

Contact: pdfsupport@pdf-tools.com

Owner: PDF Tools AG

 Kasernenstrasse 1
 8184 Bachenbülach
 Switzerland

 http://www.pdf-tools.com

Copyright © 2001-2015

3-Heights™ PDF Optimization API
Version 4.5

User Manual

mailto:pdfsupport@pdf-tools.com
http://www.pdf-tools.com/
http://www.pdf-tools.com/

3-Heights™ PDF Optimization API, Version 4.5 Page 2 of 45

July 9, 2015

 © PDF Tools AG – Premium PDF Technology

1 Table of Content
1 Table of Content 2

2 Introduction 6

2.1 Description .. 6

2.2 Functions .. 6

Features .. 6

Formats... 7

Compliance ... 8

2.3 Interfaces .. 8

2.4 Operating Systems .. 8

3 Installation 9

3.1 Windows ... 9

General ... 9

COM Interface ... 9

Java Interface ... 10

.NET Interface ... 10

Native C Interface.. 10

Uninstall, Install a New Version ... 10

3.2 Unix .. 12

All Unix Platforms .. 12

Mac OS/X ... 12

4 License Management 13

4.1 Graphical License Manager Tool ... 13

List all installed license keys .. 13

Add and delete license keys .. 13

Display the properties of a license ... 13

Select between different license keys for a single product .. 14

4.2 Command Line License Manager Tool .. 14

List all installed license keys .. 14

Add and delete license keys .. 14

Select between different license keys for a single product .. 14

4.3 License Key Storage ... 14

Windows ... 14

Mac OS X ... 14

Unix / Linux ... 15

5 Getting Started and User’s Manual 15

5.1 How to Optimize PDF Documents ... 15

Identify Target Application Area ... 15

Apply Adequate Optimization Settings ... 16

3-Heights™ PDF Optimization API, Version 4.5 Page 3 of 45

July 9, 2015

 © PDF Tools AG – Premium PDF Technology

5.2 Overview of the API... 17

What Is the 3-Heights™ PDF Optimization API About? .. 17

5.3 How Does the API Work? .. 17

5.4 Optimizing PDF Files ... 18

Relevant Factors for the File Size .. 18

Optimizing Raster Images ... 19

Mixed Raster Content (MRC) Optimization for Images ... 20

Optimizing Fonts ... 21

5.5 Extracting Resources .. 21

6 Programming Interfaces 22

6.1 Visual Basic .. 22

Simple Visual Basic Sample .. 22

6.2 ASP – VBScript ... 23

6.3 .NET ... 24

Visual Basic .. 24

C# ... 25

Troubleshooting .. 25

7 Reference Manual 26

7.1 Methods .. 26

Close .. 26

GetPDF ... 26

LinarizeFile.. 26

ListFonts ... 27

ListImages... 27

Open ... 28

OpenMem ... 29

RenameFont ... 29

SaveAs ... 29

SaveInMemory .. 29

SetInfoEntry .. 30

SetVersion .. 30

7.2 Properties ... 30

BitonalCompression .. 30

BitonalCompressions .. 31

BitonalResolutionDPI .. 31

BitonalThresholdDPI ... 31

ClipImages .. 31

ColorCompression... 32

ColorConversion ... 32

ColorResolutionDPI ... 32

ColorThresholdDPI .. 32

ContinuousCompressions.. 32

3-Heights™ PDF Optimization API, Version 4.5 Page 4 of 45

July 9, 2015

 © PDF Tools AG – Premium PDF Technology

CompressionQuality .. 33

ConvertToCFF .. 33

ErrorCode ... 33

ExtractFonts .. 33

ExtractImages ... 33

ForceRecompression .. 34

ImageStratConserv ... 34

ImageQuality ... 34

IndexedCompressions ... 34

Linearize ... 35

MrcLayerCompression .. 35

MrcLayerQuality .. 35

MrcLayerResolutionDPI ... 35

MrcMaskCompression ... 35

MrcPictCompression ... 36

MergeEmbeddedFonts .. 36

MonochromeCompression... 36

MonochromeResolutionDPI ... 36

MonochromeThresholdDPI .. 36

OptimizeResources ... 37

PageCount .. 37

RemoveNonSymbolicFonts ... 37

RemoveRedundantObjects .. 37

RemoveStandardFonts .. 37

ResolutionDPI ... 38

Strip .. 38

SubsetFonts .. 38

ThresholdDPI .. 39

7.3 Enumerations .. 39

TPDFColorConversion .. 39

TPDFCompression .. 39

TPDFComprAttempt .. 40

TPDFErrorCode .. 40

TPDFFontType.. 40

TPDFPermission ... 41

TPDFStripType ... 41

7.4 Supported Image Compression Types ... 42

No Compression (Raw) ... 42

DCT (JPEG) .. 42

Flate (ZIP) ... 42

LZW .. 42

CCITT Fax Group 3 and 4 ... 43

JBIG2 .. 43

3-Heights™ PDF Optimization API, Version 4.5 Page 5 of 45

July 9, 2015

 © PDF Tools AG – Premium PDF Technology

JPEG2000... 44

8 Samples 45

8.1 Suggested Values to Optimize for the Web .. 45

8.2 Suggested Values for Printing ... 45

3-Heights™ PDF Optimization API, Version 4.5 Page 6 of 45

July 9, 2015

 © PDF Tools AG – Premium PDF Technology

2 Introduction
2.1 Description

The 3-Heights™ PDF Optimization API optimizes PDF files to enable their use as high resolution files for
printing or, with less resolution, for electronic document exchange or space-saving document archiving.
Many processes produce very large PDF files that are not suitable for electronic document exchange.
Users are then tempted to convert the PDF documents into other formats, but this only makes the
situation even worse. The correct approach, and the easiest, is to optimize large PDF documents.
This process optimizes fonts and images to the best possible size and quality. It also removes redundant
document content and "linearizes" PDF documents to enable fast web display.

2.2 Functions

The use of the latest compression algorithms enables the tool to reduce the memory space requirements
for images or lessen their resolution, remove redundant and alternative information, optimize fonts through
summarization or subsetting, convert colors and linearize the PDF.

Features
• Optimization for Electronic Document Exchange, Web Publishing and Archiving

• Customized compression of bi-tonal, monochrome and color images

• Define image resolution in dots per inch

• Define threshold value for down-sampling

• Set the quality index of lossy compression

• Automatically select best compression type for images

3-Heights™ PDF Optimization API, Version 4.5 Page 7 of 45

July 9, 2015

 © PDF Tools AG – Premium PDF Technology

• Perform mixed raster content (MRC) optimization for images

• Remove invisible parts of images

• Linearization (fast web display)

• Compile and subset fonts

• Read encrypted input files

• Encrypt and set access authorization for the output file

• Process memory-resident files

• Removal of:

o Redundant objects

o Obsolete objects stemming from previous changes to the file

o Embedded standard fonts (e.g. Courier, Arial, Times)

o Embedded, non-symbolic fonts

o Unnecessary file information

o Article threads

o Alternative images

o Metadata

o Page piece information

o Document structure tree including markup

o Miniature page preview images

o Spider (web capture) information

• Remove or clear form fields and annotations

Optimize for Printing
• Color conversion (to RGB, CMYK or grayscale)

• Allow high print quality

• Set minimum PDF version of the output file

List and Extract Parameters
• Fonts and their properties

• Images and their properties

• Error Code

• Number of pages

Formats

Input Formats
• PDF 1.x (e.g. PDF 1.4, PDF 1.5.)

3-Heights™ PDF Optimization API, Version 4.5 Page 8 of 45

July 9, 2015

 © PDF Tools AG – Premium PDF Technology

Target Formats
• PDF 1.x (e.g. PDF 1.4, PDF 1.5)

Compliance
Standards: ISO 32000 (PDF 1.7)

2.3 Interfaces

The following interfaces are available:
• C

• Java

• .NET

• COM

2.4 Operating Systems

• Windows XP, Vista, 7, 8, 8.1 - 32 and 64 bit

• Windows Server 2003, 2008, 2008 R2, 2012, 2012 R2 - 32 and 64 bit

• HP-UX 11 and later PA-RISC2.0 32 bit or HP-UX 11i and later ia64 (Itanium) 64 bit

• IBM AIX 5.1 and later (64 bit)

• Linux (32 and 64 bit)

• Mac OS X 10.4 and later (32 and 64 bit)

• Sun Solaris 2.8 and later, SPARC and Intel

• FreeBSD 4.7 and later 32 bit or FreeBSD 9.3 and later 64 bit (on request)

3-Heights™ PDF Optimization API, Version 4.5 Page 9 of 45

July 9, 2015

 © PDF Tools AG – Premium PDF Technology

3 Installation
3.1 Windows

The retail version of the 3-Heights™ PDF Optimization API comes as a ZIP archive containing various
files including runtime binary executable code, documentation and license terms.

1. Download the ZIP archive of the product from your download account at www.pdf-tools.com.

2. Open the ZIP archive.

3. Check the appropriate option to preserve file paths (folder names) and unzip the archive to a local
folder (e.g. C:\program files\pdf-tools\).

4. The unzip process now creates the following subdirectories:

Bin: Contains the runtime executable binary code

Doc: Contains documentation files

Include: Contains files to include in your C / C++ project

Samples: Contains Visual Basic 6.0 sample program

General
Here is an overview of the relevant files that come with the 3-Heights™ PDF Optimization Tool:

bin\PdfOptimizeAPI.dll This is the DLL that contains the main functionality (required).
Bin\pdcjk.dll This DLL contains support for Asian languages (optional). It is

loaded from the module path.

Bin*NET.dll The .NET assemblies (required if using the .NET interface).
Lib\PDFOptimizeAPI.lib Import library for C programs.

Jar\POLA.jar Java API archive.

Doc\PdfOptimizeAPI.idl COM interface definition.

Include\PdfOptimizeAPI.h C API include file.

Include\PdfOptimizeAPI_c.h COM API include file.

Include\PdfOptimizeAPI_i.c COM API identifier definitions.

Include\pdferror.h Supplementary C header-file containing error codes.

COM Interface
Before you can use the 3-Heights™ PDF Optimization API component in your COM application program
you have to register the component using the regsvr32 program that is provided with the Windows
operating system in the directory System32. On Windows Vista and 7, this needs to be done in
Administrator mode. The following screenshot shows the registration of the PDF Optimization DLL
PdfOptimizeAPI.dll.

http://www.pdf-tools.com/

3-Heights™ PDF Optimization API, Version 4.5 Page 10 of 45

July 9, 2015

 © PDF Tools AG – Premium PDF Technology

If you are using a 64 bit Windows platform and would like to register the 32 bit version of the 3-Heights™
PDF Optimization API, it is required to use regsvr32 from WOW64 instead from System32.

If the registration process succeeds the following box is displayed:

The installation process is now complete.

Java Interface
When using the Java interface, the Java-wrapper jar\POLA.jar needs to be on the CLASSPATH.
PDFOptimizeAPI.dll needs to be on the environment variable PATH.

.NET Interface
The 3-Heights™ PDF Optimization API does not provide a pure .NET solution. Instead, it consists of .NET
assemblies, which are added to the project and a native DLL, which is called by the .NET assemblies.
This has to be accounted for when installing and deploying the tool.
The .NET assemblies (*NET.dll) are to be added as references to the project. They are required at
compilation time. See also chapter “Getting Started”.
PdfOptimizeAPI.dll is not a .NET assembly, but a native DLL. It is not to be added as a reference in the
project.
The native DLL PdfOptimizeAPI.dll is called by the .NET assembly PdfOptimizeNET.dll.
PdfOptimizeAPI.dll must be found at execution time by the Windows operating system.
The common way to do this is adding PdfOptimizeAPI.dll as an existing item to the project and set its
property “Copy to output directory” to “Copy if newer”.
Alternatively the directory where PdfOptimizeAPI.dll resides can be added to the environment variable
“PATH” or it can simply be copied manually to the output directory.

Native C Interface
The header file pdfoptimizeapi_c.h needs to be included in the C program. The library PdfOptimizeAPI.lib
needs to be linked to the project.

Uninstall, Install a New Version
In order to uninstall the product undo all the steps done during installation, e.g. unregister using regsvr32
–u, delete all files, etc.

3-Heights™ PDF Optimization API, Version 4.5 Page 11 of 45

July 9, 2015

 © PDF Tools AG – Premium PDF Technology

Note that an expired evaluation DLL cannot be unregistered. If you would like to unregister an expired
evaluation DLL, download a new (non-expired) evaluation version, overwrite the old version and
unregister it.
Installing a new version does not require to previously uninstall the old version. The files of the old version
can directly be overwritten with the new version. If using the COM interface, the new DLL must be
registered; unregistering the old version is not required.

3-Heights™ PDF Optimization API, Version 4.5 Page 12 of 45

July 9, 2015

 © PDF Tools AG – Premium PDF Technology

3.2 Unix

Here is an overview of the shared libraries and other files that come with the PDF Optimization API:

bin/PdfOptimizeAPI.so This is the shared library that contains the main functionality.
Jar/POLA.jar Java API archive.

Include/*.h C API include file.

All Unix Platforms
1. Unpack the archive in an installation directory, e.g. /usr/pdftools.com/

2. Copy or link the shared object into one of the standard library directories, e.g:
ln –s /usr/pdftools.com/bin/libPdfOptimizeAPI.so /usr/lib

3. In case you have not yet installed the GNU shared libraries, get a copy of these from
http://www.pdf-tools.com; extract the shared images and copy or link them into /usr/lib or
/usr/local/lib.

Mac OS/X
The shared library must have the extension .jnilib for use with Java. We suggest that you create a file link
for this purpose by using the following command:
ln libPdfOptimizeAPI.dylib libPdfOptimizeAPI.jnilib

3-Heights™ PDF Optimization API, Version 4.5 Page 13 of 45

July 9, 2015

 © PDF Tools AG – Premium PDF Technology

4 License Management
There are three possibilities to pass the license key to the application:

1. The license key is installed using the GUI tool (Graphical user interface). This is the easiest way if
the licenses are managed manually. It is only available on Windows.

2. The license key is installed using the shell tool. This is the preferred solution for all non-Windows
systems and for automated license management.

3. The license key is passed to the application at runtime via the “LicenseKey” property. This is the
preferred solution for OEM scenarios.

4.1 Graphical License Manager Tool
The GUI tool LicenseManager.exe is located in the bin directory of the product kit.

 List all installed license keys
The license manager always shows a list of all installed license keys in the left pane of the window. This
includes licenses of other PDF Tools products.
The user can choose between:

• Licenses available for all users. Administrator rights are needed for modifications.

• Licenses available for the current user only.

 Add and delete license keys
License keys can be added or deleted with the “Add Key” and “Delete” buttons in the toolbar.

• The “Add key” button installs the license key into the currently selected list.

• The “Delete” button deletes the currently selected license keys.

 Display the properties of a license
If a license is selected in the license list, its properties are displayed in the right pane of the window.

3-Heights™ PDF Optimization API, Version 4.5 Page 14 of 45

July 9, 2015

 © PDF Tools AG – Premium PDF Technology

 Select between different license keys for a single product
More than one license key can be installed for a specific product. The checkbox on the left side in the
license list marks the currently active license key.

4.2 Command Line License Manager Tool
The command line license manager tool licmgr is available in the bin directory for all platforms except
Windows.
A complete description of all commands and options can be obtained by running the program without
parameters:
licmgr

 List all installed license keys
licmgr list

The currently active license for a specific product ist marked with a star ‘*’ on the left side.

 Add and delete license keys
Install new license key
licmgr store X-XXXXX-XXXXX-XXXXX-XXXXX-XXXXX-XXXXX

Delete old license key
licmgr delete X-XXXXX-XXXXX-XXXXX-XXXXX-XXXXX-XXXXX

Both commands have the optional argument -s that defines the scope of the action:
• g: For all users

• u: Current user

 Select between different license keys for a single product
licmgr select X-XXXXX-XXXXX-XXXXX-XXXXX-XXXXX-XXXXX

4.3 License Key Storage
Depending on the platform the license management system uses different stores for the license keys.

 Windows
The license keys are stored in the registry:

• HKLM\Software\PDF Tools AG (for all users)

• HKCU\Software\PDF Tools AG (for the current user)

 Mac OS X
The license keys are stored in the file system:

• /Library/Application Support/PDF Tools AG (for all users)

3-Heights™ PDF Optimization API, Version 4.5 Page 15 of 45

July 9, 2015

 © PDF Tools AG – Premium PDF Technology

• ~/Library/Application Support/PDF Tools AG (for the current user)

 Unix / Linux
The license keys are stored in the file system:

• /etc/opt/pdf-tools (for all users)

• ~/.pdf-tools (for the current user)

Note: The user, group and permissions of those directories are set explicitly by the license manager tool.
It may be necessary to change permissions to make the licenses readable for all users. Example:
chmod -R go+rx /etc/opt/pdf-tools

5 Getting Started and User’s Manual
5.1 How to Optimize PDF Documents

Identify Target Application Area
PDF documents are used in a wide variety of application areas, which all have different requirements. As
very first step, one should clearly identify what application area documents need be optimized for. A few
typical fields of application are described briefly below. However PDF documents can also be used in
other ways or in combinations of the ones listed below.

• Web: All documents related to the web should be kept small in file size. Small means they take
less storage on the web-server and can be transferred quicker. Shorter download times are
appreciated by all users.

In order to reduce the file size as much as possible, all information that is not required for
displaying the document without a visual loss can be removed. This includes removing font
programs of embedded fonts, down-sampling images and applying compressions algorithms with
high compression ratios.
PDF documents can also be linearized, a method which refers to preparing the PDF file in way
that pages can be accessed randomly via a PDF viewer web-browser plug-in, i.e. selected pages
can be displayed before the whole file is downloaded.
Documents which are intended to be displayed at the monitor should be saved in the RGB color
space. RGB is the native form for any device that emits light, (such as computer monitor or
television), it uses three channels and uses therefore less space than CMYK which uses four
channels.

• Printing: In the printing industry the file size is not the highest priority. More important is to have a
document which prints in a predictable way. This means the correct fonts should be used, colors
should look as expected, etc.

For that reason no data from the original document that is used for a well-defined re-production
should be removed or altered. Fonts should not be un-embedded, images should not be down-
sampled (of course there are always exceptions).
Colors should be converted to the CMYK color space which is primarily used in systems that
reflect light (such as printers).
There are still ways to lower the file size, e.g. by applying a lossless compression for images or by
removing irrelevant information for printing, such as thumbnails, meta data, file attachments, etc.

• Archiving: Archiving can have varying requisites, such as: Minimize the file size, maximize the
reproducibility of the document, minimize the access time to find a specific archived document,
etc.

3-Heights™ PDF Optimization API, Version 4.5 Page 16 of 45

July 9, 2015

 © PDF Tools AG – Premium PDF Technology

The most common way for archiving a PDF is the PDF/A format, which is defined in the ISO
Standard 19005. PDF/A requires fonts and color profiles to be embedded, metadata to be
included and prohibits certain items, like LZW or JPEG2000 compression or alternate images.
The 3-Heights™ PDF Optimization API does not create PDF/A compliant output.

• OCR: PDF documents which mainly consist of scanned images to which an OCR (optical
character recognition) layer is to be applied at a later time should be optimized in a way that the
OCR process of the optimized document works as well as with the original. That means that
image compression should either be lossless, or at least perceptually lossless. Perceptually
lossless refers to a compression which is lossy, but its visual quality is high enough that neither
the human eye nor an OCR engine can distinguish between original and optimized document.

Apply Adequate Optimization Settings
The following table shows a suggestion what settings should be applied for optimizing in different
application areas. These settings are by no means valid for all situations.

 Web Printing Archiving

Color Space RGB CMYK leave as is

Resolution 72 – 150 dpi for color and
grey scale images

300 dpi for bi-tonal images

leave as is or set a
maximum (e. g. 600 dpi)

leave as is

Fonts don’t embed standard
fonts, embed special fonts

(e. g. barcodes)

embed *

Color compression JPEG or JPX leave compressed images unchanged, but apply a
lossless compression (e.g. flate) to all

uncompressed images Monochrome
compression

JPEG or JPX

Bi-tonal compression JBIG2 leave as is ** leave as is **

Quality For JPEG: 75, for JPX: 30 leave as is leave as is

Redundant objects remove remove remove

Article thread strip strip *

Form fields leave as is strip and flatten strip and flatten

Alternate images strip leave as is *

Meta data strip strip leave as is

Page piece info strip strip *

Document structure
tree

strip strip *

Thumbnails strip strip strip

Spider strip strip *

*) Setting depends on the document and type of archive. E.g. if one million similar invoice documents are
archived, it might not make much sense to embed the same font one million times.
**) Applying JBIG2 compression to bi-tonal images always yields in a smaller size than CCITT G4. JBIG2
is lossless, but supported only in PDF version 1.4 and newer (Acrobat 5).

3-Heights™ PDF Optimization API, Version 4.5 Page 17 of 45

July 9, 2015

 © PDF Tools AG – Premium PDF Technology

5.2 Overview of the API

What Is the 3-Heights™ PDF Optimization API About?
One of the main intents of the 3-Heights™ PDF Optimization API is to reduce the file size of a PDF
document. Another is to optimize it for a specific field of application (e.g. Internet, Printing, etc.). For that
purpose this API offers various options to optimize embedded resources such as fonts or images.

5.3 How Does the API Work?

The 3-Heights™ PDF Optimization API requires a PDF document as input. In this manual, that document
is referred to as input-document. In the graphic below that’s the document on the left hand side.
The optimization process consists of 3 main steps.

Step 1 Open document

 The document is opened from file or from memory. If the document is encrypted, it is
decrypted. If the document is encrypted with a user password1, a password must be
passed to the open call.

Analyze Optimize

Linearize

3-Heights™

PDF Optimization Tool

Customer Application

PDF Optimized
PDF

Set
Optimization

Options

PDF

Optimization
Directive

Linearized
(& Optimized)

PDF
Step 2 Analyze document

 The document is analyzed. This is done automatically.

Step 3 Optimize and save as new document

 The Optimization API provides a series of properties, such as compression types and
resolutions for different types of images, properties to optimize resources, linearization,
etc. You can think of these properties as of a filter. Any object in the input-document is
optimized according to these settings. Normally not all the settings are relevant. E.g. if an
input-document contains color images only, the settings for monochrome and bi-tonal
images are not used, neither any settings related to fonts.
As a result the Optimization API creates a new PDF which is referred to as output-
document. This output-document can be a file or a can be kept in memory.

1 If a PDF document is encrypted with a user password, it means a password is required to open the document.

3-Heights™ PDF Optimization API, Version 4.5 Page 18 of 45

July 9, 2015

 © PDF Tools AG – Premium PDF Technology

The output-document is optimized according to the settings defined in the Optimization API.
The input-document is never changed by the 3-Heights™ PDF Optimization API. The output-document
must be different from the input-document.

5.4 Optimizing PDF Files

Relevant Factors for the File Size
The file size of a PDF heavily depends on its content and on how the PDF is constructed internally. Often
embedded font programs, embedded color profiles, and images have the highest impact.
The size of an image is basically determined by four factors:

1. The pixel mass: The total amount of pixels the image has. An image with a size of 600 by 800
pixels has 480’000 pixels total.

2. The color depth: How many bits are required to describe 1 pixel? The table below gives the
answer for different types of images. For example, an RGB image with 600 by 800 pixels requires
therefore 600 x 800 x 3 bytes = 1.44 Mbytes in uncompressed format.

Color Space Description Bits/pixel

Bi-tonal Black and white 1

Indexed Colors are stored in an index table which usually holds 2 to 256
entries, e.g. GIF.

2-8

Grayscale Monochrome 8

Color RGB Color using Red, Green, Blue 24

Color CMYK Color using Cyan, Magenta, Yellow, Key (=black) 32

3. The compression type: A compression algorithm can compress data (such as an image) to

reduce its file size. Such an algorithm belongs to either of the following two classes:

Lossless: The original image can be restored exactly.

Lossy: The compression modifies the pixels. The original image cannot be restored from
the compressed version. This is typically applied to photographic images where the
human eye cannot distinguish whether the image was modified. The most common lossy
compression is JPEG. The benefit of lossy compression is the higher compression ratio.

See also chapter Supported Image Compression Types.
4. The content of the image: The simpler the image, the better it compresses. For most

compression algorithms a simple image (e.g. completely white) compresses much better than a
complex image (e.g. a photo).

Examples
CCITT Fax compression was designed to compress black text written on a white background. The
algorithm was optimized under the assumption that a page contains more white pixels than black pixels.
Therefore a bi-tonal image with a lot of black does generally not compress as well as in image with more
white even if they have the same pixel mass.
JBIG2 compression searches for patterns, and uses them multiple times. For example in a scanned text
document the same few dozen of characters are used over and over again. The algorithm is optimized to
save frequent patterns more efficiently than rare ones.

3-Heights™ PDF Optimization API, Version 4.5 Page 19 of 45

July 9, 2015

 © PDF Tools AG – Premium PDF Technology

Optimizing Raster Images
The 3-Heights™ PDF Optimization Tool offers the following possibilities to optimize raster images:

1. The pixel mass can be reduced. (It cannot be increased.) This is done by clipping (cropping) the
image size to its visible extent and/or by reducing the image resolution.

The resolution defines how many pixels there are in given length of the image. The most common
unit for resolution is dpi: Dots per inch. If an image has a resolution of 200 dpi, it means when
displayed at 100% zoom, there are 200 pixels for 1 inch of image. The higher the resolution is, the
“sharper” the image. A monitor has usually a resolution of at least 96 dpi, a laser printer of at least
600 dpi. When the file size matters, a common resolution for color and grayscale images in PDF is
150 dpi (usually higher for bi-tonal).

The process of changing the amount of pixels an image has, is called re-sampling, or down-
sampling when the result has less pixels than the original image.
In the 3-Heights™ PDF Optimization Tool down-sampling is applied by setting a target resolution
and a threshold resolution. The default values are 150 dpi for the target resolution and 225 dpi for
the threshold resolution. This means every image that has a resolution of 225 dpi or higher is
potentially down-sampled to 150 dpi. Of course, the threshold resolution can be set equal to the
target resolution. However there are many cases where down-sampling by just a little bit has
disadvantages. In particular, lossy images (e.g. JPEG compression) loose visual quality every
time they are newly compressed. On top of that the compressed output can be larger than the
input because artifacts introduced by the previous compression(s) are now considered as part of
the image which needs to be compressed and lead to a worse compression even when the
resolution is reduced. Per default, the 3-Heights™ PDF Optimization Tool will, however, prevent
such unnecessary re-sampling.

2. The color depth can be modified for color images. The color depth can be left unchanged, set to
Grayscale (8 bit), RGB (24 bit) or CMYK (32 bit). It cannot be changed to black and white (1 bit).
Note that in certain circumstances, the color depth of the image is not converted, e.g., if the
resulting file size increases or if the image is pre-blended with a matte color.

3. The compression can be setup independently for the following three image compression types:

Type Description

Bi-tonal Black and white images.

Indexed Images with an indexed (also known as “paletted”) color space.

Continuous Color (RGB and CMYK) images and grayscale images.

Bi-tonal images usually contain text or black and white graphics, indexed images usually contain
color graphics such as logos, while continuous images usually contain photographs.

For each of the above image types, several compression algorithms can be set. The 3-Heights™
PDF Optimization Tool tries all the given compression algorithms and takes the one that yields the
smallest file size. Note that the more compression algorithms are set, the longer the process of
optimizing images will take.

Furthermore, a more conservative image processing strategy can be enabled. This strategy
prevents all the compression trials if the image has neither been clipped nor down-sampled nor
undergone a color-conversion. Hence, if the image has not been altered, then the original image
from the input document is taken.

4. The content of the image cannot be changed directly. However changing the resolution or
applying a lossy compression algorithm modifies the content of the image.

Note: Unless forcing of re-compression is enabled, the 3-Heights™ PDF Optimization Tool never

3-Heights™ PDF Optimization API, Version 4.5 Page 20 of 45

July 9, 2015

 © PDF Tools AG – Premium PDF Technology

increases the file size of an image because it chooses the smallest among all tried compression
algorithms and the original image in the input file. This means the 3-Heights™ PDF Optimization Tool
cannot be used to “un-compress” embedded images.

Mixed Raster Content (MRC) Optimization for Images
Some raster images – typically scanned documents – consist mainly of text, possibly in several colors and
interspersed with some pictures. Such images are difficult to compress with one single compression type
because of the diverse or even conflicting features of different parts of the image.
MRC optimization is a way of breaking such images down into parts, such that each part is well suited for
one type of a compression algorithm. With this approach, the resulting file size often can be reduced
without significantly reducing the visual quality of the document.

Note: MRC optimization can only be enabled for continuous images, i.e. not for bi-tonal images and
images with an indexed color space.
MRC optimization may yield unexpected results, e.g. because the input image is not suitable for MRC. As
another example, images in the original PDF may be stored as small slices, and MRC optimization fails
because the 3-Heights™ PDF Optimization Tool has no option to concatenate such image slices.
A PDF that contains MRC-optimized images is not suited for optical character recognition (OCR) and
image extraction.

In the 3-Heights™ PDF Optimization Tool, MRC optimization works in three phases as explained below.

Phase 1: Cutting out Pictures
In this phase, the input image is analyzed and rectangular areas containing photographic features are
detected. Each detected region is cut out and placed as a separate image in the resulting PDF.
Depending on the input image it is possible that this phase decides that the whole input image consists of
one photographic region covering the whole image. In this case, the second phase (Phase 2: Separation
into Layers) is omitted.
On the other hand, it is possible, that actual photographic regions present in the input image are not
recognized correctly. This can happen for example if a photographic region contains parts with uniform
color.
For the cut-out images, a compression type can be set.

Note: The resulting cut pictures are neither down-sampled nor color-converted.

This first phase is optional and can be switched off.

Phase 2: Separation into Layers
For this second phase the image is not supposed to contain any photographic features. Instead, the
image is assumed to consist of text and graphic, potentially with varying color.
Now, the whole image is separated into two layers, a foreground and a background layer. Additionally, a
mask is created, which can be thought of as a bi-tonal image that is not displayed directly but tells for
each pixel whether to show the foreground layer or the background layer.
Example: Let the image consist of a yellow background with black paragraph text and a title text in red.
Then the resulting background layer contains the yellow color only. The foreground layer contains the
black text color where the paragraph text is located and the red text color where the title is located. In the
mask, pixels for which the foreground layer should be displayed are set to 1, the others are set to 0. I.e.
the mask contains 1’s where the black and the red text is and 0’s everywhere else.
In the resulting PDF the foreground layer, the background layer and the mask are stored as three images
and thus are allowed to have different resolution and different compression types. Since all the detailed
features have been moved to the mask, it makes sense to down-sample the foreground and background

3-Heights™ PDF Optimization API, Version 4.5 Page 21 of 45

July 9, 2015

 © PDF Tools AG – Premium PDF Technology

layers and use a low image quality. The mask on the other hand is usually stored with a lossless
compression type optimized for text.

Phase 3: Reconstruction
In this phase the results of phase 1 (the cut-out images) and phase 2 (the layers and the mask) are used
to synthesize the desired result. If in phase 1, a single photographic region covering the entire image is
detected, then the original image is used and the reconstruction is finished. Otherwise, the reconstruction
first places the background layer, followed by the foreground layer with the mask. Finally if any cut-images
are found they are placed at their respective locations on top of the foreground layer.

Optimizing Fonts
Every text in a PDF document is written with a font. This font can either be embedded or not embedded in
the resources of the PDF. Embedded means a font program is embedded that describes how glyphs are
drawn. If a font is not embedded the application rendering the PDF (e.g. 3-Heights™ PDF Viewer or
Adobe Acrobat) have to select a replacement font. Therefore the visual appearance of text written with an
embedded font is determinable, whereas it is not when the font is not embedded.
A font program can be quite large. An embedded font which contains all WinAnsi characters has a size of
about 20-100 Kbytes, if it contains a large Unicode range (e.g. Asian Characters) it can be several
Mbytes, whereas an non embedded font requires much less.
This leads to the following ways to optimize fonts:

1. Remove the embedded font: Removing embedded fonts can reduce the file size of a document,
particularly when the document contains many fonts. Removing fonts is best applied to (PDF-)
standard fonts, such as Arial, Courier, Courier New, Helvetica, Times, Times New Roman.
Removing fonts should not be applied to barcode fonts or fancy types.

Note: PDF/A requires fonts to be embedded.

2. Subset fonts: Only keep the information in the font program that is required to render the
characters that are actually used in text in this document. All unused characters are removed.

3. Merge fonts: A document can have the same font, or a subset of it, embedded multiple times.
This commonly occurs when multiple input document, are merged into one large output document.
The 3-Heights™ Optimization Tool can merge these fonts into one font (if they can be merged).

5.5 Extracting Resources

The 3-Heights™ PDF Optimization API can extract resources, such as images or fonts. This is achieved
using the corresponding calls ExtractImages and ExtractFonts.
These resources are extracted unaltered from the PDF document. In particular this means:

• Fonts are not converted to installable fonts, i.e. extracted fonts cannot be installed and used on
the operating system. (That would in most cases also be a legal issue.)

• Images are extracted from the resources, without the context of the page. This means they do not
inherit the resolution of the image on the page in the PDF document. (Note that the same image
could be used multiple times in the document at different resolutions anyway). Also images on the
PDF page could possibly be clipped (i.e. not the complete image is visible), or stretched or
rotated, etc. All these PDF operators affecting the visual appearance of the image on the page are
neglected.

Resources are extracted to the current directory. How to set the current directory depends on the
programming language and the OS. In C# such a command is:
System.IO.Directory.SetCurrentDirectory(„C:\\temp\\“);

3-Heights™ PDF Optimization API, Version 4.5 Page 22 of 45

July 9, 2015

 © PDF Tools AG – Premium PDF Technology

6 Programming Interfaces
6.1 Visual Basic

After installing the 3-Heights™ PDF Optimization API, you find a Visual Basic example
PdfOptimizeAPI.vbp in the directory “samples”. You can either use this sample as the basis for an
application, or you can start from scratch.
If you start from scratch, first create a new Standard-Exe Visual Basic 6 project. Then include the 3-
Heighth™ PDF Image Optimization API component to your project.

Draw a new Command Button and optionally rename it if you like. Now double-click the Command Button
and insert the few lines of code below. All that you need to change is the path of the two file names.

Simple Visual Basic Sample
Private Sub Command1_Click()

 Dim Opt As New PDFOPTIMIZEAPILib.PdfOptimize

 ‚ Open and analyze the input file.

 Opt.Open „C:\pdf\input.pdf“

 ‚ Optimize output

 Opt.ColorConversion = eConvRGB

 Opt.BitonalCompressions = eComprAttemptGroup4

 Opt.ContinuousCompressions = eComprAttemptJPEG + eComprAttemptJPEG2000

 Opt.ImageQuality = 75

 Opt.ResolutionDPI = 150

 Opt.ThresholdDPI = 225

 Opt.Linearize = True

 Opt.RemoveRedundantObjects = True

 Opt.SaveAs „C:\out.pdf““, „owner“, ePermPrint + ePermFillForms

 ‚ Terminate

 Opt.Close

End Sub

3-Heights™ PDF Optimization API, Version 4.5 Page 23 of 45

July 9, 2015

 © PDF Tools AG – Premium PDF Technology

6.2 ASP – VBScript

<%@ Language=VBScript %>

<%

 option explicit

 dim pdfOpt

 set pdfOpt = Server.CreateObject(„PDFOPTIMIZEAPI.PDFOptimizer“)

 if not pdfOpt.Open(„http://www.pdf-tools.com/public/downloads/manuals/pola.pdf“, „“) then

 Response.Write „<p>“

 Response.Write „Could not open input file.“ & „
“

 else

 pdfOpt.RemoveRedundantObjects = True

 pdfOpt.Linearize = True

 if not pdfOpt.SaveAs(„C:\temp\optimized.pdf“, vbNullString, vbNullString, -1) then

 Response.Write „<p>“

 Response.Write „Could not save optimized file.“ & „
“

 else

 Response.Write „<p>“

 Response.Write „Optimized output file created
“

 Response.Write „</p>“

 end if

 end if

%>

3-Heights™ PDF Optimization API, Version 4.5 Page 24 of 45

July 9, 2015

 © PDF Tools AG – Premium PDF Technology

6.3 .NET

As opposed to previous versions, the Windows build numbers 1.7.1.* and later provide a .NET interface.
There should be at least one .NET sample for MS Visual Studio 2005 available in the ZIP archive of the
Windows Version of the 3-Heights™ PDF Optimization API. The easiest for a quick start is to refer to this
sample.
In order to create a new project from scratch, do the following steps:

1. Start Visual Studio and create a new C# or VB project.

2. Add a reference to the .NET assemblies.

To do so, in the “Solution Explorer” right-click your project and select “Add Reference…”. The
“Add Reference” dialog will appear. In the tab “Browse”, browse for the .NET assemblies
libpdfNET.dll and PdfOptimizeNET.dll add them to the project as shown below:

3. Import namespaces (Note: This step is optional, but useful.)

4. Write Code

Steps 3 and 4 are shown separately for C# and Visual Basic.

Visual Basic
3. Double-click “My Project” to view its properties. On the left hand side, select the menu

“References”. The .NET assemblies you added before should show up in the upper window.

In the lower window import the two namespaces Pdftools.Pdf and Pdftools.PdfSecure.

You should now have settings similar as in the screenshot below:

3-Heights™ PDF Optimization API, Version 4.5 Page 25 of 45

July 9, 2015

 © PDF Tools AG – Premium PDF Technology

4. The .NET interface can now be used as shown below:

Dim opt As New Pdftools.PdfOptimize.Optimizer

opt.Open(...)

...

opt.Close()

C#
3. Add the following namespaces:

using Pdftools.Pdf;

using Pdftools.PdfOptimize;

4. The .NET interface can now be used as shown below:

Optimizer opt = new Optimizer ();

opt.Open(...);

...

opt.Close();

Troubleshooting
The most common issue when using the .NET interface is if the native DLL is not found at execution time.
This normally manifests when the constructor is called for the first time and exception is thrown – normally
of type System.TypeInitializationException.
To resolve that ensure the native DLL is found at execution time. For this, see sub-chapter “.NET
Interface” in the chapter “Installation”.

3-Heights™ PDF Optimization API, Version 4.5 Page 26 of 45

July 9, 2015

 © PDF Tools AG – Premium PDF Technology

7 Reference Manual
Note this manual describes the COM interface only. Other interfaces (C, Java, .NET) however work
similarly, i.e. they have calls with similar names and the call sequence to be used is the same as with
COM.
In this documentation it is distinguished between different types of images.
Bi-tonal: an image that consists of only black and white pixels
Monochrome: an image that has 1 channel (8 bit grayscale)
Color: a continuous-tone image that has 3 or 4 channels (24 bit RGB or 32 bit CMYK)

7.1 Methods

Close

Method Boolean Close()

Close an opened input file.
• Return value:

True: The file was closed successfully.
False: Otherwise

GetPDF

Method Variant GetPDF()

Get the output file from memory. See also method SaveInMemory.

• Return value: A byte array containing the optimized PDF. In certain programming languages, such
as Visual Basic 6, the type of the byte array must explicitly be Variant.

LinarizeFile

Method Boolean LinarizeFile (String FileName, String Password, String String

OutFileName, String UserPw, String OwnerPw, Long PermissionFlags)

Linearize a PDF file and save the result as a new PDF file, which is optimized for fast web view. This is a
stand-alone function and cannot be combined with any other functions or properties.

• Parameters

FileName: The input PDF file name, i.e. the name of document that is read.
Password (optional): The user or owner password of the input file name. A password must
be provided if the input file is protected by a user password, otherwise an empty string an be
passed as argument.
OutFileName: The output PDF file name, i.e. the name of the linearized document that is
written.
UserPw (optional): The user password of the output PDF file.
OwnerPw (optional): The owner password of the output PDF file.
PermissionFlags (optional): The permission flags if the document is encrypted and secured
by an owner password.

3-Heights™ PDF Optimization API, Version 4.5 Page 27 of 45

July 9, 2015

 © PDF Tools AG – Premium PDF Technology

Additional information about UserPw, OwnerPw and PermissionFlags can be founding the method
SaveAs.

• Return value:

True: A linearized PDF file was successfully created.
False: Otherwise

ListFonts

Method Boolean ListFonts(String FileName)

List all fonts included in the document and write them as a list to a text file.

• Parameters:
FileName: The file name of the output text file, to which the information should be stored. The
list contains the header line: “FontName, FontType, Encoding, IsCID, IsEmbedded,
IsSubsetted, Filename”.
The meanings of these columns are:
FontName The name of the font, such as Arial-BoldMT or TimesNewRomanPS-

BoldMT
FontType The font type, such as TrueType or Type1

Encoding The encoding of the font, such as WinAnsiEncoding or
MacRomanEncoding.

IsCID The font is CID (character identifier) keyed. This value is either CID
or Non-CID.

IsEmbedded The font program for this font is embedded in the PDF document.
This value is either Embedded or Non-Embedded.

FileName This file name if the font is extracted and saved. Only embedded
fonts can be extracted. The file name consists of the prefix “fnt”, the
object number and the file type which is one of .ttf, .pfb or .cff.
Example: fnt38.ttf

• Return values:
True: The font information was successfully extracted and written to the output text file.
False: Otherwise

ListImages

Method Boolean ListImages(String FileName)

List all images included in the document and write them as a list to a text file.

• Parameters:
FileName: The file name of the output text file, to which the information should be stored. The
list contains the header line: “PageNumber, ObjectNumber, Width, Height,
BitsPerComponent, ColorSpace, Resolution, Filter, ImageSize, CompressedSize,
CompressionRatio, FileName”.
The meanings of these columns are:
PageNumber The page number in the PDF on which the image occurs.

3-Heights™ PDF Optimization API, Version 4.5 Page 28 of 45

July 9, 2015

 © PDF Tools AG – Premium PDF Technology

ObjectNumber The PDF object number which contains this image.
Width The width of the image in dots (pixels).

Height The height of the image in dots (pixels).

BitsPerComponent The amount of bits that are used per component. This value is for
example 1 for bi-tonal images and 8 for gray-scale and color images.

ColorSpace The color space can be one of DeviceGray, DeviceRGB,
DeviceCMYK, ICCBased, Indexed.

Resolution The ratio of amount of pixels divided by the length of the image on
the page.
Example: An image is 300 dots (pixel) wide and takes 1 inch
(2.54cm) on the page in the PDF. This image has a resolution of 300
dpi (dots per inch). If the same image is stretched to 2 inches, its
resolution is 150 dpi.

Filter The compression filter, for example: FlateDecode, DCTDecode,
CCITTFaxDecode

ImageSize The size in bytes of the uncompressed image.

CompressedSize The size in bytes of the compressed image.

CompressionRatio The ratio compressed size divided by uncompressed size.
FileName This file name if the image is extracted and saved. The file name

consists of the prefix img, followed by the PDF object number, and
the extension which is one of .jpg or .tif, depending on the extracted
image type. Example: img19.jpg, img21.tif.

• Return values:

True: The image information was successfully extracted and written to the output text file.
False: Otherwise

Open

Method Boolean Open(String FileName, String Password)

Open a PDF random access disk file, i.e. make the objects contained in the PDF document accessible. If
the document is already open it is closed first.

• Parameters:
FileName: The file name and optionally the file-path, drive or server string according to the
operating systems file name specification rules.
Password (optional): The user or the owner password of the encrypted PDF document. If
this parameter is left out an empty string is used as a default.

• Return value:
True: The file could successfully be opened.
False: The file does not exist, it is corrupt, or the password is invalid.

3-Heights™ PDF Optimization API, Version 4.5 Page 29 of 45

July 9, 2015

 © PDF Tools AG – Premium PDF Technology

OpenMem

Method Boolean OpenMem(Variant varMem, String Password)

Open a PDF memory-block, i.e. make the objects contained in the PDF document accessible. If the
document is already open it is closed first.

• Parameters:
varMem: The memory block containing the PDF file given as a one dimensional byte array.
Password (optional): The user or the owner password of the encrypted PDF document. If
this parameter is left out an empty string is used as a default.

• Return value:
True: The file could successfully be opened.
False: The file does not exist, it is corrupt, or the password is invalid.

RenameFont
Deprecated

SaveAs

Method Boolean SaveAs(String FileName, String UserPw, String OwnerPw,

TPDFPermissionFlags PermissionFlags)

Create an output PDF document, optimizes the input file and saves it to the new file.
• Parameters:

FileName: The file name and optionally the file path, drive or server string according to the
operating systems file name specification rules.
UserPwd (optional): Set the user password of the PDF document. If this parameter is
omitted, the default password is used. Use 0 to set no password.
OwnerPwd (optional): Set the owner password of the PDF document. If this parameter is
omitted, the default password is used. Use 0 to set no password.
PermissionFlags (optional): The permission flags. By default no permissions are granted.
The permissions that can be granted are listed at the enumeration TPDFPermissionFlags.
To not encrypt the output document, set PermissionFlags to –1, user and owner password to
0.
In order to allow high quality printing, flags ePermPrint and ePermDigitalPrint need to be set.

• Return value:
True: The optimized document could successfully be saved to file.
False: Otherwise

SaveInMemory

Method Boolean SaveInMemory()

Save the output PDF in memory. After the Close call it can be accessed using the method GetPDF.
• Return value:

True: The optimized document could successfully be saved in memory.
False: Otherwise

3-Heights™ PDF Optimization API, Version 4.5 Page 30 of 45

July 9, 2015

 © PDF Tools AG – Premium PDF Technology

SetInfoEntry

Method Boolean SetInfoEntry (String Key, String Value)

Set the value of an info entry key. Examples for keys are “Author”, “Subject”, “Title” or custom attributes.

SetVersion

Method Boolean SetVersion (String PDFVersion)

Set the minimum PDF version of the created PDF output file. Supported values for the string are “1.1” to
“1.7”2. There are three parameters that influence the version of the PDF output file:

• The value set in this property

• The PDF version of the input file

• Other settings in the optimization (e.g. JBIG2 requires PDF 1.4, JPEG2000 requires PDF 1.5)

The maximum of the three values above sets the PDF version in the output file.

Examples
1. Input PDF is version 1.5 and the following settings are applied:

SetVersion(“1.4”)

The output file is PDF version 1.5.

2. Input PDF is version 1.4 or lower and the following settings are applied:
SetVersion(“1.4”)

The output file is PDF version 1.4.

3. Input PDF is version 1.3 and the following settings are applied:
ColorCompression = eComprJPEG2000

SetVersion(“1.4”)

If input.pdf contains color images to which JPEG2000 compression is applied, the output file will
be version 1.5. Otherwise it will be version 1.4.

7.2 Properties

BitonalCompression

Property TPDFCompression BitonalCompression

Accessors: Get, Set

Default: eComprGroup4

Deprecated, use BitonalCompressions.

2 PDF 1.4 corresponds to Acrobat version 5, PDF 1.5 to Acrobat version 6, etc.

3-Heights™ PDF Optimization API, Version 4.5 Page 31 of 45

July 9, 2015

 © PDF Tools AG – Premium PDF Technology

BitonalCompressions

Property TPDFComprAttempt BitonalCompressions

Accessors: Get, Set

Default: eComprGroup4

Get or set the compression types for bi-tonal images. Typically, CCITT G4 or JBIG2 is used for bi-tonal
compression. Due to the simpler algorithm CCITT G4 has the advantage of being faster. JBIG2 can
achieve compression ratios that are up to twice as high as CCITT G4 at the cost of longer computation
time. See also enumeration TPDFComprAttempt.
Several values can be combined with bitwise or operators. The following values are allowed:

- eComprAttemptRaw

- eComprAttemptFlate

- eComprAttemptLZW

- eComprAttemptGroup3

- eComprAttemptGroup4

- eComprAttemptSource

- eComprAttemptJBIG2

Others values are ignored.

BitonalResolutionDPI

Property Float BitonalResolutionDPI

Accessors: Get, Set

Default: 150

Get or set the target resolution in dots per inch (DPI) for bi-tonal images.

BitonalThresholdDPI

Property Float BitonalThresholdDPI

Accessors: Get, Set

Default: 225

Get or set the threshold resolution in DPI for bi-tonal images. See also ThresholdDPI.

ClipImages

Property Boolean ClipImages

Accessors: Get, Set

Default: False

Get or set the option to clip images. When enabled, then invisible parts of images are clipped (cropped).
While this does not affect visual parts of images, it may have a minor visual impact because clipped
images are re-compressed. Pre-blended images are not clipped.
Enabling this property will also enable the OptimizeResources property.

3-Heights™ PDF Optimization API, Version 4.5 Page 32 of 45

July 9, 2015

 © PDF Tools AG – Premium PDF Technology

ColorCompression

Property TPDFCompression ColorCompression

Accessors: Get, Set

Default: eComprJPEG

Deprecated, see ContinuousCompressions.

ColorConversion

Property TPDFColorConversion ColorConversion

Accessors: Get, Set

Default: eConvNone

Get or set the color conversion. Color conversion is applied to images. Image can be not converted
(eConvNone), converted to RGB (eConvRGB), to CMYK or gray scale. Color key masked images are not
color converted. Pre-blended images can be converted from RGB to Grayscale, if the force conversion
feature is set.
Color conversion is mostly used for specific application areas. E.g. in the printing industry the CMYK color
space is used, since it represents the colors that printer devices commonly support. If colors are
exclusively used for the monitor, the RGB color space should be used.
See also enumeration TPDFColorConversion.

ColorResolutionDPI

Property Float ColorResolutionDPI

Accessors: Get, Set

Default: 150

Get or set the target resolution in dots per inch (DPI) for color images.

ColorThresholdDPI

Property Float ColorThresholdDPI

Accessors: Get, Set

Default: 225

Get or set the threshold resolution in DPI for color images. See also ThresholdDPI.

ContinuousCompressions

Property TPDFComprAttempt ContinuousCompressions

Accessors: Get, Set

Default: eComprAttemptJPEG

Get or set the compression types to be tried for continuous images, i.e., RGB, CMYK, and grayscale
images. See also TPDFComprAttempt.
Several values can be combined with bitwise or operators. The following values are allowed:

3-Heights™ PDF Optimization API, Version 4.5 Page 33 of 45

July 9, 2015

 © PDF Tools AG – Premium PDF Technology

- eComprAttemptRaw

- eComprAttemptJPEG

- eComprAttemptFlate

- eComprAttemptJPEG2000
- eComprAttemptSource

- eComprAttemptMRC
Others values are ignored.

CompressionQuality
Deprecated, use ImageQuality instead.

ConvertToCFF

Property Boolean ConvertToCFF

Accessors: Get, Set

Default: False

Convert embedded Type1 (PostScript) fonts to Type1C (Compact Font Format). This reduces the file size.

ErrorCode

Property TPDFErrorCode ErrorCode

Accessors: Get

Get the error code of the last operation. See enumeration TPDFErrorCode.

ExtractFonts

Property Boolean ExtractFonts

Accessors: Get, Set

Default: False

Get or set whether to extract embedded fonts. Depending on the font type, the extracted font has one of
the following three formats: fnt<objno>.ttf or fnt<objno>.pfb or fnt<objno>.cff. Where objno is the number
of the PDF object of the font.

ExtractImages

Property Boolean ExtractImages

Accessors: Get, Set

Default: False

Get or set whether to extract images. Depending on the compression, the extracted image has one of the
following formats: img<objno>.tif or img<objno>.jpg. Where objno is the number of the PDF object of the
image.

3-Heights™ PDF Optimization API, Version 4.5 Page 34 of 45

July 9, 2015

 © PDF Tools AG – Premium PDF Technology

ForceRecompression

Property Boolean ForceRecompression

Accessors: Get, Set

Default: False

If set, all images are always recompressed. If not set (default), images are only recompressed if the
resulting image is smaller than the original, i.e. requires less bytes to store in the file.

ImageStratConserv

Property Boolean ImageStratConserv

Accessors: Get, Set

Default: false

Enables or disables a more conservative strategy for processing images. When enabled then the
compression types set in BitonalCompressions, ContinuousCompressions, and IndexedCompressions are
only tried if the image has either been clipped (ClipImages), re-sampled (ThresholdDPI, ThresholdDPI), or
if it has undergone a color conversion (ColorConversion), otherwise the original input image is taken as is.
See also Optimizing Raster Images.

ImageQuality

Property Single ImageQuality

Accessors: Get, Set

Default: 75

Get or set the quality index of the lossy compression. This is a value from 1 to 100. This can be applied for
JPEG, JPEG2000 and JBIG2 compression. For JBIG2 only the values from 10 to 100 that are multiples of
10 are supported. For both JPEG2000 and JBIG2, a quality index of 100 means lossless compression.
JPEG compression is always lossy.

IndexedCompressions

Property TPDFComprAttempt IndexedCompressions

Accessors: Get, Set

Default: eComprAttemptFlate

Get or set the compression types for images that have an indexed (“palette”) color space. See also
enumeration TPDFComprAttempt.
Several values can be combined with bitwise or operators. The following values are allowed:

- eComprAttemptRaw

- eComprAttemptFlate

- eComprAttemptLZW

- eComprAttemptSource

Others values are ignored.

3-Heights™ PDF Optimization API, Version 4.5 Page 35 of 45

July 9, 2015

 © PDF Tools AG – Premium PDF Technology

Linearize

Property Boolean Linearize

Accessors: Get, Set

Default: False

Get or set whether to linearize the PDF output file for fast web access.
Linearization is the process of preparing a PDF file in a way that permits random page access by a web
browser. While the whole non-linearized PDF file must be downloaded before the first page can be
displayed, this is not the case for a linearized file.

MrcLayerCompression

Property TPDFCompression MrcLayerCompression

Accessors: Get, Set

Default: eComprJPEG

Get or set the compression type for MRC foreground and background layers. See TPDFCompression for
possible values. See also Mixed Raster Content (MRC) Optimization for Images.

MrcLayerQuality

Property Short MrcLayerQuality

Accessors: Get, Set

Default: 10

Get or set the image quality for MRC foreground and background layers when using a lossy compression
type. This is a value between 0 and 100. See also Supported Image Compression Types, Relevant
Factors for the File Size, and Mixed Raster Content (MRC) Optimization for Images.

MrcLayerResolutionDPI

Property Float MrcLayerResolutionDPI

Accessors: Get, Set

Default: 70

Get or set the target resolution in DPI for down-sampling MRC foreground and background layers. If set to
-1 then no down-sampling is performed. See also Optimizing Raster Images and Mixed Raster Content
(MRC) Optimization for Images.

MrcMaskCompression

Property TPDFCompression MrcMaskCompression

Accessors: Get, Set

Default: eComprGroup4

Get or set the compression type for MRC masks. See TPDFCompression for possible values. See also
Mixed Raster Content (MRC) Optimization for Images.

3-Heights™ PDF Optimization API, Version 4.5 Page 36 of 45

July 9, 2015

 © PDF Tools AG – Premium PDF Technology

MrcPictCompression

Property TPDFCompression MrcPictCompression

Accessors: Get, Set

Default: eComprJPEG

Get or set the compression type for MRC cut-out pictures. See TPDFCompression for possible values.
See also Mixed Raster Content (MRC) Optimization for Images.

MergeEmbeddedFonts

Property Boolean MergeEmbeddedFonts

Accessors: Get, Set

Default: False

Merge embedded font programs. Font programs can be merged, if they originate from the same font, e.g.
they are of the same type, have the same name and encoding. Merging of Type1 (PostScript) and
TrueType fonts is supported.

MonochromeCompression

Property TPDFCompression MonochromeCompression

Accessors: Get, Set

Default: eComprJPEG

Deprecated, see ContinuousCompressions.

MonochromeResolutionDPI

Property Float MonochromeResolutionDPI

Accessors: Get, Set

Default: 150

Get or set the resolution in DPI for monochrome images.

MonochromeThresholdDPI

Property Float MonochromeThresholdDPI

Accessors: Get, Set

Default: 150

Set or get the threshold resolution dpi for monochrome images. See also ThresholdDPI.

3-Heights™ PDF Optimization API, Version 4.5 Page 37 of 45

July 9, 2015

 © PDF Tools AG – Premium PDF Technology

OptimizeResources

Property Boolean OptimizeResources

Accessors: Get, Set

Default: False

Get or set whether resources should be optimized. If set, unused resources such as images, fonts, and
color spaces are removed. Also content streams are re-built.

PageCount

Property Long PageCount

Accessors: Get

Get the number of total pages of the document. If no document is opened, it returns 0.

RemoveNonSymbolicFonts

Property Boolean RemoveNonSymbolicFonts

Accessors: Get, Set

Default: False

Get or set whether non-symbolic fonts should be removed. If a font has no Unicode information, the font is
not removed, and remains embedded instead. See the property RemoveStandardFonts for more
information on the importance of Unicode information when un-embedding fonts.

What is a symbolic font?
A symbolic font contains non standard character sets. Font programs of symbolic fonts have encodings
that are usually built-in and unique to each font. Two of the 14 PDF Standard Fonts are symbolic: Symbol
and ZapfDingbats.

RemoveRedundantObjects

Property Boolean RemoveRedundantObjects

Accessors: Get, Set

Default: False

Get or set whether redundant objects should be removed. If this property is set to true, duplicate objects
are removed in order to reduce the file size.

RemoveStandardFonts

Property Boolean RemoveStandardFonts

Accessors: Get, Set

Default: False

Get or set whether to remove all embedded standard fonts and replace them with one of the 14 PDF
Standard Fonts. The following font families are considered standard fonts:

3-Heights™ PDF Optimization API, Version 4.5 Page 38 of 45

July 9, 2015

 © PDF Tools AG – Premium PDF Technology

Arial CourierNewPS Times ZapfDingbats

Courier Helvetica TimesNewRoman

CourierNew Symbol TimesNewRomanPS

And their derivatives (they are different for different font families) such as:

Arial,Bold Arial-Bold Arial-Italic ArialMT

Arial,BoldItalic Arial-BoldItalic Arial-BoldMT Courier-Bold

Arial,Italic Arial-BoldItalicMT Arial-ItalicMT Courier-Oblique

A PDF Viewer must be able to display standard fonts correctly, even if they are not embedded. Therefore
using this option should not visually alter the PDF when it is displayed. Un-embedding a font decreases
the file size.
Un-embedding the font works based on the font’s Unicode information. I.e. the un-embedded font’s
characters are mapped to those of the original font with the same Unicode. Therefore, only fonts with
Unicode information will be un-embedded by the 3-Heights™ PDF Optimizer. However, if a font’s Unicode
information is not correct, un-embedding may lead to visual differences. Whether or not a font’s Unicode
information is correct can be verified by extracting text that uses the font. Suitable tools for this purpose
are for instance the 3-Heights™ PDF Extract Tool or an interactive PDF viewer. If the extracted text is
meaningful, the font’s Unicode information is correct and un-embedding of the font will not lead to visual
differences.

ResolutionDPI

Property Single ResolutionDPI

Accessors: Get, Set

Default: 150

Get or set the resolution in dpi after re-sampling images. This property affects all three image
compression types (bi-tonal, monochrome, color). The typical value for the resolution when optimizing for
the web is 150 dpi. For printing typically no re-sampling is applied (see property ThresholdDPI). Pre-
blended images, images with a color key mask, mask, and soft mask images are not re-sampled.

Strip

Property TPDFStripType Strip

Accessors: Get, Set

Default: 0

Get or set the stripping mode. This mode can be configured to remove unneeded data of a PDF document
such as Threads, Metadata, the PieceInfo, the StructTreeRoot entry, embedded Thumbs and the
SpiderInfo entry. Several values of TPDFStripType can be combined with the bitwise or operator.

SubsetFonts

Property Boolean SubsetFont

Accessors: Get, Set

Default: false

This property influences two optimizations related to subsetted fonts:

3-Heights™ PDF Optimization API, Version 4.5 Page 39 of 45

July 9, 2015

 © PDF Tools AG – Premium PDF Technology

• Subset embedded fonts.

• Merge embedded font programs of different subsets of the same font, granted they can be
merged.

Sub-setting refers to removing those glyphs in a font that are not actually used in any text contained in the
PDF.

ThresholdDPI

Property Single ThresholdDPI

Accessors: Get, Set

Default: 225

Get the threshold in dpi to selectively activate re-sampling. Only images with a resolution above the
threshold dpi will be re-sampled. The typical threshold value when optimizing for the web is 225 dpi
(default). This property affects all three image compression types (bi-tonal, monochrome, color). Set to -1
to deactivate re-sampling.

7.3 Enumerations

Note: Depending on the interface, enumerations may have “TPDF” as prefix (COM, C) or “PDF” as prefix
(.NET) or no prefix at all (Java).

TPDFColorConversion
Const eConvNone None

Const eConvRGB Red Green Blue

Const eConvCMYK Cyan Magenta Yellow Key

Const eConvGray Gray

TPDFCompression
Compression types as occurring in PDF. Note that not all image formats/color depths support all
compression types.
See also chapter Supported Image Compression Types.
EComprRaw No compression

eComprJPEG Joint Photographic Expert Group

eComprFlate Flate compression

eComprLZW Lempel-Ziv-Welch

eComprGroup3 CCITT Fax Group 3

eComprGroup3_2D CCITT Fax Group 3 2D

eComprGroup4 CCITT Fax Group 4

eComprJBIG2 Joint Bi-level Image Experts Group

3-Heights™ PDF Optimization API, Version 4.5 Page 40 of 45

July 9, 2015

 © PDF Tools AG – Premium PDF Technology

eComprJPEG2000 JPEG2000

eComprUnknown Unknown compression

TPDFComprAttempt
In contrast to TPDFCompression, TPDFComprAttempt is meant to be used as a bit-field, i.e, values can
be composed with the bitwise or operator (Or in Visual Basic). Use this enumeration to compose values
for the BitonalCompressions, ContinuousCompressions, and IndexedCompressions properties.
EComprAttemptRaw No compression

eComprAttemptJPEG Joint Photographic Expert Group

eComprAttemptFlate Flate compression

eComprAttemptLZW Lempel-Ziv-Welch

eComprAttemptGroup3 CCITT Fax Group 3

eComprAttemptGroup3_2D CCITT Fax Group 3 2D

eComprAttemptGroup4 CCITT Fax Group 4

eComprAttemptJBIG2 Joint Bi-level Image Experts Group

eComprAttemptJPEG2000 JPEG2000

eComprAttemptMRC Perform mixed raster content analysis

eComprAttemptSource Same compression type as the original image

TPDFErrorCode
All TPDFErrorCode enumerations start with “PDF_” followed by a single letter which is one of “S”, “E”, “W”
or “I”, an underscore and a descriptive text. The single letter gives in an indication of the type of error.
These are: Success, Error, Warning and Information. With respect to corrupt PDF files: An error indicates
a corruption in the PDF, the file may or may not be readable. A warning indicates the file is readable but
not valid.
A full list of all PDF Tools error codes is available in the header file pdferror.h. The error codes that are
listed to file access are listed here.
PDF_S_SUCCESS The operation was completed successfully.

PDF_E_EVAL This software is an evaluation version. Please contact www.pdf-
tools.com.

PDF_E_FILEOPEN File open failed.

PDF_E_FILECREATE Create file failed.

PDF_E_PASSWORD The authentication failed due to a wrong password.

TPDFFontType
eFontType1 Type 1 Font

eFontTrueType True Type Font

http://www.pdf-tools.com/
http://www.pdf-tools.com/

3-Heights™ PDF Optimization API, Version 4.5 Page 41 of 45

July 9, 2015

 © PDF Tools AG – Premium PDF Technology

eFontCFF Compact Font Format

eFontType3 Type 3 Font

TPDFPermission
An enumeration for permission flags. If a flag is set, the permission is granted.
ePermPrint Low resolution printing

ePermModify Changing the document

ePermCopy Content copying or extraction

ePermAnnotate Annotations

ePermFillForms Filling of form fields

ePermSupportDisabilities Support for disabilities

ePermAssemble Document Assembly

ePermDigitalPrint High resolution printing

ePermAll Equivalent to setting all the above flags. The output file is,
however, still encrypted.

ePermNoEncryption If this is the only flag set then the output file will not be encrypted.

Changing permissions or granting multiple permissions is done using a bitwise or operator. Changing the
current permissions in Visual Basic should be done like this:
Allow Printing: Permission = Permission Or ePermPrint

Prohibit Printing: Permission = Permission And Not ePermPrint

To disable encryption you should overwrite all flags: Permission = ePermNoEncryption

TPDFStripType
eStripThreads Strip thumbnails

eStripMetadata Strip meta data

eStripPieceInfo Strip page piece info (private application data)

eStripStructTree Strip document structure tree (incl. Mark-up)

eStripThumb Strip thumbnails

eStripSpider Strip spider (web capture) info

eStripAlternates Strip alternate images

eStripFormsAnnots Strip and flatten form fields and annotations (This removes
interactive features of the PDF.)

eStripAll Strip everything (all of the above)

3-Heights™ PDF Optimization API, Version 4.5 Page 42 of 45

July 9, 2015

 © PDF Tools AG – Premium PDF Technology

7.4 Supported Image Compression Types

For additional information about compressions in PDF, see also ISO 32000, chapter 7.4.

No Compression (Raw)
Raw means no compression is applied.

DCT (JPEG)
Developer Joint Photographic Experts Group committee

Version PDF 1.2, PDF/A-1

Color depth 8, 24 bits per pixel

Compression type Lossy

Compression
algorithm

The image is broken up into blocks that are 8 by 8 samples. On each of
these blocks and color channel a discrete cosine transformation (DCT) is
applied and its coefficients are quantized.
The visual quality of the resulting image depends on the loss of information
defined by the step size of the quantization and on the image that is being
compressed.
The compression can be controlled via an image quality parameter - a value
from 1 to 100 (default 75). Typical compression ratios are 15:1 (no
perceptible loss of information) to 30:1.

Application area Sampled continuous-tone pictures (photographs)

Flate (ZIP)
Developer Flate compression is based on the public-domain zlib / deflate compression

method

Version PDF 1.2, PDF/A-1

Color depth 1-8, 24 bits per pixel

Compression type Lossless

Compression
algorithm

A lossless data compression algorithm that uses a combination of the LZ77
algorithm and Huffman coding.

Application area Images

LZW
Developer Abraham Lempel, Jacob Ziv and Terry Welch

Copyright based issues, which expired in most countries in 2003/2004,
reduced the popularity of this compression. As one of its consequences it is
not included in PDF/A standard.

Version PDF 1.2

3-Heights™ PDF Optimization API, Version 4.5 Page 43 of 45

July 9, 2015

 © PDF Tools AG – Premium PDF Technology

Color depth 2-8 bits per pixel

Compression type Lossless

Compression
algorithm

An indexed based compression that is also used in the GIF and TIFF image
formats.

Application area Gray-scale images, artificial images

CCITT Fax Group 3 and 4
Developer International Telecommunications Union (ITU), formerly known as the Comité

Consultatif International Téléphonique et Télégraphique

Version PDF 1.0, PDF/A-1

Color depth 1 bit per pixel

Compression type Lossless

Compression
algorithm

Group 3: 1-dimensional version of the CCITT Group 3 Huffman encoding
algorithm.

Group 3 2D: 2-dimensional version of the CCITT Group 3 Huffman encoding
algorithm.

Group 4: An advanced version of a bi-tonal algorithm based on the CCITT
Fax Group 3 2D compression.

Application area Line-art image, bi-tonal, faxes

JBIG2
Developer Joint Bi-Level Image Experts Group

Version PDF 1.4, PDF/A-1

Color depth 1 bit per pixel

Compression type Lossless if the image quality index is set to 100

Lossy otherwise

Compression
algorithm

The image is broken down into individual symbols, which are stored in a
table. A symbol is added to the table if it doesn’t exist yet. If a matching
symbol already exists, it is used as a reference. This algorithm works
especially well for images with a lot of similar symbols such as scanned text
or images that use patterns.

Generally JBIG2 provides a better compression ratio than CCITT G3 or G4
compression. Typical compression ratios for text pages are 20:1 to 50:1.

Application area Line-art image, bi-tonal

3-Heights™ PDF Optimization API, Version 4.5 Page 44 of 45

July 9, 2015

 © PDF Tools AG – Premium PDF Technology

JPEG2000
Developer Joint Photographic Experts Group committee

Version PDF 1.5, PDF/A-2

Color depth 8, 24 bits per pixel

Compression type Lossless if the image quality index is set to 100

Lossy otherwise

Compression
algorithm

JPEG 2000 is a wavelet-based image compression standard. It was
developed with the intention of superseding the original discrete cosine
transform-based JPEG standard.

Application area Sampled continuous-tone pictures (photographs)

3-Heights™ PDF Optimization API, Version 4.5 Page 45 of 45

July 9, 2015

 © PDF Tools AG – Premium PDF Technology

8 Samples
8.1 Suggested Values to Optimize for the Web

ColorConversion = eConvRGB

BitonalCompressions = eComprAttemptGroup4 Or eComprAttemptJBIG2 Or

eComprAttemptSource

ContinuousCompressions = eComprAttemptJPEG Or eComprAttemptJPEG2000 Or

eComprAttemptSource

IndexedCompressions = eComprAttemptFlate Or eComprAttemptSource

ClipImages = True

OptimizeResources = True

RemoveRedundantObjects = True

SubsetFonts = True

MergeEmbeddedFonts = True

RemoveStandardFonts = True

Linearize = True

Additionally, optional information can be stripped to further minimize the file size:
Strip = eStripThreads Or eStripMetadata Or eStripPieceInfo Or eStripStructTree

Or eStripThumb Or eStripSpider Or eStripAlternates

If encrypting:
SaveAs(<filename>, "", <ownerpassword>, ePermPrint Or ePermFillForms)

8.2 Suggested Values for Printing

ColorConversion = eConvCMYK

ThresholdDPI = -1

RemoveRedundantObjects = True

OptimizeResources = True

MergeEmbeddedFonts = True

SubsetFonts = True

Additionally, optional information can be stripped to further minimize the file size:
Strip = eStripThreads Or eStripMetadata Or eStripPieceInfo Or eStripStructTree

Or eStripThumb Or eStripSpider Or eStripFormsAnnots

If encrypting:
SaveAs(<filename>, "", <ownerpassword>, ePermPrint Or ePermDigitalPrint)

	1 Table of Content
	2 Introduction
	2.1 Description
	2.2 Functions
	Features
	Optimize for Printing
	List and Extract Parameters

	Formats
	Input Formats
	Target Formats

	Compliance

	2.3 Interfaces
	2.4 Operating Systems

	3 Installation
	3.1 Windows
	General
	COM Interface
	Java Interface
	.NET Interface
	Native C Interface
	Uninstall, Install a New Version

	3.2 Unix
	All Unix Platforms
	Mac OS/X

	4 License Management
	4.1 Graphical License Manager Tool
	List all installed license keys
	Add and delete license keys
	Display the properties of a license
	Select between different license keys for a single product

	4.2 Command Line License Manager Tool
	List all installed license keys
	Add and delete license keys
	Select between different license keys for a single product

	4.3 License Key Storage
	Windows
	Mac OS X
	Unix / Linux

	5 Getting Started and User’s Manual
	5.1 How to Optimize PDF Documents
	Identify Target Application Area
	Apply Adequate Optimization Settings

	5.2 Overview of the API
	What Is the 3-Heights™ PDF Optimization API About?

	5.3 How Does the API Work?
	5.4 Optimizing PDF Files
	Relevant Factors for the File Size
	Examples

	Optimizing Raster Images
	Mixed Raster Content (MRC) Optimization for Images
	Phase 1: Cutting out Pictures
	Phase 2: Separation into Layers
	Phase 3: Reconstruction

	Optimizing Fonts

	5.5 Extracting Resources

	6 Programming Interfaces
	6.1 Visual Basic
	Simple Visual Basic Sample

	6.2 ASP – VBScript
	6.3 .NET
	Visual Basic
	C#
	Troubleshooting

	7 Reference Manual
	7.1 Methods
	Close
	GetPDF
	LinarizeFile
	ListFonts
	ListImages
	Open
	OpenMem
	RenameFont
	SaveAs
	SaveInMemory
	SetInfoEntry
	SetVersion
	Examples

	7.2 Properties
	BitonalCompression
	BitonalCompressions
	BitonalResolutionDPI
	BitonalThresholdDPI
	ClipImages
	ColorCompression
	ColorConversion
	ColorResolutionDPI
	ColorThresholdDPI
	ContinuousCompressions
	CompressionQuality
	ConvertToCFF
	ErrorCode
	ExtractFonts
	ExtractImages
	ForceRecompression
	ImageStratConserv
	ImageQuality
	IndexedCompressions
	Linearize
	MrcLayerCompression
	MrcLayerQuality
	MrcLayerResolutionDPI
	MrcMaskCompression
	MrcPictCompression
	MergeEmbeddedFonts
	MonochromeCompression
	MonochromeResolutionDPI
	MonochromeThresholdDPI
	OptimizeResources
	PageCount
	RemoveNonSymbolicFonts
	RemoveRedundantObjects
	RemoveStandardFonts
	ResolutionDPI
	Strip
	SubsetFonts
	ThresholdDPI

	7.3 Enumerations
	TPDFColorConversion
	TPDFCompression
	TPDFComprAttempt
	TPDFErrorCode
	TPDFFontType
	TPDFPermission
	TPDFStripType

	7.4 Supported Image Compression Types
	No Compression (Raw)
	DCT (JPEG)
	Flate (ZIP)
	LZW
	CCITT Fax Group 3 and 4
	JBIG2
	JPEG2000

	8 Samples
	8.1 Suggested Values to Optimize for the Web
	8.2 Suggested Values for Printing

