

ChromoGGL user manual

(authors: K.Yu. Gorbunov, V.A. Lyubetsky,

developers: R.A. Gershgorin, K.Yu. Gorbunov)

2015

1

Contents

Overview ... 2

The algorithm for computing the distance between two chromosome structures 3

The algorithm for transforming a joint graph into the final form in case of different operation

weights and extra operations of deletion and insertion .. 5

Algorithm of generation of the evolutionary tree of chromosome structures 14

Algorithm “gradient descent” from multiple random initial points for task 3 15

Installation and execution of ChromoGGL utilities on Windows ... 15

Chromo ... 15

hrom_reconstruction ... 15

Input data ... 15

Chromo input data ... 15

hrom_reconstruction input data .. 16

ChromoGGL parameters ... 18

Chromo parameters ... 18

Command line parameters ... 18

File with operations costs ... 18

hrom_reconstruction parameters .. 18

Output data .. 18

Examples of task 1 solutions .. 20

Exampels of task 2 solutions .. 21

hrom reconstruction output ... 21

Biological examples for task 3 .. 22

Recommended standart programs .. 22

Reference ... 22

2

Overview

ChromoGGL utilities are designed for solving the following three tasks:

1) Computation of the distance between the two given chromosome structures and finding a

sequence of operations with the minimum total weight (distance) that transforms one structure

into another. The most common definition (according to available papers) is considered as an

arbitrary set of paths and cycles, representing the linear and circular chromosomes, as well as the

definition of the set of allowed operations. The structures include gene paralogs, the sequence of

operations permit alternate gene composition. Arbitrary weights of single operations are allowed.

The task is to minimize the total weight of all operations from arbitrary sequence. The sequence,

for which the minimum is reached, is called the shortest. The mean of the total weight of the

sequence from one structure to another and viсe versa is called the distance between them.

Despite such a common task statement, our original algorithm has linear time and memory

complexity; it has proved to be quick when performing computations on supercomputer

2) Computation of the matrix of pairwise distances for the given set of structures and generation

of the tree, that matches the matrix best. These chromosome structures correspond to the leaves

of the obtained tree. The algorithm with linear complexity, based on the algorithm for the first

task, is used.

3) The reconstruction of the structures on the evolutionary tree defined by the structures at its

leaves, usually from the section 2, not necessarily binary, on the ansestral nodes of the tree; all

structures can include paralogs. The task contains the paralogs numeration, which allows to build

the correspondence between paralogs at the end of edge and them at the beginning of the edge;

and also to see, which paralogs have been lost and which appeared at each node of the tree. In

other words, the arrangement of chromosome structures with paralogs numeration for the tree

with the only structures in leaves defined (without numeration), is being searched.

The task is to minimize the total price of arrangement as the sum of the distances between

the pairs of chromosomes on the ends of any edge. The difficulty of the task is that the distances

are computed for the structures with fixed numerations, that is numeration of all paralogs should

be searched together with arrangement. It turns out, that the solution of this problem, when using

breakpoint distance between the pairs of structures at the ends of the edge, is a good initial

approximation for the solution of the task 3 with the distance, described in section 1. We will

refer to this distance as the biological distance. From now on we will refer to the problem 3 with

breakpoint distance as the task 3a.

3

The task 3а can be restated as the integer linear programming task, so its complexity is

close to linear. The package of programs for «Lomonosov» supercomputer in Moscow State

University contains the appropriate program, but it is not available freely. After solving the task

3а the task 3 was solved. An effective algorithm of descend from different initial breakpoint

positions has been applied, see [1]. Both tasks can be solved by means of this algorithm of

descent from different random initial points.

Next section contains the description of the task 1. This algorithm is the key element of the

solution of task 2. The solution of task 3 is described after the task 2.

The algorithm for computing the distance between two chromosome structures

The model of chromosome structure is described as the finite number of the oriented

chains and cycles, including loops. This set can be thought as the oriented graph. We call this

graph as chromosome structure. The edge of the graph is defined as the gene, each single chain

or cycle defined as chromosome or component. We attach the name to each gene, usually it is the

number i of this gene, the number can repeat (in case of paralogs), in this case this number

becomes i,j. Such a model usually does not include the lengths of genes and intergenic regions,

as well as the content of genes and intergenic regions. The direction of gene indicates to which

chain this gene belongs. The vertex of this graph defines the “place” of connection of the

neighbouring genes. Usually there are lots of chains and cycles in the structure, this leads to

interaction of these components. That is why the case of multiple chromosomes differs from the

case of the single chromosome.

The model includes the following standart operations for chromosome structures. The

double-cut-and-paste – the cut of two pairs of ends of genes and new reconnection of these ends;

sesqui-cut-and-paste – the cut of the pair of ends and the connection of one end with some new

free end, another end stays free; cut of two connected ends; join of two free ends. If we have two

chromosome structures a and b, and the gene is present in both structures, we will define this

gene as the common gene (otherwise special). If the gene is present in the structure a and is

absent in the structure b, we will define this gene as a-gene. Otherwise we define the gene as b-

gene. The model includes two additional operations: the deletion of the region of special a-genes

and the insertion of the region of b-genes.

When removing the special genes, we join the ends of common genes, which are neighbors

of the removed region. Otherwise, if we insert the region of special genes inside of chromosome,

4

we firstly cut two ends. We do not consider the cuts of special genes regions, because such

operation do not improve the solution of the task.

So, we have six operations and the positive rational number is defined for each operation.

We define this numbers as costs of the operations. Including the costs of operations into the

model is important difference of this model from other models.

The task is to find the shortest sequence of this operations; which transforms the structure a

into the structure b. By “shortest”sequence we mean the sequence with the minimal total cost.

The definition of the joint graph and its final form. The vertexes of the joint graph a+b

are the ends of common genes and all maximal regions of the special genes. Each end of gene is

included only once. We write the name of the gene with the index 1 or 2, which indicates the the

beginning of the gene or its end. The vertexes of the first type are defined as the regular vertexes,

the vertexes of the second type – special vertexes. We define the border edge with the special

end as the hanging edge. Edges are marked as a or b according to the structure, in which this

vertexes are connected. Two vertexes can be connected by up to two edges. The graph may

contain isolated vertexes – the regions of the special genes: if we have the cyclic region, we call

it the special loop. We now have the undirected graph.

We apply the following analogs of defined operations to the joint graph.

(1) Delete two equally marked edges and reconnect free resulting vertexes by two new not

incident edges. (2) remove the edge with some mark (say a) and connect one of resulting

vertexes with another vertex, which is not incident to a-edge. (3) Delete any edge. (4). Connect

two vertexes, not incident to a-edge by the b-edge (and vise versa). (5) Remove special vertex of

5

special loop. If special vertex has two regular neighboring vertexes, they are being connected by

the edge.

The final form of the joint graph a+b is defined as the common graph that contains only

isolated regular vertexes and final 2-cycles. It is easy to prove, that the initial problem is equal to

the problem of transforming the graph a+b to the final form.

The algorithm for transforming a joint graph into the final form in case of different

operation weights and extra operations of deletion and insertion

Step 1. Delete all special a-loops.

Step 2. Cut out a common edge not included in a 2-circle and close it into the final 2circle using

a double- (internal edge) or a sesqui-cut-and-paste (extreme edge) or a join (single edge)

operation. Repeat the operation if possible. If the double-cut-and-paste weight does not exceed

that of sesqui-cut-and-paste, all double operations are performed first; otherwise, all sesqui

operations go first.

Step 3. Let us start with definitions. An odd (even) path is a path of an odd (even) length. An a-

path is an odd path with extreme non-hanging edges labeled as a. b-Path is defined in a similar

way. Types are assined to paths or circles remaining after steps 1-2 (except the final 2circles and

isolated common nodes): 2-circles containing an a-node but no b-nodes are considered as a-circles;

opposite structures, as b-circles. A circle containing both a- and b-nodes belongs to the circle type.

Special b-loops belong to the loop type.

a-Paths are assigned to the following types: 1а if the path has a single hanging edge; 2а, if

it has two hanging edges; 2a' -- it is an isolated special b-node; 3а, if it has no hanging edges but

has both a- and b-nodes (then its length is greater than 1); and 3a', if there are neither hanging

edges nor b-nodes (then its length equals 1). b-Path types are defined in a similar way. Note, that

we split paths into types “with accent” and “without accent”, because we need to mark out paths

without b-nodes or a-nodes.

6

Even paths are assigned to the following types: 1, if the path has a single hanging edge and

a bnode; 1', if it has one common node and one special a-node incident to it; 1'', if it has one

common node and one special b-node incident to it; 2, if it has two hanging edges and non

hanging edges; 2', if it has only two hanging edges; 3, if it has at least one edge and no hanging

edges. Type 1 is subdivided into types 1a and 1b if the path includes a hanging a-node and b-

node, respectively.

The algorithm performs the actions described below; each action is applied to a set of paths

(from 2 to 4) of the corresponding types (specified in the beginning of the paragraph and

separated by the plus sign. Each action is repeated as long as it is applicable. For brevity we

denote 2a и 2a' as 2a, 3b and 3b' as 3b, 1b and 1'' as 1b, 2 и 2' as 2.

3.1. 1a+1b=1c. Cut an extreme non-hanging edge (such edges are called external edges) in one of

two paths of types 1a and 1b and join the corresponding special node with the extreme special

node of the other path (sesqui-cut-and-paste operation). The two variants (here, paths) are

selected only at steps 4.15-4.23 of the algorithm. This uncertainty is a characteristic of our

algorithm. Specifically, an intermediate path type 1c corresponding to 1a or 1b is introduced. At

these steps, c is set equal to either a or b for the whole chain of operations preceding this step.

This trick ensures that the algorithm has no more than one branching, which emerges when the

type 1c is assigned.

3.2. 2a+3b=1b, 2b+3a=1a, 2b'+3a=1a, 2b+3a'=1a, and 2b'+3a'=1'. Hereafter, the algorithm

execution is described for the first case only (other cases are similar): cut an external edge in the

3b-path and join the special node with the extreme special node of the 2a-path.

7

3.3. 2+3=1c. Cut an external edge in the 3-path and join the special node with the extreme special

node of the 2-path. This results in a path of type 1a or 1b, i.e., of type 1c, depending on which of

two external edges was cut.

3.4. 1b+2a+3=2+3=1c, 1a+2b+3=2+3=1c, and 1a+2b'+3=2+3=1c. First carry out the 1b+2a=2

operation (see below) and then the 2+3=1c one.

3.5. 1a+3b+2=3+2=1c, 1b+3a+2=3+2=1c, and 1b+3a'+2=3+2=1c. First carry out the 1a+3b=3

operation (see below) and then the 2+3=1c one.

3.6. 1a+2=2a and 1b+2=2b. Cut an external edge in the 1a-path and join the special node with

the extreme special node of the 2-path.

3.7. 1a+3=3a and 1b+3=3b. Cut an external b-edge in the 3-path and join the special node with

the extreme special node in the 1a-path.

3.8. 1a+1a+2b+3b=2+3=1c, 1a+1a+2b'+3b=2+3=1c, 1b+1b+2a+3a=2+3=1c, and

1b+1b+2a+3a'=2+3=1c. First carry out the 1a+2b=2 and 1a+3b=3 operations; then the 2+3=1c

one.

8

3.9. 1a+1a+2b=3a+2b=1a, 1a+1a+2b'=3a+2b'=1a, and 1b+1b+2a=3b+2a=1b. First carry out the

1a+1a=3a operation (see below); then 2b+3a=1a one.

3.10. 1a+1a+3b=1a+3=3a, 1b+1b+3a=1b+3=3b, and 1b+1b+3a'=1b+3=3b. First carry out the

1a+3b=3 operation; then the 1a+3=3a one.

3.11. 1a+1a=3a and 1b+1b=3b. Connect the extreme special nodes of two 1a-paths.

3.12. 1a+2b=2, 1a+2b'=2, and 1b+2a=2. Cut an external edge in the 1a-path and join the special

with the extreme special node of the 2b-path.

3.13. 1a+3b=3, 1b+3a=3, and 1b+3a'=3. Cut an external edge in the 3b-path and join the special

node with the extreme special node of the 1a-path.

3.14. 2a+2b+3+3=2+3=1c and 2a+2b'+3+3=2+3=1c. First carry out the 2a+2b+3=2 operation

(see below); then the 2+3=1c one.

3.15. 3a+3b+2+2=3+2=1c and 3a'+3b+2+2=3+2=1c. First carry out the 3a+3b+2=3 operation

(see below); then the 2+3=1c one.

3.16. 2a+3+3=1a+3=3a, 2b+3+3=1b+3=3b, and 2b'+3+3=1b+3=3b. First carry out the 2a+3=1a

operation (see below); then the 1a+3=3a one.

3.17. 3b+2+2=1b+2=2b, 3a+2+2=1a+2=2a, and 3a'+2+2=1a+2=2a. First carry out the 3b+2=1b

operation (see below); then the 1b+2=2b one.

3.18. 2a+2b+3=2a+1b=2 and 2a+2b'+3=2a+1b=2. First carry out the 2b+3=1b operation; then

the 1b+2a=2 one.

3.19. 3a+3b+2=3a+1b=3 and 3a'+3b+2=3a'+1b=3. First carry out the 3b+2=1b operation; then

the 1b+3a=3 one.

9

Step 4. If the weight of the double-cut-and-paste operation is greater than the weight of the

sesqui-cut-and-paste, the actions 4.1–4.24 are repeated as long as they are applicable; otherwise

the steps 4.1'–4.24' are repeated analogously.

4.1. “Loop”+(“circle” or “path K with a b-node”) = “circle” or “path of the same type as K,”

correspondingly. Join the loop node with the b-node by double-cut-and-paste (if K is not an isolated

special node) or by sesqui-cut-and-paste (otherwise).

4.1'. Same as 4.1.

4.2. “Circle”+(“circle” or “path K with b- and a-nodes) = “circle” or “path of the same type as K.”

Insert the circle (by double-cut-and-paste combining two b-nodes) near the b-node from K on the

side of the a-node; cut out the resulting common edge.

4.2'. Same as 4.2.

4.3. 2a+2b=2+1'. Cut out two 2b-path nodes (the extreme special a-node and the neighboring

common node) by sesqui-cut-and-paste and join the resulting terminus with the extreme special

b-node of the 2a-path.

4.3'. 2a'+2b=2+1'.

4.4. 3a+3b=3. Cut an external edge in the 3a-path and join the special node with the extreme

common node of the 3b-path.

10

4.4'. 3a+3b'=3.

4.5. 2a+3=1a and 2b+3=1b. Cut an external b-edge in the 3-path and join the special node with

the extreme special node of the 2a-path.

4.5'. 2a'+3=1a.

4.6. 3a+2=1a and 3b+2=1b. Cut an external edge in the 3a-path and join the special node with

the extreme special node of the 2-path.

4.6'. 3a+2'=1a, 3b'+2=1b.

4.7. 2a+2a=2a and 2b+2b=2b. Join the extreme special nodes of the two paths.

4.7'. 2a'+2a=2a.

4.8. 3a+3a=3a and 3b+3b=3b. Connect two extreme common nodes of the paths by a common

edge, and then cut out this edge.

4.8'. 3b'+3b=3b.

4.9. 1a+2a=1a and 1b+2b=1b. Connect the extreme special nodes of the two paths.

11

4.9'. 1a+2a'=1a.

4.10. 1a+3a=1a and 1b+3b=1b. Connect two extreme common nodes of the paths by a common

edge, and then cut out this edge.

4.10'. 1b+3b'=1b.

4.11. 2a+2=2 and 2b+2=2. Connect the extreme special nodes of the two paths.

4.11'. 2a'+2=2, 2a+2'=2, 2b+2'=2.

4.12. 3a+3=3, 3b+3=3. Connect two extreme common nodes of the paths by a common edge, and

then cut out this edge.

4.12'. 3b'+3=3.

12

4.13. 2+2=2+1'. Perform the sesqui-cut-and-paste operation with cutting out the two nodes of the

2-path (the extreme special a-node and the neighbor common node) and joining the resulting

terminus with the extreme special b-node of the other 2-path.

4.13'. 2'+2=2+1'.

4.14. 3+3=3. Cut an external a-edge in the 3-path and join the resulting terminus with the

bterminus of the other 3-path.

4.14'. Empty action.

4.15. 1a+1a=1a, 1b+1b=1b, and 1b+1c=1b (set c=b). Cut an external edge in the 1a-path and join the

special node with the extreme special node of the other 1a-path.

4.15'. 1''+1b=1b, 1''+1c=1b (set c=b).

4.16. 1a+1b=1a, 1b+1a=1b, and 1a+1c=1a (set c=b). Cut an external edge in the 1b-path and join

the special node with the extreme special node of the 1a-path.

4.16'. 1a+1''=1a.

4.17. 1a+1a=1a, 1b+1b=1b, and 1b+1с=1b (set c=b). Cut an external edge in the 1a-path and join

the special node with the extreme special node of the 1a-path.

13

4.17'. 1b+1''=1b.

4.18. 2a+1b=2a, 2b+1a=2b, and 2a+1c=2a (set c=b). Cut an external edge in the 1b-path and join

the special node with the extreme special node of the 2a-path.

4.18'. 2a'+1b=2a, 2a+1''=2a, 2a'+1c=2a (set c=b).

4.19. 3a+1a=3a, 3b+1b=3b, and 3b+1c=3b (set c=b). Cut an external edge in the 3a-path and join

the special node with the extreme special node of the 1a-path.

4.19'. 3b'+1b=3b, 3b+1''=3b, 3b'+1c=3b (set c=b).

4.20. 2+1a=2, 2+1b=2, and 2+1c=2 (set c=b). Cut an external edge in the 1a-path and join the

special node with the extreme special node of the 2-path.

4.20'. 2'+1a=2, 2'+1b=2, 2+1''=2, 2'+1c=2 (set c=b).

4.21. 3+1a=3, 3+1b=3, and 3+1c=3 (set c=b). Cut an external edge in the 3-path and join the

special node with the extreme special node of the 1a-path.

14

4.21'. 3+1''=3.

4.22. 1a+1c=1a, 1b+1c=1b, 1a+1с=1a, 2b+1c=2b, and 3a+1c=3a. In all cases, set c=a.

4.22'. Empty action.

4.23. For the remaining paths of type 1c, set c=b and perform the 1b+1b=1b operation.

4.23'. Empy action.

4.24. Paths, that have hanging edge, are being enclosed into circles by join operation (for paths

2a, 2b, 3a, 3b), by sesqui-cut-and-paste operations with joining of special nodes (paths 1a, 1b, 1c,

2) or without joining (paths 1a, 1b, 3). When enclosing path 1c we set c=b. When enclosing path

2 we choose variant when two b-nodes are joined, after that we delete a-node from 1', see Fig. а

below. We also cut out the common edge from circles, that were produced by 3a or 3b closure,

then we apply step 4.2 to these circles again.

4.24'. Same as 4.24.

Step 5. Remove isolated special nodes and loops. Cut out 2-circles (using double-cut-and-paste)

from circles without common edges to combine two b-nodes (accordingly, the a-node is included

into the 2-circle), fig. b. Delete special nodes from the 2-circles.

The end of algorithm description.

Algorithm of generation of the evolutionary tree of chromosome structures

The generation of the optimal evolutionary tree for matrix of pairwise distances between the

given chromosome structures uses UPGMA algorithm, http://en.wikipedia.org/wiki/UPGMA.

http://en.wikipedia.org/wiki/UPGMA
http://en.wikipedia.org/wiki/UPGMA
http://en.wikipedia.org/wiki/UPGMA
http://en.wikipedia.org/wiki/UPGMA

15

Algorithm “gradient descent” from multiple random initial points for task 3

On each step of the algorithm we iterate over all inner vertexes of the tree and try to transform

the structures by means of all possible operations. We then choose the pair vertex-operation,

which delivers minimum to the total cost of structures arrangement and by replacing the structure

in the optimal vertex with the new one we get next structures arrangement on the tree. We repeat

this step till we can’t decrease the total cost of structures arrangement.

Note that this algorithm is fast and effective when the initial arrangement is chosen correctly. The

problem of initialization was briefly described as task 3a. Even approximate solution of task 3a

let us to limit the set of possible initial points.

Installation and execution of ChromoGGL utilities on Windows

Chromo

Chromo command line utility is implemented using C++. 32-bit version of executable module is

available for download. Utility does not require installation.

Several steps are required to start use utility:

download archive chromo.zip and unpack it to any directory (for example, f:/Chromo); run

console Windows (Start > Run > cmd) and enter the directory with archive content:

f: cd f:/Chromo; run command:

chromo –h.

In case of successful execution short instruction should appear on the screen. Otherwise the

information about the error will be printed. It is recommended to test utility with

run_example_1.bat on the short example.

hrom_reconstruction

hrom_reconstruction utility is implemented as 32-bit executable module. It does not require

installation.

Several steps are required to start use utility:

download archive hrom_reconstruction.zip and unpack it to any directory (for example,

f:/hrom_reconstruction); run console Windows (Start > Run > cmd) and enter the directory with

archive content: f: cd f:/hrom_reconstruction

Input data

Chromo input data

The input data consists of one file – string with the following data: the number of chromosome

structures, name of specie/culture; the number of chromosome, included to the structure from

16

this specie, that is, the number of paths and cycles in the chromosome; label L if chromosome is

linear, and C if cyclic; the number of genes in the chromosome; sequence of genes in the

chromosome, it consists of gene names. If gene is located on the minus-strand, «–» is written in

front of its name (it is possible to mark such genes with «*» as well). For example, the file for

thwo structures from Fig. 1 is presented below.

Fig. 1

File with structures, shown on Fig. 1:

2; Structure_a; 3; L3: +1+5+2; L3: +3+6+4; L1: +9; Structure_b; 4; L2: +7+2; L2: +8+4; L1: +1;

L1: +3

Joint graph of two given on the Fig. 1 structures, where the special nodes are represented as

circles of bigger size, other nodes are circles of smaller size:

Fig. 2

hrom_reconstruction input data

hrom_reconstruction utility requires two input files: input.tre and input.chrom. input.tre contains

one single line: the tree in Newick format. The leaves of the tree are being enumerated left to

17

right by numbers 1, 2, 3. input.chromo contains chromosome structures assigned to the leaves of

the tree. The structures in this file should be listed in accordance with their number in the tree.

The descriptions of the structures are separated by the line, containing multiple symbols “*”. The

content of each chromosome should start from the new line. Chromosomes are described as the

sequence of the names of the genes together with signs “–” or “+”. The sign “–” indicates the

position of the gene on the complement (-minus) strand. Each chromosome has the mark (C), if

chromosome is cyclic and (L) otherwise.

Example for artificial data:

File input.tre contains one line ((1,2),(3,4),(5,6));

File input.chrom contains initial chromosome structures for six leaves:

+g2+g3+g4+g5+g6 (C)

+g7 (C)

+g8+g9 (C)

+g1+g3+g4+g5+g6 (C)

+g7 (C)

+g8–g9 (C)

+g1+g2+g4+g5+g6 (C)

+g8 (C)

+g7+g9 (C)

+g1+g2+g3+g5+g6 (C)

+g8 (C)

+g7–g9 (C)

+g1+g2+g3+g4+g6 (C)

+g9 (C)

+g7+g8 (C)

+g1+g2+g3+g4+g5 (C)

+g9 (C)

+g7–g8 (C)

http://lab6.iitp.ru/dl/rag/hrom_reconstruction_examples/1/input_tre_en.html
http://lab6.iitp.ru/dl/rag/hrom_reconstruction_examples/1/input_chrom_en.html

18

Here each structure contains three cycles, formed by five, one and two genes each. The structures

differ by the content of the genes and by the order of the genes in chromosomes. Second, forth

and sixth leaf contain genes from complement strand.

ChromoGGL parameters

Chromo parameters

The utility requires several parameters for execution, the meaning of these parameters is revealed

below. Also the file with string – weights of single operations is required.

Command line parameters

• -m – execution mode, it equals dist, if task 1 is being solved; tree, if task 2 is being

solved;

• -с – path to the file with chromosome structures;

• -o – path to the file with operations weights;

• -r – path to the directory with the results of utility execution.

File with operations costs

Weights are placed one by one in the single string, all of them are represented by one positive

double number:

DP = …, SP = …, J = …, C = …, aD = …, bD = ….

Example of the file – string with operations weights:

DP = 1.2, SP = 1.1, J = 1, C = 0.9, aD = 0.8, bD = 1.5

hrom_reconstruction parameters

hrom_reconstruction does not require commandline parameters or additional files.

Output data

In task 1 two files are being created: joint_graph – the description of the joint graph and

shortest_sequence – the description of the shortest sequence of transformations. The first file has:

heading joint_graph, heading cycles (…), which includes the number of cycles in the joint graph,

then they are listed; heading paths (…) indicates the number of paths, then they are listed. Each

cycle is represented as the sequence of its nodes: common node is represented as a gene name,

followed by the number 1 if it is the start of gene, and 2 if it is the end. Special node consists of

the names of special genes from the block, it is followed by the name of structure, to which this

19

edge belongs. The edge between common nodes is represented as «_», after it the name of

structure, to which this edge belongs, is printed. The edge to the special node is represented by

the same symbol, the name of the structure is not printed. At the end of file the number of special

a- and b- nodes in the joint graph is printed. It is represented as “spnodes”. If the gene partition is

not well-defined, it is enclosed in the brackets.

Example of the first file for the joint graph from Fig. 2:

Joint_graph cycles (0): paths (7):1.1; 2.2; 3.1; 4.2; 9a; 1.2_5a_ 2.1_7b;

3.2_6a_4.1_8b a-spnodes: 3, b-spnodes: 2

The second file contains the shortest sequence of operations, transforming the joint graph to its

final form. Its first line contains: the number of operations in the sequence; its total weight. Then

operations are listed. Each operation contains: component, to which one or several operations are

being applied, short names of operations; result.

Example of the second file for the joint graph from Fig. 2:

5; 5.4;

[1.2_5a_2.1_7b (L); 3.2_6a_4.1_8b (L)] C [1.2_5a_2.1_78b_4.1_6a_3.2 (L)]

Here special nodes 7b and 8b from two paths are being united into special node 78b at one path.

Labels (L) and (C) mean «path» and «cycle». The result can be seen on the figure below.

[1.2_5a_2.1_78b_4.1_6a_3.2 (L); 9a (L)] SP [3.2; 1.2_5a_2.1_78b_4.1_6a (L)]

Cut of the node 3.2 and union of special nodes 6a and 9a into one node 69a. The result

is on the figure below.

20

[1.2_5a_2.1_78b_4.1_6a (L)] SP [2.1_78b_4.1_569a_2.1 (C); 1.2]

Cut of the node 1.2 and union of the special nodes 5a and 69a into one node 569a. See the result

below.

[2.1_78b_4.1_569a_2.1 (C)] aD, bD [2.1_a4.1_b2.1 (C)]

Deletion of the special nodes 569a и 78b. See the result below.

Now graph is reduced to the final form, algorithm is over.

Examples of task 1 solutions

The archive chromo.zip contains several examples of task 1 solutions. Example – the pair of

structures from Fig.1, and the pair of structures from chromosome Salmonella enterica to

chromosome Escherichia coli.

Input data can be found in artificial and Salmonella_Escherichia, the joint graphs can be found

in artificial and Salmonella_Escherichia, the shortest sequences are described in artificial and

Salmonella_Escherichia. To run the utility on these examples it is necessary to run the following

scripts from the archive: run_example_1.bat и run_example_2.bat.

http://lab6.iitp.ru/dl/rag/chromo_examples/examples/0/1_en.html
http://lab6.iitp.ru/dl/rag/chromo_examples/examples/0/1_en.html
http://lab6.iitp.ru/dl/rag/chromo_examples/1/artificial.txt
http://lab6.iitp.ru/dl/rag/chromo_examples/1/artificial.txt
http://lab6.iitp.ru/dl/rag/chromo_examples/1/artificial.txt
http://lab6.iitp.ru/dl/rag/chromo_examples/1/artificial.txt
http://lab6.iitp.ru/dl/rag/chromo_examples/1/Salmonella_Escherichia.txt
http://lab6.iitp.ru/dl/rag/chromo_examples/1/Salmonella_Escherichia.txt
http://lab6.iitp.ru/dl/rag/chromo_examples/examples/salmonella_escherichia/1_ru.html
http://lab6.iitp.ru/dl/rag/chromo_examples/examples/salmonella_escherichia/1_ru.html
http://lab6.iitp.ru/dl/rag/chromo_examples/examples/salmonella_escherichia/1_ru.html
http://lab6.iitp.ru/dl/rag/chromo_examples/examples/salmonella_escherichia/1_ru.html
http://lab6.iitp.ru/dl/rag/chromo_examples/1/Salmonella_Escherichia.txt
http://lab6.iitp.ru/dl/rag/chromo_examples/1/Salmonella_Escherichia.txt
http://lab6.iitp.ru/dl/rag/chromo_examples/examples/0/2_ru.html
http://lab6.iitp.ru/dl/rag/chromo_examples/2/artificial.txt
http://lab6.iitp.ru/dl/rag/chromo_examples/2/artificial.txt
http://lab6.iitp.ru/dl/rag/chromo_examples/2/artificial.txt
http://lab6.iitp.ru/dl/rag/chromo_examples/2/artificial.txt
http://lab6.iitp.ru/dl/rag/chromo_examples/2/Salmonella_Escherichia.txt
http://lab6.iitp.ru/dl/rag/chromo_examples/2/Salmonella_Escherichia.txt
http://lab6.iitp.ru/dl/rag/chromo_examples/examples/salmonella_escherichia/2_ru.html
http://lab6.iitp.ru/dl/rag/chromo_examples/examples/salmonella_escherichia/2_ru.html
http://lab6.iitp.ru/dl/rag/chromo_examples/examples/salmonella_escherichia/2_ru.html
http://lab6.iitp.ru/dl/rag/chromo_examples/examples/salmonella_escherichia/2_ru.html
http://lab6.iitp.ru/dl/rag/chromo_examples/2/Salmonella_Escherichia.txt
http://lab6.iitp.ru/dl/rag/chromo_examples/2/Salmonella_Escherichia.txt
http://lab6.iitp.ru/dl/rag/chromo_examples/examples/0/3_en.html
http://lab6.iitp.ru/dl/rag/chromo_examples/examples/0/3_en.html
http://lab6.iitp.ru/dl/rag/chromo_examples/3/artificial.txt
http://lab6.iitp.ru/dl/rag/chromo_examples/3/artificial.txt
http://lab6.iitp.ru/dl/rag/chromo_examples/3/artificial.txt
http://lab6.iitp.ru/dl/rag/chromo_examples/examples/salmonella_escherichia/3_ru.html
http://lab6.iitp.ru/dl/rag/chromo_examples/examples/salmonella_escherichia/3_ru.html
http://lab6.iitp.ru/dl/rag/chromo_examples/examples/salmonella_escherichia/3_en.html
http://lab6.iitp.ru/dl/rag/chromo_examples/examples/salmonella_escherichia/3_en.html
http://lab6.iitp.ru/dl/rag/chromo_examples/3/Salmonella_Escherichia.txt
http://lab6.iitp.ru/dl/rag/chromo_examples/3/Salmonella_Escherichia.txt
http://lab6.iitp.ru/dl/rag/chromo_examples/3/Salmonella_Escherichia.txt

21

Also the program was tested using the following 8 sets of artificial data: artificial1, artificial2,

artificial3, artificial4, artificial5, artificial6, artificial7, artificial8. The joint graphs are

described in artificial1, artificial2, artificial3, artificial4, artificial5, artificial6, artificial7,

artificial8. The shortest sequences for three variants of weights are described in artificial1,

artificial2, artificial3, artificial4, artificial5, artificial6, artificial7, artificial8. The variants are

separated from each other by empty line.

The task 2 solution contains two files: distance – matrix of pairwise distances between

chromosome structures; tree – the evolutionary tree of chromosome structures, that

matches best to the matrix.

Exampels of task 2 solutions

The first example of the set of chromosome structures contains 66 plastids from rhodophytic

branch. All chromosomes are circular.

The second example of the set of chromosome structures contains 18 mitochondrion of class

Aconoidasida. There are both circular and linear chromosomes in this set.

Input chromosome structures can be found in rhodophytic_branch and mitochondria, matrixes of

pairwise distances are in rhodophytic_branch and mitochondria, the evolutionary trees are

described in rhodophytic_branch and mitochondria. The archive also contains all this data,

suitable for Microsoft Excel.

To run utility on these examples it is necessary to run the following scripts from the archive:

run_example_3.bat and run_example_4.bat.

hrom reconstruction output

The inner vertexes of the tree in output are enumerated in order they are being visited by DFS

algorithm, which starts from the root of the tree and visits the leaves in accordance with their

numbers. The resulting structure is being printed for every inner vertex.

Example of output:

File output:

#leaves 6, #species 6, #genes 9

assignment cost 9

assignment itself:

node 1 with the composition of 9 genes:

+g1+g2+g3+g4+g5+g6 (C)

+g9–g8+g7 (C)

http://lab6.iitp.ru/dl/rag/chromo_examples/1/artificial_1.txt
http://lab6.iitp.ru/dl/rag/chromo_examples/1/artificial_1.txt
http://lab6.iitp.ru/dl/rag/chromo_examples/examples/1/1_ru.html
http://lab6.iitp.ru/dl/rag/chromo_examples/examples/1/1_ru.html
http://lab6.iitp.ru/dl/rag/chromo_examples/examples/2/1_en.html
http://lab6.iitp.ru/dl/rag/chromo_examples/examples/3/1_ru.html
http://lab6.iitp.ru/dl/rag/chromo_examples/examples/3/1_ru.html
http://lab6.iitp.ru/dl/rag/chromo_examples/examples/3/1_en.html
http://lab6.iitp.ru/dl/rag/chromo_examples/examples/3/1_ru.html
http://lab6.iitp.ru/dl/rag/chromo_examples/examples/3/1_ru.html
http://lab6.iitp.ru/dl/rag/chromo_examples/examples/4/1_en.html
http://lab6.iitp.ru/dl/rag/chromo_examples/examples/5/1_ru.html
http://lab6.iitp.ru/dl/rag/chromo_examples/examples/5/1_ru.html
http://lab6.iitp.ru/dl/rag/chromo_examples/examples/5/1_en.html
http://lab6.iitp.ru/dl/rag/chromo_examples/examples/5/1_ru.html
http://lab6.iitp.ru/dl/rag/chromo_examples/examples/5/1_ru.html
http://lab6.iitp.ru/dl/rag/chromo_examples/examples/6/1_en.html
http://lab6.iitp.ru/dl/rag/chromo_examples/examples/7/1_ru.html
http://lab6.iitp.ru/dl/rag/chromo_examples/examples/7/1_ru.html
http://lab6.iitp.ru/dl/rag/chromo_examples/examples/7/1_en.html
http://lab6.iitp.ru/dl/rag/chromo_examples/examples/7/1_ru.html
http://lab6.iitp.ru/dl/rag/chromo_examples/examples/7/1_ru.html
http://lab6.iitp.ru/dl/rag/chromo_examples/examples/8/1_en.html
http://lab6.iitp.ru/dl/rag/chromo_examples/examples/8/1_en.html
http://lab6.iitp.ru/dl/rag/chromo_examples/1/artificial_8.txt
http://lab6.iitp.ru/dl/rag/chromo_examples/2/artificial_1.txt
http://lab6.iitp.ru/dl/rag/chromo_examples/2/artificial_1.txt
http://lab6.iitp.ru/dl/rag/chromo_examples/examples/2/2_ru.html
http://lab6.iitp.ru/dl/rag/chromo_examples/examples/2/2_ru.html
http://lab6.iitp.ru/dl/rag/chromo_examples/examples/3/2_ru.html
http://lab6.iitp.ru/dl/rag/chromo_examples/examples/3/2_ru.html
http://lab6.iitp.ru/dl/rag/chromo_examples/examples/4/2_ru.html
http://lab6.iitp.ru/dl/rag/chromo_examples/examples/4/2_ru.html
http://lab6.iitp.ru/dl/rag/chromo_examples/examples/5/2_ru.html
http://lab6.iitp.ru/dl/rag/chromo_examples/examples/5/2_ru.html
http://lab6.iitp.ru/dl/rag/chromo_examples/examples/6/2_ru.html
http://lab6.iitp.ru/dl/rag/chromo_examples/examples/6/2_ru.html
http://lab6.iitp.ru/dl/rag/chromo_examples/examples/7/2_ru.html
http://lab6.iitp.ru/dl/rag/chromo_examples/examples/7/2_ru.html
http://lab6.iitp.ru/dl/rag/chromo_examples/examples/7/2_ru.html
http://lab6.iitp.ru/dl/rag/chromo_examples/examples/8/2_en.html
http://lab6.iitp.ru/dl/rag/chromo_examples/examples/8/2_en.html
http://lab6.iitp.ru/dl/rag/chromo_examples/examples/1/3_en.html
http://lab6.iitp.ru/dl/rag/chromo_examples/examples/2/3_ru.html
http://lab6.iitp.ru/dl/rag/chromo_examples/examples/2/3_ru.html
http://lab6.iitp.ru/dl/rag/chromo_examples/examples/2/3_en.html
http://lab6.iitp.ru/dl/rag/chromo_examples/examples/3/3_ru.html
http://lab6.iitp.ru/dl/rag/chromo_examples/examples/3/3_ru.html
http://lab6.iitp.ru/dl/rag/chromo_examples/examples/4/3_ru.html
http://lab6.iitp.ru/dl/rag/chromo_examples/examples/4/3_ru.html
http://lab6.iitp.ru/dl/rag/chromo_examples/examples/5/3_ru.html
http://lab6.iitp.ru/dl/rag/chromo_examples/examples/5/3_ru.html
http://lab6.iitp.ru/dl/rag/chromo_examples/examples/6/3_ru.html
http://lab6.iitp.ru/dl/rag/chromo_examples/examples/6/3_ru.html
http://lab6.iitp.ru/dl/rag/chromo_examples/examples/7/3_ru.html
http://lab6.iitp.ru/dl/rag/chromo_examples/examples/7/3_ru.html
http://lab6.iitp.ru/dl/rag/chromo_examples/examples/8/3_en.html
http://lab6.iitp.ru/dl/rag/chromo_examples/examples/8/3_en.html
http://lab6.iitp.ru/dl/rag/chromo_examples/examples/rhodophytic_branch/1_en.html
http://lab6.iitp.ru/dl/rag/chromo_examples/examples/rhodophytic_branch/1_en.html
http://lab6.iitp.ru/dl/rag/chromo_examples/examples/rhodophytic_branch/1_en.html
http://lab6.iitp.ru/dl/rag/chromo_examples/1/mitochondria.txt
http://lab6.iitp.ru/dl/rag/chromo_examples/1/mitochondria.txt
http://lab6.iitp.ru/dl/rag/chromo_examples/examples/mitochondria/1_en.html
http://lab6.iitp.ru/dl/rag/chromo_examples/examples/mitochondria/1_en.html
http://lab6.iitp.ru/dl/rag/chromo_examples/1/mitochondria.txt
http://lab6.iitp.ru/dl/rag/chromo_examples/1/mitochondria.txt
http://lab6.iitp.ru/dl/rag/chromo_examples/2/rhodophytic_branch.html
http://lab6.iitp.ru/dl/rag/chromo_examples/2/rhodophytic_branch.html
http://lab6.iitp.ru/dl/rag/chromo_examples/examples/rhodophytic_branch/2_ru.html
http://lab6.iitp.ru/dl/rag/chromo_examples/examples/rhodophytic_branch/2_ru.html
http://lab6.iitp.ru/dl/rag/chromo_examples/2/rhodophytic_branch.html
http://lab6.iitp.ru/dl/rag/chromo_examples/2/rhodophytic_branch.html
http://lab6.iitp.ru/dl/rag/chromo_examples/2/mitochondria.html
http://lab6.iitp.ru/dl/rag/chromo_examples/2/mitochondria.html
http://lab6.iitp.ru/dl/rag/chromo_examples/examples/mitochondria/2_en.html
http://lab6.iitp.ru/dl/rag/chromo_examples/examples/mitochondria/2_en.html
http://lab6.iitp.ru/dl/rag/chromo_examples/2/mitochondria.html
http://lab6.iitp.ru/dl/rag/chromo_examples/2/mitochondria.html
http://lab6.iitp.ru/dl/rag/chromo_examples/2/mitochondria.html
http://lab6.iitp.ru/dl/rag/chromo_examples/examples/rhodophytic_branch/3_en.html
http://lab6.iitp.ru/dl/rag/chromo_examples/examples/rhodophytic_branch/3_en.html
http://lab6.iitp.ru/dl/rag/chromo_examples/examples/rhodophytic_branch/3_en.html
http://lab6.iitp.ru/dl/rag/chromo_examples/examples/rhodophytic_branch/3_en.html
http://lab6.iitp.ru/dl/rag/chromo_examples/3/rhodophytic_branch.html
http://lab6.iitp.ru/dl/rag/chromo_examples/3/rhodophytic_branch.html
http://lab6.iitp.ru/dl/rag/chromo_examples/3/mitochondria.html
http://lab6.iitp.ru/dl/rag/chromo_examples/3/mitochondria.html
http://lab6.iitp.ru/dl/rag/chromo_examples/examples/mitochondria/3_ru.html
http://lab6.iitp.ru/dl/rag/chromo_examples/examples/mitochondria/3_ru.html
http://lab6.iitp.ru/dl/rag/chromo_examples/3/mitochondria.html
http://lab6.iitp.ru/dl/rag/chromo_examples/3/mitochondria.html
http://lab6.iitp.ru/dl/rag/hrom_reconstruction_examples/1/output_en.html

22

node 2 with the composition of 9 genes:

+g1+g2+g3+g4+g5+g6 (C)

+g9–g8 (C)

+g7 (C)

node 3 with the composition of 9 genes:

+g1+g2+g3+g4+g5+g6 (C)

+g9+g7 (C)

+g8 (C)

node 4 with the composition of 9 genes:

+g1+g2+g3+g4+g5+g6 (C)

+g9 (C)

+g8–g7 (C)

Here the root is vertex 1, vertex 2 is ancestral for the leaves 1 and 2, vertex 2 is ancestral for the

leaves 3 and 4, 4 is ancestral for the leaves 5 and 6.

Biological examples for task 3

The archive hrom_reconstruction.zip contains two biological examples. First example contains

tree tree, structures description chromosomes and optimal arrangement arrangement. The second

example contains tree tree, structures description chromosomes chromosomes and optimal

arrangement arrangement.

Recommended standart programs

To work with output data it is recommended to used the following standart programs: Microsoft

Excel to work with matrixes. They are printed using tab separated values format (tsv). The dot is

used as the separator in numbers. It is necessary to set the correct separator for numbers, it can be

done through the menu: File>Options>Additional>Use system separators.

TreeViewX to visualize trees in the Newick format.

Any text editor to work with the joint graphs and the shortest secuences.

Reference

[1] K.Yu. Gorbunov, R.A. Gershgorin, V.A. Lyubetsky. Rearrangement and Inference of

Chromosome Structures. Molecular Biology, 2015, Vol. 49, No. 3, pp. 327–338

http://lab6.iitp.ru/dl/rag/hrom_reconstruction_examples/2/input1_biol_tre_en.html
http://lab6.iitp.ru/dl/rag/hrom_reconstruction_examples/2/input1_biol_chrom_en.html
http://lab6.iitp.ru/dl/rag/hrom_reconstruction_examples/2/input1_biol_chrom_en.html
http://lab6.iitp.ru/dl/rag/hrom_reconstruction_examples/2/output1_biol_en.html
http://lab6.iitp.ru/dl/rag/hrom_reconstruction_examples/3/input2_biol_tre_en.html
http://lab6.iitp.ru/dl/rag/hrom_reconstruction_examples/3/input2_biol_chrom_en.html
http://lab6.iitp.ru/dl/rag/hrom_reconstruction_examples/3/output2_biol_en.html
https://code.google.com/p/treeviewx/
https://code.google.com/p/treeviewx/
https://code.google.com/p/treeviewx/
https://code.google.com/p/treeviewx/
https://code.google.com/p/treeviewx/

