Dini Buses User FPGA Design
User Manual
5/12/2011
Rev 1.3

Table of Contents

R © Y= o 1T SO USPTR 5
Y - a1 (oo L LT gl [(=T - Lot TSR 5
2.1 Target Interface DEtailccoooiiiiiiiieee s 10

0 N I 1 =) YA] (ST 10
2.1.2 TArQEE REAUS ..ot bbbttt 10
2.1.3 GOLCNAS «..eeiiec ittt e e e et e e e e ara e 10

2.2 DMA INErface DLlcveoiiiiiiiiic et re e s reereas 10
2.2.1 DIMA WIS, oo ttiteetietiee ettt ettt sttt b et se et e et et st e b e e bt et e st e st et et e nbenbenbeane e 10
2.2.2 DIMA REAUSoeiteeitie ettt ettt ettt s et e e s b et e e b e e e e e e be e e be e be e aaaearaeareenraenraea 11
2.2.3 GOLCNAS .. et a e e e be e raeara e 12

3 CONTIGFPGA PCIE INTEITACE ..ottt bbb 13
3.1 CoNfIgFPGA SIMUIALION......cciiiiieiie e e e be e abe e e e s e e nreas 13

4 USEr INTErfaCe MOAUIES........coieeeiie ettt e s ta e e eneesneenteenaenneennas 17
4.1 1O MOAUIES/INTEITACES ...ttt e e e rreeres 17
4.2 N LY = B T] o 7 Lol RO OTRRPRO 18
4.3 D] o o O [1 (T o - Uot TP UP 19
| = 3 11 €1 = (= SRRSO 20

5 Description/LocCation OF FIIESccviiiiiiiie et 20
5.1 Files fOr CONTIGFPGAottt nbe s 20
5.2 FIIES TOr USEI FPGA ..ottt e e e a e be et e e et e e s reeanbeenreas 21
3070 A @0 1 110 1T o S 21
5.2.2 NIMB bbb bbbt R ettt ettt ne e 21
ST T ST 21
5.2.4 PCIE DDR ...ttt ettt bttt bbb bt r ettt nae et ne e 22

5.3 SIMUIALING The DESIGN......oouiitiiiiiieiieieee e bbbttt ettt sb e b 22

I O g LT g ot L (0TSSR 23

Table of Tables

TADIE 1 — CNANGE LLOG ...ttt b ettt b bbbt b et e bbbt n e 4
Table 2 — BaCKend ClOCKS, RESELS.......ccuiiiiiiieiiiiieieie ettt bbb 5
TabIE 3 — USEE SIGNAIS ... bbbttt ettt n et bbb 5
Table 4 — PCIE tohost/fromhost INTEITACEc.viiiiiiiieece st 14
Table of Figures

Figure 1 — EXample USEr TranSACHIONScccviiieiieeieciesieeiesteesteeseesseesieeaesseesteesessaesseessesneesssensesseensesneens 9
Figure 2 — DMA W BEGINNMINGovitiiiiiiitieiiei ettt nb b 10
Figure 3 — DIMA WIite TRIOtHHNGcocvviiecicceee e 11
Figure 4 — DMA WIIEE ENAING ...oouviiiiiieiiiee ettt nb e 11
Figure 5 - DMA Read BegINNING.......cccvciiiiiiiciesie ittt ae e teenae e snaeeesnee e 11
Figure 6 — DMA Read TRIOtHIING ...c.oooviieiiiiieee e 12
Figure 7 - DMA Read ENUING......c.oiiiiiiiieiie ettt et teente s e sneenneenee e 12
Figure 8 — Marvell-based Board CONfIQUIAtION.............cooiiiiiiiiiiiieee e 13
Figure 9 — Non-Marvell-based Board Configuration............ccccceeueiieieiiieiieeie s 13
Figure 10 — Connect Sim Model directly to pcie_INtErface.........coovvviiieiiiiiiiiie e 16
Figure 11 — Connect Sim Model to pcie_interface using intermediary 10 modulesccccccevveviernnnne. 17
Figure 12 — Detail of NMB eXample deSIgNoovoiiiiiiieiee e 18
FIGUIE 13 — INIMB BUS......ccuiiiticie ettt ettt b e be e eese e te e st e sse e teeneeara e seeneeaneesreennenneenns 19
FIGUIE 14 — PCIE DDR BUS ...ccuviiiiiitieitieie ettt sttt sttt st e be et e s e sbe et esre e be et e aneenbeeneeenee e 19
Lo UL T o = T = T SR 20

file:///C:\dncvs\FPGA\common\pcie\Documents\Reference%20Design%20User%20Manual.doc%23_Toc287013624

Table 1 — Change Log
Revision Name " Details
1.1 Brian Poladian Initial

1.2 Brian Poladian | Added detail for target/dma accesses
1.3 Brian Poladian | Added TSK_DMA READ/TSK DMA WAIT FINISH usage.

1 Overview

This document describes the interfaces, signals, and procedures necessary to understand and simulate
the Dinigroup FPGA Reference Design that interfaces to the backend of the Dini Group PCle-DMA
ConfigFPGA Design. There are several different physical bus connections that share this interface
module including NMB, SFB, and DDR-PCle. All of these are discussed here.

This document is not pertinent to the PCIe8T family of boards; please see
http://www.dinigroup.com/product/common/pcie8t_user_interface manual.pdf if working with a
DN9000K10PCle8T, DN9002K10PCle8T, DN9200K10PCle8T, DN7006K10PCIe8T,
DN7406K10PCIEST, or DNMEG_V5T_PCIE.

The Dinigroup PCle-DMA design includes BAR memory access and DMA engines. Using various
physical bus interfaces, the reference design connects the user’s design in the field FPGA to the
ConfigFPGA. If you have questions/comments/concerns, please email support@dinigroup.com .

2 Verilog User Interface

Here we discuss the signals in and out of the pcie_interface module. It is recommended that the user
instantiate this module to interface with the configFPGA. This module will connect to either a PCle
DDR, NMB, or SFB 10 module, which will convert the physical interface to the internal interface
described here. Direction of ports described is in relation to the pcie_interface module.

Table 2 — Backend Clocks, Resets

Signal Direction Description

Name

reset Input Main module reset. Input from user. Allows resetting the module from an
external source.

reset_out Output Reset to user module. When de-asserted this indicates that the interface is
ready to use.

user_clk Input User clock. Clocks logic on the user side of the interface. Can be sourced by
clk out.

clk out Output Clock sent to user. Clocks logic on the physical side of the interface.

Table 3 — User Signals

Signal Name Direction Description

Target Interface

target address[63:0] Output Byte address (bits 1:0 always 0)

target_address_valid Output One clock cycle strobe that indicates the target_address is
valid

target write data[63:0] Output Data.

target write be[7:0] Output Byte enables, bit 0 means data[7:0] is valid, etc.

http://www.dinigroup.com/product/common/pcie8t_user_interface_manual.pdf
mailto:support@dinigroup.com

target write enable Output Indicates valid write data on this interface.

target_write_accept Input Accepts the valid write data. Data is allowed to transfer
when target_write_accept and target_write_enable are active.
If connecting to blockRAM, this signal can be tied high.

debug_target_bar[2:0] Output Valid for reads and writes. Indicates which bar is being
accessed (bar number 1, 2, or 4). Onehot, so 3’b001 means
BARI1, 3’b010 means BAR2, and 3°’b100 means BAR4. To
treat target_address as a unified 64-bit address space, this
signals should be used for debug/informational purposes
only.

target read enable Output High on a target read request.

target request tag[3:0] Output Tag associated with this read request.

target_read_accept Input Acceptance of read request. Allows interface to “move on”
before the read data is returned by the user.
Target_read_enable and target_read_accept being high
signals “transfer” of request. If connecting to blockram, this
signal can be tied high.

target read data[63:0] Input Read Data to return to configFPGA.

target_read be[7:0] Output Byte enables, bit 0 means data[7:0] is requested, etc.

target_read_data_tag[3:0] Input Tag that accompanies this data. This value must match the
value provided on target_request_tag when
target read enable was high.

target read data valid Input Clock cycle pulse indicating read data is valid.

target_read_ctrl[7:0] Output Tag associated with a target read. Bit [0] indicates both
dwords are requested (non-dword aligned or quadword
transfer)

target_read_data_ctrl[7:0] Input Tag associated with a target read. User must save
target_read_ctrl[7:0] when target_read_enable is asserted and
return it on target_read data_ctrl[7:0]

DMAO Interface

dmaO_from_host_data[63:0] | Output Address, length, or data, depending on the state of
dma0_from_host_ctrl[5,0].

dmaO_from_host_ctrl[7:0] Output Bit meanings:

5, 0 indicates type of data.

3:2 are dword enables (when bit 3 is 1, 63:32 is valid, when
bit 2 is 1, 31:0 is valid)

4 indicates read request when 1, write “packet” when 0.

Bits 1, 6, 7 reserved.
Decode of 5,0:
01: 64 bit board dword address.

10: 24 bits of dword length [23:0]. Upper 40 bits are
reserved. For reads, user must return this many dwords of
data, properly aligned based on bit 0 of the dword board
address. For writes this information is provided but
informational only.

00: Data
11: Reserved/Undefined/Never Occurs.

dma0 from host valid Output Indicates valid data on data and ctrl signals.

dma0_from_host_advance Input This signal high and dmaO_from_host_valid high indicates
data “transfer”.

dmaO to host data[63:0] Input Data to return to PCI-E FPGA.

dmaO_to_host_ctrl[7:0] Input Bit meanings:
1:0 are dword enables (when bit 1 is 1, 63:32 is valid data,
when bit 0 is 1, 31:0 is valid data).
3: Indicates last data for this read request.
Bits 2, 4-7 are reserved.

dma0_to host valid Input When 1, data/ctrl is transferred into the module.

dmaO to host almost full | Output When high, user should stop writing data to the module soon.

DMAL1 Interface

Same as DMAO Same Same as DMAO, but ‘1’ in the name instead of ‘0’. Separate
interfaces for each DMA engine.

DMAZ2 Interface

Same as DMAO Same Same as DMAQO, but ‘2’ in the name instead of ‘0’. Separate
interfaces for each DMA engine.

User Interrupts

user_interrupts [?:0] Input A parameterizable number of user-level interrupts, which

will be combined into a single interrupt and sent to the PCle
core. Interrupts must be asserted until cleared by
configFPGA.

Figure 1 — Example User Transactions

clk_out

user_clk

reset_out

reset

target_address[63:0]

target_address_v:

target_write_accept

target_write_enahle

target_write_data[63:0]

target_write_be[7:0]

target_read_accept

target_read_enahle

target_read_data[63:0]

target_read_data_valid

target_request_tag[3:0]

target_read_data_tag[3:0]

dma0_from_host_data[63:0]

dma0_from_host_ctrl[7:0]

dma0_from_host_valid

dma0_from_host_advance

dma0_to_host_data[63:0]

dma0_to_host_ctrl[7:0]

dma0_to_host_valid

dma0_to_host_almost_full

BAR Read

BAR Write

[

00000000

Gl

00000000

| ooooooos

L

-

00 3

-

o

(=]

-

2.1 Target Interface Detail

211

2.1.3

Target Writes

target_write_accept must be asserted for the transaction to begin.
target_address_valid will assert when target_address is valid.
target_write_enable will assert when target_write_data and target_write_be are valid.

Target Reads

target_read_accept must be asserted for the transaction to begin.

target_address_valid and target_read_enable will pulse when target_address, target _read be,
target_request_tag, and target read_ctrl are valid.

target_read_data_valid should be assered when target_read_data, target_read_data_tag, and
target_read_data_ctrl are valid.

Gotchas

Target reads must complete within 4K clock cycles. The host processor will stall while the read
is outstanding, and to prevent a permanent system hang, the configFPGA will return a timeout
value after 4K clock cycles.

The exact amount of data requested should be returned. Returning too much or too little data
will result in unexpected/unsupported behavior.

The common use for the target interface is a register interface that can always accept accesses; it
is recommended that target_write_accept and target_read_accept always be asserted.

Only one target read is issued at a time, and the host processor will hang while it waits for a
response — it is encouraged to use this interface for low-latency accesses.

target_request_tag and target_read_ctrl should be returned as target_read request_tag and
target_read_data_ctrl.

2.2 DMA Interface Detail

221

DMA Writes

Figure 2 — DMA Write Beginning

dma_from_host_valid is asserted at start of transfer, and remains asserted while transfer
data/control is active.

64-bit address is transferred on first valid cycle (dma from host ctrl[5,0]1=2"b01)
dma_from_host_ctrl[4] should be O to indicate write.
Length data is transferred on second valid cycle (dma_from host ctrl[5,0]=2"b10).

10

e Data is transferred from third valid cycle onward.

Figure 3 — DMA Write Throttling

e dma_from_host_advance allows the write to continue; deasserting this signal prevents write data
from advancing.

Figure 4 - DMA Write Ending

[B dma_ _to | hnst data
B4 dma_to_host_ctrl

4 dma_to_host_valid

4 dma_to_host_almost_ful

e The write transaction is considered officially over at the stat of the next transaction (read or
write, read pictured here); otherwise the write may continue when dma_from_host_valid is
reasserted.

¢ Note that the last cycle of data may have a different dword enable value (pictured above)
depending on the length of data to be transferred.

2.2.2 DMA Reads

Figure 5 - DMA Read Beginning

[.. [[pizsdserssabede7
i Tid Joc

I:)333333333333333333333333333

11

o dma_from_host valid is asserted at start of transfer, and remains asserted while transfer
data/control is active.

64-bit address is transferred on first valid cycle (dma_from_host ctrl[5,0]=2"b01).
dma_from_host_ctrl[4] should be 0 to indicate write.

Length data is transferred on second valid cycle (dma_from host ctrl[5,0]=2"b10).
Return data will begin some time later — there is no latency requirement on reads.
dma_to_host_valid will be asserted when read return data is valid.

Figure 6 — DMA Read Throttling
reset
4 dock

B4 dma_from_host_data

e dma_to_host_valid shoud be deasserted when read return data is invalid; return data does not
need to be continuous.

e Ifdma_to_host_almost_full is asserted, read return data should not advance and
dma_to_host_valid should be deasserted.

Figure 7 - DMA Read Ending

dma_from_host_valid is deasserted after last valid data.
e dma_to_host_ctrl[3] should be asserted on last valid data.

2.2.3 Gotchas

o Allowable latencies for throttling are dependent on the depth of the FIFOs used in the design and
the actual latencies are dependent on the pipeline length of signals. Ideally, the response to
deasserting from_host_advance or asserting dma_to_host_almost_full would be immediate and
would thus require a smaller FIFO depth. Longer pipeline logic requires deeper FIFOs.

e dma_from_host_advance needs to be asserted for a DMA transfer to start.

DMA reads should return the exact amount of data requested.

12

3 ConfigFPGA PCle Interface

On Marvell-based Dinigroup boards, the configFPGA connects via PCle to the Marvell; the host
computer is not able to directly see the configFPGA’s DMA engines or register space. The
software/driver interface to the configFPGA runs on the Marvell, and a separate set of software/drivers
runs on the host PC to communicate with the Marvell (via PCle, USB, or Ethernet). For more
information, please see the EMU and DiniCMOS documentation.

Figure 8 — Marvell-based Board Configuration

UsB 1
configFPGA
Marvell PCle x4
Ethernet j
PCle x4
| PCle Fingers |

On non-Marvell boards (and additionally on Marvell-based boards with alternate configuration options),
the configFPGA is connected directly to the PCle fingers, and its BAR space and DMA engines are
directly accessible from the host PC. For more information, please see the AETest documentation.

Figure 9 — Non-Marvell-based Board Configuration

configFPGA

PCle x4

PCle Fingers

3.1 ConfigFPGA Simulation

The manner in which the configFPGA connects to the field (user) FPGAs varies depending on the
specific Dinigroup board. Each physical interface has a supplied 10 module that connects to the

configFPGA across a common bus interface. The common bus interface is described below:

13

Table 4 — PCIE tohost/fromhost Interface

‘ Direction ‘ Description

Signal Name
clk Output Main clock
clk_2x Output 2x main clock.
clk 5x Output 5x main clock; serial clock on NMB.
reset Output Reset supplied to user design.
pcie_fromhost data[63:0] Output Muxed target/DMA address/control/data
pcie_fromhost_transaction_type[3:0] | Output [0] = Target transaction

[1] = DMAO transaction

[2] = DMAL transaction

[3] = DMAZ2 transaction
pcie_fromhost_isaddress[1:0] Output [0] = Address / start of transaction

[1] = end of transaction
pcie_fromhost_info[1:0] Output [0] = Read transaction / write_n

[1] = 64-Dbit target access —OR-

DMA length data

pcie_fromhost_valid[1:0] Output [0] = data[31:0] valid

[1] = data[63:32] valid
pcie_fromhost_almost_full[4:0] Output [0] = Target interface almost full

[1] = DMAO interface almost full

[2] = DMAL interface almost full

[3] = DMAZ2 interface almost full
pcie_tohost data[63:0] Input Muxed target/DMA data
pcie_tohost_transaction_type[3:0] Input [0] = Target transaction

[1] = DMAO transaction

[2] = DMAL transaction

[3] = DMAZ2 transaction
pcie_tohost_info[4:0] Input When Target transaction:

[0] = 64-Dbit access

[4:1] = Target return tag

14

When DMA transaction:
[0] = data[31:0] valid

[1] = data[63:32] valid
[2] = DMA demand mode
[3] = DMA EOF

pcie_tohost_valid[1:0] Input [0] = data[31:0] valid
[1] = data[63:32] valid
pcie_tohost_almost_full[4:0] Input [0] = Target interface almost full

[1] = DMAQO interface almost full
[2] = DMAL interface almost full
[3] = DMAZ2 interface almost full

This internal interface is subject to change as new features are added, and the signal definitions listed

here should not be considered static.

It is NOT recommended to use this interface directly. This interface is intended to connect directly to

the pcie_interface module, which will translate the tohost/fromhost interface into the recommended user

interface, with separate ports for target, DMAO, DMAL, and DMAZ2, as described in section 2.

15

Figure 10 — Connect Sim Model directly to pcie_interface

tb_top

pcie_config
sim_model

—pcie_fromhoste

-&-pcie_tohost—

pcie_interface

——target_fromhost—»

F——dma0_fromhost—

——dmal_fromhost—»

——dma2_fromhost—»

4——target_tohost

<¢——dma0_tohost:

-¢——dmal_tohost

4——dma2_tohost

user_design

If the user desires to include the physical interface in simulation, then the 10 modules will be placed

between the pcie_config_sim_model and pcie_interface modules. The pcie tohost/fromhost bus will not

be modified by the physical 10 modules.

16

Figure 11 — Connect Sim Model to pcie_interface using intermediary 10 modules

pcie_config
sim_model

nmb_io

—opcie_fromhostm

ISERDES

|

-a—pcie_tohost—

OSERDES |

NMB_FROMHOST-

|

NMB_TOHOST—

——target_fromhost—m

dma0_fromhost—m-

dmal_fromhost—m

dma2_fromhost—

l-——target_tohost

tb_top
nmb_user_io pcie_interface
™| ISERDES Hpcie_fromhoste]
— OSERDES pcie_tohost—

[~¢——dma0_tohost

l-——dmal_tohost

l-——dma2_tohost

user_design

4 User Interface Modules

4.1

IO Modules/Interfaces
Each connection between the configFPGA and a field FPGA uses some type of physical interface, eg

NMB, DDR-PCle, SFB, etc. Each one of those physical interfaces has a related set of IO modules, one
for the configFPGA and one for the user FPGA. A wrapper is provided for the user IO module and the

pcie_interface module so that the user can have a single module that translates between the physical
signals and the recommended Target/DMA interface. An example top-level design is also provided

showing how to connect a user design to the interface module.

17

Figure 12 — Detail of NMB example design

pcie_nmb_user_fpga

nmb_user_interface user_design

nmb_user_io pcie_interface

——target_fromhost—»

——NMB_FROMHOST—»| |SERDES ocie_fromhoste] —dmaOl_fi'0mh|OSt—>

——dmal_fromhost—m

——dma2_fromhost—m

——target_tohost

——dma0_tohost:

-+——NMB_TOHOST OSERDES pcie_tohost—

——dmal_tohost

——dma2_tohost:

4.2 NMB Interface

The most common bus architecture for the Marvell-based boards uses the NMB bus. NMB is a high-
speed LVDS SERDES point-to-point bus for communication between the configFPGA and the user
FPGAs. NMB is not shared with configuration signals. NMB uses 10 signals (8-bit data + 1-bit control +
1 source-synchronous clock) in each direction with a maximum speed of 1 Gbps per signal, for a total

data throughput of 8Gbps in each direction (full-duplex). Each user FPGA has its own independent
NMB bus.

18

Figure 13 — NMB Bus

4.3 DDR-PCle Interface

configFPGA

NMBO—|

User FPGA A

NMB1—

User FPGA B

——NMBx—

User FPGA X

The PCle DDR bus is a 64-bit data + 13-bit control + source-synchronous clock DDR bus. Because of

the high pin count, there is usually only one of these busses attached to the configFPGA, and it is

commonly combined with SFB interfaces on Dinigroup boards. The PCle DDR bus will run ~100Mhz,
for a total data throughput of 6.4 Gbps in each direction (full-duplex).

Figure 14 — PCle DDR Bus

configFPGA

—PCle DDR—

User FPGA

19

4.4 SFB Interface

The SFB bus is a 8-bit data + 4-bit control + global clock bus that shares its signals with the SelectMAP
configuration bus. Because of its low pin count, it is ideal to combine with the PCle DDR bus on
Dinigroup boards. Multiple FPGAs can be connected to a single SFB bus, but communication is half-
duplex, and so only one FPGA may communicate on the bus at a time. The SFB bus will run ~60MHz,
for a total data throughput of 480 Mbps.

Figure 15 - SFB Bus

User FPGA
FOO

User FPGA
FO1

SFBO

User FPGA
FOX

configFPGA

User FPGA
F10

User FPGA
Fl11

User FPGA
F1X

SFB1

5 Description/Location of Files
All file locations are relative from the FPGA_Reference_Designs folder in the board support package.

5.1 Files for configFPGA

common/pcie/pcie_dma/pcie_fpga/testbench/pcie_config_sim_model.v
Simulation model of the configFPGA design. Tasks are used for stimulating the user interfaces;
see section 5.3 for further description. The testbench is configurable to connect to a user-
specified number of interfaces.

common/pcie/pcie_dma/pcie_fpgal/testbench/pcie_board.v
Board-level testbench connections between configFPGA, appropriate IO modules, and the user
design.

common/pcie/pcie_dma/pcie_fpga/testbench/tb_top.v
Top-level testbench that instantiates the board-level testbench and calls the Target/DMA tasks.

common/pcie/pcie_dma/pcie_fpga/testbench/bar_tests.v
Example list of Target interface tests to run.

common/pcie/pcie_dma/pcie_fpga/testbench/dma_tests.v
Example list of DMA interface tests to run.

common/NMB/nmb_io.v
20

NMB 10 module; connects to nmb_user_io/nmb_user_interface modules.

common/SuperFastBus/sfb_io.v
SFB 10 module; connects to sfb_user_io/sfb_user_interface modules

common/pcie/pcie_dma/user_fpga/pcie_ddr_io.v
PCIE DDR 10O module; connects to pcie_ddr_user_io/pcie_ddr_user_interface modules.

5.2 Files for User FPGA

5.2.1 Common

common/pcie/pcie_dma/user_fpga/pcie_interface.v
Translates between pcie tohost/fromhost interface and recommended Target/DMA interface.

common/pcie/pcie_dma/user_fpga/pcie_user_design.v
BlockRAM attached to Target and DMA interfaces. User should use transaction logic from this
design.

common/pcie/pcie_dma/user_fpga/pcie_dma_blockram.v
Condensed version of pcie_user_design that attaches BlockRAM to a single DMA engine.

common/pcie/pcie_dma/user_fpga/pcie_defines.v
Misc. defines used in the pcie_user_design module.

5.2.2 NMB

common/pcie/pcie_dma/user_fpga/pcie_nmb_user_fpga.v
FPGA-level example design that connects the nmb_user_interface and pcie_user_design
modules.

common/NMB/nmb_user_interface.v
Wrapper for the nmb_user_io and pcie_interface modules.

common/NMB/nmb_user_io.v

Translates physical NMB 10 signals to internal tohost/fromhost interface.

5.2.3 SFB

common/pcie/pcie_dma/user_fpga/pcie_sfb_user_fpga.v
FPGA-level example design that connects the sfb_user_interface and pcie_user_design modules.

common/SuperFastBus/sfb_user_interface.v
Wrapper for the sfb_user_io and pcie_interface modules.

common/SuperFastBus/sfb_user_io.v
Translates physical SFB 10 signals to internal tohost/fromhost interface.

21

5.2.4 PCle DDR

common/pcie/pcie_dma/user_fpga/pcie_ddr_user fpga.v
FPGA-level example design that connects the pcie_ddr_user_interface and pcie_user_design
modules.

common/pcie/pcie_dma/user_fpga/pcie_ddr_user_interface.v
Wrapper for the pcie_ddr_user_io and pcie_interface modules.

common/pcie/pcie_dma/user_fpga/pcie_ddr_user_io.v
Translates physical PCle DDR 10 signals to internal tohost/fromhost interface.

5.3 Simulating the Design

See section 3 for the connections necessary to attach the configFPGA simulation model to the user
design. After the connections are established, the tasks in the configFPGA simulation model are used to
initiate transactions to the user design.

TSK_TARGET_WRITE : 32- or 64-bit write to the target interface
input [63:0] address : address to write to

input [31:0] bar : BAR to simulate direct PCle access — set to 0x1 if only simulating NMB
input [63:0] data - data to write
input [1:0] dword_enable . enable for write data

TSK_TARGET_READ : 64-bit read from target interface
input [63:0] address : address to read from
input [31:0] bar : BAR to simulate direct PCle access — set to 0x1 if only simulating NMB
output [63:0] data : read data returned

TSK_DMA_WRITE : Write data from file to DMA interface
input [31:0] engine : 0x0, Ox1, 0x2; DMA engine to use
input [63:0] address : starting address of transfer
input [255:0] file_name : source file for DMA transfer data

TSK_DMA_READ : Read data from a DMA interface
input [31:0] engine : 0x0, Ox1, O0x2; DMA engine to use
input [63:0] address : starting address of transfer
input [23:0] length : length of DMA read (num dwords)

TSK_DMA_WAIT_FINISH : Wait for all DMA transfers to finish

Note: To properly simulate hardware behavior, only one DMA read may be issued to a DMA
engine at a time. TSK_DMA_READ will not wait for all DMA read data to return;
TSK_DMA_WAIT_FINISH needs to be called between successive DMA reads to a given engine.

22

TSK_DEMANDMODE_DMA : Set up the reference design to initiate DMA transfers

input [31:0] engine

input [7:0] dma_interface
input [63:0] address

input [31:0] tag

input [4:0] first_be
input [4:0] last_be
input [23:0] size

: 0x0, 0x1, Ox2; DMA engine to use

: 0xX0 — OXFF; Upper byte of board address
: host address for DMA transfer

: tag ID for DMA transfer

- first word byte enable

. last word byte enable

. length of DMA transfer

input direction_tohost : DMA direction; 0x0=fromhost, Ox1=tohost

Note: TSK_DEMANDMODE_DMA requires the use of the full reference design provided in

pcie_user_design.v. Users implementing their own logic to initiate DMA transfers will need to
modify this function accordingly.

6 Other Features

If you have a new feature request or feel that an essential function is missing, please contact

support@dinigroup.com .

23

mailto:support@dinigroup.com

	Overview
	Verilog User Interface
	Target Interface Detail
	Target Writes
	Target Reads
	Gotchas

	DMA Interface Detail
	DMA Writes
	DMA Reads
	Gotchas

	ConfigFPGA PCIe Interface
	ConfigFPGA Simulation

	User Interface Modules
	IO Modules/Interfaces
	NMB Interface
	DDR-PCIe Interface
	SFB Interface

	Description/Location of Files
	Files for configFPGA
	Files for User FPGA
	Common
	NMB
	SFB
	PCIe DDR

	Simulating the Design

	Other Features

