
VME-ISER12 Software Manual Rev. 1.0

VME - ISER12

Intelligent Board for
12 serial Interfaces

Software Manual

VME-ISER12 Software Manual Rev. 1.0

N O T E

The information in this document has been carefully checked and is believed to be entirely reliable.
esd makes no warranty of any kind with regard to the material in this document, and assumes no
responsibility for any errors that may appear in this document. esd reserves the right to make
changes without notice to this, or any of its products, to improve reliability, performance or design.

esd assumes no responsibility for the use of any circuitry other than circuitry which is part of a
product of esd gmbh.

esd does not convey to the purchaser of the product described herein any license under the patent
rights of esd gmbh nor the rights of others.

esd electronic system design gmbh
Vahrenwalder Str. 205
30165 Hannover
Germany

Phone: +49-511-372 98-0
Fax: +49-511-372 98-68
E-mail: info@esd-electronics.com
Internet: www.esd-electronics.com

USA / Canada
7667 W. Sample Road
Suite 127
Coral Springs, FL 33065
USA

Phone: +1-800-504-9856
Fax: +1-800-288-8235
E-mail: sales@esd-electronics.com

VME-ISER12 Software Manual Rev. 1.0

Document file: I:\texte\Doku\MANUALS\VME\ISER12\ISER12_01s.en6

Date of print: 31.10.2000

Described Firmware-Version: isers50b

Changes in the Chapters

The changes in the user’s manual listed below effect changes in the hardware, as well as changes
in the description of the facts only.

Chapter Changes versus previous version

- First version.

Further technical changes are subject to change without notice.

VME-ISER12 Software Manual Rev. 1.0

Content

VME-ISER12 Software Manual Rev. 1.0 1

Content

1. Introduction . 3
1.1 General . 3
1.2 Channel Overview . 4

1.2.1 Channel Types . 4
1.2.2 Tasks of the VME Master Servers . 4

1.3 Initialization of the System . 5
1.4 The Channel Structure . 6

1.4.1 Chaining of the Channels . 6
1.4.2 Description of the individual Channel Locations . 8

1.5 Data Channel Management . 12
1.5.1 General . 12
1.5.2 Overview to the Channels with Chaining via Pointer 12

1.6 Buffer Allocation . 15
1.6.1 Memory Allocation via Semaphore . 15
1.6.2 Example of a Buffer Allocation . 15

2. Channel Description . 17
2.1 Description of the Data Channels . 17
2.2 Description of the Parameter Channel . 19

2.2.1 Structure of the Parameter Channel . 19
2.2.2 Description of the Parameter . 20
2.2.3 Command Handing-over via the Parameter Channel 25

2.3 Description of the Interrupter Channel . 26
2.3.1 Structure of the Interrupter Channel . 26
2.3.2 Description of the Interrupter Channel Cells . 28

3. The local VME-ISER Server . 31
3.1 Functional Description of the local VME-ISER Server . 31

3.1.1 Output Channels . 31
3.1.2 Input Channels . 31
3.1.3 Interrupt Operation . 32
3.1.4 Time-Out . 32
3.1.5 Receive Error Mode . 34

3.2 Examples for the VME-ISER Server . 35
3.2.1 Example: Initialization of the VMEbus Master . 35
3.2.2 Example: Data Output to Interface 2 without IRQ . 36
3.2.3 Example: Data Input from Interface 8 . 37
3.2.4 Example: Setting the Parameter of Interface 1 . 38

3.3 User Protocols . 39
3.3.1 Function Description . 39
3.3.2 Conditions for the Use of User-Specific Rx-Protocols/Filters 39
3.3.3 Register and Structure Declarations . 40
3.3.4 Protocol Embedding for Rx-Operation . 43

VME-ISER12 Software Manual Rev. 1.02

Introduction

VME-ISER12 Software Manual Rev. 1.0 3

1. Introduction

1.1 General

This manual describes the serial VMEbus interface boards VME-ISER8 and VME-ISER12.
A large part of the descriptions is valid for the VME-ISER8 and VME-ISER12 board. In the following
both boards are summarized under the concept VME-ISER.
Special data which concern only one of these boards are pointed to in corresponding places.

The VME-ISER8 is an intelligent interface board for the VMEbus, which locally supervises 8
asynchronous and 2 optionally synchronous or asynchronous serial interfaces.

The VME-ISER12 has got the same number of interfaces as the VME-ISER8. Two transition modules
of type ESP360 can optionally be attached to VME-ISER12. In coherence with these modules the VME-
ISER12 offers 10 asynchronous and 2 synchronous/asynchronous serial interfaces.

The user operates to a linear memory and is relieved of I/O supervision tasks by the local CPU.

The memory accessible to the user is organized in so-called channels, which consist of a header and a
data range. The length of a channel amounts to 256 bytes (128 bytes net data), or 1024+128 bytes * (1
kbyte net data).

The structure of the header is identical for all occurring types of channels, the different channels differ
in corresponding entries in the header of the channel.

The status of the serial interfaces and the setting of the serial interfaces parameters is transparently
readable, resetting of the parameter ensues synchronously to the I/O transfer.

Introduction

VME-ISER12 Software Manual Rev. 1.04

1.2 Channel Overview

1.2.1 Channel Types

The system consists of following types of channels:

- the parameter channels 1 channel per serial interface

- the data channel 1 receive channel (1 kbyte)
1 transmit channel (1 kbyte)
26 transmit channels (128 bytes each)

- the interrupter channel 1 channel per board

Channels are software structures, which are chained by pointers.
The 'ROOT pointer', as well as a 'Card Id' are at fixed addresses.

1.2.2 Tasks of the VME Master Servers

The VME master server for the serial interfaces must essentially fulfill the following tasks:

- Search a free channel and occupy this channel

- Entry of the transfer mode

- (Data transfer to the VME-ISER memory for transmit operation)

- Activation of the slave server (local interrupt generation)

- Polling on 'ready' or reactivation by VME interrupt

- (Data transfer from the VME-ISER memory for receive operation)

- Channel enable

Introduction

VME-ISER12 Software Manual Rev. 1.0 5

1.3 Initialization of the System

In the following all addresses are indicated relatively to the card base address and must be addressed
correspondingly by the VME master CPU.

After a system reset the local CPU initializes its local memory and rebuilds the channel pointer chain.
This can take up to 2 sec depending on the memory size. After a restart the master CPU should check
the following entries:

- read access to the base address of the slave board.
If the board responds with a 'DTACK signal', it is physically available at the correspondent address;
otherwise a 'BUSERROR' occurs (e.g. via time- out) because the board is not available
>> abort of the initialization.

- check of the address CPUID = $0998 to: $49534552.L
 The local CPU must have an ASCII entry: "ISER" =($49, $53, $45, $52).

- check of address ANCHOR = $099C to unequal to $0
The local CPU inserts the ROOT pointer at the buffer structure (default: $00008000.L)

The local CPU has now built up the buffer structure described in the following, which enables a
communication with the master CPU.

Introduction

VME-ISER12 Software Manual Rev. 1.06

1.4 The Channel Structure

1.4.1 Chaining of the Channels

All channels are chained by pointers, where it must be distinguished between a memory chaining and
a forward/backward chaining.
The memory chaining connects all available channels, while the forward/backward chaining only
connects those channels related to the corresponding interface.

Memory Chaining:

Sequential chaining
The root pointer to the first available channel is a longword at the address ANCHOR
=$0099C, the pointer to the next channel (forward pointer) is a longword each time in the
location iofor of the channel header. The forward pointer of the last channel points back to the
first channel.
As default ANCHOR is set to $00008000. All addresses listed in the tables refer to this base,
but are relocatable without restrictions.
The length of a channel normally is 256 bytes and is divided into 128 bytes of header and 128
bytes of data.

Star-shaped chaining (from Software-Rev. iser 50b)
The star-shaped chaining speeds up the snapping of the addresses of the channels. In the
interrupt channel the successive addresses of all parameter channels can be found. In every
parameter channel the addresses of the assigned Tx- and Rx-channels are stored.

Note:
The sequential chaining and the star-shaped chaining are both available and can be used alternatively.

Introduction

VME-ISER12 Software Manual Rev. 1.0 7

80
90
A0
B0
C0
D0
E0
F0

Address
Offset
HEX

+0 +2 +4 +6 +8 +A +C +E
iofor iotyp ioname

sema iocmmd
00
10
20
30
40
50
60
70

User read-only cells

User read/write cells

User don't care

iobuff
ionext ioleniobnum
ioback

iolev iovec
iorecl iostio ioldn iomode iotout iodrv iofnam...

ioentr iotent

iostat

...iofnam...
...iofnam iofree

iofree...
...iofree...

...iofree

iorxin

...iodata...

...iodata...

...iodata...

...iodata...

...iodata...

...iodata...
...iodata

iodata...

Table 1.4.1: Internal Channel Structure with READ/WRITE Assignment of the Cells

Introduction

VME-ISER12 Software Manual Rev. 1.08

1.4.2 Description of the individual Channel Locations

Summary of the channel locations

Name Offset
[HEX] Organization Description Default/Preset

iofor 00 longword Pointer to next channel
ioback 04 longword not used $0000000
iotyp 08 word channel type (see below)
ioname 0A 6 byte ASCII channel identifier as character

string
iosema 10 byte channel semaphore preset: $00
iostat 11 byte channel status preset: $00
iocmmd 12 word channel command preset: $0000
ionext 14 longword forward / backward pointer to

next channel
ioilev 18 byte VME-Irq-Level for Slave-Irq
ioivec 19 byte VME-Irq-Vektor for Slave-Irq
iobnum 1A word number of the specific channel

type
iolen 1C longword length of the data range
iobuff 20 longword pointer to data range
iorecl 24 word number of the data in the data

range
iostio 26 byte I/O status default: $00
ioldn 27 byte Interface no. 1 ... 10
iomode 28 word transmit / receive mode
iotout 2A byte time-out
iodrv 2B byte reserved
iofnam 2C ... 43 ASCII reserved default: $0000
ioentr 44 longword pointer to user protocol (only

parameter channel)
iotent 48 longword reserved for Tx-server
iofree 4C ... 7F reserved default: $0000
iorxln 50 word number of received data
iodata 80 ... FF byte data range (128 byte channels)

80 ... 47F byte data range (1 Kbyte-channels)

Table 1.4.2: Description of the Channel Cells

Introduction

VME-ISER12 Software Manual Rev. 1.0 9

Explanation of the individual channel cells

iofor supports the memory chaining of the channels. iofor always points to the start address of
the next channel, iofor of the last channel points to the first channel again.

ioback points to the start address of the preceding channel

iotyp is the channel identifier and distinguishes the following channel types:
- $FFFF interrupter channel
- $000C parameter-channel
- $0014 default channel (not used)
- $0018 buffer
- $001C buffer-channel (not used)
- $0114 Tx-buffer long
- $0214 Rx-buffer long

ioname contains the channel identifier as a 6 bytes ASCII string and a consecutive numbering:
- Irch interrupter channel
- PARAxy parameter channel with xy = 01, 02, ... 09, 0A
- TBUFxy transmit buffer_long with xy = 01, ... 0A
- RBUFxy receive buffer_long with xy = 01,... 0A
- Buffxz transmit buffer (128 byte) with x = 1, ... A z = a, b,...z

iosema is covered with the channel semaphore and with the channel status bit:
- Bit 7 semaphore: '0' -- channel is free

'1' -- channel is occupied
- Bit 6 - 1 reserved, default: '0'
- Bit 0 channel status:'0' -- channel is busy

'1' – channel is ready

iostat is not yet supplied and is preset to $0

iocmmd is the channel command and is only necessary for setting the interface parameters (see
interface parameter setting, from page 19).

ionext is the pointer to the next data channel. Is only used for data channels, otherwise 0.

ioilev und ioivec
determine the slave interrupt behaviour. If ioilev and ioivec = 0, then the slave will not
generate an interrupt at the end of the instruction corresponding to the channel, but only
iosema is set analogously. Otherwise an IRQ on the VMEbus with the IRQ level ioilev
(1..7) will be generated by the IRQ vector ioivec ($00 .. $FF).

iobnum contains the consecutive numbering of the channels.
For the interrupter channel iobnum has a value of 0.

Introduction

VME-ISER12 Software Manual Rev. 1.010

iolen contains the available data buffer length. If the data buffer is located within the channel
structure (default), then iolen = $00080 == 128 bytes, or $400 respectively. External
data may have an unlimited length.

iobuff is the pointer to the data buffer of the corresponding pointer channel. As default iobuff
points to iodata. At external data buffers iobuff may point to any local address, so that
addressing the data buffer must use the actual content of iobuff!

iorecl determines the number of valid data in the data range. (number of data to be sent or
received).

If iorecl is negative, i.e. the MSB is set, the transmission has been stopped with error!
error codes: $8007 - time-out

$801E - framing error
$801F - overrun error
$8020 - parity error
$8046 - break detected

iostio is not yet supplied and is preset to $00.

ioldn contains the channel server no. (1,...,10)

iomode supports the setting of the data direction (transmit/receive operation) as well as setting the
receiving protocol parameters:

Bit-
No

Mnemo Description

15 MODBWA 0 After transmission of all data no IRQ will be generated, the requested
channel will automatically be released again by the slave

1 After transmission of all data ready will be set iosema, or the indicated
IRQ will be generated respectively. The requested channel will not be
released by the slave.

14 MODBOU 0 Identification: receive channel

1 Identification: transmit channel

13 MODBOU 1 After detection of a <cr> ($0D) the reception of this channel will be
terminated.

12 MODBLF 1 After detection of a <lf> ($0A) the reception of this channel will be
terminated.

11 MODBEO 1 After detection of a <eot> ($04) the reception of this channel will be
terminated.

10 MODBSC - suppress_command: actually not connected

9 MODBNE - no_echo: actually not connected

8 MODBIN 0 no binary transfer

1 binary transfer: no end check, no software-handshake

Table 1.4.3: Bits of iomode

Introduction

VME-ISER12 Software Manual Rev. 1.0 11

Bit 7-0 of iomode are reserved as mode extension bits. The following combinations are
already defined:

- $00 normal I/O transfer (default)
- $08 only for receive operation:

All characters in the local buffers will be deleted.

iotout time-out value
The MSB (bit 7) enables the Time_Out supervision of the channel.
If no transfer into an active channel buffer occurs, after the time T_Out the channel will be
released and the status Time_Out is returned! (via iorecl).

iofnam is reserved for ASCII entries (up to 24 bytes).
Actually following entry will be evaluated:
On the ASCII string SCAN in the first 4 bytes of iofnam the following return conditions
are valid for a receive channel:

1.) Return of the buffer, if <iorecl> data have been received
2.) Return of the buffer, if one of the end conditions specified in <iomode> is valid.
3.) Return of the buffer, if no more data are available in the local interrupt buffer, i.e. if the

 interrupt buffer is empty, the receive channel is returned immediately with <iorecl>=0.

For all other entries into iofnam only the end conditions 1.) and 2.) are valid. With the entry
PROT data are received via a special user protocol.

ioentr supports the embedding of an user-specific receive protocol (only parameter channel). The
start address of a protocol loaded into a free memory area is registered here.

iotent is reserved for embedding of a user-specific transmit protocol (only parameter channel).

iorxln determines the number of valid received data, specially in the error case.

iofree is actually not used and is preset to $00.

iodata is the default data buffer of a channel and has a length of 128 bytes, or 1 kbyte respectively
(TBUFxy, RBUFxy).
Writing to memory out of the data buffer limits will destroy the I/O structure!

Introduction

VME-ISER12 Software Manual Rev. 1.012

1.5 Data Channel Management

1.5.1 General

As mentioned above, the channels are divided into parameter channels, buffer channels, default
channels and interrupter channels. To each serial interface a parameter (TX) buffer, a default Tx buffer,
an Rx buffer, and a number of buffers of the 'Buffer-Pool' are allocated.

The parameter buffer, the Tx buffer and the Rx buffer are exclusively allocated to the corresponding
interface. As a principle the buffers may be used by any channel. The pointer chaining results in a
priorized buffer allocation to the corresponding interface channels.

The chaining of the TX buffers and of the buffer channels is displayed in the following tables. The
forward/backward pointer ionext allocates the corresponding Tx buffer channel to a buffer. The ionext
pointer of the last buffer points to the Tx buffer again.

This channel distribution has been chosen for a very flexible memory allocation, while the searching
algorithm remains quick and simple.

1.5.2 Overview to the Channels with Chaining via Pointer

Channel Root Pointer

Address
[HEX]

Content
[HEX]

Remarks

0099C 08000 Start address of the buffer range

Table 1.5.1: Channel Root Pointer to Address ANCHOR

Introduction

VME-ISER12 Software Manual Rev. 1.0 13

Buffer
Number
[DEZ]

Address

[HEX]

Channel Header
Remarksiofor

[HEX]
iobnum
[HEX] ioldn ionext

[HEX]
iolen
[HEX] ionam

0 08000 08100 0 0 0 80 Irch__ interrupter channel

1 08100 08200 1 1 0 80 PARA01 parameter channel 1

2 08200 08300 2 2 0 80 PARA02 parameter channel 2

3 08300 08400 3 3 0 80 PARA03 parameter channel 3

4 08400 08500 4 4 0 80 PARA04 parameter channel 4

5 08500 08600 5 5 0 80 PARA05 parameter channel 5

6 08600 08700 6 6 0 80 PARA06 parameter channel 6

7 08700 08800 7 7 0 80 PARA07 parameter channel 7

8 08800 08900 8 8 0 80 PARA08 parameter channel 8

9 08900 08A00 9 9 0 80 PARA09 parameter channel 9

10 08A00 08B00 A 10 0 80 PARA0A parameter channel 10

Table 1.5.2: Interrupter Channel and Parameter Channels

Buffer
Number
[DEZ]

Address

[HEX]

Channel Header
Remarksiofor

[HEX]
iobnum
[HEX] ioldn ionext

[HEX]
iolen
[HEX] ionam

11 08B00 08F80 B 1 0E500 400 TBUF01 transmit buffer 01

12 08F80 09400 C 1 08F80 400 RBUF01 receive buffer 01

13 09400 09880 D 2 0FF00 400 TBUF02 transmit buffer 02

14 09880 09D00 E 2 09880 400 RBUF02 receive buffer 02

15 09D00 0A180 F 3 11900 400 TBUF03 transmit buffer 03

16 0A180 0A600 10 3 0A180 400 RBUF03 receive buffer 03

17 0A600 0AA80 11 4 13300 400 TBUF04 transmit buffer 04

18 0AA80 0AF00 12 4 0AA80 400 RBUF04 receive buffer 04

19 0AF00 0B380 13 5 14B00 400 TBUF05 transmit buffer 05

20 0B380 0B800 14 5 0B380 400 RBUF05 receive buffer 05

21 0B800 0BC80 15 6 16700 400 TBUF06 transmit buffer 06

22 0BC80 0C100 16 6 0BC80 400 RBUF06 receive buffer 06

23 0C100 0C580 17 7 18100 400 TBUF07 transmit buffer 07

24 0C580 0CA00 18 7 0C580 400 RBUF07 receive buffer 07

25 0CA00 0CE80 19 8 19B00 400 TBUF08 transmit buffer 08

26 0CE80 0D300 1A 8 0CE80 400 RBUF08 receive buffer 08

27 0D300 0D780 1B 9 1B500 400 TBUF09 transmit buffer 09

28 0D780 0DC00 1C 9 0D780 400 RBUF09 receive buffer 09

29 0DC00 0E080 1D 10 1CF00 400 TBUF0A transmit buffer 0A

30 0E080 0E500 1E 10 0E080 400 RBUF0A receive buffer 0A
Table 1.5.3: Transmit and Receive Buffer

Introduction

VME-ISER12 Software Manual Rev. 1.014

Buffer
Number
[DEZ]

Address

[HEX]

 Channel Header
Remarksiofor

[HEX]
iobnum
[HEX] ioldn ionext

[HEX]
iolen
[HEX] ionam

31 0E500 0E600 1F 1 0E600 80 BUFF1a

26 buffer for channel 1

32 0E600 0E700 20 1 0E70 80 BUFF1b

: : : : : : : :

55 0FD00 0FE00 37 1 0FE00 80 BUFF1y

56 0FE00 0FF00 38 1 08800 80 BUFF1z

57 0FF00 10000 39 2 10000 80 BUFF2a

26 buffer for channel 2: : : : : : : :

82 11800 11900 52 2 09400 80 BUFF2z

83 11900 11A00 53 3 11A00 80 BUFF3a

26 buffer for channel 3: : : : : : : :

108 13200 13300 6C 3 09D00 80 BUFF3z

109 13300 13400 6D 4 13400 80 BUFF4a

26 buffer for channel 4: : : : : : : :

134 14C00 14D00 86 4 0A600 80 BUFF4z

135 14D00 14E00 87 5 14E00 80 BUFF5a

26 buffer for channel 5: : : : : : : :

160 16600 16700 A0 5 0AF00 80 BUFF5z

161 16700 16800 A1 6 16800 80 BUFF6a

26 buffer for channel 6: : : : : : : :

186 18000 18100 BA 6 0B800 80 BUFF6z

187 18100 18200 BB 7 18200 80 BUFF7a

26 buffer for channel 7: : : : : : : :

212 19A00 19B00 D4 7 0C100 80 BUFF7z

213 19B00 19C00 D5 8 19C00 80 BUFF8a

26 buffer for channel 8: : : : : : : :

238 1B400 1B500 EE 8 0CA00 80 BUFF8z

239 1B500 1B600 EF 9 1B600 80 BUFF9a

26 buffer for channel 9: : : : : : : :

264 1CE00 1CF00 108 9 03D00 80 BUFF9z

265 1CF00 1D000 109 10 1D000 80 BUFFAa

26 buffer for channel 10
: : : : : : : :

 289 1E700 1E800 121 10 1E800 80 BUFFAy

 290 1E800 08000 122 10 0DC00 80 BUFFAz

Table 1.5.4: Buffer Channels 1 to 10

Introduction

VME-ISER12 Software Manual Rev. 1.0 15

1.6 Buffer Allocation

1.6.1 Memory Allocation via Semaphore

For a multitasking and multiuser memory management the memory allocation ensues via a semaphore,
which can be accessed by the indivisible assembler command TAS.

Beginning with the corresponding default channel the semaphore of the channels is occupied.

On a successful access the corresponding channel is occupied. If not, the next buffer must be
determined by ionext. Abort and wait conditions may be a certain number of unsuccessful accesses or
the detection of 'wrap-around' (new_pointer < old_pointer).

After executing the I/O instruction either the slave server returns the channel by releasing the semaphore
or the master must decide, when the channel will be available again.

1.6.2 Example of a Buffer Allocation

* Allocate memory on ISER-8/ISER-12
*

 MOVEA.L crdadr,A0 ;Base address ISER-8/ISER12
 MOVE.L dfltbf,D0 ;buffer address relative

;to default address
 BSR srchbuff ;forward/backward buffer
 BNE no_success ;no buffer available

* sonst: in A0 actual absolute address of the channel
* in D0 buffer address relative to base address

-- Transfer --
 END

srchbuff MOVE.L D0,D1 ;end address(e.g. to start
;address as final condition)

srch1 TAS iosema(A0,D0.L) ;Semaphore access
 BEQ.S srchex ;Semaph. was not occupied

;buffer address in D0
 MOVE.L ionext(A0,D0.L),D0 ;next channel
 CMP.L D0,D1 ;end condition ?
 BGT.S srch1 ;No, go ahead searching
 TST.L D0 ;flag 'NE'

srchex LEA 0(A0,D0.L),A0 ;absolute address in A0
 RTS

Introduction

VME-ISER12 Software Manual Rev. 1.016

Channel Description

VME-ISER12 Software Manual Rev. 1.0 17

80
90
A0
B0
C0
D0
E0
F0

Address
Offset
HEX

+0 +2 +4 +6 +8 +A +C +E
iofor iotyp ioname

sema iocmmd
00
10
20
30
40
50
60
70

iobuff
ionext ioleniobnum
ioback

iolev iovec
iorecl iostio ioldn iomode iotout iodrv iofnam...

ioentr iotent

iostat

...iofnam...
...iofnam iofree

iofree...
...iofree...

...iofree

iorxlen*

...iodata...

...iodata...

...iodata...

...iodata...

...iodata...

...iodata...

...iodata

iodata...

H
E
A
D
E
R

D
A
T
A

A
R
E
A

2. Channel Description

2.1 Description of the Data Channels

Data channels serve for the transfer of transmitted/received data and are of the type default channel or
buffer channel. Before the beginning of a transmit/receive transfer a data channel has to be allocated
according to the example above. Then the header of the channel is supplied with the corresponding
parameters, if necessary data are input and are handed over to the local CPU.

* only for Rx-Buffer

Table 2.1.1: Internal Channel Structure (valid for all types of channels)

Channel Description

VME-ISER12 Software Manual Rev. 1.018

8B80
:

8F70

Address
Offset
HEX

+0 +2 +4 +6 +8 +A +C +E
8B00
8B10
8B20
8B30
8B40
8B50
8B60
8B70

...iodata...

...iodata

iodata...

00 00 00 00 00 00 E5 00 00 00 00 0B 00 00 04 00
00 00 8F 80 00 00 8A 00 01 14 'TBUF01'

00 00 8B 80 00 00 00 01 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

Table 2.1.2: Default Channels (example: TBUF01)

Channel Description

VME-ISER12 Software Manual Rev. 1.0 19

Address
Offset
HEX

+0 +2 +4 +6 +8 +A +C +E
8100
8110
8120
8130
8140
8150
8160
8170

00 00 00 00 00 00 00 01 00 00 80
00 00 82 00 00 00 0C 'PARA01'

00 00 81 80 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00

00 00 00
'iocmmd' 00 00 00

00

Protokoll Protokoll

tx_buffer1 rx_buffer1

txbs rxbs chrls stpls parts hnds rxtime0 rxtime1 ttimes txclkmods reserved
txbvs rxbvs

8180
8190
81A0
81B0

81C0
81D0
81E0
81F0

00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

txb rxb chrl stpl part hnd rtime0 rtime1 ttime reservedtxclkmod

txbv rxbv 00 00 00 00

protoks encodes

protok encode endpar= FFFF

rxfifo rxtout resrv spchr1 spchr2 spchr3 spchr4

txstat rxstat errlog 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00

rxclkmods

rxclkmod

2.2 Description of the Parameter Channel

2.2.1 Structure of the Parameter Channel

To each serial interface channel a so-called parameter channel is assigned. In the data range of this
parameter channel the actual status of the interface is stored, which can be read completely transparently
by the VME master.

The parameter channel is also necessary for the parameterization of the interface. For this the actual
parameters are input at the corresponding sections of the parameter structure and the parameter channel
is handed over to the VME-ISER server as 'transmit channel' (see also: ‘output channels’, on page 31).
By this a synchronization with running transmit and receive jobs can be achieved.

The parameter structure is separated into 2 different parts:
- parameters, which can be written to by the user (offset: $80 - $BF)
- parameters, which can only be read by the user (offset: $C0 - $FF)

The parameters txb...hnd are formatted as byte and can be interpreted as identifiers for the physical
parameterization.

Table 2.2.1: Parameter Channels (example: parameter Channel 1)

Channel Description

VME-ISER12 Software Manual Rev. 1.020

2.2.2 Description of the Parameter

Write accesses to the parameters can only ensue, if in the element iocmmd the command paraxy
($0000) is entered. Read accesses to the parameters are always possible, independently from iocmmd.
(see also 'Command Transfer via the Parameter Channel’, on page 25).

Writeable and readable parameters:

txbs Index desired value baud: transmitter baud rate
rxbs Index desired value baud: receiver baud rate
chrls Index desired value chri: bits/char
stpls Index desired value stpi: number of stop bits
parts Index desired value pari: parity type
hnds Index desired value hndi: handshake mode

Assignment of the Parameter indices:

Meaning of the index baud:
0 -- baud rate = 38400
1 -- baud rate = 19200
2 -- baud rate = 9600
3 -- baud rate = 4800
4 -- baud rate = 2400
5 -- baud rate = 1200
6 -- baud rate = 600
7 -- baud rate = 300
8 -- baud rate = 150
9 -- baud rate = 110
10 -- baud rate = 75
11 -- baud rate = 50
$FF -- baud rate = variable via txbv, rxbv

only for channel 9 and 10:
12 -- baud rate = 76800
13 -- baud rate = 115200

Meaning of the index chri:
0 -- 8 bits per character
1 -- 7 bits per character
2 -- 6 bits per character
3 -- 5 bits per character

Meaning of the index stpi:
0 -- 1 stop bit
1 -- 2 stop bits

Meaning of the index pari:
0 -- no Rx parity, no Tx parity
1 -- Rx/Tx parity ODD
2 -- Rx/Tx parity EVEN

Meaning of the index hndi:
0 -- hardware handshake DTR/CTS
1 -- software handshake XON/XOFF
2 -- modem operation RTS, CTS handshake
3 -- no handshake
4 -- RS-485 operation, no handshake
5 -- RS-422 operation, XON/XOFF handshake

rtime0s* Receive time-out for the first character in msec

Channel Description

VME-ISER12 Software Manual Rev. 1.0 21

0: Receive time-out disabled
rtime1s* Receive 'character to character' time-out in msec

0: no 'character to character' time-out
ttimes* Transmit Time-Out in msec

0: Transmit Time-Out disabled
* see also section 'Time-out' on page 32

rxclkmods Clock-mode of the DUSCC/SCC-channels has to be indicated separately for receive and
transmit:

txclkmods
rxclkmods
txclkmods txbvs Mode Function of the Pin

RxTxCLK Clock

x 0 Channel off - -

0 ≠ 0 Async-Mode - 16x baud rate

1 ≠ 0 Synch-Mode Pin RxTxCLK = OUT 1x baud rate

2 ≠ 0 Synch-Mode Pin RxTxCLK = OUT 16x baud rate

-1 ≠ 0 Synch-Mode Pin RxTxCLK = IN 1x baud rate

-2 ≠ 0 Synch-Mode Pin RxTxCLK = IN 16x baud rate

Table 2.2.2: Evaluation of rxclkmods and txclkmods

Pin RxTxCLK = DUSCC/SCC-Pin 39 (J3A-Pin 3) for channel 9,
 or DUSCC/SCC-Pin 10 (J3-Pin 3) for channel 10

txbvs baud rate absolute, range of values 50...∞ (asynchronous),
rxbvs dimension baud

In txbvs and rxbvs the actual baud rate is indicated as absolute number. If a baud rate
is desired, that deviates from the baud rates, which can be selected via txb, or rxb, via
txbvs, or rxbvs the baud rates can be handed over as an absolute value (txbs, or rxbs set
to $FF).
The interface is programmed with the nearest possible baud rate and the real value of
the adjusted baud rate is handed back in txbv and rxbv.

Example: Parameter setting with Tx baud rate 115.000 baud at the VME-ISER8

Input : $FF --> txbs
Input : 115000 --> txbvs
Output: -->> txbv = 115200

(actual baud rate = 115200 baud!)

Note: The VME-ISER12 offers a better resolution for the setting of the absolute
baud rate than the VME-ISER8, because of an additional fundamental
frequency to generate the baud rate.

Channel Description

VME-ISER12 Software Manual Rev. 1.022

protoks Protocol mode of channel 9 and 10

protoks Protocol mode

0 UART mode
(all parameters of the parameter channels 9 and 10 are relevant)

1
HDLC mode (only the parameter of the channels 9 and 10,
which are necessary for the synchronous transmission have to be
considered: rtime02, txclkmods, rxclkmods. txbvs, encode)

Table 2.2.3: Protocol mode

encodes Signal coding of the serial Interfaces
Only the format NRZ (No Return to Zero) is supported (encodes = 0) at the moment.

Channel Description

VME-ISER12 Software Manual Rev. 1.0 23

Only readable parameter:

Following parameters serve as status information:
(cannot be written by the user !!)

txb Index actual value baud: transmitter baud rate
rxb Index actual value baud: receiver baud rate
chrl Index actual value chri: bits/character
stpl Index actual value stpi: number of stop bits
part Index actual value pari: parity type
hnd Index actual value hndi: handshake mode

(assignment of the indices see page 20.)

rtime0* Receive time-out for the first character in msec
rtime1* Receive 'character to character' time-out in msec
ttime * Transmit time-out in msec

* see also section 'Time-out' on page 32

txclkmod, read parameter of the clock mode of the DUSCC/SCC channels
rxclkmod (Meaning of the parameter see Table on page 21)

txbv, baud rate absolute, range of values 50...38400, unit Baud
rxbv in txbv and rxbv the actual baud rate is indicated as an absolute number.

 (see also above: 'txbvs', 'rxbvs' on page 21)

protok protocol mode of the channels 9 and 10
$00 - UART mode
$01 - HDLC mode
(see also ‘protoks’ on page 22)

encode signal coding of the serial Interfaces
Only the format NRZ (No Return to Zero) is supported (encodes = 0) at the moment .

rxfifo internal FIFO threshold for Rx interrupt (local !!)
rxtout time for Rx time-out in 5 msec units (local !!)
resrv reserved
spchr1-
spchr4 internal controller commands

Channel Description

VME-ISER12 Software Manual Rev. 1.024

txstat status of the transmitters

Bit 7 : not used
Bit 6 : not used
Bit 5 : not used
Bit 4 : not used
Bit 3 : '1' - Tx time-out occurred

'0' - no Tx time-out occurred
Bit 2 : '1' - Tx queue filled up

'0' - Tx queue ready
Bit 1 : '1' - transmitter disabled by handshake

'0' - transmitter enabled by handshake
Bit 0 : '1' - transmitter disabled

'0' - transmitter enabled

rxstat status of the receivers

Bit 7 : '1' - break recognized
'0' - no break recognized

Bit 6 : '1' - parity error recognized
'0' - no parity error recognized

Bit 5 : '1' - framing error recognized
'0' - no framing error recognized

Bit 4 : '1' - receiver overrun recognized (data loss!)
'0' - no receiver overrun recognized

Bit 3 : '1' - Rx time-out occurred
'0' - no Rx time-out occurred

Bit 2 : '1' - character in the local interrupt buffer
'0' - no character in the local interrupt buffer

Bit 1 : '1' - receiver has set handshake to 'disabled'
'0' - receiver has set handshake to 'enabled'

Bit 0 : '1' - receiver disabled
'0' - receiver enabled

errlog enable/disable Rx-error function, read only.

errlog = $00 - no Rx-error function
errlog = $FF - Rx-error function enabled

errlog is set by the command receive-errlog.
errlog is reset by receive-on and receive-off.

Channel Description

VME-ISER12 Software Manual Rev. 1.0 25

2.2.3 Command Handing-over via the Parameter Channel

Via the parameter channel commands can be handed over as well as parameters of the data buffer. For
this purpose, the parameter channel is entered into the Tx server queue and thus being executed
synchronously.

The commands 'clear' and 'reset', are already executed before being entered into the queue.

The corresponding command is entered into the location iocmmd in the header of the parameter
channel.

Already implemented commands:

$0000 paraxy
$000C clear
$000D reset
$000E reset-Status
$0050 receive-Off
$0051 receive-On
$0052 receive-Errlog
$FFFF sync

Description of the commands:

paraxy changes interface parameters, as e.g. baud rate, handshake

clear deletes the locally stored RX data;
resets the output queue, changes no interface parameters

reset default initialization of the channel

reset-stat resets the error flags in txstat and rxstat

receive-off switches the receiver off

receive-on switches the receiver on (no ‘end-by-error')

receive-errlog switches the receiver on, enables the 'end-by-error' function

sync entering the parameter channel as an output without data, no data transfer, no change
of the interface status.

At heavy duty transmit operation without 'wait for ready' (MODMWA in iomode=0) the
condition 'output queue full' will easily become true, thus the master must check for
'output queue ready' in the polling mode.
However, after the next transfer the queue is full again. At this condition we
recommend to execute a dummy transfer with 'wait for ready' and an activated interrupt
mode. Thus after a complete execution of the queue the total memory is available to the
master again.

Channel Description

VME-ISER12 Software Manual Rev. 1.026

2.3 Description of the Interrupter Channel

2.3.1 Structure of the Interrupter Channel

The task of the interrupter channel is to establish a connection between the VME master program and
the local server.

After allocating a data channel and entering the parameters into the header of this channel, the master
program must hand over the channel to the local server. For this, the interrupter channel makes available
the cells TCHACH1 to TCHACHA and RCHACH1 to RCHACHA in its data buffer.

The master program enters the board relative address of the channel to be accessed (D0 in the example
mentioned above) into these cells and activates the VME-ISER server by triggering a local interrupt.
The VME-ISER server identifies the data channel by the entry in the interrupter channel and thus can
work on it.

The interrupter channel makes available an entry each both for transmit and receive operation for each
of the 10 interfaces.

The cells TCHACHx/RCHACHx serve as status cells as well:

If the content of the cell CHACHx is unequal to $00000000.L, the corresponding data channel has
not yet been integrated into the VME-ISER server queue, and no new entry may take place.

As soon as the data channel is integrated into the server management, the entry in the interrupter
channel is set to $00000000.L. This entry delivers no information about the status of the
corresponding channel. The status can only be obtained from the condition of the cell iosema in the
header of the data channel!

Channel Description

VME-ISER12 Software Manual Rev. 1.0 27

Address
Offset
HEX

+0 +2 +4 +6 +8 +A +C +E
8000
8010
8020
8030
8040
8050
8060
8070

00 00 00 00 00 00 00 00 00 80
00 00 81 00 00 00 FF 'Irch__'

00 00 80 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

00 00
00 00 00

00

TCHACH5
8080
8090
80A0
80B0
80C0
80D0
80E0
80F0

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

FF
00 00 00
80

addr_para1 addr_para2 addr_para3 addr_para4
addr_para5 addr_para6 addr_para7 addr_para8
addr_para9 addr_paraA

00 00 00 00 00 00 00 00

TCHACH1
TCHACH6
TCHACH2

TCHACH7
TCHACH3

TCHACH8
TCHACH4

TCHACH9 TCHACHA

RCHACH5
00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

RCHACH1
RCHACH6
RCHACH2

RCHACH7
RCHACH3

RCHACH8
RCHACH4

RCHACH9 RCHACHA

Table 2.3.1: Interrupter Channel

Channel Description

VME-ISER12 Software Manual Rev. 1.028

2.3.2 Description of the Interrupter Channel Cells

addr_para1... Start addresses of the parameter channels 1 to 10
adr_paraA

TCHACH1...
TCHACHA Entries for the Tx server:

Cell
Offset
[HEX]

 relative to
iodata

Entry Channel for
Tx Server

TCHACH1 00 1
TCHACH2 04 2
TCHACH3 08 3
TCHACH4 0C 4
TCHACH5 10 5
TCHACH6 14 6
TCHACH7 18 7
TCHACH8 1C 8
TCHACH9 20 9
TCHACHA 24 10

Table 2.3.2: Entries for the Tx server

Triggering of the local VME-ISER-Tx-Irq's:

To activate the VME-ISER Tx server task, which executes the entries in the interrupter channel, an
access to the local IRQ trigger address must take place.
This access must ensue as 'write word' to the board relative address:

tirtrig = $080002

Channel Description

VME-ISER12 Software Manual Rev. 1.0 29

RCHACH1...
RCHACHA Entries for the Rx server:

Cell
Offset
[HEX]
relative to

iodata

Entry Channel
for Rx Server

RCHACH1 40 1
RCHACH2 44 2
RCHACH3 48 3
RCHACH4 4C 4
RCHACH5 50 5
RCHACH6 54 6
RCHACH7 58 7
RCHACH8 5C 8
RCHACH9 60 9
RCHACHA 64 10

Table 2.3.3: Entries for the Rx server

Triggering the local VME-ISER-Tx-Irq's:

To activate the VME-ISER Rx server task, which executes the entries in the interrupter channel, an
access to the local IRQ trigger address must take place.
This access must ensue as 'write word' to the board relative address

 rirtrig = $080006.

Channel Description

VME-ISER12 Software Manual Rev. 1.030

The local VME-ISER Server

VME-ISER12 Software Manual Rev. 1.0 31

3. The local VME-ISER Server

3.1 Functional Description of the local VME-ISER Server

The local VME-ISER server manages all channels, which have been handed over from the VME master
program to the VME-ISER. The server distinguishes basically between input and output channels.
The execution of a parameter channel is a special form of an output channel.

3.1.1 Output Channels

The VME-ISER server contains a local execution queue for each interface. As a default these queues
have a depth of 32 entries. An output data channel linked in via the interrupter channel will be entered
into the queue and the Tx server, responsible for the interface, obtains the particular channel from the
queue and releases the entry again after the complete execution.

A run-over of the queue is prevented by the handshake with the cells TCHACHx: if the queue is full,
the entry of the corresponding data channel is certainly accepted, but the cell TCHACHx will not yet
be released again. This will only happen, if space for at least one more entry is available in the queue.

If the TX server recognizes the actual output channel as a parameter channel, no output will occur, but
the command iocmmd will be executed.

3.1.2 Input Channels

An interrupt buffer is allocated to each of the 10 serial interfaces as a default. The user has no direct
access to this buffer.

If data are received via the interface, and there is no input buffer available to the input server, then the
incoming data will be temporarily stored in the interrupt buffer.

As long as there are still data in the interrupt buffer, an input channel linked in by the VME master will
be filled with these data, otherwise incoming data are directly transferred into the input channel.

Exceptions:

- if an input channel with iomode=$xx08 is processed, all data up to now received in the interrupt
buffer are deleted, and only data received from now on will be handed over at the next READ
instruction.

- If iofnam is set to ASCII 'SCAN', data from the interrupt buffer will be handed over until reaching
the indicated end condition. If the interrupt buffer is clear, the end condition will also be set.

- If iofnam is set to ASCII ‘PROT’, the registered protocol will be executed.

The local VME-ISER Server

VME-ISER12 Software Manual Rev. 1.032

As a default the interrupt buffer has a length of 1 kbyte. The receive handshake is managed
corresponding to the free space of the interrupt buffer:

If the interface is equipped with a handshake, at a remaining space of about 10% the handshake is
disabled.
If the free space is about 70% again, the handshake will be enabled again.

3.1.3 Interrupt Operation

If the user needs a VME interrupt from the VME-ISER after completing an instruction (e.g. input
channel filled, or output channel transferred with MODMWA = '1' in iomode), then the desired VME
interrupt level, as well as the interrupt vector must be entered into the cells ioilev and ioivec of the
corresponding data channel. The VME-ISER then generates the specified interrupt.
If no interrupt generation is desired, iolev must be set to 0.
In his interrupt routine the user must confirm the interrupt. The interrupt confirmation is done as
follows:

The 2 LSB of the interrupt vector determine the bit position in the interrupt acknowledge register. This
bit must be set to '1' as an acknowledge. The board relative address of this register iack is $08601B.

e.g.:
--- Interrupt-Entry ---

 MOVE.B #ioivec,D0 ;actual interrupt vector
 ANDI.B #$03,D0 ;Masking bit 2 to 7
 BSET D0,iack+iserbase ;Set bits on VME-ISER

--- further interrupt routine --

Setting the IACK bit should happen as soon as possible, because on the VME-ISER the generation of
a new IRQ is prevented as long as the actual interrupt was not confirmed!!

3.1.4 Time-Out

Optionally it is possible to abort transmit and receive instructions after a preset time T-Out. Time setting
is done via the channel parameter iotout, or via the parameters rtime0, rtime1 and ttime in the parameter
channel.
The value in iotout corresponds to the channel being executed, while rtime0, rtime1 and ttime refer to
the interface in general.
The content of iotout overdrives the content in the parameter channel.

iotout If bit 7 of iotout equals to 0, then a time-out via <iotout> is disabled.
If bit 7 equals to 1, then the value of the remaining 7 bits indicates the time-out time in
multiples of 10 msec.
e.g.:
iotout = $0x - no time-out
iotout = $85 - time-out after 50 msec
iotout = $FF - time-out after 1.2 sec

The local VME-ISER Server

VME-ISER12 Software Manual Rev. 1.0 33

It is possible to set a global time-out for all interfaces via the parameter channel, which can be different
for transmit and receive operation.
The range of values is 0....32767, the unit is 1 msec.
If rtime0= 0, or ttime= 0, then the corresponding time-out function is disabled!

ttime time-out for transmit operation
rtime0 time-out for receive operation for the first character
rtime1 time-out for receive operation for any further character

The time-out function is retriggerable, i.e. if a transmit or receive operation takes place, the
corresponding counter will be reset. The chronological interval of these operations is variable (FIFO
operation) and corresponds to the duration of at least one, but as a maximum of 8 character times.
(e.g. 1200 Baud: 1 char.time . (1+8+1)/1200 = 8.3 msec

8 char.times . 66.6 msec, i.e. a time-out value
of less than 67 msec cannot be recommended!)

Moreover, in the receive operation it is distinguished between ‘first’ time-out and ‘character-to-
character’ time-out, i.e. the time between instruction input and first character arrival may be longer than
the character-to-character time while the active transfer.

Actions when a time-out occurs:

If a time-out occurs at a transfer, the following actions happen as a principle:

1. in the corresponding channel the time-out mark is set:
$8007 --> iorecl

2. in the parameter channel the time-out bit in rxstat, or in txstat is set.

The reset of these bits is done via the command reset-stat in the parameter channel or at a channel
reinitialization. The bit is not reset at a successful input or output!

The channel being worked on is released again, i.e. at a transmit channel without 'wait' the channel will
be 'scrapped'. The semaphore iosema is reset and the next transmit channel is obtained from the queue.

At a transmit operation with 'wait', or at a receive channel the master is informed correspondingly. The
channel status is set to 'ready' and, if required, an interrupt is generated.

The local VME-ISER Server

VME-ISER12 Software Manual Rev. 1.034

3.1.5 Receive Error Mode

Errors occurring in the Rx mode are recorded in rxstat.
An Rx status reset is performed by the commands

reset-stat, reset or receive-errlog.

Detectable errors are break, parity, framing and overrun errors.

If an evaluation of these errors is desired, then the receiver error mode must be activated by the
command receive-errlog.

If one of the above-mentioned errors occurs in the active mode, and no receive instruction is effective,
all characters received in the interrupt buffer will be deleted. If an Rx instruction is effective, the
instruction is aborted and an error code is returned via iorecl.

If several errors occur simultaneously, following priority will be obeyed: break/parity error/framing
error/overrun error.

Error codes in iorecl:

$8007 - time-out
$801E - framing error
$801F - overrun error
$8020 - parity error
$8046 - break detected

The error condition time-out is independent of the condition errlog, and is released only by the time-out
cells described before.

The local VME-ISER Server

VME-ISER12 Software Manual Rev. 1.0 35

3.2 Examples for the VME-ISER Server

3.2.1 Example: Initialization of the VMEbus Master

It is recommended to let the initialization routine of the master determine the following addresses once
and store them in master-local cells:

CRDADR -- VMEbus base address of the VME-ISER
TxBUFF -- VME-ISER relative address of the Tx channels 1 to 10
RxBUFF -- VME-ISER relative address of the Rx channels 1 to 10
PARAn -- VME-ISER relative address of the parameter cannel. 1 to 10
IRCH -- VME-ISER relative address of the interrupter channel data buffer (iobuff(IRCH))
IACK -- interrupt acknowledge address absolute
TIRTRIG -- transmit interrupt trigger address absolute
RIRTRIG -- receive interrupt trigger address absolute

The master should scan the VME-ISER channels, starting with the address of ANCHOR and either
check for the corresponding ASCII string (TBUFxy, RBUFxy, PARAxy and Irch) or determine the
channel via the cells iotyp and ioldn. As next-pointer iofor has to be used.

The local VME-ISER Server

VME-ISER12 Software Manual Rev. 1.036

3.2.2 Example: Data Output to Interface 2 without IRQ

TCHACH1 EQU (1-1)*4 ;offset server 1
TCHACH2 EQU (2-1)*4 ;offset server 2
..
TCHACH9 EQU (9-1)*4 ;offset server 9
TCHACHA EQU (10-1)*4 ;offset server A

MOVEA.L CRDADR,A0 ;base address
MOVE.L TXBUF2,D0 ;first channel
BSR srchbf ;search for free channel

 (see above)
BNE wait ;no channel free, wait !?

* Now A0 contains the absolute address of the actual
* channel, D0 contains the board relative address

MOVEA.L iobuff(A0),A1 ;rel. address data buffer
ADDA.L CRDADR,A1 ;absolute address
MOVE.W #anzdata,D1 ;number of data bytes
MOVE.W D1,iorecl(A0) ;enter into header
SUBQ #1,D1 ;because of DBxx
MOVEA.L source,A2 ;pointer to transmit data

loop MOVE.B (A2)+,(A1)+ ;transfer to VME-ISER
DBF D1,loop ;
MOVE.W #0,ioilev(A0) ;ioilev,ioivec == $0
MOVE.L #0,iofnam(A0) ;clear fname
MOVE.W #$4700,iomode(A0) ;output, no wait

* activate VME-ISER server
MOVEA.L IRCH,A2 ;pointer to data interrup.
ADDA.L CRDADR,A2 ;absolute
TST.L TCHACH2(A2) ;entry free ?
BNE wait ;No, wait ?
MOVE.L D0,TCHACH2(A2) ;enter relative channel address
MOVE.W D0,TIRTRIG ;write 'any' as a trigger

* ---- ready ---

The local VME-ISER Server

VME-ISER12 Software Manual Rev. 1.0 37

3.2.3 Example: Data Input from Interface 8

RCHACH1 EQU (1-1)*4+$40 ;offset server 1
RCHACH2 EQU (2-1)*4+$40 ;offset server 2
..
RCHACH9 EQU (9-1)*4+$40 ;offset server 9
RCHACHA EQU (10-1)*4+$40 ;offset server 10

MOVEA.L CRDADR,A0 ;base address
MOVE.L RXBUF,D0 ;first channel
TAS iosema(A0,D0.L) ;search for free channel

* (see above)
BNE wait ;no channel free, wait !?
LEA 0(A0,D0.L),A0

* Now A0 contains the absolute address of the actual
* channel, D0 contains the board relative address

MOVE.W #anzdata,D1 ;maximum number of the
* data bytes to be read

MOVE.W D1,iorecl(A0) ;enter into header
MOVE.B #05,ioilev(A0) ;IRQ level = 5
MOVE.B #$60,ioivec(A0) ;IRQ vector =$60
MOVE.W #$2700,iomode(A0) ;input, end at <cr>
MOVE.L #0,iofnam(A0) ;normal input

* activate VME-ISER server
MOVEA.L IRCH,A2 ;pointer to data interrup.

 ADDA.L CRDADR,A2 ;absolute
TST.L RCHACH8(A2) ;entry free ?
BNE wait ;no, wait ?
MOVE.L D0,RCHACH2(A2) ;enter relative channel address
MOVE.W D0,RIRTRIG ;write 'any' as a trigger

*
* ---- wait until occurring of the special IRQ

MOVE.W iorecl(A0),D1 ;number of received data
BEQ exit ;no data received
BMI error
SUBQ #1,D1 ;because of DBxx
MOVEA.L destin,A2 ;destination of the data
MOVEA.L iobuff(A0),A1 ;source of the data, relative
ADDA.L CRDADR,A1 ;address absolute

loop1 MOVE.B (A1)+,(A2)+ ;transfer data bytes
DBF D1,loop1 ;
MOVE.B =0,iosema(A0) ;release channel !!

* ---- ready --
*
error ANDI.W =$7FFF,D1 ;mask error number

.

. (error routine)

.

The local VME-ISER Server

VME-ISER12 Software Manual Rev. 1.038

3.2.4 Example: Setting the Parameter of Interface 1

TCHACH1 EQU (1-1)*4 ;offset server 1
TCHACH2 EQU (2-1)*4 ;offset server 2
..
TCHACHA EQU (10-1)*4 ;offset server 10
txbs EQU 0 ;desired value Tx_Baud
rxbs EQU txbs+1
chrls EQU rxbs+1
stpls EQU chrls+1
parts EQU stpls+1
hnds EQU parts+1
txb EQU $40 ;actual value Tx_Baud
rxb EQU txb+1
chrl EQU rxb+1
stpl EQU chrl+1
part EQU stpl+1
hnd EQU part+1

MOVEA.L CRDADR,A0 ;base address
MOVE.L PARA1,D0 ;parameter channel, relative
ADDA.L D0,A0 ;absolute address
MOVEA.L iobuff(A0),A1 ;data range parameters
ADDA.L CRDADR,A1 ;absolute address

* e.g.:
* set tx baud rate to 300 Baud
* set rx baud rate to 600 Baud
* set handshake to XON/XOFF

MOVE.B #7,txbs(A1) ;tx Baud = 300
MOVE.B #6,rxbs(A1) ;rx Baud = 600
MOVE.B #1,hnds(A1) ;XON/XOFF handshake

* All other parameters remain unchanged
MOVE.W #$4700,iomode(A1);output mode
MOVE.W #0,ioilev(A1) ;no IRQ
MOVE.W #0,iocmmd(A1) ;mode: Init parameter

* enter parameter channel into server queue
MOVEA.L IRCH,A2 ;pointer to data interrup.

 ADDA.L CRDADR,A2 ;absolute
TST.L TCHACH1(A2) ;entry free ?
BNE wait ;no, wait ?
MOVE.L D0,TCHACH1(A2) ;enter relative channel address
MOVE.W D0,TIRTRIG ;write 'any' as a trigger

* ---- ready ----

The local VME-ISER Server

VME-ISER12 Software Manual Rev. 1.0 39

3.3 User Protocols

3.3.1 Function Description

The user has got the possibility to implement an individual Rx-protocol or Rx-filter for each channel.
In order to do this the protocol program has to be loaded in an available RAM-area of the VME-ISER
(such as $20000... $3FFFF) and the entry address of the local user program has to be made
available to the local ISER server. This can be achieved by specifying the entry address of the respective
channel in cell ioentr in the parameter channel.

If the VME master now requests an Rx-element via iofnam = PROT, the received characters are
buffered in the interrupt buffer, followed by the execution of the specified protocol which can check
the buffered chain of characters and possibly transmit them to the requested channel.

If iofnam of the requested channel unequals PROT, the data is transferred normally by means of the
standard VME-ISER server.
If iofnam of the requested channel equals PROT, and if the protocol entry ioentr is not available, the Rx-
request will be ignored.

It is very important to ensure that the basic configuration of the channel via the parameter channel does
not cause conflicts with the requested protocol (such as a software handshake in binary protocols)!

3.3.2 Conditions for the Use of User-Specific Rx-Protocols/Filters

- the application program has to be installed in a free memory range between $20000 and $3FFFE
- the entry address of the server routine has to be specified in the respective parameter channel in cell

IOENTR
- the entry address has to be even
- the last four bytes before the entry address have to include the ASCII-ID 'PROT'
- Re-entry window, freely relocatable 68000-Code

no commands for 68020/30/40!
- no software traps
- restrictions in the use of registers:

Register A1 contains the pointer to the variables of the respective channel (such as irwp, ceaddr,...).
Register A3 contains the return address. In register D0 the status of the protocol is returned:
 '0' - Prot. not yet finished
> 0 - number of bytes
< 0 - e.g. number of bytes + bit 15 set: CRC-error
Data registers A2, A4, D1, D2, D4 can be used. A1 and A3 must not be changed!

The protocol is entered in supervisory mode on interrupt level 5 or interrupt level 7.

The local VME-ISER Server

VME-ISER12 Software Manual Rev. 1.040

3.3.3 Register and Structure Declarations

Register
A1.L pointer to structure irbuf
A3.L return address
A2.L/A4.L free
D0.L/D1.L/D2.L/D4.L free

When returning from the protocol via 'JMP(A3)' D0.W has to be supplied with the returned value and
the according flags have to be set in the status register:

Returned values in D0.W:

D0 Flags

'0' 'eq' Protocol has not been finished yet, no further action
of the ISER server.

'$0001','m' 'ne','pl' Protocol has been finished without errors, m
characters have been transmitted to the Rx-buffer:
The VME-ISER server returns the Rx-buffer to the
VME-master.

'$8000','m+$8000
'

'ne','mi' Protocol has been finished with errors, m characters
have been transmitted to the Rx-buffer: The VME-
ISER server returns the Rx-buffer to the VME-master.

The local VME-ISER Server

VME-ISER12 Software Manual Rev. 1.0 41

Address
Offset
HEX

+0 +2 +4 +6 +8 +A +C +E
0000
0010
0020

0080

04A0

ceaddr datapt parach chwp chrp
chrps txcnt readce cewp irmode

...

Interrupt-Buffer irbuf...

irwp irrp
prtphs

... Interrupt-Buffer irbuf

Data Structure irbuf (Interrupt Buffer)

Each VME-ISER channel has got an irbuf structure via which the Tx- and Rx-transfers are processed.
Into this structure the received data, for instance, is filed. It consists mainly of four parts:

- pointer and counter for Tx-operation
- queue for Tx-operation (32 entries)
- pointer and counter for Rx-operation
- FIFO for Rx-operation (1024 bytes)

Table 3.3.1: Relevant cells of the interrupt buffer

Usually, the following structure elements of the interrupt buffer satisfy the Rx-protocol:

Name Offset
[HEX] Organisation Meaning

readce 14 longword absolute address of the waiting Rx-buffer (iobuff)

irwp 18 word current write pointer in the data range irbuf0 (can be set by
the protocol to synchronise)

irrp 1A word current read pointer in the data range irbuf0 (must be
managed by the protocol)

prtphs 2B byte flags to control the protocol

irbuf 40 interrupt buffer, length: $400

Table 3.3.2: Relevant structure elements of the interrupt buffer

Note:
Apart from cells irrp, prtphs and possibly irwp all other cells are read-only for the application program!

Furthermore, a pointer is required from the data channel (structure iobuff):

The local VME-ISER Server

VME-ISER12 Software Manual Rev. 1.042

Name Offset
[HEX] Organisation Meaning

iobuff 20 *) longword pointer to data range
*) Offset in data channel!

Table 3.3.3: Pointer to data range

The local VME-ISER Server

VME-ISER12 Software Manual Rev. 1.0 43

3.3.4 Protocol Embedding for Rx-Operation

If characters are received, they are read-out of the controller on interrupt level, are possibly checked for
signs of software handshake or ‘end’ signs, and filed in the Rx-FIFO. Then, if required by the Rx-
buffer, the user protocol is executed. This can now check the characters while knowing the current write
pointer irwp and the (self-administered) read pointer irrp. If the protocol requirements are not met, the
returned parameter ‘0’ is transmitted and the protocol is activated again when the following characters
are received.

If the protocol requirements have been met, the application program will initiate the transfer of
characters into the Rx-buffer: The pointer to the waiting Rx-buffer is in cell readce, and is of structure
type iobuff. In cell iobuff of this structure is the initial address of the data range into which the
characters are to be transferred.

After all characters have been transferred, the number of valid bytes is transferred in D0; the MSB can
be used as a flag for a faulty protocol. According to the configuration, the VME-ISER server then
returns the Rx-buffer to the VME-master.
Register A1 is the basic address for the current structure irbuf and must not be changed during the
protocol!

Please make sure that the time for the protocol processing is optimized on server level, because no
further characters can be handled during this time (data loss!)!

Example:

DC.B 'PROT'
entry: LEA irbuf0(A1),A2 ; A2: pointer to Rx-data range

MOVE.W irrp(A1),D1 ; last read pointer
MOVE.B 0(A2,D1.W),D0 ; character from Rx-buffer
CMPI.B =char,D0 ; checking the character
BNE.S exit ; not OK
ADD.W =len,D1 ; next read pointer
MOVE.L D1,irrp(A1)

transfer LEA 0(A2,D1.W),A2 ; pointer to character chain
MOVEA.L readce(A1),A4 ; pointer to Rx-buffer 'iobuff'
MOVEA.L iobuff(A4),A4 ; pointer to Rx-data range
MOVE.W =len-1,D2 ; transfer length

tloop MOVE.B (A2)+,(A4)+ ; transfer character chain
DBF D2,tloop ;
MOVE.W =len,D0 ; returned value
JMP (A3) ; to VME-ISER server

exit MOVEQ =0,D0 ; flag: not ready yet
JMP (A3) ;

When accessing the data range in the interrupt buffer, you have to remember that it is a FIFO with 1 k
byte length, which means that all pointers have to be treated Modulo $3FF!

The local VME-ISER Server

VME-ISER12 Software Manual Rev. 1.044

Example for Configuration (esn-stx/etx-Protocol):

For this protocol the following configuration is advisable:

- iorecl = $0018
- iofnam = 'PROT'
- iomode = $8700
- ioivev, ioilev = $00, $00 - no interrupt, or
- ioivec, ioilev = vector, level - user-defined IRQ

For the group configuration via the parameter channel:

txbs = $13 (115200 baud)
rxbs = $13 (115200 baud)
chrls = $00 (8 bits/char)
stpls = $00 (1 stop bit)
parts = $00 (no parity)
hnds = $03 (no handshake)
rtime0s/rtime1s = $0000 or time-out in msec ($ 3 !)

Index

VME-ISER12 Software Manual Rev. 1.0 45

Index

A
ANCHOR 5
ASCII 5, 11, 31
asynchronous 3

B
base address 5
baud rate 20-23
bits/char 20
break 34
buffer allocation 15
buffer-channel 9, 17
buffer-pool 12
BUSERROR 5

C
card id 4
channel

chaining 12
command 8
description 13, 14, 17, 19
header 3
identifier 8
overview 4
release 15
semaphore 8
status 8, 9
structure 6, 7, 10, 17
type 3, 9

character to character 21
clear 25
command handing-over 25
CPU 3, 5
CPUID 5

D
data channel

description 17
management 12
type 4

data direction 10
default channel

data channel 17
description 18

DTACK signal 5
encodes 22

E
example

buffer allocation 15
data input 36
data output 36
initialization 35
parameterization 38

F
forward pointer 6
framing error 34

H
handshake 20, 31, 32
handshake mode 20, 23
HDLC mode 22
header-

ioback 9
iobnum 9
iobuff 10
iocmmd 9
iodata 11
iofnam 11
iofor 9
iofree 11
ioilev 9
ioivec 9
ioldn 10
iolen 10
iomode 10
ioname 9
ionext 9
iorecl 10
iorxln 11
iosema 9
iostat 9
iostio 10
iotyp 9

Index

VME-ISER12 Software Manual Rev. 1.046

I
identifier 19
initialization 5, 25
input channels 31
interrupt

buffer 31
operation 32
slave 9
vector 32

interrupter channel
description 26, 27
iobnum 9
number 4
type 9

iorecl 34
iorxln 11
iotout 32
irbuf 41

M
memory 3, 5
multitasking 15
multiuser 15

O
overrun error 34

P
parameter description 20
parameter index-

baud 20
chri 20
hndi 20
pari 20
stpi 20

parameter structure 19
parameter-channel

description 19, 20
type 9

Parameter-Index-
baud 20

parameterization 3, 9, 10
parity 20, 34
parity type 20, 23
pointer 6, 8, 9
polling 4
PROT 39
protoks 22

R
RCHACHx 29
receive channel 10
receive error mode 34
receive mode 8
receive operation 4, 11
receive-Errlog 25
receive-On 25
receiver baud rate 20, 23
receiver status 24
reset 25
rirtrig 29
root pointer 4, 5, 12
rtime0 33
Rx buffer 12, 13
Rx interrupt 23
Rx server 29
Rx time-out 23
Rx-error 24
rxclkmods 21

S
semaphore 9, 15
sequential chaining 6
slave server 4, 15
star-shaped chaining 6
status 19
stop bits 20, 23
sync 25
synchronization 19
synchronous 3
T
TAS 15
TCHACHx 28
time-out 8, 21, 32
tirtrig 28
transmit channel 10, 19
transmit mode 8
transmitter baud rate 20, 23
transmitter status 24
triggering 28, 29
ttime 33
Tx buffer 12, 13
Tx server 28
txclkmods 21

U
UART mode 22
user protocols 39

Index

VME-ISER12 Software Manual Rev. 1.0 47

V
VMEbus-

interrupt 4
IRQ-Level 8
IRQ-Vektor 8
master 19
master program 26, 31
master server 4

