CL-UTILS ROM

41CL Extensions Module.

User's Manual and Quick Reference Guide

.—" r- Ny

©Photo By J(.i-r'gen Keller, 2011.

Programmed by Angel M. Martin

December 2011

This compilation

Copyright © 2011 Angel Martin

Published under the GNU software licence agreement.

Original authors retain all copyrights, and should be mentioned in writing by any part utilizing this
material. No commercial usage of any kind is allowed.

Screen captures taken from V41, Windows-based emulator developed by Warren Furlow.
See www.hp41l.org

CLWRITE Source Code written by Raymond Wiker.

Cover photo © Juergen Keller, 2011.
Inside photos © Geoff Quickfall, 2011

Acknowledgment.- This manual and the CLUTILS module would obviously not exists without the
41CL. Many thanks to Monte Dalrymple for the development of the amazing CL board.

© Angel M. Martin Page 1 of 29 12/19/2011

http://www.hp41.org/�

CL-UTILS Module
Extension Functions for the 41CL

Table of Contents.

1. Introduction.
1.1. A word of Caution. 5
1.2. The Functions at a glance 6

2. The functions in detail

2.1 Function Launchers 7
2.2 Catalogues and CATalogs 9
2.3 Interrogating the MMU 12
24 A wealth of alLibrary 13

3. HEPAX and Security
3.1. Configuring the HEPAX system 14
3.2. Security Functions 16

4. Advanced Territory
4.1. Using Page #4 17
4.2. Calculator Flash Backup & Restore 17

5. Other Extensions
5.1 Alpha and Display Utilities 19

5.2 Other Utilities 20
5.3 Farewell.

6. Appendixes. 21

© Angel M. Martin Page 2 of 29 12/19/2011

© Angel M. Martin Page 3 of 29 12/19/2011

CL-UTILS Module
Extension Functions for the 41CL

1. Introduction.

Without a doubt the 41CL can be considered in many ways to be the pinnacle of the HP-41 system. It
comes with a well thought-out function set to manage its capabilities, from the basic to the more
adventurous ones — which have inspired the writing of yet further extensions to that capable toolset.

This collection is designed to enhance and complement the YFNS function set, providing easier access
to the many powerful capabilities of the 41CL platform. Some are function launchers, grouping several
functions by their area of functionality into a single, prompt-driven one — like it's the case for the
Plug/Unplug functions, the Baud rate, TURBO and MMU settings functions. A launcher of launcher sits
atop these, providing quick access to 27 YFNS functions from a single key assignment.

Some other extend the functionality by providing new features and more convenient alternative to
manual tasks. Examples of these are:

- A fully-featured ROM library CATALOG system, allowing direct plugging into the port of choice
- The Page Plug functions (alternative to the Port ones), including routines to handle page #4.
- Programs to backup and restore the complete calculator contents to/from Flash

- HEPAX configuration and set-up, making the HEPAX integration a simple and reliable affair.

- Security functions to password-protect your machine from prying hands.

Other housekeeping functions roundup the set, making for a total of 41 functions tightly packed into a
4k ROM. This is a design criterion, as the small footprint of the module makes it ideal to share with
other utility packs, most notoriously the CCD OS/X (or its alter-ego AMC 0OS/X) for the ultimate control
- S0 save some small exceptions there is no duplication between these two.

A word of caution.

As wise men remind us all, “with power comes responsibility’. Indiscriminate usage of some of these
functions can have unpleasant consequences, ranging from unexpected results and easy-to-recover
machine lock-ups to more serious ones involving loss of Flash sectors or even electrical damage in the
worst scenario. Functions have some built-in protection to ensure that they're used properly, but they
are not absolutely foolproof in that such protection can always be circumvented. So beware, and as
general rule “/f you don't understand something, don't use it”.

To help you with this the more dangerous functions are marked with the WARNING sign all
throughout this manual. Avoid them if you're not absolutely sure that you know what they are for, and
fully understand their operation. And always, always have fresh batteries on when using the Flash
backup!

It had to be said — so now that we got it out of the way we're ready to dive into the CL UTILS
description and usage example. May you have a nice ride!

© Angel M. Martin Page 4 of 29 12/19/2011

Function index at a glance.

And without further ado, here’s the list of functions included in the module:

Function Description Inputs Output

1 |[CLUTLS 2E Module Header n/a n/a

2 [?MMU MMU Status Yes/No None 'YES/NO, skip if false

3 [ECLF_ Global Launcher Prompts "B:M:P:T:U" Launches selected Launcher

4 BAUD _ Baud functions launcher Prompts "1:2:4:9" Launches selected function

5 |[CLLIB _ CL ID Library Prompts "A-Z" Starts listing at selected letter
6 [MMU _ MMU functions launcher Prompts "C:D:E:?" Launches selected function

7 MMUCAT MMU Catalogue None Sequential list of MMU Entries
8 |PLUGG _ Plug Page Prompts for page Plugs ROM in page

9 |PLUGG? _ Page Location MMU Prompts for page content of MMU entry for page
10 PLUGGX Plug Page by X Page# in X Plugs ROM in page

11 |PLG#4 _ Page#4 Plug Prompts "F:L:S" Selected ROM plugged

12 PLUG _ PLUG functions launcher Prompts for location ROM with ID in ALPHA is plugged
13 |ROMLIB ROM Library Displays all ROMs Sequential list of ROM ID's

14 |UPG#4 Clears MMU entry for page #4 |None MMU entry cleared

15 [TURBO _ TURBO functions launcher Prompts "X:2:5:1:0:,:?" Launches selected function

16 [UPLUG _ UPLUG functions Launcher Prompts for location Location is removed from MMU
17 |Y1SEC One-second delay None 1-sec delay

18 [YBSP ALPHA back Space String in ALPHA Deletes rightmost character

19 [YCL> Clears string from ">" String in ALPHA Clears from ">" char to the right
20 |YCL- Clears string from hyphen String in ALPHA Clears from "-" char to the right
21 |YFENZ? Page location of YNFS None Location in MMU

22 |YINPT _ Y Input None HEX entry plus control chrs.

23 |YRALL Y-Read-ALL None Reads Calculator/MMU from Flash
24 [YSWAP> Swaps both sides of ">" String in ALPHA Alpha swapped around ">"

25 [YSWAP- Swaps both sides of hyphen String in ALPHA)Alpha swapped around "-"

26 [YWALL Y-Write-ALL None \Writes Calculator/MMU to Flash
27 FSYS/IEXT Section Header n/a n/a

28 |ADRID Address ID Flash address in Alpha ROM ID in Alpha

29 [BFCAT Buffer Catalogue None Shows present buffers

30 [BLCAT Block Catalogue None Lists block contents

31 [CDE Code HexCode in ALPHA NNN in X

32 |PCD Decode NNN in X Hex Code in Alpha

33 |DTOA Display to ALPHA Display contents Text in Alpha

34 |DTST Display Test None Shows display all lit up

35 [HEPINI HEPAX FileSys Init # pages in X, first page in Y |Initializes HEPAX File System
36 ['HPX4" HEPAX FileSys Init - CL None Configures 4k HEPAX on CL
37 ['HPX8" HEPAX FileSys Init - CL None Configures 8k HEPAX on CL
38 ['HPX16" HEPAX FileSys Init - CL None Configures 16k HEPAX on CL
39 [SECURE Enable password lock None Sets SECURE mode ON

40 |UNLOCK Disable password lock IAsks for password Sets Secure mode OFF

41 [XPASS Change password IAsks old/new passwords Password is changed

Functions in BLUE are all in MCODE.
Functions in BLACK are MCODE entries that call FOCAL programs.
Functions in “QUOTES” italics are FOCAL programs.

Functions in RED denote prompting entries.

© Angel M. Martin

Page 5 of 29

12/19/2011

2. The functions in detalil.

The following sections of this document describe the usage and utilization of the functions included in
the CL-UTILS module. While some are very intuitive to use, others require a little elaboration as to
their input parameters or control options, which should be covered here.

L e | “ i e Y]
2.1. - Launchers L LUIS-EHF B ..DF'. T

2.1 Function Launchers.

The table below lists the launchers by function groups:

Index | Function | Warnings Description

1 BAUD None Calls BAUD12, BAUD24, BAUD48, or BAUD96

2 MMU None Calls MMUDIS, MMUEN, or MMU?

3 TURBO None Calls the corresponding TURBO xx function

4 PLUG Light Prompts for port location. Enter L/U first (when needed)
5 UPLUG Light Prompts for port location. Enter L/U first (when needed)
6 XCLF None Launcher of Launchers -> invokes any of the five above

When you assign XCLF to any key that alone will give you access to more that 25 functions from that
single key — an effective way to make it compatible with other existing key-assignments, saving
memory (KA registers) and time. So go ahead and get comfortable with that arrangement as your
baseline.

Prompting functions use a technique called partial key entry, dividing the data entry in two (or more)
parts. The keyboard is also re-defined, in that just those keys corresponding to the appropriate
options are active. The cues in the prompt will offer you indication of which keys are active on the
keyboard, and typically are intuitive enough to figure out in each case.

JRU D 249 _ MMU CIDED?
USER i USER i
TRIA X258, _
HER 4 options for: none, 2x, 5x, 10x, 20x, 50x, and ?

Use “0” for 20x, Radix for “50” - as 2 and 5 are already taken for 2x and 5x speeds.

In general all launchers behave in a similar manner.

- The Back Arrow key will either cancel out entirely or remove partial entries;

- Non-active keys will blink the display and maintain the prompt

- Holding down the last key briefly shows the invoked function name — visual feedback.
- This will be followed by NULL if kept depressed long enough — last chance to bail out.
- Launchers are not programmable per-se — but:

- They can be used in PRGM mode to enter the called-upon function as a program line.

© Angel M. Martin Page 6 of 29 12/19/2011

The PLUG and UPLUG launchers don't offer any cues in the prompt — and therefore deserve special
consideration. The picture below shows the convention for the external pages of the 41:

Port 1 Port2
Upper Page (%-hex) Upper Page (B-lex)
Lower Page (8-hex) Lower Page (A-hex) I
o = —_—
Port 3 Port 4 -’
Upper Page (D-hex) Upper Page (F-hex)
Lower Page (C-hex) Lower Page (E-hex)

Valid entries for the prompt are:

1, for port 1 — comprising pages 8 and 9
2, for port 2 — comprising pages A and B
3, for port 3 — comprising pages C and C
[L], to flag a LOWER half-port condition, followed by the port number
[U], to flag an UPPER half-port condition, followed by the port number

] [i i [] []
PLLIIJ [- LIPI_LIIJ [
USEFR 0 ISEFR 0

For the (U)PLUG cases the prompt completes either when the number 1-4 or the letter P-H is
entered, and the corresponding function is launched.

For half-port (or 4k) modules use the L/U keys first in the (un)plugging prompts, then the port
number. These keys act as toggles when pressed sequentially, replacing each other in the display
upon repeat usage. Also during these events pressing BackArrow removes the half-port condition and
returns to the main prompt.

Remember that plugging a module into the “wrong” port location can create minor issues (or major
havoc) if you're overwriting some/part of the machine’s configuration. A good example is overwriting
YFENS itself, or a HEPAX RAM block. Always make sure the destination is safe — using BLCAT, the
standard CAT2 or better yet the CCD CAT'2.

Also valid entries are :

[H], for page #7 — the HP-IL reserved page
[P], for page #6 -- the Printer reserved page

Caution.-

Both PLUG/UNPLUG offer all the 14 available choices in YFNS, including (U)PLUGP and (U)PLUGH.
Exercise extra caution with those two locations, as they may be used by system extensions like Printer
or HP-IL. Page #6 in particular has more strict demands on the ROM layout that makes it non-suitable
for the majority of ROMS. Also because pages #6 and #7 on the CL don'’t support bank-switching,
they unfortunately aren’t a good place for the HEPAX ROM.

© Angel M. Martin Page 7 of 29 12/19/2011

2.2. - Catalogues

USER 1]

2.2.

CATALOGS, CATALOGS...

The additional CATalogs are as follows:

Index | Function | Warnings Description

1 BLCAT None Borrowed from the HEPAX ROM — shows the 4k-blocks contents.
2 BFCAT Light Lists those elusive buffers present in the system.

3 MMUCAT | None Lists the MMU mappings into each block.

4 ROMLIB | Light List the ROM Library ID’s available in Flash.

5 CLLIB _ Light Same as above with an Alpha prompt for beginning section

If you're like me you'll like to have good visibility into your machine’s configuration. With its ROM
Library and MMU settings the CL adds a few dimensions to the already rich 41CX system — and the

goal is to have equivalent catalogue functions to review the status and options available.

Each CATalog has its own idiosyncrasies, but in general they feature single-step modes, and have “hot
keys” to allow for specific actions — like deletion of buffer, navigation shortcuts, and direct plugging of
ROMs into a port. This makes chores like searching for the correct syntax and plugging a module from
the library a trivial task.

Both BLCAT and BFCAT are not strictly related to the CL, and will also work on a standard 41.
Obviously MMUCAT is only meaningful for a CL machine, and will return all zeroes if the CL board is
not installed.

CATalog functions are notoriously complex and take up a significant amount of space — yet you'd
hopefully agree with me that the usability enhancements they provide make them worthwhile the
admission price.

| BLCAT

| Block Catalog

| Author: VM Electronics | Source: HEPAX Module

Lists the first function of every non-empty ROM block (i.e. Page), starting with Page 3 in the 41 CX or
Page 5 in the other models (C/CV). The listing will be printed if a printer is connected and user flag 15
is enabled.

Non-empty pages will show the first function in the FAT, or “NO FAT”if such is the case
Empty pages will show the “NO ROM” message next to their number.
Blank RAM pages will show “QUASI RAM”, indicating their RAM in ROM space character.

No input values are necessary. The displaying will be halted while any key (other than R/S or ON) is
being depressed, resuming its normal speed when it's released again.

© Angel M. Martin

Page 8 of 29

12/19/2011

BFCAT Buffer CATalog Hot keys: R/S, SST, SHIFT, D, H
[D] Deletes Buffer In manual mode
[H] Decodes Header register In manual mode

This function is very close to my heart; both because it was a bear to put together and because the
final result is very useful and informative. It doesn't require any input parameter, and runs
sequentially through all buffers present in the calculator, providing information with buffer id# and its
size.

41 buffers are an elusive construct that is mainly used for 1/0 purposes. Some modules reserve a
memory area right above the KA registers for their own use, not part of the data registers or program
memory either. The OS will recognize those buffers and allow them to exist and be managed by the
“owner” module — which is responsible to claim for it every time the calculator is switched on.

A good example is the Time module, which uses it to store the alarms data.

Each buffer has an id# number, ranging from 1 to 14. Only one buffer with a given id# can exist, thus
the maximum number present at a given time is 14 buffers — assuming such hoarding modules would
exit — which thankfully they don't.

The table below lists the well-known buffers that are possibly to be found on the system:

Buffer id# Moduole/Eprom Reason

1 Dawvid Assembler MCODE Labels already existing
2 David Assembler MCODE Labels referred to
3 Eramco RSU-18 ASCI file pointers
4 Eramco RSU-14 Data File Pointars
5 CCD Module, Advantage Sead, Word Size, Matrix Name
& Extended IL {Skwid} Accessory |ID of current device
T Extended IL {Skwid} Print Cols, number & width
8 Complex Stack Angel Martin's 41Z ROM
10 Time Module Alarms infarmation
11 Pletter Module Data and barcode parameters
1z IL Development, CMT-200 IL buffer and monitering
13 CMT-300 Status Info
14 Advantage INTEG & SOLVE scratch
15% Mainframe Key Assignments

*} K& area isn't really a buffer.

For instance, plug the AOSX module into any available port. Then type PI, SEED, followed by BFCAT
to see that a 2-register buffer now exists in the 41 1/0 area — created by the SEED function.

BFE5 sac

UZER o

id# = 5, buffer size =2, properly allocated.

Suppose you also change the default word size to 12 bits, by typing: 12, WSIZE. This has the effect
of increasing the buffer size in one more register, thus repeating BFCAT will show:

BFE85 Sd 3

UZER a0

id# = 5, buffer size = 3, properly allocated.

© Angel M. Martin Page 9 of 29 12/19/2011

Say now that you also plug the 41Z module into a full port of your CL. Just doing that won't create the
buffer, but switching the calculator OFF and ON will — or alternatively execute the -HP 417 function.
After doing that execute BFCAT again, then immediately hit R/S to stop the listing of the buffers and
move your way up and down the list using SST and BST. You should also see the line for the 41Z
buffer, as follows:

Ira8 g icd

USER 1]

id#=8, buffer size = 12, properly allocated.

If the module is not present during the CALC_ON event (that’s to say it won't re-brand the buffer id#)
the 41 OS will mark the buffer space as “reclaimable”, which will occur at the moment that PACKING
or PACK is performed. So it's possible to have temporary “orphan” buffers, which will show a question
mark next to the id# in the display. This is a rather strange occurrence, so most likely won't be shown
— but it’s there just in case.

BFCAT has a few hot keys to perform the following actions in manual mode:

1. R/S stops the automated listing and toggles it with the manual mode upon repeat pressings.
2. [D] - for instant buffer deletion — there’'s no way back, so handle with care!

3. [H] - to decode the buffer header register. Its structure contains the buffer ID#, as well as
some other relevant information in the specific fields - all buffer dependent.

[SHIFT] to flag the listing to go backwards — both in manual and auto modes.

SST and BST to move the listing in manual mode, until the end (or beginning) is reached

6. BackArrow to cancel out the process and return to the OS.

ok

Like it is the case with the standard Catalogues, the buffer listing in Auto mode will terminate
automatically when the last buffer (or first if running backwards) has been shown. In manual mode
the last/first entry will remain shown until you press BackArrow or R/S.

Should no buffers are present, the message "NO BUFFERS” will be shown and the catalog will
terminate. Note also that the catalogue will not be printed - being shown only on the display.

Photo courtesy of Geoff Quickfall.

© Angel M. Martin Page 10 of 29 12/19/2011

2.2.3. Interrogating the MMU.

MMUCAT MMU CATalogue No inputs

ADRID Gives ROM id# from ADR Expects string in Alpha

FYNZ? FYNS Location Finder No inputs

PLUGG? ROM id# in page by X Prompts for page# Valid inputs are 4, 6-F

MMUCAT is really a FOCAL program that drives the function ADRID, the real engine behind it — not
to be confused with the capital city of a country | know quite well. ADRID is obviously
programmable. The idea is simple: produce a list of the MMU mappings into the different pages,
showing either the ROM id# or the address (Flash or SRAM) currently mapped to the port.

A loop is executed starting on page #4, and up until page #F. Each iteration retrieves (pokes more
appropriately) the address written into the corresponding MMU register, then searches it against the
internal ROM id# table written into the CL_UTILS module. More about this later.

Note that full-port modules will return the ROM id# attached to the lower half, and the address to the
upper half. RAM MMU entries will return the corresponding RAM address.

While similar to the CAT2 concept, this really has an MMU-oriented perspective of things, and thus is
purely a 41 CL feature — it'll render all entries zero if used on a “regular” 41. The program listing is
rather simple — as ADRID does all the weight lifting under the hood:

(04 LBL "MMUCAT" | 20 [LBLOD |

02 "0-0000" 21 "B040" prefix

03 ASTOX 22 XTOA

04 |52 g 23 ARCLY page#

05 XEQOD 24 YPEEK read MMU rg,
06 CLx 25 Y SWAP- swap around ="
07* 54,057 "6"to 9" |26 | YCL- delete from ™"
(08 LBL 02 | 27 YBSP back space

09 XEQ 00 25 ATOX

10 156G X next 29 RDN

11 GTO 02 20 ADRID decode address
12 CLX 31 XKTOA

13* 65,07 "Ato F" (32 =
[14 LBL 01 | 33 |3

16 [XEQ 0D 34 AROT

16 156G X next 35 RDM

17 GTO 01 36 AVIEW show ID#

18 CLD 37 PSE pause

19* RTN 38 END

A related function is YFNZ?, which returns the page number the YFNS is currently plugged in. This
can come very handy in your programs to avoid overwriting it with other modules — as we’ll see in the
HEPAX configuration routines.

Another related function is PLUGG? - It interrogates the MMU to find out which module is plugged
into a given page — the input to the function placed in X. This is all page-driven, and not based on
the port number. There is no restriction in the input to the page number, however the returned values
for pages 0,1,2,3, and 5 don't quite have the same meaning.

PLUGG? Also uses ADRID to decode the string returned by YPEEK — which provides the MMU
address mapping the corresponding page. In the YFNZ? case there’s no need to look up in the ROM
id# table since we know what we're looking for — just need to check all pages looking for that specific
string.

© Angel M. Martin Page 11 of 29 12/19/2011

2.2.4. A wealth of a Library.

ROMLIB ROM Library No inputs
CLLIB CL Library Prompts for A-Z
[P] Invokes PLUG
[A] Copies id# shown to Alpha

One of the most notable features of the CL is its extensive ROM image library, allowing you to plug
almost any conceivable module ever made (of which I have contributed a few) into your 41CL just by
using one of the PLUGxx functions. The input syntax requires that the correct ROM ID string be
placed in Alpha, and certainly there are a few of those to remember — and rather similar to each other
since the string is only 4 characters long.

These two functions come to the rescue — by providing an alphabetical listing of all the module ID’s so
you can review them and —eventually — plug the ROM directly from the catalogue, for convenience
sake.

ROMLIB starts the listing at the top of the list, whereas CLLIB prompts for an alphabetical section, A
to Z. Choosing “A” here is of course equivalent to executing ROMLIB. Both catalogues can run in
auto mode of can be stopped using R/S, and then the listing can proceed in manual mode using SST
and BST as you can expect.

It is in manual mode where you can use the other shortcuts or “hot keys”, as follows:

- ENTER~” skips to the next section (or previous if running backwards)
- [A] will copy the id# shown to Alpha

- [P] will exit the catalog and invoke the PLUG__ function launcher

- [SHIFT] changes the direction of the listing, backwards <-> forwards
- BackArrow will cancel out the catalog.

The enumeration terminates in auto mode when the last ROM id# (or first one if running backwards)
has been reached.

The same considerations made about plugging modules can be made here — be careful not to
overwrite anything you're using with a new ROM image, as there’s no check whether the target
location is already used or not.

As you can imagine there is a lot of code sharing between ADRID and these two ROM library
catalogue functions. Fundamentally they all use a ROM id# table within the CL-UTILS ROM to look up
for the string, and fetch the address in Flash of the corresponding image. This table is quite long,
occupying almost 1k in the ROM — yet worth every byte.

The “A-Z” prompt entry in CLLIB is a refinement of the same idea: it provides a handy shortcut to
start your search in the appropriate section, so there’'s no need to review all the preceding ones —
which can be very lengthy considering the sheer number of them, even if you used ENTER” to skip
sections. The implementation is quite nice, even if it's the author who says it — have a look at the
CLUTILS Blueprint if you're curious about the MCODE implementation details.

If the section doesn’t have any ROM id# starting with such letter (which currently only occurs with [V]
and [W] letters) the message “NO SUCH” will be shown. Non-alphabetical keys are not valid entries,
and will cause the display to just blink and maintain the prompt. Lastly, selecting [X] will list the
general-purpose placeholders; refer to the CL manual for details on those.

© Angel M. Martin Page 12 of 29 12/19/2011

i1 n
2.3. HEPAX and Security. = HUEHS WORL?

L=

2.3.1. Configuring the HEPAX system.

HEPINI | Initializes File System | Author: Howard Owen |

Use this function to initialize the HEPAX File System on the CL. This is needed on the CL because this
feature is disabled in the HEPAX ROM image included in the CL Library, and therefore the addition
here.

The function takes two parameters: the number of HEPAX RAM pages to configure (in Y) and
the address of the first one (in X). The procedure consists of writing a few bytes into strategic
locations within each HRAM page so that the HEPAX will recognize them as being part of the HEPAX
File System. Those locations and byte values are shown in the table below:

Address Byte value

X000 Page id#

XFE7 Previous HRAM page id# (zero if first)
XFE8 Next HRAM page id# (zero if last)
XFE9 Fixed value = 091

XFED Fixed value = 090

XFEF Fixed value = 091

XFF1 Fixed value = OE5

XFF2 Fixed value = 200

The maximum number of HRAM pages accepted by the function is 9, but typical HEPAX configurations
have 2 pages (Standard HEPAX, 8k) or 4 (Advanced HEPAX, 16k). The page id# is assigned starting
with “D” for the first page, and increasing it on each contiguous page — up until 15 (hex) in theory.

For this to work the target pages must be mapped to SRAM — or otherwise the byte values could
obviously not be changed.

“HPX4” 4k RAM HEPAX Setup RAM page F, ROM page E
“HPX8” 8k RAM HEPAX Setup RAM pages E-F, ROM page D
“HPX16” 16k RAM HEPAX Setup RAM pages C-F, ROM page B

These three functions will prepare the CL ports to hold a properly configured HEPAX file system,
starting from the scratch. The process can be divided into four distinct parts:

1. First copying the HEPAX RAM template from Flash into the appropriate number of SRAM
blocks, as many times as needed.

2. Followed by mapping those SRAM blocks to the 41 ports, and

3. Then configuring them using HEPINI so that they are enabled for the HEPAX ROM to use.

4. Besides that, the functions will also map the HEPX ROM image to the page preceding the first
HRAM block, as shown in the table above.

So even if they don’t require any input parameter you must be fully aware that the previous MMU
mapping to those ports will be overwritten. The exception being the YFNS ROM itself — as the
programs will check whether it is currently mapped to the page being copied — and abort if that's the
case. A nice built-in protection to avoid getting in trouble.

See the appendix 2 for a listing of the FOCAL programs that implement this functionality.

© Angel M. Martin Page 13 of 29 12/19/2011

PLUGGX PLUG Page by X Page# in X 4Kk ROMS only

PLUGG PLUG page by prompt Prompts for page: “6-F” 4k ROMS only

Plugging the HEPAX ROM into the appropriate page is accomplished by a single function, using a
parameter to define the page address. This function is PLUGGX, or “Plug Page by X' (and its
prompting doppelgdnger PLUGG). Contrary to the port-related convention of the “native” CL
functions we're now referring to a page-related one, whereby the arguments of the function are the
ROM id# in Alpha (same as usual) and the page# in X — removing the hard-coded dependency of the
location used by the PLUGLxx and PLUGUxx functions.

The picture below (taken from the HEPAX manual) provides the relationship between ports and pages,
also showing the physical addresses in the bus and those reserved for special uses (like OS, Timer,
Printer, HP-IL, etc). Note that some pages (also called 4k-blocks or simply “blocks”) are bank-
switched. As always, a picture is worth 1,024 words:

Block Addresses

4000-4FFF | Take-over ROM

3000-3FFF Unused/CX

2000-2FFF | System ROM 2
1000-1FFF | System ROM 1

FOOD-FFFF |Port 4, upper
BE EOOD-EFFF |Port 4, lower
D DOOO-DFFF |Port 3, upper
C CO000-CFFF |Port 3, lower
B BOOO-BFFF |Port 2, upper
A AOOOD-AFFF |Port 2, lower
9 9000-9FFF |Port 1, upper
8 g8000-8FFF |Port 1, lower
7 T000-7FFF | HP-IL module
6 6F00-6FFF Printer IR printer
5 5000-5FFF TIME CX system
4
3
2
1
0

0000-0FFF | System ROM 0

Primary bank Secondary bank

The following error condjtions can happen.:

- Because of dealing with pages and not full ports, PLUGGX will only work with 4k ROMS, or
otherwise “DATA ERROR”will occur.

- Valid page# inputs are restricted to the 6-F range. Letters other than A-F will be inactive
during the prompt, but it will allow any numeric keys - yet values less than 6 will also be
rejected, resulting in a “DATA ERROR”.

- If the string in Alpha is not a valid ROM id# you'll get “BAD ID”— as expected.

- If the YFNS ROM is not present (not mapped to the MMU or running on a standard 41 without
the CL board) you'll get “NONEXISTENT” error.

Note that PLUGG and PLUGG? are mutually complementary functions, as they both operate on page
id# and will take or return the corresponding ROM id# from/to Alpha. You could use PLUGG? to
interrogate the MMU about page#4, but you can't use PLUGG to plug anything to page#4 — there’s a
dedicated function for that which will be covered in section 2.4 of the manual later on.

© Angel M. Martin Page 14 of 29 12/19/2011

2.3.2 Security functions.

The following group of functions are a small detour, in that they aren’t directly related to the CL but
they come to full fruition when used on this platform.

SECURE Activate Security Author: Nick Harmer Source: Data File
UNLOCK Deactivate Security Author: Angel Martin
XPASS Change Password Author: Nick Harmer Source: Data Fie

Here we have a nice practical application of advanced system control. Use these functions to manage
a password-protection scheme for your CL — so nobody without authorized access can use it.

They were published in Data File back in 198x by Nick Harmer, and implemented in Q-RAM devices
(a.k.a MLDL). Obvious caveat there was that removing the MLDL from the machine dismantled the
whole scheme — but the CL has made it possible as integral part of the core system now.

The protection works as follows:-

1. Function SECURE activates the security by setting the protection flag. The execution also

switches off the machine. This sets up a process executed on each CALC_ON event, causing

to prompt the user for the password during the start-up process.

Function UNLOCK deactivates the security by clearing the protection flag.

3. Function XPASS allows the user to change the password from the default one to his/her
favorite one. The length of the password is limited to six (6) characters.

N

Inputting the password is very simple but very unforgiving as well: at the prompt “PASSWORD=?"just
type the letters one by one until completing the word, and you're done. If you make a mistake the
machine will switch itself off and it'll be “groundhog day” all over gain — until you get it right.

Each keystroke will be acknowledged by a short tone, but no change to the display — so nothing like
“rEEXXT as you type the word. If the wrong letter is entered a lower-pitch sound will be heard and the
calculator will go to sleep.

Be especially careful when entering a new password code — as there is no repeat input to confirm the
entry, so whatever key combination you type will be taken when ending the sequence with R/S. The
initial password (“factory default”, so to speak) is “CACA”.

NEW COIEW
a0

USER

Enter code (up to 6 chrs. long) and end with R/S

Here again it comes without saying that this will only work when the CL-UTILS module is mapped to a
SRAM block in the MMU — or otherwise none of the ROM writing will work.

Note: this is how you'd get yourself out of trouble if somehow you forgot the right code: do a memory

lost to disable the MMU, then reload the CLUTILS from flash — which has the protection flag cleared.
Map it to the right page and enable the MMU again — you're back in charge.

© Angel M. Martin Page 15 of 29 12/19/2011

- w r v T
2.4. Advanced Territory. SU;EHS SE u‘

2.4.1. Using Page#4

As mentioned previously page#4 is a special case that requires its own dedicated (un)plugging
functions, not covered by PLUGGX or the native (U)PLUG ones either.

PPG#4 Plugs ROM in page#4 Prompts F:L:S WARNING

UPG#4 Unplugs ROM from p4

The 41 OS reserves Page #4 as a special location. There are frequent checks done during strategic
moments to specific locations that can be used to take control on the system, even over the OS itself
if that was required — as it happens with the diagnostics executed from the different SERVICE ROMS.

Because of that, only “take-over” ROMS can be plugged in page#4. They have been written
specifically for it and will either take complete control of the system (like the FORTH Module), or drive
it from their own directive (like the LAITRAM Module).

Function PPG#4 prompts for the ROM to plug into the page, options being just those three
mentioned above: FORTH, LAITRAM, or SERVICE modules — by their initials: “F:L:S”. Once the
selection is made the function transfer execution to a hidden FOCAL program that writes the
appropriate entries into the MMU registers, so that the mapping is correct. Refer to the CL manual for
details on this.

WARNING: Be aware that once the order is complete you'll be at the mercy of the plugged module.
Going back to the “normal” OS may not be as simple as you think, specially with the Service ROM
plugged — which requires removing the batteries, then clearing the MMU entry with the MMU disabled
after you switch it back on.

For the other instances it is possible to “exit” back to the OS, and thus you could execute UPPG#4 to
unplug the module from the page. Obviously no inputs are needed in this case.

Note that because of their titles being not directly keyable using XEQ (an intentional measure) you'll
have to use another approach to invoke them. It's a trivial task with the CCD-style CAT'2, either
during the catalog run or through a previous assignment to any USER key. Of course as a CL owner
you're only one YPOKE away from a permanent solution if CLUTILS resides in RAM ©.

2.4.2. Calculator Flash Backup & Restore.

YFRALL Backs up to Flash “OK” or “OKALL” in Alpha *WARNING*

YFWALL Restore from Flash “OK” or OKALL” in Alpha *WARNING*

The MMU content is preserved during a MEMORY LOST event, and the same is true with the SRAM on
the CL board. So using RAM for a complete calculator backup and restore is not a bad idea at all, and
it will allow you different setups or complete configurations to be swapped back and forth directly
from SRAM.

However SRAM will be erased if the batteries are removed from the calculator for a certain period of

time — longer than what it takes to reset a small glitch, but shorter than it used to be for the standard
41, - due to the increased current required to maintain its contents.

© Angel M. Martin Page 16 of 29 12/19/2011

Early CL beta user Geoff Quickfall prepared a few FOCAL programs to commit the calculator contents
to FLASH, so that even without the batteries it'll be preserved for a restore at any later time. It's a
powerful concept, but it doesn’t come free from pitfalls if you're not careful.

e The first consideration is related to the Flash write function and you should read and
understand all about it in the CL manual. Specifically pay strong attention to the
recommendations about the battery state before performing any flash-write operation.

e The second one is that YFWALL will pick certain hard-coded FLASH locations as destination
for the backup, so the 32k sector 0x0C8000 - OxOCEFFF will be ERASED by YFERASE.

e Then there’s the question about having to run the programs from RAM for the flash-
write/read to work. One could assume that YFNZ is already there but it's much better to make
sure that's the case by making a copy on the fly and plugging it to the MMU under program
control. Such copy goes to RAM block 0x80C — overwriting anything you may have
plugged in there previously.

e Finally the programs also assume that YFNZ is plugged in page#8, that is Lower port 1.
Therefore all MMU mapping to YFNS from SRAM and Flash will use that location.

The FOCAL code used by the function is shown below — There is also a check done in MCODE looking
for the string “OK” or “OKALL” to be present in Alpha. If none is there the execution will end with
“DATA ERROR” — as a protection against accidental usage. “OK” will get the Calculator content
backed up, whilst “OKALL” will also include the MMU entries into Flash. Note that on either case the
whole 32k sector will be used.

1 LBL "YWALL"

2 TURBOSD run as fast as possible

K| "062=80C" Copies YFMS o block

4 YMCPY in memaory 0x80C000

5 "B0C=RAM" plugs memory block to port
i] PLUGIL Must be run from RAM!

7 “0ca000” Erases 32k sector

a YFERASE Ox0C8000 - OxOCFFF

g “800=0C9" writes calculator RAM to
10 YFWR 4k block in Flash Ox0C3000
11 "804=0CF"
12 F37 01 writes MML' entries to
13 YFWR 4k block in Flash Ox0CFO00
14 FME"
15 PLUGIL plugs YFMS from Flash to Port
16 EMD we're done.

Should any of those default settings clash with your system setup I'd suggest you change it to match
them as the easiest way to go around the incompatibilities. Even if it's possible, re-writing the
program in 41-RAM is strongly not recommended.

Backing up MMU entries may be seen as superfluous, yet think about the issues arising from restoring
MMU configurations that don't include CLUTILS — which is from where the program is being run:
welcome to CL-limbo! - Surely something to be avoided.

Note that CLUTILS module may reside in Flash during the process, even if the FOCAL program calls
upon YFWRT - as the “from-RAM-only” restriction is for YFNS instead.

© Angel M. Martin Page 17 of 29 12/19/2011

. . EEEEEEEEEEEE
24 D|Splay and Alpha UTIIS EAT USER GRAD SHIFT 01224 PRGM ALPHA

2.4.1. Alpha and Display Utilities.

The following functions relate to Alpha string manipulation, as the main vehicle for many YFNS
functions and are included in the CLUTILS for added convenience. Some

YINPT Input Y-String Prompts for string

YBSP Alpha Back Space Author: W&W GmbH
YCL- Alpha Delete from “-* Author: W&W GmbH
YCL> Alpha Delete from “>"

YSWAP- Swap around “-*

YSWAP> Swap around “=>"

The reason why characters “-“ and “>" are so relevant is the formatting required by many of the YFNZ
functions, like YPEEK, YPOKE, PLUGXxx, etc. To that effect the most useful function of this group is
no doubt YINPT, which redefines the keyboard as a hex entry {0-9, A-F}, plus a few special control
characters, as follows:

- [J] will add character “>" to the display and Alpha

- [Q] will add character “-“ to the display and Alpha

- [M] will add the string “RAM” to the Display and Alpha

- [K] will add the string “16K” to the Display and Alpha

- BackArrow will remove the last character (or groups above), or cancel out if Empty
- ENTER” will terminate the entry process and perform AVIEW

Using this function expedites the construction of the Alpha strings required by all other Y-Functions,
make sure you have it assigned to a handy key as it's likely to be used quite frequently.

DTOA Display to Alpha

DSTEST [Display Test] Author: Chris L. Dennis Source: PPCJ V18 N8 p14

DTOA is an elusive one to grasp, but basically is the inverse from AVIEW — as it copies the characters
in the Display to Alpha. The need for this doesn’t usually present to the user, as the normal text entry
always involves Alpha — but there are times when the reverse is also needed. As a totally useless
demo, assign DTOA to any key, then press it in USER mode long enough to see its name shown, then
release the key — the words “D7OA” will be copied from the display to Alpha.

DTST Simultaneously lights up all LCD segments and indicators of the calculator display, preceded by
all the comma characters (which BTW will be totally unnoticed if your CL is running at 50x Turbo!).
Use it to check and diagnose whether your display is fully functional. No input parameters are
required.

© Angel M. Martin Page 18 of 29 12/19/2011

2.4.1. Other Utilities.

The following functions perform housekeeping tasks and are included in the CLUTILS for added
convenience. Some are a remake of the native YFNS with slightly improved behavior, while others just
add up for a “rounder pack”.

?MMU Is the MMU enabled? No Input Author: Monte Dalrymple
CDE HEX string to NNN String in Alpha Author: Ken Emery

DCD NNN to HEX string NNN in X Author: W&W GmbH
Y1SEC 1-Second Delay No input Author: Monte Dalrymple
YENZ? Location for YFNZ No Input

Some brief comments follow:

- ?MMU is almost identical to MMU? In the YFNS Rom, but the return in RUN mode is
“YES/NO” like the other conditional functions of the machine.

- Y1SEC is totally identical to YSEC.
- YFNZ? is totally equivalent to YFNS?, only that it has different coding. It also must be in the
CLUTILS for subroutine purposes. Incidentally, this is how PLUGGX checks for YFNS being

currently mapped to the target page, and discards the request if so.

- CDE and DCD are the classic NNN to/from Hex utilities, also used as subroutines throughout
the module and thus made available to the user as individual functions as well.

Farewell.

And with this you've reached the end of the CLUTILS manual. — | hope this few pages have proven
useful to you in your quest to become familiar with its capabilities and whet your appetite for even
more to come.

The 41CL is an incredible realization with amazing possibilities, opening the door to yet new
developments on the HP-41 platform; all this still happening 33+ years after the original 41 was
launched. Now that's what I call an achievement!

© Photo by Geoff Quickfall, 2011

© Angel M. Martin Page 19 of 29 12/19/2011

Appendix 1 — Detailed ROM id# table — in alphabetical order.

ID Size Name Author / Compiler
1 A41P 12k |Advantage Pac HP Co.

2 IAADV 4k IAdvantage Applications J-F Garnier

3 IADV1 16k |Adventure_1 Angel Martin

4 IADV2 12k |Adventure_2 Angel Martin

5 IAEC3 8K |AECROM 13-digit Angel Martin

6 AECR 8k AECROM Red Shift

7 AFDE 8k AFDC1 GunZen

8 AFDF 8k AFDC2 GunZen

9 AFIN 4k Auto Finance GMAC

10 |ALGG 8k Algebra ROM Angel Martin

11 |ALGY 4k Astro*ROM Elgin Knowles & Senne
12 |ALPH 4k ALPHA ROM A. Martin & D. Wilder
13 |AOSX 4k AMC OS/X Angel Martin

14 |ASM4 4k Assembler4 ??

15 |ASMB 4k Assembler3 ??

16 |ASTT 16k |ASTRO-2010 Module Jean-Marc Baillard
17 |AUTO 4k IAuto-Start / Dupl ROM HP Co.

18 |AV1Q 4k AV1 ROM Beechcraft

19 JAVIA 4k Aviation Pac HP Co.

20 |B52B 8k B-52 ROM Boeing

21 BCMW 4k BCMW ROM ??

22 BESL 8k Bessel ROM A. Martin & JM Baillard
23 |BLDR 8k BLD ROM W. Doug Wilder

24 |BLND 4k Bufferland ROM Angel Martin

25 |CCDP 8k ICCD Plus Angel Martin

26 |CCDR 8k ICCD Module W&W GmbH

27 |CCDX 4k CCD 0OS/X Raymond del Tondo
28 |CHEM 4k Chemistry User ROM ??

29 |CHES 8k Chess/Rubik's ROM Claude Roetlgen
30 |[CIRC 4K [Circuit Analysis Pac HP Co.

31 |[CLIN 4K [Clinical Lab Pac HP Co.

32 |CLUT 4k CL Utilities Angel Martin

33 |CURV 8k Curve-Fitting Module Angel Martin

34 |CVPK 8k Cv-Pack ROM ??

35 |DA4C 4k DisAssembler 4C W. Doug Wilder

36 |DACQ 8k Data Acquisition Pac HP Co.

37 |DASM 4k DisAssembler 4D W. Doug Wilder

38 |DAVA 4K David Assembler 2C David van Leeuwen
39 |DEVI 8k HP-IL Development HP Co.

40 DIIL 4k HP-IL Diagnostics HP Co.

41 |DMND 4k Diamond ROM ??

42 DYRK 4k Dyerka ROM David Yerka

43 |[E41S 8k ES41 Module Eramco

44 |[ESML 4k ES MLDL 7B Eramco

45 [EXIO 4k Extended 1/0O Module HP Co.

46 [EXTI 4k Extended-IL ROM Ken Enery

47 |FACC 4k 300889_FACC ??

48 |FINA 4k Financial Pac HP Co.

49 |FRTH (*) 8k FORTH Module Serge Vaudenay
50 |FUNS 8k Fun Stuff Module Angel Martin

51 |GAME 4k Games Pac HP Co.

52 |GMAS 4k Auto Fiance-2 Module GMAC

53 [GMAT 8k Auto Fiance-3 Module GMAC

54 HCMP 4k HydraComp ROM Paul Monroe

55 HEPR 4k HEPAX RAM Template VM Electronics

© Angel M. Martin

Page 20 of 29

12/19/2011

56 |HEPX
57 |HOME
58 |ICDO
59 |DC1
60 |DC2
61 UMAT
62 IMTX
63 |ILBF
64 |KC135
65 |L119
66 |LAIT ()
67 |LAND
68 |LBLS
69 |MADV
70 |MATH
71 [MCHN
72 MDP1
73 MDP2
74 |MELB
75 |MILE
76 |MLBL
77 IMLRM
78 MLTI
79 IMTRX
80 MTST
81 |MUEC
82 INAVI
83 |INCHP
84 |NFCR
85 |NPAC
86 |NVCM
87 loILW
88 |P3BC
89 |PANA
90 [PARI
91 |PCOD
92 |PETR
93 |PLOT
94 |PMLB
95 |POLY
96 |PPCM
97 |PRFS
98 |PRIQ
99 |QUAT
100 |RAMP
101 |REAL
102 |ROAM
103 |ROMS
104 |SANA
105 |SBOX
106 [SEAK
107 [|SECY
108 [SGSG
109 [SIMM
110 |SKWD
111 |SMCH
112 |SMPL
113 |SMTS

© Angel M. Martin

16k
4k
4k
8k
4k
8k
8k
4k
12k
8k
4k
4k
4k
12k
4k
4k
8k
8k
4k
8k
4k
4K
8k?
4k
4k
8k
8k
4k
4k
8k
8k
8k
16k
8k
4k
4k
8k
8k
4k
8k
8k
4k
8k
8k
4k
8k
4k
4k
12k
8k
4k
4k
4k
16k
4k
8k
4k
8k

HEPAX Module
Home Management. Pac

MB Matrix
IL-Buffer
eight & Balance Comp.

Land Navigation ROM
Labels ROM

Modified Advantage ROM
Math Pac

Machine Construction Pac

Military Engineering ROM
Mainframe Labels

ML ROM

Multi-Prec. Library

viation for P3B/C
PANAME ROM
PARIO ROM
Proto-Coder 1A
Petroleum Pac
Plotter Module
PPC Melb ROM

Real State Pac

Page 21 of 29

VM Electronics

HP Co.

??

BCMC 1987

BCMC 1985
Jean-Marc Baillard
Jean-Marc Baillard
IAngel Martn

?7?

Zengun

LaitRam Corp.
Warren Furlow

\W. Doug Wilder
IAngel Martn

HP Co.

HP Co.

Zengun

Zengun

PPC Members

?7?

David van Leeuwen
Frits Ferwerda
Peter Platzer

Angel Martin

?7?

Mucke Software GmbH
HP Co.

G. Isene & A. Martin
Nelson F. Crowe
?7?

?7?

Jim Daly

?7?

S. Bariziene & JJ Dhenin
Nelson F. Crowe
Nelson F. Crowe
HP Co.

HP Co.

PPC Members

A. Martin & JM Baillard
PPC Members
Winfried Maschke
??

Jean-Marc Baillard
Angel Martin

HP Co.

Wilson Holes
Serge Vaudenay
Angel Martin

Angel Martin

Navy Air

HP Co.

ISGS Redwood

??

Ken Emery
Alameda Mngmt. Corp.
Phillipe J. Roussel

Angel Martin

12/19/2011

114 |SND2 8k andMath-I| ngel Martin
115 [SPEC 4k pectral Analysis ean-Marc Baillard
116 |SRVC (*) 4k ervice ROM HP Co

117 |STAN 4k tandard Pac HP Co

118 [STAT 4k tatistics Pac HP Co

119 |STRE 4k tress Analysis Pac HP Co

120 [STRU 8k tructural An, Pac HP Co.

121 [SUPR 8k UP-R-ROM ames W. Vick
122 |SURV 4k urveying Pac HP Co

123 [THER 4k hermal Pac HP Co

124 [TOMS 4k om's ROM homas A. Bruns
125 [TOOL 4k oolBox-II ngel Martin
126 [TREK 4k tart Trek ngel Martin
127 [TRIH 4k 3Trinh Phil Trinh

128 |UNIT 4k Unit Conversion ngel Martin
129 |USPS 8k Mail Delivery USPS

130 [XXXA 4k L Utils 1H Not listed

131 [XXXB 4k Empty Not listed

132 [XXXC 4k Empty Not listed

133 [XXXD 8k Empty Not listed

134 [XXXE 8k Empty Not listed

135 [XXXF 16k [Empty Not listed

136 |YFNS 4k Iternate YFNS Monte Dalrymple
137 |YFNZ 4k Main YFNS Monte Dalrymple
138 |[z41z 8k 1Z Module ngel Martin
139 [ZENR 4k enrom engrange Ltd
140 |ZEPR 4k Programmer engrange Ltd

(*) Take-over ROMS

Other modules not included in the Library:-

For sure many more of these abound, yet these are the ones | have knowledge of — feel free to
complete the list with your own entries, and pls. share it with the whole community.

1. CCD Advanced Apps. 8k Angel Martin
2. Market Forecast 4k Forecaster?
3. MONOPOLY ROM 8k Thomas Rodke
4, Mortar Fire Data Calculator 8k MDN Canada
5. Mountain Computer EPROM 4k Paul Lind
6. Dr. Z RaceTrack Module 4k William T. Ziemba
7. SNEAP1/2/3 3x 8k SNEAP Society (F)
8. SUDOKU & Sound 4k JM Baillard & A, Martin
9. VECTOR Analysis 4k Angel Martin
10. Yach Computer 4k Bobby Schenk
© Angel M. Martin Page 22 of 29 12/19/2011

Appendix 2. FOCAL program Listings. g; EBL “HPAAT |Entry for 4k
)) 03 GTO02 —
Provided for your reference and in case you feel 04 |LBL "HPXE" | Entry for 8k
like experimenting with your own settings. 05 |2
06 GTOO02
As always, mind the potential conflicts with other g; EBL HPX16 |Entry for 16k
modulies when pluggmg stuff, and pay special 09 lBLoz €— |
attention not to overwrite YFNS. 10 N F flag sefting
11 TURBOAD run as fas as possible
In the HEPAX configuration code the role of 12 |"0B9=808" prepare for 0x808
HEPINI is to write the appropriate words into the 13 |AVIEW provide feedback
.. . 14 YMCPY copy fo Ox808 in RAM
HRAM pages, as per the descrlptl_on provided 15 Fs200 Sk case?
before. This could also be done using YPOKE, 16 GTooD ——— ves, skip the rest
but the memory requirements are much larger 17 |YBSP remaove last chr
due to all the alpha strings required to do so. 18 |m9" replace it
19 AVIEW provide feedback
For example, see below for the 16k case, using 33 :rsn;: [';" ;’ff’,fafe?‘s"g nRAM
pages C,D,E, and F. 22 |GTDOO yes, skip the rest
23 YBSP remove last char
This would mean having to write on each page 24 "A° replaceit
. . 258 AVIEW provide feedback
the four page id#s, plus the pointers to the 26 YMCRY copy to OxBOA in RAM
previous and next pages, for a total of 10x — or 27 |YBSP remove last char
equivalent to 110 bytes: 28 |"B" replace it
29 AVIEWW provide feedback
30 YMCPY copy to Ox808 in RAM
31 LBLOD £
"809FE7-000C" 32 "SETUP.." announce last phase
"808000-000C" 33 AVIEW
34 "-RAM" buffer common string
. N 35 ASTOL in temporary storage
808FE8-000D 36 | "808" build first mapping text
"80AFE7-000D" 37 ARCLL
"809000-000D" 38 PLUG4U plug 0x808 to page#-
349 F57 00 4k case?
B B 40 GTO01 ——X ves, jump over
809FE8-000E 41 |"809" build 2nd. Mapping text
"80BFE7-000E" 42 ARCLL
"80A000-000E" 43 PLUG4L plug 0x809 to page®E
44 F5?2 01 Gk case?
" " 45 GTO03 — Yes, jupm over
80AFES-000F 46 "80A" build 3er. Mapping text
"80B000-000F" 47 ARCL L
48 PLUG3U plug Ox80A to page#D
49 "80B" build 4th. Mapping text
50 ARCLL
51 PLUG3L plug Ox808B to port#C
g2 4 configuration parameters:
53 ENTER* four pages
54 12 starting at page#C
55 GTOO0
56 [LBLD3 & |8k case
57 2 config parm.
58 ENTER* two pages
59 14 starting at page®E
60 GTO00 —»
51 [LBLD1 « |4k case
62 E config parm.
63 ENTER* just one page,
64 15 starting at page#F
65 [LBLOD ¢
GG HEPINI configure HEPAX FileSys
67 E get page# below
68 -
59 "HEPX™
70 PLUGGX plug HEFPAX there
71 HEPDIR show we've done it
T2 END done.
© Angel M. Martin Page 23 of 29 12/19/2011

Apendix 3.- MCODE Listing showing the Alphabetical sections prompting code.

The function CLLIB begins by building the prompt text in the display. Using the OS routine [PROMF2]
is helpful to save bytes, so there’'s no need to write the function name again, “CLLIB”. Alpha is cleared
using [CLA], just to prepare for a possible copy of the ROM id# to Alpha using the [A] hot-key in run
mode. Then we get into a partial data entry “condition”, waiting for a key to be pressed.

Back Arrow sends the execution to [EXIT3], to do the housekeeping required to reset everything back
to the standard OS-required status (disable Display, resetting Keyboard bits, CPU flags, etc.).

Since the valid keys are quite a lot [A-Z] we need to use multiple conditions in the logic. The first two
rows are the easiest; as they set up CPU flag#4 and that can be tested easily. In this case we copy
the mantissa sign in A to C[S&X], then store it in B[S&X] and we move on.

cLLB |[BCKARW ABBE {341 PORTDEP:
2 CLLIB ABBF i08C GO
3 CLLIB ABTO 36E -=A36E [EXIT3] :
4 CLLIB Header ABT1 082 "B"
5 CLLIB Header A672 D09 "
i CLLIB Header ABT3 ooc "L
7 CLLB Header AB74 O0C "L CL Library
8 CLLIB Header AB75 D03 "C" Prompting - Alphabetical
2 CLuUB [cLuB ABTE 000 HOP
1 CLLIB ABTT 158 M=C ALL
CLLIB ABTS 345 PNC XQ Clears Alpha

12 CLLIB ABT9 (D40 -=1001 [CLAT
12 CLLIB ABTA 13C1 NCXQ Enable & Clear Display

4 CLLB AB7B {080 ->2CF0 [CLLCDE]
15 CLLIB ABTC 198 C=M ALL fot id#

§ CLLIB ABTD 134D NCXQ

7 CLLIB ABTE D14 -=0503 [PROMF2]
15 CLLIB AETF (3BD PNC XQ

9 CLUB ABB0 oic -=07EF [MESSL]
20 CLLIB ABB1 001 "A"
21 CLLIB ABB82 02D "
22 CLLIB ABB3 214 "z
23 CLLIB ABB4 1115 NCXQ <«—————— Partial Data Entry!
24 CLLIB ABB5 038 -=(JE45 [NEXT1]
25 CLLIB ABBE 343 JNC -24d
26 CLLIB ABBT 04C PFSET 4 rows 1 & 2?
27 CLLIB A638 T063 JNC +12d ———
25 CLLIB ABB9 130 LDI S&X
25 CLLIB AfBBA 00A CON: | . I
20 CLLIB AGBB !35E TARD MS was 'J"pressed?
21 CLLB aesc o2z JNC +04 yes, skip next
32 CLLIB ABBD D46 C=0 3&X
23 CLLIB ABBE |OBE A==C M3
34 CLLIB ABBF |2FC RCR 13
35 (CLLIB AB9D 'DE6 C<»B S&8X < save chri in B[S&X]
36 (CLLIB AB91 369 PORT DEF: Transfer to next section
37 CLLIB AB92 03C GO
28 CLLIB AB93 2E9 -=ABEY [MOVEQN]
39 CLuUB AGB4 0BO C=NALL «— pressed Keycode
40 CLUB ABI5 106 A=C S&X save in A[S&X] for comparisons
41 CLLB AGBE adjust pointer
42 CLLB AB9T resetcounter
42 CLLB AGOE upper value |
44 CLLIB AB99 from there down! |
45 CLLIB ABIA putitin CM
46 CLLB AGBB sKip over line
47 CLLB |A89C pipediningup _

For the rest [K-Z] we'll need to read the keycode of the pressed key and act accordingly. Also we
need to discard any non-letter key, rejecting it if its keycode value is outside of the [A,Z] range.

Now the show is about to start: see how the key pressed value (in N) is compared with every

possible value in the [K-Z] range, building the “pointer” in C[S&X] by repeat one-additions until
coming up to its final result.

© Angel M. Martin Page 24 of 29 12/19/2011

CLLIB 4690 1130 LDIS&x |
CLLIB ABGE 1120 cON_ _ XEQ keycode [120] _ _
CLLIB ABIF 366 TARC SEX
] CLLIB mEal—— 1C3 JNC +36d [K]
CLLIB ABAT 222 C=C+1 @PT keycode [220]
CLLIB ABAZ 366 TARC SEX
CLLIB AEA 183 JNC +34d L]
CLLIB AGAd 222 C=C+1@FT keycode [320]
56 CLLB ABAS 366 TARC SEX
57 CLLIB #fAS— A3 JNC+52d m _
58 CLLIB ABA7T 1130 LDIS&X !
59 CLUB ABAB 1030 CON:_ _ ENTER* keycode [030]___ | !
g0 CLLIB ABAD 366 TAHC SEX
g1 CLLIB ABAL 1688 JNC +48d — [N]
2 CLLB ABAB 222 C=C+1 @PT keycode [130]
g3 CLLIB ABAC 222 C=C+1 @PT keycode [230]
g4 CLLIB ABAD 366 TARHC SEX
5 CLLB ABAE 173 JNC +46d — [o]
g6 CLLIB ABAF 222 C=C+1 @PT keycode [330]
g7 CLLIB ABBO 366 TARHC SEX
668 CLLIB ABB1 (163 JNC+ddd — 1 | _
3 CLLIB ABBZ 130 LDI S&X i
70 CLLIB ABE2 040 CON._ L |rrkeycode fos0] i
71 CLLB AEB4 366 TARC SEX
72 CLuB ABBS 148 JNC +41d Qi
73 CLLB ABBE 222 C=C+1 @PT keycode [140]
74 CLLIB ABBT 366 TARC SEX
75 CLuLB AGBS 138 JNC +38d [R]
76 CLLIB ABB9 222 C=C+1 @PT keycode [240]
77 CLLB AGBA 366 TARHC SEX
78 CLUB AGBB 128 JNC +37d [5]
79 CLLIB 46BC 222 C=C+1 @PT keycode [340]
80 CLUB ABBD 366 TARHC SEX
81 CLLIB ABBE 11B JNC+35d —H+bo Mm@ _
52 CLUB ABBF M30 LDI S&X :
52 CLLIB ABCO 050 CON._ _ Ll |+ keycode fos0} _ !
g4 CLLB ABC1 366 TARC SEX
83 CLLB s6c2 1oz JNC +32d [y
86 CLLB ABC3I 222 C=C+1 @PT keycode [150]
&7 CLuB A6C4 366 TARC SEX
58 CLLIB ABCH | OF3 JNC +30d v
85 CLUB ABCE 222 C=C+1 @PT keycode [250]
80 CLLB A6CT 66 TARC SEX
41 CLUB s6ce "DE3 JNC +28d]
9z CLUB ABCO 222 C=C+1 @PT keycode [350]
3 CLLIB ABCA MEE TARHC SEX
CLLIB ABCB 0D3 JNC+26d —— o 1P _
43 CLUB ABCC 1130 LDI S&X |
96 CLLB ABCD 060 __CON:_ | L] keycode o601 |
g7 CLuB ABCE 366 TARC SEX
48 CLUB ABCF | 0BB JNC +23d Iv]
95 CLUB ABDO 222 C=C+1 @PT keycode [160]
100 CLLIB 4601 366 TARC SEX
104 CLLIB EE2—0AB JNC +21 [Z]
102 CLLIB ABD3I 1285 FNC XQ Blink Display - pass #1
)3 CLLB ABD4 {020 ->0899 [BLINKA1]
CLLIB ABDS 1265 NC XQ Blink Display - pass #2
CLLIB 4606 020 -=0F55 [BLINKA]
106 CLLIB ABDT | 22B JNC -59d ONE PROMFT
107 CLLIB [K] AEDE* 2TA C=C-1M
108 CLLIB] AGEE—> 2TA C=C-1M
105 CLLIB [AFEA 27A C=C-1M
110 CLLIB {N] AEDB 2TA C=C-1M =
114 CLLIB 0] ABDC 2TA C=C-1M <«
12 CLLB {F] ABDD 27A C=C-1M =—
13 CLLIB {Q] AEDE 2TA C=C-1M =
4 CLLIB {R] ABDF 27A C=C-1M =
5 CLLIB [5] ABED 27A C=C-1M =
16 CLLIB 7] ABE1 2TA C=C-1M S
17 CLLIB {uj ABEZ 274 C=C-1M S —
18 CLUB v ABE3 274 C=C-1M S
119 CLLIB w ABE4 27A C=C-1M -«
120 CLLIB] ABES 274 C=C-1M -
121 CLLIB Y] ABEB 2TA C=C-1M S —
122 CLLIB {Z] AFES 03c RCR 3 place it in C[S&X]
123 CLLIB AEES OE6 C==B S&X save chirit in B[S&X]

© Angel M. Martin

Page 25 of 29

12/19/2011

The last part is about presenting the chosen key — allowing NULLing if it's held down long enough —

Resetting everything back to normal conditions [CLNUP], and see whether there actually exists such a
section — before we launch into a blindfold enumeration. This is done by the subroutine [SRCHR],
which will fetch the address in the ROM id #table where the section starts. With that we’ll transfer the
execution to the ROMLIB function code where the actual enumeration will take place - only with a
padded value to start from, as opposed to doing it from the top of the table.

124 CLLIB MOVEOHN ABED 379 FORT DEF: CleanUp and Show
125 CLLIB ABEA 1030 XQ Allows NULLing
126 CLLIB ABEB 261 -=AG61 [CLNUPT
127 CLLIB ABEC 1149 PNC XQ Disable PER, enable RAM
125 CLLIB ABED 024 -=0552 [ENCFPO0]
125 CLLIB AGEE 1215 ?NC XQ Reset BIT sequence
120 CLLIB ABEF 1 Q0C -=0385 [RETSW
131 CLLIB ABFO I 130 LDi 58X Location of first ID '
132 CLLIB AGF1 132B =startofsearch= | romtbl
133 CLLIB ABF2 106 A=C SEX save offsel in A[S&X]
134 CLLIB ABF3 349 PORT DEF: Search Char in B[5&X]
135 CLLIB ABF4 08C XQ start offset in A[S&X]
136 CLLIB AGFS 353 -=A353 [SRCHR]
45 CLLB ABFB 023 JNC +04 —— not found, bail out with style
46 CLLIB ABFT 341 PORT DEF: Transfer code to Main LIB
47 CLLIB ABF3 0sC GO
48 CLLIB AGFD 1386 -=A356 MERGE]
45 CLLIB | INFMSG ABFA [261 PNCXQ =— debounce keyboard
120 CLLIB ABFB [000 -=0098 [RSTKE!
51 CLLIB AGFC [[3B3 PORT DEP Display Message
22 CLLIB ABFD 08C XQ Unless Error Flag is set.
33 CLLIB ABFE | 3EE -=AFEE [DSPERR]
54 CLLIB ABFF |OOE "N"
35 CLLIB ATOO QoF "o"
56 CLLIB AT01 [fo20 "
37 CLLIB AT02 013 "5"
5 CLLIB AT03 [015 "
CLLIB AT04 (002 "c"
50 CLLIB AT05 [208 "H"
i CLLIB ATOB 3289 PORT DEFP Output Message
32 CLLIB ATOT 0ac GO
? CLLIB ATDE {018 -=AG16 [APEREX]

Note how [SRCHR] is really part of the ADRID function code, which also does table look-ups for its
own purpose. This code is written around the table structure, refer to the BluePrints for more details.

T2 ADRID | SRCHR A353 04E C=DALL Expects chri in B[S&X] .

"2 ADRID A354 {350 PNCXQ i

"4 ADRID A355 000 -=00D7 [PCTOC] i
ADRID A6 03C _RCR3 _ |oetpage number |
ADRID A357 !:130 LDI S&X |

37 ADRID A38 {@0 coN i

"2 ADRID A359 'E6 |C=C+C S&X double it up

"0 ADRID 4354 206 C=C+A SBX add offset to it

10 ADRID 4358 1BC RCR 11 put it in C(6:3)

"1 ADRID A35C 0BA A==C M putitin A(6:3)

"2 ADRID 2350 066 A<>B 58X put reference in A[S&X]

i3 ADRID [NXTADR A35E OBA A<>C M bring adr to CIM

"4 ADRID A835F 11A A=C M keep it in AIM]

15 ADRID A360 330 FETCH S&X read value at address

"6 ADRID A361 2E6 ?CH#0D S&X value non-zera?

17 ADRID 4362 3A0 ?NCRTN NGO, TERMINATE HERE!

i3 ADRID A363 366 PAHC S&X are they different?

"o ADRID A364 033 INC+06 —— no,-=(FOUND] __ _ _ .

50 ADRID A365 losa™ TC=0m add offset - 5 BYTES 1

51 ADRID A366 |01C PT=3 |

52 ADRID A367 150 LD@PT-5 :

53 ADRID A8 115A _ A=AsCM_ nextaddrfield !

54 ADRID A369 (3AB JNC-11d loop back

55 ADRID [FounD 4364 1B0 POPADR <—

55 ADRID 4368 234 C=C+1M

57 ADRID #36C 70 PUSHADR increase RTM adr

52 ADRID 4360 3E0 RTH

And that’s all folks - easy when you know the tricks ©

© Angel M. Martin

Page 26 of 29

12/19/2011

Appendix 4.- Serial Transfer CLWRITE source code. — written by Raymond Wiker.

using System;

using System.l0;

using System.l0.Ports;
using System.Threading;

public class CLWriter

{
public static void Main(string [] args)

{
int baudrate = 1200;
int delay = 0;

if (args.Length < 2) {
Console.Error.WriteLine("Usage:");
Console.Error.WriteLine(" {0} file port [baudrate [delay]]", "CLWriter");
Console.Error.WriteLine();
Console.Error.WriteLine("Where baud defaults to {0}", baudrate);
Console.Error.WriteLine("and delay defaults to {0}", delay);
Console.Error.WriteLine("Available Ports:");
Console.Error.WriteLine();
foreach (string s in SerialPort.GetPortNames())

{
}

return;
}
string filename = args[0];
string portname = args[1];
if (args.Length > 2) {
baudrate = int.Parse(args[2]);
if (baudrate != 1200 && baudrate !'= 2400 &&
baudrate '= 4800 && baudrate = 9600) {
Console.Error.WriteLine("Invalid baudrate {0}; should be one of", baudrate);
Console.Error.WriteLine("1200, 2400, 4800, 9600");
return;

}
}
if (args.Length > 3) {
delay = int.Parse(args[3]);
if (delay > 10) {
Console.Error.WriteLine("delay {0} probably too large.", delay);
return;
}
}

if (IFile.Exists(filename)) {
Console.Error.WriteLine("File {0} does not exist."”, filename);
return;

}

Console.Error.WriteLine(" {0}", s);

FileStream fstream = File.Open(filename, FileMode.Open);

if (fstream.Length > 8192) {

Console.Error.WriteLine("WARNING: {0} is over 8192 bytes long ({1});", filename,

fstream.Length);
Console.Error.WriteLine("Will only transfer the first 8192 bytes.");

© Angel M. Martin Page 27 of 29

12/19/2011

}

BinaryReader binReader = new BinaryReader(fstream);

SerialPort serialport = new SerialPort();
serialport.PortName = portname;
serialport.BaudRate = baudrate;
serialport.Parity = Parity.None;
serialport.DataBits = 8;
serialport.StopBits = StopBits.One;
serialport.Handshake = Handshake.None;

serialport.Open();

try {
byte[] buffer = new byte[8192];
int count = binReader.Read(buffer, 0, 8192);

/1 swap high & low bytes:
for (inti =0; i <count; i+=2) {
byte tmp = buffer][i];
buffer[i] = buffer[i+1];
buffer[i+1] = tmp;
}

for (inti = 0; i < count; i++) {
Console.Write("{0:x2} ", buffer[i]);
if (i % 16 == 15) {
Console.WriteLine();
}
serialport.Write(buffer, i, 1);
if (delay > 0) {
Thread.Sleep(delay);
}
¥
Console.WriteLine();
}
catch (EndOfStreamException) {
// nada
}
serialport.Close();
}
}

© Angel M. Martin Page 28 of 29 12/19/2011

TT0Z Jaquiadag

ueN " 196uy (D)

JaweH YoIN pabueyd jou apow A1INJ8S pabueyd si piomssed splomssed mau/p|o syse piomssed abueyd SSvdX| 1¥
uney |abuy 1O PaYoNUMS S| Joje|nafed 440 apouwl 2inJas S19S plomssed o} syse 320| plomssed ajgesip MO0INN| ov
JaweH YoIN dnurels uodn payse plomssed NO apow IYNDIS S19S auou 20| plomssed ajgeus 34no3s| e6g
ue |abuy g 6d ur WOY ‘4-O sebed ul Ny 7D U0 XVd3H %9T sainbyuod auou 70 - M| sAS8|I4 XVdIH WOTXdH.| 8¢
uie [sbuy a '6d ul NOY '4-3 sabed ul Nvy 70 U0 XVd3H 8 sainbyuo)d auou 70 - M| sAS8|id XVd3IH W8XdH.| €
uep |gbuy 3 Bd ur NOY 'd 8bed ul Ny 70 U0 XVdIH i sainbyuo)d auou 70 - W] sAS8|I4 XVd3IH JSXdH.| 98
uamQ premoH "paiinbas swnAue asn walsAs 8|l XvdIH sazijeniul| A ui abed is1y ‘X ul sabed # uu| sAsalid Xvd3H INId3H| s€
siuuag suy)d Spuallj JNOA azewe 0] dn 3 e Aejdsip smoys auou 1s9] Aeidsig 1s1al ve
uie [abuy '98S 0] Unj} - asn 0} aAIsN|3 eyd|v ul 1xa | suaju09 Aejdsig VHd1V 01 Aejdsig voldal €€
HAWD MBM SaunnoIgNs Ul Pasn oISse(o v eyd|y ul 8poOxaH X Ul NNN apooad aoal ze
Kidw3 uay saunnoiqgns ul pasn aisse|d vy X U NNN VHd1V Ul 8podxsH 8poD 3ad| 1€
So1U0NO3IT NA passald si Aay ajiym pasned SIUSIUO0D X20|q SISIT auou Borere) xo0|g 1vo14g| og
unre [abuy slalorleyd |01uU0d seH slayng uasald smoys auou Borere) Jaung 1vod4g| 6z
unre |sbuy INOJA AQg pauinial se ssalppy eyd)y ur dl WoY eyd|y ul ippe yselq al ssaippy ardav| sz
e/u '/U e/u 1apesH uonoas IX3AISAS-| 12
[reaInd Joso VHJ IV U1, 77VMO. / MO, useld 01 NIAN/I0IeINeD S auou TIV-81IM-A TIVMA| 92
uep [buy wasaud jou s -, § Buiylon .-» punote paddems eyd|y VHdV ul Bulns uaydAy Jo sapis yloq sdems -dVMSA| sz
uie |abuy juasaud jou sI <, JI BulyioN <. punoue paddems eyd|y VHdV Ul Buins <. Jo sapis yloq sdems <dVMSA| 2
(reaInd Yoo VHATV Ul TIVMO / MO| Useld woly NAIN/I01endeD speay auou TIV-peay-A TIVHA| €2
uney |abuy WM9T. 104 ., ‘INVYY.L, 10} AL, @SN sJyd [043u0d snid Anus X3H auou ndu| A T 1dNIAl zz
ajdwAhieq awon “YI| Yoels seoq NI Ul uoieao auou SHNA J0 uoneoo| abedq JZNAAl 12
HQWo MM juasaud jou sI -, §i BuiyioN 1ybu ayy 01 yeyo -, Wolj siea|d VHdV ul Buins uaydAy woly Buinis sres|Dd -10Al oz
HQWo MM juasaud jou sI <, JI BulyioN ybu 8yl 01 Jeyd <, Wolj siea|d VHdV ul Bulns <. Wouy Buins srea|d <1DOA|l 6T
HAWD MBM pabueyo jou s| XoelS Ja1oerey2 1sownybu se1sjeq VHJ 1V ul Buis a0eds Xoeq YHA 1V dSgA| st
ajdwAireq awop paads 0gun] uo puadap jou pjnoys Aejap 28s-T auou Aejap puodas-auQ O3STA| T
uney |abuy vea ‘N 1 p-T :SIYo piieA NN W01} PaAOWAI S| UoIEI0T uoneoo| Joy sidwold JayouneT suonouny 9NIdN “onidn| 9t
unre [pbuy N0 |90URD 01 Vg uonouny Palds|as sayoune 2610:T:G:2:X,, Ssidwold Jayoune| suonoun; OgyNL “ogdnt| st
une |abuy VHJV Sialy patea|o Aius NINN auou y# abed 1oy Anus NN S1ea|d v#9dn| vI
uep |gbuy| ajqewweifold V., YIm suels ‘'g|710 | s.dl INO¥ Jo 1s]| fenuanbas SINOHY |le sAe(dsiq Areiqim WOH gITNoY| €T
uie |abuy N0 [3Jued 01 Vg pabbnid s1 YHJTV Ul Al yum WOY uoneoo| oy sidwold Jaydunej| suonduny ON1d " onid| 2t
uep |gbuy iISIWOY Jano-axel “eydly ul MO, pabbnid NOY padales .S:7:d, sidwoud Bnid y#sbed T #9d| 1T
uep |gbuy Ajuo SN0 AN abed ur NOY sbnid X ul #abed X Aq abed bnid X99N71d| 0T
uie |abuy pabueyd si eyd)y abed 1o} Anus NN 40 1UBW0D abed 1o} sydwolid NN uonedo abed “éoon1dl 6
unen [9buy Aluo SNOYE Y abed ul WOY sbnid abed 1oy sydwolid abed bn|d “o99n1d| 8
uei [8buy| vd ‘vEILNT ‘LHIHS ‘LSS ‘S 1S1Yd pijea salug NN $0 1s!| enuanbas auou Borered NN 1VONAIN L
unJep [abuy N0 |90URD 01 Vg uoiouUNy Palds|as sayoune .¢:3:a:0. sidwold Jayoune| suonouny NAIN NN 9
ue [8buy| vd ‘vHILNT ‘LHIHS ‘LSS ‘S/d 1S1Yd pijea lans| pa1oa)as 1e Bunsi suers .Z-V. sidwoid Areigr1 @l 1o Tamo| s
unJep [abuy N0 |90URD 01 Vg uoiouUNy Pa1dsIas sayoune .6:7:2:T. sidwoid Jayoune| suonouny pneg “anvd| v
unre [abuy N0 |90URD 01 Vg Jayoune paloajas sayouneT JN:L:d:N:g. sidwold Jayoune [eqo|o 4107 ¢
une [abuy X Ul 0/T sade|d as[e} JI dpis ‘ON/SIA auou ON/S®A snrels NAIN NANNE ¢
e/u e/u e/u lspesH a|npoN 3¢ ST1LN10- T
Joyiny STENNYe) indino sindu| uondiosag uonound #
3z uoisinay apIng aduaIayey R2INO SN 10

	December 2011
	This compilation
	Copyright © 2011 Ángel Martin

