
1

EE-379 Embedded Systems and Applications
Memory Revisited

Cristinel Ababei
Department of Electrical Engineering, University at Buffalo

Spring 2013
Note: This course is offered as EE 459/500 in Spring 2013

Outline

• Registers

• Memory map

• Program code

• Memory protection unit (MPU)

• Peripherals

• Memories – basic concepts

2

Cortex-M3

• Cortex-M3, as a RISC processor, is a load/store
architecture with three basic types of
instructions:

– Register-to-register operations for processing data

– Memory operations which move data between
memory and registers

– Control flow operations enabling programming
language control flow such as if and while
statements and procedure calls

Processor Register Set
• Cortex-M3 core has 16 user-visible registers

– All processing takes place in these registers!

• Three of these registers have dedicated functions
– program counter (PC) - holds the address of the next

instruction to execute

– link register (LR) - holds the address from which the
current procedure was called

– “the” stack pointer (SP) - holds the address of the
current stack top (CM3 supports multiple execution
modes, each with their own private stack pointer).

• Processor Status Register (PSR) which is implicitly
accessed by many instructions

3

Processor Register Set

Special Registers

4

Outline

• Registers

• Memory map

• Program code

• Memory protection unit (MPU)

• Peripherals

• Memories – basic concepts

LPC1768

5

Memory
• On-chip Flash memory system

– Up to 512 kB of on-chip flash memory
– Flash memory accelerator maximizes performance for

use with the two fast advanced high-performance bus
AHB-Lite buses

– Can be used for both code and data storage

• On-chip Static RAM (SRAM)
– Up to 64 kB of on-chip static RAM memory
– Up to 32 kB of SRAM, accessible by the CPU and all

three DMA (direct memory access) controllers are on
a higher-speed bus

– Devices with more than 32 kB SRAM have two
additional 16 kB SRAM blocks

LPC1768 – Flash memory – dynamic
characteristics

6

Flash accelerator

• Allows maximization of the performance of the Cortex-
M3 processor when it is running code from flash
memory, while also saving power

• The flash accelerator also provides speed and power
improvements for data accesses to the flash memory

Memory

• Predefined (fixed) memory map that specifies
which bus interface is to be used when a
memory location is accessed

• Memory system has the bit-band support

• Provides atomic operations to bit data in memory
or peripherals

• Supported only in special memory regions

• Supports both little endian and big endian
memory configuration

7

Cortex-M3 Memory Address Space (1)

• ARM Cortex-M3 has a single

“physical” address space of 232
bytes (4 GB)

• ARM Cortex-M3 Technical
Reference Manual defines how
this address space is to be used
(predefined memory map)

• The SRAM and Peripheral areas
are accessed through the System
bus

• The “Code” region is accessed
through the ICode (instructions)
and DCode (constant data) buses

Memory
Map (2)

8

Memory Map (3)

Outline

• Registers

• Memory map

• Program code

• Memory protection unit (MPU)

• Peripherals

• Memories – basic concepts

9

Program Memory Model
• Cortex-M3 has been designed to be programmed (almost) entirely

in high programming languages (e.g., C)
• So, it has a well developed “procedure call standard” (called an ABI

or application binary interface) which dictates how registers are
used

• This model explicitly assumes that the RAM for an executing
program is divided into three regions:

• RAM for an executing program is divided into three
regions:

– Data in RAM are allocated during the link process and
initialized by startup code at reset

– The (optional) heap is managed at runtime by library
code implementing functions such as the malloc and
free which are part of the standard C library

– The stack is managed at runtime by compiler generated
code which generates per-procedure-call stack frames
containing local variables and saved registers

Program Memory Model

10

Program code

• Program code can be located in:

– the Code region

– the SRAM region

– the External RAM region

• It is best to put the program code in the Code
region because the instruction fetches and
data accesses are carried out simultaneously
on two separate bus interfaces

Outline

• Registers

• Memory map

• Program code

• Memory protection unit (MPU)

• Peripherals

• Memories – basic concepts

11

Memory Protection Unit (MPU)
• Cortex-M3 has an optional Memory Protection Unit

(MPU). LPC1768 has one that supports 8 regions.
– Allows access rules to be set up for privileged access and

user program access
– When an access rule is violated -> a fault exception is

generated -> fault exception handler will be able to analyze
the problem and correct it if possible

• MPU can be used in various ways
– Set up by an operating system, allowing data used by

privileged code (e.g., the operating system kernel) to be
protected from untrusted user programs

– Can be used to make memory regions read-only, to
prevent accidental erasing of data, or to isolate memory
regions between different tasks in a multitasking system

• Overall, it can help make embedded systems more
robust and reliable

Outline

• Registers

• Memory map

• Program code

• Memory protection unit (MPU)

• Peripherals

• Memories – basic concepts

12

Peripherals
• LPC1768 microcontrollers are based on the Cortex-M3

processor with a set of peripherals distributed across three
buses – Advanced High-performance Bus (AHB) and its two
Advanced Peripheral Bus (APB) sub-buses APB1 and APB2.

• These peripherals:
– are controlled by the CM3 core with load and store instructions

that access memory mapped registers
– can “interrupt” the core to request attention through peripheral

specific interrupt requests routed through the NVIC

• Data transfers between peripherals and memory can be
automated using DMA

• Labs will cover among others:
– basic peripheral configuration (e.g., lab1 illustrates GPIO

General Purpose I/O peripherals)
– how interrupts can be used to build effective software
– how to use DMA to improve performance and allow processing

to proceed in parallel with data transfer

Peripherals

• Peripherals are “memory-mapped”
– core interacts with the peripheral hardware by reading and writing peripheral

“registers” using load and store instructions

• The various peripheral registers are documented in the user and reference
manuals
– documentation include bit-level definitions of the various registers and info on

how interpret those bits
– actual physical addresses are also found in the reference manuals

• Examples of base addresses for several peripherals (see page 14 of the
LPC17xx user manual):
0x40010000 UART1

0x40020000 SPI

0x40028000 GPIO interrupts

0x40034000 ADC

…

• No real need for a programmer to look up all these values as they are
defined in the library file lpc17xx.h as:
LPC_UART1_BASE

LPC_SPI_BASE

LPC_GPIOINT_BASE

LPC_ADC_BASE

…

13

• Typically, each peripheral has:

• control registers to configure the peripheral

• status registers to determine the current
peripheral status

• data registers to read data from and write
data to the peripheral

Peripherals

• In addition to providing the addresses of the
peripherals, lpc17xx.h also provides C language level
structures that can be used to access each peripheral.

• For example, the SPI and GPIO ports are defined by the
following register structures:

typedef struct

{

 __IO uint32_t SPCR;

 __I uint32_t SPSR;

 __IO uint32_t SPDR;

 __IO uint32_t SPCCR;

 uint32_t RESERVED0[3];

 __IO uint32_t SPINT;

} LPC_SPI_TypeDef;

Peripherals

14

Outline

• Registers

• Memory map

• Program code

• Memory protection unit (MPU)

• Peripherals

• Memories – basic concepts

Memory: basic concepts

• Stores large number of bits
– m x n: m words of n bits each
– k = Log2(m) address input signals
– or m = 2k words
– e.g., 4,096 x 8 memory:

• 32,768 bits
• 12 address input signals
• 8 input/output data signals

• Memory access
– r/w: selects read or write
– enable: read or write only when

asserted
– multiport: multiple accesses to different

locations simultaneously

m × n memory

…

…

n bits per word

m
 w

o
rd

s

enable
2k × n read and
write memory

A0
…

r/w

…

Q0 Qn-1

Ak-1

memory external view

15

Writable?
• Read-Only Memory (ROM):

– Can only be read; cannot be modified (written) by the processor.
Contents of ROM chip are set before chip is placed into the
system.

• Random-Access Memory (RAM):
– Read/write memory. Although technically inaccurate, term is

used for historical reasons. (ROMs are also random access.)

Permanence?
• Volatile memories

– Lose their contents when power is turned off. Typically used to
store program while system is running.

• Non-volatile memories do not.
– Required by every system to store instructions that get executed

when system powers up (boot code).

Memory: basic categories

Memories classification
Read-Write Memory Read-Only Memory

Volatile Memory
Non-volatile

Memory

Mask-Programmed ROM (PROM)

(nonvolatile)

Random Access Sequential Access

EPROM

EEPROM

FLASH SRAM

DRAM

FIFO

LIFO

Shift Register

CAM

 Key Design Metrics:

1.Memory Density (number of bits/mm2) and Size

2.Access Time (time to read or write) and Throughput

3.Power Dissipation

 Volatile: need electrical power
 Nonvolatile: magnetic disk, retains its stored information after the removal of power
 Random access: memory locations can be read or written in a random order
 EPROM: erasable programmable read-only memory
 EEPROM: electrically erasable programmable read-only memory
 FLASH: memory stick, USB disk
 Access pattern: sequential access: (video memory streaming) first-in-first-out (buffer), last-in-first-out

(stack), shift register, content-addressable memory
 Static vs. Dynamic: dynamic needs periodic refresh but is simpler, higher density

16

Memory Arrays

Random Access Memory Serial Access Memory Content Addressable Memory

(CAM)

Read/Write Memory

(RAM)

(Volatile)

Read Only Memory

(ROM)

(Nonvolatile)

Static RAM

(SRAM)

Dynamic RAM

(DRAM)

Shift Registers Queues

First In

First Out

(FIFO)

Last In

First Out

(LIFO)

Serial In

Parallel Out

(SIPO)

Parallel In

Serial Out

(PISO)

Mask ROM Programmable

ROM

(PROM)

Erasable

Programmable

ROM

(EPROM)

Electrically

Erasable

Programmable

ROM

(EEPROM)

Flash ROM

Memories classification

Write-ability and Storage-permanence

• Traditional ROM/RAM distinctions

– ROM

• read only, bits stored without power

– RAM

• read and write, lose stored bits without power

• Traditional distinctions blurred

– Advanced ROMs can be written to

• e.g., EEPROM

– Advanced RAMs can hold bits without power

• e.g., NVRAM

• Write ability

– Manner and speed a memory can be written

• Storage permanence

– Ability of memory to hold stored bits after they are written

17

Write ability and storage permanence of memories,
showing relative degrees along each axis (not to scale)

External
programmer

OR in-system,
block-oriented
writes, 1,000s

of cycles

Battery
life (10
years)

Write
ability

EPROM

Mask-programmed ROM

EEPROM FLASH

NVRAM

SRAM/DRAM

St
o

ra
ge

p

e
rm

an
e

n
ce

Nonvolatile

In-system
programmable

Ideal memory

OTP ROM

During
fabrication

only

External
programmer,

1,000s
of cycles

External
programmer,
one time only

External
programmer

OR in-system,
1,000s

of cycles

In-system, fast
writes,

unlimited
cycles

Near
zero

Tens of
years

Life of
product

Write-ability and Storage-permanence

Write-ability
• Ranges of write ability

– High end
• processor writes to memory simply and quickly

• e.g., RAM

– Middle range
• processor writes to memory, but slower

• e.g., FLASH, EEPROM

– Lower range
• special equipment, “programmer”, must be used to write to memory

• e.g., EPROM, OTP ROM

– Low end
• bits stored only during fabrication

• e.g., Mask-programmed ROM

• In-system programmable memory
– Can be written to by a processor in the microcomputer system using

the memory

– Memories in high end and middle range of write ability

18

Storage-permanence
• Range of storage permanence

– High end

• essentially never loses bits

• e.g., mask-programmed ROM

– Middle range

• holds bits days, months, or years after memory’s power source turned off

• e.g., NVRAM

– Lower range

• holds bits as long as power supplied to memory

• e.g., SRAM

– Low end

• begins to lose bits almost immediately after written – refreshing needed

• e.g., DRAM

• Nonvolatile memory
– Holds bits after power is no longer supplied

– High end and middle range of storage permanence

Mem
Cell

Mem
Cell

Mem
Cell

Mem
Cell

Mem
Cell

Mem
Cell

Mem
Cell

Mem
Cell

Mem
Cell

Mem
Cell

Mem
Cell

Mem
Cell

Mem
Cell

Mem
Cell

Mem
Cell

Mem
Cell

word
lines

bit lines

Different memory types are distinguished by technology for
storing bit in memory cell.

Memory array

19

memory
array

16 bits (4x4)

2
 t

o
 4

 d
ec

o
d

er
 A0

A1

A2

A3

4:1 mux/demux

OE#

CS#

WE#

D0 Control signals:
• Control read/write of array
• Map internal physical array to external configuration (4x4 16x1)

Support circuitry

Interface (1/2)

• Physical configurations are typically square.
– Minimize length word + bit line minimize access

delays.

• External configurations are “tall and narrow”.

The narrower the configuration, the higher the
pin efficiency. (Adding one address pin cuts data
pins in half.)
– Several external configurations available for a given

capacity.
– 64Kbits may be available as 64Kx1, 32Kx2, 16Kx4,…

20

Interface (2/2)

• Chip Select (CS#): Enables device. If not
asserted, device ignores all other inputs
(sometimes entering low-power mode).

• Write Enable (WE#): Store D0 at specified
address.

• Output Enable (OE#): Drive value at specified
address onto D0.

Memory timing: Reads

• Access time: Time required from start of a read access to valid data output.
– Access time specified for each of the three conditions required for valid data

output (valid address, chip select, output enable)

• Time to valid data out depends on which of these is on critical path.
• tRC: Minimum time required from start of one access to start of next.

– For most memories equal to access time.

tRC

ADDR

CS#

OE#

DATA

tAV

tCS

tOE

21

Memory timing: Writes

• Write happens on rising edge of WE#
• Separate access times tAW, tCW, tWP specified for address valid, CS#, WE#.
• Typically, tAS = 0, meaning that WE# may not be asserted before address is

valid.
• Setup and hold times required for data.
• Write cycle time tWC is typically in the order of tAW.

ADDR

CS#

WE#

DATA

tWC

tAW

tCW

tWP

tAS

tDS tDH

Memory Comparison grid

Memory

type

Read

speed

Write

speed

Volatility density power rewrite

SRAM +++ +++ - - ++

DRAM + + - - ++ - ++

EPROM + - + + -

EEPROM + - + + +

Flash + + + + +

22

ROM: “Read-Only” Memory

• Nonvolatile

• Can be read from but not written to, by a
processor in an microcomputer system

• Traditionally written to, “programmed”,
before inserting to microcomputer system

• Uses
– Store software program for general-purpose

processor

– Store constant data (parameters) needed by
system

– Implement combinational circuits (e.g., decoders)

2k × n ROM

…
Q0 Qn-1

A0 …

enable

Ak-1

External view

Example: 8 x 4 ROM

• Horizontal lines = words

• Vertical lines = data

• Lines connected only at circles

• Decoder sets word 2’s line to 1 if
address input is 010

• Data lines Q3 and Q1 are set to 1
because there is a “programmed”
connection with word 2’s line

• Word 2 is not connected with data
lines Q2 and Q0

• Output is 1010

8 × 4 ROM

3×8

decoder

Q0 Q3

A0

enable

A2

word 0

word 1

A1

Q2 Q1

programmable
connection

word line

data line

word 2

Internal view

23

Mask-programmed ROM

• Connections “programmed” at fabrication
– set of masks

• Lowest write ability
– only once

• Highest storage permanence
– bits never change unless damaged

• Typically used for final design of high-volume systems
– spread out NRE (non-recurrent engineering) cost for a low unit cost

OTP ROM: One-time programmable ROM

• Connections “programmed” after manufacture by user
– user provides file of desired contents of ROM

– file input to machine called ROM programmer

– each programmable connection is a fuse

– ROM programmer blows fuses where connections should not exist

• Very low write ability
– typically written only once and requires ROM programmer device

• Very high storage permanence
– bits don’t change unless reconnected to programmer and more fuses

blown

• Commonly used in final products
– cheaper, harder to inadvertently modify

24

(d)

(a)

(b)
 source drain

+15V

 source drain

0V

(c)
 source drain

floating gate

5-30 min

EPROM: UV Erasable programmable ROM

• Programmable component is a MOS transistor
– Transistor has “floating” gate surrounded by an insulator

– (a) Negative charges form a channel between source and drain
storing a logic 1

– (b) Large positive voltage at gate causes negative charges to
move out of channel and get trapped in floating gate storing a
logic 0

– (c) (Erase) Shining UV rays on surface of floating-gate causes
negative charges to return to channel from floating gate
restoring the logic 1

– (d) An EPROM package showing quartz window through which
UV light can pass

• Better write ability

– can be erased and reprogrammed thousands of times

• Reduced storage permanence

– program lasts about 10 years but is susceptible to
radiation and electric noise

• Typically used during design development

Sample EPROM components

25

Sample EPROM programmers

EEPROM: Electrically erasable
programmable ROM

• Programmed and erased electronically
– typically by using higher than normal voltage

– can program and erase individual words

• Better write ability
– can be in-system programmable with built-in circuit to provide higher

than normal voltage

• built-in memory controller commonly used to hide details from memory user

– writes very slow due to erasing and programming

• “busy” pin indicates to processor EEPROM still writing

– can be erased and programmed tens of thousands of times

• Similar storage permanence to EPROM (about 10 years)

• Far more convenient than EPROMs, but more expensive

26

FLASH

• Extension of EEPROM

– Same floating gate principle

– Same write ability and storage permanence

• Fast erase

– Large blocks of memory erased at once, rather than one
word at a time

– Blocks typically several thousand bytes large

• Writes to single words may be slower

– Entire block must be read, word updated, then entire
block written back

FLASH applications

 • Flash technology has made rapid advances in recent years.
– cell density rivals DRAM; better than EPROM; much better than

EEPROM.
– multiple gate voltages can encode 2 bits per cell.
– many-GB devices available

• ROMs and EPROMs rapidly becoming obsolete.

• Replacing hard disks in some applications.

– smaller, lighter, faster
– more reliable (no moving parts)
– cost effective

• PDAs, cell phones, laptops, iPods, etc…

27

RAM: “Random-Access” Memory

• Typically volatile memory

– bits are not held without power supply

• Read and written to easily by microprocessor
during execution

• Internal structure more complex than ROM

– a word consists of several memory cells, each
storing 1 bit

– each input and output data line connects to each
cell in its column

– rd/wr connected to every cell

– when row is enabled by decoder, each cell has
logic that stores input data bit when rd/wr
indicates write or outputs stored bit when rd/wr
indicates read

enable
2k × n read and write

memory

A0
…

r/w

…

Q0 Qn-1

Ak-1

external view

4×4 RAM

2×4
decoder

Q0 Q3

A0

enable

A1

Q2 Q1

Memory
cell

I0 I3 I2 I1

rd/wr To every cell

internal view

Basic types of RAM

• SRAM: Static RAM
– Memory cell uses flip-flop to store bit

– Requires 6 transistors

– Holds data as long as power supplied

• DRAM: Dynamic RAM
– Memory cell uses MOS transistor and

capacitor to store bit

– More compact than SRAM

– Retains data for only 2 – 4 ms

– “Refresh” required due to capacitor
leak

• word’s cells refreshed when read

– Slower to access than SRAM

memory cell internals

Data

W

Data'

SRAM

Data

W

DRAM

28

RAM variations

• PSRAM: Pseudo-static RAM
– DRAM with built-in memory refresh controller

– Popular low-cost high-density alternative to SRAM

• NVRAM: Nonvolatile RAM
– Holds data after external power removed

– Battery-backed RAM

• SRAM with own permanently connected battery

• writes as fast as reads

• no limit on number of writes unlike nonvolatile ROM-based memory

– SRAM with EEPROM or FLASH

• stores complete RAM contents on EEPROM or FLASH before power turned off

Dual-port RAM (DPRAM)

• Usually a static RAM circuit with two address
and data bus connections

– Shared RAM for two independent users

• Flexible communication link between two
processors

– Master/slave

29

DDR1 SDRAM, DDR2
• Double Data Rate synchronous dynamic random access

memory (DDR1 SDRAM) is a class of memory
integrated circuits used in computers.

• The interface uses double pumping (transferring data
on both the rising and falling edges of the clock signal)
to lower the clock frequency

• One advantage of keeping the clock frequency down is
that it reduces the signal integrity requirements on the
circuit board connecting the memory to the controller

• DDR2 memory is fundamentally similar to DDR SDRAM

• DDR2 SDRAM can perform four transfers per clock
using a multiplexing technique

Credits and references

• Joseph Jiu, The Definitive guide to the ARM
Cortext-M3, 2007 (Chapters 5,13)

• LPC17xx microcontroller user manual

• Cortex-M3 Processor Technical Reference
Manual

• Lab manual (G. Brown, Indiana)

• EECS 373, Umich

• http://esd.cs.ucr.edu

http://tinymicros.com/mediawiki/images/7/75/Definitive_Guide_To_The_ARM_Cortex_M3.pdf
http://tinymicros.com/mediawiki/images/7/75/Definitive_Guide_To_The_ARM_Cortex_M3.pdf
http://tinymicros.com/mediawiki/images/7/75/Definitive_Guide_To_The_ARM_Cortex_M3.pdf
http://tinymicros.com/mediawiki/images/7/75/Definitive_Guide_To_The_ARM_Cortex_M3.pdf
http://tinymicros.com/mediawiki/images/7/75/Definitive_Guide_To_The_ARM_Cortex_M3.pdf
http://tinymicros.com/mediawiki/images/7/75/Definitive_Guide_To_The_ARM_Cortex_M3.pdf
http://www.nxp.com/documents/user_manual/UM10360.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0337e/DDI0337E_cortex_m3_r1p1_trm.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0337e/DDI0337E_cortex_m3_r1p1_trm.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0337e/DDI0337E_cortex_m3_r1p1_trm.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0337e/DDI0337E_cortex_m3_r1p1_trm.pdf
http://www.cs.indiana.edu/~geobrown/book.pdf
http://www.eecs.umich.edu/courses/eecs373/refs.html
http://www.eecs.umich.edu/courses/eecs373/refs.html
http://esd.cs.ucr.edu/
http://esd.cs.ucr.edu/

