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Figure 2 
MailCat Interface to Lotus Notes 
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An Automated Assistant for Organizing Electronic Documents 
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PO. Box ?U4, Yorktown Heights, NY1U598 

Field of the Invention 

This invention relates generallyto software applications that deliver electronic documents such 
as electronic mail, articles from news groups, or articles from electronic news services 
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Figure 3 
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Figure 4 
Training from Scratch 
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Figure 5 
MailCat_Add(Message, Folder) 
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Figure 6 
MailCat_Delete(Message) 
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Figure 7 
MaiICat_Move(Message, FromFolder, ToFolder) 
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Figure 8 
Incremental Learning Update 
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Figure 9 
Tokenize(Message) 
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Figure 10 
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Figure 11 
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Figure 12 
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AN AUTOMATED ASSISTANT FOR ORGANIZING 
ELECTRONIC DOCUMENTS 

FIELD OF THE INVENTION 

[0001] This invention relates generally to software appli 
cations that manage electronic documents such as electronic 
mail, articles from neWs groups, articles from electronic 
neWs services, Web pages or non-textual electronic docu 
ments such as images, video clips and audio clips. 

BACKGROUND OF THE INVENTION 

[0002] Numerous softWare applications permit users to 
receive and/or read electronic documents of various types. 
Lotus Notes, cc:Mail, Eudora, Netscape Messenger and 
Xmh are just a feW of the many applications that handle 
electronic mail. Other applications, such as Xrn and GNUS, 
are speci?cally tailored to neWs groups on UseNet. Yet 
another set of applications, such as Netscape Navigator and 
Microsoft Internet Explorer, alloWs the reader to access and 
vieW Web pages (documents that are distributed throughout 
the Internet and made available via the World Wide Web). 

[0003] A useful feature shared by many of these applica 
tions is the ability to store a given document (or pointer to 
a document) and associate that document (or pointer) With 
one or more categorical labels. When the user Wishes to vieW 
a document, the user can supply one or more of the labels to 
the application, thereby improving the speed and ef?ciency 
of locating it Within the collection of documents. 

[0004] Applications that manage electronic mail, elec 
tronic neWs items, Web pages or other forms of electronic 
documents use a variety of methods for storing, labeling and 
retrieving documents. For example, the mail application 
Xmh stores each document as a separate ?le in the ?le 
system of the computer or netWork on Which Xmh is 
running. Each document is assigned a single label, and all 
documents With the same label are stored in the same 
directory. The name of the label and the name of the 
directory in Which documents With that label are stored are 
typically closely associated. For example, all documents 
labeled “administrivia” might be stored in the directory 
"/u/kephart/Mail/administrivia.” If the user later Wishes to 
?nd mail that he received a feW months ago having to do 
With a lab safety check, he might click the button that 
represents the “administrivia” folder and either visually 
inspect the messages in that folder or ask Xmh to do a 
keyWord search that is con?ned to the “administrivia” 
folder. 

[0005] An alternative to storing each document as a sepa 
rate ?le in a categorically labeled directory is to store each 
electronic document, along With one or more associated 
labels, in a database. For example, Lotus Notes employs this 
approach. Furthermore, Web broWsers, such as Netscape, 
permit users to maintain a collection of bookmarks (pointers 
to remotely stored Web pages) that can be organiZed into 
folders. Netscape keeps information on bookmarks and their 
grouping into folders in a specially formatted ?le. 

[0006] From the user’s perspective, the act of storing, 
labeling and retrieving documents depends very little on 
such implementation details. Applications typically combine 
the steps of labeling and storing documents by offering the 
user a (usually alphabetiZed) menu of all of the labels that 
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currently exist. Typically, the user selects one or more labels 
and then signals to the application (e. g., by clicking a button) 
that it can go ahead and store the document (or the document 
pointer) With the selected labels. Facilities for choosing and 
dynamically updating a set of labels meaningful to an 
individual user are usually provided. 

[0007] A problem often encountered in electronic mail 
readers and other applications that manage electronic docu 
ments is that the list of possible labels may be several doZen 
or more, and consequently, it may take a user an appreciable 
amount of time (e.g., a fraction of a minute) to choose the 
most appropriate label or labels. The prospect of taking this 
time, along With the cognitive burden placed on the user, can 
discourage the user from labeling the document at all. The 
result is an undifferentiated mass of documents that can be 
dif?cult to navigate. 

[0008] One attempt to address this issue in the electronic 
mail domain, Maxims, has been proposed and implemented 
by Maes et al., Agents That Reduce Work and Information 
Overload, Communications of the ACIVI, 37(7):31-40, July 
1994. An individual user’s Maxims agent continually moni 
tors each interaction betWeen that user and the Eudora mail 
application, and stores a record of each such interaction as 
a situation-action pair. It uses memory-based reasoning to 
anticipate a user’s actions, ie it searches for close matches 
betWeen the current situation and previously encountered 
situations, and uses the actions associated With past similar 
situations to predict What action the user is likely to take. 
Given this prediction, Maxims either carries out the pre 
dicted action automatically or provides a shortcut to the user 
that facilitates that action. 

[0009] There are several draWbacks to the approach taken 
by Maxims. First, as noted by Maes et al., it can take some 
time for Maxims to gain enough experience to be useful. 
Maes et al. address this problem by alloWing a neWly 
instantiated agent to learn from more established ones. 
HoWever, because categoriZation schemes and labels are 
very much an individual matter, one personaliZed e-mail 
agent cannot accurately teach another personaliZed e-mail 
agent about categoriZation. A second problem is that this 
approach requires the agent to be active and vigilant at all 
times to record every action taken by the user. Constant 
vigilance requires tight integration betWeen the agent and 
the mail application, and therefore increases the difficulty of 
incorporating mail categoriZation into existing mail appli 
cations. A third problem is that the route by Which a mail 
item becomes associated With a label may be indirect. For 
example, suppose a message M is initially ?led under 
category C1 and then, one month later, it is moved to 
category C2. This Would generate tWo situation-action pairs: 
M being moved from the Inbox to C1, and later M being 
moved from C1 to C2. While the net effect is that M has been 
placed in C2, the tWo situation-action pairs learned by 
Maxims cause it to predict that messages like M should ?rst 
be placed in C1 and then sometime later be moved to C2. At 
best, this is inef?cient and, at Worst, it could decrease 
classi?cation accuracy because the movement of M to C2 
requires tWo separate predictions to be made accurately. The 
classi?er Would be more efficient and accurate if the clas 
si?er simply learned that M should be moved to C2. Afourth 
problem that could be acute for mail systems that store a 
user’s mail database remotely on a server is that it may be 
inef?cient to continually monitor actions on a client and 
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report them back to the server. Workarounds for this are 
likely to be complex. A?fth problem is that the learning step 
of this approach involves periodic analysis of the entire body 
of situation features and actions to ?nd correlations that are 
used as Weights in the distance metric used to gauge the 
similarity betWeen one situation and another. As the agent 
groWs in experience, so does the amount of time required for 
the learning step. Because of the large amount of time 
required for the learning phase, Maes et al. suggest that 
learning be performed only once a day. As a result, the 
Maxims classi?er can be a full day out of sync With the 
user’s most recent patterns of placing messages in folders. 

[0010] Payne et al., Interface Agents That Learn: An 
Investigation of Learning Issues in a Mail Agent Interface, 
Applied Arti?cial Intelligence, 11:1-32, 1997, describe an 
electronic mail categoriZation system very similar to that of 
Maes et al. Their method also requires that the user’s actions 
be monitored on a continual basis. Furthermore, although 
they alloW for to the possibility of incremental learning, they 
do not address the issue that the classi?er cannot perform 
Well until the classi?er has seen the user categoriZe a large 
number of messages. 

[0011] Cohen, Learning Rules That Classify e-mail, In 
Proceedings of the 1996 AAAI Spring Symposium on 
Machine Learning and Information Access, AAAI Press, 
1996,compares the relative merits of tWo procedures for text 
classi?cation. The comparisons are made using mail mes 
sages that have been previously categoriZed into folders 
using a technique similar to that disclosed hereinbeloW to 
bootstrap a text classi?er to perform Well on the ?rst 
messages seen by the classi?er. HoWever, the emphasis of 
his Work is on comparing the performance of the tWo 
methods. Cohen does not discuss the relevance of previously 
categoriZed messages for bootstrapping a mail categoriZer or 
similar application. 

[0012] Conventionally, text classi?ers learn to predict the 
category of a document by training on a corpus of previously 
labeled documents. Text classi?ers make their predictions by 
comparing the frequency of tokens Within a document to the 
average frequency of tokens in documents appearing in each 
category. A token is any semantically meaningful sequence 
of characters appearing in the document, such as a Word, 
multi-Word phrase, number, date or abbreviation. For 
example, the text “The Civil War ended in 1865” might be 
tokeniZed into the token set {“The”, “Civil War”, “ended”, 
“in”, “1865”}. Note that “Civil War” is interpreted here as 
a single token. The art of tokeniZation, as described in Salton 
et al., Introduction to Modern Information Retrieval, 
McGraW-Hill Book Company, 1983, is Well knoWn to those 
in the skilled in the art. 

[0013] As discussed by Salton et al., direct comparison of 
the document’s token frequencies With the token frequencies 
of each category can lead to highly inaccurate categoriZation 
because it tends to over-emphasiZe frequently occurring 
Words such as “the” and “about.” This problem is typically 
avoided by ?rst converting the category token frequencies 
into category token Weights that de-emphasiZe common 
Words using the Term Frequency-Inverse Document Fre 
quency (TF-IDF) principle. The TF-IDF Weight for a token 
in a speci?c category increases With the frequency of that 
token among documents knoWn to belong to the category 
and decreases With the frequency of that token Within the 
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entire collection of documents. There are many different 
TF-IDF Weighting schemes. Salton et al. describe several 
Weighting schemes and their implementations. 

[0014] A document is classi?ed by computing the simi 
larity betWeen the document token frequencies and the 
category token Weights. The document is assigned the 
category labels for the most similar category or categories. 
Numerous similarity metrics are used in practice. Most treat 
the document token frequencies and the category token 
Weights as a vector and compute some variation on the 
cosine of the angle betWeen the tWo vectors. Salton et al. 
describe several similarity metrics and their implementa 
tions. 

[0015] The complete procedure for training and using a 
standard text classi?er is as folloWs. The classi?er is ?rst 
trained on a corpus of previously labeled documents. The 
training consists of tallying the frequencies of each token 
Within each category, using this information to compute each 
token’s Weight Within each category, and storing the com 
puted Weights in a database for later retrieval. Classi?cation 
consists of computing the document token frequencies, 
retrieving the category Weights of each token appearing in 
the document and using the similarity measure to compute 
the similarity betWeen the document’s token frequencies and 
each category’s token Weights. The classi?er predicts the 
categories With the largest similarity. 

[0016] The standard algorithm Works Well When the cor 
pus used for training is static. A problem occurs if the 
training corpus ever changes due to addition, removal or 
re-categoriZation of a document. Because of the nature of the 
Weight computation, adding or removing a single document 
affects the Weights of every token in every category. As a 
result, the entire token Weight database must be recomputed 
Whenever the training corpus changes. This is unacceptable 
for organiZing electronic mail because messages are con 
tinually being added and removed from folders. 

[0017] Therefore, there is a need for an automated method 
for assisting a user With the task of using labels to organiZe 
electronic documents, Without requiring continual monitor 
ing of the user’s actions or excessive amounts of computa 
tion devoted to learning the user’s categoriZation prefer 
ences. 

[0018] Also, there is a need for an automated method of 
assisting a user With organiZing electronic documents using 
a text classi?er algorithm having ?exibility so that the 
normal additions, deletions and re-categoriZation of docu 
ments do not require unnecessary Weight recomputation 
Within the system. 

[0019] Finally, there is a need for an automated method of 
assisting the user With organiZing documents that, When ?rst 
installed, uses information about documents that have been 
labeled previously by other means to produce a classi?er, 
thus reducing or eliminating the amount of time required to 
train the automated method to categoriZe documents accu 
rately. 

SUMMARY OF THE INVENTION 

[0020] The present invention is a method for assisting a 
user With the task of identifying and carrying out an appro 
priate labeling of an electronic document such as electronic 
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mail, a news group article, Web pages or non-textual elec 
tronic documents such as images, video clips and audio 
clips. 

[0021] The method of the present invention includes the 
steps of training a teXt classi?er on the user’s existing 
labeled collection of documents, running the classi?er on 
neWly received documents, using the classi?cation results to 
identify the most likely labels and presenting the set of 
possible labels to the user in a Way that accentuates the most 
likely labels. The method further includes the step of updat 
ing the classi?er as documents continue to be stored and 
labeled. 

[0022] In one embodiment of the invention, the method is 
imbedded in an electronic mail application and assists users 
in organiZing their mail in separate folders. In a second 
embodiment, the method is imbedded in a Web broWser for 
the purpose of assisting users in organiZing their bookmarks 
(pointers to Web pages). 

[0023] Speci?cally, a method of assisting a user With the 
task of categoriZing a received electronic document into a 
collection is provided including the steps of classifying the 
document to obtain one or more most likely categorical 
labels, displaying, to the user, a representation of the one or 
more most likely categorical labels, receiving data, from the 
user, representative of one or more selected categorical 
labels and labeling the document Within the collection With 
the one or more selected categorical labels. 

[0024] Preferably, the method includes the step of re 
training a classi?er incrementally to adapt to modi?cations 
of the collection. In addition, the method preferably includes 
the step of training the classi?er from scratch With a pre 
eXisting collection of categoriZed documents. 

BRIEF DESCRIPTION OF THE DRAWING 

[0025] These and other features of the present invention 
Will become apparent from the accompanying detailed 
description and draWings, Wherein: 

[0026] FIG. 1 is a block diagram of a data processing 
system on Which the present invention can be implemented; 

[0027] FIG. 2 shoWs the user interface of one embodiment 
of the present invention, the Mailcat interface With Lotus 
Notes; 

[0028] FIG. 3 is a How diagram of the MailCat_Classify 
procedure of one embodiment of the present invention; 

[0029] FIG. 4 is a How diagram of the procedure by Which 
the classi?er, according to one embodiment of the present 
invention, is trained from scratch; 

[0030] FIG. 5 is a How diagram of the MailCat_Add 
procedure of one embodiment of the present invention; 

[0031] FIG. 6 is a How diagram of the MailCat_Delete 
procedure of one embodiment of the present invention; 

[0032] FIG. 7 a How diagram of the MailCat_Move 
procedure of one embodiment of do the present invention; 

[0033] FIG. 8 is a How diagram of the batched incremen 
tal learning update procedure of one embodiment of the 
present invention; 
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[0034] FIG. 9 a How diagram of the procedure by Which 
messages are tokeniZed prior to further processing by one of 
the core classi?er procedures of one embodiment of the 
present invention; 

[0035] FIG. 10 is a How diagram of the Classi?er_Clas 
sify procedure of one embodiment of the present invention; 

[0036] FIG. 11 is a How diagram of the Classi?er_Add 
procedure of one embodiment of the present invention; and 

[0037] FIG. 12 is a How diagram of the Classi?er_Delete 
procedure of one embodiment of the present invention. 

DETAILED DESCRIPTION OF THE 
PREFERRED EMBODIMENT 

[0038] FIG. 1 is a block diagram of a data processing 
system 10 that is suitable for practicing the teaching of the 
present invention. A bus 12 is comprised of a plurality of 
signal lines for conveying addresses, data and controls 
betWeen a Central Processing Unit 14 and a number of other 
system bus units. ARAM 16 is coupled to the system bus 12 
and provides program instruction storage and Working 
memory of the CPU 14. A terminal control subsystem 18 is 
coupled to the system bus 14 and provides outputs to a 
display device 20, typically a CRT monitor, and receives 
inputs from a manual input device 22, typically a keyboard. 
Manual input may also be provided from a pointing device, 
such as a mouse. A hard disk control subsystem 24 bidirec 
tionally couples a rotating ?Xed disk, or hard disk 26, to the 
system bus 12. The control 24 and hard disk 26 provide mass 
storage for CPU instructions and data. A floppy disk control 
subsystem 28, Which along With ?oppy disk drives 30 is 
useful as an input means in the transfer of computer ?les 
from a ?oppy diskette 30a to system memory, bidirection 
ally couples one or more of the ?oppy disk drives 30 to the 
system bus 12. Also, other storage systems such as compact 
disk (CD) (not shoWn) can be included. Finally, a commu 
nications controller subsystem 32 provides netWorking 
capabilities for the data processing system 10. 

[0039] The components illustrated in FIG. 1 may be 
embodied Within a personal computer, a portable computer, 
a Workstation, a minicomputer or a supercomputer. As such, 
the details of the physical embodiment of the data process 
ing system 10, such as the structure of the bus 12 or the 
number of CPUs 14 that are coupled to the bus, is not crucial 
to the operation of the invention, and is not described in 
further detail hereinbeloW. 

[0040] One embodiment of the present invention, referred 
to hereinbeloW as “MailCat,” augments Lotus Notes, a 
commercially available groupWare product that supports 
electronic mail. MailCat uses a teXt classi?er to assist the 
user With categoriZing mail, and continually updates the teXt 
classi?er to maintain an accurate prediction of the user’s 
likely categoriZation choices. 

[0041] All electronic messages received by Notes are 
stored in a database. The database is organiZed into a 
hierarchy of folders. Initially, When a message is ?rst 
received, it is placed in a special folder called the InboX. 
After the message has arrived in the InboX, the user can 
move the message into any folder. The folders provide a 
mechanism for categoriZing messages. For instance, the user 
may use the folder “Baseball” to store all messages related 
to the game of baseball. 
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[0042] Notes allows users to categorize messages using 
the “File” button. When the “File” button is pressed While 
the user is viewing a mail message, a dialog box entitled 
“Move To Folder” is displayed to the user, and the user can 
select from it a folder in Which to place the message. It 
generally takes a small but signi?cant amount of time and 
mental effort to scroll through the list of folders, trying to 
determine the most appropriate folder for the message. 

[0043] MailCat simpli?es the task of moving messages to 
folders by placing a number (e.g., three) of special “Move 
To” buttons (categorization shortcuts) above each message 
displayed on the display device 20, as illustrated in FIG. 2. 
The leftmost button 210 is labeled With “Patents,” Which is, 
preferably, the name of the folder that is deemed by the text 
classi?er to be most likely to be selected by the user as the 
destination for the message. Preferably, the other tWo but 
tons 220 and 230 are labeled, respectively, With the names 
of folders that are deemed second (“Mailcat”) and third 
(“Text Classi?ers”) most likely to be selected by the user. 
When one of the three buttons is selected by the manual 
input device 22, e.g., clicked, the message is immediately 
moved to the associated folder name. If the user decides that 
none of the folders offered by the three special buttons are 
appropriate, she can simply select the “File” button 240 and 
use the traditional “Move To Folder” dialog box (not shoWn) 
Which lists all of the user’s folders. Thus, even When the 
classi?er fails to anticipate the correct folder, there is no 
penalty other than the small loss of screen space devoted to 
the buttons. When the message is moved from the Inbox to 
another folder, various actions are taken to support incre 
mental learning based on the neW information derived from 
the fact that the message has been placed in a particular 
folder. Amore detailed description of MailCat’s usage of the 
text classi?er is provided hereinbeloW. 

[0044] In order to predict the most likely destination folder 
or folders for a particular message, the text classi?er must be 
trained. As is generally knoWn in the ?eld, a text classi?er 
is trained on a corpus of documents that have been classi?ed 
by humans. Often, the development of a labeled corpus 
involves a long, laborious effort by a human expert. Fortu 
nately, in an electronic mail application, the corpus is 
ready-made: the documents are the individual mail mes 
sages, and the label for each is simply the name of the folder 
into Which it has been placed. 

[0045] In the present invention, training may take place in 
a number of Ways at various times. If the automated cat 
egoriZation capability of the MailCat embodiment is 
installed after Lotus Notes has already been in use, most 
likely there Will be a pre-existing mail database containing 
folders into Which mail messages have been placed by the 
user (using the standard “File” button). In this situation, an 
initial classi?er can be trained directly from the existing 
database. While MailCat is in use, further training can be 
performed by an incremental learning procedure Which can 
be run in either a “lazy” or “instant” mode. Training from 
scratch, laZy incremental learning and instant incremental 
learning are described hereinbeloW. 

Using the Classi?er 

[0046] According to this embodiment of the present inven 
tion, When neW mail arrives in a user’s Inbox, a sequence of 
events ensues in Which the message is classi?ed, appropriate 

Nov. 15, 2001 

buttons are added to displayed messages and the mail is 
quickly ?led in response to the user’s selection. This 
sequence of events is referred to as the MailCat_Classify 
procedure. 

[0047] MailCat_Classify may be triggered in a number of 
different Ways. The simplest approach is to invoke MailCat 
_Classify Whenever a neW message arrives in the Inbox. 
HoWever, With this approach, there is a delay betWeen When 
the message is classi?ed and When it is vieWed. If incre 
mental learning has updated the classi?er during the interim, 
the buttons displayed With the message upon vieWing might 
not represent the classi?er’s latest predictions. An alterna 
tive is to run MailCat_Classify on a message just at the 
moment When the user indicates a desire to display that 
message. This method improves the accuracy of the buttons 
added to the classi?er, but introduces a slight delay in 
displaying the more up-to-date message screen. A third 
possibility is to offer the user a button that, When clicked, 
invokes MailCat_Classify on one, some or all of the mes 
sages in the Inbox. This method for triggering MailCat 
_Classify gives the user manual control over the tradeoff 
betWeen computational cost and currentness of the buttons. 

[0048] The operation of MailCat_Classify is illustrated in 
FIG. 3. MailCat_Classify takes as input a Message in any of 
the three approaches described hereinabove. First, at step 
308, a core classi?er procedure Classi?er_Classify is 
applied to the Message. As is described in greater detail 
hereinbeloW, Classi?er_Classify takes the Message as its 
input and produces, as output, a list of one or more cat 
egorical labels or folder names, “BestFolders.” Preferably, 
graphical representations or categoriZation shortcuts of the 
folder names in BestFolders are derived sometime betWeen 
the time the document is received and the time the document 
is displayed to the user. These representations, e.g. buttons, 
are preferably ordered such that the ?rst element is the name 
of the folder deemed by the classi?er to be the most likely 
destination for the input Message, the second element is the 
second most likely destination folder, etc. The maximal 
number of buttons that should be displayed, “MaxButtons,” 
is an integer, set either to some chosen default value or set 

by the user (most likely via a graphical user interface). For 
example, in FIG. 2, MaxButtons is set to 3, and Classi 
?er_Classify has returned the ordered list consisting of 
BestFolders={Patents, Mailcat, Text Classi?ers}. 

[0049] At step 310, the value of a ?ag “ShortcutMode” is 
examined. If the value of ShortcutMode is equal to 
“AddButtons,” this is interpreted as meaning that the folders 
listed in BestFolders are to be presented to the user in the 
form of special “Move To” buttons as illustrated in FIG. 2. 
In this case, the objects corresponding to the buttons are 
derived, even if their display is delayed. If the value of the 
?ag is equal to “EnhanceMenu,” then in lieu of buttons the 
user Will be provided With an enhanced version of the “Move 
To Folder” menu, in Which the ordered set of folders 
BestFolders is prepended to the standard alphabetic ordering 
of all of the folders in the database. 

[0050] If the value of ShortcutMode is AddButtons, then 
the method continues in step 312. At step 312, special 
“Move To” buttons are included at the top of the message, 
so that if and When that message is displayed to the user, it 
Will be similar in form to What is illustrated in FIG. 2. The 
“Move To” button labels are the folder names in BestFold 
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ers, preferably placed in order of their appearance in Best 
Folders from left to right at the top of the message. After 
some period of time, When the user has displayed and read 
the message, the user may elect to click on one of the “Move 
To” buttons to choose a “SelectedFolder” into Which she 
desires the message to be placed. If none of the “Move To” 
buttons offer the desired category, the user may choose 
SelectedFolder by using the standard “File” button. There 
fore, in step 314, data is received indicating that the user 
chose a SelectedFolder. 

[0051] If the value of ShortcutMode is EnhanceMenu, the 
method continues from step 310 to step 316. At step 316, the 
reader reads the message and data is received indicating that 
the user invoked the standard “Move To Folder” menu by 
clicking on the “File” button. At step 318, the list BestFold 
ers is prepended to the traditional alphabetic listing of folder 
names. This enables the user to quickly choose a Selected 
Folder, causing data indicative of the selection to be received 
at step 320. 

[0052] Regardless of the value of ShortcutMode, the tWo 
alternative paths join back together at step 322, Where the 
function MailCat_Move (detailed hereinbeloW) is called. 
MailCat_Move moves the message from the Inbox to the 
SelectedFolder and updates the classi?er With the informa 
tion that the Message is noW in SelectedFolder. 
MailCat_Classify then terminates at step 324. 

Training the Classi?er 

[0053] Although not directly observable by the user, Mail 
Cat continually trains and re-trains the classi?er in an 
attempt to keep up With dynamic changes in the user’s mail 
database as mail is received, deleted and moved. HoWever, 
an additional step of training the classi?er from scratch is 
preferable When an automated assistant according to the 
present invention is instantiated. 

Training from Scratch 

[0054] If MailCat is installed after Lotus Notes has already 
been in use, the mail database Will most likely contain a set 
of folders, each of Which contains several mail messages. If 
so, this pre-existing set of folders constitutes a corpus of 
labeled documents that can be used to train the classi?er. At 
installation, or in response to the user’s request for a 
complete refresh of the classi?er, the classi?er can be trained 
from scratch by the procedure illustrated in FIG. 4. 

[0055] First, at step 401, a global variable “PrevLearning 
Time” is set to the current time. PrevLearningTime records 
the last time at Which the classi?er Was updated. As Will 
become clear in the discussion of incremental updates 
hereinbeloW, this information can help reduce computational 
effort during the incremental updates. 

[0056] At step 402, a loop over all folders in the database 
begins by determining the ?rst (or next) folder F to process. 
If there are no folders left, the entire training-from-scratch 
procedure terminates at step 412. OtherWise, if F exists, it is 
checked at step 404 for membership in “ExclusionList,” a 
list of names of folders that are excluded from indexing. For 
example, ExclusionList could contain the folders Inbox, 
Drafts or any others that the user Wishes to exclude from 
automatic categoriZation. ExclusionList could be a default 
list, or a list modi?ed or created by the user via a graphical 
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user interface. If F is a member of ExclusionList, then the 
method continues to step 402, Where the next folder is 
determined. OtherWise, at step 406, a loop begins over all 
messages M stored Within F. At step 406, the ?rst (or next) 
message M is determined, and When no such messages are 
left in F, the training method continues to step 402, Where the 
loop over folders is resumed. OtherWise, if at step 406, it is 
determined that there is a message M to process, then the 
training method continues to step 408. At step 408, the 
procedure Classi?er_Add (detailed hereinbeloW) is applied 
to message M and folder F. Classi?er_Add incorporates into 
the classi?er the fact that message M and its contents belong 
to category F. At step 410, the “LastFolder” ?eld of message 
M, “M.LastFolder,” is set equal to F to indicate that the 
classi?er has recorded that M belongs to category F. MailCat 
preferably de?nes and uses an extra LastFolder ?eld for each 
message for tracking Which category the message Was in 
When the classi?er Was last updated for that message. This 
bookkeeping is needed for laZy incremental learning. After 
step 410, is the method returns to step 406 Where the loop 
over messages continues. 

Incremental Learning 

[0057] Users continually receive neW mail, delete old mail 
and move mail messages among folders. Since the contents 
of the folders (and the user’s oWn conception of What 
messages belong in What folders) are in constant ?ux, it is 
important for the classi?er to continually adapt itself, ie it 
should be capable of incremental learning. 

[0058] MailCat can use tWo different strategies for incre 
mental learning. The ?rst is an “instant” strategy, in Which 
updates to the classi?er are made immediately Whenever 
mail is added, deleted or moved. The second is a “lazy” 
strategy, in Which some minor bookkeeping permits the 
updates to be deferred. As mentioned hereinabove, the 
bookkeeping required to support laZy learning involves 
de?ning and maintaining an extra ?eld, “Message.Last 
Folder,” to track Which category Message Was in When the 
classi?er Was last updated. 

[0059] There are numerous advantages to laZy learning. 
On computers that are currently available, it can take a 
signi?cant fraction of a second to update the classi?er. Users 
might not tolerate an extra second of delay before vieWing 
their next mail message. LaZy learning makes it possible to 
perform the classi?er update during a moment When that to 
update is less likely to hurt performance, for example When 
the user’s machine is relatively idle. Of potentially even 
greater importance than performance is that the instant 
learning technique demands closer integration of the auto 
mated categoriZer With the mail application than does laZy 
learning. An automated mail categoriZer that employs 
instant learning must be constantly vigilant for any operation 
taken by the mail application that results in adding, deleting 
or moving a message, and When any such operation occurs, 
it must respond immediately by updating its classi?er. The 
need for tight communication betWeen the categoriZer and 
the mail application can complicate the incorporation of 
automated categoriZation into an existing mail application, 
making it less universal and practical than one based on laZy 
learning. In contrast, the use of laZy learning simpli?es 
MailCat’s integration With Lotus Notes. 

[0060] The implementation of incremental learning 
requires either updating the classi?er or performing book 
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keeping operations Whenever messages are added to folders, 
removed from folders or moved from one folder to another. 
These operations are handled by the MailCat_Add, Mail 
Cat_Delete, and MailCat_Move operations respectively. In 
addition, laZy incremental learning requires an additional 
procedure for processing any updates to the classi?er that 
have been deferred. A detailed description of each of these 
functions under both the laZy and instant learning scenarios 
is given hereinbeloW. 

MailCat_Add 
[0061] The MailCat_Add procedure adds the message 
“M” to the folder “Folder” and simultaneously updates the 
classi?er, if necessary. MailCat_Add is called Whenever a 
neW mail message is received and placed in a folder. 
Because neW mail is usually placed in the Inbox, normally 
Folder=Inbox. FIG. 5 illustrates the process of receiving 
neW mail into any folder. At step 501, a check is made to 
determine Whether the “LearningMode” is “Lazy” or 
“Instant.” If the LearningMode is LaZy, the process contin 
ues in step 510. At step 510, M’s LastFolder ?eld, M.Last 
Folder, is set to “None” to indicate that the message is not 
currently regarded by the classi?er as belonging to any 
particular folder. Then, the process continues in step 508, 
Where the addition of M to Folder is carried out. The process 
terminates at step 512. Except for the simple act of setting 
a ?eld’s value in the database, the system behaves exactly as 
it Would if there Were no automated categoriZer. Thus, little 
added Work is necessary to handle neW incoming messages. 

[0062] If, at step 501, it is determined that the Learning 
Mode is Instant, then the process continues in step 502. At 
step 502, a check is made to determine Whether Folder is in 
ExclusionList. If Folder is not a member of ExclusionList, 
then at step 504 the Classi?er_Add function (detailed here 
inbeloW) is applied to M and Folder, and the process 
continues to step 506. OtherWise, if F is a member of 
ExclusionList, then application of Classi?er_Add at step 
504 is bypassed, and the process continues directly to step 
506. At step 506, the LastFolder ?eld of M, M.LastFolder, 
is set to Folder. At step 508, M is added to Folder, and the 
process terminates at step 512. 

MailCat_Delete 
[0063] The MailCat_Delete procedure removes a message 
M from the database and simultaneously updates the clas 
si?er, if necessary. FIG. 6 illustrates the process. Regardless 
of the learning mode, the procedure begins at step 602, 
Where it is determined Whether the folder F named in the 
LastFolder ?eld of message M, M.LastFolder, is in Exclu 
sionList. If F is not a member of ExclusionList, then at step 
604, the Classi?er_Delete function is applied to message M. 
M is then deleted from the mail database at step 606. 
OtherWise, if F is a member of ExclusionList, then appli 
cation of Classi?er_Delete at step 604 is bypassed, and M is 
deleted from the mail database at step 606. 

MailCat_Move 
[0064] The function MailCat_Move moves a message M 
from the folder “FromFolder” to the folder “To Folder,” and 
simultaneously updates the classi?er, if appropriate. FIG. 7 
illustrates the process. At step 701, a check is made to 
determine Whether the LearningMode is LaZy or Instant. If 
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the LearningMode is LaZy, the process continues in step 712, 
Where M is moved from FromFolder to ToFolder. The 
system behaves exactly as it Would if there Were no auto 
mated categoriZer. In laZy learning mode, it is unnecessary 
to monitor the movement of messages among folders, as Was 
highlighted hereinabove. 

[0065] If, at step 701, it is determined that the Learning 
Mode is Instant, then the process continues in step 702, 
Where it is determined Whether ToFolder is a member of 
ExclusionList. If ToFolder is not in ExclusionList, then at 
step 704, the Classi?er_Add procedure is applied to the 
message M and the folder ToFolder, and then the process 
continues in step 706. OtherWise, if ToFolder is in Exclu 
sionList, step 704 is bypassed and the process continues 
directly to step 706. At step 706, FromFolder is checked for 
membership in ExclusionList. If FromFolder is not a mem 

ber of ExclusionList, then at step 708, the Classi?er_Delete 
function is applied to message M and the folder FromFolder, 
and then the process continues in step 710. OtherWise, if 
FromFolder is a member of ExclusionList, then step 708 is 
bypassed and the process continues directly to step 710. At 
step 710, the LastFolder ?eld of message M is set to 
ToFolder to indicate that the classi?er (correctly) regards M 
as a member of the ToFolder category. Finally, at step 712, 
M is moved from FromFolder to ToFolder. Finally, the 
MailCat_Move process terminates at 714. 

Incremental Learning Update for LaZy Learning 

[0066] If laZy learning is being employed, then the dis 
crepancies betWeen the state of the database When the 
classi?er Was last trained and the current state of the 
database Will continue to groW. At some point, a decision 
must be made to re-train the classi?er by performing an 
incremental update. Several criteria can be used to determine 
When to trigger incremental learning. For example, a ?xed 
amount of time (say an hour) may have passed since the last 
incremental update, or a threshold for the number of mes 
sages that have been added, deleted or moved may have 
been exceeded. Alternatively, the system may be in an idle 
state, so that the update can be carried out Without adversely 
affecting performance. Regardless of the details of hoW or 
Why it is triggered, the incremental learning update proceeds 
as illustrated in FIG. 8. 

[0067] At step 802, a “CurrLearningTime” variable is set 
to the current time. Then, at step 804, a loop over the folders 
in the mail database begins by identifying the ?rst folder F 
to be scanned for updates. The loop continues until all 
folders have been processed. When all folders have been 
processed, the update continues in step 822 Where the 
variable “PrevLearningTime” is set to CurrLearningTime. 
The incremental update terminates at step 824. 

[0068] The loop over folders in the mail database proceeds 
as folloWs. At step 806, a to test is made to determine 
Whether PrevLearningTime (the time at Which the previous 
incremental learning batch began) occurred before the time 
at Which the current folder F Was last modi?ed (this infor 
mation is typically available in the mail database). If the last 
modi?cation to F occurred after the start of the last update, 
then one or more messages may have been added to F in the 
interim. Therefore, each message in F should be checked to 
see Whether the classi?er has already been updated With the 
understanding that the message is in category F, Which is 



US 2001/0042087 A1 

accomplished by continuing to step 808. Otherwise, if F Was 
last modi?ed before the start of the last update, then no 
messages in F need to be checked, and the update continues 
in step 804, Where the next folder to process is determined. 

[0069] Step 808 is the beginning of a loop over all 
messages in the folder F. The loop terminates When there are 
no messages in F that remain to be processed. At this point, 
control passes back to the loop over folders at step 804. 
OtherWise, if there is a message M to process, at step 810 
M’s LastFolder ?eld, M.LastFolder, is checked to see 
Whether it is equal to F. If so, then no updates are required 
on account of M, and the update continues in step 808, 
Where the next message in F is obtained. OtherWise, if M’s 
LastFolder ?eld is not equal to F, then the classi?er may 
need to be updated, and the update continues in step 812. 

[0070] At 812, a check is ?rst made to determine Whether 
F is a member of ExclusionList. If so, the update continues 
in step 816. OtherWise if F is not a member of ExclusionList, 
then, at step 814, the Classi?er_Add function (detailed 
hereinbeloW) is applied to the message M and the folder F. 
At step 816, the folder F‘ speci?ed in the LastFolder ?eld of 
M is checked for membership in ExclusionList. If F is in 
ExclusionList, then the update continues in step 820. Oth 
erWise, at step 818, the Classi?er_Delete procedure (detailed 
hereinbeloW) is applied to the message M and the folder F. 

[0071] At step 820, message M’s LastFolder ?eld, M.Last 
Folder, is set to F. Upon the completion of step 820, the 
update continues in step 808, Where the next message in F 
is obtained. Note that steps 802, 806, and 822 are introduced 
only for the sake of efficiency, and could be eliminated 
Without affecting the correctness of the incremental update. 

Text Classi?er 

[0072] The overhead of recomputing all token Weights for 
each update is avoided in MailCat’s text classi?er according 
to the present invention by storing and retrieving token 
frequencies rather than token Weights. Token frequencies are 
easier to maintain in the face of updates because adding and 
removing documents from a category only requires adding 
or subtracting the token counts for the document being 
updated. Token frequencies can be used for classi?cation as 
folloWs. When the classi?er is asked to classify a document, 
it retrieves, for each category, the frequencies for just those 
tokens that appear in the document. From the retrieved token 
frequencies, it computes the token Weights for each category 
on the ?y. The classi?er then uses the dynamically generated 
token Weights to compute the similarity of the document to 
each category. Since the similarity computation only 
requires Weights for the tokens appearing in the document 
being compared, computing Weights for the entire database 
can be avoided. Furthermore, the on-the-?y Weight compu 
tation does not affect the computational complexity of 
classi?cation. As a result, on-the-?y computation of token 
Weights sloWs the classi?cation procedure by only 10% to 
20% in practice. 

[0073] The MailCat classi?er provides three functions to 
implement incremental learning: Classi?er_Classify, Clas 
si?er_Add and Classi?er_Delete. Classi?er_Classify per 
forms the actual classi?cation of messages. Classi?er_Add 
and Classi?er_Delete maintain the database of token fre 
quencies. The database of token frequencies is stored in a 
tWo-dimensional array “TokenCount[Folder, Token].” 
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TokenCount stores, for each Token and each Folder, the 
number of occurrences of Token in Folder. The TokenCount 
array is stored as an inverted index for ef?ciency as 
described in Salton et al. In addition to its three core 
functions, the MailCat classi?er uses the function Token 
iZe(Message) to generate the tokens used for classi?cation. 
The folloWing sections describe each of these functions in 
detail. 

TokeniZe(Message) 
[0074] TokeniZe is used by the three core classi?er pro 
cedures to convert a message into a series of tokens. 
TokeniZing an unstructured body of text is straightforWard; 
the text is scanned and tokens are created for each sequence 
of characters that forms a valid token. HoWever, mail 
messages are not just ?at text. Mail messages are structured 
documents that contain a list of headers plus the message 
body. The headers contain information about the message 
such as the message sender, the message recipients and the 
message subject. 

[0075] A mail message can be tokeniZed by individually 
tokeniZing each of its headers and the message body and 
then combining the resulting tokens into a single token set. 
HoWever, it is useful to distinguish betWeen header tokens 
and body tokens because a token’s location can convey 
useful information that can be exploited by the classi?er. 
Tokens can be distinguished using a number of techniques. 
One approach is to store With each token a tag indicating the 
location in Which the token appears. 

[0076] Rather than storing tags as separate entities, the 
present invention preferably distinguishes tokens by pre?x 
ing each header token With the name of its header. For 
example, the From header “Richard Segal” is converted to 
the tWo tokens “FromzRichard” and “FromzSegal.” The 
Subject header is a special case because its contents could 
equally Well be regarded as a message header or as part of 
the message body. As a result, tWo separate sets of tokens are 
generated for the Subject header, one With the “Subject:” 
pre?x and one Without. Thus, subject of “Patent draft” is 
converted to the tokens “Subject:patent,”“Subjectzdraft, 
”“patent” and “draft.” 

[0077] FIG. 9 is a ?oWchart of the process of tokeniZing 
a message. First, in step 902, the body of a received message 
is tokeniZed. Next, in step 904, the From header is tokeniZed 
and the string “Fromz” is pre?xed to each token. Steps 906 
and 908 perform the identical operation for the To and CC 
headers. Step 910 tokeniZes the subject headers, but does not 
add the “Subject” pre?x to them. Instead, “SubjectTokens” 
is added as is to “BodyTokens” in step 911. This ensures that 
the unpre?xed subject tokens appear in the ?nal token list. 
Then, step 912 adds the “Subject:” pre?x to the subject 
tokens so that they Will also appear pre?xed in the ?nal 
tokeniZation. Finally, step 914 combines the tokens for each 
of the headers and the tokens for the message body into a 
single set called “AllTokens.” TokeniZe ends in step 916 by 
returning AllTokens as its ?nal output. 

Classi?er_Classify(Message) 
[0078] Classi?er_Classify uses the information stored in 
TokenCount to predict the MaxButtons most likely folders 
into Which the user Will place the Message. The prediction 
is made by comparing the token frequencies in the Message 








