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Abstract

The security and confidentiality of user transmitted data on the Internet is at a dangerous stage.
More and more, users are under attack from those who would use their data for financial gain or
to eavesdrop on their communications. Transport Layer Security (TLS) is the mechanism that has
been developed to secure user privacy across the open Internet. After significant vulnerabilities
were identified recent years, desktop browsers such as Mozilla Firefox and Google Chrome have
become hardened against attacks and many implementation errors have been fixed. The younger
mobile ecosystem is not so secure. Users connecting to the Internet on their mobile phones using
one of the myriad of apps available have no indication that their data is being transmitted securely,
and no confidence that implementations are safe and bug-free.

This study demonstrates the failings in the implementation of TLS security on the Android
operating system by examining the failings of apps developed by major corporations, analysing the
Android ecosystem as a whole through the automated analysis of over 2500 apps, demonstrating
the ease with which a man-in-the-middle attack can be conducted, and finally by developing an
app entitled Sift, intended to protect and warn users when they are under attack.
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Chapter 1

Introduction

This study reveals the widespread misuse of the Transport Layer Security (TLS) cryptographic
protocol in many major Android applications. It demonstrates how easy it is for users to have
important information stolen and how simple it is for an attacker to orchestrate a widespread attack.
Apps from across the spectrum are affected, including those that deal with finance, healthcare and
online shopping.

TLS is designed to secure data transmitted over computer networks. It is used in all areas of the
Internet, including web browsing, email and mobile applications. It has four main goals: crypto-
graphic security (providing confidentiality, authenticity and integrity), interoperability, extensibility
and efficiency. Unfortunately, despite its widespread use, the protocol and its implementations have
suffered, and continue to suffer, from serious flaws and vulnerabilities. These are examined in de-
tail, looking at issues that have affected the protocol itself as well specific implementations both in
general and those particular to Android applications.

1.1 Objectives and Contributions

An app, entitled Sift, is produced, which protects users when an app is behaving insecurely, alerting
them to the potential leaking of credentials and private data. In addition to the protection offered,
attention will be drawn to this serious issue among the general public, spurring developers into
making sure their apps are coded safely and securely, but safeguarding user data until they do.

Although many users don’t pay any attention while browsing the internet on desktops and
laptops, more technical users have learned to be cautious when connecting to the Internet from
unfamiliar locations. In recent years there has been an increasing level of awareness of the ability
for passive interceptors to recover plaintext HTTP traffic, but TLS offers users an amount of
trust that their personal information (usernames, passwords, credit card numbers, etc.) will be
transmitted without interception, and users have been trained to ‘look for the padlock’ (Figure
1.1) when making secure transactions.

Figure 1.1: TLS security indications from Mozilla Firefox and Google Chrome

When faced with a potentially compromised TLS connection, desktop browsers such as Mozilla
Firefox and Google Chrome have evolved to display warning screens to users (Figure 1.2) alerting
them to the potential for data to be leaked to a malicious third party. However, users increasingly
access secure information from their mobile phones, but mobile operating systems, and the appli-
cations that run on them, have been slower to alert users to problems in TLS connections. This
leaves them vulnerable to providing a third-party man in the middle with information that can be
used in fraud and identity theft.

This study will also demonstrate the ease with which a malicious wireless access point can be
set up with cheap, off the shelf hardware, and used to harvest users’ information.
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Figure 1.2: Mozilla Firefox and Google Chrome Certificate Warnings

An analysis of over 2500 apps has been performed, and several apps developed by major cor-
porations, with downloads totalling in the tens of millions have been identified as leaking users’
personal information, including important financial and medical details. Some of these apps allow
users to login using their account credentials from Google or Facebook. A whole wealth of user data
is available in these accounts, and this data is put at risk even when the apps produced by Google
and Facebook themselves are secure. The developers have been informed of the vulnerabilities and
in some cases fixed the issues very quickly, but users can be left vulnerable to apps where the bugs
have gone unreported, or when using those which the developers have not yet fixed. Sift can protect
users in these cases, and so takes the decision-making power away from developers and places it
back in the hands of the users.

1.2 Report Outline

The report begins with an in depth analysis of the TLS protocol and issues it and its various
implementations have faced. It continues by looking specifically at issues with TLS in the Android
operating system, exploring approaches already taken to analysis of vulnerable apps and examining
specific causes of insecurity.

The next section describes development of an app, Sift, to protect users against these vulnera-
bilities.

This is followed by a section detailing the construction of testing infrastructure, to test both
Sift and individual Android apps and to evaluate the Android ecosystem as a whole.

The results of this investigation are then examined and evaluated. The report concludes with
recommendations for securing the Android API and with ideas for future work.
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Chapter 2

Background

The TLS protocol began life as the Secure Socket Layer (SSL) and was developed by Netscape in
1994 [1]. SSL 1.0 was never publicly released. SSL 2.0 was included in Netscape Navigator 1.1
but it was quickly discovered to have some serious vulnerabilities. SSL 3.0 was released in 1995.
Following that, there was an effort to standardize the protocol, which included changing its name
to Transport Layer Security (which was mostly a political push by Microsoft) [2]. TLS 1.0 was
released in 1999 [3]. This remained in use for several years, even as TLS 1.1 and 1.2 were released in
2006 and 2008 respectively [4, 5]. However, following the release of TLS 1.2 and a greater awareness
of the need for strong cryptography over the Internet, there was a concerted push for all clients
and servers to move to TLS 1.2. SSL 3.0 was finally deprecated in June 2015 [6]. This section will
give a brief overview of TLS 1.2 (with reference to older versions of the protocol where relevant).
This information mostly comes from the TLS 1.2 Request for Comments (RFC) 5246 [5], and the
excellent summary by Ristić in Bulletproof SSL and TLS [7], with cryptographic background from
Schneier’s classic Applied Cryptography [8].

It will be followed with a brief overview of several major vulnerabilities and issues that have
been discovered in the protocol and its implementations, to which a significant proportion of clients
and servers remain vulnerable.

2.1 The TLS Protocol

TLS is implemented with a high level Record Protocol, which encapsulates a variety of lower level
protocols, specifically four core subprotocols: handshake protocol, change cipher spec protocol,
application data protocol and alert protocol. It is designed to be extensible, easily allowing other
subprotocols to be added.

Figure 2.1: Struture of a TLS record packet. Source: [7, p24]

Each TLS record has a header followed by message data (Figure 2.1). The record layer handles
message transport (splitting large buffers into smaller chunks), encryption, integrity validation and
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compression, although this is no longer used due to the CRIME vulnerability (detailed in Section
2.4.3).

2.1.1 Handshake Protocol

The handshake protocol is the most complex part of the protocol. It is conducted in plain text and
there are several variations. The most common handshake when using the Internet is a full hand-
shake with server authentication, but without client authentication. When a client is recognised
by a server, an abbreviated handshake can be performed, allowing a session to be resumed with
fewer messages.

Figure 2.2: The TLS handshake. Source: [7, p27]

Figure 2.2 shows the messages exchanged for a full TLS handshake. There are four main
activities that must be accomplished in the handshake:

1. Exchange capabilities and agree on desired connection parameters.

2. Validate the presented certificate(s) or authenticate using other means.

3. Agree on a shared master secret that will be used to protect the session.

4. Verify that the handshake messages haven’t been modified by a third party [7, p26].

The handshake can be easily observed using a tool such as Wireshark1 to observe network traffic.
The purpose of each message becomes more clear with a specific example. Here the client is host
129.31.232.71 which is negotiating a connection to https://cpp.doc.ic.ac.uk, host 146.169.13.85.

2.1.1.1 Client Hello

1https://www.wireshark.org/
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SSL Record Layer: Handshake Protocol: Client Hello

Content Type: Handshake (22)

Version: TLS 1.0 (0 x0301)

Length: 231

Handshake Protocol: Client Hello

Handshake Type: Client Hello (1)

Length: 227

Version: TLS 1.2 (0 x0303)

Random

GMT Unix Time: Feb 16, 1997 00:02:25.000000000 GMT

Random Bytes:

f74af2d4fe86fb3364ede90ec9fe994d94a6b449c026d0d4 ...

Session ID Length: 32

Session ID: a09a7312d65259738801337c0229f39aca51d9457158210d

...

Cipher Suites Length: 22

Cipher Suites (11 suites)

Cipher Suite: TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256 (0

xc02b)

Cipher Suite: TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256 (0

xc02f)

Cipher Suite: TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA (0 xc00a

)

Cipher Suite: TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA (0 xc009

)

Cipher Suite: TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA (0 xc013)

Cipher Suite: TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA (0 xc014)

Cipher Suite: TLS_DHE_RSA_WITH_AES_128_CBC_SHA (0 x0033)

Cipher Suite: TLS_DHE_RSA_WITH_AES_256_CBC_SHA (0 x0039)

Cipher Suite: TLS_RSA_WITH_AES_128_CBC_SHA (0 x002f)

Cipher Suite: TLS_RSA_WITH_AES_256_CBC_SHA (0 x0035)

Cipher Suite: TLS_RSA_WITH_3DES_EDE_CBC_SHA (0 x000a)

Compression Methods Length: 1

Compression Methods (1 method)

Compression Method: null (0)

Extensions Length: 132

Extension: server_name

Type: server_name (0 x0000)

Length: 21

Server Name Indication extension

Server Name list length: 19

Server Name Type: host_name (0)

Server Name length: 16

Server Name: cpp.doc.ic.ac.uk

Extension: renegotiation_info

Type: renegotiation_info (0 xff01)

Length: 1

Renegotiation Info extension

Renegotiation info extension length: 0

Extension: elliptic_curves

Type: elliptic_curves (0 x000a)

Length: 8

Elliptic Curves Length: 6

Elliptic curves (3 curves)

Elliptic curve: secp256r1 (0x0017)

Elliptic curve: secp384r1 (0x0018)

Elliptic curve: secp521r1 (0x0019)

Extension: ec_point_formats

Type: ec_point_formats (0 x000b)

Length: 2
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EC point formats Length: 1

Elliptic curves point formats (1)

EC point format: uncompressed (0)

Extension: SessionTicket TLS

Type: SessionTicket TLS (0 x0023)

Length: 0

Data (0 bytes)

Extension: next_protocol_negotiation

Type: next_protocol_negotiation (0 x3374)

Length: 0

Extension: Application Layer Protocol Negotiation

Type: Application Layer Protocol Negotiation (0 x0010)

Length: 41

ALPN Extension Length: 39

ALPN Protocol

ALPN string length: 5

ALPN Next Protocol: h2 -16

ALPN string length: 5

ALPN Next Protocol: h2 -15

ALPN string length: 5

ALPN Next Protocol: h2 -14

ALPN string length: 2

ALPN Next Protocol: h2

ALPN string length: 8

ALPN Next Protocol: spdy /3.1

ALPN string length: 8

ALPN Next Protocol: http /1.1

Extension: status_request

Type: status_request (0 x0005)

Length: 5

Certificate Status Type: OCSP (1)

Responder ID list Length: 0

Request Extensions Length: 0

Extension: signature_algorithms

Type: signature_algorithms (0 x000d)

Length: 18

Signature Hash Algorithms Length: 16

Signature Hash Algorithms (8 algorithms)

Signature Hash Algorithm: 0x0401

Signature Hash Algorithm Hash: SHA256 (4)

Signature Hash Algorithm Signature: RSA (1)

Signature Hash Algorithm: 0x0501

Signature Hash Algorithm Hash: SHA384 (5)

Signature Hash Algorithm Signature: RSA (1)

Signature Hash Algorithm: 0x0201

Signature Hash Algorithm Hash: SHA1 (2)

Signature Hash Algorithm Signature: RSA (1)

Signature Hash Algorithm: 0x0403

Signature Hash Algorithm Hash: SHA256 (4)

Signature Hash Algorithm Signature: ECDSA (3)

Signature Hash Algorithm: 0x0503

Signature Hash Algorithm Hash: SHA384 (5)

Signature Hash Algorithm Signature: ECDSA (3)

Signature Hash Algorithm: 0x0203

Signature Hash Algorithm Hash: SHA1 (2)

Signature Hash Algorithm Signature: ECDSA (3)

Signature Hash Algorithm: 0x0402

Signature Hash Algorithm Hash: SHA256 (4)

Signature Hash Algorithm Signature: DSA (2)

Signature Hash Algorithm: 0x0202

Signature Hash Algorithm Hash: SHA1 (2)
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Signature Hash Algorithm Signature: DSA (2)

Listing 2.1: Client Hello

Listing 2.1 is a full listing of the Client Hello protocol message, in which the client initiates
a handshake and informs the server of its capabilities. This message can also be sent when a client
wishes to renegotiate a connection, or when a server has requested a renegotiation.

Some of the key elements in this message are the protocol version, indicating the highest version
the client supports, here listed as TLS 1.2. This is followed by the random field, of which 28 bytes
are randomly generated with the following four bytes containing information from the client’s clock.
In this session, it is clear that the client is not sending an accurate time, listing Feb 16, 1997: an
accurate time is not required in the protocol, and in fact, because of fears that the clock could
be used to fingerprint clients [9], this is now a random time. This is a common feature when
examining the TLS protocol: elements which were once thought to be necessary, or crucial are
realised to contain flaws, and so remain in label only, with random data in their place.

The session ID field can be used to resume an existing session. The cipher suite block
indicates the ciphers supported by the client in order of preference. The compression field indicates
the supported compression methods. As mentioned above, this is no longer used, and so the method
is listed as null. Finally, the extensions block is used for arbitrary extensions to the protocol.
Some important extensions are discussed in Section 2.1.7.

2.1.1.2 Server Hello

Secure Sockets Layer

TLSv1.2 Record Layer: Handshake Protocol: Server Hello

Content Type: Handshake (22)

Version: TLS 1.2 (0 x0303)

Length: 57

Handshake Protocol: Server Hello

Handshake Type: Server Hello (2)

Length: 53

Version: TLS 1.2 (0 x0303)

Random

GMT Unix Time: May 29, 2015 17:03:50.000000000 BST

Random Bytes: 1

c5842d1b3d7c0d2f46df7a9c1af422d9f74be76b6f44519 ...

Session ID Length: 0

Cipher Suite: TLS_DHE_RSA_WITH_AES_128_CBC_SHA (0 x0033)

Compression Method: null (0)

Extensions Length: 13

Extension: server_name

Type: server_name (0 x0000)

Length: 0

Extension: renegotiation_info

Type: renegotiation_info (0 xff01)

Length: 1

Renegotiation Info extension

Renegotiation info extension length: 0

Extension: SessionTicket TLS

Type: SessionTicket TLS (0 x0023)

Length: 0

Data (0 bytes)

The Server Hello message is similar to Client Hello and allows the server to communicate back to
the the client the elements of the protocol it supports; thus there is only one option per field. The
server can also offer a version that the client did not list as its best version; the client can accept
or reject the offer.
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2.1.1.3 Certificate

Secure Sockets Layer

TLSv1 .2 Record Layer: Handshake Protocol: Certificate

Content Type: Handshake (22)

Version: TLS 1.2 (0 x0303)

Length: 2691

Handshake Protocol: Certificate

Handshake Type: Certificate (11)

Length: 2687

Certificates Length: 2684

Certificates (2684 bytes)

Certificate Length: 1318

Certificate: 308205223082040

aa00302010202141dc339fcc65bbcbb58 ... (id -at -commonName=

cpp.doc.ic.ac.uk ,id -at -organizationalUnitName=Computing

Department ,id -at -organizationName=Imperial College of

Science , Technology ,id -at -localityName=LONDON

signedCertificate

version: v3 (2)

serialNumber : 0

x1dc339fcc65bbcbb58ad3e971939114870469c0f

signature (sha256WithRSAEncryption)

Algorithm Id: 1.2.840.113549.1.1.11 (

sha256WithRSAEncryption)

....

Listing 2.2: Certificate

The optional certificate message contains the server’s X.509 certificate. It must match the
offered cipher suite.

2.1.1.4 Server Key Exchange

Secure Sockets Layer

TLSv1 .2 Record Layer: Handshake Protocol: Server Key Exchange

Content Type: Handshake (22)

Version: TLS 1.2 (0 x0303)

Length: 527

Handshake Protocol: Server Key Exchange

Handshake Type: Server Key Exchange (12)

Length: 523

Diffie -Hellman Server Params

p Length: 128

p: d67de440cbbbdc1936d693d34afd0ad50c84d239a45f520b ...

g Length: 1

g: 02

Pubkey Length: 128

Pubkey: 3dc99e8e511da11023061d0285674ea4065fcefdaf1607cb

...

Signature Hash Algorithm: 0x0401

Signature Hash Algorithm Hash: SHA256 (4)

Signature Hash Algorithm Signature: RSA (1)

Signature Length: 256

Signature: 5

ea3e0e62fbde554fb005daab0d9fa11be8f57dd378ef757 ...

This is another optional message that contains any additional data that may be needed for the key
exchange.
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2.1.1.5 Server Hello Done

Secure Sockets Layer

TLSv1.2 Record Layer: Handshake Protocol: Server Hello Done

Content Type: Handshake (22)

Version: TLS 1.2 (0 x0303)

Length: 4

Handshake Protocol: Server Hello Done

Handshake Type: Server Hello Done (14)

Length: 0

This indicates that the server has sent all the necessary handshake messages and is waiting for the
client.

2.1.1.6 Client Key Exchange

Secure Sockets Layer

TLSv1.2 Record Layer: Handshake Protocol: Client Key Exchange

Content Type: Handshake (22)

Version: TLS 1.2 (0 x0303)

Length: 134

Handshake Protocol: Client Key Exchange

Handshake Type: Client Key Exchange (16)

Length: 130

Diffie -Hellman Client Params

Pubkey Length: 128

Pubkey: 3b80967adcfbbae616582a841c20d3ce8049ceda2151b6f5

...

Similar to Server Key Exchange, this carries the required client data for the key exchange. This
is a mandatory message.

2.1.1.7 Change Cipher Spec

TLSv1 .2 Record Layer: Change Cipher Spec Protocol: Change Cipher Spec

Content Type: Change Cipher Spec (20)

Version: TLS 1.2 (0 x0303)

Length: 1

Change Cipher Spec Message

Both client and server send this message when there is enough information to switch to encryption.
All messages following this will be encrypted. Change Cipher Spec is actually a separate subprotocol
to the Handshake Protocol, which has been a cause of issues [7, p31]: it is supposed to be the
penultimate message in the handshake, but implementations allowed it at other points in the
sequence [10, p4].

2.1.1.8 Finished

TLSv1 .2 Record Layer: Handshake Protocol: Encrypted Handshake Message

Content Type: Handshake (22)

Version: TLS 1.2 (0 x0303)

Length: 64

Handshake Protocol: Encrypted Handshake Message

This message indicates that the handshake is complete and is encrypted. It contains the verify

data field which is a hash of all handshake messages combined with the new master secret.
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2.1.1.9 Session Resumption

Figure 2.3: TLS session resumption. Source: [7, p35]

As shown in Figure 2.3, if a connection has previously been established between the server and
client, an abbreviated handshake can be performed, requiring only one network round trip. The
session ID field is used, and a new set of keys is generated using the already generated master
secret. The server can either cache the previous session, or the client can use a session ticket,
defined in RFCs 4507 [11] and 5077 [12].

2.1.1.10 Renegotiation

TLS supports renegotiation to generate new session keys or switch cipher suites. If a client wants
to initiate a renegotiation it simply needs to send another Client Hello message. If a server wants
to renegotiate the connection it needs to send Hello Request. The initial renegotiation protocol
has been found to be insecure and is no longer supported: the renegotiation info extension must
be used instead (see Section 2.4.1).

2.1.2 Key Exchange

In the key exchange, the client and server agree on a premaster secret which is then used to generate
the master secret which secures the session. A variety of algorithms can be used for this, but the
most common are RSA, Ephemeral Diffie-Hellman (DHE RSA) which provides forward secrecy and
Ephemeral Elliptic Curve Diffie-Hellman (ECDHE RSA and ECDHE ECDSA) which is based on
elliptic curve cryptography.

The Server Key Exchange message allows the server to select an algorithm if it wishes. In the
example message, the server selected Diffie-Hellman.

RSA key exchange is very simple: the client generates a premaster secret, encrypts it with the
server’s public key and sends it to the server. While straightforward, and easy to implement, this
suffers from a lack of forward secrecy: every message encrypted with the server’s public key can be
decrypted with the server’s private key, at any point in time. If an adversary stores all messages
from the client and at some point in the future discovers the server’s private key, they will be able
to decrypt all messages.

Diffie-Hellman avoids this problem, as the client and server each generate their own parameters,
meaning a different encryption key is used for each session. When ephemeral Diffie-Hellman is used,
no parameters are stored and reused between sessions, providing forward secrecy. The server’s
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parameters are encrypted with its private key, allowing the client to decrypt them with the server’s
public key and verify that they were issued by the server.

Elliptic Curve Diffie-Hellman uses the same principles as regular Diffie-Hellman, but uses elliptic
curves (chosen by the server) as the ‘hard’ problem, rather than modular arithmetic.

The premaster secret is eventually used to create the master secret using a Pseudorandom
Function (PRF). This takes a the premaster secret, a seed (taken from both the client and server)
and a label and generates the master secret. The master secret can then be further processed with
the PRF to generate any required keys, specifically MAC keys, encryption keys and IVs.

2.1.3 Encryption

When it comes to actually encrypting the data, TLS supports many ciphers, which break down
into three types of encryption: stream, block and authenticated.

2.1.3.1 Stream Encryption

In stream encryption, the plaintext is XORed with a keystream byte by byte to produce a ciphertext.
In TLS, a message authentication code (MAC) is calculated of the sequence number (to avoid replay
attacks), header (to protect the unencrypted data) and plaintext, combined with the plaintext and
encrypted to form the ciphertext. The most common stream encryption algorithm is RC4, which
is now considered insecure (see Section 2.4.6), and so this method is rarely used.

2.1.3.2 Block Encryption

In block encryption, the plaintext is encrypted a block at a time. In modern algorithms a block
is usually 16 bytes. If a block is smaller than 16 bytes then padding must be added to make it
the correct size. This has been a cause of weakness in TLS (for example the POODLE exploit,
described in Section 2.4.5). A second issue is that block ciphers are deterministic: they produce
the same output for the same input. This is a major issue for TLS because an attacker can attempt
to encrypt a block of plaintext any number of times. If the ciphertext matches some captured
ciphertext, she now has the encryption key and can decrypt the entire session. Because HTTP has
predictable messages, attempting to guess the plaintext for a specific block becomes a lot easier.
Electronic Codebook Mode (ECB) works in this way. To counter this, Cipher Block Chaining
(CBC) is introduced, which uses an Initialization Vector (IV) to produce a different encrypted
block each time.

Generation of IVs has also proved to be an issue in TLS: in TLS 1.0 the previous encrypted
block was used as the IV, but that was found to be insecure in 2011 (see Section 2.4.2) and so
explicit IVs are now included in the record. The most popular Block Encryption algorithm is AES
and it is heavily used in TLS.

2.1.3.3 Authenticated Encryption

Authenticated encryption is currently the most favoured encryption mode in TLS [7, p44]. It
provides encryption and integrity validation in the same algorithm. It can be seen as a combination
of stream encryption and block encryption. Galois/Counter Mode (GCM) is the mode of operation
used in TLS. In the example Client Hello, it can be seen as part of the most preferable cipher
suite supported by the client.

2.1.4 Certificates

X.509 certificates are defined in RFCs 2818 [13] and 5280 [14]. They have become the primary
method of verifying trust within the TLS protocol. A certificate essentially contains a public key,
information about who it represents, and a signature from a trusted authority. Listing 2.2 shows
some key elements of a certificate. A certificate firstly contains its version number; either 1, 2 or 3.
Most certificates are v3, although some v1 root certificates still exist - these have been a cause of
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some issues within implementations of TLS in certain libraries. Certificates have a serial number,
which was initially sequentially issued by the issuing authority, but now for security reasons are a
random number. They also detail the algorithm used for the signature (sha256WithRSAEncryption
in the example), the issuer, validity (both a start time and end time) and subject.

Certificates also contain extensions, allowing additions to be made to them without needing
to define a whole new version. They can be marked critical, meaning an implementation must
understand the extension or reject the certificate. There are many extensions defined. Some key
ones are Subject Alternative Name which replaces the Subject field and allows a certificate to
support multiple identities. Name Constraints can limit the domains a certificate is able to issue
certificates for. Basic Constraints contains more limitations on the certificate, including Path

Length which limits the depth of a certificate chain. There is also the CRL Distribution Points

extension which details the location of the Certificate Revocation List to allow a client to determine
if the certificate has been revoked. This has mostly been replaced by OCSP, the Online Certificate
Status Protocol, detailed in Authority Information Access to allow faster, real-time verification
of certificate validity.

2.1.4.1 Certificate Chains

In practice, certificate verification works based on a chain of trust: a relatively small subset of root
certificates sign a larger group of intermediate certificates, which can then be used to validate indi-
vidual leaf certificates for domains. Root certificates are extremely valuable as they are inherently
trusted by browsers and operating systems. All signing must take place manually, and on an offline
computer. Certification Authorities (CAs) are in control of these root certificates. The certificate
chain for the example connection is shown in Listing 2.3.

1 cpp.doc.ic.ac.uk

Fingerprint: 23 d2911ffec2b355a8c137afdad609abe9c33e37

RSA 2048 bits (e 65537) / SHA256withRSA

2 QuoVadis Global SSL ICA G2

Fingerprint: 6036330 e1643a0cee19c8af780e0f3e8f59ca1a3

RSA 2048 bits (e 65537) / SHA256withRSA

3 QuoVadis Root CA 2 Self -signed

Fingerprint: ca3afbcf1240364b44b216208880483919937cf7

RSA 4096 bits (e 65537) / SHA1withRSA

Listing 2.3: A Certificate Chain

2.1.4.2 Certificate Pinning

A relatively new innovation is the concept of certificate pinning. In this implementation, a browser
or application ‘pins’ a certificate or CA, meaning that any other certificate will be rejected. This
is designed to get around the fact that any CA can issue a certificate for any domain. By enforcing
white-listing on the client side, a developer can be more certain that any certificate used will be
valid and correct.

2.1.5 Application Data Protocol

There is little to say about the Application Data Protocol. It carries the encrypted data that the
client and server actually want to send. The record layer manages fragmentation, encryption and
packaging of this data.

2.1.6 Alert Protocol

The alert protocol is used for transmitting short status messages, usually errors, to the other party.
They contain a level and a description, with no ability to specify an arbitrary error message. If
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a fatal alert is received, the connection is terminated and the session is destroyed. A warning

leaves the client the discretion as to whether to continue the session.

One alert that is not an error is the close notify alert. This is used to close a TLS connection.
This is needed to avoid truncation attacks, where a malicious third party closes the connection
before it is intended to be complete.

2.1.7 Extensions

TLS supports extensions, which can be used to add functionality without changing the protocol
itself. Some of these are defined in RFC 6066 [15]. As can be seen in the example packets, extensions
can be specified in the Extensions block in Client Hello and Server Hello. There are too many
extensions to discuss in detail here, but some important ones are elliptic curves which indicates
support for Elliptic Curve cryptography and heartbeat which allows for keep-alive functionality
(and was the source of the bug in OpenSSL that was the cause of Heartbleed, discussed in Section
2.3.1). The renegotiation info extension is used to indicate support for secure renegotiation,
and server name is used for virtual host support for certificates.

2.2 Certificate Vulnerabilities

Certificates are a key element in the TLS protocol, yet are arguably one of the weakest elements,
irrespective of implementation issues. The problem of decentralized trust has not been solved; there
is no way to determine whether an unknown third party is trustworthy without asking a trusted
party. Trusted parties are identified in the TLS ecosystem as Certification Authorities (CAs): a
client has a set of root certificates (Android 5.1.1 has 162 root certificates, for example). Any valid
certificate that is signed by one of these CAs will be trusted and CAs can issue certificates for any
domain without obtaining permission. A certificate is obtained by verifying ownership of a domain
and with a monetary payment.

Immediately, one can see the weakness in this approach: if one of the root CAs is compromised,
or otherwise acts in a manner detrimental to the client (for example issuing certificates in exchange
for large payments, regardless of whether the requester controls that domain), it is both difficult to
detect, and hard to deal with once detected. This is not a theoretical problem. In 2011 DigiNotar
was compromised. This was detected when an Iranian Gmail user reported problems accessing his
account [16]: Chrome’s use of certificate pinning had detected the problem. DigiNotar had been
fully compromised, and hundreds of fraudulent certificates had been issued, including for some well
known companies [17].

Even without a compromised CA there have been many incidents where attackers have been
able to obtain certificates they were not entitled to. Due to weaknesses with the MD5 algorithm
[18], researchers were able to obtain a CA certificate valid for signing any other certificates. They
used the Chosen-Prefix Collision Attack to trick RapidSSL into issuing this certificate. After this
incident, CAs moved to using the SHA-1 algorithm to sign certificates. In 2014 however, Google
announced that Chrome would start warning about certificates signed with SHA-1, and encourage
a move to SHA-2, because of severe weaknesses in the SHA-1 algorithm [19].

In 2008, poor email verification resulted in Mike Zusman being able to obtain a certifiate for
login.live.com, Microsoft’s authentication hub [20]. He was able to register the email address
sslcertificates@live.com, which Thawte’s systems accepted as an administrator account. In
2015 Microsoft faced the same issue with their Finnish live.fi domain [21].

Other CAs have been found issuing weak keys (for example DigiCert in 2011 [22]) or to have
bugs in their systems allowing certificates to be issued for any domain names (StartCom [23] and
CertStar [24] in 2008). Clearly the mix of a commercial ecosystem with the need to verify millions
of websites in a hostile environment is not going to guarantee security.
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2.2.1 Validating Certificates

In addition to issues with CAs, verifying certificates as valid is not a trivial task. The RFCs
describing X.509 certificates (2818 [13] and 5280 [14]) are long, complex and difficult to interpret.
Brubaker et al. generated eight million certificates (which they called Frankencerts) and ran them
against multiple SSL libraries [25]. They used the varying acceptance of these certificates as a
verification oracle: if one implementation accepts a certificate as valid and another rejects it then
they cannot both be adhering to the specification.

There have been many issues in clients failing to validate certificates correctly. Perhaps the
most well known of these is Apple’s ‘goto fail’ bug, in which one misplaced line of code led to easy
hijacking of DHE and ECDHE connections [26].

In July 2015 a serious vulnerability in OpenSSL was announced [27] which would allow clients
to treat invalid certificates as legitimate. It was only in the code for a few months, but as one of
the most widely used tools for encrypting connections, this was still a serious issue.

There have also been several studies looking specifically at certificate verification within the
Android ecosystem. While the effectiveness of warnings to users about the security of a connection
has been examined by Egelman et al. [28] and Sunshine et al. [29], when running an Android
application, there is not even a security indicator that one can ignore: ‘developers currently have
the power to define SSL policies for an app without those being transparent for the user’ [30, p54].
Fahl et al. [31] conducted a static analysis of 13,500 Android applications, discovering that the
majority did not provide adequate security to user data. This is explored in more detail in Section
3.

2.2.2 Certificate Revocation

There are also issues with revoking certificates [32]. The initial solution was to use Certificate Revo-
cation Lists (CRLs), but they have become unwieldy due to their large size [7, p146]. Additionally,
propagation time for revocation can be up to ten days, which is a serious problem if a certificate
needs to be immediately revoked. The Online Certificate Service Protocol, OCSP allows real-time
checking, but unfortunately most browsers are configured to ignore all failures. It’s also possible
for an active man-in-the-middle to block all OCSP requests easily, leaving the client unaware that
a certificate has been revoked. Google’s Chrome browser now uses CRLSets, which are proprietary.

2.2.3 Superfish

Vulnerabilities have also been introduced by trusted third-parties. In February 2015 it was dis-
covered that Lenovo had been pre-installing software on its computers called Superfish [33]. This
installed a trusted root certificate in the operating system, allowing the software to examine all
encrypted connections and inject advertisements into the stream. By using the same root certificate
for every installation, Superfish rendered all clients vulnerable to man-in-the-middle attacks using
certificates signed by this certificate. This was made worse by the fact that the root certificate had
been secured with the incredibly weak password ‘komodia’, allowing attackers to easily sign new
certificates [34].

2.3 Implementation Issues

Implementing the complex TLS protocol is not an easy task. Subtle mistakes can be easily intro-
duced and remain undiscovered for a long period of time. This section will examine some of the
most significant implementation issues that have been discovered in TLS, including perhaps the
most notorious, Heartbleed.

2.3.1 Heartbleed

Heartbleed [35] exploited a flaw in the OpenSSL implementation of the Heartbeat TLS extension.
It was disclosed in April 2014. The flaw itself was very simple: OpenSSL failed to check the length
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field in the heartbeat message, allowing an attacker to send a small amount of data but pretend they
had sent a lot, therefore receiving up to 64KB of memory back from the server. This could happen
an unlimited amount of times. Crucial information is stored in memory, including private RSA
keys, session tokens and passwords; with enough work all of these became visible to the attacker.

The issue was easily fixed, and remarkably many servers were patched very quickly. According
to one study, one month later only 1.36% of sites were vulnerable [36]. Despite the easy fix, the
bug had been in OpenSSL from version 1.0.1 and left unnoticed for many years.

2.3.2 FREAK

In the 1990s, the United States limited the export of cipher keys to 40 bits. Although this rule
was relaxed in January 2000, many libraries still contain code for negotiating encryption with these
weak keys. FREAK, which stands for Factoring RSA Export Keys [37], enables a man-in-the-
middle attacker to force a server to supply a weak, 512-bit RSA key to the client by forcing the
Server Key Exchange message, which is not expected to be sent. These keys are weak enough to
be cracked in real-time by powerful computers. Even when using a regular computer, some libraries
reuse the weak key for performance reasons, allowing the key to be cracked offline, and then used
to break the security of all future sessions between the server and its clients.

2.3.3 Logjam

Logjam was announced in May 2015 [38]. Similarly to FREAK, it downgrades TLS connections
to exploit export grade encryption and negotiate weak, 512-bit, Diffie-Hellman keys. In addition
to that, it was observed that many servers used the same prime numbers for Diffie-Hellman key
exchange, and the researchers posit that some of the most common 1024 bit primes have been
broken by state-level agencies such as the NSA, breaking this level of encryption.

2.3.4 Downgrade Attacks

In a downgrade attack, an attacker tries to force the connection protocol to be downgraded to a more
vulnerable one. The ability to downgrade was introduced because of the lack of interoperability
between clients and servers that supported different protocol versions. While there have been
attempts to block forced downgrades, most modern browsers can still be forced to downgrade their
connection to at least TLS 1.0, although the TLS FALLBACK SCSV extension has been introduced to
prevent protocol downgrade [39].

2.3.5 Opportunistic Encryption

In recent years there has been an effort to extend encryption to connections even when servers
do not explicitly support it. HTTP Alternative Services [40] seems to be gaining acceptance as
the accepted standard. This feature was introduced in Firefox 37 in April 2015, however it was
quickly removed in version 37.0.1 [41] due to a critical bug that allowed malicious websites to bypass
HTTPS security. This highlights the dangers of introducing new extensions to the protocol, even
when they attempt to solve an existing problem.

2.4 Protocol Attacks

Weaknesses in the TLS protocol itself are another difficult issue. Unlike implementation flaws such
as buffer overflows, and insecure bounds checking, which can be easily fixed, faults in the protocol
itself are a lot harder to resolve quickly. Changes to the protocol can break interopability between
clients and servers, and there are many clients which may never be updated. This section will look
at some of the most serious protocol attacks so far.
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2.4.1 Insecure Renegotiation

Insecure renegotiation was discovered in 2009 [42]. A man-in-the-middle attacker could sit between
a client and server and act as a transparent proxy. It catches the Client Hello from the client,
and holds it, sending its own Client Hello to the server. It will then submit an HTTP request to
the server that will have a negative consequence on the client. It will then quickly let through the
client’s Client Hello, which the server will treat as a renegotiation attempt, process, and then
send back to the client the results of the bad HTTP request. This technique was used by Anil
Kurmos to retrieve encrypted data in 2009 [43].

2.4.2 BEAST

BEAST, or Browser Exploit Against SSL/TLS, was announced in the summer of 2011 [44]. It
exploited an issue that had been noted many years before but not considered serious. The issue
had even been fixed in TLS 1.1, but at the time many clients and servers still only supported TLS
1.0. It exploits a weakness in the Initialization Vector (IV), allowing an attacker to decrypt much
of the traffic.

BEAST attacks the CBC mode of encryption (described in Section 2.1.3.2): by making the
IVs predictable the encryption is effectively reduced to ECB, which is easy to break. The problem
with TLS 1.0 was that it used a random IV to encrypt the first block, but then used subsequent
encrypted blocks as IVs for the next block. This would not be an issue unless the attacker is able to
see the encrypted blocks and thus discover the IV: of course, by watching the traffic on the wire, she
can. This is resolved in TLS 1.1 and 1.2 which use per-record IVs. The practicalities of exploiting
this issue are complex, involving crafting specific HTTP messages to enable easy guessing of the
plaintext. BEAST is a client-side attack, and at the time of writing all modern browsers are no
longer vulnerable, but BEAST remains an issue with older clients and servers.

2.4.3 Compression Attacks: CRIME, TIME and BREACH

As mentioned in Section 2.1.1, the TCP protocol supports compression. However a series of attacks
have demonstrated that using compression is insecure in every case, and modern servers all disable
compression. The issue comes because an attacker is able to submit arbitrary data for compression.
Combining this with secret data, she is able to create a ‘compression oracle’ allowing the data to
be revealed.

CRIME, Compression Ratio Info-leak Made Easy, was disclosed in 2012 [45] and uses Javascript
malware to extract cookies in an active man-in-the-middle attack. TIME, Timing Info-leak Made
Easy, advanced CRIME to no longer require an attacker to be on the same network as the victim
[46]. It measures I/O differences using Javascript to detect timing differences in the server responses.
It cleverly exploits the TCP slow-start algorithm to generate time differences large enough to be
exploitable.

BREACH, Browser Reconnaissance and Exfiltration via Adaptive Compression of Hypertext,
followed CRIME and TIME in August 2013 [47]. It is similar to CRIME but focuses on the HTTP
response compression. They were able to ‘attack Outlook Web Access (OWA), [and] retrieve CSRF
tokens with 95% reliability and often in under 30 seconds’ [7, p213].

2.4.4 Lucky 13

Lucky 13 exploits the fact that padding (used in CBC mode) is not protected by the TLS proto-
col, allowing the attacker to modify the padding and observe how the server reacts [48]. ‘Using
JavaScript malware injected into a victims browser, the attack needs about 8,192 HTTP requests
to discover one byte of plaintext’ [7, p220]. This technique uses a ‘padding oracle’ to guess which
combination of bytes decrypt to valid padding.
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2.4.5 POODLE

POODLE, Padding Oracle On Downgraded Legacy Encryption, [49] is another attack that uses a
padding oracle. It exploits a weakness in SSL 3 (and has since been shown to be effective with TLS
1.0 [50]) and allows an attacker to discover one byte of plaintext at a time.

2.4.6 Bar Mitzvah Attack

RC4 is a common stream encryption algorithm used with TLS. At one point it was recommended
to be used in favour of CBC ciphers with TLS 1.0 to avoid the BEAST and POODLE attacks.
However, RC4 has now been found to be completely broken. The Bar Mitzvah attack exploits
this, allowing ‘partial plaintext recovery attacks on SSL-protected data, when RC4 is the cipher
of choice’ [51]. RFC 7465 [52] now prevents the further use of RC4 in TLS and support will be
removed from all major browsers starting in January and February 2016 [53].

2.4.7 Further RC4 Attacks

In March 2015 Garman et al. released a paper reducing the number of encryptions required to
break a TLS connection from 234 [54] to 226 [55], although each encryption required a separate
TLS connection, making the attack difficult to execute. In July 2015 the RC4NoMore attack [56]
reduced this further and the researchers were able to break a session cookie in 75 hours, requiring
9 × 227 requests.

2.4.8 Triple Handshake Attack

The triple handshake attack breaks secure renegotiation in TLS (which had been introduced to
fix problems with the original implementation of renegotiation), allowing an attacker to learn the
premaster secret and decrypt all traffic in a connection. It requires client authentication to be in
use and allows an attacker to impersonate the client. The attacker directs a client to a malicious
server, and then mirrors the random parameters to create a connection with the intended server. It
then uses session resumption to resume the original connection, and then attempts to renegotiate
the connection to take control of both connections. For more details, see Ristić [7, pp230-237].

2.5 Further Vulnerabilities

As should hopefully have become clear, these issues have been coming to light regularly. There are
certainly further issues to be found. Even over the course of this project from May 2015 to August
2015, three or four major issues have been announced: the TLS protocol and its implementation is
not fixed and complete. This emphasizes the importance of both careful development techniques,
and the need for layered security, as the possibility for encryption to be compromised, possibly
through no fault of one’s own, is high.

2.6 State Actors

State intervention is also an issue. As the Snowden revelations have shown, organisations such
as the NSA and GCHQ are not averse to interfering with global internet traffic. Programs such
as that revealed by the Brazilian television show Fantastico [57] peform man-in-the-middle attacks
against adversaries. A leaked document ‘illustrates with a diagram how one of the agencies appears
to have hacked into a target’s Internet router and covertly redirected targeted Google traffic using
a fake security certificate so it could intercept the information in unencrypted format’ [58]. This,
combined with the XKEYSCORE program (in which all available internet traffic is collected and
stored for a number of days) [59] allow these agencies the ability to examine a large amount of
internet traffic. Unfortunately, not much can be done to combat this. With the authority of
government, they can demand access to root keys, allowing valid certificates to be generated and
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traffic to be decrypted with a user being none the wiser. Their unrivalled computing resources
allow them to take advantage of any slip in server configuration, for example it has been speculated
that they are able to break the 1024-bit primes used in Diffie-Hellman key exchange.

The NSA has also tried to attack elements of the TLS protocol as part of its Bullrun program.
The Dual Elliptic Curve Deterministic Random Bit Generator (Dual EC DRBG) was adopted
as a standard in 2005 and 2006. The Snowden revelations showed that this was a deliberately
weak random number generator planted by the NSA [60]. When this is used as the random number
generator in the TLS handshake, with knowledge of the backdoor a TLS connection becomes 65,000
times easier to break [61, 62]. Since the exposure of this program this random number generator
is no longer used, but the potential remains for some other element of the protocol to contain a
backdoor unknown to the majority of users.

2.7 The Human Element

Even if the protocol is secure, and all implementations are correct, security still relies on end users
understanding any warnings and not overriding any security that is in place. There have been many
studies examining adherence to certificate warnings, with one study showing a 70% click through
rate (i.e. users ignoring the warnings they are given) on Google’s Chrome browser [63]. For any
security solution to be effective, a user must be informed as to the meaning and severity of any
warnings and must not be overwhelmed by alerts when they do not perceive themselves to be doing
anything that requires encryption.

A solution could be introduced that attempts to analyse a connection and only warn a user
when the risk of interception and value of data loss is deemed to be severe. This would avoid the
user growing accustomed to bypassing warnings and would perhaps lead to greater security of truly
sensitive information. Any attempt at this would have to be carefully examined however, both in
regards to classification of sensitive data and because of the tendency of users to reuse passwords
in different contexts.
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Chapter 3

TLS on Android

In the past few years there have been several studies examining TLS security in general [64, 10, 25,
65] and security on Android smartphones in particular [66]. Edgecombe developed a static analysis
tool to analyse application use of certificates, as well as a tool to conduct man-in-the-middle attacks
[67]. Fahl et al. examined SSL security and also developed a static analysis tool [30, 31], and Egele
et al. examined the use of cryptographic libraries, finding some severe vulnerabilities [68].

Netcraft1 examined the source code of several applications and discovered some serious issues
in implementing application security, finding one particularly egregious example where the verify

method of the HostnameVerifier had been overridden to always return true [69].

Georgiev et al. discovered flaws in widely used applications from major companies, including
the banking app for Chase, one of the largest banks in the United States [64].

Fahl et al. suggest extending the Android API to enforce appropriate usage of cryptographic
primitives [30], however at the time of writing this remains a suggestion and has not been integrated
into the Android operating system. Even if this approach was integrated into the Android API,
the issue of existing apps failing to provide security to users would still exist.

In their separate study of 11,748 Android applications, Egele et al. found that ‘10,327 programs
- 88% in total - use cryptography inappropriately’ [68]: clearly developers cannot be trusted to
implement security in a way that guarantees to a user that their data is secure. In the same way
that antivirus aids the user in discriminating malicious applications, and firewalls block unwanted
network traffic, Fahl et al. [31, p59] suggest that a mechanism should be in place that shows
the user in real time the security of their connection (verifying the validity of certificates and the
strength of the TLS protocol), allowing them to decide whether to proceed with inputting their
confidential information.

In September 2014, researchers at the CERT Division of the Software Engineering Institute of
Carnegie Mellon University analysed over a million Android apps, finding over 23,000 that failed
to properly secure TLS traffic [70]. Sam Bowne at City College San Francisco found his own
set of vulnerable apps [71] and a separate company, AppBugs, that analyses apps installed on
users’ handsets found another set of apps that failed to protect users’ information [72]. Since the
development of apps moves at such a fast pace, and as old apps get updated, and new ones are
released, maintaining a blacklist of insecure apps becomes very difficult.

Poorly coded apps can even have real-world implications. In August 2015, security researcher
Samy Kamkar revealed vulnerabilities in the remote connection apps for General Motors, BMW,
Mercedes-Benz and Chrysler, allowing an attacker to gain access to vehicles [73].

This is also a challenge for regulators. In March 2014, the Federal Trade Commission (FTC)
in the United States settled with two companies, Fandango and Credit Karma, over their failure
‘to properly implement SSL encryption’ [74]. While this action is to be commended, the fact that
only two companies have been fined despite the much larger number of apps with this vulnerability
highlights the difficulty of relying on government regulators to protect unwitting users.

1http://www.netcraft.com/
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3.1 Reasons for Insecurity

These apps are insecure not through any fault of the TLS protocol, but because of implementation
issues. As mentioned earlier, when negotiating a TLS connection, the client is presented with a
certificate by the server. The client must properly verify this certificate before proceeding with the
handshake. Specifically, a chain of trust must be established, linking the presented certificate to
a trusted root certificate in the trust store (Figure 3.1) and the hostname in the certificate must
match the hostname the client is trying to connect to (Figure 3.2).

Figure 3.1: Source: http://security.stackexchange.com/a/56393

Figure 3.2: Source: https://www.digicert.com

Android provides an Application Programming Interface (API) to do this, although with some
caveats. Development of the Android operating system has moved extremely rapidly over the past
few years: it is currently on version 5.1 (Lollipop). However, the ecosystem has been slower to
update; as of August 3, 2015, 87.1% of devices are on version 4.4 (Jelly Bean) or below (Figure
3.3).

Google has tried to mitigate this by providing support libraries, allowing developers to use the
most up to date API and still maintain compatibility with the oldest devices, but this is not a
complete solution. As such, there are a number of APIs developers may use when attempting to
create a secure connection to a server.

There are even two interfaces for establishing a connection, Apache HTTP Client, used by
Google in Android Gingerbread 2.3 and below but as of 2011 no longer being actively developed,
and HttpURLConnection, which is now the recommended API [75]. Apache HTTP Client was in
fact deprecated in API version 22, but can still be used. Of course, if one provides developers with
multiple options, there will be many that do not research the best option, and use whatever they
first come across.

To initiate a TLS connection, Google’s documentation [76] suggests code as simple as Listing
3.1, although if one wants to do anything more complicated, the process becomes more involved.

One may want to use a certificate signed by a root that is not in the default Android trust store,
or even a self-signed certificate. One may want to establish a TLS connection with a protocol other
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Figure 3.3: Android Operating System Fragmentation. Source: https://developer.android.

com/about/dashboards/index.html

1 URL url = new URL("https :// wikipedia.org");

2 URLConnection urlConnection = url.openConnection ();

3 InputStream in = urlConnection.getInputStream ();

4 copyInputStreamToOutputStream(in, System.out);

Listing 3.1: Source: [76]

than HTTP, or server issues may require workarounds in client code.

3.1.1 Custom TrustManagers

Establishing a custom trust store requires implementing a custom TrustManager. This puts cer-
tificate verification in a developer’s hands, and unsurprisingly, many developers have made simple
errors. Modern development relies heavily on searching the internet for already solved solutions to
problems, with StackOverflow2 a common source of information. Therefore, if a highly rated, but
incorrect solution exists, many developers will end up blindly copying that into their code. Just
such a situation exists here. When searching for a solution to their client not validating what seems
to be a correct certificate, common answers on StackOverflow encourage developers to use code
similar to Listing 3.2.

1 public MySSLSocketFactory(KeyStore truststore) throws

NoSuchAlgorithmException , KeyManagementException ,

KeyStoreException , UnrecoverableKeyException {

2 super(truststore);

3

4 TrustManager tm = new X509TrustManager () {

5 public void checkClientTrusted(X509Certificate [] chain ,

String authType) throws CertificateException {

6 }

7

8 public void checkServerTrusted(X509Certificate [] chain ,

String authType) throws CertificateException {

9 }

10

11 public X509Certificate [] getAcceptedIssuers () {

2http://stackoverflow.com/
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12 return null;

13 }

14 };

Listing 3.2: An ineffective TrustManager. Source: http://stackoverflow.com/a/4837230

At a glance, one can see that the crucial checkServerTrusted method contains no code, and
so will trust any server it encounters. There are many warnings surrounding this, and Google’s
own documentation cautions:

Many web sites describe a poor alternative solution which is to install a TrustManager
that does nothing. If you do this you might as well not be encrypting your communi-
cation, because anyone can attack your users at a public Wi-Fi hotspot by using DNS
tricks to send your users’ traffic through a proxy of their own that pretends to be your
server. The attacker can then record passwords and other personal data. This works
because the attacker can generate a certificate and - without a TrustManager that ac-
tually validates that the certificate comes from a trusted source - your app could be
talking to anyone. So don’t do this, not even temporarily. You can always make your
app trust the issuer of the server’s certificate, so just do it.[76]

Nevertheless, code like this still makes it into widely downloaded apps published on the Play Store.

3.1.2 Custom HostnameVerifiers

The second thing that must occur during certificate verification is hostname validation: that is,
making sure the hostname provided in the certificate matches the hostname of the server the client
is trying to connect to. This can be complicated by the use of virtual hosting, as many hostnames
are located on one server, but the use of the Server Name (SNI) extension (as described in Section
2.1.7 and the RFC [15, Sec. 3]) can alleviate this. Unfortunately Apache HTTP Client does not
support SNI, so any developer that chooses to use this API will be stuck. Section 6.3.1 examines
the prevalence of the SNI extension among Android apps.

A developer unaware, or unable, to use SNI may, for ease of use, simply decide to disable
hostname verification:

1 MySSLSocketFactory.setHostnameVerifier(SSLSocketFactory.

ALLOW_ALL_HOSTNAME_VERIFIER);

This will solve a developer’s problem, but will leave the client app trusting any correctly signed
certificate, no matter the hostname. Alternatively, they may decide to create their own Host-
nameVerifier, and as with the TrustManager, try and look for a solution on the Internet. They
may find code like that in Listing 3.3.

1 DO_NOT_VERIFY = new HostnameVerifier () {

2 @Override

3 public boolean verify(final String hostname , SSLSession

session) {

4 return true;

5 }

6 };

Listing 3.3: An ineffective HostnameVerifier

Again, at a glance, it is clear that this method performs no verification whatsoever and so offers
no protection, but code like this can be found in popular apps on the Play Store.

A more insidious issue is when a developer has decided to use a custom SSLSocket imple-
mentation. This does not include any hostname verification whatsoever, and so a developer must
remember to include it. If she forgets, there will be no warning or obvious notification; the app
will just become silently vulnerable.
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3.1.3 onReceivedSslError

Another source of error in Android apps comes when a developer wants to implement a WebView.
A WebView is an interface in an app which essentially just displays a webpage. If that webpage
loads over a TLS connection, it is possible to override the onReceivedSslError method as in
Listing 3.4.

1 public void onReceivedSslError(WebView view , SslErrorHandler handler

, SslError error)

2 {

3 handler.proceed ();

4 }

Listing 3.4: An ineffective WebView SSL error handler. Source: http://stackoverflow.com/a/

5978391

This instructs the app to completely ignore any SSL errors and simply proceed as normal,
completely removing any security that the connection may provide. Patrick Mutchler at Stanford
University examined this particular vulnerability in 2014 and found 5% of apps with this code [77].
As the cited StackOverflow answer demonstrates, developers face an issue with their app and are
desperate to get it working with the easiest method possible. If that entails removing security from
the connection then some developers will happily do that.

3.1.4 Summary

Correct hostname
Signed by trusted
root

Any hostname
Signed by
trusted root

Correct hostname
Signed by anyone

Any hostname
Signed by anyone

Secure Imple-
mentation

Allowed Rejected Rejected Rejected

No hostname
verification

Allowed Allowed Rejected Rejected

No trust chain
verification

Allowed Rejected Allowed Rejected

No hostname
verification
No trust chain
verification

Allowed Allowed Allowed Allowed

Table 3.1: Summary of certificate validation errors and their consequences

Table 3.1 shows how an app coded with these vulnerabilities will behave when faced with certain
certificates. This suggests the strategies that a man-in-the-middle attacker can attempt when trying
to gain information from the app. Any app that follows anything but the first row of the table is
insecure, and liable to leak confidential information.

3.2 A Solution

Various mitigations for these weaknesses have been proposed, including updating the Android API
to enforce secure connections [30] and scanning apps for security weakness upon uploading to
application stores [31], but these have not been incorporated into the Android ecosystem so far.
Even if these solutions were to be implemented, a user, even if she were technically able, is unable
to examine the security of a connection: unlike with a desktop web browser, one cannot examine
the certificate, or check the version of the TLS protocol being used (if indeed it is being used at
all).
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Therefore, an Android application was proposed (as suggested by Fahl et al. [31, p59]), designed
to sit between an application and its connection to the internet, and inform a user as to the
security of their connection, including any relevant protocols and the validity of any certificates.
This would provide protection to users against poorly coded apps, as well as alerting them if they
were connected to a malicious WiFi hotspot - a notification could appear warning them that any
certificates presented to any app was invalid and that they should disconnect immediately.
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Chapter 4

Implementing the App

The app aims to replicate the warnings given to users by desktop browsers, allowing normal internet
use to continue, but warning if weaknesses arise, and completely blocking the connection if it cannot
be deemed trustworthy. This section will detail the architecture of the app, the design choices that
had to be made, and some implementation challenges that had to be overcome.

4.1 Design

4.1.1 Goals

For the app to be successful it had to achieve two primary goals.

• It must be easy to use and run, not just for technical users but for all users. This means a
minimum of configuration and the ability to install the app, press one button and let the app
do the rest. Of course, it may offer some configuration ability for more advanced users. It
should also run without any user modification to the phone: no root access to the operating
system should be required.

• It must be as correct as possible. That is, it must be clear when an issue is discovered, and
crucially, not permit insecure traffic without explicit user approval. It is better to be more,
rather than less, restrictive. It must have as few false positives and negatives as possible.

4.1.2 Development Environment and Tools

As an Android app, the tool was developed in Java. The integrated development environment (IDE)
used was Android Studio1 running on an Apple MacBook Air. Development occurred mostly on a
Samsung Galaxy S6 running Android Lollipop 5.0.2, although other phones were used for testing.
Git was used for version control and code was synchronized with the Imperial College Department of
Computing GitLab server for secure backup. Development was modelled on the Agile methodology,
in which rapid prototypes and iterations were developed and worked on in two week sprints.

4.1.3 Issues and Challenges

There were several issues to be aware of when developing this application.

• If applications use custom protocols to generate a secure connection, this application will be
unable to verify the integrity of the connection. However, a survey of the Android ecosystem
suggests that using the in-built SSL API is the most common way that apps attempt to secure
a connection between client and server.

• Issues may be faced when trying to assign connections to applications: a modern smartphone
will have many concurrent connections to the internet at once, and so the application must
be able to distinguish relevant connections for the foreground app.

1http://developer.android.com/tools/studio/index.html
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• As pointed out by Fahl et al. [30], in general using self-signed certificates creates a vulnera-
bility, as an application will then trust a certificate signed by an attacker. However, if an app
successfully implements certificate pinning and pins a self-signed certificate, this connection
will still be secure. The application may be unable to verify this. It may be possible to
present a forged certificate to an application to determine acceptance, but this solution will
need to be examined.

• As certificate verification is hard to implement correctly, there is a risk that this application
contains a subtle bug that verifies a certificate as valid even if it is not. This would lead to a
false sense of security for the user and would be worse than providing no indication at all.

• Developing on a mobile phone introduces efficiency challenges. Battery life becomes a key
concern, as does the importance of not adding any additional latency to a connection. This
application will attempt to minimize both battery usage and latency, but this may prove
demanding.

4.2 Initial Decisions

The most important decision to be made for the structure of the app was to decide the method
of traffic interception. The decision was made to analyse all traffic on the phone. This avoids
having to maintain a third-party server to which a user’s phone must be constantly connected.
While maintaining a third-party server allows insight into connections from many users, allowing
heuristics to be developed as to what constitutes a compromised connection, there are several
downsides to this approach. With an app of this nature, user privacy is very important, and the
possibility that traffic may be stored on a system outside of a user’s control would be hard for some
to accept. In addition, routing traffic through another server would add significant latency to the
connection. The financial and practical implications of hosting a server of this nature would also
not be insignificant.

With the decision thus made to analyse traffic on the user’s device, the method of doing so had
to be determined. The Android operating system provides three methods for doing this; running a
local proxy server, running a local virtual private network (VPN), or observing the traffic directly
as it passes through the kernel.

4.2.1 Local Proxy Server

Using a local proxy server is perhaps the easiest method to implement. It does not require root
access to the phone and it operates at the HTTP layer, thus requiring little additional work to
reconstruct the network traffic once intercepted. According to RFC 2817, SSL connections are
tunnelled over an HTTP proxy server using the CONNECT method [78], which also allows easy
comprehension of the server an app is attempting to connect to, which is important for performing
hostname verification.

There are some downsides to this approach, however. It is the most difficult for a user to
configure, as, since version 4.1.2, the Android system does not let apps automatically configure
a proxy for security reasons. This means that for each WiFi connection, a user must manually
point traffic to the proxying app (Figure 4.1) - a step that will quickly be forgotten. This also
restricts screening to WiFi connections, as 3G and 4G mobile data connections cannot be proxied.
Additionally, apps can be coded (either accidentally or deliberately) to avoid a configured proxy
altogether, and so any app implementing a proxy server would not be able to analyse and secure
any connections such an app makes.

Existing apps that use this approach include Adblock Plus for Android2 which allows users to
block advertising on their phones.

2https://adblockplus.org/en/android-about
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Figure 4.1: Complicated Android Proxy Configuration

4.2.2 Local VPN

The Android API supports a VpnService,3 primarily designed for establishing tunnels to third-
party VPN servers, and like the local proxy method, does not require root access. This exposes a
TUN interface that operates on the Internet layer. This means that packet interception will include
an IP header, a TCP or UDP header, and an application layer header (e.g. DNS or HTTP). Ideally
these packets could be forwarded as is, but unfortunately this would require raw sockets, which is
not available on Android without root (and in fact there is no raw sockets API in Java).

This means that layer translation would have to take place: the VpnService has to strip the
Internet and Transport layer headers and forward the Application layer data over a new socket.
When data is received back, the Internet and Transport layer headers must be added back on.
While this is relatively straightforward for UDP packets, for TCP packets, the TCP connection
(the handshake, acknowledgements, etc) must be managed, requiring a TCP/IP stack. If this
approach is taken, a lot of work must go into this.

On the positive side, such an approach is more straightforward for a user. They must simply
accept one system dialogue (Figure 4.2) and from then on all traffic will go through the VPN.

Unfortunately, this approach limits the use of proxy servers, as Android does not support both
proxying a connection and running a VPN. Additionally, this may have a larger impact on battery
life than the local proxy approach. Because Android also requires explicit user approval to start
the VPN (again for security reasons), the app cannot be set to run automatically when the phone
is turned on. Additionally, Android’s VPN does not currently support IPv6. This is not currently

3http://developer.android.com/reference/android/net/VpnService.html
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Figure 4.2: Android VPN Approval Dialogue

an issue for WiFi traffic, as there is very little IPv6 support on the Internet, but could become
significant in a few years time, and indeed some carriers’ 4G implementations rely solely on IPv6
already.

There are several existing apps that take this approach either to block all traffic, block specific
traffic, or monitor traffic, suggesting that this approach is achievable and that there is an existing
market of users happy to follow these steps. These apps include:

• AdGuard Android:
http://adguard.com/en/adguard-android/overview.html

• Mobiwol: NoRoot Firewall (100,000-500,000 installs):
https://play.google.com/store/apps/details?id=com.netspark.firewall

• NoRoot Firewall (500,000-1,000,000 installs):
https://play.google.com/store/apps/details?id=app.greyshirts.firewall

• tPacketCapture (100,000-500,000 installs):
https://play.google.com/store/apps/details?id=jp.co.taosoftware.android.

packetcapture

• Packet Capture (10,000-50,000 installs):
https://play.google.com/store/apps/details?id=app.greyshirts.sslcapture
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4.2.3 Examining Traffic Directly

Taking this approach requires root access to the phone, so was almost immediately ruled out, but
it is worth looking at the possibilities offered to see what might be lost by not following it. This
would either use libpcap, the Linux packet capture library, or iptables (which would require writing
a kernel module). As this approach is more low-level than both a proxy or VPN, the impact on
battery life would be more limited. Analysis is also likely to be quicker and more efficient. The
AdAway app4 uses this approach.

4.2.4 Decision

Based on these considerations, the choice was made to take the VPN approach. This required
the least work on the users’ part, and had the chance of capturing the most traffic from apps,
making the additional work required worth it. Additionally, a basic existing implementation had
been created by Mohamed ‘Hexene’ Naufal5 and licensed as Apache v2.0, allowing free use and
modification. This would save a lot of the initial work and meant connection analysis could begin
much more quickly.

4.3 Building on LocalVPN

Nauful’s LocalVPN app is extremely basic. As seen in Figure 4.3, the user interface is a single
button. The app merely passes traffic through the VPN without doing any manipulation or analysis.
This is a good proof of concept, but requires a lot of work on top.

4.3.1 VPN Architecture

The VPN runs as a Service, which on the Android operating system means it can continue to run in
the background, even while the main app is closed. It extends Android’s VpnService which provides
basic scaffolding for setting up a VPN. The service runs a thread which continually receives and send
traffic to and from the network. Data is buffered in directly allocated byte buffers for performance
as they are allocated separately from the Java virtual machine (JVM) heap. A basic TCP/IP stack
is implemented. This handles connection set-up and tear-down and deals with the most important
TCP flags. TCP connections are cached in a Transmission Control Block implemented as a Least
Recently Used cache of 50 entries.

Each packet is initialized as a Java object, allowing inspection of the IP and UDP/TCP headers.
This also allows the headers to be recalculated as required for the layer translation mentioned above.

4.3.2 Packet Capture

The first step to turning this pass-through app into something useful was being able to understand
what was happening in it. This required being able to observe the traffic with a tool such as
Wireshark. The pcap file format, which Wireshark uses, is relatively simple [79]. The file requires
a global header (which marks if the packets are stored as little endian or big endian, the version
number and other key information), and each packet is proceeded by a header which includes a
timestamp and the length of the packet.

With some experimentation, the header in Listing 4.1 was found to be sufficient.

0xA1B2C3D40004000200000000000000000000FFFF0000000C

Listing 4.1: Wireshark Header

The Packet class was also extended to include the required packet header and the requisite
timestamp. Writing these bytes out to a file on the Android external file system produced files
which can be opened with Wireshark and easily analysed.

4https://f-droid.org/repository/browse/?fdid=org.adaway
5https://github.com/hexene/LocalVPN
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Figure 4.3: LocalVPN’s Basic UI

4.4 Finding and Analysing TLS Packets

Now that it is possible to capture packets and examine them in more detail, focus can move to TLS
packets in particular. A simple heuristic for determining if traffic is TLS is if it is being transmitted
over port 443. A future expansion could dynamically examine packets on other ports to determine
if they are encrypted too, but for now just looking at all traffic on port 443 will suffice.

Looking into the packet header it is easy to determine if the source or destination port is 443
and so select the packet for further examination. This occurs on the TCPInput and TCPOutput
threads; whenever they detect an appropriate packet, they alert they instruct the transmission
control block (TCB) object for that connection to analyse the packet. This method takes the bytes
given to it, and constructs a TLSPacket object (similar to the generic Packet object). Following
the specification in the TLS RFCs [3, 4, 5], a header can be constructed (Listing 4.2), and further
analysis can be performed.

1 public static class TLSHeader

2 {

3 public byte majorVersion;

4 public byte minorVersion;

5 public ContentType type;

6 public short length;

7 public int payload;

8

9 public enum ContentType
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10 {

11 change_cipher_spec (20),

12 alert (21),

13 handshake (22),

14 application_data (23),

15 Other (0xFF);

16 ...

17 }

18

19 ...

20 }

Listing 4.2: The TLS Record Header as a Java Object

Specifically, we are most interested in the handshake packets. We can select the packets of this
type, and again create a Java object for them (Listing 4.3).

1 public static class TLSHandshake

2 {

3 public static final int TLS_HANDSHAKE_HEADER_SIZE = 4;

4

5 public HandshakeType msg_type;

6 public int length;

7 ...

8

9 public enum HandshakeType

10 {

11 hello_request (0),

12 client_hello (1),

13 server_hello (2),

14 certificate (11),

15 server_key_exchange (12),

16 certificate_request (13),

17 server_hello_done (14),

18 certificate_verify (15),

19 client_key_exchange (16),

20 finished (20),

21 Other(0xFF);

22 ...

23 }

24

25 ...

26 }

Listing 4.3: The TLS Handshake Header as a Java Object

Drilling down even further, headers can be constructed for the client hello, server hello,
certificate, and other key handshake packets. They are omitted here for brevity but can be
found in the TLSPacket.java source file. This allows us to extract key information about the
connection before it is encrypted and we can no longer read it. From the server hello packet we
can determine the TLS Version and Cipher Suite chosen by the server, and from client hello we
can see the Cipher Suites that the client supports - this will be very useful in analysing the state
of the ecosystem and searching for possible vulnerabilities in servers and clients (Section 6.3.1).

Crucially, the certificate packet gives us the certificate chain used in the connection. This
stream of bytes can be constructed as an X509Certificate from the Android API.6 Now we are able

6http://developer.android.com/reference/java/security/cert/X509Certificate.html
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to attempt to verify the hostname and chain of trust, and determine if a man-in-the-middle attack
is being staged against the user. We can also write the certificate to a file on the internal storage
for later manual analysis.

4.4.1 Caveats

This technique allows us to examine the handshake as it passes across the network, without slowing
down the connection. To avoid issues, it is important to be aware of some lower level details. As
the RFC states,

The record layer fragments information blocks into TLSPlaintext records carrying data
in chunks of 2ˆ14 bytes or less. Client message boundaries are not preserved in the
record layer (i.e., multiple client messages of the same ContentType MAY be coalesced
into a single TLSPlaintext record, or a single message MAY be fragmented across several
records) [5, Sec 6.2.1].

Because we are looking at the connection packet-by-packet, this is crucial information. It is impor-
tant not to throw away data by considering a packet just to contain one TLS record, and similarly,
it is important not to miss information by reading only half a packet. Careful use of the buffer is
required in this instance - packets may even span more than two TCP packets depending on their
size (although this will mainly be the case for Application Data, in which we are not interested).

It is also important to note when the client and server have agreed on an encryption key and
the connection is encrypted. This will be signified by a ChangeCipherSpec packet. Any further
data received after this point may seem to be a regular handshake packet [5, Sec 7.1], but this will
be coincidence, and any attempt to read further will cause an error.

4.5 Certificate Verification

As discussed in Section 3.1, the reason many apps fail to verify certificates correctly is because they
have overridden the default Android API. Therefore, to enforce correct verification, it is enough to
simply pass the obtained certificates to the Android API. Exceptions will be thrown if there is an
issue. Verifying the chain of trust is relatively simple, as Listing 4.4 demonstrates, but hostname
verification throws up some challenges.

1 private void validateCertChain(X509Certificate [] chain) {

2 try {

3 TrustManagerFactory trustManagerFactory =

TrustManagerFactory.getInstance(TrustManagerFactory.

getDefaultAlgorithm ());

4 trustManagerFactory.init(( KeyStore) null);

5 for (TrustManager trustManager : trustManagerFactory.

getTrustManagers ()) {

6 X509TrustManager x509TrustManager = (X509TrustManager)

trustManager;

7 x509TrustManager.checkServerTrusted(chain ,

TrustManagerFactory.getDefaultAlgorithm ());

8 }

9 } catch (CertificateException e) {

10 ...

11 }

12 }

Listing 4.4: Validating the Certificate Chain

32



4.5.1 Finding the Hostname

As mentioned in Section 4.2.1, if using the Local Proxy approach, finding the hostname is just a
case of looking at what server was named in the HTTP CONNECT request. Since this approach
was not taken, an alternate approach must be found.

4.5.1.1 SNI

The easiest way of achieving this is to use the Server Name Indication extension in the Client Hello
packet. As described in Section 2.1.7 and the RFC [15, Sec. 3], the packet contains a field that
describes the host that it is attempting to connect to. Listing 4.5 shows an example of this. SNI
is intended to provide support for HTTPS over virtual servers, that is, where one physical server
hosts multiple websites all with different hostnames. Without a field in the packet identifying
the intended site, either a certificate would have to be valid for all sites on the physical host, or
certification would not work at all. We can take advantage of this field and verify the hostname in
any received certificate against the hostname in the SNI field (Listing 4.6).

Extension: server_name

Type: server_name (0 x0000)

Length: 19

Server Name Indication extension

Server Name list length: 17

Server Name Type: host_name (0)

Server Name length: 14

Server Name: www.google.com

Listing 4.5: The SNI extension

1 private void validateSNIName(X509Certificate cert) {

2 MyHostnameVerifier hv = new MyHostnameVerifier ();

3 try {

4 hv.verify(sni_name , cert);

5 } catch (SSLException e) {

6 ...

7 }

8 }

Listing 4.6: Verifying SNI

4.5.1.2 DNS

Unfortunately however, not every TLS connection includes the SNI extension. For one thing, SSL3
does not have the ability to include extensions, so this technique will not work with any connections
using SSL3. In addition, as mentioned in Section 3.1, Apache HTTP Client does not support SNI,
so any apps using this library will also fail when using this technique. There are also various other
apps whose TLS connections do not include the SNI field. For this reason a secondary technique
must be found.

An initial approach would be to take the IP address of the connection and do a reverse DNS
lookup using the getHostName() method of InetAddress.7 Of course, this does not solve the
problem of virtual hosting, as the hostname returned, if any, will be that of the physical server.
One could also take the reverse approach, and lookup the IP addresses of the hostnames stored in
the certificate with the getAllByName() method. If any of these IP addresses match the source IP
address then we can be reasonably certain that the certificate’s hostname is valid. This approach
however is vulnerable to a DNS spoofing attack. If an attacker can control the DNS responses a

7http://developer.android.com/reference/java/net/InetAddress.html

33

http://developer.android.com/reference/java/net/InetAddress.html


client receives (which is certainly possible), she can simply configure her own hostname presented
in the certificate to match that of the intended connection, and trick the app into believing the
certificate is valid. Thus, while this technique may offer a small amount of verification, it is subject
to both false positives and false negatives and so cannot be seen as completely reliable.

An alternative approach is to try and emulate the HTTP CONNECT message that would be
received if running a local proxy. This can be achieved by using a DNS cache. The VpnService
can be configured so that all DNS traffic passes through the VPN. Then, by observing all UDP
traffic over port 53 (in a similar manner to the way TLS traffic is analysed) it is possible to see all
the DNS queries and responses that the user’s phone is sending. By turning these messages into a
DNSPacket Java object (following the DNS RFC, 1035 [80]), we can learn the intended hostnames
an app is intending to connect to, and the associated IP addresses. By storing these in a cache,
when attempting to verify a hostname in a certificate, we can lookup the IP address that the app
is trying to connect to, and find the associated hostname or hostnames. We can then verify that
the received certificate matches one of these hostnames (Listing 4.7).

1 private void validateHostname(X509Certificate cert , InetAddress

source) {

2 MyHostnameVerifier hv = new MyHostnameVerifier ();

3 try {

4 List <String > l = DNSCache.getDomain(source.getHostAddress ())

;

5 if (l != null) {

6 boolean verified = false;

7 SSLException exception = null;

8 for (String domain : l) {

9 try {

10 hv.verify(domain , cert);

11 verified = true;

12 break;

13 } catch (SSLException e) {

14 exception = e;

15 }

16 }

17 if (! verified)

18 throw exception;

19 }

20 else {

21 ...

22 }

23 } catch (SSLException e) {

24 ...

25 }

26 }

Listing 4.7: Verifying hostnames through a DNS cache

4.5.1.3 Android Bugs

This technique works very well, and would solve this problem completely, were it not for one issue.
There is a bug in the Android operating system that means all DNS requests routed through the
VPN are not rewritten with the correct IP address, but instead use the internal VPN address.8

This means that no DNS replies are received, as the router does not know the correct IP address of
the device. This of course, completely kills internet connectivity. It appears that the bug has been

8https://code.google.com/p/android/issues/detail?id=64819

34

https://code.google.com/p/android/issues/detail?id=64819


fixed in the latest version of Android, but whether specific device manufacturers have included the
fix is unclear: the bug is still present on a Samsung Galaxy S6 running Android 5.0.2 and a Google
Nexus 4 running Android 5.1.

After much investigation, a workaround was found for this issue. Using a rooted phone,
iptables was configured to log all traffic it handled:

iptables -t nat -A OUTPUT -j LOG --log -uid --log -level debug --log -ip-

options

Viewing the logs with dmesg revealed that the source IP address of certain UDP packets wasn’t
being rewritten to the IP of the outgoing interface. This could be resolved on a rooted phone by
adding an iptables rule:

iptables -t nat -A POSTROUTING -p udp -j MASQUERADE

Most phones of course are not rooted, so another solution needed to be found. After exploring
many options, it was discovered that when a UDP socket is opened by the VPN, if it is explicitly
bound to the IP address of the outgoing interface, then the source IP addresses of the packets are
correct. This was achieved with the code in Listing 4.8. This was a significant discovery, as without
it hostname verification would not work on many large networks.

1 InetSocketAddress sa = new InetSocketAddress(localIP , sourcePort);

2 outputChannel.socket ().setReuseAddress(true);

3 outputChannel.socket ().bind(sa);

Listing 4.8: Workaround for Google’s VPN DNS bug

Another DNS issue that arose was that some large networks (including that of Imperial College
London) block DNS requests to external servers, and force all traffic to go through their local DNS
server. The app was initially configured to send all DNS traffic through Google’s DNS server,
8.8.8.8, but code had to be added to also use the local DNS server provided. This of course is
vulnerable to DNS spoofing, where the returned IP address of a domain points to a server controlled
by an attacker, and so the option is available to disable this server and use solely Google’s external
one.

4.5.2 False Positives

These techniques prove to be effective in verifying both the chain of trust and hostnames for
standard certificates. There are one or two cases where false positives are thrown and that users
must verify manually to ensure protection. Normally an app relying on a self-signed certificate
would be vulnerable to attack, because an attacker could present their own self-signed certificate
for the same hostname and be trusted. In this situation the app will alert the user to a potential
attack. If however, the self-signed certificate is ‘pinned’ in the app, that is, the app is set to trust
that certificate, and only that certificate, then security is still achieved. There is no way for a third
party app to verify that an app is using certificate pinning, and so manual verification must be
used.

In addition, certain apps hardcode the specific hostnames that they trust, in addition to the
hostname they are attempting to connect to. That is, if they try and connect to domain-one.com

and receive a certificate valid for domain-two.com, the app is configured to see this as a valid
certificate. Again, a third-party app is not able to know this, and so will alert the user to a
certificate error, which must be manually inspected and approved (or not).

Specific examples of both of these cases are in Section 6.2.

4.6 Grading Connections

Now that it is possible to inspect the TLS handshake, and verify that the certificates are valid or
not, we can decide if a connection should be allowed to proceed or not. However, with awareness
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of the various protocol and implementation vulnerabilities discussed in Sections 2.3 and 2.4, we
can also take a more fine-grained approach. Even if the connection’s certificate is valid, an old
version of the TLS protocol may be in use, or a weak Cipher Suite may be in effect, which are
both conditions that may affect the security of a connection. Blocking a connection may be a little
excessive in this case as users may quickly become frustrated and disable the app, but it is useful to
give a warning to the user that the connection is not as secure as it could be (in the same manner
as web browsers do on the desktop: Figure 4.4).

Figure 4.4: A TLS security warning from Google Chrome

A grade from A to F can be computed for each connection in a similar manner to Ristić’s SSL
Labs. This allows users to make an informed decision about whether to proceed with using an app
without blocking it outright. After some consideration, the grading criteria outlined in Table 4.1
was implemented in the app. This grade is displayed on the connection information page and is
colour-coded to highlight the meaning of each letter without a less technical user having to fully
understand. The list of TLS Cipher Suites is defined by the Internet Assigned Numbers Authority
(IANA) [81], and with reference to the literature, can be marked as secure, insecure or obsolete.
See Appendix C for the definitions used in this app.

In addition, each app can be given a grade, based on the connections it makes. Initially, this is a
simple algorithm, and is simply the lowest grade of the previous ten connections. This is sufficient
to highlight any active poor connections in an app, but allows a grade to develop over time as an
app is updated or a phone connects to a different WiFi hotspot.
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Grade Criteria

A Using TLS version 1.2 and a strong cipher suite

B Using a version of TLS below 1.2 or a weak cipher suite or a certificate with
a weak signature

C Invalid certificate presented: attempted attack on connection

F FAIL: Invalid certificate presented and further traffic allowed to proceed

Table 4.1: Grading Criteria

4.7 Linking Connections to Apps

Although the local VPN allows us to examine all the connections that the phone is making to
the internet, connections are not explicitly marked with the name of the app that is making the
connection. This is an issue, because we need to identify which apps are making which connections
in order to assess their security. Luckily, because of Android’s roots in the Linux operating system,
a solution is at hand. The /proc/net/tcp and /proc/net/tcp6 interfaces provide information
about the TCP connections the operating system has made, and are readable without requiring
root access. The format is as in Listing 4.9. IP addresses are given in hexadecimal format and
the UID column gives the ID of the user that owns a particular connection. Because each app on
Android runs as a different user this means we can link connections to apps.

$ cat /proc/net/tcp

sl local_address rem_address st tx_queue rx_queue tr tm ->when

retrnsmt uid timeout inode

0: 1D00A8C0 :9007 03 D23AD8 :01BB 01 00000000:00000000 00:00000000

00000000 10091 0 440101 1 0000000000000000 23 4 1 10 -1

$ cat /proc/net/tcp6

sl local_address remote_address

st tx_queue rx_queue tr tm ->when retrnsmt

uid timeout inode

0: 0000000000000000 FFFF00001C00A8C0:E4DE 0000000000000000

FFFF000003D23AD8 :01BB 01 00000000:00000000 00:00000000 00000000

10219 0 445576 1 0000000000000000 25 4 11 10 -1

Listing 4.9: Output of /proc/net/tcp and /proc/net/tcp6

The AndroidTCPSourceApp library9 helps accomplish this. It loads these interfaces into a
BufferedReader and searches for a matching IP address, before looking up the UID (via the
Android API, Listing 4.10), and returning an object with information about the appropriate app.
This library required a little rewriting, as the regular expressions it used to search were not complete,
and to increase efficiency, but was useful in saving the initial work. With a package name it is easy
to use the Android API to get the app’s user-friendly name and icon to present to a user in the
user interface (Listing 4.10).

1 PackageManager manager = context.getPackageManager ();

2 String [] packagesForUid = manager.getPackagesForUid(pidEntry);

3 String packageName = packagesForUid [0];

Listing 4.10: Getting a Package Name from a UID

4.8 Data Persistence

Without some way to store this information on the phone, every time the app closes (or is forced
to close by the operating system), the historical data of connections made is lost, affecting one’s

9https://github.com/dextorer/AndroidTCPSourceApp
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ability to look back at an app’s previous behaviour and perform data analysis. Thus, some way
is needed to store connections for easy recall. Storing this information in a database would be
the most obvious solution, and indeed, Android provides an easy way for apps to create and use a
SQLite database. However, this still requires writing SQL statements, which adds complexity. For
this reason it would be ideal to use an object relational mapper (ORM). This allows one to map
Java objects to database tables, without having to write any SQL. Active Android10 is just such a
library, and is used heavily in this app. An ER diagram for the database schema used by the app
is shown in Figure 4.5.

Figure 4.5: ER Diagram

Conveniently, it also provides an easy representation of the key elements the app needs to
deal with. Whenever the app interfaces with Connection, App or Certificate objects, that data is
directly backed by the database, with no intermediate layer required. Certificates are written to
files on the filesystem, indexed by their fingerprint. With Active Android, reading rows from tables
is made very easy, as regular Java syntax can be used. To update or create a row, all that is needed
is to call the save() method.

4.9 The User Interface

As this app is intended for use by non-technical users, some time was dedicated to creating a
simple, easy to use interface. The design language is influenced by Google’s Material Design, which
is intended to promote a common experience among all Android Apps. On the main screen (Figure
4.6), apps are represented as ‘cards’ which can be swiped and tapped. A large message is displayed
to indicate to the user whether protection is enabled or not (recall that protection cannot be enabled
automatically, because user interaction is required to start the VpnService).

The cards are implemented using a CardView from Android’s support library, and the list is
created using a RecyclerView (which is more memory-efficient than the older ListView).

On the bottom right corner one will also notice the large button. This is a ‘Floating Action
Button’ which is designed to highlight the primary action of an app and provide easy and consistent
access to it. In this app it is used to start and stop the VpnService. It is implemented using the
FloatingActionButton widget from the Android Design Library.

Figure 4.7 shows the page that is displayed when an app card is selected. A large, colour-coded
grade is displayed. The user is also able to decide whether to always block an app, never block
an app, or let blocking be decided based on analysis (the default behaviour). The list of historic

10https://github.com/pardom/ActiveAndroid
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Figure 4.6: Main Screen

connections is displayed below. Each connection can be chosen to display further detail. If a
connection is problematic, it is highlighted in red.

The connection screen (Figure 4.8) provides more information about an individual connection.
Its grade is displayed, along with the IP address, date and time. The version of the TLS protocol
used is highlighted, as is the cipher suite that was negotiated. Any provided certificate is displayed
below.

Figure 4.9 shows an app that has been under attack, and leaks data. It is marked clearly with
an F grade, and notifies the user that the app has been blocked.

Of course, one cannot rely on a user constantly opening the app to examine what has been
happening. If problematic events are encountered, Android notifications are generated to alert the
user about the situation (Figure 4.10). These can be enabled or disabled in the app’s preferences,
which also allows packet capture to be enabled or disabled.

4.9.1 Identity

The app also needs an identity: a name and a logo so that it can be identified on users’ phones
and on the Google Play Store. The name Sift was chosen, as it represents the app’s ability to filter
connections, and allow only the appropriate ones through. A logo was also created, again following
the Material design language, and is shown in Figure 4.11. With these elements in place, the app
can be submitted to the Google Play Store for general use, allowing anyone to download and use
the app.
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(a) (b)

Figure 4.7: App Pages

4.10 Summary

Sift was created to provide users awareness of the TLS connections their apps make, and to pro-
tect them from poorly coded, vulnerable apps. It operates as a local VPN, tunnelling all traffic
through itself before passing it on to the network. It implements a simple interface making it easy
for non-technical users, and can run in the background with minimal user interaction. Sift can
be downloaded from the Google Play Store at this address: https://play.google.com/store/

apps/details?id=com.imhotepisinvisible.sslsift. It proves to be effective, and a further
examination of its operation can be found in Section 6.2.
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Figure 4.8: The Connection Screen

41



(a) (b)

Figure 4.9: A vulnerable app
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Figure 4.10: Notifications

Figure 4.11: Sift’s Logo
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Chapter 5

Testing App Vulnerability

In order to both test Sift, and to perform a survey of encryption in the Android ecosystem, a
testing suite needed to be created. This would sit between a phone and the internet and attempt
to perform a man-in-the-middle attack against any TLS connections, presenting forged certificates
and seeing if apps permitted connections to proceed. This system could also be used for packet
capture, useful when surveying many apps in one go.

5.1 Man-in-the-Middle Techniques

In the real world, an attacker will generally use one of a small subset of techniques to force a
victim’s traffic through her system. When setting up a test system, one of these approaches must
be chosen.

5.1.1 Malicious Hotspot

A malicious hotspot is simply a WiFi access point over which an attacker has complete control.
This means that she can run any transparent proxy or other traffic manipulation software she
wants, without the user being aware. It can take the form of a hacked router, a laptop with two
network interfaces, or even a small system such as a Raspberry Pi. There is no control over access
point naming, so given a convincing name such as ‘Free WiFi’ or ‘BTWiFi’ users can be convinced
to connect. This can be especially problematic with mobile devices, as once a network has been
connected to, devices will attempt to connect to any networks with the same name (or SSID). Thus,
if a user has ever connected to a hotspot run by BT, their device will always try and connect to a
hotspot called ‘BTWiFi’ if it is available.

Technical users may disable this feature, but some situations can prohibit this. For example,
AT&T, one of the largest cell phone operators in the United States configures all iPhones sold to
automatically connect to networks with the SSID ‘attwifi’ [82], and this behaviour is very hard to
disable (and will be re-enabled every time an AT&T sim card is inserted into the phone). Therefore,
in the US, an attacker merely needs to name an access point ‘attwifi’ and a large amount of traffic
will automatically start flowing through their system.

5.1.2 ARP Spoofing

ARP spoofing takes advantage of the lack of security in the Address Resolution Protocol. This
protocol is a basic component of networking, and is how devices identify themselves and others
on a network, connecting physical (MAC) addresses to network (IP) addresses. Simply, a device
broadcasts asking which device has a certain IP address. If a listening device indeed has that
address it will reply with its MAC address. This communication occurs frequently on a network.
Therefore, a device looking for the address of a local gateway (frequently a router) will send a
message asking for the router’s MAC address, and will receive a reply in turn. However, there
is nothing stopping an attacker listening to these broadcasts and replying that in fact they are
the router, and therefore to send all traffic through them. The reverse is done with the router,
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making it think that the attacker’s address is the victim’s address. This can easily be done with
the arpspoof tool.1 Now the attacker can view and manipulate the traffic between the victim and
the router.

This can be mitigated somewhat, but most networks (especially public WiFi networks) take no
precautionary measures. The ARP protocol was designed in 1982 [83] and security was not on the
minds of the creators. While ARP remains a key element of networking, this attack will always be
a viable option.

5.1.3 Other techniques

Other techniques also exist, such as DNS spoofing and DHCP spoofing, which allow the attacker
to either direct traffic intended for one server to a different server of their choice or to confuse
the victim into thinking that the gateway machine is the attacker’s [84], but become increasingly
difficult to achieve.

5.1.4 Decision

Since no deception is involved in this experiment, and running a hotspot provides the most control,
that was the option chosen. An access point configured to perform man-in-the-middle attacks could
be created with a certain SSID and a phone could be configured to connect to that network.

5.2 Setting up the Malicious Access Point

5.2.1 Hardware

The following hardware was used:

• Raspberry Pi Model B

• Kingston 8GB SD card

• Edimax EW7811Un WiFi USB adapter

• Ethernet cable

A Raspberry Pi was chosen both for its extremely cheap cost (approximately £25) and small
size, allowing it to be used discreetly. Any laptop or desktop computer supported by Kali Linux
can also easily be used. The key component to the set-up is having two network interfaces: one
to create the malicious network, and one for Internet traffic. In this set-up Ethernet was used to
connect to the Internet, but for portability a second WiFi adapter could be used, or even a 3G or
4G mobile connection.

5.2.2 Software

Kali Linux2 is the operating system used. Kali is a Linux distribution based on Debian Linux,
which is designed specifically for network monitoring, security auditing and penetration testing.
It can run on x86 or ARM, among other architectures, making it suitable for the ARM-powered
Raspberry Pi.

Additional software:

• TightVNCServer3 and SSH are used to access the Raspberry Pi remotely.

• Dnsmasq4 is used as a DNS cache and relay.

• Hostapd5 is used to create the access point.

1http://su2.info/doc/arpspoof.php
2https://www.kali.org/
3http://www.tightvnc.com/
4http://www.thekelleys.org.uk/dnsmasq/doc.html
5https://w1.fi/hostapd/
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• Mitmproxy6 is used to create the transparent proxy that is used to attack the TLS connec-
tions.

5.2.3 Installation

The Kali Linux ARM distribution was downloaded and imaged onto an SD card. Once booted up
it is easy to SSH into the Raspberry Pi to continue setting up. After expanding the OS partition
to fill the SD card,7) the full distribution of Kali was installed:

apt -get install kali -linux -full

The additional software was then installed:

apt -get install tightvncserver dnsmasq hostapd

Configuration files were created for dnsmasq (Listing 5.1) and hostapd (Listing 5.2) and a signed
certificate was downloaded to the system to enable the invalid hostname attack.

interface=wlan0

dhcp -range =10.0.0.10 ,10.0.0.250 ,12h

dhcp -option =3 ,10.0.0.1

dhcp -option =6 ,10.0.0.1

server =8.8.8.8

log -queries

log -dhcp

Listing 5.1: dnsmasq.conf

interface=wlan0

driver=nl80211

ssid=badguy

channel =1

Listing 5.2: hostapd.conf

5.2.4 Installation Issues

The version of hostapd in the Kali software repository is not compatible with the Edimax WiFi
adapter used. An appropriate version can be downloaded from Realtek’s website8 and compiled.

The network-manager service gets in the way of the manual network configuration and must be
stopped with

service network -manager stop

5.2.5 Running the Software

These commands assume that the Ethernet adapter is at eth0 and the WiFi adapter is at wlan0
and that the configuration files are stored in the working directory.

Bring up the WiFi adapter:

ifconfig wlan0 10.0.0.1/24 up

6https://mitmproxy.org/
7Following the instructions here:

https://linhost.info/2015/05/expand-the-root-partition-in-kali-linux-for-the-raspberry-pi/
8http://www.realtek.com.tw/downloads/downloadsView.aspx?Langid=1&PNid=21&PFid=48&Level=5&Conn=4&

DownTypeID=3&GetDown=false
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Start dnsmasq:

dnsmasq -C dnsmasq.conf -d

Start hostapd:

hostapd ./ hostapd.conf

Enable IP forwarding:

sysctl -w net.ipv4.ip_forward =1

iptables -P FORWARD ACCEPT

iptables -t nat -A POSTROUTING -o eth0 -j MASQUERADE

At this point one can connect to the WiFi hotspot and it will simply pass on traffic to the
Ethernet interface. Wireshark can be used to inspect the traffic flow.

Now mitmproxy can be started. It can be run in two different configurations depending on the
attack to be run: presenting the user with a self-signed certificate, or presenting the user with a
valid certificate signed for an invalid host.

First configure IPTables to route all TLS traffic to mitmproxy:

iptables -t nat -A PREROUTING -i wlan0 -p tcp --dport 443 -j REDIRECT --to

-port 8080

Unencrypted HTTP traffic can also be routed through the proxy:

iptables -t nat -A PREROUTING -i wlan0 -p tcp --dport 80 -j REDIRECT --to-

port 8080

And run mitmproxy with one of the two commands:

mitmproxy -T --host

mitmproxy -T --host --cert=cert.pem

The -T flag runs mitmproxy transparently (i.e. invisible to the user) and the --host flag helps
with displaying the connections to the user. The --cert flag points to the location of a custom
certificate. Mitmproxy will run on port 8080 by default.

Everything is now set up and waiting for connections from an unwitting user (Figure 5.1).

5.3 Manually Testing Vulnerable Apps

Apps were tested by configuring an Android phone to connect to the attacking access point.
Mitmproxy was configured to run, and the app was opened. Any available login box was filled
in with a dummy username and password. If any traffic appeared in the mitmproxy window then
the app was marked as vulnerable and further examination was conducted. Apps chosen for test-
ing included those of financial institutions, large chains, and other apps with a high number of
downloads on the Google Play Store.

5.4 Further Examination

When a vulnerable app is discovered, it may prove useful to examine it further to discover which
error has been made when creating a TLS connection. Fahl et al. introduced the Mallodroid static
analysis tool [31], which works with the AndroGuard decompiler to statically analyse Android
applications. This can provide useful guidance as to where to look for vulnerabilities, but as is
typical with static analysis, can miss certain issues, or highlight issues with code that is in fact
never called.
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Figure 5.1: List of captured https connections

Indeed, Dormann, when testing apps at CERT [85] highlights the same issue: the static analysis
provides useful information, but cannot be relied on completely. Therefore, a small number of apps
that have been found to be vulnerable can be manually decompiled and inspected, finding the exact
causes of an issue.

The decompilation process will be described here. Specific results and analysis can be found in
Section 6.1.

5.4.1 Static Analysis: Mallodroid

Running the Mallodroid tool is relatively straightforward. An installation of AndroGuard9 (includ-
ing all relevant dependencies) must be in place, and then the tool can be run:

./ mallodroid.py -f /path/to/app.apk -x

Mallodroid will output XML highlighting any issues it has found.

5.4.2 Decompilation

Because Android apps are written in Java (although native code can be included for performance
reasons), decompilation is a relatively straightforward task. There is not space for an exploration
of the architecture of Android apps here, but it is sufficient to know that the Java code is compiled
to Dalvik bytecode, which is stored in an APK file along with the app’s resources. An APK is
essentially a zip file, which can be opened and extracted. As one might expect, there are a number
of tools designed to convert this Dalvik bytecode back into readable Java. Dex2Jar10 takes an APK
file or DEX file as input and outputs CLASS files zipped as a JAR file. This can be read with
any number of Java decompilers, including JD11 and Luyten12 (which is a GUI frontend for the

9https://code.google.com/p/androguard/
10https://github.com/pxb1988/dex2jar
11http://jd.benow.ca/
12https://github.com/deathmarine/Luyten
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Procyon decompiler). Because different Java decompilers perform differently it is useful to analyse
the JAR files with a few of them.

Other tools designed specifically for Android can also be used. Bytecode Viewer13 wraps all of
the above tools into one package, making things more convenient. APKStudio14 is also useful as it
incorporates Smali, which allows editing of the Dalvik bytecode, which is needed when a decompiler
is unable to process a particular method, or to edit and recompile applications (to patch out an
app checking if a phone has root access or not, for example).

When a JAR file created with Dex2Jar has been loaded into one of these decompilers, a search
can be performed looking for the specific API calls that we know are required when implementing
TLS in apps: instantiation of an X509TrustManager or HostnameVerifier. Mallodroid can also be
useful in directing us to the relevant classes. At this point it becomes easy to see what errors have
been made, whether it is overriding a TrustManager to provide no protection at all, forgetting to
include a HostnameVerifier with a custom SocketFactory, setting a HostnameVerifier to pass
all hostnames, or allowing a WebView to ignore SSL errors.

5.4.2.1 Obfuscation

Some apps use the ProGuard tool to ‘shrink, optimize and obfuscate’ their code.15 This renames all
classes, fields and methods with short, obscure names, making understanding the decompiled Java
code harder. This can provide an obstacle to inspecting apps, although any calls to the Android
API cannot be obfuscated (as the operating system needs to understand the calls), so searches for
X509TrustManager and so on will still succeed.

5.5 Automated Testing

As intimated in the previous section, manual testing and static analysis can only reveal so much. To
get a broader view of the Android ecosystem and to find a range of apps with security vulnerabilities,
widescale, automated, dynamic testing is required. A process was devised to download and test a
large number of Android applications from the Google Play Store, with minimal user interaction
required.

5.5.1 Finding the Apps

Before downloading the apps, criteria were needed to decide which ones to evaluate. Apps on the
Google Play Store are divided into 45 categories, 20 for games and 25 for other applications (Listing
5.3). Ranking charts are produced, globally and by category, divided by free and paid apps, ordered
by number of downloads, to help users decide which apps they may want to install. Since apps
have a higher likelihood of containing sensitive user information, it was decided to focus on those,
rather than games, and to analyse the top 100 of all free apps, and the top 100 free apps in each
of the application categories, a total of 2500 apps.

BUSINESS

COMICS

COMMUNICATION

EDUCATION

ENTERTAINMENT

FINANCE

HEALTH_AND_FITNESS

LIBRARIES_AND_DEMO

LIFESTYLE

APP_WALLPAPER

MEDIA_AND_VIDEO

13https://github.com/Konloch/bytecode-viewer
14https://apkstudio.codeplex.com/
15http://developer.android.com/tools/help/proguard.html
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MEDICAL

MUSIC_AND_AUDIO

NEWS_AND_MAGAZINES

PERSONALIZATION

PHOTOGRAPHY

PRODUCTIVITY

SHOPPING

SOCIAL

SPORTS

TOOLS

TRANSPORTATION

TRAVEL_AND_LOCAL

WEATHER

APP_WIDGETS

Listing 5.3: Google Play Store App Categories

Gaining programmatic access to this list of apps is not made easy by Google’s Play Store
interface, so google-play-scraper,16 a Node.js17 based scraper was used. A script was written in
JavaScript to iterate over the relevant categories and generate a CSV file of the app names, their
package identifier and a market link, producing a list of 2500 apps. The script and list of apps can
be seen in Appendices B.1 and D.

5.5.2 Downloading the Apps

Downloading 2500 apps in one go is also not made straightforward by Google. There is no easy
interface in the Play Store to download multiple apps, and all downloads are sent directly to a
phone, which will not have enough storage for that number of apps in one go. Therefore, a tool
called Raccoon18 was used, which is able to take a list of Market URLs and download the APKs
to a PC. It is a Java app that has both a GUI and a command line interface. Bulk download from
a provided list can be initiated with the command:

java -jar raccoon -3.5. jar -a /path/to/configuration/ -u -i list.txt

5.5.3 Running the Apps

Monkeyrunner19 is a tool included in the Android SDK that allows developers to create Python
scripts to test their apps. They can configure certain button presses to be made, allowing them to
determine if their apps are behaving in the desired manner.

Using this tool, a Python script was created to loop over the entire set of 2500 downloaded
apps, extract the package and activity names (required by monkeyrunner to launch an app) and
attempt to log in (if a log in page was encountered at the first screen). This script can be seen in
Appendix B.2.

While this script was running, the phone was connected to the Raspberry Pi access point, which
was configured to log all SSL and DNS traffic to a packet capture file with tcpdump:20

tcpdump -i wlan0 -w cap.pcap

Once execution was complete this app could be analysed to determine the various parameters
apps used to connect to their backend servers.

In another pass of the monkeyrunner script, mitmproxy could be configured to run. Any
connections that appeared in the log would be from a vulnerable app, and these apps could then
be examined further.

16https://github.com/facundoolano/google-play-scraper
17https://nodejs.org
18http://www.onyxbits.de/raccoon
19http://developer.android.com/tools/help/monkeyrunner_concepts.html
20http://www.tcpdump.org
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Testing 2500 apps takes about 12 hours, and runs without any user interaction required. This
allows multiple tests to be run and enables useful analysis. The results of this process can be seen
in Section 6.3.

5.6 Summary

A system was developed to perform a man-in-the-middle attack against an Android phone. Apps
were then tested manually and automatically, with both static and dynamic analysis. Apps that
seemed vulnerable were inspected further by decompiling and manually inspecting them. This
revealed a wide range of apps that either do not use the most up-to-date version of TLS available,
do not use sufficiently secure cipher suits, or in the worst cases, do not offer users any protection
against a man-in-the-middle eavesdropper.
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Chapter 6

Results and Evaluation

The testing detailed in the previous section revealed several apps that fail to properly secure
communication between the client and the server. This section will begin with case studies of
several of these apps, investigating the ways in which security is broken. It will continue by looking
at the performance of Sift when running these apps, followed by an examination of the Android
ecosystem by looking at the results of automated testing. It will conclude with recommendations
for the Android operating system and app developers to help ensure proper TLS security in the
future.

6.1 Case Studies

6.1.1 Online Shopping App

An app developed by a major online retailer was identified.1 It has been downloaded from the
Play Store between 100,000 and 500,000 times. The app allows customers to purchase goods, and
so has the ability to store and transmit payment information. On testing, it were found to leak
user information when attacked with a correctly signed certificate with an invalid hostname (Figure
6.1).

6.1.1.1 The Cause

Without access to the full source code for the app the cause cannot be determined with 100%
accuracy, but using the decompilation techniques detailed in Section 5.4.2, an estimation can be
made.

A custom SSLSocketFactory is defined in the AdditionalKeyStoresSSLSocketFactory class,
allowing a custom keystore to be used. This keystore is intended to hold certificates not otherwise
available to the app through the Android operating system.

The purpose for this in these apps is not clear, as the keystore (stored in the res/raw/-

keystore.bks file with the password ‘hel10s’) only contains a Verisign root and intermediate cer-
tificate. The root certificate is already present in both a Samsung Galaxy S6 and a Google Nexus
4, and the intermediate certificate can be provided by the server, but perhaps this is needed to
support older Android devices (although in fact the server the app connects to present certificates
signed by different roots).

In any case, the code in the app seems to follow an answer available from the StackOverflow
website.2 As noted in the comments, this code accidentally fails to verify the hostname of the
presented certificate.

In addition, activity.views.WebViewStack implements a WebView. It contains the following
code:

1We have been asked to withhold the name of this app to allow time for users to update to the latest secured
version.

2http://stackoverflow.com/a/6378872
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Figure 6.1: Leaked information from the online shopping app

1 public void onReceivedSslError(final WebView webView , final

SslErrorHandler sslErrorHandler , final SslError sslError) {

2 sslErrorHandler.proceed ();

3 }

This instructs the app to continue with a request when an SSL error is received, rather than
displaying an error.

6.1.1.2 The Solution

The solution that would require the fewest changes would be to make sure a HostnameValidator

is instantiated (as recommended by Google in their documentation.3) Alternatively, Additional-
KeyStoresSSLSocketFactory could extend SSLCertificateSocketFactory, Google’s implemen-
tation of SSLSocketFactory which provides hostname verification, or hostname verification could
be directly coded into the AdditionalKeyStoresSSLSocketFactory class.

Of course, if using a custom keystore is no longer necessary, this class could be removed com-
pletely and the standard API could be used.

One could also go in the opposite direction and implement certificate pinning, which would
mean that the app would only trust a specific certificate, providing protection from malicious
trusted roots.

The fix for the WebView is simple. The code should instead read

1 public void onReceivedSslError(final WebView webView , final

SslErrorHandler sslErrorHandler , final SslError sslError) {

2 sslErrorHandler.cancel ();

3 }

3https://developer.android.com/training/articles/security-ssl.html#WarningsSslSocket

53

https://developer.android.com/training/articles/security-ssl.html#WarningsSslSocket


6.1.1.3 Resolution

This issue was reported to the retailer on August 12 2015. They were very receptive to the report
and were able to release a fixed version of the app on August 14 2015. The custom SocketFactory

and keystore were removed and the WebView code was corrected.

6.1.2 Santander Mexico

Santander is one of the largest banks in the world. Their Mexican division has an app called
SuperMóvil4 which has been downloaded between 500,000 and 1,000,000 times on the Google Play
Store. The app can be used for mobile banking, and so the information it transmits is highly
confidential. Unfortunately, it fails to properly verify hostnames, and so easily falls victim to a
man-in-the-middle attack (Figure 6.2). The versions tested were 2.5.10, 2.7 and 2.8.3, the latest
currently available at the time of writing.

Figure 6.2: Leaked information from the Santander Mexico app

6.1.2.1 The Cause

The output from Mallodroid (Listing 6.1) reveals a series of errors.

<result package ="mx.bancosantander.supermovil">

<trustmanagers >

<trustmanager broken =" Maybe" class="com.twincoders.

twinpush.sdk.communications.security.

TwinPushTrustManager">

<xref class="com.twincoders.twinpush.sdk.

communications.DefaultRequestLauncher" method ="

executeRequest "/>

</trustmanager >

4https://play.google.com/store/apps/details?id=mx.bancosantander.supermovil
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<trustmanager broken ="True" class="mx.bancosantander.

realidadaumentada.ContextoRealidad$5">

<xref class="mx.bancosantander.realidadaumentada.

ContextoRealidad" method =" getHttpGETInputStream

"/>

</trustmanager >

<trustmanager broken ="True" class="mx.bancosantander.

supermovil.comunicaciones.HttpsJSONRequest$1">

<xref class="mx.bancosantander.supermovil.

comunicaciones.HttpsJSONRequest" method ="&lt;

init&gt;"/>

</trustmanager >

<trustmanager broken ="True" class="mx.bancosantander.

supermovil.util.Utils$2">

<xref class="mx.bancosantander.supermovil.util.

Utils" method =" ObtenerImagen "/>

</trustmanager >

<insecuresslsocket/>

</trustmanagers >

<hostnameverifiers >

<hostnameverifier broken ="True" class="mx.bancosantander.

realidadaumentada.ContextoRealidad$4">

<xref class="mx.bancosantander.realidadaumentada.

ContextoRealidad" method =" getHttpGETInputStream

"/>

</hostnameverifier >

<hostnameverifier broken ="True" class="mx.bancosantander.

supermovil.comunicaciones.HttpsJSONRequest$2">

<xref class="mx.bancosantander.supermovil.

comunicaciones.HttpsJSONRequest" method ="&lt;

init&gt;"/>

</hostnameverifier >

<hostnameverifier broken ="True" class="mx.bancosantander.

supermovil.util.Utils$3">

<xref class="mx.bancosantander.supermovil.util.

Utils" method =" ObtenerImagen "/>

</hostnameverifier >

<allowhostnames/>

</hostnameverifiers >

<onreceivedsslerrors/>

</result >

Listing 6.1: Santander Mexico Mallodroid Output

Further inspection shows completely empty TrustManagers and HostnameVerifiers (Listing 6.2
shows just one, from mx.bancosantander.realidadaumentada.ContextoRealidad), a textbook
example of what not to do. For a major financial institution, this is a rather shocking result.

1 if (paramString.startsWith("https ://"))

2 {

3 HttpsURLConnection.setDefaultHostnameVerifier(new

HostnameVerifier ()

4 {

5 public boolean verify(String paramAnonymousString ,

SSLSession paramAnonymousSSLSession)

6 {

7 return true;

8 }

9 });

10 SSLContext localSSLContext = SSLContext.getInstance("TLS");
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11 X509TrustManager local5 = new X509TrustManager ()

12 {

13 public void checkClientTrusted(X509Certificate []

paramAnonymousArrayOfX509Certificate , String

paramAnonymousString)

14 throws CertificateException

15 {}

16

17 public void checkServerTrusted(X509Certificate []

paramAnonymousArrayOfX509Certificate , String

paramAnonymousString)

18 throws CertificateException

19 {}

20

21 public X509Certificate [] getAcceptedIssuers ()

22 {

23 return new X509Certificate [0];

24 }

25 };

26 SecureRandom localSecureRandom = new SecureRandom ();

27 localSSLContext.init(null , new X509TrustManager [] { local5 },

localSecureRandom);

28 HttpsURLConnection.setDefaultSSLSocketFactory(localSSLContext.

getSocketFactory ());

29 }

Listing 6.2: Insecure Code from the Santander Mexico App

6.1.2.2 The Solution

Unlike the online shopping app, this is not a complicated error. The app simply needs to correctly
implement TrustManagers and HostnameVerifiers, which can be easily done using the standard
Android API.

6.1.2.3 Resolution

The issue was reported to Santander Mexico on August 17 2015. At the time of writing no reply
has been received.

6.1.3 Patient Access

Patient Access5 is an app that lets patients access local GP services, including viewing medical
records and booking appointments. It has been downloaded between 100,000 and 500,000 times on
the Google Play Store. One would think security would be a priority when viewing medical records
are an issue, and failing to keep such information private is a serious offence under the UK’s Data
Protection Act 1998. However, login information is easily visible when a man-in-the-middle attack
is conducted (Figure 6.3). The version tested was 1.1, the latest currently available at the time of
writing.

6.1.3.1 The Cause

The app implements a WebView, and fails to deal with any SSL errors, instead instructing the app
to proceed if any issue is encountered (Listing 6.3).

5https://play.google.com/store/apps/details?id=uk.co.patient.patientaccess
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Figure 6.3: Leaked information from the Patient Access app

1 public void onReceivedSslError(WebView paramWebView ,

SslErrorHandler paramSslErrorHandler , SslError paramSslError)

2 {

3 paramSslErrorHandler.proceed ();

4 }

Listing 6.3: Insecure code from the Patient Access app

6.1.3.2 The Solution

Again, this is a very simple fix. The proceed() method call can simply be replaced with cancel()

and the app will refuse to initiate a connection when faced with an invalid certificate.

6.1.3.3 Resolution

The issue was reported to EMIS Health on August 17 2015. At the time of writing no reply has
been received.

6.1.4 Wowcher

Wowcher, owned by Associated Newspapers Ltd., is an app that allows users to purchase discounts
to restaurants, shops, and more.6 It takes payment information, and so data security is a top
priority. It has been downloaded between 1,000,000 and 5,000,000 times on the Play Store. Unfor-
tunately, it is susceptible to a man-in-the-middle attack (Figure 6.4). The version tested was 3.4.1,
the latest currently available at the time of writing.

6https://play.google.com/store/apps/details?id=com.anmedia.wowcher.ui
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Figure 6.4: Leaked information from the Wowcher app

6.1.4.1 The Cause

This app makes a different error. It manages to set up a Trust Manager correctly, but when
instantiating a HostnameVerifier uses the code in Listing 6.4. This explicitly tells the app to
allow any hostname encountered in a certificate, and essentially disables security.

1 (( SSLSocketFactory)localObject).setHostnameVerifier(SSLSocketFactory

.ALLOW_ALL_HOSTNAME_VERIFIER);

Listing 6.4: Insecure code from the Wowcher app

6.1.4.2 The Solution

This is very easy to fix. A functioning HostnameVerifier must be used.

6.1.4.3 Resolution

The issue was reported to Wowcher on August 17 2015. At the time of writing no reply has been
received.

6.1.5 Other Apps

These four apps all leak user information, but the errors they make are all different. The online
shopping app fails to instantiate a HostnameVerifier, Santander uses a custom, non-existent Trust
Manager and HostnameVerifier, Patient Access does not protect its WebView, and Wowcher uses
a useless HostnameVerifier. These errors can be found repeatedly in many more apps. A brief
selection is detailed in Table 6.1.

One app it might be worth highlighting here is gReader. gReader is a news app that lets users
read news from multiple sources in an easy way.7 It has been downloaded between 1,000,000 and

7https://play.google.com/store/apps/details?id=com.noinnion.android.greader.reader
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5,000,000 times on the Play Store. One might consider losing credentials to a news app worrisome,
but not that important. However, users don’t use a gReader account to authenticate: instead they
are able to sign in with an account from one of Google, Facebook, Twitter, Microsoft or Evernote.
As Figure 6.5 shows, this results in the compromise of these account details. This is potentially
catastrophic, because an attacker can leverage a user’s Google account to compromise many other
accounts: they just need to send password reset emails to the user’s GMail address. This highlights
the dangers in the increasing push for using one set of credentials to sign into accounts all over the
Internet.

Figure 6.5: Leaked information from the gReader app

All of these vulnerabilities are still current as of the time of writing, even as updated versions
have been released that claim to have ‘bug fixes’. The vulnerabilities were reported on August 17
2015 but at the time of writing no reply has been received from any developer.

6.1.6 Safe Apps

Of course, this analysis highlights apps that fail to protect users’ information. However, the major-
ity of apps do get the TLS implementation right, and refuse to establish a connection when under
attack. Those written by the large technology companies such as Google, Twitter and Facebook
perform the best, but many other apps do behave properly. However, even in these cases, the error
message displayed to a user is not clear. An error message may not be displayed, with the app just
refusing to load (as is the case with the GMail app), or if there is an error message it is often a
generic one complaining about the lack of internet connectivity, as in Figure 6.6, which may leave
users confused; they are after all connected to the internet.

6.2 Sift

The vulnerable apps were tested using the same Raspberry Pi access point, but with the Sift app
running. The app performed well, blocking connections in every case, and displaying the reason
why. It also became easy to tell that the phone was connected to a malicious access point, because
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App Name Number of
Downloads

Description Version Vulnerability

Match.com US 5,000,000 -
10,000,000

Online dating 3.2.0, 3.2.2, 3.2.3 TrustManager
and Hostname

gReader (Google and
Facebook login)

1,000,000 -
5,000,000

News reader 4.1.2, 4.2.0 TrustManager
and Hostname

State Bank
Anywhere (India)

1,000,000 -
5,000,000

Internet Banking 4.1.1, 4.1.2 TrustManager
and Hostname

Pizza Hut US 5,000,000 -
10,000,000

Food ordering 2.0 TrustManager
and Hostname

Last.fm 1,000,000 -
5,000,000

Music tracking 2.0.0.3 TrustManager
and Hostname

Airelive 100,000 -
500,000

Video chat 1.2.3 TrustManager
and Hostname

MyTube (Google lo-
gin)

500,000 -
1,000,000

Playlist Creator 2.06 TrustManager
and Hostname

Table 6.1: More Vulnerable Apps

a notification was generated for every app that attempted to make a TLS connection, whether
it was vulnerable or not. The app thus performs two uses: it protects a user from poorly coded
apps, and alerts the user that the access point they are connected to is not secure and they should
consider disconnecting. Figures 4.9 and 4.10 show the app responding to this situation.

The app also did well at identifying apps that were not using the latest verion of TLS, or up-
to-date cipher suites. For some reason, the Skype app8 consistently connected to pipe.skype.com

using TLS 1.0 even though the server supports TLS 1.2. It also warns that this server presents
a SHA-1 certificate, which is dangerously weak [19]. The app also highlighted apps that used
self-signed certificates, and those that had custom hostname verification algorithms.

The Netflix app9 makes connections to several domains, including ichnaea.netflix.com,
api-global.netflix.com and android.nccp.netflix.com. The first two of these domains use
certificates signed by Verisign, however for some reason, android.nccp.netflix.com uses a self-
signed certificate, and causes Sift to create a notification (the custom Netflix certificate author-
ity is stored in res/raw/ca.bks with the password ‘spyder’ as well as assets/ca.pem). This is
implemented in the classes com.netflix.mediaclient.nccp.NccpKeyStore and com.netflix.-

mediaclient.nccp.NccpRequestTask. NccpRequestTask instantiates an SSLSocketFactory us-
ing only the custom keystore, and then permits all hostnames to be used (Listing 6.5).

1 private HttpClient getNewHttpClient ()

2 {

3 try

4 {

5 Object localObject = new SSLSocketFactory(NccpKeyStore.

getInstance ());

6 (( SSLSocketFactory)localObject).setHostnameVerifier(

SSLSocketFactory.ALLOW_ALL_HOSTNAME_VERIFIER);

7 ...

8 }

9 ...

10 }

Listing 6.5: Extract from Netflix’s custom KeyStore

8https://play.google.com/store/apps/details?id=com.skype.raider
9https://play.google.com/store/apps/details?id=com.netflix.mediaclient
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Figure 6.6: An incorrect error from the Google Play Store app when under a man-in-the-middle-
attack.

Even though all hostnames are permitted, security is provided by the custom keystore: only
Netflix is able to sign certificates with the provided CA, and so an attacker is unlikely to have a
certificate that will allow her to decode the traffic. This is not a usual arrangement and the Sift
app highlights this. An SSLLabs scan of the domain (Figure 6.7) also reveals vulnerability to the
POODLE attack, vulnerability to denial of service attacks, and other issues.

The Snapchat app10 hardcodes additional hostnames that certificates can validate to, even
if the hostname of the server does not match. It marks the domains feelinsonice.com and
www.feelinsonice.com as permanently trusted (Listing 6.6). This does not cause an immediate
vulnerability, as Snapchat is in control of the feelinsonice.com domain, but this custom logic
has the potential to cause issues in the future.

In all, Sift performs well and can be said to be meeting its goals. It alerts a user when a phone
is under attack, highlighting potential issues. It also draws attention to custom app configurations
raising awareness of workarounds developers have made to get their apps working.

6.3 Automated Testing Results

The automated testing also revealed some interesting results. Six additional apps vulnerable to
man-in-the-middle attacks were found. This number could be even higher with modifications to
the testing script. Currently, the script attempts to login if the login screen is the first page, but

10https://play.google.com/store/apps/details?id=com.snapchat.android
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Figure 6.7: SSLLabs results for android.nccp.netflix.com

a number of apps have several screens before the login screen is reached. With a more sophisti-
cated script, or more manual intervention, more TLS connections could be triggered, potentially
discovering more vulnerable apps.

6.3.1 The Android Ecosystem

Analysing the TLS connections made also gave some useful insight into the Android ecosystem as a
whole. Using the generated packet capture file, tshark could be used to provide useful information.
Various parameters can be extracted and counted:

• The total number of connections (ClientHello is ssl.handshake.type 1 and ServerHello

is ssl.handshake.type 2):

tshark -r cap.pcap -Y ‘ssl.handshake.type == 1’ | wc -l

tshark -r cap.pcap -Y ‘ssl.handshake.type == 2’ | wc -l

• Cipher suites used by servers:

tshark -r cap.pcap -VY ‘ssl.handshake.type == 2’ | grep ‘Cipher Suite

:’ | sort | uniq -c | sort -n

• Cipher suites supported by clients:
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1 public final class bcb implements X509TrustManager

2 {

3 ...

4 static {

5 TRUSTED_SUBJECT_ALTERNATIVE_DNS_NAMES = new String [] { "

feelinsonice.com", "www.feelinsonice.com" };

6 sTrustedSubjectAlternativeDNSNames = new HashSet <String >(

Arrays.asList(bcb.TRUSTED_SUBJECT_ALTERNATIVE_DNS_NAMES))

;

7 }

8 ...

9 }

Listing 6.6: Extract from Snapchat’s custom TrustManager

tshark -r cap.pcap -VY ‘ssl.handshake.type == 1’ | grep ‘Cipher Suite

:’ | sort | uniq -c | sort -n

• The version of TLS used:

tshark -r cap.pcap -VY ‘ssl.handshake.type == 2’ | grep ‘Version:’ |

sort | uniq -c | sort -n

• Whether the SNI extension is supported and used:

tshark -r cap.pcap -Y ‘ssl.handshake.type == 2 && ssl.handshake.

extension.type == 0x0000 ’ | wc -l

tshark -r cap.pcap -Y ‘ssl.handshake.type == 1 && ssl.handshake.

extension.type == 0x0000 ’ | wc -l

• The algorithms used to sign certificates:

tshark -r cap.pcap -VY ‘ssl.handshake.certificate ’ | grep ‘

algorithmIdentifier ’ | sort | uniq -c | sort -n

6.3.1.1 Results from the overall top 100 free apps

From the 100 top free apps on August 6 2015, 928 ClientHellos were sent, and 919 ServerHellos
were received in reply. Of these, 891 were TLS version 1.2 and the remaining 28 were TLS 1.0. This
is a fairly good result, but the fact that 3% of servers still respond with TLS 1.0 7 years after TLS
1.2 was standardized is still considerable, especially considering the fact that it is unlikely for any
of the servers to have been running for longer than 7 years: the first Android phone was released
in 2008.

Support for the SNI extension is considerably lower. It was offered by 583 of the client con-
nections (63%), but only accepted by 318 of the servers (35%). There is a long way to go before
support for this extension is complete, even though it is now completely supported by the Android
API, and offers a layer of security and convenience for developers.

Looking at the algorithms used to sign the certificates offered by servers is also interesting. In
total 1634 certificates were presented. Of these, 128 (7.8%) were signed with the sha384With-

RSAEncryption algorithm, 595 (36.4%) with sha256WithRSAEncryption and 911 (55.8%) with
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shaWithRSAEncryption. Google Chrome marks certificates due to expire during or after 2016 and
signed with the weak SHA-1 algorithm as insecure. With over half of the certificates signed with
this algorithm, there is a long way to go for the transition to SHA-256 and above to be even close
to complete.

Cipher suite support is similarly enlightening. The cipher suites negotiated by the servers are
shown in Table 6.2. The levels of security displayed are the same as used in Sift, and can be found
in Appendix C. Figure 6.8 shows in graph form the proportion of secure to obsolete cipher suites.
While the majority (94.6%) of suites are secure, those that are not leave an app vulnerable to
attack. RC4 has been shown not to be secure (Section 2.4.6). 3DES, used by two connections has
theoretical attacks against it and is considered problematic: there is no reason for a server to be
using this cipher. Using CBC mode with the SHA algorithm is also insecure, and vulnerable to the
BEAST attack (Section 2.4.2).

Cipher Suite Count Security

TLS ECDHE RSA WITH AES 256 CBC SHA384 1 Secure

TLS ECDHE RSA WITH RC4 128 SHA 1 Insecure

TLS RSA WITH AES 128 GCM SHA256 1 Secure but no
forward secrecy

TLS RSA WITH 3DES EDE CBC SHA 2 Insecure

TLS DHE RSA WITH AES 256 CBC SHA 3 Secure

TLS DHE RSA WITH AES 128 CBC SHA 6 Secure

TLS ECDHE RSA WITH AES 256 CBC SHA 7 Secure

TLS DHE RSA WITH AES 128 GCM SHA256 8 Secure

TLS RSA WITH AES 256 CBC SHA 8 Insecure

TLS RSA WITH AES 128 CBC SHA 10 Insecure

TLS ECDHE RSA WITH AES 128 CBC SHA 12 Secure

TLS RSA WITH RC4 128 SHA 29 Insecure

TLS ECDHE RSA WITH AES 256 GCM SHA384 69 Secure

TLS ECDHE ECDSA WITH AES 128 GCM SHA256 112 Secure

TLS ECDHE RSA WITH AES 128 GCM SHA256 650 Secure

Table 6.2: Cipher suites negotiated by servers of the top 100 free Android apps

Looking at the cipher suites offered by clients also raises some questions. The full list is too
long to be included here, but some of the interesting rows can be found in Table 6.3. Interestingly,
the only two suites offered by all of the clients are insecure.

Cipher Suite Count Security

TLS RSA EXPORT1024 WITH DES CBC SHA 9 Insecure

TLS RSA EXPORT1024 WITH RC2 CBC 56 MD5 9 Insecure

TLS RSA EXPORT1024 WITH RC4 56 MD5 9 Insecure

TLS RSA EXPORT1024 WITH RC4 56 SHA 9 Insecure

TLS SRP SHA DSS WITH 3DES EDE CBC SHA 33 Insecure

TLS DHE DSS EXPORT WITH DES40 CBC SHA 36 Insecure

TLS DHE RSA EXPORT WITH DES40 CBC SHA 36 Insecure

TLS DHE DSS WITH DES CBC SHA 37 Insecure

TLS ECDHE ECDSA WITH CHACHA20 POLY1305 SHA256 201 Secure

TLS ECDHE RSA WITH CHACHA20 POLY1305 SHA256 201 Secure

TLS RSA WITH AES 128 CBC SHA 928 Insecure

TLS RSA WITH AES 256 CBC SHA 928 Insecure

Table 6.3: Cipher suites offered by clients of the top 100 free Android apps

A significant number of clients offer support for export cipher suites, which are almost designed
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Figure 6.8: Graph of negotiated cipher suites by servers of the top 100 free Android apps

Cipher Suite: TLS_RSA_WITH_AES_256_CBC_SHA (0 x0035)

Cipher Suite: TLS_RSA_WITH_AES_128_CBC_SHA (0 x002f)

Cipher Suite: TLS_RSA_WITH_3DES_EDE_CBC_SHA (0 x000a)

Cipher Suite: TLS_RSA_WITH_RC4_128_SHA (0 x0005)

Cipher Suite: TLS_RSA_WITH_RC4_128_MD5 (0 x0004)

Cipher Suite: TLS_RSA_WITH_DES_CBC_SHA (0 x0009)

Cipher Suite: TLS_RSA_EXPORT_WITH_RC4_40_MD5 (0 x0003)

Cipher Suite: TLS_RSA_EXPORT_WITH_RC2_CBC_40_MD5 (0 x0006)

Cipher Suite: TLS_RSA_EXPORT_WITH_DES40_CBC_SHA (0 x0008)

Cipher Suite: TLS_RSA_EXPORT1024_WITH_RC4_56_MD5 (0 x0060)

Cipher Suite: TLS_RSA_EXPORT1024_WITH_RC2_CBC_56_MD5 (0 x0061)

Cipher Suite: TLS_RSA_EXPORT1024_WITH_DES_CBC_SHA (0 x0062)

Cipher Suite: TLS_RSA_EXPORT1024_WITH_RC4_56_SHA (0 x0064)

Listing 6.7: Cipher Suites supported by the Subway Surfers app

to be breakable and have been successfully attacked with the FREAK and Logjam attacks (Sections
2.3.2 and 2.3.3). While the servers eventually negotiate a more secure suite this clearly exposes
the client to some form of attack. Additionally, this also suggests other configuration issues.
Using the packet capture file, the hostnames of the servers that the clients supporting these weak
cipher suites were attempting to connect to were extracted. Universally, a scan with Ristić’s
SSLLabs tool highlighted issues with the servers, ranging from vulnerability to denial of service
attacks to configurations that could lead to other attacks. As an example, the app connecting to
subwaysurfers.kiloo-games.com supports 13 cipher suites (Listing 6.7).

Just seeing the words EXPORT, MD5, RC2 and DES in this list should be enough to arouse suspicion.
This connection is generated by the Subway Surfers game downloaded by between 500,000,000 and
1,000,000,000 users.11 The results of a scan using the SSLLabs tool are shown in Figure 6.9. It is
vulnerable to the POODLE attack because it still supports SSL3. It does not support TLS 1.2 at
all, the certificate is signed with the weak SHA-1 algorithm, and its certificate chain is incomplete.
This server could be considered vulnerable to a host of attacks.

11https://play.google.com/store/apps/details?id=com.kiloo.subwaysurf
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No server or client should offer support for export protocols and the fact that they do suggests
poor coding or lack of consideration for security. Client support for weak protocols can be used as
a signifier of weak servers and vulnerable clients, and serve as an excellent place for an attacker to
start looking.

Figure 6.9: SSLLabs results for subwaysurfers.kiloo-games.com

6.3.1.2 Results from the top 100 free apps from each category

The results from the larger scan, performed on August 10 2015, were similar. 15806 ClientHellos
were sent, and 15779 ServerHellos were received in reply. Of these, an impressive 15393 were
TLS version 1.2, 26 were TLS version 1.1, 356 were TLS version 1.0, 2 were marked as unknown,
and amazingly, there were 2 SSL 3 connections. One of these belonged to a connection for the
Flurry analytics library, and the other for the MagicJack app.12 to prov1.talk4free.com Overall,
the fact that 97.5% of connections used TLS 1.2 is reassuring, but the fact that even one app
(downloaded by between 10,000,000 and 50,000,000 people) used the obsolete SSL 3 protocol is
amazing.

SNI support mirrored that of the smaller sample. It was offered by 9591 of the client connections
(61%) and accepted by 5577 of the servers (35%).

The algorithms used to sign the certificates were also similar. Of a total of 28280 presented
certificates, 2653 (9.4%) were signed with the sha384WithRSAEncryption algorithm, 10899 (38.5%)

12https://play.google.com/store/apps/details?id=com.magicjack
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with sha256WithRSAEncryption, 14701 (52.0%) with shaWithRSAEncryption, and 27 (0.1%) with
other algorithms.

There is some interest in looking at the other algorithms presented, although they represent
such a small percentage of the total. One certificate, used on a domain owned by Salesforce,
shopitize.desk.com, used the ultra-strong sha512WithRSAEncryption. We can expect to see
more certificates signed with this in the future. 7 certificates were signed with ECDSAWithSHA256

and 7 with ECDSAWithSHA384; secure, if a little esoteric. Interestingly, 12 certificates were signed
with the incredibly insecure md2WithRSAEncryption algorithm. Looking into this futher, in every
case the certificate was a root Verisign certificate. Ignoring the fact that servers shouldn’t be
sending root certificates in the first place (they should be in the client’s trust store already), the
signature algorithm for root certificates doesn’t matter, as they are trusted by default, and so this
is not in fact a security risk. The apps that these certificates were presented to were Nationwide
Mobile Banking,13 Amex UK,14 HSBC Mobile Banking15 and eBay.16 Three out of four of these
apps are finance related: perhaps they all share a common developer that has misconfigured the
servers in the same way.

The cipher suites negotiated by the servers are shown in Table 6.4. One connection was made to
chronicle.comparethemarket.com with the TLS RSA WITH RC4 128 MD5 suite, which is incredibly
insecure. As with the smaller sample (and visualised in Figure 6.10), 95.4% of suites used were
secure, still leaving one in twenty connections using insecure cipher suites.

Cipher Suite Count Security

TLS ECDHE RSA WITH AES 128 CBC SHA256 1 Secure

TLS RSA WITH RC4 128 MD5 1 Insecure

TLS ECDHE RSA WITH AES 256 CBC SHA384 1 Secure

TLS DHE RSA WITH AES 128 GCM SHA256 13 Secure

TLS ECDHE RSA WITH RC4 128 SHA 21 Insecure

TLS RSA WITH 3DES EDE CBC SHA 21 Insecure

TLS DHE RSA WITH AES 256 CBC SHA 32 Secure

TLS RSA WITH AES 128 GCM SHA256 33 Secure but no
forward secrecy

TLS DHE RSA WITH AES 256 GCM SHA384 34 Secure

TLS RSA WITH AES 256 GCM SHA384 38 Secure but no
forward secrecy

TLS ECDHE RSA WITH CHACHA20 POLY1305 SHA256 40 Secure

TLS DHE RSA WITH AES 128 CBC SHA 86 Secure

TLS ECDHE RSA WITH AES 256 CBC SHA 155 Secure

TLS RSA WITH RC4 128 SHA 191 Insecure

TLS ECDHE RSA WITH AES 128 CBC SHA 205 Secure

TLS RSA WITH AES 128 CBC SHA 244 Insecure

TLS RSA WITH AES 256 CBC SHA 253 Insecure

TLS ECDHE RSA WITH AES 256 GCM SHA384 750 Secure

TLS ECDHE ECDSA WITH AES 128 GCM SHA256 2875 Secure

TLS ECDHE RSA WITH AES 128 GCM SHA256 10783 Secure

Table 6.4: Cipher suites negotiated by servers of the top 100 free Android apps in each category

The cipher suites offered by the clients also offer a similar picture. 129 different suites were of-
fered by the clients, ranging from the insecure TLS DH anon EXPORT WITH DES40 CBC SHA offered by
one connection (the MagicJack app again), to the very secure TLS ECDHE ECDSA WITH CHACHA20 -

POLY1305 SHA256 offered by 4239, to the again insecure TLS RSA WITH AES 128 CBC SHA offered by

13https://play.google.com/store/apps/details?id=co.uk.Nationwide.Mobile
14https://play.google.com/store/apps/details?id=com.americanexpress.android.acctsvcs.uk
15https://play.google.com/store/apps/details?id=com.htsu.hsbcpersonalbanking
16https://play.google.com/store/apps/details?id=com.ebay.mobile
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Figure 6.10: Graph of negotiated cipher suites by servers of the top 100 free Android apps in each
category

nearly all (15800) clients.

6.4 Summary

Apps were tested manually and automatically, and run against the Sift app. Some serious issues
were found. Apps made by large corporations failed to properly secure customer data, leaving
information at risk. The increasing use of cross-site authentication means that apps failing to
secure user information can be leveraged to provide access to higher-value accounts such as those
controlled by Google and Facebook. A survey of the Android ecosystem was performed, showing
that around one in forty connections do not use the most up-to-date version of TLS and one in
twenty negotiating a connection with insecure cipher suites. There is much room for improvement.
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Chapter 7

Conclusion

This has been a wide-ranging study, encompassing both the development of a new app for users
and an examination of the Android ecosystem. This section will reiterate the contributions made
by this project, put forward some recommendations to improve security on Android, offer areas for
future work, and make a final conclusion.

7.1 Achievements

• An app, Sift, has been developed that alerts users when a man-in-the-middle attack is tak-
ing place. It protects them from poorly coded apps that fail to properly secure the TLS
communication channel, preventing the loss of important personal information.

• Several apps have been identified that do not protect user information, despite their claims.
These include apps that deal with personal, financial and medical information. In depth
analysis has been performed, pinpointing the exact cause of vulnerability. The app developers
have been notified, with one, a major UK-based online retailer, rapidly fixing their app in
response to the report.

• A straightforward process for setting up and performing man-in-the-middle attacks with
cheap, off-the-shelf hardware has been detailed, demonstrating the ease and practicality of
this attack.

• An automated analysis of over 2500 apps has been performed, highlighting the state of the
Android ecosystem and demonstrating that many apps, and the servers that they communi-
cate with, may be susceptible to attacks based on known weaknesses in the TLS protocol,
despite having properly coded certificate validation.

7.2 Recommendations for Android

With the results of this investigation, several recommendations can be made to improve the security
of TLS connections on the Android operating system:

• As suggested by Fahl et al. [30], the Android operating system must enforce stronger se-
curity through the API. Disabling of crucial certification checks cannot be permitted, or
should require many more steps to make sure that a developer is fully aware of the conse-
quences. Currently, it is too easy to forget to use a HostnameValidator when using a custom
SSLSocketFactory - this is a fault of the API, and while it may have logical reasoning behind
it1, the API should be changed to make things clearer. Developers should be given as little

1‘The rationale for that decision was probably that the TLS/SSL handshake happens at the socket layer,
whereas the hostname verification depends on the application-level protocol (HTTPS at that time). Therefore,
the X509TrustManager class for certificate trust checks was integrated into the low-level SSLSocket and SSLEngine

classes, whereas the HostnameVerifier API was only incorporated into the HttpsURLConnection.’ [86]
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freedom as possible when security is at stake: too many mistakes can be made, as the results
of this study show. The longer developers are able to shoot themselves in the foot, the higher
the likelihood of a significant data breach, causing users loss of important data and bringing
negative publicity to Android.

• Google, as stewards of the Android operating system could also do more. The vast majority of
app installs by users come from Google’s Play Store. The Play Store already scans uploaded
apps for malware and other issues; it would be a simple step to add static analysis similar to
Fahl’s Mallodroid tool. This would help catch the most egregious of errors by developers.

• Certificate pinning should be made easier to implement and use for developers. If this is
integrated correctly it provides protection both against man-in-the-middle attacks and attacks
using certificates signed by trust certificate authorities (perhaps conducted by state agencies).
If certificate pinning is made easy and error free, a lot of issues can be prevented. Of course,
if configuration remains similar to now, many developers may get this process wrong and
accidentally leave their apps vulnerable to attack: care must be taken in insuring that as few
configuration errors as possible can be made.

• Users should also be made more aware that they are under attack. Sift alerts users that
they are potentially connected to a malicious access point and allows them to take steps to
disconnect and avoid any data breach. Without Sift running, a user will not know that they
are on an untrustworthy connection. When a correctly coded app fails certificate validation,
often the error given is a generic one relating to a lack of internet connectivity, leaving the
user unaware of the true cause of failure. While increased awareness cannot help every user,
the more information technical users have the better.

• There could also be a stronger response from government regulators. The FTC in the United
States fined two companies in 2014 [74], but stronger enforcement could persuade large com-
panies to take security more seriously. One could argue that failing to secure personal data
over the internet is a breach of the UK’s Data Protection Act 1998, which contains strong
penalties for violations. This study has shown that personal, financial and medical informa-
tion can all be at risk, and government regulators would do well to protect users’ information.

7.3 Future Work

There remains space for significant future work in extending the Sift app to offer more protection
to users:

• As Google improves the state of the Android VpnService, IPv6 support can be added to the
app, to offer protection on networks of the future, and on 4G mobile phone networks.

• Non-HTTPS traffic can also be analysed, including secure email (perhaps by using dynamic
TLS detection through protocol sensing). Google is also increasingly experimenting with
the QUIC protocol as a faster alternative to TCP: work will be needed to analyse these
connections.

• Certificates in the app can be cached, and the user alerted if an unexpected certificate is used
on the app’s next connection. Care will have to be taken to avoid false positives.

• The certification validation algorithms could also be extended, using multiple techniques and
implementations (perhaps using those developed by Mersinjak et al. [10] or Fahl et al. [30]).
This would also help verify the validation code in the manner of Brubaker et al. [25].

• Additionally, the app could check the revocation lists in the certificates, assuming that issues
with the reliability of these can be resolved.
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• Apps could be categorized by risk, providing stronger alerts to a user if an app in a higher
risk category (for example the financial category) has issues.

• Vulnerabilities could be reported to a central server, allowing potential attacks to be quickly
found and reported to authorities and other users.

• Some apps use self-signed certificates securely. A process could be developed to have a
whitelist of these certificates (either user or developer driven) to avoid false positives.

• A testing mode could be implemented where the app itself attempts to conduct a man-in-
the-middle attack against the apps on the phone. If any succeeds an app could be marked as
vulnerable. This feature would also be useful for developers testing their own apps as they
could avoid setting up a malicious access point of their own.

• To improve speed and battery life, a future version of the app could be coded using the
Android Native Development Kit (NDK) which allows code to be written directly in native-
code such as C or C++.

• To improve the testing suite, more sophisticated scripts could be written to ensure all apps
make a secure connection when being tested.

• The mitmproxy software could also be extended to attempt both the self-signed certificate
attack and incorrect hostname attack in the same handshake, rather than having to test
connections twice.

• If one was designing mitmproxy to attack users, it may also be worthwhile to extend it to
attack probabilistically: perhaps only every tenth connection. This would allow most apps
to behave normally, with the user unconcerned, but with any vulnerable apps still leaking
important user information.

• A further investigation could also investigate the possibility of attacking apps that advertise
support for weak cipher suites (include the Export suites). There is a likelihood that these
apps could be tricked into negotiating a weak TLS connection with the server causing the
connection to be compromised.

• Regular scanning of the Android ecosystem could also be performed and published, perhaps
on a monthly basis. This would both track the (hopefully) improving level of TLS support and
security in apps, as well as provide information to users seeking to learn about the security
of the apps they use.

7.4 Final Conclusion

The implementation of TLS in many Android apps is, to put it simply, broken. Google, as steward
of the operating system must take some blame, both for allowing a confusing API to mislead
developers, and for not taking steps to scan apps for simple vulnerabilities. The ultimate fault
though, rests with developers who claim to implement security, yet fail to do so. Users are left
in the middle, with no awareness that their personal data can be stolen, and with no protection
from this theft. Sift helps defend users against poorly coded apps, while the naming and analysis
of the broken apps developed by major corporations should help to improve the general state of
the Android ecosystem. Until the day that all apps implement TLS correctly, users should follow
a simple mantra: ‘Love all, trust a few’ [87, I.i.61].
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Appendix A

Sift User Manual

Sift can be downloaded and installed from the Google Play Store from https://play.google.

com/store/apps/details?id=com.imhotepisinvisible.sslsift.
Using Sift is straightforward. After installing and opening the app, simply press the large

button on the bottom right. The VPN will now be running and monitoring TLS traffic in the
background. Simply use other apps as normal. One can return to Sift to see more information
about the connections apps make, but if anything requiring the user’s attention arises, a notification
will be generated.

Settings can be adjusted through the menu, allowing notifications to be turned off and on and
packet capture to be enabled. The entire history can also be cleared through the menu.
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Appendix B

Testing Scripts

B.1 Google Play Store Scraper Script (JavaScript)

1 var gplay = require(’google -play -scraper ’);

2

3 myCats = {

4 BUSINESS: ’BUSINESS ’,

5 COMICS: ’COMICS ’,

6 COMMUNICATION: ’COMMUNICATION ’,

7 EDUCATION: ’EDUCATION ’,

8 ENTERTAINMENT: ’ENTERTAINMENT ’,

9 FINANCE: ’FINANCE ’,

10 HEALTH_AND_FITNESS: ’HEALTH_AND_FITNESS ’,

11 LIBRARIES_AND_DEMO: ’LIBRARIES_AND_DEMO ’,

12 LIFESTYLE: ’LIFESTYLE ’,

13 APP_WALLPAPER: ’APP_WALLPAPER ’,

14 MEDIA_AND_VIDEO: ’MEDIA_AND_VIDEO ’,

15 MEDICAL: ’MEDICAL ’,

16 MUSIC_AND_AUDIO: ’MUSIC_AND_AUDIO ’,

17 NEWS_AND_MAGAZINES: ’NEWS_AND_MAGAZINES ’,

18 PERSONALIZATION: ’PERSONALIZATION ’,

19 PHOTOGRAPHY: ’PHOTOGRAPHY ’,

20 PRODUCTIVITY: ’PRODUCTIVITY ’,

21 SHOPPING: ’SHOPPING ’,

22 SOCIAL: ’SOCIAL ’,

23 SPORTS: ’SPORTS ’,

24 TOOLS: ’TOOLS’,

25 TRANSPORTATION: ’TRANSPORTATION ’,

26 TRAVEL_AND_LOCAL: ’TRAVEL_AND_LOCAL ’,

27 WEATHER: ’WEATHER ’,

28 APP_WIDGETS: ’APP_WIDGETS ’

29 };

30

31 Object.keys(myCats).forEach(function(cat) {

32 gplay.list({

33 category: cat ,

34 collection: gplay.collection.TOP_FREE ,

35 num: 100,

36 country: ’gb’

37 })

38 .then(function(apps){
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39 apps.forEach(function(app) {

40 console.log(’"’ + app.title + ’",’ + app.appId + ’,market ://

details?id=’ + app.appId);

41 })

42 })

43 .catch(function(e){

44 console.log(’There was an error fetching the list!’);

45 });

46 })

B.2 MonkeyRunner Script (Python)

1 import glob

2 import subprocess

3 from com.android.monkeyrunner import MonkeyRunner , MonkeyDevice

4 import logging

5 logging.basicConfig(filename=’log.log’,level=logging.INFO ,format=’%(

asctime)s %( message)s’)

6

7 build_tools = ’/path/to/android/sdk/build -tools /21.1.1/ ’

8 root = ’/path/to/apk_storage/’

9

10 def has_internet_permission(apk):

11 command = "aapt dump permissions " + apk + " | sed 1d | awk -F

\"’\" ’/name=/ {print $2}’"

12 process = subprocess.Popen(build_tools + command , stdout=

subprocess.PIPE , stderr=None , shell=True)

13 permissions = process.communicate ()[0]

14 #print permissions

15 if "INTERNET" in permissions:

16 return True

17 else:

18 return False

19

20 def get_package_name(apk):

21 command = "aapt dump badging " + apk + " | awk ’/package/ {print

$2}’ | awk -F\"’\" ’/name=/ {print $2}’"

22 process = subprocess.Popen(build_tools + command , stdout=

subprocess.PIPE , stderr=None , shell=True)

23 package = process.communicate ()[0]

24 return package

25

26 def get_activity_name(apk):

27 command = "aapt dump badging " + file + " | awk ’/launchable -

activity/ {print $2}’ | awk -F\"’\" ’/name=/ {print $2;exit

;}’"

28 process = subprocess.Popen(build_tools + command , stdout=

subprocess.PIPE , stderr=None , shell=True)

29 activity = process.communicate ()[0]

30 return activity

31

32 device = MonkeyRunner.waitForConnection ()
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33 files = glob.glob(root + ’*/*. apk’)

34 for file in files:

35 print file

36 if has_internet_permission(file):

37 device.installPackage(file)

38 package = get_package_name(file)

39 activity = get_activity_name(file)

40 runComponent = package.strip() + ’/’ + activity.strip()

41 print runComponent

42 logging.info(package)

43 device.startActivity(component=runComponent)

44 MonkeyRunner.sleep (10)

45 device.press(’KEYCODE_DPAD_CENTER ’, MonkeyDevice.DOWN_AND_UP

)

46 device.press(’KEYCODE_DPAD_DOWN ’, MonkeyDevice.DOWN_AND_UP)

47 device.type(’asdf1234 -user’)

48 device.press(’KEYCODE_DPAD_CENTER ’, MonkeyDevice.DOWN_AND_UP

)

49 device.press(’KEYCODE_DPAD_DOWN ’, MonkeyDevice.DOWN_AND_UP)

50 device.type(’qwer5678 -pass’)

51 device.press(’KEYCODE_DPAD_ENTER ’, MonkeyDevice.DOWN_AND_UP)

52 device.removePackage(package)
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Appendix C

Cipher Suite Security

The full list of cipher suites is too long to be included here. Below is a list of cipher suites deemed
to be secure, created with reference to Mozilla’s recommended configuration.1 Any suites that use
insecure algorithms (Export keys, MD5, DES, RC4, PSK) can be considered to offer no to very
little security. The remaining cipher suites offer some security but using one of the recommended
cipher suites would be highly recommended.

TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256

TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256

TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384

TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384

TLS_DHE_RSA_WITH_AES_128_GCM_SHA256

TLS_DHE_DSS_WITH_AES_128_GCM_SHA256

TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256

TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256

TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA

TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA

TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384

TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384

TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA

TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA

TLS_DHE_RSA_WITH_AES_128_CBC_SHA256

TLS_DHE_RSA_WITH_AES_128_CBC_SHA

TLS_DHE_DSS_WITH_AES_128_CBC_SHA256

TLS_DHE_RSA_WITH_AES_256_CBC_SHA256

TLS_DHE_DSS_WITH_AES_256_CBC_SHA

TLS_DHE_RSA_WITH_AES_256_CBC_SHA

TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256

TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256

TLS_DHE_RSA_WITH_CHACHA20_POLY1305_SHA256

1https://wiki.mozilla.org/Security/Server_Side_TLS#Recommended_configurations
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Appendix D

Evaluated Apps

The list of apps is too long to be included in text form. A CSV of the 100 apps tested can be
downloaded from http://www.doc.ic.ac.uk/~og514/top100-080615.csv and a CSV of the 2500
apps tested can be downloaded from http://www.doc.ic.ac.uk/~og514/top2500-081015.csv.
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