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Chapter 1 
1.1 Executive Summary 
When the idea of creating a flight simulator came up as a topic for a senior 
design project it sounded like a fun project that could have many different types 
of challenges.  A simulator is an imitation of something real, and the simulator 
that we were asked to build was for a real product, the GoBosh 700s aircraft.  
The aircraft is used for training students on how to fly and the simulation would 
make that task easier, and also make the student a little more comfortable with 
his/her ability as a pilot before they actually fly the real aircraft.   
 
Originally, an actual aircraft fuselage of this aircraft type was going to be part of 
our design.  The fuselage would have come equipped with all the working control 
inputs (pedals, stick, and throttle) as well the instrument panel for our simulated 
instruments.  Unfortunately, due to supplier issues between the factory (Aero Sp. 
z o.o.) and the US importer (GoBosh Aviation), we did not receive a cockpit as 
intended.  Although the cockpit was not received, GoBosh did come through and 
deliver us an instrument panel cutout and several gauges to use for parts to add 
what realism we could to our simulator. Even with this limitations, our goal was to 
still to make an as realistic as possible simulator with the materials and resources 
we had available to us.  
 
Originally one of the key features for this simulator was the actual use of the 
aircraft‟s original flight controls.  However, with above mentioned supply issue, 
we instead were tasked with implementing our electronics design to test rigs to 
validate our design work. The electronics design did not change at all and still 
utilized potentiometers (slide and turn) coupled with Analog-to-Digital Converters 
feeding into one of our FTDI USB communication chips. From a mechanical 
perspective, we needed to design in a short amount of time our controls for 
implementation with our simulator. The implementation of these controls is 
discussed in a later chapter.  The other half of the physical implementation 
requirements of this simulator included the design and construction of a set of 
simulated “six-pack” flight instruments.  This includes the airspeed indicator, turn 
coordinator, vertical speed indicator, altimeter, artificial horizon and directional 
gyro (compass).  These will all take their values from X-Plane and will display the 
same as if they were the simulated gauges on the computer screen.   
 
Another aspect of our original plan was to implement a visual projection system 
along with computer hardware to power our simulator.  This was going to be 
accomplished through the use of three 24” monitors to give the user a 120° field 
of view out of the cockpit. Since the actual cockpit was not to arrive in time, a 
decision was reached with our sponsor to not take the simulator to Sun „n Fun in 
Lakeland and as a result to not purchase the associated computer components 
at this time.  Even with this limitation we were able to demonstrate the ability of 
the software to output 120° field of view onto a single 24” monitor.  Additionally, 
for our demonstration, we utilized our primary development machine to power all 
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of our simulated controls, instruments and visual output without any performance 
or other issues.  
 
Additionally, another feature of the simulation is that we will include databases for 
the local airports of the surrounding areas so that pilots form this area can notice 
landmarks while flying the simulator.  These databases are all included in X-
Plane, although for higher realism 3rd-party scenery can be purchased to 
increase realism of the local area. All of the features listed above will give a good 
simulation of the GoBosh 700s that will give the user a better understanding of 
this aircraft reacts inflight and the ease at which one can fly this aircraft. 
 
This paper describes how each of the features listed above were researched how 
they were implemented, and the results of our testing.  Also we will cover some 
administrative information, including our budget and our original project schedule 
predictions.  Additionally, in the Appendices of this paper you can find several of 
our early project deliverables and research information.  
 
In order to make the simulator as real as possible we needed to pinpoint the 
parts of the activity of flying the GoBosh that were essential.  From several 
meetings with our sponsor and two of his fellow aviators we gathered and 
formulated our project requirements.  This allowed us to develop requirements 
for our hardware and software components that we needed to interface with one 
another.  These requirements are listed in the requirements chapter in this paper 
and are broken down by functional area.  Also located in that table is the status 
of the implementation of our project requirements, since due to some decisions 
between us and our sponsor, several requirements were not met.  From our 
requirements we formulated our budget.  We were given an initial budget 
limitation of $1500 by our sponsor, which would not have been enough for the 
project if we had purchased the computer.  Since we did not purchase a 
computer our budget came in at under half of the original. This is explained 
further in the budget chapter of this paper.  Additionally, the design of our 
individual of components is discussed in the chapter on design. It lists all the 
reasons why we decided to create the system the way we did as well as provide 
the basics for implementing our designs.  After discussing our design we will 
discuss the implementation of our designs including the testing of our system to 
ensure that it meets our project requirements.   
 
Overall, the project was a tough challenge, but we feel that we all now have a 
greater understanding of the engineering process as well as effort that it takes to 
create a functioning simulator.  The effort required many hours of work in the 
senior design lab, but overall it is worth it when in the end a functional product 
works during the project demonstration. 
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Chapter 2 
2.1 Project Objective 
The objective of this project is simple: to build a simulator around a GoBosh 
G700S/Aero AT-4 Light Sport Aircraft.  We were tasked on this project by Mr. 
Dave Kotick, a local flight instructor based out of the Orlando-Apopka Airport 
(X04) near Apopka, FL who has sponsored this project through his business 
Grizzly Aviation. 
 
As defined in our first meeting with Mr. Kotick, the initial purpose of this project 
was to produce a flight simulator that is not necessarily for flight training, but for 
demonstrations of this aircraft.  In addition to training of aspiring Light Sport 
Aircraft pilots, his business is also a representative of the US importer of the 
aircraft we simulated: GoBosh Aviation (the aircraft are manufactured in Poland 
by a company known as Aero Sp. z o. o. as the Aero AT-4).   Because of this, he 
frequently travels to airshows and general aviation conferences to demonstrate 
the aircraft and find potential buyers or those who are interested in potentially 
earning their LSA pilot‟s license. 
 
One of these events in which he participates in with GoBosh Aviation, is the Sun 
„n Fun airshow and general aviation conference which was held in Lakeland, FL 
at the Lakeland Linder Regional Airport.  This year the event was held during the 
second week of April (4/13-4/18), and we were originally to be part of the exhibits 
with our simulator at the show. Unfortunately, due to not receiving our cockpit 
from Aero in Poland, a decision was made to not demonstrate at the airshow.  
 
While making it to Sun „n Fun was considered our ultimate objective for this 
project, we also had several side objectives as well that this project needed to 
meet.  In addition to being developed for demonstrations at aviation shows where 
the individuals in attendance are familiar with aircraft or at least flying one, it was 
also designed to be taken to a variety of other shows in the future once handed 
over to Mr. Kotick.  One example would be the Orlando Home and Boat show, 
where people who may have never considered becoming a light sport aircraft 
pilot or purchasing a light sport aircraft could be exposed.  This serves the 
purpose of education, as many people assume that they could never fly due to 
the fact that flight lessons are expensive and time consuming, which is the 
opposite of the aircraft we are simulating.  Because of this, the purpose at these 
shows is to show the relative ease that exists to pilot one of these aircraft.  
Although we were unable to get the cockpit in time, we were able to complete all 
of the necessary software and hardware without it and this can be put into the 
real cockpit once obtained.  This would allow our sponsor to ultimately meet 
these original goals. 
 
Another additional objective for this project was for it to potentially be used in 
ground based flight training.  Pilots are allowed to use a limited number of ground 
based flight simulator training in lieu of actual time in the cockpit.  With this in 
mind we have kept this as an open option through the development of our 
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requirements and through our design.  In fact as later discussed in Section 
2.2.1.1, we see that it actually is as simple as plugging in a special USB key into 
a computer running the simulation software (X-Plane).  While providing the key is 
not within the scope of this project, the ability to do this allows our sponsor to add 
to the simulator once we have finished. 
 

2.2 Specifications/Requirements 
We have broken down our requirements into two parts; our software 
requirements and our hardware requirements.  In each subsection, we break 
down the development of our requirements and explain why we chose a 
particular option over the other and ultimately which devices or software were 
ultimately the one that met our requirements. 
 

2.2.1 Software Requirements 
The software requirements will be broken down into three sections: the 
requirements for the flight simulator, the requirements for the aircraft model we 
developed for the flight simulator, and the microcontroller/FTDI chip control 
software requirements. 
 

2.2.1.1 Flight Simulator Requirements 
In order to be able to realistically portray the GoBosh G700S/Aero AT-4 in a 
virtual environment it was critical to pick the correct flight simulation software 
package.  Currently, there are two competing simulators on the market available 
to end-users: Microsoft® Flight Simulator X (FSX) and Laminar Research® X-
Plane 9.4.  To the average end user, they are fairly similar applications, although 
for our purposes only one really stands out.   
 
X-Plane 9.4 incorporates the most accurate methods of modeling an aircraft in 
virtual environment by actually taking the shape of the aircraft and model the 
aircraft through the use of blade element theory.  This technique means that the 
software sections the aircraft model into multiple small “blades” to calculate the 
forces on these points.  This gives a realistic physics model of the aircraft, which 
means if you model a solid cube with no aerodynamic properties, all it is going to 
do is sit on the ground.  Microsoft FSX takes a different approach and instead of 
breaking down the aircraft into sections and then modeling it in a physics engine, 
it receives all of its properties through a configuration file, meaning the previously 
mentioned cube would be able to fly with the proper variables. 
 
X-Plane also includes a model editor in order to create aircraft that will fly in the 
game.  FSX does not include this feature and requires expensive third-party 
applications in addition to manually editing a configuration file. 
 
While X-Plane takes a victory when it comes to modeling, it does not when it 
comes to scenery.  Scenery in FSX is much more detailed including airport 
terminals, landmarks, towers, and major population centers.  X-Plane 9.4 does 
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not include any of these and instead uses random auto-generated scenery to 
populate the world.  While a city such as Apopka does not need major detail, 
cities like New York City miss all the important landmarks a pilot would use to fly.  
However, this feature is not a primary requirement and is considered part of the 
“entertainment-value” of the simulator and where the need arises for detailed 
local scenery it can be developed or purchased from third-party developers.   
 
There is also the possibility, down the road, that this flight simulator could be 
used for ground based flight training.  Currently only X-Plane is certified by the 
FAA when coupled with a $500 USB key, which guarantees frame rates and 
output data.  However, the consumer version does allow you to set a frame rate 
limit and it will scale the simulation graphics settings in order to match this rate.  
For the purposes of this simulator, a minimum of 30 frames per second was 
deemed necessary.  In addition, this is part of the commitment Laminar Research 
has made to the X-Plane family including the fact that there are regular updates 
of the software.  This is compared to FSX which as of January 2009, has had a 
stop in development of future versions due to the closing of the Microsoft ACES 
studio. 
 
All of these items together show that for this simulator, the use of X-Plane 9.4 
would be most advantageous to use.  A further exploration of the requirements 
and results of a side-by-side comparison lie in Table 2-1 below with explanations 
given in the proceeding paragraphs. 
 

Table 2-1 Environmental Aspects 

No. Item/Description Req. No. FSX X-Plane 9 

1. Inclusion of Majority of Airports 
Worldwide 

S1.B Yes Yes 

2. Detailed Realistic Scenery S1.A Yes Yes 

2a. Accurately detailed major cities and 
landmarks  

S1.A Yes No 

3. Realistic Weather Conditions S3.A Yes Yes 

3a. Real-World Weather S3.A Yes Yes 

4. AI Aircraft in the virtual world S3.E Yes No 

5. Deliver a constant 30 FPS S6 No Yes 

 
While comparing the environment simulated in both of the software options we 
find that on the surface the two seem similar.  They both include a large number 
of airports worldwide (X-Plane even includes a few that FSX omits), but the major 
difference is that in X-Plane airports are just runways, taxiways, and aprons.  
There are no buildings on airport property at any airports in the simulator, not 
even at airports such as John F. Kennedy International Airport (KJFK) in New 
York City or Orlando International Airport (KMCO).  Microsoft‟s Flight Simulator 
does have these major airports accurately modeled and where there isn‟t an 
actual model, automatically generated buildings are displayed along with other 
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support buildings.  However, while this is a feature that is nice to have, the whole 
purpose is actually to have the plane flying, not taxiing to a commercial aircraft 
gate at a terminal.  At the same time, Microsoft FSX also includes more detailed 
scenery overall.  In order to provide some realism, the modelers at Microsoft 
decided to model major landmarks and major population centers.  That means 
when flying over Disney World you fly over the EPCOT attraction Spaceship 
Earth or if flying over New York City, the skyline of Manhattan is present.  Now, 
this isn‟t to say that X-Plane does not have decent scenery installed.  In fact in 
some areas it does appear to have a decent level of detail, however most areas 
do appear to be just randomly generated entirely.  When you realize that X-Plane 
is not an entertainment simulator like Microsoft FSX, you can see that why 
Laminar Research spent more time on the aircraft physics modeling instead of 
providing great details to look at.  Additionally one can supplement the default 
scenery (of either simulator) by purchasing 3rd party packages or creating your 
own. A comparison of scenery in each simulator is in the following figures (figure 
2-1 and 2-2). 
 

 
Figure 2-1. Flying a Cessna C172SP over Innsbruck, Austria in Microsoft FSX 
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Figure 2-2. Flying a Cessna C172 over Innsbruck, Austria in X-Plane 9.4C 

 
Comparing the two images preceding this paragraph (Figure 2-1 and 2-2) you 
can notice some interesting differences between the two simulators.  However, 
before we start, we should make it clear that in X-Plane 9, the default airport is 
Innsbruck Kranebitten Airport (LOWI), and is therefore has higher detailed 
scenery than many of the airports in the game, whereas in Microsoft Flight 
simulator it is just another airport from a list of thousands.   One thing that is 
noticeably different between the two simulators is that smoothness of the 
rendering of the aircraft.  Both simulation packages ran on the same machine 
and resolution, but the one in FSX is slightly jagged.  Also, while not able to tell 
form this picture, X-Plane supports curved runways, which this airport has 
(runways typically are not a 0% gradient), whereas in FSX, it‟s a flat straight line.  
Also speaking of airport surface areas, the taxiways in X-Plane are also of a 
higher detail where in FSX they just intersect the runway as a opposed to having 
some curve into it.  Terrain data in either X-Plane or FSX appears identically the 
same (there were no missing or added terrain features), so there is no 
differentiation in that department.  Render distance is essentially the same, but 
as the terrain fades off into the distance FSX does a better job of blending the 
horizon and the sky.  If you notice in Figure 2-2 the mountain in the distance 
appears to be on a boundary of different shades of grey in X-Plane.   
 
Out of this table, one requirement is much more important, especially if this 
simulator is to ever be used for ground based flight training: the ability to deliver a 
constant frame rate of 30 frames per second (FPS).  In FSX you are able to set a 
target frame rate, but unfortunately this target is just a way for you to compare 
the output frame rate and the ideal, so that you can adjust the graphics settings 
yourself on the computer.  Unfortunately, this also means at times the system 
can become slow and as a result the simulation will not feel as real at all.  X-
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Plane does address this by allowing the user to set a target frame rate, but unlike 
FSX, the software will actually scale the graphics settings of the game to match 
the target.  In addition to this feature X-Plane also has the option to purchase a 
$500 USB key that allows for the simulator to be considered FAA accredited 
through the guarantee that the output frame rate will not drop below 30 FPS.  For 
the purpose of this project, this key will not be purchased. 
 
Another point that needs to be addressed is the inclusion of computer controlled 
or AI aircraft that exist in the simulated environment.  Microsoft Flight Simulator 
has this feature built-in and turned on automatically.  These AI-based aircraft fly 
normal routes and will land, takeoff and even make contact with the AI-based Air 
Traffic Control.  Additionally they are not limited to one type, almost every single 
flyable aircraft in the game can be found in the skies on an AI flight path including 
some that are not available to the user.  This ensures a decent mix of air traffic 
that adds to the realism.  On top of all this, for users that seek true realism, many 
users in the FSX community have generated their own flight plan files.  This 
allows the addition of the schedules of entire airlines or flights around an airport.  
Additionally this also means that it is relatively straight forward to create custom 
flight plans. 
 
X-Plane however, lacks built-in AI-based aircraft support.  This however does not 
mean that you cannot have computer controlled aircraft sharing the airspace with 
the user, it just means that like everything else with X-Plane a plug-in has to be 
developed.  Luckily there exist several plug-ins already available to download for 
free.  FSImp is one such plug-in that has spanned many versions of X-Plane and 
allows a user to import flight plans from Microsoft Flight Simulator in to X-Plane.  
The beauty about this solution is that an X-Plane user can utilize all of the flight 
plans developed by the Flight Simulator community, which far outnumbers the 
available flight plan databases that are available to the X-Plane Community.  
There are other plug-ins as well for X-Plane for AI aircraft, including one that is 
nothing more than a flight recorder that replays your past flights as computer 
controlled flights. 

 
Table 2-2 Aircraft Modeling 

No. Item/Description Req. No. FSX X-Plane 9 

1. Included 3D Model Generator S4.A No Yes 

2. Ability to change aircraft parametric data 
on the fly                                    

S4.B Yes Yes 

 
In order to deliver an accurate simulation of the aircraft, a detailed and realistic 
model was developed to the best of our abilities.  Each of the simulators utilize 
two different methods to model aircraft, with FSX requiring the use of a 3rd party 
3D modeling software such as 3ds Studio Max.  In addition, once the model is 
generated in the software, one must then create an aircraft.cfg file which 
specifies the model properties.  As mentioned earlier this creates the possibility 
for generating a model that does not meet the flight characteristics.  X-Plane 
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utilizes an included model generator that allows us to build an accurate model 
without utilizing expensive software.  Pictured below is how one builds a fuselage 
with the editor; in addition you can edit all the other features of the aircraft 
including avionics and engines.  A more specific discussion on the development 
of requirements for the aircraft model can be found in the next section, Section 
2.2.1.2 Aircraft Model Requirements is where we cover modeling the aircraft 
using the tools in X-Plane in addition to parametric data we currently have from 
the manufacturer.  Table 2-2 above summarizes this information. 
 

 
Figure 2-3. X-Plane Model Editor running in Windows 

 
Table 2-3 Entertainment Features 

No. Item/Description Req. No. FSX X-Plane 
9 

1. Detailed Crash Effects S3.B No Yes 

2. Multiplayer Support S5.A Yes Yes 

3. Aircraft Sounds S3.C Yes Yes 

4. Ability to create custom 
scenarios/missions 

S3.D Yes Yes 

5. Built-in Instructor Operator Station (IOS) S8 No Yes 
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By default in both of the flight simulators, when the aircraft crashes or the 
airframe is overstressed due to physical factors, the flight ends with the aircraft 
stuck in that position; either struck the ground or featured overstressed 
conditions.  However, X-Plane allows for the removal of flight surfaces if the 
aircraft goes past over-speed and over-G thresholds as well as the flaps and 
gear doors when over-Vfe (Velocity flap extended) thresholds have been passed.  
FSX has overstress indicators in addition to crash detection, but they are not 
nearly as extensive as in X-Plane.  
 
As for multiplayer support FSX utilizes the GameSpy matchmaking service for 
multiplayer sessions across the internet, but also supports direct connections 
utilizing Microsoft DirectPlay for computers on the same local area network.  X-
Plane also allows for direct connections over a local network.  For each of the 
simulators the multiplayer connectivity options allow us to also integrate an 
Instructor Operator Station (IOS) to remotely control aspects of the simulator.  
For FSX one would need to have to write additional software, and with X-Plane 
this feature is built in and would just require an additional installation of X-Plane.  
Alternatively, we are also able to utilize the variables presented in the X-Plane 
SDK and create our own IOS application.  This would allow us to customize the 
interface to our needs or provide different interfaces for different usage 
scenarios.  This way there could be one IOS interface for public demonstrations 
and one for actual flight training, should it be used for that.  The “entertainment” 
features test results are given in Table 2-3 on the previous page. 
 

Table 2-4 Simulator to External Flight Instruments/Controls Communication 

No. Item/Description Req. No. FSX X-Plane 9 

1. Protocol/API to interface with flight 
simulator software 

S2.A Yes Yes 

 
FSX allows for two methods of interfacing with simulated flight controls and 
instruments: the SimConnect API and the legacy FSUIPC interface from previous 
versions of Flight Simulator, but still supported.  X-Plane also has an API 
available in order to develop plug-ins for the software.  This allows us to develop 
.dll and .exe files to facilitate the data flow between the software and our 
hardware.  The API for either flight simulator allows access to nearly all of the 
internal variables used in the simulators.  This allows us to dig into the simulation 
state and pull out information ranging to which lights are on, is a switch on or off, 
to changing the weather, changing aircraft position, and of course simply flying 
the aircraft.  This allows us to write a plug-in for X-Plane or an application for 
FSX that allows us to do nearly everything.  Due to this we will be able to 
interface with each of our gauges, our indicator lights, switches and our flight 
control systems. 
 
Our overall requirements list is presented the Table 2-5 below.  This incorporates 
all the requirements that were derived in the preceding paragraphs. 
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Table 2-5 Simulator Requirements 

Req # Task Summary 

S1 - Realistic look and feel 

S1 A Realistic Scenery 

S1 B Inclusion of Airports Worldwide 

S2 - Ability to change environmental factors dynamically 

S2 A Ability to interface hardware with software via API 

S3 - Model Entertainment Aspects 

S3 A Weather Effects 

S3 B Crash Effects 

S3 C Sounds 

S3 D Ability to create custom scenarios/missions 

S3 E AI Aircraft also utilizing airspace and airports 

S4 - Aircraft Model 

S4 A Aircraft Exterior Model 

S4 B Model parametric data 

S5 - Ability to interface with other Flight Sim/X-plane games 

S5 A Native Multiplayer Support 

S6 - Guaranteed minimum 30 FPS 

S6 A FAA Certification - Optional Requirement 

S7 - Ability to interface controls/flight instruments 

S8 - Ability to interact with an Instructor Operator Station 

 

2.2.1.2 Aircraft Model Requirements 
The requirements that we needed in our simulation for the aircraft model have to 
do with the actual aircraft and how we can get its physical characteristics into the 
X-Plane editor.  While we were able to get a good amount of information from the 
manufacturer (Aero) and the Importer (GoBosh) on the aircraft model 
specifications, some of the needed info was not able to be obtained.  We also 
contacted the creator of X-Plane and some of the modeling that we wanted to do 
was not in the current release of X-Plane and was planned for a later time.  Yet, 
from some of the info we could get from the sponsor and from the brochure that 
was given to us we got some of the info needed to create a model of the plane 
we are trying to simulate.  We also used the planes manual that we were able to 
get from an online site (I don't think it should of been published but we found it). 
 
In order to get the information into the actual X-Plane simulation we needed to 
use the included application Plane-Maker.  This program is bundled with the 
game and has an interface that allows you to input the various parameters of an 
aircraft needed info to build a model and make it fly.  As for the actual model of 
the plane you need to have an .acf file and this is what is created by the Plane-
Maker software. 
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 We tried to create the aircraft outside of the editor and ran into many difficulties.  
The drawings for the model needed to be exported in the form of an .obj file and 
then loaded into sketch-up and then could be exported as an X-Plane format but  
this proved to not work or be unworkable in the time that we had so we needed to 
go back to the Plane-Maker software for the solution that we eventually went 
with. 
 
Given the aircraft specifications in Table 2-6 below, we used this information to 
develop our aircraft model, and also developed an airfoil for the wings using 
publically available wind tunnel testing data.  A further discussion of the design 
and implementation of the model will follow in the design chapter. 
 

Table 2-6 Summarized Aircraft Data1,2 

Wingspan 27‟4” 
Height 7‟4” 
Fuselage Length 20‟6” 
Width (At Cabin) 41” 
Prop. Diameter 5‟8” 
Lifting Area 122.7 ft2 
Wing Profile NACA 4415 mod. 
Empty Weight 820 lbs. 
Maximum Weight 1320 lbs. 
Maximum Cruise Speed 116 ktas. 
Stall Speed / Minimum landing speed (Vs0) 39 kts. 
Stall Speed / Minimum steady flight speed (Vs1) 44 kts. 
Normal Operating Speed 110 kts. 
Never Exceed Speed 129 kts. 
Maneuvering Speed 90 kts. 
Service Ceiling 13,200 msl 
Sea Level Climb Rate 850 fpm. 
Maximum Range 360 nm. 
Minimum Take-off distance 380 ft. 
Minimum Landing Distance 656 ft. 
Wheel Track 7.42 ft 

 
Figure 2-4 below shows one of the screens in the plane maker software.  This 
shows some of the parametric data input for the plane maker and gives an idea 
of what we had to work with.  While X-Plane makes the creation of a aircraft 
model relatively easy compared with Microsoft FSX, it is still a very challenging 
task.  With not a single group member having experience with 3D modeling or 
aerospace engineering or the basics of aircraft operation, there is a limitation on 
our abilities to create 100% accurate model. The GUI of the plane maker was 

                                                           
1 (2009, Nov.). GoBosh G700S Specs  [Online]. Available: http://www.gobosh.aero/G700.cfm 
2
 (2009 Dec.). Airplane Flight Manual Aero AT-4 Light Sport Airplane [Online]. Available: 

http://www.ussportaircraft.com/uploads/Gobosh_POH_1_.pdf 
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also fairly complex and lacked a variety of features that would have made the 
creation of a flight model much easier. 
 

 
Figure 2-4.  Plane-Maker viewpoint setup 

 
Once the model had all of its parameters input then came the part of the 
modeling that needed some sort of artistic capability.  The Plane-Maker tool also 
includes a basic model editor that allows you to change the fuselage to the 
correct shape it also gives you the options for each of the wings and nose of the 
aircraft.  A screenshot below in Figure 2-6 and 2-6, while not representing the 
model that we developed shows process for creating the fuselage of the aircraft.  
In Figure 2-6 the wireframe representation of the model is manipulated by pulling 
on the points indicated.  These can be stretched in any direction and all of the 
three views will be updated.  Additionally more sections can be added from the 
default to increase the ability to create smooth edges.   Another plus is that we 
can place an image behind the wireframe to trace our fuselage shape. 
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Figure 2-5 Plane Maker Fuselage Editor 

 

 
Figure 2-6 Wireframe representation of a Fuselage in development. 

 
Another part of the plane-maker software that will allow us to interact with the 
simulation correctly is the fact that you can actually model the aircrafts systems 
and inputs.  This includes being able to customize an existing cockpit panel or 
creating your own panel and even the flight electrical systems.  All of the gauges 
can be displayed and indicator lights can be switched on and off based on the 
data that is given to the simulation.  In Figure 2-7 we show a default cockpit from 
a Cessna C172 that has been modified to include some additional gauges 
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utilizing the Plane-Maker tool.  They are located on the right side of the cockpit.  
This is helpful with the testing of our gauges, since the output to the in game 
gauges is the same as we will be outputting to our hardware via the plug-in we 
developed.  Figure 2-7 shows the layout of an example cockpit built with the 
cockpit editor that is part of the Model Editor software. 
 
 

 
Figure 2-7. Example cockpit showing additional gauges. 

 

2.2.1.3 Microcontroller Software Requirements 
The requirements for the microcontroller software were really based on the 
hardware that ended up using to implement our design.  We are used stepper 
motors and A/D converters to design the gauges and the controls.  The stepper 
motors needed to be updated at a rate that will make the movements look 
smooth.  This led to a decision on the motor being a stepper motor, that and the 
fact that we needed to continually go in 360 degree circles.  We used all the 
same stepper motors with 200 full steps per revolution.  With the 200 steps we 
can get a 1.8 degree resolution this may not be good enough for smooth rotation.  
We needed to half step to overcome this and that required that the 
microcontroller/FTDI chip be able to get information from the host computer and 
update the motor twice as fast in order to get smooth looking steps.   
 
The servo motors we looked at needed to be updated by a signal for a certain 
period of time in order to move it.  This would of been fine except that when that 
design idea came before our sponsor, he didn't like it and that led to us picking 
the stepper motors as they could be controlled easily through the FTDI chips.    
There is more discussion of the actual controlling of the stepper motors in the 
microcontroller requirements section of this paper. 
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The software that we are running X-Plane tells us our capabilities.  The plugin 
allows us to dictate the update rate and should update their graphics at a rate of 
30 frames per second minimum.  This gives us our update rate for sending 
signals to the gauges.  We could of updated faster than this but it would just be 
the same value sent and that would just cause unneeded traffic.  That could of 
slowed down the code and could take away from other threads that were 
operating.  So at that rate we needed to have a speed of : 1 sec / 30 = 33 ms  
and we also needed to send enough information to update each of the gauges 
we implemented.  For the basic six pack we have 8 bits x 6 gauges which is the 
same as 6 bytes that need to be updated every 33ms that gives us a speed of  6 
bytes x 30 = 180 bytes/sec this was easy to keep up with over USB speeds as 
USB 1 was 12 Mbit/s.  There will be room to expand the gauges and input 
devices as needed.  
 
The microcontroller/FTDI chip we used set the type of software requirements that 
we needed also.  It determined the how we needed to update the gauges as well 
as how we could get our information from our controls. 
 

2.2.2 Hardware Requirements 
The hardware requirements development includes all of our hardware and 
physical assemblies that will need to be created.  This includes our simulator PC 
that will run X-Plane, the requirements for the microcontroller (outside of software 
issues), requirements for our aircraft instruments, and requirements for our flight 
controls.  While we did not receive our cockpit or demonstrate at Sun „n Fun as 
intended, some of these requirements were not implemented (especially for the 
computer setup).  As these were requirements developed for our original design, 
we will retain these discussions at the end of this paper show the status of each 
of the requirements and which ones we met or did not meet and why. 
 

2.2.2.1 The Game PC 
In order to meet our performance requirements for the flight simulator of 
providing a constant frame rate while maintaining detailed graphics we have 
established a baseline for the simulator computer that goes above and beyond 
the system requirements listed by Laminar Research for X-Plane 9.  Not only will 
this give us room to play with the graphics settings, but will allow for the 
computer to be used for years to come as newer versions of software is 
released. In Table 2-6, the minimum requirements for X-Plane are listed, while 
our suggested requirements are listed in Table 2-7 in order to deliver excellent 
graphics and performance. 
 

Table 2-6 X-Plane 9.4 Minimum Requirements 

Operating System Windows XP/Vista/7, Linux, MacOS 
RAM 1 GB 
CPU Speed 2.0 GHz 
HDD Space 60 GB 
Video Card 64 MB 
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Table 2-7 Established Requirements 

Req # Task Summary 

C1 - USB ports for Flight Controls and Instruments 

C2 - 120 Degree Field of View 

C2 A Three LCD Monitors 

C2 B Graphics Card/External Device to output required resolution 

C3 - 2GHz 64-bit CPU (minimum) 

C4 - 4GB of RAM 

C5 - 120GB Hard Drive (minimum) 

 

2.2.2.2 Microcontroller Requirements 
In order to make the gauges we needed to decide on what the important 
characteristics of the gauges will be, below is a list of requirements that needed 
to be met for each of the gauges.  These are laid out in Table 2-8 below. 
 

Table 2-8 Established Requirements 

Req # Task Summary 

M1 - USB Controlled 

M2 - Use less than 5V 

M3 - Minimum 8 I/O Pins for external communications 

M4 - Fit inside of a 3.24”x3.24” footprint 

M5 - Low Cost Microcontroller 

M6 - As self-contained as possible 

 
The gauges that we duplicated are the six-pack that is located slightly to the left 
in the photo in Figure 2-8 (next page).  From the requirements we needed to 
make these gauges look and act just like the real gauges would in the actual 
Bosh aircraft.  We also need to make them react as the gauges in the X-Plane 
game, this makes them as real as the model in the simulation.  They also needed 
to fit in to our budget was a very small amount.  There of course are the pre-
made gauges that were discussed, but those are expensive, so we needed to 
think of other ways.  What we came up with is the handmade gauges discussed 
in this paper, and we also got lucky when we talked to the people at GoBosh, 
and they sent us some used gauges to take apart and alter for use in our 
simulator.  The gauges are controlled by a stepper motor.  In order to do this we 
needed to come up with a way to power these gauges as well as control them.    
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Figure 2-8. A photo of the cockpit in a GoBosh aircraft. Photo by Robert Gysi 

 
We were given a requirement that everything needed to be connected via USB.  
With this constraint we had to find a way to control the motors with the USB 
protocol. Along with the restriction of speaking USB protocol it needed to fit into 
the power specs of USB so we chose to connect an outside power source.  This 
allowed us to control a stronger stepping motor and also not worry about meeting 
the requirements for the USB protocol, which only allowed for 5 volts at 100mA at 
startup and 500mA during peak running of all coils of the motor3. 
 
Looking into the different types of stepper motors we to go with a 12 volt and low 
amperage motor that used to drive 5.25” floppy drives.  The stepper motor is 
mostly used in robotics to add an amount of torque (strength) to the limbs.  The 
stepper motor requires sometimes turning on more than one coil inside the motor 
in order to get the correct amount of movement.  This required more current from 
the power supply.  Since we are using a computer power supply the amount of 
current and voltage required is less than the voltage and current the power 
supply supplies.  Micro-stepping is typically used in applications that require 
accurate positioning and a fine resolution over a wide range of speeds4.  
Although the microstepping of the motors was not implemented and is left for 
future expansion of the project if it is to be included within the scope of a future 
upgrade work on our system.  Stepper motors have the capability to run at lower 
currents since the current is what controls the motors torque or holding power, 
and we only need to hold a small pointing device. 

                                                           
3
 (2009, Nov.). USB as a power source  [Online]. Available: 

http://www.girr.org/mac_stuff/usb_stuff.html 
4 (2009, Nov.). Stepper Motors reference guide [Online]. Available:  

http://ams2000.com/stepping101.html 
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Use of the servo needed some sort of extra timing circuit in order to give the 
servo motor the pulse widths it desires to run correctly.  The initial design of the 
controller for the servo involved a 555 timer, and some sort of Digital to Analog 
converter.  The 555 timer was to be used to give us our pulses of the different 
lengths, depending on the analog values that are received from the D/A 
converter.  In order to get the most from our FTDI chip we needed to get an eight 
input D/A that can give out voltages with high resolution (2^8 = 256 values 
between 0 and 180 degrees).  This was ruled out when our sponsor, who has an 
electrical engineering background, decided that the 555 timer circuit couldn't give 
us the most stable of time pulses to keep everything accurate. 
 
The design and test phase of the project will determined we needed to add some 
sort of outside power source to help control the gauges, but we first tried to put it 
together using no outside power source.   Unfortunately, this led to the devices 
disappearing during operation due to the power supplied was too low for the 
device to function properly.  A diagram of the circuits can be found below in 
Chapter 3.  
 

2.2.2.3 Flight Instrumentation Requirements 
The flight instruments are one of the most important elements regarding the 
authentication of the simulation.  For this reason we had some very strict 
requirements regarding the instruments.  First of all, it was asked that we use 
mechanical, heads down gauges for all the instruments we were modeling.  In 
the simulation world, many times the instrument panel is modeled using LCD 
screens displaying virtual gauges and this functionality is even built into the 
simulation software.  The problem with virtual gauges is that you don‟t get the 
look and feel of the cockpit like you do with mechanical gauges.  Figure 2-9 
shows the view of the instrument panel from inside the cockpit.  Figure 2-10 
shows our simulator‟s instrument panel.  As you can see the look of the 
simulated gauges are almost identical to those of the actual gauges.  
Unfortunately we did not have the time or resources to model all of the Gobosh 
instruments instruments so we just modeled the essential flight gauges as seen 
in Figure 2-10.  
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Figure 2-9:  The interior view of the instrument panel.  Photo by Robert Gysi. 

 

 
Figure 2-10:  Our simulator‟s instrument panel.  Photo by Lewis Vail 

 
The instruments that were essential to properly simulate the aircraft were the 
standard six-pack of gauges.  Figure 2-11 is an enlarged view of these gauges 
from the actual aircraft.  They include (from left to right, top to bottom) the 
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airspeed indicator, the attitude indicator, the altimeter, the turn coordinator, the 
heading indicator, and the vertical speed indicator.  These are the gauges that 
are essential to successfully fly and navigate a plane.  Although we were not able 
to model any other instruments these were enough to get the feel of flying a 
GoBosh.  The following are some specific requirements for each gauge: 
 

 
Figure 2-11:  This is the standard six-pack of gauges in the GoBosh. 

Photo by Robert Gysi. 
 
The airspeed indicator (top left corner of figure 2-11) requires the ability to record 
up to 160 KTS as indicated on the faceplate.  This requires almost a 360-degree 
range of motion.  Among the six-pack gauges, this one requires one of the faster 
moving needles but still needs to support small fluctuations in airspeed without 
looking choppy. 
 
The attitude indicator, also known as the artificial horizon (top middle of figure 2-
11) is one of the more complicated gauges.  It is required to turn all the way 
around (more than 360 degrees) and part of the face must slide up and down to 
indicate whether the plane is nose up or nose down respectively.  The speed and 
precision needed for this gauge is comparable to that of the airspeed indicator. 
 
The altimeter (top right corner of figure 2-10) requires the ability to record up to 
10,000 feet above sea level as indicated on the faceplate.  The altimeter has two 
arms like a clock; the long arm (corresponding to the minute hand of a clock) 
represents hundreds of feet above sea level.  This arm will need to go all the way 
around up to ten times.  The shorter arm (corresponding to the hour hand of a 
clock) represents thousands of feet above sea level.  This gauge will move at a 
fairly fast rate, especially during dive maneuvers, and therefore the gauge we 
build must turn the needles fast enough to replicate this real worlds speed.  The 
requirement for smooth movements also persists with this gauge but precision is 
not as critical as with the slower moving gauges. 
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The turn coordinator (bottom left corner of figure 2-11) is another more 
complicated gauge, similar to the attitude indicator.  It consists of two 
components, a plane shaped needle that indicates the bank of the plane during a 
turn and a small ball in a tube (similar to a bubble level) that indicates the slip 
and skid.  Both components require the least range of motion and therefore every 
move they make must be as smooth as possible.  This gauge operates at a 
moderate speed that is far less critical than some of the other gauges.  To 
optimize authenticity, this gauge must have four tick marks as shown in figure 2-
11.  The top two tick marks represent no bank and the bottom two marks 
represent a turn in which the heading change is three degrees per second.  
These two bottom marks are now at the 2 minute marks because it takes two 
minutes to do a full 360 at this bank5.   
 
The heading indicator (bottom middle of figure 2-11) is required to turn all the 
way around (more than 360 degrees) just as with the attitude indicator and 
altimeter.  This gauge is probably the slowest turning of all the gauges.  This 
means that any choppy movement would be magnified. 
 
The vertical speed indicator (bottom left corner of figure 2-11) is required to have 
a range of motion of 360 degrees.  Unlike the altimeter, the attitude indicator, and 
the heading indicator, this gauge is not required to turn more than 360 degrees.  
To match its real life counterpart, our gauge must also have a range of ±2000 
feet per minute.  This is the fastest of all the six-pack gauges and our model will 
have to replicate this speed.  But because this gauge operates at a higher speed, 
choppiness and lack of precision is less of a concern, as it is hardly noticable. 
 

2.3 Project Budget 
Our project sponsor has established a budget of $1500 during our initial 
discussions.  Due to the previously mentioned issue with not receiving a cockpit 
we went through a major design revision.  This affected our budget in that we 
wound up being significantly under our original budget due to not purchasing 
several components.  For this section we will discuss our actual planned budget 
in addition to our actual spending after design changes.   
 
For the original design effort we anticipated that our budget would need to be 
expanded to cover the costs of the simulation computer and monitors.  Up to the 
moment the decision was made to alter our project due to the lack of a cockpit, 
we had an anticipated cost of approximately $1700.  In the event that our 
sponsor would have not agreed to pay for costs over $1500, the members of the 
group were prepared to meet the additional costs required to implement this 
design.  Our original budget can be found in the appendices of this document for 
reference. 
 

                                                           
5
 (2009, Dec.). Wikipedia Article: Turn Coordinator  [Online]. Available: 

http://en.wikipedia.org/wiki/Turn_coordinator 
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Once the decision was made to forego the purchase of a computer, we knew that 
we would not have an issue meeting our requirement of keeping spending under 
$1500.  However, since to go to that amount under the circumstances would not 
be in good taste, we attempted to keep our spending to approximately within the 
bounds of what we felt our original non-computer component cost would be.  As 
a result we made an attempt to spend approximately $500 on components.  We 
found this difficult to keep given several last minute purchases including a 
powered USB Hub.  In the end our spending represented a total of $626.36 or 
roughly $100 more than our anticipated spending.   Table 2-9 below represents 
our actual spending upon completion of spring 2010 semester.  All costs are 
included, although may be listed under general categories for small items such 
as screws would be under Misc. Hardware.  Quantities on items may be smaller 
than required for project completion due to getting some components from other 
sources for free or by using parts already possessed by a group member. 
 

Table 2-9 Expenses 
Item Part Number Quantity 

Required 
Unit 
Cost 

Total 
Cost 

USB Communication Board FTDI245BL 10 $30.00 $300.00 

IC Sockets (Assorted) Various - $21.72 $21.72 

PCB Boards (Small)  4 $1.99 $7.96 

Wire  3 $5.99 $17.97 

Transistor 2N3904 4 $0.79 $3.16 

Diodes 1N4003 - $6.75 $6.75 

Spacers (Assorted Lengths) N/A - $28.20 $28.20 

Stepper Motors  8 $5.00 $40.00 

Terminal Blocks N/A 36 $0.30 $10.80 

PCB Boards (Large) N/A 7 $2.50 $17.50 

Buffer Chip CD4050 6 $0.35 $2.10 

Comparator IC LM741CN 5 $0.25 $1.25 

A/D Converter ADC0804LCN 3 $2.50 $7.50 

Powered USB Hub  1 $49.99 $49.99 

USB Cables Various 9 $5.00 $45.00 

Slide Potentiometers RA6020F-10-
20D1-B10K 

3 $2.12 $6.36 
 

Molex Connectors Various - $20.36 $20.36 

Epoxy Putty N/A 1 $3.97 $3.97 

3/8 x 0.035 Aluminum Tube N/A 1 $4.78 $4.78 

Misc. Hardware N/A - $30.42 $30.42 

470-Ohm Resistors  3 $0.99 $2.97 

Thin Aluminum N/A 1 $2.38 $2.38 

 Total $631.14 

Project Budget $1,500.00 

Difference $868.85 
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2.4 Project Timeline 
The original deadline of the project was determined by the date of Sun „n Fun 
which meant that we needed to be done around April 1, 2010 in order to 
complete testing and transport the simulator to Lakeland.  However, with that 
event not occurring, the deadline became the day of our presentation on April 21, 
2010.  Originally, we had wanted to adhere to our original schedule, but 
unfortunately due to uncertainties early in the semester we found ourselves 
getting behind our schedule and as a result did not meet an April 1 deadline.  We 
did however, get all of our components working by the new deadline of April 21.  
Figure 2-14 shows our original project schedule in a simplified manner while 
Figure 2-15 shows approximate dates for when certain phases and aspects of 
the project were completed.  Also, in Appendix B at the end of this 
documentation, one can find our original schedules from our fall semester 
documentation. 

 
Figure 2-14. Original Project Schedule 

 
What cannot be seen from the milestones listed in Figure 2-15 is that while the 
build phase officially started on January 11 (start of the Spring 2010 semester), is 
that no actual building started at this time.  It was at the beginning at this time we 
built our first test gauge to validate our design and from this we determined that 
we needed to have our metal gauge decks fabricate by a machine shop.  Gauge 
construction was placed on hold for a few weeks during this time in order for 
fabrication to be complete.  Additionally, the issues with the cockpit arrival kept 
us from being able to start on working on controls, until we received word that we 
would not receive it in time.  However, with these few issues, we still completed 
with enough time to test all of our components. 
 

 
Figure 2-15. Actual Project Completion Milestones 

Design Phase 
(Completed) 

Pre-Build 
(December/January) 

Preliminary Design 
Review (Jan. 3 2010) 

Build Phase/Testing    
(January 11 - April 1) 

Sun 'n Fun - Lakeland 
Regional Airport 

(April  13-18) 

Design Phase 
(Completed 

12/09) 

Preliminary 
Design Review 
(Jan. 3 2010) 

Build Phase    
(January 11 - 

April 19 

Testing Phase 

(April 19-21) 

Design 
Presentation 

(April 21) 
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Chapter 3 
3.1 Design Summary  
In Designing the System we needed to know which of the Flight simulators we 
were going to use. As well as what type of gauges we were going to implement 
and also what other switches and knobs needed to be able to interact with our 
simulation. For the initial design of this system we came up with a design plan 
that included a separate IOS station to control the setup of the simulation. Since 
that became an extra hurdle it was an "if we have time OPTION" and eventually 
never came to fruition. The system still has the capability to have the IOS from 
the simulation software we chose(X-Plane).  
 
The control of the cockpit and the gauges is done through the USB chips that we 
have decided upon. The flight controls are divided into input devices and passive 
devices. The input devices are the yoke and pedals along with. The passive 
devices are the lights that are lit and the gauges. All of this is covered in the 
cockpit design section. The block diagram of the design is below in Figure 3-1. 

 

Figure 3-1 Block diagram representing cockpit interfaces and responsible parties.  

Diagram by Lewis Vail 
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One of the major decisions was made regarding the design of the GoBosh 700S 
flight simulator was which flight simulator software to use.  We had two options 
available to us as to which commercially available flight simulator software we 
could use.  The first option was Microsoft FSX.  Microsoft‟s flight simulator is the 
oldest and most established flight simulator of the two.  We liked the fact that the 
community and resources available for the Microsoft flight simulator series was 
very vast and highly accessible.  Unfortunately for the flight simulator community 
Microsoft decided in January 2009, to close both Ensemble Studios and ACES 
Game Studio due to a process of ongoing job cuts due to financial crisis and 
restructuring of their game studios.  This became a factor in deciding which flight 
simulator software to use for this project. 
 
The second option was X-Plane.  X-Plane is the newest and least established of 
the two flight simulators.  The X-Plane community and resources are not as vast 
and content rich when compared to Microsoft‟s.  This was one of our biggest 
concerns when we were considering using X-Plane for our GoBosh 700S flight 
simulator.  It turns out that X-Plane was not that different from Microsoft FSX in 
terms of our integration needs and requirements for the flight simulator.  X-Plane 
also has a plugin architecture that allows users to create their own modules, 
extending the functionality of the software.   
 
One unique feature that really stood out with X-Plane was the Plane-Maker 
Software. Plane maker is included with the purchase of the X-Plane software and 
allows users to build their own aircraft models.  What is really remarkable about 
this is that there is no extra cost, unlike Microsoft FSX which requires the use of 
expensive 3rd party applications.  Additionally, the method at which these models 
are simulated in the environment turned out to be a differentiating factor.  X-
Plane distinguishes itself by implementing a concept known as blade element 
theory.  With plane maker you are able to build and model any aircraft using 
blade element theory.  This feature will greatly simplify the design of the aircraft 
modeling and the aircraft flight dynamics.  In the end we decided to use X-Plane 
as the visuals for the GoBosh 700S flight simulator. 
 
One of the biggest components of the flight simulator was the design and 
construction of the simulators aircraft flight instruments.  The flight simulator 
consists of the traditional six-pack of flight instruments.  The traditional six-pack 
consists of the altimeter, attitude indicator, airspeed indicator, heading indicator, 
turn indicator, and the vertical speed indicator.  All the aircraft flight instruments 
for this simulator are analog designed and assembled using stepper motors.  As 
we researched the functionality and mechanical operation of each aircraft flight 
instrument we began to narrow down the way we were going to go about 
designing them.   
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Figure 3-2. Gauges to be implemented.  The “Six-pack” gauges are the cluster of 
six large gauges to the left of the picture.  Photo by Robert Gysi. 

When designing the aircraft flight instruments we realized we needed 360 
degrees of motion for most of the needles on the instruments.  The best way to 
achieve this degree of motion was to use stepper motors.  A problem occurred 
when using stepper motors as they have no unique home position.  We solved 
this problem by using an optical sensor to establish the zero position.  When the 
optical sensor is interrupted this signals to the computer that the needle is in the 
home position.  
 
We also considered using servo motors in our design of the simulators aircraft 
flight instruments.  Most servos unfortunately only have a range of motion of 180 
degrees.  This limits our ability to turn the needle on certain aircraft flight 
instruments the full 360 degrees required.  There exist several ways to get 
around this limitation.  A few that we explored consisted of modifying a servo by 
removing the mechanical stopper as well as a few other modifications, or by 
buying a servo motor capable of rotating 360 degrees.  The following figures 
highlight the basic operation of the two types of motors applied to the gauges.  
The first shows operation of a stepper motor (figure 3-3), while the second a 
servo motor (figure 3-4). 
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Figure 3-3 Stepper Motor Control Diagram. Diagram by Lewis Vail 

 

 

Figure 3-4. Servo Motor Control Diagram. Diagram by Lewis Vail. 
 
The aircraft flight instruments are interfaced with the computer and the flight 
simulator X-Plane.  Each aircraft flight instrument is controlled with the FTDI chip.  
The FTDI chip was chosen because the cost of each chip is only $5.00.  The low 
price of the chip reduced our overall cost to design and build the aircraft flight 
instruments for our GoBosh 700S flight simulator.  Figure 3-3 and Figure 3-4 
show the control diagrams for each type of motor that was considered. 
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Each aircraft flight instrument is connected to the computer through a USB 
connection to a USB hub.  The USB hub is in turn connected to the USB port on 
the computer.  This is where our communication with the computer takes place.  
However, the previously mentioned FTDI chipset does not handle any processing 
of our data; it merely passes it over the USB to the desktop computer. This is 
excellent because we are able to do all of the programming in C++ and on the 
computer side, meaning that we will be able to write plug-ins for our instrument 
panels.  The two flow charts below represent the relation of the Plug-ins to the X-
Plane software and hardware.  Figure 3-5 shows the relation for flight 
instruments while Figure 3-6 shows the relation for flight controls. 

 
Figure 3-5. Gauge Software Interface. Diagram by Lewis Vail. 

 
Figure 3-6. Control Software Interface. Diagram by Lewis Vail. 
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The following block diagram in figure 3-7 highlights the higher order levels of our 
design and process.  The chart also assigns block responsibility and completion 
status. Being at the end of this project, all blocks are complete with the exception 
of the IOS.  This is due to the decision to not take the simulator to Sun „n Fun.  
However, X-Plane does have the IOS function built in. 
 

 
 
 

Figure 3-7 Software Flow Chart.  Created by Chris Dlugolinksi 
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3.2 Microcontroller Design 
After some research on the types of microcontrollers that were available with the 
ability to do the required tasks, we decided to go with the FTDI chip that has the 
capability to be used in bit bang mode which allows for control of individual I/O 
ports. 
 
The chip has the capability to interface with any microcontroller, being the USB 
portion of the communication for the microcontroller without the need to code the 
interface for USB communications.  This was great but added to the cost of the 
gauges.  Yet, the added cost saved us some time.  This gave us the ability to not 
really worry about USB protocol and it is able to remove our need for a 
microcontroller at least for the gauges we have implemented.  The 
implementation only called for controlling of a few I/O ports, this was done with 
any I/O ports and the FTDI chip in its special mode was able to do this.  It can 
read and write to the lines directly giving us the ability to write the control for the 
device right into our software. 
 
We used the FT245BL chip it has 8 I/O pins and direct connection capable to talk 
over the USB line as needed.  It also has the capability to have EEProm 
connected up to the chip.  This will allow us or anyone who wants to make a 
gauge to make one and we could easily identify them through a description or a 
PID or VID that we will assign.  Our program contains many different types of 
gauge control capability and adding a new gauge only take setting the PID or VID 
to that type of gauge, and you will have control for that gauge based on the real 
gauges activity, and it will be given data from the simulation that is running it.   
 
The cost of the FTDI chip will also reduce our overall cost of the gauges.  During 
the initial research a microcontroller was thought to be needed and they cost $10 
to $15 dollars for the chips we were looking at.  The FTDI chip is only $5 a chip 
and needs only a few external components.  This cost for a premade board for 
the FTDI chip makes it cost around $25 per board which is slightly higher than 
predicted. 
 
One of the most important parts of the design was with the power consumption.  
The USB port on a computer can supply 5 volts and 500mA as we have already 
stated.  The use of this to drive a motor of any kind is pushing the power of the 
USB port to the limit, not to mention the ability of the motor to push current back 
at the port which can kill the port all together.  So we went with an external power 
supply (computer power supply) using Molex connectors for each controlled 
gauge. 
 

3.2.1 Implementation of Hardware 
The implementation or actual making of the hardware came from the FTDI 
FT245BL chip that was able to use the USB signal and allow the use of the 8 I/O 
ports right through the computer.  We ordered the DLP-USB245M chip as a dev 
board for trying out our design.  The chip came with a standard crystal, and an 
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EEProm that holds some descriptions that we used for naming the gauges.  
Along with the FTDI chip we needed a chip to keep the FTDI chip from being 
overloaded and we will use the 4050 buffer chip to help drive the transistors that 
drive the small stepper motor.   
 

 
Figure 3-8.  Circuit for the stepper motor controls Created by Chris Dlugolinksi 

 
Figure 3-8 shows the connections needed to run each of the coils of the stepper 
motor and how the circuit is designed.  The microcontroller being the FTDI chip 
and each of the coils needed to be turned  on by the transistors.  The diodes are 
in the design to stop the motor kickback current from coming back and hurting 
any of the hardware components.   
 

 
Figure 3-9.  Circuit for the Servo motor controls Created by Chris Dlugolinksi 

 
Figure 3-9 above shows the controls for the servo motor, the 555 timer is used to 
generate the pulse widths needed to control the position of the motor.  
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Depending on the needed position of the motor we are turning on a certain 
amount of resistance in the digital pot chip that will change the pulse width of the 
555 timer.  We are keeping the frequency at a frequency that will allow the pulses 
to be output every 20ms.   
 
The circuit shown above was vetoed by the sponsor based on his knowledge that 
the signal from the 555 timer will not be able to give the correct pulse length 
repeatedly ("it is not that accurate"). 
 
The power supply needed to be able to provide 5 volts for any of the circuitry that 
we need as well as 12 volts for the motors that were used in the design.  A 
simple power supply was used that needed to be able to give at least 6 amps.  
That is 1 amp for each of the gauges.  We used an extra power supply from a 
computer, and Molex connectors. This gave us our 5v and 12 volts needed to 
drive the circuit. 
 

3.2.2 Embedded Software 
The embedded software has been minimized since we are using the special (Bit 
Bang) mode on the FTDI chip that allows for direct use of the I/O ports.  The 
amount of embedded software just comes down to programming each of the 
gauges so that they are recognized as different gauges and can be recognized if 
unplugged and re-plugged in.  This shifted most of the software to the host 
computer and also shifted where we manage all of our gauges as well.  With this 
type of design we needed to come up with a way to get our modular design.  We 
have a write-up that we will give the end-user on how to go about implementing 
our design for future expansion of the gauges or controls. 
 

3.3 Flight Instrument Design 
There are six main flight instruments, as pictured above, to be designed and 
simulated for our senior design project.  Figure 3.10 shows the actual flight 
instruments that have been simulated for the GoBosh 700S.  Figure 3.11 shows 
a close up of the traditional six pack of flight instruments arranged in a “basic T” 
that are very similar to the flight instruments contained in the GoBosh 700S and 
many traditional aircraft to date.  The names of the flight instruments in Figure 3-
11 starting from the top are airspeed indicator, attitude indicator, altimeter, turn 
coordinator, heading indicator, and vertical speed indicator.  In this section we 
will describe the name and function of each flight instrument, how it is 
constructed, and the way we built and constructed our own for simulation.   
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Figure 3-10. Cockpit with gauges to be implemented. Photo by Robert Gysi 

 

 
Figure 3-11. Closeup of the standard “Six-Pack” – Wikipedia used with 

permission under the GNU License6 
 

Figure 3-12 shows the basic layout of how each flight instrument is connected to 
the game computer.  Each flight instrument is programmed and controlled using 
a FTDI FT246BM USB chip, which is connected to an externally powered USB 
hub.  The USB hub is in turn connected to one of the free USB ports on the 
computer. 
 

                                                           
6
 (2009, Dec.). Six Flight Instruments.jpg Wikipedia  [Online]. Available: 

http://en.wikipedia.org/wiki/File:Six_flight_instruments.JPG 
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Figure 3-12:  Diagram of USB controlled flight instruments showing the 

connections to the computer. Created by Joseph Munera 
Additionally a mouse and keyboard are connected to USB ports on the game 
computer.  This allows the operator of the simulator to adjust the settings of the 
X-Plane flight simulator as well as troubleshoot programming issues affecting the 
operation of the flight simulator‟s flight instruments. 
 
Figure 3-13 below shows the back of the actual aircraft panel we used with most 
of the USB controlled gauges installed.  Each gauge is mounted to the back of 
the aircraft panel with the USB cable connection located on the back of the 
aircraft flight instruments.  These USB cables are connected to a USB hub, which 
is then connected to a USB port on the game computer. 
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Figure 3-13. Back view of the aircraft panel received from Dave Graham of 
GoBosh Aviation with USB controlled gauges mounted.  Photo used with 

permission from Joseph Munera. 
 
To accomplish the requirements regarding the flight instruments there were a few 
options to consider.  The options available were to mod a real world gauge to 
interface with the flight software, buy a simulation gauge kit that comes with all 
the parts pre-manufactured, build servo based gauges, or build stepper motor 
based gauges. 
 
The best part of modifying real world gauges is that you get the most realistic 
look, as the gauges are in fact real.  The other benefit of using real aircraft 
gauges is that all the faceplates, needles, glass coverings and in some cases the 
mechanical inner workings are already there so that all we would have to create 
would be the interface with  the computer.  Unfortunately, creating this interface 
was not an easy task.  In the aircraft that we simulated all the gauges we are 
replicating are either barometric or gyroscopic, neither of which are easily 
simulated by a computer.  For instance, the airspeed indicator can be simulated 
by a variable speed fan blowing into the barometer, but this was neither easier to 
implement nor more accurate than the other methods we have available.  The 
other problem we had with real world gauges is the price.  After calling a few 
airplane junkyards, like the one in Groveland, FL, we found that to buy salvaged 
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gauges would be over $100 per gauge.  This is much higher than some of the 
other implementations and therefore was ruled out as an option. 
 
The easiest option would have been to buy gauge kits from a supplier like 
SimKits.  These kits usually come with all the parts needed pre-manufactured 
and ready for assembly.  The only development work that would be required is to 
write the USB drivers for each gauge.  The downfall of this implementation is the 
cost.  Each kit costs well above $150.  There were however a few gauges that 
we initially considered modeling with these kits just because the mechanics of 
the gauges were complicated enough to warrant spending the money. 
 
Servo-based gauges are probably the most common gauge implementation in 
the flight simulator community.  In this implementation, the needle of the gauge is 
turned by a servo, which is driven by a microcontroller.  Servo-based gauges are 
fairly low cost and easy to design.  The microcontroller sends a pulse to the 
servo and depending on the width of the pulse; the needle will turn to the 
appropriate angle.  There are however a few limitations with servo-based 
gauges.  The first problem we ran into in our design was that we planned to 
interface all of the gauges with an FTDI USB chip using bit-bang mode.  
Unfortunately, this interface did not allow us to send pulses to the servo with the 
accuracy we needed to implement the gauge smoothly.  Fortunately we were 
able to design a timing circuit to interface the FTDI chip with the servo.  This 
implementation is illustrated in figure 3-14.  The other limitation that we ran into is 
that a servo only has a certain range of motion.  For most gauges we can gear 
the servo so that it turns as far as we wish, but two of the gauges must be able to 
turn all the way around multiple times and would therefore require another 
implementation. 
 

 
Figure 3-14:  Block diagram of servo-based gauge. Created by Lewis Vail 

 
The last implementation we had to choose from was a stepper-based gauge.  
Stepper based gauges are similar to servo based gauges except that they use 
stepper motors instead of servos.  They are comparable in terms of cost and 
ease of implementation but they don‟t suffer from the two limitations servo based 
motors do.  Instead of taking in a timed pulse like servos, they take in a 5 bit 
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digital input meaning that it can be interfaced directly with the FTDI chip.  Also, 
stepper motors will turn indefinitely in either direction.  They do however have a 
few limitations of their own.  The first being that when you step the motor, it will 
turn the needle a discrete amount which can look choppy if the steps of the pulse 
are too large.  To overcome this limitation, we used stepper motors that have a 
step of 1.8 degrees.  They are then half-stepped to maximize fidelity.  The other 
limitation that stepper motors have is that they support no option to supply 
feedback to the computer regarding the location of the needle.  To overcome this 
we  implemented an optic sensor to reset the needle to its home position at 
initialization.  This stepper motor based implementation is illustrated in figure 3-
15. 
 

 
Figure 3-15:  Block diagram of stepper motor based gauge. Created by Lewis 

Vail 
Given the options above, we initially were going to be using two kit gauges, and 
four stepper motor gauges.  Although servo gauges are low cost and fairly easy 
to implement, all of our gauges require fairly high range of motion that is not 
available with standard servos.  The fact that the location of the needle is always 
known when using servos makes this the easiest one to code because there is 
no initialization needed but this implementation falls short of meeting the 
requirements for our gauges.  Although stepper motor gauges are not quite as 
simple as servo-based gauges they are not too much harder to implement.  They   
did take much more time to test and refine as the sensor circuit took a little while 
to properly calibrate and mount.  We initially decided to model two of the gauges 
with kit gauges because those two required multiple motors turning 
independently.  Although these two could have been implemented by using the 
techniques used for the other ones with some extra components, this seemed at 
first to be too difficult mechanically to justify the cost.   
 
After considering all of these options we found out through contacting GoBosh 
Aviation that the Vice President of the company, Dave Graham, had set aside for 
us five of the six traditional flight instruments and a aircraft panel that we were 
able to use to house the simulated instruments.  The five instruments that we 
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received from Dave Graham included the altimeter, attitude indicator, turn 
coordinator, airspeed indicator, and vertical airspeed.  Figure 3-16 shows some 
of the instruments we received from GoBosh Aviation.  We were allowed and 
given permission to take apart every flight instrument and use any of the parts 
that were useful for our flight simulator.  The fact that we were able to use real 
flight instruments to build our simulated gauges helped to give our flight simulator 
the highest realism that we could hope to achieve.  The only flight instrument that 
we did not obtain was the heading indicator.  Fortunately this flight instrument 
was one of the simpler gauges to build and simulate.  We were able to build and 
construct the heading indicator from scratch.   
 

 
Figure 3-16. Instruments as received from GoBosh. Photo by Joseph Munera 

3.3.1 Air Pressure Sensing Instruments 
The air pressure sensing instruments are a collection of instruments that exist in 
the “six-pack” that on an actual aircraft generate their data from taking 
measurements based on air pressure.  For our purposes this is just grouping 
these common gauges together, as we will not be utilizing any air pressure 
systems.  These gauges include the Altimeter, the Airspeed Indicator, and the 
Vertical Speed Indicator.  
 

3.3.1.1 Altimeter 
The altimeter is used to measure altitude above a reference level, which is 
usually set at sea-level.  This is done by measuring the local air pressure.  Figure 
3-17 shows the faceplate of a “three pointer” sensitive aircraft altimeter displaying 
an altitude of 10,180 ft. while Figure 3-18 shows the autocad drawings with the 
dimensions we used.  For the altimeter we only implemented two pointers to 
indicate tens and thousands of feet. 
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Figure 3-17. Altimeter Face plate, dials, and barometric pressure adjustment 

knob. This image has been released into the public domain by its author, 
Bsayusd at the Wikipedia project.7 

                                                           
7
 (2009, Nov.). SVG Drawing of Altimeter  [Online]. Available: http://en.wikipedia.org/wiki/File:3-

Pointer_Altimeter.svg 
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Figure 3-18. Autocad drawings with the measurements of the altimeter sheet 

aluminum decks.   Drawings by Robert Gysi. 
 
We had three options for constructing this gauge in order to be implemented in 
the cockpit.  Of the following three gauges we have selected option two and 
three.  This is because the stepper motors provided us with 360 degrees of 
rotation, which is necessary should the plane ever go above 1000 feet (this will 
happen with 100% certainty). 
 
Three options that were considered: 
 
I. Construction of the altimeter would have consisted of several parts.  The gauge 
would be controlled by servo or stepper motors.  A servo motor design would 
have required either the use of a 360 degree capable servo or the modification of 
a standard servo of 180 degrees.  A standard servo could have been  modified 
by either modifying the internal structure or by pairing a set of gears together with 
the proper gear ratio to spin a shaft at least 360 degrees. 
 
Multiple motors may have been required to control the altimeter.  The small hand 
and large hand of the altimeter could be controlled by a modified servo made to 
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run continuously.  Each pointer would be USB controlled by an electronics board, 
which would l deliver direct feedback of the position of each pointer.  The small 
indicator could have been controlled by a stepper motor.  A second stepper 
motor could be used to regulate the air pressure scale by using a dial located at 
the lower left land hand side of the gauge.    
 
II. The altimeter could have been built using 3 stepper motors.  There would have 
been a motor to move the 100 ft hand and 1000 ft hand.  The third stepper motor 
could have been used for the plate linked to a potentiometer to adjust the 
settings for the barometric pressure.  The pointers, small indicator, and dial for 
the barometric pressure would be USB controlled by an electronics board, which 
will deliver direct feedback of the position and setting. 
 
A problem arises when using stepper motors.  There is no way to know when the 
shaft is positioned at zero or home.  To determine where the starting point or 
zero is an optical sensor is used to sense when the motor is moved to the start 
position. 
 
III. A real commercial altimeter could be used for the flight simulator.  It required 
accurately generating slow varying pressures within small fractions of a PSI.  
Figure 3-19 shows the inherent complexity involved when trying to use a real 
aircraft flight instrument in building a flight simulator cockpit.  The mechanical 
parts of the aircraft flight instrument are removed by disassembling the aircraft 
flight instrument.    Stepper motors are   then placed inside the aircraft flight 
instrument. 
 

 
Figure 3-19. Actual altimeter components.  As a work of the U.S. federal 

government, the image is in the public domain8. 
 

We were only able to utilize the faceplates, needles, and glass frame of the real 
altimeter we obtained from GoBosh Aviation to build our simulated altimeter.  
These components were added to the faceplate deck of the layered sheet metal 

                                                           
8
 (2009, Nov.). Drawing of Altimeter [Online]. Available: 

http://en.wikipedia.org/wiki/File:Sens_alt_components.PNG 
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and hex spacer flight instrument design.  A single stepper motor was mounted in 
the center of the motor deck and used to turn the needles of the altimeter.  A 
piece of 3/8” round aluminum tube was first mounted to the shaft of the stepper 
motor.  Next brass tubing of 1/16” was slipped inside brass tubing of 3/32” and 
each was allowed to spin freely within each other.  To simulate the altimeter 
needle readings 48 pitch gears of 12, 24, 48, and 60 teeth were used to spin the 
shafts at a 1:10 ratio to indicate the 100 and 1000 feet readings. 
 

3.3.1.2 Airspeed Indicator 

The airspeed indicator measures the indicator airspeed of an aircraft via a probe 
on the fuselage.  In our application, our airspeed indicator is fed data from X-
Plane, simulating the mechanical operation of a pressure driven system.  In an 
actual gauge, the speed indicated is relative to the surrounding air by measuring 
the ram-air pressure in the aircraft‟s pitot tube.  As with our other instruments this 
is powered over USB and based on the FTDI chipset previously mentioned in our 
microcontroller design section.  All of the code required to drive the motor is 
developed as a plug in for X-Plane.  Figure 3-20 (below) shows an example of an 
airspeed indicator, similar to the one utilized in the GoBosh G700S, while Figure 
3-21 shows the autocad drawings with the dimensions we used.   
 

 
Figure 3-20. Airspeed Indicator Faceplate -  Wikipedia.  Used with permission 

under the GNU Free Documentation License9 
 

                                                           
9
 (2009, Nov.). Drawing of Airspeed Indicator from FAA Instrument Flying Handbook [Online]. 

Available: http://en.wikipedia.org/wiki/File:True_airspeed_indicator-FAA.SVG 
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Figure 3-21. Autocad drawings with the measurements of the airspeed indicator 

sheet aluminum decks.   Drawings by Robert Gysi. 
 
Four options that were considered: 
 
I. Construction of the airspeed indicator would consist of several parts.  The 
gauge would be controlled by servo or stepper motors.  A servo motor design 
would require either the use of a 360 degree capable servo or the modification of 
a standard servo of 180 degrees.  A standard servo could  be modified by either 
modifying the internal structure or by pairing a set of gears together with the 
proper gear ratio to spin a shaft at least 360 degrees. 
 
II. The airspeed indicator only has a single pointer to control.  A single servo 
motor capable of 360 degrees, a modified 180 degree servo motor, or a 180 
degree standard single servo motor paired with a set of gears could have  been 
used to control the pointer on the airspeed indicator. 
 
III. A single stepper motor capable of turning 360 degrees could be used instead 
of a single servo motor to control the pointer of the vertical speed indicator.   A 
problem arises when using stepper motors.  There is no way to know when the 
shaft is positioned at zero or home.  To determine where the starting point or 
zero is an optical sensor could be used to sense when the motor is moved to the 
start position.   
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IV. A real commercial airspeed indicator could also be used for the flight 
simulator.  It would require accurately generating slow varying pressures within 
small fractions of a PSI.  Figure 3-22 shows the inherent complexity involved 
when trying to use a real aircraft flight instrument in building a flight simulator 
cockpit.  The mechanical parts of the aircraft flight instrument would have needed 
to be removed by disassembling the aircraft flight instrument.  Servo motors or 
stepper motors would then be placed inside the aircraft flight instrument. 
 
For the airspeed indicator we have selected option three and four.   This is 
because stepper motors provided 360 degrees of rotation.  While our airspeed 
indicator never had to go around more than once, we do need to ensure that the 
extreme values can be represented.  Servo motors unfortunately lacked 
resolution at high angles.  
 

 
Figure 3-22. Components of an actual airspeed indicator.  As works of the U.S. 

federal government, all FAA images are in the public domain.10 
 
We were only able to utilize the faceplate, needle, and glass frame of the real 
airspeed indicator we obtained from GoBosh Aviation to build our simulated 
airspeed indicator.  These components were added to the faceplate deck of the 
layered sheet metal and hex spacer flight instrument design.  A single stepper 
motor was mounted in the center of the motor deck and used to turn the needle 
of the airspeed indicator.  A piece of 3/8” round aluminum tube was mounted to 
the shaft of the stepper motor to extend the shaft length to the faceplate.   
 

3.3.1.3 Vertical Speed Indicator 
The vertical speed indicator measures the speed at which an aircraft rises and 
falls - its vertical speed.  If the nose is banked upward and the vertical speed 
drops starts to decrease for example, this would indicate that the aircraft has 
stalled, or lost lift.  Also, for example if the nose is banked downward, the vertical 
speed indicator would now turn counter-clockwise to provide the vertical speed 
as you decrease in altitude (and increase in indicator airspeed as well).  Figure 3-
23 shows the faceplate of a simple vertical speed indicator, similar to the one we 

                                                           
10

 (2009, Nov.). Airspeed Indicator Cutaway - Wikipedia [Online]. Available: 

http://en.wikipedia.org/wiki/File:ASI-operation-FAA.png 
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implemented in our simulator.  Figure 3-24 shows the autocad drawings with the 
dimensions we used.   
 

 
Figure 3-23. Face plate of the vertical speed indicator.  This work has been 

released into the public domain by the copyright holder, Benet Allen.11 
 

 
Figure 3-24. Autocad drawings with the measurements of the vertical speed 

indicator sheet aluminum decks.   Drawings by Robert Gysi 
 

                                                           
11

 (2009, Nov.). Vertical Speed Indicator - Wikipedia [Online]. Available: 

http://en.wikipedia.org/wiki/File:R22-VSI.jpg 
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Four options that were considered: 
 
I. Construction of the vertical speed indicator would have consisted of several 
parts.  The gauge would be controlled by servo or stepper motors.  A servo motor 
design will require either the use of a 360 degree capable servo or the 
modification of a standard servo of 180 degrees.  A standard servo can be 
modified by either modifying the internal structure or by pairing a set of gears 
together with the proper gear ratio to spin a shaft at least 360 degrees. 
 
II. The vertical speed indicator only has a single pointer to control.  A single servo 
motor capable of 360 degrees, a modified 180 degree servo motor, or a 180 
degree standard single servo motor paired with a set of gears could have been 
used to control the pointer on the vertical speed indicator. 
 
III. A single stepper motor capable of turning 360 degrees could be used instead 
of a single servo motor to control the pointer of the vertical speed indicator.   A 
problem arises when using stepper motors.  There is no way to know when the 
shaft is positioned at zero or home.  To determine where the starting point or 
zero is an optical sensor could be used to sense when the motor is moved to the 
start position.   
 
IV. A real commercial vertical speed indicator could also be used for the flight 
simulator.  It would require accurately generating slow varying pressures within 
small fractions of a PSI.  Figure 3-25 shows the inherent complexity involved 
when trying to use a real aircraft flight instrument in building a flight simulator 
cockpit.  The mechanical parts of the aircraft flight instrument would have to be 
removed by disassembling the aircraft flight instrument.  Servo motors or stepper 
motors would then be place inside the aircraft flight instrument.     
     
 

 
Figure 3-25. Components of an actual vertical speed indicator.  This work is in 
the public domain in the United States because it is a work of the United States 

Federal Government12 
                                                           
12

 (2009, Nov.). Vertical Speed Indicator (FAA) - Wikipedia [Online]. 

http://en.wikipedia.org/wiki/File:Faa_vertical_air_speed.JPG 
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For the vertical speed indicator we have selected option three.   This is because 
stepper motors provide 360 degrees of rotation.  Again, just like the airspeed 
indicator, we will never need to go beyond just short of 360 degrees, but since 
we will need to cover large angles of rotation, only a stepper motor can provide 
us with the resolution we require. 
 
We were only able to utilize the faceplate, needle, and glass frame of the real 
vertical speed indicator we obtained from GoBosh Aviation to build our simulated 
vertical speed indicator.  These components were added to the faceplate deck of 
the layered sheet metal and hex spacer flight instrument design.  A single 
stepper motor was mounted in the center of the motor deck and used to turn the 
needle of the vertical speed indicator.  A piece of 3/8” round aluminum tube was 
mounted to the shaft of the stepper motor to extend the shaft length to the 
faceplate.   
 

3.3.2 Gyroscopic Instruments 
The instruments in this category all are based on gyroscopes.  They help the pilot 
determine the position and status of the aircraft in flight.  While during day time 
flying a pilot may be able to determine if his wings are level or if he is at level 
flight (or climbing or descending), but in times of low light levels, it may be 
impossible to see the ground or may become disoriented and not know which 
way is up, down, left, or right. 
 

3.3.2.1 Attitude Indicator (Artificial Horizon) 
The attitude indicator displays the aircraft‟s orientation relative to the earth.  As 
seen in Figure 3-26, we see that the gauge has two different colored areas: one 
blue to represent the sky and one black (in most case this colored brown) to 
represent the earth.  The hatch indicates the attitude of the aircraft.  This gauge 
does not solely work in an up and down fashion.  Since it is gyroscope based on 
an actual aircraft, it also rotates to the left and the right indicating the bank or roll 
of the aircraft.  Figure 3-27 shows the autocad drawings with the dimensions we 
would have used had we not received an actual attitude indicator.   
 

 
Figure 3-26. Face plate of the attitude indicator.  Used with permission under the 

GNU Free Documentation License13 
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Figure 3-27. Autocad drawings with the measurements of the attitude indicator 

sheet aluminum decks.   Drawings by Robert Gysi 
 
Five options that were considered: 
 
I. Construction of the attitude indicator consists of several parts.  The gauge will 
be controlled by servo or stepper motors.  A servo motor design may require 
either the use of a 360 degree capable servo or the modification of a standard 
servo of 180 degrees if a roll indication of 360 degrees is desired.  A standard 
servo can be modified by either modifying the internal structure or by pairing a 
set of gears together with the proper gear ratio to spin at least 360 degrees. 
 
II. Two standard 180 degree servo motors can be used if the desired roll 
indication does not require 360 degrees.  The two servo motors will drive the 
scales which are able to turn left or right, as well as move up and down.  One of 
the servo motors will control upward and downward motions.  The second servo 
motor will be used to control the turning motion.  With this design the roll 
indication will have a maximum at 95 degrees to the left and at 95 degrees to the 
right.  A centrally located dial underneath the attitude indicator will show proper 
indication of the horizon. 
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III. A pair of stepper motors could be used instead of servo motors to control the 
scales.   A problem arises when using stepper motors.  There is no way to know 
where the scales are positioned.  To determine where the starting point or zero is 
an optical sensor could be used to sense when the motor is moved to the start 
position.   
 
IV. A real commercial attitude indicator could be used for this simulator.  The 
attitude indicator incorporates a gyro which is designed so the indicators do not 
move.  The instrument housing bolted to the aircraft is what moves around the 
indicator.  The mechanical parts of the aircraft flight instrument would have to be 
removed by disassembling the aircraft flight instrument.  Servo motors or stepper 
motors would then be place inside the aircraft flight instrument. 
 
V. Another option would have been to buy a simulated instrument kit for this type 
of flight instrument.  This could be purchased from SimKits.com or from Flight 
Illusion, both of which are companies located in the Netherlands.  Figure 3-28 
shows an example of a kit version available from Flight Illusion.  This (along with 
a similar one from SimKits) simulates the motions of the gyroscope ball by 
utilizing a moving plate.  It should also be noted that the SimKits gauge, while it 
has a X-Plane plug-in available it is only sold for “professional use” and is priced 
accordingly at $2000.  The Flight Illusion gauge however includes a free X-Plane 
plug-in, so there would be no additional costs or development required to 
implement. 
 

 
Figure 3-28. Flight Illusion Attitude Indicator Gauge.  Photo used with permission 

from Mark Verschaeren.14 
 
For the attitude indicator we chose option three and four.    The attitude indicator 
was one of our toughest and challenging flight instruments to simulate.  We were 
fortunate enough to get a real attitude indicator from GoBosh Aviation.  The 
attitude indicator was taken apart and the gyro was removed.  A stepper motor 
was mounted on the inside of the yoke to drive the pitch indicator.  A second 
stepper motor was mounted on the back to control the roll indicator.  Figure 3-29 
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on the following page shows the setup of the actual attitude indicator and the 
mounted stepper motors. 
 

 
Figure 3-29. Actual Attitude Indicator during modification process. Photo by 

Lewis Vail 
 

3.3.2.2 Turn Coordinator 
The turn coordinator provides to the pilot information about the yaw, roll and 
coordination of the turn being performed15.  If the turn is coordinated than the ball 
that exists in track in the bottom of the gauge (see Figure 3-30), will remain in 
between the two black lines.  If this ball moves to the left section of the track it is 
known as skid and to the right section of the track it is known as slip (these are 
both when the aircraft is making a turn to the right).  Figure 3-31 shows the 
autocad drawings with the dimensions we used.   
 

 
Figure 3-30. Turn Coordinator Used with permission under the GNU Free 

Documentation License16 
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Figure 3-31. Autocad drawings with the measurements of the turn coordinator 

sheet aluminum decks.   Drawings by Robert Gysi 
 
Five options that were considered: 
 
I. Construction of the turn coordinator will consist of several parts.  The gauge will 
be controlled by servo or stepper motors.  A servo motor design will not require 
the use of a 360 degree capable servo or the modification of a standard servo of 
180 degrees.  
 
II. The turn coordinator can be built using two standard 180 degree servo motors.  
The first servo motor will control the aircrafts turn rate.  The second servo motor 
will be used to control the slip indication. 
 
III. A pair of stepper motors could be used instead of servo motors to control the 
turn rate and slip indication.   A problem arises when using stepper motors.  
There is no way to know where the turn rate and slip indication are positioned.  
To determine where the starting point or zero is an optical sensor could be used 
to sense when the motor is moved to the start position.   
 
IV. A real commercial turn coordinator could be used for this simulator.  The turn 
coordinator incorporates a gyro which is designed so the indicators do not move.  



   P a g e  |53 

 

The instrument housing bolted to the aircraft is what moves around the indicator.  
Figure 3-32 shows the inherent complexity involved when trying to use a real 
aircraft flight instrument in building a flight simulator cockpit.  The mechanical 
parts of the aircraft flight instrument would have to be removed by disassembling 
the aircraft flight instrument.  Servo motors or stepper motors would then be 
place inside the aircraft flight instrument.   
 

 
Figure 3-32. Components of an actual turn coordinator.  As a work of the U.S. 

federal government, the image is in the public domain.17   
 
V. Another option would be to buy a simulated instrument kit for this type of flight 
instrument. Like with the Attitude indicator, there are two manufacturers of this 
gauge, SimKits and Flight Illusion.  SimKits has one with an existing faceplate, 
while Flight Illusion does not have this particular one.  If we are to order this 
gauge versus building it, we would need to order from SimKits. 
 
For the turn coordinator we have decided to go with options three and four.  We 
were only able to utilize the faceplate, airplane, and glass frame of the real turn 
coordinator we obtained from GoBosh Aviation to build our simulated turn 
coordinator.  These components were added to the faceplate deck of the layered 
sheet metal and hex spacer flight instrument design.  Two stepper motors were 
mounted side by side on the motor deck offset from the center.  The airplane was 
fastened to brass hobby tubing through the center of the faceplate with a gear 
fastened on the opposite end of the tube.  Another gear was fastened to one of 
the stepper motor shafts and allowed to mesh with the brass tubing in order to 
spin the airplane clockwise or counter clockwise.  The second stepper motor had 
a piece of 3/8” round aluminum tube attached to its shaft in order to extend it.  On 
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the tip of the aluminum shaft was a black flag that was used to indicate the slip or 
skid ball.     
 

3.3.2.3 Heading Indicator 
The heading indicator in the standard instrument gauge setup on an aircraft 
functions as a compass pointing in heading of travel of the aircraft.  This however 
does not function exactly like a wet compass as it is not affected by the 
downward slope of the Earth‟s magnetic field.18  Figure 3-33 shows a common 
design for heading indicator face plates, while Figure 3-34 shows the autocad 
drawings with the dimensions we used.   
 

 
Figure 3-33. Face plate of the heading indicator.  Used with permission under the 

GNU Free Documentation License19
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Figure 3-34. Autocad drawings with the measurements of the heading indicator 

sheet aluminum decks.   Drawings by Robert Gysi  
 

Four options that were considered: 
 

I. Construction of the heading indicator will consist of several parts.  The gauge 
will be controlled by a servo or stepper motor.  A servo motor design will require 
either the use of a 360 degree capable servo or the modification of a standard 
servo of 180 degrees.  A standard servo can be modified by either modifying the 
internal structure or by pairing a set of gears together with the proper gear ratio 
to spin a shaft at least 360 degrees. 
 
II. A single modified servo motor can be used to turn right or left.  The heading 
indicator may also have two dials for this aircraft.  The left dial will indicate the 
position of the gyro compass.  The right dial will be used to adjust the heading 
bug to the proper heading for use with auto pilot. 
 
III. A single stepper motor could be used instead of a servo motor to control the 
turn from right or left.  A problem arises when using stepper motors.  There is no 
way to know were the heading is positioned.  To determine where the starting 
point or zero is an optical sensor could be used to sense when the motor is 
moved to the start position.   
 
IV. A real commercial heading indicator most likely cannot be used for this 
simulator.  The heading indicator incorporates a gyro which is designed so the 
indicators do not move.  The instrument housing bolted to the aircraft is what 
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moves around the indicator.  Figure 3-35 shows the inherent complexity involved 
when trying to use a real aircraft flight instrument in building a flight simulator 
cockpit.  The mechanical parts of the aircraft flight instrument would have to be 
removed by disassembling the aircraft flight instrument.  Servo motors or stepper 
motors would then be place inside the aircraft flight instrument. 
 

 
Figure 3-35. Components of an actual heading indicator.  Photo used with 

permission from Bob Miller. 20 
 
For the heading indicator we selected option three.   This is because stepper 
motors provide 360 degrees of rotation.  In this gauge we needed the capability 
to continuously rotate the instrument if someone was piloting the aircraft in a 
circle formation. 
 
The head indicator is the one gauge we did not receive from GoBosh Aviation.  
Fortunately it was not an extremely difficult gauge to build and construct.  A 
single stepper motor is used to spin the compass rose of the heading indicator.  
A 3/8” round aluminum tube is attached to the shaft of the stepper motor to 
extend the length.  The compass rose is attached to the end of this tube.  A 
square cutout of clear acrylic with an airplane marking is placed above the 
compass rose to indicate the heading of the aircraft.  Figure 3-36 shows the 
heading indicator without the lens. 
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Figure 3-36. Completed Heading Indicator (without lens faceplate). Photo by 

Lewis Vail 
 

3.3.3 Gauge Design 
This section details the construction of the flight instruments including the 
housing, motors, faceplates, and needles.  Due to the similar nature of many of 
these gauges, we were  able to use a common design and then only make slight 
adjustments to take care of any differing features. 
 

3.3.3.1 Stepper Motor Design 
This design takes advantage of the two strengths involved when using a stepper 
motor for a simulated aircraft flight instrument or gauge.  The motor can rotate 
continually because there is no mechanical stop.  There is also quite a bit of 
torque at your disposal.  When using stepper motors to design the aircraft flight 
instrument an optical interrupter must be incorporated into the design.  An optical 
interrupter will be used to sense the zero position during power up and execution 
of the reset command. 
 
The stepping motor is centered and mounted directly behind the faceplate 
assembly.  For this type of aircraft flight instrument there is a rotary encoder 
which is mounted in the lower corner of the motor deck.  The optical interrupter is 
located directly above the stepper motor.  The optical interrupter is mounted on 
the decks front surface with the leads pointing toward the circuit deck.  Just 
behind the motor deck is the circuit deck which is followed by the rear deck. 
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There is no unique starting position for the stepper motor.  When powered up the 
stepper motor shaft is in an unknown rotational position. 
 
A 400 step per revolution stepper motor is used in this design.  To boost the 
number of steps to 800 the stepper motor is half stepped. 
 
The difference between the motor positioned desired and the current position is 
calculated with each pass through the interrupt service routine.  The code 
executes a return from interrupt when a difference of zero indicates no need for 
movement. 
 

3.3.3.2 Flag Interrupter 
The flag interrupter consists of an L-Shaped thin piece of sheet metal.  A 
machine screw and nut hold the flag interrupter in place.  The flag interrupter is 
bent on the outer end so that as the needle or faceplate rotates, the flag 
interrupter will pass through the gap for the optical interrupter. The flag 
interrupter can be constructed out of any rigid opaque material or aluminum. 
 

3.3.3.3 Motor Deck 
The rotary encoder, stepper motor, and optical interrupter are supported by the 
motor deck.  The stepper motor is mounted on the decks rear surface with the 
motor shaft facing forward.  The stepper motor has no particular up or down 
orientation.  Figure 3-37 shows a picture of the motor deck on the left. 
 

 
Figure 3-37.  The motor deck is pictured on the left.  Photo used with permission 

from Joseph Munera. 
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Just above the stepper motor is where the optical interrupter is mounted on the 
front surface of the motor deck. 
 
To determine the best direction of movement a difference not equal to zero is 
used.  This requires more than just observing the sign of the difference.  Ideally 
we want to move in the direction that will minimize the number of steps required.  
Even though both are positive differences movement from 0 to 1 is in one 
direction while movement from 0 to 799 should go the other way. 
 
By looking at the sign of the difference a direction is set, forward movement is 
implied with a positive difference.  Then the number of half steps equivalent to 
half a rotation is compared to the magnitude of the difference.  The direction flag 
is complemented if the magnitude is larger.  It is then shorter to go the other way. 
 

3.3.3.4 Optical Interrupter 
The optical interrupter is used to during initialization to tell the gauge when the 
needle is in the home position.  It consists of two components, a sender and a 
receiver. 
 
The receiver is a light sensor that goes to 0 when it senses light.  It consists of a 
P4537 CdS photocell connected to ground and a 5KΩ resistor connected to VCC 
wired in series.  The voltage is taken between them and fed into the FTDI chip at 
D7 (see figure 3-27).  When no light is hitting the photocell its resistance is much 
higher than 5KΩ and the D7 goes high.  When light hits the photocell its 
resistance is much lower than 5KΩ and D7 goes low.  The 5KΩ value mentioned 
above is just a theoretical value arrived at by examining the P4537 datasheet 
and it may change once we begin testing.  A simplified block diagram of this 
system is located below in figure 3-35. 
 
The sending component is simply an LED.  It emits light that it picked up by the 
photocell.  During initialization the LED is lit.  When the needle finally gets around 
to the home position, the flag interrupter blocks the LED from lighting the 
photocell and the signal to stop is sent to FTDI chip. 
 
3.3.3.5 Mechanical Construction 
Figure 3-36 shows the internal structure of a dual needle aircraft flight instrument, 
along with dimensions required to build the gauge.  The measurements are in 
mm and the following labeled parts are: 

A) Face Plate 
B) Lens 
C) Motor 1 
D) Motor 2 
E) Printed Circuit Board 1 
F) Printed Circuit Board 2 
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The entire aircraft flight instrument structure is made from a variety of 
components including Aluminum, and metal tubes with a diameter of 2mm to 
5mm.  In addition, the glass window of the gauge  isconstructed using acrylic or 
plexi-glass.  Figure 3-38 show the implementation of the autocad drawings into 
the basic structure and foundation of our simulated flight instruments  As you can 
see the aluminum rods connect the front and rear ends of the gauges with the 
sheets of aluminum providing stability to the whole assembly including a place to 
mount components to.   

  
Figure 3-38.  Constructed flight instrument.  Photo used with permission from 

Lewis Vail.    
 

Figure 3-39 shows some of the finished faceplate designs that were   mounted to 
the front of the aircraft flight instrument gauge frames.  The faceplates are all 
from the actual aircraft flight instruments we received from GoBosh Aviation 
except for the heading indicator.   All the needles were also removed from the 
actual flight instruments and utilized in the simulated aircraft instruments.   
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Figure 3-39.   Assembled face plates for a various flight instruments.  Photo used 

with permission from Lewis Vail   
 

3.3.3.6 Prototype Gauge 
In order to validate the research we performed, we built a prototype airspeed 
indicator around a Futaba S3003 servo motor purchased from Central Florida 
Hobbies.  Using the function generator in the Senior Design Lab, we were able to 
perform a test of the circuitry.  Other components used in the construction of the 
prototype consist of plywood, nylon gears (from a clock kit), aluminum shafts, 
circular pipe, screws, and epoxy.  Figure 3-40 shows this prototype during testing 
in the Senior Design lab. 
 

 
Figure 3-40. Flight instrument assembly consisting of a servo motor, nylon gears, 

circular wood cutout and aluminum shaft.  Photo by Joseph Munera. 
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A circular saw was used to make a circular cutout from the plywood.  The circular 
cutout is used to mount the servo motor and shaft.  The aluminum shaft is 
positioned in the center of the circular cutout.  A power drill is used to drill out a 
small section of the wood so that the aluminum shaft can sit in the center of the 
circular cutout and rotate freely.  
 
The nylon gears are drilled out so that the smaller gear would be able to fit onto 
the aluminum shaft and the larger gear would be able to be mounted on the 
Futaba servo motor shaft. 
 
Figure 3-41 shows the aluminum shaft with the gear in place and also the Futaba 
servo motor with the larger gear mounted on the top of the shaft.  The circular 
wood cutout is now glued and sealed to the back of the circular pipe.  The Futaba 
servo motor is glued and two screws are used to mount it to the circular wood 
cutout.  The aluminum shaft sits inside its drilled fitting.  Three screws are used 
to hold the aluminum shaft in place preventing it from slipping out of its setting. 
 
The wires for the Futaba servo motor hang out the back of the circular wood 
cutout.  The Futaba S3003 servo motor has three colored wires.  The black wire 
is the ground, the red wire is for the power and the white wire is for the PWM 
signal. 
 

 
Figure 3-41. Flight instrument assembly glued and sealed to circular pipe.  Photo 

by Joseph Munera. 
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Table 3-1. Futaba S3003 Specifications 

Specification Value 

Speed 0.23 sec/60° @ 4.8V 
0.19 sec/60° @ 6V 

Torque 44 oz-in (3.2 kg-cm) @ 4.8V 
57 oz-in (4.1 kg-cm) @ 6V 

Dimensions 1.6" x 0.8 x 1.4" (40 x 20 x 36mm) w/o output shaft 

Weight 1.3oz (37g) 

Connector "J" type with approx. 5" lead 

Cost $10.99 

 
Figure 3-43 shows the flight instrument aircraft gauge finished product.  A 
hacksaw was used to cut the aluminum shaft to the correct size.  The faceplate 
consists of a printed airspeed indicator face glued to a circular cardboard cutout.  
This was then glues to the circular pipe.  The needle comes from a build your 
own clock set kit that was purchased from Skycraft.  It sits inside a hole in the 
center of the aluminum shaft.  The gears have 28 teeth on the idler gear and 16 
on the pinion.  If we divide the idler gear teeth count by the pinion gear teeth 
count, we find the gear ratio for the setup.  For this gauge the gear ratio was 
calculated to be 1.75:1.  Additionally the gear was tested in the Senior Design lab 
where we were able to successfully turn the shaft with the servo motor.  It 
appears however that the Futaba servo does not possess the right response 
curve in terms of the rotation angle, therefore causing problems with gauges that 
require extreme movements of the gears (such as an airspeed indicator or 
altitude indicator). 
 

 
Figure 3-42. Assembled flight instrument with face plate and needle.  Photo by 

Joseph Munera 
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Since our testing of a prototype using a Futuaba motor did not work as expected, 
we have ultimately decided to not use it.  Because the issue lies not just with the 
Futaba motor, but with servo motors in general, we will utilize a stepper motor in 
the gauges instead.  The stepper motor we intend to use the Mineba SMT-112 
available at allelectronics.com.  It features 48 steps per revolution with a 
movement of 7.5 degrees per step.  Testing with this motor will take place, to 
confirm if this a suitable replacement for the Futaba servo motor. 
 
The second prototype we built was designed around the multiple layered deck 
concept and was closer to what we actually built for our simulated flight 
instrumentation.  
 
Figure 3-43 shows the prototype for the heading indicator which later became the 
basis for all of our simulated flight instruments.  This design consists of the clear 
acrylic lens with the airplane markings.  This lens is supported by #4-40 thread 
female to female hex spacers which connect to a piece of sheet aluminum for the 
motor deck.  In between these two pieces is the compass rose which in turn is 
connected to the shaft of the stepper motor. 
 

 
Figure 3-43. Prototype 2 Photo by Joseph Munera 

 

3.4 Flight Control Design 
In this section we will discuss the design of our flight control interfaces.  
Originally, the plan was to implement our designs into the cockpit that we were 
slated to receive.  Due to not receiving the cockpit, we still needed to provide 
flight controls for the user, and a decision was made with our sponsor to build 
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test rigs for the controls that would be used for input for the demonstration in 
addition to validating our electrical designs.  We originally were designing a 
joystick around the existing stick in the aircraft, rudder pedals utilizing the existing 
pedals found in the aircraft and a throttle, but since no aircraft arrived we needed 
to change our design implementation.  Since we want preserve a record of our 
original designs so that they could be possibly implemented by our project 
sponsor (if the cockpit arrives at a later date), we will present these alongside 
temporary controls that we built from scratch. 
 

3.4.1 Joystick Design  
One of the most critical components of this project was the joystick controller that 
was designed for the flight simulator.  In most small general aviation aircraft the 
actual stick is actually connected to the flight surfaces through the use of push-
pull rods.  For this simulator we needed to simulate this same operation digitally 
and then passes the data into the simulator computer so that the appropriate 
command is executed on the screen.  In order to tackle this problem we needed 
to first understand that in order to create this control stick we will need to work 
with two directions: the X-axis and the Y-axis.  Connected to these two axes are 
potentiometers which as the stick is moved, change in resistance which allows 
one to map when at a particular output voltage a certain position has been 
reached. 
 

 
Figure 3-44. Control Stick.  Photo by Robert Gysi 

 
The image shown in Figure 3-44 is the actual control stick in a GoBosh G700S 
that would have been part of the airframe that was to be utilized on this project.  
From discussions with our project sponsor, we determined that since the cockpit 
was not being received with the control devices, we would need to build a basic 
joystick for inputs and testing.  We decided to come up with a very similar design 
from the one we first came up with using the two slide pots one for x-axis and 
one for y-axis.  It uses a plunger for control and return to center.  
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During our research in Fall 2009, two methods were initially researched for 
implementation for our joystick.  The first proposed design we brought to our 
sponsor had us utilizing a joystick controller that we could purchase from a 
number of electrical component distributors.  An example of this option would be 
the SPC Multicomp STD-2607AR joystick controller available from Newark.com.  
This joystick controller has all of the mechanical and electrical connections and 
can simply be retrofitted to the end of a control stick.  Mechanically it has the 
ability to rotate 60° in each direction with a minimum required operating force, but 
only has a rated lifetime of 300,000 cycles21.  Additionally the size is relatively 
small, which at first seemed perfect since we did not know where we would find 
room to mount this device.  However, it having a short stature (1.29” is the length 
of the joystick knob), was deemed to be impractical to use for this application, 
because we need to be able to have a wide range of deflection in our controls to 
mimic the actual feel of the stick in the aircraft (approximately 8” at the user end).    
Additionally, it is a fairly expensive part for a fairly simple task, costing $67 with a 
$20 handling fee as it must be shipped from the United Kingdom.  Therefore after 
discussing options with our sponsor we decided to take a much cheaper and 
basic approach. 
 
Our finalized approach included using 60mm slide potentiometers that we would 
attach to the push-pull rods and cables that exist inside of the fuselage.  While 
we did not receive the cockpit, we were still able to use this design electrically 
with our test rig setup.  The only difference between integrating with the cockpit 
controls and building our own is simply how the slide potentiometers are 
connected to the controls.  To keep a record of our original design efforts, Figure 
3-45 highlights the locations of the push-pull rods and cables that we would have 
interfaced our controls to. 
 

 
Figure 3-45. Mechanical linkages for control stick. Drawing by Robert Gysi 
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For our implemented design for our demonstration, we needed to build out of 
wood, every aspect of the joystick.  To do this we started with a sheet of plywood 
which we cut slots for our slide potentiometers to be held in place with screws.  
Attached to this base was also stand which held our stick and created a pivot 
point for the stick (fashioned out of a used sink plunger).  At the bottom of the 
stick we connected strips of metal to the each of the X and Y axis 
potentiometers. 
 
In our initial testing of our joystick we found that there was no return to center 
capability like the stick in the aircraft would have.  To correct this issue, we used 
the rubber end of the plunger to accomplish this.  All we needed to do was simply 
cut a hole in the center and slide over our shaft.  Additionally we made some slits 
to the rubber plunger base to free up the motion a little bit.  This was done after 
testing showed the plunger by itself was possibly too stiff to correctly get our 
range of motion.  Additionally since we wanted to make sure we had the correct 
throw of the stick, we measured the throw in our sponsor‟s GoBosh to a distance 
of 8”.  To implement this in our simulated stick, we simply measured out 8” of 
throw on a table edge and cut our stick to the length that would give us our 
distance.  As a result the stick is a bit on the low side to the user, but still 
perfectly usable.  Figure 3-46 shows our overall construction of the joystick test 
rig. 
 

 
Figure 3-46. Joystick implementation 

 
For this application we just needed your everyday basic slide potentiometer 
available from any number of suppliers.   
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3.4.1.2 Joystick Analog Design 
Without going into how a potentiometer functions, the analog side of the design is 
quite straight forward.  Utilizing a +5V supply from the computer power supply, 
we can then find what the corresponding voltage is across the separate X and Y 
axes.  With these varying voltages, we can take the analog output of the joystick 
control and then feed the result into an analog to digital (A/D) converter.  We 
used our RA6020F-10-20D1-B10K slide potentiometer to get our voltage divider 
circuit to register a voltage between 0 and 5 volts.  This output voltage will then 
feed into the A/D converter which is then fed into the FTDI chip.  Once it enters 
the A/D it is now a digital design problem.  
 

3.4.1.3 Joystick Digital Design 
As the control stick must ultimately be connected to the USB port of a computer, 
there is a digital component to the design of this device.  For this purpose, there 
were two options to consider for this design.  The first option reviewed included 
using an A/D converter IC chip tied to the inputs on the FTDI USB interface chip 
that is being utilized for our gauge design.  This depending on the number of 
controls connected to the FTDI chip is fed into the USB chip based on the chip 
select pin on each of the A/D that are connected to the controls.  This value is 
then read in and processed by the software and is fed into the X-Plane system. 
 

Table 3-2 Implementation of Control Stick Analog to Digital 

Function Slider potentiometers FTDI chip select 

X Axis Output (Pin 3) 0 

Y Axis Output (Pin 3) 1 

 
The slide potentiometers that are positioned along each axis of movement are 
tied to the analog-to-digital (A/D) converter with the connections listed in Table 3-
2 (above).  The software handles the change in values that are needed to take 
the A/D value to the correct input value; this is handled in the Config.ini file. 

 
3.4.2 Rudder Pedals 
In this simulator we needed to include the ability to use rudder pedals as a basic 
flight control device and to enhance the simulation experience.  Like with the 
stick, due to not receiving the cockpit meant that we would not have actual 
pedals to interface with.  Additionally, we found that we would need to change 
every aspect of our design aside from the electrical components in order to 
implement this requirement. 
 
For our original design we wanted to match the feel of the pedals in the aircraft 
as close as possible.  This meant imply interfacing a rod to the back of one of the 
pedals in the footwell to a slide potentiometer behind the engine firewall.  This 
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would allow have allowed us to keep the mechanical interfaces and linkages 
intact and maintain the “feel”.  In addition to this, we should note that from the 
beginning, the requirement for toe brakes were not required nor planned to be 
implemented.  We also did not implement this as an additional feature when we 
needed to build our own pedals.  Figure 3-47 shows the pedals as they exist in 
the aircraft and what we needed to replicate. 
 

 
Figure 3-47 Pedals on the GoBosh G700S. Photo by Robert Gysi 

 
Using purchased lumber and scrap pieces from the senior design lab we set out 
to create our rudder pedal test rig so that we could validate our electrical design 
efforts and provide input during the demonstration phase of the project.  The 
design was kept inherently simple just like with all of our other control interfaces.  
The biggest difference here between our other controls is that for our test rig we 
did not utilize a slide potentiometer, instead using a rotary potentiometer for 
measurement.  We opted for this as we wanted to have a single pivot point so 
that the pedals moved together.  To achieve this we just needed to build a simple 
frame with two pedals and a rod sticking out of the front middle.  Given the short 
time frame that we had to develop a solution (approx. 3 weeks before the project 
deadline is when the final determination was made that cockpit would not arrive 
in time), we sought to keep everything simple in comparison to a design that 
would have utilized a slide pot in the middle.  This would have required more 
moving parts would have more than likely increased the cost. 
 
During our testing we found that our first revision had a design flaw in that the 
motion was not very smooth at all due to the wooden frame rubbing across the 
plywood base.  To rectify this issue, we purchased a lazy susan from Home 
Depot that elevated our pedal frame off of the base and provided a smooth 
motion.  This resulted in more favorable results although occasionally the gears 
on our potentiometer slip for an unknown reason.  As a result, when first using 
the simulator, it is recommended to use the test application to find the midpoint of 
the potentiometer and then set the pedals so that they are aligned correctly.  
Figure 3-50 below shows a close up of the gears on the shaft of the rotary 
potentiometer. 
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Figure 3-48. Mechanical configuration of the pedals.  Photo by Lewis Vail. 

 
In addition to the basic frame of the pedals we needed to place a location for the 
user to place their feet during use.  We also wanted to ensure that we had 
somewhat of the feel of actually using the pedals in the aircraft.  In order to 
achieve this we simply cut two pieces left over from building the frame of the 
pedals and attached each to the from using door hinges.  This allowed the user 
to either have their feet at an angle up on the pedals (provided they did not push 
too hard as it possibly would have adverse effects on the gear shafts) or in a 
position with their heels on the ground and their feet on the pedals.  Together 
with the stick the instruments were secured to another piece of plywood so that 
each device would retain proper distance apart in addition to keep the user from 
pushing the pedals away during use.  Figure 3-49 below shows this 
configuration. 
 

 
Figure 3-49. Pedals and Stick combined. Photo by Lewis Vail 
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3.4.2.1 Rudder Pedal Analog Design 
As mentioned in the previous section we did not utilize our 60mm 10kΩ slide 
potentiometers as originally intended.  Instead we utilized a 10kΩ linear rotary 
potentiometer for our data measurement.  The decision was made from a purely 
mechanical standpoint and can be reviewed in the section preceding this one.  
Just as with the joystick control, we utilized the +5V supply from the computer 
ATX power supply to find what the corresponding voltage is across our 
potentiometer and then fed the resulting voltage into an A/D on the control circuit 
reserved for the throttle and pedals.  We would read in a value between 0 and 5 
volts just as with the joystick and once this voltage is passed through the A/D it 
becomes a digital design problem, which we cover in the next section. 
 

3.4.2.2 Rudder Pedal Digital Design 
As the pedal assembly must ultimately be connected to the USB port of a 
computer, there is a digital component to the design of this device.  For this 
purpose, there were two options to consider for this design.  The first option 
reviewed included using an A/D converter IC chip tied to the inputs on the FTDI 
USB interface chip that is being utilized for our gauge design.  The second option 
was to use a microcontroller (specifically the Atmel AT90USB1287) which had 
onboard USB support and A/D pins.  Ultimately the decision was made to utilize 
two FTDI chips between our controls with our throttle and pedals using one 
control circuit.  For our throttle/pedals design we utilized the chip select pin on 
each of the A/D that is connected to our controls.  This is to ensure that we select 
the right input device for taking in values into X-Plane.  Table 3-3 below shows 
the chip select value for selecting the A/D assigned to the pedals.     
 

Table 3-3 Implementation of Pedals Analog to Digital 

Function Potentiometer FTDI chip select 

Pedals Output (Pin 3) 0 

 

3.4.3 Throttle 
The theme with the controls for this simulator is that in each section the design 
becomes simpler and simpler.  For our throttle control all we need to implement 
is a simple slide potentiometer which should have a travel length as close to 
100mm in order to get as much travel as possible.  From an electrical standpoint 
it is the same as our other control inputs.  
 
Mechanically, it is nowhere near the same as the others.  This was also the only 
control device that we were not slated to receive from Aero as part of the cockpit 
(pedals and stick were to be in place).  As a result we did not need to make any 
design changes to our throttle assembly. To implement our throttle we opted to 
use the same slide potentiometer as with our other control devices, meaning we 
used the Alpha (Taiwan) RA6020F-10-20D1-B10K.  This potentiometer did meet 
the requirement of being 100mm of travel, but unfortunately due to costs of some 
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100mm slide potentiometers and the lower cost ones being not expected in 
before project completion, the decision was made to utilize this slide 
potentiometer.  As a result we are about an inch short on the throw of the throttle, 
but this does not impede operation of the device. Figure 3-50 shows the location 
of the throttle inside of the cockpit of our sponsor‟s GoBosh G700S. 
 

 
Figure 3-50. Throttle location (black knob pulled out of instrument panel). Photo 

by Robert Gysi 
 

To begin with the mechanical design we will start off discussing how we need to 
modify our slide potentiometer to be able to interface with our throttle rod.  The 
reason we picked this slide potentiometer outside of it meeting our electrical 
requirements was the fact that the slider on it would be able to be modified for 
use on any of our control devices.  That that end, the dimensions from the slide 
are .197” at its widest and .787” total height.  This gives us adequate space to 
drill a hole for a #4 screw into.  Figure 3-51 shows an approximation of the tab 
and the modification made to it. 
 

 
Figure 3-51. Drill Pattern for potentiometer modification. Drawing by Robert Gysi 
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After modifying the potentiometer tab, we can discuss how to connect the throttle 
rod.  To achieve this we knew we wanted to secure a small piece of angled metal 
to the slider.  Through searching through the scrap metal bins at SkyCraft, we 
discovered several small pieces that were strong, lightweight, cheap, and small 
enough to fit in the space required.  It was important to use a piece that was 
angled so that we could have a flat surface against the potentiometer and 
forward facing flat surface for the throttle rod to mount to.  To build our throttle 
rod we started with a 6-32 threaded rod that was also purchased from skycraft.  
This gave us a satisfactory length with the slide potentiometer we used (would 
have needed a longer rod if we had been able to secure a 100mm 
potentiometer).  Since the rod itself is of a small diameter, we wanted to increase 
the shaft diameter by using the same aluminum tube we purchased originally for 
our gauge construction.  This was cut and filed down until we had just enough of 
the 4” threaded rod showing to secure our knob to (just a standard wooden 
cabinet knob purchased from Home Depot).  The AutoCAD 2D drawing in Figure 
3-52 represents the design of our throttle. 
 

 
Figure 3-52. Mechanical representation of Throttle Assembly.  Drawing by Robert 

Gysi 
 
Additionally, we needed to be able to lift the assembly located behind the panel 
so as to secure it in place and keep the throttle from moving around.  To achieve 
this we used more angle brackets purchased from SkyCraft (although with only a 
single bend) to form the legs of our throttle stand.  After drilling a hole large 
enough for a #6 screw (diameter of approx. 0.13”), we used another 4” rod and 
secured on each end with two nuts on both sides of each bracket.  The inner nut 
is your standard 6-32 nut, while the one on the outside is a nylon insert lock nut.  
This helps us keep our rod from rotating once in place.  It is also important to 
note that since we wanted to run the rod across the bottom of the slide 
potentiometer between the connection pins, we needed to ensure that we kept 
the rod from shorting anything.  To ensure this, we wrapped the rod in electrical 
tape and then inserted the slide potentiometer over top.  The tape itself held the 
potentiometer fairly snug, but for extra security we utilized zip ties on both the 
front and back of the throttle (so as to not impede movement).   
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Figure 3-53.  Angle bracket for connecting to slide potentiometer.  Photo by 

Robert Gysi 
 

Through our testing we discovered issues with the potentiometer wanting to lean 
towards the right when a user pulls out on the throttle.  To alleviate this we added 
an extra angle bracket supporting it from being able to rotate about the rod.  Also, 
we found that the throttle assembly had issues of wanting to travel left and right 
within the hole.  Since we were not able to get the correct nut that the throttle 
would have normally exited the panel through, we devised a solution using the 
thin aluminum that we used for several purposes in our gauge construction.  We 
cut a thin strip that was secured to the base of the front throttle assembly.  This 
helped restricted our throttle from moving left and right.  Although this was our 
solution, we would recommend that the appropriate sized nut be located and 
installed to maximize the left-right travel restriction.  The completed throttle 
assembly installed in the instrument panel is located in Figure 3-54 below. 
 

 
Figure 3-54. Completed throttle assembly.  Photo by Robert Gysi 
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3.4.3.1 Throttle Analog Design 
The analog electronics design on the throttle is the same as with all the other 
control circuits.  Using the 10kΩ slide potentiometer we used an input voltage of 
+5V from the ATX power supply and connected in such a fashion that Pin 1 was 
input, pin 2 was the wiper (also tied to input) and pin 3 was our output pin, so that  
our voltage divider circuit would register a voltage between 0 and 5 volts.  This 
output voltage will then feed into the A/D converter which is then fed into the 
FTDI chip.  Once it enters the A/D it is now a digital design problem.  
 

3.4.2.2 Throttle Digital Design 
As the throttle must ultimately be connected to the USB port of a computer, there 
is a digital component to the design of this device.  For this purpose, there were 
two options to consider for this design.  The first option reviewed included using 
an A/D converter IC chip tied to the inputs on the FTDI USB interface chip that is 
being utilized for our gauge design.  The second option was to use a 
microcontroller (specifically the Atmel AT90USB1287) which had onboard USB 
support and A/D pins.  Ultimately the decision was made to utilize two FTDI chips 
between our controls with our throttle and pedals using one control circuit.  For 
our throttle/pedals design we utilized the chip select pin on each of the A/D that is 
connected to our controls.  This is to ensure that we select the right input device 
for taking in values into X-Plane.     
 

Table 3-4 Implementation of Throttle Analog to Digital 

Function Potentiometer FTDI chip select 

Throttle Output (Pin 3) 1 

 

3.4.5 Combined Flight Control Circuit 
The schematic below in figure 3-55 represents the overall circuitry for the 
implementation of the flight controls utilizing the pins on A/D ports mentioned in 
the previous sections tied to a potentiometer. 
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Figure 3-55. Circuit implementing control systems. Created by Chris Dlugolinksi 

  

3.5 Computer Hardware Selection 
Computer selection is a probably the most important task on this project due to 
the fact that a full computer needs to be assembled so that we are able to meet 
our requirements that were discussed earlier in this documentation to provide the 
most realistic and smooth experience while maintaining a low cost.  This is not 
always easy to do and in section 3.5.1 a discussion on the choice of various 
components along with trade-offs are presented. 
 

3.5.1 Computer Hardware 
Flight simulators are notorious for being some of the most graphics intensive 
applications that a consumer can install on their personal computer.  This is even 
truer with X-Plane, because not only does it feature impressive graphics, but also 
due to the fact that X-Plane is also a full-fledge aerospace modeling application.  
Because of this we needed to ensure that we had hardware powerful enough to 
support the application. In this section we will cover both the original computer 
selection that was to power the simulator before the decision to not display at 
Sun „n Fun was made (Section 3.5.1.1) and the computer specifications for the 
system we used for our demonstrations (Section 3.5.1.2).  This is presented in 
this fashion to preserve our original efforts for future completion by our sponsor. 
 

3.5.1.1 Original Design Effort 
Starting with our original computer design effort the most appropriate place to 
start our discussion is on CPU selection. When it comes to manufacturers, there 
are only two (Intel and AMD), and along with that there is a fierce debate 
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between enthusiasts over which one provides superior performance.  Ignoring 
the recommendations of those individuals we set out to find the lowest-cost, 
highest performing CPU available from each manufacturer.  For comparison, the 
Intel family selected would be the Core 2 Duo whereas the AMD family selected 
for comparison would be the AMD Phenom II family.  Each of these processor 
families are dual core, x86-64 processors and are priced relatively the same.  
Upon searching various computer part distributors online we settled on two 
processors the Intel Core 2 Duo E8400 and the AMD Phenom X2 550.  A 
comparison the specifications are listed below in table 3-5. 
 

Table 3-5. Comparison of Intel and AMD CPU options. 

 Intel Core 2 Duo 
E840022 

AMD Phenom X2 55023 

Clock Speed 3.0 GHz 3.1 Ghz 

FSB (Intel) / HT (AMD) 1333 MHz 4000 Mhz 

Socket Type LGA 775 AM3 

L2 Cache 6 MB 2x 512kB (1024kB total) 

L3 Cache N/A 6 MB 

64-bit Yes Yes 

Manufacturing Process 45 nm 45 nm 

Voltage 0.85-1.3625V 0.85-1.425V 

Heatsink Included Yes Yes 

Price $167.99 $99.00 

 
Here we have two very similar CPUs that are matched in almost every 
specification, but one of them, the $99 AMD Phenom X2 550 is around $70 
cheaper than the most equivalent Intel-manufactured CPU.  Since we are 
attempting at all costs to create the most powerful machine for the lowest cost, it 
makes perfect sense to choose the AMD Phenom CPU over the Intel.  
Additionally, while this was not a factor in determining the CPU, it appears AMD 
has given the enthusiast community a gift with the release of this particular 
model.  It turns out that the Callisto-based Phenom X2 processors are really 
quad core chips with just two of the cores disabled and are extremely receptive 
to overclocking to upwards of 4 GHz.  This means that for $99 we could upgrade 
our CPU using a fairly simple process to unlock the remaining two cores 
(requires no hardware modification) and up our clock speed to a high value in the 
end giving us the performance of a nearly $200 AMD Phenom X4 or an Intel 
Core 2 Quad24. 
 

                                                           
22

(2009, Nov.). Intel Core 2 Duo E8400 Specifications  [Online]. Available: 
http://www.newegg.com/Product/Product.aspx?Item=N82E16819115037 
23

 (2009, Nov.). AMD Phenom X2 550 Black Edition Specifications  [Online]. Available: 
http://www.newegg.com/Product/Product.aspx?Item=N82E16819103680 
24

 (2009, Dec.). AMD Phenom X2 550 Review – Unlocking Blocked Cores  [Online]. Available: 
http://www.xbitlabs.com/articles/cpu/display/phenom-athlon-ii-x2_15.html 



   P a g e  |78 

 

The next most important piece of computer hardware to be installed in the 
simulator computer is the graphics card.  Just like in the CPU industry there are 
two primary manufacturers of chipsets: ATI and NVIDIA.  In order to stay within 
our project budget we would have to neglect the most recent, high-end cards 
from these manufacturers.  This unfortunately means that we would not be able 
to purchase a card that has ATI‟s new Eyefinity™ technology.  This technology 
allows for a maximum resolution of 8192x8192, but at the same time also 
requires the use of a monitor that includes a display port.  There is also a 
limitation currently where if one wanted to use three monitors utilizing the DVI 
connections, only two would be able to be utilized even with two cards running 
due to a technical limitation25.  This technical limitation could possibly corrected 
by the completion of the project, however it would still be possible to run the card 
in CrossFireX mode without using the Eyefinity support to span the three 
displays.  Currently large monitors, such as those in the neighborhood of 24” are 
still quite expensive, so we would need to utilize two ATI based cards.  If the 
display limitation is addressed or the cost of display-port equipped monitors 
decreases in cost, then this may be a suitable graphics solution.  Now, in order to 
select the graphics card to be utilized in our simulator PC, we have chosen two 
similarly priced graphics cards.  One is based on an NVIDIA chipset while one 
will be based on an ATI chipset.  They both should have fairly comparable 
specifications and performance given the rivalry between the two companies.  
The comparison between the ATI and NVIDIA based chipsets are in table 3-6 
located below. 
 

Table 3-6. Comparison of Graphics Card Options 

 EVGA 01G-P3-N981-TR26 XFX HD-575X-
ZNFC27 

GPU Family NVIDIA GeForce 9800 GT ATI Radeon HD 5750 

Core Clock 600 MHz 700 MHz 

Shader Clock 1500 MHz Unknown 

Stream Processors 112 720 

Memory Clock 1800 MHz 1150 MHz 

Memory Size 1 GB 1 GB 

Memory Interface / Type 256-bit GDDR3 128-bit GDDR5 

SLI / CrossFire 
Support? 

Yes (SLI) Yes (CrossFireX) 

Price $139.99 $139.99 

 

                                                           
25

 (2009, Dec.). ATI Eyefinity Technology Brief  [Online]. Available: 

http://www.amd.com/us/Documents/ATI_Eyefinity_Technology_Brief.pdf 
26

 (2009, Dec.). EVGA Product Specification Sheet [Online]. Available: 

http://www.evga.com/products/pdf/01G-P3-N981.pdf 
27

 (2009, Dec.). XFX 5750 Specifications [Online]. Available: http://www.xfxforce.com/en-

us/products/graphiccards/hd%205000series/5750.aspx#2 
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These two cards are exactly the same price at Newegg.com and while they have 
some similarities, such as memory size, relatively close GPU clock speeds, and 
the ability to be linked to another graphics card to increase graphics processing 
power, they are very much different cards.  The ATI-based card for example has 
a lowe memory clock rate than the 9800, but many more stream processors.  
Now there may be a difference in how ATI versus NVIDIA calculates the stream 
processors on the chip, but there is not a way to know without diving into what is 
more than likely ATI-proprietary information. 
 
Moving on, let‟s discuss some of added features each card brings to the table.  
The NVIDIA based card is a Direct X 10/OpenGL 3.0 based card that includes 
support for NVIDIA PhysX (enhanced physics processing), and support for 
NVIDIA CUDA, which is a “general purpose parallel computing architecture that 
leverages the parallel compute engine in NVIDIA graphics processing units to 
solve many complex computation problems in a fraction of the time required on a 
CPU.”28  These two features however will be of no assistance to us in running the 
flight simulator, for one X-Plane is not optimized for the PhysX architecture and 
we will not be writing any CUDA based applications. 
 
Likewise, the ATI Radeon HD 5750 also comes with “value-added” features as 
well.  However, it is important to first note that this card is not only DirectX 11, but 
is also an OpenGL 3.1 card, meaning that it is compliant with the latest revision 
of each graphics rendering architecture and being the most up-to-date card 
between the two.  Additional the GPU on the 5750 includes support for the 
previously mentioned ATI Eyefinity technology and a technology known as ATI 
Stream.11  The Eyefinity technology was described on the previous page, and 
ATI describes the Steam technology as “enable AMD graphics processors 
(GPUs), working in concert with the system‟s central processors (CPUs), to 
accelerate enabled applications beyond traditional graphics and video 
processing.”29 
 
With all of the information about each of the graphics processing units taken into 
account, we must come to a conclusion about which to pick for inclusion in the 
simulation computer.  The ATI Radeon HD 5750 from XFX is the one that has 
been selected.  It has a slight edge over the NVIDIA-based card in the raw 
specifications, but the real selling point has been the inclusion of the Eyefinity 
technology.  While the Eyefinity technology may have some limitations currently, 
this project will ultimately have a much longer life beyond the end of the Spring 
Semester and it is important that we design the computer powering the simulator 
to be ready for future technologies and future capabilities. 
 
The selection of the motherboard is something that either happens first and then 
you build your computer around it or you go in the opposite direction and find the 

                                                           
28

 (2009, Dec.). What is CUDA? [Online]. http://www.nvidia.com/object/cuda_what_is.html 
29

 (2009, Dec.). ATI Stream Technology [Online]. Available: 

http://www.amd.com/us/products/technologies/stream-technology/Pages/stream-technology.aspx 
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components you wish to use and find a board that will meet your specifications.  
Performing a search on newegg.com returned several boards, but two stood out 
from the rest.  The boards, one manufactured by ASUS and the other by MSI are 
both fairly comparable boards with nearly the same specifications at the same 
price.  However, there is one major difference.  The ASUS board allows for 16GB 
of DDR3 RAM to be installed while the MSI board only allows for 8GB of DDR3 
RAM  A comparison of the two follows in Table 3-7. 
 

Table 3-7 Motherboard Comparison 

 ASUS M4A785TD-V EVO30 MSI 790X-G4531 

Socket AM3 AM3 

Chipset AMD 785G/SB710 AMD 790X/SB710 

Memory 4x DDR3 DIMM Max. 16GB 4x DDR3 DIMM 8GB 

Expansion Slots 2x PCIe x16, 1x PCIe x1, 
3xPCI 

2x PCIe x16, 2x PCIe x1, 
2xPCI 

CrossFireX Support Yes Yes 

Onboard Audio Yes Yes 

USB Ports 12 6 

Form Factor ATX ATX 

Phenom X2 Unlock  Possible Not Possible 

Price $99.99 $99.99 

 
With the CPU, graphics cards and motherboard selected, we can select our 
remaining components to round out our computer build.  For RAM, we have 
decided to go above the minimum requirements for X-Plane (set at 1GB) and 
Windows 7 minimum (also 1GB) and go with a 4GB DDR3 dual channel kit 
running at the DDR3 1066 speed (PC3 8500).  This should be sufficient for the 
simulator, although if more memory is desired, the motherboard will allow up to 
16GB total to be installed (64-Bit Windows 7 is required for this). 
 
For drive selection it was incredibly straight forward.  For the hard drive we 
calculated that total space required by an Installation of Windows 7 Professional 
and X-Plane 9.4 would utilize roughly 100GB of capacity.  Since we do not need 
a very large drive due to the computer‟s specialization, a 160GB Serial-ATA drive 
with a 8MB cache and a 4.2ms average latency from Western Digital was 
selected.32  In reality when it comes time to purchase any drive as long as it 
meets or exceeds the same specifications could be purchased.  This will allow us 
to procure the cheapest drive and potentially cut our spending some.  In addition, 
the same situation exists for the DVD-ROM drive.  Since almost all DVD-ROM 
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(2009, Dec.). ASUSTeK Computer Inc. M4A785TD-V EVO Specifications [Online]. Available:  
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(2009, Dec.). NewEgg: MSI 790X-G45 Specifications [Online]. Available:   
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32

 (2009, Dec.). Western Digital WD1600AAJS Hard Drive Specifications [Online]. Available: 
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drives are essentially the same (they all read DVD and CDs) and almost all have 
a read speed of around 18x, we are again able to go with the cheapest possible 
drive available to us.  The Lite-On iHDP118-08 meets this requirement and only 
costs under $20. 
 
All of the components will be fitted into an case that meets the ATX specification.  
We have chosen the Linkworld 313-06-C2228 available from Newegg.com for 
$20.99.  It is a very simple case that can hold our ATX motherboard, includes 3 
mounting locations for fans and provides enough space for all of our drives.  
Also, since the case manufacturer is not a critical requirement (only that we have 
a case for the computer), this could change when it comes time to purchase 
components in the spring.  Table 3-8 lists the complete specifications of our 
desired computer configuration. 
 

Table 3-8. Complete Simulation Computer Specifications 

 Part Number Description 

CPU HDZ550WFGIBOX AMD Phenom X2 550 @ 3.1 GHz 

Graphics Card HD-575X-ZNFC XFX ATI Radeon HD 5750 

Motherboard M4A785TD-V EVO ASUS AM3 ATX Motherboard 

RAM OCZ3G10664GK OCZ 4GB (2x2GB) DDR3 1066 Kit 

Hard Drive WD1600AAJS Western Digital 160GB 

DVD Drive iHDP118-04 Lite-On 18X DVD-ROM Drive - 
OEM 

Case 313-06-C2228 Black ATX Tower 

Power Supply EP-1000SC ePower 1000W SLI Ready ATX 
PSU 

 
3.5.1.2 Demonstration Hardware 
While the preceding section discussed our original hardware design under the 
circumstances of receiving a cockpit to integrate all of our systems with this 
section deals with the reality of not receiving our cockpit and what we did to 
ensure that we still had the abilities to run X-Plane sufficiently. 
 
From discussions with our sponsor, it was decided that for the demonstrations of 
our project at the end of EEL 4915 that we should use our development machine 
to power our graphics as well as all of our controls and instruments.  Since the 
bulk of development took place using Chris‟ laptop we set out to test his machine 
to ensure that it would be able to handle all of the demands of X-Plane.  We 
should note here that also due to not going to Sun „n Fun meant that we would 
not be purchasing monitors and would not need to implement 3 monitors tied to 
the VGA output on the laptop.  Instead we made the decision to just output to 
one 24” monitor owned by a group monitor and having X-Plane output a 120-
degree field of view onto the single monitor. 
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From our testing on the laptop, we noticed no issues with graphics performance 
and as a result decided to use this computer for our demonstration.  One limiting 
factor that did arise from the use of the laptop however was the number of USB 
ports.  With only four available ports on the computer we knew that we would 
need a USB hub to handle all of our controls and instruments.  We started out by 
first utilizing a single powered USB hub that had 7 available ports onboard.  
Through testing our USB hub during our integrated systems testing, we found 
that often when a seventh device was connected to the hub, we would 
experience issues.  USB should be able to handle 128 devices, so the cause of 
this issue is unknown.  As a work around we use a separate four port unpowered 
USB hub connected to a separate USB port on the computer.  This alleviated our 
issue and allowed for all devices to work flawlessly. A full table below lists the 
specifications of the machine we used during our demonstrations. 
 

Table 3-9. Complete Simulation Computer Specifications 

 Description 

CPU Intel Core 2 Duo 2.4 GHz 

Graphics Card NVIDIA GeForce 280 

RAM 6 GB DDR 

Hard Drive 500 GB 

OS Microsoft® Windows® 7 

  

3.5.2 Display Projection 
Just as with the computer hardware selection, we will cover both our original 
design centered on receiving the cockpit in addition to covering what we did 
when the decision was made to not purchase a computer.  Section 3.5.2.1 
contains our original design work, so that it can be implemented by our sponsor 
at a later date.  Section 3.5.2.2 covers what we did to have a working component 
for our demonstrations. 
 

3.5.2.1 Original Design Effort 
Display projection really comes down to two options. The first option was to 
utilize a DLP projector for producing our visuals onto a drop screen in front of the 
simulator. Unfortunately this presents several issues. To meet the requirement of 
a 120-degree field of view given to us by our sponsor, we would need to use 
multiple projectors, but each time the simulator would be set up the placing of 
projectors would need to be calibrated and the whole set up would be very 
cumbersome.  Another concern was the effectiveness of projectors at an outdoor 
event.  We would probably have to implement some kind of tenting to keep the 
light level within the projectors‟ operational range.  This of course would also hide 
our simulator from plane sight hindering our sponsor from luring in on-lookers at 
various shows.  The ultimate factor that led us away from this option was the 
cost.  If we had chosen this form of display our entire budget would be spent on 
just the projectors. 
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Our second option is the one we recommend for implementation at a future date 
by our project sponsor: LCD Monitors. First of all the cost of LCD monitors has 
been driven down enormously over the last few years; a 24” monitor can now be 
purchased for under $200. In addition the setup is incredibly easy in that you just 
need to place each monitor next to the other.  Also, LCD monitors are much 
easier to see than projectors when operating in very bright environments.  The 
primary operation area of this simulator will be at air shows and other aviation 
gatherings so this was a major concern. 
 
In designing our display system we needed to know what size monitors we need 
to purchase in order to produce a field of view of 120°. To achieve this we have 
established a set of formulas using basic trigonometry to calculate the required 
monitor size for any given viewing distance.  Figure 3.56 shows the monitor 
configuration that meets our 120-degree field of view requirement.  The dotted 
line in the middle represents the distance used in equation 3-1.  Monitor size in 
this equation refers to the diagonal of the screen.  This is because that is the 
dimension manufactures use to market their product.  K in this set of equations 
represents the proportionality constant used to calculate a monitor‟s diagonal 
from their width.  It is included in the formula set to illustrate the path that was 
taken to get our monitor size to distance proportionality constant (this constant 
comes out to be about 0.8352). 
 

 
Figure 3.56:  Schematic of display configuration.  Diagram by Lewis Vail. 
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Equation 3-1. Monitor Distance Formulas 
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From these three equations we can solve for our constant value and then 
multiply that by the distance the individual in the cockpit will sit from the monitors. 
For this we know that the distance should be about two and a half feet or 30 
inches. Plugging this value into Equation 3 above gives us a value of 25”. Now 
this is the complete diagonal of the monitor we have found, including the frame. 
In order to find the monitor size that we need to purchase, we need to simply 
subtract approximately 1” total (the frame of the many LCD monitors is around 
0.5” wide) to come to the conclusion that we need three 24” monitors to give us 
our 120° field of view. 
 
With our monitor sized now defined, we set about to located an adequate monitor 
for our needs. We ultimately found the Gateway FHD2401 on sale at 
Newegg.com for only $189.99. The monitor has a native resolution at 1920x1200 
with a maximum viewing angle of 160° (Horizontal and Vertical) in addition a 5ms 
response time and a 2000:1 contrast ratio; all common traits of lower cost LCD 
monitors today18. We also expect that monitor prices will continue to drop as they 
have for the past few years, and should a better deal come along, say potentially 
a refurbished monitor from a major manufacturer that meets or exceeds the 
specifications on the FHD2401, we will consider purchasing that instead in order 
to decrease the overall cost of our project. 
 

3.5.2.2 Demonstration Hardware 
For our demonstration we still needed to provide a visual projection to the end 
user separate from our test machine.  The reason for this is that we wanted to 
not utilize the screen built-in to the laptop as it was only 17” and we would have 
not been able to place it in an acceptable location without either blocking 
instruments or at a bad angle resulting in a sub-par performance.  To remedy this 
we utilized a single 24” monitor (Asus VW246H) owned by a group member.  
This was placed in the center on top of our instrument panel frame and angled 
slightly downwards towards the user.  This allowed us to give the reviewers some 
resemblance to how if we had three of these monitors the space footprint that 
would have been required.  Additionally, we selected 120-degree as our output 
range in X-Plane which was in turn displayed on our single 24” monitor.  Figure 
3-57 below shows the configuration used for our demonstration. 
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Figure 3-57. Monitor placement for demonstration. Photo by Robert Gysi 

 

3.6 Switches 
The topic of implementing switches will be briefly covered, as this was not a 
specified requirement of this project and was not implemented.  However, as we 
did complete the design work for this we have maintained the section on how to 
implement this for future reference for our sponsor, should the decision be made 
to at a later date. In the GoBosh there is a row of switches that light up when on 
and that allow you to control different functions on the aircraft. This includes 
switches to control the various lights on the aircraft in addition to the ability to 
start the aircraft.  Pictured below (Figure 3-58) is the panel of switches that could 
be implemented using this electrical design.  The numbered circles in the left of 
the picture are not switches, but are fuses and circuit breakers.  This design 
discussion does not cover implementing these. 
 

 
Figure 3-58.  Switches and knobs that control the aircraft. Photo by Robert Gysi 
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To integrate these switches we could have used some sort of multiplexer or 
decoder to decide which of the switches is in what position.  Each of the 
channels could have been read by the FTDI chip which only has the 8 I/O ports 
which is polled by the software.  Pulling information from the simulator is 
relatively straight forward; a simple circuit diagram showing how the switches 
could be connected is shown below.   This would allow any other developer to 
put this into the code and implement this. 
 

 
Figure 3-59.  Switch circuit. Created by Chris Dlugolinksi 

 
In this circuit in Figure 3-59 you can see that the FTDI chip would be connected 
to the Decoder, and a couple of the pins are used to select the channel that is 
allowed to come across.  It is an 8-1 decoder; it will take 3 pins for selection and 
then one pin to read the switch.  This can be done for 2 separate decoders 
allowing input for 16 different switches, and since switches are not really time 
needy they don't need to be polled very quickly and this circuit should work fine. 
 
Each of the switches would need to be connected to a high point or the USB 5 
volts or the power supply whichever we chose to go with.  There should be a 
resistor in the circuit so that we don't draw too much current.  The software on 
the computer side should recognize the chip as the control chip and then be 
setup to poll 2 switches at once using the same code sent out to each of the 
decoders.  This info will then be read in over the USB and applied in the 
simulation. 
 

3.7 Panel Indicator Lights 
Similar to the switches we didn't have time to implement this additional feature.  
Although, we did receive lights from GoBosh in case we were able to find time to 
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implement this feature, we were not able to implement them.  However, we did 
populate the panel with the lights we were given and the electrical design in this 
section is presented here for future use by our project sponsor.  Just as with all 
the other devices controlled by the simulator, the indicator lights will be controlled 
once again through USB and using the FTDI chip we could use simple transistors 
and resistors to turn on and off the lights whenever needed.  The nice part about 
using the FTDI chip is that once the port is high or low on the chip it will stay that 
way acting just like a switch.  This allows the indicator light to stay lit or not lit 
whenever we need it to be.  A circuit of the lights is shown on the next page as 
well as the actual indicator lights to be implemented along with their labels in the 
actual aircraft below.  The data to drive these lights should be pulled from 
variables in X-Plane. 
 

 
Figure 3-60.  Cockpit Indicator lights. Photo by Robert Gysi 

 

 
Figure 3-61.  Indicator lights circuit diagram. Created by Chris Dlugolinksi 
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The schematic in Figure 3-61 (on the previous page) shows how the design for 
illuminating the lights in the cockpit could of been implemented.  The other way 
that can be used depends on the sinking capabilities of the buffer.  If it can light 
up all the lights and still function it may be possible to remove the transistors and 
just use resistors. 
 

3.8 Flight Instrument and Control Interface Design  
The core of our simulator will be X-Plane‟s simulation software.  Therefore, all of 
our softwareinterfaces with X-Plane via its plug-in API.  This API gives us access 
to all of the functions and variables that we needed.   
 
The implementation of the plugin has three main parts.  (1) The TimeProcessing 
part, this is the part of the plugin that has the main parts of the plugin callbacks 
needed in X-Plane. (2) The devices have two separate threads, one for the 
Controls, this updates the controls for the aircraft.  (3) Then the final part of the 
plugin is the control of the Gauges.  Each of these  will be discussed in detail 
later in this section.  
By interfacing with all the gauges using a single plug-in we have a little more 
control and can step through all of the interfaces in series.  This way, whenever it 
is time to refresh the data on the I/O devices, we can make sure it all happens at 
the same time.  You could also keep the desired modularity by allowing the user 
to configure which devices to use or by having the software sense all appropriate 
I/O devices at initialization.  Also, by using one global plugin, it makes it much 
easier to share and recycle code. 
 
Figure 3.62 shows a block diagram of our high-level plugin architecture.  Each 
device will plug into the computer with its own designated USB cord and will be 
controlled by the plugin.  The reason we chose to group them in this fashion was 
because the design for all of the control devices are very similar as is the design 
for all for all of the flight instruments.  Figures 3.62 and 3.63 show a higher 
resolution diagram of the control and flight instrument interfaces respectively.  
Because all of the hardware interfaces into the simulation fall into one of these 
two categories, much of the code is reused for each gauge. 
 
Figure 3.63 shows interface architecture for the control devices.  As with all of 
our I/O devices, the controls will be integrating with X-plane via the X-Plane 
Plugin Manager.  The plugin manager is a dynamically linked library that handles 
all the communication between the plugins and X-plane.33  The main loop for our 
control devices will be as follows.  Setup each of the Devices connected to the 
computer.  Find out how many devices are attached and initialize them using the 
.ini file that is used to set parameters for the controls or gauges.  The two threads 
that need to be started by the plugin are then kicked off.  

                                                           
33

 (2009, Dec.). X-Plane SDK [Online]. Available: 

http://www.xsquawkbox.net/xpsdk/mediawiki/Overview 
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The controls thread is used to allow us to eliminate any waiting period to update 
X-Plane when the controls are being monitored.  Most of our controls will give us 
a 8-bit digital signal, which will need to be truncated to an 7-bit signal so that we 
can use it in software.  This is only for controls that have multiple controls linked 
to the FTDI board.  Once we have this data we will need to turn it into a format 
that can be assigned to one of the X-Plane variables according to the plugin API.  
There will be a variable sized array in the plugin that is filled with the data for the 
controls that are connected so that we can just read these values in the plugin for 
use in X-Plane.  Finally, once the appropriate data reference is populated with 
the new value, X-Plane will respond appropriately. 
 
Figure 3.64 shows the interface architecture for the flight instruments.  It is very 
similar to the control interface architecture except it is backwards. The first step 
in the main loop once again is to look up the appropriate data reference, this is 
found in the .ini file.  The gauge thread is started and in this thread you have the 
data that needs to be set getting passed in from the array that carries all the 
connected devices.  Next the data must be translated into something we can use 
to drive the gauge.  Finally the appropriate value is sent out to the gauges, which 
will turn to display the current instrument readings.  In the case of stepper motor 
based gauges, an aspect of this final step will be a gauge driving loop that steps 
the motor through the appropriate amount of iterations to get the needle in the 
right position. 
 

 
Figure 3.62.  Instrument and control architecture.  Diagram by Lewis Vail. 
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Figures 3.63.  High-resolution control  interface.  Diagram by Lewis Vail.  

 
Figure 3.64. High-resolution flight instrument interface. Diagram by Lewis Vail 

 
The other major consideration with regards to how we integrate our I/O devices 
into X-Plane is how often we update the X-Plane values.  In the case of the 
instruments, this would be moving the needle into the right location, and in the 
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case of the controls, this would be updating the variables as the user moves the 
controls.  With regards to the instruments, the limiting factor here would most 
likely be the speed of the motors.  Too fast and the needles may jump around.  
Too slow and the needles movements may be too choppy.  A good starting point 
would be thirty times a second to correspond with the frame rate but testing will 
have to be done to optimize it.  With regards to the controls, the limiting factor 
would most likely be the human element.  Once again, it would probably be best 
to start with the frame rate and increase the loop time until it is optimal. 
 

3.9 Power Supply 
No matter what we were doing we needed a power supply.  Since we didn't get 
the computer that we planned and had to use a laptop, we just used a computer 
power supply, for the external power, the USB hub and any of the other circuitry 
that is was used, used this power supply. 
 

3.9.1 Peripheral Devices Power Supply 
The peripherals will need at most a 12 volt supply to run the motors in the 
gauges.  We could of designed a power supply for each of the circuits and use 
this supply for each of the needed devices.  Another alternative is to use a molex 
pass-through card that can give you the same voltages from the computer supply 
on the outside of the computer.  It can be found here performance-pcs.com for 
$4.00 this is cheaper than building our own and will give us a steady 12 or 5 volts 
to use. Since we didn't get the computer we were not able to get the pass 
through cards and that can be added later, we had to go with our separate power 
supply for the simulator. 
 
The power supply that we decided to use has an output power rating of 1000W 
with six 12V lines rated for 20A each which should be more than enough to 
power our gauges and controls. All that needs to be added are some extenders 
and splitters for the molex connectors.  The following table is a summary of the 
power supply output as indicated by the manufacture and on the side label of the 
power supply34. 
 

Table 3-9 Power Supply Ratings 
VDCout +3.3V +5V +12V +12V +12V +12V +12V +12V -12V -5V 

Imax,out 28A 28A 20A 20A 20A 20A 20A 20A 0.8A 6.5A 

Imin,out 0.3A 0.3A 0.5A 0.5A 0.5A 0.5A 0.5A 0.5A 0.1A 0.1A 

 
Since we will only need at most 1 amp total current draw on each of the gauges 
which is well below the power ratings of the power supply.  In addition this will 
give us a safety feature in that we are reducing the number of devices to be 
plugged into a single wall receptacle which makes set up much easier.  This is 
especially true at shows where this simulator might be displayed, where there is 

                                                           
34

 (2009, Dec.). Power Supply Unit Specifications [Online]. Available: 

http://epowertec.com/power_ep-1000p10-t2.html 
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limited availability of power receptacles available for exhibitor use, such as 
outdoor areas at airports during airshows. 
 

3.10 Remote Instructor Operator Station 
One of the feature requests of our project sponsor was to have potential ability to 
implement a remote Instructor Operator Station (IOS) in order to dynamically 
change flight simulator characteristics.   First it should be noted that as part of the 
scope of this project we were not responsible for building a second computer to 
play host to the IOS functions.  Instead the use of an existing computer, like a 
laptop or netbook, to run the IOS functions for us. 
 
X-Plane 9.4 provides many angles of attack for providing an IOS to the simulator 
user.  The first option that X-Plane provides is to simply draw the IOS on a 
secondary monitor. This is inconvenient due to the fact that it will obstruct the 
view of the individual flying an aircraft in the simulator and give away anything 
the instructor may try to throw at the pilot.  Luckily X-Plane provides another to 
interface with an IOS console.  Using the local network and either TCP/IP or 
UDP, we can either write a custom application or simply purchase another copy 
of X-Plane.  The beauty of purchasing a second copy of X-Plane is that it already 
has the IOS console built in and all we have to do is simply connect to the host 
(simulator computer) machine.  From there the instructor can change weather 
effects, add flocks of birds in the air or deer running across a runway, change the 
aircraft position or speed, and also add other aircraft operating in the proximity of 
the piloted aircraft.   In addition the instructor can view the aircraft gauges as 
well.  For the purposes of this project, utilizing the built in X-Plane IOS over a 
local network is the most efficient use of resources and keeps the project 
sponsor from being locked into a custom application. 
 

3.11 Aircraft Model 
One of the major requirements of this project was to build an accurate as 
possible flight model for the GoBosh G700S.  In section 2.2.1.2 we discuss the 
requirements that we developed for our model.  For example Table 2-6 on page 
12 covers all of the basic aircraft data available from the GoBosh Flight Manual.  
However, when it comes to developing the model, this information while helpful is 
only a part of the required information to complete the task.  Section 2.2.1.2 also 
covers additional information on the background on the operation of the Plane 
Maker tool.  This will not be discussed in this section. 
 
It should be noted now, that none of the group members had any experience 
working with any sort of 3D modeling software or have any strong background in 
flight physics.  As a result, we were only able to make our model to the best of 
our abilities given our limited knowledge and experience.  Still, we were able to 
generate a model that bore a strong resemblance to the actual aircraft (Figure 3-
65 below). 
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Figure 3-65. Finished Aircraft Model.  Image by Robert Gysi 

 

3.11.1 Model Generation 
Generating the model was a fairly difficult process, although was made much 
simpler thanks to the included Plane Maker that ships with X-Plane 9.  In order to 
generate our basic fuselage shape we utilized dimension drawings obtained from 
the manufacturer.  We contact one of Aero‟s design engineers who was more 
than willing to provide us with this information.  From these drawings we were 
able to trace our fuselage shape into the plane maker.  While the drawings we 
used were dimensioned, it is possible that our fuselage is not the exact length of 
the actual aircraft; however by using the same drawings for each background 
image, we are confident that it is at least to scale (and should still be fairly close 
to the full size).  This process is shown in Figure 3-66 below. 
 

 
Figure 3-66. Wireframe model traced over dimensioned drawings. Image by 

Robert Gysi 
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The wings were much easier to implement, as all that really needs to be done is 
to specify the length of the wings and place the control surfaces in the correct 
location.  Due to our simulator not having controls for the flaps, this feature was 
not implemented.  However, the ailerons are required to the fly the aircraft and 
they were placed that the location specified in our dimensioned drawings.  Also in 
terms of control geometry, we needed to be able to specify the chord ratio of the 
ailerons.  Using our drawings again we found that the ratio was approximately 
0.20 of the total surface area of the wing.  In order to create the winglets on the 
tip of the wings we simply created a new wing section and tweaked the incidence 
values in the plane maker until we had a similar shape. 
 
The horizontal stabilizer is where we first ran into problems when modeling the 
aircraft.  Due to a limitation in the Plane Maker software we are not able to 
change the point about which it rotates.  In the actual GoBosh it pivots from the 
leading edge of the stabilizer, but in Plane Maker it must pivot from the center of 
the control surface.  This is a limitation that according to the creator of X-Plane 
will be corrected with a future release.  We still attempted to ensure that the 
proper control reactions were the same, so utilizing flight manual we input values 
of 20° for the upper range of motion and 10° for the downward range of motion. 
Similarly, the vertical stabilizer was not able to be accurately modeled in Plane 
Maker as well.  There is not an easy way to change the base of the rudder so 
that it is angled upwards.  We even contacted Austin Meyer, the creator of X-
Plane to see if he had any ideas for implementing this, and admitted that there 
was not a good method to do this within Plane Maker.  As a result we attempted 
to maintain the other aspects of the shape of the stabilizer, so to as hopefully 
maintain as close as possibly flight characteristics.  Figure 3-67 below shows a 
comparison of this section of the aircraft in both real life and in our model. 
 

 

Figure 3-67. Actual versus Model.  Photo by Lewis Vail, Model by Robert Gysi 

 

Another issue we had with the model stems from specifying the engine.  We 
attempted to utilize the specs for the Rotax 912ULS, the engine that is shipped 
with the GoBosh, but this unfortunately would not provide enough power to allow 
the plane to take off.  This was probably due to an issue from modeling our 
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aircraft, as there may be something that does not match the GoBosh‟s flight 
profile at all.  As a result we had to customize our engine specifications, using 
other LSA models as a starting point.  Ultimately, we did find engine specs that 
would allow the plane to take off and fly, although it is possible to go slightly 
faster than maximum speed that the GoBosh is rated for.  Table 3-10 below 
highlights these differences. 

 

Table 3-10. Engine Specifications 

 Rotax 
912ULS35 

Actually Used 

Horsepower 98.5 hp 180 hp 

Redline RPM 5800 RPM 2700 RPM 
Idle RPM 1400 RPM 500 RPM 

Continuous RPM 5500 RPM 2500 RPM 

 

3.11.2 Airfoil 
One of the particular aspects we wanted to attempt to accurately model was the 
flight physics.  To do this we needed to create an airfoil for the NACA 4415 wing 
profile that this aircraft uses for its wings.  While we lack the basic aerospace 
principles to fully understand this process, the steps for creating the airfoil were 
covered extensively on the X-Plane community message boards.  To start, we 
got the polar coordinate data file from the University of Illinois at Urbana-
Champaign Applied Aerodynamics Group for the wing profile on their public 
website.  From there we needed to utilize an application known as javafoil to 
convert this file into a format that X-Plane can understand.  This is a fairly time 
consuming process as one must wait for all the calculations to be completed and 
then remove extra information from the .afl file it generates. 
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Chapter 4 
4.1 Project Implementation  
Following the completion of our Preliminary Design Review with our sponsor on 
January 3, 2010 we started our build phase.  All of the design work at this point 
was considered completed and we were still slated to receive a cockpit to 
integrate at this time.  In mid-March, we were told that we would not be receiving 
the cockpit as planned and which necessitated several design changes.  This 
included building our own joystick and pedals and not procuring the computer we 
would have powered our simulator with.  Upon demonstrating our project and 
presenting to the review committee our project has been completed with all the 
hardware and software being handed over to our project sponsor. 
 

4.2 List of Required Parts 
The following table (Table 4-1) lists the required parts needed to implement the 
design contained in Section 3 along with distributors in Table 4-2.   
 

Table 4-1. Required Parts 

Item P/N Qty. 
Req‟d. 

Vendor 

USB Communication 
Board 

FTDI245BL 10 
Saelig 

IC Sockets (Assorted) Various - SkyCraft/Radio Shack 
PCB Boards (Small)  4 Radio Shack 
Wire  3 Radio Shack 
Transistor 2N3904 36 Radio Shack 
Diodes 1N4003  

36 Radio Shack 
Spacers (Assorted 
Lengths) 

N/A - 
SkyCraft 

Stepper Motors  8 RoboKits World 
Terminal Blocks N/A 36 SkyCraft/Radio Shack 
PCB Boards (Large) N/A 7 SkyCraft 
Buffer Chip CD4050 6 Futurlec 
Comparator IC LM741CN 5 Futurlec 
A/D Converter ADC0804LCN 3 Futurlec 
Powered USB Hub  1 Best Buy 
USB Cables Various 9 Big Lots 
Slide Potentiometers RA6020F-10-20D1-

B10K 
3 

Mouser 
Molex Connectors Various - Radio Shack 
Epoxy Putty N/A 1 Home Depot 
3/8 x 0.035 Aluminum 
Tube 

N/A 1 
Cent. FL Hobbies 

Misc. Hardware N/A - SkyCraft/Home Depot 
470-Ohm Resistors  3 Radio Shack 
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Table 4-2. Vendor Contact Information 

Vendor Web Site Phone Number 

Best Buy http://www.bestbuy.com 407-482-8099 

Radio Shack http://www.radioshack.com 800-843-7422 

DLP Design http://www.dlpdesign.com 469-964-8027 

Cent. Florida 
Hobbies 

http://orlandohobbyshop.com 407-295-9256 

Home Depot http://www.homedepot.com 321-235-3600 

Mouser Electronics http://www.mouser.com 800-346-6873 

Futurlec http://www.futurlec.com None 

Saelig http://www.saelig.com 585-385-1750 

Robokits World http://www.robokitsworld.com None 

Big Lots http://www.biglots.com 407-380-3755 

 

4.3 Build Phase 
The build phase for this project commenced after our Preliminary Design Review 
with the project sponsor, which was completed on January 3, 2010.  A full 
schedule representing our build phase as displayed in a Gantt chart can be found 
in Appendix B.  A simplified view of the progression through this phase is 
presented in figure 4-1 below. 
 

 
Figure 4-1 Overview of the Build Phase 

 

4.3.1 Flight Instrument Assembly 
The assembly of our simulated flight instruments occurred immediately after 
completion of our design review with our sponsor.  We began to prototype our 
boards at this point and working out issues with the circuits.  During this time we 
also attempted fabrication of our mounting decks, and dertermined through this 
exercise that having parts fabricated was the best option.  Our original schedule 

Preliminary 
Design 
Review  

(Jan. 3, 2010) 

Order 
Components 

Begin Software 
Development 
and Aircraft 
Modelling 

Perform Assembly of 
Instruments, Controls, 

Lights and Switches 

Acceptance Testing and 
Systems Integration 

Testing 
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had us finishing our flight instrument build phase by the first week of March 2010.  
Unfortunately, due to a variety of factors this milestone was not reached.  This 
was due to the fabrication time of our cut aluminum.  Additionally we had to work 
out issues with gearing and other mechanical related issues.  We did complete 
the construction of each component however within an updated schedule, which 
left us with plenty of time for testing of our project.  All the work on the flight 
instruments occurred in the senior design lab at UCF. 
 

4.3.2 Flight Control Assembly 
Flight control assembly occurred, unfortunately at the last minute of the build 
phase.  The reason behind this was up until mid-March we were still assuming 
that we would be receiving a cockpit to integrate with.  As a result, while we had 
our electronics finished and tested using rotary potentiometers, we were behind 
schedule.  The design of mechanical interfaces was not part of the original scope 
of this project and as a result we had to focus efforts on additional designs.  
Fortunately, we were able to get this completed before our testing phase 
commenced.  For more information on the design of the controls, refer to Chapter 
2. 
 

4.3.3 Indicator and Switch Assembly 
No work was completed on the indicator lights or swtiches.  This was due to the 
lack of time for completing the project and in addition to not demonstrating at Sun 
„n Fun.  These were never required components of the simulator, but features we 
designed in case we had the time available. 
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Chapter 5 
5.1 Overview 
This section contains all of our test procedures for testing the individual 
components to be installed in the aircraft cockpit as well as the final test 
procedure to ensure that the system as a whole works correctly.  This is critical 
as our project ultimately will wind up in the hands of our project sponsor, and this 
an excellent method for us to perform quality control on our components.  In 
addition to test procedures and results, this section also includes the usage 
cases as well as the requirements verification. 
 

5.2 Required Test Equipment 
In order to perform the testing the acceptance testing in section 5.3, some 
equipment will be needed.  The list below includes the required items. 
 

 PC running Windows 7 Professional. 

 Latest version of X-Plane (currently version 9.4). 

 Digital Multimeter (to troubleshoot any electrical issues that may arise). 

 Computer screwdriver set (for making adjustments to mechanical 
components if necessary). 

 Second computer (such as a laptop) for running the Instructor Operator 
Station (IOS) during integrated systems testing. 

 Test application for light, switches and motor control testing 

 USB Cables 

 USB Hub 

 Oscilloscope for troubleshooting issues with motor control. 
 

In addition to this test equipment will have written a test program that we can use 
to test the indicator lights, switches, and the gauges.  There will be the ability to 
turn on and off the lights, test the response of the switches (when the switch is 
thrown, the checkbox will become selected), and a tab that will allow us to test 
each of the motor control circuits for the gauges.  In regards to the gauge test, 
there will be a slider control with a range representing 0-100%.  For the gauges 
that need to continue to rotate it will only rotate one full revolution.  In addition 
this will allow us to verify that a microcontroller is in 100% working order before 
we create any boards, and thus help eliminate the chance of a possible 
expensive mistake from occurring.  Figure 5-1 on the next page highlights the 
test application. 
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Figure 5-1. Gauge/Motor TestForm 

 

5.3 Test Locations 
All testing occurred in the senior design lab in room ENGR 456 on the UCF 
campus.  This included the testing of our parts as we receive them as well as our 
integrated systems testing.  Originally, the integrated systems testing was to take 
place at the hanger of our sponsor.  This was due to this being the location of the 
stored cockpit, if it had arrived from Poland. 
 

5.4 Acceptance Testing 
The purpose of the acceptance testing is to verify that as we completed building 
each component we could immediately verify if the component is working 100% 
according to our specifications and requirements or if there are deficiencies that 
need to be corrected before we install the component into the instrument panel.  
This was our way of performing quality control on our components, so that once 
we install a component, we should not need to replace it due to a failure.  
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Controls are to be tested through the use of their test rig assemblies built 
specifically for the demonstrations. 
 

5.4.1 Part Testing 
This section is to verify that the critical components that were to be installed in 
our instruments and controls perform as specified from the manufacturer.  We 
will require this of our most critical component: the FTDI USB communication 
board.  This board will need to be tested before any are installed onto a board as 
a faulty chip will not only cost us the price of the chip, but also the time it takes to 
receive a replacement component. The procedures for this follows in section 
5.4.1.1. 
 

5.4.1.1 Microcontroller 
The purpose of the microcontroller test is to verify that the part is received in 
working order.  If the test results in any failures, a new part will need to be 
ordered or other corrective actions.  This will be tested using the test software 
installed on the test computer. 
 

No. Testing Action Result 

1. The microcontroller is internal to the Gauges that are being 
used in order to test it you must plug it into the computer 
through the USB port.  Computer should recognize the 
device 

 
P / F 

2. In the Application there is a Test Tab open it you will find a 
list with all the connected gauges.  Make sure your gauge is 
in the list. 

 
P / F 

3. Depending on the gauge you will be able to test the max and 
the min of the gauge.  Slide the bar between max and min 
and the gauge should move with the slider. 

 
P / F 

4. Repeat steps 1-3 for each gauge / motor - 

5. We will now verify the operation of the switches and lights 
through the microcontroller to ensure that we have no 
defective parts.  Disconnect the microcontroller responsible 
for the gauge tested in the previous step and connect the 
switches and lights up individually up to the microcontroller. 

 
 
 

P / F 

6. The microcontroller is externally connected to all the 
switches and lights in order to test this controller connect the 
controller up to the computer through the USB port it should 
be recognized 

 
P / F 

7. In the Application there is a Test Tab open it you will find a 
list with all the connected gauges.  You will see a section for 
the switches and lights. You should see the current state of 
all of the switches and lights connected to that particular 
device 

 
 

P / F 

8. Depending on the switch you are testing you will see the  



   P a g e  |102 

 

switch change in the test program as well. P / F 

9. Do this for all the switches and lights that are being 
connected. 

 
N/A 

10. Overall Result Pass 

 
From the completion of the above test procedure, we were able to verify that 
each of the FTDI chips was working upon arrival from the distributor.  In order to 
knot waste paper, the cumulative results of the testing for the entire batch of 
development boards was recorded the table above.  Step 9, while included in the 
procedure was not tested as lights and switches were not implemented as part of 
this project. 
 

5.4.2 Flight Instruments 
This section of the acceptance testing will cover the flight instruments or gauges 
to be installed in our cockpit.  Gauges to the tested will include the airspeed 
indicator, altimeter, attitude indicator, turn coordinator, heading indicator and the 
vertical speed indicator.  Success will be determined if all of the test steps results 
in a “pass”.  Any failures will need to be corrected before being installed in the 
instrument panel.  If necessary a redesign will occur, if successive fails are 
generated by the component in question. Additionally, any comments regarding 
the test events are included in paragraphs following the result tables. 

 
5.4.2.1 Airspeed Indicator 
The purpose of this test is to verify that the assembled component has been 
properly manufactured.  If the test results in any failures, a replacement parts will 
need to be ordered or other corrective actions performed.  This will be tested 
using X-Plane on a test computer. 
 

 No. Testing Action Result 

1. Perform Visual Inspection of the airspeed indicator. 
WARNING: Ensure airspeed indicator is disconnected from 
the USB Port and that the device is not powered. 

1. Ensure that all contacts are soldered properly. 
2. Verify that the indicator motor is clean of and there are 

no obstructions to the movement of the gauge. 
3. Verify wiring to/from the FTDI USB controller is in 

accordance with the schematic diagram. 

 
 
 

 
 
 

P / F 

2. Plug in the airspeed indicator into a free USB port on the 
simulation computer.  Verify that the computer recognizes 
the device. 

 
 

P / F 

3. Perform operational testing utilizing X-Plane 9. 
1. Launch X-Plane and set up with an aircraft on a 

runway idling.  Ensure the throttle is set to zero. 
2. Ensure you are in the cockpit view in X-Plane.  We will 
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 No. Testing Action Result 

want to verify that the same indicated airspeed is 
displayed on the virtual instrument on the screen and 
our simulated instrument. 

3. First release the aircraft brake by pressing the B key 
on the keyboard.  Then using the throttle control 
increase the power to at least 40 kts.  Verify that the 
physical gauge matches the airspeed indicated in X-
Plane.  Verify that the gauge moves at the same rate 
as indicated on the screen. 

4. Bring the aircraft to a halt.  Verify that the gauge 
returns to zero.  If it does not return to zero, note 
where it stops.  This is important as we will need to 
potentially adjust the calibration of the gauge if it does 
not return to zero. 

5. Repeat steps 3 and 4.  Ensure that the data again 
matches on both the screen and on the physical 
gauge installed in the cockpit. 

 
 
 
 
 
 
 
 
 
 
 
 
 

P / F 

4.  Overall Result Pass 

 

5.4.2.2 Altimeter 
The purpose of this test is to verify that the assembled component has been 
properly manufactured.  If the test results in any failures, a replacement parts will 
need to be ordered or other corrective actions performed.  This will be tested 
using X-Plane on a test computer. 
 

No. Testing Action Result 

1. Perform Visual Inspection of the altimeter. 
WARNING: Ensure altimeter is disconnected from the 
USB Port and that the device is not powered. 

1. Ensure that all contacts are soldered properly. 
2. Verify that the indicator motor is clean of and 

there are no obstructions to the gauge movement. 
3. Verify wiring to/from the FTDI USB controller is in 

accordance with the schematic diagram. 

 
 
 

 
 
 

P / F 

2. Plug in the altimeter into a free USB port on the 
simulation computer.  Verify that the computer 
recognizes the device. 

 
P / F 

3. Perform operational testing utilizing X-Plane 9. 
1. Launch X-Plane and set up with an aircraft on a 

runway idling.  Ensure the throttle is set to zero. 
2. Ensure you are in the cockpit view in X-Plane.  

We will want to verify that the same altitude is 
displayed on the virtual instrument on the screen 
and our simulated instrument. 
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No. Testing Action Result 

3. First release the aircraft brake by pressing the B 
key on the keyboard.  Then climb to an altitude of 
900ft above sea level.  Verify that the physical 
gauge matches the altitude in X-Plane.  Verify that 
the gauge moves at the same rate as indicated on 
the screen. 

4. Now climb to a level of 2300 feet above sea level.  
With this increase in altitude the thousands hand 
on the gauge should move.  Verify that the altitude 
matches the result displayed in X-Plane.  If the 
thousands hand is not correct, check the gearing 
of the motor. 

5. To ensure that we can roll back, decrease the 
altitude to 500 feet above sea level.  Verify that 
the physical gauge matches the value given on 
the virtual gauge in the simulation software. 

 
 
 
 
 
 
 
 
 
 
 

P / F 

4. Overall Result Pass (With 
conditions) 

 
With the altimeter, everything from an electrical standpoint works as designed.  
However, from testing we discovered that the gearing we utilized eventually 
causes the gauge to be off at high altitudes.  We can partially correct this by 
adjusting the barometric pressure in X-Plane on the virtual gauge.  In order fully 
fix this new gears would need to be installed.  Unfortunately, this was discovered 
late in the process, as this gauge took a very long time to construct. 
 

5.4.2.3 Attitude Indicator 
The purpose of this test is to verify that the assembled component has been 
properly manufactured.  If the test results in any failures, a replacement parts will 
need to be ordered or other corrective actions performed.  This will be tested 
using X-Plane on a test computer. 
 

No. Testing Action Result 

1. Perform Visual Inspection of the attitude indicator. 
WARNING: Ensure attitude indicator is disconnected from 
the USB Port and that the device is not powered. 

1. Ensure that all contacts are soldered properly. 
2. Verify that the attitude indicator was constructed in 

accordance with the manufacturer‟s specifications.  
Verify mechanical assembly and electrical schematic. 

3. Verify that the indicator motor is clean of and there are 
no obstructions to the movement of the gauge. 

 
 
 

 
 
 
 

P / F 

2. Plug in the airspeed indicator into a free USB port on the 
simulation computer.  Verify that the computer recognizes 

 
P / F 
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No. Testing Action Result 

the device. 

3. Perform operational testing utilizing X-Plane 9. 
1. Launch X-Plane and set up with an aircraft on a 

runway idling.  Ensure the throttle is set to zero. 
2. Ensure you are in the cockpit view in X-Plane.  We will 

want to verify that the same position is indicated on 
the screen and with our simulated gauge. 

3. First release the aircraft brake by pressing the B key 
on the keyboard.  Take-off and then climb to any 
altitude.  As you are climbing the attitude indicator 
should indicate that the plane is at an increased pitch 
(in the blue region).  Verify that the same level is 
indicated on the physical gauge and in X-Plane.   

4. Put the aircraft into level flight.  Verify that the attitude 
indicator rests on the line representing the horizon 
(between the blue and brown sections). 

5. Roll the wings to the left and to the right.  Verify that 
the result on the gauge matches the movement of the 
aircraft on the screen and the gauge on the screen. 

6. Put the aircraft nose down.  The attitude indicator 
should roll forward into the lower half of the gauge 
(brown section) as you head towards the ground. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

P / F 

4. Overall Result Pass 

 

5.4.2.4 Turn Coordinator 
The purpose of this test is to verify that the assembled component has been 
properly manufactured.  If the test results in any failures, a replacement parts will 
need to be ordered or other corrective actions performed.  This will be tested 
using X-Plane on a test computer. 
 

No. Testing Action Result 

1. Perform Visual Inspection of the turn coordinator. 
WARNING: Ensure turn coordinator is disconnected from the 
USB Port and that the device is not powered. 

1. Ensure that all contacts are soldered properly. 
2. Verify that the turn coordinator was constructed in 

accordance with the manufacturer‟s specifications.  
Verify mechanical assembly and electrical schematic. 

3. Verify that the indicator motor is clean of and there are 
no obstructions to the movement of the gauge. 

 
 
 

 
 
 
 

P / F 

2. Plug in the turn coordinator into a free USB port on the 
simulation computer.  Verify that the computer recognizes 
the device. 

 
P / F 

3. Perform operational testing utilizing X-Plane 9.  
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1. Launch X-Plane and set up an aircraft on a runway 
idling.  Ensure that the throttle is set to zero and you 
are in the virtual cockpit view. 

2. Take-off and climb to 4000 feet above sea level.  
Keep the aircraft in level flight.  At this point the 
aircraft pictured on the turn coordinator should be 
level and the ball below the aircraft on the instrument 
should be in the center. 

3. Next make a turn to the right.  The turn coordinator 
should match bank angle of the aircraft or in other 
words the right wing should be dipped to the right as 
indicated by the instrument. The ball should also 
move towards the right.  Verify that the turn indicator 
in the virtual cockpit matches the result on the 
physical gauge. 

4. Next make a turn to the left.  The turn coordinator 
should match bank angle of the aircraft or in other 
words the right wing should be dipped to the left as 
indicated by the instrument. The ball should also 
move towards the left.  Verify that the turn indicator in 
the virtual cockpit matches the result on the physical 
gauge. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

P / F 

4. Overall Result Pass 

 
During testing our turn coordinator worked flawlessly.  The bank angle of the 
aircraft was reported accurately and the ball worked as well during our testing 
and up to the day of the demonstration.  Unfortunately, we did fry the FTDI chip 
that controlled the motor for the ball, possibly during our first demonstration 
attempt.  As a result, this instrument will require the purchase of a new FTDI chip 
to be restored to full functionality. 
 

5.4.2.5 Heading Indicator 
The purpose of this test is to verify that the assembled component has been 
properly manufactured.  If the test results in any failures, a replacement parts will 
need to be ordered or other corrective actions performed.  This will be tested 
using X-Plane on a test computer. 
 

No. Testing Action Result 

1. Perform Visual Inspection of the Heading indicator. 
WARNING: Ensure heading indicator is disconnected from 
the USB Port and that the device is not powered. 

1. Ensure that all contacts are soldered properly. 
2. Verify that the indicator motor is clean of and there are 

no obstructions to the gauge movement. 
3. Verify wiring to/from the FTDI USB controller is in 

 
 
 

 
 
 

P / F 
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No. Testing Action Result 

accordance with the schematic diagram. 

2. Plug in the heading indicator into a free USB port on the 
simulation computer.  Verify that the computer recognizes 
the device. 

 
P / F 

3. Perform operational testing utilizing X-Plane 9. 
1. Launch X-Plane and set up with an aircraft on a 

runway idling.  Ensure the throttle is set to zero. 
2. Ensure you are in the cockpit view in X-Plane.  We will 

want to verify that the same position is indicated on 
the screen and with our simulated gauge. 

3. First note the direction indicated on the physical 
gauge while on the runway.  Verify that this matches 
with the heading indicator in the virtual cockpit. 

4. Release the brake by pressing the B key on the 
keyboard, take-off and climb to any altitude.  Once at 
an appropriate altitude turn to a heading of 330 
degrees.  Verify that the physical gauge moves 
smoothly in the correct direction to 330 degrees and 
matches the movement of the virtual gauge.   

5. Put the aircraft back into level flight.  Next perform a 
360 degree turn to the right.  Verify that the indicator 
goes around the full 360 degrees back to a heading of 
330 degrees.  Resume a forward heading and 
continue level flight. 

6. Repeat part 5, but instead of turning to the right as 
stated, make a turn to the left.  Verify that gauge 
works correctly and that you have returned to a 
heading of 330 degrees.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

P / F 

4. Overall Result Pass 

 

5.4.2.6 Vertical Speed Indicator 
The purpose of this test is to verify that the assembled component has been 
properly manufactured.  If the test results in any failures, a replacement parts will 
need to be ordered or other corrective actions performed.  This will be tested 
using X-Plane on a test computer. 
 

No. Testing Action Result 

1. Perform Visual Inspection of the vertical speed indicator. 
WARNING: Ensure vertical speed indicator is disconnected 
from the USB Port and that the device is not powered. 

1. Ensure that all contacts are soldered properly. 
2. Verify that the indicator motor is clean of and there are 

no obstructions to the gauge movement. 
3. Verify wiring to/from the FTDI USB controller is in 

 
 
 

 
 

 
P / F 
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No. Testing Action Result 

accordance with the schematic diagram. 

2. Plug in the vertical speed indicator into a free USB port on 
the simulation computer.  Verify that the computer 
recognizes the device. 

 
P / F 

3. Perform operational testing utilizing X-Plane 9. 
1. Launch X-Plane and set up with an aircraft on a 

runway idling.  Ensure the throttle is set to zero. 
2. Ensure you are in the cockpit view in X-Plane.  We will 

want to verify that the same position is indicated on 
the screen and with our simulated gauge. 

3. Release the brake by pressing the B key on the 
keyboard, take-off and climb to any altitude.  As you 
climb you should see the vertical speed indicator 
move in a clockwise fashion.  Ensure that the 
movement mimics the virtual gauge on the screen.  

4. Pitch the aircraft nose as far back as possible, putting 
the aircraft into a stall.  Right before the stall the 
gauge should go no further than the established 
maximum on the gauge. 

5. Recover from the stall (return to level flight) and pitch 
the nose towards the ground.  The vertical speed 
indicator should now move in the counter-clockwise 
direction.  Verify that this matches the gauge on the 
screen. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

P / F 

4. Overall Result Pass 

 

5.4.3 Flight Controls 
This section of the acceptance testing will cover the testing of our flight controls 
to that were installed in our instrument panel.  Each step must result in a “pass” 
with any deficiencies noted for correction.  Each individual component should 
pass before being installed to the instrument panel and before integrated system 
testing.  Any comments about the testing follows the result tables in each section. 
 

5.4.3.1 Joystick 
The purpose of this test is to verify that the assembled component had been 
properly manufactured.  If the test results in any failures, replacement parts will 
need to be ordered or other corrective actions performed.  This was tested using 
X-Plane on a test computer. 
 

No. Testing Action Result 

1. Perform Visual Inspection of Joystick Control.   
WARNING: Ensure joystick control is disconnected from the 
USB Port and that the device is not powered. 

1. Ensure contacts on each of the slide potentiometers 

 
 
 
 



   P a g e  |109 

 

No. Testing Action Result 

are soldered correctly and that the wires lead to the 
correct pins on the A/D Converter board as specified 
on the schematic.  

2. Ensure the entire yoke mechanical assembly including 
the wires leading to the slide potentiometers is 
connected and that there is no restriction in the 
movement of the stick. 

 
 
 
 
 

P / F 

2. Plug in the joystick control into a free USB port on the 
simulation computer.  Verify that the computer recognizes 
the device. 

 
P / F 

3. Perform operational testing utilizing the Windows Control 
Panel. 

1. In Windows 7 click Start → Control Panel → Devices 
and Printers → Right click on the icon associated with 
the yoke → Click Properties → Click on the Test Tab. 

2. This is built in Windows Test utility for game controller 
and joysticks.  First move the joystick in the positive X 
direction and then to the negative X direction.  The 
crosshair should move up and then down. 

3. Next test the Y-axis in the same fashion.  Moving the 
stick to the left should move the crosshair to the left 
and moving the stick to the right should move the 
crosshair to the right. 

 

 
 
 
 
 
 
 
 
 
 

P / F 

4. If the joystick passed the previous test, then we may verify 
that it works accordingly in X-Plane 9.4.  First launch X-Plane 
and set up with an aircraft on a runway. 

1. First release the brake on the keyboard (if enabled) by 
pressing the B key.  Then using the throttle control 
increase the throttle until the RPM gauge in X-Plane 
moves and the aircraft moves down the runway. 

2. Pull back on the stick when V1 speed has been 
achieved.  Ensure that the aircraft rotates off of the 
runway.  Note if the aircraft is slow to respond to the 
joystick control. 

3. Once airborne move the yoke in the direction of all 
four axes.  Ensure that the response on the screen 
matches both the direction and the speed at which the 
yoke was moved. 

 
 
 
 
 
 
 
 
 
 
 
 

P / F 

5. Return the joystick to center.  It should stay in the center 
without moving in any direction. 

 
P / F 

6. With the aircraft still in flight, verify that the rudder pedals 
move accordingly.  Ensure that when pressing on the correct 
pedal that the aircraft moves in the same direction  

 
P / F 

7.  Overall Result Pass 
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5.4.3.2 Throttle 
The purpose of this test is to verify that the assembled component has been 
properly manufactured.  If the test results in any failures, a replacement parts will 
need to be ordered or other corrective actions performed.  This was tested using 
X-Plane on a test computer. 

No. Testing Action Result 

1. Perform Visual Inspection of Throttle Control.   
WARNING: Ensure throttle control is disconnected from the 
USB Port and that the device is not powered. 

1. Ensure contacts on the slide potentiometer are 
soldered correctly and that the wires lead to the 
correct pin on the A/D Converter board responsible for 
the throttle and pedals as specified on the schematic.  

2. Ensure the entire throttle mechanical assembly 
including the wires leading to the slide potentiometers 
is connected and that there is no restriction in the 
movement of the throttle 

 
 
 
 

 
 
 
 
 

P / F 

2. Plug in the throttle control into a free USB port on the 
simulation computer.  Verify that the computer recognizes 
the device. 

 
P / F 

3. Perform operational testing utilizing the Windows Control 
Panel. 

1. In Windows 7 click Start → Control Panel → Devices 
and Printers → Right click on the icon associated with 
the yoke → Click Properties → Click on the Test Tab. 

2. This is built in Windows Test utility for game controller 
and joysticks.  To test our throttle, simply move the 
throttle out.  The bar labeled „slider‟ should move 
along with the throttle. 

 
 
 
 
 
 

P / F 

4. If the throttle passed the previous test, then we may verify 
that it works accordingly in X-Plane 9.4.  First launch X-Plane 
and set up with an aircraft on a runway. 

1. First release the brake on the keyboard (if enabled) by 
pressing the B key.  Set the throttle for full throttle and 
take off.  Verify that virtual throttle position on the 
screen is roughly the same as the physical throttle. 

2. Increase and decrease speed with the throttle while in 
level flight.  Verify that it response on the screen 
matches the physical input. 

 
 
 
 
 
 
 
 

P / F 

5. With the aircraft still in flight, verify that the rudder pedals 
move accordingly.  Ensure that when pressing on the correct 
pedal that the aircraft moves in the same direction  

 
P / F 

6. Overall Result Pass 
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5.4.3.3 Pedals 
The purpose of this test is to verify that the assembled component has been 
properly manufactured.  If the test results in any failures, a replacement parts will 
need to be ordered or other corrective actions performed.  This was tested using 
X-Plane on a test computer. 
 

No. Testing Action Result 

1. Perform Visual Inspection of foot pedals.   
WARNING: Ensure pedals are disconnected from the USB 
Port and that the device is not powered. 

1. Ensure contacts on the slide potentiometer are 
soldered correctly and that the wires lead to the 
correct pin on the A/D Converter board responsible for 
the throttle and pedals as specified on the schematic.  

2. Ensure the entire throttle mechanical assembly 
including the wires leading to the slide potentiometers 
is connected and that there is no restriction in the 
movement of the pedals. 

 
 
 
 

 
 
 
 
 

P / F 

2. Plug in the pedals into a free USB port on the simulation 
computer.  Verify that the computer recognizes the device. 

 
P / F 

3. Perform operational testing using X-Plane 9.4.   
1. First release the brake on the keyboard (if enabled) by 

pressing the B key and then proceed to take off. 
2. Once in the air, use the rudder pedals to change the 

position of the rudder on the tail of the aircraft.  This is 
best observed when flying in chase view.  Ensure that 
both the left and right pedals cause the correct 
change in direction of the aircraft on the screen. 

 
 
 
 
 
 

P / F 

4. Overall Result Pass 

 

5.4.4 Cockpit Switch and Indicator Circuit Testing 
The switches and indicator lamps circuits would have been tested to the same 
level as all other flight instruments and controls, if they had been implemented.  
The indicator lamps provide secondary information to the pilot and the indicator 
switches provide additional input commands, including turning on and off exterior 
strobe lights to the pilot.  This was established as an optional requirement for the 
project.  Not all of the switches may be functional, as implementation is solely up 
to our sponsor after handing over the project.  Nonfunctional switches will be 
noted, so that they can be excluded from testing.   
 

5.4.4.1 Indicator Lamps 
The purpose of this test is to verify that the assembled component has been 
properly manufactured.  If the test results in any failures, a replacement parts will 
need to be ordered or other corrective actions performed.  This should be tested 
using X-Plane on a test computer.  For the scope of this project, this component 
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was not implemented and therefore did not require testing.  These procedures 
are included in this document for the reference of our project sponsor and/or 
future groups that may work on this simulator. 
 

No. Testing Action Result 

1. Perform Visual Inspection of indicator lamps.   
WARNING: Ensure indicator lamp control board is 
disconnected from the USB Port and that the device is not 
powered. 

1. Ensure of each LED is connected to the board 
correctly and that the overall circuit matches the board 
schematic. 

 
 

 
 

P / F 

2. Plug in the indicator light control board into a free USB port 
on the simulation computer.  Verify that the computer 
recognizes the device. 

 
P / F 

3. Perform operational testing using X-Plane 9.4. 
1. First start by setting up the aircraft so that there is only 

2 gallons of fuel available.  This should trigger the low 
fuel light. 

2. Turn off the engine to the aircraft.  Reconfigure the 
aircraft to have a higher amount of fuel.  Start the 
aircraft using the keyboard command CTRL-1.  The 
starter engaged light should come on as the engine 
starts. 

3. To check if the generator failed indicator works 
properly, use the cockpit of the Cessna C172SP and 
toggle off the battery switch.  This should cause the 
light to turn on. 

4. Locate a fuel pump in the virtual cockpit.  Click your 
mouse so that the switch is on.  The light on the board 
should turn on. 

5. Next, select an aircraft and take-off.  Achieve level 
flight and a steady airspeed.  Pitch the nose of the 
aircraft up quickly until the aircraft loses lift and the 
stall light turns on.  This light should extinguish once 
the aircraft has achieved lift again. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

P / F 

4. Overall Result  

 

5.4.4.2 Switches 
The purpose of this test is to verify that the assembled component has been 
properly manufactured.  If the test results in any failures, a replacement parts will 
need to be ordered or other corrective actions performed.  This should be tested 
using X-Plane on a test computer.  For the scope of this project, this component 
was not implemented and therefore did not require testing.  These procedures 
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are included in this document for the reference of our project sponsor and/or 
future groups that may work on this simulator. 
 

No. Testing Action Result 

1. Perform Visual Inspection of switches.   
WARNING: Ensure switch control board is disconnected 
from the USB Port and that the device is not powered. 

1. Ensure of each switch is connected to the board 
correctly and that the overall circuit matches the board 
schematic. 

2. Ensure that each switch is in the off position. 

 
 

 
 

P / F 

2. Plug in the switch control board into a free USB port on the 
simulation computer.  Verify that the computer recognizes 
the device. 

 
P / F 

3. Perform operational testing using X-Plane 9.4. 
1. First start by setting up an aircraft on a runway with 

the virtual cockpit open. 
2. Taking the switch that is desired to be tested and 

switch it into the on position.  Verify that the switch in 
the virtual cockpit has moved to the on position as 
well. 

3. For each switch implemented repeat step 2, until all 
implemented switches have been placed into the on 
position. 

4. Next start turning off the switches one by one, 
ensuring that the result on the screen mimics the 
physical switch. 

5. Repeat steps 2-4 once more to verify that the switch 
circuit is still functional after one full operational cycle. 

 
 
 
 
 
 
 
 
 
 
 

P / F 

4. Overall Result  

 

5.5 Integrated Systems Testing 
The purpose of integrated systems testing is to validate the install of the 
components as a whole and ensure that each system works together in a 
combined environment.  This represents the final phase of testing before the 
project can be considered complete and allows any issues to be corrected before 
the project deadline and demonstration.  In the integrated systems testing, each 
component was tested individually in a large scale test event using the 
acceptance test procedures.  During the testing we had one individual operating 
the simulator, one individual ensuring that the data from X-Plane matched our 
physical gauges, and another individual keeping track of everything from the test 
computer screen. 
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No. Testing Action Result 

1. Perform Visual Inspection of cockpit.   
WARNING: Ensure that power is disconnected to all of the 
electrical components, including the computer, before 
performing the inspection. 

1. Ensure that the mechanical components of the stick, 
pedals and throttle are all free of obstructions and that 
the electrical components have been properly installed 
in accordance with the schematic. 

2. Verify that each of the gauges has been installed in 
the proper location.  Check the mechanical 
connections on the motors to the gauge faces for any 
obstructions or misconnections.  Verify that the 
electrical layout matches the appropriate schematic 
drawing. 

3. Verify that the indicator lights have been installed in 
the instrument panel correctly.  Verify wiring to the 
electrical schematic. 

4. Verify that the indicator switches have been installed 
in the instrument panel correctly.  Ensure that each 
one is seated properly with no movement of the switch 
housing when the switch is used.  Verify the electrical 
connections with the schematic diagram.  

5. Verify that the cockpit is clean of any debris. 
6. Verify that the monitors are secured to the top of the 

cockpit.  

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

P / F 

2. Plug in the power supply to the computer, the individual 
power supplies for the monitors, and any other required 
power supplies to a 115VAC, 60Hz receptacle.  Plug in all 
USB cables into an empty USB port on one of the USB 
Hubs.  

 
P / F 

3. Perform system start up. 
1. Press the power button on the computer.  The 

computer will boot into Microsoft® Windows 7 
Professional.  After Windows starts, double click on 
the X-Plane icon on the desktop. 

2. X-Plane by default will load to the default aircraft and 
default airport.  Select the airport KMCO – Orlando 
International Airport and select the GoBosh G700S 
aircraft model. 

3. On our second computer launch X-Plane and connect 
to the IP address of the simulation computer.  Open 
the Instructor Operator Station (IOS) window.  We will 
use this to assist in verifying data output over the 
established  network connection 

 
 
 
 
 
 
 
 
 
 
 

P / F 

4. Perform Flight testing.  This procedure will make reference to  
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No. Testing Action Result 

our previous test procedures for the individual components.  
The goal here is to operate the aircraft under normal flying 
conditions while a second group member verifies that each 
component is working.  The following procedures do not 
need to be followed in a specific order, as long as each step 
is verified.  While each procedure is being verified, ensure 
that the same result is being displayed on the physical gauge 
in the cockpit, the virtual gauge in X-Plane, in addition to the 
data matching on the Instructor Operator Station computer 
as well.  If there is a mismatch in the data being displayed on 
one of the computers or the physical gauge perform 
troubleshooting to determine which device is reporting the 
incorrect information to the user. 

1. Verify Operation of the gauges.  Perform the following 
sections from the acceptance testing to verify the 
install of each gauge. 

a. 5.3.2.1 Airspeed Indicator 
b. 5.3.2.2 Altimeter 
c. 5.3.2.3 Attitude Indicator 
d. 5.3.2.5 Heading Indicator 
e. 5.3.2.6 Vertical Speed Indicator 

2. Verify Operation of the gauges.  Perform the following 
sections from the acceptance testing to verify the 
install of each flight control. 

a. 5.3.3.1 Joystick 
b. 5.3.3.2 Pedals 
c. 5.3.3.3 Throttle 

3. Verify the operation of indicator lamps.  Perform the 
following sections from the acceptance testing to 
verify the install of each lamp. 

a. 5.3.4.1 Indicator Lamps 
4. Verify the operation of the switches.  Perform the 

following sections from the acceptance testing to 
verify the install of each switch. 

a. 5.3.4.2 Switches 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

P / F 

5. Restart X-Plane.  Perform steps 3 through 4 again.  Ensure 
that the gauges, switches, lights, and controls still work the 
same without needing calibration.  If any gauges appear to 
not reset to zero, take note of which need adjustments along 
with the ones that reset with no issues. 

 
P / F 

6. If the system performs with no issues on the second system 
run, then we can consider the system as having been 
certified in working order and built to our specifications and 
design. 

 
P / F 
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At the completion of our integrated systems testing, all systems were functioning 
as they should and with the limitation on the instruments as noted in the 
acceptance testing section.  Any issues that have arisen since testing are not 
covered in the above results. 
 

5.6 Prototype Use Cases 
The simulator being developed as part of this project was slated to be ultimately 
used as a demonstrator at the Sun „n Fun airshow and aviation conference at 
Lakeland Linder Regional Airport in April 2010.  Unfortunately, due to cockpit not 
arriving this use was never realized.  Should the cockpit have arrived this 
simulator would have be used by the aircraft manufacturer to give prospective 
buyers seat time in a very realistic simulation of the actual aircraft.  In this 
capacity it would have also be utilized to take those prospective customers and 
show how relatively easy (compared to other general aviation aircraft) that the 
aircraft is to fly.  This was meant to assist in the selling of flight instruction 
courses for the actual aircraft. 
 
The second usage scenario for our prototype is as a ground based instruction 
simulator.  In the configuration being developed as part of this project it has the 
ability to give a new student basic lessons in aircraft control before setting off in 
the actual aircraft.  However, those hours will not be able to be logged as flight 
time, due to the simulator not being FAA Certified.  In order to achieve 
certification, the optional $500 USB key from Laminar Research would need to 
be purchased.  This allows the student pilot to log up to ten hours of ground 
based training towards the completion of their sport aviation license.  Although, 
we do not have the actual cockpit, our desktop simulator could possibly be used 
for this scenario.  All that would need to be done is to procure the computer 
components to build the simulation computer and the three screens for the 120-
degree field of view.   
 
Beyond the scope of our efforts, is the use of this simulator at future airshows 
and general aviation conventions after the prototype has been turned back over 
to Mr. Kotick and Grizzly Aviation.  It has been mentioned that one of the second 
type of events this would be taken to gatherings and trade shows such as the 
Orlando Home and Boat show.  At this type of show, the goal would be to 
introduce individuals to the aircraft and flying in general.  This use scenario is 
dependent on our sponsor receiving the cockpit from the manufacturer and 
moving our completed panel into the cockpit. 
 
While our prototype did not wind up finished as designed, all of the components 
have been built and are working.  It is now up to our sponsor to utilize this 
simulator as he sees fit for his business and expand upon the features we were 
not able to implement due to time or the cockpit not arriving. 
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5.7 Requirements Verification 
After completing the test procedures and certifying that our project was built to 
our specifications and schematics, we needed to perform a requirements 
verification to ensure that each requirement we developed in Chapter 2 has been 
implemented.  The requirements have been broken into two tables: hardware 
requirements and software requirements.   In this final check of the simulator we 
have tallied what we successfully met, what have we partially met, and what 
requirements were not met.   Most requirements were met overall, however as 
seen in the following sections there are some requirements that were either 
partially met or not met at all.  The majority of these cases are the result of the 
cockpit not arriving.  This has also been established as a requirement by our 
project sponsor in order to have traceability of the implementation of our 
requirements and that each component has been tested and found to be in good 
working order. 
 

5.7.1 Software Requirement Verification 
The following table determines compliance with the established requirements 
from the beginning of this document.  All of these requirements were met through 
the selection and purchase of X-Plane as our simulation software. 
 

Req. # Sub. Req. Requirement Description Result 

S1 - Realistic Look and Feel: The virtual 
simulation environment mimics the look 
and feel of the real world as close as 
possible.   This not only includes visual 
effects, but also how physics are applied to 
the environment. 

 
 
 
 

Met 

S1 A Realistic Scenery: scenery has a natural 
feel and does not look jaded or ragged.  
Terrain meshes are of high enough 
resolution to navigate from the air. 

 
 

Met 

S1 B Inclusion of Airports Worldwide: Ensure a 
wide variety of airports are installed. 

 
Met 

S2 - Ability to change environmental factors 
dynamically: Using the X-Plane IOS 
screen or from the weather and 
time/season options in the menu bar. 

 
 

Met 

S2 A Ability to Interface Hardware with software 
via API: Inclusion of X-Plane SDK to 
develop plug-ins to interface with gauges, 
controllers as well as other computers and 
data types. 

 
 
 

Met 

S3 - Model Entertainment Aspects  Met 

S3 A Weather Effects: Ability to have a wide  
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Req. # Sub. Req. Requirement Description Result 

range of weather scenarios in X-Plane 

including rain, snow, wind, sheer effects, 

turbulence, lightning and strong waves in 

the water. 

 
Met 

S3 B Crash Effects: When the aircraft is 

overstressed, or flies into the earth effects 

are generated by X-Plane end the 

simulation is ended. 

 
 

Met 

S3 C Sounds: Realistic prop sounds.  Either 

using default audio in X-Plane from a 

similar propeller driven aircraft  or recorded 

sounds of an actual GoBosh G700S 

 
 

Met 

S3 D Ability to create custom 

scenarios/missions: X-Plane has tools to 

create and save custom missions. 

 
Met 

S3 E. AI Aircraft also utilizing airspace and 

airports: Available via 3rd party plug-ins 

and custom development using the SDK. 

 
Met 

S4 - Aircraft Model Met 

S4 A Aircraft Exterior Model: Complete and 

generated via the Plane-Maker tool.   

 
Met 

S4 B Model parametric data: Data received and 

implemented from the aircraft 

manufacturer or other source 

 
Met 

S5 - Ability to interface with other Flight Sim/X-

plane games: X-Plane has built in 

multiplayer as well as the ability to 

interface with other simulators with an 

appropriate plug-in. 

 
 
 

Met 

S5 A Native Multiplayer Support: Support over 

TCP/IP and UDP protocols included for an 

enhanced simulation experience through 

multiplayer gaming or through the use of 

 
 
 

Met 
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Req. # Sub. Req. Requirement Description Result 

an Instructor Operator Station. 

S6 - Guaranteed minimum 30 FPS: Set in 

rendering options; ensure graphics 

settings are not overset so that there is no 

error while the simulator is launching that it 

is reducing graphics settings to maintain 

performance. 

 
 
 
 

Met 

S6 A FAA Certification – Optional Requirement: 

Ability to be implemented with a $500 key.  

The ability to is the requirement, not the 

implementation. 

 
 

Met 

S7 - Ability to interface controls/flight 

instruments: SDK to write control plug-ins 

for flight instruments and flight control s 

 
Met 

S8 - Ability to interact with an Instructor 

Operator Station: Includes built in IOS or 

3rd party applications. 

 
Met 

 

 

5.7.2 Hardware Requirement Verification 
The following table determines compliance with the established hardware 
requirements from the beginning of this document.    Several of these 
requirements were not met due to the cockpit not arriving and the subsequent 
decision to not build a computer as a result of not going to Sun „n Fun in 
Lakeland, FL.  All of our primary requirements were met however for 
implementing controls and gauges. 
 

Req. # Sub. Req. Requirement Description Result 

C1 - USB interface for controls & gages: 

Motherboard provides enough free USB 

ports for all of the flight controls and 

instruments or requires the use of a USB 

hub. 

 
 
 

Met 

C2 - 120 degree field of view: Ability to in X-

Plane as well as with chosen graphics 

adapters and monitors. 

 
Partial 
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Req. # Sub. Req. Requirement Description Result 

C2 A 3 LCD monitors: Must be no smaller than 

24” and secured to the fuselage of the 

aircraft. 

 
No 

C2 B Graphics Card/Adapter: Powerful enough 

to output required resolution to 3 monitors 

with a resolution of approximately 

1920x3240. 

 
 

No 
 

C3 -. 2Ghz 64-bit CPU (minimum): Established 

through X-Plane requirements. 

 
No 

C4 - 4GB RAM: Sufficient memory to run both 

Windows 7 Professional as well as the 

flight simulator. 

 
No 

C5 - 120GB Hard Drive (minimum): X-Plane 

requires around 72GB for a full install, and 

Windows 7 requires 20GB.  160GB 

recommended. 

 
 

No 

M1 - USB Controlled: Has USB on the chip with 

little development required to implement 

computer communications 

 
Met 

M2 - 20ms refresh rate (minimum) Met 

M3 - Use less than 5V to power the actual chip.  

Devices connected to the chip may use 

other values. 

 
Met 

M4 - Minimum 8 I/O Pins for external 

communications 

 
Met 

M5 - Fit inside of a 3.24”x3.24” profile.: For the 

aircraft gauges and alongside the flight 

controls. 

 
Met 

M6 - Low Cost Microcontroller: Including not 

only the chip but also the development 

board. 

 
Met 
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Req. # Sub. Req. Requirement Description Result 

M7 - As self-contained as possible: Does not 

require any complex circuitry or boards to 

be manufactured outside of very simple 

boards that can be manufactured in ENGR 

456. 

 
 
 

Met 

F1 - Motor to drive flight instruments: Use of 

servo and stepper motors to drive flight 

instruments.  Must be able to complete a 

turn of over 360 degrees for the altimeter 

and heading indicator.  Other gauges need 

only to travel less than 360 degrees 

 

 

 

 

Met 

F2 - Realistic flight instruments and controls: 

Flight controls are to be original, 

instruments should be as close to original 

manufacture specification as possible. 

 
 

Partial 

F2 A Gauges: Standard Six-Pack has been 

implemented - Altimeter, Airspeed 

Indicator, Attitude Indicator, Turn 

Coordinator, Heading Indicator, Vertical 

Speed Indicator.  Ensure each gauge 

matches or closely matches the actual 

gauge utilized in the G700S cockpit. 

 
 
 
 
 

Met 

F2 B Flight Controls (Stick, Pedals, Throttle): 

Using existing controls from the GoBosh 

G700S to preserve realistic look and feel. 

 
Met 

 
Requirements F2 and F2A were both recorded to have partial compliance with 
our stated project requirements.  In the case of requirement F2, this is due to the 
end result of our gearing being off on the altimeter and the FTDI chip that control 
the turn coordinator ball having fried.  As a result, these requirements have been 
mostly fulfilled, but will need work after the project is handed over to our project 
sponsor to fine tune the results. 
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Chapter 6 
6.1 User Manual 
In this chapter we will discuss the proper operation of our flight simulator.  We will 
start with the basic operation and cover some troubleshooting procedures if 
something unexpected occurs during use.  This user manual assumes that the 
user is familiar with the Windows operating system and flight simulators. 
 

6.2 Setup and Basic Operation 
With this section we will describe how to setup the simulator for a first run.  To 
start navigate Windows Explorer to your X-Plane directory.  This is commonly 
found in C:\Program Files\ but could be located elsewhere depending on your 
setup.  From here verify that you have the following directories: 

 …\X-Plane 9\Aircraft\General Aviation\GoBosh 

 …\X-Plane 9\Airfoils\NACA_4415.afl 

 ....\X-Plane 9\Resources\plugins\GaugeTest.xpl 

 ....\X-Plane\config.ini   
Also verify that X-Plane 9.4 is the version that is installed.  This software has not 
been tested with version 9.5 which was released in March 2010. 
After verifying that you have the appropriate plug in and aircraft data installed, 
proceed to plug the seven port USB hub into one free USB port on the simulation 
computer.  Plug the 4 port hub also into a free USB port on the simulation 
computer.  At this point you should hear multiple audible alerts that Windows has 
detected new hardware.  Each of the instruments and controls can be verified in 
the device manager of Windows. 
 
After plugging in all of the devices, double click on the X-Plane icon located on 
the desktop.  This will launch X-Plane.  While the loading screen appears on your 
monitor, you should see each of the six simulated instruments move as they 
initialize.  If a gauge does not move, proceed to section 6.3 for troubleshooting 
information. 
 
Once X-Plane has loaded, you should be on a runway with the GoBosh loaded 
on the screen.  If the GoBosh is not the aircraft on the screen then the GoBosh 
will need to be selected from the Aircraft menu on the top of the screen.  It can 
be found in the category “General Aviation,” 
 
Before flying, it is suggested that you ensure your control devices are calibrated.  
With the pedals, the gears can slip when extreme forces are applied during use.  
This causes the center to not be correct.  Using the chase view of the aircraft, 
ensure that the rudder pedals are forward facing to you and that the rudder of the 
aircraft is in the 0° position.  Additionally, take the time to move the joystick to 
ensure that the ailerons and elevator moves as expected. 
 
At this point one can switch to the cockpit view by hitting “A” on the keyboard or 
remain in the chase view (to return to the chase view from the cockpit, hit the “W” 
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key).  At this point you may release the brakes with the “B” key and increase the 
throttle.  To increase the throttle, one just needs to push in on the rod that is 
located in the center of the instrument panel.  To decrease throttle, simply pull 
back on the rod.  Note: the throttle may get caught as you pull out on a zip tie; 
this results in not fully decreasing your throttle.  Simply pull up and back until you 
reach full stop. 
 
Flying in the aircraft is fairly straight forward and works just the same as in an 
aircraft or with any other flight simulator.  To increase altitude pull back on the 
stick.  To decrease altitude, push forward on the stick.  To go left, pull the stick to 
the left and to go right, pull the stick to the right.   The rudder pedals have been 
designed to help add realism to the simulator.  In order to use place your feet 
firmly on the foot rests or place your heel on the ground and toes on the foot rest.  
The pedals are attached with hinges so either operation will work.  To turn the 
rudder to the left, push on the pedals with your right foot.  To turn right, push on 
the pedals with your left foot.  It may take a while to get the hang of the 
operation, but once successful, flying the plane will actually be easier. 
 
Since the majority of simulator functions at this point are functions of X-Plane, 
please see the X-Plane User Manual at http://wiki.x-plane.com/Category:X-
Plane_Desktop_Manual.  This will cover all aspects of the simulator software. 
 

6.3 Troubleshooting 
At some point during the operation of the simulator, a component may fail or 
produce undesired results.   This section will cover the steps to recover from 
these failures. 
 

6.3.1 Inoperative Gauge 
It is possible that a gauge may not properly work during simulator usage.  This 
could be caused by a variety of factors including Windows not recognizing the 
device properly.  The steps below should correct this issue. 

1. Check the Config.ini file to see if the gauge is named correctly 
2. Check to make sure the gauges and controls show up in the Device 

Manager Correctly 
a. Right Click on My Computer and select Manage, then select Device 

Manager 
b. Click on the USB and you should see all the connected gauges and 

controls 
c. Right Click on the gauge or control in question and select 

properties 
d. Select the Advanced tab 

i. You see that the VCP drivers are deselected 
e. If you don't see Advanced tab then you need to uninstall and 

reinstall the device, making sure the VCP drivers is deselected 
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6.3.2 Gauge does not Initialize Properly 
If the gauge does not initialize properly on startup, the first thing to check is to 
ensure that the LED for the light sensor is on.  If it is on ensure that it hits the 
light sensor.  It is possible that during transport that these two could become 
misaligned and cause undesirable results. 
 
For the attitude (artificial horizon), if it does not return to a perfect center, it is due 
to another issue.  In this gauge there is no LED for calibration.  Instead the issue 
is that the wire that goes to the stepper motor will become too tight around the 
shaft.  Simply manually adjusting the shaft and rotating until it lines up rectifies 
this issue.  
 

6.3.4 Control Device is not Recognized 
If a control is not functioning in X-Plane, first verify that it is plugged into a USB 
port.  If it is plugged in, follow the procedure below to troubleshoot the control. 

1. Check the Config.ini file to see if the gauge is named correctly 
2. Check to make sure the gauges and controls show up in the Device 

Manager Correctly 
a. Right Click on My Computer and select Manage, then select Device 

Manager 
b. Click on the USB and you should see all the connected gauges and 

controls 
c. Right Click on the gauge or control in question and select 

properties 
d. Select the Advanced tab 

i. You see that the VCP drivers are deselected 
e. If you don't see Advanced tab then you need to uninstall and 

reinstall the device, making sure the VCP drivers is deselected 
 

6.4 FTDI Chip Programming 
This section will explain how to install the drivers for a device that you wish to 
connect that uses the FTDI chip and how to program the EEProm on the chip to 
make the device whatever you want it to be.  This will allow you to use the device 
with the GoBosh Simulator.  Prior to doing this you should have: 

 An idea of the gauge or control that you are creating 

 FTDI Drivers can be gotten at the Code Site through a versioning software 
(tortoise SVN) or here http://www.ftdichip.com/Drivers/D2XX.htm 

 A board wired up for connection to the computer(USB A/B cable) 
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Procedure: 
1. Make sure the board is at least wired up to drive the FTDI chip. 
2.  

 
Figure 6-1.  Basic Bus Powered 5V System. Image by Chris Dlugolinski 

 
3. Connect the USB A/B cable to the chip and to the computer, since it is self 

powered as shown you don't need any external power. 
4. In the FTDI Drivers folder you need to open the D:\FTDI Drivers\CDM 2.06.00 

WHQL Certified folder 
a. You will see two files that you need to edit 
b. Ftdiport.inf and ftdibus.inf 

 

 
Figure 6-2. FTDIport.inf. Screenshot by Chris Dlugolinski 

 
c. The highlighted section above shows the section in ftdiport that you 

need to edit 
i. You need to add a new PID for your device and a name 

following the GAUGE_<name> or CONTROL_<name> 
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convention, this is for the plugin to work with the gauge or 
control 

d. Do the same for the ftdibus.inf file as shown below (following the same 
naming convention) 
 

 
Figure 6-3. FTDIbus.inf Screenshot by Chris Dlugolinski. 

 
e. There is one last file that needs to be edited before you can begin and 

that is the  Config.ini file 
f. Follow the other data format and fill in the info needed to make your 

control or gauge work correctly 
 

 
Figure 6-4. Config.ini file.  Screenshot by Chris Dlugolinski 
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5. Plug in the FTDI chip 
6. You will see the found new hardware window open cancel it and open the 

Device Manager 
a. Start->Right Click on My Computer and select Manage 
b. Click on Device Manager 

 

 
Figure 6-5. Device Manager.  Screenshot by Chris Dlugolinski 

 
c. You will see a USB to Serial device with a Yellow Exclamation.  
d. Install the FTDI Driver, Right Click on the device and select Update 

driver 
e. You will need to find the directory where you saved the FTDI drivers 

and point to it  
f. Click continue anyway 
g. Once the drivers are installed you need to uninstall the VCP drivers 
h. Then unplug the USB and re-plug the device in, if it comes up again 

without the yellow exclamation you can continue if not reinstall the 
driver and uninstall the VCP  

i. Once installed you can change the device to what you have entered 
into the other files above using the FTD2XX.exe serializer program 
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Figure 6-6. FTD2XX Serializer Program 

 
j. First you need to enter the info as seen above just changing the 

description to your corrected name, and changing the Product ID to 
your corrected ID. 

k. Then you will need to select the Advanced setup button  this will 
pop up a window you just need to select OK to 

l. Then  you will see that the other buttons are enabled press the save 

button  

m. Then you can program the chip using the Program button   

n. Now press the test button it will probably fail but that is fine  
o. Unplug the USB and re-plug in the device and see if the new name 

shows in the Device Manager.  If it does OK, if not you need to Right 
Click on the device and Uninstall it then Scan for new hardware and 
you should find it.  If Not then you have to check your .inf files to see if 
the PID and the Description you typed match in that file. 

Upon completion of the above procedure, the new FTDI chip will have been 
programmed.  At this point you can use the chip for the purpose you have set it 
up for. 
 
 
 
 
 
 
 
 



   P a g e  |129 

 

Chapter 7 
7.1 Summary 
Our project has been completed according to our design specifications and we 
have ceased all further production.  All the software and parts have been 
integrated and tested completing the test and production phase of the project.  
The following is where we stand with each component of the project. 
 
The first part of the semester we spent all of our time doing expensive trade 
studies to decide on various implementations to peruse.  For our simulation 
software trade study we chose X-Plane over Microsoft Flight Simulator because it 
better met our need overall.  Once we picked this platform we did extensive 
research into the X-Plane SDK and decided on the best way to interface with the 
simulation software.  We figured out the logical flow of our interface software, and 
have completed and tested the actual code.  Example code available on the X-
Plane SDK website was a great resource in the design and implementation of our 
software. 
 
On the hardware end, we had looked at various parts for various applications and 
decided on the parts we wanted to use and for what components.  We‟ve used 
FTDI boards for all the gauges and other simple devices as well as for the control 
devices that generate an analog signal.  We have completed writing and testing 
all the interface code for the FTDI boards.  For the gauges we had explored 
every conceivable implementation and went with stepper motors exclusively for 
all six.  For the electronics we successfully implemented our high level circuit 
design for our stepper motor gauges.  Finally we acquired the proper motors and 
assembled and tested them successfully for all six gauges. 
 
We have successfully completed every step of the design phase and the build 
phase and our project has been handed over to our project sponsor.
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A.1 Microcontroller Trade Study 
Table A-1 Microcontroller Comparison 

 

 
A.2 Flight Simulator Trade Study 

Table A-1 Environmental Aspects 

No. Item/Description Req. 
No. 

FSX X-Plane 9 

1. Inclusion of Majority of Airports 
Worldwide 

1.B Yes Yes 

Microcontroller Atmel AT89C5131 PIC18F4550 FTDI FT245BM

Dev Board futurlec.com futurlec.com FTDI

Cost Dev Board $35.90  Chip $10.11 Dev Board $46.90  Chip $14.99 Dev Board $30      Chip $5.00

Usb driver http://www.atmel.com/dyn/resource

s/prod_documents/doc7646.pdf

CDC Firmware  

http://www.microchipc.com/sourcecode/inde

x.php#pic18f4550usb  

http://microcontrollershop.com/product_info.

php?products_id=2125

Free from FTDI to download and no 

programming on chip unless really 

necessary.   Www.futurlec.com

speed 24 MHz 48 MHz USB 1.1 or USB 2.0 (compatible)

Examples Come with dev board Come with dev board  

http://www.create.ucsb.edu/~dano/CUI/  

http://www.edaboard.com/ftopic313796.html

http://electronicdesign.com/Articles/I

ndex.cfm?AD=1&ArticleID=16125

Memory 32k 32k External EEPROM
Memory RAM 1k 2k

I/O 34 35 8 pin

Languages c, assembler c, c++, assembler any

Power Needed 3.0V to 3.6V    30 mA Max 

Operating Current

3.3V detached   25mA All usb self contained may need to 

do something for control of external 

Thoughts
Atmel AT89C5131

PIC18F4550

FT245BM

Conclusion:

Needing to know the devices and gauges so we know what ouputs and ports need to support.  We have been looking into different servo 

motors, Joe bought a small servo that seems to have the ratings needed to run off of USB power alone, that will be easily interfaceable with 

the FT245BM USB chip.  That will solve some of the problems with some of the gauges as well as allow for feedback of the position, we 

could also gear these motors to get the full rotation that is necessary. The other gauges that need to be continuous are a little different and 

will need to use steppers if possible to find a mini stepper at the ratings that we need.  I have been looking and have found a few but the 

ratings are right at the cutoff for the power consumption of the USB.  This will take a little more research but it should be possible if not we 

could always use a separate power supply for each of the gauges, either way the gauges can be driven by the simple FT245BM chip and 

circuit that is necessary to make it work found on the FTDI Website....

This seems to be a better choice all around including the fact that we could have pre made USB communications 

cutting out some of the hassle of that.  After speaking with Dr. Richie and discussions with the rest of the group this 

option is there only if we need to actually do some programming on chip that is greater than necessary to make the 

hardware work

Most hobbyists and a lot of projects on the net use this controller, which means we will have many examples to use or go 

from

This is a chip that requires no extra programming on chip for the USB communication.  It can be used in conjunction with 

the other chips or on its own in a speacial mode that allows for direct transfer of the info from the cpu to the ports on the 

chip….
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No. Item/Description Req. 
No. 

FSX X-Plane 9 

2. Detailed Realistic Scenery 1.A Yes Yes1 

2a.     Accurately detailed major cities and 
landmarks  

1.A Yes No 

3. Realistic Weather Conditions 3.A Yes Yes 

3a.    Real-World Weather 3.A Yes Yes 

4. AI Aircraft in the virtual world 3.E Yes No 

5. Deliver a constant 30 FPS 6 No2 No2 

 
Notes: 

1. X-Plane 9 does include the majority of airports worldwide including a few 
obscure airports that are not found in Microsoft Flight Simulator, but 
otherwise each largely has the same facilities available.  Microsoft Flight 
Simulator however does include a higher detail of scenery of individual 
airports by ensuring that beacons, buildings and fueling stations are 
located at each facility.  X-Plane 9 has only the runways and taxiways in 
the scenery, lacking any structures – even at major airports such as KJFK 
or KMCO.   

2. The retail versions of FSX and X-Plane do not include any guarantees for 
being able to reach 30 FPS.  This requirement can be achieved by 
purchasing sufficient computer hardware and optimizing the setting of the 
software package.  FSX will allow you to set a target frame rate in the 
display options, but this will not change the display settings to deliver the 
required rate.  X-Plane 9 also allows you to set a target frame as well as 
ensuring that the target frame rate is reached by changing the graphics 
settings on the fly.  In addition to this one can purchase a USB key that 
brings the software into FAA compliance at a price of $500 (if to be used 
for flight training).  

 
Table A-2 Aircraft Modeling 

No. Item/Description Req. 
No. 

FSX X-Plane 9 

1. Included 3D Model Generator 4.A No1 Yes 

2. Ability to change aircraft parametric data 
on the fly                                    

4.B Yes2 Yes 

 
Notes: 

1. FSX requires the use of an outside modeling program such as 3ds Studio 
Max to generate a 3D model of the aircraft.  This opens up to the 
possibility that the model could look one way and have the flight 
characteristics of an aircraft that does not resemble that particular design. 

2. Requires editing the aircraft.cfg file in a text editor, but allows you to 
change all of the aircraft variables. 

Table A-3 Entertainment Features 
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No. Item/Description Req. 
No. 

FSX X-Plane 9 

1. Detailed Crash Effects 3.B No1 Yes1 

2. Multiplayer Support 5.A Yes2 Yes2 

3. Aircraft Sounds 3.C Yes Yes 

4. Ability to create custom 
scenarios/missions 

3.D Yes Yes 

5. Built-in Instructor Operator Station (IOS) 8 No3 Yes3 

 
Notes: 

1. By Default in both of the flight simulators, when the aircraft crashes or the 
airframe is overstressed due to physical factors, the flight ends with the 
aircraft stuck in the position that the either struck the ground or featured 
overstressed conditions.  However, X-Plane allows for the removal of flight 
surfaces if the aircraft goes past over-speed and over-G thresholds as well 
as the flaps and gear doors when over-Vfe thresholds have been passed. 
[X-Plane] 

2. Microsoft Flight Simulator utilizes the GameSpy matchmaking service for 
multiplayer sessions across the internet but also supports direct 
connections across computers on the same LAN.  X-Plane has support for 
local networking built-in.   

3. X-Plane features a built in IOS that can be projected to a secondary 
monitor or can be utilized across the network with a different computer 
running a separate copy of X-Plane.  Microsoft Flight Simulator does not 
have this feature built in and would require an additional application to be 
developed for this functionality to exist. 

 
Table A-4 Simulator to External Flight Instruments/Controls Communication 

No. Item/Description Req. 
No. 

FSX X-Plane 9 

1. Protocol/API to interface with flight 
simulator software 

2.A Yes1 Yes1 

 
Notes: 

1. FSX allows for two methods of interfacing with simulated flight controls 
and instruments: the SimConnect API and the legacy FSUIPC interface.  
X-Plane 9.4 utilizes plug-ins based on .dll files to communicate between 
the software and other applications and external instruments/controls. 

 
Summary: 
While Microsoft Flight Simulator X wins in regards to the default scenery included 
with the software and the number of resources available on the internet it is also 
unfortunately no longer being developed by Microsoft with no time frame for 
when a new version would be released, if ever.  X-Plane 9 however released 
version 9.40 recently with no indication that development will stop soon.  In 
addition, X-Plane models the aircraft more realistically, and includes the model 
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generator to develop an airframe to fly in the software compared to FSX which 
requires the use of an expensive 3rd party 3D modeling package.  X-Plane also 
includes a few more effects in-terms of crashes, but lacks detailed scenery.  Any 
areas that would need detailed scenery would need to be modeled or purchased 
as a add-on from a 3rd party developer.  Finally there is the aspect if this 
simulator were to ever be used for ground based training, the only option to allow 
for this would be to use X-Plane after purchase of a $500 USB license key which 
unlocks the ability for it to be FAA Certified. 
 
Recommendation: 
Use Laminar Research X-Plane 9.4 for the graphics software to power the 
G700S Cockpit flight simulator. 



 

 

 

 

 

 

 

 

 

 

Appendix B: Project Schedules and Fall Semester 
Monthly Status Reports 
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B.1 Fall Semester Project Schedule 

 
 

B.2 Spring Semester Project Schedule 
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B.3 October – Monthly Status Report 
Period Covered: 
1 Oct. 2009 – 31 Oct. 2009 
 
Project Progression: 
Upon reaching October 31 the trade study and requirements development 
phases have been completed.  Trade studies are being presented at the first 
meeting of November along with our formal recommendations for design.  In 
addition, the design phase has begun with USB communication and 
microcontroller interface being worked on.   
 
Project Expenditures: 

 Project Funds: $0 

 Personal Funds: ~$50 
o Purchased a copy of X-Plane, servo motor and USB 

communications chip for evaluation. 
 
Project Files Delivered: 
FSX vs. X-Plane Trade Study 
Microcontroller/USB Implementation Trade Study 
Hardware Trade Study 
 
Project Items to be Completed: 

 Design of Flight Instruments 
o Microcontrollers/USB interface 
o Servo Motors 
o Required software on simulator PC 

 Design of Flight Controls 
o USB interface 
o Throttle 
o Yoke 
o Pedals 

 Other Electrical Design 
o Lights/Switches 
o Power Supply 

 Design of Aircraft Model – Need Parametric Data 

 Mounting Design for Monitors and Computer Hardware 
Design Documentation 

 

B.4 November – Monthly Status Report 
Period Covered: 
1 Nov. 2009 – 30 Nov. 2009 
 
Project Progression: 
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Upon reaching November 30, 2009 we have completed major areas of the 
project design.  The majority of the flight instruments design has been completed, 
although we are still attempting to contact simkits in regards to a discount on 
their pre-built gauges.  Part selection for all of the major components, including 
the computer has been completed and has been rolled into our projected budget.  
At this time we are working on pulling together our project documentation and 
taking care of the remaining design tasks.  We have also successfully tested the 
FTDI chipset that we intend to use for the aircraft gauges.   
 
Project Expenditures: 

 Project Funds: $0 

 Personal Funds (this month): $0 

 Personal Funds (project total): ~$50 
 
Project Files Delivered: 
Budget 
 
Project Status: 

 Design of Flight Instruments  
o Microcontrollers/USB interface (Complete) 
o Servo Motors(Complete) 
o Required software on simulator PC (Complete) 
o Mechanical design (In Progress) 

 Design of Flight Controls 
o USB interface (Complete) 
o Throttle (Complete) 
o Yoke (Complete) 
o Pedals (In Progress) 

 Other Electrical Design 
o Lights/Switches (Complete) 
o Power Supply (Complete) 

 Design of Aircraft Model – Have aircraft manual, other sources of 
performance data? 

 Mounting Design for Monitors and Computer Hardware (In Progress) 

 Design Documentation (In Progress) 
 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

Appendix C: Permissions to use Protected Materials 
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C.1  Images by Mark Verschaeren/Flight Illusion 

 
Site: http://www.flightillusion.com 
This reference is used with permission for the following figures: 

A) Figure 3-28 
 

C.2 Information from Bob Miller 
Reply: OTA is NOT copyrighted.  Please pass along anything you like.  Credit 
back to OTA would be appreciated. 
-- Bob Miller 
 
Site: http://overtheairwaves.com/vol3-46.jpg 
This reference is used with permission for the following figures: 

A) Figure 3-35 
 

C.3 Wikipedia 
Images taken from Wikipedia fall into three categories: Licensed under the GNU 
Free documentation License (denoted with a *), A work of a Federal Agency of 
the United States Government covered by Title 17, Chapter 1, Section 105 of the 
US Code (denoted by a +), or with no copyright claimed by the author (denoted 
by a ^). 
For the following figures: 
 

A) Fig. 3-11^ http://en.wikipedia.org/wiki/File:Six_flight_instruments.JPG 
B) Fig. 3-17* http://en.wikipedia.org/wiki/File:3-Pointer_Altimeter.svg 
C) Fig. 3-19+  http://en.wikipedia.org/wiki/File:Sens_alt_components.PNG 
D) Fig. 3-20* http://en.wikipedia.org/wiki/File:True_airspeed_indicator-

FAA.SVG 

http://en.wikipedia.org/wiki/United_States_Code
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E) Fig. 3-22+ http://en.wikipedia.org/wiki/File:ASI-operation-FAA.png 
F) Fig. 3-23^ http://en.wikipedia.org/wiki/File:R22-VSI.jpg 
G) Fig. 3-25+ http://en.wikipedia.org/wiki/File:Faa_vertical_air_speed.JPG 
H) Fig. 3-26*

 http://en.wikipedia.org/wiki/File:Attitude_indicator_level_flight.svg 
I) Fig. 3-30* http://en.wikipedia.org/wiki/File:Turn_indicator.png 
J) Fig. 3-32+ http://en.wikipedia.org/wiki/File:Turn_indicators.png 
K) Fig. 3-33 * http://en.wikipedia.org/wiki/File:Heading_indicator.png 

 
 


