GoBosh G700S Flight
Simulator

Senior Design II - Spring 2010 - Group 11

Christopher Dlugolinksi, Robert Gysi, Joseph Munera, Lewis Vail

Project Sponsor: Mr. Dave Kotick, Grizzly Aviation

5/3/2010

Page |i

Table of Contents

L0 0 F=T o) o =T ol U 1
1.1 EXECUTIVE SUMIMAIY ..eiiiiiiiiiiieiiitteee e e e ettt te e e e e s e sttt e e e e s s sabsrteeeeeeeesaaaseraeeeesesssannnsnaeaeesssnas 1

L8 0 =T o} =T PP 3
D oY1= ot A 0] o 1= 4 Y TSP 3
2.2 Specifications/REQUIFEMENTSviiiiieeiee ettt ettt ettt e etee e e beeebeeeeaaeeeabeeennnas 4
2.2.1 SOftWare REQUIMEMENTScccccuiieeeciiiee et e ectree et e e et e e e e satr e e e esaaaeeeesataeeesnsaeeesansaneenas 4
2.2.2 Hardware REQUITEMENTScccuiieecciieeeecitee ettt e et e e e ae e e e sabee e s e abe e e e e nteeeeentaeeeenreeas 16

P B oY (=Tt a2 0T F == SRR 22

P N oY1=t T =1 11 TSP UPR 24
(00T T o1 =T . JR TSRS 25
3.1 DESIZN SUMMIAIY ceiiiiiiiiceieieeeeeese e s s s s se s e s e e s s s es s e s s s s e s e s e s e s e s s s e s e s e s s s asessessssasasasasssasessssesesesnenenennens 25
IV \V, ol qoTelo] ol o] | =T gl D I=Ty F-d s TP PRRNt 31
3.2.1 Implementation of HardWarec..ueeoiiiiiiciiie e 31
3.2.2 EMbedded SOfTWAIEcc..eiiiiiiiie ettt ettt et e e e e sbe e 33

3.3 Flight INStrUMENTt DESISN ..vviiiiiiiiee ittt e et e e e st e e e sbte e e e sbaeeessbeeeeesseeeassanes 33
3.3.1 Air Pressure Sensing INSTrUMENTSceieiieiciccceccececececeee e e e e e e 39
3.3.2 GYrOSCOPIC INSTIUMENES .. eeeas 48

R T N O [U == D =T 1= I U TSP 57

3.4 Flight CONtrol DESIZN...cciiiiiiiiiiiiiee ettt e et e st e e e st e e e st te e e s sbaeeeesbaeeeessraeassnnes 64
I R T 1Y 2y ol [1T =4 o IR 65
3.4.2 RUAAEN PEAAIS ...ttt 68
BB TRIOTEIE ettt sttt et b e bt sttt e nbe e sbeesaeeeas 71
3.4.5 Combined Flight CoNtrol CirCUIt........eeeeiuiieeeiiiie e 75

3.5 Computer Hardware SEIECTIONcccuviiiieiiee ettt et tte e e e e bae e e e e areeeeeaees 76
3.5.1 COMPULEr HAardWAare ...c..eviiiiiiiiie ettt ettt e e e ve e e e sabe e e e s a e e e s abe e e e enbaeeesnnnneas 76
3.5.2 DiSPlay ProjECIONciiiiiieecitee ettt et e et e e et e e e e anaeas 82

30 SWILCNES ettt ettt st b e st nr e reennee e 85
3.7 Panel INdicator LIGhtS........uuiiiiiiii et e e e e e e s e e e e e e e e e eannnnes 86
3.8 Flight Instrument and Control Interface DeSIZNc..eeeeeciiiieeeciiiie e e 88
3.0 POWET SUPPIY eeettitiiie ettt e e e et e e e e e e e e n b e e e e e e e s e s s arteeaeeaeeeeannbaraeeeeaeeeannnranns 91

3.9.1 Peripheral Devices POWET SUPPIY ...vvvieiiiieieeiiiecccteee ettt e e e e 91

3.10 Remote Instructor Operator STatioN. ... 92
3.12 AIFCraft MO ...ttt et et st e e s e s bt e e s b e e s neeesaree s 92
3.11.1 MOl GENEIATION...c.uiiiiiiiieteeteet ettt sttt e bt esbee st s e e ebeesbeesbeesane e 93
3012 ANFOIL ettt b e saee e 95

(0 0 F=T oY =T o SRR 96
4.1 Project IMplementation ...t e e e s nrreeeean 96
o I o) B Y=Y (WY [=Te I o [o £ S UPPPSRN 96
4.3 BUIIA PRASE ... eeiiiieeieeee ettt ettt st et st e s e st e s b e s be e e s reeenees 97
4.3.1 Flight Instrument ASSEMDBIYcoiiiiiiie e e e e e e 97
4.3.2 Flight Control ASSEMDBIYooiieiiieeceee et e e etee e e eaba e e e e areeas 98
4.3.3 Indicator and SWItch ASSEMDBIYuviiiiiiiiie e e 98

(0 0T T o1 =T T TP 99
5.1 OVEIVIBW ..ttt ettt ettt e ettt e st e e s ettt e e s ebe e e e s sabe e e e s sabeeeeseaseeeesaasaneesaaseeeesaneeeesannen 99
5.2 Required Test EQUIPMENT ...occiiiiiie ettt e et e e et e e e e e bte e e s ebae e e e eabaeeeeenbeeeaeennes 99
5.3 TSt LOCATIONS ..ttt s 100
Sy Y olol=T o] =1 g [0l = I =T}] = T PRSP RPPPRRRRP 100
oI I oY A =T] o = OO PP PP PPTRPPPPTN 101
LI B A 1= oY) (T g 1= PSP 102
oI B o 1= oY ol o 4 o P UPP 108
5.4.4 Cockpit Switch and Indicator Circuit TESTINGccccveeeeeiiiieeeciee e e 111
5.5 Integrated SYStEmMS TeSING .. uuuiii i e e e e e rrrrre e e e e s e s eaarrereeeeeeeans 113
5.6 ProtOtYPE USE CASES ..uuiiiiiieieiiiieiieeseeeseesssse s s e s s s s e s s e s e s s s s s s s s s s s e s s s e e s e e e e e e s e e eeeseneeseaneesasasasasanenenas 116
5.7 Requirements VerifiCationccuei ittt e 117
5.7.1 Software Requirement Verificationcccoocuveeiiiiii i 117
5.7.2 Hardware Requirement Verification........cccccueeiiciiiiiciiie e 119

(0 0 F=T oY =T ol TSP 122
6.1 USEIr MANUAL ..ttt s re e e neas 122
6.2 Setup and BasiC OPeratioN.......uucc et e e e e e e e e e aas 122
(o T oYU o1 [T g Yo Yo T o = SRS 123
6.3.1 INOPEIAtIVE GAUBE... e iieeeeeeiiririrerererererere e sese s s es e s ss e s s s s s sssssssssseessssssssssssssssssesanssassnsssnsenns 123
6.3.2 Gauge does not INitialize Properly ... 124

6.3.4 Control Device is NOt RECOGNIZEAcvvveiiieiiiiiieee e e 124

Page |iii

6.4 FTDI Chip PrOgrammMiNgueeeeeeeiieeiiiiiieeeeeeeeccitieeeeeeeeeseinteseeesassessssnssssesessssssssnssssseseesannns 124
(01 0 =T o1 =T PSPPI 129
7.1 SUMIMIAIY ¢ s e s e s s e s e s enenenasansssssssssssssnsssssssssssnsesesasssnsnanannns 129
ApPPENndixX A: Trade STUAIES ...cciciiieeeeciiee et e e e e e are e e e e aree e e eabeeeseabeeeeensaeeeenasenas 0
A.1 Microcontroller Trade STUAYeeeee ittt e e et e e e e bee e e e s baaeeeeanes 1
A.2 Flight SIMUIator Trade StUAY ...ocveeeiiiieee ettt e e s e e s sbee e e s sbeeeeseanes 1
Appendix B: Project Schedules and Fall Semester Monthly Status Reports........ccccoecveeeiviieeeennneen. 0
B.1 Fall Semester Project SCheAUIE........coi i 1
B.2 Spring Semester Project SCheAUIEoiiuiiie e e 1
B.3 October — Monthly STatus REPOIT.......ccuuiiiieiiie ettt e e e aa e e eeaaeeeeas 2
B.4 November — Monthly Status REPOIt........ccccciiiiieciiieecciiee ettt e e e e are e e e aaeeeean 2
Appendix C: Permissions to use Protected Materials.........ccceveviiiiicieieiiciiee e 0
C.1 Images by Mark Verschaeren/Flight HIUSIONccoeiiiiieiieiiie ettt 1
C.2 Information from Bob MillEr.........cue it 1

(O3 VY]] o =T - PRSP 1

Page |1

Chapter 1

1.1 Executive Summary

When the idea of creating a flight simulator came up as a topic for a senior
design project it sounded like a fun project that could have many different types
of challenges. A simulator is an imitation of something real, and the simulator
that we were asked to build was for a real product, the GoBosh 700s aircratft.
The aircraft is used for training students on how to fly and the simulation would
make that task easier, and also make the student a little more comfortable with
his/her ability as a pilot before they actually fly the real aircratft.

Originally, an actual aircraft fuselage of this aircraft type was going to be part of
our design. The fuselage would have come equipped with all the working control
inputs (pedals, stick, and throttle) as well the instrument panel for our simulated
instruments. Unfortunately, due to supplier issues between the factory (Aero Sp.
z 0.0.) and the US importer (GoBosh Aviation), we did not receive a cockpit as
intended. Although the cockpit was not received, GoBosh did come through and
deliver us an instrument panel cutout and several gauges to use for parts to add
what realism we could to our simulator. Even with this limitations, our goal was to
still to make an as realistic as possible simulator with the materials and resources
we had available to us.

Originally one of the key features for this simulator was the actual use of the
aircraft’s original flight controls. However, with above mentioned supply issue,
we instead were tasked with implementing our electronics design to test rigs to
validate our design work. The electronics design did not change at all and still
utilized potentiometers (slide and turn) coupled with Analog-to-Digital Converters
feeding into one of our FTDI USB communication chips. From a mechanical
perspective, we needed to design in a short amount of time our controls for
implementation with our simulator. The implementation of these controls is
discussed in a later chapter. The other half of the physical implementation
requirements of this simulator included the design and construction of a set of
simulated “six-pack” flight instruments. This includes the airspeed indicator, turn
coordinator, vertical speed indicator, altimeter, artificial horizon and directional
gyro (compass). These will all take their values from X-Plane and will display the
same as if they were the simulated gauges on the computer screen.

Another aspect of our original plan was to implement a visual projection system
along with computer hardware to power our simulator. This was going to be
accomplished through the use of three 24” monitors to give the user a 120° field
of view out of the cockpit. Since the actual cockpit was not to arrive in time, a
decision was reached with our sponsor to not take the simulator to Sun ‘n Fun in
Lakeland and as a result to not purchase the associated computer components
at this time. Even with this limitation we were able to demonstrate the ability of
the software to output 120° field of view onto a single 24” monitor. Additionally,
for our demonstration, we utilized our primary development machine to power all

Page |2

of our simulated controls, instruments and visual output without any performance
or other issues.

Additionally, another feature of the simulation is that we will include databases for
the local airports of the surrounding areas so that pilots form this area can notice
landmarks while flying the simulator. These databases are all included in X-
Plane, although for higher realism 3™-party scenery can be purchased to
increase realism of the local area. All of the features listed above will give a good
simulation of the GoBosh 700s that will give the user a better understanding of
this aircraft reacts inflight and the ease at which one can fly this aircraft.

This paper describes how each of the features listed above were researched how
they were implemented, and the results of our testing. Also we will cover some
administrative information, including our budget and our original project schedule
predictions. Additionally, in the Appendices of this paper you can find several of
our early project deliverables and research information.

In order to make the simulator as real as possible we needed to pinpoint the
parts of the activity of flying the GoBosh that were essential. From several
meetings with our sponsor and two of his fellow aviators we gathered and
formulated our project requirements. This allowed us to develop requirements
for our hardware and software components that we needed to interface with one
another. These requirements are listed in the requirements chapter in this paper
and are broken down by functional area. Also located in that table is the status
of the implementation of our project requirements, since due to some decisions
between us and our sponsor, several requirements were not met. From our
requirements we formulated our budget. We were given an initial budget
limitation of $1500 by our sponsor, which would not have been enough for the
project if we had purchased the computer. Since we did not purchase a
computer our budget came in at under half of the original. This is explained
further in the budget chapter of this paper. Additionally, the design of our
individual of components is discussed in the chapter on design. It lists all the
reasons why we decided to create the system the way we did as well as provide
the basics for implementing our designs. After discussing our design we will
discuss the implementation of our designs including the testing of our system to
ensure that it meets our project requirements.

Overall, the project was a tough challenge, but we feel that we all now have a
greater understanding of the engineering process as well as effort that it takes to
create a functioning simulator. The effort required many hours of work in the
senior design lab, but overall it is worth it when in the end a functional product
works during the project demonstration.

Page |3

Chapter 2
2.1 Project Objective

The objective of this project is simple: to build a simulator around a GoBosh
G700S/Aero AT-4 Light Sport Aircraft. We were tasked on this project by Mr.
Dave Kotick, a local flight instructor based out of the Orlando-Apopka Airport
(X04) near Apopka, FL who has sponsored this project through his business
Grizzly Aviation.

As defined in our first meeting with Mr. Kotick, the initial purpose of this project
was to produce a flight simulator that is not necessarily for flight training, but for
demonstrations of this aircraft. In addition to training of aspiring Light Sport
Aircraft pilots, his business is also a representative of the US importer of the
aircraft we simulated: GoBosh Aviation (the aircraft are manufactured in Poland
by a company known as Aero Sp. z 0. 0. as the Aero AT-4). Because of this, he
frequently travels to airshows and general aviation conferences to demonstrate
the aircraft and find potential buyers or those who are interested in potentially
earning their LSA pilot’s license.

One of these events in which he participates in with GoBosh Aviation, is the Sun
‘n Fun airshow and general aviation conference which was held in Lakeland, FL
at the Lakeland Linder Regional Airport. This year the event was held during the
second week of April (4/13-4/18), and we were originally to be part of the exhibits
with our simulator at the show. Unfortunately, due to not receiving our cockpit
from Aero in Poland, a decision was made to not demonstrate at the airshow.

While making it to Sun ‘n Fun was considered our ultimate objective for this
project, we also had several side objectives as well that this project needed to
meet. In addition to being developed for demonstrations at aviation shows where
the individuals in attendance are familiar with aircraft or at least flying one, it was
also designed to be taken to a variety of other shows in the future once handed
over to Mr. Kotick. One example would be the Orlando Home and Boat show,
where people who may have never considered becoming a light sport aircraft
pilot or purchasing a light sport aircraft could be exposed. This serves the
purpose of education, as many people assume that they could never fly due to
the fact that flight lessons are expensive and time consuming, which is the
opposite of the aircraft we are simulating. Because of this, the purpose at these
shows is to show the relative ease that exists to pilot one of these aircraft.
Although we were unable to get the cockpit in time, we were able to complete all
of the necessary software and hardware without it and this can be put into the
real cockpit once obtained. This would allow our sponsor to ultimately meet
these original goals.

Another additional objective for this project was for it to potentially be used in
ground based flight training. Pilots are allowed to use a limited number of ground
based flight simulator training in lieu of actual time in the cockpit. With this in
mind we have kept this as an open option through the development of our

Page |4

requirements and through our design. In fact as later discussed in Section
2.2.1.1, we see that it actually is as simple as plugging in a special USB key into
a computer running the simulation software (X-Plane). While providing the key is
not within the scope of this project, the ability to do this allows our sponsor to add
to the simulator once we have finished.

2.2 Specifications/Requirements

We have broken down our requirements into two parts; our software
requirements and our hardware requirements. In each subsection, we break
down the development of our requirements and explain why we chose a
particular option over the other and ultimately which devices or software were
ultimately the one that met our requirements.

2.2.1 Software Requirements

The software requirements will be broken down into three sections: the
requirements for the flight simulator, the requirements for the aircraft model we
developed for the flight simulator, and the microcontroller/FTDI chip control
software requirements.

2.2.1.1 Flight Simulator Requirements

In order to be able to realistically portray the GoBosh G700S/Aero AT-4 in a
virtual environment it was critical to pick the correct flight simulation software
package. Currently, there are two competing simulators on the market available
to end-users: Microsoft® Flight Simulator X (FSX) and Laminar Research® X-
Plane 9.4. To the average end user, they are fairly similar applications, although
for our purposes only one really stands out.

X-Plane 9.4 incorporates the most accurate methods of modeling an aircraft in
virtual environment by actually taking the shape of the aircraft and model the
aircraft through the use of blade element theory. This technique means that the
software sections the aircraft model into multiple small “blades” to calculate the
forces on these points. This gives a realistic physics model of the aircraft, which
means if you model a solid cube with no aerodynamic properties, all it is going to
do is sit on the ground. Microsoft FSX takes a different approach and instead of
breaking down the aircraft into sections and then modeling it in a physics engine,
it receives all of its properties through a configuration file, meaning the previously
mentioned cube would be able to fly with the proper variables.

X-Plane also includes a model editor in order to create aircraft that will fly in the
game. FSX does not include this feature and requires expensive third-party
applications in addition to manually editing a configuration file.

While X-Plane takes a victory when it comes to modeling, it does not when it
comes to scenery. Scenery in FSX is much more detailed including airport
terminals, landmarks, towers, and major population centers. X-Plane 9.4 does

Page |5

not include any of these and instead uses random auto-generated scenery to
populate the world. While a city such as Apopka does not need major detalil,
cities like New York City miss all the important landmarks a pilot would use to fly.
However, this feature is not a primary requirement and is considered part of the
‘entertainment-value” of the simulator and where the need arises for detailed
local scenery it can be developed or purchased from third-party developers.

There is also the possibility, down the road, that this flight simulator could be
used for ground based flight training. Currently only X-Plane is certified by the
FAA when coupled with a $500 USB key, which guarantees frame rates and
output data. However, the consumer version does allow you to set a frame rate
limit and it will scale the simulation graphics settings in order to match this rate.
For the purposes of this simulator, a minimum of 30 frames per second was
deemed necessary. In addition, this is part of the commitment Laminar Research
has made to the X-Plane family including the fact that there are regular updates
of the software. This is compared to FSX which as of January 2009, has had a
stop in development of future versions due to the closing of the Microsoft ACES
studio.

All of these items together show that for this simulator, the use of X-Plane 9.4
would be most advantageous to use. A further exploration of the requirements
and results of a side-by-side comparison lie in Table 2-1 below with explanations
given in the proceeding paragraphs.

Table 2-1 Environmental Aspects

No. | Item/Description Req. No. | FSX [X-Plane 9

1. Inclusion of Majority of Airports | S1.B Yes | Yes
Worldwide

2. Detailed Realistic Scenery S1.A Yes | Yes

2a. | Accurately detailed major cities and | S1.A Yes [No
landmarks

3. Realistic Weather Conditions S3.A Yes | Yes

3a. | Real-World Weather S3.A Yes | Yes

4, Al Aircraft in the virtual world S3.E Yes | No

5. Deliver a constant 30 FPS S6 No Yes

While comparing the environment simulated in both of the software options we
find that on the surface the two seem similar. They both include a large number
of airports worldwide (X-Plane even includes a few that FSX omits), but the major
difference is that in X-Plane airports are just runways, taxiways, and aprons.
There are no buildings on airport property at any airports in the simulator, not
even at airports such as John F. Kennedy International Airport (KJFK) in New
York City or Orlando International Airport (KMCO). Microsoft’s Flight Simulator
does have these major airports accurately modeled and where there isn’t an
actual model, automatically generated buildings are displayed along with other

Page |6

support buildings. However, while this is a feature that is nice to have, the whole
purpose is actually to have the plane flying, not taxiing to a commercial aircraft
gate at a terminal. At the same time, Microsoft FSX also includes more detailed
scenery overall. In order to provide some realism, the modelers at Microsoft
decided to model major landmarks and major population centers. That means
when flying over Disney World you fly over the EPCOT attraction Spaceship
Earth or if flying over New York City, the skyline of Manhattan is present. Now,
this isn’'t to say that X-Plane does not have decent scenery installed. In fact in
some areas it does appear to have a decent level of detail, however most areas
do appear to be just randomly generated entirely. When you realize that X-Plane
is not an entertainment simulator like Microsoft FSX, you can see that why
Laminar Research spent more time on the aircraft physics modeling instead of
providing great details to look at. Additionally one can supplement the default
scenery (of either simulator) by purchasing 3™ party packages or creating your
own. A comparison of scenery in each simulator is in the following figures (figure
2-1 and 2-2).

A ;,/ !

Figur 2-1. Flying a Cessna C172SP over Innsbruck, Austria in Microsoft FSX

Page |7

Figure 2-2. Flying a Cessna C172 over Innsbruck, Austria in X-Plane 9.4C

Comparing the two images preceding this paragraph (Figure 2-1 and 2-2) you
can notice some interesting differences between the two simulators. However,
before we start, we should make it clear that in X-Plane 9, the default airport is
Innsbruck Kranebitten Airport (LOWI), and is therefore has higher detailed
scenery than many of the airports in the game, whereas in Microsoft Flight
simulator it is just another airport from a list of thousands. One thing that is
noticeably different between the two simulators is that smoothness of the
rendering of the aircraft. Both simulation packages ran on the same machine
and resolution, but the one in FSX is slightly jagged. Also, while not able to tell
form this picture, X-Plane supports curved runways, which this airport has
(runways typically are not a 0% gradient), whereas in FSX, it's a flat straight line.
Also speaking of airport surface areas, the taxiways in X-Plane are also of a
higher detail where in FSX they just intersect the runway as a opposed to having
some curve into it. Terrain data in either X-Plane or FSX appears identically the
same (there were no missing or added terrain features), so there is no
differentiation in that department. Render distance is essentially the same, but
as the terrain fades off into the distance FSX does a better job of blending the
horizon and the sky. If you notice in Figure 2-2 the mountain in the distance
appears to be on a boundary of different shades of grey in X-Plane.

Out of this table, one requirement is much more important, especially if this
simulator is to ever be used for ground based flight training: the ability to deliver a
constant frame rate of 30 frames per second (FPS). In FSX you are able to set a
target frame rate, but unfortunately this target is just a way for you to compare
the output frame rate and the ideal, so that you can adjust the graphics settings
yourself on the computer. Unfortunately, this also means at times the system
can become slow and as a result the simulation will not feel as real at all. X-

Page |8

Plane does address this by allowing the user to set a target frame rate, but unlike
FSX, the software will actually scale the graphics settings of the game to match
the target. In addition to this feature X-Plane also has the option to purchase a
$500 USB key that allows for the simulator to be considered FAA accredited
through the guarantee that the output frame rate will not drop below 30 FPS. For
the purpose of this project, this key will not be purchased.

Another point that needs to be addressed is the inclusion of computer controlled
or Al aircraft that exist in the simulated environment. Microsoft Flight Simulator
has this feature built-in and turned on automatically. These Al-based aircraft fly
normal routes and will land, takeoff and even make contact with the Al-based Air
Traffic Control. Additionally they are not limited to one type, almost every single
flyable aircraft in the game can be found in the skies on an Al flight path including
some that are not available to the user. This ensures a decent mix of air traffic
that adds to the realism. On top of all this, for users that seek true realism, many
users in the FSX community have generated their own flight plan files. This
allows the addition of the schedules of entire airlines or flights around an airport.
Additionally this also means that it is relatively straight forward to create custom
flight plans.

X-Plane however, lacks built-in Al-based aircraft support. This however does not
mean that you cannot have computer controlled aircraft sharing the airspace with
the user, it just means that like everything else with X-Plane a plug-in has to be
developed. Luckily there exist several plug-ins already available to download for
free. FSImp is one such plug-in that has spanned many versions of X-Plane and
allows a user to import flight plans from Microsoft Flight Simulator in to X-Plane.
The beauty about this solution is that an X-Plane user can utilize all of the flight
plans developed by the Flight Simulator community, which far outnumbers the
available flight plan databases that are available to the X-Plane Community.
There are other plug-ins as well for X-Plane for Al aircraft, including one that is
nothing more than a flight recorder that replays your past flights as computer
controlled flights.

Table 2-2 Aircraft Modeling

No. | Iltem/Description Reg. No. | FSX | X-Plane 9
1. Included 3D Model Generator S4.A No Yes
2. Ability to change aircraft parametric data | S4.B Yes | Yes

on the fly

In order to deliver an accurate simulation of the aircraft, a detailed and realistic
model was developed to the best of our abilities. Each of the simulators utilize
two different methods to model aircraft, with FSX requiring the use of a 3" party
3D modeling software such as 3ds Studio Max. In addition, once the model is
generated in the software, one must then create an aircraft.cfg file which
specifies the model properties. As mentioned earlier this creates the possibility
for generating a model that does not meet the flight characteristics. X-Plane

Page |9

utilizes an included model generator that allows us to build an accurate model
without utilizing expensive software. Pictured below is how one builds a fuselage
with the editor; in addition you can edit all the other features of the aircraft
including avionics and engines. A more specific discussion on the development
of requirements for the aircraft model can be found in the next section, Section
2.2.1.2 Aircraft Model Requirements is where we cover modeling the aircraft
using the tools in X-Plane in addition to parametric data we currently have from
the manufacturer. Table 2-2 above summarizes this information.

[Import Weapon Body || Import Aircraft Body |

|Tup-‘Butmm || Front/Back ‘ E aircraft has fuselage (might be no for flying wings)
BODY DATA BODY LOCATION BODY TEXTURE
number ?{3 2 attach o =] ??? maovement use second B for
stations 55 eEts] ratio aircraft texture this part
0f alalalala] [alalalala] OOO0 alalala]
number™ o757 ~oo0000 heading ™ s 0000 | 7t g lratio, left “Joono lratio, right
09 # lengarm 000.00 (ft) 000.00 (deg) texturetop 0.754 texturetop, 1000
radiifside == et nffs& fererer] e side of part) o] side of part)
[alalaala] alalalala] jalalalala] OO0 _ AOOO A0AA _OO(A
body radius| 00 2.0 0 | (ft) latarm| 000.00 (ft) pitchoffset| 000.00 (deg) teft” 00001 0.754] HAEE jeit| 0.000]0.754 7 R
oo ooUoog === ooog gogg ogou oogo
falalala] [alalalala] [alalalalal falalaTal [alalalal
Do e 0:07 5 s o vertarm| 00000 (ft) rolloffset| 000.00 (deg) texturebot’ 0.510 | (UGS) texture bot[0.7 5 6 | (Rl Nt
e ouoge oUooT e ogo

‘CROSS-SECTIONS (Double-click on a node to 'LOCK' it, preventing smeothing operations from moving that node)

[alalalala] AOOOH alaTaTala] alalalala] alaTalala] alalalala] [alalalala] alalalala] alalaTala] OOOOH
000.00 00100 00200 003.00 004.00 00500 006.00 007.00 008.00 009.00
=== 5= ===) === CEEEE EEEEE === == ===) =55)

AAAAAAAAA

e 8 PS8 B8 A8 B8 B8 B8 BA8 B S
[Eerv) (Faeve) [eoev) [Fasve) [Zorv] [ramve) (eoev) Famve] [eoev] Fraeve] [zerv) (raewe) [oev) (rasve) [Eoev) [ramwe) [eorv) fraeve) Feoev) fravel

[alalalalal [alalalala] OOAOA [aTalaTala] AOAAH [alalalala] AOAAEH [alalalalal [alalalala] [aTaTaTala]
000.00 000.00 000.00 000.00 000.00 000.00 000.00 000.00 000.00 000.00
=== = == == TooT0 CEEEE OOnET === Oeo0G Too0T
[alalalalal [TalaTala] BAOOAH BOAAH [alalalalal [alalalalal [alalalalal [alalalalal [alalaTaTa] BOOAH
00200 00200 00200 00200 00200 00200 00200 00200 00200 00200
o= ouooT oUooo ooooo ooooe == =l- =1 oonoT ooooe ooooo
ELLIPSE | ELLIPSE | ELLIPSE | [ELOIPSE] [ELOPSE] [ELOPSE] ELLIPSE | ELLIPSE | ELLIPSE | [ELOIPSE]
INSERT | INSERT | [INSERT] ['INSERT] INSERT | INSERT | INSERT | INSERT | [INSERT]

RESET EDITING OFFSETS (arrows and +/- to change)

part description:

Figure 2-3. X-Plane Model Editor running in Windows

Table 2-3 Entertainment Features

No. [Iltem/Description Reqg. No. | FSX | X-Plane
9
1. Detailed Crash Effects S3.B No Yes
2. Multiplayer Support S5.A Yes | Yes
3. Aircraft Sounds S3.C Yes | Yes
4. Ability to create custom S3.D Yes | Yes
scenarios/missions
5. Built-in Instructor Operator Station (I0S) | S8 No Yes

Page |10

By default in both of the flight simulators, when the aircraft crashes or the
airframe is overstressed due to physical factors, the flight ends with the aircraft
stuck in that position; either struck the ground or featured overstressed
conditions. However, X-Plane allows for the removal of flight surfaces if the
aircraft goes past over-speed and over-G thresholds as well as the flaps and
gear doors when over-Vfe (Velocity flap extended) thresholds have been passed.
FSX has overstress indicators in addition to crash detection, but they are not
nearly as extensive as in X-Plane.

As for multiplayer support FSX utilizes the GameSpy matchmaking service for
multiplayer sessions across the internet, but also supports direct connections
utilizing Microsoft DirectPlay for computers on the same local area network. X-
Plane also allows for direct connections over a local network. For each of the
simulators the multiplayer connectivity options allow us to also integrate an
Instructor Operator Station (I0S) to remotely control aspects of the simulator.
For FSX one would need to have to write additional software, and with X-Plane
this feature is built in and would just require an additional installation of X-Plane.
Alternatively, we are also able to utilize the variables presented in the X-Plane
SDK and create our own IOS application. This would allow us to customize the
interface to our needs or provide different interfaces for different usage
scenarios. This way there could be one IOS interface for public demonstrations
and one for actual flight training, should it be used for that. The “entertainment”
features test results are given in Table 2-3 on the previous page.

Table 2-4 Simulator to External Flight Instruments/Controls Communication
No. | Item/Description Req. No. | FSX | X-Plane 9

1. Protocol/API to interface with flight S2.A Yes | Yes
simulator software

FSX allows for two methods of interfacing with simulated flight controls and
instruments: the SimConnect API and the legacy FSUIPC interface from previous
versions of Flight Simulator, but still supported. X-Plane also has an API
available in order to develop plug-ins for the software. This allows us to develop
dil and .exe files to facilitate the data flow between the software and our
hardware. The API for either flight simulator allows access to nearly all of the
internal variables used in the simulators. This allows us to dig into the simulation
state and pull out information ranging to which lights are on, is a switch on or off,
to changing the weather, changing aircraft position, and of course simply flying
the aircraft. This allows us to write a plug-in for X-Plane or an application for
FSX that allows us to do nearly everything. Due to this we will be able to
interface with each of our gauges, our indicator lights, switches and our flight
control systems.

Our overall requirements list is presented the Table 2-5 below. This incorporates
all the requirements that were derived in the preceding paragraphs.

Page |11

Table 2-5 Simulator Requirements

Req # Task | Summary

S1 - Realistic look and feel

S1 A Realistic Scenery

S1 B Inclusion of Airports Worldwide

S2 - Ability to change environmental factors dynamically
S2 A Ability to interface hardware with software via API
S3 - Model Entertainment Aspects

S3 A Weather Effects

S3 B Crash Effects

S3 C Sounds

S3 D Ability to create custom scenarios/missions

S3 E Al Aircraft also utilizing airspace and airports

S4 - Aircraft Model

S4 A Aircraft Exterior Model

S4 B Model parametric data

S5 - Ability to interface with other Flight Sim/X-plane games
S5 A Native Multiplayer Support

S6 - Guaranteed minimum 30 FPS

S6 A FAA Certification - Optional Requirement

S7 - Ability to interface controls/flight instruments

S8 - Ability to interact with an Instructor Operator Station

2.2.1.2 Aircraft Model Requirements

The requirements that we needed in our simulation for the aircraft model have to
do with the actual aircraft and how we can get its physical characteristics into the
X-Plane editor. While we were able to get a good amount of information from the
manufacturer (Aero) and the Importer (GoBosh) on the aircraft model
specifications, some of the needed info was not able to be obtained. We also
contacted the creator of X-Plane and some of the modeling that we wanted to do
was not in the current release of X-Plane and was planned for a later time. Yet,
from some of the info we could get from the sponsor and from the brochure that
was given to us we got some of the info needed to create a model of the plane
we are trying to simulate. We also used the planes manual that we were able to
get from an online site (I don't think it should of been published but we found it).

In order to get the information into the actual X-Plane simulation we needed to
use the included application Plane-Maker. This program is bundled with the
game and has an interface that allows you to input the various parameters of an
aircraft needed info to build a model and make it fly. As for the actual model of
the plane you need to have an .acf file and this is what is created by the Plane-
Maker software.

Page |12

We tried to create the aircraft outside of the editor and ran into many difficulties.
The drawings for the model needed to be exported in the form of an .obj file and
then loaded into sketch-up and then could be exported as an X-Plane format but
this proved to not work or be unworkable in the time that we had so we needed to
go back to the Plane-Maker software for the solution that we eventually went
with.

Given the aircraft specifications in Table 2-6 below, we used this information to
develop our aircraft model, and also developed an airfoil for the wings using
publically available wind tunnel testing data. A further discussion of the design
and implementation of the model will follow in the design chapter.

Table 2-6 Summarized Aircraft Data’?

wingspan 274"
Height 74
Fuselage Length 20’6”
Width (At Cabin) 41”
Prop. Diameter 5'8”
Lifting Area 122.7 ft?
Wing Profile NACA 4415 mod.
Empty Weight 820 Ibs.
Maximum Weight 1320 Ibs.
Maximum Cruise Speed 116 ktas.
Stall Speed / Minimum landing speed (Vso) 39 kts.
Stall Speed / Minimum steady flight speed (Vs1) 44 kts.
Normal Operating Speed 110 kts.
Never Exceed Speed 129 kts.
Maneuvering Speed 90 kts.
Service Ceiling 13,200 msl
Sea Level Climb Rate 850 fpm.
Maximum Range 360 nm.
Minimum Take-off distance 380 ft.
Minimum Landing Distance 656 ft.
Wheel Track 7.42 ft

Figure 2-4 below shows one of the screens in the plane maker software. This
shows some of the parametric data input for the plane maker and gives an idea
of what we had to work with. While X-Plane makes the creation of a aircraft
model relatively easy compared with Microsoft FSX, it is still a very challenging
task. With not a single group member having experience with 3D modeling or
aerospace engineering or the basics of aircraft operation, there is a limitation on
our abilities to create 100% accurate model. The GUI of the plane maker was

! (2009, Nov.). GoBosh G700S Specs [Online]. Available: http://www.gobosh.aero/G700.cfm
? (2009 Dec.). Airplane Flight Manual Aero AT-4 Light Sport Airplane [Online]. Available:
http://www.ussportaircraft.com/uploads/Gobosh_POH_1_.pdf

Page |13

also fairly complex and lacked a variety of features that would have made the
creation of a flight model much easier.

[X
,M | view |[Ext Lights |[int Lights [impart
author | www.dmax.it
[alalalalalal
N1725¢P descrip = Cessna 172 SP SkyHawk - 180HP
oooooT = =
0 coe e B S
-a h, |
Vso ??(; refuel‘ii:gaﬁ:\?t B
o long arm iIDt's—ﬂmmﬂn lon: am—ﬂﬂﬂﬂﬁ lon am—ﬁﬂﬂﬁﬂ
o ?{2? g wewppomt Déé‘su (it} refuellng port ééééé (ft) CDEkDIth!!]ECt ééééé (it}
s
oo AR AP AP
iy e 00000, o -20000 20000
o ??? A viewpoint 555‘ () refueling port 55@‘55 (ft) cockpit object 655‘55 U
e-m ull dep
oo AR A AP
_oen vertamplte 055 eruelli S 00000 (9 ok 000007
Viel 085 lstdet oogoo == oogoe
oog
[alala]
Vno, 116
s | AABAN | AAAOA | AABAN
e 202 wahook GLEED M winching-hook 00000 (™ bosraing door 55555
ne
o N— [alalalalal
AOAA - 000.00 (ft)
Mmo 00.4 0 | (Mach) boarding deor -5
vove — [aTaTalalal — [aTaTaTala] — [aTalalala]
[alala) = 000.70 | (ft) il 000.00 (Ft) i 000.00 | (ft)
—a0d tow-hook S] winching-hook] boarding door S

posG| 0 4.5 (limit)
==

A6
neg G| 0 2.0 {limit)
5 5/+] notes
f = has aural has verbal aircraft
(General Aviation I I
(-2 General Aviation. i3 o stall warning B g caliout is glossy
. = has gear al airspeed indicator shows
speed un'ﬁ B warmning horn B gear callout) autopilot airspeed setting
has airliner aural has verbal 500 only airports
B warning system B AGL Callout on map T e e 0006
has fighter aural has marker only paved to show on maps ééé B i
B8 i B

ot 200
warn alpha é%é (deg) beacon audio

warning system runways on map

Figure 2-4. Plane-Maker viewpoint setup

Once the model had all of its parameters input then came the part of the
modeling that needed some sort of artistic capability. The Plane-Maker tool also
includes a basic model editor that allows you to change the fuselage to the
correct shape it also gives you the options for each of the wings and nose of the
aircraft. A screenshot below in Figure 2-6 and 2-6, while not representing the
model that we developed shows process for creating the fuselage of the aircratft.
In Figure 2-6 the wireframe representation of the model is manipulated by pulling
on the points indicated. These can be stretched in any direction and all of the
three views will be updated. Additionally more sections can be added from the
default to increase the ability to create smooth edges. Another plus is that we
can place an image behind the wireframe to trace our fuselage shape.

Page |14

00000 00006 00000 00006 00000 00006 00000 00006
[C003.64 [-00336] [-00271] [-00179] [-00039 [00023 [00118 | 00237 | 00478 | 00709] [00839 [00978
oooog == o) oooog == o) oooog QoooT oooog QoooT oooog QoooT oooog = v

il 24 B1 B1 51 0 wi pi wj 2] &

2 a BbDQa B PO PO PO PO BDPC BDQ DQC B4 D
e e e

~OOOAB _AOO6A ~OO6A6 _OAOAA —OOAOA
"000.00] [00000 [00000 [00000 [00000 [00000 [00000 [00000 [00000 [00000/ [00000 [00000
oooog ooo0T oooog ooo0T oooog ooo0T oooog ooo0T oooog ooo0T oooog ooooT

OOO6BA _AAOANH —OOAOA OAOAA —OOAOA
"000.00 [00050 [00073 [00090 [00104 [00112 [00190 [00264 [00264 | 00221 [00198 [00172
oooog ooo0T oooog ooo0T oooog ooooT oooog ooooT oooog ooooT oooog ooooT

[Fitwse] [Fiese] [Fioese] [Fese] [Fioese] [Frese] [Fioese] [Fioese| [Fuoese] [Fruese] [Fooese] [Eioese]
INSERT| [WSERT] [WSERT| |WSERT| | NSERT| |IWSERT] [NSERT| |WSERT] | WSERr| [iNSERT] | wSERT]

Figure 2-5 Plane Maker Fuselage Editor

Section = Front/Back 1

BOTTOM

Another part of the plane-maker software that will allow us to interact with the
simulation correctly is the fact that you can actually model the aircrafts systems
and inputs. This includes being able to customize an existing cockpit panel or
creating your own panel and even the flight electrical systems. All of the gauges
can be displayed and indicator lights can be switched on and off based on the
data that is given to the simulation. In Figure 2-7 we show a default cockpit from
a Cessna C172 that has been modified to include some additional gauges

Page |15

utilizing the Plane-Maker tool. They are located on the right side of the cockpit.
This is helpful with the testing of our gauges, since the output to the in game
gauges is the same as we will be outputting to our hardware via the plug-in we
developed. Figure 2-7 shows the layout of an example cockpit built with the
cockpit editor that is part of the Model Editor software.

I N T § "
3 ¢ ¢ - ® /

Figure 2-7. Example cockpit showing daional gauges.

2.2.1.3 Microcontroller Software Requirements

The requirements for the microcontroller software were really based on the
hardware that ended up using to implement our design. We are used stepper
motors and A/D converters to design the gauges and the controls. The stepper
motors needed to be updated at a rate that will make the movements look
smooth. This led to a decision on the motor being a stepper motor, that and the
fact that we needed to continually go in 360 degree circles. We used all the
same stepper motors with 200 full steps per revolution. With the 200 steps we
can get a 1.8 degree resolution this may not be good enough for smooth rotation.
We needed to half step to overcome this and that required that the
microcontroller/FTDI chip be able to get information from the host computer and
update the motor twice as fast in order to get smooth looking steps.

The servo motors we looked at needed to be updated by a signal for a certain
period of time in order to move it. This would of been fine except that when that
design idea came before our sponsor, he didn't like it and that led to us picking
the stepper motors as they could be controlled easily through the FTDI chips.
There is more discussion of the actual controlling of the stepper motors in the
microcontroller requirements section of this paper.

Page |16

The software that we are running X-Plane tells us our capabilities. The plugin
allows us to dictate the update rate and should update their graphics at a rate of
30 frames per second minimum. This gives us our update rate for sending
signals to the gauges. We could of updated faster than this but it would just be
the same value sent and that would just cause unneeded traffic. That could of
slowed down the code and could take away from other threads that were
operating. So at that rate we needed to have a speed of : 1 sec / 30 = 33 ms
and we also needed to send enough information to update each of the gauges
we implemented. For the basic six pack we have 8 bits x 6 gauges which is the
same as 6 bytes that need to be updated every 33ms that gives us a speed of 6
bytes x 30 = 180 bytes/sec this was easy to keep up with over USB speeds as
USB 1 was 12 Mbit/s. There will be room to expand the gauges and input
devices as needed.

The microcontroller/FTDI chip we used set the type of software requirements that
we needed also. It determined the how we needed to update the gauges as well
as how we could get our information from our controls.

2.2.2 Hardware Requirements

The hardware requirements development includes all of our hardware and
physical assemblies that will need to be created. This includes our simulator PC
that will run X-Plane, the requirements for the microcontroller (outside of software
issues), requirements for our aircraft instruments, and requirements for our flight
controls. While we did not receive our cockpit or demonstrate at Sun ‘n Fun as
intended, some of these requirements were not implemented (especially for the
computer setup). As these were requirements developed for our original design,
we will retain these discussions at the end of this paper show the status of each
of the requirements and which ones we met or did not meet and why.

2.2.2.1 The Game PC

In order to meet our performance requirements for the flight simulator of
providing a constant frame rate while maintaining detailed graphics we have
established a baseline for the simulator computer that goes above and beyond
the system requirements listed by Laminar Research for X-Plane 9. Not only will
this give us room to play with the graphics settings, but will allow for the
computer to be used for years to come as newer versions of software is
released. In Table 2-6, the minimum requirements for X-Plane are listed, while
our suggested requirements are listed in Table 2-7 in order to deliver excellent
graphics and performance.

Table 2-6 X-Plane 9.4 Minimum Requirements

Operating System Windows XP/Vista/7, Linux, MacOS
RAM 1GB

CPU Speed 2.0 GHz

HDD Space 60 GB

Video Card 64 MB

Page |17

Table 2-7 Established Requirements
Req# Task Summary

C1 - USB ports for Flight Controls and Instruments

C2 - 120 Degree Field of View

Cc2 A Three LCD Monitors

C2 B Graphics Card/External Device to output required resolution
C3 - 2GHz 64-bit CPU (minimum)

C4 - 4GB of RAM

C5 - 120GB Hard Drive (minimum)

2.2.2.2 Microcontroller Requirements

In order to make the gauges we needed to decide on what the important
characteristics of the gauges will be, below is a list of requirements that needed
to be met for each of the gauges. These are laid out in Table 2-8 below.

Table 2-8 Established Requirements
Reg# Task Summary

M1 - USB Controlled

M2 - Use less than 5V

M3 - Minimum 8 1/0O Pins for external communications
M4 - Fit inside of a 3.24"x3.24” footprint

M5 - Low Cost Microcontroller

M6 - As self-contained as possible

The gauges that we duplicated are the six-pack that is located slightly to the left
in the photo in Figure 2-8 (next page). From the requirements we needed to
make these gauges look and act just like the real gauges would in the actual
Bosh aircraft. We also need to make them react as the gauges in the X-Plane
game, this makes them as real as the model in the simulation. They also needed
to fit in to our budget was a very small amount. There of course are the pre-
made gauges that were discussed, but those are expensive, so we needed to
think of other ways. What we came up with is the handmade gauges discussed
in this paper, and we also got lucky when we talked to the people at GoBosh,
and they sent us some used gauges to take apart and alter for use in our
simulator. The gauges are controlled by a stepper motor. In order to do this we
needed to come up with a way to power these gauges as well as control them.

Page |18

-
GoBosh aircraft. Photo by Robert Gysi

Figure 2-8. A photo of the cockpit in a
We were given a requirement that everything needed to be connected via USB.
With this constraint we had to find a way to control the motors with the USB
protocol. Along with the restriction of speaking USB protocol it needed to fit into
the power specs of USB so we chose to connect an outside power source. This
allowed us to control a stronger stepping motor and also not worry about meeting
the requirements for the USB protocol, which only allowed for 5 volts at 100mA at
startup and 500mA during peak running of all coils of the motor?®.

Looking into the different types of stepper motors we to go with a 12 volt and low
amperage motor that used to drive 5.25” floppy drives. The stepper motor is
mostly used in robotics to add an amount of torque (strength) to the limbs. The
stepper motor requires sometimes turning on more than one colil inside the motor
in order to get the correct amount of movement. This required more current from
the power supply. Since we are using a computer power supply the amount of
current and voltage required is less than the voltage and current the power
supply supplies. Micro-stepping is typically used in applications that require
accurate positioning and a fine resolution over a wide range of speeds”.
Although the microstepping of the motors was not implemented and is left for
future expansion of the project if it is to be included within the scope of a future
upgrade work on our system. Stepper motors have the capability to run at lower
currents since the current is what controls the motors torque or holding power,
and we only need to hold a small pointing device.

* (2009, Nov.). USB as a power source [Online]. Available:
http://www.girr.org/mac_stuff/usb_stuff.html
* (2009, Nov.). Stepper Motors reference guide [Online]. Available:

http://ams2000.com/stepping101.html

Page |19

Use of the servo needed some sort of extra timing circuit in order to give the
servo motor the pulse widths it desires to run correctly. The initial design of the
controller for the servo involved a 555 timer, and some sort of Digital to Analog
converter. The 555 timer was to be used to give us our pulses of the different
lengths, depending on the analog values that are received from the D/A
converter. In order to get the most from our FTDI chip we needed to get an eight
input D/A that can give out voltages with high resolution (2"8 = 256 values
between 0 and 180 degrees). This was ruled out when our sponsor, who has an
electrical engineering background, decided that the 555 timer circuit couldn't give
us the most stable of time pulses to keep everything accurate.

The design and test phase of the project will determined we needed to add some
sort of outside power source to help control the gauges, but we first tried to put it
together using no outside power source. Unfortunately, this led to the devices
disappearing during operation due to the power supplied was too low for the
device to function properly. A diagram of the circuits can be found below in
Chapter 3.

2.2.2.3 Flight Instrumentation Requirements

The flight instruments are one of the most important elements regarding the
authentication of the simulation. For this reason we had some very strict
requirements regarding the instruments. First of all, it was asked that we use
mechanical, heads down gauges for all the instruments we were modeling. In
the simulation world, many times the instrument panel is modeled using LCD
screens displaying virtual gauges and this functionality is even built into the
simulation software. The problem with virtual gauges is that you don’t get the
look and feel of the cockpit like you do with mechanical gauges. Figure 2-9
shows the view of the instrument panel from inside the cockpit. Figure 2-10
shows our simulator’s instrument panel. As you can see the look of the
simulated gauges are almost identical to those of the actual gauges.
Unfortunately we did not have the time or resources to model all of the Gobosh
instruments instruments so we just modeled the essential flight gauges as seen
in Figure 2-10.

Page |20

Figure 2-9:

v

ENGINE START -
PARKING BRAKE
TOE BRAKES

Figure 2-10: Our simulator’s instrument panel. Photo by Lewis Valil

The instruments that were essential to properly simulate the aircraft were the
standard six-pack of gauges. Figure 2-11 is an enlarged view of these gauges
from the actual aircraft. They include (from left to right, top to bottom) the

Page |21

airspeed indicator, the attitude indicator, the altimeter, the turn coordinator, the
heading indicator, and the vertical speed indicator. These are the gauges that
are essential to successfully fly and navigate a plane. Although we were not able
to model any other instruments these were enough to get the feel of flying a
GoBosh. The following are some specific requirements for each gauge:

Figure 2-11: This is the standard six-pack of gauge in the GoBosh.
Photo by Robert Gysi.

The airspeed indicator (top left corner of figure 2-11) requires the ability to record
up to 160 KTS as indicated on the faceplate. This requires almost a 360-degree
range of motion. Among the six-pack gauges, this one requires one of the faster
moving needles but still needs to support small fluctuations in airspeed without
looking choppy.

The attitude indicator, also known as the artificial horizon (top middle of figure 2-
11) is one of the more complicated gauges. It is required to turn all the way
around (more than 360 degrees) and part of the face must slide up and down to
indicate whether the plane is nose up or nose down respectively. The speed and
precision needed for this gauge is comparable to that of the airspeed indicator.

The altimeter (top right corner of figure 2-10) requires the ability to record up to
10,000 feet above sea level as indicated on the faceplate. The altimeter has two
arms like a clock; the long arm (corresponding to the minute hand of a clock)
represents hundreds of feet above sea level. This arm will need to go all the way
around up to ten times. The shorter arm (corresponding to the hour hand of a
clock) represents thousands of feet above sea level. This gauge will move at a
fairly fast rate, especially during dive maneuvers, and therefore the gauge we
build must turn the needles fast enough to replicate this real worlds speed. The
requirement for smooth movements also persists with this gauge but precision is
not as critical as with the slower moving gauges.

Page |22

The turn coordinator (bottom left corner of figure 2-11) is another more
complicated gauge, similar to the attitude indicator. It consists of two
components, a plane shaped needle that indicates the bank of the plane during a
turn and a small ball in a tube (similar to a bubble level) that indicates the slip
and skid. Both components require the least range of motion and therefore every
move they make must be as smooth as possible. This gauge operates at a
moderate speed that is far less critical than some of the other gauges. To
optimize authenticity, this gauge must have four tick marks as shown in figure 2-
11. The top two tick marks represent no bank and the bottom two marks
represent a turn in which the heading change is three degrees per second.
These two bottom marks are now at the 2 minute marks because it takes two
minutes to do a full 360 at this bank®.

The heading indicator (bottom middle of figure 2-11) is required to turn all the
way around (more than 360 degrees) just as with the attitude indicator and
altimeter. This gauge is probably the slowest turning of all the gauges. This
means that any choppy movement would be magnified.

The vertical speed indicator (bottom left corner of figure 2-11) is required to have
a range of motion of 360 degrees. Unlike the altimeter, the attitude indicator, and
the heading indicator, this gauge is not required to turn more than 360 degrees.
To match its real life counterpart, our gauge must also have a range of +2000
feet per minute. This is the fastest of all the six-pack gauges and our model will
have to replicate this speed. But because this gauge operates at a higher speed,
choppiness and lack of precision is less of a concern, as it is hardly noticable.

2.3 Project Budget

Our project sponsor has established a budget of $1500 during our initial
discussions. Due to the previously mentioned issue with not receiving a cockpit
we went through a major design revision. This affected our budget in that we
wound up being significantly under our original budget due to not purchasing
several components. For this section we will discuss our actual planned budget
in addition to our actual spending after design changes.

For the original design effort we anticipated that our budget would need to be
expanded to cover the costs of the simulation computer and monitors. Up to the
moment the decision was made to alter our project due to the lack of a cockpit,
we had an anticipated cost of approximately $1700. In the event that our
sponsor would have not agreed to pay for costs over $1500, the members of the
group were prepared to meet the additional costs required to implement this
design. Our original budget can be found in the appendices of this document for
reference.

® (2009, Dec.). Wikipedia Article: Turn Coordinator [Online]. Available:
http://en.wikipedia.org/wiki/Turn_coordinator

Page |23

Once the decision was made to forego the purchase of a computer, we knew that
we would not have an issue meeting our requirement of keeping spending under
$1500. However, since to go to that amount under the circumstances would not
be in good taste, we attempted to keep our spending to approximately within the
bounds of what we felt our original non-computer component cost would be. As
a result we made an attempt to spend approximately $500 on components. We
found this difficult to keep given several last minute purchases including a
powered USB Hub. In the end our spending represented a total of $626.36 or
roughly $100 more than our anticipated spending. Table 2-9 below represents
our actual spending upon completion of spring 2010 semester. All costs are
included, although may be listed under general categories for small items such
as screws would be under Misc. Hardware. Quantities on items may be smaller
than required for project completion due to getting some components from other
sources for free or by using parts already possessed by a group member.

Table 2-9 Expenses

Item Part Number Quantity Unit Total

Required Cost Cost
USB Communication Board FTDI245BL 10 $30.00 $300.00
IC Sockets (Assorted) Various - $21.72 $21.72
PCB Boards (Small) 4 $1.99 $7.96
Wire 3 $5.99 $17.97
Transistor 2N3904 4 $0.79 $3.16
Diodes 1N4003 - $6.75 $6.75
Spacers (Assorted Lengths) N/A - $28.20 $28.20
Stepper Motors 8 $5.00 $40.00
Terminal Blocks N/A 36 $0.30 $10.80
PCB Boards (Large) N/A 7 $2.50 $17.50
Buffer Chip CD4050 6 $0.35 $2.10
Comparator IC LM741CN 5 $0.25 $1.25
A/D Converter ADCO0804LCN 3 $2.50 $7.50
Powered USB Hub 1 $49.99 $49.99
USB Cables Various 9 $5.00 $45.00
Slide Potentiometers RA6020F-10- 3 $2.12 $6.36

20D1-B10K

Molex Connectors Various - $20.36 $20.36
Epoxy Putty N/A 1 $3.97 $3.97
3/8 x 0.035 Aluminum Tube N/A 1 $4.78 $4.78
Misc. Hardware N/A - $30.42 $30.42
470-Ohm Resistors 3 $0.99 $2.97
Thin Aluminum N/A 1 $2.38 $2.38
Total $631.14
Project Budget | $1,500.00
Difference $868.85

Page |24

2.4 Project Timeline

The original deadline of the project was determined by the date of Sun ‘n Fun
which meant that we needed to be done around April 1, 2010 in order to
complete testing and transport the simulator to Lakeland. However, with that
event not occurring, the deadline became the day of our presentation on April 21,
2010. Oiriginally, we had wanted to adhere to our original schedule, but
unfortunately due to uncertainties early in the semester we found ourselves
getting behind our schedule and as a result did not meet an April 1 deadline. We
did however, get all of our components working by the new deadline of April 21.
Figure 2-14 shows our original project schedule in a simplified manner while
Figure 2-15 shows approximate dates for when certain phases and aspects of
the project were completed. Also, in Appendix B at the end of this
documentation, one can find our original schedules from our fall semester
documentation.

Figure 2-14. Original Project Schedule

What cannot be seen from the milestones listed in Figure 2-15 is that while the
build phase officially started on January 11 (start of the Spring 2010 semester), is
that no actual building started at this time. It was at the beginning at this time we
built our first test gauge to validate our design and from this we determined that
we needed to have our metal gauge decks fabricate by a machine shop. Gauge
construction was placed on hold for a few weeks during this time in order for
fabrication to be complete. Additionally, the issues with the cockpit arrival kept
us from being able to start on working on controls, until we received word that we
would not receive it in time. However, with these few issues, we still completed
with enough time to test all of our components.

Figure 2-15. Actual Project Completion Milestones

Page |25

Chapter 3

3.1 Design Summary

In Designing the System we needed to know which of the Flight simulators we
were going to use. As well as what type of gauges we were going to implement
and also what other switches and knobs needed to be able to interact with our
simulation. For the initial design of this system we came up with a design plan
that included a separate 10S station to control the setup of the simulation. Since
that became an extra hurdle it was an "if we have time OPTION" and eventually
never came to fruition. The system still has the capability to have the 10S from
the simulation software we chose(X-Plane).

The control of the cockpit and the gauges is done through the USB chips that we
have decided upon. The flight controls are divided into input devices and passive
devices. The input devices are the yoke and pedals along with. The passive
devices are the lights that are lit and the gauges. All of this is covered in the
cockpit design section. The block diagram of the design is below in Figure 3-1.

Instrument & Control Interface

X-Plane
l |
Controls Gauges
Thread Thread
8 USB Interfaces
2 USB Interfaces
Altimeter Air Speed Heading
Stick Throttle/Petals
2 USB /2 USB
Vert. Speed Art. Horizon Turn

Figure 3-1 Block diagram representing cockpit interfaces and responsible parties.
Diagram by Lewis Vail

Page |26

One of the major decisions was made regarding the design of the GoBosh 700S
flight simulator was which flight simulator software to use. We had two options
available to us as to which commercially available flight simulator software we
could use. The first option was Microsoft FSX. Microsoft’s flight simulator is the
oldest and most established flight simulator of the two. We liked the fact that the
community and resources available for the Microsoft flight simulator series was
very vast and highly accessible. Unfortunately for the flight simulator community
Microsoft decided in January 2009, to close both Ensemble Studios and ACES
Game Studio due to a process of ongoing job cuts due to financial crisis and
restructuring of their game studios. This became a factor in deciding which flight
simulator software to use for this project.

The second option was X-Plane. X-Plane is the newest and least established of
the two flight simulators. The X-Plane community and resources are not as vast
and content rich when compared to Microsoft's. This was one of our biggest
concerns when we were considering using X-Plane for our GoBosh 700S flight
simulator. It turns out that X-Plane was not that different from Microsoft FSX in
terms of our integration needs and requirements for the flight simulator. X-Plane
also has a plugin architecture that allows users to create their own modules,
extending the functionality of the software.

One unique feature that really stood out with X-Plane was the Plane-Maker
Software. Plane maker is included with the purchase of the X-Plane software and
allows users to build their own aircraft models. What is really remarkable about
this is that there is no extra cost, unlike Microsoft FSX which requires the use of
expensive 3rd party applications. Additionally, the method at which these models
are simulated in the environment turned out to be a differentiating factor. X-
Plane distinguishes itself by implementing a concept known as blade element
theory. With plane maker you are able to build and model any aircraft using
blade element theory. This feature will greatly simplify the design of the aircraft
modeling and the aircraft flight dynamics. In the end we decided to use X-Plane
as the visuals for the GoBosh 700S flight simulator.

One of the biggest components of the flight simulator was the design and
construction of the simulators aircraft flight instruments. The flight simulator
consists of the traditional six-pack of flight instruments. The traditional six-pack
consists of the altimeter, attitude indicator, airspeed indicator, heading indicator,
turn indicator, and the vertical speed indicator. All the aircraft flight instruments
for this simulator are analog designed and assembled using stepper motors. As
we researched the functionality and mechanical operation of each aircraft flight
instrument we began to narrow down the way we were going to go about
designing them.

Figure 3-2. Gauges to be implemented. The “Six-pack” gauges are the cluster of
six large gauges to the left of the picture. Photo by Robert Gysi.

When designing the aircraft flight instruments we realized we needed 360
degrees of motion for most of the needles on the instruments. The best way to
achieve this degree of motion was to use stepper motors. A problem occurred
when using stepper motors as they have no unique home position. We solved
this problem by using an optical sensor to establish the zero position. When the
optical sensor is interrupted this signals to the computer that the needle is in the
home position.

We also considered using servo motors in our design of the simulators aircraft
flight instruments. Most servos unfortunately only have a range of motion of 180
degrees. This limits our ability to turn the needle on certain aircraft flight
instruments the full 360 degrees required. There exist several ways to get
around this limitation. A few that we explored consisted of modifying a servo by
removing the mechanical stopper as well as a few other modifications, or by
buying a servo motor capable of rotating 360 degrees. The following figures
highlight the basic operation of the two types of motors applied to the gauges.
The first shows operation of a stepper motor (figure 3-3), while the second a
servo motor (figure 3-4).

Page |28

/ _‘_ Stepper
|
/

Motor
Gauge face/;
D0-D3/D5
_ Signal in from computer
Optical USB Interface
Sensor Board Signal out to computer
| A

n7

Figure 3-3 Stepper Motor Control Diagram. Diagram by Lewis Vail

Servo timin
Servo - ming
/,_\ logic
/ ‘\
D0-D3/D5
Gauge face o
‘S|gnal in from computer
USB Interface
- Board Signal out to computer

Figure 3-4. Servo Motor Control Diagram. Diagram by Lewis Vail.

The aircraft flight instruments are interfaced with the computer and the flight
simulator X-Plane. Each aircraft flight instrument is controlled with the FTDI chip.
The FTDI chip was chosen because the cost of each chip is only $5.00. The low
price of the chip reduced our overall cost to design and build the aircraft flight
instruments for our GoBosh 700S flight simulator. Figure 3-3 and Figure 3-4
show the control diagrams for each type of motor that was considered.

Page |29

Each aircraft flight instrument is connected to the computer through a USB
connection to a USB hub. The USB hub is in turn connected to the USB port on
the computer. This is where our communication with the computer takes place.
However, the previously mentioned FTDI chipset does not handle any processing
of our data; it merely passes it over the USB to the desktop computer. This is
excellent because we are able to do all of the programming in C++ and on the
computer side, meaning that we will be able to write plug-ins for our instrument
panels. The two flow charts below represent the relation of the Plug-ins to the X-
Plane software and hardware. Figure 3-5 shows the relation for flight
instruments while Figure 3-6 shows the relation for flight controls.

Gauge Software Interface

Plugin Thread

Gauge Thread

Figure 3-5. Gauge Software Interface. Diagram by Lewis Vail.

Control Software Interface

Plugin Thread

Figure 3-6. Control Software Interface. Diagram by Lewis Vail.

Page |30

The following block diagram in figure 3-7 highlights the higher order levels of our
design and process. The chart also assigns block responsibility and completion
status. Being at the end of this project, all blocks are complete with the exception
of the 10S. This is due to the decision to not take the simulator to Sun ‘n Fun.
However, X-Plane does have the 10S function built in.

Flight Simulator — Software

Responsible Party: Robert

Responsible Party:Chris

Aquired: This is the groups
computer and will not be turned

Aquired: No never got extra
over

computer so no |0S was there

Status: Computer used and
license used were property of
the group

Status: Left open, can be
created easily with a separate
computer and X-Plane license

Complete: Yes

Complete: No

munication
(TCP /'UDP)

Responsible Party: Lewis

Aquired: Yes

Responsible Party: Group

Status: Made and given to the

Aquired: No sponsor for use on the
simulator

Status: Stuck in the UK, we had

to make a mock cockpit Complete: Yes

Complete: Yes

Responsible Party: Joe

Aquired: Yes they were demo’ed

Responsible Party: Chris
Status: Gauges were created and

Aquired: Yes it was demo’ed used, and turned over to sponsor

Status: Code was turned over Complete: Yes
to sponsor and how to add

more USB controls

Complete: Yes

Responsible Party: Chris

Aquired: Yes it was demo’ed Responsible Party: Chris

Figure 3-7 Software Flow Chart. Created by Chris Dlugolinksi

Status: Code was turned over
to sponsor and how to add
more gauges

Complete: Yes

Aquired: Yes it was demo’ed
Status: Created mock controls

Complete: Yes

Legend

Page |31

3.2 Microcontroller Design

After some research on the types of microcontrollers that were available with the
ability to do the required tasks, we decided to go with the FTDI chip that has the
capability to be used in bit bang mode which allows for control of individual 1/0
ports.

The chip has the capability to interface with any microcontroller, being the USB
portion of the communication for the microcontroller without the need to code the
interface for USB communications. This was great but added to the cost of the
gauges. Yet, the added cost saved us some time. This gave us the ability to not
really worry about USB protocol and it is able to remove our need for a
microcontroller at least for the gauges we have implemented. The
implementation only called for controlling of a few 1/O ports, this was done with
any 1/O ports and the FTDI chip in its special mode was able to do this. It can
read and write to the lines directly giving us the ability to write the control for the
device right into our software.

We used the FT245BL chip it has 8 I/O pins and direct connection capable to talk
over the USB line as needed. It also has the capability to have EEProm
connected up to the chip. This will allow us or anyone who wants to make a
gauge to make one and we could easily identify them through a description or a
PID or VID that we will assign. Our program contains many different types of
gauge control capability and adding a new gauge only take setting the PID or VID
to that type of gauge, and you will have control for that gauge based on the real
gauges activity, and it will be given data from the simulation that is running it.

The cost of the FTDI chip will also reduce our overall cost of the gauges. During
the initial research a microcontroller was thought to be needed and they cost $10
to $15 dollars for the chips we were looking at. The FTDI chip is only $5 a chip
and needs only a few external components. This cost for a premade board for
the FTDI chip makes it cost around $25 per board which is slightly higher than
predicted.

One of the most important parts of the design was with the power consumption.
The USB port on a computer can supply 5 volts and 500mA as we have already
stated. The use of this to drive a motor of any kind is pushing the power of the
USB port to the limit, not to mention the ability of the motor to push current back
at the port which can kill the port all together. So we went with an external power
supply (computer power supply) using Molex connectors for each controlled
gauge.

3.2.1 Implementation of Hardware

The implementation or actual making of the hardware came from the FTDI
FT245BL chip that was able to use the USB signal and allow the use of the 8 I/O
ports right through the computer. We ordered the DLP-USB245M chip as a dev
board for trying out our design. The chip came with a standard crystal, and an

Page |32

EEProm that holds some descriptions that we used for naming the gauges.
Along with the FTDI chip we needed a chip to keep the FTDI chip from being
overloaded and we will use the 4050 buffer chip to help drive the transistors that
drive the small stepper motor.

+5y 1
F’HOTOD\OD%Z COMPARITOR CIRCUIT ! !
d
ut
3 T 5
R2 > - D2 XD D3 7D D4 7D D5 A D
47k s STERPERMOTOR
v COLL1 colL2 oIL3 colLs
R3
10k 4 d 4 L
Qi Q2 Q3 Q4
4050
Ldlee i Q2N2222, Q2N2222 Q2Nz2p2 Q2Nz222
1 ouT - GBOUTHE o . . . A
17N G6_INg —
270UT - Nogs 10k
2_IN G5 OUTY
—=%3 OUT - G5 iy,
3_IN G4_OUTHs
—4GND- GL-H‘J»—‘
L

Figure 3-8. Circuit for the stepper motor controls Created by Chris Dlugolinksi

Figure 3-8 shows the connections needed to run each of the coils of the stepper
motor and how the circuit is designed. The microcontroller being the FTDI chip
and each of the coils needed to be turned on by the transistors. The diodes are
in the design to stop the motor kickback current from coming back and hurting
any of the hardware components.

+5v &
4050
1
cC : NC:
—1_0uT GB_OUTq—i
451_IN G6_IN>1—3 ®
2-0UT NC# > [a
FTDI 52N G5_0UTel2 100 X1
+—eP3 1/0(0)p— 3_ouT Gﬁ_IN% n) vee
¢— P10 1/0(1) 3N G4_GUTy c10 +| TRIGGER 5 R16
+—eP11 1/0(2)e N C o GAING T £ RESET - OUTPUT
L 4P121/0(3)s = CONTROL 29K
170(4)8 7 THRESHOLD
1/0(5)% DISCHARGE 12 D13
. 10(6)e Gl 1N4 DTR4002
110¢7)% 5550
—8%ND 1
) B e TR i Digital_Pot(7.5-10K)
\ IN output
INC GND
DEC OUTe—
100n c11
| |
1T

Figure 3-9. Circuit for the Servo motor controls Created by Chris Dlugolinksi

Figure 3-9 above shows the controls for the servo motor, the 555 timer is used to
generate the pulse widths needed to control the position of the motor.

Page |33

Depending on the needed position of the motor we are turning on a certain
amount of resistance in the digital pot chip that will change the pulse width of the
555 timer. We are keeping the frequency at a frequency that will allow the pulses
to be output every 20ms.

The circuit shown above was vetoed by the sponsor based on his knowledge that
the signal from the 555 timer will not be able to give the correct pulse length
repeatedly ("it is not that accurate™).

The power supply needed to be able to provide 5 volts for any of the circuitry that
we need as well as 12 volts for the motors that were used in the design. A
simple power supply was used that needed to be able to give at least 6 amps.
That is 1 amp for each of the gauges. We used an extra power supply from a
computer, and Molex connectors. This gave us our 5v and 12 volts needed to
drive the circuit.

3.2.2 Embedded Software

The embedded software has been minimized since we are using the special (Bit
Bang) mode on the FTDI chip that allows for direct use of the 1/O ports. The
amount of embedded software just comes down to programming each of the
gauges so that they are recognized as different gauges and can be recognized if
unplugged and re-plugged in. This shifted most of the software to the host
computer and also shifted where we manage all of our gauges as well. With this
type of design we needed to come up with a way to get our modular design. We
have a write-up that we will give the end-user on how to go about implementing
our design for future expansion of the gauges or controls.

3.3 Flight Instrument Design

There are six main flight instruments, as pictured above, to be designed and
simulated for our senior design project. Figure 3.10 shows the actual flight
instruments that have been simulated for the GoBosh 700S. Figure 3.11 shows
a close up of the traditional six pack of flight instruments arranged in a “basic T”
that are very similar to the flight instruments contained in the GoBosh 700S and
many traditional aircraft to date. The names of the flight instruments in Figure 3-
11 starting from the top are airspeed indicator, attitude indicator, altimeter, turn
coordinator, heading indicator, and vertical speed indicator. In this section we
will describe the name and function of each flight instrument, how it is
constructed, and the way we built and constructed our own for simulation.

Page |34

/ \\\\“2‘]2”’”/ \

Figure 3-11. Closeup of the standard “Six-Pack” — Wikipedia used with
permission under the GNU License®

Figure 3-12 shows the basic layout of how each flight instrument is connected to
the game computer. Each flight instrument is programmed and controlled using
a FTDI FT246BM USB chip, which is connected to an externally powered USB
hub. The USB hub is in turn connected to one of the free USB ports on the
computer.

® (2009, Dec.). Six Flight Instruments.jpg Wikipedia [Online]. Available:
http://en.wikipedia.org/wiki/File:Six_flight_instruments.JPG

PC Connections

Computer

USB Port 1

USB Port 2

=

USB Port 3

Figure 3-12: Diagram of USB controlled flight instruments showing the
connections to the computer. Created by Joseph Munera

USB Hub

Alrspeed Indicator

Attitude Indicator

Altimeter

Turn Coordinator

Heading Indicator

Vertical Speed Indicator

Page |35

Additionally a mouse and keyboard are connected to USB ports on the game
computer. This allows the operator of the simulator to adjust the settings of the
X-Plane flight simulator as well as troubleshoot programming issues affecting the
operation of the flight simulator’s flight instruments.

Figure 3-13 below shows the back of the actual aircraft panel we used with most
of the USB controlled gauges installed. Each gauge is mounted to the back of
the aircraft panel with the USB cable connection located on the back of the
aircraft flight instruments. These USB cables are connected to a USB hub, which
is then connected to a USB port on the game computer.

Page |36

- A i
! P o e
Figure 3-13. Back view of the aircraft panel received from Dave Graham of

GoBosh Aviation with USB controlled gauges mounted. Photo used with
permission from Joseph Munera.

To accomplish the requirements regarding the flight instruments there were a few
options to consider. The options available were to mod a real world gauge to
interface with the flight software, buy a simulation gauge kit that comes with all
the parts pre-manufactured, build servo based gauges, or build stepper motor
based gauges.

The best part of modifying real world gauges is that you get the most realistic
look, as the gauges are in fact real. The other benefit of using real aircraft
gauges is that all the faceplates, needles, glass coverings and in some cases the
mechanical inner workings are already there so that all we would have to create
would be the interface with the computer. Unfortunately, creating this interface
was not an easy task. In the aircraft that we simulated all the gauges we are
replicating are either barometric or gyroscopic, neither of which are easily
simulated by a computer. For instance, the airspeed indicator can be simulated
by a variable speed fan blowing into the barometer, but this was neither easier to
implement nor more accurate than the other methods we have available. The
other problem we had with real world gauges is the price. After calling a few
airplane junkyards, like the one in Groveland, FL, we found that to buy salvaged

Page |37

gauges would be over $100 per gauge. This is much higher than some of the
other implementations and therefore was ruled out as an option.

The easiest option would have been to buy gauge kits from a supplier like
SimKits. These kits usually come with all the parts needed pre-manufactured
and ready for assembly. The only development work that would be required is to
write the USB drivers for each gauge. The downfall of this implementation is the
cost. Each kit costs well above $150. There were however a few gauges that
we initially considered modeling with these kits just because the mechanics of
the gauges were complicated enough to warrant spending the money.

Servo-based gauges are probably the most common gauge implementation in
the flight simulator community. In this implementation, the needle of the gauge is
turned by a servo, which is driven by a microcontroller. Servo-based gauges are
fairly low cost and easy to design. The microcontroller sends a pulse to the
servo and depending on the width of the pulse; the needle will turn to the
appropriate angle. There are however a few limitations with servo-based
gauges. The first problem we ran into in our design was that we planned to
interface all of the gauges with an FTDI USB chip using bit-bang mode.
Unfortunately, this interface did not allow us to send pulses to the servo with the
accuracy we needed to implement the gauge smoothly. Fortunately we were
able to design a timing circuit to interface the FTDI chip with the servo. This
implementation is illustrated in figure 3-14. The other limitation that we ran into is
that a servo only has a certain range of motion. For most gauges we can gear
the servo so that it turns as far as we wish, but two of the gauges must be able to
turn all the way around multiple times and would therefore require another
implementation.

/ \l DO0-D3/D5
Gauge face o
Signal in from computer
USB Interface

— Board Signal out to computer
s e

Servo timing
logic

Servo -

Figure 3-14: Block diagram of servo-based gauge. Created by Lewis Vall

The last implementation we had to choose from was a stepper-based gauge.
Stepper based gauges are similar to servo based gauges except that they use
stepper motors instead of servos. They are comparable in terms of cost and
ease of implementation but they don’t suffer from the two limitations servo based
motors do. Instead of taking in a timed pulse like servos, they take in a 5 bit

Page |38

digital input meaning that it can be interfaced directly with the FTDI chip. Also,
stepper motors will turn indefinitely in either direction. They do however have a
few limitations of their own. The first being that when you step the motor, it will
turn the needle a discrete amount which can look choppy if the steps of the pulse
are too large. To overcome this limitation, we used stepper motors that have a
step of 1.8 degrees. They are then half-stepped to maximize fidelity. The other
limitation that stepper motors have is that they support no option to supply
feedback to the computer regarding the location of the needle. To overcome this
we implemented an optic sensor to reset the needle to its home position at
initialization. This stepper motor based implementation is illustrated in figure 3-
15.

/ \‘F Stepper
f
!

Motor

Gauge face /

>

D0-D3/D5

Signal in from computer
Optical USB Interface
Sensor Board Signal out to computer
—
| A
n7
Figure 3-15: Block diagram of stepper motor based gauge. Created by Lewis

Vail

Given the options above, we initially were going to be using two kit gauges, and
four stepper motor gauges. Although servo gauges are low cost and fairly easy
to implement, all of our gauges require fairly high range of motion that is not
available with standard servos. The fact that the location of the needle is always
known when using servos makes this the easiest one to code because there is
no initialization needed but this implementation falls short of meeting the
requirements for our gauges. Although stepper motor gauges are not quite as
simple as servo-based gauges they are not too much harder to implement. They
did take much more time to test and refine as the sensor circuit took a little while
to properly calibrate and mount. We initially decided to model two of the gauges
with kit gauges because those two required multiple motors turning
independently. Although these two could have been implemented by using the
techniques used for the other ones with some extra components, this seemed at
first to be too difficult mechanically to justify the cost.

After considering all of these options we found out through contacting GoBosh
Aviation that the Vice President of the company, Dave Graham, had set aside for
us five of the six traditional flight instruments and a aircraft panel that we were
able to use to house the simulated instruments. The five instruments that we

Page |39

received from Dave Graham included the altimeter, attitude indicator, turn
coordinator, airspeed indicator, and vertical airspeed. Figure 3-16 shows some
of the instruments we received from GoBosh Aviation. We were allowed and
given permission to take apart every flight instrument and use any of the parts
that were useful for our flight simulator. The fact that we were able to use real
flight instruments to build our simulated gauges helped to give our flight simulator
the highest realism that we could hope to achieve. The only flight instrument that
we did not obtain was the heading indicator. Fortunately this flight instrument
was one of the simpler gauges to build and simulate. We were able to build and
construct the heading indicator from scratch.

Figure 3-16. Instrumenfs as received from GoBosh. Photo by Joseph Munera

3.3.1 Air Pressure Sensing Instruments

The air pressure sensing instruments are a collection of instruments that exist in
the “six-pack” that on an actual aircraft generate their data from taking
measurements based on air pressure. For our purposes this is just grouping
these common gauges together, as we will not be utilizing any air pressure
systems. These gauges include the Altimeter, the Airspeed Indicator, and the
Vertical Speed Indicator.

3.3.1.1 Altimeter

The altimeter is used to measure altitude above a reference level, which is
usually set at sea-level. This is done by measuring the local air pressure. Figure
3-17 shows the faceplate of a “three pointer” sensitive aircraft altimeter displaying
an altitude of 10,180 ft. while Figure 3-18 shows the autocad drawings with the
dimensions we used. For the altimeter we only implemented two pointers to
indicate tens and thousands of feet.

Page |40

Figure 3-17. Altimeter Face plate, dials, and barometric pressure adjustment
knob. This image has been released into the public domain by its author,
Bsayusd at the Wikipedia project.’

7 (2009, Nov.). SVG Drawing of Altimeter [Online]. Available: http://en.wikipedia.org/wiki/File:3-
Pointer_Altimeter.svg

Page |41

I~ 2.29400 -

~—=10.7000 f

€ O—

\ 00

\ 1200
20,1250
3.2400
<_RUU"'/8%%U EPLATE DECK - le——
»\«\»01560 o 7000
X © 0.3300
o N\ 201094 C
e \ 20,1406
20,2188
@
\~H1H[]‘9/-
) O
O
o
| FODOU 201250
0.380(o & 901406
3 _(y/\. \\ép,

Figure 3-18. Autocad drawings with the measurements of the altimeter sheet
aluminum decks. Drawings by Robert Gysi.

We had three options for constructing this gauge in order to be implemented in
the cockpit. Of the following three gauges we have selected option two and
three. This is because the stepper motors provided us with 360 degrees of
rotation, which is necessary should the plane ever go above 1000 feet (this will
happen with 100% certainty).

Three options that were considered:

I. Construction of the altimeter would have consisted of several parts. The gauge
would be controlled by servo or stepper motors. A servo motor design would
have required either the use of a 360 degree capable servo or the modification of
a standard servo of 180 degrees. A standard servo could have been modified
by either modifying the internal structure or by pairing a set of gears together with
the proper gear ratio to spin a shaft at least 360 degrees.

Multiple motors may have been required to control the altimeter. The small hand
and large hand of the altimeter could be controlled by a modified servo made to

Page |42

run continuously. Each pointer would be USB controlled by an electronics board,
which would | deliver direct feedback of the position of each pointer. The small
indicator could have been controlled by a stepper motor. A second stepper
motor could be used to regulate the air pressure scale by using a dial located at
the lower left land hand side of the gauge.

Il. The altimeter could have been built using 3 stepper motors. There would have
been a motor to move the 100 ft hand and 1000 ft hand. The third stepper motor
could have been used for the plate linked to a potentiometer to adjust the
settings for the barometric pressure. The pointers, small indicator, and dial for
the barometric pressure would be USB controlled by an electronics board, which
will deliver direct feedback of the position and setting.

A problem arises when using stepper motors. There is ho way to know when the
shaft is positioned at zero or home. To determine where the starting point or
zero is an optical sensor is used to sense when the motor is moved to the start
position.

lll. A real commercial altimeter could be used for the flight simulator. It required
accurately generating slow varying pressures within small fractions of a PSI.
Figure 3-19 shows the inherent complexity involved when trying to use a real
aircraft flight instrument in building a flight simulator cockpit. The mechanical
parts of the aircraft flight instrument are removed by disassembling the aircraft
flight instrument. Stepper motors are then placed inside the aircraft flight
instrument.

Barometric scale adjustment knob

Figure 3-19. Actual altimeter components. As a work of the U.S. federal
government, the image is in the public domain®.

We were only able to utilize the faceplates, needles, and glass frame of the real
altimeter we obtained from GoBosh Aviation to build our simulated altimeter.
These components were added to the faceplate deck of the layered sheet metal

® (2009, Nov.). Drawing of Altimeter [Online]. Available:
http://en.wikipedia.org/wiki/File:Sens_alt_components.PNG

Page |43

and hex spacer flight instrument design. A single stepper motor was mounted in
the center of the motor deck and used to turn the needles of the altimeter. A
piece of 3/8” round aluminum tube was first mounted to the shaft of the stepper
motor. Next brass tubing of 1/16” was slipped inside brass tubing of 3/32” and
each was allowed to spin freely within each other. To simulate the altimeter
needle readings 48 pitch gears of 12, 24, 48, and 60 teeth were used to spin the
shafts at a 1:10 ratio to indicate the 100 and 1000 feet readings.

3.3.1.2 Airspeed Indicator

The airspeed indicator measures the indicator airspeed of an aircraft via a probe
on the fuselage. In our application, our airspeed indicator is fed data from X-
Plane, simulating the mechanical operation of a pressure driven system. In an
actual gauge, the speed indicated is relative to the surrounding air by measuring
the ram-air pressure in the aircraft’s pitot tube. As with our other instruments this
is powered over USB and based on the FTDI chipset previously mentioned in our
microcontroller design section. All of the code required to drive the motor is
developed as a plug in for X-Plane. Figure 3-20 (below) shows an example of an
airspeed indicator, similar to the one utilized in the GoBosh G700S, while Figure
3-21 shows the autocad drawings with the dimensions we used.

240 30+0-30
\ TEMP. //// 60
200 40 /
~N
AIRSPEED 60~ 8

7,140 150

KNOTS 100 100
\

Figure 3-20. Airspeed Indicator Faceplate - Wikipedia. Used with permission
under the GNU Free Documentation License®

° (2009, Nov.). Drawing of Airspeed Indicator from FAA Instrument Flying Handbook [Online].
Available: http://en.wikipedia.org/wiki/File:True_airspeed_indicator-FAA.SVG

Page |44

- 2.5400 -
[~ 0.7000 1
& o1
\ 500
\ 0.1500
\ =
—$0.12°50
3.2400
b=——0.7000 racesiare oeex -
— |~+0.3800 -
— \«Lmaoo {01500 [~ 0.7000
K ° 0.3%00
&\ o2
O D N\ 201094 C
*7 \ 20,1406
20,2188
&
\ k01094
) O
@]
(o]
[_F:SOU 90.1250 o 2400—~
0.3800 7}1"” ‘is{/—mzme o H'. I L
f 70380
\ i
/ \ \
[\“R1.4000 | os750—] "2
{ : | |— 3.2400 903750 5 [L o400
\ / - 2,540
\ ' VLCJ w W }
6)
o014 «
(J\\‘, / \] ‘ 4=l \]
| o o 0.750095 200 o [
~{ |={0.3800 7000 |-
~——1-0.7000 S N
3.2400 _ S
50(

Figure 3-21. Autocad drawings with the measurements of the airspeed indicator
sheet aluminum decks. Drawings by Robert Gysi.

Four options that were considered:

|. Construction of the airspeed indicator would consist of several parts. The
gauge would be controlled by servo or stepper motors. A servo motor design
would require either the use of a 360 degree capable servo or the modification of
a standard servo of 180 degrees. A standard servo could be modified by either
modifying the internal structure or by pairing a set of gears together with the
proper gear ratio to spin a shaft at least 360 degrees.

Il. The airspeed indicator only has a single pointer to control. A single servo
motor capable of 360 degrees, a modified 180 degree servo motor, or a 180
degree standard single servo motor paired with a set of gears could have been
used to control the pointer on the airspeed indicator.

lll. A single stepper motor capable of turning 360 degrees could be used instead
of a single servo motor to control the pointer of the vertical speed indicator. A
problem arises when using stepper motors. There is no way to know when the
shaft is positioned at zero or home. To determine where the starting point or
zero is an optical sensor could be used to sense when the motor is moved to the
start position.

Page |45

IV. A real commercial airspeed indicator could also be used for the flight
simulator. It would require accurately generating slow varying pressures within
small fractions of a PSI. Figure 3-22 shows the inherent complexity involved
when trying to use a real aircraft flight instrument in building a flight simulator
cockpit. The mechanical parts of the aircraft flight instrument would have needed
to be removed by disassembling the aircraft flight instrument. Servo motors or
stepper motors would then be placed inside the aircraft flight instrument.

For the airspeed indicator we have selected option three and four. This is
because stepper motors provided 360 degrees of rotation. While our airspeed
indicator never had to go around more than once, we do need to ensure that the
extreme values can be represented. Servo motors unfortunately lacked
resolution at high angles.

Static Air Line

Figure 3-22. Components of an actual airspeed indicator. As works of the U.S.
federal government, all FAA images are in the public domain.*

We were only able to utilize the faceplate, needle, and glass frame of the real
airspeed indicator we obtained from GoBosh Aviation to build our simulated
airspeed indicator. These components were added to the faceplate deck of the
layered sheet metal and hex spacer flight instrument design. A single stepper
motor was mounted in the center of the motor deck and used to turn the needle
of the airspeed indicator. A piece of 3/8” round aluminum tube was mounted to
the shaft of the stepper motor to extend the shaft length to the faceplate.

3.3.1.3 Vertical Speed Indicator

The vertical speed indicator measures the speed at which an aircraft rises and
falls - its vertical speed. If the nose is banked upward and the vertical speed
drops starts to decrease for example, this would indicate that the aircraft has
stalled, or lost lift. Also, for example if the nose is banked downward, the vertical
speed indicator would now turn counter-clockwise to provide the vertical speed
as you decrease in altitude (and increase in indicator airspeed as well). Figure 3-
23 shows the faceplate of a simple vertical speed indicator, similar to the one we

1%(2009, Nov.). Airspeed Indicator Cutaway - Wikipedia [Online]. Available:
http://en.wikipedia.org/wiki/File:ASl-operation-FAA.png

Page |46

implemented in our simulator. Figure 3-24 shows the autocad drawings with the

dimensions we used.

\\\7‘}1‘1//,
S0,

~ 7’5
UP VERTICAL SPEED

-
100 FEET PER MINUIE =
201

-~
~
~

Figure 3-23. Face plate of the vertical speed indicator. This work has been
released into the public domain by the copyright holder, Benet Allen.™

= 2.5400 -
$

~—=—20.7000

3.2400
—0

s

3.2400 ‘
Figure 3-24. Autocad drawings with the measurements of the vertical speed
indicator sheet aluminum decks. Drawings by Robert Gysi

(2009, Nov.). Vertical Speed Indicator - Wikipedia [Online]. Available:
http://en.wikipedia.org/wiki/File:R22-VSl.jpg

Page |47

Four options that were considered:

I. Construction of the vertical speed indicator would have consisted of several
parts. The gauge would be controlled by servo or stepper motors. A servo motor
design will require either the use of a 360 degree capable servo or the
modification of a standard servo of 180 degrees. A standard servo can be
modified by either modifying the internal structure or by pairing a set of gears
together with the proper gear ratio to spin a shaft at least 360 degrees.

Il. The vertical speed indicator only has a single pointer to control. A single servo
motor capable of 360 degrees, a modified 180 degree servo motor, or a 180
degree standard single servo motor paired with a set of gears could have been
used to control the pointer on the vertical speed indicator.

lll. A single stepper motor capable of turning 360 degrees could be used instead
of a single servo motor to control the pointer of the vertical speed indicator. A
problem arises when using stepper motors. There is no way to know when the
shaft is positioned at zero or home. To determine where the starting point or
zero is an optical sensor could be used to sense when the motor is moved to the
start position.

IV. A real commercial vertical speed indicator could also be used for the flight
simulator. It would require accurately generating slow varying pressures within
small fractions of a PSI. Figure 3-25 shows the inherent complexity involved
when trying to use a real aircraft flight instrument in building a flight simulator
cockpit. The mechanical parts of the aircraft flight instrument would have to be
removed by disassembling the aircraft flight instrument. Servo motors or stepper
motors would then be place inside the aircraft flight instrument.

Diaphragm
\

X
Calibrated Direct Static
Leak Pressure

Figure 3-25. Components of an actual vertical speed indicator. This work is in
the public domain in the United States because it is a work of the United States
Federal Government*?

'2 (2009, Nov.). Vertical Speed Indicator (FAA) - Wikipedia [Online].
http://en.wikipedia.org/wiki/File:Faa_vertical_air_speed.JPG

Page |48

For the vertical speed indicator we have selected option three. This is because
stepper motors provide 360 degrees of rotation. Again, just like the airspeed
indicator, we will never need to go beyond just short of 360 degrees, but since
we will need to cover large angles of rotation, only a stepper motor can provide
us with the resolution we require.

We were only able to utilize the faceplate, needle, and glass frame of the real
vertical speed indicator we obtained from GoBosh Aviation to build our simulated
vertical speed indicator. These components were added to the faceplate deck of
the layered sheet metal and hex spacer flight instrument design. A single
stepper motor was mounted in the center of the motor deck and used to turn the
needle of the vertical speed indicator. A piece of 3/8” round aluminum tube was
mounted to the shaft of the stepper motor to extend the shaft length to the
faceplate.

3.3.2 Gyroscopic Instruments

The instruments in this category all are based on gyroscopes. They help the pilot
determine the position and status of the aircraft in flight. While during day time
flying a pilot may be able to determine if his wings are level or if he is at level
flight (or climbing or descending), but in times of low light levels, it may be
impossible to see the ground or may become disoriented and not know which
way is up, down, left, or right.

3.3.2.1 Attitude Indicator (Artificial Horizon)

The attitude indicator displays the aircraft’s orientation relative to the earth. As
seen in Figure 3-26, we see that the gauge has two different colored areas: one
blue to represent the sky and one black (in most case this colored brown) to
represent the earth. The hatch indicates the attitude of the aircraft. This gauge
does not solely work in an up and down fashion. Since it is gyroscope based on
an actual aircraft, it also rotates to the left and the right indicating the bank or roll
of the aircraft. Figure 3-27 shows the autocad drawings with the dimensions we
would have used had we not received an actual attitude indicator.

Figure 3-26. Face plate of the attitude indicator. Used with permission under the
GNU Free Documentation License®

Y (2009, Nov.). Artificial Horizon - Wikipedia [Online]. Available:
http://en.wikipedia.org/wiki/File:Attitude_indicator_level_flight.svg

Page |49

ROL BUSHING DECK <ATTITUDEY - QTY. 1
—0.1500
1
: & —o0
;
0.7000 ..
03800 | = L— 0.1500 ®»0,1094
0.1500 —— |=- —{4—01000 .
T ,‘ 5 Q 1 Udé%% —R0.1875
O B ﬂ_] C Y
o %FU 50 A
Ao 3** \ 3.2400 *
[RL4000— \
3.2400 L 340w 3,
\\
T~/
O - @
= |=03347 N
G‘ 5 4&%\\ e} o
\— 30,2188 o
1 3.2400 $0.1406 o 3.2400
—n 7NnNn ?0.1094]6
e :

Figure 3-27. Autocad drawihgs with the measurements of the attitude indicator
sheet aluminum decks. Drawings by Robert Gysi

Five options that were considered:

|. Construction of the attitude indicator consists of several parts. The gauge will
be controlled by servo or stepper motors. A servo motor design may require
either the use of a 360 degree capable servo or the modification of a standard
servo of 180 degrees if a roll indication of 360 degrees is desired. A standard
servo can be modified by either modifying the internal structure or by pairing a
set of gears together with the proper gear ratio to spin at least 360 degrees.

[I. Two standard 180 degree servo motors can be used if the desired roll
indication does not require 360 degrees. The two servo motors will drive the
scales which are able to turn left or right, as well as move up and down. One of
the servo motors will control upward and downward motions. The second servo
motor will be used to control the turning motion. With this design the roll
indication will have a maximum at 95 degrees to the left and at 95 degrees to the
right. A centrally located dial underneath the attitude indicator will show proper
indication of the horizon.

Page |50

lll. A pair of stepper motors could be used instead of servo motors to control the
scales. A problem arises when using stepper motors. There is no way to know
where the scales are positioned. To determine where the starting point or zero is
an optical sensor could be used to sense when the motor is moved to the start
position.

IV. A real commercial attitude indicator could be used for this simulator. The
attitude indicator incorporates a gyro which is designed so the indicators do not
move. The instrument housing bolted to the aircraft is what moves around the
indicator. The mechanical parts of the aircraft flight instrument would have to be
removed by disassembling the aircraft flight instrument. Servo motors or stepper
motors would then be place inside the aircraft flight instrument.

V. Another option would have been to buy a simulated instrument kit for this type
of flight instrument. This could be purchased from SimKits.com or from Flight
lllusion, both of which are companies located in the Netherlands. Figure 3-28
shows an example of a kit version available from Flight Illusion. This (along with
a similar one from SimKits) simulates the motions of the gyroscope ball by
utilizing a moving plate. It should also be noted that the SimKits gauge, while it
has a X-Plane plug-in available it is only sold for “professional use” and is priced
accordingly at $2000. The Flight lllusion gauge however includes a free X-Plane
plug-in, so there would be no additional costs or development required to
implement.

Figure 3-28. Flight lllusion Attitude Indicator Gauge. Photo used with permission
from Mark Verschaeren.**

For the attitude indicator we chose option three and four. The attitude indicator
was one of our toughest and challenging flight instruments to simulate. We were
fortunate enough to get a real attitude indicator from GoBosh Aviation. The
attitude indicator was taken apart and the gyro was removed. A stepper motor
was mounted on the inside of the yoke to drive the pitch indicator. A second
stepper motor was mounted on the back to control the roll indicator. Figure 3-29

* For e-mail response granting permission to use, see Appendix C

Page |51

on the following page shows the setup of the actual attitude indicator and the
mounted stepper motors.

Figure 3-29. Actual Attitude Indicator during modification process. Photo by
Lewis Valil

3.3.2.2 Turn Coordinator

The turn coordinator provides to the pilot information about the yaw, roll and
coordination of the turn being performed*®. If the turn is coordinated than the ball
that exists in track in the bottom of the gauge (see Figure 3-30), will remain in
between the two black lines. If this ball moves to the left section of the track it is
known as skid and to the right section of the track it is known as slip (these are
both when the aircraft is making a turn to the right). Figure 3-31 shows the
autocad drawings with the dimensions we used.

Figure 3-30. Turn Coordinator Used with permission under the GNU Free
Documentation License™®

3(2009, Dec.). Turn Coordinator - Wikipedia [Online]. Available:
http://en.wikipedia.org/wiki/Turn_coordinator

1°(2009, Dec.). Turn Coordinator Drawing - Wikipedia [Online]. Available:
http://en.wikipedia.org/wiki/File:Turn_indicator.png

Page |52

3.2400

!
. © 0.3900

80,1250 S ,
& 1 —001406 0.7000 =l et CTE e N TR

Figure 3-31. Autocad drawings with the measurements of the turn coordinator
sheet aluminum decks. Drawings by Robert Gysi

Five options that were considered:

I. Construction of the turn coordinator will consist of several parts. The gauge will
be controlled by servo or stepper motors. A servo motor design will not require
the use of a 360 degree capable servo or the modification of a standard servo of
180 degrees.

[I. The turn coordinator can be built using two standard 180 degree servo motors.
The first servo motor will control the aircrafts turn rate. The second servo motor
will be used to control the slip indication.

lll. A pair of stepper motors could be used instead of servo motors to control the
turn rate and slip indication. A problem arises when using stepper motors.
There is no way to know where the turn rate and slip indication are positioned.
To determine where the starting point or zero is an optical sensor could be used
to sense when the motor is moved to the start position.

IV. A real commercial turn coordinator could be used for this simulator. The turn
coordinator incorporates a gyro which is designed so the indicators do not move.

Page |53

The instrument housing bolted to the aircraft is what moves around the indicator.
Figure 3-32 shows the inherent complexity involved when trying to use a real
aircraft flight instrument in building a flight simulator cockpit. The mechanical
parts of the aircraft flight instrument would have to be removed by disassembling
the aircraft flight instrument. Servo motors or stepper motors would then be
place inside the aircraft flight instrument.

Turn Coordinator

Gimbal rotation
__ Gimbal
Gyro rotation

Canted gyro

Figure 3-32. Components of an actual turn coordinator. As a work of the U.S.
federal government, the image is in the public domain.’

V. Another option would be to buy a simulated instrument kit for this type of flight
instrument. Like with the Attitude indicator, there are two manufacturers of this
gauge, SimKits and Flight lllusion. SimKits has one with an existing faceplate,
while Flight Illusion does not have this particular one. If we are to order this
gauge versus building it, we would need to order from SimKits.

For the turn coordinator we have decided to go with options three and four. We
were only able to utilize the faceplate, airplane, and glass frame of the real turn
coordinator we obtained from GoBosh Aviation to build our simulated turn
coordinator. These components were added to the faceplate deck of the layered
sheet metal and hex spacer flight instrument design. Two stepper motors were
mounted side by side on the motor deck offset from the center. The airplane was
fastened to brass hobby tubing through the center of the faceplate with a gear
fastened on the opposite end of the tube. Another gear was fastened to one of
the stepper motor shafts and allowed to mesh with the brass tubing in order to
spin the airplane clockwise or counter clockwise. The second stepper motor had
a piece of 3/8” round aluminum tube attached to its shaft in order to extend it. On

(2009, Dec.). File: Turn_indicators.png - Wikipedia [Online].
http://en.wikipedia.org/wiki/File:Turn_indicators.png

Page |54

the tip of the aluminum shaft was a black flag that was used to indicate the slip or
skid ball.

3.3.2.3 Heading Indicator

The heading indicator in the standard instrument gauge setup on an aircraft
functions as a compass pointing in heading of travel of the aircraft. This however
does not function exactly like a wet compass as it is not affected by the
downward slope of the Earth’s magnetic field.*® Figure 3-33 shows a common
design for heading indicator face plates, while Figure 3-34 shows the autocad
drawings with the dimensions we used.

Figure 3-33. Face plate of the heading indicator. Used with permission under the
GNU Free Documentation License®®

'8 (2009, Dec.). Heading Indicator - Wikipedia [Online].
http://en.wikipedia.org/wiki/Heading_indicator

(2009, Dec.). Heading Indicator Drawing - Wikipedia [Online]. Available:
http://en.wikipedia.org/wiki/File:Heading_Indicator.png

Page |55

= 2.5400 -
[=—=10.7000 !
& Cj
\ 01300
-
—@0.1230
3.2400
=700 e s - o
A Hfdsoo O o700
] e 0.3500

n a9\ o—f T

o B N\ 201094 o

- \ 20,1406
#0.2188
&b

_R0.1094

) O

O

0
i oo — 0125 R T

38 N & 1—20.1406 N

03800 [9§ T o aa0-] ~

32400 ——

Figure 3-34. Autocad drawings with the measurements of the heading indicator
sheet aluminum decks. Drawings by Robert Gysi

Four options that were considered:

I. Construction of the heading indicator will consist of several parts. The gauge
will be controlled by a servo or stepper motor. A servo motor design will require
either the use of a 360 degree capable servo or the modification of a standard
servo of 180 degrees. A standard servo can be maodified by either modifying the
internal structure or by pairing a set of gears together with the proper gear ratio
to spin a shaft at least 360 degrees.

Il. A single modified servo motor can be used to turn right or left. The heading
indicator may also have two dials for this aircraft. The left dial will indicate the
position of the gyro compass. The right dial will be used to adjust the heading
bug to the proper heading for use with auto pilot.

lll. A single stepper motor could be used instead of a servo motor to control the
turn from right or left. A problem arises when using stepper motors. There is no
way to know were the heading is positioned. To determine where the starting
point or zero is an optical sensor could be used to sense when the motor is
moved to the start position.

IV. A real commercial heading indicator most likely cannot be used for this
simulator. The heading indicator incorporates a gyro which is designed so the
indicators do not move. The instrument housing bolted to the aircraft is what

Page |56

moves around the indicator. Figure 3-35 shows the inherent complexity involved
when trying to use a real aircraft flight instrument in building a flight simulator
cockpit. The mechanical parts of the aircraft flight instrument would have to be
removed by disassembling the aircraft flight instrument. Servo motors or stepper
motors would then be place inside the aircraft flight instrument.

Gimbal Main Compass
Rotation Drive Gear Card Gear

: / Adjustment
Adjustment Gears Knob

Figure 3-35. Components of an actual heading indicator. Photo used with
permission from Bob Miller. %

/
Gimbal Gyro

For the heading indicator we selected option three. This is because stepper
motors provide 360 degrees of rotation. In this gauge we needed the capability
to continuously rotate the instrument if someone was piloting the aircraft in a
circle formation.

The head indicator is the one gauge we did not receive from GoBosh Aviation.
Fortunately it was not an extremely difficult gauge to build and construct. A
single stepper motor is used to spin the compass rose of the heading indicator.
A 3/8” round aluminum tube is attached to the shaft of the stepper motor to
extend the length. The compass rose is attached to the end of this tube. A
square cutout of clear acrylic with an airplane marking is placed above the
compass rose to indicate the heading of the aircraft. Figure 3-36 shows the
heading indicator without the lens.

*° For e-mail response granting permission to use, see Appendix C

Page |57

Figure 3-36. Completed Heading Indicator (without lens faceplate). Photo by
Lewis Valil

3.3.3 Gauge Design

This section details the construction of the flight instruments including the
housing, motors, faceplates, and needles. Due to the similar nature of many of
these gauges, we were able to use a common design and then only make slight
adjustments to take care of any differing features.

3.3.3.1 Stepper Motor Design

This design takes advantage of the two strengths involved when using a stepper
motor for a simulated aircraft flight instrument or gauge. The motor can rotate
continually because there is no mechanical stop. There is also quite a bit of
torgue at your disposal. When using stepper motors to design the aircraft flight
instrument an optical interrupter must be incorporated into the design. An optical
interrupter will be used to sense the zero position during power up and execution
of the reset command.

The stepping motor is centered and mounted directly behind the faceplate
assembly. For this type of aircraft flight instrument there is a rotary encoder
which is mounted in the lower corner of the motor deck. The optical interrupter is
located directly above the stepper motor. The optical interrupter is mounted on
the decks front surface with the leads pointing toward the circuit deck. Just
behind the motor deck is the circuit deck which is followed by the rear deck.

Page |58

There is no unique starting position for the stepper motor. When powered up the
stepper motor shaft is in an unknown rotational position.

A 400 step per revolution stepper motor is used in this design. To boost the
number of steps to 800 the stepper motor is half stepped.

The difference between the motor positioned desired and the current position is
calculated with each pass through the interrupt service routine. The code
executes a return from interrupt when a difference of zero indicates no need for
movement.

3.3.3.2 Flag Interrupter

The flag interrupter consists of an L-Shaped thin piece of sheet metal. A
machine screw and nut hold the flag interrupter in place. The flag interrupter is
bent on the outer end so that as the needle or faceplate rotates, the flag
interrupter will pass through the gap for the optical interrupter. The flag
interrupter can be constructed out of any rigid opaque material or aluminum.

3.3.3.3 Motor Deck

The rotary encoder, stepper motor, and optical interrupter are supported by the
motor deck. The stepper motor is mounted on the decks rear surface with the
motor shaft facing forward. The stepper motor has no particular up or down
orientation. Figure 3-37 shows a picture of the motor deck on the left.

Figure 3-37. The motor deck is pictured on the left. Photo used with permission
from Joseph Munera.

Page |59

Just above the stepper motor is where the optical interrupter is mounted on the
front surface of the motor deck.

To determine the best direction of movement a difference not equal to zero is
used. This requires more than just observing the sign of the difference. Ideally
we want to move in the direction that will minimize the number of steps required.
Even though both are positive differences movement from O to 1 is in one
direction while movement from 0 to 799 should go the other way.

By looking at the sign of the difference a direction is set, forward movement is
implied with a positive difference. Then the number of half steps equivalent to
half a rotation is compared to the magnitude of the difference. The direction flag
is complemented if the magnitude is larger. It is then shorter to go the other way.

3.3.3.4 Optical Interrupter

The optical interrupter is used to during initialization to tell the gauge when the
needle is in the home position. It consists of two components, a sender and a
receiver.

The receiver is a light sensor that goes to 0 when it senses light. It consists of a
P4537 CdS photocell connected to ground and a 5KQ resistor connected to VCC
wired in series. The voltage is taken between them and fed into the FTDI chip at
D7 (see figure 3-27). When no light is hitting the photocell its resistance is much
higher than 5KQ and the D7 goes high. When light hits the photocell its
resistance is much lower than 5KQ and D7 goes low. The 5KQ value mentioned
above is just a theoretical value arrived at by examining the P4537 datasheet
and it may change once we begin testing. A simplified block diagram of this
system is located below in figure 3-35.

The sending component is simply an LED. It emits light that it picked up by the
photocell. During initialization the LED is lit. When the needle finally gets around
to the home position, the flag interrupter blocks the LED from lighting the
photocell and the signal to stop is sent to FTDI chip.

3.3.3.5 Mechanical Construction
Figure 3-36 shows the internal structure of a dual needle aircraft flight instrument,
along with dimensions required to build the gauge. The measurements are in
mm and the following labeled parts are:

A) Face Plate

B) Lens

C) Motor 1

D) Motor 2

E) Printed Circuit Board 1

F) Printed Circuit Board 2

Page |60

The entire aircraft flight instrument structure is made from a variety of
components including Aluminum, and metal tubes with a diameter of 2mm to
5mm. In addition, the glass window of the gauge isconstructed using acrylic or
plexi-glass. Figure 3-38 show the implementation of the autocad drawings into
the basic structure and foundation of our simulated flight instruments As you can
see the aluminum rods connect the front and rear ends of the gauges with the
sheets of aluminum providing stability to the whole assembly including a place to
mount components to.

L - .'.-’,/-- PRS0 ool eV -

Figure 3-38. Constructed flight instrument. Photo used with permission from
Lewis Vail.

Figure 3-39 shows some of the finished faceplate designs that were mounted to
the front of the aircraft flight instrument gauge frames. The faceplates are all
from the actual aircraft flight instruments we received from GoBosh Aviation
except for the heading indicator. All the needles were also removed from the
actual flight instruments and utilized in the simulated aircraft instruments.

Page |61

o

X
Figure 3-39. Assembled face plates for a various flight instruments. Photo used
with permission from Lewis Vail

3.3.3.6 Prototype Gauge

In order to validate the research we performed, we built a prototype airspeed
indicator around a Futaba S3003 servo motor purchased from Central Florida
Hobbies. Using the function generator in the Senior Design Lab, we were able to
perform a test of the circuitry. Other components used in the construction of the
prototype consist of plywood, nylon gears (from a clock kit), aluminum shafts,
circular pipe, screws, and epoxy. Figure 3-40 shows this prototype during testing
in the Senior Design lab.

Figure 3-40. Flight instrument assembly consisting of a servo motor, nylon gears,
circular wood cutout and aluminum shaft. Photo by Joseph Munera.

Page |62

A circular saw was used to make a circular cutout from the plywood. The circular
cutout is used to mount the servo motor and shaft. The aluminum shaft is
positioned in the center of the circular cutout. A power drill is used to drill out a
small section of the wood so that the aluminum shaft can sit in the center of the
circular cutout and rotate freely.

The nylon gears are drilled out so that the smaller gear would be able to fit onto
the aluminum shaft and the larger gear would be able to be mounted on the
Futaba servo motor shaft.

Figure 3-41 shows the aluminum shaft with the gear in place and also the Futaba
servo motor with the larger gear mounted on the top of the shaft. The circular
wood cutout is now glued and sealed to the back of the circular pipe. The Futaba
servo motor is glued and two screws are used to mount it to the circular wood
cutout. The aluminum shaft sits inside its drilled fitting. Three screws are used
to hold the aluminum shaft in place preventing it from slipping out of its setting.

The wires for the Futaba servo motor hang out the back of the circular wood
cutout. The Futaba S3003 servo motor has three colored wires. The black wire
is the ground, the red wire is for the power and the white wire is for the PWM
signal.

Figure 3-41. Flight instrument assembly glued and sealed to circular pipe. Photo
by Joseph Munera.

Page |63

Table 3-1. Futaba S3003 Specifications

Specification Value
Speed 0.23 sec/60° @ 4.8V
0.19 sec/60° @ 6V
Torque 44 oz-in (3.2 kg-cm) @ 4.8V
57 0z-in (4.1 kg-cm) @ 6V
Dimensions 1.6"x 0.8 x 1.4" (40 x 20 x 36mm) w/o output shaft
Weight 1.30z (37Q)
Connector "J" type with approx. 5" lead
Cost $10.99

Figure 3-43 shows the flight instrument aircraft gauge finished product. A
hacksaw was used to cut the aluminum shaft to the correct size. The faceplate
consists of a printed airspeed indicator face glued to a circular cardboard cutout.
This was then glues to the circular pipe. The needle comes from a build your
own clock set kit that was purchased from Skycraft. It sits inside a hole in the
center of the aluminum shaft. The gears have 28 teeth on the idler gear and 16
on the pinion. If we divide the idler gear teeth count by the pinion gear teeth
count, we find the gear ratio for the setup. For this gauge the gear ratio was
calculated to be 1.75:1. Additionally the gear was tested in the Senior Design lab
where we were able to successfully turn the shaft with the servo motor. It
appears however that the Futaba servo does not possess the right response
curve in terms of the rotation angle, therefore causing problems with gauges that
require extreme movements of the gears (such as an airspeed indicator or
altitude indicator).

Figure 3-42. Assembled flight instrument with face plate and needle. Photo by
Joseph Munera

Page |64

Since our testing of a prototype using a Futuaba motor did not work as expected,
we have ultimately decided to not use it. Because the issue lies not just with the
Futaba motor, but with servo motors in general, we will utilize a stepper motor in
the gauges instead. The stepper motor we intend to use the Mineba SMT-112
available at allelectronics.com. It features 48 steps per revolution with a
movement of 7.5 degrees per step. Testing with this motor will take place, to
confirm if this a suitable replacement for the Futaba servo motor.

The second prototype we built was designed around the multiple layered deck
concept and was closer to what we actually built for our simulated flight
instrumentation.

Figure 3-43 shows the prototype for the heading indicator which later became the
basis for all of our simulated flight instruments. This design consists of the clear
acrylic lens with the airplane markings. This lens is supported by #4-40 thread
female to female hex spacers which connect to a piece of sheet aluminum for the
motor deck. In between these two pieces is the compass rose which in turn is
connected to the shaft of the stepper motor.

Figure 3-43. Protdtype 2 Photo by Jseph Munera

3.4 Flight Control Design

In this section we will discuss the design of our flight control interfaces.
Originally, the plan was to implement our designs into the cockpit that we were
slated to receive. Due to not receiving the cockpit, we still needed to provide
flight controls for the user, and a decision was made with our sponsor to build

Page |65

test rigs for the controls that would be used for input for the demonstration in
addition to validating our electrical designs. We originally were designing a
joystick around the existing stick in the aircraft, rudder pedals utilizing the existing
pedals found in the aircraft and a throttle, but since no aircraft arrived we needed
to change our design implementation. Since we want preserve a record of our
original designs so that they could be possibly implemented by our project
sponsor (if the cockpit arrives at a later date), we will present these alongside
temporary controls that we built from scratch.

3.4.1 Joystick Design

One of the most critical components of this project was the joystick controller that
was designed for the flight simulator. In most small general aviation aircraft the
actual stick is actually connected to the flight surfaces through the use of push-
pull rods. For this simulator we needed to simulate this same operation digitally
and then passes the data into the simulator computer so that the appropriate
command is executed on the screen. In order to tackle this problem we needed
to first understand that in order to create this control stick we will need to work
with two directions: the X-axis and the Y-axis. Connected to these two axes are
potentiometers which as the stick is moved, change in resistance which allows
one to map when at a particular output voltage a certain position has been
reached.

j

Figure 3-44. Control Stick. rPhoto by Robert Gysi

The image shown in Figure 3-44 is the actual control stick in a GoBosh G700S
that would have been part of the airframe that was to be utilized on this project.
From discussions with our project sponsor, we determined that since the cockpit
was not being received with the control devices, we would need to build a basic
joystick for inputs and testing. We decided to come up with a very similar design
from the one we first came up with using the two slide pots one for x-axis and
one for y-axis. It uses a plunger for control and return to center.

Page |66

During our research in Fall 2009, two methods were initially researched for
implementation for our joystick. The first proposed design we brought to our
sponsor had us utilizing a joystick controller that we could purchase from a
number of electrical component distributors. An example of this option would be
the SPC Multicomp STD-2607AR joystick controller available from Newark.com.
This joystick controller has all of the mechanical and electrical connections and
can simply be retrofitted to the end of a control stick. Mechanically it has the
ability to rotate 60° in each direction with a minimum required operating force, but
only has a rated lifetime of 300,000 cycles?. Additionally the size is relatively
small, which at first seemed perfect since we did not know where we would find
room to mount this device. However, it having a short stature (1.29” is the length
of the joystick knob), was deemed to be impractical to use for this application,
because we need to be able to have a wide range of deflection in our controls to
mimic the actual feel of the stick in the aircraft (approximately 8” at the user end).
Additionally, it is a fairly expensive part for a fairly simple task, costing $67 with a
$20 handling fee as it must be shipped from the United Kingdom. Therefore after
discussing options with our sponsor we decided to take a much cheaper and
basic approach.

Our finalized approach included using 60mm slide potentiometers that we would
attach to the push-pull rods and cables that exist inside of the fuselage. While
we did not receive the cockpit, we were still able to use this design electrically
with our test rig setup. The only difference between integrating with the cockpit
controls and building our own is simply how the slide potentiometers are
connected to the controls. To keep a record of our original design efforts, Figure
3-45 highlights the locations of the push-pull rods and cables that we would have
interfaced our controls to.

Cxtxm) (o pws)

whneckonto allivms e [ecdsy
Rt FAC AT
Covirred, SHTIE-
(x-Ax57s)
Cenlyle |eading
Yo Al lewnus

Figure 3-45. Mechanical linkages for control stick. Drawing by Robert Gysi

*1 (2009, Nov.). SPC Multicomp STD-2607AR Product specifications and drawing [Online].
Available: http://www.farnell.com/cad/358999.pdf

Page |67

For our implemented design for our demonstration, we needed to build out of
wood, every aspect of the joystick. To do this we started with a sheet of plywood
which we cut slots for our slide potentiometers to be held in place with screws.
Attached to this base was also stand which held our stick and created a pivot
point for the stick (fashioned out of a used sink plunger). At the bottom of the
stick we connected strips of metal to the each of the X and Y axis
potentiometers.

In our initial testing of our joystick we found that there was no return to center
capability like the stick in the aircraft would have. To correct this issue, we used
the rubber end of the plunger to accomplish this. All we needed to do was simply
cut a hole in the center and slide over our shaft. Additionally we made some slits
to the rubber plunger base to free up the motion a little bit. This was done after
testing showed the plunger by itself was possibly too stiff to correctly get our
range of motion. Additionally since we wanted to make sure we had the correct
throw of the stick, we measured the throw in our sponsor’'s GoBosh to a distance
of 8”. To implement this in our simulated stick, we simply measured out 8” of
throw on a table edge and cut our stick to the length that would give us our
distance. As a result the stick is a bit on the low side to the user, but still
perfectly usable. Figure 3-46 shows our overall construction of the joystick test

rig.

Figure 3-46. Joystick implementation

For this application we just needed your everyday basic slide potentiometer
available from any number of suppliers.

Page |68

3.4.1.2 Joystick Analog Design

Without going into how a potentiometer functions, the analog side of the design is
quite straight forward. Utilizing a +5V supply from the computer power supply,
we can then find what the corresponding voltage is across the separate X and Y
axes. With these varying voltages, we can take the analog output of the joystick
control and then feed the result into an analog to digital (A/D) converter. We
used our RA6020F-10-20D1-B10K slide potentiometer to get our voltage divider
circuit to register a voltage between 0 and 5 volts. This output voltage will then
feed into the A/D converter which is then fed into the FTDI chip. Once it enters
the A/D it is now a digital design problem.

3.4.1.3 Joystick Digital Design

As the control stick must ultimately be connected to the USB port of a computer,
there is a digital component to the design of this device. For this purpose, there
were two options to consider for this design. The first option reviewed included
using an A/D converter IC chip tied to the inputs on the FTDI USB interface chip
that is being utilized for our gauge design. This depending on the number of
controls connected to the FTDI chip is fed into the USB chip based on the chip
select pin on each of the A/D that are connected to the controls. This value is
then read in and processed by the software and is fed into the X-Plane system.

Table 3-2 Implementation of Control Stick Analog to Digital

Function Slider potentiometers FTDI chip select
X Axis Output (Pin 3) 0
Y Axis Output (Pin 3) 1

The slide potentiometers that are positioned along each axis of movement are
tied to the analog-to-digital (A/D) converter with the connections listed in Table 3-
2 (above). The software handles the change in values that are needed to take
the A/D value to the correct input value; this is handled in the Config.ini file.

3.4.2 Rudder Pedals

In this simulator we needed to include the ability to use rudder pedals as a basic
flight control device and to enhance the simulation experience. Like with the
stick, due to not receiving the cockpit meant that we would not have actual
pedals to interface with. Additionally, we found that we would need to change
every aspect of our design aside from the electrical components in order to
implement this requirement.

For our original design we wanted to match the feel of the pedals in the aircraft
as close as possible. This meant imply interfacing a rod to the back of one of the
pedals in the footwell to a slide potentiometer behind the engine firewall. This

Page |69

would allow have allowed us to keep the mechanical interfaces and linkages
intact and maintain the “feel”’. In addition to this, we should note that from the
beginning, the requirement for toe brakes were not required nor planned to be
implemented. We also did not implement this as an additional feature when we
needed to build our own pedals. Figure 3-47 shows the pedals as they exist in
the aircraft and what we needed to replicate.

Figure 3-47 Pedals on the GoBosh G700S. Photo by Robert Gysi

Using purchased lumber and scrap pieces from the senior design lab we set out
to create our rudder pedal test rig so that we could validate our electrical design
efforts and provide input during the demonstration phase of the project. The
design was kept inherently simple just like with all of our other control interfaces.
The biggest difference here between our other controls is that for our test rig we
did not utilize a slide potentiometer, instead using a rotary potentiometer for
measurement. We opted for this as we wanted to have a single pivot point so
that the pedals moved together. To achieve this we just needed to build a simple
frame with two pedals and a rod sticking out of the front middle. Given the short
time frame that we had to develop a solution (approx. 3 weeks before the project
deadline is when the final determination was made that cockpit would not arrive
in time), we sought to keep everything simple in comparison to a design that
would have utilized a slide pot in the middle. This would have required more
moving parts would have more than likely increased the cost.

During our testing we found that our first revision had a design flaw in that the
motion was not very smooth at all due to the wooden frame rubbing across the
plywood base. To rectify this issue, we purchased a lazy susan from Home
Depot that elevated our pedal frame off of the base and provided a smooth
motion. This resulted in more favorable results although occasionally the gears
on our potentiometer slip for an unknown reason. As a result, when first using
the simulator, it is recommended to use the test application to find the midpoint of
the potentiometer and then set the pedals so that they are aligned correctly.
Figure 3-50 below shows a close up of the gears on the shaft of the rotary
potentiometer.

Page |70

Figure 3-48. Mechanical configuration of the pedals. Photo by Lewis Vail.

In addition to the basic frame of the pedals we needed to place a location for the
user to place their feet during use. We also wanted to ensure that we had
somewhat of the feel of actually using the pedals in the aircraft. In order to
achieve this we simply cut two pieces left over from building the frame of the
pedals and attached each to the from using door hinges. This allowed the user
to either have their feet at an angle up on the pedals (provided they did not push
too hard as it possibly would have adverse effects on the gear shafts) or in a
position with their heels on the ground and their feet on the pedals. Together
with the stick the instruments were secured to another piece of plywood so that
each device would retain proper distance apart in addition to keep the user from
pushing the pedals away during use. Figure 3-49 below shows this
configuration.

Figure 3-49. Pedals and Stick combined. Photo by Lewis Vail

Page |71

3.4.2.1 Rudder Pedal Analog Design

As mentioned in the previous section we did not utilize our 60mm 10kQ slide
potentiometers as originally intended. Instead we utilized a 10kQ linear rotary
potentiometer for our data measurement. The decision was made from a purely
mechanical standpoint and can be reviewed in the section preceding this one.
Just as with the joystick control, we utilized the +5V supply from the computer
ATX power supply to find what the corresponding voltage is across our
potentiometer and then fed the resulting voltage into an A/D on the control circuit
reserved for the throttle and pedals. We would read in a value between 0 and 5
volts just as with the joystick and once this voltage is passed through the A/D it
becomes a digital design problem, which we cover in the next section.

3.4.2.2 Rudder Pedal Digital Design

As the pedal assembly must ultimately be connected to the USB port of a
computer, there is a digital component to the design of this device. For this
purpose, there were two options to consider for this design. The first option
reviewed included using an A/D converter IC chip tied to the inputs on the FTDI
USB interface chip that is being utilized for our gauge design. The second option
was to use a microcontroller (specifically the Atmel AT90USB1287) which had
onboard USB support and A/D pins. Ultimately the decision was made to utilize
two FTDI chips between our controls with our throttle and pedals using one
control circuit. For our throttle/pedals design we utilized the chip select pin on
each of the A/D that is connected to our controls. This is to ensure that we select
the right input device for taking in values into X-Plane. Table 3-3 below shows
the chip select value for selecting the A/D assigned to the pedals.

Table 3-3 Implementation of Pedals Analog to Digital
Function Potentiometer FTDI chip select

Pedals Output (Pin 3) 0

3.4.3 Throttle

The theme with the controls for this simulator is that in each section the design
becomes simpler and simpler. For our throttle control all we need to implement
is a simple slide potentiometer which should have a travel length as close to
100mm in order to get as much travel as possible. From an electrical standpoint
it is the same as our other control inputs.

Mechanically, it is nowhere near the same as the others. This was also the only
control device that we were not slated to receive from Aero as part of the cockpit
(pedals and stick were to be in place). As a result we did not need to make any
design changes to our throttle assembly. To implement our throttle we opted to
use the same slide potentiometer as with our other control devices, meaning we
used the Alpha (Taiwan) RA6020F-10-20D1-B10K. This potentiometer did meet
the requirement of being 100mm of travel, but unfortunately due to costs of some

Page |72

100mm slide potentiometers and the lower cost ones being not expected in
before project completion, the decision was made to utilize this slide
potentiometer. As a result we are about an inch short on the throw of the throttle,
but this does not impede operation of the device. Figure 3-50 shows the location
of the throttle inside of the cockpit of our sponsor's GoBosh G700S.

Figure 3-50. Trottle location (black knob pulled out of instrument panel). Photo
by Robert Gysi

To begin with the mechanical design we will start off discussing how we need to
modify our slide potentiometer to be able to interface with our throttle rod. The
reason we picked this slide potentiometer outside of it meeting our electrical
requirements was the fact that the slider on it would be able to be modified for
use on any of our control devices. That that end, the dimensions from the slide
are .197” at its widest and .787” total height. This gives us adequate space to
drill a hole for a #4 screw into. Figure 3-51 shows an approximation of the tab
and the modification made to it.

—U. /83U
L

Vﬁ$¥®01180

Figure 3-51. Drill Pattern for potentiometer modification. Drawing by Robert Gysi

Page |73

After modifying the potentiometer tab, we can discuss how to connect the throttle
rod. To achieve this we knew we wanted to secure a small piece of angled metal
to the slider. Through searching through the scrap metal bins at SkyCraft, we
discovered several small pieces that were strong, lightweight, cheap, and small
enough to fit in the space required. It was important to use a piece that was
angled so that we could have a flat surface against the potentiometer and
forward facing flat surface for the throttle rod to mount to. To build our throttle
rod we started with a 6-32 threaded rod that was also purchased from skycratft.
This gave us a satisfactory length with the slide potentiometer we used (would
have needed a longer rod if we had been able to secure a 100mm
potentiometer). Since the rod itself is of a small diameter, we wanted to increase
the shaft diameter by using the same aluminum tube we purchased originally for
our gauge construction. This was cut and filed down until we had just enough of
the 4” threaded rod showing to secure our knob to (just a standard wooden
cabinet knob purchased from Home Depot). The AutoCAD 2D drawing in Figure
3-52 represents the design of our throttle.

£.0000 P——

Ea

T—— 201380

e e =]
Figure 3-52. Mechanical representation of Throttle Assembly. Drawing by Robert

Gysi

Additionally, we needed to be able to lift the assembly located behind the panel
SO as to secure it in place and keep the throttle from moving around. To achieve
this we used more angle brackets purchased from SkyCraft (although with only a
single bend) to form the legs of our throttle stand. After drilling a hole large
enough for a #6 screw (diameter of approx. 0.13”), we used another 4” rod and
secured on each end with two nuts on both sides of each bracket. The inner nut
is your standard 6-32 nut, while the one on the outside is a nylon insert lock nut.
This helps us keep our rod from rotating once in place. It is also important to
note that since we wanted to run the rod across the bottom of the slide
potentiometer between the connection pins, we needed to ensure that we kept
the rod from shorting anything. To ensure this, we wrapped the rod in electrical
tape and then inserted the slide potentiometer over top. The tape itself held the
potentiometer fairly snug, but for extra security we utilized zip ties on both the
front and back of the throttle (so as to not impede movement).

Page |74

Figure 3-53. Angle bracket for connecting to slide potentiometer. Photo by
Robert Gysi

Through our testing we discovered issues with the potentiometer wanting to lean
towards the right when a user pulls out on the throttle. To alleviate this we added
an extra angle bracket supporting it from being able to rotate about the rod. Also,
we found that the throttle assembly had issues of wanting to travel left and right
within the hole. Since we were not able to get the correct nut that the throttle
would have normally exited the panel through, we devised a solution using the
thin aluminum that we used for several purposes in our gauge construction. We
cut a thin strip that was secured to the base of the front throttle assembly. This
helped restricted our throttle from moving left and right. Although this was our
solution, we would recommend that the appropriate sized nut be located and
installed to maximize the left-right travel restriction. The completed throttle
assembly installed in the instrument panel is located in Figure 3-54 below.

Figure 3-54. Completed throttle assembly. Photo by Robert Gysi

Page |75

3.4.3.1 Throttle Analog Design

The analog electronics design on the throttle is the same as with all the other
control circuits. Using the 10kQ slide potentiometer we used an input voltage of
+5V from the ATX power supply and connected in such a fashion that Pin 1 was
input, pin 2 was the wiper (also tied to input) and pin 3 was our output pin, so that
our voltage divider circuit would register a voltage between 0 and 5 volts. This
output voltage will then feed into the A/D converter which is then fed into the
FTDI chip. Once it enters the A/D it is now a digital design problem.

3.4.2.2 Throttle Digital Design

As the throttle must ultimately be connected to the USB port of a computer, there
is a digital component to the design of this device. For this purpose, there were
two options to consider for this design. The first option reviewed included using
an A/D converter IC chip tied to the inputs on the FTDI USB interface chip that is
being utilized for our gauge design. The second option was to use a
microcontroller (specifically the Atmel AT90USB1287) which had onboard USB
support and A/D pins. Ultimately the decision was made to utilize two FTDI chips
between our controls with our throttle and pedals using one control circuit. For
our throttle/pedals design we utilized the chip select pin on each of the A/D that is
connected to our controls. This is to ensure that we select the right input device
for taking in values into X-Plane.

Table 3-4 Implementation of Throttle Analog to Digital
Function Potentiometer FTDI chip select

Throttle Output (Pin 3) 1

3.4.5 Combined Flight Control Circuit

The schematic below in figure 3-55 represents the overall circuitry for the
implementation of the flight controls utilizing the pins on A/D ports mentioned in
the previous sections tied to a potentiometer.

Page |76

.| Q2n222d R5 . .

10k 10k

|
]
o
= =
[
20
o
o
=
h
2
e

S

17 Slide POT|#2

15 Fer N

D!
D
e S o o i D:
IN_+ D +
R7 N Dorg R8 N
D!
D!
D

10K PAE (N~
5»1;; 4" oND
a% /REF/2
741 . . Coor Tm . GND

Figure 3-55. Circuit implementing control systems. Created by Chris Dlugolinksi

lide POT #1

ot
>
I

oopoooool O
93888882 3

3.5 Computer Hardware Selection

Computer selection is a probably the most important task on this project due to
the fact that a full computer needs to be assembled so that we are able to meet
our requirements that were discussed earlier in this documentation to provide the
most realistic and smooth experience while maintaining a low cost. This is not
always easy to do and in section 3.5.1 a discussion on the choice of various
components along with trade-offs are presented.

3.5.1 Computer Hardware

Flight simulators are notorious for being some of the most graphics intensive
applications that a consumer can install on their personal computer. This is even
truer with X-Plane, because not only does it feature impressive graphics, but also
due to the fact that X-Plane is also a full-fledge aerospace modeling application.
Because of this we needed to ensure that we had hardware powerful enough to
support the application. In this section we will cover both the original computer
selection that was to power the simulator before the decision to not display at
Sun ‘n Fun was made (Section 3.5.1.1) and the computer specifications for the
system we used for our demonstrations (Section 3.5.1.2). This is presented in
this fashion to preserve our original efforts for future completion by our sponsor.

3.5.1.1 Original Design Effort

Starting with our original computer design effort the most appropriate place to
start our discussion is on CPU selection. When it comes to manufacturers, there
are only two (Intel and AMD), and along with that there is a fierce debate

Page |77

between enthusiasts over which one provides superior performance. Ignoring
the recommendations of those individuals we set out to find the lowest-cost,
highest performing CPU available from each manufacturer. For comparison, the
Intel family selected would be the Core 2 Duo whereas the AMD family selected
for comparison would be the AMD Phenom Il family. Each of these processor
families are dual core, x86-64 processors and are priced relatively the same.
Upon searching various computer part distributors online we settled on two
processors the Intel Core 2 Duo E8400 and the AMD Phenom X2 550. A
comparison the specifications are listed below in table 3-5.

Table 3-5. Comparison of Intel and AMD CPU options.

Intel Core 2 Duo | AMD Phenom X2 550°°
E8400%

Clock Speed 3.0 GHz 3.1 Ghz

FSB (Intel) / HT (AMD) 1333 MHz 4000 Mhz

Socket Type LGA 775 AM3

L2 Cache 6 MB 2x 512kB (1024kB total)

L3 Cache N/A 6 MB

64-bit Yes Yes

Manufacturing Process | 45 nm 45 nm

Voltage 0.85-1.3625V 0.85-1.425V

Heatsink Included Yes Yes

Price $167.99 $99.00

Here we have two very similar CPUs that are matched in almost every
specification, but one of them, the $99 AMD Phenom X2 550 is around $70
cheaper than the most equivalent Intel-manufactured CPU. Since we are
attempting at all costs to create the most powerful machine for the lowest cost, it
makes perfect sense to choose the AMD Phenom CPU over the Intel.
Additionally, while this was not a factor in determining the CPU, it appears AMD
has given the enthusiast community a gift with the release of this particular
model. It turns out that the Callisto-based Phenom X2 processors are really
guad core chips with just two of the cores disabled and are extremely receptive
to overclocking to upwards of 4 GHz. This means that for $99 we could upgrade
our CPU using a fairly simple process to unlock the remaining two cores
(requires no hardware modification) and up our clock speed to a high value in the
end giving us the performance of a nearly $200 AMD Phenom X4 or an Intel
Core 2 Quad?®*.

22(2009, Nov.). Intel Core 2 Duo E8400 Specifications [Online]. Available:
http://www.newegg.com/Product/Product.aspx?ltem=N82E16819115037

2 (2009, Nov.). AMD Phenom X2 550 Black Edition Specifications [Online]. Available:
http://www.newegg.com/Product/Product.aspx?Item=N82E16819103680

24 (2009, Dec.). AMD Phenom X2 550 Review — Unlocking Blocked Cores [Online]. Available:
http://www.xbitlabs.com/articles/cpu/display/phenom-athlon-ii-x2_15.html

Page |78

The next most important piece of computer hardware to be installed in the
simulator computer is the graphics card. Just like in the CPU industry there are
two primary manufacturers of chipsets: ATl and NVIDIA. In order to stay within
our project budget we would have to neglect the most recent, high-end cards
from these manufacturers. This unfortunately means that we would not be able
to purchase a card that has ATI’'s new Eyefinity™ technology. This technology
allows for a maximum resolution of 8192x8192, but at the same time also
requires the use of a monitor that includes a display port. There is also a
limitation currently where if one wanted to use three monitors utilizing the DVI
connections, only two would be able to be utilized even with two cards running
due to a technical limitation?®. This technical limitation could possibly corrected
by the completion of the project, however it would still be possible to run the card
in CrossFireX mode without using the Eyefinity support to span the three
displays. Currently large monitors, such as those in the neighborhood of 24” are
still quite expensive, so we would need to utilize two ATI based cards. If the
display limitation is addressed or the cost of display-port equipped monitors
decreases in cost, then this may be a suitable graphics solution. Now, in order to
select the graphics card to be utilized in our simulator PC, we have chosen two
similarly priced graphics cards. One is based on an NVIDIA chipset while one
will be based on an ATI chipset. They both should have fairly comparable
specifications and performance given the rivalry between the two companies.
The comparison between the ATI and NVIDIA based chipsets are in table 3-6
located below.

Table 3-6. Comparison of Graphics Card Options

EVGA 01G-P3-N981-TR*® | XFX HD-575X-

ZNFC?’

GPU Family NVIDIA GeForce 9800 GT | ATI Radeon HD 5750

Core Clock 600 MHz 700 MHz

Shader Clock 1500 MHz Unknown

Stream Processors 112 720

Memory Clock 1800 MHz 1150 MHz

Memory Size 1 GB 1 GB

Memory Interface / Type | 256-bit GDDR3 128-bit GDDR5

SLI / CrossFire Yes (SLI) Yes (CrossFireX)

Support?

Price $139.99 $139.99

%% (2009, Dec.). ATl Eyefinity Technology Brief [Online]. Available:
http://www.amd.com/us/Documents/ATI_Eyefinity_Technology_Brief.pdf

?® (2009, Dec.). EVGA Product Specification Sheet [Online]. Available:
http://www.evga.com/products/pdf/01G-P3-N981.pdf

%7 (2009, Dec.). XFX 5750 Specifications [Online]. Available: http://www.xfxforce.com/en-
us/products/graphiccards/hd%205000series/5750.aspx#2

Page |79

These two cards are exactly the same price at Newegg.com and while they have
some similarities, such as memory size, relatively close GPU clock speeds, and
the ability to be linked to another graphics card to increase graphics processing
power, they are very much different cards. The ATI-based card for example has
a lowe memory clock rate than the 9800, but many more stream processors.
Now there may be a difference in how ATI versus NVIDIA calculates the stream
processors on the chip, but there is not a way to know without diving into what is
more than likely ATI-proprietary information.

Moving on, let’s discuss some of added features each card brings to the table.
The NVIDIA based card is a Direct X 10/OpenGL 3.0 based card that includes
support for NVIDIA PhysX (enhanced physics processing), and support for
NVIDIA CUDA, which is a “general purpose parallel computing architecture that
leverages the parallel compute engine in NVIDIA graphics processing units to
solve many complex computation problems in a fraction of the time required on a
CPU.”® These two features however will be of no assistance to us in running the
flight simulator, for one X-Plane is not optimized for the PhysX architecture and
we will not be writing any CUDA based applications.

Likewise, the ATl Radeon HD 5750 also comes with “value-added” features as
well. However, it is important to first note that this card is not only DirectX 11, but
is also an OpenGL 3.1 card, meaning that it is compliant with the latest revision
of each graphics rendering architecture and being the most up-to-date card
between the two. Additional the GPU on the 5750 includes support for the
previously mentioned ATI Eyefinity technology and a technology known as ATI
Stream.'* The Eyefinity technology was described on the previous page, and
ATI describes the Steam technology as “enable AMD graphics processors
(GPUs), working in concert with the system’s central processors (CPUs), to
accelerate enabled applications beyond traditional graphics and video
processing.”®

With all of the information about each of the graphics processing units taken into
account, we must come to a conclusion about which to pick for inclusion in the
simulation computer. The ATI Radeon HD 5750 from XFX is the one that has
been selected. It has a slight edge over the NVIDIA-based card in the raw
specifications, but the real selling point has been the inclusion of the Eyefinity
technology. While the Eyefinity technology may have some limitations currently,
this project will ultimately have a much longer life beyond the end of the Spring
Semester and it is important that we design the computer powering the simulator
to be ready for future technologies and future capabilities.

The selection of the motherboard is something that either happens first and then
you build your computer around it or you go in the opposite direction and find the

%% (2009, Dec.). What is CUDA? [Online]. http://www.nvidia.com/object/cuda_what_is.html
(2009, Dec.). ATI Stream Technology [Online]. Available:
http://www.amd.com/us/products/technologies/stream-technology/Pages/stream-technology.aspx

Page |80

components you wish to use and find a board that will meet your specifications.
Performing a search on newegg.com returned several boards, but two stood out
from the rest. The boards, one manufactured by ASUS and the other by MSI are
both fairly comparable boards with nearly the same specifications at the same
price. However, there is one major difference. The ASUS board allows for 16GB
of DDR3 RAM to be installed while the MSI board only allows for 8GB of DDR3
RAM A comparison of the two follows in Table 3-7.

Table 3-7 Motherboard Comparison

ASUS M4A785TD-V EVO™ | MSI 790X-G45°"
Socket AM3 AM3
Chipset AMD 785G/SB710 AMD 790X/SB710
Memory 4x DDR3 DIMM Max. 16GB | 4x DDR3 DIMM 8GB
Expansion Slots 2x PCle x16, 1x PCle x1, | 2x PCle x16, 2x PCle x1,
3xPCI 2XPCl
CrossFireX Support | Yes Yes
Onboard Audio Yes Yes
USB Ports 12 6
Form Factor ATX ATX
Phenom X2 Unlock | Possible Not Possible
Price $99.99 $99.99

With the CPU, graphics cards and motherboard selected, we can select our
remaining components to round out our computer build. For RAM, we have
decided to go above the minimum requirements for X-Plane (set at 1GB) and
Windows 7 minimum (also 1GB) and go with a 4GB DDR3 dual channel kit
running at the DDR3 1066 speed (PC3 8500). This should be sufficient for the
simulator, although if more memory is desired, the motherboard will allow up to
16GB total to be installed (64-Bit Windows 7 is required for this).

For drive selection it was incredibly straight forward. For the hard drive we
calculated that total space required by an Installation of Windows 7 Professional
and X-Plane 9.4 would utilize roughly 100GB of capacity. Since we do not need
a very large drive due to the computer’s specialization, a 160GB Serial-ATA drive
with a 8MB cache and a 4.2ms average latency from Western Digital was
selected.®* In reality when it comes time to purchase any drive as long as it
meets or exceeds the same specifications could be purchased. This will allow us
to procure the cheapest drive and potentially cut our spending some. In addition,
the same situation exists for the DVD-ROM drive. Since almost all DVD-ROM

*%(2009, Dec.). ASUSTeK Computer Inc. MAA785TD-V EVO Specifications [Online]. Available:
http://www.asus.com/product.aspx?P_ID=fcsXWSxnhzZE9rnR

*(2009, Dec.). NewEgg: MSI 790X-G45 Specifications [Online]. Available:
http://www.newegg.com/Product/Product.aspx?Item=N82E16813130249

%2 (2009, Dec.). Western Digital WD1600AAJS Hard Drive Specifications [Online]. Available:
http://www.newegg.com/Product/Product.aspx?ltem=N82E16822136075

Page |81

drives are essentially the same (they all read DVD and CDs) and almost all have
a read speed of around 18x, we are again able to go with the cheapest possible
drive available to us. The Lite-On iIHDP118-08 meets this requirement and only
costs under $20.

All of the components will be fitted into an case that meets the ATX specification.
We have chosen the Linkworld 313-06-C2228 available from Newegg.com for
$20.99. Itis a very simple case that can hold our ATX motherboard, includes 3
mounting locations for fans and provides enough space for all of our drives.
Also, since the case manufacturer is not a critical requirement (only that we have
a case for the computer), this could change when it comes time to purchase
components in the spring. Table 3-8 lists the complete specifications of our
desired computer configuration.

Table 3-8. Complete Simulation Computer Specifications

Part Number Description

CPU HDZ550WFGIBOX | AMD Phenom X2 550 @ 3.1 GHz

Graphics Card HD-575X-ZNFC XEX ATI Radeon HD 5750

Motherboard M4A785TD-V EVO [ASUS AM3 ATX Motherboard

RAM 0CZ3G10664GK OCZ 4GB (2x2GB) DDR3 1066 Kit

Hard Drive WD1600AAJS Western Digital 160GB

DVD Drive iHDP118-04 Lite-On 18X DVD-ROM Drive -
OEM

Case 313-06-C2228 Black ATX Tower

Power Supply EP-1000SC ePower 1000W SLI Ready ATX
PSU

3.5.1.2 Demonstration Hardware

While the preceding section discussed our original hardware design under the
circumstances of receiving a cockpit to integrate all of our systems with this
section deals with the reality of not receiving our cockpit and what we did to
ensure that we still had the abilities to run X-Plane sufficiently.

From discussions with our sponsor, it was decided that for the demonstrations of
our project at the end of EEL 4915 that we should use our development machine
to power our graphics as well as all of our controls and instruments. Since the
bulk of development took place using Chris’ laptop we set out to test his machine
to ensure that it would be able to handle all of the demands of X-Plane. We
should note here that also due to not going to Sun ‘n Fun meant that we would
not be purchasing monitors and would not need to implement 3 monitors tied to
the VGA output on the laptop. Instead we made the decision to just output to
one 24" monitor owned by a group monitor and having X-Plane output a 120-
degree field of view onto the single monitor.

Page |82

From our testing on the laptop, we noticed no issues with graphics performance
and as a result decided to use this computer for our demonstration. One limiting
factor that did arise from the use of the laptop however was the number of USB
ports. With only four available ports on the computer we knew that we would
need a USB hub to handle all of our controls and instruments. We started out by
first utilizing a single powered USB hub that had 7 available ports onboard.
Through testing our USB hub during our integrated systems testing, we found
that often when a seventh device was connected to the hub, we would
experience issues. USB should be able to handle 128 devices, so the cause of
this issue is unknown. As a work around we use a separate four port unpowered
USB hub connected to a separate USB port on the computer. This alleviated our
issue and allowed for all devices to work flawlessly. A full table below lists the
specifications of the machine we used during our demonstrations.

Table 3-9. Complete Simulation Computer Specifications

Description
CPU Intel Core 2 Duo 2.4 GHz
Graphics Card NVIDIA GeForce 280
RAM 6 GB DDR
Hard Drive 500 GB
(O Microsoft® Windows® 7

3.5.2 Display Projection

Just as with the computer hardware selection, we will cover both our original
design centered on receiving the cockpit in addition to covering what we did
when the decision was made to not purchase a computer. Section 3.5.2.1
contains our original design work, so that it can be implemented by our sponsor
at a later date. Section 3.5.2.2 covers what we did to have a working component
for our demonstrations.

3.5.2.1 Original Design Effort

Display projection really comes down to two options. The first option was to
utilize a DLP projector for producing our visuals onto a drop screen in front of the
simulator. Unfortunately this presents several issues. To meet the requirement of
a 120-degree field of view given to us by our sponsor, we would need to use
multiple projectors, but each time the simulator would be set up the placing of
projectors would need to be calibrated and the whole set up would be very
cumbersome. Another concern was the effectiveness of projectors at an outdoor
event. We would probably have to implement some kind of tenting to keep the
light level within the projectors’ operational range. This of course would also hide
our simulator from plane sight hindering our sponsor from luring in on-lookers at
various shows. The ultimate factor that led us away from this option was the
cost. If we had chosen this form of display our entire budget would be spent on
just the projectors.

Page |83

Our second option is the one we recommend for implementation at a future date
by our project sponsor: LCD Monitors. First of all the cost of LCD monitors has
been driven down enormously over the last few years; a 24” monitor can now be
purchased for under $200. In addition the setup is incredibly easy in that you just
need to place each monitor next to the other. Also, LCD monitors are much
easier to see than projectors when operating in very bright environments. The
primary operation area of this simulator will be at air shows and other aviation
gatherings so this was a major concern.

In designing our display system we needed to know what size monitors we need
to purchase in order to produce a field of view of 120°. To achieve this we have
established a set of formulas using basic trigonometry to calculate the required
monitor size for any given viewing distance. Figure 3.56 shows the monitor
configuration that meets our 120-degree field of view requirement. The dotted
line in the middle represents the distance used in equation 3-1. Monitor size in
this equation refers to the diagonal of the screen. This is because that is the
dimension manufactures use to market their product. K in this set of equations
represents the proportionality constant used to calculate a monitor's diagonal
from their width. It is included in the formula set to illustrate the path that was
taken to get our monitor size to distance proportionality constant (this constant
comes out to be about 0.8352).

Monitor

Pilot
Figure 3.56: Schematic of display configuration. Diagram by Lewis Vail.
V92 + 162
K=—"— (Eq.1)
tan 20°V9? + 162
constant = 2K tan 20° = (Eq.2)

8
monitor size = (distance)(constant) (Eq.3)

Equation 3-1. Monitor Distance Formulas

Page |84

From these three equations we can solve for our constant value and then
multiply that by the distance the individual in the cockpit will sit from the monitors.
For this we know that the distance should be about two and a half feet or 30
inches. Plugging this value into Equation 3 above gives us a value of 25”. Now
this is the complete diagonal of the monitor we have found, including the frame.
In order to find the monitor size that we need to purchase, we need to simply
subtract approximately 1” total (the frame of the many LCD monitors is around
0.5” wide) to come to the conclusion that we need three 24” monitors to give us
our 120° field of view.

With our monitor sized now defined, we set about to located an adequate monitor
for our needs. We ultimately found the Gateway FHD2401 on sale at
Newegg.com for only $189.99. The monitor has a native resolution at 1920x1200
with a maximum viewing angle of 160° (Horizontal and Vertical) in addition a 5ms
response time and a 2000:1 contrast ratio; all common traits of lower cost LCD
monitors todayis. We also expect that monitor prices will continue to drop as they
have for the past few years, and should a better deal come along, say potentially
a refurbished monitor from a major manufacturer that meets or exceeds the
specifications on the FHD2401, we will consider purchasing that instead in order
to decrease the overall cost of our project.

3.5.2.2 Demonstration Hardware

For our demonstration we still needed to provide a visual projection to the end
user separate from our test machine. The reason for this is that we wanted to
not utilize the screen built-in to the laptop as it was only 177 and we would have
not been able to place it in an acceptable location without either blocking
instruments or at a bad angle resulting in a sub-par performance. To remedy this
we utilized a single 24” monitor (Asus VW246H) owned by a group member.
This was placed in the center on top of our instrument panel frame and angled
slightly downwards towards the user. This allowed us to give the reviewers some
resemblance to how if we had three of these monitors the space footprint that
would have been required. Additionally, we selected 120-degree as our output
range in X-Plane which was in turn displayed on our single 24” monitor. Figure
3-57 below shows the configuration used for our demonstration.

Page |85

e

Figure 3-57. Monitor placement for demonsrtion. Photo by Robert Gysi

3.6 Switches

The topic of implementing switches will be briefly covered, as this was not a
specified requirement of this project and was not implemented. However, as we
did complete the design work for this we have maintained the section on how to
implement this for future reference for our sponsor, should the decision be made
to at a later date. In the GoBosh there is a row of switches that light up when on
and that allow you to control different functions on the aircraft. This includes
switches to control the various lights on the aircraft in addition to the ability to
start the aircraft. Pictured below (Figure 3-58) is the panel of switches that could
be implemented using this electrical design. The numbered circles in the left of
the picture are not switches, but are fuses and circuit breakers. This design
discussion does not cover implementing these.

D

Figure 3-58. Switches and knobs that control the aircraft. Photo by Robert Gysi

Page |86

To integrate these switches we could have used some sort of multiplexer or
decoder to decide which of the switches is in what position. Each of the
channels could have been read by the FTDI chip which only has the 8 1/0O ports
which is polled by the software. Pulling information from the simulator is
relatively straight forward; a simple circuit diagram showing how the switches
could be connected is shown below. This would allow any other developer to
put this into the code and implement this.

+5v (> -

R8

100k 1 2

74148 VVVTRY
00k %o,

EO El sV

15 5 u7

IN7 [100k i 2

7168 IN6[3 VRS T
IN5 [100k 37 oy

51A2 N4 — RV ik
IN3 |5 100k 1 7 2

AT IN2[35 WVR3 us "
IN1 {7 100k 37 g

5 AD INO[7g Ry WA=
U9 00k 172

RT WV)
100k [

. il

[

Figure 3-59. Switch circuit. Created by Chris Dlugolinksi

In this circuit in Figure 3-59 you can see that the FTDI chip would be connected
to the Decoder, and a couple of the pins are used to select the channel that is
allowed to come across. It is an 8-1 decoder; it will take 3 pins for selection and
then one pin to read the switch. This can be done for 2 separate decoders
allowing input for 16 different switches, and since switches are not really time
needy they don't need to be polled very quickly and this circuit should work fine.

Each of the switches would need to be connected to a high point or the USB 5
volts or the power supply whichever we chose to go with. There should be a
resistor in the circuit so that we don't draw too much current. The software on
the computer side should recognize the chip as the control chip and then be
setup to poll 2 switches at once using the same code sent out to each of the
decoders. This info will then be read in over the USB and applied in the
simulation.

3.7 Panel Indicator Lights
Similar to the switches we didn't have time to implement this additional feature.
Although, we did receive lights from GoBosh in case we were able to find time to

Page |87

implement this feature, we were not able to implement them. However, we did
populate the panel with the lights we were given and the electrical design in this
section is presented here for future use by our project sponsor. Just as with all
the other devices controlled by the simulator, the indicator lights will be controlled
once again through USB and using the FTDI chip we could use simple transistors
and resistors to turn on and off the lights whenever needed. The nice part about
using the FTDI chip is that once the port is high or low on the chip it will stay that
way acting just like a switch. This allows the indicator light to stay lit or not lit
whenever we need it to be. A circuit of the lights is shown on the next page as
well as the actual indicator lights to be implemented along with their labels in the
actual aircraft below. The data to drive these lights should be pulled from
variables in X-Plane.

FUEL FUEL RESERVE
& PP ON 26USgH

Gy O - + - - - -
d|D1 GlD d 03 d-!-DddlﬂﬂlDE
) a050 |
=]
f—shee . 0’;?:1 Q2N3904
1_0UT 36 1
FTRl | BTN GE N.}g . | o |
+4F3 LD(0)e- | z_out NCe o QNS0 |
P10 LD(1)e . 2_IN GS_OuTcﬁ e : —
s—+Pi1 10 2je 30UT G5 e '-l a8
P12 103 3N G4_OUTa—— azNaEDs
1D je- —atsND Sd_INg | —]
1O(5}e- L B
Qg
(B L - -
QN3G04
W[) - ! - - —
GND a8]
QPN3E04 |
1 ar
N304
. =
1

Figure 3-61. Indicator lights circuit diagram. Created by Chris Dlugolinksi

Page |88

The schematic in Figure 3-61 (on the previous page) shows how the design for
illuminating the lights in the cockpit could of been implemented. The other way
that can be used depends on the sinking capabilities of the buffer. If it can light
up all the lights and still function it may be possible to remove the transistors and
just use resistors.

3.8 Flight Instrument and Control Interface Design

The core of our simulator will be X-Plane’s simulation software. Therefore, all of
our softwareinterfaces with X-Plane via its plug-in API. This API gives us access
to all of the functions and variables that we needed.

The implementation of the plugin has three main parts. (1) The TimeProcessing
part, this is the part of the plugin that has the main parts of the plugin callbacks
needed in X-Plane. (2) The devices have two separate threads, one for the
Controls, this updates the controls for the aircraft. (3) Then the final part of the
plugin is the control of the Gauges. Each of these will be discussed in detall
later in this section.

By interfacing with all the gauges using a single plug-in we have a little more
control and can step through all of the interfaces in series. This way, whenever it
is time to refresh the data on the I/O devices, we can make sure it all happens at
the same time. You could also keep the desired modularity by allowing the user
to configure which devices to use or by having the software sense all appropriate
I/O devices at initialization. Also, by using one global plugin, it makes it much
easier to share and recycle code.

Figure 3.62 shows a block diagram of our high-level plugin architecture. Each
device will plug into the computer with its own designated USB cord and will be
controlled by the plugin. The reason we chose to group them in this fashion was
because the design for all of the control devices are very similar as is the design
for all for all of the flight instruments. Figures 3.62 and 3.63 show a higher
resolution diagram of the control and flight instrument interfaces respectively.
Because all of the hardware interfaces into the simulation fall into one of these
two categories, much of the code is reused for each gauge.

Figure 3.63 shows interface architecture for the control devices. As with all of
our I/O devices, the controls will be integrating with X-plane via the X-Plane
Plugin Manager. The plugin manager is a dynamically linked library that handles
all the communication between the plugins and X-plane.®® The main loop for our
control devices will be as follows. Setup each of the Devices connected to the
computer. Find out how many devices are attached and initialize them using the
ini file that is used to set parameters for the controls or gauges. The two threads
that need to be started by the plugin are then kicked off.

(2009, Dec.). X-Plane SDK [Online]. Available:
http://www.xsquawkbox.net/xpsdk/mediawiki/Overview

Page |89

The controls thread is used to allow us to eliminate any waiting period to update
X-Plane when the controls are being monitored. Most of our controls will give us
a 8-bit digital signal, which will need to be truncated to an 7-bit signal so that we
can use it in software. This is only for controls that have multiple controls linked
to the FTDI board. Once we have this data we will need to turn it into a format
that can be assigned to one of the X-Plane variables according to the plugin API.
There will be a variable sized array in the plugin that is filled with the data for the
controls that are connected so that we can just read these values in the plugin for
use in X-Plane. Finally, once the appropriate data reference is populated with
the new value, X-Plane will respond appropriately.

Figure 3.64 shows the interface architecture for the flight instruments. It is very
similar to the control interface architecture except it is backwards. The first step
in the main loop once again is to look up the appropriate data reference, this is
found in the .ini file. The gauge thread is started and in this thread you have the
data that needs to be set getting passed in from the array that carries all the
connected devices. Next the data must be translated into something we can use
to drive the gauge. Finally the appropriate value is sent out to the gauges, which
will turn to display the current instrument readings. In the case of stepper motor
based gauges, an aspect of this final step will be a gauge driving loop that steps
the motor through the appropriate amount of iterations to get the needle in the
right position.

Instrument & Control Interface

X-Plane
\
I |
Controls Gauges
Thread Thread
/}/ 8 USB Interfaces
2 USB Interfaces ’ ’ ‘
Altimeter Air Speed Heading
Stick Throttle/Petals
’ /}/ 2UsSB /~/§ usB
Vert. Speed Art. Horizon Turn

Figure 3.62. Instrument and control architecture. Diagram by Lewis Vail.

Page |90

Control Software Interface

Plugin Thread

A

Control Thread

Figures 3.63. High-resolution control interface. Diagram by Lewis Vail.

Gauge Software Interface

Plugin Thread
i

Y

Gauge Thread

Figure 3.64. High-resolution flight instrument interface. Diagram by Lewis Vail

The other major consideration with regards to how we integrate our 1/O devices
into X-Plane is how often we update the X-Plane values. In the case of the
instruments, this would be moving the needle into the right location, and in the

Page |91

case of the controls, this would be updating the variables as the user moves the
controls. With regards to the instruments, the limiting factor here would most
likely be the speed of the motors. Too fast and the needles may jump around.
Too slow and the needles movements may be too choppy. A good starting point
would be thirty times a second to correspond with the frame rate but testing will
have to be done to optimize it. With regards to the controls, the limiting factor
would most likely be the human element. Once again, it would probably be best
to start with the frame rate and increase the loop time until it is optimal.

3.9 Power Supply

No matter what we were doing we needed a power supply. Since we didn't get
the computer that we planned and had to use a laptop, we just used a computer
power supply, for the external power, the USB hub and any of the other circuitry
that is was used, used this power supply.

3.9.1 Peripheral Devices Power Supply

The peripherals will need at most a 12 volt supply to run the motors in the
gauges. We could of designed a power supply for each of the circuits and use
this supply for each of the needed devices. Another alternative is to use a molex
pass-through card that can give you the same voltages from the computer supply
on the outside of the computer. It can be found here performance-pcs.com for
$4.00 this is cheaper than building our own and will give us a steady 12 or 5 volts
to use. Since we didn't get the computer we were not able to get the pass
through cards and that can be added later, we had to go with our separate power
supply for the simulator.

The power supply that we decided to use has an output power rating of 1000W
with six 12V lines rated for 20A each which should be more than enough to
power our gauges and controls. All that needs to be added are some extenders
and splitters for the molex connectors. The following table is a summary of the
power supply output as indicated by the manufacture and on the side label of the
power supply®*.

Table 3-9 Power Supply Ratings
VDCqyy | ¥3.3V | +5V | +12V | +12V | +12V | +12V | +12V | +12V | -12V | -5V
| max.out 28A | 28A | 20A | 20A | 20A | 20A | 20A | 20A | 0.8A | 6.5A
I min.out 0.3A | 0.3A | 0.6A | O.5A | O.5A | 0O.5A | O.5A | 0.5A | 0.1A | 0.1A

Since we will only need at most 1 amp total current draw on each of the gauges
which is well below the power ratings of the power supply. In addition this will
give us a safety feature in that we are reducing the number of devices to be
plugged into a single wall receptacle which makes set up much easier. This is
especially true at shows where this simulator might be displayed, where there is

** (2009, Dec.). Power Supply Unit Specifications [Online]. Available:
http://epowertec.com/power_ep-1000p10-t2.html

Page |92

limited availability of power receptacles available for exhibitor use, such as
outdoor areas at airports during airshows.

3.10 Remote Instructor Operator Station

One of the feature requests of our project sponsor was to have potential ability to
implement a remote Instructor Operator Station (I0OS) in order to dynamically
change flight simulator characteristics. First it should be noted that as part of the
scope of this project we were not responsible for building a second computer to
play host to the IOS functions. Instead the use of an existing computer, like a
laptop or netbook, to run the 10S functions for us.

X-Plane 9.4 provides many angles of attack for providing an 10S to the simulator
user. The first option that X-Plane provides is to simply draw the IOS on a
secondary monitor. This is inconvenient due to the fact that it will obstruct the
view of the individual flying an aircraft in the simulator and give away anything
the instructor may try to throw at the pilot. Luckily X-Plane provides another to
interface with an 10S console. Using the local network and either TCP/IP or
UDP, we can either write a custom application or simply purchase another copy
of X-Plane. The beauty of purchasing a second copy of X-Plane is that it already
has the 10S console built in and all we have to do is simply connect to the host
(simulator computer) machine. From there the instructor can change weather
effects, add flocks of birds in the air or deer running across a runway, change the
aircraft position or speed, and also add other aircraft operating in the proximity of
the piloted aircraft. In addition the instructor can view the aircraft gauges as
well. For the purposes of this project, utilizing the built in X-Plane 10S over a
local network is the most efficient use of resources and keeps the project
sponsor from being locked into a custom application.

3.11 Aircraft Model

One of the major requirements of this project was to build an accurate as
possible flight model for the GoBosh G700S. In section 2.2.1.2 we discuss the
requirements that we developed for our model. For example Table 2-6 on page
12 covers all of the basic aircraft data available from the GoBosh Flight Manual.
However, when it comes to developing the model, this information while helpful is
only a part of the required information to complete the task. Section 2.2.1.2 also
covers additional information on the background on the operation of the Plane
Maker tool. This will not be discussed in this section.

It should be noted now, that none of the group members had any experience
working with any sort of 3D modeling software or have any strong background in
flight physics. As a result, we were only able to make our model to the best of
our abilities given our limited knowledge and experience. Still, we were able to
generate a model that bore a strong resemblance to the actual aircraft (Figure 3-
65 below).

Page |93

[
Figure 3-65. Finished Aircraft Model. Image by Robert Gysi

3.11.1 Model Generation

Generating the model was a fairly difficult process, although was made much
simpler thanks to the included Plane Maker that ships with X-Plane 9. In order to
generate our basic fuselage shape we utilized dimension drawings obtained from
the manufacturer. We contact one of Aero’s design engineers who was more
than willing to provide us with this information. From these drawings we were
able to trace our fuselage shape into the plane maker. While the drawings we
used were dimensioned, it is possible that our fuselage is not the exact length of
the actual aircraft; however by using the same drawings for each background
image, we are confident that it is at least to scale (and should still be fairly close
to the full size). This process is shown in Figure 3-66 below.

TOF

BOTTOM

Figure 3-66. Wireframe model traced over dimensioned drawings. Image by
Robert Gysi

Page |94

The wings were much easier to implement, as all that really needs to be done is
to specify the length of the wings and place the control surfaces in the correct
location. Due to our simulator not having controls for the flaps, this feature was
not implemented. However, the ailerons are required to the fly the aircraft and
they were placed that the location specified in our dimensioned drawings. Also in
terms of control geometry, we needed to be able to specify the chord ratio of the
ailerons. Using our drawings again we found that the ratio was approximately
0.20 of the total surface area of the wing. In order to create the winglets on the
tip of the wings we simply created a new wing section and tweaked the incidence
values in the plane maker until we had a similar shape.

The horizontal stabilizer is where we first ran into problems when modeling the
aircraft. Due to a limitation in the Plane Maker software we are not able to
change the point about which it rotates. In the actual GoBosh it pivots from the
leading edge of the stabilizer, but in Plane Maker it must pivot from the center of
the control surface. This is a limitation that according to the creator of X-Plane
will be corrected with a future release. We still attempted to ensure that the
proper control reactions were the same, so utilizing flight manual we input values
of 20° for the upper range of motion and 10° for the downward range of motion.
Similarly, the vertical stabilizer was not able to be accurately modeled in Plane
Maker as well. There is not an easy way to change the base of the rudder so
that it is angled upwards. We even contacted Austin Meyer, the creator of X-
Plane to see if he had any ideas for implementing this, and admitted that there
was not a good method to do this within Plane Maker. As a result we attempted
to maintain the other aspects of the shape of the stabilizer, so to as hopefully
maintain as close as possibly flight characteristics. Figure 3-67 below shows a
comparison of this section of the aircraft in both real life and in our model.

Figure 3-67. Actual versus Model. Photo by Lewis Vail, Model by Robert Gysi

Another issue we had with the model stems from specifying the engine. We
attempted to utilize the specs for the Rotax 912ULS, the engine that is shipped
with the GoBosh, but this unfortunately would not provide enough power to allow
the plane to take off. This was probably due to an issue from modeling our

Page |95

aircraft, as there may be something that does not match the GoBosh'’s flight
profile at all. As a result we had to customize our engine specifications, using
other LSA models as a starting point. Ultimately, we did find engine specs that
would allow the plane to take off and fly, although it is possible to go slightly
faster than maximum speed that the GoBosh is rated for. Table 3-10 below
highlights these differences.

Table 3-10. Engine Specifications

Rotax Actually Used
912ULS%®
Horsepower 98.5 hp 180 hp
Redline RPM 5800 RPM 2700 RPM
Idle RPM 1400 RPM 500 RPM

Continuous RPM 5500 RPM 2500 RPM

3.11.2 Airfoil

One of the particular aspects we wanted to attempt to accurately model was the
flight physics. To do this we needed to create an airfoil for the NACA 4415 wing
profile that this aircraft uses for its wings. While we lack the basic aerospace
principles to fully understand this process, the steps for creating the airfoil were
covered extensively on the X-Plane community message boards. To start, we
got the polar coordinate data file from the University of lllinois at Urbana-
Champaign Applied Aerodynamics Group for the wing profile on their public
website. From there we needed to utilize an application known as javafoil to
convert this file into a format that X-Plane can understand. This is a fairly time
consuming process as one must wait for all the calculations to be completed and
then remove extra information from the .afl file it generates.

% (2009 Dec.). Airplane Flight Manual Aero AT-4 Light Sport Airplane [Online]. Available:
http://www.ussportaircraft.com/uploads/Gobosh_POH_1_.pdf

Page |96

Chapter 4

4.1 Project Implementation

Following the completion of our Preliminary Design Review with our sponsor on
January 3, 2010 we started our build phase. All of the design work at this point
was considered completed and we were still slated to receive a cockpit to
integrate at this time. In mid-March, we were told that we would not be receiving
the cockpit as planned and which necessitated several design changes. This
included building our own joystick and pedals and not procuring the computer we
would have powered our simulator with. Upon demonstrating our project and
presenting to the review committee our project has been completed with all the

hardware and software being handed over to our project sponsor.

4.2 List of Required Parts

The following table (Table 4-1) lists the required parts needed to implement the
design contained in Section 3 along with distributors in Table 4-2.

Table 4-1. Required Parts

ltem P/N Qty. Vendor

Req'd.
USB Communication FTDI245BL 10
Board Saelig
IC Sockets (Assorted) Various - | SkyCraft/Radio Shack
PCB Boards (Small) 4 | Radio Shack
Wire 3 | Radio Shack
Transistor 2N3904 36 | Radio Shack
Diodes 1N4003

36 | Radio Shack
Spacers (Assorted N/A -
Lengths) SkyCraft
Stepper Motors 8 | RoboKits World
Terminal Blocks N/A 36 | SkyCraft/Radio Shack
PCB Boards (Large) N/A 7 | SkyCraft
Buffer Chip CD4050 6 | Futurlec
Comparator IC LM741CN 5 | Futurlec
A/D Converter ADCO0804LCN 3 | Futurlec
Powered USB Hub 1| Best Buy
USB Cables Various 9 [Big Lots
Slide Potentiometers RA6020F-10-20D1- 3
B10K Mouser

Molex Connectors Various - | Radio Shack
Epoxy Putty N/A 1| Home Depot
3/8 x 0.035 Aluminum N/A 1
Tube Cent. FL Hobbies
Misc. Hardware N/A - | SkyCraft/Home Depot
470-Ohm Resistors 3 | Radio Shack

Table 4-2. Vendor Contact Information

Page |97

Vendor Web Site Phone Number
Best Buy http://www.bestbuy.com 407-482-8099
Radio Shack http://www.radioshack.com 800-843-7422
DLP Design http://www.dlpdesign.com 469-964-8027
Cent. Florida http://orlandohobbyshop.com 407-295-9256
Hobbies
Home Depot http://www.homedepot.com 321-235-3600

Mouser Electronics

http://www.mouser.com

800-346-6873

Futurlec http://www.futurlec.com None
Saelig http://www.saelig.com 585-385-1750
Robokits World http://www.robokitsworld.com None
Big Lots http://www.biglots.com 407-380-3755

4.3 Build Phase

The build phase for this project commenced after our Preliminary Design Review
with the project sponsor, which was completed on January 3, 2010. A full
schedule representing our build phase as displayed in a Gantt chart can be found
in Appendix B. A simplified view of the progression through this phase is
presented in figure 4-1 below.

Preliminary
Design

Review
(Jan. 3, 2010)

Order
Components

Perform Assembly of
Instruments, Controls,
Lights and Switches

Begin Software
Development
and Aircraft
Modelling

Acceptance Testing and
Systems Integration
Testing

Figure 4-1 Overview of the Build Phase

4.3.1 Flight Instrument Assembly
The assembly of our simulated flight instruments occurred immediately after
completion of our design review with our sponsor. We began to prototype our
boards at this point and working out issues with the circuits. During this time we
also attempted fabrication of our mounting decks, and dertermined through this
exercise that having parts fabricated was the best option. Our original schedule

Page |98

had us finishing our flight instrument build phase by the first week of March 2010.
Unfortunately, due to a variety of factors this milestone was not reached. This
was due to the fabrication time of our cut aluminum. Additionally we had to work
out issues with gearing and other mechanical related issues. We did complete
the construction of each component however within an updated schedule, which
left us with plenty of time for testing of our project. All the work on the flight
instruments occurred in the senior design lab at UCF.

4.3.2 Flight Control Assembly

Flight control assembly occurred, unfortunately at the last minute of the build
phase. The reason behind this was up until mid-March we were still assuming
that we would be receiving a cockpit to integrate with. As a result, while we had
our electronics finished and tested using rotary potentiometers, we were behind
schedule. The design of mechanical interfaces was not part of the original scope
of this project and as a result we had to focus efforts on additional designs.
Fortunately, we were able to get this completed before our testing phase
commenced. For more information on the design of the controls, refer to Chapter
2.

4.3.3 Indicator and Switch Assembly

No work was completed on the indicator lights or swtiches. This was due to the
lack of time for completing the project and in addition to not demonstrating at Sun
‘n Fun. These were never required components of the simulator, but features we
designed in case we had the time available.

Page |99

Chapter 5

5.1 Overview

This section contains all of our test procedures for testing the individual
components to be installed in the aircraft cockpit as well as the final test
procedure to ensure that the system as a whole works correctly. This is critical
as our project ultimately will wind up in the hands of our project sponsor, and this
an excellent method for us to perform quality control on our components. In
addition to test procedures and results, this section also includes the usage
cases as well as the requirements verification.

5.2 Required Test Equipment
In order to perform the testing the acceptance testing in section 5.3, some
equipment will be needed. The list below includes the required items.

PC running Windows 7 Professional.

Latest version of X-Plane (currently version 9.4).

Digital Multimeter (to troubleshoot any electrical issues that may arise).
Computer screwdriver set (for making adjustments to mechanical
components if necessary).

Second computer (such as a laptop) for running the Instructor Operator
Station (I0S) during integrated systems testing.

Test application for light, switches and motor control testing

USB Cables

USB Hub

Oscilloscope for troubleshooting issues with motor control.

In addition to this test equipment will have written a test program that we can use
to test the indicator lights, switches, and the gauges. There will be the ability to
turn on and off the lights, test the response of the switches (when the switch is
thrown, the checkbox will become selected), and a tab that will allow us to test
each of the motor control circuits for the gauges. In regards to the gauge test,
there will be a slider control with a range representing 0-100%. For the gauges
that need to continue to rotate it will only rotate one full revolution. In addition
this will allow us to verify that a microcontroller is in 100% working order before
we create any boards, and thus help eliminate the chance of a possible
expensive mistake from occurring. Figure 5-1 on the next page highlights the
test application.

Page |100

a5 Forml o || =R

STATUS STALL CYCLES ¢ = Using chip as A/D

| Tum Clockwise || Tum CounterClockwise |

Throttle NOT AVAILABLE NOTA\ Pitch NOT AVAILABLE NOT A\

MOTOR # Rudder NOTAVAILABLE NOTA\ Roll NOT AVAILABLE NOT A\
IblGauge1 Value of Slider
U
IblGauge2 Value of Slider
U
IblGauge3 Value of Slider
U
IblGauge4 Value of Slider
U
IblGauge5 Value of Slider
U
IblGauges Value of Slider
U
IblGauge7 Value of Slider
U
IblEJiaugeS Value of Slider
IblGauged Value of Slider
U
IblGauge10 Value of Slider

U
Figure 5-1. Gauge/Motor TestForm

5.3 Test Locations

All testing occurred in the senior design lab in room ENGR 456 on the UCF
campus. This included the testing of our parts as we receive them as well as our
integrated systems testing. Originally, the integrated systems testing was to take
place at the hanger of our sponsor. This was due to this being the location of the
stored cockpit, if it had arrived from Poland.

5.4 Acceptance Testing

The purpose of the acceptance testing is to verify that as we completed building
each component we could immediately verify if the component is working 100%
according to our specifications and requirements or if there are deficiencies that
need to be corrected before we install the component into the instrument panel.
This was our way of performing quality control on our components, so that once
we install a component, we should not need to replace it due to a failure.

Page |101

Controls are to be tested through the use of their test rig assemblies built
specifically for the demonstrations.

5.4.1 Part Testing

This section is to verify that the critical components that were to be installed in
our instruments and controls perform as specified from the manufacturer. We
will require this of our most critical component: the FTDI USB communication
board. This board will need to be tested before any are installed onto a board as
a faulty chip will not only cost us the price of the chip, but also the time it takes to
receive a replacement component. The procedures for this follows in section
5.4.1.1.

5.4.1.1 Microcontroller

The purpose of the microcontroller test is to verify that the part is received in
working order. If the test results in any failures, a new part will need to be
ordered or other corrective actions. This will be tested using the test software
installed on the test computer.

No. | Testing Action Result
1. The microcontroller is internal to the Gauges that are being
used in order to test it you must plug it into the computer P/F
through the USB port. Computer should recognize the
device
2. In the Application there is a Test Tab open it you will find a
list with all the connected gauges. Make sure your gauge is P/F
in the list.
3. Depending on the gauge you will be able to test the max and
the min of the gauge. Slide the bar between max and min P/F
and the gauge should move with the slider.
4. Repeat steps 1-3 for each gauge / motor -
5. We will now verify the operation of the switches and lights

through the microcontroller to ensure that we have no
defective parts. Disconnect the microcontroller responsible
for the gauge tested in the previous step and connect the P/F
switches and lights up individually up to the microcontroller.
6. The microcontroller is externally connected to all the
switches and lights in order to test this controller connect the P/F
controller up to the computer through the USB port it should
be recognized

7. In the Application there is a Test Tab open it you will find a
list with all the connected gauges. You will see a section for
the switches and lights. You should see the current state of P/F
all of the switches and lights connected to that particular
device

8. Depending on the switch you are testing you will see the

Page |102

switch change in the test program as well. P/F
9. Do this for all the switches and lights that are being

connected. N/A
10. [Overall Result Pass

From the completion of the above test procedure, we were able to verify that
each of the FTDI chips was working upon arrival from the distributor. In order to
knot waste paper, the cumulative results of the testing for the entire batch of
development boards was recorded the table above. Step 9, while included in the
procedure was not tested as lights and switches were not implemented as part of
this project.

5.4.2 Flight Instruments

This section of the acceptance testing will cover the flight instruments or gauges
to be installed in our cockpit. Gauges to the tested will include the airspeed
indicator, altimeter, attitude indicator, turn coordinator, heading indicator and the
vertical speed indicator. Success will be determined if all of the test steps results
in a “pass”. Any failures will need to be corrected before being installed in the
instrument panel. If necessary a redesign will occur, if successive fails are
generated by the component in question. Additionally, any comments regarding
the test events are included in paragraphs following the result tables.

5.4.2.1 Airspeed Indicator

The purpose of this test is to verify that the assembled component has been
properly manufactured. If the test results in any failures, a replacement parts will
need to be ordered or other corrective actions performed. This will be tested
using X-Plane on a test computer.

No. | Testing Action Result

1. Perform Visual Inspection of the airspeed indicator.
WARNING: Ensure airspeed indicator is disconnected from
the USB Port and that the device is not powered.
1. Ensure that all contacts are soldered properly.
2. Verify that the indicator motor is clean of and there are
no obstructions to the movement of the gauge.
3. Verify wiring to/from the FTDI USB controller is in P/F
accordance with the schematic diagram.
2. Plug in the airspeed indicator into a free USB port on the
simulation computer. Verify that the computer recognizes
the device. P/F
3. Perform operational testing utilizing X-Plane 9.
1. Launch X-Plane and set up with an aircraft on a
runway idling. Ensure the throttle is set to zero.
2. Ensure you are in the cockpit view in X-Plane. We will

No.

Testing Action

Result

want to verify that the same indicated airspeed is
displayed on the virtual instrument on the screen and
our simulated instrument.

3. First release the aircraft brake by pressing the B key
on the keyboard. Then using the throttle control
increase the power to at least 40 kts. Verify that the
physical gauge matches the airspeed indicated in X-
Plane. Verify that the gauge moves at the same rate

as indicated on the screen.
4. Bring the aircraft to a halt. Verify that the gauge
returns to zero. If it does not return to zero, note

where it stops. This is important as we will need to
potentially adjust the calibration of the gauge if it does

not return to zero.

5. Repeat steps 3 and 4. Ensure that the data again

matches on both the screen and on the physical
gauge installed in the cockpit.

4.

Overall Result

Pass

5.4.2.2 Altimeter

The purpose of this test is to verify that the assembled component has been
properly manufactured. If the test results in any failures, a replacement parts will
need to be ordered or other corrective actions performed. This will be tested

using X-Plane on a test computer.

No.

Testing Action

Result

1.

Perform Visual Inspection of the altimeter.
WARNING: Ensure altimeter is disconnected from the
USB Port and that the device is not powered.
1. Ensure that all contacts are soldered properly.
2. Verify that the indicator motor is clean of and

there are no obstructions to the gauge movement.

3. Verify wiring to/from the FTDI USB controller is in
accordance with the schematic diagram.

P/F

Plug in the altimeter into a free USB port on the
simulation computer. Verify that the computer
recognizes the device.

P/F

Perform operational testing utilizing X-Plane 9.
1. Launch X-Plane and set up with an aircraft on a
runway idling. Ensure the throttle is set to zero.
2. Ensure you are in the cockpit view in X-Plane.
We will want to verify that the same altitude is
displayed on the virtual instrument on the screen
and our simulated instrument.

|103

No.

Testing Action

Result

3.

First release the aircraft brake by pressing the B
key on the keyboard. Then climb to an altitude of
900ft above sea level. Verify that the physical
gauge matches the altitude in X-Plane. Verify that
the gauge moves at the same rate as indicated on
the screen.

Now climb to a level of 2300 feet above sea level.
With this increase in altitude the thousands hand
on the gauge should move. Verify that the altitude
matches the result displayed in X-Plane. If the
thousands hand is not correct, check the gearing
of the motor.

To ensure that we can roll back, decrease the
altitude to 500 feet above sea level. Verify that
the physical gauge matches the value given on
the virtual gauge in the simulation software.

P/F

Overall Result

Pass (With
conditions)

With the altimeter, everything from an electrical standpoint works as designed.
However, from testing we discovered that the gearing we utilized eventually
causes the gauge to be off at high altitudes. We can patrtially correct this by
adjusting the barometric pressure in X-Plane on the virtual gauge. In order fully
fix this new gears would need to be installed. Unfortunately, this was discovered
late in the process, as this gauge took a very long time to construct.

5.4.2.3 Attitude Indicator

The purpose of this test is to verify that the assembled component has been
properly manufactured. If the test results in any failures, a replacement parts will
need to be ordered or other corrective actions performed. This will be tested

using X-Plane on a test computer.

No.

Testing Action

Result

1.

Perform Visual Inspection of the attitude indicator.

WARNING: Ensure attitude indicator is disconnected from

the USB Port and that the device is not powered.

1.
2.

3.

Ensure that all contacts are soldered properly.

Verify that the attitude indicator was constructed in
accordance with the manufacturer’s specifications.
Verify mechanical assembly and electrical schematic.

Verify that the indicator motor is clean of and thereare | P/F

no obstructions to the movement of the gauge.

Plug in the airspeed indicator into a free USB port on the

simulation computer. Verify that the computer recognizes

|104

No.

Testing Action

Result

the device.

Perform operational testing utilizing X-Plane 9.

1.

2.

Launch X-Plane and set up with an aircraft on a
runway idling. Ensure the throttle is set to zero.
Ensure you are in the cockpit view in X-Plane. We will
want to verify that the same position is indicated on
the screen and with our simulated gauge.

First release the aircraft brake by pressing the B key
on the keyboard. Take-off and then climb to any
altitude. As you are climbing the attitude indicator
should indicate that the plane is at an increased pitch
(in the blue region). Verify that the same level is
indicated on the physical gauge and in X-Plane.

Put the aircraft into level flight. Verify that the attitude
indicator rests on the line representing the horizon
(between the blue and brown sections).

Roll the wings to the left and to the right. Verify that
the result on the gauge matches the movement of the
aircraft on the screen and the gauge on the screen.
Put the aircraft nose down. The attitude indicator
should roll forward into the lower half of the gauge
(brown section) as you head towards the ground.

4.

Overall Result

Pass

5.4.2.4 Turn Coordinator

The purpose of this test is to verify that the assembled component has been
properly manufactured. If the test results in any failures, a replacement parts will
need to be ordered or other corrective actions performed. This will be tested

using X-Plane on a test computer.

No.

Testing Action

Result

1.

Perform Visual Inspection of the turn coordinator.
WARNING: Ensure turn coordinator is disconnected from the
USB Port and that the device is not powered.

1.
2.

3.

Ensure that all contacts are soldered properly.

Verify that the turn coordinator was constructed in
accordance with the manufacturer’s specifications.
Verify mechanical assembly and electrical schematic.
Verify that the indicator motor is clean of and there are
no obstructions to the movement of the gauge.

P/F

Plug in the turn coordinator into a free USB port on the
simulation computer. Verify that the computer recognizes
the device.

Perform operational testing utilizing X-Plane 9.

|105

1. Launch X-Plane and set up an aircraft on a runway
idling. Ensure that the throttle is set to zero and you
are in the virtual cockpit view.

2. Take-off and climb to 4000 feet above sea level.
Keep the aircraft in level flight. At this point the
aircraft pictured on the turn coordinator should be
level and the ball below the aircraft on the instrument
should be in the center.

3. Next make a turn to the right. The turn coordinator
should match bank angle of the aircraft or in other
words the right wing should be dipped to the right as
indicated by the instrument. The ball should also
move towards the right. Verify that the turn indicator
in the virtual cockpit matches the result on the
physical gauge. P/F

4. Next make a turn to the left. The turn coordinator
should match bank angle of the aircraft or in other
words the right wing should be dipped to the left as
indicated by the instrument. The ball should also
move towards the left. Verify that the turn indicator in
the virtual cockpit matches the result on the physical
gauge.

4. Overall Result Pass

During testing our turn coordinator worked flawlessly. The bank angle of the
aircraft was reported accurately and the ball worked as well during our testing
and up to the day of the demonstration. Unfortunately, we did fry the FTDI chip
that controlled the motor for the ball, possibly during our first demonstration
attempt. As a result, this instrument will require the purchase of a new FTDI chip
to be restored to full functionality.

5.4.2.5 Heading Indicator

The purpose of this test is to verify that the assembled component has been
properly manufactured. If the test results in any failures, a replacement parts will
need to be ordered or other corrective actions performed. This will be tested
using X-Plane on a test computer.

No. | Testing Action Result

1. Perform Visual Inspection of the Heading indicator.
WARNING: Ensure heading indicator is disconnected from
the USB Port and that the device is not powered.
1. Ensure that all contacts are soldered properly.
2. Verify that the indicator motor is clean of and there are
no obstructions to the gauge movement.
3. Verify wiring to/from the FTDI USB controller is in P/F

|106

No.

Testing Action

Result

accordance with the schematic diagram.

Plug in the heading indicator into a free USB port on the
simulation computer. Verify that the computer recognizes
the device.

P/F

Perform operational testing utilizing X-Plane 9.

1.

2.

Launch X-Plane and set up with an aircraft on a
runway idling. Ensure the throttle is set to zero.
Ensure you are in the cockpit view in X-Plane. We will
want to verify that the same position is indicated on
the screen and with our simulated gauge.

First note the direction indicated on the physical
gauge while on the runway. Verify that this matches
with the heading indicator in the virtual cockpit.
Release the brake by pressing the B key on the
keyboard, take-off and climb to any altitude. Once at
an appropriate altitude turn to a heading of 330
degrees. Verify that the physical gauge moves
smoothly in the correct direction to 330 degrees and
matches the movement of the virtual gauge.

Put the aircraft back into level flight. Next perform a
360 degree turn to the right. Verify that the indicator
goes around the full 360 degrees back to a heading of
330 degrees. Resume a forward heading and
continue level flight.

Repeat part 5, but instead of turning to the right as
stated, make a turn to the left. Verify that gauge
works correctly and that you have returned to a
heading of 330 degrees.

4.

Overall Result

Pass

5.4.2.6 Vertical Speed Indicator

The purpose of this test is to verify that the assembled component has been
properly manufactured. If the test results in any failures, a replacement parts will
need to be ordered or other corrective actions performed. This will be tested

using X-Plane on a test computer.

No.

Testing Action

Result

1.

Perform Visual Inspection of the vertical speed indicator.
WARNING: Ensure vertical speed indicator is disconnected
from the USB Port and that the device is not powered.

1.
2.

3.

Ensure that all contacts are soldered properly.

Verify that the indicator motor is clean of and there are
no obstructions to the gauge movement.

Verify wiring to/from the FTDI USB controller is in

P/F

|107

No. | Testing Action Result
accordance with the schematic diagram.
2. Plug in the vertical speed indicator into a free USB port on
the simulation computer. Verify that the computer P/F
recognizes the device.
3. Perform operational testing utilizing X-Plane 9.

1. Launch X-Plane and set up with an aircraft on a
runway idling. Ensure the throttle is set to zero.

2. Ensure you are in the cockpit view in X-Plane. We will
want to verify that the same position is indicated on
the screen and with our simulated gauge.

3. Release the brake by pressing the B key on the
keyboard, take-off and climb to any altitude. As you
climb you should see the vertical speed indicator
move in a clockwise fashion. Ensure that the
movement mimics the virtual gauge on the screen.

4. Pitch the aircraft nose as far back as possible, putting
the aircraft into a stall. Right before the stall the
gauge should go no further than the established
maximum on the gauge.

5. Recover from the stall (return to level flight) and pitch
the nose towards the ground. The vertical speed

indicator should now move in the counter-clockwise P/F
direction. Verify that this matches the gauge on the
screen.

4, Overall Result Pass

5.4.3 Flight Controls

This section of the acceptance testing will cover the testing of our flight controls
to that were installed in our instrument panel. Each step must result in a “pass”
with any deficiencies noted for correction. Each individual component should
pass before being installed to the instrument panel and before integrated system
testing. Any comments about the testing follows the result tables in each section.

5.4.3.1 Joystick

The purpose of this test is to verify that the assembled component had been
properly manufactured. If the test results in any failures, replacement parts will
need to be ordered or other corrective actions performed. This was tested using
X-Plane on a test computer.

No. | Testing Action Result

1. Perform Visual Inspection of Joystick Control.
WARNING: Ensure joystick control is disconnected from the
USB Port and that the device is not powered.

1. Ensure contacts on each of the slide potentiometers

|108

No.

Testing Action

Result

are soldered correctly and that the wires lead to the
correct pins on the A/D Converter board as specified
on the schematic.

2. Ensure the entire yoke mechanical assembly including
the wires leading to the slide potentiometers is
connected and that there is no restriction in the
movement of the stick.

P/F

Plug in the joystick control into a free USB port on the
simulation computer. Verify that the computer recognizes
the device.

P/F

Perform operational testing utilizing the Windows Control
Panel.

1. In Windows 7 click Start — Control Panel — Devices
and Printers — Right click on the icon associated with
the yoke — Click Properties — Click on the Test Tab.

2. This is built in Windows Test utility for game controller
and joysticks. First move the joystick in the positive X
direction and then to the negative X direction. The
crosshair should move up and then down.

3. Next test the Y-axis in the same fashion. Moving the
stick to the left should move the crosshair to the left
and moving the stick to the right should move the
crosshair to the right.

P/F

If the joystick passed the previous test, then we may verify
that it works accordingly in X-Plane 9.4. First launch X-Plane
and set up with an aircraft on a runway.

1. First release the brake on the keyboard (if enabled) by
pressing the B key. Then using the throttle control
increase the throttle until the RPM gauge in X-Plane
moves and the aircraft moves down the runway.

2. Pull back on the stick when V; speed has been
achieved. Ensure that the aircraft rotates off of the
runway. Note if the aircraft is slow to respond to the
joystick control.

3. Once airborne move the yoke in the direction of all
four axes. Ensure that the response on the screen
matches both the direction and the speed at which the
yoke was moved.

P/F

Return the joystick to center. It should stay in the center
without moving in any direction.

P/F

With the aircraft still in flight, verify that the rudder pedals
move accordingly. Ensure that when pressing on the correct
pedal that the aircraft moves in the same direction

Overall Result

Pass

1109

5.4.3.2 Throttle

The purpose of this test is to verify that the assembled component has been
properly manufactured. If the test results in any failures, a replacement parts will
need to be ordered or other corrective actions performed. This was tested using

X-Plane on a test computer.

No.

Testing Action

Result

1.

Perform Visual Inspection of Throttle Control.
WARNING: Ensure throttle control is disconnected from the
USB Port and that the device is not powered.

1. Ensure contacts on the slide potentiometer are
soldered correctly and that the wires lead to the
correct pin on the A/D Converter board responsible for
the throttle and pedals as specified on the schematic.

2. Ensure the entire throttle mechanical assembly
including the wires leading to the slide potentiometers
is connected and that there is no restriction in the
movement of the throttle

P/F

Plug in the throttle control into a free USB port on the
simulation computer. Verify that the computer recognizes
the device.

Perform operational testing utilizing the Windows Control
Panel.

1. In Windows 7 click Start — Control Panel — Devices
and Printers — Right click on the icon associated with
the yoke — Click Properties — Click on the Test Tab.

2. This is built in Windows Test utility for game controller
and joysticks. To test our throttle, simply move the
throttle out. The bar labeled ‘slider’ should move
along with the throttle.

P/F

If the throttle passed the previous test, then we may verify
that it works accordingly in X-Plane 9.4. First launch X-Plane
and set up with an aircraft on a runway.

1. First release the brake on the keyboard (if enabled) by
pressing the B key. Set the throttle for full throttle and
take off. Verify that virtual throttle position on the
screen is roughly the same as the physical throttle.

2. Increase and decrease speed with the throttle while in
level flight. Verify that it response on the screen
matches the physical input.

With the aircraft still in flight, verify that the rudder pedals
move accordingly. Ensure that when pressing on the correct
pedal that the aircraft moves in the same direction

P/F

Overall Result

Pass

|110

Page |111

5.4.3.3 Pedals

The purpose of this test is to verify that the assembled component has been
properly manufactured. If the test results in any failures, a replacement parts will
need to be ordered or other corrective actions performed. This was tested using
X-Plane on a test computer.

No. | Testing Action Result

1. Perform Visual Inspection of foot pedals.
WARNING: Ensure pedals are disconnected from the USB
Port and that the device is not powered.

1. Ensure contacts on the slide potentiometer are
soldered correctly and that the wires lead to the
correct pin on the A/D Converter board responsible for
the throttle and pedals as specified on the schematic.

2. Ensure the entire throttle mechanical assembly
including the wires leading to the slide potentiometers

is connected and that there is no restriction in the P/F
movement of the pedals.
2. Plug in the pedals into a free USB port on the simulation
computer. Verify that the computer recognizes the device. P/F
3. Perform operational testing using X-Plane 9.4.

1. First release the brake on the keyboard (if enabled) by
pressing the B key and then proceed to take off.

2. Once in the air, use the rudder pedals to change the
position of the rudder on the tail of the aircraft. This is
best observed when flying in chase view. Ensure that

both the left and right pedals cause the correct P/F
change in direction of the aircraft on the screen.
4. Overall Result Pass

5.4.4 Cockpit Switch and Indicator Circuit Testing

The switches and indicator lamps circuits would have been tested to the same
level as all other flight instruments and controls, if they had been implemented.
The indicator lamps provide secondary information to the pilot and the indicator
switches provide additional input commands, including turning on and off exterior
strobe lights to the pilot. This was established as an optional requirement for the
project. Not all of the switches may be functional, as implementation is solely up
to our sponsor after handing over the project. Nonfunctional switches will be
noted, so that they can be excluded from testing.

5.4.4.1 Indicator Lamps

The purpose of this test is to verify that the assembled component has been
properly manufactured. If the test results in any failures, a replacement parts will
need to be ordered or other corrective actions performed. This should be tested
using X-Plane on a test computer. For the scope of this project, this component

was not implemented and therefore did not require testing. These procedures
are included in this document for the reference of our project sponsor and/or
future groups that may work on this simulator.

No. | Testing Action Result

1. Perform Visual Inspection of indicator lamps.

WARNING: Ensure indicator lamp control board is

disconnected from the USB Port and that the device is not

powered.

1. Ensure of each LED is connected to the board P/F
correctly and that the overall circuit matches the board
schematic.

2. Plug in the indicator light control board into a free USB port

on the simulation computer. Verify that the computer P/F

recognizes the device.

3. Perform operational testing using X-Plane 9.4.

1. First start by setting up the aircraft so that there is only
2 gallons of fuel available. This should trigger the low
fuel light.

2. Turn off the engine to the aircraft. Reconfigure the
aircraft to have a higher amount of fuel. Start the
aircraft using the keyboard command CTRL-1. The
starter engaged light should come on as the engine
starts.

3. To check if the generator failed indicator works
properly, use the cockpit of the Cessna C172SP and
toggle off the battery switch. This should cause the
light to turn on.

4. Locate a fuel pump in the virtual cockpit. Click your
mouse so that the switch is on. The light on the board
should turn on.

5. Next, select an aircraft and take-off. Achieve level
flight and a steady airspeed. Pitch the nose of the P/F
aircraft up quickly until the aircraft loses lift and the
stall light turns on. This light should extinguish once
the aircraft has achieved lift again.

4. Overall Result

5.4.4.2 Switches

The purpose of this test is to verify that the assembled component has been
properly manufactured. If the test results in any failures, a replacement parts will
need to be ordered or other corrective actions performed. This should be tested
using X-Plane on a test computer. For the scope of this project, this component
was not implemented and therefore did not require testing. These procedures

1112

are included in this document for the reference of our project sponsor and/or
future groups that may work on this simulator.

No. | Testing Action Result

1. Perform Visual Inspection of switches.

WARNING: Ensure switch control board is disconnected

from the USB Port and that the device is not powered.

1. Ensure of each switch is connected to the board
correctly and that the overall circuit matches the board | P/F
schematic.

2. Ensure that each switch is in the off position.

2. Plug in the switch control board into a free USB port on the

simulation computer. Verify that the computer recognizes P/F

the device.

3. Perform operational testing using X-Plane 9.4.

1. First start by setting up an aircraft on a runway with
the virtual cockpit open.

2. Taking the switch that is desired to be tested and
switch it into the on position. Verify that the switch in
the virtual cockpit has moved to the on position as
well.

3. For each switch implemented repeat step 2, until all
implemented switches have been placed into the on
position.

4. Next start turning off the switches one by one,
ensuring that the result on the screen mimics the P/F
physical switch.

5. Repeat steps 2-4 once more to verify that the switch
circuit is still functional after one full operational cycle.

4. Overall Result

5.5 Integrated Systems Testing

The purpose of integrated systems testing is to validate the install of the
components as a whole and ensure that each system works together in a
combined environment. This represents the final phase of testing before the
project can be considered complete and allows any issues to be corrected before
the project deadline and demonstration. In the integrated systems testing, each
component was tested individually in a large scale test event using the
acceptance test procedures. During the testing we had one individual operating
the simulator, one individual ensuring that the data from X-Plane matched our
physical gauges, and another individual keeping track of everything from the test
computer screen.

1113

No.

Testing Action

Result

Perform Visual Inspection of cockpit.

WARNING: Ensure that power is disconnected to all of the
electrical components, including the computer, before
performing the inspection.

1. Ensure that the mechanical components of the stick,
pedals and throttle are all free of obstructions and that
the electrical components have been properly installed
in accordance with the schematic.

2. Verify that each of the gauges has been installed in
the proper location. Check the mechanical
connections on the motors to the gauge faces for any
obstructions or misconnections. Verify that the
electrical layout matches the appropriate schematic
drawing.

3. Verify that the indicator lights have been installed in
the instrument panel correctly. Verify wiring to the
electrical schematic.

4. Verify that the indicator switches have been installed
in the instrument panel correctly. Ensure that each
one is seated properly with no movement of the switch
housing when the switch is used. Verify the electrical
connections with the schematic diagram.

5. Verify that the cockpit is clean of any debris.

6. Verify that the monitors are secured to the top of the
cockpit.

P/F

Plug in the power supply to the computer, the individual
power supplies for the monitors, and any other required
power supplies to a 115VAC, 60Hz receptacle. Plug in all
USB cables into an empty USB port on one of the USB
Hubs.

P/F

Perform system start up.

1. Press the power button on the computer. The
computer will boot into Microsoft® Windows 7
Professional. After Windows starts, double click on
the X-Plane icon on the desktop.

2. X-Plane by default will load to the default aircraft and
default airport. Select the airport KMCO — Orlando
International Airport and select the GoBosh G700S
aircraft model.

3. On our second computer launch X-Plane and connect
to the IP address of the simulation computer. Open
the Instructor Operator Station (I0S) window. We will
use this to assist in verifying data output over the
established network connection

P/F

Perform Flight testing. This procedure will make reference to

|114

Page |115

No.

Testing Action

Result

our previous test procedures for the individual components.
The goal here is to operate the aircraft under normal flying
conditions while a second group member verifies that each
component is working. The following procedures do not
need to be followed in a specific order, as long as each step
is verified. While each procedure is being verified, ensure
that the same result is being displayed on the physical gauge
in the cockpit, the virtual gauge in X-Plane, in addition to the
data matching on the Instructor Operator Station computer
as well. If there is a mismatch in the data being displayed on
one of the computers or the physical gauge perform
troubleshooting to determine which device is reporting the
incorrect information to the user.

1. Verify Operation of the gauges. Perform the following
sections from the acceptance testing to verify the
install of each gauge.

a. 5.3.2.1 Airspeed Indicator

b. 5.3.2.2 Altimeter

c. 5.3.2.3 Attitude Indicator

d. 5.3.2.5 Heading Indicator

e. 5.3.2.6 Vertical Speed Indicator

2. Verify Operation of the gauges. Perform the following
sections from the acceptance testing to verify the
install of each flight control.

a. 5.3.3.1 Joystick
b. 5.3.3.2 Pedals
c. 5.3.3.3 Throttle

3. Verify the operation of indicator lamps. Perform the
following sections from the acceptance testing to
verify the install of each lamp.

a. 5.3.4.1 Indicator Lamps

4. Verify the operation of the switches. Perform the
following sections from the acceptance testing to
verify the install of each switch.

a. 5.3.4.2 Switches

Restart X-Plane. Perform steps 3 through 4 again. Ensure
that the gauges, switches, lights, and controls still work the
same without needing calibration. If any gauges appear to
not reset to zero, take note of which need adjustments along
with the ones that reset with no issues.

P/F

If the system performs with no issues on the second system
run, then we can consider the system as having been
certified in working order and built to our specifications and
design.

Page |116

At the completion of our integrated systems testing, all systems were functioning
as they should and with the limitation on the instruments as noted in the
acceptance testing section. Any issues that have arisen since testing are not
covered in the above results.

5.6 Prototype Use Cases

The simulator being developed as part of this project was slated to be ultimately
used as a demonstrator at the Sun ‘n Fun airshow and aviation conference at
Lakeland Linder Regional Airport in April 2010. Unfortunately, due to cockpit not
arriving this use was never realized. Should the cockpit have arrived this
simulator would have be used by the aircraft manufacturer to give prospective
buyers seat time in a very realistic simulation of the actual aircraft. In this
capacity it would have also be utilized to take those prospective customers and
show how relatively easy (compared to other general aviation aircraft) that the
aircraft is to fly. This was meant to assist in the selling of flight instruction
courses for the actual aircraft.

The second usage scenario for our prototype is as a ground based instruction
simulator. In the configuration being developed as part of this project it has the
ability to give a new student basic lessons in aircraft control before setting off in
the actual aircraft. However, those hours will not be able to be logged as flight
time, due to the simulator not being FAA Certified. In order to achieve
certification, the optional $500 USB key from Laminar Research would need to
be purchased. This allows the student pilot to log up to ten hours of ground
based training towards the completion of their sport aviation license. Although,
we do not have the actual cockpit, our desktop simulator could possibly be used
for this scenario. All that would need to be done is to procure the computer
components to build the simulation computer and the three screens for the 120-
degree field of view.

Beyond the scope of our efforts, is the use of this simulator at future airshows
and general aviation conventions after the prototype has been turned back over
to Mr. Kotick and Grizzly Aviation. It has been mentioned that one of the second
type of events this would be taken to gatherings and trade shows such as the
Orlando Home and Boat show. At this type of show, the goal would be to
introduce individuals to the aircraft and flying in general. This use scenario is
dependent on our sponsor receiving the cockpit from the manufacturer and
moving our completed panel into the cockpit.

While our prototype did not wind up finished as designed, all of the components
have been built and are working. It is now up to our sponsor to utilize this
simulator as he sees fit for his business and expand upon the features we were
not able to implement due to time or the cockpit not arriving.

Page |117

5.7 Requirements Verification

After completing the test procedures and certifying that our project was built to
our specifications and schematics, we needed to perform a requirements
verification to ensure that each requirement we developed in Chapter 2 has been
implemented. The requirements have been broken into two tables: hardware
requirements and software requirements. In this final check of the simulator we
have tallied what we successfully met, what have we partially met, and what
requirements were not met. Most requirements were met overall, however as
seen in the following sections there are some requirements that were either
partially met or not met at all. The majority of these cases are the result of the
cockpit not arriving. This has also been established as a requirement by our
project sponsor in order to have traceability of the implementation of our
requirements and that each component has been tested and found to be in good
working order.

5.7.1 Software Requirement Verification

The following table determines compliance with the established requirements
from the beginning of this document. All of these requirements were met through
the selection and purchase of X-Plane as our simulation software.

Req.# | Sub.Req. [Requirement Description Result

S1 - Realistic Look and Feel: The virtual
simulation environment mimics the look
and feel of the real world as close as
possible. This not only includes visual
effects, but also how physics are applied to Met
the environment.

S1 A Realistic Scenery: scenery has a natural
feel and does not look jaded or ragged.
Terrain meshes are of high enough Met
resolution to navigate from the air.

S1 B Inclusion of Airports Worldwide: Ensure a
wide variety of airports are installed. Met
S2 - Ability to change environmental factors
dynamically: Using the X-Plane 10S
screen or from the weather and Met
time/season options in the menu bar.

S2 A Ability to Interface Hardware with software
via API: Inclusion of X-Plane SDK to
develop plug-ins to interface with gauges,

controllers as well as other computers and Met
data types.
S3 - Model Entertainment Aspects Met

S3 A Weather Effects: Ability to have a wide

Req. #

Sub. Req.

Requirement Description

Result

range of weather scenarios in X-Plane
including rain, snow, wind, sheer effects,
turbulence, lightning and strong waves in
the water.

Met

S3

Crash Effects: When the aircraft is
overstressed, or flies into the earth effects
are generated by X-Plane end the
simulation is ended.

Met

S3

Sounds: Realistic prop sounds. Either
using default audio in X-Plane from a
similar propeller driven aircraft or recorded
sounds of an actual GoBosh G700S

Met

S3

Ability to create custom
scenarios/missions: X-Plane has tools to
create and save custom missions.

Met

S3

Al Aircraft also utilizing airspace and
airports: Available via 3" party plug-ins
and custom development using the SDK.

Met

S4

Aircraft Model

Met

S4

Aircraft Exterior Model: Complete and
generated via the Plane-Maker tool.

Met

S4

Model parametric data: Data received and
implemented from the aircraft
manufacturer or other source

Met

S5

Ability to interface with other Flight Sim/X-
plane games: X-Plane has built in
multiplayer as well as the ability to
interface with other simulators with an
appropriate plug-in.

Met

S5

Native Multiplayer Support: Support over
TCP/IP and UDP protocols included for an
enhanced simulation experience through
multiplayer gaming or through the use of

Met

|118

Page |119

Req. #

Sub. Req.

Requirement Description

Result

an Instructor Operator Station.

S6

Guaranteed minimum 30 FPS: Set in
rendering options; ensure graphics
settings are not overset so that there is no
error while the simulator is launching that it
is reducing graphics settings to maintain
performance.

Met

S6

FAA Certification — Optional Requirement:
Ability to be implemented with a $500 key.
The ability to is the requirement, not the
implementation.

Met

S7

Ability to interface controls/flight
instruments: SDK to write control plug-ins
for flight instruments and flight control s

Met

S8

Ability to interact with an Instructor
Operator Station: Includes built in IOS or
3" party applications.

Met

5.7.2 Hardware Requirement Verification
The following table determines compliance with the established hardware

requirements from the beginning of this document.

Several of these

requirements were not met due to the cockpit not arriving and the subsequent
decision to not build a computer as a result of not going to Sun ‘n Fun in

Lakeland, FL. All of our primary requirements were met however for
implementing controls and gauges.
Req.# | Sub.Req. [Requirement Description Result
C1 - USB interface for controls & gages:
Motherboard provides enough free USB
ports for all of the flight controls and
instruments or requires the use of a USB L=
hub.
C2 - 120 degree field of view: Ability to in X-
Plane as well as with chosen graphics Partial
adapters and monitors.

Req.# | Sub.Req. [Requirement Description Result
C2 A 3 LCD monitors: Must be no smaller than
24” and secured to the fuselage of the No
aircraft.
Cc2 B Graphics Card/Adapter: Powerful enough
to output required resolution to 3 monitors
with a resolution of approximately No
1920x3240.
C3 - 2Ghz 64-bit CPU (minimum): Established
through X-Plane requirements. No
C4 - 4GB RAM: Sufficient memory to run both
Windows 7 Professional as well as the No
flight simulator.
C5 - 120GB Hard Drive (minimum): X-Plane
requires around 72GB for a full install, and
Windows 7 requires 20GB. 160GB No
recommended.
M1 - USB Controlled: Has USB on the chip with
little development required to implement Met
computer communications
M2 - 20ms refresh rate (minimum) Met
M3 - Use less than 5V to power the actual chip.
Devices connected to the chip may use Met
other values.
M4 > Minimum 8 1/O Pins for external
communications Met
M5 - Fit inside of a 3.24"x3.24” profile.: For the
aircraft gauges and alongside the flight Met
controls.
M6 - Low Cost Microcontroller: Including not
Met

only the chip but also the development
board.

|120

Page |121

Req. #

Sub. Req.

Requirement Description

Result

M7

As self-contained as possible: Does not
require any complex circuitry or boards to
be manufactured outside of very simple
boards that can be manufactured in ENGR
456.

Met

F1

Motor to drive flight instruments: Use of
servo and stepper motors to drive flight
instruments. Must be able to complete a
turn of over 360 degrees for the altimeter
and heading indicator. Other gauges need
only to travel less than 360 degrees

Met

F2

Realistic flight instruments and controls:
Flight controls are to be original,
instruments should be as close to original
manufacture specification as possible.

Partial

F2

Gauges: Standard Six-Pack has been
implemented - Altimeter, Airspeed
Indicator, Attitude Indicator, Turn
Coordinator, Heading Indicator, Vertical
Speed Indicator. Ensure each gauge
matches or closely matches the actual
gauge utilized in the G700S cockpit.

Met

F2

Flight Controls (Stick, Pedals, Throttle):
Using existing controls from the GoBosh
G700S to preserve realistic look and feel.

Met

Requirements F2 and F2A were both recorded to have partial compliance with
our stated project requirements. In the case of requirement F2, this is due to the
end result of our gearing being off on the altimeter and the FTDI chip that control
the turn coordinator ball having fried. As a result, these requirements have been
mostly fulfilled, but will need work after the project is handed over to our project
sponsor to fine tune the results.

Page |122

Chapter 6

6.1 User Manual

In this chapter we will discuss the proper operation of our flight simulator. We will
start with the basic operation and cover some troubleshooting procedures if
something unexpected occurs during use. This user manual assumes that the
user is familiar with the Windows operating system and flight simulators.

6.2 Setup and Basic Operation
With this section we will describe how to setup the simulator for a first run. To
start navigate Windows Explorer to your X-Plane directory. This is commonly
found in C:\Program Files\ but could be located elsewhere depending on your
setup. From here verify that you have the following directories:

e ...\X-Plane 9\Aircraft\General Aviation\GoBosh

o ...\X-Plane 9\Airfoils\NACA 4415.afl

e ...\X-Plane 9\Resources\plugins\GaugeTest.xpl

e ...\X-Plane\config.ini
Also verify that X-Plane 9.4 is the version that is installed. This software has not
been tested with version 9.5 which was released in March 2010.
After verifying that you have the appropriate plug in and aircraft data installed,
proceed to plug the seven port USB hub into one free USB port on the simulation
computer. Plug the 4 port hub also into a free USB port on the simulation
computer. At this point you should hear multiple audible alerts that Windows has
detected new hardware. Each of the instruments and controls can be verified in
the device manager of Windows.

After plugging in all of the devices, double click on the X-Plane icon located on
the desktop. This will launch X-Plane. While the loading screen appears on your
monitor, you should see each of the six simulated instruments move as they
initialize. If a gauge does not move, proceed to section 6.3 for troubleshooting
information.

Once X-Plane has loaded, you should be on a runway with the GoBosh loaded
on the screen. If the GoBosh is not the aircraft on the screen then the GoBosh
will need to be selected from the Aircraft menu on the top of the screen. It can
be found in the category “General Aviation,”

Before flying, it is suggested that you ensure your control devices are calibrated.
With the pedals, the gears can slip when extreme forces are applied during use.
This causes the center to not be correct. Using the chase view of the aircraft,
ensure that the rudder pedals are forward facing to you and that the rudder of the
aircraft is in the 0° position. Additionally, take the time to move the joystick to
ensure that the ailerons and elevator moves as expected.

At this point one can switch to the cockpit view by hitting “A” on the keyboard or
remain in the chase view (to return to the chase view from the cockpit, hit the “W”

Page |123

key). At this point you may release the brakes with the “B” key and increase the
throttle. To increase the throttle, one just needs to push in on the rod that is
located in the center of the instrument panel. To decrease throttle, simply pull
back on the rod. Note: the throttle may get caught as you pull out on a zip tie;
this results in not fully decreasing your throttle. Simply pull up and back until you
reach full stop.

Flying in the aircraft is fairly straight forward and works just the same as in an
aircraft or with any other flight simulator. To increase altitude pull back on the
stick. To decrease altitude, push forward on the stick. To go left, pull the stick to
the left and to go right, pull the stick to the right. The rudder pedals have been
designed to help add realism to the simulator. In order to use place your feet
firmly on the foot rests or place your heel on the ground and toes on the foot rest.
The pedals are attached with hinges so either operation will work. To turn the
rudder to the left, push on the pedals with your right foot. To turn right, push on
the pedals with your left foot. It may take a while to get the hang of the
operation, but once successful, flying the plane will actually be easier.

Since the majority of simulator functions at this point are functions of X-Plane,
please see the X-Plane User Manual at http://wiki.x-plane.com/Category:X-
Plane_Desktop_Manual. This will cover all aspects of the simulator software.

6.3 Troubleshooting

At some point during the operation of the simulator, a component may fail or
produce undesired results. This section will cover the steps to recover from
these failures.

6.3.1 Inoperative Gauge
It is possible that a gauge may not properly work during simulator usage. This
could be caused by a variety of factors including Windows not recognizing the
device properly. The steps below should correct this issue.
1. Check the Config.ini file to see if the gauge is named correctly
2. Check to make sure the gauges and controls show up in the Device
Manager Correctly
a. Right Click on My Computer and select Manage, then select Device
Manager
b. Click on the USB and you should see all the connected gauges and
controls
c. Right Click on the gauge or control in question and select
properties
d. Select the Advanced tab
I. You see that the VCP drivers are deselected
e. If you don't see Advanced tab then you need to uninstall and
reinstall the device, making sure the VCP drivers is deselected

Page |124

6.3.2 Gauge does not Initialize Properly

If the gauge does not initialize properly on startup, the first thing to check is to
ensure that the LED for the light sensor is on. If it is on ensure that it hits the
light sensor. It is possible that during transport that these two could become
misaligned and cause undesirable results.

For the attitude (artificial horizon), if it does not return to a perfect center, it is due
to another issue. In this gauge there is no LED for calibration. Instead the issue
is that the wire that goes to the stepper motor will become too tight around the
shaft. Simply manually adjusting the shaft and rotating until it lines up rectifies
this issue.

6.3.4 Control Device is not Recognized
If a control is not functioning in X-Plane, first verify that it is plugged into a USB
port. If itis plugged in, follow the procedure below to troubleshoot the control.
1. Check the Config.ini file to see if the gauge is named correctly
2. Check to make sure the gauges and controls show up in the Device
Manager Correctly
a. Right Click on My Computer and select Manage, then select Device
Manager
b. Click on the USB and you should see all the connected gauges and
controls
c. Right Click on the gauge or control in question and select
properties
d. Select the Advanced tab
i. You see that the VCP drivers are deselected
e. If you don't see Advanced tab then you need to uninstall and
reinstall the device, making sure the VCP drivers is deselected

6.4 FTDI Chip Programming
This section will explain how to install the drivers for a device that you wish to
connect that uses the FTDI chip and how to program the EEProm on the chip to
make the device whatever you want it to be. This will allow you to use the device
with the GoBosh Simulator. Prior to doing this you should have:

e An idea of the gauge or control that you are creating

e FTDI Drivers can be gotten at the Code Site through a versioning software

(tortoise SVN) or here http://www.ftdichip.com/Drivers/D2XX.htm
e A board wired up for connection to the computer(USB A/B cable)

Page |125

Procedure:
1. Make sure the board is at least wired up to drive the FTDI chip.
2.

Figure 1

[F=s w

13

Basic Bus-Powered
5V System

Figure 6-1. Basic Bus Powered 5V System. Image by Chris Dlugolinski

3. Connect the USB A/B cable to the chip and to the computer, since it is self
powered as shown you don't need any external power.
4. In the FTDI Drivers folder you need to open the D:\FTDI Drivers\CDM 2.06.00
WHQL Certified folder
a. You will see two files that you need to edit
b. Ftdiport.inf and ftdibus.inf

G D:\FTDI Drivers\CDM 2.06.00 HQL |
Eile Edit Search View Format Language Settings Macro Run TextFX Plugins Window 2 x
o5 s s & & Dl | e (Bg) = = | B2[= 1 [Fa|=] | = a = >
= Rdibusinf | (=] fdiportrf | Fr——
El [FtdiPort2232.NT.Services 1 ES
AddService — FISERZK, 0Ox00000002, FrdiPort.NT.AddService

El [FtdiPort2232.NTamd64 . Services]
RddSerws — FISER2K, 0x00000002, FrdiPort.NT.RddService

71 [F£tdiPort2232.NT.ColInstallers.AddReg]
HKR, ,CoInstallers32, 0x00010000, "ftosexco. D11, FICSERCoInstallex"”

[l [FtdiPort2232.NT.CopyColnst]

Cl [Strings]

FTDI="FTDI"

DESC—"CDM Driver Packags"
DriversDisk—"EFIDI US ~

VID 0403&PID_6001.
VID_0403&PID_6002 .
VID 0403sPID_6003.
VID 0403&PID_6004.
VID 0403&PID_6005.
VID 0403sPID_6006.
VID 0403sPID_6007.
VID 0403&PID_6008.
VID_0403&PID_6009.
VID _0403sPID_6010.

n,

SerEnum.SvcDesc="Serenum Filter Driver™

MS ini file nb char: 7123 nb line: 199 Ln:184 Col:1 Sel:565 Dos\Windows ANSI NS

Figure 6-2. FTDIport.inf. Screenshot by Chris Dlugolinski

c. The highlighted section above shows the section in ftdiport that you
need to edit

i. You need to add a new PID for your device and a name

following the GAUGE_<name> or CONTROL_<name>

d.

Page |126

convention, this is for the plugin to work with the gauge or
control
Do the same for the ftdibus.inf file as shown below (following the same
naming convention)

Eile Edit Search View Format Language Seftings Macro Run TedFX Plugin: Window 2 x
cEEHE s ha|ldhh a2 x|l xs B2 10| EEHEERE =a v >
= fdibusint | Bl Adnarin |

128 fobusui.dll
fodexx.dll
FTLang.d11l

[FtdiBus.NTamd64 .Copy]

[FtdiBus .NTamd64.Copy2]

ftbusui.dll

frdzxx.dll, fod2xx64.dil

FILang.dll

[FtdiBus.NTamd64.Copy3]
e
Elrstrings]
Frdi—"FTDI"
DESC—"CDM Driver Package"
DriversDisk—"FIDI USS Drivers Disk"
USB\VID_0403&PID_6001.DeviceDesc—"GUAGE_HEADING"
USB\VID_0403sPID_6002.DeviceDesc—"GUAGE_ATRSPEED™
USB\VID_0403sPID_6003.DeviceDesc—"GAUGE_VERTATRSPEED™
USB\VID_0403&PID_6004.DeviceDesc—"GAUGE_ALTIMETER"
USB\VID_0403sPID_6005.DeviceDesc—"GAUGE_TURNINDICATOR ROLL™
USB\VID_0403&8PID_6006.DeviceDesc—"GAUGE ATTITUDEMIDDLE"
USB\VID_0403&8PID_6007.DeviceDesc—"CONTROL_THROTTLE_RUDDER"™
USB\VID_0403&8PID_6008.DeviceDesc—"CONTROL _YOKE_FBRL™
USB\VID_0403&8PID_6009.DeviceDesc—"GAUGE_ATTITUDECUTSIDE"
USB\VID_0403&PID_6010.DeviceDesc—"GAUGE_TURNINDICATOR SLIE"
USB\VID_0403&8PID_6010&MI_0O.DeviceDesc—"GAUGE TURNINDICATOR SLID"
USB\VID_0403&8PID_60114MI_01.DeviceDesc—"USE Serial Port"
USB\VID_0403&8PID_60114MI_00. DeviceDesc—"U
USB\VID_0403&£PID_60114MI_01.DeviceDesc
USB\VID_0403£PID_6011&MI_02.DeviceDasc
USB\VID_0403£PID_6011&MI_03.DeviceDasc—"USE Serial Converter D7

Serial Convertexr A"
Serial Convertexr B7

Serial Converter C© =

< T] »

MS ini file nb char: 6196 nb line ; 165 Ln:147 Col:1l Sel:624 Dos\Windows AMNSI NS

Figure 6-3. FTDIbus.inf Screenshot by Chris Dlugolinski.

There is one last file that needs to be edited before you can begin and
that is the Config.ini file

Follow the other data format and fill in the info needed to make your
control or gauge work correctly

File Edit Search View Format Lenguage Seftings Macre Run TedFX Plugins Window 2 =
sHHEHB s 4hD|oe| it x| BESI(ED CDENBER=Eay =
B fidus i | B fdporticd [Configni |
? the cockpit A
: MAX_VALUE - Tnis is the mamimem value Of TRe actual Gauge CRat is being put in

the cockpit
WRAPAROUND - This if YES if the gauge goes around its sctart point and values keep

getting higher, NO if it doesn't

; MULTIPLE - (Controls only) This is set to YES if the control created has multiple
7 dinputs on the same FTDI chip, NO if it doesn't. I there are two controls then
: the first control is always YES and the sscond is always NO
; REVERSED - This is if when you finish cCreating yOUr QRUge it Spins in reverse you
set this to YES slse NO
STEPOFFSET - This is set here because the flags used to stop the gauges weren't

engineered to the highest standards and offsets need to be taken
; NOLED - This wariable is used to tell the program if the gauge or control you

; have created has a photodiode used to sStop the gauge if NO LED is used type YES

HEADING NOLED=NO

AIRSPEED_MAX_STEPS=380
AIRSPEED_MIN_VALUE:
AIRSPEED MAX VALUE—160
AIRSPEED_WRAPAROUND=NO
AIRSPEED_REVERSED=NO
ATRSPEED_STEPOFFSET=5
AIRSPEED NOLED—NO

VERTAIRSPEED_MAX_STEPS=380
VERTAIRSPEED_MIN VALUE=-2000
VERTAIRSPEED MAX_VALUE—2000
VERTAIRSPEED_WRAPAROUND=NO
VERTAIRSPEED_REVERSED=NO
VERTAIRSPEED_STEPOFFSET=2
VERTAIRSPEED_NOLED=NO

i v

MS ini file nb char:5471 nb line: 149 Ln:143 Col:3 Sel:0 Dos\Windows ANSI NS

Figure 6-4. Config.ini file. Screenshot by Chris Dlugolinski

Page |127

5. Plug in the FTDI chip
6. You will see the found new hardware window open cancel it and open the
Device Manager
a. Start->Right Click on My Computer and select Manage
b. Click on Device Manager

4 48 Christopher-PC Actions
&F AsusOtherDevices
B Batt
% Computer
ed Folders s Disk drives
() Performance K, Display adapters
5 Device Manager + -4 DVD/CD-ROM drives
4 22 Storage » 8% Human Interface Devices
(=% Disk Management g IDE ATA/ATAPI controllers
4 Services and Applications § IEEE 1394 Bus host controllers
2.5 Imaging devices
1.2 Officejet 7300

Figure 6-5. Device Manager. Screenshot by Chris Dlugolinski

You will see a USB to Serial device with a Yellow Exclamation.

Install the FTDI Driver, Right Click on the device and select Update

driver

e. You will need to find the directory where you saved the FTDI drivers
and point to it

f. Click continue anyway

g. Once the drivers are installed you need to uninstall the VCP drivers

h. Then unplug the USB and re-plug the device in, if it comes up again
without the yellow exclamation you can continue if not reinstall the
driver and uninstall the VCP

i. Once installed you can change the device to what you have entered

into the other files above using the FTD2XX.exe serializer program

oo

Page |128

= FTD2XX Serializer and Tester =REEN X

File Device Options Help

L B/Eeo 9

M anufacturer |FTDI Manufacturer 1D |[FT
Wendar ID (0403

Product IV |s004

Description |GAUGEJLTII‘-'I ETER

MODE: Program
Figure 6-6. FTD2XX Serializer Program

J. First you need to enter the info as seen above just changing the
description to your corrected name, and changing the Product ID to
your corrected ID.

k. Then you will need to select the Advanced setup button ¥/ this will
pop up a window you just need to select OK to
I. Then you will see that the other buttons are enabled press the save

button
m. Then you can program the chip using the Program button 9

n. Now press the test button it will probably fail but that is fine H|

0. Unplug the USB and re-plug in the device and see if the new name
shows in the Device Manager. If it does OK, if not you need to Right
Click on the device and Uninstall it then Scan for new hardware and
you should find it. If Not then you have to check your .inf files to see if
the PID and the Description you typed match in that file.

Upon completion of the above procedure, the new FTDI chip will have been
programmed. At this point you can use the chip for the purpose you have set it
up for.

Page |129

Chapter 7

7.1 Summary

Our project has been completed according to our design specifications and we
have ceased all further production. All the software and parts have been
integrated and tested completing the test and production phase of the project.
The following is where we stand with each component of the project.

The first part of the semester we spent all of our time doing expensive trade
studies to decide on various implementations to peruse. For our simulation
software trade study we chose X-Plane over Microsoft Flight Simulator because it
better met our need overall. Once we picked this platform we did extensive
research into the X-Plane SDK and decided on the best way to interface with the
simulation software. We figured out the logical flow of our interface software, and
have completed and tested the actual code. Example code available on the X-
Plane SDK website was a great resource in the design and implementation of our
software.

On the hardware end, we had looked at various parts for various applications and
decided on the parts we wanted to use and for what components. We've used
FTDI boards for all the gauges and other simple devices as well as for the control
devices that generate an analog signal. We have completed writing and testing
all the interface code for the FTDI boards. For the gauges we had explored
every conceivable implementation and went with stepper motors exclusively for
all six. For the electronics we successfully implemented our high level circuit
design for our stepper motor gauges. Finally we acquired the proper motors and
assembled and tested them successfully for all six gauges.

We have successfully completed every step of the design phase and the build
phase and our project has been handed over to our project sponsor.

Appendix A: Trade Studies

A.1 Microcontroller Trade Study

Table A-1 Microcontroller Comparison

Page Al

Microcontroller Atmel AT89C5131 PIC18F4550 FTDIFT245BM

Dev Board futurlec.com futurlec.com FTDI

Cost Dev Board $35.90 Chip $10.11 [DevBoard $46.90 Chip $14.99 DevBoard $30 Chip $5.00

Usb driver http:/Aww.atmel.com/dyn/resource |CDC Firmware Free from FTDIto download and no

s/prod_documents/doc7646.pdf | http:/Aww.microchipc.com/sourcecodefinde |programming on chip unless really

x.php#pic18f4550ush necessary. Www.futurlec.com
http://microcontrollershop.com/product_info.
php?products_id=2125

speed 24 MHz 48 MHz USB 1.1 or USB 2.0 (compatible)

Examples Come with dev board Come with dev board http://electronicdesign.com/Articles/!
http:/Mww.create.ucsb.edu/~dano/CUI/ ndex.cfm?AD=1&ArticlelD=16125
http:/mww.edaboard.com/ftopic313796.html

Memory 32k 32k External EEPROM

Memory RAM 1k 2k

(e} 34 35 8 pin

Languages ¢, assembler ¢, c++, assembler any

Power Needed

3.0Vt0 3.6V 30 mA Max
Operating Current

3.3V detached 25mA

All usb self contained may need to
do something for control of external

Thoughts

Atmel AT89C5131

This seems to be a better choice all around including the fact that we could have pre made USB communications
cutting out some of the hassle of that. After speaking with Dr. Richie and discussions with the rest of the group this
option is there only if we need to actually do some programming on chip that is greater than necessary to make the

hardware work

PIC18F4550 Most hobbyists and a lot of projects on the net use this controller, which means we will have many examples to use or go
from

FT245BM This is a chip that requires no extra programming on chip for the USB communication. It can be used in conjunction with
the other chips or onits own in a speacial mode that allows for direct transfer of the info from the cpu to the ports on the
chip....

Conclusion:

Needing to know the devices and gauges so we know what ouputs and ports need to support. We have been looking into different servo
motors, Joe bought a small servo that seems to have the ratings needed to run off of USB power alone, that will be easily interfaceable with
the FT245BM USB chip. That will solve some of the problems with some of the gauges as well as allow for feedback of the position, we
could also gear these motors to get the full rotation that is necessary. The other gauges that need to be continuous are a little different and
will need to use steppers if possible to find a mini stepper at the ratings that we need. 1have been looking and have found a few but the
ratings are right at the cutoff for the power consumption of the USB. This will take a little more research but it should be possible if not we
could always use a separate power supply for each of the gauges, either way the gauges can be driven by the simple FT245BM chip and
circuit that is necessary to make it work found on the FTDI Website....

A.2 Flight Simulator Trade Study

Table A-1 Environmental Aspects

No. | ltem/Description Req. FSX | X-Plane 9
No.
1. Inclusion of Majority of Airports 1B Yes | Yes
Worldwide

Page A2

No. | Item/Description Req. FSX | X-Plane 9
No.
2. | Detailed Realistic Scenery 1.A Yes | Yes!
2a. Accurately detailed major cities and 1A Yes | No
landmarks
3. Realistic Weather Conditions 3.A Yes | Yes
3a. Real-World Weather 3.A Yes | Yes
4. Al Aircraft in the virtual world 3.E Yes | No
5. | Deliver a constant 30 FPS 6 No® | No?
Notes:
1. X-Plane 9 does include the majority of airports worldwide including a few

obscure airports that are not found in Microsoft Flight Simulator, but
otherwise each largely has the same facilities available. Microsoft Flight
Simulator however does include a higher detail of scenery of individual
airports by ensuring that beacons, buildings and fueling stations are
located at each facility. X-Plane 9 has only the runways and taxiways in
the scenery, lacking any structures — even at major airports such as KJFK
or KMCO.

The retail versions of FSX and X-Plane do not include any guarantees for
being able to reach 30 FPS. This requirement can be achieved by
purchasing sufficient computer hardware and optimizing the setting of the
software package. FSX will allow you to set a target frame rate in the
display options, but this will not change the display settings to deliver the
required rate. X-Plane 9 also allows you to set a target frame as well as
ensuring that the target frame rate is reached by changing the graphics
settings on the fly. In addition to this one can purchase a USB key that
brings the software into FAA compliance at a price of $500 (if to be used
for flight training).

Table A-2 Aircraft Modeling

No. | ltem/Description Req. FSX | X-Plane 9
No.
1. Included 3D Model Generator 4.A No® | Yes
2. Ability to change aircraft parametric data | 4.B Yes® | Yes
on the fly
Notes:

1. FSX requires the use of an outside modeling program such as 3ds Studio
Max to generate a 3D model of the aircraft. This opens up to the
possibility that the model could look one way and have the flight
characteristics of an aircraft that does not resemble that particular design.

2. Requires editing the aircraft.cfg file in a text editor, but allows you to

change all of the aircraft variables.
Table A-3 Entertainment Features

Page A3

No. | Item/Description Req. FSX | X-Plane 9
No.

1. | Detailed Crash Effects 3.B No' |Yes!

2. | Multiplayer Support 5.A Yes® | Yes®

3. Aircraft Sounds 3.C Yes | Yes

4. Ability to create custom 3.D Yes | Yes

scenarios/missions
5. | Built-in Instructor Operator Station (I0S) | 8 No® | Yes®
Notes:

1. By Default in both of the flight simulators, when the aircraft crashes or the
airframe is overstressed due to physical factors, the flight ends with the
aircraft stuck in the position that the either struck the ground or featured
overstressed conditions. However, X-Plane allows for the removal of flight
surfaces if the aircraft goes past over-speed and over-G thresholds as well
as the flaps and gear doors when over-Vfe thresholds have been passed.
[X-Plane]

2. Microsoft Flight Simulator utilizes the GameSpy matchmaking service for
multiplayer sessions across the internet but also supports direct
connections across computers on the same LAN. X-Plane has support for
local networking built-in.

3. X-Plane features a built in IOS that can be projected to a secondary
monitor or can be utilized across the network with a different computer
running a separate copy of X-Plane. Microsoft Flight Simulator does not
have this feature built in and would require an additional application to be
developed for this functionality to exist.

Table A-4 Simulator to External Flight Instruments/Controls Communication

No. | Item/Description Req. FSX | X-Plane 9
No.
1. | Protocol/API to interface with flight 2.A Yes® | Yes!
simulator software

Notes:

1. FSX allows for two methods of interfacing with simulated flight controls
and instruments: the SimConnect API and the legacy FSUIPC interface.
X-Plane 9.4 utilizes plug-ins based on .dll files to communicate between
the software and other applications and external instruments/controls.

Summary:

While Microsoft Flight Simulator X wins in regards to the default scenery included
with the software and the number of resources available on the internet it is also
unfortunately no longer being developed by Microsoft with no time frame for
when a new version would be released, if ever. X-Plane 9 however released
version 9.40 recently with no indication that development will stop soon. In
addition, X-Plane models the aircraft more realistically, and includes the model

Page A4

generator to develop an airframe to fly in the software compared to FSX which
requires the use of an expensive 3" party 3D modeling package. X-Plane also
includes a few more effects in-terms of crashes, but lacks detailed scenery. Any
areas that would need detailed scenery would need to be modeled or purchased
as a add-on from a 3" party developer. Finally there is the aspect if this
simulator were to ever be used for ground based training, the only option to allow
for this would be to use X-Plane after purchase of a $500 USB license key which
unlocks the ability for it to be FAA Certified.

Recommendation:

Use Laminar Research X-Plane 9.4 for the graphics software to power the
G700S Cockpit flight simulator.

Appendix B: Project Schedules and Fall Semester
Monthly Status Reports

B.1 Fall Semester Project Schedule

Page |B.1

e
1
2

5
‘
$

Pleceeeeeeceeeeceaeaacee cecccccayo

| -

Ll

B.2 Spring Semester Project Schedule

=
=
3
A
o
T
o

niAvdvEsA VI HYNEA TS

P

i

e Lemy e e e
W b b

S e
-

e —

R
- ae e

R b me - —
e © . S——

Tek Name

Pmpct St

m0a P mied et e oo Cotument

188 F e Pases T
Veetng Was Sponasr

Oesgr Deument ste

Conduct Trade Soates and ntal Reveach

Fowne 0nd F om ut vt Cesgn 00 uman tanen

e e -
S ey
e ——— . ———
. -

- —
e —

B el

———

-

.-y

. ————

A o - .

o s ee am e

- o - S bt

e L)
-

B s . s

S s g

e s e s ey
s e e Asarene ey
v e ey

e b

Completedt nd off ol Samanter

| Dwraten | 2t 1

Odan Wed IOD Wed
Cdmn FAVILOD Wes 92000
Néen SAWIOY Fn NN

Tdey MS2408 Fasaene .

W dms FRISOR Mea 121400
205 dayn AN Fa10200)
Tideys Sen SUILON P 000N
M LLS et LR G
Taas Se2U00 P 9R0S0R
MGy Sa N0 Mon 129409
Mdays MWV The 12000
1Wdan S8 WAV Sen 111500
184ma Ven 110008 Yoo 12100
103 VNan 11006 Ton 110406
Waan Sa OO0 Ves (L1008
1060n Tee 110608 The 12009
Ty SO0 Sat NI
MA3ys S MON0D Wed 12208
MA3ders Sa N0 Wed 12200
Wans Sun 11108 Tee 101708
19 St 1V Tee 1IN
Wawys SN0 Tes 111708
Wden SIS Tes WITRE
Doen SN Tee 1ITE
dan 50 HOVE Sen 117308
1dayn Yo WUITRE Wed 13000
Sdays Sa 10D The dtes
St e 1ERE The 11AMOS
Cdays SH MO0 Thu 10808
Cdan Set 0 The 110400
foes FRadod FaidieRR

S
e
T
s
LR LR R)
LAl
-
i
-
-y
-
——
ane
o~
wdeunw
-
-
aived
e raen
-3
- N
R
e
o
e
PO
v
ednan
—aman
e
e
.
.
-y
e
O
- can

12900 T I T
P 333039020008 114 12 1R ainny 3 16 [0 R N2 ERAST,

Cdeys WNoa D00 Mon 1211400

enad S B sed i T

e

.-

sopmier

2000
03603 3213100

——
-
-
=
2
-
=
-
-
o
-
P
[
¢

e i

UL S L —) p—

B.3 October — Monthly Status Report

Period Covered:
1 Oct. 2009 — 31 Oct. 2009

Project Progression:

Page |B.2

Upon reaching October 31 the trade study and requirements development
phases have been completed. Trade studies are being presented at the first

meeting of November along with our formal recommendations for design.

In

addition, the design phase has begun with USB communication and

microcontroller interface being worked on.

Project Expenditures:
e Project Funds: $0
e Personal Funds: ~$50

o Purchased a copy of X-Plane, servo motor and USB

communications chip for evaluation.

Project Files Delivered:

FSX vs. X-Plane Trade Study
Microcontroller/USB Implementation Trade Study
Hardware Trade Study

Project Items to be Completed:
e Design of Flight Instruments
o Microcontrollers/USB interface
o Servo Motors
o Required software on simulator PC
e Design of Flight Controls
o USB interface
o Throttle
o Yoke
o Pedals
e Other Electrical Design
o Lights/Switches
o Power Supply

e Design of Aircraft Model — Need Parametric Data
e Mounting Design for Monitors and Computer Hardware

Design Documentation

B.4 November — Monthly Status Report

Period Covered:
1 Nov. 2009 — 30 Nov. 2009

Project Progression:

Page |B.3

Upon reaching November 30, 2009 we have completed major areas of the
project design. The majority of the flight instruments design has been completed,
although we are still attempting to contact simkits in regards to a discount on
their pre-built gauges. Part selection for all of the major components, including
the computer has been completed and has been rolled into our projected budget.
At this time we are working on pulling together our project documentation and
taking care of the remaining design tasks. We have also successfully tested the
FTDI chipset that we intend to use for the aircraft gauges.

Project Expenditures:
e Project Funds: $0
e Personal Funds (this month): $0
e Personal Funds (project total): ~$50

Project Files Delivered:
Budget

Project Status:
e Design of Flight Instruments
o Microcontrollers/USB interface (Complete)
o Servo Motors(Complete)
o Required software on simulator PC (Complete)
o Mechanical design (In Progress)
e Design of Flight Controls
o USB interface (Complete)
o Throttle (Complete)
o Yoke (Complete)
o Pedals (In Progress)
e Other Electrical Design
o Lights/Switches (Complete)
o Power Supply (Complete)
e Design of Aircraft Model — Have aircraft manual, other sources of
performance data?
e Mounting Design for Monitors and Computer Hardware (In Progress)
e Design Documentation (In Progress)

Appendix C: Permissions to use Protected Materials

Page |C1

C.1 Images by Mark Verschaeren/Flight lllusion

RE: Permission to use Photographs
info flight illusion to you - Mov 13 More Details Add to: To Do, Calendar

Please feel free to use the images from our website

We only sell the gauges ready made for use with FS or X-Plane

We can give you a discount, but you would have to send us the list of gauges you require
Usually this is 10% discount.

Bestregards

Mark Verschaeren

Marketing & Communications Manager
Flight illusion

mabile +32 475 37 37 28

wnw flightillusion.com

From: jmun7767@aim.com [mailto:jmun7767@aim.com]
Sent: vrijdag 13 november 2009 19:17

To: info@flightillusion.com
Subject: Permission to use Photographs

Hello. | am building a flight simulator for my senior design project at the University of Central Florida. | was wondering if | could get your permission to use some of the photographs on your
web site for my senior design documentation.

Do you sell just the housing. faceplate. and indicators? Also do you provide any discount to college engineering students? Thank you.

Site: http://www.flightillusion.com
This reference is used with permission for the following figures:
A) Figure 3-28

C.2 Information from Bob Miller

Reply: OTA is NOT copyrighted. Please pass along anything you like. Credit
back to OTA would be appreciated.

-- Bob Miller

Site: http://overtheairwaves.com/vol3-46.jpg
This reference is used with permission for the following figures:
A) Figure 3-35

C.3 Wikipedia

Images taken from Wikipedia fall into three categories: Licensed under the GNU
Free documentation License (denoted with a *), A work of a Federal Agency of
the United States Government covered by Title 17, Chapter 1, Section 105 of the
US Code (denoted by a +), or with no copyright claimed by the author (denoted
by a 7).

For the following figures:

A) Fig. 3-11 http://en.wikipedia.org/wiki/File:Six_flight_instruments.JPG

B) Fig. 3-17* http://en.wikipedia.org/wiki/File:3-Pointer_Altimeter.svg

C) Fig. 3-19+ http://en.wikipedia.org/wiki/File:Sens_alt_components.PNG

D) Fig. 3-20* http://en.wikipedia.org/wiki/File:True_airspeed_indicator-
FAA.SVG

http://en.wikipedia.org/wiki/United_States_Code

E) Fig.
F) Fig.
G) Fig.
H) Fig.

1) Fig.
J) Fig.
K) Fig.

3-22+
3-23%
3-25+
3-26*

Page |C.2

http://en.wikipedia.org/wiki/File:ASI-operation-FAA.png
http://en.wikipedia.org/wiki/File:R22-VSI.jpg
http://en.wikipedia.org/wiki/File:Faa_vertical_air_speed.JPG

http://en.wikipedia.org/wiki/File:Attitude_indicator_level_flight.svg

3-30*
3-32+
3-33 *

http://en.wikipedia.org/wiki/File:Turn_indicator.png
http://en.wikipedia.org/wiki/File:Turn_indicators.png
http://en.wikipedia.org/wiki/File:Heading_indicator.png

