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1 Introduction

1.1 Multi-Task Learning

In many real-world applications we deal with multiple related classification/regression tasks. For example,
in the prediction of therapy outcome (Bickel et al., 2008), the tasks of predicting the effectiveness of several
combinations of drugs are related. In the prediction of disease progression, the prediction of outcome at
each time point can be considered as a task and these tasks are temporally related (Zhou et al., 2011b). A
simple approach is to solve these tasks independently, ignoring the task relatedness. In multi-task learn-
ing, these related tasks are learnt simultaneously by extracting and utilizing appropriate shared information
across tasks. Learning multiple related tasks simultaneously effectively increases the sample size for each
task, and improves the prediction performance. Thus multi-task learning is especially beneficial when the
training sample size is small for each task. Figure 1 illustrates the difference between traditional single task
learning (STL) and multi-task learning (MTL). In STL, each task is considered to be independent and learnt
independently. In MTL, multiple tasks are learnt simultaneously, by utilizing task relatedness.

Single Task Learning
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Figure 1: Illustration of single task learning (STL) and multi-task learning (MTL). In single task learning
(STL), each task is considered to be independent and learnt independently. In multi-task learning (MTL),
multiple tasks are learnt simultaneously, by utilizing task relatedness.

In data mining and machine learning, a common paradigm for classification and regression is to mini-
mize the penalized empirical loss:

mmi/nﬁ(W) +Q(W), ey

where W is the parameter to be estimated from the training samples, £(W) is the empirical loss on the
training set, and Q(W) is the regularization term that encodes task relatedness. Different assumptions on
task relatedness lead to different regularization terms. In the field of multi-task learning, there are many prior
work that model relationships among tasks using novel regularizations (Evgeniou & Pontil, 2004; Ji & Ye,



Table 1: Formulations included in the MALSAR package of the following form: miny, £(W) + Q(W).

Name Loss function £(W) | Regularization Q(W) Main Reference
Lasso Least Squares, Logistic | p1||W|1 (Tibshirani, 1996)
Joint Feature Selection | Least Squares, Logistic | A||W{|1 2 (Argyriou et al., 2007)
Dirty Model Least Squares P1lIP|l1,00 + 2] @11 (Jalali et al., 2010)
Graph Structure Least Squares, Logistic | p1|WR||% + p2||W|1
Low Rank Least Squares, Logistic | p1||W ||« (Ji & Ye, 2009)
Sparse+Low Rank Least Squares YP1,st. W=P+Q,||Q]« <7 (Chen et al., 2010)
Relaxed Clustered MTL || Least Squares, Logistic | p1n(1 +n)tr (W (nl + M)"*W7T) | (Zhouetal., 2011a)
st.tr(M) = kM <X I,M €
Sfi-v n= ﬁ
Relaxed ASO Least Squares, Logistic | p1n(1 + n)tr (WT(nl + M)~'W) (Chen et al., 2009)
st.tr(M) = kM <X I,M €
St =1
Robust MTL Least Squares p1||L|[«+p2||S|12,st. W = L+S | (Chenetal., 2011)
Robust Feature Learning Least Squares pillPll2a + p2llQ||21,s.t. W = (Gong et al., 2012)
P+Q

2009; Abernethy et al., 2006; Abernethy et al., 2009; Argyriou et al., 2008a; Obozinski et al., 2010; Chen
et al., 2010; Argyriou et al., 2008b; Agarwal et al., 2010). The formulations implemented in the MALSAR
package is summarized in Table 1.

1.2 Optimization Algorithm

In the MALSAR package, most optimization algorithms are implemented via the accelerated gradient meth-
ods (AGM) (Nemirovski, ; Nemirovski, 2001; Nesterov & Nesterov, 2004; Nesterov, 2005; Nesterov, 2007).
The AGM differ from traditional gradient method in that every iteration it uses a linear combination of pre-
vious two points as the search point, instead of only using the latest point. The AGM has the convergence
speed of O(1/k?), which is the optimal among first order methods. The key subroutine in AGM is to
compute the proximal operator:

W* = argmin M., g(W) = argmin ZHW —(S— lV.C(T/V))H% + Q(W) (2)
w w2 Y

where (W, \) is the non-smooth regularization term.



2 Package and Installation

The MALSAR package is currently only available for MATLAB!. The user needs MATLAB with 2010a or
higher versions. Some of algorithms (i.e., clustered multi-task learning and alternating structure optimiza-
tion) need Mosek? to be installed. The recommended version of Mosek is 6.0. If you are not sure whether
Mosek has been installed or not, you can type the following in MATLAB command window to verify the
installation:

help mosekopt

Mosek version information will show up if it is correctly installed. After MATLAB and Mosek are correctly
installed, download the MALSAR package from the software homepage’, and unzip to a folder. If you are
using a Unix-based machines or Mac OS, there is an additional step to build C libraries: Open MATLAB,
navigate to MALSAR folder, and run INSTALL . M. A step-by-step installation guide is given in Table 2.

Table 2: Installation of MALSAR

Step Comment
1. Install MATLAB 2010a or later Required for all functions.
2. Install Mosek 6.0 or later Required only for Least CMTL, Logistic CMTL,

Least_CASO, Logistic_CASO
3. Download MALSAR and uncom- | Required for all functions.

press
4. In MATLAB, go to the MALSAR | Required for non-Windows machines.
folder, run INSTALL.M in command
window

The folder structure of MALSAR package is:
* manual. The location of the manual.
* MALSAR. This is the folder containing main functions and libraries.

— utils. This folder contains opts structure initialization and some common libraries. The folder
should be in MATLA path.

— functions. This folder contains all the MATLAB functions and are organized by categories.

— c_files. All cfiles are in this folder. It is not necessary to compile one by one. For Windows
user, there are precompiled binaries for 1386 and x64 CPU. For Unix user and Mac OS user, you
can perform compilation all together by running INSTALL . M.

* examples. Many examples are included in this folder for functions implemented in MALSAR. If
you are not familiar with the package, this is the perfect place to start with.

* data. Popular multi-task learning datasets, such as School data.

"http://www.mathworks.com/products/matlab/
http://www.mosek.com/
3http://www.public.asu.edu/~jye02/Software/MALSAR



3 Interface Specification

3.1 Input and Output

All functions implemented in MALSAR follow a common specification. For a multi-task learning algorithm
NAME, the input and output of the algorithm are in the following format:

[MODEL_VARS, func_val, OTHER_OUTPUT] =
LOSS NAME (X, Y, p1, ..., pPp, lOpts])
where the name of the loss function is LOSS, and MODEL_VARS is the model variables learnt.
In the input fields, X and Y are two t-dimensional cell arrays. Each cell of X contains a n;-by-d matrix,
where n; is the sample size for task ¢ and d is the dimensionality of the feature space. Each cell of Y contains

the corresponding n;-by-1 response. The relationship among X, Y and W is given in Figure 2. pq ... p, are
algorithm parameters (e.g., regularization parameters). opts is the optional optimization options that are

elaborated in Sect 3.2.
In the output fields, MODEL_VARS are model variables that can be used for predicting unseen data points.

Depending on different loss functions, the model variables may be different. Specifically, the following
format is used under the least squares loss:

[W, func_val, OTHER.OUTPUT ] = Least NAME (X, Y, p1, ..., pp [opts])

where W is a d-by-t matrix, each column of which is a d dimensional parameter vector for the corresponding
task. For a new input x from task ¢, the prediction y is given by

y=x1-W(,i).

The following format is used under the logistic loss:

[W, ¢, func_val, OTHER_.OUTPUT ] =
Logistic NAME (X, Y, p1, ..., pp lopts])
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Figure 2: The main input and output variables.



where W is a d-by-t matrix, each column of which is a d dimensional parameter vector for the corresponding
task, and c is a t-dimensional vector. For a new input x from task ¢, the binary prediction y is given by

y= sign(xT W (2, 1) + c(3)).

These two loss functions are available for most of the algorithms in the package. The output func_val is
the objective function values at all iterations of the optimization algorithms. In some algorithms, there are
other output variables that are not directly related to the prediction. For example in convex relaxed ASO,
the optimization also gives the shared feature mapping, which is a low rank matrix. In some scenarios the
user may be interested in such variables. The variables are given in the field %ZOTHER_OUTPUT%.

3.2 Optimization Options

All optimization algorithms in our package are implemented using iterative methods. Users can use the
optional opts input to specify starting points, termination conditions, tolerance, and maximum iteration
number. The input opts is a structure variable. To specify an option, user can add corresponding fields. If
one or more required fields are not specified, or the opts variable is not given, then default values will be
used. The default values can be changed in init_opts.min \MALSAR\utils.

« Starting Point .init. Users can use the field to specify different starting points.

— opts.init = 0. If 0is specified then the starting points will be initialized to a guess value
computed from data. For example, in the least squares loss, the model W (:, 1) for i-th task is
initialized by x{i} « v{i}.

— opts.init = 1.If1is specified then opts.WO is used. Note that if value 1 is specified in
.init but the field .WO is not specified, then .init will be forced to the default value.

— opts.init = 2 (default). If2is specified, then the starting point will be a zero matrix.

* Termination Condition .tFlag and Tolerance .tol. In this package, there are 4 types of termination
conditions supported for all optimization algorithms.

- opts.tFlag = 0.
— opts.tFlag = 1 (default).
- opts.tFlag = 2.
- opts.tFlag = 3.

¢ Maximum Iteration .maxIter. When the tolerance and/or termination condition is not properly set,
the algorithms may take an unacceptable long time to stop. In order to prevent this situation, users
can provide the maximum number of iterations allowed for the solver, and the algorithm stops when
the maximum number of iterations is achieved even if the termination condition is not satisfied.

For example, one can use the following code to specify the maximum iteration number of the opti-
mization problem:

opts.maxIter = 1000;

The algorithm will stop after 1000 iteration steps even if the termination condition is not satisfied.



4 Multi-Task Learning Formulations

4.1 Sparsity in Multi-Task Learning: /;-norm Regularized Problems

The ¢1-norm (or Lasso) regularized methods are widely used to introduce sparsity into the model and achieve
the goal of reducing model complexity and feature learning (Tibshirani, 1996). We can easily extend the
£1-norm regularized STL to MTL formulations. A common simplification of Lasso in MTL is that the
parameter controlling the sparsity is shared among all tasks, assuming that different tasks share the same

sparsity parameter. The learnt model is illustrated in Figure 3.
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Figure 3: Illustration of multi-task Lasso.
4.1.1 Multi-Task Lasso with Least Squares Loss (Least_Lasso)
The function
[W, funcVal] = Least_Lasso(X, Y, pi, [opts])
solves the ¢1-norm (and the squared ¢s-norm ) regularized multi-task least squares problem:
t
: T 2 2
mvénZHWj Xj = Yle + pulWll + pr2lWlE, 3)
=1

where X; denotes the input matrix of the i-th task, Y; denotes its corresponding label, W; is the model

for task i, the regularization parameter p; controls sparsity, and the optional pyo regularization parameter

controls the £2-norm penalty. Note that both £1-norm and ¢5-norm penalties are used in elastic net.
Currently, this function supports the following optional fields:

e Starting Point: opts.init, opts.WO0
e Termination: opts.tFlag

* Regularization: opts.rho_L2

10



4.1.2 Multi-Task Lasso with Logistic Loss (Logistic_Lasso)
The function
[W, ¢, funcVal] = Logistic._Lasso(X, Y, pj, [opts])
solves the /1-norm (and the squared ¢s-norm ) regularized multi-task logistic regression problem:
t ng
Hv[glg; ; log(1 + exp (=Yi (W] Xi 5 + €))) + pr|[ Wl + pralWI|7, 4)

where X; ; denotes sample j of the i-th task, Y; ; denotes its corresponding label, W; and c; are the model
for task i, the regularization parameter p; controls sparsity, and the optional p;o regularization parameter
controls the /2-norm penalty.

Currently, this function supports the following optional fields:

e Starting Point: opts.init, opts.W0, opts.CO
e Termination: opts.tFlag

* Regularization: opts.rho_L2

4.2 Joint Feature Selection: ¢, ;-norm Regularized Problems

One way to capture the task relatedness from multiple related tasks is to constrain all models to share a com-
mon set of features. This motivates the group sparsity, i.e. the ¢1/¢2-norm regularized learning (Argyriou
et al., 2007; Argyriou et al., 2008a; Liu et al., 2009a; Nie et al., 2010):

min L(W) + A[W][1.2, (5)
where |[W]| = Zle ||W¢|2 is the group sparse penalty. Compared to Lasso, the /5 1-norm regularization

results in grouped sparsity, assuming that all tasks share a common set of features. The learnt model is
illustrated in Figure 4.
4.2.1 /3 1-Norm Regularization with Least Squares Loss (Least_L21)
The function
[W, funcVal] = Least L21 (X, Y, pi1, [opts])
solves the /5 1-norm (and the squared ¢2-norm ) regularized multi-task least squares problem:
t
. T 2 2
mﬁnz;HWj Xj = Yjlle + prlWll2n + pra[Wlie, (6)
1=
where X; denotes the input matrix of the i-th task, Y); denotes its corresponding label, W; is the model for
task 7, the regularization parameter p; controls group sparsity, and the optional py o regularization parameter

controls £2-norm penalty.
Currently, this function supports the following optional fields:

e Starting Point: opts.init, opts.W0
e Termination: opts.tFlag

* Regularization: opts.rho_L2

11
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Figure 4: Illustration of multi-task learning with joint feature selection based on the ¢5 1-norm regularization.

4.2.2 /3 1-Norm Regularization with Logistic Loss (Logistic_L21)

The function
[W, ¢, funcVal] = Logistic L2l (X, Y, p1, [opts])

solves the /5 1-norm (and the squared ¢2-norm ) regularized multi-task logistic regression problem:

t g
rgvlgzl Zl log(1 + exp (—Yi; (W} Xij + i) + pr|Wll2a + pra| W1, (7)
=1 j=

where X; ; denotes sample j of the i-th task, Y; ; denotes its corresponding label, W; and c; are the model for
task 7, the regularization parameter p; controls group sparsity, and the optional pr regularization parameter

controls #o-norm penalty.
Currently, this function supports the following optional fields:

* Starting Point: opts.init, opts.W0, opts.CO
e Termination: opts.tFlag

* Regularization: opts.rho_L2

4.3 The Dirty Model for Multi-Task Learning

The joint feature learning using ¢, /¢,-norm regularization performs well in idea cases. In practical appli-
cations, however, simply using the ¢; /{,-norm regularization may not be effective for dealing with dirty
data which may not fall into a single structure. To this end, the dirty model for multi-task learning is
proposed (Jalali et al., 2010). The key idea in the dirty model is to decompose the model W into two

components P and (), as shown in Figure 5.

12
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Figure 5: Illustration of dirty model for multi-task learning.

4.3.1 A Dirty Model for Multi-Task Learning with the Least Squares Loss (Least Dirty)

The function
[W, funcval, P, Q] = LeastDirty(X, Y, p1, p2, [opts])

solves the dirty multi-task least squares problem:

t
mvgn; WX = Yill#+ pill Plhos + p2ll Q1 (8)
subject to:W = P + Q 9)

where X; denotes the input matrix of the i-th task, Y); denotes its corresponding label, W; is the model for
task ¢, P is the group sparsity component and () is the elementwise sparse component, p; controls the group
sparsity regularization on P, and po controls the sparsity regularization on ().

Currently, this function supports the following optional fields:

e Starting Point: opts.init, opts.PO0, opts.QO0 (set opts.WO to any non-empty value)
¢ Termination: opts.tFlag

* Initial Lipschiz Constant: opts.1lFlag

4.4 Encoding Graph Structure: Graph Regularized Problems

In some applications, the task relationship can be represented using a graph where each task is a node, and
two nodes are connected via an edge if they are related. Let £ denote the set of edges, and we denote edge ¢

as a vector () € R* defined as follows: eg) and eg) are set to 1 and —1 respectively if the two nodes z and

13



y are connected. The complete graph is encoded in the matrix R = [e(l), e@ ..., e(HgH)] e RXI€N The
following regularization penalizes the differences between all pairs connected in the graph:

I€]] €]

IWR[F =Y IIWeD 3= IW,0 - W 13, (10)
=1 =1

which can also be represented in the following matrix form:

IWR||% =tr (WR)Y(WR)) = trt (WRRTWT) =t (WLWT), (11)

where £ = RR”, known as the Laplacian matrix, is symmetric and positive definiteness. In (Li & Li, 2008),
the network structure is defined on the features, while in MTL the structure is on the tasks.

In the multi-task learning formulation proposed by (Evgeniou & Pontil, 2004), it assumes all tasks are
related in the way that the models of all tasks are close to their mean:

T T
. 1
min L(W) +A Y [We— = > Wil (12)
t=1 s=1

where A > 0 is penalty parameter. The regularization term in Eq.(12) penalizes the deviation of each task
from the mean % Zstl Ws. This regularization can also be encoded using the structure matrix R by setting
R = eye(t) - ones(t)/t.

4.4.1 Sparse Graph Regularization with Logistic Loss (Least _SRMTL)

The function
[W, funcVal] = Least_SRMTL (X, Y, R, pi1, p2, [opts])

solves the graph structure regularized and ¢;-norm (and the squared ¢5-norm ) regularized multi-task least
squares problem:

t
min Y [W}X; = Yillf + pulWRIE + o2 Wl + pral WIIE, (13)
i=1

where X; denotes the input matrix of the i-th task, Y denotes its corresponding label, W; is the model
for task ¢, the regularization parameter p; controls sparsity, and the optional pro regularization parameter
controls £2-norm penalty.

Currently, this function supports the following optional fields:

e Starting Point: opts.init, opts.WO0
e Termination: opts.tFlag

* Regularization: opts.rho_L2

4.4.2 Sparse Graph Regularization with Logistic Loss (Logistic SRMTL)

The function

[W, ¢, funcVal] = Logistic_ SRMTL(X, Y, R, p1, p2, l[opts])

14



solves the graph structure regularized and #1-norm (and the squared ¢>-norm ) regularized multi-task logistic
regression problem:

t g
leflgzl z; log(1+ exp (=Yi (W] X;j + i) + prWR|% + p2| Wit + prolWl[7,  (14)
i=1 j=

where X; ; denotes sample j of the i-th task, Y; ; denotes its corresponding label, W; and c; are the model
for task ¢, the regularization parameter p; controls sparsity, and the optional pro regularization parameter
controls £2-norm penalty.

Currently, this function supports the following optional fields:

* Starting Point: opts.init, opts.WO0, opts.CO
¢ Termination: opts.tFlag

* Regularization: opts.rho_L2

4.5 Low Rank Assumption: Trace-norm Regularized Problems

One way to capture the task relationship is to constrain the models from different tasks to share a low-
dimensional subspace, i.e., W is of low rank, resulting in the following rank minimization problem:

min L(W) + Arank(W).

The above problem is in general NP-hard (Vandenberghe & Boyd, 1996). One popular approach is to replace
the rank function (Fazel, 2002) by the trace norm (or nuclear norm) as follows:

min L(W) + | W], (15)

where the trace norm is given by the sum of the singular values: ||[W||, = >, 0;(W). The trace norm
regularization has been studied extensively in multi-task learning (Ji & Ye, 2009; Abernethy et al., 2006;
Abernethy et al., 2009; Argyriou et al., 2008a; Obozinski et al., 2010).

Task Models Sparse Component Low Rank
W = P + Component — X

Figure 6: Learning Incoherent Sparse and Low-Rank Patterns form Multiple Tasks.

The assumption that all models share a common low-dimensional subspace is restrictive in some appli-
cations. To this end, an extension that learns incoherent sparse and low-rank patterns simultaneously was

15



proposed in (Chen et al., 2010). The key idea is to decompose the task models W into two components: a
sparse part P and a low-rank part ), as shown in Figure 6. It solves the following optimization problem:

minC (W) + P
subjectto: W =P+ Q, [|Q|« < 7.

4.5.1 Trace-Norm Regularization with Least Squares Loss (Least_Trace)

The function
[W, funcVal] = Least_Trace(X, Y, pi1, [opts])

solves the trace-norm regularized multi-task least squares problem:
t
. T 2
n%nz;HWj Xj =Yl + pal W1, (16)
1=

where X; denotes the input matrix of the i-th task, Y); denotes its corresponding label, W; is the model for
task ¢, and the regularization parameter p; controls the rank of WW.
Currently, this function supports the following optional fields:

» Starting Point: opts.init, opts.WO0

e Termination: opts.tFlag

4.5.2 Trace-Norm Regularization with Logistic Loss (Logistic_Trace)

The function
[W, ¢, funcVal] = Logistic._Trace(X, Y, pi;, [opts])
solves the trace-norm regularized multi-task logistic regression problem:
t n;
min z; ; log(1 + exp (—Y;; (W] Xij + ;) + pr|[ W], (17)

where X; ; denotes sample j of the i-th task, Y; ; denotes its corresponding label, W; and c; are the model
for task ¢, and the regularization parameter p; controls the rank of .
Currently, this function supports the following optional fields:

e Starting Point: opts.init, opts.W0, opts.CO

¢ Termination: opts.tFlag

4.5.3 Learning with Incoherent Sparse and Low-Rank Components (Least_SparseTrace)

The function

[W, funcVal, P, Q] = Least_SparseTrace(X, Y, p1, p2, [opts])
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Figure 7: Illustration of clustered tasks. Tasks with similar colors are similar with each other.

solves the incoherent sparse and low-rank multi-task least squares problem:

¢
: T 2
g S IWT X5 = 5l P as
1=
subjectto: W =P + Q, |Q|l« < p2 (19)

where X; denotes the input matrix of the i-th task, Y denotes its corresponding label, I¥; is the model for
task 7, the regularization parameter p; controls sparsity of the sparse component P, and the py regularization
parameter controls the rank of Q.

Currently, this function supports the following optional fields:

* Starting Point: opts.init, opts.P0, opts.QO0 (set opts.WO0 to any non-empty value)

e Termination: opts.tFlag

4.6 Discovery of Clustered Structure: Clustered Multi-Task Learning

Many multi-task learning algorithms assume that all learning tasks are related. In practical applications,
the tasks may exhibit a more sophisticated group structure where the models of tasks from the same group
are closer to each other than those from a different group. There have been many work along this line
of research (Thrun & O’Sullivan, 1998; Jacob et al., 2008; Wang et al., 2009; Xue et al., 2007; Bakker
& Heskes, 2003; Evgeniou et al., 2006; Zhang & Yeung, 2010), known as clustered multi-task learning
(CMTL). The idea of CMTL is shown in Figure 7.

In (Zhou et al., 2011a) we proposed a CMTL formulation which is based on the spectral relaxed k-means
clustering (Zha et al., 2002):

min ~ L(W) + o («W!'W — «FTWIWF) + Bu(WTW). (20)
W,F:FTF=I,

where k is the number of clusters and F' captures the relaxed cluster assignment information. Since the
formulation in Eq. (20) is not convex, a convex relaxation called cCMTL is also proposed. The formulation
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of cCMTL is given by:
minL(W) + prn(1 + n)te (W(nI + M)~'wT)
P2

subject to: tr (M) = k,M <I,M € S ,n = )

There are many optimization algorithms for solving the cCMTL formulations (Zhou et al., 2011a). In
our package we include an efficient implementation based on Accelerated Projected Gradient.

4.6.1 Convex Relaxed Clustered Multi-Task Learning with Least Squares Loss (Least _CMTL)
The function
[W, funcVal, M] = Least CMTL (X, Y, pi, p2, k, [opts])

solves the relaxed k-means clustering regularized multi-task least squares problem:

t
mmi/nz W] X; = Y%+ pin(1 +n)r (W(nI +M)"'W'), (21)
i=1
. t P2
subjectto: tr (M) =k, M <I,M € S =7 (22)
P

where X; denotes the input matrix of the i-th task, Y; denotes its corresponding label, W; is the model for
task i, and p; is the regularization parameter. Because of the equality constraint tr (M) = k, the starting
point of M is initialized to be My = k/t x I satisfying tr (M) = k.

Currently, this function supports the following optional fields:

 Starting Point: opts.init, opts.WO0

e Termination: opts.tFlag

4.6.2 Convex Relaxed Clustered Multi-Task Learning with Logistic Loss (Logistic_CMTL)

The function
[W, ¢, funcVal, M] = Logistic CMTL (X, Y, pi1, p2, k, [opts])

solves the relaxed k-means clustering regularized multi-task logistic regression problem:

t g
. T —1yp T
r&g; z; log(1 + exp (=Y j (W Xy 5+ ¢:)) + pin(L +m)a (W(nl + M)~'W7T), (23)
=1 j=
subject to: tr(M):k,MjI,MeSi,n:p—i (24)
p
where X; ; denotes sample j of the i-th task, Y; ; denotes its corresponding label, W; and c; are the model
for task ¢, and p; is the regularization parameter. Because of the equality constraint tr (M) = k, the starting
point of M is initialized to be My = k/t x I satisfying tr (My) = k.
Currently, this function supports the following optional fields:

* Starting Point: opts.init, opts.WO0, opts.CO

¢ Termination: opts.tFlag
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4.7 Discovery of Shared Feature Mapping: Alternating Structure Optimization

The basic idea of alternating structure optimization (ASO) (Ando & Zhang, 2005) is to decompose the pre-
dictive model of each task into two components: the task-specific feature mapping and task-shared feature
mapping, as shown in Figure 8. The ASO formulation for linear predictors is given by:

T
1
i —L(wy) + 2)
B Z(nt (wy) + af|we|

t=1
subject to oo’ = I, w=u+ @Tvt, (25)

where O is the low dimensional feature map across all tasks. The predictor f; for task ¢ can be expressed as:

fi(z) = wlz = ul'z + vl O,

Task 1 Input X |u|+| @F X|Z|

X

— N
<\
\A T
Task 2 Input X|uwl|+| @ |X |E| A~ (C]
\\_\>
R >
. Low-
_ . / Dimensional
TR Feature Map
/

Taskm Input X [unf+| ©F X|£| ~

Figure 8: Illustration of Alternating Structure Optimization. The predictive model of each task includes two
components: the task-specific feature mapping and task-shared feature mapping.

The formulation in Eq.(12) is not convex. A convex relaxation of ASO called cASO is proposed in (Chen
et al., 2009):

T ne

1

min Y (=Y L(w) | +an(1 +n)w (W (I + M)"'W)
{weh, M- 427\ i

subject to tr(M) = h,M < I, M € S¢ (26)

It has been shown in (Zhou et al., 2011a) that there is an equivalence relationship between clustered

multi-task learning in Eq. (20) and cASO when the dimensionality of the shared subspace in cASO is
equivalent to the cluster number in cMTL.

4.7.1 cASO with Least Squares Loss (Least_CASO)

The function
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[W, funcVal, M] = Least CASO(X, Y, p1, p2, k, [opts])

solves the convex relaxed alternating structure optimization (ASO) multi-task least squares problem:

t
min Y [|W]X; = YillE + pun(L+ my (W (gL + M)~'W) 27)
=1
subject to: tr (M) =k, M < I, M € 8% = p—i (28)
1)

where X; denotes the input matrix of the i-th task, Y; denotes its corresponding label, W; is the model for
task 4, and p; is the regularization parameter. Due to the equality constraint tr (M) = k, the starting point
of M is initialized to be My = k/t x I satisfying tr (My) = k.

Currently, this function supports the following optional fields:

e Starting Point: opts.init, opts.WO0

e Termination: opts.tFlag

4.7.2 ¢cASO with Logistic Loss (Logistic_CASO)
The function
[W, ¢, funcVal, M] = Logistic. CASO (X, Y, p1, p2, k, I[optsl])

solves the convex relaxed alternating structure optimization (ASO) multi-task logistic regression problem:

t ng
. T T -1
min Z; 2; log(1 + exp (=Y (W} Xy + i) + pin(1 +n)r (W (nl + M)™'W),  (29)
=1 j=
subject to: tr(M):k,MjI,MeSi,n:p—i (30)
p
where X; ; denotes sample j of the i-th task, Y; ; denotes its corresponding label, W; and c; are the model
for task ¢, and p; is the regularization parameter. Due to the equality constraint tr (M) = k, the starting
point of M is initialized to be My = k/t x I satisfying tr (M) = k.
Currently, this function supports the following optional fields:

e Starting Point: opts.init, opts.W0, opts.CO

e Termination: opts.tFlag

4.8 Dealing with Outlier Tasks: Robust Multi-Task Learning

Most multi-task learning formulations assume that all tasks are relevant, which is however not the case in
many real-world applications. Robust multi-task learning (RMTL) is aimed at identifying irrelevant (outlier)
tasks when learning from multiple tasks.

One approach to perform RMTL is to assume that the model W can be decomposed into two com-
ponents: a low rank structure L that captures task-relatedness and a group-sparse structure S that detects
outliers (Chen et al., 2011). If a task is not an outlier, then it falls into the low rank structure L with its corre-
sponding column in S being a zero vector; if not, then the S matrix has non-zero entries at the corresponding
column. The following formulation learns the two components simultaneously:

i LOV) + pil| L]« + 8ISl @D

The predictive model of RMTL is illustrated in Figure 9.
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Figure 9: Illustration of robust multi-task learning. The predictive model of each task includes two compo-
nents: the low-rank structure L that captures task relatedness and the group sparse structure S that detects
outliers.

4.8.1 RMTL with Least Squares Loss (Least _RMTL)
The function
[W, funcval, L, S] = Least RMTL(X, Y, pi, p2, [opts])

solves the incoherent group-sparse and low-rank multi-task least squares problem:

t
mmi,nleWjTXj—YjH%erHLH*+p2HSH1,2 (32)
1=
subjectto: W =L+ S (33)

where X; denotes the input matrix of the i-th task, Y; denotes its corresponding label, W; is the model for
task 7, the regularization parameter p; controls the low rank regularization on the structure L, and the p»
regularization parameter controls the ¢ ;-norm penalty on S.

Currently, this function supports the following optional fields:

 Starting Point: opts.init, opts.L0, opts.SO0 (set opts.WO to any non-empty value)

¢ Termination: opts.tFlag

4.9 Joint Feature Learning with Outlier Tasks: Robust Multi-Task Feature Learning

The joint feature learning formulation in 4.2 selects a common set of features for all tasks. However, it
assumes there is no outlier task, which may not the case in practical applications. To this end, a robust
multi-task feature learning (rMTFL) formulation is proposed in (Gong et al., 2012). rtMTFL assumes that
the model W can be decomposed into two components: a shared feature structure P that captures task-
relatedness and a group-sparse structure () that detects outliers. If the task is not an outlier, then it falls into
the joint feature structure P with its corresponding column in ) being a zero vector; if not, then the () matrix
has non-zero entries at the corresponding column. The following formulation learns the two components
simultaneously:

21+ BQT|

r:ninQE(W) + p1||P 2,1 (34)

W=P}
The predictive model of tMTFL is illustrated in Figure 10.
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Figure 10: Illustration of robust multi-task feature learning. The predictive model of each task includes
two components: the joint feature selection structure P that captures task relatedness and the group sparse
structure () that detects outliers.

4.9.1 RMTL with Least Squares Loss (Least _rMTFL)

The function
[W, funcval, Q, P] = Least rMTFL(X, Y, pi1, p2, [opts])

solves the problem of robust multi-task feature learning with least squares loss:

t

mmi/n§||WjTXj = Yi|E + pil Pllag + p2] Q7 121 (35)
subjectto: W =P +Q (36)

where X; denotes the input matrix of the i-th task, Y denotes its corresponding label, IW; is the model for
task 7, the regularization parameter p; controls the joint feature learning, and the regularization parameter
pa controls the columnwise group sparsity on () that detects outliers.

Currently, this function supports the following optional fields:

* Starting Point: opts.init, opts.L0, opts.SO0 (set opts.WO0 to any non-empty value)
¢ Termination: opts.tFlag

e Initial Lipschitz constant: opts.1Flag
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S Examples

In this section we provide some running examples for some representative multi-task learning formulations
included in the MALSAR package. All figures in these examples can be generated using the corresponding
MATLAB scripts in the examples folder.

5.1 Code Usage and Optimization Setup

The users are recommended to add paths that contains necessary functions at the beginning:

o°

load function
load utilities

addpath (' /MALSAR/functions/Lasso/");
addpath (' /MALSAR/utils/");
addpath (genpath (' /MALSAR/c_files/"));

o\

o

load c—-files

An alternative is to add the entire MALSAR package:

addpath (genpath (' /MALSAR/ ")) ;

The users then need to setup optimization options before calling functions (refer to Section 3.2 for detailed
information about opts ):

oe

opts.init = 0;

; compute start point from data.
opts.tFlag = 1;

terminate after relative objective
value does not changes much.
tolerance.

o

o\

opts.tol = 10°-5;
opts.maxIter = 1500; maximum iteration number of optimization.
[W funcVal] = Least_Lasso(data_feature, data_response, lambda, opts);

o° oP

Note: For efficiency consideration, it is important to set proper tolerance, termination conditions and most
importantly, maximum iterations, especially for large-scale problems.
5.2 Sparsity in Multi-Task Learning: /;-norm regularization

In this example, we explore the sparsity of prediction models in ¢;-norm regularized multi-task learning
using the School data. To use school data, first load it from the data folder.

load('../data/school.mat'); % load sample data.

Define a set of regularization parameters and use pathwise computation:

lambda = [1 10 100 200 500 1000 20007;

sparsity = zeros(length(lambda), 1);

log_lam = log(lambda);

for i = 1: length(lambda)
[W funcVal] = Least_Lasso (X, Y, lambda (i), opts);
% set the solution as the next initial point.
% this gives better efficiency.
opts.init = 1;
opts.W0 = W;
sparsity (i) = nnz (W);

end
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The algorithm records the number of non-zero entries in the resulting prediction model W. We show the
change of the sparsity variable against the logarithm of regularization parameters in Figure 11. Clearly,
when the regularization parameter increases, the sparsity of the resulting model increases, or equivalently,
the number of non-zero elements decreases. The code that generates this figure is from the example file
example_Lasso.m.

Sparsity of Predictive Model when Changing Regularization Parameter

2500 T T T T T T T
~~

T~

~

2000+ 4

1500 3

1000 1

Sparsity of Model (Non-Zero Elements in W)

500 \ :

Figure 11: Sparsity of the model Learnt from ¢;-norm regularized MTL. As the parameter increases, the
number of non-zero elements in W decreases, and the model W becomes more sparse.

5.3 Joint Feature Selection: ¢ ;-norm regularization

In this example, we explore the /3 1-norm regularized multi-task learning using the School data from the
data folder:

load('../data/school.mat'); % load sample data.

Define a set of regularization parameters and use pathwise computation:

lambda = [200 :300: 1500];
sparsity = zeros(length(lambda), 1);
log_lam log(lambda) ;

for 1 = 1: length (lambda)

[W funcVal] = Least_L21(X, Y, lambda(i), opts);
set the solution as the next initial point.
this gives better efficiency.

opts.init = 1;

opts.W0 = W;

sparsity (i) = nnz(sum(W,2 )==0)/d;

end

o
°
o
)
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The statement nnz (sum (W, 2 ) ==0) computes the number of features that are not selected for all tasks.
We can observe from Figure 12 that when the regularization parameter increases, the number of selected
features decreases. The code that generates this result is from the example file example_L21 .m.

Row Sparsity of Predictive Model when Changing Regularization Parameter
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Figure 12: Joint feature learning via the {5 1-norm regularized MTL. When the regularization parameter
increases, the number of selected features decreases.

5.4 Low-Rank Structure: Trace norm Regularization

In this example, we explore the trace-norm regularized multi-task learning using the School data from the
data folder:

load('../data/school.mat'); % load sample data.

Define a set of regularization parameters and use pathwise computation:

tn_val = zeros(length(lambda), 1);
rk_val = zeros(length(lambda), 1);
log_lam = log(lambda);

for i = 1: length(lambda)

[W funcvVal] = Least_Trace (X, Y, lambda (i), opts);
set the solution as the next initial point.
this gives better efficiency.

opts.init = 1;

opts.W0 = W;

tn_val (i) = sum(svd(W));

rk_val (i) = rank (W);

end

o
5
o
5
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In the code we compute the value of trace norm of the prediction model as well as its rank. We gradually
increase the penalty and the results are shown in Figure 17. The code sum (svd (W) ) computes the trace
norm (the sum of singular values).

Rank of Predictive Model when Changing Regularization Parameter
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Figure 13: The trace norm and rank of the model learnt from trace norm regularized MTL.

As the trace-norm penalty increases, we observe the monotonic decrease of the trace norm and rank.
The code that generates this result is from the example file example_Trace.m.
5.5 Graph Structure: Graph Regularization

In this example, we show how to use graph regularized multi-task learning using the SRMTL functions. We
use the School data from the data folder:

load('../data/school.mat'); % load sample data.

For a given graph, we first construct the graph variable R to encode the graph structure:

% construct graph structure variable.

R = [];
for 1 = 1: task_num
for j =1 + 1: task_num
if graph (i, J) #0
edge = zeros(task_num, 1);
edge (1) = 1;
edge(3) = -1;
R = cat (2, R, edge);
end
end
end
[W_est funcVal] = Least_SRMTL(X, Y, R, 1, 20);

The code that generates this result is from example_ SRMTL.m and example_SRMTL_spcov.m.

5.6 Learning with Outlier Tasks: RMTL

In this example, we show how to use robust multi-task learning to detect outlier tasks using synthetic data:
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o

rng ('default'); % reset random generator.

dimension = 500;
sample_size = 50;
task = 50;

X = cell(task ,1);

Y cell(task ,1);

for i = 1: task
X{i} rand (sample_size, dimension);
Y{i} rand (sample_size, 1);

end

To generate reproducible results, we reset the random number generator before we use the rand function.
We then run the following code:

uess start point from data.

opts.init = 0; g
terminate after relative objective value does not changes much.
t

opts.tFlag = 1;

o° o° o

opts.tol = 107-6; olerance.

opts.maxIter = 1500; % maximum iteration number of optimization.

rho_1 = 10;% rhol: low rank component L trace-norm regularization parameter
rho_2 = 30; % rho2: sparse component S Ll1,2-norm sprasity controlling parameter
[W funcVal L S] = Least_RMTL(X, Y, rho_1l, rho_2, opts);

We visualize the matrices L and S in Figure 14. In the figure, the dark blue color corresponds to a zero entry.
The matrices are transposed since the dimensionality is much larger than the task number. After transpose,
each row corresponds to a task. We see that for the sparse component S has non-zero rows, corresponding
to the outlier tasks. The code that generates this result is from the example file example Robust .m.

5.7 Joint Feature Learning with Outlier Tasks: rMTFL

In this example, we show how to use robust multi-task learning to detect outlier tasks using synthetic data:

)

rng ('default'); % reset random generator.

Visualization of Robust Multi-Task Learning Model

s’ (outliers)

L (low rank)

Dimension

Figure 14: Illustration of RMTL. The dark blue color corresponds to a zero entry. The matrices are trans-
posed since the dimensionality is much larger than the task number. After transpose, each row corresponds
to a task. We see that for the sparse component S has non-zero rows, corresponding to the outlier tasks.
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dimension = 500;
sample_size = 50;
task = 50;

X = cell(task ,1);

Y = cell(task ,1);

for i = 1: task
X{i} = rand(sample_size, dimension);
Y{i} = rand(sample_size, 1);

end

To generate reproducible results, we reset the random number generator before we use the rand function.
We then run the following code:

opts.init = 0;
opts.tFlag = 1;
opts.tol = 107-6;
opts.maxIter = 500;

guess start point from data.

terminate after relative objective value does not changes much.
tolerance.

maximum iteration number of optimization.

o© o° o° o

rho_1 = 90;% rhol: Jjoint feature learning
rho_2 = 280; % rho2: detect outlier
[W funcval P Q] = Least_rMTFL(X, Y, rho_1, rho_2, opts);

We visualize the matrices P and 0 in Figure 15. The code that generates this result is from the example
file example rMTFL.m.

Visualization of Robust Multi-Task Feature Learning Model

o ‘HH HH‘ H HH H HH H

T (feature)

Q' (outliers)

Dimension

Figure 15: Illustration of outlier tasks detected by rMTFL. Black means non-zero entries. The matrices are
transposed because that dimension number is larger than the task number. After transpose, each row denotes
a task.
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5.8 Learning with Dirty Data: Dirty MTL Model

In this example, we show how to use dirty multi-task learning using synthetic data:

rng ('default'); % reset random generator.
dimension = 500;

sample_size = 50;

task = 50;

X = cell(task ,1);

Y = cell(task ,1);

for 1 = 1: task
X{i} = rand(sample_size, dimension);
Y{i} = rand(sample_size, 1);

end

We then run the following code:

opts.init = 0;
opts.tFlag = 1;
opts.tol = 107-4;
opts.maxIter = 500;

guess start point from data.

terminate after relative objective value does not changes much.
tolerance.

maximum iteration number of optimization.

o© o° o oo

rho_1 = 350;% rhol: group sparsity regularization parameter
rho_2 = 10;% rho2: elementwise sparsity regularization parameter
[W funcvVal P Q] = Least_Dirty(X, Y, rho_1, rho_2, opts);

Visualization Non—-Zero Entries in Dirty Model

pT

Dimension

Figure 16: The dirty prediction model w learnt as well as the joint feature selection component P and the
element-wise sparse component Q.
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We visualize the non-zero entries in P, O and R in Figure 16. The figures are transposed for better
visualization. We see that matrix P has a clear group sparsity property and it captures the joint-selected
features. The features that do not fit into the group sparsity structure is captured in matrix Q. The code that

generates this result is from the example file example Dirty.m.

5.9 Learning with Clustered Structures: CMTL

In this example, we show how to use clustered multi-task learning (CMTL) functions. we use synthetic data

generated as follows:

rng ('default');

clus_var = 900; % cluster variance
task_var = 16; % inter task variance
nois_var = 150; % variance of noise
clus_num = 2; % clusters
clus_task_num = 10; % task number of each cluster
task_num = clus_num » clus_task_num; % total task number.
sample_size = 100;
dimension = 20; % total dimension
comm_dim = 2; % independent dimension for all tasks.
clus_dim = floor ((dimension — comm_dim)/2); % dimension of cluster
% generate cluster model
cluster_weight = randn(dimension, clus_num) = clus_var;
for 1 = 1: clus_num

cluster_weight (randperm(dimension-clus_num)<clus_dim, i) = 0;
end
cluster_weight (end-comm_dim:end, :) = O;

W = repmat (cluster_weight, 1, clus_task_num);
cluster_index = repmat (l:clus_num, 1, clus_task_num)"';

o

% generate task and intra-cluster variance

W_it = randn(dimension, task_num) =* task_var;
for 1 = 1: task_num

W_it (cat(l, W(l:end-comm_dim, 1i)==0, zeros(comm_dim, 1))==1, i) =
end

W =W+ W_it;

apply noise;

= W + randn (dimension, task_num) * nois_var;
Generate Data Sets

oe

=

o

X = cell (task_num, 1);

Y = cell (task_num, 1);

for i = 1: task_num
X{i} = randn(sample_size, dimension);
XwW = X{i} * W(:, 1);
XW = xw + randn(size(xw)) * nois_var;
Y{i} = sign(xw);

end

We generate a set of tasks as follows: We firstly generate 2 cluster centers with between cluster variance
N (0,900), and for each cluster center we generate 10 tasks with intra-cluster variance N(0, 16). We thus
generate a total of 20 task models w. We generate data points with variance A/ (0, 150). After we generate

the data set, we run the following code to learn the CMTL model:

opts.init = 0;
opts.tFlag = 1;
opts.tol = 10°-6; tolerance.

opts.maxIter = 1500; % maximum iteration number of optimization.
rho_1 = 10;

guess start point from data.

o° oo o
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terminate after relative objective value does not changes much.




rho_2 = 10"-1;

W_learn = Least_CMTL (X, Y, rho_1, rho_2, clus_num, opts);
% recover clustered order.

kmCMTL_OrderedModel = zeros (size (W));

OrderedTrueModel = zeros(size (W));
for i = 1: clus_num
clusModel = W_learn (:, 1:clus_num:task_num );
kmCMTL_OrderedModel (:, (i-1)* clus_task_num + 1: ix clus_task_num ) =
clusModel;
clusModel = W (:, 1:clus_num:task_num );
OrderedTrueModel (:, (i-1)* clus_task_num + 1: ix clus_task_num ) =
clusModel;
end

We visualize the models in Figure 17. We see that the clustered structure is captured in the learnt model.
The code that generates this result is from the example file example CMTL.m.

Model Correlation: Ground Truth Model Correlation: Clustered MTL

Figure 17: Illustration of the cluster Structure Learnt from CMTL.
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