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1 Disclaimer

This manual and the αML implementation itself are works in progress! There may well be
bugs—if you find one, please submit a bug report (or other feedback) to

alphaml.feedback@googlemail.com.

The system is distributed under the terms of the GNU General Public License version
3—see the LICENSE file in the doc/ directory for more details.

2 Introduction

αML is a functional-logic programming language for easy prototyping of inductively-defined
systems such as type systems and operational semantics of programming languages and
calculi. The design and semantics of the language are detailed in [3]. This document
describes the language from the perspective of an end-user, with sections on installation
and interaction with the toplevel loop. It also provides a reference for the ASCII concrete
syntax of the core language and the various syntax extensions which are defined in terms
of the core. Code examples in teletype font represent actual concrete syntax of the
language, whereas metavariables in italic font range over syntactic constructs.

The language and its theory were developed as joint work with Andrew Pitts, and
funded by UK EPSRC grant EP/D000459/1.

2.1 Installation

The αML source code distribution can be downloaded from

http://www.cl.cam.ac.uk/∼mrl35/.

It has been successfully compiled under Linux, Mac OS X and Windows Vista (using both
the MSVC and cygwin ports of OCaml). There is also a binary distribution available for
Windows users (32-bit only).

The following are required to compile the system from source:
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• Objective Caml, version 3.10.2 or greater.
http://caml.inria.fr/download.en.html

• GNU Make, version 3.80 or greater.

• OCamlMakefile.
http://www.ocaml.info/home/ocaml sources.html

• The ocamlgraph library.
http://ocamlgraph.lri.fr/

• The vec library.
http://luca.dealfaro.org/Vec-Extensible-Functional-Arrays-for-Ocaml

To compile the system:

1. First ensure that the OCaml compilers and GNU Make are installed correctly.

2. Compile the ocamlgraph and vec libraries and install them, either manually or using
a tool such as findlib. It is simplest to install the library files into the default OCaml
library directory and copy the OCamlMakefile into the source directory.

3. If this is not possible then the libraries can be placed into any directory (provided
that the files are all together) and the OCamlMakefile can be placed in any directory
(which need not be the same as the location of the compiled library files).

4. If the libraries and the OCamlMakefile were installed in alternative locations, the
OCAMLMAKEFILE and LIBDIR variables at the beginning of the Makefile to point to
the correct locations (OCAMLMAKEFILE should be the path including the file name,
whereas LIBDIR should be the path to the directory containing the library files).

5. It should be possible to compile the αML interpreter now—do

make native-code or make nc

make byte-code or make bc

to build native- and byte-code versions of the interpreter respectively. To clean the
directory, do make clean.

If compilation fails, the most likely reason is that the libraries cannot be found be-
cause paths are not set correctly. If compiling native-code under Windows, consult the
README.win32 file from the OCaml distribution to ensure that you have all of the neces-
sary ingredients for native-code compilation. In particular, if the final linking phase fails
with an error about flexlink, try running the final ocamlopt command manually but
without any /ccopt argument.
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$ ./aml

_ _ __ __ _

__ _| |_ __ | |__ __ _| \/ | |

/ _‘ | | ’_ \| ’_ \ / _‘ | |\/| | |

| (_| | | |_) | | | | (_| | | | | |___

\__,_|_| .__/|_| |_|\__,_|_| |_|_____|

|_|

Version 0.3

>

Figure 1: αML interpreter prompt

2.2 Toplevel loop

Having successfully compiled the system, the αML interpreter is invoked by running the
aml command, which produces a prompt for user input liek that shown in Figure 1. User
input is terminated by dual semicolons ’;;’, so the input may span multiple lines. A single
input phrase at the toplevel may take one of four forms.

1. An αML expression to evaluate. If the user enters an expression e, the expression
is typechecked and then evaluated (see Section 3 for concrete syntax accepted by the
interpreter). The operational semantics of αML involves non-deterministic search,
which means that the evaluation of an expression might produce multiple values. If a
value is computed, the value and the type are then printed to the terminal—if there
are more branches of computation waiting to be explored then there is a prompt to
either keep searching or stop:

Type ’,’ (then Enter) to look for more answers, or ’.’ to stop.

The state produced by evaluating the expression is only stored when the user selects
‘.’ to stop searching, or when the final value is found. If one selects to keep searching
past the final value, or there are no values at all (i.e. the expression fails finitely),
then the response “no” is printed to the terminal and any new constraints generated
during the evaluation are discarded.

2. An expression to evaluate and bind. A let-binding has the syntax “let x
= e” and is dealt with in largely the same way as a “normal” expression e. The
difference is that when a value is accepted (either explicitly by the user, or implicitly
as the single value computed by a deterministic computation) then it is bound to the
variable x. The result of evaluating e can then be referred to using x in subsequent
expressions, until the binding is shadowed by another binding to x or the compiler
state is reset.
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3. A type declaration. Nametypes and datatypes can be declared by the user. Name-
types are used to represent object-language names. A single command can declare
multiple types of the same kind. The syntax for each of these declarations is as
follows:

• nametype nty 1 and · · · and nty j;;

• datatype dty 1 = K 11 of T11 | · · · | K 1n of T1n

and · · ·
and dty j = K j1 of Tj1 | · · · | K jm of Tjm;;

The syntax of datatype declarations follows that of ML datatype declarations very
closely. A particular datatype declaration is mutually recursive, so the types on the
right-hand sides may refer to any of the datatypes on the left, or any previously
declared types. The grammar of types T is presented in Section 3.2.

The identifiers for nametype and datatypes must begin with a lowercase letter and
data constructors must begin with an uppercase letter—the lexical conventions of
the language are described in Section 3.1. The processing of a type declaration may
fail if one of the identifiers has already been used as a nametype, datatype or data
constructor.

There is also another kind of type declaration, for relation types, which are discussed
in Section 3.6 below.

4. An interpreter directive. Any user input which begins with the ’%’ character is
parsed as a directive to the interpreter. The following directives are accepted by the
interpreter:

• %breath: switches the non-deterministic branching search procedure to breadth-
first mode (this is the default setting).

• %constraints: prints a representation of the set of all constraints which have
been processed by the interpreter.

• %debug on/off: toggles debug output (off by default).

• %depth: switches the non-deterministic branching search procedure to depth-
first mode.

• %help: prints out the list of interpreter directives.

• %quit: exits the toplevel loop.

• %reset: resets the internal state of the interpreter, i.e. the generated logic
variables, type declarations, variable bindings and constraints.

• %use "foo": loads the file “foo” and runs all of the commands contained therein
(which might include more directives, including more “use” directives).
Note: if there is a type error which prevents one of the commands within the
file from running, any earlier changes made to the state of the interpreter, for
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example by a type declaration, will persist. If the file is used again, the repeated
type declaration will fail, so a “%reset” must be done before the file is re-run.

• %walk on/off: by default, the values produced by the evaluation of expres-
sions are “walked”, which actually performs the substitutions implied by the
constraint set. This directive toggles this behaviour.

3 Language syntax

In this section we present the lexical conventions and concrete syntax of the αML language
as accepted by the interpreter, along with a discussion of the numerous defined extensions
and details of their implementation within the compiler.

3.1 Lexical conventions

Most of the identifiers used in αML are lowercase identifiers (lcase) which means that they
match the regular expression

lc [ lc | uc | digit | | ’ ]*

i.e. the initial lowercase letter (lc) is followed by zero or more lowercase letters, uppercase
letters (uc), digits (digit), underscores (’ ’) or primes (’́’). These identifiers are used for
αML value identifiers, as well as nametypes and datatypes. Data constructors, however,
are uppercase identifiers (ucase) which match the (very similar) regular expression

uc [ lc | uc | digit | | ’ ]*

i.e. they begin with an uppercase letter.
The following keywords are reserved and therefore cannot be used for value identifiers.

as and case datatype distinct exists fresh fn fun

in let nametype no of off on rec relation some

unbind unbind fresh unit where yes

The grammar also uses tokens num (which stands for an integer constant) and alpha
(which stands for one or more lowercase letters).

3.2 Core language

The syntax of the core language is defined by the grammar in Figure 2. From low to high,
the precedences of the infixed operators are branch, freshness, equality, projection, abstrac-
tion. The expression forms with meta-level binding are the let-bindings, anonymous and
recursive functions and case analysis. As usual in nominal abstract syntax, the abstraction
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e ::= lcase value identifier
| () unit
| ucase e data
| <e>e abstraction
| (e,· · ·,e) tuple
| fn (lcase:T) -> e anonymous function
| fun lcase(lcase:T):T = e recursive function
| let lcase = e in e let-binding
| case e of ucase lcase -> e case analysis

| · · · | ucase lcase -> e
| e.num projection
| e · · · e application
| e = e equality constraint
| e # e freshness constraint
| e || · · · || e branch
| some T logic variable generation
| fail T fail
| yes succeed
| (e) bracketed expression
| ?alpha existential variable

Figure 2: Syntax of the αML core language

term-former <e>e′ models the binding of a name in a term but is not itself a meta-level
binder.

The “some T” syntactic construct returns a new existential variable each time is is
invoked. This is as oppposed to the existential quantifier used in [3], which is available as a
defined construct (see Section 3.5 below). The result of evaluating “some” is an existential
variable, represented as ?a, ?b, ?c etc. When the result of a program is pretty-printed,
the interpreter attempts to hide these by substituting for them according to the constraint
environment (unless the “%walk” directive has been disabled). However, in some cases
these variables may still be visible in the pretty-printed output, even if “%walk” is enabled.
If this is the case, the “%constraints” directive can provide extra information on the
result of the computation.

Largely for debugging purposes, it is possible to enter these variables directly in ex-
pressions at the command prompt. For example, the existential variable ?c refers to the
third existential variable generated by the interpreter (since the last %reset). If a variable
is typed in which has not been generated yet (e.g. ?z when only three existential variables
have been generated) the interpreter signals an error.
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T ::= lcase type identifier
| prop proposition type
| unit unit type
| [T]T abstraction type
| T * · · · * T product type
| T -> T function type
| (T) bracketed type

Figure 3: Syntax of αML types

3.3 Types

The αML type system is simple and monomorphic—see [3] for a brief discussion of the
typing rules for the non-standard constructs. The grammar of types is presented in Fig-
ure 3. In particular, for an abstraction <e>e′ the type of e should be a nametype and e′

should have an equality type. Equality types are a subset of types which have a decidable
notion of equality, so that α-equivalence constraints between terms of these types can be
checked for satisfiability. Equality types are built from the unit and name types by tu-
pling, abstraction and data construction. In particular, existential variables may only be
generated at equality types, and it is worth pointing out that the only values of nametypes
are existential variables.

The type inference problem is rendered trivial by the requirement that programs be
annotated with type information at certain points, such as the arguments of recursive
functions and the generation of new existential variables. The failing expression (fail T )
is also annotated with a type, so that expressions of any type can be made to fail finitely.

A type identifier lcase could refer to a nametype or a datatype, depending on the types
that have been declared already. The abstraction type-former has higher precedence than
the function type, which is in turn higher than the product type. Function types associate
to the right, as usual.

3.4 Comments

αML comments are ML-style multi-line comments. They are opened by “(*” and closed
by “*)”. Comments can appear anywhere and they can be nested, but nested comments
must be terminated properly.

3.5 Language extensions

The implementation supports various language extensions on top of the language defined
in [3], most of which are defined straightforwardly in terms of the core language.

• Wildcard variables. The bound variable in a let-expression may be replaced by
the wildcard ’ ’ which discards the value instead of binding it. This can be used to
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simulate sequential evaluation.

• Conjunction. Two expressions can also be evaluated sequentially using the syntax
“e & e”. This is intended to be suggestive of logical conjunction, for use in the
specification of inductive definitions (see Section 3.6 below).

• Function definition. The definition and let-binding of anonymous and recursive
function values is simplified by these syntactic sugars.

let [rec] lcase lcase · · · lcase = e in e

The value identifiers for the arguments are bound as normal—in the recursive case
(when the optional rec is included) the name of the function is also bound in its
body.

• Existential quantification. The scoped existential quantification operator used in
[3] is available in αML using the syntax “exists lcase:T in e”. It is definable in
terms of let-binding and the some operator. The value identifier is bound in the
body of the quantifier.

• Fresh name generation. Fresh name generation “fresh nty” is not definable
in terms of the core language. It is implemented as an additional core feature, as
outlined in [3].

• Distinct names. Given a list of variables x 1,. . . ,x n there is a defined shorthand to
assert that they are pairwise distinct: “distinct (e,· · ·,e)”. This expression only
type-checks if all of the variables are of nametypes (they do not all need to be the
same nametype).

• Unbinding. The language provides standard built-in deconstructors for tuples and
data terms. We provide a deconstructor for abstractions

unbind e as <lcase>lcase : [lcase]T in e

which generates metavariables to stand for the bound name and the body of the
abstraction and uses an equality constraint to relate these to the term being un-
bound. These are referred to by value identifiers which are bound in the body of
the expression. The type annotations are required because the some operator is used
to generate the metavariables which itself requires a type annotation. No freshness
constraints are produced, but can be added manually to assert that the bound name
should be locally fresh for some set of names.

• Fresh unbinding. This construct is very similar to the previous unbinding operator,
but uses fresh (as opposed to some) to generate the variable standing for the bound
name.

unbind fresh e as <lcase>lcase : [lcase]T in e
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This means that the bound name is globally fresh for all metavariables that have been
created so far, and provides a flavour of the “generative unbinding” functionality
provided by FreshML [5].

3.6 Inductive definitions

αML includes a sub-language of inductive definitions over terms involving binders. These
are expressed in an ASCII designed to resemble inference rules (and which are reminiscent
of the concrete syntax of the ott language [4], but without that system’s support for
concrete object-language syntax). The translation of schematic inductive definitions into
αML recursive functions is described informally in [3].

An expression corresponding to an inductive definition is delimited by double braces:
“{{” at the beginning and “}}” at the end. Within these delimiters there must be one or
more inductive definitions, each of which takes the form

e
------------

ucase(p,. . .,p)
[lcase where x1,· · ·,xn:T1 , · · · ,y1,· · ·,ym:Tm]

The uppercase symbol is a relation symbol. These are declared using the following syntax.

relation R 1 <: E1 and · · · and R n <: En

When a relation symbol R i is applied to an expression of the appropriate equality type Ei,
the resulting term is of a special datatype “rel”, which is reserved for terms corresponding
to these instances of inductively defined relations. The premise of every inference rule must
have type rel. The conclusion of the rule contains of patterns p (enclosed by parentheses),
defined as in [3]:

p ::= lcase variable
| () unit
| ucase p data
| (p,· · ·,p) tuple
| <lcase>p abstraction

On the right-hand side of the middle line the lowercase label is optional—it is for docu-
mentation only. If it is omitted, the subsequent “where” keyword must be omitted also. A
type annotation “xi:etyi” is required for any value identifier appearing in the rule which
is scoped to within that rule (it is possible to write rules with free variables, e.g. in a defi-
nition which is parameterised by an argument). If neither a label nor any type annotations
are required for a particular rule, then the square brackets should be omitted completely.

Although the syntax is intended to be suggestive of inference rules, the parser is not
actually whitespace dependent. However, the relative position of the elements is important.
In particular, if the list of type annotations is long it can be split over multiple lines but the
conclusion of the rule must still be on the line below the end of the list of type annotations.
The files in the examples/ directory of the αML distribution contain examples of code
making heavy use of the inductive definition syntax.
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3.7 Ground trees

The αML system implements the translation of ground abstract syntax trees described
informally in [2]. This syntactic form is delimited by “[|” and “|]”, and the syntax of the
ground trees themselves is given by the following grammar.

g ::= lcase name
| () unit
| ucase g data
| (g,· · ·,g) tuple
| <lcase:lcase>g abstraction

The concrete syntax is similar to a fragment of the core language grammar (Figure 2): the
only difference is that every variable in abstraction position must have a type annotation
of the nametype of that particular bound name. This is because the translation uses
existentially-quantified variables to represent the bound names of the ground tree.

The crucial difference between the sub-language of ground trees and the rest of the lan-
guage is the way that value identifiers are interpreted. Here, the lowercase value identifiers
(which must all be of nametypes) are interpreted as distinct concrete names, like the atoms
used in FreshML [5]. The translation into core αML ensures that these expressions are
operationally equivalence precisely when the corresponding ground trees are α-equivalent.
For example, the representation of the λ-term λa. λb. (a b) is

[| Lam <a:var>(Lam <b:var>(App (Var a,Var b))) |].

A note is required on the treatment of free names of ground trees. In order to achieve
the correspondence between α- and operational equivalence, the free names of a ground
tree g must be interpreted as free value identifiers of its encoding. Therefore, if a ground
tree has free names then existential variables with the same identifiers must have already
been declared, all at nametypes. For example, to encode the open λ-term λa. (a, b) would
require the following toplevel interaction.

let b = some var;;

[| Lam <a:var>(App (Var a,Var b)) |].

It is worth pointing out that the evaluation of an encoded ground tree may fail finitely. This
is because existential variables corresponding to the free names must have been declared
already, so there could already be constraints between these names. The translation of
ground trees requires all of the names appearing in the tree to be pairwise distinct, so if
any two of the free names have already been constrained to be equal then the expression
cannot be evaluated successfully. For example, the following interaction leads to finite
failure:

let b = some var;;

let c = some var;;

b = c;; (* constrain two names to be equal *)

[| Lam<a:var>(App(Var b,Var c)) |];;
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4 Examples

The examples/ directory of the source distribution contains a few examples of systems
defined in αML:

• lam.aml: “free variable” and reduction relations for λ-calculus.

• peano.aml: an implementation of Peano numbers and some trivial numeric functions
(no binding features used).

• poplmark.aml: solution to part 3 of the POPLmark challenge [1], for the Fsub lan-
guage without records.
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