOG OPL Studio Basics .35

File Types. .35

Opening an Existing File .36

Creating a New File .36

Executing a Project or Model .38

Checking for Syntactic or Semantic Errors .39

Specifying Processing Directives .40

Terminating ILOG OPL Studio .40

The Text Editor .41

Switching Between Editor Windows. .41

Resizing an Editor Window .42

Editor Quick Reference .43

Customizing the Editor .46

The Online Help .48

Windows Platforms .48

UNIX Platforms .49

Chapter 2 Tutorial: Working with Projects. 51

The Production Planning Example. .52

Creating a Project .54

Inserting an Existing Model File into a Project .55

Inserting an Existing Data File into a Project .57

Adding New Files to a Project .58

Saving the Project .59

Setting Project Options .60

Executing the Project .62

Examining a Solution to the Model .63

Using the Output Area .63

Using the Model Browser .67
4 I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L

C O N T E N T S
Continuing the Execution .71

Using an Alternative Data File .73

Closing a Project File. .74

Working with Several Projects .74

Chapter 3 Tutorial: Predefined Dynamic Display . 79

The Car Sequencing Example. .80

Setting Up the Project .83

Opening the Project File. .83

Loading the Data .83

Executing the Project .85

Examining the First Solution .86

Copying the Results Matrix to a Spreadsheet. .88

Continuing the Execution .88

Looking at the Model Structure .89

Using Dynamic Display with ILOG OPL Studio. .90

Closing the Project .92

Chapter 4 Tutorial: Examining the Solution to a Scheduling Problem 93

The House Building Example .94

Opening the Model File .95

Looking at the Model Structure .96

Executing the Model .98

Examining the Solution .100

Looking at the Activities Results .100

Looking at the Resources Results .107

The Optimization Notebook Page .109

The Solver Notebook Page .109

Completing the Execution. .110

Closing the Model File .111
I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L 5

C O N T E N T S
Chapter 5 Tutorial: Scheduling-Specific Dynamic Display . 113

The Activity Domains Window .114

The Bridge Example. .116

Chapter 6 Tutorial: User-Defined Dynamic Display . 119

The Drawing Board .119

The Square Example .120

The Map Example. .122

The Euler Example .122

Chapter 7 Tutorial: Debugging the Search Strategy. 123

A Basic Example with the Eight Queens Problem .124

Setting up the Example .124

Executing the Model. .124

Continuing the Execution .127

The Frequency Allocation Example .130

Looking at the Model Structure .135

Setting the Debug Option. .136

Executing the Frequency Allocation Project. .137

Displaying the Stack Window .139

Displaying the Inspector Window .139

Continuing the Execution .140

Executing the Project with the ‘Stepping in Model’ Option .142

Displaying the Stack Window and Inspector Window .144

Visualizing the Search Strategy with the Stack and Inspector Windows147

Visualizing the Search Tree .148

Using the Depth First Search .148

Using the Slice-Based Search .150

Cooperating Solvers – Combined LP and CP .153

Exploration Strategy – Drawing Board Combined with Search Tree 160

Terminating ILOG OPL Studio .162
6 I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L

C O N T E N T S
Chapter 8 Customizing ILOG OPL Studio . 163

Default Options and Project Options .164

Setting the Default Options .164

Setting Project Options .164

Navigating in the Options Dialog Boxes. .164

Setting Constraint Programming Options .165

Setting Editor Options .166

Changing the Fonts .167

Changing the Foreground and Background Colors .168

Setting Output Options .169

Setting Advanced Options .171

Setting Miscellaneous Options. .172

Chapter 9 Mathematical Programming. 175

MP General .176

Optimization Using Simplex .180

Preprocessing .185

Mixed Integer Programming .189

MIP Strategy .189

MIP Limits .194

MIP Tolerances .198

MIP Cuts .201

Barrier Algorithm .205

Network Simplex Algorithm .209

Results of Mathematical Programming .211

Chapter 10 Working with a Database . 213

Supported Databases .214

Database Connectivity .214

Prerequisites .216

The Bridge Example. .216

Setting Up the Database .217
I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L 7

C O N T E N T S
The Data Tables .218

The Task Table .219

The Resource Table. .220

The MAX and MIN Tables .220

The Precedence Table. .221

The Requirements Table .221

The OPL Model .222

Record Definitions .222

Connecting to the Database from OPL .223

Reading From the Database .224

Creating a New Table and Updating the Database .225

Executing the Bridge Example .226

Viewing the Result in the Database .226

Consulting the Result From Another Model .229

Chapter 11 Using OPLScript . 231

The Vellino Example .232

Opening the Script File .233

Executing the Script .234

Stepping in a Script .236

To Step to the First Instruction .236

To Step to the Next Instruction. .237

To Abort the Execution. .237

To Deselect the Stepping Option .237

To Continue without Stepping .237

To Step Out of a Loop .237

To Complete the Execution .239

Adding and Removing Breakpoints .240

Closing the Script File .240

Chapter 12 Generating Compiled Models . 241
8 I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L

C O N T E N T S
Appendix A OPL Parameters . 243

List of Figures . 255

List of Tables . 259

List of Code Samples. 261

Index . 263
I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L 9

C O N T E N T S
10 I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L

P R E F A C E
Before You Begin

This manual provides you with all the information you need for installing and using ILOG
OPL Studio. It contains several tutorials with examples and step by step explanations.

About ILOG OPL Studio

ILOG OPL Studio is an integrated development environment for mathematical
programming and combinatorial optimization applications. It is the graphic user interface
for the OPL modeling language. All development effort is supported through the various
modules accessible via ILOG OPL Studio.

With ILOG OPL Studio, you can:

◆ create and modify model and project files using the editing capabilities

◆ execute a model or project

◆ debug OPL statements using the debug facilities

◆ visualize OPL results, using 2D graphic representation or textual representation

◆ dynamically visualize the state of variables during the search for a solution

◆ display the constraint programming search tree

◆ select mathematical programming options

◆ connect to a database
I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L 11

◆ work with OPLScript, the OPL scripting language

◆ generate a compiled model

What You Need to Know

This manual assumes that you are familiar with the UNIX or PC environment in which you
are going to use ILOG OPL Studio, including its particular windowing system.

You should also be familiar with the OPL modeling language. The tutorial examples referred
to in this manual are taken from the ILOG OPL Studio: Language Manual.

In the present manual, the programming and language concepts behind the examples are not
explained. You will need to refer to the ILOG OPL Studio: Language Manual for an
explanation of the modeling language of these examples. The present manual describes only
how to use the features of ILOG OPL Studio.

What This Manual Contains

◆ Chapter 1, Overview of ILOG OPL Studio, describes the basics of ILOG OPL Studio –
how to launch the product, the Main window and its elements, the text editor, the
keyword help.

◆ Chapter 2, Tutorial: Working with Projects. A simple production planning example
introduces you to ILOG OPL Studio.

◆ Chapter 3, Tutorial: Predefined Dynamic Display. The car sequencing example
contains a constraint model showing constraint programming constructs.

◆ Chapter 4, Tutorial: Examining the Solution to a Scheduling Problem. The house
building example illustrates how ILOG OPL Studio can handle a scheduling problem.

◆ Chapter 5, Tutorial: Scheduling-Specific Dynamic Display. The bridge example shows
how to define a scheduling-specific dynamic display and use the Activity Domains
window.

◆ Chapter 6, Tutorial: User-Defined Dynamic Display. The examples presented use the
Drawing Board to animate the search algorithm.

◆ Chapter 7, Tutorial: Debugging the Search Strategy. The frequency allocation example
demonstrates the debugging facilities of ILOG OPL Studio, including the search tree.

◆ Chapter 8, Customizing ILOG OPL Studio, provides information about setting ILOG
OPL Studio options to meet your particular needs.
12 I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L

◆ Chapter 9, Mathematical Programming, describes the CPLEX options available in
ILOG OPL Studio.

◆ Chapter 10, Working with a Database, illustrates how to connect to a database from
ILOG OPL Studio, and how to read from and write to the database.

◆ Chapter 11, Using OPLScript, describes how to work with the OPL scripting language.

◆ Chapter 12, Generating Compiled Models, explains how to generate a .opl file that
can be integrated into your application.

◆ Appendix A, OPL Parameters, provides an alphabetical list of OPL parameters with
their values.

Notation Used in This Manual

The following typographic conventions apply throughout this manual:

◆ code extracts and file names are written in this typeface.

◆ entries to be made by the user are written <in angle brackets>

◆ commands appear as: File>Open.

Related Documentation

◆ ILOG OPL Studio: Language Manual

Provides a description of the OPL and OPLScript programming languages used in our
examples and should be read in conjunction with the present document.

◆ An online help, accessible from OPL Studio, contains a quick reference to the OPL and
OPLScript languages.

◆ ILOG OPL Studio: Component Libraries Reference Manual

Describes the various APIs available for accessing the OPL solving engine, including the
Microsoft COM/ActiveX API, a native C++ API, and a Java API. Microsoft’s
Component Object Model (COM) allows Windows users to access OPL from within
languages such as Visual Basic.

◆ ILOG OPL Studio: Component Libraries User’s Manual

Contains examples that show how to use the APIs in order to access OPL from Excel
VBA, Visual Basic, C++, and Java. Examples of integration into web servers with ASP
and JSP are also provided.
I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L 13

◆ ILOG OPL Studio: Release Notes

Indicate the new and modified features of each release.

◆ Source code for examples delivered in the standard distribution.

◆ A readme.txt file delivered as part of the standard distribution. This file contains the
most up-to-date information about platform prerequisites for ILOG OPL Studio.

Where to Get More Information

For technical support of OPL Studio, contact your local distributor, or, if you are a direct

ILOG customer, contact:

We encourage you to use e-mail for faster, better service.

Region E-mail Telephone Fax

France oplstudio-support@ilog.fr 0 800 09 27 91
(numéro vert)
+33 (0)1 49 08 35 62

+33 (0)1 49 08 35 10

Germany oplstudio-support@ilog.de +49 6172 40 60 33 +49 6172 40 60 10

Spain oplstudio-support@ilog.es +34 91 710 2480 +34 91 372 9976

United
Kingdom

oplstudio-support@ilog.co.uk +44 (0)1344 661 630 +44 (0)1344 661 601

Rest of Europe oplstudio-support@ilog.fr +33 (0)1 49 08 35 62 +33 (0)1 49 08 35 10

Japan oplstudio-support@ilog.co.jp +81 3 5211 5770 +81 3 5211 5771

Singapore oplstudio-support @ilog.com.sg +65 6773 06 26 +65 6773 04 39

North America oplstudio-support@ilog.com 1-877-ILOG-TECH
1-877-8456-4832
(toll free) or
1-650-567-8080

+1 650 567 8001
14 I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L

Users’ Mailing List

The electronic mailing list oplstudio-list@ilog.fr is available for you to share your
development experience with other OPL users. This list is not moderated, but subscription is
subject to an on-going maintenance contract. To subscribe to oplstudio-list, send an
e-mail without any subject to oplstudio-list-owner@ilog.fr, with the following
contents:

subscribe oplstudio-list

your e-mail address if different from the From field

first name, last name

your location (company and country)

maintenance contract number

maintenance contract owner’s last name

Web Site

On our web sites, you will find a wealth of information about constraint programming in a
range of articles and conference papers explaining the theoretical background and technical
features of OPL Studio and other ILOG products.

In addition to those freely accessible pages, there are also technical support pages on our
web sites. They contain FAQ (Frequently Asked/Answered Questions) and the latest patches
for some of our products. Changes are posted in the product mailing list. Access to these
pages is restricted to owners of an on-going maintenance contract. The maintenance contract
number and the name of the person this contract is sent to in your company will be needed
for access, as explained on the login page.

All three of these sites contain the same information, but access is localized, so we
recommend that you connect to the site corresponding to your location, and select the “Tech
Support Web” page from the home page.

Americas: http://www.ilog.com

Asia and Pacific Nations: http://www.ilog.com.sg

Europe, Africa, and Middle East: http://www.ilog.fr

Licensing Requirements

◆ To use the OPL Studio 3.7 graphic environment you need the key OPLStudio 3.

◆ To use the free trial version of OPL Studio 3.7, which has restrictions on model size and
does not allow the compiling of models for deployment, you do not need a key. The
evaluation period is 6 months. The free trial version does not include the OPL
Component Library, and not all database drivers are provided.
I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L 15

◆ To use OPL Studio 3.7 in batch mode you need the keys for the underlying libraries, as
required by your model (CPLEX and/or Solver and/or Scheduler).

◆ The keys required to execute an OPL model, or a compiled OPL model, using the OPL
Component Libraries are indicated in the Preface of the ILOG OPL Studio: Component
Libraries User’s Manual.

Information on licensing requirements can also be found in the file readme.txt, delivered
with OPL Studio.
16 I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L

C H A P T E R

1. O
verview

 o
f IL

O
G

O

P
L

 S
tu

d
io
1

Overview of ILOG OPL Studio

This chapter describes the basic features of ILOG OPL Studio:

◆ how to launch the product

◆ the main window and its elements

◆ the basic concepts for using ILOG OPL Studio

◆ the text editor

◆ the online help
I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L 17

L A U N C H I N G I L O G O P L S T U D I O
Launching ILOG OPL Studio

In this manual we assume that you have already successfully installed ILOG OPL Studio on
your particular platform. If this is not the case, refer to the booklet delivered with the
OPL Studio CD-ROM.

Once you have installed the product, you are ready to launch ILOG OPL Studio.

◆ For Windows XP, Windows 2000, Windows NT 4, Windows 98

Click the Start menu and then select:

Programs>Ilog>ILOG OPL Studio 3.7>OPL Studio 3.7

In Batch Mode

Use the option -batch in the command line.

◆ For UNIX Systems

Enter:

oplst

On HP systems you must set SHLIB_PATH instead of LD_LIBRARY_PATH. You need to
add the shared libraries to the env variable:

set env SHLIB_PATH=/usr/ilog/OPLSt37/lib/hp32_11_3.15/shared

In Batch Mode

Use the option -batch in the command line.

A configuration file, oplst3.config, is created in each directory from which you launch
OPL Studio. When you quit the application, the configuration options (main window setup,
dockable pane positions) are saved in this file. Each time you relaunch the GUI, these
options are restored and the GUI has the same appearance as the last time you used it.

When using OPL Studio in batch mode you need licenses for the underlying libraries as
required by your model (Solver, Scheduler and/or CPLEX).

opl.bat launches oplst.exe with the -batch option and redirects the standard output to
a file called result.txt. Then it displays this file’s content and deletes it. Because
OPL Studio is a Windows application and not a console application, you would not be able
to see the output if you launched directly oplst.exe -batch without redirecting the
standard output. This is why we provide the opl.bat file.

When using the batch mode, you must avoid interactive instructions in your model such as:

int n << "number of queens:";

which is used in the model queens.mod and displays a window requiring input from the
user.
18 I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L

L A U N C H I N G I L O G O P L S T U D I O

1. O
verview

 o
f IL

O
G

O

P
L

 S
tu

d
io
Launching an OPL Script in Batch Mode

On UNIX

oplst -batch ../../examples/opl/scripts/gomory.osc

On Windows

A .bat file is available in the bin directory:

opl.bat ..\examples\opl\scripts\gomory.osc

Batch Mode for OPL Models

On UNIX

oplst -batch ../../examples/opl/gas.mod ../../examples/opl/gas.dat

On Windows

opl.bat ..\examples\opl\gas.mod ..\examples\opl\gas.dat

Other Command Line Options

Path Option

-path <include_path>

The -path option specifies a directory in which an OPL script can find the OPL model files
and include files.

Help Option

-help

The -help option displays a message describing the documented options available in
command line mode, then exits.

Version Option

-version

The -version option displays a message with the version number and build date of the
executable, then exits.
I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L 19

L A U N C H I N G I L O G O P L S T U D I O
Japanese Localization

If you run OPL Studio on a Windows platform with the Japanese regional settings, you will
see labels in Japanese. There is no need to install another executable or a message database.

These labels can be displayed in English by relaunching the application and adding a startup
parameter.
20 I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L

L A U N C H I N G I L O G O P L S T U D I O

1. O
verview

 o
f IL

O
G

O

P
L

 S
tu

d
io
Switching from Japanese to English

If you want to switch to the English (US) version, you need to relaunch OPL Studio with the
parameter -us. There are two ways of doing this.

◆ In MS-DOS, enter the command:

C:\ILOG\OPLSt37\bin\oplst.exe -us

◆ On your Windows desktop, right-click on the OPL Studio shortcut and select Properties.
In the dialog box (see Figure 1.1), do the following:

● Select the Shortcut tab

● In the Target field, add the parameter -us

This field should now contain

C:\ILOG\OPLSt37\bin\oplst.exe -us

● Click OK.

Figure 1.1

Figure 1.1 Switching from the Japanese Version to the English (US) Version

Reading from a Database

OPL cannot read a double-byte string from a database. This means that all string data from a
database must contain standard single-byte characters.

This applies whether the regional settings are Japanese or English.
I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L 21

I L O G O P L S T U D I O M A I N W I N D O W
ILOG OPL Studio Main Window

When you launch ILOG OPL Studio, the Main window appears. All tasks and commands
for using ILOG OPL Studio are carried out from this window. The figure below shows the
Main window with three projects open.

Figure 1.2

Figure 1.2 ILOG OPL Studio Main Window

Note: If you have a mouse with a wheel between the two buttons, you can use the wheel to
scroll up and down.

Menu Bar

Tool Bar

Status BoxLine and Column
or

Status Bar

Output Notebook

Work Space

Editing Area

Path Name

Execution Tool Bar
22 I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L

I L O G O P L S T U D I O M A I N W I N D O W

1. O
verview

 o
f IL

O
G

O

P
L

 S
tu

d
io
◆ Menu Bar Use these menus to choose various commands, such as Save in the File menu,
and to display dialog boxes to perform various tasks. Certain menu commands have their
own buttons just below the menu bar.

◆ Tool Bar These buttons are provided for frequently-used commands.

◆ Execution Tool Bar Contains the buttons for commands used during execution mode.

◆ Work Space Contains a notebook with two pages:

Projects More than one project can be open at the same time.This page displays project
tree structures containing all the files related to each project. It also displays stand-alone
models and scripts.

Model This page displays the model browser, containing information about the data
structures defined in the active model. From the model browser you can select display
options for the variables before executing a model, and open visualization windows after
execution. The active model is browsed using one of the following methods:

● Click the "Rebuild Browser Information" button in the tool bar

● Select "Browse Active Model" from the Execution menu

● Select "Browse Active Model" from the model browser root contextual menu,
accessible through right-clicking on the root item

● Select "Browse Model" from the context-sensitive menu, accessible through right-
clicking on the active project in the Projects notebook page.

◆ Editing Area This area displays opened model, data, script, or C++ files. Use this area to
create new files, edit existing files, or examine active documents. You can open more
than one file in this space. The opened files are displayed in separate panels with the file
name appearing in the title bar.

◆ Output Notebook This area is used by ILOG OPL Studio to return error information,
solutions, and results. Separate notebook pages appear for console messages, solutions to
models, optimization information, the log of past actions, solving statistics, and
additional pages appear for other displays depending on the nature of the model.

◆ Status Bar This area displays messages concerning the execution status of ILOG OPL
Studio. These messages are then stored in the Log notebook page.

◆ Path Name or Line and Column This area displays the pathname of the file just
loaded, or the file being executed. When moving the insertion point in the editor, this
area displays the line number and column number.
I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L 23

I L O G O P L S T U D I O M A I N W I N D O W
◆ Status Box This box changes its color and label according to the status of the currently
active model, project or script:

The default behavior of the yellow box is to blink in order to remind you that OPL Studio
is in a waiting state. You can stop this effect in the Advanced page of the Default Options
dialog box. See Setting Advanced Options on page 171.

Color Label Meaning

Blue Idle Indicates that ILOG OPL Studio is idle. Files can be created,
edited or examined in the editing area.

Green Running Indicates that ILOG OPL Studio is executing the active
model, project or script.

Yellow
(flashing)

Waiting Indicates that ILOG OPL Studio is in a waiting state during
execution mode. It is waiting for further direction from the
user to continue or stop the execution.

Red Aborting Indicates that ILOG OPL Studio is aborting the execution.
24 I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L

I L O G O P L S T U D I O M A I N W I N D O W

1. O
verview

 o
f IL

O
G

O

P
L

 S
tu

d
io
Menu Bar Commands

Figure 1.3

Figure 1.3 Overview of Commands in the Menu Bar

Some of the menu items have a keyboard shortcut, indicated in the right-hand column of the
menu. For example, Keyword Help has the shortcut F1, which means that you can obtain
help on an OPL keyword in the text editor by selecting the keyword and then either clicking
the item Keyword Help, or pressing the key F1.
I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L 25

I L O G O P L S T U D I O M A I N W I N D O W
The table below lists the commands found in the menus and provides a description of each
command.

Table 1.1 Commands in the Menu Bar

Command Description

File

New Creates a new file. Displays a submenu to specify a model,
project, data or script file.

Open Opens a file. Displays a submenu to specify a model,
project, data, script, or C++ file.

Recent Files Files that you have used recently can be opened by
selecting the file names from the submenu.

Save Saves the current edited file.

Save As Saves the current edited file with a new name.

Save All Saves all the open files.

Close Current Editor Closes the current edited file.

Close Active Project Closes the active project.

Dump Active Model and
 Result

Allows you to save current ILOG OPL Studio information to
a file. OPL Studio saves all the model and data files for the
active project, anything in the Solutions and Optimization
windows, and the current user settings for solving the
problem.

Generate Compiled Model
 File

Generates a compiled OPL model (.opl file) from the
active model.

Quit Exits ILOG OPL Studio.

Edit

 Undo Undoes an unlimited number of nested actions in the
current editor.

Redo Redoes previously undone actions in the current editor
(unlimited).
26 I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L

I L O G O P L S T U D I O M A I N W I N D O W

1. O
verview

 o
f IL

O
G

O

P
L

 S
tu

d
io
Cut Deletes the selected text from the editor and puts it in the
clipboard.

Copy Copies the selected text, from the editor or output window,
to the clipboard.

Paste Pastes from the clipboard to the current editor.

 Kill Line Deletes a line from the cursor position onward and appends
it to the clipboard.

Select All Selects the entire content of the current editor.

Find Displays the Find dialog box for specifying search criteria.

Find Next Finds the next occurrence of the text displayed in the Find
box.

Find Previous Finds the previous occurrence of the text displayed in the
Find box.

Replace Displays the Replace dialog box for specifying search
criteria and replacing specified strings.

 Go To Displays the Go To dialog box for specifying a line where
the cursor should be placed in the work space.

 Recenter Places the current line in the middle of the window, if
possible.

 Indent Lines Adds a tabulation at the beginning of selected lines.

 Outdent Lines Removes a tabulation from the beginning of selected lines.

 Comment Transforms selected lines to comments.

 Uncomment Uncomments selected lines.

 Complete Word Searches upward for a string in the same file and
completes with the first string that matches the same
beginning letters. The search begins upward at the left of
the current cursor position.

View

 Workspace Displays the Workspace notebook containing the model
browser and the project tree.

Table 1.1 Commands in the Menu Bar (Continued)

Command Description
I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L 27

I L O G O P L S T U D I O M A I N W I N D O W
Output Displays the Output area.

Choice Stack Displays the Stack dialog box.

Inspect Current Node Displays the Inspect dialog box.

Project (This menu depends on the selection made in the Project
Tree.)

Set as Active Project When several projects are open, remembers the project
selected in the Project Tree as the active one.

 Add New Model File Adds a newly-created model file to the project.

 Add New Data File Adds a newly-created data file to the project.

 Insert Existing Model File Adds an existing model file to the project.

 Insert Existing Data File Adds an existing data file to the project.

 Save the Project Saves the project’s options and its components.

 Save the Project As Changes the name of an existing project.

 Close Project Closes the project.

 Browse Model Builds or rebuilds the model tree of the data structures
defined in the active model or project.

 Project Options Opens the Project Options dialog box for the project.

Execution

Browse Active Model Builds or rebuilds the model tree of the data structures
defined in the active model or project.

All Solutions When checked, solves for all solutions during the
execution. Does not enter a waiting state after each
solution.

Run Executes the active model, project or script.

 Abort Stops execution of a model, project or script and returns to
a normal editing session. After pressing the Abort button,
the traces of any solutions found up to that point are kept in
the Output notebook.

Table 1.1 Commands in the Menu Bar (Continued)

Command Description
28 I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L

I L O G O P L S T U D I O M A I N W I N D O W

1. O
verview

 o
f IL

O
G

O

P
L

 S
tu

d
io
 Next Goes to the next solution of a model or project, or next
choice point or next instruction.

 Continue Run Forces OPL Studio to produce all the remaining solutions.

 Step Out Avoids going through all the iterations of a loop when
executing a script.

Debug

Stepping in Model During an execution, forces ILOG OPL Studio to stop at
each instruction in a search procedure.

Stepping in Script During an execution, forces ILOG OPL Studio to stop at
each instruction in the script.

Stop at Choice Point During an execution, forces ILOG OPL Studio to stop at
each choice point.

 Stop at Solution During an execution, forces ILOG OPL Studio to stop at
each solution in an optimization.

 Display Search Tree During the execution of a constraint programming model,
displays the corresponding search tree.

 Add/Remove Break Point Used to set (and remove) breakpoints in the search
procedure of an OPL model or script.

Options

Customize Default Options Displays the Default Options dialog box that allows you to
change solver, font, color and graphics options.

Customize Active Project
 Options

Displays the Project Options dialog box that allows you to
change solver, font, color and graphics options for the
active project.

Window

 Cascade Displays overlapping panels in the editing area.

 Tile Horizontally Displays panels in the editing area horizontally.

 Tile Vertically Displays panels in the editing area vertically.

Table 1.1 Commands in the Menu Bar (Continued)

Command Description
I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L 29

I L O G O P L S T U D I O M A I N W I N D O W
Help

 Contents Opens the Help window, displaying the presentation page.

 Keyword Help Opens the Help window, displaying the page corresponding
to the OPL keyword selected in the text editor.

 About OPL Studio Indicates the version of ILOG OPL Studio, the ILOG
products used by OPL Studio, and contains copyright
information.

Table 1.1 Commands in the Menu Bar (Continued)

Command Description
30 I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L

I L O G O P L S T U D I O M A I N W I N D O W

1. O
verview

 o
f IL

O
G

O

P
L

 S
tu

d
io
Tool Bar Buttons

The following buttons appear in the tool bar:

● Load Project File

Opens a project. ILOG OPL Studio displays an Open File dialog box requesting the
file name of the project you wish to open. The Project dialog box then appears.

● Close Active Project

Saves and closes the active project file (.prj).

● Load Model File

Opens a model file (.mod) in the editing area.

● Load Data File

Opens a data file (.dat) in the editing area.

● Load Script File

Opens a script file (.osc) in the editing area.

● Save the Editor Content

Saves the current file in the editing area.

● Save All Files

Saves all the files in the editing area.

● Close Current Editor

Closes the active file in the editing area.

● Undo

Undoes your modifications to an edited file without a limit.

● Redo

Redoes what you have just undone, without a limit.

● Cut

Cuts selected text.

● Copy

Copies selected text to the clipboard.

● Paste

Pastes text from the clipboard.
I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L 31

I L O G O P L S T U D I O M A I N W I N D O W
● Rebuild Browser Information

Builds or rebuilds the model tree of the data structures defined in the active model or
project, and displays the Model Browser notebook page in the work space.

● Run

Submits the active model, project or script for execution.

● Add/Remove Breakpoint

Sets (and removes) breakpoints in the search procedure of an OPL model or script.

● Generate Compiled Model File

Generates a compiled OPL model file (.opl).

Execution Tool Bar Buttons

The execution tool bar appears after clicking the Run button.

● Abort

Stops the current computation during execution of the model, project or script. After
an Abort, the traces of any solutions found up to that point are kept in the Output
notebook.

● Next

Goes to the next solution of the model or project, or to the next instruction in stepping
mode, or to the next choice point in ‘stop at choice point’ mode.

● Continue Run

Forces ILOG OPL Studio to produce all the remaining solutions without further
intervention.

● Step Out

Steps out of a loop in a script to avoid going through all the iterations.

● View Choice Stack

Inspects the entire execution stack.

● Inspect Current Node

 Inspects the current choice point in the execution.
32 I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L

I L O G O P L S T U D I O M A I N W I N D O W

1. O
verview

 o
f IL

O
G

O

P
L

 S
tu

d
io
Dockable GUI Elements

In the graphic interface the following elements are dockable:

A dockable element can be detached from, or floated in, its own frame window or it can be
attached to, or docked at, any side of its parent window.

Floating a Window

To float a window, drag it outside the Main Window by its handle, materialized by double
horizontal or vertical lines, as shown in Figure 1.4. When the ghost frame thickens, drop the
window and let it float.

Figure 1.4

Figure 1.4 Handles on Dockable Windows

You can alternatively double-click on the handle to float a window. In order to float the tool
bar or menu bar, double-click on the background.

Menu Bar Output Area Stack window

Tool Bar Drawing Board Inspector window

Work Space Activity Domains Window Search Tree

Handle
I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L 33

I L O G O P L S T U D I O M A I N W I N D O W
Docking a Window

To dock a window, drag it back inside the Main Window and drop it.

In Microsoft Windows, you must drag and drop the title bar (see Figure 1.5). Alternatively,
double-click on the title bar.
Figure 1.5

Figure 1.5 Title Bar on Floating Window (Windows XP, 2000, NT 4, 98)

In UNIX, you must drag the handle inside the window, as shown in Figure 1.6. Dragging the
title bar will have no effect on UNIX platforms (X-Windows).

Figure 1.6

Figure 1.6 Handle on Floating UNIX Window (X-Windows)

Hiding a Docked Window
To hide a docked window, just click on the button with a cross in it .

To display it again, choose the corresponding window in the View Menu.

Title Bar

Handle
34 I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L

I L O G O P L S T U D I O B A S I C S

1. O
verview

 o
f IL

O
G

O

P
L

 S
tu

d
io
ILOG OPL Studio Basics

This section describes several basic concepts to consider when you use ILOG OPL Studio.

File Types

◆ Models

Model files contain OPL statements. A stand-alone model is a model that can be
executed in OPL Studio without any additional requirements. A model file can be
generated in a compiled form for integration into the OPL component libraries.

◆ Data files

Large problems are better organized by separating the model of the problem from the
instance data. The instance data is stored in a data file (or in several data files).

◆ Projects

ILOG OPL Studio uses the concept of a project to associate a model file with a number
of data files. The model file declares the data but does not initialize it. The data files
contain the initialization of each data item declared in the model. The project file then
organizes all the related model and data files. A project provides a convenient way to
maintain the relationship between related files and runtime options for the environment.

◆ Scripts

Script files contain OPLScript, a script language for OPL. A script handles different
models with their data. The model and data file are associated in the script itself. For
example, mulprod.osc contains the following declaration:
Model produce("mulprod.mod","mulprod.dat") editMode;

The following naming conventions are used to indicate these different files:

The examples in the tutorial chapters of this manual illustrate the use of model, data, project
and script files with ILOG OPL Studio. You will see how to create project files, associate
model and data files with the project, and then find the solution to the problem using the
project file. The use of scripts is illustrated in Chapter 11, Using OPLScript.

File Extension Description

.mod Used for files containing models.

.opl Used for compiled model files.

.dat Used for files containing data instances.

.prj Used for project files.

.osc Used for scripts written in OPLScript.
I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L 35

I L O G O P L S T U D I O B A S I C S
Opening an Existing File

The model and data files used in the examples in this manual are distributed with the
product. In this way you will not have to create these files from scratch, but just open them
once ILOG OPL Studio is launched.

To open an existing file, select Open>Model (or Data, Script, Project, C++ File) from the
File menu. ILOG OPL Studio then displays a standard Open File dialog box for you to select
the file you want to open.

Select from the directory:

ILOG\OPLSt37\examples\opl

If you have recently used the file, you can alternatively select it from the Recent Files
submenu.

Creating a New File

When you are using ILOG OPL Studio to solve a problem of your own, you will first have to
define a working document in ILOG OPL Studio. You can do this either by opening existing
model and data files (that you created with a text editor of your choice) or by creating the file
from scratch using the editing capabilities of ILOG OPL Studio.

The following is a brief explanation of how to create a model file in ILOG OPL Studio.

From the File menu, select New>Model.

Figure 1.7

Figure 1.7 Selecting a New Model
36 I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L

I L O G O P L S T U D I O B A S I C S

1. O
verview

 o
f IL

O
G

O

P
L

 S
tu

d
io
In the editing area of the Main window, ILOG OPL Studio opens an empty working
document called noname.mod. The.mod extension indicates a model document.

Figure 1.8

Figure 1.8 New Model in Main Window

ILOG OPL Studio is now in editing mode and you can enter OPL statements for your
problem. For example, if you want to create the model file for the simple production
planning problem of the Volsay company that is presented at the beginning of Chapter 2 of
the ILOG OPL Studio: Language Manual, the OPL statement for this problem is as follows:

Code Sample 1.1var float+ gas;
var float+ chloride;

maximize
 40 * gas + 50 * chloride
subject to {
 gas + chloride <= 50;
 3 * gas + 4 * chloride <= 180;
 chloride <= 40;
};

Code Sample 1.1 Example of an OPL Statement
I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L 37

I L O G O P L S T U D I O B A S I C S
When you finish, the editor looks something like this:

Figure 1.9

Figure 1.9 Simple OPL Statement in the noname.mod file

You can now save your model under another name. From the File menu, select the Save As
option. ILOG OPL Studio displays a standard Save As dialog box for you to supply the new
file name.

When you save your file, the new name appears in the title bar of the Main window. You can
now perform other tasks as required for this new working document.

Executing a Project or Model

Once a project or model is opened in ILOG OPL Studio, you can execute it by simply
clicking the Run button in the tool bar of the Main window.
38 I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L

I L O G O P L S T U D I O B A S I C S

1. O
verview

 o
f IL

O
G

O

P
L

 S
tu

d
io
Checking for Syntactic or Semantic Errors

Before ILOG OPL Studio begins executing a model or project, it compiles the OPL
statement into an internal representation that is better suited for execution. If the model
contains syntactic or semantic errors, ILOG OPL Studio reports them immediately and does
not continue with the execution. All errors appear in the Console notebook page of the
output area in the lower half of the Main window. In addition, the line containing the error is
highlighted in the current model file and a blue arrow appears in the margin. Figure 1.10
shows ILOG OPL Studio as it reports a syntactic error.

Figure 1.10

Figure 1.10 Error Message Displayed in Console Notebook Page
I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L 39

I L O G O P L S T U D I O B A S I C S
An error message has the following format when displayed in the Console notebook page:

◆ The first element indicates where the error was detected. In Figure 1.10, the file and the
line in the file are displayed:

..\examples\opl\gas.mod(14)

◆ The second element indicates the type of error. In our example:

syntax error

◆ The third element indicates the token that was encountered.

got token: Components(Identifier)

◆ The fourth element shows a list of tokens that could have been valid at that point. In our
example:

expecting token in {in, }

An OPL statement must be correct before ILOG OPL Studio will execute it. You must
correct any errors before running the model again.

Specifying Processing Directives

The following buttons in the tool bar of the Main window can be used to indicate how to
proceed in the processing of a model or project:

● Next

Goes to the next solution of the model or project.

● Continue Run

Forces ILOG OPL Studio to produce all the remaining solutions without further
intervention.

● Abort

Stops the current computation during execution of the model, project or script. After
pressing the Abort button, the traces of any solutions found up to that point are kept in
the Output notebook.

Terminating ILOG OPL Studio

To terminate an ILOG OPL Studio session, select Quit from the File menu of the Main
window.

Note: If there are multiple errors, double-click on an error message to scroll the editor to
the corresponding line.

Note: The abort process can sometimes take a little time.
40 I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L

T H E T E X T E D I T O R

1. O
verview

 o
f IL

O
G

O

P
L

 S
tu

d
io
The Text Editor

The OPL Studio text editor has the following features:

◆ MDI approach

The MDI (Multi-Document Interface) enables you to edit more than one file at the same
time.

◆ Syntax coloring

The syntax in each type of file that you can load (model, script, data or C++ file) is
colored differently, according to its type.

◆ Multiple levels of Undo and Redo

You can undo and redo your modifications without any limit.

◆ Automatic indentation

{ } blocks are automatically indented.

◆ Brace matching

When typing], } or), the matching open brace is highlighted for 800 ms. In data files
< and > are also matched.

◆ Margin symbols

The editor has a left margin that can contain margin symbols, such as:

● the yellow arrow that indicates the current line

● the blue arrow that indicates an error

◆ Reload prompt

If you modify a file with an external editor, you are prompted to reload the file as soon as
the OPL Studio editor regains focus.

Switching Between Editor Windows

The editor respects the Multi-Document Interface (MDI) approach, which allows you to edit
more than one file at a time and thus have several document windows open simultaneously,
as shown in Figure 1.2, Main Window.
I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L 41

T H E T E X T E D I T O R
The Window menu lists the opened files, and allows you to arrange them in a cascade or as
tiles. An icon in the upper-left corner of each window reminds you of the file type:

● model file

● data file

● script file

● C++ file

Resizing an Editor Window

An editor window may have three states: minimized, normal, or maximized. By default, it is
maximized. The buttons on the right-hand side of the menu bar enable you to
minimize, restore to normal size, or close the editor.

By hiding the docked windows you can use almost all the screen for editing, as shown in
Figure 1.11.

Figure 1.11

Figure 1.11 Text Editor after Hiding the Output and Model Windows
42 I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L

T H E T E X T E D I T O R

1. O
verview

 o
f IL

O
G

O

P
L

 S
tu

d
io
Editor Quick Reference

In addition to the default Visual Mode (see Setting Editor Options on page 166), an Emacs
mode, that emulates Emacs key bindings, is available.

Note:

◆ Ctrl = Control

◆ Ctrl + x = Control and x keys simultaneously

Table 1.2 Editor Functions

Action Visual Mode Emacs Mode

Save Ctrl + s Ctrl + x, Ctrl + s, or
ESC x save-buffer

Save All Ctrl + x s, or
ESC x save-some-buffers

Save As Ctrl + x, Ctrl + w, or
ESC x write-file

Undo Ctrl + z Ctrl + x u, or Ctrl + _, or
ESC x undo

Redo Ctrl + y Ctrl + x r

Next character (right) → Ctrl + f, or →, or
ESC x forward-char

Previous character (left) ← Ctrl + b, or ←, or
ESC x backward-char

Next line (down) ↓ Ctrl + n, or ↓, or
ESC x next-line

Previous line (up) ↑ Ctrl + p, or ↑, or
ESC x previous-line

Next screen (down) Page Down Ctrl + v, or PageDown, or
ESC x scroll-down

Previous screen (up) Page Up ESC v, or PageUp, or
ESC x scroll-up

Beginning of file Ctrl + Home ESC <, or Home, or
beginning-of-buffer
I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L 43

T H E T E X T E D I T O R
End of file Ctrl + End ESC >, or End, or
ESC x end-of-buffer

Next word (right) Ctrl + → Ctrl + →, or ESC f, or
ESC x forward-word

Previous word (left) Ctrl + ← Ctrl + ←, or ESC b, or
ESC x backward-word

Beginning of line Home Ctrl + a, or
ESC x beginning-of-line

End of line End Ctrl + e, or ESC x end-of-line

Delete character after cursor Delete Ctrl + d, or Delete, or
ESC x delete-char

Delete character before
cursor

Backspace Backspace, or
ESC x delete-backward-char

Cumulative cut from cursor to
end of line

Ctrl + k Ctrl + k, or
ESC x kill-line

Cut Ctrl + x or
Shift + Delete on selection

Ctrl + w on selection, or
ESC x kill-region

Copy Ctrl + c or Ctrl + Insert
on selection

ESC w or Ctrl + Insert on
selection, or
ESC x kill-ring-save

Paste Ctrl + v, or Shift + Insert Ctrl + y, or Shift + Insert, or
right click, or ESC x yank

Scroll down one line Ctrl + ↓ Ctrl + ↓

Scroll up one line Ctrl + ↑ Ctrl + ↑

Recenter on current line Ctrl + l Ctrl + l, or ESC x recenter

Mark the beginning of a
selection

Click left mouse button and
drag cursor, or use arrow
keys

Ctrl + SPACE, or
ESC x set-mark-command

Table 1.2 Editor Functions (Continued)

Action Visual Mode Emacs Mode
44 I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L

T H E T E X T E D I T O R

1. O
verview

 o
f IL

O
G

O

P
L

 S
tu

d
io
Mark the end of a selection
or extend a selection

Release left mouse button, or
press Shift + left button, or
Shift + arrow keys, or Shift +
Page keys, or Ctrl + Shift +
arrow keys, or drag mouse

Change the caret location
after marking the beginning
of the selection

Stop command in progress Release selection Ctrl + g, or
ESC x keyboard-quit

Select line Click on the margin or triple
click

Click on the margin or triple
click

Select word Double click on word Double click on word

Select all Ctrl + a or
quadruple click

ESC + h, or quadruple click,
or ESC x mark-whole-buffer

Switch editor buffers Ctrl + Tab Ctrl + Tab, or
ESC x switch-to-buffer

Indent a region Tab on selected lines Ctrl + x / on selected lines, or
ESC x indent-region

Unindent a region Shift + Tab on selected lines Ctrl + x m on selected lines,
or ESC x back-to-indentation

Indent at location Tab without any selection Tab without any selection

Unindent at location Shift + Tab without selection Shift + Tab without selection

Comment lines ESC x comment-region

Uncomment lines ESC x kill-comment

Find Ctrl + f Ctrl + s, or
ESC x search-forward

Find Next F3 F3

Find Previous Shift + F3 Ctrl + r

Replace Ctrl + h ESC % or
ESC x query-replace

Complete Word Ctrl + t ESC / or
ESC x dabbrev-expand

Go to a specific line Ctrl + g ESC g or ESC x goto-line

Table 1.2 Editor Functions (Continued)

Action Visual Mode Emacs Mode
I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L 45

T H E T E X T E D I T O R
Customizing the Editor

To customize the editor, select Options>Customize Default Options from the tool bar. Then
go to the Editor page in the Default Options dialog box:

● either by clicking on Editor in the left panel

● or by using the next and previous arrows in the top right corner.

◆ You can change the character font. Note that although proportional fonts are allowed, we
recommend that you use a fixed font.

◆ You can change the background and foreground colors for:

● ordinary text (default: black and white)

● errors (default: red and white)

● OPL and C++ keywords (default: blue and white)

● OPL and OPLScript functions (default: violet and white)

● OPLScript keywords and C++ preprocessor macros (default: orange and white)

● comments (default: green and white)
46 I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L

T H E T E X T E D I T O R

1. O
verview

 o
f IL

O
G

O

P
L

 S
tu

d
io
◆ You can switch off the error line coloring, the syntax coloring, and the brace matching.

By default, the syntax coloring is automatically switched off if the file size is more than
65 KB. However, you can force the syntax coloring to be on or off.

◆ You can switch off the automatic indentation and change the tabulation size, but these
two switches block the undo/redo mechanism for previous commands.

Tabulations and indentations are handled as blanks.

◆ You can change the save preferences:

● Save before running (checked by default)

If checked, all edited files and projects are saved before execution.

● Prompt before saving files (unchecked by default)

If checked, a dialog box is displayed for you to confirm that you want to save a file.
I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L 47

T H E O N L I N E H E L P
The Online Help

The online help provides a quick reference to OPL and OPLScript instructions, functions
and methods.

Windows Platforms

The online help available on Windows platforms is based on Microsoft HTML Help. To
access the help, you must use Microsoft Internet Explorer 4.0 or above, and at least version
1.22 of the ActiveX control file HHCTRL.OCX must be installed.

If you are unsure of what components are installed on your system, you can upgrade it with
the HTML Help update file (hhupd.exe) which contains browser and software compatibility
updates. It is available for all languages at the following URL:

http://msdn.microsoft.com/library/tools/htmlhelp/wkshp/hhupd.exe
48 I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L

T H E O N L I N E H E L P

1. O
verview

 o
f IL

O
G

O

P
L

 S
tu

d
io
On windows platforms, the online help provides the following features:

◆ Integration of the entire online documentation set

● ILOG OPL Studio: User’s Manual

● ILOG OPL Studio: Language Manual

● ILOG OPL Studio: Component Libraries User’s Manual

● ILOG OPL Studio: Component Libraries Reference Manual

● ILOG OPL Studio: Release Notes.

◆ A link to the OPL Studio home page on the ILOG web site (when connected to the
Internet)

◆ A link to the model library on the ILOG web site (when connected to the Internet). You
can download a model and use it as a basis for creating your own model.

To access the help from OPL Studio:

◆ either use the Help menu

◆ or press the F1 key on a selected keyword in the text editor.

To navigate in the help, use the contents list, the index, or the search function.

◆ Click on an item in the contents list to display the corresponding page.

◆ In the index field, type the beginning of a word, then double-click on the listed item you
want to display.

◆ In the search field, type the word you want to find, then click on “List Topics”. The
search function lists all the pages that reference the word you entered (OPL keyword or
natural language). When you double-click an item in the list, the page is displayed with
all the referenced words highlighted.

UNIX Platforms

Prerequisite: you need Netscape Communicator 4.0.

After clicking F1, if a Netscape window is available, the appropriate help page will be
opened in the existing Netscape window. If not, you will be told to launch Netscape.

Important:

◆ If Netscape is launched from a different machine sharing the same display, ensure that
the disk mount allows Netscape to find the directory in which OPL Studio is installed.

◆ It is recommended to launch Netscape after OPL Studio, as Netscape uses a large
number of colors, leaving very few for OPL Studio.
I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L 49

T H E O N L I N E H E L P
50 I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L

C H A P T E R

2. W
o

rkin
g

 w
ith

P

ro
jects
2

Tutorial: Working with Projects

This chapter provides an introduction to ILOG OPL Studio through the use of a simple
production planning example.

In this example, you will learn how to:

◆ create a project and associate a model file and a data file with the project

◆ execute the project

◆ display and examine the results of the solution

◆ use the model browser

◆ close the project file with its associated model and data file

◆ work with several projects.

For this part of the tutorial, you will need the product.mod and product.dat files from
your release distribution. If you used the default directories at installation time, you will find
these files at the following location:

◆ For UNIX systems

<installation-directory>/OPLSt37/examples/opl

◆ For Windows XP, Windows 2000, Windows NT 4, and Windows 98

c:\ILOG\OPLSt37\examples\opl
I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L 51

T H E P R O D U C T I O N P L A N N I N G E X A M P L E
The Production Planning Example

The first example centers around the production planning model that appears in Chapter 2 of
the ILOG OPL Studio: Language Manual. The problem is described as follows.

To meet the demands of its customers, a company manufactures its products in its own
factories (inside production) or buys the products from other companies (outside
production). The inside production is subject to resource constraints: each product consumes
a certain amount of each resource. In contrast, the outside production is theoretically
unlimited. The problem is to determine how much of each product should be produced
inside the company and how much outside, while minimizing the overall production cost,
meeting the demand, and satisfying the resource constraints.

Code Sample 2.1 shows the OPL model for this example. This model is found in the
distributed product.mod file.

Code Sample 2.1enum Products ...;
enum Resources ...;

struct ProductData {
 float+ demand;
 float+ insideCost;
 float+ outsideCost;
 float+ consumption[Resources];
};

ProductData product[Products] = ...;
float+ capacity[Resources] = ...;

var float+ inside[Products];
var float+ outside[Products];

minimize
 sum(product[p].insideCost*inside[p] +
 product[p].outsideCost*outside[p])
subject to {
 forall(r in Resources)
 sum(p in Products) product[p].consumption[r] * inside[p] <= capacity[r];
 forall(p in Products)
 inside[p] + outside[p] >= product[p].demand;
};

Code Sample 2.1 OPL Model for the Production Planning Example (product.mod)
52 I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L

2. W
o

rkin
g

 w
ith

P

ro
jects

T H E P R O D U C T I O N P L A N N I N G E X A M P L E
Code Sample 2.2 shows the data initialization for the problem. This can be found in the
product.dat file of the product distribution.

Code Sample 2.2Products = {kluski capellini fettucine};
Resources = {flour eggs};
product =
 #[
 kluski : < 100, 0.6, 0.8, [0.5, 0.2] >
 capellini : < 200, 0.8, 0.9, [0.4, 0.4] >
 fettucine : < 300, 0.3, 0.4, [0.3, 0.6] >
]#;
capacity = [20, 40];

Code Sample 2.2 OPL Data for the Production Planning Example (product.dat)

Your first task in this tutorial will be to create a project file that associates these two files,
product.mod and product.dat. You will then see how to execute the project, look at the
results of the solution, and close the project.
I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L 53

C R E A T I N G A P R O J E C T
Creating a Project

After launching ILOG OPL Studio as described in Launching ILOG OPL Studio on page 18,
create the project file that will contain the product.mod and product.dat files by
selecting New>Project from the File menu.

ILOG OPL Studio displays the project tree in the work space, to which you can add all files
related to the project. Notice that it creates a project called noname.prj at the top of the tree
structure. Project files are displayed in the Projects page and use the .prj extension.

Figure 2.1

Figure 2.1 Project Window (Floating State)

To close the active project, use either the command File>Close Active Project, or the
button in the main tool bar.
54 I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L

2. W
o

rkin
g

 w
ith

P

ro
jects

C R E A T I N G A P R O J E C T
Inserting an Existing Model File into a Project

Figure 2.2

Figure 2.2 Insert a Model File into a Project

To insert an existing model into the new project, position the cursor on the project name
(noname.prj) and right-click on the mouse. Select Insert Existing Model File from
the popup menu, as shown in Figure 2.2.

The ILOG OPL Studio distribution structure contains five directories:

bin

doc

examples

include

lib

You will find the list of available model files in:

<installation-directory>\examples\opl.
I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L 55

C R E A T I N G A P R O J E C T
Select the product.mod file from the list and click Open.

Notice that ILOG OPL Studio adds the product.mod file to the project tree and opens the
file in the work space.

Figure 2.3

Figure 2.3 Project Tree and Editing Area After Inserting a Model File
56 I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L

2. W
o

rkin
g

 w
ith

P

ro
jects

C R E A T I N G A P R O J E C T
Inserting an Existing Data File into a Project

Next, you are going to insert the product.dat file into the project. Position the cursor on
the project name (noname.prj) and right-click on the mouse. Select Insert Existing
Data File from the menu, as shown in Figure 2.4.

Figure 2.4

Figure 2.4 Inserting a Data File into a Project

ILOG OPL Studio again displays the Open File dialog box, this time filtering the .dat files.

Figure 2.5

Figure 2.5 Open Data File Dialog Box

Select the product.dat file from the list and click Open.
I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L 57

C R E A T I N G A P R O J E C T
ILOG OPL Studio adds the product.dat file to the tree structure. To load the data into the
editor, right-click on the gray data icon then click on the Load button that appears. This
opens the data file in the editing area.

Figure 2.6

Figure 2.6 Loading Data into a Project

You can create a project without loading the data file into the editor. This feature is useful if
you have a large data file that takes a long time to load.

Adding New Files to a Project

If you create a new model file, or data file, and want to add it to a project, click on the project
name and select, as appropriate:

◆ Add New Model File

◆ Add New Data File.
58 I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L

2. W
o

rkin
g

 w
ith

P

ro
jects

C R E A T I N G A P R O J E C T
Saving the Project

Figure 2.7

Figure 2.7 Saving a Project

To save your project file, position the cursor on the project name (noname.prj) and right-
click on the mouse. Select the menu item Save the Project As (see Figure 2.7).

ILOG OPL Studio displays a standard Save As dialog box. Enter product.prj for the file
name and click Save. (As product.prj already exists in your distribution, you will have to
overwrite it.)

Notice that noname.prj at the top of the tree has now changed to product.prj.

Figure 2.8

Figure 2.8 Project Tree for product.prj Example
I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L 59

C R E A T I N G A P R O J E C T
Setting Project Options

ILOG OPL Studio also allows you to set certain options for your project.

◆ Right-click on the project name in the project tree, then select Project Options

◆ or select Options>Customize Active Project Options from the menu bar.

ILOG OPL Studio displays the Project Options notebook.

Figure 2.9

Figure 2.9 Project Options Notebook
60 I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L

2. W
o

rkin
g

 w
ith

P

ro
jects

C R E A T I N G A P R O J E C T
To navigate through the notebook, you can either click on elements in the tree structure or
click on a tab. Within the notebook pages, you can set options for:

◆ constraint programming (for ILOG Solver and ILOG Scheduler)

◆ linear optimization (for ILOG CPLEX)

◆ optimization using simplex (for ILOG CPLEX)

◆ mixed integer programming (for ILOG CPLEX)

◆ the barrier algorithm (for ILOG CPLEX)

◆ the network simplex algorithm (for ILOG CPLEX)

◆ the text editor

◆ labels and output

◆ paths for OPL and OPLScript files, and for compiled model generation.

To set the project options, click Apply then OK in the notebook.

To save these options, right-click on the project name in the project tree, then
select Save the Project.

The new options are stored in the current .prj file and restored automatically when the
project is re-opened. They do not affect files that are not associated with the current project.

To set default options for all files, see Chapter 8, Customizing ILOG OPL Studio.

For the present production planning example, you are going to use the delivered defaults, so
just click Cancel.
I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L 61

E X E C U T I N G T H E P R O J E C T
Executing the Project

As the project file product.prj is now open, you can execute the project and find the
solution. Click the Run button in the tool bar of the Main window.

You will notice that the execution tool bar is displayed.

When you execute a project, you trigger a chain of events.

ILOG OPL Studio first analyzes the model and produces summary information. Click on the
tab Model to display the model browser in the Workspace window. This browser contains
information about the data structures defined in the model. The model browser is described
in Using the Model Browser on page 67.

Figure 2.10

Figure 2.10 Model Browser for product.prj Example

ILOG OPL Studio also checks for syntactic or semantic errors at this time. If it finds errors,
it stops the execution and the errors must be corrected. See Checking for Syntactic or
Semantic Errors on page 39.

ILOG OPL Studio then executes the model. The message “OPL Studio is running” appears
in the status bar, the name product.prj appears in the Path Name area, and the color patch
turns to green to indicate the program is running.

Note: ILOG OPL Studio always gives precedence to the active project. If you have other
models, scripts or projects open in the Main window, the model of the active project
always gets executed. To switch to another model, project or script, right-click on it in the
project tree and select the menu item Set As Active.
62 I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L

2. W
o

rkin
g

 w
ith

P

ro
jects

E X A M I N I N G A S O L U T I O N T O T H E M O D E L
When ILOG OPL Studio finds a solution, it enters a waiting state and expects further
instruction from you. The message “Next solution?” appears in the status bar, and the color
patch turns to yellow and blinks to indicate the waiting state.

Figure 2.11

Figure 2.11 “Next solution?” Message

You can use this break in the execution to examine the solution in more detail.

Examining a Solution to the Model

ILOG OPL Studio provides two facilities for examining the details of your model and the
solutions:

◆ the output notebook in the lower half of the Main window

◆ the model browser in the work space.

Using the Output Area

When a solution to the model is found, ILOG OPL Studio fills in several notebook pages in
the output area. These pages show:

◆ the solution that ILOG OPL Studio has found

◆ optimization information (if it exists)

◆ log information

◆ solving statistics.

Solutions Notebook Page

The Solutions notebook page is used to display the current solution to the model.
I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L 63

E X A M I N I N G A S O L U T I O N T O T H E M O D E L
Figure 2.12

Figure 2.12 Solutions Notebook Page for product.prj Example

By default, all variables are displayed. However, you can specify which variables are
displayed and in what format. See Chapter 9 of the ILOG OPL Studio: Language Manual for
more information.

Optimization Notebook Page

When you click the Optimization tab, you will see that the notebook page is empty. The
Optimization notebook page contains information:

◆ only when there is an optimization statement in the model (that is, a minimize or
maximize statement)

◆ and only when optimization is obtained by improving on successive solutions.

When these two conditions are met, all the solutions found (and their costs) are displayed. If
the model contains only a solve statement, the first solution is supplied in the Solutions page
and the Optimization page is empty.

Log Notebook Page

Click either the Log tab, or the arrow at the left of the status bar, to view log details.

Figure 2.13

Figure 2.13 Log Notebook Page for product.prj Example

The information displayed in the log notebook page is of the following type:

◆ status changes
64 I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L

2. W
o

rkin
g

 w
ith

P

ro
jects

E X A M I N I N G A S O L U T I O N T O T H E M O D E L
◆ file loadings

◆ results of analyzing a model.

You can consult this log information to find out which kind of algorithm OPL Studio has
switched to when analyzing a model. In our example, the Log notebook page displays the
"linear programming" message. OPL Studio has detected a linear problem so it uses ILOG
CPLEX as the solving engine.

The type of algorithm used varies according to the model analyzed, and can be one of the
following:

◆ linear programming (CPLEX)

◆ piecewise linear programming (CPLEX MIP)

◆ piecewise linear programming (Solver MIP)

◆ integer programming (CPLEX MIP)

◆ integer programming (Solver)

◆ integer programming (Solver MIP)

◆ mixed integer programming (CPLEX MIP)

◆ mixed integer programming (Solver MIP)

◆ Solver

◆ Solver + Scheduler

◆ Solver + Hybrid

◆ Solver + Hybrid + Scheduler

Solver Notebook Page

Click the Solver tab to view statistics that ILOG OPL Studio gathered while solving the
model. They correspond to ILOG Solver library statistics.

Figure 2.14

Figure 2.14 Solver Notebook Page for product.prj Example

ILOG OPL Studio reports the following statistics in the Solver notebook page:

◆ Constraints - the number of constraints it received
I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L 65

E X A M I N I N G A S O L U T I O N T O T H E M O D E L
◆ Failures - the number of failures encountered during the resolution

◆ Variables - the number of variables received

◆ Choice points - the number of choices needed to produce the solution

◆ Solver memory - the amount of memory used

◆ Solving time

● computation time on UNIX platforms

● elapsed time (computation plus graphics display) on PCs.

In our example the number of choice points is zero since ILOG Solver’s constraint
programming search is not used here (product.prj is a pure LP model).

CPLEX Notebook Page
Figure 2.15

Figure 2.15 CPLEX Notebook Page for product.prj Example

This page shows CPLEX statistics. Here, in dual phase II, the objective is 3.72e+002, and
there are 7 iterations, 5 constraints and 6 variables.
66 I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L

2. W
o

rkin
g

 w
ith

P

ro
jects

E X A M I N I N G A S O L U T I O N T O T H E M O D E L
Using the Model Browser

To browse the active model in the work space, you can choose from one of the following
methods:

◆ In the tool bar:

● Click on the button Rebuild Browser Information

● Select Execution>Browse Active Model

◆ In the model browser, right click on the root item and select Browse Active Model

◆ In the project tree, right-click on the project name and select Browse Model.

The model browser provides another way for you to examine the solution to your model.
ILOG OPL Studio displayed the model browser before it began executing the model and so
it is visible during the execution process. The model browser summarizes information about
the data structures defined in the model. It lists the types and constants that appear in the
model, as well as any variables, activities, or resources. As you can see, the following have
been defined for the model product.mod:

◆ Products and Resources in the Type folder

◆ product and capacity in the Data folder

◆ inside and outside in the Variables folder.

Figure 2.16

Figure 2.16 Model Browser for product.mod File
I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L 67

E X A M I N I N G A S O L U T I O N T O T H E M O D E L
The model browser can be used in three different ways:

◆ To help you navigate through a .mod file displayed in the editing area

◆ To display additional views of the solution after running OPL Studio

◆ To check dynamic display options on variable items before running OPL Studio. These
options are not available when OPL is in a waiting state, as it is now. Dynamic display is
explained in Using Dynamic Display with ILOG OPL Studio on page 90.

Navigating the .mod File

If you click on one of the entries in the project tree, ILOG OPL Studio selects the line in
product.mod containing the first occurrence of that entry. For example, click on
capacity and the first occurrence of capacity is highlighted.

Displaying Additional Views

If you right-click on capacity while OPL Studio is in a waiting state, the Open View
button appears, as shown in Figure 2.17. By clicking this button, you can display an
additional view of the solution.

Figure 2.17

Figure 2.17 Open View Button
68 I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L

2. W
o

rkin
g

 w
ith

P

ro
jects

E X A M I N I N G A S O L U T I O N T O T H E M O D E L
When you double-click an entry in the tree, ILOG OPL Studio displays an additional view
for that entry and highlights the corresponding declaration in the text editor. The
presentation of the object’s content depends on the type of object displayed.

For example, if you double-click Products in the Type folder, ILOG OPL Studio displays
the following view:

If you double-click Resources under Type, you will see a similar display with the defined
resources.

If you double-click product in the Data folder, ILOG OPL Studio displays the following:

I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L 69

E X A M I N I N G A S O L U T I O N T O T H E M O D E L
If you double-click capacity under Data, ILOG OPL Studio displays the following:

As you can see, the Types and Data panels are not very interesting since you can very readily
see the same information in the .mod file or the .dat file. The panels displayed for
Variables are more interesting since they represent the results of the problem. At times, you
may want to display the Data panels and the Variables panels together so that the panels have
the same appearance and can be compared easily.

If you double-click inside under Variables, ILOG OPL Studio displays:

If you double-click outside under Variables, ILOG OPL Studio displays:

In the other examples in this manual, you will see how ILOG OPL Studio uses other objects
to display the results of a solution. But for now, let’s continue with our production planning
project.
70 I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L

2. W
o

rkin
g

 w
ith

P

ro
jects

C O N T I N U I N G T H E E X E C U T I O N
Continuing the Execution

All the while you were examining the model, ILOG OPL Studio was in its waiting state,
expecting you to tell it what to do next. The following buttons in the execution tool bar of the
Main window allow you to continue:

● Abort

Terminates the execution. After an Abort, the traces of any solutions found up to that
point are kept in the Output notebook.

● Next

Goes to the next solution of the model.

● Continue Run

Forces ILOG OPL Studio to produce all the remaining solutions without further
intervention.

For this example, let’s go to the next solution. Click the Next button in the tool bar.
I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L 71

C O N T I N U I N G T H E E X E C U T I O N
ILOG OPL Studio continues its computation. Since there is only one solution to this model,
it completes its execution and returns to its idle state. The status bar displays “OPL Studio is
idle: 1 solution(s) found” and the color patch returns to blue.

Figure 2.18

Figure 2.18 Main Window After Executing product.prj Example

Notice also that in the model browser, the tree structure has collapsed and no longer shows
the data structures.
72 I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L

2. W
o

rkin
g

 w
ith

P

ro
jects

U S I N G A N A L T E R N A T I V E D A T A F I L E
Using an Alternative Data File

Here we examine an alternative way of expressing the data initialization of this problem. In
the product.dat file, the expression was a simple initialization of records. OPL provides
the possibility of a named initialization of records, as shown in Code Sample 2.3.

Code Sample 2.3Products = {kluski capellini fettucine};
Resource = {flour eggs}
product =
 #[
 kluski :
 #< demand:100
 insideCost:0.6
 outsideCost:0.8
 consumption: [0.5 0.2]
 >#
 capellini :
 #< demand:200
 insideCost:0.8
 outsideCost:0.9
 consumption: [0.4 0.4]
 >#
 fettucine :
 #< demand:300
 insideCost:0.3
 outsideCost:0.4
 consumption:[0.3 0.6]
 >#
]#;
capacity = [20, 40];

Code Sample 2.3 OPL Named Data for Production Planning Example (productn.dat)

To use this alternative data file, you can open the product.prj file, remove the
product.dat file (see Removing a File from a Project on page 75), and insert the file
productn.dat. When you execute product.prj this time with the productn.dat file,
you should see exactly the same results as when product.dat was associated with it.
I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L 73

C L O S I N G A P R O J E C T F I L E
Closing a Project File

This completes the production planning example. Since you are finished with the
product.prj file, you can close it, in one of three ways:

◆ Select File>Close Active Project from the menu bar, because product.prj is the active
project

◆ Click on the Close Active Project button in the tool bar, as product.prj is the
active project

◆ Right click on product.prj in the project tree, then select Close Project.

You will notice that when you close the project, you also close all the files associated with it.

Working with Several Projects

ILOG OPL Studio allows you to load more than one project at the same time. Of course,
only one of the loaded projects is the active one. The active project name and its model name
are displayed in red.

A project tree structure is displayed in the work space:

Figure 2.19

Figure 2.19 Project Tree in the Work Space

As shown in Figure 2.19, stand-alone models and scripts are also displayed on the Projects
page, although they are not true projects.

You can set a stand-alone model as the active model, or a script as the active script. Stand-
alone models do not have their own settings, they take them from the default options.
74 I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L

2. W
o

rkin
g

 w
ith

P

ro
jects

W O R K I N G W I T H S E V E R A L P R O J E C T S
Setting the Active Project

By default, the last loaded project is the active one. If you want to change the active project,
right-click on the new project name in the Projects viewer and select the menu item
Set As Active Project, as shown in Figure 2.20.

Figure 2.20

Figure 2.20 Setting an Active Project

To change a project’s options or close a non-active project, right click on the corresponding
tree item.

Removing a File from a Project

To remove a model or data file from a project, right click on the corresponding file name and
select Remove from Project.
I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L 75

W O R K I N G W I T H S E V E R A L P R O J E C T S
Setting the Active Model

For a stand-alone model select Set As Active Model:

Setting the Active Script

For a stand-alone script select Set As Active Script:
76 I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L

2. W
o

rkin
g

 w
ith

P

ro
jects

W O R K I N G W I T H S E V E R A L P R O J E C T S
Two References to the Same File

You can open two projects, standalone models or scripts that reference the same file.

In the figure above, the file car.mod is referenced by two different projects,
carsmall.prj and car.prj.
I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L 77

W O R K I N G W I T H S E V E R A L P R O J E C T S
78 I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L

C H A P T E R

3. P
red

efin
ed

D

yn
am

ic D
isp

lay
3

Tutorial: Predefined Dynamic Display

In this chapter, you will see how ILOG OPL Studio handles a basic constraint model with
constraint programming constructs.

Using the car sequencing example, you will:

◆ open a project file with its associated model and data files

◆ load the data into the editor

◆ execute the project

◆ display and examine the results of the model solution, noting how ILOG OPL Studio
displays the variables of a solution

◆ complete the model execution by searching for all solutions to the problem

◆ generate summary information in the model browser and select dynamic display

◆ re-execute the project, using dynamic display to view solutions.

For this part of the tutorial, you will need these from your release distribution:

car.mod, car.dat, car.prj
I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L 79

T H E C A R S E Q U E N C I N G E X A M P L E
If you used the default directories at installation time, you can find these files at the
following location:

◆ For UNIX systems

<installation-directory>/OPLSt37/examples/opl

◆ For Windows XP, Windows 2000, Windows NT 4, and Windows 98

c:\ILOG\OPLSt37\examples\opl

The Car Sequencing Example

This example centers around the car sequencing model that appears in Chapter 14 of the
ILOG OPL Studio: Language Manual. The problem is as follows.

Cars in production are placed on an assembly line and move through various units that
install various options, such as air conditioning or car radios. The assembly line is composed
of slots and each car must be allocated to a single slot. The cars cannot be allocated
arbitrarily because each production unit has a limited capacity and the options must be added
to the cars as the assembly line passes in front of the unit. The capacity constraints for this
problem are expressed using the form l outof u. They indicate that the unit can produce at
most l cars with the option out of each sequence of u cars. The purpose is to find an
assignment of cars to the slots of the assembly line that satisfies the capacity constraints.

Code Sample 3.1 shows the OPL model for this example. This file is car.mod of your
release distribution.
80 I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L

3. P
red

efin
ed

D

yn
am

ic D
isp

lay
T H E C A R S E Q U E N C I N G E X A M P L E
Code Sample 3.1int nbCars = ...;
int nbOptions = ...;
int nbSlots = ...;

range
 Cars 1..nbCars,
 Options 1..nbOptions,
 Slots 1..nbSlots;

int demand[Cars] = ...;
int option[Options,Cars] = ...;

struct Tcapacity {
 int l;
 int u;
};
Tcapacity capacity[Options] = ...;
int optionDemand[i in Options] = sum(j in Cars) demand[j] * option[i,j];

var
 Cars slot[Slots],
 int setup[Options,Slots] in 0..1;

solve {
 forall(c in Cars)
 sum(s in Slots) (slot[s] = c) = demand[c];

 forall(o in Options & s in [1..nbSlots - capacity[o].u + 1])
 sum(j in [s..s + capacity[o].u - 1]) setup[o,j] <= capacity[o].l;

 forall(o in Options & s in Slots)
 setup[o,s] = option[o,slot[s]];

 forall(o in Options & i in [1..optionsDemand[o]])
 sum(s in [1..nbSlots - i * capacity[o].u])
 setup[o,s] >= optionDemand[o] - i * capacity[o].l;
};

Code Sample 3.1 OPL Model for the Car Sequencing Example (car.mod)
I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L 81

T H E C A R S E Q U E N C I N G E X A M P L E
Code Sample 3.2 shows the data initialization for the problem. This code can be found in the
car.dat file of the release distribution.

Code Sample 3.2nbCars = 6;
nbOptions = 5;
nbSlots = 10;
demand = [1,1,2,2,2,2];
option = [
 [1, 0, 0, 0, 1, 1],
 [0, 0, 1, 1, 0, 1],
 [1, 0, 0, 0, 1, 0],
 [1, 1, 0, 1, 0, 0],
 [0, 0, 1, 0, 0, 0]
];
capacity = [
 <1,2>,
 <2,3>,
 <1,3>,
 <2,5>,
 <1,5>
];

Code Sample 3.2 OPL Data for the Car Sequencing Example (car.dat)
82 I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L

3. P
red

efin
ed

D

yn
am

ic D
isp

lay
S E T T I N G U P T H E P R O J E C T
Setting Up the Project

You need to open a project file with its associated model and data files, and, optionally, load
the data into the editor.

Opening the Project File

The ILOG OPL Studio Main window should still be open from the previous tutorial. If not,
you will need to launch it as described in Launching ILOG OPL Studio on page 18. When
the Main window is open, you are ready to start the car sequencing tutorial by opening the
project file.

Select Open>Project from the File menu, or click on the corresponding button. Then select
car.prj from the list displayed in the opl directory.

ILOG OPL Studio then displays the project tree in the work space, showing the names of the
associated model and data files in the tree structure. You can see that car.mod and car.dat
are the files associated with car.prj. You will notice that the names car.prj and
car.mod are highlighted in red. This is to remind you that car.prj is the active
project, and thus, car.mod is the active model.

Loading the Data

You can open the project without loading the data file into the editor. This feature is useful if
you have a large data file that takes a long time to load. For this example we will load the
data file by clicking on the name of the file with the right mouse button, then selecting the
Load option, as shown in Figure 3.1.

Figure 3.1

Figure 3.1 Loading a Data File for the Car Sequencing Example
I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L 83

S E T T I N G U P T H E P R O J E C T
ILOG OPL Studio has now opened the files associated with the project in the work space of
the Main window. For this example, it has opened car.mod and car.dat.

Figure 3.2

Figure 3.2 Main Window for the Car Sequencing Example
84 I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L

3. P
red

efin
ed

D

yn
am

ic D
isp

lay
E X E C U T I N G T H E P R O J E C T
Executing the Project

Now that everything is set up in the project file, you can execute the project right away.

Click the Run button in the tool bar of the Main window.

ILOG OPL Studio, when it executes a project:

◆ analyzes the project and produces the summary information in the model browser

◆ checks for syntactic or semantic errors

◆ executes the model displaying “OPL Studio is running” in the status bar, showing the
name car.prj in the Path Name area, and changing the color patch to green

◆ displays the first solution in the Solutions notebook page in the Main window

◆ enters a waiting state when the first solution is found, displays “Next solution?” in the
status bar, and changes the color patch to yellow.

Note: If you happen to have other model files, or other project files, open in the Main
window, ILOG OPL Studio always gives precedence to the active project file. The most
recently opened project model is by default the active project.

You can set another project as the active one by right clicking on the new project name
and selecting the option Set As Active Project.
I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L 85

E X A M I N I N G T H E F I R S T S O L U T I O N
Examining the First Solution

While ILOG OPL Studio is in its waiting state, you can take a look at the first solution to the
car sequencing problem. The slot variables are listed first. The slot variables specify
which car is assigned to a given slot in the assembly line. You can see that slot 1 has car 5,
slot 2 has car 4, and so on.

Figure 3.3

Figure 3.3 slot Variable Results for Solution[1]

If you want to see another view of this result, go to the model browser and double-click the
slot entry in the Variables folder. ILOG OPL Studio displays the following panel with the
same result. Slot 1 (Index 1) has car 5, slot 2 (Index 2) has car 4, and so on.

Figure 3.4

Figure 3.4 Alternative View of slot Variable Results for Solution[1]
86 I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L

3. P
red

efin
ed

D

yn
am

ic D
isp

lay
E X A M I N I N G T H E F I R S T S O L U T I O N
If you scroll down through the Solutions notebook page, you see the results for the setup
variables. The setup variables specify, given an option and a slot, whether the car assigned
to the slot requires the option. From the first line, you can see that the car at option 1 and slot
1 [1,1] requires option 1 as indicated by the value 1. The car at option 1 and slot 2 [1,2] does
not require option 1 as indicated by the value 0. You can scroll down through the list to see
the assignments for all five options and the slots for each option.

Figure 3.5

Figure 3.5 setup Variable Results for Solution[1]

Again, if you want to see another view of this result, go to the model browser and double-
click the setup entry in the Variables folder. ILOG OPL Studio displays the following panel
with the same results. This time the results are displayed in matrix format. The 5 options are
listed on the left-hand side of the panel and the 10 slots appear across the top. Again, the
values 1 and 0 in the matrix indicate whether the car at that intersection requires the option
or not. The car at [1,1] requires option 1; the car at [1,2] does not require option 1.

Figure 3.6

Figure 3.6 Alternative View of setup Variable Results for Solution[1]
I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L 87

C O P Y I N G T H E R E S U L T S M A T R I X T O A S P R E A D S H E E T
Copying the Results Matrix to a Spreadsheet

You can copy the results matrix from OPL Studio to an external spreadsheet such as
Microsoft Excel, StarOffice or gnumerics.

Select a matrix or sub-matrix by dragging the mouse from the top left corner of the matrix to
the bottom right corner. Press Ctrl+C to copy to the clipboard, then Ctrl+V to paste into the
spreadsheet. Tabulation characters are placed between the cells as separators.

Continuing the Execution

While you have been looking at the first solution, ILOG OPL Studio has been in its waiting
state. To produce all the remaining solutions to the problem, click the Continue Run
button in the tool bar.

ILOG OPL Studio continues its computation of subsequent solutions without stopping until
it has found all the solutions. While it is running, it again displays “OPL Studio is running”
in the status bar and the color patch changes to green.

When it completes its execution, ILOG OPL Studio returns to its idle state and the following
occur:

◆ the status bar displays “OPL Studio is idle: 6 solution(s) found”

◆ the color patch returns to blue

◆ the model browser collapses and no longer shows the data structures.

You can look at the Solutions notebook to see all the solutions. As ILOG OPL Studio returns
additional results, it adds them, one after the other, to the Solutions notebook page.
Solution [6] is now visible, but you can use the scroll bar to see the other solutions.

Take a look at the Solver notebook page to see the statistics generated for the execution of
this problem.

If you look at the Optimization notebook page, you see that it is empty. This model does not
contain an optimization statement, so therefore this page remains empty.

Note: You can read and write to an Excel sheet via OPL or OPL Script by using the
keywords SheetConnection, SheetRead and SheetWrite.
88 I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L

3. P
red

efin
ed

D

yn
am

ic D
isp

lay
L O O K I N G A T T H E M O D E L S T R U C T U R E
Looking at the Model Structure

At this point in the tutorial, the data structure for car.prj is not displayed in the model
browser. However, ILOG OPL Studio allows you to rebuild the data structure of a model
without having to execute the model.

There are four ways of rebuilding the browser information. These are described in Using the
Model Browser on page 67.

For example, click on the Rebuild Browser Information button in the tool bar of the
Main window.

ILOG OPL Studio builds the tree representing the data structures of the model in the model
browser, just as it did when it executed the project.

Figure 3.7

Figure 3.7 Model Browser for car.prj (Floating State)

The navigation tools of the model browser are available for your use at this time. When you
click on an entry, ILOG OPL Studio highlights the line where the first occurrence of the
entry is found in the edited model file.

Note: Because ILOG OPL Studio is in an idle state at this point, a double-click on an
entry has no effect. However, when ILOG OPL Studio is in a waiting state during
execution, you can double-click on an entry to display additional views of the results of a
solution.
I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L 89

U S I N G D Y N A M I C D I S P L A Y W I T H I L O G O P L S T U D I O
Using Dynamic Display with ILOG OPL Studio

As the last task in this tutorial, let’s take a look at the dynamic display feature of ILOG OPL
Studio. Dynamic display plays an essential role in the development process, as it can bring
important insights into the actual behavior of the various constraint solutions. Such insights
can suggest different search strategies or the addition of redundant constraints.

The variables of a model can be subject to dynamic display. You must first select the display
option.

To see how to use the dynamic display feature in ILOG OPL Studio, go to the model
browser. The tree structure of car.prj should still be displayed from the previous section.
If not, click the Rebuild Browser Information button in the tool bar, or select
Execution>Browse Active Model from the menu bar.

Let’s look at how ILOG OPL Studio handles the dynamic display of the setup variable.
Click on setup in the Variables folder, then, with the cursor on setup, click the right mouse
button. A pop-up menu appears with a list of the available display options. Specify your
selection by checking one of the options.

◆ display domain – each variable is associated with an array of cells. Each cell in the array
corresponds to a value in the domain of the variable. The cell is colored blue or beige
based on the presence of that value in the domain.

◆ display value – each variable is associated with an array of cells. Each cell in the array
corresponds to a value of the variable. The cell is colored blue when the value is
assigned.

◆ display interval – each variable is mapped to an interval showing the lower bound and
the upper bound. The execution narrows the interval. Holes in the domain are not shown.

◆ display boolean – each variable is mapped to a colored cell. This is useful for a variable
whose domain is {0,1}. The cell becomes blue if the domain is reduced to {1} and beige
if the domain is reduced to {0}.

For this example, select “display boolean”. A check mark appears to the left of the option,
indicating that it is selected, as shown in Figure 3.8.
90 I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L

3. P
red

efin
ed

D

yn
am

ic D
isp

lay
U S I N G D Y N A M I C D I S P L A Y W I T H I L O G O P L S T U D I O
Figure 3.8

Figure 3.8 Selecting a Dynamic Display Option

Now, execute the project again to see the dynamic display.

Click the Run button in the tool bar.

This time, as it executes, ILOG OPL Studio opens a setup notebook page in the output area
of the Main window. It displays the setup results in a matrix. Because you selected “display
boolean” from the pop-up menu, each Boolean is displayed in a colored cell. During the
search for a solution, the matrix is updated in real time. The cells appear gray or colored
depending on the value the corresponding Boolean receives. A gray cell is associated with a
Boolean variable that is still unassigned. A blue cell is true and a beige cell is false.

The following screen shows how the setup notebook page looks after the first solution is
found and ILOG OPL Studio is in its waiting state.
I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L 91

C L O S I N G T H E P R O J E C T
Figure 3.9

Figure 3.9 Setup Notebook Page Showing Boolean Display

Click on the Next button and watch as ILOG OPL Studio computes the second
solution.

Continue clicking on the Next button to see more solutions of the model displayed. To
complete the execution, click on Continue Run .

Closing the Project

This completes the car sequencing example. To close the files associated with a project, you
have to close the project. This is done in one of three ways:

◆ Select File>Close Active Project from the menu bar

◆ Click on the Close Active Project button in the tool bar

◆ Right click on the project name in the work space, and select Close Project.

The project file and its associated files are saved and closed.

Note: In dynamic display mode, the execution may be slower.
92 I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L

C H A P T E R

4. S
o

lu
tio

n
 to

 a
S

ch
ed

u
lin

g
 P

ro
b

lem
4

Tutorial: Examining the Solution to a
Scheduling Problem

In this chapter, you will see how ILOG OPL Studio handles a scheduling model and uses
Gantt charts to display results.

Using the house building example, you will:

◆ open the model file

◆ execute the model

◆ examine the solution of the problem, noting how ILOG OPL Studio handles the display
of the activities and resources of a scheduling problem

◆ close the model file.

For this part of the tutorial, you will be using the file house2.mod from your release
distribution. If you used the default directories at installation time, you can find this file at
the following location:

◆ For UNIX systems

<installation-directory>/OPLSt37/examples/opl/scheduler

◆ For Windows XP, Windows 2000, Windows NT 4, and Windows 98

c:\ILOG\OPLSt37\examples\opl\scheduler
I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L 93

T H E H O U S E B U I L D I N G E X A M P L E
The House Building Example

This example centers around the activities necessary to build a house and the budget
constraints for each of these tasks. The house building example shows how OPL and ILOG
OPL Studio support scheduling applications through the concepts of activities and resources.

In OPL, an activity can be thought of as an object containing three data items: a starting date,
a duration, and an ending date. In the example, activities are the tasks needed to build a
house.

OPL supports a variety of resources including unary, discrete, discrete energy, state and
reservoirs. In this example, you will see the support of discrete resources. A discrete
resource is a resource with a capacity. The capacity, which may vary over time, represents
the number of available instances of the resource. In this example, a discrete resource is used
to model the budget for building the house.

In planning the construction of the house, there are a certain number of activities that must
be performed, each with a certain duration, and some that must be completed before others
can be started. The table below lists each activity, its duration in days, and the activities that
must precede it.

In addition to the time constraints, there are constraints concerning the budget for this house.
Each activity requires the payment of an amount of money proportional to the duration of
the activity. This amount, to be paid at the beginning of the activity, is set to $1,000 per day.
The total budget is $29,000, which is $1,000 times the sum of the duration of the project
activities. Only $20,000 is available at the beginning of the project; the remaining $9,000 is

Name Duration Preceding Activities

masonry 7

carpentry 3 masonry

plumbing 8 masonry

ceiling 3 masonry

roofing 1 carpentry

painting 2 ceiling

windows 1 roofing

facade 2 roofing, plumbing

garden 1 roofing, plumbing

moving 1 windows, facade, garden, painting
94 I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L

4. S
o

lu
tio

n
 to

 a
S

ch
ed

u
lin

g
 P

ro
b

lem
O P E N I N G T H E M O D E L F I L E
available 15 days after the beginning of the project. The goal is to minimize the duration of
the project while taking into account both the time and budget constraints.

Code Sample 4.1 shows the OPL model for this example. This model is found in the file
house2.mod of your release distribution. In this example, the data for the problem is
contained within the model. It has not been separated out into a.dat file.

Code Sample 4.1enum Tasks
 { masonry,carpentry,plumbing,
 ceiling,roofing,painting,
 windows,facade,garden,moving };

int duration[Tasks] = [7,3,8,3,1,2,1,2,1,1];

scheduleHorizon = 30;
Activity a[t in Tasks](duration[t]);

DiscreteResource budget(29000);

minimize
 a[moving].end
subject to {
 a[masonry] precedes a[carpentry];
 a[masonry] precedes a[plumbing];
 a[masonry] precedes a[ceiling];
 a[carpentry] precedes a[painting];
 a[ceiling] precedes a[painting];
 a[roofing] precedes a[windows];
 a[roofing] precedes a[facade];
 a[plumbing] precedes a[facade];
 a[roofing] precedes a[garden];
 a[plumbing] precedes a[garden];
 a[windows] precedes a[moving];
 a[facade] precedes a[moving];
 a[garden] precedes a[moving];
 a[painting] precedes a[moving];

 capacityMax(budget,0,15,20000);

 forall(t in Tasks)
 a[t] consumes(1000*duration[t]) budget;

};

Code Sample 4.1 OPL Model for the House Building Example (house2.mod)

Opening the Model File

If the Main window is not open, you will need to launch OPL Studio, as described in
Launching ILOG OPL Studio on page 18. When the Main window is open, you are ready to
start the house building tutorial by opening the model file. Select Open>Model from the File
I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L 95

L O O K I N G A T T H E M O D E L S T R U C T U R E
menu, or click on the Load Model button in the tool bar, and select house2.mod from
the scheduler directory.

ILOG OPL Studio then displays the house2.mod file in the work space.

Looking at the Model Structure

Before executing the model, let’s take a look at the data structure of house2.mod to see
what has been defined in this model.

Right-click on the model name in the Projects window, then select Browse Model, as
shown in Figure 4.1.

Figure 4.1

Figure 4.1 Main Window for the House Building Example
96 I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L

4. S
o

lu
tio

n
 to

 a
S

ch
ed

u
lin

g
 P

ro
b

lem
L O O K I N G A T T H E M O D E L S T R U C T U R E
ILOG OPL Studio opens the Model browser and builds the tree of the model objects.

Figure 4.2

Figure 4.2 Model Browser for house2.mod (Floating State)

As you can see, this model has the following objects: Type (Tasks), Data (duration),
Activities (a), and Discrete Resources (budget).

For this model, you will want to pay particular attention to how ILOG OPL Studio displays
the results of the activities and the discrete resources.
I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L 97

E X E C U T I N G T H E M O D E L
Executing the Model

For this example, there is only a model file. The data has not been isolated in a .dat file, so
therefore a project file (.prj) and a data file (.dat) do not exist. You are going to be
executing only the model file (house2.mod).

Click the Run button in the tool bar of the Main window.

In the same manner as when executing a project, ILOG OPL Studio:

◆ analyzes the model and, if not already done, produces the summary information and
updates the Model browser

◆ checks for syntactic or semantic errors

◆ executes the model displaying “ILOG OPL Studio is running” in the status bar, showing
the name house2.mod in the Path Name area, and changing the color patch to green

◆ displays the results in the notebook pages of the output window

◆ enters a waiting state when the optimal solution is found, displays “Next solution?” in
the status bar, and changes the color patch to yellow.

Note: Make sure that house2.mod is the active model. The name should appear in red on
the Projects notebook page. If this is not the case, right-click on the name and select Set
As Active Model.
98 I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L

4. S
o

lu
tio

n
 to

 a
S

ch
ed

u
lin

g
 P

ro
b

lem
E X E C U T I N G T H E M O D E L
The Main window now looks like this.

Figure 4.3

Figure 4.3 Main Window with house2.mod Solution

Note that because the model file contains an optimization statement (minimize), ILOG
OPL Studio has found the optimal solution to the problem. While OPL Studio is in the
waiting state, and before you continue, you have the opportunity to examine the results.
I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L 99

E X A M I N I N G T H E S O L U T I O N
Examining the Solution

The results of Activities and Resources are the important things to look at in this example.
Let’s first look at the Activities results and see how ILOG OPL Studio displays those results.
Then, let’s look at how ILOG OPL Studio displays the results for Resources.

Looking at the Activities Results

First, go to the Solutions notebook page. The first line shows that the duration of the project,
taking into account the precedence and budget constraints, is 21 days. The next part of the
solution shows the schedule for the tasks. These are the results for the Activities of the
problem and are shown as an activity vector. The data is in the format of s -- d -> e. The
activity starts at time s for a duration of d units of time, and is completed at time e. For
example, you can see that masonry begins at time 0, has a duration of 7 units, and is
completed at time 7. Carpentry begins at time 7, has a duration of 3 units, and is completed
at time 10.

Figure 4.4

Figure 4.4 Activities Results for house2.mod Example
100 I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L

4. S
o

lu
tio

n
 to

 a
S

ch
ed

u
lin

g
 P

ro
b

lem
E X A M I N I N G T H E S O L U T I O N
Using the Model Browser

To get another view of the results of the Activities, go to the Model browser and double-click
the a entry in the Activities folder. ILOG OPL Studio first displays the following panel that
essentially shows the results in the same format as shown in the Solutions notebook page.
You will need to move the Gantt chart, as it is displayed on top of the activities results.

Figure 4.5

Figure 4.5 Alternative View of Activities Results for house2.mod Example

ILOG OPL Studio also displays a Gantt chart representation of the activities. The horizontal
scale shows the total duration of the project, that is 21 units. The vertical scale on the left
side of the window lists all the activities for the project. The center area shows the starting
and ending dates of each task and the precedence relationships among the tasks. You can see
that masonry begins at day 0, has a duration of 7 days, and ends on day 7. Carpentry begins
on day 7, has a duration of 3 days, and ends on day 10.
I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L 101

E X A M I N I N G T H E S O L U T I O N
Figure 4.6

Figure 4.6 Gantt Chart of Activities Results for house2.mod Example

Using the Gantt Chart

The Gantt chart can display either activities alone, or activities and resource allocation.

◆ Activities are displayed:

● in the Activities and Sorted Activities output area

● or, by double clicking on Activities items in the model browser.

◆ Activities and resource allocation are displayed for unary resources only, by double
clicking on the UnaryResources items in the model browser.

◆ To zoom

You can zoom in and zoom out of the chart using the keyboard or the mouse.

● To zoom in on the time axis there are two possibilities:

− press the two keys: Shift + z

− or select a time zone by left-clicking and dragging on the horizontal axis

● To zoom out of the time axis:

− press the two keys: Shift + u

Note: Before using the keyboard with the Gantt chart, click on the chart in order to give it
the keyboard focus. In the Activities and Sorted Activities notebook pages, if the cursor is
outside the chart, the z key will take you to the Optimization tab.
102 I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L

4. S
o

lu
tio

n
 to

 a
S

ch
ed

u
lin

g
 P

ro
b

lem
E X A M I N I N G T H E S O L U T I O N
● To zoom in on the vertical axis, there are two possibilities:

− press the z key

− or select a vertical zone by left-clicking and dragging on the vertical axis

● To zoom out of the vertical axis:

− press the u key

◆ To scroll

● Use the horizontal scroll bars or the arrow keys → and ← for time scrolling.

● Use the vertical scroll bars or the arrow keys ↓ and ↑ for vertical scrolling.

◆ To fit the contents to the frame, or return to the initial state

● To fit the contents on the time axis, press the two keys: Shift + f.

● To fit the contents on the vertical axis, press the f key.

● To return to the initial state (no zoom) press the two keys: Shift + i.

◆ To split the chart into four views

If the Gantt chart is large, you cannot zoom in and see activities that are far apart. In
order to see them together, you can use the split feature. By dragging the black square
located at the top left corner of the chart you obtain four views. Figure 4.7 contains a
Gantt chart split into four views.

Note: Before using the keyboard on one of the four views, click on the view in order to
give it the keyboard focus.
I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L 103

E X A M I N I N G T H E S O L U T I O N
Figure 4.7

Figure 4.7 Gantt Chart Split into Four Views

The top left and top right views are constrained by their vertical scale, which means that
these two views display the same row, but you can select different zoom factors or scroll
states along the time axis. The same applies to the bottom left and bottom right views.

The top left and bottom left views are constrained by their horizontal scale (time axis),
but you can select different zoom factors or scroll states for the vertical axis. The same
applies to the top right and bottom right views.
104 I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L

4. S
o

lu
tio

n
 to

 a
S

ch
ed

u
lin

g
 P

ro
b

lem
E X A M I N I N G T H E S O L U T I O N
The Activities Notebook Page

ILOG OPL Studio provides another way to look at the Activities results. During the
execution of the model, ILOG OPL Studio added two notebook pages, Activities and Sorted
Activities, to the display area. These notebook pages provide additional views of the
activities results.

Click on the Activities tab to bring the Activities notebook page to the foreground.

Figure 4.8

Figure 4.8 Activities Notebook Page for house2.mod Example

The chart displayed in the Activities notebook page again shows the time line on the
horizontal scale with a duration of 21 days. The center area shows each task with its starting
and ending date. You can see that the precedence of the tasks is indicated by the arrows
going from one task to another.
I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L 105

E X A M I N I N G T H E S O L U T I O N
You can display the same information via the model browser. Right-click on the root item
and select Show All Activities.

The Sorted Activities Notebook Page

Click on the Sorted Activities tab to bring that notebook page to the foreground.

Figure 4.9

Figure 4.9 Sorted Activities Gantt Chart for house2.mod Example

Note: The Activities notebook page is displayed by default when a model or project
contains activities objects. If you do not want the Activities notebook page displayed, you
can deselect this option in the Options dialog box (for the current project) or in the
Default options dialog box (for all other projects). See Setting Output Options on
page 169.
106 I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L

4. S
o

lu
tio

n
 to

 a
S

ch
ed

u
lin

g
 P

ro
b

lem
E X A M I N I N G T H E S O L U T I O N
This notebook page displays all the activities in sorted order. Again, the horizontal scale
shows the duration of the project, 21 days. The vertical scale lists all the activities, this time
sorting them by precedence. In the center, you can again see the chart of the activities with
their precedence.

You can display the same information via the model browser by right-clicking on the root
item and selecting Show Sorted Activities.

Looking at the Resources Results

To see the results for the resources defined in the model, you need to go back to the
Solutions notebook page. Click the Solutions tab to bring it to the foreground. Then use the
vertical scroll bar to move down through the solution until you come to budget =
Discrete Resource.

Figure 4.10

Figure 4.10 Discrete Resource Results for house2.mod Example

The results show how the budget resources for each task are consumed for the life of the
project. The tasks are listed in reverse order of their precedence. Go to the last line to look at
the masonry budget resources. This line shows that masonry consumes $7,000 ($1,000 for
each day of its 7-day duration). The [0,30] indicates that the resource is consumed from day
0, which is the start time of the masonry task, to day 30, which is the end of the project. The
value of 30 comes from the scheduleHorizon = 30 statement in the model file (see Code
Sample 4.1). The carpentry task consumes $3000 of the budget, beginning at day 7 and

Note: The Sorted Activities notebook page is displayed by default when a model or
project contains activities objects. If you do not want the Sorted Activities notebook page
displayed, you can deselect this option in the Options dialog box (for the current project)
or in the Default options dialog box (for all other projects). See Setting Output Options on
page 169.
I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L 107

E X A M I N I N G T H E S O L U T I O N
ending at day 30. In this way, you can see the consumption of budget resources for all the
tasks of the project.

To get another view of these results, go to the Model browser and double-click the budget
entry in the Discrete Resources folder. ILOG OPL Studio displays the results in a bar chart
(see Figure 4.11).

Figure 4.11

Figure 4.11 Alternative View of Discrete Resources Results for house2.mod Example

Discrete Resources are displayed with a bar chart in ILOG OPL Studio. The horizontal scale
shows the time line, just as it did for the Gantt chart. The vertical scale represents the
maximum number of units (in this case, dollars) used at any point in time throughout the
duration of the project. The bars in the chart give the evolution of the resource over time.

This panel has two sliders that you can use to adjust the scaling factor along the respective
axes. When this panel comes up for the first time, ILOG OPL Studio uses a scaling factor to
guarantee that the whole chart appears in the viewing area. You may want to adjust the
scaling factor to see more details of the results and you can do this with the sliders. Then, use
the scroll bars to bring any part of the chart into the viewing area.

Note: The graphic representation of unary resources is different. Double-clicking on a
unary resource displays a Gantt chart with resource allocation. See bridge.prj for an
example.
108 I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L

4. S
o

lu
tio

n
 to

 a
S

ch
ed

u
lin

g
 P

ro
b

lem
E X A M I N I N G T H E S O L U T I O N
The Optimization Notebook Page

In the previous two examples in Chapters 2 and 3, the Optimization notebook page was
empty. When a model contains an optimization statement, as this one does (the minimize
statement in Code Sample 4.1), this notebook page contains information.

Figure 4.12

Figure 4.12 Optimization Notebook Page for house2.mod Example

The Optimization page displays the optimal solution.

The Solver Notebook Page

As with the other examples, the Solver notebook page contains statistics generated by ILOG
OPL Studio during the execution of the model.

Figure 4.13

Figure 4.13 Solver Notebook Page for house2.mod Example
I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L 109

C O M P L E T I N G T H E E X E C U T I O N
Completing the Execution

While you have been examining the results after running the model file, ILOG OPL Studio
has been in a waiting state. You can now complete the execution.

Click the Abort button in the execution tool bar of the Main window.

As it completes the execution, ILOG OPL Studio closes all the panels that were opened from
the Model browser. However, the solutions and results remain in the Solutions,
Optimization, Activities, and Sorted Activities notebook pages.

You can also close all the panels by right-clicking on the root item in the model browser.
110 I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L

4. S
o

lu
tio

n
 to

 a
S

ch
ed

u
lin

g
 P

ro
b

lem
C L O S I N G T H E M O D E L F I L E
Closing the Model File

This completes the house building example. You can close the model file in one of the
following ways:

◆ Select Close Current Editor from the File menu

◆ Press the keys Ctrl + F4

◆ In the Projects notebook page, right-click on the active model (house2.mod) and select
Close from the menu, as shown in Figure 4.14.

Figure 4.14

Figure 4.14 Closing a Model in the Projects Page

◆ In the editing area (when the window is in cascade mode) select Close from the menu, or
click on the button with an X in it, as shown in Figure 4.15.

Figure 4.15

Figure 4.15 Closing a Model in the Editing Area
I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L 111

C L O S I N G T H E M O D E L F I L E
112 I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L

C H A P T E R

5. S
ch

ed
u

lin
g

-
S

p
ecific D

yn
. D

isp
la
5

Tutorial: Scheduling-Specific Dynamic
Display

In this chapter you will see how to use the Activity Domains window.

OPL Studio enables you to define scheduling-specific dynamic display. The Activity
Domains dockable window shows the algorithm reducing the domains of the activities
during a search.
I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L 113

y

T H E A C T I V I T Y D O M A I N S W I N D O W
The Activity Domains Window

The vertical bar to the left of the Activity Domains window contains mode selectors. First
click a selector button, then click in the main part of the window for the selected mode to
become effective.

Mode Selectors
114 I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L

5. S
ch

ed
u

lin
g

-
S

p
ecific D

yn
. D

isp
la

T H E A C T I V I T Y D O M A I N S W I N D O W
Mode Selectors

● Time selector

Click on the arrow button, then click on the beginning of the activity and drag the cursor
across the activity, holding down the left mouse button. An approximate value of the time
at a given location appears in the center of the time scale.

● Elastic zoom mode

First, adjust the Activity Domains window to the required size. Click on the zoom button
then, with the left mouse button, trace a rectangle around the element(s) you want to
enlarge. When you release the mouse button, the enlarged image fills the window.

● Zoom in

Click on the button with a + sign, then click on the image in the main window. The image
is increased by a factor of 2 each time you click.

● Zoom out

Click on the button with a – sign, then click on the image in the main window. The image
is decreased by a factor of 2 each time you click.

● View all activity domains

Click on this button then click in the main part of the window. All the activity domains
become visible; their sizes are adjusted to fit into the window.

● Create new window

Click on this button, then trace a rectangle around the element(s) you want to view in
another window. A new dockable window is created, with a zoom level defined by the
rectangle.
I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L 115

y

T H E B R I D G E E X A M P L E
The Bridge Example

Using the distributed project bridgebr.prj you can:

◆ browse the model and select the “display domain” option

◆ select a debug option, then execute the model

◆ look at the algorithm animation when searching for solutions.

If you used the default directories at installation time, you can find the bridgebr.prj file
at the following location:

◆ For UNIX systems

<installation-directory>/OPLSt37/examples/opl/scheduler

◆ For Windows XP, Windows 2000, Windows NT 4, and Windows 98

c:\ILOG\OPLSt37\examples\opl\scheduler

To select the “display domain” option

1. Open the bridgebr.prj file.

2. Browse the model.

3. Right-click on activity a and select the option "display domain".

To execute the model

1. Select: Debug>Stop at Choice Point.

2. Click Run.

To observe the algorithm animation

1. The activity domains appear after the initial propagation, then the search begins.

2. Click 5 times on Next.
116 I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L

5. S
ch

ed
u

lin
g

-
S

p
ecific D

yn
. D

isp
la

T H E B R I D G E E X A M P L E
3. Place the mouse pointer over the 11th task. A tooltip appears with the activity name
a[s1].

To zoom in on the a[s1] activity

1. Enlarge the Activity Domains window to the required size.

2. Click on the zoom mode selector in the vertical tool bar.

3. Place the cursor in the main part of the window, hold down the left mouse button and
trace a rectangle around the a[s1] activity. Then lift your finger off the mouse button.
I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L 117

y

T H E B R I D G E E X A M P L E
4. The a[s1] activity fills the enlarged window.

Because of the breakable nature of some of the activities in this example, the Start Min-
End Min blue rectangle and the Start Max-End Max red rectangle may not always be the
same size.

5. Click Next a 6th time.

As soon as end min passes start max, the time window between these two dates is the
surely overlapped time window.

6. Click Next a 7th time. The activity is totally instantiated.

When start min = start max and end min = end max, the activity schedule is
totally determined.

7. Click on Continue Run to see the algorithm finding solutions and backtracking.

Reminder: You can change the colors of the time windows in the Advanced notebook page
of the Options dialog box.
118 I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L

C H A P T E R

6. U
ser-D

efin
ed

D

yn
am

ic D
isp

lay
6

Tutorial: User-Defined Dynamic Display

In this chapter you will see how to use the Drawing Board. OPL Studio enables you to define
your own backtrackable 2D graphical representation using the Drawing Board to animate
the search algorithm.

The Drawing Board

The Drawing Board is a dockable window that you can float and resize.

The Drawing Board creates ellipses, arrows, lines, arcs, polygons, polylines, grids and
labels. You can find the description of the Board keyword:

◆ in the online help (select Board and press the F1 key)

◆ in the ILOG OPL Studio: Language Manual.

Reminder: To float or dock a window, see Dockable GUI Elements on page 33.
I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L 119

T H E S Q U A R E E X A M P L E
The Square Example

Using the distributed model squaregr.mod you can:

◆ execute the model

◆ examine the first solution

◆ look at the algorithm animation when searching for the remaining solutions.

If you used the default directories at installation time, you can find the squaregr.mod file
at the following location:

◆ For UNIX systems

<installation-directory>/OPLSt37/examples/opl/scheduler

◆ For Windows XP, Windows 2000, Windows NT 4, and Windows 98

c:\ILOG\OPLSt37\examples\opl\scheduler

The aim of the square example is to place a set of small squares of different sizes into a large
square. The model is solved using scheduling algorithms, but the Gantt chart representation
used by default for scheduling representation does not fit the natural representation of the
problem. In our example we create a specific 2D representation by using the Drawing Board.

In the model we declare a color table containing standard X11 names:

string colors[1..21] = [
 "red","green","blue","yellow","pink",
 "brown","magenta","cyan","white","black",
 "turquoise1","SeaGreen1","gold1","IndianRed1","Sienna1",
 "tan1","salmon1","orange1","tomato1","HotPink1",
 "orchid2"
];

Next we declare the Drawing Board. Note that you can declare more than one if you need to.

Board b;

In the search part of the model we use Drawing Board methods to draw. We can bind data or
variables to the method parameters;

search {
 // Drawing the large square
 b.rectangle(0,0,112,112,2);
 // Drawing the small colored squares using variables and data
 forall(i in Squares) {
 b.filledRectangle(x[i].start,y[i].start,size[i],size[i],1,colors[i]);
 b.rectangle(x[i].start,y[i].start,size[i],size[i],1);
 };
 setTimes(x);
 setTimes(y);
};
120 I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L

T H E S Q U A R E E X A M P L E

6. U
ser-D

efin
ed

D

yn
am

ic D
isp

lay
For instance the large square, which is pure constant data, is drawn using the following
instruction:

b.rectangle(0,0,112,112,2);

The small squares, whose locations depend upon variable values, use two variables for (x, y)
location and data for height, width and colors.

Load the model squaregr.mod into OPL Studio, then click on Run to execute it.

By clicking on Continue Run, you will see the search for solutions. As soon as a location is
found for a square (that is, its x and y are bounded variables) the square is drawn. When
backtracking occurs, the square is cleared.

By default the drawing board is docked, but you can choose to have it automatically
undocked. Before executing a model, uncheck the Docked option in the Advanced page of
the Options dialog box(see page 171).

You can specify a width, a height and a scaling factor (between 0.0 and 2.0) when you
initialize the drawing board. If the Docked box is checked, only the height/width ratio is
guaranteed. If Docked is unchecked, the height and width values are respected.
I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L 121

T H E M A P E X A M P L E
The Map Example

Another example of Drawing Board use, coloring a map, can be found in:

<installation-directory>/OPLSt37/examples/opl/mapgr.prj

The Euler Example

Try also examples/opl/eulergr.mod to see another instance of Drawing Board use, this
time involving a grid and colored arrows.
122 I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L

C H A P T E R

7. D
ebu

g
g

in
g

 th
e

S
earch

 S
trateg

y

7

Tutorial: Debugging the Search Strategy

In this chapter, you will see the debug feature of ILOG OPL Studio applied to the search
procedure of constraint programming models. You will learn how to display the search tree
and how to use it in conjunction with the Choice Stack, the Drawing Board, and other
dynamic display facilities.

If you used the default directory at installation time, you will find the files you need at the
following location:

◆ For Windows XP, Windows 2000, Windows NT 4, and Windows 98

c:\ILOG\OPLSt37\examples\opl

◆ For UNIX systems

<installation-directory>/OPLSt37/examples/opl

Note: The debug feature primarily aims at tracing the search strategy of the model.
Models that are deterministic (that is, linear programming models) have no search
strategy and hence the debug feature has no effect.
I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L 123

A B A S I C E X A M P L E W I T H T H E E I G H T Q U E E N S P R O B L E M
A Basic Example with the Eight Queens Problem

There are some preliminary steps to take before executing the model. You need to modify
the code and select the appropriate options.

Setting up the Example

1. Open the file:

examples/opl/queens8.mod

This model contains the following code:

var int queens[1..8] in 1..8;
solve {
 forall(ordered i,j in 1..8) {
 queens[i] <> queens[j] ;
 queens[i] + i <> queens[j] + j;
 queens[i] - i <> queens[j] - j
 };
};

2. Add a simple search procedure:

search {
 forall(i in 1..8)
 tryall(v in 1..8)
 queens[i] = v;
};

3. From the Debug menu, select the options Stepping in Model and Display Search Tree.

4. Browse the model by selecting the menu item Execution>Browse Active Model. Right-
click on the queens item in the Model notebook page and select "display domain".

Executing the Model

1. Execute the model by clicking on the green Run button.

2. Open the Choice Stack and the Current Node Inspector (via the View menu). Click three
times on the Next button. You will see the yellow arrow in the editor margin pointing to
the line:

queens[i] = v;

Simultaneously the Current Node Inspector expands this choice as queens[1] = 1.

3. Click one more time on Next. You will see the result of the choice and of the constraint
propagation on the chessboard.

4. Click one more time on Next. The next choice tried is queens[2] = 1.
124 I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L

7. D
ebu

g
g

in
g

 th
e

S
earch

 S
trateg

y
A B A S I C E X A M P L E W I T H T H E E I G H T Q U E E N S P R O B L E M
Because the value 1 has already been removed from the domain of the variable
queens[2], this second choice leads to a failure.

5. Click once more on Next. The previous blue node is now red and a brother node,
representing the choice of the value 2 for the same variable, is to be explored:

6. Click Next two more times. You will notice that the value 2 has already been removed
from the queens[2] variable, so this choice leads to a failure too. However, the value 3
is in the domain of the variable. The constraint propagation that follows does not lead to
a failure. Other variables see their domain reduced by the propagation algorithm.
I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L 125

A B A S I C E X A M P L E W I T H T H E E I G H T Q U E E N S P R O B L E M
126 I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L

7. D
ebu

g
g

in
g

 th
e

S
earch

 S
trateg

y
A B A S I C E X A M P L E W I T H T H E E I G H T Q U E E N S P R O B L E M
Continuing the Execution

To continue the execution step by step, click the Next button repeatedly and watch how
ILOG OPL Studio assigns the variables. At this point, we describe:

◆ the tree mode selectors

◆ tree abstraction

◆ the default search strategy of ILOG OPL Studio.

Search Tree Mode Selectors

● Selection mode

Click on the arrow button, then double-click on a node belonging to the current branch.

● Elastic zoom mode

Click on the zoom button then, with the left mouse button, trace a rectangle around the
element(s) you want to enlarge. When you release the mouse button, the enlarged image
fills the window.

● Zoom in

Click on the button with a + sign, then click in the search tree window. The image is
increased by a factor of 2 each time you click.

● Zoom out

Click on the button with a – sign, then click in the search tree main window. The image is
decreased by a factor of 2 each time you click.

● View whole content

Click on this button then click in the search tree window. The whole tree becomes
visible.

● Create new window

Click on this button, then trace a rectangle around the element(s) you want to view in
another window. A new dockable window is created, with a zoom level defined by the
rectangle.
I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L 127

A B A S I C E X A M P L E W I T H T H E E I G H T Q U E E N S P R O B L E M
Tree Abstraction

The search tree used internally by ILOG Solver is always a binary tree. ILOG OPL Studio
abstracts this binary tree as an n-ary tree so that it resembles the search procedure you
defined. This tree abstraction facility is available only if you have defined the choice points
yourself using the try or tryall instructions.

Default Search Strategy

Click on Abort and edit the model to remove the search procedure.

It is important to observe that, although the model now has no search strategy, the debug
features are still beneficial. As explained in the ILOG OPL Studio: Language Manual, OPL
has default search strategies that are used when no search strategy is specified. The debug
features work, in fact, on these default search procedures, and OPL Studio stops at each
instruction or at each choice point inside them. However, the search tree is not abstracted as
an n-ary tree and the basic internal binary tree of ILOG Solver is displayed instead.

Select the menu option Debug>Stop At Solution. Rerun the model and click once on Next.
You should obtain the following display:

Figure 7.1

Figure 7.1 The Eight Queens Model with the Default Search Strategy
128 I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L

7. D
ebu

g
g

in
g

 th
e

S
earch

 S
trateg

y
A B A S I C E X A M P L E W I T H T H E E I G H T Q U E E N S P R O B L E M
In the search tree:

◆ The red nodes are the failures.

◆ The green nodes are the solutions.

◆ The blue nodes are the explored choice points (i.e. the interior nodes).

◆ The white nodes are the nodes created internally by ILOG Solver and that remain
unexplored so far.

◆ The black nodes are the unexplored nodes that ILOG Solver has finally pruned (visible
only in Slice-Based Search).

◆ The root node, although blue, does not correspond to a choice point. When the yellow
arrow points to the root, the algorithm is performing the initial domain reduction.

To end the 8 Queens example, click on Abort.
I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L 129

T H E F R E Q U E N C Y A L L O C A T I O N E X A M P L E
The Frequency Allocation Example

Using the frequency allocation problem, you will:

◆ execute a project using the debug feature of ILOG OPL Studio

◆ try two different exploration search strategies

◆ visualize dynamically the search strategy in the search tree.

This example centers around the frequency allocation problem that appears in Chapter 14 of
the ILOG OPL Studio: Language Manual.

The frequency allocation problem consists of allocating frequencies to a number of
transmitters so that there is no interference between transmitters and the number of allocated
frequencies is minimized. This problem is an actual cellular phone problem where the
network is divided into cells. Each cell contains a number of transmitters whose locations
are specified. The interference constraints are as follows:

◆ the distance between two transmitter frequencies within a cell must not be less than 16

◆ the distance between two transmitter frequencies from different cells varies according to
their geographical situations. The variations are described in a matrix.

The problem is to assign frequencies to transmitters to avoid interference and, if possible, to
minimize the number of frequencies.

Code Sample 7.1 shows the OPL model for this example. The model file is alloc.mod in
your product distribution.
130 I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L

7. D
ebu

g
g

in
g

 th
e

S
earch

 S
trateg

y
T H E F R E Q U E N C Y A L L O C A T I O N E X A M P L E
Code Sample 7.1int nbCells = ...;
int nbFreqs = ...;
range Cells 1..nbCells;
range Freqs 1..nbFreqs;
int nbTrans[Cells] = ...;
int distance[Cells,Cells] = ...;

struct TransmitterType {Cells c; int t;};

{TransmitterType} Transmitters = {<c,t> | c in Cells & t in 1..nbTrans[c]};
var Freqs freq[Transmitters];
var Freqs maxFreq;

solve {
 forall(c in Cells & ordered t1, t2 in 1..nbTrans[c])
 abs(freq[<c,t1>] - freq[<c,t2>]) >= 16;

 forall(ordered c1, c2 in Cells : distance[c1,c2] > 0)
 forall(t1 in 1..nbTrans[c1 & t2 in 1..nbTrans[c2])
 abs(freq[<c1,t1>] - freq[<c2,t2,>]) >= distance[c1,c2];
};

search {
 forall(t in Transmitters ordered by increasing <dsize(freq[t]),nbTrans[t.c]>)
 tryall(f in Freqs ordered by decreasing nbOccur(f,freq)){
 freq[t] = f;
 };
 maxFreq = sum(i in Freqs) (nbOccur(i,freq) > 0;)
};

Code Sample 7.1 OPL Model for the Frequency Allocation Example with Search Procedure
I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L 131

T H E F R E Q U E N C Y A L L O C A T I O N E X A M P L E
Code Sample 7.2 shows the data initialization for the problem. This code can be found in the
alloc.dat file of the product distribution.

Code Sample 7.2nbCells = 25;
nbFreqs = 256;
nbTrans = [8 6 6 1 4 4 8 8 8 8 4 9 8 4 4 10 8 9 8 4 5 4 8 1 1];
distance = [
 [16 1 1 0 0 0 0 0 1 1 1 1 1 2 2 1 1 0 0 0 2 2 1 1 1]
 [1 16 2 0 0 0 0 0 2 2 1 1 1 2 2 1 1 0 0 0 0 0 0 0 0]
 [1 2 16 0 0 0 0 0 2 2 1 1 1 2 2 1 1 0 0 0 0 0 0 0 0]
 [0 0 0 16 2 2 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 1 1]
 [0 0 0 2 16 2 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 1 1]
 [0 0 0 2 2 16 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 1 1]
 [0 0 0 0 0 0 16 2 0 0 1 1 1 0 0 1 1 1 1 2 0 0 0 1 1]
 [0 0 0 0 0 0 2 16 0 0 1 1 1 0 0 1 1 1 1 2 0 0 0 1 1]
 [1 2 2 0 0 0 0 0 16 2 2 2 2 2 2 1 1 1 1 1 1 1 0 1 1]
 [1 2 2 0 0 0 0 0 2 16 2 2 2 2 2 1 1 1 1 1 1 1 0 1 1]
 [1 1 1 0 0 0 1 1 2 2 16 2 2 2 2 2 2 1 1 2 1 1 0 1 1]
 [1 1 1 0 0 0 1 1 2 2 2 16 2 2 2 2 2 1 1 2 1 1 0 1 1]
 [1 1 1 0 0 0 1 1 2 2 2 2 16 2 2 2 2 1 1 2 1 1 0 1 1]
 [2 2 2 0 0 0 0 0 2 2 2 2 2 16 2 1 1 1 1 1 1 1 1 1 1]
 [2 2 2 0 0 0 0 0 2 2 2 2 2 2 16 1 1 1 1 1 1 1 1 1 1]
 [1 1 1 0 0 0 1 1 1 1 2 2 2 1 1 16 2 2 2 1 2 2 1 2 2]
 [1 1 1 0 0 0 1 1 1 1 2 2 2 1 1 2 16 2 2 1 2 2 1 2 2]
 [0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 2 2 16 2 2 1 1 0 2 2]
 [0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 16 2 1 1 0 2 2]
 [0 0 0 1 1 1 2 2 1 1 2 2 2 1 1 1 1 2 2 16 1 1 0 1 1]
 [2 0 0 0 0 0 0 0 1 1 1 1 1 1 1 2 2 1 1 1 16 2 1 2 2]
 [2 0 0 0 0 0 0 0 1 1 1 1 1 1 1 2 2 1 1 1 2 16 1 2 2]
 [1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 1 1 16 1 1]
 [1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 1 2 2 1 16 2]
 [1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 1 2 2 1 2 16]];
};

Code Sample 7.2 OPL Data for the Frequency Allocation Example (alloc.dat)
132 I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L

7. D
ebu

g
g

in
g

 th
e

S
earch

 S
trateg

y
T H E F R E Q U E N C Y A L L O C A T I O N E X A M P L E
Select Open>Project from the File menu, or click on the Load Project button in the tool bar,
then select alloc.prj from the list and click Open.

The project tree showing the associated model and data files is displayed on the Projects
page of the work space. For this example, we will load the data into the editor.

Figure 7.2

Figure 7.2 Project Tree for the Frequency Allocation Example (in Dockable Window)
I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L 133

T H E F R E Q U E N C Y A L L O C A T I O N E X A M P L E
ILOG OPL Studio opens the files associated with the project in the editing area of the Main
window. For this example, it opens alloc.mod and alloc.dat.

Figure 7.3

Figure 7.3 Main Window for the Frequency Allocation Example
134 I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L

7. D
ebu

g
g

in
g

 th
e

S
earch

 S
trateg

y
T H E F R E Q U E N C Y A L L O C A T I O N E X A M P L E
Looking at the Model Structure

If you want to see the data structure of alloc.mod before executing the project, you need to
browse the model. To do this:

◆ click on the Model tab in the work space

◆ right-click on the root item

◆ select Browse Active Model from the menu (see Figure 7.4).

Figure 7.4

Figure 7.4 Browsing an Active Model - Frequency Allocation Example

Other ways of browsing a model are described in Using the Model Browser on page 67.

The model’s elements are displayed in a tree structure in the work space (see Figure 7.5).

Figure 7.5

Figure 7.5 Model Browser for the Frequency Allocation Example

To expand the docked work space window, do one of the following:

◆ drag down the border between the work space and the output area and drag to the right
the border between the work space and the editing area

◆ click on the button in the top right corner of the work space.
I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L 135

T H E F R E Q U E N C Y A L L O C A T I O N E X A M P L E
Setting the Debug Option

The frequency allocation example illustrates the debug feature well, because of the search
procedure that appears in the model file. (See Code Sample 7.1.) To use the debug feature,
select one of the debug options from the Debug menu in the menu bar.

ILOG OPL Studio gives you the following options for a model debugging session:

◆ Stepping in model – ILOG OPL Studio stops at each instruction in the search
procedure.

◆ Stop at choice point – ILOG OPL Studio stops at each choice point.

◆ Stop at solution – ILOG OPL Studio stops at each solution in an optimization.

◆ Display Search Tree – The search tree is displayed.

◆ Add/Remove Breakpoint – A breakpoint breaks the execution in the search procedure.
This is useful when you want to run quickly through part of the execution, then stop and
display the value of a variable, or continue the execution by clicking Next.

To begin this example, we will run ILOG OPL Studio in debug mode and stop at each choice
point. Select the option Stop at Choice Point. Once you have selected a debug option from
the menu, ILOG OPL Studio is in debug mode.

Figure 7.6

Figure 7.6 Debug Menu
136 I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L

7. D
ebu

g
g

in
g

 th
e

S
earch

 S
trateg

y
E X E C U T I N G T H E F R E Q U E N C Y A L L O C A T I O N P R O J E C T
Executing the Frequency Allocation Project

You can now execute the project with ILOG OPL Studio in debug mode.

Click the Run button in the tool bar of the Main window.

During the execution, ILOG OPL Studio:

◆ analyzes the model and, if not already done, produces the summary information and
updates the structure in the model browser

◆ checks for syntactic or semantic errors

◆ executes the model displaying “OPL Studio is running” in the status bar, showing the
name alloc.prj in the Path Name area, and changing the color patch to green

◆ stops at the first choice point

◆ enters a waiting state, displays “Stopped at instruction?” in the status bar, displays the
line number and column number of the cursor in the editor, and changes the color patch
to yellow.

Note: If you happen to have other models open in the Main window, ILOG OPL Studio
always gives precedence to the model associated with the active project. The active
project model always gets executed. To find out which project is the active one, look at the
Projects notebook page; the active project is colored red.
I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L 137

E X E C U T I N G T H E F R E Q U E N C Y A L L O C A T I O N P R O J E C T
The Main window now looks like this:

Figure 7.7

Figure 7.7 Main Window in Debug Mode with Stop at Choice Point Option

The yellow arrow in the editor margin indicates the instruction at which execution stops.

Now you can display two additional windows that will help you perform your debugging
task:

◆ the Stack window

◆ the Inspector window.
138 I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L

7. D
ebu

g
g

in
g

 th
e

S
earch

 S
trateg

y
E X E C U T I N G T H E F R E Q U E N C Y A L L O C A T I O N P R O J E C T
Displaying the Stack Window

Click the View Choice Stack button in the tool bar of the Main window.

ILOG OPL Studio displays the Stack window in a docked state, but you can float it by
clicking on its handle at the left side. All the instructions executed so far appear in the Stack
window. After stopping at the first choice point, the window looks like this:

Figure 7.8

Figure 7.8 Stack Window (Floating) at the First Choice Point

Displaying the Inspector Window

Click the Inspect Current Node button in the tool bar of the Main window.

ILOG OPL Studio displays the Inspector window in a docked state, but you can float it by
clicking on its handle at the left side. The current instruction is displayed in the Inspector
window.

Figure 7.9

Figure 7.9 Inspector Window (Floating) at the First Choice Point
I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L 139

E X E C U T I N G T H E F R E Q U E N C Y A L L O C A T I O N P R O J E C T
Continuing the Execution

You can continue the execution by clicking the Next button to look at the subsequent choice
points.

Click the Next button to go the next choice point.

As you do this, you can see how the Stack and Inspector windows change, showing the
instructions that were executed. The Stack window now looks like this:

Figure 7.10

Figure 7.10 Stack Window at Second Choice Point

The Inspector window now looks like this:

Figure 7.11

Figure 7.11 Inspector Window at Second Choice Point
140 I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L

7. D
ebu

g
g

in
g

 th
e

S
earch

 S
trateg

y
E X E C U T I N G T H E F R E Q U E N C Y A L L O C A T I O N P R O J E C T
Click the Next button two more times. As you progress through the execution, you can see
the values that were assigned to the variables. The Stack and Inspector windows should now
look like this:

Figure 7.12

Figure 7.12 Stack Window at the Fourth Choice Point

Figure 7.13

Figure 7.13 Inspector Window at the Fourth Choice Point

Now, you can do one of the following:

◆ If you want to continue, step by step, looking at the values assigned to the variables, click
the Next button until you reach the end of the execution.

◆ If you want to continue the execution without stopping, click the Continue Run
button in the tool bar.

When you click the Continue Run button at this point, ILOG OPL Studio leaves debug
mode and finds the first solution. This solution appears in the Solutions notebook page.
ILOG OPL Studio then enters its waiting state so that you can ask for the next solution or
complete the execution.

◆ If you have checked what you are looking for, you can terminate the execution by
clicking the Abort button in the execution tool bar.
I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L 141

E X E C U T I N G T H E P R O J E C T W I T H T H E ‘ S T E P P I N G I N M O D E L ’ O P T I O N
For this example, we will terminate the execution so that you can look at another way of
using the debug feature.

Click the Abort button. ILOG OPL Studio returns to its idle state. Notice that the model
browser collapses, and the Stack and Inspector windows are closed.

Next, you are going to see how the Stepping option of the debug feature works.

Executing the Project with the ‘Stepping in Model’ Option

The Stepping in Model option from the Debug menu allows you to follow the execution of
the model more closely by looking at each instruction. The difference between the Stepping
in Model option and the Stop at Choice point option is as follows. When you use Stop at
Choice Point, you see only the values that were actually assigned during the execution.
When you use Stepping in Model, you see all the values that ILOG OPL Studio tries to
assign during the execution, including the ones leading to failures. With the Stepping in
Model option, you can see a more detailed view of the execution.

Go to the Debug menu and deselect the Stop at Choice Point option, then select the Stepping
in Model option.

Now, click the Run button to execute ILOG OPL Studio in debug mode.
142 I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L

7. D
ebu

g
g

in
g

 th
e

S
earch

 S
trateg

y
E X E C U T I N G T H E P R O J E C T W I T H T H E ‘ S T E P P I N G I N M O D E L ’ O P T I O N
When ILOG OPL Studio stops at the first instruction, the Main window looks like this:

Figure 7.14

Figure 7.14 Main Window in Debug Mode with Stepping Option

The first instruction is indicated by the yellow current line arrow in the editor.
I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L 143

E X E C U T I N G T H E P R O J E C T W I T H T H E ‘ S T E P P I N G I N M O D E L ’ O P T I O N
Displaying the Stack Window and Inspector Window

Now, open the Stack and Inspector windows. Click those buttons in the tool bar.

The Stack window will again display all the instructions executed in the program. The
Inspector window will again display the current instruction executed.

Figure 7.15

Figure 7.15 Stack and Inspector Windows at First Instruction of Stepping Option
144 I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L

7. D
ebu

g
g

in
g

 th
e

S
earch

 S
trateg

y
E X E C U T I N G T H E P R O J E C T W I T H T H E ‘ S T E P P I N G I N M O D E L ’ O P T I O N
Click the Next button to move to the next instruction. You can see how the windows have
changed.

Figure 7.16

Figure 7.16 Stack and Inspector Windows at Second Instruction of Stepping Option

Click the Next button four more times. While you are doing this, notice how ILOG OPL
Studio moves from instruction to instruction and how the Stack and Inspector windows
change with each move.
I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L 145

E X E C U T I N G T H E P R O J E C T W I T H T H E ‘ S T E P P I N G I N M O D E L ’ O P T I O N
The Stack and Inspector windows now look like this:

Figure 7.17

Figure 7.17 Stack and Inspector Windows at Sixth Instruction of Stepping Option

If you click the Next button several more times, you will see how ILOG OPL Studio displays
the values that it tries to assign to the variables.

Because the values 1 and 2 assigned to freq[<c:5;t:1>] lead to a failure, you did not see
them with the option Stop at Choice Point. Here, with the option Stepping in Model, you can
also see those attempts.
146 I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L

7. D
ebu

g
g

in
g

 th
e

S
earch

 S
trateg

y
E X E C U T I N G T H E P R O J E C T W I T H T H E ‘ S T E P P I N G I N M O D E L ’ O P T I O N
Visualizing the Search Strategy with the Stack and Inspector Windows

The Stack window displays the current path inside the search tree.

To understand more clearly what is displayed in the Stack and Inspector windows during a
search, we will examine the corresponding search tree.

Figure 7.18

Figure 7.18 Order of the Search Tree Exploration with the Default Depth-First Search

In this search tree, the path 1-2-5-24 corresponds to the following choices:

◆ the value 1 has been assigned to the variable freq[<c:4;t:1>] and

◆ the value 3 has been assigned to the variable freq[<c:5;t:1>] and

◆ the value 19 has been assigned to the variable freq[<c:5;t:2>].

When executing with the Stop at Choice Point debug option, only the choice point nodes are
displayed in the Stack and Inspector Windows; the failure nodes are hidden. When executing
with the Stepping in Model debug option, you see all the nodes, including the choices that
have failed. The number between brackets indicates the depth in the search tree.

At the same level, the same variable is selected but different values are tried. Notice that the
order in which the values must be tried is specified by the statement:

ordered by decreasing nbOccur(f,freq)
I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L 147

V I S U A L I Z I N G T H E S E A R C H T R E E
For instance, look at the 7th and 8th nodes. You will notice that the value 3 is tried before the
value 2 for the variable freq[<c:5;t:2>]. In the path 1-2-5, the frequencies 1 and 3 are
used once each for the variables freq[<c:4;t:1>] and freq[<c:5;t:2>] respectively.
The value 2 is not yet used, so has lower priority than the values 1 and 3. You see that the
statement prioritizes the use of already allocated frequencies.

Click on the Abort button to stop execution of the project.

Visualizing the Search Tree

We are going to execute alloc.prj again, this time displaying the search strategy in the
search tree. Two search procedures will be used:

◆ the Depth First Search

◆ the Slice-Based Search.

Using the Depth First Search

When declaring a search specification, you declare the search tree that the OPL engine must
explore. You do not specify how the search tree is to be explored. By default, the search tree
is explored by a Depth First Search.

1. In the Debug Menu, deselect Stepping in Model, then select the Display Search Tree
option in addition to Stop at Choice Point.

2. Execute the project by clicking on Run.

3. Select the View>Choice Stack menu item.

4. Click on Next 3 times. Note that, with the option Stop at Choice Point, OPL Studio does
not stop at the fail nodes. The n-ary tree corresponding to your search is displayed.

The yellow arrow indicates the current node.

5. Double-click on the second, and then on the third node from the root.
148 I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L

7. D
ebu

g
g

in
g

 th
e

S
earch

 S
trateg

y
V I S U A L I Z I N G T H E S E A R C H T R E E
A green arrow appears next to the node you have selected by the double-click and the
corresponding lines in the goal stack are highlighted.

6. Right click on the third node. In the context-sensitive menu that appears, select the
Shrink option. The subtree is shrunk and replaced by a triangle, the color of which
depends on the nodes that have been shrunk. If a solution has been found in the subtree,
the triangle is green. If the subtree contains only blue nodes (Interior nodes, i.e. choice
points), then it is blue. If there are failures in the subtree and no solution found, it is red.

Note: You must select a node in the active branch, that is, a node in the path from the
current node (yellow arrow) to the root.
I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L 149

V I S U A L I Z I N G T H E S E A R C H T R E E
Using the Slice-Based Search

You can select other search strategies, including the Slice-Based Search (SBS). See the
ILOG OPL Studio: Language Manual for more information on search strategies. We will
now try the SBS strategy to see what the Stack and Inspector windows display.

1. Stop the execution with the Abort button.

2. Select the SBS as follows:

● open the Project Options dialog box via the command:

 Options>Customize Active Project Options

● in the Constraint Programming page, select Slice-Based Search from the Procedure
combo-box

● Click on OK.

3. Now rerun the project with the Stepping in Model debug option. (Don’t forget to deselect
the previous options.)

4. Click on the buttons View Choice Stack and Inspect Current Node to make the
corresponding docking windows appear.

5. Click on the Next button, 10 times.

The Stack window should display:

[0]--->solve
[0]--->forall(t in Transmitters)
[0]--->tryall(f in Freqs)
[1]--->freq[#<c:4,t:1>#] = 1
[1]--->tryall(f in Freqs)
[2]--->freq[#<c:5,t:1>#] = 3
[2]--->tryall(f in Freqs)
[3]--->freq[#<c:5,t:2>#] = 3

6. Click on the Next button an 11th time.

The Stack window should now display:

[0]--->solve
[0]--->forall(t in Transmitters)
[0]--->tryall(f in Freqs)
[1]--->freq[#<c:4,t:1>#] = 1
[1]--->tryall(f in Freqs)
[2]--->freq[#<c:5,t:1>#] = 4

It has jumped in the tree.

The corresponding search tree exploration order is as follows:
150 I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L

7. D
ebu

g
g

in
g

 th
e

S
earch

 S
trateg

y
V I S U A L I Z I N G T H E S E A R C H T R E E
Figure 7.19

Figure 7.19 Part of the Search-tree Exploration Order with the SBS

You see that the SBS explores the same tree in a different order. See the ILOG OPL Studio:
Language Manual for more information.

You can abort and rerun with the Display Search Tree item checked. After clicking 11 times
on the Next button, you will obtain the following tree layout:

When you have a feel for how the Stepping in Model option works, stop the execution and
reopen the Project Options dialog box. Return to the Depth First Search procedure which is,
in fact, more suitable in this example. Uncheck the Debug options and run the project again.

Note that an example demonstrating the usefulness of the SBS strategy is given at the
following location:

examples\opl\scheduler\jobshop20.prj

To compute the optimal solution and prove the optimally, this model takes days using Depth
First Search and seconds with Slice-Based Search.

The Main window now looks like this:

[0] root

[1] freq[<c:4;t:1>] = 1

[2] freq[<c:5;t:1>] = 1 [2] freq[<c:5;t:1>] = 2 [2] freq[<c:5;t:1>] = 3

[3] freq[<c:5;t:2>] = 1 [3] freq[<c:5;t:2>] = 3 [3] freq[<c:5;t:2>] = 19[3] freq[<c:5;t:2>] = 2 [3] freq[<c:5;t:2>] = 4 ...

choice point

failure

1

2

3 4 5

6 7 8 9 24
I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L 151

V I S U A L I Z I N G T H E S E A R C H T R E E
Figure 7.20

Figure 7.20 Main Window After Leaving Debug Mode

ILOG OPL Studio displays the first solution and enters the waiting state, expecting further
direction on how to proceed.

◆ You can look at further solutions by clicking the Next button or the Continue Run button.
ILOG OPL Studio continues the execution and produces all the remaining solutions, if
they exist.

◆ Otherwise, to terminate the execution, you can click the Abort button .
152 I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L

7. D
ebu

g
g

in
g

 th
e

S
earch

 S
trateg

y
C O O P E R A T I N G S O L V E R S – C O M B I N E D L P A N D C P
Cooperating Solvers – Combined LP and CP

The keywords minimize with linear relaxation, instead of minimize, ensure that
OPL uses the linear relaxation on all linear constraints. Thus CPLEX will produce a lower
bound at each node of the Solver search tree. In this section we will take the example
wareboth.prj to visualize the search tree, which will be explored in both cases:

◆ using linear relaxation

◆ not using linear relaxation.

First, open the project:

examples\opl\wareboth.prj

The example is described in the ILOG OPL Studio: Language Manual. In this problem, a
company is considering a number of locations for building warehouses to supply its existing
stores. Each possible warehouse has a fixed maintenance cost and a maximum capacity
specifying how many stores it can support. In addition, each store can be supplied by only
one warehouse and the supply cost to the store varies according to the warehouse selected.
The application consists of choosing a) the warehouses to build and b) which of them should
supply the various stores in order to minimize the total cost, i.e., the sum of the fixed and
supply costs.

This model does not contain only linear constraints over integer expressions. The model
contains higher order constraints. See the constraint:

 forall(w in Warehouses)
 sum(s in Stores) (supplier[s] = w) <= capacity[w];

supplier[s] = w contains a variable, so it is a constraint, not a traditional expression.
Therefore the overall constraint is a meta-constraint (a constraint on constraints).

If we do not use explicitly with linear relaxation, OPL switches to Solver alone.
I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L 153

C O O P E R A T I N G S O L V E R S – C O M B I N E D L P A N D C P
1. First you need to modify the example. Put the objective function in a variable so that you
can refer to it graphically. Create totalCost, an integer variable between 0 and 1000.

......
var int totalCost in 0..1000;

Now minimize totalCost and add a constraint to link this variable to the objective
function expression.

minimize with linear relaxation
 totalCost
subject to {
 totalCost = sum(w in Warehouses) fixed * open[w] +
 sum(w in Warehouses, s in Stores)
 supplyCost[s,w] * supply[s,w];

};

search {
 forall(s in Stores ordered by decreasing regretdmin(cost[s]))
 tryall(w in Warehouses ordered by increasing supplyCost[s,w])
 supplier[s] = w;
};

2. Select Display Search Tree from the Debug menu. (Deselect any other options.)

3. Run the program. You will see a small search tree, with only a few branches. The optimal
value in the Solutions panel is 383. Click on Abort to stop the search.

4. Comment the keywords with linear relaxation.

minimize // with linear relaxation
 totalCost

5. Run the program again. This time the tree is much bigger. Click on Abort.

6. In the Debug menu, select Stop At Choice Point and Stop At Solution.

7. In the Execution menu, select Browse Active Model.

8. In the Model Browser Notebook Page, right click on the totalCost variable and select
the option “display domain”.

9. Run the program again. Select View>Choice Stack or click on the corresponding item on
the execution tool bar.

The root of the tree appears. The domain of the objective is 0..1000.

Double-click on the totalCost item inside the model browser. You can keep a snapshot
of the domain’s current state.
154 I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L

7. D
ebu

g
g

in
g

 th
e

S
earch

 S
trateg

y
C O O P E R A T I N G S O L V E R S – C O M B I N E D L P A N D C P
10. Click once on Next. You see the domain of the objective reduced to 41..1000 in the lower
notebook.

Double-click on the totalCost item inside the model browser. You can keep another
snapshot of the domain’s current state.

Figure 7.21

Figure 7.21 Search Tree and Objective Bounds, after One Choice using Solver without Linear
Relaxation

11. Now click on the Next button six more times. You will see OPL finding solutions and
backtracking.
I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L 155

C O O P E R A T I N G S O L V E R S – C O M B I N E D L P A N D C P
Figure 7.22

Figure 7.22 Search Tree without Linear Relaxation after 14 Next Commands

12. Click on the Abort button.

Uncomment the keywords with linear relaxation. Run the program again.

The root of the tree appears. The domain of the objective is 376..1000. CPLEX produced
a first lower bound: 376.

13. Double-click on the totalCost item inside the model browser. You can keep a snapshot
of the domain’s current state.

14. Click one time on Next. This second node represents the first choice. You see the domain
of the objective reduced to 385..1000 in the lower notebook. CPLEX produced a lower
bound at 385. Double-click on the totalCost item inside the model browser. You can
keep another snapshot of the domain’s current state.
156 I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L

7. D
ebu

g
g

in
g

 th
e

S
earch

 S
trateg

y
C O O P E R A T I N G S O L V E R S – C O M B I N E D L P A N D C P
Figure 7.23

Figure 7.23 Search Tree after One Choice using Solver with Linear Relaxation at Each Node

15. Click 12 more times on the Next button. You see OPL finding 3 solutions. The third one
has 385 as objective value, that is the lower bound of the totalCost domain as
computed by the linear relaxation. Double click on the first choice, i.e. the child of the
root node. The Choice Stack window appears and the label corresponding to the selected
node is highlighted. The first choice sets the variable supplier[0] to the value
London.
I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L 157

C O O P E R A T I N G S O L V E R S – C O M B I N E D L P A N D C P
You can drag and drop to see the complete choice stack together with the search tree:

16. Click one more time on the Next button. This time the search explores fewer nodes and
backtracks sooner to the root children, pruning the other potential nodes. The pruned
nodes are not displayed. Compare this to the previous tree obtained without the linear
relaxation. This time, because you know that the lower bound of the objective value is
385 in the subtree beginning at the root’s first child, it is unnecessary to search for a
better solution than the third solution found (Objective Value: 385). So Solver prunes this
subtree and explores the brothers of the root’s first child.
158 I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L

7. D
ebu

g
g

in
g

 th
e

S
earch

 S
trateg

y
C O O P E R A T I N G S O L V E R S – C O M B I N E D L P A N D C P
Figure 7.24

Figure 7.24 Search Tree with Linear Relaxation after 14 Next commands
I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L 159

E X P L O R A T I O N S T R A T E G Y – D R A W I N G B O A R D C O M B I N E D W I T H S E A R C H T R E E
Exploration Strategy – Drawing Board Combined with Search Tree

In this section you will visualize simultaneously the search tree and a 2D graphic
representation of the choices made by the algorithm at each search node.

1. Open the file:

examples\opl\eulergr.mod

2. Select the following options from the Debug menu:

Display Search Tree

Stop At Choice Point

Stop At Solution.

3. Click on the Run button, and click on the Next button several times.

You can visualize the selected knight moves on the chessboard, created simultaneously
in the Drawing Board panel and the explored Search Tree. First, notice that you have
access to a binary tree. The basic one produced by ILOG Solver. The n-ary tree is
available only if you define the choice points yourself with the try or tryall
instructions in the search procedure. To understand what happens at each choice point,
take a look at the Drawing Board.

4. Click on the Continue Run button and observe the yellow arrow exploring the tree in a
Depth First Search strategy. The white nodes are the nodes created by ILOG Solver and
not yet visited.

5. Click on the Abort button. Select Customize Default Options from the Options Menu.
Select the Constraint Programming page and select the Slice-Based Search as the search
strategy.

6. Deselect Stop At Choice Point and Stop At Solution. Run the example again. This time
you see the yellow arrow jumping in the tree and leaving some white nodes behind it.
These white nodes are left unvisited for the moment. They will be visited or pruned later.
160 I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L

7. D
ebu

g
g

in
g

 th
e

S
earch

 S
trateg

y
E X P L O R A T I O N S T R A T E G Y – D R A W I N G B O A R D C O M B I N E D W I T H S E A R C H T R E E
Figure 7.25

Figure 7.25 Exploring the Search Tree in the Slice-Based Search

The corresponding state of the Drawing Board is shown below (the colors have no
special meaning):

The white dots represent unexplored nodes.
I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L 161

T E R M I N A T I N G I L O G O P L S T U D I O
7. Click on the Abort button. Return to the Options dialog box and reselect the Depth First
Search as search strategy. Click on OK.

Terminating ILOG OPL Studio

This completes the explanation of displaying the search with ILOG OPL Studio.

This also concludes the ILOG OPL Studio tutorial. By now, you should be able to perform
all the basic tasks and start creating and executing your own projects with ILOG OPL
Studio.

If you are finished using ILOG OPL Studio, you can terminate the session by selecting Quit
from the File menu.
162 I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L

C H A P T E R

8. C
u

sto
m

izin
g

 IL
O

G

O
P

L
 S

tu
d

io
8

Customizing ILOG OPL Studio

To customize ILOG OPL Studio to suit your particular needs you can:

◆ set constraint programming options

◆ specify editor options

◆ specify output options

◆ specify options for makefile generation

◆ indicate paths for model and script files

◆ set options for mathematical programming (described in Chapter 9, Mathematical
Programming).
I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L 163

D E F A U L T O P T I O N S A N D P R O J E C T O P T I O N S
Default Options and Project Options

There are two types of options:

◆ those that are set for OPL Studio and become the default settings and apply to stand-
alone models and scripts

◆ those that are set for an active project, and apply only to that project.

The Default Options and Project Options dialog boxes contain the same options. Only the
title bars differ. This chapter describes how to set default options.

Setting the Default Options

You can customize your ILOG OPL Studio sessions using the Default Options dialog box.
(See Figure 8.1.) To access this dialog box, select Options>Customize Default Options in the
menu bar.

To set your options for the current session, click Apply or OK.

To reset the default values, click Reset.

Default options are saved in the default.prj file, in your home directory on UNIX and in
your profile directory on Windows, when you quit the application or after the command
Save All. The options will then be restored the next time you start OPL Studio. Only an
option whose value differs from its default value is saved in the default.prj file.

Options for stand-alone model and script files are set in the Default Options dialog box.

Setting Project Options

For an active project, there are two ways of accessing the project options:

◆ In the menu bar, select Options>Customize Active Project Options

◆ In the project tree, right-click on the project name, then select Project Options from the
menu.

Options and files associated with the active project are saved by right-clicking on the project
name, in the project tree, then selecting Save the Project.

See Setting Project Options on page 60.

Navigating in the Options Dialog Boxes

To select a notebook page, either click on a tree item or click on the corresponding tab.

You can also use the navigation arrows in the top right corner.

Note: The project settings take precedence over the default settings.
164 I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L

8. C
u

sto
m

izin
g

 IL
O

G

O
P

L
 S

tu
d

io
S E T T I N G C O N S T R A I N T P R O G R A M M I N G O P T I O N S
Setting Constraint Programming Options

Use the Constraint Prog. notebook page to set the default search strategy and search
procedure for ILOG Solver.

Figure 8.1

Figure 8.1 Default Options - Constraint Programming

◆ Strategy – You can choose from:

Standard (default)

Dichotomic

◆ Procedure – You can choose from:

Depth First Search (default)

Sliced-Based Search

Depth-bounded Discrepancy Search

Best First Search

Interleaved Depth First Search

For information on these search procedures, refer to the ILOG Solver User’s Manual.
I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L 165

S E T T I N G E D I T O R O P T I O N S
Setting Editor Options

Some of the editor options are described in The Text Editor on page 41.

You can use the Editor notebook page to set the default fonts and colors for the ILOG OPL
Studio editor.

Figure 8.2

Figure 8.2 Editor Options
166 I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L

8. C
u

sto
m

izin
g

 IL
O

G

O
P

L
 S

tu
d

io
S E T T I N G E D I T O R O P T I O N S
Changing the Fonts

You can change the font used for text displays. When you click the Font button, ILOG OPL
Studio displays the Font Chooser dialog box.

Figure 8.3

Figure 8.3 Font Chooser Dialog Box

Use the list box on the left side of the dialog box to choose the type of font.

Use the check boxes in the middle of the dialog box to choose the style of font (italic, bold,
underlined), or the font size in points.

Use the list box on the right side of the screen to specify the size of the font.

The text box at the bottom of the dialog box shows the results of your selection.

Click Apply to return to the Default Options dialog box. You must also click Apply in the
Default Options dialog box for your changes to appear in the Main window.

The options will then be restored the next time you start OPL Studio.

Tip: Choose fixed fonts if you have them. They will improve indentation and scrolling
performance.
I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L 167

S E T T I N G E D I T O R O P T I O N S
Changing the Foreground and Background Colors

You can change the color used for the following text displays:

◆ Editor – the default colors used for ordinary text inside the editor.

◆ Errors – the colors used to display errors found during syntax checking.

◆ OPL and OPLScript – the colors used to highlight:

● OPL and C++ keywords (default: blue and white)

● OPL and OPLScript functions or methods (default: violet and white)

● OPLScript keywords and C++ preprocessor macros (default: orange and white)

◆ Comments - the colors used to display comments in the files you create.

Click the Fore or Back button next to the type of text whose color you want to change. ILOG
OPL Studio displays the Color Chooser dialog box. Select Color Names or the Color Disk.

Figure 8.4

Figure 8.4 Color Chooser Dialog Boxes

You can use the sliders on the left side of the panels to obtain a color, click the color name in
the Names dialog box, or mix colors in the Color Disk.

The color box at the bottom of the dialog box shows the results of your selection.

Click Apply to return to the Default Options dialog box. You must also click Apply in the
Default Options dialog box for your changes to appear in the Main window.

The options will then be restored the next time you start OPL Studio.
168 I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L

8. C
u

sto
m

izin
g

 IL
O

G

O
P

L
 S

tu
d

io
S E T T I N G O U T P U T O P T I O N S
Setting Output Options

Use the Output notebook page to set the display options for ILOG OPL Studio.

Figure 8.5

Figure 8.5 Output Options

◆ For the model browser display windows:

● Square matrix – check this box to specify that the cells in a displayed matrix appear
as squares. If this box is not checked, the cells appear as rectangles.

● Hide the zeros – check this box to specify that the zeros in a displayed matrix do not
appear. If this box is not checked, the zeros appear in the matrix.

● Font – the font used in the results panels displayed from the model browser. Select
options from the Font Chooser.

● Data colors – the colors used to display the results in the panels that pop up from the
model browser. Select options from the Color Chooser.

● Label colors – the colors used to display the labels of a matrix in the panels that pop
up from the model browser. Select options from the Color Chooser.

● Gantt font – the fonts used in the Gantt charts displayed from the model browser.

● Gantt activities color – the activities colors in the Gantt charts displayed from the
model browser.
I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L 169

S E T T I N G O U T P U T O P T I O N S
◆ For the output notebook:

● Activities – whether or not the Activities notebook page is displayed during the
execution of a model with activities defined.

● Sorted Activities – whether or not the Sorted Activities notebook page is displayed
during the execution of a model with activities defined.

● Textual result – whether or not ILOG OPL Studio displays the instantiation of the
variables in the Solutions and Optimization notebook pages.

● Precision – the number of digits you want to see after the decimal point when
displaying a floating point value. The default is 4.

● Console Font – the font used in the Console, Solutions, Optimization, Log and
Output notebook pages.
170 I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L

8. C
u

sto
m

izin
g

 IL
O

G

O
P

L
 S

tu
d

io
S E T T I N G A D V A N C E D O P T I O N S
Setting Advanced Options

Use the Advanced notebook page to set colors for activity domains and docking options for
the drawing board.

Figure 8.6

Figure 8.6 Advanced Options

◆ Activity Domains:

● Min Color – used to draw the min rectangle (start min, end min).

● Max Color – used to draw the max rectangle (start max, end max).

● Sure Color – used to draw the surely overlapped time window (start min, end max)

◆ Drawing Board:

Docked – the drawing board window is docked by default. Uncheck this box if you
prefer the drawing board to float.

◆ Blinking status – the yellow patch indicating a Waiting state blinks by default. Uncheck
this box if you do not want the patch to blink in waiting mode. This modification is not
taken into account in the Project Options, only in the Default Options.
I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L 171

S E T T I N G M I S C E L L A N E O U S O P T I O N S
Setting Miscellaneous Options

Use the Miscellaneous notebook page to set the paths for OPL and OPLScipt files, and for
compiled models.

Figure 8.7

Figure 8.7 Miscellaneous Options

◆ OPL and OPLScript Include Path

The pathname entered in this field indicates where to find files referenced in OPL or
OPLScript code.

For a script that references model and data files, as in

Model car ("car.mod", "car.dat");

you can set this field to:

<OPLDIR>/examples/opl

 to specify where to find the car.mod and card.dat files.

The only valid separator between pathnames is a semi-colon (;). Do not use blanks.
172 I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L

8. C
u

sto
m

izin
g

 IL
O

G

O
P

L
 S

tu
d

io
S E T T I N G M I S C E L L A N E O U S O P T I O N S
For a model that references a data file, as in queens1.mod:

int n < "n.txt";

you can set the parameter to:

<OPLDIR>/examples/opl

to specify where to find the n.txt file.

◆ Path for .opl file generation

The pathname entered in this field indicates where .opl files are produced after
generating a compiled model. See Chapter 12, Generating Compiled Models.
I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L 173

S E T T I N G M I S C E L L A N E O U S O P T I O N S
174 I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L

C H A P T E R

9. M
ath

em
atical

P
ro

g
ram

m
in

g

9

Mathematical Programming

When customizing OPL Studio default or project options, you can select options for
mathematical programming.

OPL parameters are identical to CPLEX parameters, except that OPL parameter names do
not begin with a prefix, and contain mixed upper and lower case characters. For example, the
two versions of the time limit parameter are as follows:

tiLimit (OPL)
CPX_PARAM_TILIMIT (CPLEX)

The default values are those displayed when the Default Options window appears.

To set your options for the current session, click Apply or OK.

To reset the default values, click Reset.

Default options are saved in the default.prj file when you quit an application. This file is
stored in your home directory on UNIX platforms and in your profile directory on Windows
platforms. The options will be restored the next time you start OPL Studio. Only an option
whose value differs from its default value is saved in the default.prj file.

Appendix A, OPL Parameters, contains an alphabetical list of the OPL parameters with their
types and values.
I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L 175

M P G E N E R A L
MP General

◆ Time limit

Sets the OPL parameter tiLim.

Sets the maximum time, in seconds, for computations before termination. The time limit
applies to primal simplex, dual simplex, barrier, and mixed integer optimizations, as well
as infeasibility finder computations. (Network simplex and barrier crossover operations
are exceptions; these processes do not terminate if the time limit is exceeded.) The time
limit includes preprocessing time. For ‘hybrid’ optimizations (such as network
optimization followed by dual or primal simplex, barrier optimization followed by
crossover), the cumulative time applies.

The value can be any positive number.

Default: 1e75
176 I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L

9. M
ath

em
atical

P
ro

g
ram

m
in

g
M P G E N E R A L
◆ Refresh rate

Sets the screen refresh rate. Enter a decimal value, for example:

0.5 = refresh every half second

1 = refresh every second

0 = refresh as often as possible

Default: 0.1

◆ Export format

No export (default)

LP format

MPS format

SAV format

RLP format

REW format

These options apply to LP and MIP models. The exported file is created with its
extension after running the model. The destination directory is the directory in which the
project file is located, or the model file is located.

◆ CPLEX Log File

Sets the OPL parameter cplexLogFile used to generate the CPLEX log file.

The default value is empty, otherwise the value is a string containing a file name.

As an alternative to using the GUI, you can use the setting keyword in the model:

setting cplexLogFile = "myLogFile.log";

◆ Mixed integer programming

In this field you select the search method to be used for mixed integer programming.

CPLEX MIP (default)

Solver MIP Uses an ILOG Solver search procedure (by default, a depth-
first branch and bound search) with a linear relaxation.

Solver Uses ILOG Solver only (no linear relaxation). This option is
valid only for integer programs and is ignored otherwise.
I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L 177

M P G E N E R A L
◆ MIP emphasis indicator

Sets the OPL parameter MIPEmphasis.

In this field, specify whether CPLEX should use feasibility, optimality or a balance
between searching for feasible solutions and proving optimality. The best bound choice
emphasizes moving the best bound as an aggressive technique for proving optimality on
extremely difficult models. Most models will reach the optimal solution fastest using one
of the other choices, depending on the user’s needs. The values are:

Balance optimality and feasibility (default)

Emphasize feasibility over optimality

Emphasize optimality over feasibility

Emphasize moving best bound

Emphasize hidden feasibles

◆ LP Method

In this field, you select a method to be used by OPL Studio to optimize a linear program.
The available methods are:

Dual (default)

Primal

Network Primal

Network Dual

Barrier Primal

Barrier Dual

Barrier

◆ Solver Search

● LP First Method

Here you select a value to be passed to the first LP solving method. Select from:

Primal (default)

Dual

Network Primal

Network Dual

Barrier Primal

Barrier Dual
178 I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L

9. M
ath

em
atical

P
ro

g
ram

m
in

g
M P G E N E R A L
● LP Search Method

Here you select a value to be passed to the LP incremental solving method. Select
from:

Dual (default)

Primal

● Piecewise Cuts

When this box is checked (default), the OPL parameter PiecewiseCuts is set to on.

If the parameter is set to off, the default OPL search procedure will branch on the
segments of the piecewise linear expression appearing in the problem statement.

If the parameter is set to on, in addition to the behavior described above, OPL can
generate cuts to reduce the search space.

◆ Memory available for working storage

Sets the OPL parameter workMem.

Specifies an upper limit on the amount of central memory, in megabytes, that CPLEX is
permitted to use for working files. See also workDir, below.

The value can be any positive number.

Default: 128

◆ Directory for working files

Sets the OPL parameter workDir.

Specifies the name of an existing directory in which CPLEX may store temporary
working files, such as for MIP node files or for out-of-core barrier.

Default: . (a dot)
I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L 179

O P T I M I Z A T I O N U S I N G S I M P L E X
Optimization Using Simplex

◆ Crash ordering

Sets the OPL parameter craInd.

Determines how CPLEX orders variables relative to the objective function when
selecting an initial basis. Select a value from:

If primal, alternative ways of using objective coefficients; else, aggressive starting basis

If primal, ignore object coefficients during crash; else, aggressive starting basis

If primal, alternative ways of using objective coefficients; else, default starting basis
180 I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L

9. M
ath

em
atical

P
ro

g
ram

m
in

g
O P T I M I Z A T I O N U S I N G S I M P L E X
◆ Dual pricing algorithm

Sets the OPL parameter dPriInd.

The default pricing (Determined automatically) usually provides the fastest solution
time, but many problems benefit from alternative settings. Select a value from:

Determined automatically (default)

Standard dual pricing

Steepest-edge pricing

Steepest-edge pricing in slack space

Steepest-edge pricing, unit initial norms

Devex pricing

◆ Primal pricing algorithm

Sets the OPL parameter pPriInd.

The default pricing (Hybrid reduced-cost & devex pricing) usually provides the fastest
solution time, but many problems benefit from alternative settings. Select a value from:

Reduced-cost pricing

Hybrid reduced-cost & devex pricing (default)

Devex pricing

Steepest-edge pricing

Steepest-edge pricing with slack initial norms

Full pricing

◆ Scale parameter

Sets the OPL parameter scaInd.

Defines the method to be used for scaling the problem matrix. Select a value from:

No scaling

Equilibration scaling method (default)

More aggressive scaling

◆ Final factor

Sets the OPL parameter finalFactor.

When preprocessing changes the model prior to optimization, a reverse operation
(uncrush) occurs at termination to restore the full model with its solution. With default
settings, the simplex optimizers perform a final basis factorization on the full model
I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L 181

O P T I M I Z A T I O N U S I N G S I M P L E X
before terminating. If you turn off this parameter, the final factorization after uncrushing
will be skipped; on large models this can save some time, but computations that require a
factored basis after optimization (for example, for the computation of the condition
number Kappa) may be unavailable, depending on the operations performed during
preprocessing. If you run out of memory at the end of a simplex optimization, consider
turning off final factorization. The values are:

0 Off

1 On (default)

◆ Pricing candidate list size

Sets the OPL parameter priceLim.

Determines the maximum number of variables kept in the pricing candidate list. The
value can be:

 0 Determined automatically (default)

 or any positive integer

◆ Refactorization frequency

Sets the OPL parameter reInv.

Determines the number of iterations between refactorizations of the basis matrix. The
value can be:

 0 Determined automatically (default)

 or any positive integer

◆ Perturbation limit

Sets the OPL parameter perLim.

Determines the number of stalled iterations before perturbation will be performed. The
value can be:

 0 Determined automatically (default)

 or any positive integer

◆ Singularity repair limit

Sets the OPL parameter singLim.

Restricts the number of attempts to repair the basis when singularities are encountered.
Once this limit is exceeded, CPLEX replaces the current basis with the best factorable
basis that has been found.

The value can be any positive number.

Default: 10
182 I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L

9. M
ath

em
atical

P
ro

g
ram

m
in

g
O P T I M I Z A T I O N U S I N G S I M P L E X
◆ Iteration limit

Sets the OPL parameter itLim.

Determines the maximum number of iterations to be performed before the algorithm
terminates without reaching optimality.

The value can be any positive integer.

Default: 2 100 000 000

◆ Basis saving frequency

Sets the OPL parameter basInterval.

Establishes the number of iterations between simplex basis file writings.

The value can be any positive integer.

Default: 2100000000

◆ Markowitz tolerance

Sets the OPL parameter epMrk.

Influences pivot selection during basis factorization. Increasing the Markowitz threshold
may improve the numerical properties of the solution.

The value can be any number between 0.0001 and 0.99999.

Default: 1e-02

◆ Optimality tolerance

Sets the OPL parameter epOpt.

Influences the reduced-cost tolerance for optimality. This parameter governs how closely
CPLEX must approach the theoretically optimal solution.

The value can be any number between 1e-09 and 1e-04

Default: 1e-06

◆ Feasibility tolerance

Sets the OPL parameter epRHS.

The feasibility tolerance specifies the degree to which a problem's basic variables may
violate their bounds. This tolerance influences the selection of an optimal basis and can
be reset to a lower value when a problem is having difficulty maintaining feasibility
during optimization. You may also wish to lower this tolerance after finding an optimal
solution if there is any doubt that the solution is truly optimal. If the feasibility tolerance
is set too low, CPLEX may falsely conclude that a problem is infeasible. If you encounter
reports of infeasibility during Phase II of the optimization, a small adjustment in the
feasibility tolerance may improve performance.

The value can be any number between 1e-09 and 1e-04

Default: 1e-06
I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L 183

O P T I M I Z A T I O N U S I N G S I M P L E X
◆ Upper objective value limit

Sets the OPL parameter objULim.

Setting an upper objective function limit will cause CPLEX to halt the optimization
process once the maximum objective function value limit has been exceeded. This limit
applies only during Phase II of the optimization.

The value can be any number.

Default: 1e75

◆ Lower objective value limit

Sets the OPL parameter objLLim.

Causes CPLEX to halt the optimization process once the minimum objective function
value limit has been exceeded. This limit applies only during Phase II of the
optimization.

The value can be any number.

Default: -1e75

◆ Perturbation constant

Sets the OPL parameter epPer.

Sets the amount by which CPLEX will perturb the upper and lower bounds on the
variables when a problem is perturbed. This parameter can be set to a smaller value if the
default value creates too large a change in the problem.

The value can be any positive number ≥ 1e-8

Default: 1e-6

◆ Perturbation

Sets the OPL parameter perInd.

Indicates whether or not simplex perturbation is turned on.

Simplex perturbation deals with situations – called stalling – in which no progress has
been made in the objective function over a significant number of iterations.

If this box is not checked, CPLEX determines dynamically, during solution, whether
progress is slow enough to merit a perturbation.

If this box is checked, all problems will be automatically perturbed as optimization
begins. The situations in which this is useful will be rare and restricted to problems that
exhibit extreme degeneracy.
184 I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L

9. M
ath

em
atical

P
ro

g
ram

m
in

g
P R E P R O C E S S I N G
Preprocessing

◆ Bound strengthening

By default, the OPL parameter bndStrenInd is set to on and OPL Studio will use
bound strengthening when solving MIP problems.

Bound strengthening tightens the bounds on variables, perhaps to the point where the
variable can be fixed and thus removed from consideration during branch-and-bound.
This reduction is usually beneficial, but may take a long time due to its iterative nature.
The value can be:

Automatically determined (default)

Do not apply bound strengthening

Apply bound strengthening
I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L 185

P R E P R O C E S S I N G
◆ Compression of model after presolve

Sets the OPL parameter preCompress.

Specifies whether CPLEX should compress the original model after presolve is
performed. Compressing can save considerable storage space for large models. Under
the automatic setting, CPLEX will decide whether to perform the compression based on
model characteristics. The values are:

Off

Automatic (default)

On

◆ Coefficient reduction

Sets the OPL parameter coeRedInd.

Determines how coefficient reduction will be used. Coefficient reduction improves the
objective value of the initial (and subsequent) LP relaxations solved during branch-and-
bound by reducing the number of non-integral vertices. Select a value from:

Do not use

Reduce only to integral coefficients

Reduce all potential coefficients (default)

◆ Symmetry

Sets the OPL parameter symmetry to determine whether or not symmetry breaking cuts
may be added, during the preprocessing phase, to a MIP model. The values are:

0 Off (default)

1 On

◆ Preprocessing aggregator fill

Sets the OPL parameter aggFill.

Limits variable substitutions by the aggregator. If the net result of a single substitution is
more nonzeros than this value, the substitution will not be made.

The value can be any positive number.

Default: 10

◆ Preprocessing aggregator application limit

Sets the OPL parameter aggInd.

Invokes the aggregator to use substitution where possible to reduce the number of rows
and columns before the problem is solved. If set to a positive value, the aggregator will
be applied the specified number of times or until no more reductions are possible. The
value can be:

-1 Automatic (1 for LP, infinite for MIP)

 0 Do not use any aggregator

Default: -1
186 I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L

9. M
ath

em
atical

P
ro

g
ram

m
in

g
P R E P R O C E S S I N G
◆ Simplification with Presolve

By default, the OPL parameter preInd is set to on.

Invokes CPLEX Presolve to simplify and reduce problems.

Uncheck the box to turn off this function.

◆ Use LP Presolve on initial MIP relaxation

Sets the OPL parameter relaxPreInd.

If you check this box, OPL Studio will invoke CPLEX Presolve for the initial relaxation
of MIP problems.

◆ Limit on the number of Presolve passes made

Sets the OPL parameter prePass.

When set to a nonzero value, will invoke the CPLEX Presolve to simplify and reduce
problems. When set to a positive value, the Presolve will be applied the specified number
of times, or until no more reductions are possible. At the default value of -1, Presolve
should continue only if it seems to be helping. The value can be:

-1 Determined automatically (default)

 0 Do not use Presolve

 or any positive integer

◆ Use dependency checker

Sets the OPL parameter depInd.

The dependency check strengthens problem reduction by detecting redundant
constraints. Such reductions are usually most effective with the Barrier optimizer, but
these reductions can be applied to LP or MIP problems. The settings for this parameter
enable a user to control dependency checking.

-1 Automatic (default)

 0 Off

 1 On at beginning of preprocessing

 2 On at end of preprocessing

 3 On at beginning and end of preprocessing

If the dependency check is activated, it will search for dependent rows during
preprocessing. If it is not activated, dependent rows will not be identified. For many
models, eliminating the dependency check will speed up the preprocessing time at the
expense of not identifying dependent rows.
I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L 187

P R E P R O C E S S I N G
◆ Pre-optimizer passes Dual

Sets the OPL parameter preDual.

Determines whether CPLEX Presolve should pass the primal or dual linear programming
problem to the linear programming optimization algorithm. By default, CPLEX chooses
automatically. If the DUAL indicator is set to On, the CPLEX presolve algorithm is
applied to the primal problem, but the resulting dual linear program is passed to the
optimizer. This is a useful technique for problems with more constraints than variables.
The value can be:

Off

Automatic (default)

On

◆ Primal and dual reduction type

Sets the OPL parameter reduce.

Determines whether primal reductions, dual reductions, or both, are performed during
preprocessing. The value can be:

No primal and dual reductions

Only primal reductions

Only dual reductions

Both primal and dual reductions (default)
188 I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L

9. M
ath

em
atical

P
ro

g
ram

m
in

g
M I X E D I N T E G E R P R O G R A M M I N G
Mixed Integer Programming

There are four notebook pages for mixed integer programming (MIP):

◆ MIP Strategy

◆ MIP Limits

◆ MIP Tolerances

◆ MIP Cuts

MIP Strategy
I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L 189

M I X E D I N T E G E R P R O G R A M M I N G
◆ Best bound interval

Sets the OPL parameter BBInterval.

When nodeSel=2, the value of BBInterval is the interval at which the best bound
node, instead of the best estimate node, will be selected from the tree. The value can be:

0 Best estimate node always selected

1 Best bound node always selected

or, any positive integer

Default: 7

◆ Heuristic frequency

Sets the OPL parameter heurFreq.

Determines how often to apply the periodic heuristic. The value can be:

0 Do not apply heuristic at nodes (default)

or any positive integer

◆ Priority order generation

Sets the OPL parameter MIPOrdType. Select a value from:

Do not generate a priority order (default)

Use decreasing cost

Use increasing bound range

Use increasing cost per coefficient count

◆ Branching direction

Sets the OPL parameter brDir. Select a value from:

Down branch first

Automatically determined (default)

Up branch first
190 I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L

9. M
ath

em
atical

P
ro

g
ram

m
in

g
M I X E D I N T E G E R P R O G R A M M I N G
◆ Starting LP algorithm

Sets the OPL parameter startAlg to determine which LP algorithm should be used to
solve the initial relaxation of the MIP. Select a value from:

Controlled by the lpmethod parameter (default)

Primal simplex

Dual simplex

Network optimizer followed by dual simplex

Barrier with crossover

◆ Sub-problem LP algorithm

Sets the OPL parameter subAlg, the algorithm to be used on MIP subproblems. Select a
value from:

Automatic (default)

Primal simplex

Dual simplex

Network optimizer followed by dual simplex

Barrier with crossover

◆ Node selection strategy

Sets the OPL parameter nodeSel. Select a value from:

Depth-first search

Best-bound search (default)

Best-estimate search

Alternative best-estimate search

◆ Variable selection strategy

Sets the OPL parameter varSel. Select a value from:

Branch on variables with minimum infeasibility

Branch variable automatically selected (default)

Branch on variable with maximum infeasibility

Branch based on pseudo cost

Strong branching

Branch based on pseudo reduced cost
I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L 191

M I X E D I N T E G E R P R O G R A M M I N G
◆ Use MIP priority information

By default, the OPL parameter MIPOrdInd is set to on and OPL Studio will use priority
order information (if it exists) for the next MIP optimization.

A priority order assigns a branching priority to some or all of the integer variables.
Variables with priorities will be branched on before variables without priorities.
Variables with higher priorities will be branched on before variables with lower priorities
(when the variables have fractional values).

Uncheck the box to switch off this function.

◆ Probe strategy

Sets the OPL parameter probe.

Determines the amount of variable probing to be performed on a problem. Probing can
be both very powerful and very time consuming. Setting the value to 1 can result in
dramatic reductions or dramatic increases in solution time on particular models. The
value can be:

No probing

Automatic (default)

Probing level 1

Probing level 2

Probing level 3

◆ Node presolve selector

Sets the OPL parameter preslNd.

Indicates whether node presolve should be performed at the nodes of a mixed integer
programming solution. Node presolve can significantly reduce solution time for some
models. The default setting is generally effective at determining whether to apply node
presolve, although runtimes can be reduced for some models by turning node presolve
off. The value can be:

No node presolve

Automatic (default)

Force node presolve
192 I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L

9. M
ath

em
atical

P
ro

g
ram

m
in

g
M I X E D I N T E G E R P R O G R A M M I N G
◆ Dive type

Sets the OPL parameter diveType to determine the MIP dive strategy.

The MIP traversal strategy occasionally performs probing dives, where it looks ahead at
both children nodes before deciding which node to choose. The values are:

Automatically determined (default)

Traditional dive

Probing dive

Guided dive

The default setting lets CPLEX choose when to perform a probing dive. The option
Traditional dive directs CPLEX never to perform probing dives, Probing dive to always
perform probing dives, and Guided dive to spend more time exploring potential solutions
that are similar to the current incumbent.

◆ RINS heuristic

Sets the OPL parameter RINSHeur to determine how often to apply the relaxation
induced neighborhood search (RINS) heuristic. The values are:

-1 Turns off the RINS heuristic

0 Applies the RINS heuristic at an interval chosen automatically by CPLEX (default)

Any positive integer to apply the RINS heuristic at the requested node interval. For
example, setting RINSHeur to 20 indicates that the RINS heuristic will be called at
nodes 0, 20, 40, 60, etc.
I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L 193

M I X E D I N T E G E R P R O G R A M M I N G
MIP Limits

◆ Row multiplier factor for cuts

Sets the OPL parameter cutsFactor.

Limits the number of both clique and cover cuts that can be added. The number of rows
in the problem with cuts added is limited to this value times the original number of rows.

The value can be any positive number.

Default: 4

◆ Node limit

Sets the OPL parameter nodeLim.

Determines the maximum number of nodes solved before the algorithm terminates,
without reaching optimality.

The value can be any positive integer.

Default: 2 100 000 000
194 I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L

9. M
ath

em
atical

P
ro

g
ram

m
in

g
M I X E D I N T E G E R P R O G R A M M I N G
◆ Solution limit

Sets the OPL parameter intSolLim.

Determines the number of MIP solutions to be found before stopping.

The value can be any positive integer.

Default: 2 100 000 000

◆ Strong branching candidate list limit

Sets the OPL parameter strongCandLim.

Controls the length of the candidate list when using the "strong branching" variable
selection setting.

The value can be any positive number.

Default: 10

◆ Simplex iterations

Sets the OPL parameter strongItLim.

Controls the number of simplex iterations performed on each variable in the candidate
list when using the "strong branching" variable selection setting.

The value can be any positive number.

The default setting 0 chooses the iteration limit automatically.

◆ Strong branching thread limit

Sets the OPL parameter strongThreadLim.

Controls the number of parallel threads used to perform strong branching. Note that this
parameter does nothing if the MIP thread limit is greater than 1.

The value can be any positive number.

Default: 1
I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L 195

M I X E D I N T E G E R P R O G R A M M I N G
◆ Tree memory limit

Sets the OPL parameter treLim.

Sets an upper limit on the amount of memory (in megabytes) that the branch-and-bound
tree can consume. The action taken by CPLEX, when the amount of memory required to
store the branch-and-bound information exceeds the treLim parameter, depends on the
setting of the node file parameter (nodeFileInd). If the parameter is set to 0 (no node
file), CPLEX terminates optimization. Otherwise, CPLEX continues optimization,
transferring nodes from the branch-and-bound tree to node files to keep the required
memory below the tree memory limit.

The value can be any non-negative number.

Default: 128

◆ Number of cutting plane passes

Sets the OPL parameter cutPass.

Sets the upper limit on the number of passes CPLEX performs when generating cutting
planes on a MIP model. The value can be:

-1 None

 0 Automatically determined (default)

Any positive integer, to indicate the number of passes to perform

◆ Candidate limit for Gomory fractional cuts

Sets the OPL parameter fracCand.

Limits the number of candidate variables for generating Gomory fractional cuts.

The value can be any non-negative integer.

Default: 200

◆ Pass limit for Gomory fractional cuts

Sets the OPL parameter fracPass.

Limits the number of passes for generating Gomory fractional cuts. At the default setting
of 0, CPLEX decides. The parameter is ignored if the Gomory fractional cut parameter,
fracCuts, is set to a nonzero value.

The value can be any positive integer.

Default: 0
196 I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L

9. M
ath

em
atical

P
ro

g
ram

m
in

g
M I X E D I N T E G E R P R O G R A M M I N G
◆ Save node information to disk

Sets the OPL parameter nodeFileInd.

Used when the tree memory limit (set by treLim) is reached. If the node file parameter
is set to zero when the tree memory limit is reached, optimization is terminated.
Otherwise, a group of nodes is removed from the in-memory set as needed. By default,
CPLEX transfers nodes to node files when the in-memory set is larger than 128 MBytes,
and it keeps the resulting node ‘files’ in compressed form in memory.

The use of node files is described in more detail in the CPLEX User’s Manual.

The value can be:

No node file

Node file in memory and compressed (default)

Node file on disk

Node file on disk and compressed

◆ MIP thread-limit

Sets the OPL parameter MIPThreads.

 0 Limit determined by global thread (default)

>0 Upper limit on threads for Parallel MIP

◆ Sub-MIP node limit

Sets the OPL parameter subMIPNodeLim to define the MIP subnode limit. This
parameter restricts the number of nodes searched during application of the relaxation
induced neighborhood search (RINS) heuristic. See the RINSHeur parameter.

The value can be any positive integer.

Default: 500
I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L 197

M I X E D I N T E G E R P R O G R A M M I N G
MIP Tolerances

◆ Absolute MIP gap tolerance

Sets the OPL parameter epAGap.

Defines an absolute tolerance on the gap between the best integer objective and the
objective of the best node remaining. When the difference falls below the value of the
this parameter, the MIP optimization is stopped.

The value can be any positive number.

Default: 1e-06

◆ Relative MIP gap tolerance

Sets the OPL parameter epGap.

Defines a relative tolerance on the gap between the best integer objective and the object of the
best node remaining. When the value |bestnode-bestinteger |/(1e-10 +|bestinteger|) falls
below this value, the MIP optimization is stopped.

The value can be any number between 0 and 1.

Default: 1e-04
198 I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L

9. M
ath

em
atical

P
ro

g
ram

m
in

g
M I X E D I N T E G E R P R O G R A M M I N G
◆ Integrality tolerance

Sets the OPL parameter epInt.

Specifies the amount by which an integer variable can be different from an integer and
still be considered feasible.

The value can be any number between 1e-09 and 1.

Default: 1e-05

◆ Upper cutoff tolerance

Sets the OPL parameter cutUp.

Used on a minimization problem to cuts off any nodes that have an objective value above
the this value. On a continued MIP optimization, the smaller of this value and the
updated cutoff found during optimization will be used during the next MIP optimization.
A too-restrictive value for the this parameter may result in no integer solutions being
found.

The value can be any number.

Default: 1e75

◆ Lower cutoff tolerance

Sets the OPL parameter cutLo.

Used on a maximization problem to cut off any nodes that have an objective value below
this value. On a continued MIP optimization, the larger of this value and the updated
cutoff found during optimization will be used during the next MIP optimization. A too-
restrictive value for the this parameter may result in no integer solutions being found.

The value can be any number.

Default: -1e75

◆ Absolute objective difference cutoff

Sets the OPL parameter objDif.

Used to update the cutoff each time a MIP solution is found. This absolute value will be
subtracted from (added to) the newly found integer objective value when minimizing
(maximizing). This forces the MIP optimization to ignore integer solutions that are not at
least this amount better than the one found so far. This parameter can be adjusted to
improve problem solving efficiency by limiting the number of nodes; however, setting
this parameter at a value other than zero (the default) can cause some integer solutions,
including the true integer optimum, to be missed. Negative values for this parameter will
result in some integer solutions that are worse than, or the same as, those previously
generated, but will not necessarily result in the generation of all possible integer
solutions.

The value can be any number.

Default: 0
I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L 199

M I X E D I N T E G E R P R O G R A M M I N G
◆ Relative objective difference cutoff

Sets the OPL parameter relObjDif.

Used to update the cutoff each time a MIP solution is found. The value is multiplied by
the absolute value of the integer objective and subtracted from (added to) the newly
found integer objective when minimizing (maximizing). This forces the MIP
optimization to ignore integer solutions that are not at least this amount better than the
one found so far. This parameter can be adjusted to improve problem solving efficiency
by limiting the number of nodes; however, setting this parameter at a value other than
zero (the default) can cause some integer solutions, including the true integer optimum,
to be missed. If both relObjDif and objDif are nonzero, the value of objDif will be
used.

The value can be any positive number.

Default: 0

◆ Backtracking tolerance

Sets the OPL parameter btTol.

Controls how often backtracking is done during the branching process. The decision
when to backtrack depends on three values that change during the course of the
optimization:

- the objective function value of the best integer feasible solution (“incumbent”)

- the best remaining objective function value of any unexplored node (“best node”)

- the objective function value of the most recently solved node (“current objective”).

If a cutoff tolerance (see cutUp and cutLo) has been set by the user, then that value is
used as the incumbent until an integer feasible solution is found. The “target gap” is
defined to be the absolute value of the difference between the incumbent and the best
node, multiplied by this backtracking parameter. CPLEX does not backtrack until the
absolute value of the difference between the current objective and the best node is at least
as large as the target gap. Low values of this backtracking parameter thus tend to increase
the amount of backtracking, which makes the search process more of a pure best-bound
search. Higher parameter values tend to decrease backtracking, making the search more
of a pure depth-first search. The backtracking value has effect only after an integer
feasible solution is found or when a cutoff has been specified. Note that this backtracking
value merely permits backtracking but does not force it; CPLEX may choose to continue
searching a branch of the tree if it seems a promising candidate for finding an integer
feasible solution.

The value can be any number between 0 and 1.

Default: 0.9999
200 I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L

9. M
ath

em
atical

P
ro

g
ram

m
in

g
M I X E D I N T E G E R P R O G R A M M I N G
MIP Cuts

◆ Cliques indicator

Sets the OPL parameter cliques. Select a value from:

Do not generate clique cuts

Automatically determined (default)

Generate clique cuts moderately

Generate clique cuts aggressively

◆ Covers indicator

Sets the OPL parameter covers. Select a value from:

Do not generate cover cuts

Automatically determined (default)

Generate cover cuts moderately

Generate cover cuts aggressively
I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L 201

M I X E D I N T E G E R P R O G R A M M I N G
◆ Flow covers

Sets the OPL parameter flowCovers.

Determines whether or not to generate flow cuts for the problem. Setting the value to 0,
the default, indicates that the attempt to generate flow cuts should continue only if it
seems to be helping. The value can be one of the following:

Do not generate flow cuts

Automatically determined (default)

Generate flow cuts moderately

Generate flow cuts aggressively

◆ GUB covers

Sets the OPL parameter gubCovers.

Determines whether or not to generate GUB cuts for the problem. Setting the value to 0,
the default, indicates that the attempt to generate GUB cuts should continue only if it
seems to be helping. The value can be:

Do not generate GUB cuts

Automatically determined (default)

Generate GUB cuts moderately

Generate GUB cuts aggressively

◆ Implied bound cuts indicator

Sets the OPL parameter implBd.

Determines whether or not to generate implied bound cuts for the problem. Setting the
value to 0, the default, indicates that the attempt to generate implied bound cuts should
continue only if it seems to be helping. The value can be:

Do not generate implied bound cuts

Automatically determined (default)

Generate implied bound cuts moderately

Generate implied bound cuts aggressively
202 I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L

9. M
ath

em
atical

P
ro

g
ram

m
in

g
M I X E D I N T E G E R P R O G R A M M I N G
◆ MIP Gomory fractional cuts indicator

Sets the OPL parameter fracCuts to determine whether or not Gomory fractional cuts
should be generated. The value can be:

-1 Do not generate Gomory fractional cuts

 0 Automatically determined (default)

 1 Generate Gomory fractional cuts moderately

 2 Generate Gomory fractional cuts aggressively

◆ Constraint aggregation limit

Sets the OPL parameter aggCutLim to limit the number of constraints that can be
aggregated for generating flow cover and mixed integer rounding cuts.

The value can be any non-negative integer.

Default: 3

◆ MIP disjunctive cuts indicator

Sets the OPL parameter disjCuts to determine whether or not disjunctive cuts should
be generated for the problem. Setting the value to 0, the default, indicates that the attempt
to generate disjunctive cuts should continue only if it seems to be helping. The value can
be:

-1 Do not generate disjunctive cuts

 0 Automatically determined (default)

 1 Generate disjunctive cuts moderately

 2 Generate disjunctive cuts aggressively

◆ MIP flow path cuts indicator

Sets the OPL parameter flowPaths to determine whether or not flow path cuts should
be generated for the problem. Setting the value to 0, the default, indicates that the attempt
to generate flow path cuts should continue only if it seems to be helping. The value can
be:

-1 Do not generate flow path cuts

 0 Automatically determined (default)

 1 Generate flow path cuts moderately

 2 Generate flow path cuts aggressively
I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L 203

M I X E D I N T E G E R P R O G R A M M I N G
◆ MIP Mixed Integer Rounding cuts indicator

Sets the OPL parameter MIRCuts to determine whether or not to generate MIR cuts for
the problem. Setting the value to 0, the default, indicates that the attempt to generate
MIR cuts should continue only if it seems to be helping. The value can be:

-1 Do not generate MIR cuts

 0 Automatically determined (default)

 1 Generate MIR cuts moderately

 2 Generate MIR cuts aggressively
204 I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L

9. M
ath

em
atical

P
ro

g
ram

m
in

g
B A R R I E R A L G O R I T H M
Barrier Algorithm

◆ Barrier algorithm

Sets the OPL parameter barAlg to determine which barrier algorithm is used. The
default value (Default primal-dual log barrier) is normally fastest, but the alternative
settings may eliminate numerical difficulties relating to infeasibility. The value can be:

Default primal-dual log barrier (default)

Infeasibility-estimate start

Infeasibility-constant start

Standard barrier
I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L 205

B A R R I E R A L G O R I T H M
◆ Ordering algorithm

Sets the OPL parameter barOrder to define the algorithm to be used to permute the
rows of the constraint matrix in order to reduce fill in the Cholesky factor. The value can
be:

Automatic (default)

Approximate minimum degree (AMD)

Approximate minimum fill (AMF)

Nested dissection (ND)

◆ Starting point algorithm

Sets the OPL parameter barStartAlg to define the algorithm to be used to compute the
initial starting point for the barrier solver. The value can be:

Dual is 0 (default)

Estimate dual

Average of primal estimate, dual 0

Average of primal estimate, estimate dual

◆ Barrier crossover method

Sets the OPL parameter barCrossAlg to determine which, if any, crossover method is
performed at the end of a Barrier optimization. The value can be:

-1 No crossover

 0 Automatic (default)

 1 Primal crossover

 2 Dual crossover

◆ Convergence tolerance

Sets the OPL parameter barEpComp to determine the tolerance on complementarity for
convergence. The barrier algorithm will terminate with an optimal solution if the relative
complementarity is smaller than this value.

The value can be any positive number ≥ 1e-10

Default: 1e-8
206 I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L

9. M
ath

em
atical

P
ro

g
ram

m
in

g
B A R R I E R A L G O R I T H M
◆ Growth limit

Sets the OPL parameter barGrowth.This parameter is used to detect unbounded optimal
faces. At higher values, the barrier algorithm will be less likely to conclude that the
problem has an unbounded optimal face, but more likely to have numerical difficulties if
the problem has an unbounded face.

The value can be any positive number.

Default: 1e12

◆ Objective range

Sets the OPL parameter barObjRng to specify the maximum absolute value of the
objective function. The barrier algorithm looks at this limit to detect unbounded
problems.

The value can be any positive number.

Default: 1e20

◆ Column nonzeros

Sets the OPL parameter barColNz. This parameter is used in the recognition of dense
columns. If columns in the presolved and aggregated problem exist with more entries
than the given value, such columns will be considered dense and will be treated specially
by CPLEX barrier to reduce their effect.

The value can be:

dynamically calculated

or any positive integer

Default: 0

Note: If the problem contains fewer than 400 rows, dense column handling will not
be initiated.
I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L 207

B A R R I E R A L G O R I T H M
◆ Iteration limit

Sets the OPL parameter barItLim.

Specifies the number of barrier iterations before termination. When set to 0, no barrier
iterations occur, but problem “set up” occurs and information about the set up is
displayed (such as Cholesky factorization information). The value can be:

0 No barrier iterations

or any positive integer

Default: 2 100 000 000

◆ Maximum correction limit

Sets the OPL parameter barMaxCor to specify the maximum number of centering
corrections done on each iteration. An explicit value greater than 0 may improve the
numerical performance of the algorithm at the expense of computation time. The value
can be:

-1 Automatically determined (default)

 0 None

or any positive integer

◆ Out-of-core barrier indicator

Sets the OPL parameter barOOC to specify whether the barrier optimizer should use out-
of-core storage (on disk) for the Cholesky factorization. Disk usage is controlled by the
parameters workmem and workDir.

By default this parameter is set to off. Check the box to use out-of-core storage.

◆ Barrier thread limit

Sets the OPL parameter barThreads

 0 Limit determined by global thread default

>0 Upper limit on threads for Parallel Barrier
208 I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L

9. M
ath

em
atical

P
ro

g
ram

m
in

g
N E T W O R K S I M P L E X A L G O R I T H M
Network Simplex Algorithm

◆ Pricing

Sets the OPL parameter netPPriInd.

The default (Automatic) shows best performance for most problems, and currently is
equivalent to 3. Select a value from:

Automatic (default)

Partial pricing

Multiple partial pricing

Multiple partial pricing with sorting
I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L 209

N E T W O R K S I M P L E X A L G O R I T H M
◆ Network extraction level

Sets the OPL parameter netFind to establish the level of network extraction for network
simplex optimizations. Select a value from:

Extract pure network only

Try reflection scaling (default)

Try general scaling

◆ Optimality tolerance

Sets the OPL parameter netEpOpt.

Settings 1 and 2 differ only during Phase I. Setting 2 shows monotonic values, whereas 1
usually does not.

The value can be any number from 1e-4 to 1e-11

Default: 1e-6

◆ Feasibility tolerance

Sets the OPL parameter netEpRHS.

The feasibility tolerance specifies the degree to which a problem's flow value may
violate its bounds. This tolerance influences the selection of an optimal basis and can be
reset to a lower value when a problem is having difficulty maintaining feasibility during
optimization. You may also wish to lower this tolerance after finding an optimal solution
if there is any doubt that the solution is truly optimal. If the feasibility tolerance is set too
low, CPLEX may falsely conclude that a problem is infeasible. If you encounter reports
of infeasibility during Phase II of the optimization, a small adjustment in the feasibility
tolerance may improve performance.

The value can be any number from 1e-4 to 1e-11

Default: 1e-6

◆ Iteration limit

Sets the OPL parameter netItLim to determine the maximum number of iterations to be
performed before the algorithm terminates without reaching optimality.

The value can be any non-negative integer.

Default: 2100000000
210 I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L

9. M
ath

em
atical

P
ro

g
ram

m
in

g
R E S U L T S O F M A T H E M A T I C A L P R O G R A M M I N G
Results of Mathematical Programming

Once you have selected your options and executed the Run command, the results are
displayed in the CPLEX notebook page at the bottom of the Main window.

This page informs you of the phase that CPLEX is currently in.

◆ The long bar at the bottom of the notebook page is the phase indicator. The phase
displayed may be one of the following:

Presolve

Network

Primal Phase I

Primal Phase II

Dual Phase I

Dual Phase II

Barrier
I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L 211

R E S U L T S O F M A T H E M A T I C A L P R O G R A M M I N G
The various frames in the rest of the page give information pertaining to each specific phase.

◆ For primal and dual phase I:

Infeasibility measure

Number of iterations

◆ For primal and dual phase II:

Value of the objective function

Number of iterations

◆ For the primal and dual crossover:

Number of pushes

Number of exchanges

◆ For barrier:

Primal objective value

Dual objective value

Number of iterations

◆ For the MIP:

Number of nodes explored

Number of nodes still left to explore

Number of iterations

Best value found so far (upper bound)

Lower bound currently used for this subtree

Cutoff value

◆ This page also displays the:

Number of constraints

Number of variables

that are submitted to the linear solver.
212 I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L

C H A P T E R

10. W
o

rkin
g

 w
ith

 a
D

atab
ase
10

Working with a Database

This chapter explains how to use the database connection feature offered by ILOG OPL
Studio. The example used is based on the bridge problem, which is a scheduling application
discussed in detail in the ILOG OPL Studio: Language Manual, and presented in the
distributed project bridge.prj located in the following subdirectory:

◆ For UNIX systems

<installation>/OPLSt37/examples/opl/scheduler

◆ For Windows XP, Windows 2000, Windows NT 4, and Windows 98

c:\ILOG\OPLSt37\examples\opl\scheduler

However, this time, for the purposes of the example shown here, the data items are stored in
tables in a relational database. In this chapter, you will see how to:

◆ establish a connection to a database from OPL Studio

◆ read database relations into OPL sets

◆ create a new relational table from OPL

◆ write an OPL set to a database by inserting new rows into a table.

Note: OPL cannot read a double-byte string from a database. This means that all string
data from a database must contain standard single-byte characters.
I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L 213

S U P P O R T E D D A T A B A S E S
Supported Databases

OPL Studio 3.7 interfaces with the RDBMS supported by ILOG DB Link 5.0. The specific
database systems supported by each of the UNIX and Windows platforms are listed in the
README file.

For example:

◆ On UNIX systems

Oracle 8.1 (Solaris, HP, Linux, RS6000)

◆ On Windows XP, Windows 2000, Windows NT 4, and Windows 98

Oracle 7.3, 8.0, 8.1, 9i

Database Connectivity

The Connection Command

The OPL instruction DBconnection establishes a connection to a database. It requires two
arguments: the database client you want to use and the connection string.

The first argument is a string indicating the name of a database system as known by ILOG
DB Link and must have a value such as oracle81. The complete list of possible values can
be found in the README file.

The second argument, the connection string, must comply with a format that depends on the
target RDBMS. For Oracle, for example, the format is:

[<user>]/[<password>][@<SQL Net id>]

where the SQL Net id is:

@<net>:<hostname>[:<SID>] for SQL Net V1, and @<service name> for SQL Net V2.

In the example

DBconnection db("oracle81", "scott/tiger@ilog");

the user scott with the password tiger will connect to the Oracle database called ilog.

Note: Prior to using a database connection, you must ensure that the corresponding
database client is correctly installed on your system.
214 I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L

10. W
o

rkin
g

 w
ith

 a
D

atab
ase

D A T A B A S E C O N N E C T I V I T Y
The Environment Variable

◆ On UNIX systems

When integrating with your application you should make the LD_LIBRARY_PATH (or
SHLIB_PATH or LIBPATH) environment variable point to the database driver location
and to the ILOG DB Link driver directory.

The DB Link drivers are provided in directories of the type:

<OPLDIR>/lib/<platform>/<shared_format>

Details are provided in the README file.

ILOG OPL 3.7 is in theory independent of ILOG DB Link, since it comes with all the
DB Link dynamic link libraries. In certain cases, however, DB Link drivers need to be
relinked for the platform and database release that OPL needs to connect to. Please
consult the ILOG DB Link documentation that explains how to rebuild the DB Link
drivers.

In these specific cases:

● Install ILOG DB Link 5.0 and patches if necessary.

● Relink the DB Link drivers for the platform and RDBMS in question.

● Type the name of the ILOG DB Link dynamic library directory at the beginning of
your LD_LIBRARY_PATH (or SHLIB_PATH or LIBPATH).

◆ On Windows XP, Windows 2000, Windows NT 4, and Windows 98

● To use database connectivity on Windows from the GUI, you do not need to set paths.
The dblink.ini file is in the bin directory containing the oplst.exe file and calls
the libraries in the directory lib/msvc6/dll_mda.

● To use database connectivity on Windows from an application that integrates the OPL
library, you need to check that the dynamic link libraries required by DB Link can be
found in the PATH variable. (Example for msvc6/stat_mda, COM or JNI applications:
set PATH=c:\ilog\OPLSt37\lib\msvc6\dll_mda;%PATH%)

Dynamic link libraries are provided with OPL Studio 3.7. These dll files are for
msvc6/stat_mda, COM/ActiveX and Java. They can be found in
<OPLDIR>\lib\msvc6\dll_mda. For the other ports, you need to install ILOG
DB Link 5.0.

● In the case of deployment on another machine, make sure that the PATH variable of
the target machine indicates where the dynamic drivers are located.

Consult the README file for details.
I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L 215

P R E R E Q U I S I T E S
Prerequisites

◆ In order to follow this example, a minimal knowledge of the syntax of the query
language, SQL, would help.

◆ If you are working with ODBC, you are not required to have Microsoft Access installed
on your computer. However, having this product installed will allow you to view the
contents of the database file abridge.mdb.

◆ If you are working with Oracle:

● you must have a user account and a password allowing you to connect to a pre-
existing database

● the Oracle client must be installed.

The Bridge Example

For this example, you will need to use the following files from your release distribution:

◆ Windows XP, Windows 2000, Windows NT 4, and Windows 98

c:\ILOG\OPLSt37\examples\opl\database\abridge.mod

which is the Bridge example using a connection to ODBC

c:\ILOG\OPLSt37\examples\opl\database\abridge.mdb

which is a Microsoft Access database source containing the data for the Bridge example.

◆ UNIX systems

<installation-directory>/OPLSt37/examples/opl/database/obridge.mod

which is the Bridge example using a connection to Oracle 8.

<installation-directory>/OPLSt37/examples/opl/database/obridge.sql

which is an SQL script to help you load the data for the Bridge example into an Oracle
database of your choice.

The Bridge example involves finding a schedule that minimizes the time needed to build a
five-segment bridge.

The project contains a set of 46 tasks and a set of constraints within these tasks. Most tasks
require a resource (e.g. a crane), and tasks requiring the same resource cannot overlap in
time.

In addition, several other constraints must be satisfied, as explained in detail in the ILOG
OPL Studio: Language Manual, Chapter 15.
216 I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L

10. W
o

rkin
g

 w
ith

 a
D

atab
ase

S E T T I N G U P T H E D A T A B A S E
The data items are organized in tables in a relational database. OPL establishes a connection
to the database and initializes the model by reading the corresponding relational tables.

After the optimal schedule is computed, a new table is created and the optimal schedule is
stored in this new table.

Setting Up the Database

Before running the example, you must ensure that a database containing the data for the
Bridge problem is properly installed and available on your particular system. To do this,
follow these steps:

◆ On Windows XP, Windows 2000, Windows NT 4, and Windows 98

● Select: Start>Settings>Control Panel>ODBC

● On the page User DSN press the button Add...

● Select Microsoft Access driver (*.mdb)

● In the field Data Source Name, enter abridge

● In the field Description, enter the comment OPL example

● Click on the button Select... and look for the file abridge.mdb in the directory

c:\ILOG\OPLSt37\examples\database

◆ On UNIX

● Ensure that the environment variable ORACLE_HOME is correctly set to the Oracle
installation on your machine. For example:

$ setenv ORACLE_HOME /nfs/oracle/8/solaris

● Use the SQL statements from the file:

<installation-directory>/OPLSt37/examples/opl/database/obridge.sql

in order to load the data for the example into your database.

For example, you can launch the SQL shell $ORACLE_HOME/bin/sqlplus, then
type:

SQL> @obridge.sql;

● Ensure that the environment variable LD_LIBRARY_PATH contains both the path
$ORACLE_HOME/lib and the path <installation-directory>/OPLSt37/bin
I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L 217

T H E D A T A T A B L E S
The Data Tables

The data for the Bridge example is stored in nine relational tables:

MAX_EF, MAX_NF, MIN_AF, MIN_NF, MIN_SF, Precedence, Requirements,
Resource, Task

◆ Windows XP, Windows 2000, Windows NT 4, and Windows 98

Provided that you have Microsoft Access installed on your computer, you can view the
contents of any of these tables by simply double clicking from Windows Explorer on the
file:

c:\ILOG\OPLSt37\examples\opl\database\abridge.mdb

Microsoft Access opens the database and displays the tables in alphabetical order.
Double click on the table whose contents you want to see.

◆ UNIX

If you are working with Oracle on UNIX, and you followed the steps given for setting up
the tables in your database, you can view the contents of any of these tables by issuing a
select command at the prompt of the SQL shell:

$ORACLE_HOME/bin/sqlplus
218 I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L

10. W
o

rkin
g

 w
ith

 a
D

atab
ase

T H E D A T A T A B L E S
The Task Table

The two-column table Task stores the names of the 46 tasks involved in the building of the
bridge, together with their durations in days.

Each row of the table corresponds to a task, with the name of the task stored as a character
string in the first column, and with its duration stored as an integer in the second column.

◆ Windows XP, Windows 2000, Windows NT 4, and Windows 98

Figure 10.1 shows a part of the table Task as you see it from Microsoft Access.

Figure 10.1

Figure 10.1 The Task Table

◆ UNIX

In order to see the contents of the table Task, launch the SQL shell then type:

SQL> select * from Task;

You see 46 rows selected.
I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L 219

T H E D A T A T A B L E S
The Resource Table

The table Resource stores the different resources needed by the tasks during the
construction of the bridge. Each row of the table corresponds to a resource and contains one
column storing the name of the resource as a character string.

The MAX and MIN Tables

The tables:

MAX_EF, MAX_NF, MIN_AF, MIN_NF, MIN_SF

store data describing the temporal constraints imposed on the different tasks involved in the
project.

Each table contains three columns:

Before, After, Distance

The first two columns store the names of tasks, while the third column stores an elapsed
number of days.

Depending on the table, each row is interpreted as a specific temporal constraint imposed on
the start times and/or the end times of the tasks indicated.

For example, the data stored in the table MAX_EF corresponds to the constraint stating that
the time between the completion of a particular formwork and the completion of its
corresponding concrete foundation is at most four days.

◆ Windows XP, Windows 2000, Windows NT 4, and Windows 98

Figure 10.2 shows an example, table MAX_EF, as seen from Microsoft Access.

Figure 10.2

Figure 10.2 The MAX_EF Table
220 I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L

10. W
o

rkin
g

 w
ith

 a
D

atab
ase

T H E D A T A T A B L E S
◆ UNIX

Here you can see the contents of the table MAX_EF as reported by the select command
in the SQL shell:

SQL> select * from MAX_EF;

 6 rows selected

The Precedence Table

The table Precedence indicates the precedence relationships that must exist between the
different tasks of the project.

For each row, the task stored in the column Before must be completed before the beginning
of the task stored in the column After.

The Requirements Table

Finally, the table Requirements stores the resources needed by different tasks. For each
row, the first column TaskName indicates the name of a task, while the second column
ResName contains the name of the particular resource needed by the task.

BEFORE AFTER DIST

s1 b1 4

s2 b2 4

s3 b3 4

s4 b4 4

s5 b5 4

s6 b6 4
I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L 221

T H E O P L M O D E L
The OPL Model

From the File menu in OPL Studio, select Open>Model, then select the appropriate model
file.

◆ On Windows XP, Windows 2000, Windows NT 4, and Windows 98

c:\ILOG\OPLSt37\examples\opl\database\abridge.mod

◆ On UNIX

<installation-directory>/OPLSt37/examples/opl/database/obridge.mod

Record Definitions

At the beginning of the model there are several definitions of OPL records, as shown in Code
Sample 10.1.

Code Sample 10.1struct TaskDuration {
 string task;
 int duration;
};

struct Distance {
 string before; //Task
 string after; //Task
 int dist;
};

struct Precedence {
 string before; //Task
 string after; //Task
};
·
·
·
struct TaskResource {
 string task;
 string resource;
};

struct Schedule {
 string task;
 int startTime;
 int endTime;
};
·
·
·

Code Sample 10.1 Record Definitions in the abridge.mod File

These record definitions closely follow the actual structure of the rows in the different tables
of the database. The OPL record TaskDuration is an example.

struct TaskDuration {
 string task;
 int duration;
};

This record corresponds to the two-column structure of the table Task. The field task
corresponds to the column Name and the field duration corresponds to the column
Duration in the table Task.
222 I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L

10. W
o

rkin
g

 w
ith

 a
D

atab
ase

T H E O P L M O D E L
You will notice the type concordance between the table columns and the OPL fields. The
column Name contains character strings, so the field task is of type string, the column
Duration contains integers, so the field duration is of type int.

Similarly, the OPL record Distance corresponds to the column structure of the tables:

MAX_EF, MAX_NF, MIN_AF, MIN_NF, MIN_SF

The OPL record Precedence corresponds to the column structure of the table Precedence
and the OPL record TaskResource corresponds to the column structure of the table
Requirements.

The OPL record Schedule corresponds to a new table, Result, that will be created at the
end of the computation in order to store the results of the optimization.

Connecting to the Database from OPL

Another interesting part of the model is the DBconnection statement you use to connect to
the database.

Connecting to ODBC

If you are using ODBC, the connection is established by the following statement:

DBconnection db("odbc", "abridge//");

The string passed as first argument indicates that you want to connect to a database source
managed by ODBC. The string passed as second argument must respect the format below:

data source name/[user]/[password]

where data source name is the identifier you typed in the field Data Source Name when
linking the database to ODBC (as explained in Setting Up the Database on page 217.). In
our case, this identifier is abridge.

The fields user and password may be omitted, but note that the slash signs (/) are
mandatory.

Note: Depending on your actual database system, it is possible that columns storing
integer values need to be mapped to OPL fields of type float, rather than of type int.
This is the case, for example, if you are using ODBC connected to an Excel database
source, as the numeric values manipulated in Excel are of type float.
I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L 223

T H E O P L M O D E L
Connecting to Oracle

The string passed as first argument must take the value oraclex, where x represents the
particular version of the Oracle client you are using. A possible value is oracle81. The
complete list of values can be found in the README file.

The string passed as second argument must respect the format below:

[user]/[password][@SQL Net id]

where user and password indicate the user name and the password that the database
administrator has already assigned to you.

The field SQL Net id has the format:

<net:hostname> [:SID] for SQL Net V1

<instance name> for SQL Net V2

As an example, the distributed model file obridge.mod contains the connection statement:

DBconnection db("oracle8", "scott/tiger@ilog");

where the user scott with the password tiger will connect to the Oracle database called
ilog.

Reading From the Database

The rows contained in any table may be read into OPL by using the DBread statement. For
example, with the following instruction you create an OPL set called taskduration which
contains the rows of the table Task, each row becoming an OPL record of type
TaskDuration:

{TaskDuration} taskduration from
 DBread(db, "select DURATION, NAME from Task")
 DBmapping {0->duration; 1->task;};

For the sake of the example, we wrote a select statement inverting the columns from the
table, but note that the DBmapping part is not mandatory if there is a positional
correspondence between the columns returned by the select statement and the fields of the
OPL record.

Similarly, the OPL sets:

max_ef, max_nf, min_af, min_nf, min_sf, precedences
Resource, taskresource

Note: If you are using an Oracle database, you should adapt the DBconnection
statement to your particular case.
224 I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L

10. W
o

rkin
g

 w
ith

 a
D

atab
ase

T H E O P L M O D E L
are initialized with the rows of the corresponding tables from the database, as shown in Code
Sample 10.2.

Code Sample 10.2{Distance} max_ef from DBread(db, "select * from MAX_EF");
{Distance} max_nf from DBread(db, "select * from MAX_NF");
{Distance} min_af from DBread(db, "select * from MIN_AF");
{Distance} min_nf from DBread(db, "select * from MIN_NF");
{Distance} min_sf from DBread(db, "select * from MIN_SF");
{Precedence} precedences from DBread(db, "select * from PRECEDENCE");
{string} Resource from DBread(db, "select NAME from RESOURCE");
{TaskResource} taskresource from DBread(db, "select * from REQUIREMENTS");

Code Sample 10.2 Initializing OPL Sets

Once these sets have been initialized, they can be used later in the model just like any other
OPL set. For example, the instruction:

{string} Task = {t | <t,d> in taskduration};

collects the names of the tasks in a new set of strings called Task.

Creating a New Table and Updating the Database

At the end of the optimization process, we want to store the optimal schedule obtained in a
new database table.

First, we must collect the results of the optimization in a new OPL set. This set, called
resultSet, will contain a record of type Schedule for each task involved in the bridge
construction.

Each record stores the name of the task, and its start and end times, which were optimally
computed by OPL:

{Schedule} resultSet = {#<task: t,
 startTime: a[t].start,
 endTime: a[t].start
 + a[t].duration># |
 t in Task};

By using the OPL statement DBexecute, you can create a new table, called Result, which
has three columns, corresponding to the fields of the record Schedule.

If you are using ODBC with Microsoft Access, the instruction to create the new table is:

DBexecute(db, "create table Result (task string,
 startTime integer,
 endTime integer)");

If you are using Oracle, the instruction to create the new table is:

DBexecute(db, "create table Result (task VARCHAR(20),
 startTime NUMBER(6,0),
 endTime NUMBER(6,0))");
I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L 225

E X E C U T I N G T H E B R I D G E E X A M P L E
Finally, the members of the set resultSet can be inserted as rows in the table Result by
using a DBupdate statement.

For ODBC, the insertion is made by the instruction:

DBupdate(db, "insert into Result (task, startTime, endTime)
 values (?, ?, ?)")(resultSet);

For Oracle, the insertion is made by the instruction:

DBupdate(db, "insert into Result (task, startTime, endTime)
 values (:1, :2, :3)")(resultSet);

The difference between the two DBupdate instructions is due to the different syntax for the
placeholders inside the SQL request, imposed by the two database systems. In the case of
ODBC you use a query sign as a placeholder, while in Oracle you use a column sign
followed by a column number, with the columns numbered starting from one.

Executing the Bridge Example

Click the Run button in the tool bar of the OPL Studio Main window.

At the end of the execution you will see the following message in the Solutions notebook
page:

Optimal Solution with Objective Value: 104

Also, OPL Studio will open the model browser. You can examine the model in the usual
manner to see the contents of the various data structures in this example.

Viewing the Result in the Database

When you have successfully executed the model from OPL Studio, you can view, in the
database, the contents of the newly created table Result.

◆ Windows XP, Windows 2000, Windows NT 4, and Windows 98

Close OPL Studio and Microsoft Access (if you are using it). Restart Microsoft Access
by double clicking from Windows Explorer on the database abridge.mdb.

Figure 10.3 shows that the Result table has been added to the list of tables
abridge.mdb.
226 I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L

10. W
o

rkin
g

 w
ith

 a
D

atab
ase

E X E C U T I N G T H E B R I D G E E X A M P L E
Figure 10.3

Figure 10.3 The Result Table
I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L 227

E X E C U T I N G T H E B R I D G E E X A M P L E
Double click on Result in order to see the table’s contents. The table contains 46 rows,
each row corresponding to a task with its optimal start and end time, as you can see in
Figure 10.4.

Figure 10.4

Figure 10.4 Contents of the Results Table

If you want to rerun the example, first remove the table Result from the database by
selecting the name Result then pressing the Delete button on the keyboard.

◆ UNIX

If you are working with Oracle on UNIX, you can view the contents of the table Result
by typing the select command at the prompt of the SQL shell:

SQL> select * from Result;

You will see 46 rows selected.

If you want to rerun the example, remove the table Result from the Oracle database by
typing a drop command at the prompt of the SQL shell:

SQL> drop table Result;
228 I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L

10. W
o

rkin
g

 w
ith

 a
D

atab
ase

E X E C U T I N G T H E B R I D G E E X A M P L E
Consulting the Result From Another Model

It is not mandatory to have Microsoft Access installed on your computer in order to view the
contents of the table Result. As an alternative, you can type the following OPL instructions
in a new model file:

Code Sample 10.3DBconnection db("odbc", "abridge//"); //connect to the database

struct Schedule {
 string task;
 int startTime;
 int endTime;
};

{Schedule} see from
 DBread(db, "select * from Result"); //read the table Result

DBexecute(db, "drop table Result"); //remove the table from the database

solve;

display see; //display the result

Code Sample 10.3 OPL Instructions to View the Results Table

Upon execution of this new model file, the set see will be displayed by OPL Studio in the
Solution notebook page.

You can also examine the set see from the data structure tree built in the model browser.
I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L 229

E X E C U T I N G T H E B R I D G E E X A M P L E
230 I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L

C H A P T E R

11. U
sin

g
 O

P
L

S
crip

t

11

Using OPLScript

This chapter explains how to work with OPLScript, the OPL scripting language, in OPL
Studio.

OPLScript enables you to:

◆ solve repeated instances of the same model

◆ make data modifications

◆ format output

◆ create algorithmic solutions where the output of one model is used as the input of a
second model.

Refer to the ILOG OPL Studio: Language Manual, Chapters 16 and 17, for a detailed
description of OPLScript.
I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L 231

T H E V E L L I N O E X A M P L E
The Vellino Example

When using this example you will:

◆ open a script file and execute the script

◆ re-execute the script step by step in debug mode

◆ abort the execution while stepping in the script

◆ proceed with the execution while stepping in the script

◆ step out from a loop while stepping in the script

You do not use projects to manipulate scripts, you use script files with the extension .osc.

In this example you will be using the file vellino.osc from your release distribution. If
you used the default directories at installation time, you can find this file in the following
location:

◆ For UNIX systems

<installation-directory>/OPLSt37/examples/opl/scripts/vellino.osc

◆ For Windows XP, Windows 2000, Windows NT 4, and Windows 98

C:\ILOG\OPLSt37\examples\opl\scripts\vellino.osc

The application is a bin-packing configuration that, given a supply of components and bins
of various types, must assign the components to the bins so that the bin constraints are
satisfied and the smallest possible number of bins is used.

The application is described in detail in the ILOG OPL Studio: Language Manual, Section
16.4, Sequences of Models.

Here, we assume that you are familiar with this application and the solving strategy as it is
explained in that document.

The file vellino.osc contains the script to implement the solving strategy. It invokes two
models, contained in the files genBin.mod and chooseBin.mod.

Data for the model genBin.mod is contained in the file genBin.dat.

All these files are located in the same subdirectory as the script file vellino.osc.
232 I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L

O P E N I N G T H E S C R I P T F I L E

11. U
sin

g
 O

P
L

S
crip

t

Opening the Script File

In the tool bar of the OPL Studio Main window, select File>Open>Script or, click on the
icon .

ILOG OPL Studio displays a standard Open File dialog box for you to select the appropriate
script file. Select vellino.osc from the scripts directory.

ILOG OPL Studio then displays the script in the editing area.

Figure 11.1

Figure 11.1 vellino.osc, OPL Script Example
I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L 233

E X E C U T I N G T H E S C R I P T
Executing the Script

In order to execute the loaded script, simply click the Run button in the tool bar of the
Main window.

Once the script is open, ILOG OPL Studio does the following:

◆ checks for syntactic or semantic errors

◆ executes the script, displaying the script file name in the status bar and changing the
color patch to green

◆ if the script contains instructions of the form cout << ..., the resulting output is
printed in the Console notebook page

◆ upon completion, displays “OPL Studio is idle” in the status bar and changes the color
patch to blue.

Note: If you happen to have a project open in the Main window, ILOG OPL Studio always
gives precedence to the project file. The opened project file always gets executed. You will
need to close the project before trying to execute the script file.
234 I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L

E X E C U T I N G T H E S C R I P T

11. U
sin

g
 O

P
L

S
crip

t

The Main window now looks like this:

Figure 11.2

Figure 11.2 Execution of the vellino.osc Example
I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L 235

S T E P P I N G I N A S C R I P T
Stepping in a Script

ILOG OPL Studio offers you the possibility of interactively executing a loaded script, step
by step. This facility is useful for debugging a script.

To Step to the First Instruction

Now that the script vellino.osc is open, select the option Stepping in Script from the
Debug menu. Then click the Run button in order to start the execution of the script.

ILOG OPL Studio stops at the first instruction of the script, indicated by the current line
arrow in the editor margin. At the same time, the status bar displays the message “Next
instruction?” and the color patch changes to yellow and blinks (to stop the blinking, see
Blinking Status on page 171).

Figure 11.3

Figure 11.3 Step by Step Execution of a Script
236 I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L

S T E P P I N G I N A S C R I P T

11. U
sin

g
 O

P
L

S
crip

t

To Step to the Next Instruction

In order to execute the instruction indicated, click on the Next button in the execution
tool bar of the Main window.

ILOG OPL Studio executes this instruction then steps to the following instruction in the
execution flow. By repeatedly clicking on the Next button, you can follow the execution of
the script one instruction after another.

To Abort the Execution

At any moment during the stepping in the script, you can abort the execution by clicking the
Abort button in the execution tool bar of the Main window.

In this case, you will get the message "OPLScript: Execution has aborted" in the Console
notebook page. The status bar will indicate that OPL Studio is idle and the color patch will
change to blue.

After aborting, you can relaunch the script in stepping mode, from the beginning, by
clicking on Run.

To Deselect the Stepping Option

If you want to run the script from the beginning without stepping, deselect the option
Stepping in Script from the Debug menu, prior to clicking on Run.

As long as the option Stepping in Script is not deselected, the script will stop at the first
instruction each time the Run button is clicked.

To Continue without Stepping

At any moment during the stepping in the script, you can ask ILOG OPL Studio to continue
until completion by clicking the Continue Run button in the tool bar of the Main
window.

OPL Studio will execute the rest of the script without stopping at instructions. The possible
outputs of the script are printed in the Console notebook page. At the end of the execution,
the status bar indicates that ILOG OPL Studio is idle.

You can relaunch the script in stepping mode, from the beginning, by clicking on Run.

To Step Out of a Loop

When you are stepping in a script and the current instruction is a looping instruction (i.e.
forall, while, or repeat), you can ask ILOG OPL Studio to execute the loop without
stopping at instructions, by clicking the Step Out button in the tool bar.
I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L 237

S T E P P I N G I N A S C R I P T
OPL Studio will proceed with the entire loop, then it will stop at the first instruction after the
loop in the execution flow.

For example, if you launched the script vellino.osc in stepping mode, you can first
proceed by clicking the Next button several times until the current instruction, indicated by
the yellow arrow in the editor margin (see Figure 11.4), becomes the while statement:

while bin.nextSolution() do {

Figure 11.4

Figure 11.4 A Loop in a Script
238 I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L

S T E P P I N G I N A S C R I P T

11. U
sin

g
 O

P
L

S
crip

t

Now continue by clicking the Step Out button .

You will see that OPL Studio is not stepping inside the while loop and that the current
instruction becomes:

pro.nbBin := nbSol;

which is the first instruction after the while loop.

Figure 11.5

Figure 11.5 Stepping Out of a Loop in OPLScript

To Complete the Execution

While stepping through a script, you can take ILOG OPL Studio to the idle state in one of
three ways:

◆ click the Continue Run button

◆ click the Abort button

◆ click the Next button to follow the entire execution of the script, instruction by
instruction. In this case, in order to avoid loops, you may use the Step Out button, as
explained previously.
I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L 239

A D D I N G A N D R E M O V I N G B R E A K P O I N T S
Adding and Removing Breakpoints

You can place breakpoints against lines of code at which you want the execution to stop,
either to display the value of a variable, or to continue the execution by clicking the Next
button.

1. Uncheck the Stepping in Script option from the Debug menu. In the editor, click on the
line:

if pro.nextSolution()

2. Select the menu item Debug>Add/Remove Breakpoint. A red dot appears in the margin.

3. Run the script. It stops at the specified line.

4. By clicking on Next you can step in the subsequent lines of the script.

You can also continue the execution by clicking the Continue Run button.

Closing the Script File

When you have completed the execution of a script, you can close the script file by selecting
Close Current Editor from the File Menu.
240 I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L

C H A P T E R

12. G
en

eratio
n

12

Generating Compiled Models

In this chapter you will learn how to generate compiled models that can be used with the
OPL Component Libraries. Here, the basic steps are given for generating a compiled model.
Examples and more detailed information are provided in the following documents:

ILOG OPL Studio: Component Libraries User’s Manual

ILOG OPL Studio: Component Libraries Reference Manual.

1. Open a model in the usual way:

● select File>Open>Model, or click on the corresponding button

● select the model file from the standard Open File dialog box.

Ensure that the focus is on the model.

2. Select the commands File>Generate Compiled Model File, or click on the corresponding
button in the tool bar.

3. The extension of the generated file is .opl. For example, if you generate a compiled
model file for queens8.mod, the resulting file will be queens8.opl.

4. You can specify, in your default options settings, where you want these generated files to
be placed (See Setting Miscellaneous Options on page 172.)

A compiled model is to be used with the OPLsolver API for compiled model files or
buffers. OPLsolver is described in the ILOG OPL Studio: Component Libraries Reference
Manual.
I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L 241

242 I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L

A P P E N D I X

e

A

OPL Parameters

The following table presents the OPL parameters in alphabetical order. The page numbers refer you to the chapter
Mathematical Programming, where you will find a detailed description of each parameter.

Table A.1 OPL Parameters

Parameter Name
 and Description

Type Possible Values Default Pag

aggCutLim

Constraint aggregation limit for
cut generation.

int Any non-negative integer 3 203

aggFill

Preprocessing aggregator fill.

int Any non-negative integer 10 186

aggInd

Preprocessing aggregator
application limit.

int -1 Automatic (1 for LP, infinite for MIP)
 0 Do not use any aggregator
— or — Any positive integer

-1 186
I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L 243

e

barAlg

Barrier algorithm.

int 0 Default primal-dual log barrier
1 Infeasibility-estimate start
2 Infeasibility-constant start
3 Standard barrier

0 205

barColNz

Barrier column non-zeros.

int 0 Dynamically calculated
— or — Any positive integer

0 207

barCrossAlg

Barrier crossover method.

int -1 No crossover
 0 Automatic
 1 Primal crossover
 2 Dual crossover

0 206

barEpComp

Barrier convergence tolerance.

float Any positive number ≥ 1e-10 1e-8 206

barGrowth

Barrier growth limit.

float Any positive number 1e12 207

barItLim

Barrier iteration limit.

int 0 No barrier iterations
— or — Any positive integer

2 100 000 000 208

barMaxCor

Barrier maximum correction
limit.

int -1 Automatically determined
 0 None
 Any positive integer

-1 208

barObjRng

Barrier objective range.

float Any positive number 1e20 207

barOOC

Out-of-core barrier indicator.

int 0 Off
1 On

0 208

barOrder

Barrier ordering algorithm.

int 1 Automatic
2 Approximate minimum degree (AMD)
3 Approximate minimum fill (AMF)
4 Nested dissection (ND)

4 206

Parameter Name
 and Description

Type Possible Values Default Pag
244 I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L

e

barStartAlg

Barrier starting point algorithm.

int 1 Dual is 0
2 Estimate dual
3 Average of primal estimate, dual 0
4 Average of primal estimate, estimate dual

1 206

barThreads

Barrier thread limit.

int 0 Determined by global thread default
>0 Upper limit on threads for Parallel Barrier

0 208

basInterval

Basis file saving frequency.

int Any positive integer 2 100 000 000 183

BBInterval

MIP strategy BBinterval.

int 0 Best estimate node always selected
1 Best bound node always selected
— or — Any positive integer

7 190

bndStrenInd

Bound strengthening indicator.

int -1 Automatic
 0 Off
 1 On

-1 185

brDir

MIP branching direction.

int -1 Down branch selected first
 0 Automatically determined
 1 Up branch selected first

0 190

btTol

MIP backtracking tolerance.

float Any number between 0 and 1 0.9999 200

cliques

MIP clique cuts indicator.

int -1 Do not generate clique cuts
 0 Automatically determined
 1 Generate clique cuts moderately
 2 Generate clique cuts aggressively

0 201

coeRedInd

Coefficient reduction setting.

int 0 Do not use coefficient reduction
1 Reduce only to integral coefficients
2 Reduce all potential coefficients

2 186

covers

MIP cover cuts indicator.

int -1 Do not generate cover cuts
 0 Automatically determined
 1 Generate cover cuts moderately
 2 Generate cover cuts aggressively

0 201

cplexLogFile

Generates the CPLEX log file.

string Empty by default, otherwise a string containing a file
name.

Empty 177

Parameter Name
 and Description

Type Possible Values Default Pag
I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L 245

e

craInd

Simplex crash ordering.

int Primal:
 0 Ignore object coefficients during crash
-1 or 1 Alternative ways of using objective coefficients
Dual:
 1 Default starting basis
 0 or -1 Aggressive starting basis

1 180

cutLo

MIP lower cutoff tolerance.

float Any number -1e75 199

cutPass

Number of cutting plane passes.

int -1 None
 0 Automatically determined
Any positive value, to indicate number of passes

0 196

cutsFactor

MIP row multiplier factor for
cuts.

float Any non-negative number 4.0 194

cutUp

MIP upper cutoff tolerance.

float Any number 1e75 199

depInd

Dependency checker.

int -1 Determined automatically
0 Off
1 On at beginning of preprocessing
2 On at end of preprocessing
3 On at beginning and end of preprocessing

-1 187

diveType

MIP dive strategy.

int 0 Automatically determined
1 Traditional dive
2 Probing dive
3 Guided dive

0 193

disjCuts

MIP disjunctive cuts indicator.

int -1 Do not generate disjunctive cuts
 0 Automatically determined
 1 Generate disjunctive cuts moderately
 2 Generate disjunctive cuts aggressively

0 203

dPriInd

Dual simplex pricing algorithm.

int 0 Determined automatically
1 Standard dual pricing
2 Steepest-edge pricing
3 Steepest-edge pricing in slack space
4 Steepest-edge pricing, unit initial norms
5 Devex pricing

0 181

Parameter Name
 and Description

Type Possible Values Default Pag
246 I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L

e

epAGap

MIP absolute mipgap tolerance.

float Any positive number 1e-6 198

epGap

MIP relative mipgap tolerance.

float Any number between 0.0 and 1.0 1e-04 198

epInt

MIP integrality tolerance.

float Any number between 1e-09 and 1.0 1e-05 199

epMrk

Simplex Markowitz tolerance.

float Any number between 0.0001 and 0.99999 0.01 183

epOpt

Simplex optimality tolerance.

float Any number between 1e-10 and 0.01 1e-06 183

epPer

Simplex perturbation constant.

float Any positive number ≥ 1e-8 1e-6 184

epRHS

Simplex feasibility tolerance.

float Any number between 1e-10 and 0.01 1e-06 183

finalFactor

Simplex final basis factorization
after uncrush.

int 0 Off
1 On

1 181

flowCovers

MIP flow cuts indicator.

int -1 Do not generate flow cuts
 0 Automatically determined
 1 Generate flow cuts moderately
 2 Generate flow cuts aggressively

0 202

flowPaths

MIP flow path cut indicator.

int -1 Do not generate flow path cuts
 0 Automatically determined
 1 Generate flow path cuts moderately
 2 Generate flow path cuts aggressively

0 203

fracCand

Candidate limit for generating
Gomory fractional cuts.

int Any non-negative integer 200 196

Parameter Name
 and Description

Type Possible Values Default Pag
I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L 247

e

fracCuts

MIP Gomory fractional cuts
indicator.

int -1 Do not generate Gomory fractional cuts
 0 Automatically determined
 1 Generate Gomory fractional cuts moderately
 2 Generate Gomory fractional cuts aggressively

0 203

fracPass

Pass limit for generating
Gomory fractional cuts.

int Any non-negative integer 0 196

GUBCovers

MIP GUB cuts indicator.

int -1 Do not generate GUB cuts
 0 Automatically determined
 1 Generate GUB cuts moderately
 2 Generate GUB cuts aggressively

0 202

heurFreq

MIP heuristic frequency.

int -1 None
 0 Automatic
— or — Any positive integer

0 190

implBd

MIP implied bound cuts
indicator.

int -1 Do not generate implied bound cuts
 0 Automatically determined
 1 Generate implied bound cuts moderately
 2 Generate implied bound cuts aggressively

0 202

intSolLim

MIP solution limit.

int Any positive integer 2 100 000 000 195

itLim

Simplex maximum iteration limit.

int Any non-negative integer 2 100 000 000 183

MIPEmphasis

MIP emphasis indicator

int 0 Balance optimality and feasibility
1 Emphasize feasibility over optimality
2 Emphasize optimality over feasibility
3 Emphasize moving best bound
4 Emphasize hidden feasibles

0 178

MIPOrdInd

MIP priority order indicator.

int 0 Off
1 On

1 192

Parameter Name
 and Description

Type Possible Values Default Pag
248 I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L

e

MIPOrdType

MIP priority order generation.

int 0 Do not generate a priority order
1 Use decreasing cost
2 Use increasing bound range
3 Use increasing cost per coefficient count

0 190

MIPThreads

MIP thread limit.

int 0 Determined by global thread default
>0 Upper limit on threads for Parallel MIP

0 197

MIRCuts

MIP MIR (mixed integer
rounding) cut indicator.

int -1 Do not generate MIR cuts
 0 Automatically determined
 1 Generate MIR cuts moderately
 2 Generate MIR cuts aggressively

0 204

netEpOpt

Network optimality tolerance.

float Any number from 1e-4 to 1e-11 1e-6 210

netEpRHS

Network feasibility tolerance.

float Any number from 1e-4 to 1e-11 1e-6 210

netFind

Simplex network extraction
level.

int 1 Extract pure network only
2 Try reflection scaling
3 Try general scaling

2 210

netItLim

Network simplex iteration limit.

int Any non-negative integer 2 100 000 000 210

netPPriInd

Network simplex pricing
algorithm.

int 0 Automatic
1 Partial pricing
2 Multiple partial pricing
3 Multiple partial pricing with sorting

0 209

nodeFileInd

MIP node storage file indicator.

int 0 No node file
1 Node file in memory and compressed
2 Node file on disk
3 Node file on disk and compressed

1 197

nodeLim

MIP node limit.

int Any non-negative integer 2 100 000 000 194

Parameter Name
 and Description

Type Possible Values Default Pag
I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L 249

e

nodeSel

MIP node selection strategy.

int 0 Depth-first search
1 Best-bound search
2 Best-estimate search
3 Alternate best-estimate search

1 191

objDif

MIP absolute objective
difference cutoff.

float Any number 0.0 199

objLLim

Simplex lower objective value
limit.

float Any number -1e+75 184

objULim

Simplex upper objective value
limit.

float Any number 1e+75 184

perInd

Simplex perturbation indicator.

int 0 Off
1 On

0 184

perLim

Simplex perturbation limit.

int 0 Determined automatically
— or — Any positive integer

0 182

PiecewiseCuts

Piecewise cuts indicator.

int 0 Off
1 On

1 179

pPriInd

Primal simplex pricing
algorithm.

int -1 Reduced-cost pricing
 0 Hybrid reduced-cost & devex pricing
 1 Devex pricing
 2 Steepest-edge pricing
 3 Steepest-edge pricing with slack initial norms
 4 Full pricing

0 181

preCompress

Compression of model after
presolve.

int -1 Off
 0 Automatic
 1 On

0 186

Parameter Name
 and Description

Type Possible Values Default Pag
250 I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L

e

preDual

Presolve dual setting.

int -1 Off
 0 Automatic
 1 On

0 188

preInd

Presolve indicator.

int 0 Off
1 On

1 187

prePass

Presolve pass limit.

int -1 Determined automatically
 0 Do not use Presolve
 — or — Any positive integer

-1 187

preslNd

Node presolve selector.

int -1 No node presolve
 0 Automatic
 1 Force node presolve

0 192

priceLim

Simplex pricing candidate list
size.

int 0 Determined automatically
— or — Any positive integer

0 182

probe

MIP probe.

int -1 No probing
 0 Automatic
 1 Probing level 1
 2 Probing level 2
 3 Probing level 3

0 192

reduce

Primal and dual reduction type.

int 0 No primal and dual reductions
 1 Only primal reductions
 2 Only dual reductions
 3 Both primal and dual reductions

3 188

reInv

Simplex refactorization
frequency.

int 0 Determined automatically
— or — Any positive integer

0 182

relaxPreInd

Relaxed LP presolve indicator.

int 0 Off
1 On

0 187

relObjDif

MIP relative objective difference
cutoff.

float Any non-negative number 0.0 200

Parameter Name
 and Description

Type Possible Values Default Pag
I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L 251

e

RINSHeur

MIP strategy RINS heuristic

int -1 None
 0 Automatic
 or, any positive integer

0 193

scaInd

Scale parameter.

int -1 No scaling
 0 Equilibration scaling method
 1 More aggressive scaling

0 181

singLim

Simplex singularity repair limit.

int Any non-negative integer 10 182

startAlg

MIP starting LP algorithm.

int 0 Controlled by LP Method
1 Primal simplex
2 Dual simplex
3 Network simplex
4 Barrier

0 191

strongCandLim

MIP candidate list.

int Any positive integer 10 195

strongItLim

MIP simplex iterations.

int Any positive integer 0 195

strongThreadLim

MIP parallel threads.

int Any positive integer 1 195

subAlg

MIP subproblem LP algorithm.

int 0 Automatic
1 Primal simplex
2 Dual simplex
3 Network optimizer followed by dual simplex
4 Barrier

0 191

subMIPNodeLim

MIP subnode limit.

int Any positive integer 500 197

symmetry

Symmetry breaking cuts

int 0 Off
1 On

0 186

Parameter Name
 and Description

Type Possible Values Default Pag
252 I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L

e

tiLim

Global time limit.

float Any non-negative number 1e+75 176

treLim

MIP tree memory limit.

float Any positive number 128 196

varSel

MIP variable selection strategy.

int -1 Branch on variable with minimum infeasibility
 0 Branch variable automatically selected
 1 Branch on variable with maximum infeasibility
 2 Branch based on pseudo reduced costs
 3 Strong branching
 4 Branch based on pseudo reduced costs

0 191

workDir

The name of an existing
directory in which CPLEX may
store temporary working files.

string Any valid string.

The default value is a dot (.), meaning the current
local directory.

. 179

workMem

Memory available, in
megabytes, for working storage.

double Any positive number 128 179

Parameter Name
 and Description

Type Possible Values Default Pag
I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L 253

254 I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L

F I G U R E S
List of Figures

1.1 Switching from the Japanese Version to the English (US) Version . 21

1.2 ILOG OPL Studio Main Window . 22

1.3 Overview of Commands in the Menu Bar . 25

1.4 Handles on Dockable Windows . 33

1.5 Title Bar on Floating Window (Windows XP, 2000, NT 4, 98). 34

1.6 Handle on Floating UNIX Window (X-Windows) . 34

1.7 Selecting a New Model . 36

1.8 New Model in Main Window . 37

1.9 Simple OPL Statement in the noname.mod file . 38

1.10 Error Message Displayed in Console Notebook Page . 39

1.11 Text Editor after Hiding the Output and Model Windows . 42

2.1 Project Window (Floating State) . 54

2.2 Insert a Model File into a Project. 55

2.3 Project Tree and Editing Area After Inserting a Model File . 56

2.4 Inserting a Data File into a Project . 57

2.5 Open Data File Dialog Box . 57

2.6 Loading Data into a Project. 58

2.7 Saving a Project . 59

2.8 Project Tree for product.prj Example . 59

2.9 Project Options Notebook . 60

2.10 Model Browser for product.prj Example . 62

2.11 “Next solution?” Message . 63

2.12 Solutions Notebook Page for product.prj Example. 64
I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L 255

F I G U R E S
2.13 Log Notebook Page for product.prj Example . 64

2.14 Solver Notebook Page for product.prj Example . 65

2.15 CPLEX Notebook Page for product.prj Example . 66

2.16 Model Browser for product.mod File . 67

2.17 Open View Button . 68

2.18 Main Window After Executing product.prj Example . 72

2.19 Project Tree in the Work Space . 74

2.20 Setting an Active Project . 75

3.1 Loading a Data File for the Car Sequencing Example . 83

3.2 Main Window for the Car Sequencing Example . 84

3.3 slot Variable Results for Solution[1] . 86

3.4 Alternative View of slot Variable Results for Solution[1] . 86

3.5 setup Variable Results for Solution[1] . 87

3.6 Alternative View of setup Variable Results for Solution[1] . 87

3.7 Model Browser for car.prj (Floating State) . 89

3.8 Selecting a Dynamic Display Option . 91

3.9 Setup Notebook Page Showing Boolean Display . 92

4.1 Main Window for the House Building Example . 96

4.2 Model Browser for house2.mod (Floating State) . 97

4.3 Main Window with house2.mod Solution. 99

4.4 Activities Results for house2.mod Example . 100

4.5 Alternative View of Activities Results for house2.mod Example . 101

4.6 Gantt Chart of Activities Results for house2.mod Example. 102

4.7 Gantt Chart Split into Four Views . 104

4.8 Activities Notebook Page for house2.mod Example . 105

4.9 Sorted Activities Gantt Chart for house2.mod Example . 106

4.10 Discrete Resource Results for house2.mod Example. 107

4.11 Alternative View of Discrete Resources Results for house2.mod Example . 108

4.12 Optimization Notebook Page for house2.mod Example . 109

4.13 Solver Notebook Page for house2.mod Example . 109

4.14 Closing a Model in the Projects Page . 111

4.15 Closing a Model in the Editing Area . 111

7.1 The Eight Queens Model with the Default Search Strategy . 128

7.2 Project Tree for the Frequency Allocation Example (in Dockable Window) . 133

7.3 Main Window for the Frequency Allocation Example . 134
256 I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L

F I G U R E S
7.4 Browsing an Active Model - Frequency Allocation Example . 135

7.5 Model Browser for the Frequency Allocation Example . 135

7.6 Debug Menu . 136

7.7 Main Window in Debug Mode with Stop at Choice Point Option . 138

7.8 Stack Window (Floating) at the First Choice Point . 139

7.9 Inspector Window (Floating) at the First Choice Point . 139

7.10 Stack Window at Second Choice Point. 140

7.11 Inspector Window at Second Choice Point . 140

7.12 Stack Window at the Fourth Choice Point. 141

7.13 Inspector Window at the Fourth Choice Point. 141

7.14 Main Window in Debug Mode with Stepping Option . 143

7.15 Stack and Inspector Windows at First Instruction of Stepping Option . 144

7.16 Stack and Inspector Windows at Second Instruction of Stepping Option . 145

7.17 Stack and Inspector Windows at Sixth Instruction of Stepping Option . 146

7.18 Order of the Search Tree Exploration with the Default Depth-First Search . 147

7.19 Part of the Search-tree Exploration Order with the SBS . 151

7.20 Main Window After Leaving Debug Mode. 152

7.21 Search Tree and Objective Bounds, after One Choice using Solver without Linear Relaxation 155

7.22 Search Tree without Linear Relaxation after 14 Next Commands. 156

7.23 Search Tree after One Choice using Solver with Linear Relaxation at Each Node 157

7.24 Search Tree with Linear Relaxation after 14 Next commands. 159

7.25 Exploring the Search Tree in the Slice-Based Search . 161

8.1 Default Options - Constraint Programming . 165

8.2 Editor Options . 166

8.3 Font Chooser Dialog Box . 167

8.4 Color Chooser Dialog Boxes. 168

8.5 Output Options . 169

8.6 Advanced Options. 171

8.7 Miscellaneous Options . 172

10.1 The Task Table . 219

10.2 The MAX_EF Table . 220

10.3 The Result Table . 227

10.4 Contents of the Results Table . 228

11.1 vellino.osc, OPL Script Example . 233

11.2 Execution of the vellino.osc Example. 235
I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L 257

F I G U R E S
11.3 Step by Step Execution of a Script . 236

11.4 A Loop in a Script . 238

11.5 Stepping Out of a Loop in OPLScript . 239
258 I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L

T A B L E S
List of Tables

1.1 Commands in the Menu Bar . 26

1.2 Editor Functions . 43

A.1 OPL Parameters . 243
I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L 259

T A B L E S
260 I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L

S A M P L E S
List of Code Samples

1.1 Example of an OPL Statement . 37

2.1 OPL Model for the Production Planning Example (product.mod) . 52

2.2 OPL Data for the Production Planning Example (product.dat) . 53

2.3 OPL Named Data for Production Planning Example (productn.dat) . 73

3.1 OPL Model for the Car Sequencing Example (car.mod). 81

3.2 OPL Data for the Car Sequencing Example (car.dat) . 82

4.1 OPL Model for the House Building Example (house2.mod) . 95

7.1 OPL Model for the Frequency Allocation Example with Search Procedure . 131

7.2 OPL Data for the Frequency Allocation Example (alloc.dat). 132

10.1 Record Definitions in the abridge.mod File . 222

10.2 Initializing OPL Sets . 225

10.3 OPL Instructions to View the Results Table. 229
I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L 261

C O D E S A M P L E S
262 I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L

I N D E X
Index

A

Abort button 32, 40, 71
Abort command 28
active model 76
active project 74
active script 76
Activities notebook page 105
activity domains after propagation 116
Activity Domains window 114
activity domains, color options 171
activity, definition 94
Add New Data File command 28
Add New Model File command 28
Add/Remove Breakpoint button 32
adding

data files to projects 57, 58
model files to projects 55, 58

advanced options 171
aggCutLim parameter 203, 243
aggFill parameter 186, 243
aggInd parameter 186, 243
algorithm animation 116
algorithms used for solving 65
All Solutions command 28
alternative data files 73

B

backtrackable 2D graphics 119

barAlg parameter 205, 244
barColNz parameter 207, 244
barCrossAlg parameter 206, 244
barEpComp parameter 206, 244
barGrowth parameter 207, 244
barItLim parameter 208, 244
barMaxCor parameter 208, 244
barObjRng parameter 207, 244
barOOC parameter 244
barOOC parameter 208
barOrder parameter 206, 244
barStartAlg parameter 206, 245
barThreads parameter 208, 245
basic concepts

checking for syntactic errors 39
creating files 36
executing models or projects 38
opening files 36
processing directives 40
terminating ILOG OPL Studio 40

basInterval parameter 183, 245
batch mode 18
BBInterval parameter 190, 245
bndStrenInd parameter 185, 245
Board keyword 119
brDir parameter 190, 245
breakpoints 240
Browse Active Model command 28
Browse Model command 28
btTol parameter 245
I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L 263

I N D E X
building the data structure 89, 96
buttons

Abort 32, 40, 71
Add/Remove Breakpoint 32
Close Current Editor 31
Continue Run 32, 40, 71
Copy 31
Cut 31
Generate Compiled Model File 32
Inspect Current Node 32
Load Data File 31
Load Model File 31
Load Project File 31
Load Script File 31
Next 32, 40, 71
Paste 31
Rebuild Browser Information 32
Redo 31
Run 32
Save All Files 31
Save and Close Project 31
Save Editor Content 31
Step Out 32
Undo 31
View Choice Stack 32

C

car sequencing tutorial
car.dat file 82
car.mod file 80
car.prj file 83
closing the project file 92
continuing the execution 88
displaying variable results 91
dynamic display 90
examining the solution 86
executing the project 85
looking at the model structure 89
Main window 84
opening a project file 83
problem description 80

Cascade command 29
changing colors 168
changing fonts 167

checking for errors 39
choice point 29, 32, 66, 128, 136, 139, 142, 146, 154, 160
choice point, in bridgebr example 116
choice stack 124
Choice Stack command 28
cliques parameter 201, 245
Close Current Editor button 31
Close Current Editor command 26
Close Project command 28
CloseActive Project command 26
closing models 111
closing projects 74, 92
closing the active file 31
coeRedInd parameter 186, 245
Color Chooser dialog box 168
color patch, setting the blink option 171
colors

changing 168
comments 168
editor 168
error 168
label 169
OPL keywords and functions 168
OPLScript 168
options 169

commands
Debug

Add/Remove Break Point 29
Display Search Tree 29
Stepping in Model 29
Stepping in Script 29
Stop at Choice Point 29
Stop at Solution 29

Edit
Comment 27
Complete Word 27
Copy 27
Cut 27
Find 27
Find Next 27
Find Previous 27
Go To 27
Indent Lines 27
Kill Line 27
Outdent Lines 27
264 I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L

I N D E X
Paste 27
Recenter 27
Redo 26
Replace 27
Select All 27
Uncomment 27
Undo 26

Execution
Abort 28
All Solutions 28
Browse Active Model 28
Continue Run 29
Next 29
Run 28
Step Out 29

File
Close Active Project 26
Close Current Editor 26
Dump Active Model and 26
Generate Compiled Model File 26
New 26
Open 26
Quit 26
Recent Files 26
Save 26
Save All 26
Save As 26

Help
Contents 30
Keyword Help 30

Options
Customize Active Project Options 29, 164
Customize Default Options 29, 164

Project
Add New Data File 28
Add New Model File 28
Browse Model 28
Close Project 28
Insert Existing Data File 28
Insert Existing Model File 28
Project Options 28
Save the Project 28
Save the Project As 28
Set as Active Project 28

View
Choice Stack 28
Inspect Current Node 28
Output 28
Workspace 27

Window
Cascade 29
Tile Horizontally 29
Tile Vertically 29

comment colors 168
Comment command 27
compiled model files 26
compiled models 173
Complete Word command 27
configuration file oplst3.config 18
Console notebook page 40
constraint programming options 165
Continue Run button 32, 40, 71
Continue Run command 29
continuing executions

car sequencing 88
production planning 71

Copy button 31
Copy command 27
covers parameter 201, 245
CPLEX notebook page 211
cplexLogFile parameter 177, 245
craInd parameter 180, 246
creating files 36
creating projects 54, 59
current node inspector 124
Customize Active Project Options command 29
Customize Default Options command 29
customizing default options 164
customizing OPL Studio

changing colors 168
changing fonts 167
constraint programming options 165
setting advanced options 171
setting output options 169

customizing project options 60, 61, 164
Cut button 31
Cut command 27
cutLo parameter 199, 246
cutPass parameter 196, 246
I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L 265

I N D E X
cutsFactor parameter 194, 246
cutUp parameter 199, 246

D

data files 58, 83
data files, description 35
data initialization 73
data structure information 89, 96
data, loading into editor 133
database connection

bridge example 213, 216, 226
installing the database 217
ODBC 223, 225
Oracle 224, 225
reading from a database 224
storing results in a database 225
the OPL model 222
updating a database 225
viewing the data tables 218

database connectivity 214
databases supported in OPL 214
DBconnection OPL instruction 214
Debug menu

Add/Remove Break Point 29
Display Search Tree 29
Stepping in Model 29
Stepping in Script 29
Stop at Choice Point 29
Stop at Solution 29

debugging OPL models
executing in debug mode 137, 142
Inspector window 139
options 136
processing directives 141
setting options 136
Stack window 139
Stepping in Model option 142
Stop at Choice Point 136

debugging OPL scripts
stepping in a script 236
stepping out from a loop 237

Default Options dialog box 164
depInd parameter 187, 246

dialog boxes
Color Chooser 168
Default Options 164
Font Chooser 167
Project Options 60

disjCuts parameter 203, 246
displaying

activities results 100, 101, 105
Inspector window 139, 144
model data structure 89, 96
results 90
sorted activities 106
Stack window 139, 144
variable arrays 87

diveType parameter 193, 246
dockable elements 33
docking a window 34
dPriInd parameter 181, 246
drawing board

docking, undocking 119, 121
setting the docking option 171, 172
the Euler example 122
the map example 122
the square example 120

Dump Active Model and Result command 26
dynamic display 90, 113

E

Edit menu
Comment 27
Complete Word 27
Copy 27
Cut 27
Find 27
Find Next 27
Find Previous 27
Go To 27
Indent Lines 27
Kill Line 27
Outdent Lines 27
Paste 27
Recenter 27
Redo 26
Replace 27
266 I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L

I N D E X
Select All 27
Uncomment 27
Undo 26

editing area, description 23
editing mode 37
editor

customizing 46
Emacs mode 43
how to use 41
loading data 133
Multi-Document Interface 41
quick reference 43
visual mode 43, 46

editor colors 168
epAGap parameter 198, 247
epGap parameter 198, 247
epInt parameter 199, 247
epMrk parameter 183, 247
epOpt parameter 183, 247
epPer parameter 184, 247
epRHS parameter 183, 247
error checking

description of 39, 62
display colors 168
error message format 40

Euler example 122
examining

activities results 100, 101, 105
model solutions 63, 88, 100
variable results 86, 87

examples
abridge.mod (using a DB) 216, 226
bridgebr.prj (activities domain) 116
car sequencing 80
Euler (drawing board) 122
frequency allocation 130
house building 94
map (drawing board) 122
production planning 52
square (drawing board) 120
Vellino (OPLScript) 232

Excel, paste results to 88
executing

in debug mode 137
models 38, 98

next command 140
projects 38, 62, 85, 137, 142
scripts 234
termination 152

execution events, description 62, 85, 98
Execution menu

Abort 28
All Solutions 28
Browse Active Model 28
Continue Run 29
Next 29
Run 28
Step Out 29

execution steps 71
execution tool bar buttons 32, 71
execution tool bar, description 23
exported file formats 177

F

file export 177
file formats

LP 177
MPS 177
REW 177
RLP 177
SAV 177

File menu
Close Active Project 26
Close Current Editor 26
Dump Active Model and 26
Generate Compiled Model File 26
New 26
Open 26
Quit 26
Recent Files 26
Save 26
Save All 26
Save As 26

file naming conventions 35
file saving preferences 47
file types in OPL

data file 35
model 35
project 35
script 35
I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L 267

I N D E X
files referenced in OPL/OPLScript 172
finalFactor parameter 181, 247
Find command 27
Find Next command 27
Find Previous command 27
floating a window 33
flowCovers parameter 202, 247
flowPaths parameter 203, 247
Font Chooser dialog box 167
fonts

changing 167
options 169

fracCand parameter 196, 247
fracCuts parameter 203, 248
fracPass parameter 196, 248
frequency allocation 140
frequency allocation tutorial

alloc.dat file 132
alloc.mod file 130
alloc.prj file 133
continuing the execution 140
executing the project 137
looking at the model structure 135
Main window 134
model browser 135
problem description 130
processing directives 141
setting the debug option 136
Stack and Inspector windows 139

G

Gantt chart
how to use 102
showing activities results 101

Go To command 27
GUBCovers parameter 248
gubCovers parameter 202

H

Help menu
Contents 30
Keyword Help 30

help on keywords
UNIX platforms 49
Windows platforms 48

heurFreq parameter 190, 248
house building tutorial

Activities notebook page 105
activities results 100
closing the model file 111
completing the execution 110
discrete resources bar chart 108
examining the solution 100
executing the model 98
house2.mod file 95
list of activities 94
looking at the model structure 96
Main window 96
Main window after execution 99
Optimization notebook page 109
problem description 94
Resources results 107
Solutions notebook page 107
Solver notebook page 109
Sorted Activities notebook page 106

I

implBd parameter 202, 248
include files 172
Indent Lines command 27
initialization of data 73
Insert Existing Data File command 28
Insert Existing Model File command 28
Inspect Current Node button 32
Inspect Current Node command 28
Inspector window 139, 144
installation directory 51, 80, 93, 123
intSolLim parameter 195, 248
itLim parameter 183, 248

J

Japanese version
database restriction 21, 213
switching to English version 21
268 I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L

I N D E X
K

keyword help 48
Kill Line command 27

L

label colors 169
launching ILOG OPL Studio 18
Load Data File button 31
Load Model File button 31
Load Project File button 31
Load Script File button 31
loading data into the editor 58, 83, 133
localization

database restriction in Japanese version 21, 213
switching from Japanese to English 21

log notebook page 64
LP file format 177

M

Main window
button descriptions 31
command descriptions 26
description 22
editing area 23
execution tool bar 23
execution tool bar buttons 32
line number, column number 23
menu bar 23
model browser 23
output notebook 23
pathname 23
project tree 23
status bar 23
status box 24
tool bar 23
work space 23

MDI (Multi-Document Interface) 41
menu bar description 23
MIPEmphasis parameter 178, 248
MIPOrdInd parameter 192, 248
MIPOrdType parameter 190, 249
MIPThreads parameter 197, 249

MIRCuts parameter 204, 249
mode selectors for the Activity Domains window 115
model browser

building the data structure 89, 96
collapsed structure 72
description 23, 67
displaying a Gantt chart 101
displaying problem results 70
for alloc.prj 135
for car.prj 89
for house2.mod 97
for product.prj 62
navigating the model file 68
using dynamic display 90

model structure
rebuilding 89

models
closing 111
description 35
executing 98
opening 95
setting as active 76

modifying
colors 169
fonts 169

MPS file format 177
Multi-Document Interface 41

N

named initialization of records 73
netEpOpt parameter 210, 249
netEpRHS parameter 210, 249
netFind parameter 210, 249
netItLim parameter 210, 249
netPPriInd parameter 209, 249
New command 26
Next button 32, 40, 71
Next command 29
node inspector 124
nodeFileInd parameter 197, 249
nodeLim parameter 194, 249
nodeSel parameter 191, 250
I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L 269

I N D E X
notebook pages
Activities 105
Console 40
CPLEX 211
Optimization 64, 109
setup 91
Solutions 63
Solver 65, 109
Sorted Activities 106

O

objDif parameter 199, 250
objLLim parameter 184, 250
objULim parameter 184, 250
ODBC 223, 225
online help 48
Open command 26
opening

model files 95
projects 83
scripts 233

opening files 36
OPL keyword and function colors 168
OPL Studio options

export file format 177
refresh rate 177

OPLScript
debugging 236
description 232
example 232
executing 234
executing step by step 236
keyword colors 168
opening a script file 233
stepping out from a loop 237

OPLScript, features 231
oplst3.config file 18
Optimization notebook page 64, 109
optimization statement 99, 109
options

activities 170
advanced 171
console font 170
constraint programming 165

output 169
pathname for compiled models 173
precision 170
project 60, 61
sorted activities 170
textual result 170

Options menu
Customize Active Project Options 29, 164
Customize Default Options 29, 164

options, setting 75
Oracle 224, 225
Outdent Lines command 27
Output command 28
output notebook, description 23
output options

hide zeros 169
setting 169
square matrix 169

P

parameters
aggCutLim 203, 243
aggFill 186, 243
aggInd 186, 243
barAlg 205, 244
barColNz 207, 244
barCrossAlg 206, 244
barEpComp 206, 244
barGrowth 207, 244
barItLim 208, 244
barMaxCor 208, 244
barObjRng 207, 244
barOOC 208, 244
barOrder 206, 244
barStartAlg 206, 245
barThreads 208, 245
basInterval 183, 245
BBInterval 190, 245
bndStrenInd 185, 245
brDir 190, 245
btTol 200, 245
cliques 201, 245
coeRedInd 186, 245
covers 201, 245
270 I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L

I N D E X
cplexLogFile 177, 245
craInd 180, 246
cutLo 199, 246
cutPass 196, 246
cutsFactor 194, 246
cutUp 199, 246
depInd 187, 246
disjCuts 203, 246
diveType 193, 246
dPriInd 181, 246
epAGap 198, 247
epGap 198, 247
epInt 199, 247
epMrk 183, 247
epOpt 183, 247
epPer 184, 247
epRHS 183, 247
finalFactor 181, 247
flowCovers 202, 247
flowPaths 203, 247
fracCand 196, 247
fracCuts 203, 248
fracPass 196, 248
GUBCovers 248
gubCovers 202
heurFreq 190, 248
implBd 202, 248
intSolLim 195, 248
itLim 183, 248
MIPEmphasis 178, 248
MIPOrdInd 192, 248
MIPOrdType 190, 249
MIPThreads 197, 249
MIRCuts 204, 249
netEpOpt 210, 249
netEpRHS 210, 249
netFind 210, 249
netItLim 210, 249
netPPriInd 209, 249
nodeFileInd 197, 249
nodeLim 194, 249
nodeSel 191, 250
objDif 199, 250
objLLim 184, 250
objULim 184, 250

perInd 184, 250
perLim 182, 250
PiecewiseCuts 179, 250
pPriInd 181, 250
preCompress 186, 250
preDual 188, 251
preInd 187, 251
prePass 187, 251
preslNd 192, 251
priceLim 182, 251
probe 192, 251
reduce 188, 251
reInv 182, 251
relaxPreInd 187, 251
relObjDif 200, 251
RINSHeur 193, 252
scaInd 181, 252
singLim 182, 252
startAlg 191, 252
strongCandLim 195, 252
strongItLim 195, 252
strongThreadLim 195, 252
subAlg 191, 252
subMIPNodeLim 197, 252
symmetry 186, 252
tiLim 176, 253
treLim 196, 197, 253
varSel 191, 253
workDir 179, 253
workMem 179, 253

Paste button 31
Paste command 27
pathname

for compiled models 173
for include files 172
of current file 23

perInd parameter 184, 250
perLim parameter 182, 250
PiecewiseCuts parameter 179, 250
pPriInd parameter 181, 250
preCompress parameter 186, 250
preDual parameter 188, 251
preInd parameter 187, 200, 251
prePass parameter 187, 251
preslNd parameter 192, 251
I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L 271

I N D E X
priceLim parameter 182, 251
probe parameter 192, 251
proceeding through executions 71
processing directives 40, 71
production planning tutorial

alternative data file 73
closing the project file 74
continuing the execution 71
creating the project 54, 59
displaying results 70
editing area with model file 56
examining the solution 63
executing the project 62
Main window after executing 72
Main window with data file 58
Optimization notebook page 64
problem description 52
product.dat file 53
product.mod file 52
product.prj file 59
Solutions notebook page 63
Solver notebook page 65

Project menu
Add New Data File 28
Add New Model File 28
Browse Model 28
Close Project 28
Insert Existing Data File 28
Insert Existing Model File 28
Project Options 28
Save the Project 28
Save the Project As 28
Set as Active Project 28

Project Options command 28
Project Options dialog box 60
project options, setting 60, 61
project tree

description 23, 54
displayed in workspace 74
for alloc.prj 133
for car.prj 83

projects
adding existing data files 57
adding existing model files 55
adding new data files 58

adding new model files 58
closing 74, 92
creating 54, 59
executing 62, 85, 137, 142
opening 83

Projects page 133
projects, description 35

Q

Quit command 26

R

reading from a database 224
Rebuild Browser Information button 32
Recent Files command 26
Recenter command 27
Redo button 31
Redo command 26
reduce parameter 188, 251
referenced files in OPL/OPLScript 172
regional settings

database restriction in Japanese version 21, 213
overriding default Japanese settings 21

reInv parameter 182, 251
relaxPreInd parameter 187, 251
relObjDif parameter 200, 251
removing a file from a project 75
Replace command 27
resources, definition 94
results, displaying 90
REW file format 177
RINSHeur parameter 193
RINSheur parameter 252
RLP file format 177
Run button 32
Run command 28

S

SAV file format 177
Save All command 26
Save All Files button 31
Save and Close Project button 31
272 I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L

I N D E X
Save As command 26
Save command 26
Save Editor Content button 31
save preferences 47
Save the Project As command 28
Save the Project command 28
saving a file 31
saving project options 61
saving several files 31
scaInd parameter 181, 252
scheduling-specific dynamic display 113
scripts

debugging 236
description 35, 232
executing 234
executing step by step 236
opening a script file 233
setting as active 76
stepping out from a loop 237

search procedure
Best First Search 165
Depth First Search 165
Depth-bounded Discrepancy Search 165
Interleaved Depth First Search 165
Slice-Based Search 165

search strategy
dichotomic 165
standard 165
visualizing 147

search tree 148
exploration order 150
visualizing 148

Select All command 27
Set as Active Project command 28
setting

active model 76
active script 76
advanced options 171
constraint programming options 165
output options 169
project options 60, 61

setting the active project 75
setup notebook page 91
singLim parameter 182, 252
Solutions notebook page 63, 100

solutions, examining 88, 100
Solver notebook page 65, 109
solving algorithms used 65
Sorted Activities notebook page 106
spreadsheet, paste results to 88
square example 120
Stack window 139, 144
stack window 124
stand-alone models and scripts 74
startAlg parameter 191, 252
status bar description 23
status box description 24
status colors 24
status messages

after execution 88
during execution 62, 85, 98

Step Out command 29
stepping in model (debug mode) 142
stepping in script (debug mode) 236
stepping out of a script 32, 237
strongCandLim parameter 195, 252
strongItLim parameter 195, 252
strongThreadLim parameter 195, 252
subAlg parameter 191, 252
subMIPNodeLim parameter 197, 252
symmetry parameter 186, 252

T

terminating
executions 152
ILOG OPL Studio 40, 162

text-editor
customizing 46
Emacs mode 43
how to use 41
Multi-Document Interface 41
quick reference 43
visual mode 43, 46

tiLim parameter 176, 253
tool bar description 23
tree

in project workspace 74, 133
search layout 151
visualizing search tree 148
I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L 273

I N D E X
treLim parameter 196, 197, 253

U

Uncomment command 27
Undo button 31
Undo command 26
updating a database

creating a new table 225
viewing the result 226
viewing the result from a model 229

V

variables, examining results 86
varSel parameter 191, 253
Vellino example (OPLScript) 232
View Choice Stack button 32
View menu

Choice Stack 28
Inspect Current Node 28
Output 28
Workspace 27

viewing tables in a database 218

W

waiting state, blink option 171
Window menu

Cascade 29
Tile Horizontally 29
Tile Vertically 29

windows
docking 34
floating 33

work space, description 23
workDir parameter 179, 253
workMem parameter 179
workMemr parameter 253
Workspace command 27
274 I L O G O P L S T U D I O 3 . 7 — U S E R ’ S M A N U A L

	ILOG OPL Studio 3.7 User’s Manual
	Before You Begin
	About ILOG OPL Studio
	What You Need to Know
	What This Manual Contains
	Notation Used in This Manual
	Related Documentation
	Where to Get More Information
	Users’ Mailing List
	Web Site

	Licensing Requirements

	Overview of ILOG OPL Studio
	Launching ILOG OPL Studio
	Launching an OPL Script in Batch Mode
	Batch Mode for OPL Models
	Other Command Line Options
	Japanese Localization

	ILOG OPL Studio Main Window
	Menu Bar Commands
	Tool Bar Buttons
	Execution Tool Bar Buttons
	Dockable GUI Elements

	ILOG OPL Studio Basics
	File Types
	Opening an Existing File
	Creating a New File
	Executing a Project or Model
	Checking for Syntactic or Semantic Errors
	Specifying Processing Directives
	Terminating ILOG OPL Studio

	The Text Editor
	Switching Between Editor Windows
	Resizing an Editor Window
	Editor Quick Reference
	Customizing the Editor

	The Online Help
	Windows Platforms
	UNIX Platforms

	Tutorial: Working with Projects
	The Production Planning Example
	Creating a Project
	Inserting an Existing Model File into a Project
	Inserting an Existing Data File into a Project
	Adding New Files to a Project
	Saving the Project
	Setting Project Options

	Executing the Project
	Examining a Solution to the Model
	Using the Output Area
	Using the Model Browser

	Continuing the Execution
	Using an Alternative Data File
	Closing a Project File
	Working with Several Projects

	Tutorial: Predefined Dynamic Display
	The Car Sequencing Example
	Setting Up the Project
	Opening the Project File
	Loading the Data

	Executing the Project
	Examining the First Solution
	Copying the Results Matrix to a Spreadsheet
	Continuing the Execution
	Looking at the Model Structure
	Using Dynamic Display with ILOG OPL Studio
	Closing the Project

	Tutorial: Examining the Solution to a Scheduling Problem
	The House Building Example
	Opening the Model File
	Looking at the Model Structure
	Executing the Model
	Examining the Solution
	Looking at the Activities Results
	Looking at the Resources Results
	The Optimization Notebook Page
	The Solver Notebook Page

	Completing the Execution
	Closing the Model File

	Tutorial: Scheduling-Specific Dynamic Display
	The Activity Domains Window
	The Bridge Example

	Tutorial: User-Defined Dynamic Display
	The Drawing Board
	The Square Example
	The Map Example
	The Euler Example

	Tutorial: Debugging the Search Strategy
	A Basic Example with the Eight Queens Problem
	Setting up the Example
	Executing the Model
	Continuing the Execution

	The Frequency Allocation Example
	Looking at the Model Structure
	Setting the Debug Option

	Executing the Frequency Allocation Project
	Displaying the Stack Window
	Displaying the Inspector Window
	Continuing the Execution

	Executing the Project with the ‘Stepping in Model’ Option
	Displaying the Stack Window and Inspector Window
	Visualizing the Search Strategy with the Stack and Inspector Windows

	Visualizing the Search Tree
	Using the Depth First Search
	Using the Slice-Based Search

	Cooperating Solvers - Combined LP and CP
	Exploration Strategy - Drawing Board Combined with Search Tree
	Terminating ILOG OPL Studio

	Customizing ILOG OPL Studio
	Default Options and Project Options
	Setting the Default Options
	Setting Project Options
	Navigating in the Options Dialog Boxes

	Setting Constraint Programming Options
	Setting Editor Options
	Changing the Fonts
	Changing the Foreground and Background Colors

	Setting Output Options
	Setting Advanced Options
	Setting Miscellaneous Options

	Mathematical Programming
	MP General
	Optimization Using Simplex
	Preprocessing
	Mixed Integer Programming
	MIP Strategy
	MIP Limits
	MIP Tolerances
	MIP Cuts

	Barrier Algorithm
	Network Simplex Algorithm
	Results of Mathematical Programming

	Working with a Database
	Supported Databases
	Database Connectivity
	Prerequisites
	The Bridge Example
	Setting Up the Database
	The Data Tables
	The Task Table
	The Resource Table
	The MAX and MIN Tables
	The Precedence Table
	The Requirements Table

	The OPL Model
	Record Definitions
	Connecting to the Database from OPL
	Reading From the Database
	Creating a New Table and Updating the Database

	Executing the Bridge Example
	Viewing the Result in the Database
	Consulting the Result From Another Model

	Using OPLScript
	The Vellino Example
	Opening the Script File
	Executing the Script
	Stepping in a Script
	To Step to the First Instruction
	To Step to the Next Instruction
	To Abort the Execution
	To Deselect the Stepping Option
	To Continue without Stepping
	To Step Out of a Loop
	To Complete the Execution

	Adding and Removing Breakpoints
	Closing the Script File

	Generating Compiled Models
	OPL Parameters
	Index

