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1. Introduction 
This note introduces the conceptual basis of layered queueing networks (LQNs) as a 

performance model for software systems, and then leads the reader through the features provided by 
the LQML modeling language. Layered queueing is an elegant compact notation for Extended 
Queueing Networks, which incorporates a number of features which are common in software 
systems (and other kinds of systems too). The central feature is a kind of structured “simultaneous 
resource possession”, common in layered and client-server architectures, which gives it the name 
Layered Queueing. 

There is also a User Manual for the LQNS solver and LQSIM simulator, and a thesis and 
more recent technical paper which summarize the underlying mathematics; these and other 
materials can be found on the layeredqueues.org web site, and on the LQNS page at 
www.sce.carleton.ca/rads/lqns. 

2. Concepts 
Performance, in the sense of response times and throughputs, is determined by how the 

system’s operations use its resources. While a resource is in use it is busy, and other requests for it 
must wait, as determined by a queueing discipline. Ordinary queueing network (QN) performance 
models are directly applicable to systems in which each operation requires only a single resource, 
such as a CPU or disk; extended queueing networks (EQNs) are needed for simultaneous resources. 

Software systems often have software servers that also have a queue of requests. When a 
request is accepted by the software server process, the process must then request and wait for the 
CPU. When it has the CPU, the operation can be executed and a reply returned for the request. This 
is “simultaneous resource possession” with two layers of resources, the software server and the 
CPU. The service time of the CPU is the host demand of the operation; the service time of the task 
includes the waiting for the CPU as well, possibly waiting for several “slices” of CPU time. 

We consider layered systems (software systems, and other kinds of systems too) that are made 
up of servers (and other resources which we will model as servers); the generic term we will use for 
these entities is “task”. A server is either a pure server, which executes operations on command (for 
instance a processor), or a more complex logical bundle of operations, which include the use of 
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lower layer services. Such a bundle of operations may be implemented as a software server. 
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FIGURE 1. The elements of a software server, including multiple threads, multiple entries, and
second phases, which are all optional

 
Figure 1 illustrates the elements of a software server, as they might be implemented in a 

software process. The threads are servers to the queue, the requests take the form of interprocess 
messages (remote procedure calls, or the semantic equivalent), and the entries describe or define the 
classes of service which can be given. The assumption is made that each thread has the capability of 
executing any entry. The execution of the entry can follow any sequence of operations, and can 
include any number of nested requests or calls to other servers. Calls to internal services of the same 
server are assumed to be included in the entry, so all calls are to other servers. A canonical sequence 
of operations is the first-phase/second phase sequence shown by the heavy line in the figure, with 
the reply sent after the first phase. Software servers often send the reply as early as possible, and 
complete some operations later (e.g. database commits). 

The execution of the server entity is carried out by a host processor, which may be a 
multiprocessor. Once the request is accepted, the execution of the entry is a sequence of requests for 
service to the host and to other servers, and the essence of layered modeling is to capture this 
nesting of requests. Each request requires queueing at the other server, and then execution of a 
service there. The service time of a software server is the time to execute one request, and it has two 
components, a phase 1 time until the reply is generated, and a phase 2 time. 

The “thread” abstraction in a software server can also model other mechanisms that allow the 
server to operate simultaneously on several requests, including a process pool, kernel or user 
threads, dynamically created threads or processes, and virtual threads. 
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The “task” concept created for a software server can also be applied to other system resources, 
as described later. For instance, a disk device may offer more than one operation with different 
service times, so the disk is modelled as a task with operations modelled by entries, plus an 
underlying device for the actual execution.  
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Figure 2 A layered application with software and hardware servers 

Figure 2 shows one graphical LQN notation. The tasks (software servers) are the bold 
rectangles, and their entries are the attached rectangles. The task of Figure 1 could for instance be 
the HTTPServ task, with its thread pool indicated by the multiplicity notation m=20 for a limit of 
20 threads. One webService request requires a total of 15 ms (CPU time) to handle it, including 
receiving the request, interpreting it, and making a nested request to the Application, receiving the 
response, and sending the final response page back to the client. The pool of 150 clients is 
represented by the single Client task symbol, with an entry that represents one cycle of client 
activity: think for 2 seconds, make one request. It runs on a single processor. The request arrows to 
the Application entries show that 90% of requests are to the Browse entry, and 10% to the Buy 
entry. The host demand of the entries is 30 ms for Browse, 250 ms for Buy, and Application has 10 
threads and runs on two cores (or a two-CPU multiprocessor). The host demand labels indicate only 
one phase of service at each layer in this model. 

A real system may have additional layers. If this is an e-commerce system, the Application 
will make requests to one or more database systems (which will in turn use a storage system), and 
to some kind of financial server for the purchase transaction. An HTTP server usually has separate 
storage for fixed page elements and makes requests to that. 

Tasks, entries, calls, demands 

The notation for layered queueing models uses the terms task, host (processor), entry, call, 
and demand, as follows. 

• Tasks are the interacting entities in the model. Tasks carry out operations defined by their entries 
and also have the properties of resources, including a queue, a discipline, and a multiplicity. A 
single-threaded task is itself a critical section 
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Tasks that do not receive any requests are special; they are called reference tasks and represent 
load generators or users of the system, that cycle endlessly and create requests to other tasks. 
Separate classes of users are modeled by separate reference tasks. 

• A task has a host processor, which models the physical entity that carries out the operations. 
This separates the logic of an operation from its physical execution. The processor has a queue 
and a discipline for executing its tasks, and a task has a priority. The host processor has a speed 
ratio relative to a “standard processor”, such that when the host demand s of an entry given for 
the standard processor, and the actual demand is s/(speed ratio). 

Thus a disk is modeled by two entities, a disk task representing the logic of disk operations 
(including the difference between say a read and a write, including the logic of disk device-level 
caching), and a disk device. 

• A task has one or more entries, representing different operations it may perform. If the task is 
seen as a concurrent object, then the entries are its methods (the name entry comes from the Ada 
language). Entries with different workload parameters are equivalent to separate classes of 
service in queueing. The workload parameters of an entry are its host execution demand, its pure 
delay (or think time), and its calls to other entries. Priorities between entries are not supported in 
the model, and an entry may not call another entry in the same task (however it may call a 
pseudo-task which  models such an entry, see section 4.2) 

• Calls are requests for service from one entry to an entry of another task. A call may be 
synchronous, asynchronous, or forwarding, as discussed in section 5. This gives a rich 
vocabulary of parallel and concurrent operations, expressed in a manner very close to that of a 
software architecture description language. 

• Demands are the total average amounts of host processing and average number of calls for 
service operations required to complete an entry. More detailed descriptions, detailing the 
sequence of operations, can be given by the activity structure of an entry or a task, which will be 
described below.  

The basic use of these elements to model software tasks is illustrated in Figure 2. Extensions of the 
modeling concepts will be described later, including: defining parallel operations with activities, 
using a task to model pure delays (such as a network latency), using a task to model other kinds of 
software resources such as semaphores, exclusive locks, or buffer pools, and using forwarding 
interactions to model asynchronous operations. A large family of replicated systems can be modeled 
compactly using replication. 

2.1. Model workload parameters 
The software workload is described by the parameters of an activity. The basic model of an 

entry assumes it has a single activity (sometimes called “phase 1” above); some systems have a 
second activity (phase 2) after sending a reply. More generally, a graph of activities may be defined 
to describe the execution of an operation (see section 6). The parameters of an activity are: 

• execution demand: the time demand on the CPU or other device (indicated by the parameter 
labelled “s” in the modeling code) 

• wait delay (also called a think time) (optional... it can be used to model any pure delay that does 
not occupy the processor) (parameter label is Z) 

• mean synchronous requests to another entry (token label is y) 
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• mean asynchronous requests to another entry (parameter label  is z) 
Additional optional parameters of an activity are: 

• the probability of forwarding the request to another entry, rather than replying to it, when serving 
a synchronous request (parameter label is F, there can be multiple probabilities) 

• the squared coefficient of variation of the execution demand requests. This is the ratio of the 
variance to the square of the mean; for a deterministic demand its value is 0 (parameter label is c) 

• a binary parameter to identify a stochastic sequence in which the number of requests from the 
activity is random, with a geometric distribution and the stated mean, versus a deterministic 
sequence in which the number is exactly the stated number (which must be an integer). (the 
parameter label is f, with value 0 for stochastic (the default) or 1 for a deterministic sequence) 

2.2. Performance measures: service time and utilization of an entry or a task 
The service time of an entry is the time it is busy, in response to a single request. It includes 

its execution time and all the time it spends blocked, waiting for its processor and for nested lower 
services to complete. The service time in a layered model is a result rather than a parameter, except 
for pure servers such as hosts. 

Since a task may have entries with different service times, the entries define different classes 
of service by the task. The overall mean service time of a task is the average of the entry service 
times (weighted by frequency of invocation). 

The utilization of a single-threaded task is the fraction of time the task is busy (executing or 
blocked), meaning not idle. A multi-threaded or infinite-threaded task may have several services 
under way at once and its utilization is the mean number of busy threads. 

A saturated task has all its threads busy almost all the time. 
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Figure 3 Service time of an entry, indicated on a sequence diagram 
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Software Bottlenecks 

When a task is fully utilized but the resources it uses (by nested calls, or its processor) are not 
fully utilized, the task is called a “software bottleneck”. A typical example is a single-threaded task 
which blocks for I/O, and the typical cure is to multi-thread the task. Then when one thread is 
blocked another one can proceed. (See the paper [2] on software bottlenecks). 

3. The LQNS solver, the simulator, and their modeling languages 
There are two solvers for layered queues, that take the same input files:  

• The analytic solver LQNS can be executed with the command line:  lqns infile.lqn 
(where the suffix .lqn is suggested, but not mandatory) and it produces an output file with the 
default name infile.out. There are many options, which can be listed by invoking lqns or 
lqns -h. The documentation is the manual (“man”) page, also available in ASCII as 
lqns.txt. 

• The simulator is invoked as:   lqsim [run controls] infile.lqn and also generates 
an output file infile.out, which includes confidence intervals on the estimated performance 
parameters. Documentation is the man page for lqsim, or the ASCII version lqsim.txt. 

There are also two languages for defining models, a cryptic “original” language and an XML-
based language LQML which is now the normative language. A conversion program lqn2xml is 
used to convert between them. Since LQML is very verbose, models are often written in the original 
language and converted before running, or run from that. Another approach is to use the semi-
graphical editor jLQNDef. This editor can be used from scratch or to display and edit models 
created earlier, and it can read and write in either syntax. 

LQNS includes an experiment control section written in a language called LQX (for LQ 
eXperiments) which can set parameters to various values, extract and format results, and force new 
solutions based on the results of a previous solution. LQX can only be used with LQML input. 

Simple experiments involving solutions over sets of parameter values can also be run with 
LQNS/LQSIM in a simpler format using the “original” language plus annotations for parameters 
and results. This facility replaces the experiment controller SPEX, which worked with the original 
language but has become unmaintainable. See section 11. 

4. Task resources, queueing, multiplicity (threads) and arrival 
processes 

A task models those properties of a software object which govern contention for executing the 
object; it is identified with a task resource, and a task queue. One task queue is used by all requests 
to all the task’s entries. Typically the software object is an operating system process, but tasks can 
also represent other objects. 

A single-threaded task can respond to one request at a time. A multi-threaded task has a 
limited pool of instances, each of which can respond to a request (it acts as a queueing multiserver). 
The instances are homogeneous and are dispatched from a single queue, like any multiserver. 
Multiple instances may be provided in different ways, for instance by process forking, by a static 
pool of lightweight threads or kernel threads, or by re-entrant procedure calls. A special case which 
can be modelled as multiple instances is a single carefully written process that accepts all requests, 
and saves the context of uncompleted requests in data tables (this is called virtual threading, or data 
threading). 
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Some software objects are fully re-entrant and can exist in any number of copies, each with its 
own context. These are often called multi-threaded, however because there is no limit to the number 
of threads we will term them infinite-threaded. They impose no resource constraint, and are used to 
represent pure delays.  

Multiplicity also applies to processors (hardware servers) which may be defined as single, 
multiple, or infinite. An infinite processor is an artificial entity introduced to provide a host for an 
infinite task (every task must have a host). If there are several infinite tasks, they can all be hosted 
on a single infinite processor. 

4.1. Driver tasks and arrival processes 
Arrivals to the system are modeled by tasks which generate requests spontaneously, called 

reference tasks in LQN. Any task with no requests made to it is a reference task. It should have a 
single entry with just one phase. Each reference task generates a separate class of requests. 

A closed class with population N and think time Z is represented by a reference task with 
multiplicity N and think time Z, hosted by a processor with multiplicity at least N, and making 
synchronous requests (that block waiting for a reply). The importance of the blocking is that the 
client task cannot do anything else while the response is coming back, thus imposing the finite 
population of simultaneous requests. 

It is usually preferable to model open arrivals by a closed arrival approximation (see below) 
However, an open class with arrivals at rate f/sec can be modeled by a reference task of multiplicity 
1 and think time Z = 1/f sec, and making an asynchronous call to some operation. Since the call is 
asynchronous, the task immediately begins to generate the next call, giving the arrival process. If 
the think time is exponentially distributed (the default), and the entry has a single deterministic 
phase, the arrivals will be Poisson. As an alternative way to model open arrivals, any entry can be 
defined to have a Poisson stream of arrivals coming to it, in addition to other requests. 

Closed modeling of open arrivals: Since the service time of entries in layered queueing is not 
known in advance (it may include lower-layer contention delays), it is not possible to guarantee that 
a given arrival rate does not over-saturate the system. The analytic solver detects this condition 
during iteration and stops, but the simulator gives no indication (unless it crashes due to memory 
problems). For this reason it is better to make a closed approximation to the open stream. Introduce 
a reference task with a very large population N (large relative to the expected queue lengths), and a 
large think time Z = N/f, to get an approximate rate f. If N is not large enough, the rate will fall, and 
this is a signal to increase N (or, that the system cannot handle the rate f/sec). 

4.2. Pseudo-tasks 
Artificial pseudo-tasks can be used to model a variety of things, including an internal 

operation of a “task”, a network delay, or a response-time measurement probe. They may be hosted 
on pseudo-processors. 
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Figure 4 Pseudotasks: (a) a shared module, (b) a network latency, (c) instrumentation 

An internal operation of a task: Refer to Figure 4(a). A LQN task T2 can model a re-entrant 
module that has no attached resource significance, for example a module within a task T1 that is 
shared by several of its entries. Instead of including the workload of the module in all the entries, it 
can be modelled separately (to better reflect the software structure, or just to calculate its loading 
within the model). The pseudo-task T2 is an infinite server that runs on the same host as the task 
T1. Since it is always called by an entry of T1, its task resources are provided by T1. 

A network delay: Refer to Figure 4(b). An infinite task with host demand equal to the delay 
time can be interposed in any call to impose this delay on the call. Multiple calls over the same 
network to different destination entries must have separate entries in the delay pseudotask, to 
separate the call routing. The task is hosted on an infinite pseudo-processor of speed factor 1.0. 

Response-time instrumentation: Refer to Figure 4(c). The LQNS solver returns the delay to a 
call (such as the call from clientOp to serverOp in Figure 4(c)) in two parts, as the queueing time of 
the request at Server, plus the service time of the  entry serverOp. Purely for convenience, we 
sometimes define a dummy pseudotask that simply passes on the call; the task “Response” blocks 
for a time equal to the queueing plus service at serverOp. “Response” does not have to be infinite, 
but it and its pseudo-processor host must have equal or greater multiplicity, than Client. 

5. Styles of interaction 
We can model three kinds of interactions between entries, which are illustrated in Figure 5 by 

a sequence diagram matching the LQN diagram for each interaction. 

• asynchronous call: the sender does not wait and receives no reply. The receiving entry operates 
autonomously and handles the request.  

This propagates the workload among the servers and gives the resource utilizations and 
throughputs, but it is an effort to determine the delays along the path taken by a request. For this 
reason an asynchronous chain of operations may be modeled by forwarding. 

• synchronous call, with a reply. The sender waits (blocked) for the reply, and the receiving entry 
must provide replies. This is the pattern of a standard remote procedure call (RPC). The sending 
object task or thread is regarded as busy during the wait.  

For non-blocking software the request-reply structure may be kept in the model by introducing 
artificial sender threads, one for each potential outstanding reply. In the model these threads do 
block and wait for the reply, and they accumulate the total time to complete a response. These 
threads need not exist explicitly in the software. 
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Some “delayed-synchronous” interactions with a reply actually continue in parallel with the 
execution of the server, and later attempt to pick up the reply from an agent or mailbox. This can 
be modeled as parallel execution, with activities (see section 6). 

• forwarding interaction: the first sender sees a synchronous interaction, and waits for a reply. 
However the receiver does not reply, but rather forwards the request to a third party, which either 
replies, or forwards it further. This gives an asynchronous chain of operations for a waiting 
client. Further, at each step there may multiple forwarding targets, with probabilities. 

Asynchronous sequences of events can be modeled by forwarding, in order to structure the 
sequences in the model and to capture the delay over a path. If the sender does not block, an 
instrumentation pseudotask (infinite-threaded) can be introduced to at the beginning of the path, 
which forwards the request, receives the final “reply” when the sequence ends, and records the 
delay as the service time of the waiting thread. 
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Figure 5 Synchronous, asynchronous and forwarding interactions in LQ models 
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6. Adding detail with activities within an entry 
The simplest operation by an entry is a single activity, followed by a reply to the invocation. 

However it is important to be able to specify more complex behaviour patterns, including 
operations in a particular sequence, and parallel subthreads. This is done by specifying a precedence 
graph of activities, starting from the first activity for the entry. 

Each activity is described by a set of parameters with labels s, y, f, c etc as described in 
section 2.1. The graph can then be described by a series of textually specified relationships: 

• Sequence:  activity1 -> activity2  activity 1 precedes activity 2 

• AND-fork:  activity1 -> activity2 & activity3 &...  activity 1 precedes activities 2, 3...  
    in parallel (an AND-list of any length)   

• AND-join:  activity1 & activity2 &.... -> activity3 (predecessors are an AND-list of any  
   length) 

• OR-fork (branch): activity1 -> (prob2) activity2 + (prob3) activity3 +......means activity 1  
   precedes one of : 

o  activity2 (with probability prob2) or  

o  activity3 (with probability prob3) or ... (this is an OR-list of any 
length) 

•  OR-join (merge): activity1 + activity2 -> activity3.....   (predecessors may be an OR-list of any 
    length) 

• JOIN-FORK:  any OR or AND list -> any OR or AND list 

• LOOP:  predecessor join-list -> (average-repeat-count)*activity1  activity2  ..... a repeated  
  activity1, followed afterwards by activity2 

If the repeated part is not a single activity then: 

• if it is a sequence, the rest of the sequence is defined separately, with a definition that it is 
preceded by activity1.  

• If it is a complex structure of activities it can be packaged into a separate pseudo-task (as 
described in Section 2.1), called by activity1. This pseudo-task can contain forks and joins and 
other behaviour structure nested within the loop. 

Figure 6 shows an example, including both ways to structure a loop. The textual definition is: 

a1->a2;   a2->a3;   a3->a4 (0.7) + a5 (0.3);   a4+a5->a6;   a6->a7&a8;   a7&a8->a9;    

a9->a10[E];  a10->*7.3 a11 a13;   a11->a12;   a13->a14 

The reply is sent after a10. The loop defined by the call from a14 is defined in the workload 
parameters of a13, not in the precedence graph. The parallel activities a7 and a8 are executed by 
two concurrent threads which compete for the host processor; one or both are assumed to be created 
dynamically at the fork and destroyed at the join. Physical parallelism is obtained when the host is a 
multiprocessor, or if one or both of these activities call other tasks on different hosts. 
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Figure 6 An example to illustrate the features of activity graphs in LQN 

Although there is commonly a separate sub-graph for each entry, the activity graph is a 
property of the task as a whole. The reason is, that it allows one to define a single graph with 
multiple starting points at two or several entries, for instance to define a task which joins flows from 
two different tasks. 

Parallelism in layered queues is discussed in REF (from WOSP 1998). 

LQN code for the activity section 

The textual definition above is part of the “original” LQN language; the XML-based LQML 
has a more extended syntax. 

In the LQN language, the entries which use activities are identified in the entry list, along 
with the first activity in the entry. In a separate activity section for the task, the workload 
parameters of the activities and their precedence relationships are defined for all the entries that 
have activities. Also the workload of each activity is defined, using the parameters defined in 
Section 3.1. The template file activity-templ.lqn, repesenting a server with OR and AND 
forks, is commented to document the syntax including that for activities. 

Modeling Asynchronous RPC, and Prefetching: An asynchronous RPC is modeled by forking an 
activity to make the RPC, and joining at the point where the result is picked up by the main flow. 
Prefetches are modeled similarly, as are “futures” operations (which do a speculative computation 
in parallel).  

7. Service with a Second Phase 
A wide variety of software services give a reply to the requester before they are entirely 

finished, in order to release the requester from the synchronous call delay as soon as possible. The 
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remaining operations after the reply are done under sole control of the server task, and they form the 
second phase. A special shorthand is used to represent this common case.  

display

TktDBqueryTDB
  [0.3, 0.5]

WebSrvr

WebSrvr

display

queryTDB

(1)

TktDB

First phase,

Second phase,
demand 0.5 s

demand 0.3 s

display

TktDBqueryTDB

WebSrvr

(1)

phase1 [0.3]

[queryTDB]

phase2 [0.5]

Behaviour                                   LQN with phases in TktD   LQN with activities in TktDB
(activities shaded)

 
Figure 7 A second phase of service lets the client of the interaction proceed. 

Entries with phase one and phase two can be represented by two activities, one performed 
before the reply and one after. Because they all have this simple structure they can be defined 
directly for the entry, without an explicit precedence graph. Each entry has a vector for each 
workload parameter, with a value for each phase. Thus the execution demand for the entry 
queryTDB above would be defined by a line beginning with code “s” for execution demand: 

“s queryTDB 0.3 0.5 -1” 

The host demands are 0.3 for phase 1, 0.5 for phase 2. Note that the separator -1 is used in many 
places in the definition language. 

Second phases are common. An example is seen in a write operation to the Linux NFS file 
server; the write operation returns to the requester once the file is buffered in the server, and the 
actual write to disk is performed later, under sole congtrol of the server. Doing the writes in first 
phase would be safer, because the client would be told if the write failed, and this is how the NFS 
protocol was originally defined. Other NFS implementations allow second-phase or delayed writes 
only if the server has  a battery-powered buffer to provide security of the data, in case of a power 
failure. 

Second phases improve performance; they give less delay to the client, and they increase 
capacity because there can be some parallel operation between the client and the server. The amount 
of gain depends on circumstances (real parallelism needs separate processors, and a saturated server 
cannot increase its capacity). 

The extreme case of all execution being in second phase is a kind of acknowledged handover 
of data from the client to the server. Thus it is similar to an asynchronous message, except that the 
sender waits for the acknowledgement. One important advantage of this is that the sender cannot 
over-run the receiver; the sender is throttled by the waiting for acknowledgements. 

Results for second phase at a single server, and at two layered servers  
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If some of a task’s work can be put into the second phase, the task can return more quickly to 
its clients. However if the task is already saturated the clients have to wait for many other services 
anyway and the advantage is small or even nil. The degree of improvement thus depends on the 
degree of saturation, and where the saturation is. Table 1 shows how a group of users with a 5-sec 
thinking time are affected when the server service time is split between phase 1 and phase 2 in 
different ratios (LQNS approximate results). At low utilizations, more phase 2 is uniformly better, 
but as utilization increases, the best split moves towards the middle. 

  
TABLE 1.  The impact of dividing a unit server demand between phase 1 and 
phase 2 

 Response time (sec) for different values of demand s = [phase 1, phase 2] 

nusers s = 
[0,1.0] 

[0.2, 0.8] [0.4, 0.6] [0.6, 0.4] [0.8, 0.2] [ 1.0, 0] 

1 

4 

7 

10 

15 

20 

0.166 

1.125 

3.066 

4.8474 

 9.9096 

14.9381 

 0.310 

 0.726 

 2.694 

4.2741 

9.4738 

14.541 

 0.464 

 0.827 

1.5087 

3.8951 

9.2281 

14.323 

 0.629 

 0.996 

 1.7928 

3.98149 

 9.2289 

 14.318 

 0.807 

 1.269 

 2.269 

4.4927 

9.5048 

14.548 

  0.999 

 1.6420 

 2.9256 

5.221 

 10.037 

15.0120 

 

 

8. Logical resources (critical sections, locks, buffers) 
The task entity in layered modeling is used to model any resource whatever. Consider first a 

critical section shared by a set of concurrent threads or processes. There are two cases: 

• if the threads or processes are on the same processor, and they all execute the identical operation 
in the critical section (this is like a monitor) then the operation can be removed from the tasks 
and made into an entry in a pseudo-task with multiplicity 1. This is like a pseudo task for an 
internal operation, but imposing concurrency restrictions. 

• if the threads or processes are on different hosts, or they execute different operations in the 
critical section, then the pseudo-task with multiplicity 1 runs on a psedo-processor, with an 
entry for each caller... this entry calls a sort of shadow task defined for each process, which 
represents the critical section workload of that process. The shadow tasks are defined as a “task 
for an internal operation” described above, with multiplicity 1, and run on the same host as the 
caller. Only one of these shadow tasks can be active at once, and a queue of requests forms 
before the critical section “task”. Effectively the calling tasks are split into a task for the 
workload outside the critical section, and a task for the inside.  

The same approach can be applied to locking a table, with the operations applied while 
holding the lock, treated as a critical section. A complex locking system, with many separate locks, 
and read and write locks, requires special treatment. The queuing disciplines are complex, and there 
are often too many locks to represent each one separately. This is a subject of current research. 
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Memory and buffer resources can be modeled similarly, with a multiple “task” (the same 
designation as a multi-threaded task) to represent the resource, and with entries to activate the 
workload for each user. 

Modeling finite buffers: A finite buffer space, which blocks its senders when it is full, can be 
modeled by a multi-threaded buffer task with second-phase interactions going into and coming out 
of the buffer. Each buffer space is modeled by a “thread” which immediately replies (releasing the 
sender) and then sends to the receiver (and waits until the receiver replies, to acknowledge 
receipt).

store

Receiver    receive
   [0, work]

Sendersender

Buffer

Sender Buffer

store

receive

Receiver

Receiver
is busy

(0,1)

(2,0)

B
threads

 
Figure 8 Buffer pseudo-task 

9. Limitations 
This is not a complete list, but notes some limitations that have come up: 

• recursive calls are excluded (a task calling its own entries)... the approach for dealing with 
recursive calls is to aggregate the demand into the first entry. Possibly this should be 
accommodated, but it requires an assumption that the same thread handles the recursive request 
(to avoid deadlock when threads are limited), which limits the behaviour of an entry. 

• replication of subsystems (without defining all the replicas separately) is handled but only with 
restrictions; a thesis is available (Amy Pan). 

• activity sequences which fork in one task and join in another can be solved by the simulation 
solver (lqsim). 

• external arrival flows may be specified into any entry, however a system with only external 
arrivals causes problems for the analytic solver. It is recommended to define sources of traffic as 
tasks which make requests and block; this has the advantage that it never overruns the system. 
message loss is not modeled; current research may cure this. 

• exceptions and timeouts are not currently modeled. 

10. Reference material 
[1] Greg Franks, "Performance Analysis of Distributed Server Systems", Jan. 2000, PhD. thesis, 

Carleton University.  
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103-114, Riverside, CA, USA, Sept. 2006.  

[3] Greg Franks, Tariq Al-Omari, Murray Woodside, Olivia Das, Salem Derisavi, "Enhanced 
Modeling and Solution of Layered Queueing Networks", IEEE Trans. on Software Eng. Aug. 
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Also, see the web pages: 

• http://www.layeredqueues.org/  includes a bibliography on layered queueing. 

• www.sce.carleton.ca/rads... for material on the larger project (RADS is the Real-time And 
Distributed Systems group at Carleton), and for software download. 

• www.sce.carleton.ca/rads/lqns/documentation 

• www.sce.carleton.ca/faculty/woodside for my bibliography material 

11. Running the tools 
LQNS is available from the download page (you will need to sign a license and fax it) for 

Linux and Windows (actually, for GNU tools under DOS). It has a comprehensive man page 
describing many options for different solver algorithms, for tracing solutions and for printing more 
or less detail. The best reference on the many solver options is Greg Franks’ PhD thesis (1999). 

The LQNS  input language is essentially documented by the comments in the example files 
... . There is a BNF definition included in the more extensive discussion of activity notation, in 
“Parallel Activity Notation in LQNS” by Franks (a chapter in the thesis, reference [1]). Personally I 
create models starting with one of two template files that include example definitions and comments 
defining the syntax. template.lqn does not include activities, activity-template.lqn 
does. I replace the model in the template by the one I want. 

LQML is the more recent XML-based language, with schema lqn.xsd (and there are two 
sub-schemas with it). You can convert between the two languages with the program lqn2xml, or the 
jlqndef editor. If you need the XML it may be preferable to create the model in the input language 
and convert, writing models in XML is brutal. 

lqn2ps is a program for creating a graphical image in many formats, not just postscript. 

Jlqndef is a graphical and text-window-based editor which shows a simple diagram of the 
model. It requires Java 1.1.3 or higher, with the “swing components”. 

11.1. Efficient experiment control 
Two ways are provided to do parameter sensitivity and other experiments under program 

control, and extract the results in a compact form.  

1. The most general is to write a progam in lqx and include it in a LQML definition file (see the 
LQNS User Guide) 

2. A more restricted but useful capability allows one to define sets of values of parameters, and then 
evaluate models for all combinations of these values. This replaces SPEX. It is provided by LQNS 
or LQSIM using the original LQ language with SPEX-like additions to the model file, which are 
described in the User Guide. If you are familiar with SPEX, the main difference is that the 
parameter range definitions must be enclosed in square brackets (e.g. $param = [1,6,15,37] or 
$param = [10:100,10]. Also expressions must conform to LQX rather than PERL, comments must 
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begin with #, and string substitution is not supported, and there is a change to how solver pragmas 
are set.  
If you are not familiar with SPEX, a simplified description of experiment control follows (for more 
capabilities and details see the User Guide, section 5.3): 
• before the model begins, add lines of form “paramname = [value1, value2,...]” or “paramname = 

[start:end,increment]” (where paramname must begin with $) to define the experiment cases. 
• optionally you can define other named parameters as functions (expressions) of these, using +-

*/ operators in the usual way. 
• within the model, use paramname in place of the numeric model parameter value. 
• add results definitions at the ends of lines defining processors, tasks, entry host demands and 

calls. Each result definition is of the form %X resultname, where resultname also begins with $ 
and X is a code, one of: u (utilization), pu (processor utilization), s0 (total entry time), s1 (entry 
phase 1 time), s2 (entry phase 2 time), f (throughput). 

• after the model, add a section starting “R 0” with a list of items: (1) parameter names, (2) result 
names (3) $var = expression, one per line with no line termination (the first line begins $0 = 
item). Each case solved will give one line of results with these values in the order defined. 

12. Questions 
• Throughput refuses to increase when I introduce more resources. Search for a saturated 

resource; it may represent a modeling error. For instance, if one introduces more users, one must 
also introduce more processors for them to run on. A simple expedient is to make any resource 
which should not be a limt, infinite. This is also solver-friendly, a infinite resources are easy. 

• Convergence: what if my LQNS solution does not converge? The symptom is that the 
convergence value for the iterations is greater than the set value, typically 10^-6. Sometimes, 
especially in heavily loaded systems, the iterative solver will cycle and not converge. One cure 
which is sometimes effective is to reduce the value of the under-relaxation coefficient in the 
solver controls, from a typical value of 0.9 or 0.7 to a low value, of say 0.1. This is intended to 
force convergence by reducing the step size. If this does not succeed, then as long as the 
convergence value is less than 0.1, the solution found has some reasonable relationship to the 
correct value. (The size of the convergence value is the largest relative change from one iteration 
to the next, of any of the variables in the model; it does not directly indicate the size of errors, 
but if the solution is in fact cycling around the correct solution then all relative errors are 
probably smaller than this). A method which is ususally not effective is to increase the number of 
iteration steps. The basic recourse for greater accuracy is to simulate. 

• Replication: how can I model a system with many repetitions of a subsystem within it? Provided 
the replications are identical in every respect, and divide all their interactions with the rest of the 
system equally, the replication feature of LQNS can give efficient solutions. The full 
documentation of this feature is in the Master’s thesis of Amy Pan. Briefly, any task can have a 
replication factor r, which means that multiple copies are created. If its processor has the same r, 
then each cophy has a separate processor. If it communicates with other tasks with the same r, it 
communicaties with just one of them, and the interactions are assumed to form r subsystems. 
Messages between tasks with different r must have values of fan-in (f) and fanout (o) such that 
the product of source (r times fanout) = destination (r times fan-in). These factors f and o 
describe the replication of the message arcs. Unfortunately replication does not work for models 
with activities, only with phases. 



Tutorial Introduction to Layered Modeling of Software Performance  2/26/13  17  

• Odd results for multiple servers: if I run for a series of values of m for server multiplicity, I may 
see rising throughput; then for m= infinity, the throughput drops a bit. How come? The waiting 
time calculation for a multiserver is an approximation, and errors of a few percent are to be 
expected. The infinite server queue is solved exactly (no waiting). If the anomaly is worrying, try 
a more exact multiserver algorithm by using “pragma -Pmultiserver=conway”, but it will take 
longer. 

• Non-blocking systems: in my model the servers are asynchronous. A server processes each 
message, whether a request or a reply, and then takes whatever message comes next. I never 
blocks to wait for a reply. How to model it? Such a server is modeled with infinite threads, 
allowing one active thread for each uncompleted request it is processing. This may be called 
virtual threads or data threads, since the request context, if any , is managed by user data. 

• Solution Time: my LQNS solution takes a long time (a minute is long for a few tasks; 10 minutes 
is long for any model). Possible reasons are: (1) poor convergence (see below)... you may want 
to reduce the iterations or simulate; (2) a huge number of classes, generated by having a lot of 
separate source tasks (“reference tasks” and lots of entries on worker tasks.... you could get faster 
results if the sources were combined into fewer tasks, with random splits to generate the requests 
they make into the service layers.(3) do you have a multiserver (not a reference task) with a large 
m (say, m> 20?)... or layered multiservers one above the other, with moderate m... multiserver 
solutions are only moderately expensive by the default algorithm, but the others cost more. You 
might consider whether it could as easily be infinite (if, say, its usage is well below the limit so 
the limit is not a factor). In any of these cases, you might try to simulate; there have been models 
that solved faster by simulation. 

• Cycles: what do I do if my model has a synchronous messaging cycle? LQNS will refuse to solve 
a model, however it can be instructed to ignore the cycle checker with the pragma -
Pcycles=allow. It then solves the model with an implicit assumption that if deadlocks are 
possible, they do not occur or are resolved. The simulator (parasrvn) will take a model with 
cycles at any time, however if a deadlock occurs as a result of a cycle, the simulation stops 
without any diagnostic. 

• Delay: how can I get the result for delay from an input at one point, to a response completion 
somewhere else in the model? The cleanest approach is to introduce some special model 
elements: first, at the start of the response, introduce a pseudo-task R to capture the delay as its 
service time. It has zero demands (s = 0), has infinite multiplicity (code i) runs on its own 
processor or an infinite processor, has deterministic phases (f = 1) and makes one synchronous 
call to the input point to start the response. Second, create a forwarding chain through the model 
along the path of the response, so that the reply is created at the completion point; the reply goes 
back to the pseudo-task R, and ends its blocking state.  

• Simulation accuracy: how can I tell how accurate my simulation is? It is essential to get 
confidence intervals out of the simulation. If you don’t know about these, you will have to 
consult a statistics text. Parasrvn will calculate confidence intervals for you, for all its results, if 
you run with the -A (automatic) or -B (batched) run options. These have the form -A,a,p,b or -
B,n,b where b is a batch length in model time units, which should be say 100 times longer than 
the longest service time in your model, and n is the number batches (suggest 30, which is the 
max allowed). For A, a is the accuracy target in 5 of mean values, p is the confidence leveel 
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13. Appendix: Model files 
Model File template.lqn 
G 
#Comments between quotes, as many lines as necessary 
“Layered Queueing Network for a Web-based Reservation System” 
#Convergence criterion, iteration limit, print interval, under-
relaxation 
#Under-relaxation coefficient stabilizes the algorithm if less 
than 1 
0.0001 
500 
1 
0.5 
# End of General Information 
-1 
 
# Processor Information (the zero is necessary; it may also give 
the number of processors) 
P 0 
#SYNTAX: p ProcessorName SchedDiscipline [multiplicity, default = 
1] 
# SchedDiscipline = f fifo|r random|p premptive| 
#   h hol or non-pre-empt|s proc-sharing 
# multiplicity = m value (multiprocessor)|i (infinite) 
p UserP f i 
p ReservP f 
p DBP f 
p DBDiskP f 
p ReservDiskP f 
p CCReqP f i 
# End of Processor Information 
-1 
 
# Task Information: (the zero is necessary; it may also give the 
number of tasks) 
T 0 
#SYNTAX: t TaskName RefFlag EntryList -1 ProcessorName 
[multiplicity] 
# TaskName is any string, globally unique among tasks 
# RefFlag = r (reference or user task)|n (other) 
# multiplicity = m value (multithreaded)|i (infinite) 
t Users r users -1 UserP m 100 
t Reserv n connect interact disconnect -1 ReservP m 5 
t DB n dbupdate -1 DBP 
t Netware n netware -1 ReservP 
t DBDisk n dbDisk -1 DBDiskP 
t ReservDisk n reservDisk -1 ReservDiskP 



Tutorial Introduction to Layered Modeling of Software Performance  2/26/13  19  

t CCReq n ccreq -1 CCReqP i 
# End of Task Information 
-1 
 
#Entry Information: (the zero is necessary; it may also give the 
total number of entries) 
E 0 
# SYNTAX-FORM-A: Token EntryName Value1 [Value2] [Value3] -1 
# EntryName is a string, globally unique over all entries 
# Values are for phase 1, 2 and 3 (phase 1 is before the reply) 
#  Tokens indicate the significance of the Value: 
#   s HostServiceDemand for EntryName 
#   c HostServiceCoefficientofVariation 
#   f PhaseTypeFlag 
# SYNTAX-FORM-B: Token FromEntry ToEntry Value1 [Value2] [Value3] 
-1 
#  Tokens indicate the Value Definitions: 
#   y SynchronousCalls (no. of rendezvous) 
#   F ProbForwarding (forward to ToEntry rather than replying) 
#   z AsynchronousCalls (no. of send-no-reply messages) 
#   o Fanout (for replicated servers)(ignore this) 
#   i FanIn (for replicated servers)(ignore this) 
# This example only shows use of host demands and synchronous 
requests 
s users 0 56 0 -1 
y users connect 0 1 0 -1 
y users interact 0 6 0 -1 
y users disconnect 0 1 0 -1 
s connect 0.001 0 0 -1 
y connect netware 1 0 0 -1 
s interact 0.0014 0 0 -1 
y interact netware 1 0 0 -1 
y interact ccreq 0.1 0 0 -1 
y interact dbupdate 1.15 0 0 -1 
s disconnect 0.0001 0.0007 0 -1 
y disconnect netware 1 0 0 -1 
y disconnect dbupdate 1 0 0 -1 
s netware 0.0012 0 0 -1 
y netware reservDisk 1.5 0 0 -1 
s dbupdate 0.0085 0 0 -1 
y dbupdate dbDisk 2 0 0 -1 
s ccreq 3 0 0 -1 
s reservDisk 0.011 0 0 -1 
s dbDisk 0.011 0 0 -1 
#End of Entry Information 
-1 

Model File activity-templ.lqn 



Tutorial Introduction to Layered Modeling of Software Performance  2/26/13  20  

#This template documents the use of activities in depth 
#It assumes familiarity with other features documented in reserv-
template.lqn 
# or in template.lqn 
G “Activity template” 1e-06 50 5 0.9 -1 
 
P 0 
  p UserP f i 
  p ServerP s #processor sharing at the server 
  p Disk1P f 
  p Disk2P f 
-1 
 
T 0 
  t User r  user -1 UserP  z 50 m 50 
  t Server n server -1 ServerP  m 4 #4 threads with activities 
  t BigLoop n bigLoop -1 ServerP i  #pseudo-task for a complex 
loop pattern 
  t Disk1 n disk1read disk1write -1 Disk1P  
  t Disk2 n disk2read disk2write -1 Disk2P  
-1 
 
E 0 
  s  user  1.0 -1 
  f user 1 -1 
  y  user server 1 -1  #one request to the server per cycle 
  A  server  serverStart #entry server is defined by 
#activities, with the first one being serverStart 
  A  bigLoop  bigLoopStart 
  s  disk1read  0.04 -1  #operation time of this entry 
  s  disk1write 0.04 -1 
  s  disk2read  0.03 -1 
  s  disk2write 0.03 -1 
-1 
 
 
#Optional sections for definition of activities 
# One section for each task that has activities, beginning A 
TaskName 
# list of activity parameters, using the syntax for entry 
parameters, but 
# with just one value and no terminator -1 
# : (separator), then a section for precedence among activities 
# Syntax for precedence: 
# a1 -> a2 for sequence 
# a1 -> a2 & a3 ... AND-fork (any number) 
# a1 & a2 ... -> a3   AND join 
# a1 & a2 ... -> a3 & a4 ... AND join followed by AND fork 
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# a1 -> (prob2)a2 + (prob3)a3 ... OR fork (any number, with 
probabilities) 
# a1 -> meanCount*a2,a3....for a repeated activity a2, followed 
by a3 
#  (notice that activities that follow a2 are inside the loop) 
# a6[entryName] indicates that after a6, a reply will be sent 
# to entryName 
 
A  Server 
  s  serverStart  0.0 #every activity that is used must have a 
host demand 
  s  seqInit  0.3 
  s  parInit  0.1 
  s  parA  0.05 
  y  parA disk1read 1.3 #average of 1.3 read operations 
  s  parB  0.08 
  y  parB disk2read 2.1 
  s  parReply  0.01 
  s  loopOperation  0.1 
  y loopOperation disk1read 0.7 
  s  loop2 0 
  f  bigLoopDriver 1 #exactly one call operation (deterministic) 
  y bigLoopDriver bigLoop 1 #trigger the pseudo-task for the 
complex loop 
  s seqReply 0.005 
  s loopEnd 0 
: 
  serverStart -> (0.4)seqInit + (0.6)parInit; 
  parInit -> parA & parB; 
  parA & parB -> parReply; 
  parReply[server];  #reply for the parallel branch 
  seqInit -> 3.5* loopOperation, loopEnd; 
  loopOperation -> loop2; #this activity is also in the loop 
  loopEnd -> 1.2* bigLoopDriver, seqReply;#big loop is executed 
avge 1.2times 
  seqReply[server]  #reply for the sequential branch 
-1 
 
A BigLoop #activities for the loop pseudo-task 
# (a loop pseudo-task is needed if there is a fork-join within a 
loop) 
s first 0.01  #execute 
f second 1  #deterministic sequence in this activity 
y second disk1write 1 #exactly one file write on this branch 
y third disk2write 1 #average of one write on this branch 
s fourth 0.13  #execute only 
: 
bigLoopStart -> first; 
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first -> second & third; 
second & third -> fourth; 
fourth[bigLoop] #generate the reply from the pseudo task, ending 
the loop op 
-1 

 

 

 


