
© 1999-2008 AGG Software

ASCII data query and parser plugin module

PRINTED MANUAL

All rights reserved. No parts of this work may be reproduced in any form or by any means - graphic, electronic, or
mechanical, including photocopying, recording, taping, or information storage and retrieval systems - without the
written permission of the publisher.

Products that are referred to in this document may be either trademarks and/or registered trademarks of the respective
owners. The publisher and the author make no claim to these trademarks.

While every precaution has been taken in the preparation of this document, the publisher and the author assume no
responsibility for errors or omissions, or for damages resulting from the use of information contained in this document
or from the use of programs and source code that may accompany it. In no event shall the publisher and the author be
liable for any loss of profit or any other commercial damage caused or alleged to have been caused directly or
indirectly by this document.

Printed: 28.01.2008

ASCII data query and parser plugin module

© 1999-2008 AGG Software

Publisher

AGG Software

Production

© 1999-2008 AGG Software
http://www.aggsoft.com

IContents

© 1999-2008 AGG Software

Table of Contents

Part 1 Introduction 1

Part 2 System requirements 1

Part 3 Installing ASCII data query and
parser 2

Part 4 Glossary 4

Part 5 User Manual 5

... 51 Data query

... 72 Analyzing and parsing data

... 113 Characters translation

... 124 Filter

... 135 Syntax of Regular Expressions

Part 6 Troubles? 18

... 181 Possible problems

1 ASCII data query and parser plugin module

© 1999-2008 AGG Software

1 Introduction

This module provides bidirectional data input-output in our software (for example, Advanced
Serial Data Logger). This module can send an process ASCII data and single out variables to be
processed and exported later.

This module consists of two parts and works in two modes:

1. Data query – allows you to query a device via the port. This typical use of this mode is a
request for data output;

2. Data parser – allows you to single our data packets from the data flow and convert these
packets into one or several variables that are exported into a database of a file of some format.

2 System requirements

The following requirements must be met for "ASCII data query and parser " to be installed:

Operating system:

· Windows 95;
· Windows 95 OSR2;
· Windows 98;
· Windows Me;
· Windows NT4;
· Windows 2000;
· Windows XP (all editions) (both x86 and x64);
· Windows 2003 Server (both x86 and x64);
· Windows Vista (both x86 and x64).

Free disk space: Not less than 5 MB of free disk space is recommended.
Special access requirements: You should log on as a user with Administrator rights in order to
install this module.

The main application (core) must be installed, for example, Advanced Serial Data Logger.

Notes for Microsoft Vista:

Since our software saves data to the registry and installs to the Program Files folder, the
following requirements must be met:

1. You need Administrator rights to run and install our software
2. The shortcut icon of our software will be located on the desktop;
3. Windows Vista will ask for your confirmation to continue the installation.

NOTE: You can configure the user account only once in order not to see the above dialog box
any more. Search Google for the solution of this problem.

2Installing ASCII data query and parser

© 1999-2008 AGG Software

3 Installing ASCII data query and parser

1. Close the main application (for example, Advanced Serial Data Logger) if it is running;
2. Copy the program to your hard drive;
3. Run the module installation file with a double click on the file name in Windows Explorer;
4. Follow the instructions of the installation software. Usually, it is enough just to click the "Next"

button several times;
5. Start the main application. The name of the module will appear on the "Modules" tab of the

"Settings" window if it is successfully installed.

If the module is compatible with the program, its name and version will be displayed in the module
list. You can see examples of installed modules on fig.1-2. Some types of modules require
additional configuration. To do it, just select a module from the list and click the "Setup" button
next to the list. The configuration of the module is described below.

You can see some types of modules on the "Log file" tab. To configure such a module, you
should select it from the "File type" list and click the "Advanced" button.

Fig.1. Examples of installed modules

3 ASCII data query and parser plugin module

© 1999-2008 AGG Software

Fig.2. Examples of installed modules

4Installing ASCII data query and parser

© 1999-2008 AGG Software

Fig.3. Examples of installed modules

4 Glossary

Plug-in - module

Main program – the program shell that uses this module. For example: Advanced Serial Data
Logger

Parser – the module that processes the data flow singling out data packets from it and variables
from data packets. These variables are used in data export modules after that.

Core - see "Main program".

5 ASCII data query and parser plugin module

© 1999-2008 AGG Software

5 User Manual

5.1 Data query

With this module, our software can not only collect incoming data, but also send commands or
queries to your devices. This way you can request data or initialize your device. Thus, this
module offers extended features providing bidirectional interaction with external devices.

You can define one or several requests (fig.1) that will be sent via the port and each request can
be performed in the following modes (fig.2):

· Once, on program startup;
· Polling – you have to specify the interval and the unit (ms, seconds, minutes, hours). The

module will send requests using the specified interval;
· At specified time – you can specify the time when the request will be sent. You can specify

several values separated with a semicolon. For example: 00:01:20;23:12:00;13:00:01. The
value of hours must be within the range from 1 to 23, minutes: 1-59, seconds: 1-59. Instead of a
particular value for hours, minutes or seconds, you can specify the * wildcard. In this case, the
program will send a request every hour, minute or second respectively. Additionally, you can
specify a devisor. For example: */2 or */3. In this case, the module will send a request every 2
or 3 hours, minutes or seconds respectively.

Fig.1 Request list

If you want to add a new request to the list, click the "Add" button. You will see the corresponding
dialog box (fig.2). Specify the request string and set the request options. You can use
hexadecimal character values in the request string in the #XX format, where XX is hexadecimal

6User Manual

© 1999-2008 AGG Software

code. For example: the request "#02INIT#03" will send 6 bytes 0x02, INIT, 0x03.

Fig.2. Request options dialog box

If your device is supposed to send a response, you can specify a certain timeout for the module
to wait for. The module will wait for the data within the specified period and will send the next
request in the queue only if it receives a data packet or after the timeout expires. The module
determines responses by signs of the data packet beginning and ending specified in the parser
settings.

You can insert the current date and time into your request, for example, in order to synchronize
the device time. To do it, you should insert the following text into the request string that will be
replaced with the date or time value: "[[XYZD]]" (without quotation marks), where:

· X – one or several symbols from the sublist below that stand for part of date or time:
· Z - millisecond;
· S - second;
· N - minute;
· H - hour;
· D - days;
· M - month;
· Y – four year digits;
· U – last two year digits.

· Y – one of the symbols from the sublist below that stand for number format:
· D – the value will be in the decimal format;
· H – the value will be in the hexadecimal format.

· Z – one of the symbols from the sublist below that define whether leading space/zeros should
be added to the number:

· S – the module will add leading spaces to numbers if their length is less than D;
· Z – the module will add leading zeros to numbers if their length is less than D.

· D – number length (one or several digits)

Y, Z, D are additional values. If you leave them out, the module will convert part of data or time
into a decimal value. You cannot specify the D parameter without the Y and Z parameters. You

7 ASCII data query and parser plugin module

© 1999-2008 AGG Software

cannot specify the Z parameter without the Y parameter, etc.

Example: You want to send the date value to the port as: 20050130
Solution: Type the following in the request string [[Y]][[MDZ2]][[DDZ2]], where
[[Y]] - 4 year digits;
[[MDZ2]] – the month value in the decimal format with additional leading zeros;
[[DDZ2]] – the day value in the decimal format with additional leading zeros;

5.2 Analyzing and parsing data

To export the data received from the port, you should configure the parser. The ASCII data parser
allows you to single out data packets from the overall flow consisting of ASCII characters and
parse these packets into variables that are exported into various destinations after that. You
should define the rules the parser will use to process the incoming data flow on the "Data packet"
tab (fig.3). There are two ways to parse data:

1. Use beginning/ending signs to split data packets – in this case, each data block has one or
more characters at the end of each packet and may have symbols at its beginning;

2. Use timeout to split data packets – in this case, data packets have no limiting characters.
The parser waits for the specified interval and, if no data is received within it, the parser
considers all data received within the timeout as one data packet.

Fig.3. Data formatting.

1. Use beginning/ending signs to split data packets

8User Manual

© 1999-2008 AGG Software

Usually, an ASCII data flow contains a data packet ending sign. Usually, the 0x0D, 0x0A
characters or their combination are used. You can see what characters are the ending signs in
your case. Just enable displaying characters with the code < 0x20h in the main window of the
program and try to receive some data. If your data block contains nonprinting characters with the
code < 0x20h, you should specify them in the module as #XX#XX (for example, #0D#0A).

· Data packet beginning sign – optional parameter. For example: #02;

· Data packet ending sign – required parameter. For example: #0D#0A;

Sometimes the beginning and the ending of a data packet vary. For example, the beginning of
your data packet contains the value of time, like 00:01:55, but this value is constantly changing.
Then you can create such a regular expression as \d{2}\:\d{2}\:\d{2} in order to determine the
beginning of a packet and select the RE checkbox next to the corresponding field.

Timeout – if you do not specify the beginning of a data packet, it may happen that the module will
infinitely wait for the ending of some data packet. The timeout value is used to prevent it. It
defines the maximum interval the module can wait for a packet to end.

Parse the entire packet (with packet signs) – this option can be useful when you use regular
expressions to determine the beginning and the ending of a data packet. This option makes the
parser use the part of the packet that will be considered as a regular expression.

2. Use timeout to split data packets

Just specify the necessary interval in the corresponding field.

3. Common parameters on this tab

The following parameters are used in both methods.

· Delete characters before parsing – you can specify one or more ASCII characters or their
codes in the hexadecimal format. These characters will be deleted from the packet before it is
parsed into variables;

· Control the data packet length – optional parameter – if you set it to 0, the packet length will
be ignored. Otherwise only packets of the specified length will be parsed into variables;

· Add a time stamp to each data packet – the parser will add the new "data stamp" variable to
each data packet that will be parsed into variables;

· Add a port number to each data packet – the parser will add the new "port number" variable
to each data packet that will be parsed into variables; It will allow you to identify data during
export if you collect data from several devices at the same time.

Data parsing variants

You can find several real-life examples on our site where different data parsing methods are
used. It can help you understand how the parser works.
http://www.aggsoft.com/serial-data-logger/tutorials.htm

1. Fixed position

Example:

Please take a look at the example below (we received this data from one telephone station):

http://www.aggsoft.com/serial-data-logger/tutorials.htm

9 ASCII data query and parser plugin module

© 1999-2008 AGG Software

 223 741 09127 15:53:30 00:05:28 O **********************************
 223 741 09127 15:56:30 00:01:28 T **********************************

The data above consists of two strings of a fixed length (77 symbols without the new line
character), all values in the string are in a fixed position. In our case, they are:
· time - the string "15:53:30" – fixed length (8 characters) that is always located in the same

(fixed) position (26 characters from the beginning of the string);
· "223" – telephone station subscriber's number;

· "741" – called number;

· "00:05:28" – call duration – all values are in fixed positions and have fixed lengths.

The parameter window is located in the "Data parsing" window. You should use this window to
add several variables (there are 4 parameters in the above example) and specify their
parameters. All fields are in fixed positions in our example so you should set the "Parsing type" to
"Fixed position" and also set the beginning and the length of this variable in a data packet.
Additionally, you should set the data type of the variable: string, date, time, etc. Other variables in
the list may have different parsing types. Data types supported by the module are listed at the
end of this section.

Parsing methods that are not used in the above example are described below.

2. Enumeration – all data was in fixed position in the above example. However, it is possible that
data looks like this:

223 741 09127 5:21:20 00:05:28 O **********************************
5 13134 013 15:53:30 0:05:28 O **********************************

Strings with data have different lengths in this case. But all variables are located in a certain
order separated with a space - separator(s). In this example, you can single out data by their
ordinal number (1..7) using the separator.

3. None – If you select this type, the parser will not single out a value from the data packet, but
will just create a variable with the NULL value.

4. Default – If you select this type, the parser will not single out a value from the data packet, but
will just create a variable with the value you specify in the "Default value" field.

5. Regular expression - 5. Regular expression – a widely used data parsing method that uses
templates with certain syntax to search for data. The general rules of specifying regular
expressions are described in next chapter. In this mode you must specify regular expression text
with one subexpression. Result of this subexpression will be used as parsing result.

You can use the following tab to specify the data format for some data types (fig.4).

10User Manual

© 1999-2008 AGG Software

Fig.4. Data format

Text data format – this group of options allows you to remove leading and/or trailing spaces in
variables of the String type.

Date and time format – it often happens that the date or time format the external device sends
does not coincide with the format in which this data is stored in the database. To convert the date
into the necessary format, you should specify the format the date and time is received in.

The same format is used to specify the date and time as the one that is used in the name of the
log file in the main program (for example, Advanced Serial Data Logger). So read about it in the
help file of the main program. Note: the "/" and/or ":" characters are enclosed in quotation marks
in the template (see fig.4).

If some part is missing in the received date and time (for example, year), you can take the missing
part from the current date and time:

Use the current date for missing parts;
Use the current time for missing parts;

Sometimes devices send dates with month names (for example, "Jan, 10 2005") and this name
can be in a language (in this example, it is in English) different from the language of your
operating system. The language ID the date is sent in is specified in the "Date language ID" field
in this case.

Data types:

· String - String value - Character array with length from 1 to 65535 characters;
· Memo - String value - Character array with length from 1 to 2^32 characters;

11 ASCII data query and parser plugin module

© 1999-2008 AGG Software

· Bytes - Binary value;
· Blob - Binary Large Object field (bytes set);
· Boolean - Logical value (True/False) - 0 or 1;
· Float - Real number - value range: -2.9 x 10^-39 .. 1.7 x 10^38
· Smallint - Signed small integer - value range: 32768..32767;
· Word - Word (unsigned small integer) - value range: 0..65535;
· Integer - Signed integer value: -2147483648..2147483647;
· Date - Date;
· Time - Time;
· DateTime - Date and time.

5.3 Characters translation

Character translation (fig.4) is used when you want to remove or replace some characters in a
data packet. For example, remove nonprinting ASCII characters.

Fig.4 Character translation

12User Manual

© 1999-2008 AGG Software

5.4 Filter

The filter is used to ignore some data packets that you do not want to export with the help of other
modules.

Fig.1 Filtering rules

You should define one or several filtering rules. If some condition is true, the program does what
is specified in the "Action" field with the matching packet.

Action types

· Ignore – the current data packet will be ignored and will not be exported;

· Parse – the current data packet will be parsed and exported.

There are several condition types that are specified in the "Status" field.

Rule status types

· Disabled – this rule is disabled and not used for filtering purposes;

· Contains – this rules checks whether the string/expression from the "Expression" field is
present in the data packet;

· Does not contain – this rules checks whether the string/expression from the "Expression" field
is absent in the data packet.

Expressions types – Expressions in the "Expression" field can be of 2 types:

· Text – the module will search the data packet for a string specified in the "Expression" field.
The search is case-sensitive.

· Regular expression – the module will use the regular expression specified in the "Expression"
field in its search. The search is case-sensitive.

13 ASCII data query and parser plugin module

© 1999-2008 AGG Software

5.5 Syntax of Regular Expressions

Introduction

Regular Expressions are a widely-used method of specifying patterns of text to search for.
Special metacharacters allow You to specify, for instance, that a particular string You are
looking for occurs at the beginning or end of a line, or contains n recurrences of a certain
character.

Regular expressions look ugly for novices, but really they are very simple, handy and powerful
tool.

Let's start our learning trip!

Simple matches

Any single character matches itself, unless it is a metacharacter with a special meaning
described below.

A series of characters matches that series of characters in the target string, so the pattern "bluh"
would match "bluh'' in the target string. Quite simple, eh ?

You can cause characters that normally function as metacharacters or escape sequences to be
interpreted literally by 'escaping' them by preceding them with a backslash "\", for instance:
metacharacter "^" match beginning of string, but "\^" match character "^", "\\" match "\" and so on.

Examples:

 foobar matchs string 'foobar'

 \^FooBarPtr matchs '^FooBarPtr'

Escape sequences

Characters may be specified using a escape sequences syntax much like that used in C and
Perl: "\n'' matches a newline, "\t'' a tab, etc. More generally, \xnn, where nn is a string of
hexadecimal digits, matches the character whose ASCII value is nn. If You need wide (Unicode)
character code, You can use '\x{nnnn}', where 'nnnn' - one or more hexadecimal digits.

 \xnn char with hex code nn

 \x{nnnn} char with hex code nnnn (one byte for plain text and two bytes for Unicode)

 \t tab (HT/TAB), same as \x09

 \n newline (NL), same as \x0a

 \r car.return (CR), same as \x0d

 \f form feed (FF), same as \x0c

 \a alarm (bell) (BEL), same as \x07

 \e escape (ESC), same as \x1b

Examples:

 foo\x20bar matchs 'foo bar' (note space in the middle)

 \tfoobar matchs 'foobar' predefined by tab

14User Manual

© 1999-2008 AGG Software

Character classes

You can specify a character class, by enclosing a list of characters in [], which will match any
one character from the list.

If the first character after the "['' is "^'', the class matches any character not in the list.

Examples:

 foob[aeiou]r finds strings 'foobar', 'foober' etc. but not 'foobbr', 'foobcr' etc.

 foob[^aeiou]r find strings 'foobbr', 'foobcr' etc. but not 'foobar', 'foober' etc.

Within a list, the "-'' character is used to specify a range, so that a-z represents all characters
between "a'' and "z'', inclusive.

If You want "-'' itself to be a member of a class, put it at the start or end of the list, or escape it
with a backslash. If You want ']' you may place it at the start of list or escape it with a backslash.

Examples:

 [-az] matchs 'a', 'z' and '-'

 [az-] matchs 'a', 'z' and '-'

 [a\-z] matchs 'a', 'z' and '-'

 [a-z] matchs all twenty six small characters from 'a' to 'z'

 [\n-\x0D] matchs any of #10,#11,#12,#13.

 [\d-t] matchs any digit, '-' or 't'.

 []-a] matchs any char from ']'..'a'.

Metacharacters

Metacharacters are special characters which are the essence of Regular Expressions. There are
different types of metacharacters, described below.

Metacharacters - line separators

 ^ start of line

 $ end of line

 \A start of text

 \Z end of text

 . any character in line

Examples:

 ^foobar matchs string 'foobar' only if it's at the beginning of line

 foobar$ matchs string 'foobar' only if it's at the end of line

 ^foobar$ matchs string 'foobar' only if it's the only string in line

 foob.r matchs strings like 'foobar', 'foobbr', 'foob1r' and so on

The "^" metacharacter by default is only guaranteed to match at the beginning of the input
string/text, the "$" metacharacter only at the end. Embedded line separators will not be matched
by "^'' or "$''.
You may, however, wish to treat a string as a multi-line buffer, such that the "^'' will match after
any line separator within the string, and "$'' will match before any line separator.

The ".'' metacharacter by default matches any character.

15 ASCII data query and parser plugin module

© 1999-2008 AGG Software

Note that "^.*$" (an empty line pattern) doesnot match the empty string within the sequence
\x0D\x0A, but matchs the empty string within the sequence \x0A\x0D.

Metacharacters - predefined classes

 \w an alphanumeric character (including "_")

 \W a nonalphanumeric

 \d a numeric character

 \D a non-numeric

 \s any space (same as [\t\n\r\f])

 \S a non space

You may use \w, \d and \s within custom character classes.

Examples:

 foob\dr matchs strings like 'foob1r', ''foob6r' and so on but not 'foobar', 'foobbr' and so
on

 foob[\w\s]r matchs strings like 'foobar', 'foob r', 'foobbr' and so on but not 'foob1r', 'foob=r'
and so on

Metacharacters - iterators

Any item of a regular expression may be followed by another type of metacharacters - iterators.
Using this metacharacters You can specify number of occurences of previous character,
metacharacter or subexpression.

 * zero or more ("greedy"), similar to {0,}

 + one or more ("greedy"), similar to {1,}

 ? zero or one ("greedy"), similar to {0,1}

 {n} exactly n times ("greedy")

 {n,} at least n times ("greedy")

 {n,m} at least n but not more than m times ("greedy")

 *? zero or more ("non-greedy"), similar to {0,}?

 +? one or more ("non-greedy"), similar to {1,}?

 ?? zero or one ("non-greedy"), similar to {0,1}?

 {n}? exactly n times ("non-greedy")

 {n,}? at least n times ("non-greedy")

 {n,m}? at least n but not more than m times ("non-greedy")

So, digits in curly brackets of the form {n,m}, specify the minimum number of times to match the
item n and the maximum m. The form {n} is equivalent to {n,n} and matches exactly n times. The
form {n,} matches n or more times. There is no limit to the size of n or m, but large numbers will
chew up more memory and slow down r.e. execution.

If a curly bracket occurs in any other context, it is treated as a regular character.

Examples:

 foob.*r matchs strings like 'foobar', 'foobalkjdflkj9r' and 'foobr'

 foob.+r matchs strings like 'foobar', 'foobalkjdflkj9r' but not 'foobr'

 foob.?r matchs strings like 'foobar', 'foobbr' and 'foobr' but not 'foobalkj9r'

 fooba{2}r matchs the string 'foobaar'

16User Manual

© 1999-2008 AGG Software

 fooba{2,}r matchs strings like 'foobaar', 'foobaaar', 'foobaaaar' etc.

 fooba{2,3}r matchs strings like 'foobaar', or 'foobaaar' but not 'foobaaaar'

A little explanation about "greediness". "Greedy" takes as many as possible, "non-greedy" takes
as few as possible. For example, 'b+' and 'b*' applied to string 'abbbbc' return 'bbbb', 'b+?' returns
'b', 'b*?' returns empty string, 'b{2,3}?' returns 'bb', 'b{2,3}' returns 'bbb'.

Metacharacters - alternatives

You can specify a series of alternatives for a pattern using "|'' to separate them, so that
fee|fie|foe will match any of "fee'', "fie'', or "foe'' in the target string (as would f(e|i|o)e). The first
alternative includes everything from the last pattern delimiter ("('', "['', or the beginning of the
pattern) up to the first "|'', and the last alternative contains everything from the last "|'' to the next
pattern delimiter. For this reason, it's common practice to include alternatives in parentheses, to
minimize confusion about where they start and end.
Alternatives are tried from left to right, so the first alternative found for which the entire expression
matches, is the one that is chosen. This means that alternatives are not necessarily greedy. For
example: when matching foo|foot against "barefoot'', only the "foo'' part will match, as that is the
first alternative tried, and it successfully matches the target string. (This might not seem
important, but it is important when you are capturing matched text using parentheses.)
Also remember that "|'' is interpreted as a literal within square brackets, so if You write [fee|fie|foe]
You're really only matching [feio|].

Examples:

 foo(bar|foo) matchs strings 'foobar' or 'foofoo'.

Metacharacters - subexpressions

The bracketing construct (...) may also be used for define r.e. subexpressions.

Subexpressions are numbered based on the left to right order of their opening parenthesis.
First subexpression has number '1'

Examples:

 (foobar){8,10} matchs strings which contain 8, 9 or 10 instances of the 'foobar'

 foob([0-9]|a+)r matchs 'foob0r', 'foob1r' , 'foobar', 'foobaar', 'foobaar' etc.

Metacharacters - backreferences

Metacharacters \1 through \9 are interpreted as backreferences. \<n> matches previously
matched subexpression #<n>.

Examples:

 (.)\1+ matchs 'aaaa' and 'cc'.

 (.+)\1+ also match 'abab' and '123123'
 (['"]?)(\d+)\1 matchs '"13" (in double quotes), or '4' (in single quotes) or 77 (without quotes) etc

Modifiers

Modifiers are for changing behaviour of parser.

17 ASCII data query and parser plugin module

© 1999-2008 AGG Software

There are many ways to set up modifiers.
Any of these modifiers may be embedded within the regular expression itself using the (?...)
construct.

i
Do case-insensitive pattern matching (using installed in you system locale settings).

m
Treat string as multiple lines. That is, change "^'' and "$'' from matching at only the very start
or end of the string to the start or end of any line anywhere within the string.

s
Treat string as single line. That is, change ".'' to match any character whatsoever, even a line
separators, which it normally would not match.

g
Non standard modifier. Switching it Off You'll switch all following operators into non-greedy
mode (by default this modifier is On). So, if modifier /g is Off then '+' works as '+?', '*' as '*?'
and so on

x
Extend your pattern's legibility by permitting whitespace and comments (see explanation

below).

The modifier /x itself needs a little more explanation. It tells the parser to ignore whitespace that is
neither backslashed nor within a character class. You can use this to break up your regular
expression into (slightly) more readable parts. The # character is also treated as a metacharacter
introducing a comment, for example:

(
(abc) # comment 1

 | # You can use spaces to format r.e. - parser ignores it
(efg) # comment 2
)

This also means that if you want real whitespace or # characters in the pattern (outside a
character class, where they are unaffected by /x), that you'll either have to escape them or
encode them using octal or hex escapes. Taken together, these features go a long way towards
making regular expressions text more readable.

How to change modifiers

(?imsxr-imsxr)
You may use it into r.e. for modifying modifiers by the fly. If this construction inlined into
subexpression, then it effects only into this subexpression

Examples:

 (?i)New-York matchs 'New-york' and 'New-York'

 (?i)New-(?-i)York matchs 'New-York' but not 'New-york'

 (?i)(New-)?York matchs 'New-york' and 'new-york'

 ((?i)New-)?York matchs 'New-York', but not 'new-york

(?#text)
A comment, the text is ignored. Note that parser closes the comment as soon as it sees a ")", so

18User Manual

© 1999-2008 AGG Software

there is no way to put a literal ")" in the comment.

6 Troubles?

6.1 Possible problems

No data for publication/exporting – no data is passed for exporting. Solution: configure the
parser, make sure that one or more variables are declared in the parser.

Error on binding variable with name %s [%s] – the error usually occurs if data does not
correspond to the specified format. For example, the date and time format does not correspond to
the data.

Unable to disconnect from the database [%s] and Unable to connect to a database [%s] – it
is impossible to connect/disconnect to/form the database. You should check the parameters of
the database connection. The analysis of the additional information will help you locate the error.

Database access error [%s]. Stop operations with the database? – the message appears if an
error occurs during an attempt to execute an SQL query if the second variant of reacting to errors
is selected. The message implies a "Yes" or "No" answer. The analysis of the additional
information will help you locate the error.

Unable to verify your SQL script [%s] – the message appears when an attempt to analyze your
SQL query fails. Check if the syntax of your SQL query is correct.

Tested successfully – the message appears if your database connection is successfully tested.
It requires no additional actions.

Database isn't used – the message appears if the module is temporarily disabled (the
"Temporarily disabled" check box is selected) or the database name field is empty. Check the
connection parameters.

Database isn't selected - the message appears if the database type is not selected. Check the
connection parameters.

Database: %s – %s contains the database name. The message appears if the database
connection is successful. Usually, you see it when you call the module for the first time. It
requires no additional actions.

Invalid data block length (columns=%d,length=%d) – an internal application error. It means
that the data sent by the parser is in an invalid format. Perhaps, you are using the module
incompatible with the version of the Advanced Serial Data Logger kernel. Update the versions of
both the kernel and the module.

The time of connection is not due yet (%d,%d) – the message appears during an attempt to
connect to the database after the connection to it has been lost and the "Reconnect after" option
is enabled. No additional actions are required.

Invalid procedure call. Bad arguments –an attempt to call the module using invalid parameters.
Perhaps, you are using the module incompatible with the version of the Advanced Serial Data
Logger kernel. Update the versions of both the kernel and the module.

19 ASCII data query and parser plugin module

© 1999-2008 AGG Software

Writing to the database is complete - the message appears if your queue of SQL queries is
successfully executed. It requires no additional actions.

Writing to the database is complete with errors – the message appears if the executing your
queue of SQL queries was interrupted by an error. It requires no additional actions.

Your SQL is empty. Please, specify some SQL text first – the message appears if you do not
enter the text for your SQL query. Check if the options on the "SQL queue" tab are configured
correctly.

Invalid temporary path – the path to the temporary file specified by you does not exist. Enter a
new path in the "Temporary folder" field on the "Errors handling" tab.

%s, %d – will be replaced by additional information.

	Introduction
	System requirements
	Installing ASCII data query and parser
	Glossary
	User Manual
	Data query
	Analyzing and parsing data
	Characters translation
	Filter
	Syntax of Regular Expressions

	Troubles?
	Possible problems

