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It is important for the military to know as much as possible about how easily detected their vehicles are.
One way among many used to detect vehicles is the use of radar sensors. The radar reflecting
characteristics of military vehicles are therefor often rigorously tested. With measurements and
simulations it is possible to calculate likely  detection distances to a vehicle from different angles. This
process often produces very large data sets that are hard to analyze.

This thesis discusses and implements a method for  visualizing the detection distance data set and also
discusses a lot of related issues with a focus on computer graphics.

The main concept is called spherical displacement and the idea is to visualize the detection distances as
a surface with the imagined vehicle in the center point. Detection is likely inside the surface but not on
the outside. This concept is the next step from the colored sphere where the colors represent the
detection distance which was previously used.

The thesis project resulted in a visualization tool that uses the new concept and can handle large data
sets. The spherical displacement concept is more intuitive and shows detail better than the colored
sphere visualization.
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Abstract
It is important for the military to know as much as possible about how easily detected their vehicles 
are. One way among many used to detect vehicles is the use of radar sensors. The radar reflecting 
characteristics of military vehicles are therefor often rigorously tested. With measurements and 
simulations it is possible to calculate likely detection distances to a vehicle from different angles. 
This process often produces very large data sets that are hard to analyze. 

This thesis discusses and implements a method for visualizing the detection distance data set and 
also discusses a lot of related issues with a focus on computer graphics. 

The main concept is called spherical displacement and the idea is to visualize the detection 
distances as a surface with the imagined vehicle in the center point. Detection is likely inside the 
surface but not on the outside. This concept is the next step from the colored sphere where the 
colors represent the detection distance which was previously used. 

The thesis project resulted in a visualization tool that uses the new concept and can handle large 
data sets. The spherical displacement concept is more intuitive and shows detail better than the 
colored sphere visualization. 
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1 Introduction
This chapter discusses the background and purpose of the thesis project and also contains the 
requirements and considerations implied by SAAB Communication. 

1.1 Background
Information has always been a central part of warfare and this is even more so today. The key 
problem for military forces is to gather as much information as possible while keeping the enemy 
guessing. One of the most important means of gathering information today is through the use of 
radar, therefore the research in this area is intense. Since the 1950s researchers have been working 
on the problem of hiding vehicles from detection using so called stealth technology. The most 
commonly known stealth vehicles are probably the American B-2 bomber and F-117A fighter 
aircrafts. 

To make it easier to create and improve on stealth vehicles the radar reflections can be measured 
and analyzed to find weaknesses in the design. One approach is to use Inverse Synthetic Aperture 
Radar (ISAR) to create a set of color coded images that show the magnitude of the reflections for 
several different angles. These images can be projected onto a model of the vehicle itself to 
illuminate the parts that cause the most reflections. 

The ISAR data also contains the information to make it possible to calculate the likely detection 
distances for a vehicle from all possible angles or at least an approximation of them.  

1.2 Purpose
Military platforms usually have specifications involving radar cross section (RCS). The RCS is a 
measurement of the amount of the radar signal that is reflected back to the radar from the target. 
The specifications are often broken up into different angular sectors for the platform. These sectors 
correspond to different types of radar threats. For each sector a maximum RCS  value is typically 
specified. These values will vary greatly across a threat sector and it is often very hard to meet the 
specifications for all sectors. It is also hard to show what difference a change in the design will 
provide.

This project aims to create a tool able to visualize the overall radar reflectance properties of a 
platform as well as compare different measurements or simulations. The tool should be highly 
interactive and able to highlight the different threat sectors to help showing that requirements have 
been met. Such a tool may also be useful to educate military personnel about the radar signature of 
their vehicle. 

1.3 Further requirements and considerations
The project was carried out at SAAB Communication who had already done some work in the area. 
A tool called BaseTool that could calculate detection distances and show them as colored spheres 
had already been developed but SAAB felt more work could be done. The idea of using spherical 
displacement was presented to them and they decided that it was worth exploring. They also wanted 
to see if it was possible to optimize the preprocessor module that produced the detection distances. 
Other things on the wish list was the ability to produce high quality visualizations for marketing 
purposes and a way of visualizing RCS specifications. 

There were also prerequisites on how the application should be designed and what tools to use. The 
previous version had been created using open source tools and one requirement was that the new 
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version continued to use only such tools. The existing version of the application used the script 
language python. To make it easy to maintain and update the application SAAB wanted the new 
version to use python as well since the language was known by key individuals within the project. 

One of the tools used in the first version was the Visualization Toolkit (VTK), an open source 
library for scientific visualization that could be controlled from python. The company wanted to 
continue to use VTK if it was possible. 

8/56



2 Theory
This chapter contains the background theory needed to understand the rest of the report. It is  
divided in three parts, radar, computer graphics and interpolation.

2.1 Radar
The acronym radar stands for “radio detection and ranging”. Radar was initially developed to 
replace visual target detection for several reasons. Radio waves suffer much less attenuation 
through the atmosphere than light waves, and signals in the lower frequency ranges actually 
propagate over the visible horizon. This makes it possible to detect targets long before they are 
visible optically. Radars also work well at night when there is little or no ambient light to illuminate 
the target. [Knott et al, 1993]

The basic principle of a radar is to emit electromagnetic energy and listen to the echo to determine 
something about the surrounding environment. Since the speed of electromagnetic waves is known 
it is easy to find the distance to the target by clocking the time between transmission and reception. 
To find the location of the target the azimuth and elevation angles must also be determined. This 
can usually be done by measuring the direction of the antenna since most radar antennas are a lot 
more sensitive in one direction. [Knott et al, 1993]

It is also possible to determine the velocity of the target because of the Doppler effect.

2.1.1 Radar Cross Section

Radar Cross Section (RCS) is a measurement of the amount of energy reflected by the object back 
towards the radar antenna. It is defined as the effective area of reflection and is uniform in all 
incident angles only for a perfect sphere but for all practical objects it varies with the azimuth and 
elevation angles to the radar and therefore shows how detectable the object is to radar from different 
points of view. The RCS also varies with the frequency of the incoming radar signal. 

RCS can be used to calculate detection distances for different radar threats. The detection distances 
are much more intuitive than SAR images and can thus, if visualized in a good way, be used as 
information to fighter pilots and other military personnel without a need to understand the 
underlying physics. 

2.1.2 Inverse Synthetic Aperture Radar

Synthetic Aperture Radar (SAR) and Inverse Synthetic Aperture Radar (ISAR) are two commonly 
used radar modes that can be used for mapping. Any time two objects have relative rotation to one 
another, a SAR map can be formed in the plane of rotation. [Lynch, 2004] 

In ISAR the object that is mapped is rotated and the radar is stationary rather than the other way 
around. This is a method used under controlled forms for measurements of radar reflection 
properties of aircraft and other vehicles. 

2.1.3 Stealth

A stealth vehicle is often thought upon as a vehicle that is nearly invisible to radar, but making a 
vehicle invisible to radar is called radar signature control and is just a part of the much larger 
concept of stealth. 

Stealth is not a single concept but an assemblage of techniques, which makes a system harder to 

9/56



find and attack. Included in this concept is controlling emissions like heat, sound, exhaust fumes, 
communications, radar, et cetera and also everything that requires external illumination of some 
kind, like magnetic and gravitational anomalies, reflection of sunlight, sound, radar and laser 
illumination and also reflection of the ever present ambient radar waves from unrelated sources 
(often called splash track).  [Lynch, 2004]

2.1.3 Detection distances

To calculate the detection distances for a platform more information than the RCS is needed. As the 
RCS is a measurement of the reflected energy it is possible to calculate how much energy will be 
reflected to the radar sensor if the amount of energy that is sent out is known. The next 
consideration that has to be made is how much reflected energy is needed for the radar sensor to be 
likely to detect the object. The frequency of the radar sensor is also needed since the RCS varies 
with the frequency of the incoming signal. If the RCS of the object, the output power and frequency 
of the radar sensor and the reflected energy needed to detect the object are all known it is possible 
to calculate the likely maximum detection distances. 

The magnitude of the response for different angles is proportional to the power of the incoming 
radar signal but as the RCS varies with the frequency it should be noted that the detection distances 
are very much dependent on the radar sensor and calculations need to be made for different kinds of 
sensors to get a good picture of the radar reflectance properties of the platform.

2.2 Computer graphics
“The purpose of a graphics pipeline is to take a description of a scene in three-dimensional space 
and map it into a two-dimensional projection on the view surface – the monitor screen.” [Watt, 
2000] Figure 1 shows the different spaces that the vertices are transformed between to achieve the 
rendering and the different operations that are carried out in those spaces.

2.2.1 Local coordinate space

The vertices of a polygon mesh objects are usually stored in their own coordinate system. This 
makes it possible to, for example, set the origin in the middle of the object and align the axles with 
the object. It also helps when creating local animations such as the walk of a 3D model of a human. 

The face and vertex normals are usually also stored in the local coordinate system. [Watt, 2000]
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2.2.2 World coordinate space

This is a global coordinate space into which all objects are transformed so that their spatial 
relationship can be defined. The light sources of the scene are also specified in the world coordinate 
space. Animations of things moving in relative of each other are also done in world coordinate 
space.

2.2.3 View space

To be able to render the scene some viewing parameters has to be set. The minimum definitions 
needed are a view point, a view direction, a view coordinate system, a view plane and a view 
volume. The view point is also called the camera point or eye point and describes the viewer's 
position in the world space and is usually defined together with a view direction. The view plane is 
setup normal to the viewing direction and can be seen as the screen onto which the scene later will 
be projected. The view coordinate system is defined by the viewing direction and the view plane.

Figure 2 shows the different viewing parameters. The first image shows a view point C with a 
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view direction. The next image shows a view plane that is normal to the view direction. The second 
image from the bottom shows the view coordinate system that is defined by the view direction and 
view plane and finally the bottom image shows the view volume as the shaded area created by the 
frustum of the view point, the view plane and usually also a far clipping plane. [Watt, 2000]

Another operation that is carried out in view space is culling or back-face elimination. It compares 
the orientation of polygons with the view point and removes those polygons that cannot be seen. 
This is a very simple test which will remove on average half the polygons in the scene.

2.2.4 3D screen space

There are two common projections used to go from 3D to 2D: Parallel projection and perspective 
projection. Parallel projection is used when the relative size of objects needs to be preserved. 
Perspective projection is much more common since it provides a feeling of depth in the scene. In 
perspective projection objects that are far away appear smaller than objects that are close. Figure 3 
shows the difference between perspective and parallel projection. 

While it would be possible to go directly from view space to display space there are a few 
operations that benefit from an intermediate state. This is the 3D screen space. When going from 
view space to 3D screen space points are transformed so that a parallel projection would give a 
perspective projected scene. Figure 4 shows this transformation on a box.
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Clipping is the process of discarding all polygons outside the view volume as well as clipping the 
polygons that intersect the view volume. One of the neat things with 3D screen space is that the 
sides of the view volume becomes parallel, the view volume in fact becomes a box rather than a 
pyramid, and this box is also aligned with the coordinate system. Rather than comparing 
coordinates with plane equations you now simply have boundaries in x, y and z to compare against, 
which is much more efficient. [Watt, 2000] 

In the culling process we removed polygons that were located on the back side of objects but we 
still need to remove polygons that are obscured by other objects. This is called hidden surface 
removal. There are several different approaches to hidden surface removal but the most commonly 
used is the Z-buffer algorithm. The Z-buffer algorithm was invented by Edwin Catmull in 1974. 
[Catmull, 1974]. The Z-buffer algorithm works in 3D screen space for much the same reasons as 
clipping. In 3D screen space the camera can be said to be infinitely far away, making lines from the 
camera towards the scene parallel. This means that if a point (x,y) on a polygon has a higher z value 
than the same point on another polygon then the first point is hidden. The Z-buffer algorithm 
basically uses this fact by creating a buffer containing the smallest z value for each pixel. 

Figure 5 shows the difference between culling and hidden surface removal where step a is culling 
and b is hidden surface removal. 
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What now remains is the process of creating pixels out of the 3D dimensional content. This is done 
by rasterization and shading. The rasterization is the process that actually creates pixels from the 
edges and polygons and the shading process is what colors the pixels. A programmer often has little 
interest in controlling the rasterization process but shading is one of the most interesting aspects of 
3D computer graphics. 

2.2.5 Local reflection models

A local reflection model enables the calculation of the reflected light intensity from a point on the 
surface of an object. [Watt, 2000]  The most common model was developed in 1973 by Bui Tuong 
Phong and published in 1975 in Communications of the ACM. [Phong, 1975]

This model estimates the intensity of the light reflected from a point depending on the normal of the 
surface and the position of the light source and viewing directions. It is called a local reflection 
model since it only considers direct illumination. 

This model considers the reflected light to consist of three components.
I=I a I d I s

Where I is the reflected light, I a is an ambient light component, I d is the diffuse component 
and I s is an imperfect specular reflection component. 

The ambient component is added to compensate for the lack of indirect illumination in the model. A 
surface that does not have a clear view to a light source would be completely black without this 
component since the only light that normally would reach it is light that is reflected off other 
surfaces. This component is usually just a constant. 

The diffuse component is assumed to be perfect diffuse reflection which means that it reflects light 
equally in all directions. This component is modeled as follows:

I d=I icos 

Where I i is the intensity of the incident light and  is the angle between the surface normal and 
the incident light. In vector notation this becomes:

I d=I i L⋅N 

L is the light vector, a vector from the light source to the point of interest. N is the surface 
normal at the point of interest. 

Finally, the specular component is what is commonly known as a highlight, practically an image of 
the light source reflected in the surface. This reflection is only seen if the view point is near the 
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mirror direction of the light source. This specular component is modeled by:

Is= Ii∗cosn

Where  is the angle between the viewing direction and the mirror direction and n is an index 
that simulates the degree of imperfection of a surface. The surface becomes a perfect mirror as n  
reaches infinity. In vector notation this is:

I s=I i R⋅V n

R is the mirror direction and V is the viewing direction. Computing R is unnecessarily 
expensive. Instead a halfway vector H is usually calculated. H is the unit normal to a 
hypothetical surface that is oriented in a direction halfway between the light direction and the 
viewing vector such that:
H=LV / 2

 Using this halfway vector the specular intensity can be calculated as follows:

I s=I i N⋅H n

Using all this together gives an expression for the light reflected from a point. [Watt, 2000]

I=I a k a I ik d L⋅N k s  N⋅H n

Figure 6 shows the vectors and angles used in the local reflection model. 

2.2.6 Gouraud shading

In Gouraud shading [Gouraud, 1971] the light intensity is calculated in each vertex using the local 
reflection model method described in the previous section. These intensities are then interpolated 
across the polygon using bilinear interpolation. To achieve different values at each vertex special 
normals called vertex normals are used. See section 2.2.8 for details on vertex normals.

The big problem with this method is its inability to correctly handle highlights. Since the intensity 
values are only calculated in the vertices the algorithm will miss highlights that should have 
appeared somewhere on the polygon. [Watt, 2000]
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2.2.7 Phong shading

A polygon mesh is often an approximation of a smooth surface and as such the normal of the 
surface should vary across the polygons. Phong shading [Phong, 1975] is a way of dealing with this 
problem by interpolating vertex normals across a polygon rather than just interpolating the 
intensity. This solves the problems with the highlights and makes it possible to get a smooth look to 
objects that in reality are made up of polygons. Using Phong shading is considerably more 
expensive in terms of computations, but in modern hardware it is not very likely to become the 
bottleneck since most hardware is built to use this method. [Watt, 2000]

2.2.8 Generating vertex normals

Phong and Gouraud shading use vertex normals to estimate the curvature of the surface.  These 
normals are usually calculated as the average of the normals of all the faces that the vertex belongs 
to. 

N A= N 1  N 2  N 3  N 4

Simply averaging the normals of the adjacent faces sometimes create problems since all faces are 
weighted equally. This method was introduced in 1971 be Henri Gouraud. [Gouraud, 1971]  Better 
results can be achieved through different weighting schemes. One idea is to weight the face normals 
by the angle under which a face is incident to a  vertex. Figure 7 shows the concept, the normal a
is weighted by the angle  when added to the vertex normal for the center vertex. This algorithm 
was proposed by Thürmer and Wütrich in 1998. [Thürmer et al, 1998] Another idea first proposed 
by Max in 1999 [Max, 1999] is to weight each face normal with the area of the face. 

Both the weight by area and the weight by angle methods works well for smooth objects but when it 
comes to objects with edges there will be ugly artefacts. 

A problem when generating vertex normals is that not all objects in reality are smooth. In particular 
it is hard to preserve edges when using Phong or Gouraud shading. For an edge to look good it 
needs two normals, one for each side of the edge and the normal models does not take this into 
account. 

When modeling new meshes the designer is usually given the option of making an edge hard. In 
practice this means duplicating the vertices on the edge and using one vertex normal per vertex. 
This makes it possible for the surface to have two vertex normals at the same position which can 
account for the discontinuity of the edge.

If the vertex normals are generated we need a way of detecting edges and then splitting the vertices 
accordingly. One way of accomplishing this is the edge preserving method proposed by Nate 
Robins [Robins, 1997]. It compares the angles between adjacent faces and splits the shared vertices 
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if the angle is larger than some given crease angle. The vertices in these points will use the face 
normal instead giving a sharp edge. The method is not perfect. It will still miss some edges and split 
some vertices that are not on edges. But it gives a better result for objects with edges than a purely 
smoothing algorithm would.

2.2.9 Vertex Shaders

A vertex shader is a small compiled program that is executed once per vertex and frame. Such a 
program has to be loaded onto the graphics card itself and has a limited number of inputs and 
outputs. The vertex shader is a replacement for the transformation and lighting parts of a standard 
graphics pipeline and is thus executed in world coordinate space. The usual inputs to a vertex 
shader are position, the vertex normal, some often user specified uniform variables that are the same 
for all vertices and vertex attributes which are usually arrays of data with one value per vertex. 

A vertex shader is supposed to output the transformed homogeneous vertex position. It can also 
pass other variables to the fragment shader. All the output variables will be interpolated across the 
polygon which means that the fragment shader will be executed a lot more than the vertex shader.

Vertex shaders are often used to manipulate the mesh or the normals in some way, but also to do 
preparation calculations for the fragment shader.  

2.2.10 Fragment Shaders

Fragment shaders are executed in a later stage in the rendering pipeline. After passing the vertex 
shader vertices go through culling, clipping, hidden surface removal until they reach the fragment 
shader. 

It is the job of the fragment shader to calculate the color of a fragment. It gets input from uniform 
variables just like the vertex shader and it also gets varying attributes from the vertex shader. While 
the vertex shader is required to output a position the fragment shader is allowed to discard the 
fragment. If not it should output a color and an alpha value. Using the colors of the different 
fragment together with the alpha values and the z-buffer pixels are created by the fixed pipeline in 
the next step after the fragment shader is executed. 

2.3 Interpolation
When dealing with discrete data it is quite common to find that you need the value in between two 
samples. Interpolation is the art of estimating that value. This chapter lists and describes some of the 
most common interpolation techniques. They are described for one dimension but can easily be 
applied for two or more dimensions as well.

2.3.1 Nearest neighbor

This method is quite simple, as the name implies you just pick the nearest neighbor. If two samples 
are equally close either one will do. This method is very fast but not very accurate.

2.3.2 Linear interpolation

In linear interpolation the value to be estimated is a blend of the two closest points. Each of the 
points are weighed with how close they are to the new point. The concept can be understood by 
examining figure 8. Given the points x0, y0 and x1, y1 we need to find the value y for any 
given x . 
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The following equation describes the relationship.

y− y0
 y1− y0

=
x− x0
x1−x0

We introduce the parameter  to describe as the interpolation coefficient. It describes the 
proportion of the distance from x0 to x1 you have traversed when you encounter x .

=
x− x0
x1−x0

Since x is known we can calculate  and insert it into the first equation to get the expression of 
y shown in the equation below. [Wikipedia]

y=1− y0 y1

Linear interpolation is slower than nearest neighbor interpolation but still quite fast and sufficiently 
accurate for most implementations.

2.3.3 Cubic spline interpolation

Spline interpolation is a more complex interpolation method which uses piecewise polynomials also 
known as splines. There are a few different methods in this family of interpolation algorithms. In 
the case of cubic spline interpolation cubic polynomials are used. This method often produces very 
good results but is a lot more complex than linear interpolation.
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3 The Method
This chapter describes how the different problems of the project where attacked and solved and the 
tools that were used. 

3.1 Spherical Displacement
The detection distance data was previously presented as a colored sphere, or sectors of a sphere. 
The key idea of the project is very simple: Displace each value from a center point in the normal 
direction of the sphere with a distance proportional to that value instead of just showing it as a 
colored sphere. The intention of this was to make it easier to detect small variations in the data.

Since the values represent distances in some way, spherical displacement was also considered to be 
a more intuitive way of visualizing the data. Using spherical displacement will result in a 
visualization of the actual detection volume. To understand the concept, imagine a vehicle inside a 
transparent object. The distance from the vehicle to any point on the surface of the transparent 
object describes the detection distance for that angle. Figure 9 shows the concept in 2D. Each point

P is displaced a distance d in the normal direction of a sphere or a circle in the 2D case. The 
distance d is the detection distance and the angle  describes from what direction the vehicle 
has this detection distance. In this 2D example the vehicle is seen from above with its nose pointing 
upward. This is usually the case for the 3D visualizations as well but an elevation angle is also 
introduced to give a full sphere of angles. 

3.2 Scaling
Since the range of the data is so high it is often hard to see small variations. One way to counter this 
was the spherical displacement. A method to further increase the visibility of small variations was 

19/56
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the use of different scaling options. Before displacing the values they can be scaled, for instance, 
using logarithmic scaling. The use of a logarithmic scale presents a problem in the visualization. 
Values between zero and one suddenly becomes negative and while this would be possible to 
visualize if values are displaced from a flat surface it becomes completely confusing if values are 
displaced spherically from a point. The negative values then end up on the opposite side of the 
sphere. One solution to this is to add the inverse minimum value to all values. This pushes 
everything outwards and creates a shape that is less confusing. It may be misleading that the center 
point of the visualization is not zero but an arbitrary negative number. The method also falls apart if 
the RCS is exactly zero in some point since that would displace everything infinitely. 

Another solution is to take the fourth root of the value. This is, somewhat simplified, what the 
preprocessor module already does to convert RCS values to detection distances. The detection 
distances also depend on other variables than the RCS, such as the sensor and dampening, but is 
essentially proportional to the fourth root of the RCS. This means that “fourth root scaling” is rather 
useful for visualization purposes. This method doesn't have the problem with negative values and is 
more intuitive. 

3.3 Visualizing Specification Data
One of the key problems for the military industry is to show that they have met the specifications 
for the project. This is already hard enough since the measurements are very expensive and the 
values are often simulated. The specifications are usually in the form of different maximum values 
allowed for certain sectors. The idea here is to visualize these specifications much like a normal 
dataset, with spherical displacement. If the specification data is shown like this but with 
transparency and no color information it is possible to show a specification set and the 
corresponding detection distance or RCS data simultaneously. Where the detection distances show 
outside the specification set the detection distance doesn't meet the requirements. This would be 
very much easier, faster and more intuitive than searching the data sets for too high values by hand. 
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Figure 10 shows how it could look in 2D. The black shape is the detection distance set and the red 
set is the specifications. Wherever the black set is outside the red the requirements have not been 
met. 

Currently the specifications are usually rather simple. A sector is indicated with start and end angles 
in azimuth and elevation and then an RCS value is specified for that sector. Often different RCS 
values are specified for different frequency bands. In reality such specifications can usually not be 
met. When creating stealth vehicles the main tool is shaping the vehicle so that the radar reflection 
is concentrated in a few directions. While there are other methods of  reducing the radar signature of 
a vehicle, such as radar absorbing materials (RAMs) the major contribution comes from shaping. 
Therefore a good stealth vehicle will have heavy spikes in RCS in certain directions. The 
application is meant to help the creators of the vehicle to prove to the client that the spikes cover a 
small sector and located in directions where sensors are unlikely to be located. 

In order to do this it was decided to add modifications to the simple flat sectors mostly used. These 
modifications are meant to give greater weight to the center of the sectors and less to the corners.

The first idea was to create elliptical sectors. These would be useful when examining one sector at 
the time. Section 4.4.6 describe the implementation of the elliptical sectors. At a later stage in the 
project it was clear that this feature was unlikely to be used since it is just as easy to look at the 
whole data set at once rather than one sector at the time. 

To still be able to support weighting by distance to the center of the sector a few options were added 
when creating these sectors in the application. These options allow the user to let the RCS or 
detection distance value decrease with the distance from the center. 

The options that were implemented are shown below in table 1. 
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Sector Type Value
Flat min

Linear minmax−min ∣x∣∣y∣
2

Elliptical
minmax−min 

∣x p∣∣y p∣
2

Gaussian
minmax−mine

 1
2  x /0.4 p y/0.4  p

Table 1: Specification sector modifiers

Where min is the minimum value of the sector, usually the original value. The maximum value is 
max and describes the highest value that the sector will take. The sector will take maximum 

value in the corners and the minimum value in the center. The p value controls how fast the 
values decreases. A high p value makes most of the sector use the minimum value and only the 
corners use the maximum while a lower value lets the maximum value control more of the sector. A 
normal value of p would be 3 or 4 for the elliptically decreasing sectors. The Gaussian sector 
creates a normal distribution curve over the sector. It is not possible to assert that the Gaussian 
method creates a sector with the maximum values in the corners and the minimum value in the 
center. The Gaussian sector should also have the standard deviation as an extra control parameter 
but it has been set to 0.4 for simplicity. 

3.4 Generate high quality visualization
One of the key problems in the project was to generate good looking high quality visualizations of 
the data. Scientific visualizations often have a rather dull and functional look to them but since one 
of the intended uses for the application was producing images for marketing it was important to 
produce good looking results. To achieve this a decision was made to use smooth shading with the 
Phong model described in section 2.2.7. Using smooth shading also allowed for the use of good 
looking specular effects. For smooth shading to produce sufficiently good results high quality 
vertex normals had to be calculated. Since both CAD models and the generated meshes contain a lot 
of hard edges it was decided to use the smooth normal generation with edge preservation algorithm 
created by Nate Robins [Robins, 1997]. For an even better result this was coupled with the 
weighting by angle algorithm proposed by Thürmer and Wütrich in 1998. [Thürmer, 1998] These 
algorithms are described in section 2.2.8.

3.5 Tools, languages and maintainability  
As described in section 1.3 SAAB wanted the application to be easily maintained. To make it easier 
to change the user interface and add new features it should be separated from the core of the 
program. A script language controlling the application and the user interface would be helpful for 
future programmers and would also add some structure to the application. Creating a user interface 
in a script language is also helpful since it does not require the programmer to compile the program 
every time a new feature is tested.  The user interface and part of the rendering controls was 
programmed in the script language Python. It was chosen for several reasons. It is an open source 
project which is in line with the requirements of the project, it has a multitude of open source 
modules available and since it was used in the previous version of the application there were people 
able to give support on the language available at SAAB but the major reason was that SAAB 
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explicitly asked that the project continued to use python. 

Several of the python add-in modules were also used in the project. For instance wxPython, which 
is a wrapper for wxWidgets that provides access to the platform specific user interface widgets for 
Windows, Apple and Linux platforms. Another module that was used is PyOpenGL, which 
provides access to most of the OpenGL functionality within Python. PIL or Python Imaging Library 
was used for saving captured screen shots as image files. The Numeric module was used for its 
excellent mathematical operations on matrices, which was especially useful in the preprocessor 
module of the application. PyTables was used as an interface to the HDF5  hierarchical file format 
that was used in the input files as well as the intermediate files.

The base functionality and rendering facilities of the application created for this thesis was built in 
C++, using OpenGL as the interface to the graphics hardware. The Visualization Toolkit (VTK) 
was used in the early stages of the project but was eventually replaced by the C++/OpenGL module 
to add more control and better performance to the application. While VTK is a great tool for quickly 
creating scientific visualizations some of the specific features that was needed in this project were 
not available in VTK. 

The OpenGL Extension Wrangler Library (GLEW) was used in the C++ module to simplify access 
to a few of the newer OpenGL extensions. All of the tools and languages used are Open Source and 
more or less platform independent. Even though the application was designed with Windows in 
mind it could easily be ported to another platform.  
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4 Implementation
This chapter goes into detail on the application design and visualization solution that was the result  
of the project. It contains program code comments and a discussion about the rendering techniques 
that was chosen. 

4.1 Application Design
The basic idea of the application design was to do all the performance sensitive calculations and 
rendering in C++ and OpenGL and use a highly flexible script language and a good widgets library 
for the user interface and application control. This allowed for using advanced rendering techniques 
to speed up the application. Using a script language also makes it easier to change the application 
later without a need to understand C++ or OpenGL.

Figure 11 shows the data flow for the actual test data in the application. The ISAR data  is read 
from an input file and processed by the preprocessor module. This input data contains values per 
angle and frequency with the phase information intact meaning that each angle and frequency is 
represented by a complex number. Before detection distance values can be estimated the data radar 
cross section values must be calculated for all available angles. This is done by averaging the 
frequency data and calculating the magnitude of the complex numbers. After this processing we 
have one value per angle which is the RCS. 
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The data is read from the intermediate BaseTool file via pyTables to an array in python. Python 
then sends it into the data array manager class in the C++ module. The user can now choose what 
parts of the data to create a mesh from, the resolution of the mesh and what kind of mesh to create. 
The data array manager resamples the data into the new resolution and sends it to the sphere 
generator which creates the mesh. Using vertex buffer objects the sphere generator saves the mesh 
onto the graphics card via OpenGL and during rendering the data is read directly from the video 
memory.

Figure 12 shows the information flow in the rendering process. The rendering is controlled by the 
python module. Most of the instructions to OpenGL such as navigation are sent directly from the 
python module via pyOpenGL. The call to render the mesh itself is sent via the sphere generator 
class in the C++ module. The sphere generator asks OpenGL to read from the video memory where 
the data was previously stored. OpenGL then sends the data through the vertex and fragment 
shaders. Interactive parameters to the shaders are also sent via the sphere generator. These 
parameters control the transparency, color, specularity and scale of the mesh.

When designing the user interface the main objectives were to make it flexible and easy to use. 
These are often two conflicting interests since flexibility often also creates complexity. The script 
language python and widget library wxPython was used to make the creation of the user interface 
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easier and faster. 

Figure 13 shows how the different tools used in the user interface interact as well as how the 
OpenGL calls are handled. The normal interface widgets such as buttons, sliders, menus, windows, 
dialogs, et cetera are created through wxPython. The python module of the application contains 
wxPython instructions that describes how the application should look. These instructions are sent 
through wxPython, which is a thin wrapper around the much more complex wxWidgets C++ 
library. WxWidgets contains functionality to ask the OS for its specific widgets to use. This gives 
the application the look of a Windows XP application. 

To be able to show OpenGL content you need to create an OpenGL canvas to render on. In most 
labs and projects on university level this is done with the OpenGL Utility Toolkit (GLUT). While 
GLUT is simple to use it does not provide much control over the canvas it creates. The canvas is 
coupled with a window so to use this the user interface would either have to be in a separate 
window or programmed in OpenGL as well. None of these were an option in this project but there 
are other ways to create an OpenGL canvas. WxWidgets and also wxPython has limited support for 
this. Again what wxWidgets actually does is utilize the OS specific functions to create such a 
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canvas. In the case of Windows it provides a simplified interface to Windows OpenGL (WGL). 

A nice feature of OpenGL is that once a canvas has been created all OpenGL calls will be directed 
to that canvas, or if there are several canvases they will be directed to the currently active canvas. 
The application uses 2-3 canvases, all created by wxWidgets. The main render function is located in 
the python module and is executed whenever wxWidgets is idle, which means that the controls 
remain responsive. The render function uses a mix of pyOpenGL calls and calls to the C++ 
rendering module. PyOpenGL is a thin wrapper for OpenGL  much like wxPython is a wrapper for 
wxWidgets. Some of the graphic calls uses extensions to OpenGL. These are made available by the 
OpenGL Extension Wrangler Library (GLEW). For simplicity all OpenGL calls from the C++ 
module also go through GLEW. Before making a call to a function in the C++ module all that needs 
to be done is to set the correct canvas in python since the python module controls the canvases.

As shown in figure 13 most of the application is actually platform independent. To make it possible 
to run the application on another platform than Windows it would be necessary to change and 
recompile the C++ module and replace the current GLEW version with the correct version for the 
new platform. 
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4.2 Rendering Techniques
The data sets visualized by the BaseTool applications are quite large and complex. Because of this 
the objects that are rendered tend to be complex as well, often containing several million triangles. 
The graphic hardware of today can handle these triangles, but only if the right rendering techniques 
are used and the most common bottlenecks are avoided. To achieve the high performance that the 
application currently produces the rendering engine was reworked several times. 

The most significant increase in performance came from the use of vertex buffer objects (VBO). 
The vertex buffer objects used to be an extension of OpenGL but are part of the core language since 
version 2.0. They allow saving vertex and index arrays in video memory rather than system 
memory. Instead of copying the data from system memory to video memory every frame it can 
simply be read from the video memory directly. Since the graphics card reads data a lot faster from 
the video memory than  the system memory this is a very helpful tool, especially for large meshes.  

The drawback of using vertex buffer objects is that the data cannot easily be changed dynamically 
since it is locked in place in the video memory but that was not a problem in the case of BaseTool.

Vertex and fragment shaders were used to allow some dynamic control of the objects and to gain 
full control of the rendering pipeline. Through the shaders the user can control transparency, scale, 
color and specularity of the objects. 

Vertex normal calculation was implemented to allow specular shading. The algorithm that was used 
also allows for some degree of edge preservation and was based on work by Nate Robins [Robins, 
1997]. The reason for using such a complex method is that the generated meshes often contain a lot 
of edges. Other methods were tried but didn't produce acceptable results. Another reason was that 
the CAD models did not contain vertex normals. Usually hard edges are indicated by hand when 
converting from CAD format to a mesh but that wasn't an option in this project. The idea behind the 
algorithm is described more in detail in section 2.2.8

Multiple render windows with shared context was implemented to improve performance and save 
video memory. This means that rather than creating several copies of a mesh or other render data 
the information is shared between the different windows or canvases. Limited support for this was 
available in wxPython and was made to work with GLEW with a few modifications. 
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4.4 Program Comments

4.4.1 Optimizations

One of the problems with the existing software was that the module that calculated the detection 
distances was very slow. Even though there was a significant amount of calculations to be done the 
module was still unreasonably slow. One of the first things that was done in the project was to 
analyze this module to find weaknesses in the design. The main problem was found to be that the 
module was written almost entirely in core python. The module does computations on large 
matrices and a lot of loops like the following were found.
        if project.Background=='Free space':
            for ix in range(el):
                for jx in range(az):
                    Detdist[ix,jx]=50.0*0.76*sqrt(sqrt(RCS[ix,jx]))

Since python is not a compiled language it does not take advantage of the multitude of 
optimizations available in modern compilers. To speed these loops up numerical python's matrix 
operations were used reducing the code to the following statement. 
        if self.background=='Free space':
            Detdist=20.0*sqrt(sqrt(RCS))

This is in fact also a loop but it is executed in numerical python's precompiled C++ module, which 
does take advantage of loop optimizations as well as other compiler optimizations. Several similar 
loops were replaced. The old preprocessor module also carried out a lot of rather slow and heavy 
graphical computations such as sphere generation, Delaunay triangulation and normal generation. 
Some of these were done in python and were slow because of that, others like Delaunay 
triangulation was done in VTK C++ modules but are still heavy. Sphere mesh and normal 
generation were moved to the new C++ visualization and some other features were removed 
altogether since they were no longer needed with the new implementation.

4.4.2 Interpolation

The ability to interpolate freely across the data was important to allow the user to change the 
resolution in phi and theta. In this way it is possible to control the complexity of the calculations. 
The method used for the interpolation was simple bilinear interpolation. A function that returns an 
interpolated value for any given phi and theta was created. 
// Takes values in spherical coordinates and returns interpolated values
float CDataArray::GetInterpolatedValue(float theta, float phi)
{

// calculate decimal indices
float x = theta/m_pAllData->fThetaStep - m_pAllData->nThetaOffset;
float y = phi/m_pAllData->fPhiStep - m_pAllData->nPhiOffset;

// Calculate indices
int i = (int)x;
int j = (int)y;

// Get the offset
float dx = fabsf(x - i);
float dy = fabsf(y - j);
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// recalculate indices for angles outside the boundaries of the array
// really only works for phi
int phiRes=(int)m_pAllData->nPhiRes; // if not done % will break
if(j<0)

j = phiRes - abs(j%(phiRes-1));
else

j = j%(phiRes-1);

// clamp in case the interpolated value lies outside data boundaries
if(i>m_pAllData->nThetaRes-1)

return 0.0f;
if(j>m_pAllData->nPhiRes-1)

return 0.0f;
if(i==m_pAllData->nThetaRes-1)

return m_pAllData->ppData[i  ][j  ];
if(j==m_pAllData->nPhiRes-1)

return m_pAllData->ppData[i  ][j  ];

// Bilinear interpolation
return

m_pAllData->ppData[i  ][j  ]*(1-dx)*(1-dy) +
m_pAllData->ppData[i+1][j  ]*(  dx)*(1-dy) +
m_pAllData->ppData[i  ][j+1]*(1-dx)*(  dy) +
m_pAllData->ppData[i+1][j+1]*(  dx)*(  dy);

}

4.4.3 Sphere Generator

All the meshes created by the program use the sphere generator class. It creates a sphere with 
arbitrary resolution, displaces the vertices according to the input data and triangulates the mesh. The 
following function adds a new vertex with correct displacement depending on the scaling setting 
provided by the application.
// Adds a vertex to the vertex array, also adds a vertex normal since they are
// used to calculate the position of the vertex anyway. If displacement by
// scalar is used the normals will need to be recalculated since the topology 
// of the object will change.
void CSphere::AddVertex(float phi,float theta, Vec3f vOrigin, UINT nVertex)
{

float fCurrPhi = phi*M_PI/180;
float fCurrTheta = theta*M_PI/180;

Vec3f normal;

// Normals
// x is the horizontal on the screen (left to right)
// y is the vertical on the screen (bottom to top)
// z points out of the screen (negative values far away, positive close)
normal.x = sinf(fCurrPhi)*cosf(fCurrTheta);
normal.y = sinf(fCurrTheta);
normal.z = cosf(fCurrPhi)*cosf(fCurrTheta);
m_pMesh->m_vVertexNormals.push_back(normal);

Vec3f vert;
if(m_bDisplaceByScalars)
{

// Vertices
if(m_bLogScale)
{

float scale = m_pMesh->m_vVertexScalars[nVertex] = 
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logf(m_pMesh->m_vVertexScalars[nVertex])-logf(m_fRMin);

vert.x=vOrigin[0]+normal.x*scale;
vert.y=vOrigin[1]+normal.y*scale;
vert.z=vOrigin[2]+normal.z*scale;

}
else if(m_bFourthRootScale)
{

float scale = m_pMesh->m_vVertexScalars[nVertex] = 
powf(m_pMesh->m_vVertexScalars[nVertex],0.25f);

vert.x=vOrigin[0]+normal.x*scale;
vert.y=vOrigin[1]+normal.y*scale;
vert.z=vOrigin[2]+normal.z*scale;

}
else
{

vert.x=vOrigin[0]+normal.x*m_pMesh->m_vVertexScalars[nVertex];
vert.y=vOrigin[1]+normal.y*m_pMesh->m_vVertexScalars[nVertex];
vert.z=vOrigin[2]+normal.z*m_pMesh->m_vVertexScalars[nVertex];

}
}
else
{

vert.x=vOrigin[0]+normal.x;
vert.y=vOrigin[1]+normal.y;
vert.z=vOrigin[2]+normal.z;

}

m_pMesh->m_vVertices.push_back(vert);
}

Triangulating a sphere is very simple if you can afford not to have a closed surface. The vertex 
normal calculations in this application allows the surface to be open without any visible effects. 
Therefor the triangulation can be solved in a simple double loop. 

// Four corners of a quad
UINT p1,p2,p3,p4;

// Triangulation, counter clockwise ordering
for(i=0;i<m_nThetaRes-1;i++)
{

for(UINT j=0;j<m_nPhiRes-1;j++)
{

p1=i*m_nPhiRes+j; // Bottom left
p2=p1+1; // Bottom right
p3=p1+m_nPhiRes; // Top left
p4=p3+1; // Top right

m_pMesh->m_vIndices.push_back(p1);
m_pMesh->m_vIndices.push_back(p4);
m_pMesh->m_vIndices.push_back(p3);

m_pMesh->m_vIndices.push_back(p1);
m_pMesh->m_vIndices.push_back(p2);
m_pMesh->m_vIndices.push_back(p4);

}
}
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4.4.4 Vertex Normals with Edge Preservation

The use of edge preservation is motivated in section 4.2 and the idea behind it is described in 
section 2.5.8. in The following code shows (somewhat simplified) how vertices can be split using 
this algorithm. Before this code is executed face normals and angles are calculated. The vector 
vVertexInformation contains links to all faces that the vertex belongs to as well as the 
corresponding angle. The algorithm calculates the dot product between normals of the first two 
faces in the list. If the value is larger than the cosine of the crease angle it splits the vertex. 
Otherwise the normals are added and weighted by their corresponding angles. When an edge is 
found a new vertex is created for all the following vertices. This may split an unnecessarily large 
amount of vertices but simplifies the algorithm somewhat.

for(i=0; i<m_nVertices;i++)
{

if(!vVertexInformation[i].bIsUsed)
continue;

vector<UINT> faces   = vVertexInformation[i].vFaces;
vector<float> angles = vVertexInformation[i].vAngles;
Vec3f normal(0.0f,0.0f,0.0f);
normal[0]+=vFaceNormals[faces[0]][0];
normal[1]+=vFaceNormals[faces[0]][1];
normal[2]+=vFaceNormals[faces[0]][2];
bool bSplit = false;
for(UINT j=1;j<faces.size();j++)
{

UINT face = faces[j];
NormalizeVec3(normal);
float dot = Vec3fDot(vFaceNormals[face],normal);
if(!bSplit && dot < cosf(m_fCreaseAngle))

bSplit=true;
if(bSplit)
{

UINT v1 = m_vIndices[face*3];
UINT v2 = m_vIndices[face*3+1];
UINT v3 = m_vIndices[face*3+2];
UINT id=0;
UINT vert;
if(i==v1)
{

id=face*3;
vert=v1;

}
else if(i==v2)
{

id=face*3+1;
vert=v2;

}
else if(i==v3)
{

id=face*3+2;
vert=v3;

}
if(id!=0)
{

m_vIndices[id]=nVertices;
m_vVertexNormals.push_back(vFaceNormals[face]);
m_vVertices.push_back(m_vVertices[vert]);
nVertices++;

}

32/56



}
else
{

normal[0]+=vFaceNormals[face][0]*angles[j];
normal[1]+=vFaceNormals[face][1]*angles[j];
normal[2]+=vFaceNormals[face][2]*angles[j];

}
}
NormalizeVec3(normal);
m_vVertexNormals[i]=normal;

}

4.4.5 Specification Sectors

One new feature in the application was the ability to show specification sectors. The following code 
sample shows how the different types of sectors discussed in 3.2 was implemented. 

for(int i=iStart;i<=iEnd;i++)
{

for(int j=jStart;j<=jEnd;j++)
{

x = float((i-iStart)*2 - iRange)/float(iRange);
y = float((j-jStart)*2 - jRange)/float(jRange);
switch(mode){
case SECTOR_MODE_FLAT:

value = fMin;
break;

case SECTOR_MODE_LINEAR_THETA:
value = fMin+(fMax-fMin)*fabsf(x);
break;

case SECTOR_MODE_LINEAR_PHI:
value = fMin+(fMax-fMin)*fabsf(y);
break;

case SECTOR_MODE_LINEAR_BOTH:
value = fMin+(fMax-fMin)*((fabsf(x)+fabsf(y))/2.0f);
break;

case SECTOR_MODE_SPHERICAL_THETA:
value = fMin+(fMax-fMin)*fabsf(powf(x,xPow));
break;

case SECTOR_MODE_SPHERICAL_PHI:
value = fMin+(fMax-fMin)*fabsf(powf(y,yPow));
break;

case SECTOR_MODE_SPHERICAL_BOTH:
value = fMin+(fMax – fMin)*((fabsf(powf(x,xPow)) + 

  fabsf(powf(y,yPow)))/2.0f);
break;

case SECTOR_MODE_GAUSSIAN_PHI:
value = fMax – (fMax-fMin)* expf( 

         -0.5f*(fabsf(powf(y/yStd,yPow))));
break;

case SECTOR_MODE_GAUSSIAN_THETA:
value = fMax – (fMax-fMin)*expf(

                          -0.5f*(fabsf(powf(x/xStd,xPow))));
break;

case SECTOR_MODE_GAUSSIAN_BOTH:
value = fMax–(fMax-fMin)*expf(-.5f*(fabsf(powf(x/xStd,xPow)) + 

  fabsf(powf(y/yStd,yPow))));
break;

}
 }
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}

4.4.6 Elliptical Sectors

When analyzing a sector of the sphere data it can sometimes be interesting to disregard the corners 
of the sector. To help with this the application can create sectors of elliptical shape. These are 
created by sampling the data in a grid, ignoring points that lie outside the imagined ellipse, moving 
certain points to the edge of the ellipse and interpolating needs correct values for the new points. 
The following code sample finds the new position for points that are near the edge of the ellipse. It 
is based on the marching cubes algorithm [Lorensen and Cline, 1987] but is ported to the 2D case 
(marching squares) and somewhat simplified since ellipses are convex objects. 

// Grid sampling of an ellipse. Moves points that are outside the edge but 
// close to it to the perimiter itself. Does nothing with values that are 
// inside the ellipse or way outside it.
// To find out if (x,y) is outside the ellipse but near the edge the function
// checks if the neighbours (x+xStep,y), (x-xStep,y), (x,y+yStep) and
// (x,y-yStep) are inside the ellipse.
bool CDataArray::FindNewPosition(float &x, float &y, float xStep, float yStep, 
float a, float b)
{

// If the coordinates are inside the ellipse - use them as they are
if(IsInsideEllipse(x,y,a,b))

return true;

bool bLeftInside = IsInsideEllipse(x-xStep,y,a,b);
bool bRightInside = IsInsideEllipse(x+xStep,y,a,b);
bool bAboveInside = IsInsideEllipse(x,y+yStep,a,b);
bool bBelowInside = IsInsideEllipse(x,y-yStep,a,b);

// squareIndex defines which of the four neighbours are inside the ellipse
// basically sets the 4 bits with lowest significance
// 0010 = 2 => bRightInside is true
// 1001 = 9 => bLeftInside and bBelowInside are true
// etc
int squareIndex=0;
if (bLeftInside ) squareIndex |= 1;
if (bRightInside) squareIndex |= 2;
if (bAboveInside) squareIndex |= 4;
if (bBelowInside) squareIndex |= 8;

// Check if any neighbours are inside the ellipse
// if so, use a point on the ellipse
// uses the simple fact that 
// x=a*cos(theta)
// y=b*sin(theta)
// defines the ellipse
switch(squareIndex)
{
case 0: // All neighbours outside

return false;
case 1: // Left

x = a*cosf(asinf(y/b));
return true;

case 2: // Right
x =   -a*cosf(asinf(y/b));
return true;
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case 4: // Above
y = -b*sinf(acosf(x/a));
return true;

case 8: // Below
y = b*sinf(acosf(x/a));
return true;

case 5: // Left and above
x = a*cosf(asinf(y/b));
return true;

case 6: // Right and above
x =   -a*cosf(asinf(y/b));
return true;

case 9: // Left and below
x = a*cosf(asinf(y/b));
return true;

case 10: // Right and below
x =   -a*cosf(asinf(y/b));
return true;

default: // The other cases only apply to concave objects and are ignored
return false;

}
}

4.4.7 Rendering with Vertex Buffer Objects in OpenGL

The vertex buffer objects technique allows the application to save data in the video memory. This 
provides a major speed increase as discussed in section 4.3. The following code sample shows how 
the data is saved to the video memory. 

// Initialize the mesh for rendering, if vertex arrays are used, stores 
// vertex arrays in video memory for fast access in rendering
void CSphere::RenderInit()
{

// Store vertex array in video card memory
glGenBuffers( 1, &m_nVBOVertexID );
glBindBuffer( GL_ARRAY_BUFFER, m_nVBOVertexID );
glBufferData( GL_ARRAY_BUFFER, m_pMesh->m_nVertices*3*sizeof(float), 

*m_pMesh->m_vVertices.begin(), GL_STATIC_DRAW );

// Store vertex normal array in video card memory
glGenBuffers( 1, &m_nVBONormalID );
glBindBuffer( GL_ARRAY_BUFFER, m_nVBONormalID );
glBufferData( GL_ARRAY_BUFFER, m_pMesh->m_nVertices*3*sizeof(float), 

*m_pMesh->m_vVertexNormals.begin(), GL_STATIC_DRAW );

// Store vertex attribute array in video card memory
glGenBuffers( 1, &m_nVBOAttribID );
glBindBuffer( GL_ARRAY_BUFFER, m_nVBOAttribID );
glBufferData( GL_ARRAY_BUFFER, m_pMesh->m_nVertices*sizeof(float), 

&m_pMesh->m_vVertexScalars[0], GL_STATIC_DRAW );

// Store index array in video card memory
glGenBuffers( 1, &m_nVBOIndexID );
glBindBuffer( GL_ELEMENT_ARRAY_BUFFER, m_nVBOIndexID );
glBufferData( GL_ELEMENT_ARRAY_BUFFER, m_pMesh->m_nIndices*sizeof(UINT), 

&m_pMesh->m_vIndices[0], GL_STATIC_DRAW );
}
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To access the data during the actual rendering pass the following code can be used.
// This render method uses vertex arrays that have previously been uploaded 
// to the video memory. Probably the fastest method available.
void CSphere::Render(){

// Set vertex array from video memory
glBindBuffer( GL_ARRAY_BUFFER, m_nVBOVertexID );
glVertexPointer( 3, GL_FLOAT, 0, (char *) NULL );
// Normal array
glBindBuffer( GL_ARRAY_BUFFER, m_nVBONormalID );
glNormalPointer( GL_FLOAT, 0, (char *) NULL );
// Vertex attribute array
glBindBuffer( GL_ARRAY_BUFFER, m_nVBOAttribID );
glVertexAttribPointer(m_nAttribLocationID,1,GL_FLOAT,0,0,(char *) NULL );
// Set index array from memory and draw 
glBindBuffer( GL_ELEMENT_ARRAY_BUFFER, m_nVBOIndexID );
glDrawElements(GL_TRIANGLES, m_pMesh->m_nIndices, GL_UNSIGNED_INT, 

   (char *) NULL);
}

4.4.8 The vertex shader

The use of shaders allow for better control over the rendering pipeline. How they work and where 
they fit into the graphics pipeline is described in section 2.2.9. In this project the vertex shader is 
used to calculate the specular component of the light intensity. Some of the CAD models used in 
the project are does not have uniform orientation of the face normals, or rather, they have 
inconsistent ordering of the vertices in the triangles. This causes some triangles to show as zero 
intensity unless dealt with. The solution was to treat the object as a two-sided object. If the dot 
product between the light vector and the normal is negative, simply invert the normal. The vertex 
shader calculates the intensity according to the local reflection model described in section 2.5. 
Dynamic scaling is also done by the vertex shader. 

    // Get the position
    vec4 pos  = gl_Vertex;
    
    // Dynamic scaling
    pos.x = pos.x * fScale;
    pos.y = pos.y * fScale;
    pos.z        = pos.z * fScale;

    // Pass the scalar vertex attribute to the fragment shader
    scalarFrag = scalarVert;

    // Calculate transformed position, light vector and normal
    vec3 P = vec3(gl_ModelViewMatrix * pos);
    vec3 L = normalize((gl_LightSource[0].position.xyz)-P);
    vec3 N = normalize(gl_NormalMatrix * gl_Normal);

    // Two-sided object, if dot product between normal and 
    // light vector is negative, invert normal
    if(dot(N,L)<0.0)
    {

N=-N;
    }
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    // Calculate eye vector and halfway vector
    vec3 E = normalize(-P)
    vec3 H = normalize(E+L);
 
    // Calculate ambient, diffuse and specular intensities 
    // and pass them to the fragment shader
    Iamb = 0.0;
    Idiff = max(dot(N,L),0.0);
    Ispec = pow(max(dot(N,H),0.0),50.0);

    // Save transformed position
    gl_Position = gl_ModelViewProjectionMatrix * pos;

4.4.9 The fragment shader

In this project it is the job of the fragment shader to map scalar values into colors. It does this by 
interpolating linearly between two out of three colors. A rate value between 0 and 1 is calculated 
from the scalar depending on the the minimum and maximum values of the scale. Rate values 
between 0 and 0.5 will result in a mix of the minimum color and the mean color and values between 
0.5 and 1 gives a mix of the mean color and the maximum color. It also uses the intensity values 
calculated in the vertex shader and sets the alpha value dynamically from user input. 

    vec3 color;

    float scalar = scalarFrag;
    float rate = (scalar-scalarMin)/(scalarMax-scalarMin);
    rate = clamp(rate,0.0,1.0);
    if(rate<=0.5)
    {
      rate=rate*2.0;
      color = mix(minColor,meanColor,rate);
    }
    else
    { 
      rate=(rate-0.5)*2.0;
      color = mix(meanColor,maxColor,rate);
    }    

    gl_FragColor = vec4(color*(Idiff+Iamb)+Ispec*specColor,fAlpha);
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5 Results
In this chapter the results of many different aspects of the project are presented. It contains images 
from the resulting application and comparisons with the old implementation. It also contains the 
results of the optimization tests. 

5.1 Spherical displacement
One of the major improvements in the new version of BaseTool is the spherical displacement. With 
spherical displacement the actual detection volume can be shown which is considerably more 
intuitive for the end user than the colored sphere approach. The concept of spherical displacement is 
explained in section 3.1. Figure 14 shows the colored sphere approach of the old version while 
figure 15 shows the new spherical displacement. The old method of visualization is still available in 
the new version. 

Both images show the same data but the spherically displaced data conveys it in a better way. It 
shows both detail and the general appearance at the same time and it is a lot easier to get an idea of 
the magnitude of the variations in the data. The color information is still available in the new 
version but it shows the same thing as the distances to the center. By looking at the colors and the 
minimum and maximum values of the object one can see what values the colors represent. 

5.3 Specularity
The use of specular effects is mostly eye candy but also has some advantages when analyzing the 
data. While good looking visualization is a motive in itself the specular effects also help in 
enhancing details on the spherically displaced meshes. Figure 16 shows a spherically displaced 
detection distance mesh with specularity effects off and figure 17 shows the same mesh with 
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Figure 14: Colored sphere

Figure 15: Spherical displacement



specularity on. Geometric detail is more visible in figure 17 while color information is somewhat 
destroyed. 

Using specular effects on a colored sphere is not very useful. Since the light source is located in the 
same direction as the camera it only causes annoying glare coloring the sphere white in the position 
where the user is most likely to be looking. Figure 18 shows the specular glare corrupting the color 
information on a colored sphere. 

Another example of an object that should use no or low specularity is the specification sets. These 
are often spherical or at least partly spherical and are usually used with transparency. It's easier to 
see through the object if the specularity is low. Because of this problem the user can control the 
specularity of all object by setting a value between 0 and 100 with a slider. 

5.4 Downsampling data
The data sets that this application is meant for are very diverse. Some contain huge amounts of data 
and even though the application could handle showing several million triangles on the test computer 
there is a possibility that the application will be run on a less advanced machine. Being able to 
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Figure 17: Full specular effects

Figure 18: Specular effects on a colored sphere

Figure 16: No specular effects



change the resolution of the data before visualization can help ease the load on the hardware. Figure 
19 shows the same data set with different resolutions. The top image contains 518 400 triangles and 
the bottom image contains 129 600. The difference is barely visible in these images but is a lot 
easier to detect in the application itself. Naturally some of the small details are lost but the main 
features seem to remain untouched. Increasing the resolution above that of the original data is also 
possible but probably has little use. The interpolation method used is bilinear interpolation which is 
described in theory in section 2.3 and the implementation in section 4.4.2. It is possible that a more 
advanced interpolation method such as bi-cubic spline interpolation would give better results but as 
the interpolation is a heavily used feature in the application this would have a big impact on the 
performance. 

5.5 Visualizing specification data
One of the major new features in this version of BaseTool is the ability to show specification data. 
The process of creating these specification data sets is described in the user manual in Appendix A. 
After such a set is created it is treated mostly like a normal data set. The main difference is that the 
default settings for color, transparency and specularity are different for specification sets. Figure 19 
shows a fictional specification set with the default appearance settings and containing a detection 
distance set. It is very easy to see where the detection distances intersect with the specification set 
and thus fail to meet the specifications.
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Figure 19: Downsampling comparison



The specification set in figure 20 uses elliptically diminishing sectors as described in section 3.4. 
Most of the different sector settings are easy to use and produce good results but the Gaussian 
method is rather complex and doesn't always produce good results.

5.6 Optimizations
The optimizations described in section 4.4.1 were tested with different data sets to find the 
performance gain. The time to run the preprocessor module and get show the result on screen was 
tested and the times for the preprocessor and preparations to show the data was also noted. These 
tests were carried out on a 1.7 GHz Pentium 4 with 1 GB of RAM. 
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Test Calculation time Loading time Total time

GR2 full, old 
implementation

1 hr 40 min 11 sec 45 sec 1 hr 40 min 56 sec

GR2 small, old 
implementation

1 min 58 sec 5 sec 2 min 3 sec

Thin metal plate, old
implementation

39 sec 4 sec 44 sec

GR2 full, new
implementation

22 sec 8 sec 30 sec

GR2 small, new 
implementation

< 1 sec < 1 sec ~1 sec

Thin metal plate, new
implementation

< 1 sec < 1 sec < 1 sec

Table 2: Optimization tests

Table 2 shows execution times for three different data sets with the old and new implementation. 
GR2 full is the data set shown on most of the images in the report. GR2 small is a narrow band of 
the full GR2 set and is about 50 times smaller. The thin metal plate set is a very small set which 
should be executed nearly instantly and therefore is good for testing how much overhead the two 
implementations have. It should be noted that the two implementations do not perform the exact 
same tasks. In particular the old implementation does Delaunay triangulation which isn't needed in 
the new version and the new version does a lot more sophisticated vertex normal calculations. For 
large data sets the new implementation is about 200 times faster than the old one in total. It is also 
about 5-6 times faster in just loading the precalculated data and showing it on screen even though it 
does significantly more advanced computations in this step. 

5.7 Showing elliptical sectors
The idea behind using elliptical sectors and the implementation is discussed in section 4.4.6. In the 
end the usefulness of this feature in the context of radar visualizations could be questioned. But it 
was implemented and is still a part of the application. As can be seen in figure 21 the edge vertices 
are located on the edge of the ellipse itself making the shape look good. A few of the triangles break 
away from the general pattern. Interpolating the vertex positions in one more dimension would 
probably solve that problem. 
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5.8 User interface
As figure 22 shows the old version of the application was rather simple. Being simple it was also 
easy to use. The user just had to open a file and the CAD model and sphere was shown on screen. A 
problem with the old user interface was that much of the screen was wasted by showing the CAD 
on half the screen. A nice detail was the color bar on the right showing how to interpret the colors. 
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Figure 21: Elliptical sector in wireframe mode

Figure 22: Visualization window of the old version



The few options that existed were accessed on a separate panel shown in figure 23. This approach 
was simple and sufficient for the features that the old version had. 

In the new version the CAD model is shown in the upper left corner instead, leaving much more 
room for the actual data visualization. All the new interactive options such as transparency, 
specularity, scale and color are located beneath the CAD model on the left side. The process of 
creating a mesh out of a data set is handled in a separate dialog. The new version contains a lot of 
new options and features but since there are default options for almost everything it is very easy to 
get started. The BaseTool user manual in Appendix A shows more details on how the program 
works and contains more screen shots. Figure 24 shows the main interface of the new application.
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Figure 23: Menu of the old version



5.8 User manual
A simple user manual was created to help the end users getting started with the application. The 
manual contains step by step instructions for how to go from an input data set, via the preprocessor 
module, and finally displaying the visualization. Apart from the “getting started”-guide there is also 
more detailed information about the options and settings in the application. The manual is enclosed 
as appendix A.  
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Figure 24: User interface of the new version



6 Discussion and conclusions
This chapter discusses the results presented in chapter 5 and draws conclusions from these results.  
It also contains recommendations for future work and improvements. 

6.1 Discussion
In creating an application such as BaseTool the usual approach is to ask the end users what they 
want from the program and then try to implement as much as possible of those wishes. In the 
BaseTool project the input from the end users was mixed. In terms of general characteristics the 
requirements were well defined. The end users wanted a good looking application that was fast, 
easy to work with and easily maintainable. When it came to actual features there was simply not 
enough input. This is a common scenario in software engineering. The application designer asks the 
end users what they want and the end users reply by asking what the application designer can do. 

In this project it meant that some of the features that were asked for and implemented are of limited 
value for the user. With better interaction with the end users they could probably have been 
avoided. 

How and if the application will be used remains to see. In its current form it is very much a 
showcase of different techniques to visualize radar signatures. The most likely uses are 
demonstrations and marketing rather than scientific analysis. It probably works well as a tool to aid 
in discussions about test data and simulated data. 

6.2 Conclusions
The main idea with the project was to explore the idea of using spherical displacement rather than 
just colored spheres. The spherical displacement was implemented together with several other 
features resulting in the BaseTool application. The admittedly few that has tested the application 
claim that the spherical displacement is indeed more intuitive and easier to work with in comparison 
with the colored spheres. More testing would be required to properly assert this. 

SAAB also wanted an optimization of the preprocessor code and a general improvement of loading 
times. Section 5.6 clearly shows a significant improvement with loading times up to 200 times 
faster in the new version of the application. 

Visualization of specification data was also implemented. As seen in section 5.5 it is easy to find 
the points where the specifications are not met. In reality it is very likely that mostly the flat sectors 
will be used because of their simplicity. But the other methods could be used to prove a point if the 
application is used as a demonstration tool during a session discussing the specifications. The 
Gaussian sector is unlikely to be used at all since it is very complex and not all control parameters 
are available in the application. It was left in the application mostly for reference. 

Achieving a high quality visual appearance was one of the aims of the project. The new 
implementation is undoubtedly better looking than the old and some of the images generated by the 
application could probably be used for marketing purposes. 

Very little testing has been carried out on the user interface but comments have been positive from 
those who have tried to use the program and they have had no problem getting results with it. More 
testing is required before any further conclusion can be drawn about the user interface.
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6.3 Future work and improvements
Time was a major limiting factor in the project. There are a lot of features that would add value to 
the application. The ability to save a visualization with all the objects and settings as some sort of 
project would save a lot of time for the users. Adding color bars and angle information would help 
the user understand and analyze the visualization. Color bars would act as a legend explaining the 
color information instead of the currently showed min and max values that are not very intuitive. 
Angle information in this case would be the ability to select a point on a surface and get a reading 
on what angle that point represents. Selecting a point would also make it possible to show the exact 
distance value in that point. Such information is crucial when using BaseTool in conjunction with 
software that analyze other radar data, such as ISAR maps. The screen capture function in the 
application should be improved so that it can produce images of arbitrary resolution. Such images 
could be used in marketing. Some or all of these features will be implemented during the summer. 

Further testing of the user interface and the application features themselves should be carried out. 
Adjusting the user interface with the help of such tests should be fairly easy thanks to the use of 
python and wxWidgets. 

Even though the bilinear interpolation currently implemented in the application seems to be 
sufficiently accurate it would be interesting to try using bi-cubic spline interpolation or some other 
more advanced interpolation technique instead.
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Appendix A

Introduction

BaseTool is an application that offers the user an easy way to visually analyze and demonstrate 
magnitude of RCS or detection distance data. 

Features

• Show RCS data as a colored sphere or a displaced sphere
• Show the corresponding CAD-models
• Rotate and zoom data freely
• Create and show specification sets and compare with RCS data
• Control transparency, scale, specularity and color of all objects
• 1-2 visualization windows that can both show several objects at once
• Small CAD-window to show the CAD-model at all times
• Save screen shots to .jpg, .bmp or .png files
• Resize all windows
• Fast loading times and high performance 3D visualization

Getting Started

Start by opening an ISAR data file and create a .base file with the precalculation functions. This 
will remove phase information and calculate an averaged RCS data set from the frequency data. 
Next load the .base file, you'll notice the CAD-model showing up in the upper left window (the 
CAD-window). Now press Add Mesh in the options panel. Depending on how you did the 
precalculation part one or more data sets will show up in the left list. Pick one and edit the settings 
or just click Create Mesh to start with the default settings. The dialog will close and your mesh will 
show up in the list in the Options Panel. Select the mesh from the list, this will allow you to control 
settings for that mesh.

To show the mesh in the Main Canvas, check the box for Show on Main Canvas. Alpha controls the 
transparency of the object, scale controls the size in relation to other objects (while zoom, scales 
everything in all windows) and specularity controls the direct light reflections. The object is color 
coded with a mix of three colors, the default is Red at maximum distance from the center, Blue at 
minimum distance and Green in the middle. These values can be changed per object. To show two 
screens press the Split Window button. This enables the secondary canvas and allows you to 
compare different data sets. 

To create a specification set, click Add Mesh, then Add Specification Set. Set the base value to the 
maximum value the set will have. After creating the set, select it from the list and click Add 
Specification Sector. You can add several sectors to one set. When finished just click Create Mesh 
as with a normal mesh. 
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Menus

The menus of the application contain the following items.

• File - Create BaseTool file from ISAR data. This allows you to create a .base file for further use 
in BaseTool. The ISAR data needs to be in hdf5 format.

• File - Open BaseTool file. Opens a .base file and adds its data to the project.

• File - Capture Image. Creates a screen shot of the application and saves it as a jpeg, png or bmp 
image file. 

• File – Exit. Exits the application.

• Options – Wireframe. Toggles wireframe rendering mode on and off.
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Dialogs and Panels

Options Panel

The Options Panel is located on the left hand side of the application and contains options for Mesh 
Objects. The Mesh Objects List shows all mesh objects. You can select a mesh object by clicking it 
in the Mesh Objects List. Options for the mesh will then activate in the Options Panel. The Alpha 
Slider controls the transparency of the current mesh. The Specularity Slider controls the shininess of 
the current mesh. The Scale Slider controls the relative scale of the current mesh. Check the Main 
Canvas Checkbox to show the mesh on the Main Canvas. Check the Secondary Canvas Checkbox to 
show the mesh on the Secondary Canvas. Click the Show/Hide Secondary Canvas Button to show 
or hide the Secondary Canvas. 

The Reset Navigation Button resets all rotation and zooming in the canvases but leaves the mesh 
options intact. To change the color of a mesh click one of the color buttons. For CAD objects they 
will all change the color of the object. For other meshes the Min Color represents the color for the 
smallest detection distance or RCS values and the Mean and Max Colors represents the mean and 
max values in the same way. The colors for values in between are interpolated linearly. The Min 
and Max Value Text boxes show the smallest and highest detection distance or RCS values for the 
currently selected mesh. Changing these values will change the coloring of the object but not the 
actual geometry. For example, setting the Min Value to something larger than the first value will 
make a larger portion of the mesh use the Min Color.
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Create Mesh Object Dialog

The Create Mesh Object Dialog is accessed with the Add... button on the Options Panel. It contains 
a Data Set List which shows all the data sets currently loaded. To create a mesh, first select a data 
set from the list, set all the options or use the default options, set a name for the mesh with the Mesh 
Label Text box, and then click the Create Mesh Button. 
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The Mesh Type Choice Box lets you chose between Square Sector and Ellipse Sector. The square 
sector cuts a square sector from phi start to phi stop and theta start to theta stop out of the data set. 
The ellipse sector does the same but with an elliptical cut, discarding data in the corners. 
Unchecking the Use Displacement Check Box will put the values for all angles at the same distance 
from the origin, forming a perfect sphere for a full data set. Checking it will displace each value 
proportional to itself in the direction of the normal, forming an object that is easier to analyze. The 
Use Zero Padding Option is useful if the data set contains a very limited number of theta angles. It 
will add two theta angels, one above and one below, with only zeros. This makes the object visible 
even if it's just one angle thick. Only use this option with data sets that are not full or if you limit the 
theta angles shown. It does nothing for phi angles since data sets are assumed to contain full range 
in phi for all theta angles that are present. 

Phi Start, Phi Stop, Theta Start and Theta Stop control what angles are shown. Phi Samples and 
Theta Samples control the number of samples in phi and theta. If the number of samples are 
changed bilinear interpolation will be used to determine the values in the new sample points. The 
Scaling Type Choice Box lets you use normal, logarithmic or fourth root scaling. For logarithmic 
scaling log10 of the value is shown, the smallest negative logarithm is shown as zero and all the 
other values are translated outwards which makes it hard to see what the values actually mean in 
terms of RCS or detection distance. Fourth root scaling simply shows the fourth root of each value. 
Taking the fourth root of RCS values roughly gives values that are proportional to the detection 
distance. Using logarithmic or fourth root scaling for detection distance values probably doesn't 
make much sense.
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Specification Set Dialog

To compare RCS or detection distance data to specifications you can manually create a data set with 
the Add Set Button in the Create Mesh Object Dialog. The Sampling Controls are similar to those 
of creating a new Mesh Object, except here you create a new data set instead. The Base Value is the 
maximum value that the specification set will take in any point. Later on you can modify the set by 
adding Specification Sectors but for overlapping sectors the smallest value will always be picked 
which is why the Base Value will never be exceeded for the set. 
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Specification Sector Dialog

To add more information to the specification set, select it from the Data Set List and click the Add 
Sector To Set Button in the Create Mesh Object Dialog. You can chose from several different types 
of sectors to add. The sector type controls how the value varies over the sector according to the 
following table.

Sector Type Value
Flat min
Linear min + (max-min)*( |x| + |y| )/2
Elliptical min + (max-min)*( |x^p| + |y^p| )/2
Gaussian min + (max-min)*e^(1/2 * ((x/0.4)^p + (y/0.4)^p))

In practice this means that the Flat Sector mode gives a constant value across the sector. The Linear 
mode gives linearly diminishing values. For the Elliptical mode values will be close to the min 
value for most of the sector but near the max value in the corners. The p or Power To parameter 
controls how fast the values diminish, a higher Power To means most of the sector will be close to 
the min value. The Gaussian mode is mostly for testing purposes and should not be used for any 
real projects. For each of the modes, except the Flat mode, you can chose to let the values diminish 
in phi only, theta only or both angles. The data set created like this can then be used in making a 
new Mesh Object. 
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Precalculation Dialog

The Precalculation Dialog is accessed via the File Menu item Create BaseTool file from ISAR data. 
To create a .base file, first select an input file with the Browse Button. Choose the wanted Sensor 
and  Background options. The Data Redundancy option controls how the redundant data is handled. 
There are usually more than 360 degrees of data in the phi orientation so you can either average the 
redundant data or simply remove it. The Data Type controls the output data type, you can get raw 
magnitude of RCS data, detection distances or both. If you only want RCS data you don't need to 
care about the Sensor and Background options. The Frequency Band options are not yet 
implemented and cannot be changed.
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