DBTool User Manual 2.4

Qiang He (Ph.D.)

obase@tom.com
qhe@tsinghua.org.cn

http://energy.51.net /dbtool /index.htm

mailto:obase@tom.com
mailto:qhe@tsinghua.org.cn
http://energy.51.net/dbtool/index.htm

Contents

1 Introduction 1
1.1 What’'s DBTool 1
1.2 DBTool features e 1
1.3 Order DBTool e 2

2 Install DBTool 4
2.1 Demo version installation Lo o 4

2.1.1 Unpack dbtool.zip e 4
2.1.2 Update MATLAB path 4
2.2 Licensed version installation o 6
2.2.1 Unpack dbtool.zip 6
2.2.2 Copy the license file o 6
2.2.3 Update MATLAB path 7
2.3 Setup ODBC data source 7
2.3.1 Prepare tosetup ODBCo 7
2.3.2 Setup an Access ODBC data source 8
2.3.3 Setup an MySQL ODBC data source 10
2.3.4 Setup ODBC data source for MATLAB Web Server 12

3 Getting Started With DBTool 13
3.1 Test the installation e 13
3.2 Openarecordset 14
3.3 Navigating in the recordset Lo 14
3.4 Reading data from recordset Lo L 15
3.5 Close database and recordset L 16

4 Using DBTool 17
4.1 Editing row 17
4.2 Inserting row e e 18
4.3 Deleting row oL 19
4.4 FExecute SQL directlyo 19
4.5 Date/Time field L 19
4.6 BLOB field o 20

4.6.1 Whatis BLOB 20
4.6.2 Reading file from BLOB field of Access database 20
4.6.3 Storing double array in Access 22
4.6.4 Writing and reading BLOB data into MySQL table 23

ii

DBTool User Manual

5 Using Plain API 26
5.1 What’s Plain API e 26
5.2 Work with MATLAB Compiler, 27

5.2.1 Prepare your program i o et e e e e 27
5.2.2 Compile into Standalone Executable 27
5.3 Work with MATLAB COM Builder 29
5.3.1 Prepare your programot e e e 29
5.3.2 Compile into COM component 32

6 References 34

6.1 dbase e e e e 34

6.1.1 Properties 34
6.1.1.1 handle. e 34

6.1.1.2 dsn 34

6.1.1.3 uid 34
6.1.1.4 pwd e 34

6.1.2 Methods e 34
6.1.2.1 dbase 34

6.1.2.2 close. 35

6.1.2.3 tablelisto 35
6.1.2.4 settimeout e 36

6.1.2.5 execsql 36

6.1.2.6 display 37

6.2 TSet. . .. e e e 37
6.2.1 Properties 37
6.2.1.1 handle. 37
6.2.1.2 hdb 37
6.2.1.3 sql 37
6.2.1.4 field 37
6.2.1.5 fieldname 37
6.2.1.6 fieldtype L 38
6.2.1.7 fieldcount 38

6.2.2 Methods e e e 38
6.2.2.1 rset e e 38
6.2.2.2 close. 39
6.2.2.3 fields 39
6.2.2.4 fieldec 40
6.2.2.5 movefirst 40
6.2.2.6 movelast 40
6.2.2.7 movenext 41
6.2.2.8 MOVEPTEV o e e e e e e e e e e 41
6.2.2.9 movenext 41
6.2.2.10 dnsert e e 42
6.2.2.11 updateo 42
6.2.2.12 delete 42
6.2.2.13 display 43
6.2.2.14 dsempty 43

6.3 Plain API 43

iii

DBTool User Manual

6.3.1 Database API. 43
6.3.1.1 dbopen 43
6.3.1.2 db.close 44
6.3.1.3 dbexecsql 44
6.3.1.4 db_settimeout 44
6.3.1.5 db_tablelist 45

6.3.2 Recordset APIo 45
6.3.2.1 rs.open 45
6.3.2.2 rs.close e 46
6.3.2.3 rsfields 46
6.3.2.4 rsfieldec 46
6.3.2.0 rs_insert e e 47
6.3.2.6 rs.delete 47
6.3.2.7 rsupdate Lo 47
6.3.2.8 rsmovefirst 48
6.3.2.9 rscmovenexto 48
6.3.2.10 TS.MOVEPTEVo 48
6.3.2.11 rscmovelast 49
6.3.2.12 rsdisempty oL 49

6.4 Utilities L e e e e e 49

6.4.1 dbwarn 49

6.4.2 dblasterr e e e e 50

6.4.3 dsnlist e 50

6.4.4 word2byte 50

6.4.5 byte2word L e 51

6.4.6 num2byte 51

6.4.7 byte2num e e 51

v

List of Figures

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12
2.13
2.14
2.15

4.1
4.2

5.1
5.2
5.3
5.4
2.5
5.6

Install demo version of DBTool 4
The Set Path dialog e)
Select the DBTool folder 5
DBTool folder added to MATLAB search path 6
Install non-demo version of DBTool 7
The Control Panel window 7
The Administrative Tools window 8
The ODBC Data Source Administrator window 8
The Create New Data Source window 9
The ODBC Microsoft Access Setup dialog 9
Select an Access fileo 10
ODBC Microsoft Access Setup dialog is finished 10
Add a MySQL ODBC data source, 11
MySQL ODBC data source configuration window 11
ODBC Setup with 2 new data sources 12
Show GIF extracted from BLOB 22
Data extracted from the BLOB field 25
DBAccess: DSN list dialog e 30
DBAccess: Table list dialog 31
DBAccess: message DOX e e e e e 31
DBAccess: contents of first row Lo 31
Create a new COM project 32
Add M-files and compileo 33

Chapter 1

Introduction

1.1 What’s DBTool

Besides Database Toolbox released by Mathworks, DBTool is another choice to access database
from MATLAB.

1.2 DBTool features

The kernel of DBTool is a mex file dbtool.d11, which is written and compiled in Visual C++
using the MFC classes CDatabase, CRecordset and some direct ODBC calling. It’s reliable and
runs faster than Database Toolbox, which is implemented in Java. And then a set of .m’ files
is written to wrap it into two MATLAB class objects: dbase and rset.

A set of functions which make direct calling into dbtool.d1l is also implemented. They
are functional equivalent to there class correspondences. They use structures instead of class
objects. This set of functions is named Plain API. With the Plain API, you can write MATLAB
Compiler (and also MATLAB COM Builder) compatible program, so you can compile your
database program into standalone executable. MATLAB Compiler can’t compile Database
Toolbox program, because it uses class and Java.

MATLAB Database Toolbox does not support binary large object (BLOB) fields, while
DBTool can read and write BLOB fields freely. For BLOB fields, the contents are treated as
byte streams. All the bytes are read into a MATLAB 1*N double array, each element stores a
byte. And any 1*N double array (elements must be 0~255 integer) can be written into a BLOB
field.

DBTool has the following features:

e Faster and reliable, easy to use

e Implemented using MATLAB class objects, also Plain API provided

e MATLAB Compiler and COM Builder compatible with the Plain API
e Designed to access any database which has an ODBC interface

e Designed to access any data types including binary large object(BLOB)
e Multi-rows fetching in one statement

e Directly execute SQL statements

e Automatic close all database when MATLAB is closed

e Enumerate DSN names and table names

e many others...

DBTool User Manual

1.3 Order DBTool

DBTool is shareware. The demo version of DBTool is free for use, but has some limitations:
e Multi-rows fetch not enabled.
e You can open only 1 database and 1 recordset each time.
e The length of BLOB fields is limited to 8192 bytes.

Since version 2.4, the demo version is 30 minutes full functional each time. That is, every
time you start DBTool demo version in MATLAB, it acts as professional version for 30 minutes,
and then go back to demo version. dbase and rset objects opened will be stiil alive untill
closed.

Besides demo version, the standard, professional and redistributable versions are also avail-
able. The demo, standard and professional versions are for personal use only. For commercial
use, please buy the redistributable version. Features and prices for different versions are listed
in the table below.

Version ‘ Demo ‘ Standard | Professional | Redistributable
BLOB Size 8K 256K Unlimited Unlimited
dbase objects 1 16 16 16
rset objects 1 16 16 16
multi-rows fetch no no yes yes
Plain API yes yes yes yes
price free USD30 USD60 USD300

If you have a PayPal account, please go to the DBTool registration page:
http://energy.51.net/dbtool /purchase.htm
and click the PayPal icon in the price table to register. If you do not have a PayPal account,

you can also click the icon, you will be guided to setup a new PayPal account for free.

If you can’t pay with PayPal, please send the registration fee to:

BANK OF CHINA, BEIJING BRANCH
NO.8 YA BAO LU

BEIJING, CHINA

SWIFT CODE: BKCHCNBJ110

Name : Qiang He
Account: 4080603-0188-017731-7

And send me an email with:

e Your name (or names, each name for a copy)
e Your company
e Your email

e License type and number of copies

http://energy.51.net/dbtool/purchase.htm

DBTool User Manual

Note: If you want to buy several copies of DBTool, different registration information should be
supplied for each copy.

Wire transfer is preferred. If wire transfer is not convenient for you, a check via ordinary
mail is also acceptable, in this case please contact me to ask for my post address. I'll email the
license file to you immediately.

The author’s email is: obase@tom.tom or ghe@tsinghua.org.cn

Chapter 2

Install DBTool

2.1 Demo version installation

2.1.1 Unpack dbtool.zip

Unpack all the files to a folder using WinZIP, such as "c:\matlab\toolbox\dbtool". See figure
2.1.

(ol x|
J File Edit ‘iew Favoribes Tools Help |
|Je-» - AL @ELKo|E
J.ﬁ.ddress I[:I CHMATLAE koalbod dbkool j @G0
@dbase @rset byteznum.c byteZnum.dl byteZword.m closeall.m
conkents.m dbtool.dl dbtool.m dsnlisk.m rumzbvbe . numzbyvte di
test.mdb wardzbyte.m
|14 object(s) |4.66 ME [ty Computer 4

Figure 2.1: Install demo version of DBTool

2.1.2 Update MATLAB path

Now we add the DBTool path to the MATLAB search path. First click menu File->Set
Path. .., the Set Path dialog opens as seen in figure 2.2.

DBTool User Manual

=

All changes take effect immediately.

MATLAE search path:

|| AddFolder. || |og camaTLABMoalbowwaicehox il

A

L3 CmATLARoolbodmatiabigeneral

Add with Subfolders...l
3 CAMATLABooIboximatiablops

howe to Top [CWMATLABRoolboximatiabilang
[CAMATLABYooIbo¥imatiakielmat

e o (03 CMATLABY0olboximatiabieliun
move Down [CAMATLABYooIho¥imatiabispecfun
£ CMATLABoolboimatiabimatiun
Move to Bottom (£ CAMATLAB 0 0lboximatiabidatafun

L3 CMATLARoolboximatiabtaudio

Remuove P P TR S SO l
(:_I | 3

Save | Close | Revert Default Help |

IS

Figure 2.2: The Set Path dialog

Click Add Folder... button, and a folder selection dialog shows up, as seen in figure 2.3.

dbtonl

|
|
)
|
|
|
|
|
|
|

oK & I Cancel |

Figure 2.3: Select the DBTool folder

Select the folder dbtool, and click OK, then the Add Folder... dialog has the dbtool folder
on the top of the list, as seen in figure 2.4.

DBTool User Manual

|

J Set Path =101z

All changes take effect immediately.

MATLAE search path:

Add Folder... | B CoMATLABtOOlboXdbtoal
L3 CWMATLARoolboxvoicebox

[CAMATLABYoolboximatiabigeneral
Woveto Top [C3 CWMATLABROolboximatiabiops

3 CAMATLABYooIho¥imatiakilang

Add with Subfolders...l

oz Uy (3 CMATLABo0lboximatiaelmat
move Down 3 CAMATLABo olboximatiabielfun
L3 COWMATLARoolboximatiabispecfun
Move to Bottom (£ CAMATLAB o 0lboximatiabimatiun

L3 CWMATLARoolboximatiabidatafun

Remuove P P TR S TR l
(:_I | 3

Save Close | Revert Default Help |

L

:

Figure 2.4: DBTool folder added to MATLAB search path

Click Save and then Close, and the setup of MATLAB search path is finished.

2.2 Licensed version installation

The standard, professional and redistributable versions of DBTool are provided in another
dbtool.zip, which has the Plain API functions included. You need a license file named
license.dat to activate the licensed version.

2.2.1 Unpack dbtool.zip

Unpack all the files in dbtool.zip to a folder using WinZIP, just as the same as installing the
demo version.

2.2.2 Copy the license file

The license file 1icense.dat will be emailed to you as an attachment. Just copy the license file
into the folder of DBTool, as seen in figure 2.5.

DBTool User Manual

_{ol x|
J File Edit ‘iew Favorites Tools Help |
|e-=» - EE X w|E
| Address | CAMATLAB!taolbox|dbtool =| @eo
(0 (3 (@3 =
@dbase @rsek plain byteznum.c byteZnum.dl byte2word.m
#
closeall.m contents.m dbkaal di dbkaal.m dsnlist.m license. dat
#
rumzbvbe . numzbyvte di test.mdb wordZbyte.m
|16 obizct(s) |[4.66 ME = vy Computer 4

Figure 2.5: Install non-demo version of DBTool

2.2.3 Update MATLAB path

Add the DBTool path to the MATLAB search path, just likes installing the demo version. Be
aware that licensed version has a folder *plain’ which contains the Plain API functions, you
also need to add the folder ’plain’ to the MATLAB path, if your want use Plain API, especially
to compile your database program into a standalone executable with MATLAB Compiler.

2.3 Setup ODBC data source

2.3.1 Prepare to setup ODBC

Click the icon of My Computer and open it, find the Control Panel icon and open it. If you are
running Windows 9x, you can find the 0DBC icon there. If you are running Windows 2000/XP,
you should first click the icon Administrative Tools in it, as seen in figure 2.6.

E3 Control Panel

J File Edit ‘iew Favorites Tools Help
|e-=»-HAGIEE X9 E
| s (TR T @ |

Configures administrative settings For waur computer 4

Figure 2.6: The Control Panel window

DBTool User Manual

Open the Administrative Tools window, and find the Data Sources (0ODBC) icon, as seen
in figure 2.7.

Administrative Tools

J File Edit ‘iew Favorites Tools Help |
[e —

|.0.|:Ids, removes, and configures Ope |1 43 KE | My Computer 4

Figure 2.7: The Administrative Tools window

Click the ODBC icon and begin to setup the data sources, the ODBC Data Source Administrator
window shows up, as seen in figure 2.8

“l0DBC Data Source Administrator

User DSH | System DSM | File DSNI Driversl Tracingl Connection F'l:n:ulingl About I

User Data Sources:

MName Diriver Add...

L3
Canfigure... |

An ODEC User data source stares information about how to connect to
the indicated data provider. A& Uzer data source iz only visible to you,
and can only be uzed on the current machine.

ok | Cancel | ASpply | Help |

Figure 2.8: The ODBC Data Source Administrator window

2.3.2 Setup an Access ODBC data source

You can setup any kind of data sources. In this example, we demonstrate how to setup an

Access data source.
First click the ADD button, in the Create New Data Source window, select
Driver do Microsoft Access(*.mdb) from the ODBC driver list, and click Finish, as seen

in figure 2.9.

DBTool User Manual

Create New Data Source x|

Select a driver for which pou want to get up a data zource,

Diriveer dia b

< Bach: I Finish [_xl Cancel |

Figure 2.9: The Create New Data Source window

In the ODBC Microsoft Access Setup dialog, type in the Data Source Name, in this exam-
ple, we use testaccess, as seen in figure 2.10.

ODBC Microsoft Access Setup 2=

Data Source Name: [festaeess oK

Dezcription:
Cancel |
— Database
Database; Help |
Select... Create. .. | Repair... | Compact...l
Advanced... |

— System D atabasze

* None
¥ Database;

System Databaze.. |

Optiona:» |

Figure 2.10: The ODBC Microsoft Access Setup dialog

Then click the Select. .. button, to select an access file (*.mdb). In this example, we select
the file c:\matlab\toolbox\dbtool\test.mdb, as seen in figure 2.11.

DBTool User Manual

Xl
Directories:
c:hmatlabhtoolboxdbtaol k
Cancel |
Help |
[~ Read Only
7 Exclusive
Lizt Filez of Type: Drives:

Figure 2.11: Select an Access file

After selected an Access file, the ODBC Microsoft Access Setup dialog looks like the figure
2.12.

ODBC Microsoft Access Setup 2=

Data Source Name: [festaeess o |
Descrpions [T

— Database

Database: C:MMATLARMtooboxsdbtaoltest. mdb Help |
Select... I Create. .. | Repair... | Compact...l
Advanced... |

Cancel |

— System D atabasze

* None
¥ Database;

System Databaze.. |
Optiona:» |

Figure 2.12: ODBC Microsoft Access Setup dialog is finished

After that, click 0K, and the ODBC data source testaccess is finished,

2.3.3 Setup an MySQL ODBC data source

Now let’s setup a MySQL ODBC data source. Before that, you need to install MySQL and
MyODBC, which can be downloaded from http://www.MySQL.com/downloads/index.html.

After MySQL and MyODBC are installed and setup correctly, we need to create a database
for test purpose. This can be done in MySQL command window, or use the GUI MySQL
Administration tool: WinMySQLadmin.

Assume you have created a database named test, then you can setup a data source with it.
First click Add button in the Create New Data Source window (figure 2.8).

In the Create New Data Source window, select MySQL in the driver list, and click Finish,
as seen in figure 2.13.

10

http://www.MySQL.com/downloads/index.html

DBTool User Manual

Create New Data Source x|

Select a driver for which pou want to get up a data zource,

Mariie [v <]

ticrozoft QDBLC for Oracle 2
ticrozoft Parados Driver [*.db | 4,
ticrozoft Parados-Treiber [*.db) 4,
bicrozoft Test Diriver [* ket * cav] 4,
ticrozoft Test-Treiber [*.tut; *.cav] 4,
Microzoft Visual FoxPro Driver E.
Microzoft Visual FoxPro-Treiber E.
MpSOL 2
SOL Server 3
4 I I 3

< Bach: I Finish :\I Cancel

Figure 2.13: Add a MySQL ODBC data source

Then the MySQL ODBC data source configuration window shows up, as in figure 2.14. Type
in the DSN name, for example: testmysql, and the MySQL server host (name/IP): localhost,
or your IP, or domain name, and the MySQL database name: test, which is mentioned above.

TDX my=ql Driver default configuration x|
Thiz iz in public domain and comes with MO WARRAMTY of any kind
Enter a databaze and options for connect

Windows DSM name: Itestmysql

WySOL kost [name ar 1FP): Ilocalhost

MuS AL database name: ltESt

Uzer I
Password; I
Prort [if not 3308 I

S0AL command on connect: I

— Options that affects the behaviour of MyODBEC
[T Don't optimize colurnn width 7 Pad CHAR to full length
[Return matching rows [” Return table names in SOLDescibeCol
[T Trace MyODEC 7 Usze compressed protocol
[T Allow BIG results [T Ignore space after function names
[T Don't prompt on connect [Farce uzse of named pipes
[T Simulate ODBC 1.0 [T Change BIGIMT columng ta INT
7 Ignore # in #.table [T Mo catalog [exp)
[T Use manager cursors [exp) T Read options from C: . cnf
[T Don't use setlocale [T Safety [Check this if pou have problems)
[T Dizable transactions

Cancel |

Figure 2.14: MySQL ODBC data source configuration window

After that, click OK to return to the ODBC Data Source Administrator window, as shown
in figure 2.15. We can see that two data sources have been added: testaccess and testmysql.

11

DBTool User Manual

“l0DBC Data Source Administrator

User DSH | Spstern DSH | File DSNI Driversl Tracingl Connection F'l:n:ulingl About I

User Data Sources:

MName Diriver Add...

Eemove

Canfigure...

|

An ODEC User data source stares information about how to connect to
the indicated data provider. A& Uzer data source iz only visible to you,
and can only be uzed on the current machine.

ok I Cancel | Aol | Help

Figure 2.15: ODBC Setup with 2 new data sources

2.3.4 Setup ODBC data source for MATLAB Web Server

If you are running MATLAB Web Server to provide HT'TP service using MATLAB and DBTool,
don’t create your ODBC Data Source as User DSN, use System DSN instead, which is the second
tab in figure 2.8.

12

Chapter 3

Getting Started With DBTool

3.1 Test the installation

We’ll test the installation by opening a database. Start MATLAB and type the command:
db=dbase(’testaccess’,’’,’’)

Where testaccess is the DSN name of Access ODBC data source we just setup, the following
two empty strings are the user name and password separately. In this case, we don’t need login

authentication, so they can be empty.
If the installation is OK, we’ll get the following display in the MATLAB command window:

>>db=dbase(’testaccess’,’’,’’)
Database object members:

Data source name: testaccess
User name:
Password:
handle: 1

>>

Notice the last line “handle: 1” means the database is opened and is assigned a handle
(=1) to the dbase object db. Of course, if the statement is followed by a “;”, there will be on

output.

If the installation is not correct, or the user has assigned an error DSN, user name or
password, or any other errors happens, there should be some error message printed, and the
returned db is empty. You can use isempty to test whether the operation is successful. For
example, we open a DSN named foo which is not exist:

>> db=dbase(’foo0’,’?,’’)
Warning: Data source name not found and no default driver specified

Failed to open database.

db =

13

DBTool User Manual

(]

>>

3.2 Open a recordset

We have successfully opened a database, and the database information is saved in the dbase
object db. Now type the following command:

rs=rset(db, ’select * from mytable’)

This will open a recordset, where db is the dbase object, and the following string is a SQL
command. In this case, the SQL command ’select * from mytable’ selects all fields in the
table mytable. Of course, you can use any other valid SQL commands to select different fields
with some special conditions.

This command will produce the following output:

>> rs=rset(db,’select * from mytable’)

Recordset object members:
handle: 1
field count: 7
handle of database: 1
connect sql string: select * from mytable

field names:
’ID° ’Name’ ’Sex’ ’Age’ ’City’ ’Date’ ’Photo’

field types:
’long’ ’string’ ’string’ ’short’ ’string’ ’date’ ’blob’

>>

The object rs has some properties, handle is the handle of the recordset, field count
indicates there are 7 fields selected in the table, handle of database indicates the handle of
the corresponding dbase object. connect sql string shows the SQL command string of this
query. The following is field names and field types for all the fields.

@“.”

If the statement is followed by a *;”, there will be on output. The output is produced by
the object rs.

3.3 Navigating in the recordset

Although a SQL query can return several rows of data, rset in the old version of DBTool was
designed to fetch only one row of data each time. This is because when the table is very large,
reading in the whole table is a waste of memory and time, especially when the data source is
on another machine of the network, it may take a long time to load the whole table via the
network. On the other hand, through the ODBC API, there is no way to find the total number

14

DBTool User Manual

of rows in a recordset directly. But since DBTool version 2.0, multi-rows fetching is available,
this is implemented by calling movenext internally in dbtool.d1l1, until the last row is reached
or enough rows has been collected, and it’s pretty faster than calling movenext in .m program.

A method is needed to access different rows for the object rset, this is called navigating.
We can use the following 4 commands to navigate in the recordset.

e movefirst — Moves to the first row.

e movelast — Moves to the last row.
e movenext — Moves to the next row.
e moveprev — Moves to the previous row.

For example, we use the movenext to navigate to the second row, because when the recordset
is opened, it’s indicated to the first row.

>> movenext (rs)

ans =

>>

By using movenext (or moveprev) continuously, you can navigate through all the rows of the
recordset. When movenext (or moveprev) returns a 0, this means the last (or the first) row has
already been reached, navigating should then stop.

3.4 Reading data from recordset

Once a rset object is successfully opened, we can fetch data from it. There are two methods
to read data from the rset object:

e fields — Read and arrange the data into a structure.

e fieldc — Read and arrange the data into a cell.

The fields method returns a structure, its field names are the field names of the recordset,
and its values are the values of the recordset. For example,

>> xs=fields(rs)
xXs =

ID: 1
Name: ’Mike’
Sex: ’male’
Age: 25
City: ’New York’
Date: 7.3123e+005
Photo: [1x5099 double]

>>

15

DBTool User Manual

Now you can use xs.Name, xs.Age, etc. directly.
The fieldc method returns a cell, no field name information is included, only the field values
are saved in sequence. For example,

>> xc=fieldc(rs)

[1] ’Mike’ ‘male’ [25] ’New York’ [7.3123e+005]
[1x5099 double]
>>

Now you can use xc{1} for field ID, xc{3} for field Age, and so on.
Adding a parameter ’0’ to read all rows into an array of structure or cell array:

xc=fieldc(rs,0);
xs=fields(rs,0);

Or specify the number of rows expected to read:

xc=fieldc(rs,5);
xs=fields(rs,5);

3.5 Close database and recordset

To close dbase and rset object, just use the close method. For example:

>> close(rs);
>> close(db);

Be sure not to close dbase objects which have rset objects opened, else there will be a warning
message.
If you forgot which objects were opened, just use the command closeall:

>> closeall
This will close all opened rset and dbase objects.

In addition, when MATLAB is terminated, all rset and dbase objects are closed automati-
cally (this feature is depended on the ODBC driver).

16

Chapter 4

Using DBTool

4.1 Editing row

To edit an existing row, we should use the update method with the following format:

update(rs, xc);

This will update the data of the current row using cell array xc.

Notice that only cell array is supported in updating, structure is not supported. The field
values are stored in the cell xc, the number and sequence of the fields in xc must be the same
as in the recordset.

For example,

>> db=dbase(’testaccess’,’’,’’);
>> rs=rset(db,’select Name,Age from mytable’);
>> xc=fieldc(rs)

’Mike’ [25]
>> xc{2}=26;
>> update(rs,xc);
>> xc=fieldc(rs)
Xc =

’Mike’ [26]
>> close(rs);
>> close(db);

>>

Multi-rows updating is not supported.

17

DBTool User Manual

4.2 Inserting row

Use insert method to insert rows into the recordset. insert method is used in the following
format:

insert(rs,xc);

For example, we copy the data of the first row, change the name and age, and insert it back
into the recordset

>> db=dbase(’testaccess’,’’,’’);

>> rs=rset(db, ’select Name,Sex,Age,City,Date,Photo from mytable’);
>> xc=fieldc(rs);

>> xc{1}=’Bill’;

>> xc{3}=22;

>> insert(rs,xc);

>> close(rs);

>> rs=rset(db,’select * from mytable where Name=’’Bill’’’);

>> xc=fieldc(rs)

Columns 1 through 6
[49] ’Bill’ ’male’ [22] ’New York’ [7.3123e+005]
[1x5099 double]

>> close(rs);
>> close(db);
>>

In this example, the ID of the new inserted row is 49, but not 7, this is because ID is the key
and index field, and the ODBC driver maintaines its value automatically.

Multi-rows inserting is also supported, prepare your data as a 2-dimentional cell array, for
example, a 2 rows cell array with 3 fields can be constructed as:

>> xc = {’Nike’ , ’male’ , 24; ’Windy’ , ’female’ , 22}
Xc =

’Nike’ ‘male’ [24]

>Windy’ ’female’ [22]
>>

and then use the same command to insert rows.

insert(rs,xc);

Note: in demo version, multi-rows insertion is only functional for 30 minutes each time.

18

DBTool User Manual

4.3 Deleting row

Use delete method to delete the current row from the recordset. It’s used in the following

format:

delete(rs);

For example, we delete the row inserted in the previous section.

>>
>>
>>
>>

XC

>>
>>
>>

db=dbase (’testaccess’,’’,’’);

rs=rset(db, ’select * from mytable where Name=’’Bill’’’);
delete(rs);

xc=fieldc(rs)

close(rs);
close(db);

4.4 Execute SQL directly

When a database is opened, you can use execsql method to execute SQL command or stored
procedure directly. The calling convention is:

execsql(db, ’sql command’);

For example, the following command create a new table named pet in the database, and then

drop it.

>>
>>
>>
>>
>>

db=dbase(’testaccess’,’’,’’);

execsql(db, ’create table pet (name CHAR(20), birth DATE)’);
execsql(db, ’drop table pet’);

close(db);

To verify the creating and dropping of the new table pet, open the file test.mdb in Access to

check it.

4.5 Date/Time field

We have seen the Date field of the table is a type of date/time, but when we display the data
in xs or xc, there is only a number:

>>

XS

xs=fields(rs)

19

DBTool User Manual

ID: 1
Name: ’Mike’
Sex: ’male’
Age: 25
City: ’New York’
Date: 7.3123e+005
Photo: [1x5099 double]

>>

How to read the time stored in the field xs.Date? We can use the MATLAB command
datastr to convert it into a string:

>> datestr(xs.Date)
ans =

10-Jan-2002 14:44:00
>>

Similarly, use MATLAB command datenum to convert time into number. And the current
time can be obtained by MATLAB command now.

4.6 BLOB field

4.6.1 What is BLOB

DBTool supports BLOB fields. BLOB is binary large object. Using BLOB, user can store large
binary or text data with variable length. The data stored as BLOB can be managed by user,
or by the database manager, such as Access. In Access, BLOB fields are called Packages, which
can store OLE objects or embed files directly into the table.

4.6.2 Reading file from BLOB field of Access database

The table mytable in database test.mdb has a field named Photo, which is a Package. Every
Photo field is embedded with a .gif file. There is no difference to read the data from the BLOB
fields than other fields. For example:

>> db=dbase(’testaccess’,’’,’’);
>> rs=rset(db,’select * from mytable’);
>> xs=fields(rs)

Xs =
ID: 1

Name: °’Mike’
Sex: ’male’

20

DBTool User Manual

Age: 26

City: ’New York’
Date: 7.3123e+005
Photo: [1x5099 double]

>>

We can see xs.Photo is a 1x5099 double array, each double word only contains a byte
Actually, it has a picture file named Abra.gif embedded. The file Abra.gif is 1165 bytes,
other bytes are OLE information inserted by Access.

We can find the file content of Abra.gif by searching the string “GIF8”, this is the beginning
string of an ordinary GIF file.

>> pack = xs.Photo;
>> offset = findstr(pack, ’GIF8’)

offset =
184
>>

And the 4 bytes before the string “GIF8” is the length of the file:

>> pack(184-4:184-1)
ans =
141 4 0 0
>>
So the length of the file can be calculated:
>> len=141+256%*4
len =
1165

>>

Now we can extract the content of the file, and save it to disk:

>> dat = pack(offset:offset+len);
>> fout = fopen(’temp.gif’,’wb’);
>> fwrite(fout, dat);

>> fclose(fout);

>>

21

DBTool User Manual

Now we can open the file temp.gif by the Windows Explorer, or read it into MATLAB and
plot it.

>> [xxx map] = imread(’temp.gif’);
>> imshow(xxx,map) ;
>>

The GIF file extracted from the BLOB field is shown in figure 4.1.

) rigure NI
File Edit View
Insert Tools

Window Help

IsE=N= =3

Ay

Figure 4.1: Show GIF extracted from BLOB

4.6.3 Storing double array in Access

In the Access test file test.mdb, another table named arrays is provided. It has the following
fields:

e ’name’ - The name of the matrix to be saved, text.

e ’rows’ - Number of rows of the matrix, numeric.

e ’cols’ - Number of columns of the matrix, numeric.

e ’data’ - Stores binary data of the matrix, set to OLE Object at design, and

changes to long binary automatically after data is written in.

In the following example, we first generate a random matrix x, convert it into byte series
using the mex program num2byte, and construct a cell array xc contains the name and dimension
information and the data in byte series. Then insert a new row into the table arrays . Finally
read it back into a structure xs, and restore the data of the matrix from xs.data using mex
program byte2num, and reshape it back into the original dimension.

>> db=dbase(’testaccess’,’’,’’);

>> rs=rset(db, ’select * from arrays’);
>> xc=fieldc(rs)

Xc =

»? (] (] (]

>> x=rand(3,4)

22

DBTool User Manual

0.4447 0.9218 0.4057 0.4103
0.6154 0.7382 0.9355 0.8936
0.7919 0.1763 0.9169 0.0579

>> xc{1}="x";

>> xc{2}=3;

>> xc{3}=4;

>> xc{4}=num2byte(x) ;
>> insert(rs,xc);

>> xs=fields(rs)

Xs =
name: ’x ’
rows: 3
cols: 4

data: [1x96 double]

>> y=byte2num(xs.data) ;
>> y=reshape(y,xs.rows,xs.cols)

y:

0.4447 0.9218 0.4057 0.4103
0.6154 0.7382 0.9355 0.8936
0.7919 0.1763 0.9169 0.0579

>> close(rs);
>> close(db);
>>

4.6.4 Writing and reading BLOB data into MySQL table

In this section, we give an example of accessing BLOB data with MySQL.
First create a table named arrays, with a field name to save the array’s name and a field
data to save the array’s binary data, and the field id is used as the key.

>> db=dbase(’testmysql’,’’,’’);
>> execsql(db,’create table arrays (id int(10) default O not null,
name char(20), data blob, primary key (id))’);

Now insert a new row into the table manually.

>> execsql(db,’insert into arrays (id,name,data) values (0,’’abc’’,0)’);

Then open a recordset and write data into the table.

23

DBTool User Manual

>>
>>

XC

>>

The data field is 48, this is because ’0’ is regarded as a character, not a number, and the ASCII
code of 0’ is 48 in decimal. Now we change the content of xc and update the data in the

rs=rset(db,’select * from arrays’, 1);
xc=fieldc(rs)

[0] ’abc’ [48]

recordset, and then close it:

>>
>>
>>
>>

data=fix (127+127*sin((1:512) /512%2xpi));
xc{3}=data;

update(rs,xc);

close(rs);

To verify our modification is correct, try the following code:

>>
>>
>>

XC

>>
>>
>>

Make sure to add a parameter 1’ to open MySQL recordset in snapshot mode. See figure 4.2

rs=rset(db,’select * from arrays’);
xc=fieldc(rs)
xc

[0] ’abc’ [1x512 double]

plot(xc{3})
close(rs);
close(db);

for the plot of xc{3}.

24

DBTool User Manual

<} Figure No. 1 M=l E3

File Edit ¥iew Insert Tools Window Help

BTN e

300

250 -

200 -

180 ¢

100

=N

0 100 200 300 400 500 B00

Figure 4.2: Data extracted from the BLOB field

25

Chapter 5

Using Plain API

5.1 What’s Plain API

In the previous chapters, class dbase and rset for database operations are introduced. Using
these two classes, one can write object oriented database program. But MATLAB Compiler
does not support classes, so the program can’t be compiled into standalone executable.

A set of Plain API functions is provided, which has no class objects and compatible with
MATLAB Compiler. At the same time, the Plain API has very similar grammar to the class
version. These include database operations:

e db_open - open dadabase
e db_close - close the database

e db_execsql - execute a sql string directly
and recordset operations:

e rs_open - open recordset

e rs_close - close recordset

e rs_fields - fetch data into structure array
e rs_fieldc - fetch data into cell array

e rs insert - insert a new row

e rs_delete - delete current row

e rs_ update - update current row

e rs_movefirst - move to the first row

e rs movenext - move to the next row

e rs moveprev - move to the previous row

e rs_movelast - move to the last row

For detailed description, see reference.

26

DBTool User Manual

5.2 Work with MATLAB Compiler

5.2.1 Prepare your program

To make your program compatible with MATLAB Compiler, write your MATLAB program as
a function, not a script file. This is simply by adding ’function’ to the first line. In the following
example dbmcc.m, a database structure db is first opened with db_open, and a recordset rs is
opened with rs_open. Then use rs movefirst and rs movelast to navigate in the table, and
use rs_fields and rs_fieldc to read data into a structure or a cell. Finally use rs_close and
db_close to close database connections.

function dbmcc

fprintf (’open db\n’)
db=db_open(’testaccess’,’’,’’);

fprintf (’open rs\n’)
rs=rs_open(db, ’select * from mytable’);

fprintf (’move first\n’)
rs_movefirst(rs);

fprintf (’read struct\n’)
xs=rs_fields(rs)

fprintf (’move last\n’)
rs_movelast(rs);

fprintf(’read cell\n’)
xc=rs_Tfieldc(rs)

fprintf(’close rs\n’)
rs=rs_close(rs);

fprintf (’close db\n’)
db=db_close(db) ;

5.2.2 Compile into Standalone Executable

In MATLAB window, type mcc -m foo.mormcc -p foo.m to compile your MATLAB program
into a standalone executable. With the >-m’ or ’-x’ directive, mcc will search all .m files called
by the main program, and compile them into C or C++ files, and finally link them into a .exe
file. Then you can run the file in a DOS prompt. If your program used GUI, use mcc -B sgl
foo.m instead. For more information of mcc, type help mcc in MATLAB window.

Be sure to place a copy of dbtool.d1l to the same folder of your main program. Otherwise
mcc will not work properly. The following example is to compile dbmcc.m into dbmcc . exe.

>> mcc -m dbmcc.m %hcompile it into standalone
>> 1s %dbmcc.exe appears

27

DBTool User Manual

dbmcc.h rs_fetch.c rs_movelast.c
.. dbmcc.m rs_fetch.h rs_movelast.h
db_close.c dbmcc_main.c rs_fieldc.c rs_open.c
db_close.h dbtool.dll rs_fieldc.h rs_open.h
db_open.c dbtool_mex_interface.c rs_fields.c
db_open.h dbtool_mex_interface.h rs_fields.h
dbmcc.c rs_close.c rs_movefirst.c
dbmcc.exe rs_close.h rs_movefirst.h

Now you can run dbmcc.exe in a DOS prompt, or just run it inside MATLAB, with a’!” ahead
of the command.

>> Ildbmcc J%run dbmcc.exe, ’!’ means a DOS shell execution
open db

open rs

move first

read struct

Xs

ID: 1
Name: ’Mike’
Sex: ’male’
Age: 26
City: ’New York’
Date: 7.3123e+005
Photo: [1x5080 double]

move last
read cell

xc =
Columns 1 through 6
[6] ’Susan’ >female’ [27] ’Pittsburgh’ [7.3122e+005]
Column 7
[1x4375 double]
close rs

close db
>>

28

DBTool User Manual

5.3 Work with MATLAB COM Builder

5.3.1 Prepare your program

The following example dbaccess.m is a MATLAB GUI program which direct you to open a
database, select a table and then show the contents of the first row.

function dbaccess

closeall;

dsns = dsnlist;

v = 0;

while v™=1

[s,v]=listdlg(’PromptString’,’Select a database:’,...
’SelectionMode’,’single’,’ListString’,dsns);

end
dsn

db
tbs
V=

dsns{s};

db_open(dsn,’?,’’);
db_tablelist(db);

0;

while v™=1
[s,v]=1listdlg(’PromptString’,’Select a table:’,...
’SelectionMode’, ’single’,’ListString’,tbs);

end

tb = tbs{s};

s =

sprintf (’Now let’’s read the first row of\ntable "Ys"

from database "Y%s"’,

uiwait (msgbox (s, ’DBAccess’,’modal’));

Irs
XC

names =
types =

rs_open(db, [’select * from ’ tb]l);
rs_fieldc(rs);

rs_fieldname(rs);
rs_fieldtype(rs);

str = 77,

for i=1:length(xc)
switch types{i}

case {’bool’,’short’,’long’,’single’, ’double’}

s = sprintf(’Ys :
case ’date’;

s = sprintf(’%s
case {’char’,’string’}

s = sprintf(’%s
case ’blob’

s = sprintf(’%s

otherwise,

29

tb, dsn);

%d\n’, names{il}, xc{i});

: %s\n’, names{i}, datestr(xc{il}));

: %s\n’, names{i}, xc{il});

: BLOB filed\n’, names{i});

DBTool User Manual

end
str = [str s];
end

rs_close(rs);
db_close(db);

s = sprintf(’The first row of\ntable "%s" from database "%s"
is:\n%s’, tb, dsn, str);
uiwait (msgbox (s, ’DBAccess’,’modal’));

By typing dbaccess, a listbox with all system DSN lists pops up.

EEE X

Select a databage:

MS Acoess 97 Database - |
dB&SE Files

Eucel Files

FosPro Files

Text Files

Wizual FoxPro Tables

Wisual FouxPro Databaze

dbase

M5 Access Database Eg

[

Ok | Cancel |

Figure 5.1: DBAccess: DSN list dialog

By selecting a DSN name, a dbase object is opened and another listbox pops up with the
table lists in this database.

30

DBTool User Manual

x|

Select 5 table:

|anass AI

-

Ok | Cancel |

Figure 5.2: DBAccess: Table list dialog

Select a table in the list, and the contents of the first row is displayed in a dialog box.

x

Mow let's read the first row of
table "mytable’ from databaze "'test"

o |

Figure 5.3: DBAccess: message box

5I

The first row of

table "mptable" from databaze "test' is
ID:1

Mame ; Mike

Sex: male

Age: 24

City = Mew York

Date : 10-Jul-2003 21:13:10

Fhata : BLOB filed

|

Figure 5.4: DBAccess: contents of first row

The function name is ’>dbaccess’, and we’ll build a COM component *DBTool Demo’, which
has a method named ’dbaccess’.

31

DBTool User Manual

5.3.2 Compile into COM component

Before building your COM component with comtool, type this command to register mwcomutil.d11
in a DOS prompt:

mwregsvr mwcomutil.dll

In MATLAB window, type comtool to envoke MATLAB COM Builder. Create a new project
by clicking menu File | New Project, fill items like figure 5.5.

JRT=TE

r Project naming

Component name

I DBToaol_Dermao

Claszes

Clasz name

DBTool Demo |«
I— Add s> |
Remowe | LI

Froject version
{10
Project directary

I D Mok dbtooleom

Browsze. . |

r Compile code in
*C
" Cat

r Campiler options
¥ Use Handle Graphics library
[Build debug version

[Show verbose output

0k I Cancel I Help I

Figure 5.5: Create a new COM project

In the Project Files tree, add the file dbaccess.m into M-files. Every M-File you
added becomes a method of the COM component. Then click the button ’Build’, after
a while, the COM object is compiled, the filename is DBTool Demo 1 0.d11, in the folder
’distrib’. To distribute the object, click menu Component | Package Component and you
get a ’DBTool Demo.exe’ in the distrib folder. This is a installer program with necessary
MATLAB COM components and the DBTool Demo component.

32

DBTool User Manual

<): MATLAB COM Builder - DETool_Demo.cbl 101 =l
File Project Build Companent Help

rProject Files rBuild Status

Add File | Building standalone executable. .

mce -M -silentsetup -d 'Doiworkidhtoolfcomisie' -B'c

A Project Files dbtool_demo_idlidl
=3 DBTool_Demo oaidl idl
H-L3 M-files objidl.idl
i s Dowvorlddbtoohcomidhaccess.m ankmamidl
MEX-files witypes idl
ocidlidl
aleidl.idl
servprov.idl
urlron.idl
msxmlidl

mwcomtypes.idl

Creating distrib directory.
moving files to distrib.

Standalone DLL huild complete.
Al | v
Edit | Remove | N‘J Clear |

Figure 5.6: Add M-files and compile

Before testting the COM component, make sure the mex file ’dbtool.d11’ is in the system
PATH. For more information on COM programing, refer to the manual of MATLAB COM
Builder.

33

Chapter 6

References

6.1 dbase

The class object dbase is a database object. It can be opened by assigning an ODBC data
source. Then several methods are used to operate on the tables in the database.

6.1.1 Properties

The properties of class object dbase can’t be accessed directly. The only way to read it is by
using the method display.

6.1.1.1 handle

Use the handle property to distinguish between different dbase objects.

6.1.1.2 dsn

The dsn property is the data source name in a string.

6.1.1.3 uid

The uid property is the user login name of the database. In many cases uid is not needed and
an empty string ’’ is used.

6.1.1.4 pwd

The pwd property is the user login password of the database. In many cases pwd is not needed
and an empty string ’’ is used.

6.1.2 Methods
6.1.2.1 dbase

Create an ODBC database object and open it.
Calling convention:

db=dbase (dsn,uid,pwd,options) ;

Inputs:

34

DBTool User Manual

dsn - string of data source name
uid - string of username
pwd - string of login password

options - optional, default to 8. Other values:
2 : Open database read only
4 : Use 0ODBC cursor 1lib
8 : Don’t display ODBC Connect dialog, default
16 : Always display ODBC connect dialog
Sum up the options needed, or leave blank to use default 8
For example, use 0ODBC cursor 1lib and don’t display ODBC Connect
dialog, then options should be 4+8=12

Return:

db - dbase object

Example:
db = dbase(’testaccess’,’’,’’);
db = dbase(’testaccess’,’’,’’,12);

If the database open operation not successful, the function returns [1 (empty), you can use
isempty to verify that.

6.1.2.2 close

Close an ODBC database.
Calling convention:

ret=close(db)
Input:

db

a database object

Return:

1 - Success
0 - Failure, maybe already closed.
-1 - Failure, not all recordsets closed.

6.1.2.3 tablelist

Show the table list in the current database.
Calling convention:

tb = tablelist(db, type, fmt);

Input:

35

DBTool User Manual

db - dbase object
type - Optional, default to O, only list ’Table’
0: Table only
1: Table and View
2: Table and System Table
3: Table, View and System Table
fmt - Optional string, output format, default to ’name’
’name’: return a cell array of table names
’full’: return a struct array of table name, type and owner

Return:

tb - cell array of table names
or
tb - structure array of tables, with 3 fields:
Name : table name
Type : table type, ’Table’, ’View’ or ’System Table’
Owner: table owner

6.1.2.4 settimeout

Set the timeout parameter in seconds. Default timeout is 15 seconds.
Calling convention:

settimeout (db, timeout);

Input:

db - dbase object
timeout - timeout in seconds, default to 15, O = no timeout

6.1.2.5 execsql

Execute a SQL string.
Calling convention:

ret=execsql(db,sql);

Input:

db - dbase object
sql - string of SQL command

Return:

1 - Success
0 - Fail

36

DBTool User Manual

6.1.2.6 display

Display ODBC database members.
Calling convention:

display (db)
or
db
Input:
db - dbase object

Return:

Print the properties of the database object.

6.2 rset

6.2.1 Properties

The properties of class object rset can’t be accessed directly. The only way to read it is by
using the method display.

6.2.1.1 handle

The property handle is the handle of the recordset and used to distinguish between different
rset objects.

6.2.1.2 hdb

The property hdb is the handle of the associated dbase object.

6.2.1.3 sql

The property sql is the SQL command issued to create the recordset.

6.2.1.4 field

The property field is a cell array to store the data of a row of the recordset.

6.2.1.5 fieldname

The property fieldname is a cell array of string to store the field name of the row.

37

DBTool User Manual

6.2.1.6 fieldtype

The property fieldtype is a cell array of string to store the field type name of the row. Available
field types are:

e bool
e char

e short
e long

e single
e double
e date
e string

e blob

6.2.1.7 fieldcount

The property fieldcount is the number of the fields.

6.2.2 Methods
6.2.2.1 rset

Creates a rset object from the dbase object db and SQL string sql.
Calling convention:

rset = rset(db,sql,type,options,blobsize);

Input:

db - dbase object

sql - database connect string

type - open type, see below (optional)

options - open options, see below (optional)

blobsize - set the maximum size of BLOB/MEMO fields in KB(optional)
Return:

rset object
Example:

rset = rset(db,’select * from mytab’, type, options);

rset = rset(db,’select *

rset = rset(db,’select * from mytab’, 1);
*

from mytab’, [1, [1, 2048);

from mytab’);

rset = rset(db, ’select

38

DBTool User Manual

Open Type:
0 - dynaset , uses SQLExtendedFetch, keyset driven cursor, default
1 - snapshot , uses SQLExtendedFetch, static cursor
2 - forwardOnly , uses SQLFetch
3 - dynamic , uses SQLExtendedFetch, dynamic cursor

Open Options:
0x0000 -
0x0004 -
0x0008 -
0x0010 -
0x0020 -
0x0100 -

0x0800 -

0x2000 -

none
readOnly

appendOnly

skipDeletedRecords, default

Turn on skipping of deleted records, Will slow Move(n).
noDirtyFieldCheck

Disable automatic dirty field checking

useBookmarks

Turn on bookmark support

useExtendedFetch

Use SQLExtendedFetch with forwardOnly type recordsets
executeDirect

Directly execute SQL rather than prepared execute

Choose all options needed and add them up, convert it to decimal. For example, the default
skipDeletedRecords is 0x10, and in decimal is 16. For detailed information, see the description
of CRecordset::Open in Visual C4++ Documentation of MSDN.

If the recordset open operation not successful, the function returns [] (empty), you can use
isempty to verify that.

6.2.2.2 close

Close the recordset.
Calling convention:

ret=close(rs);

Input:

rs - rset object

Return:

1 - Success

0 - Fail

6.2.2.3 fields

Return field data in a structure array.
Calling convention:

data=fields(rs, rows);

39

DBTool User Manual

Input:

rs - rset object

rows — optional, max rows to read, default to 1, use O to read all following rows
Return:

data - rset object fields in structure

6.2.2.4 fieldc

Return field data in a cell array.
Calling convention:

data=fieldc(rs, rows);

Input:

rs - rset object

rows — optional, max rows to read, default to 1, use O to read all following rows
Return:

data - rset object fields in cell

6.2.2.5 movefirst

Move to the first row.
Calling convention:

ret = movefirst(rs);

Input:

rs - rset object

Return:

1 - Success
0 - Fail

6.2.2.6 movelast

Move to the last row.
Calling convention:

ret = movelast(rs);

Input:

rs - rset object

Return:

1 - Success
0 - Fail

40

DBTool User Manual

6.2.2.7 movenext

Move to the next row.
Calling convention:

ret = movenext(rs);

Input:

rs - rset object

Return:

1 - Success
0 - Fail

6.2.2.8 moveprev

Move to the previous row.
Calling convention:

ret = moveprev(rs);

Input:

rs - rset object

Return:

1 - Success
0 - Fail

6.2.2.9 movenext

Move to the next row.
Calling convention:

ret = movenext(rs);
Input:
rs - rset object

Return:

1 - Success
0 - Fail

41

DBTool User Manual

6.2.2.10 insert

Insert new row(s) into the recordset.

Calling convention:
ret=insert(rs,data) ;
Input:

rs - rset object

data - rset data fields in cell array.

Return:

1 - Success
0 - Fail

6.2.2.11 update

Edit and update the current row in the recordset.

Calling convention:
ret=update(rs,data);
Input:

rs - rset class

Structure not supported

data - rset data fields in cell. Structure not supported

Return:

1 - Success
0 - Fail

6.2.2.12 delete

Delete current row in the recordset.
Calling convention:

ret=delete(rs);
Input:
rs - rset object

Return:

1 - Success
0 - Fail

42

DBTool User Manual

6.2.2.13 display

Display rset class members.
Calling convention:

display(rs)
or

rs
Input:

rs - rset object
Return:

Print the properties of the rset object.

6.2.2.14 isempty

Test recordset for empty.
Calling convention:

yn = isempty(rs);
Input:

rs - rset object
Return:

yn - 1: rs is empty, O: rs is not empty.

6.3 Plain API

6.3.1 Database API
6.3.1.1 db_open

Create an ODBC database structure and open the database.
Calling convention:

db = db_open(dsn, uid, pwd, options);
Input:

dsn - string of data source name
uid - string of username

pwd - string of login password
options - optional, see below

43

DBTool User Manual

Return:
db - dbase structure
Example:
db = db_dbase(’testaccess’,’’,’’);
db = db_dbase(’testaccess’,’’,’’,12);

6.3.1.2 db_close

Close an ODBC database.
Calling convention:

db = db_close(db);

Input:

db - a dbase structure

Return:

Check db.handle,
0 - Success
1 - Failure, maybe already closed.

6.3.1.3 db_execsql

Execute a SQL string.
Calling convention:

ret = db_execsql(db,sql);

Input:

db - dbase structure
sql - string of SQL command

Return:

1 - Success
0 - Fail

6.3.1.4 db_settimeout

Set query timeout in seconds.
Calling convention:

db_settimeout(db, timeout);
Input:

db - dbase structure
timeout - timeout in seconds, default to 15, 0 = no timeout

44

DBTool User Manual

6.3.1.5 db_tablelist

Get a structure array of table list in the database.
Calling convention:

tb = db_tablelist(db, type, fmt);

Input:

db - dbase structure
type - Optional, default to O, only list ’Table’

0:Table only, 1: Table and View,

2: Table and System Table, 3: Table, View and System Table
fmt - Optional string, output format, default to ’name’

’name’: return a cell array of table names

’full’: return a struct array of table name, type and owner

Return:

tb - cell array of table names
or
tb - structure array of tables, with 3 fields:
Name : table name
Type : table type, ’Table’, ’View’ or ’System Table’
Owner: table owner

6.3.2 Recordset API
6.3.2.1 rs_open

Creates a rset structure from the dbase structure db and SQL string sql.
Calling convention:

rs = rs_open(db,sql,type,options,blobsize);

Input:
db - dbase structure
sql - database connect string
type - open type (optional)
options - open options (optional)

blobsize - max size of BLOB and MEMO fields (optional)

Return:

rs - rset structure

45

DBTool User Manual

6.3.2.2 rs_close

Close the recordset.
Calling convention:

rs = rs_close(rs);
Input:

rs - rset structure

Return:

Check rs.handle,
0 - Success
1 - Failure, maybe already closed.

6.3.2.3 rs_fields

Return field data in a structure array.
Calling convention:

data rs_fields(rs, rows);

Input:

rs - rset structure
rows - optional, max rows to read, default to 1, use O to read all following rows

Return:

data - rset structure fields in structure

6.3.2.4 rs_fieldc

Return field data in a cell array.
Calling convention:

data = rs_fieldc(rs, rows);
Input:

rs - rset structure
rows — optional, max rows to read, default to 1, use O to read all following rows

Return:

data - rset structure fields in cell

46

DBTool User Manual

6.3.2.5 rs_insert

Insert new row(s) into the recordset.
Calling convention:

ret = rs_insert(rs,data);
Input:

rs - rset structure

data - rset data fields in cell array.

Return:

1 - Success
0 - Fail

6.3.2.6 rs_delete

Delete current row in the recordset.
Calling convention:

ret = rs_delete(rs);
Input:

rs - rset structure

Return:

1 - Success
0 - Fail

6.3.2.7 rs_update

Edit and update the current row in the recordset.
Calling convention:

ret = update(rs,data);
Input:

rs - rset class

Structure not supported

data - rset data fields in cell. Structure not supported

Return:

1 - Success
0 - Fail

47

DBTool User Manual

6.3.2.8 rs_movefirst

Move to the first row.
Calling convention:

ret = rs_movefirst(rs);
Input:

rs - rset structure

Return:

1 - Success
0 - Fail

6.3.2.9 rs_movenext

Move to the next row.
Calling convention:

ret = rs_movenext(rs);
Input:

rs - rset structure

Return:

1 - Success
0 - Fail

6.3.2.10 rs_moveprev

Move to the previous row.
Calling convention:

ret = rs_moveprev(rs);
Input:
rs - rset structure

Return:

1 - Success
0 - Fail

48

DBTool User Manual

6.3.2.11 rs_movelast

Move to the last row.
Calling convention:

ret = rs_movelast(rs);
Input:
rs - rset structure

Return:

1 - Success
0 - Fail

6.3.2.12 rs_isempty

Test whether a recordset is empty.
Calling convention:

ret = isempty(rs);;
Input:

rs - rset structure
Return:

1 - rs is empty
0 - rs is not empty

6.4 Utilities

6.4.1 dbwarn

Enable/disable DBTool warning messages.
Calling convention:

dbwarn(yn) ;

Input:

yn - 1: enable warning messages(default), 0: disable waring messages.

49

DBTool User Manual

6.4.2 dblasterr

Get last error/warning message from the dbtool mex file. Enable/disable DBTool warning
messages.
Calling convention:

s = dblasterr();

Return:

s - last error/warning message string

6.4.3 dsnlist

Show DSN list. The user and/or system DSN names can be retrieved simply by typing this
command.
Calling convention:

dsns = dsnlist(type);

Input:

type - Optional, default to ’usr’, only list user DSNs
’usr’: only user DSNs
’sys’: only system DSNs
’all’: both user and system DSNs

Return:

dsns - cell array of DSN names

6.4.4 word2byte

Convert 16-bit signed word series into unsigned byte series. The lower byte is first, and the
higher byte is the second. For example, (0x1234 0x2345 0x3456 0x4567) is converted into (0x34
0x12 0x45 0x23 0x45 0x34 0x67 0x45). This function is used when storing 16-bits signed word
array into BLOB fields of the table.

Calling convention:

y=word2byte (x) ;

Input:

x - 1xN signed word array, range in [-32768, +32767].

Return:

y - 1x2N unsigned byte series.

50

DBTool User Manual

6.4.5 byte2word

Convert unsigned byte series into 16-bit signed word series. The lower byte is first, and the higher
byte is the second. For example, (0x34 0x12 0x45 0x23 0x45 0x34 0x67 0x45) is converted into
(0x1234 0x2345 0x3456 0x4567). This function is used when reading unsigned byte series from
BLOB fields of the table and restoring 16-bits signed word array from it.

Calling convention:

y=byte2word(x) ;

Input:

x — 1x2N unsigned byte series.

Return:

y - 1xN signed word array, range in [-32768, +32767].

6.4.6 num2byte

Convert double array into unsigned byte series. Because a double number is represented by 8
bytes, this function unpack the 8 bytes of the elements in the double array. This function is
used before storing double arrays into BLOB fields of the table.

Calling convention:

y=num2byte (x) ;

Input:

x - double array, in any dimention, could be 1xN, Nx1, MxN, MxNxP, etc.

Return:

y — 1xN unsigned byte series. The length of y is 8 times of N,
which is the total number of elements in x.

6.4.7 byte2num

Convert unsigned byte series back into 1xN double array, where N is 1 of 8 of the size of
input. This function is used to restore double arrays from BLOB fields of the table. Since the
dimension information is not saved int the BLOB fields, a reshape function must be used to
restore dimension.

Calling convention:

y=byte2num(x) ;

Input:

x - 1xN double array contains unsigned char values 07255.

Return:

y - 1xN/8 double array restored.

o1

	Introduction
	What's DBTool
	DBTool features
	Order DBTool

	Install DBTool
	Demo version installation
	Unpack dbtool.zip
	Update MATLAB path

	Licensed version installation
	Unpack dbtool.zip
	Copy the license file
	Update MATLAB path

	Setup ODBC data source
	Prepare to setup ODBC
	Setup an Access ODBC data source
	Setup an MySQL ODBC data source
	Setup ODBC data source for MATLAB Web Server

	Getting Started With DBTool
	Test the installation
	Open a recordset
	Navigating in the recordset
	Reading data from recordset
	Close database and recordset

	Using DBTool
	Editing row
	Inserting row
	Deleting row
	Execute SQL directly
	Date/Time field
	BLOB field
	What is BLOB
	Reading file from BLOB field of Access database
	Storing double array in Access
	Writing and reading BLOB data into MySQL table

	Using Plain API
	What's Plain API
	Work with MATLAB Compiler
	Prepare your program
	Compile into Standalone Executable

	Work with MATLAB COM Builder
	Prepare your program
	Compile into COM component

	References
	dbase
	Properties
	handle
	dsn
	uid
	pwd

	Methods
	dbase
	close
	tablelist
	settimeout
	execsql
	display

	rset
	Properties
	handle
	hdb
	sql
	field
	fieldname
	fieldtype
	fieldcount

	Methods
	rset
	close
	fields
	fieldc
	movefirst
	movelast
	movenext
	moveprev
	movenext
	insert
	update
	delete
	display
	isempty

	Plain API
	Database API
	db_open
	db_close
	db_execsql
	db_settimeout
	db_tablelist

	Recordset API
	rs_open
	rs_close
	rs_fields
	rs_fieldc
	rs_insert
	rs_delete
	rs_update
	rs_movefirst
	rs_movenext
	rs_moveprev
	rs_movelast
	rs_isempty

	Utilities
	dbwarn
	dblasterr
	dsnlist
	word2byte
	byte2word
	num2byte
	byte2num

