

STATECRUNCHER User Manual

Graham G. Thomason

Report Relating to the Thesis “The Design

and Construction of a State Machine

System that Handles Nondeterminism”

Department of Computing

School of Electronics and Physical Sciences

University of Surrey

Guildford, Surrey GU2 7XH, UK

July 2004

© Graham G. Thomason 2003-2004

ii © Graham G. Thomason 2003-2004

Summary

This document is a user manual and training course for users of STATECRUNCHER.

STATECRUNCHER is a state transition language in which a dynamic model of a system (i.e. a

statechart) can be written and exercised. Given a dynamic model of a system,

STATECRUNCHER provides an oracle to state based tests. It specialises in its handling of

nondeterminism. It has been integrated by Philips Research India - Bangalore into a tool chain

to provide automated generation and execution of tests. This report assumes a basic

knowledge of UML dynamic modelling, and shows how to implement them in

STATECRUNCHER, describing both syntax and semantics.

© Graham G. Thomason 2003-2004 iii

Contents

1. Introduction .. 1

1.1 What STATECRUNCHER is and does .. 1

1.2 STATECRUNCHER and Prolog ... 3

1.3 Notation ... 4

1.4 Related documentation by the present author ... 4

2. Installation .. 5

2.1 Hardware requirements .. 5

2.2 Installation overview .. 5

2.3 To install STATECRUNCHER source from the zip file .. 8

2.4 Downloading and installing SWI-Prolog.. 8

2.5 To compile and run STATECRUNCHER under SWI Prolog 9

2.6 To compile and run STATECRUNCHER under WinProlog...................................... 9

2.7 To run the STATECRUNCHER MS-DOS executable .. 10

3. Getting started .. 11

4. Guide to operation .. 16

4.1 Variables, and parameterised and conditional transitions ... 17

4.2 Nested cluster and history .. 21

4.3 Sets ... 24

4.4 Fired events .. 28

4.5 Client-server composition and PCOs ... 31

4.6 Assignments on transitions and inexact variable scoping ... 34

4.7 Orbits, self-transitions, upon-enter and upon-exit actions .. 38

4.8 Meta-events .. 43

4.9 Conditional actions and the in() function ... 46

4.10 Strings and string functions .. 51

4.11 Traces ... 56

4.12 Inexact state scoping .. 59

4.13 Introduction to nondeterminism ... 63

4.14 Fork nondeterminism ... 64

4.15 Fork nondeterminism differentiated by history and trace ... 68

4.16 Scoped events illustrated by fork nondeterminism ... 71

4.17 Race nondeterminism ... 75

4.18 Set-transit nondeterminism... 79

4.19 Set-action nondeterminism ... 83

4.20 Set meta-event nondeterminism ... 88

4.21 Fired event and multiple nondeterminism .. 95

4.22 Transition prioritisation .. 98

4.23 Limited race nondeterminism ... 104

4.24 Limited set nondeterminism ... 108

4.25 Independence of race and set-transit control .. 112

iv © Graham G. Thomason 2003-2004

4.26 Pruning on the basis of traces ... 113

4.27 Arrays .. 116

4.28 What else is there to STATECRUNCHER? ... 119

5. Modelname mode ... 120

5.1 To prepare your file and an index to it ... 120

5.2 Using modelname mode ... 121

6. The STATECRUNCHER Release 1.02 loop .. 122

6.1 To prepare a model... 122

6.2 To compile and validate your file ... 122

6.3 Exercising models .. 123

7. The socket version of STATECRUNCHER ... 124

8. Reference for STATECRUNCHER syntax .. 125

8.1 Declarations and an overview of state statements .. 125

8.2 Transitions.. 127

8.3 Arithmetic operators... 131

8.4 Scoping operators ... 132

8.5 The split operator ... 133

8.6 Functions .. 134

9. Reference for STATECRUNCHER commands.. 135

10. Glossary and abbreviations ... 140

11. References .. 144

© Graham G. Thomason 2003-2004 1

1. Introduction

This document is a user manual for STATECRUNCHER . It covers the syntax and explains the

semantics, mainly by example. Both the STATECRUNCHER modelling language and the main

user commands that can be sent to it are treated.

It does not cover advanced commands that would probably only be given under program

control (by a primer), except in a reference section, nor at all the art of producing good

models from a software specification, nor does it cover software component composition

issues, except for a basic client-server paradigm. These are or will be the subjects of separate

studies.

STATECRUNCHER and some proposals for extensions are the subject of a number of pending

patents (PHGB-020195, PHGB-020196, PHGB-030116).

1.1 What STATECRUNCHER is and does

STATECRUNCHER is a state machine system that handles nondeterminism. As a language

system, it provides a means to textually describe and compile UML dynamic models and

produce an executable exhibiting the state behaviour of the model. This in turn provides an

oracle to state based tests. A very simple deterministic model is shown below.

Figure 1. A very simple deterministic model and its source code

This model is always in one of two states aa or ab. The initial, or default, state is aa (marked

by the arrow). Transitioning between aa and ab occurs if the model is in state aa and is

given event α or γ to process. Transitioning between ab and aa occurs if the model is in state

ab and is given event β or γ to process. The fact that α and γ are on the same transition in

one direction, but that β and γ are on separate transitions in the other direction, simply shows

flexibility in how the model is written; the effect is the same in cases like this whether the

events are put on the same transition or separate transitions. If the model is in state aa and it

is given event β to process, there is no change in state. Similarly if it is in state ab and it is

statechart sc

a

aa

ab

β

α,γ

γ

statechart sc(a)

event alpha,beta,gamma;

 cluster a(aa,ab)

 state aa {alpha,gamma->ab;}

 state ab {beta->aa; gamma->aa;}

STATECRUNCHER source code

2 © Graham G. Thomason 2003-2004

given event α to process. All this behaviour is assumed to be what we require and expect of a

real system: the System Under Test (SUT), also referred to as an Implementation Under Test

(IUT), especially when there may be several implementations of one specified system.

If we compile and run this model, and get the initial configuration (with the gc command),

the output is :

The fact that leafstate aa is occupied, and ab is vacant can be seen. The double asterisks

draw attention to occupied states. Cluster a is occupied is because it is the parent of aa and

ab; this will be explained later. The output also shows transitionable events (the TREV lines),

showing that events alpha and gamma will trigger a transition. The rest of the output will be

explained in due course.

If we now give a command to process event gamma (pe gamma), and then get the new

configuration (gc) , the new configuration is seen:

What we have is a tool giving the result of a test - a test oracle. But it is not a test generator

because the user had to decide what event to give STATECRUNCHER to process. Now since

STATECRUNCHER outputs what events it will transition on (and it can also give all its events

on request), one can imagine STATECRUNCHER being connected to another program that

decides on the events to be processed. Such a tool is called a test generator or primer. The

SC:gc

2 statechart sc

2 cluster a [sc] = OCC [] **

2 leafstate aa [a, sc] = OCC [] **

2 leafstate ab [a, sc] = VAC []

2 TRACE =[]

2 TREV [[alpha, [sc]], 0, [], []]

2 TREV [[gamma, [sc]], 0, [], []]

outworlds=[2]

number of outworlds=1

SC:pe gamma

SC:gc

3 statechart sc

3 cluster a [sc] = OCC [] **

3 leafstate aa [a, sc] = VAC []

3 leafstate ab [a, sc] = OCC [] **

3 TRACE =[]

3 TREV [[beta, [sc]], 0, [], []]

3 TREV [[gamma, [sc]], 0, [], []]

outworlds=[3]

number of outworlds=1

© Graham G. Thomason 2003-2004 3

primer will also pass the events to be tested, and their oracle, to a test harness. The test

harness will (directly or indirectly) call the Implementation Under Test and obtain its new

state, and compare this with the test oracle, and log a pass or fail. This is the basis of

automated test execution.

A possible toolset working as described above to go with STATECRUNCHER is TorX [CdR].

A system to be tested may be a formal component. The following diagram shows the

processes applied to a specification and then a model as it is compiled, validated and deployed

in a testing tool chain such as TorX.

Figure 2. Compilation, Validation and Application to a Testing Tool Chain

1.2 STATECRUNCHER and Prolog

STATECRUNCHER is currently implemented in Prolog. STATECRUNCHER's own syntax is

independent of Prolog, and STATECRUNCHER can be run in a mode that hides Prolog

completely, but it is generally somewhat more convenient to develop a model using a Prolog

environment. The ordinary user does not need to know Prolog as a language at all, however

STATECRUNCHER is run.

STATECRUNCHER can be run:

 As an MS-DOS executable. Apart from a startup message, the user will not be aware

of any connection with Prolog.

 Under SWI-Prolog - a public domain system, (but read the conditions), reference

[SWI-Prolog].

 Under WinProlog - a commercial system, reference [WinProlog].

STATECRUNCHER

Compiler/

Validator

Machine

Engine

System

Under

Test

Textual

Dynamic

Model

Test case

generator

Test

Report

Test

 harness

Glue

code/

Glue

tools

Component

Specification

4 © Graham G. Thomason 2003-2004

1.3 Notation

UML describes a detailed notation for diagrams, but for historical reasons, (and perhaps also

compactness) this manual differs in respect of certain features:

 on entry to a state (UML “entry/”) is a solid triangle pointing in to the state, e.g.

 on exit from a state (UML “exit/”) is a solid triangle pointing out of the state, e.g.

 events declared in a part of the hierarchy are denoted by the symbol , e.g.

 variables are declared in a part of the hierarchy by the symbol, e.g.

 PCOs (Points of Control and Observation) are declared by the symbol , e.g.

1.4 Related documentation by the present author

 For the underlying parsing technique: [StCrGP4]

 For detail of STATECRUNCHER parsing: [StCrParsing]

 For detail of STATECRUNCHER system and design: [StCrMain]

 For detail of the STATECRUNCHER-primer protocol: [StCrPrimer]

 For test models: [StCrTest]

This manual is self-sufficient as a basic tutorial without reference to other documentation, but

references will be given for amplification on the material in many instances.

v=6

v=6

ζ1

pco1

v=6

© Graham G. Thomason 2003-2004 5

2. Installation

2.1 Hardware requirements

The supported platforms are Windows 98 and above. The disk usage is about 20MB (though

this includes much test material and can be pruned away to about 1 MB).

STATECRUNCHER will run on older, slower machines, but the following will be noticed:

 run-time response for deterministic models will still be fast, by human standards at least.

 run-time response time when there are many worlds in existence will be slow.

 compile time for models with long statements will be noticeably slow.

STATECRUNCHER compilation of models runs rather slowly on a 120 MHz laptop, runs

adequately on a 300 MHz machine (on which it was largely developed), and runs all the better

on more modern machines. There will always be a performance bottleneck under highly

nondeterministic situations, since there is potential for combinatorial explosion. If possible,

keep the number of worlds that models generate to below, say, 100.

2.2 Installation overview

There are various implementations of STATECRUNCHER:

 As an MS-DOS executable, using an embedded WinProlog kernel. Apart from a

startup message, the user will not be aware of any connection with Prolog.

 Under SWI-Prolog - a public domain system, (but read the conditions), reference

[SWI-Prolog].

 Under WinProlog - a commercial system from Logic Programming Associates (LPA),

reference [WinProlog].

There is also a special socket version under SWI-Prolog, (not relevant to a learner), described

in section 5.

In order to run STATECRUNCHER under SWI-Prolog or WinProlog, you need the

STATECRUNCHER source. The MS-DOS executable does not need a Prolog system or the

STATECRUNCHER source.

All versions work with the same modelling language and the same command language though

there are some alternative ways of working, e.g. modelname mode, which are not available in

the MS-DOS executable version). The executable runs in an MS-DOS window, which has the

6 © Graham G. Thomason 2003-2004

disadvantage that is may not be scrollable. It is possible, however, under later versions of

Windows, to set an MS-DOS window to more than the default 24 lines.

We consider installation of SWI-Prolog and of each STATECRUNCHER system, taking the

process as far as starting up STATECRUNCHER and obtaining a STATECRUNCHER command

prompt (SC:). After this stage, the difference between the systems becomes largely

irrelevant. Follow a path in the tree below according to your way of working.

© Graham G. Thomason 2003-2004 7

Figure 3. Diagram of installation routes

An MS-DOS executable

of STATECRUNCHER

The source of

STATECRUNCHER

WinProlog SWI-Prolog

What implementation

of STATECRUNCHER

do you have?

What implementation

of PROLOG will you

be using?

Download and

Install SWI-Prolog

Purchase and Install

WinProlog

Follow

STATECRUNCHER

compile and run

instructions for

WinProlog

You should now have

STATECRUNCHER's SC: prompt

Follow

STATECRUNCHER

compile and run

instructions

for SWI-Prolog

Follow

STATECRUNCHER

run instructions

Follow instructions on installation

of STATECRUNCHER source

8 © Graham G. Thomason 2003-2004

2.3 To install STATECRUNCHER source from the zip file

STATECRUNCHER is supplied in a zip file. Create a directory KWinPro. Extract

STATECRUNCHER from the zip file into it; that should generate a directory structure at least as

shown, (though there will be more subdirectories if supplied, e.g. containing documentation).

The structure below KWinPro is best regarded as fixed. The path to and including KWinPro is

not fixed and can be user defined (in a STATECRUNCHER loader file, aux_load_sc.pl).

Figure 4. Installation directory structure

Edit (the equivalent to) file
 P:\KWinPro\StCr\StCr2Sand\Boot_sc\aux_load_sc.pl

Edit the boot_root lines to reflect the actual location in your directory hierarchy

boot_root(gp4,'P:\Kwinpro\GP4\GP4Sand1\').

boot_root(sc, 'P:\Kwinpro\StCr\StCr2Sand\').

(Ignore any xxboot_root lines - they are effectively disabled and have no effect).

2.4 Downloading and installing SWI-Prolog

The SWI Prolog site is:

http://www.swi-prolog.org/

Read and heed the license details. Do not distribute public domain and Philips proprietary

software together without permission from Philips IP&S.

Versions at or above 5.0.3 should be suitable. Download SWI-Prolog for Windows:

SWI-Prolog/XPCE for MS-Windows

Install as instructed with standard options. This includes accepting .pl as the Prolog

extension (sorry, Perl users).

Preferably, increase the capacity of the main window with regedit. Go to

HKEY_CURRENT_USER\Software\SWI\Plwin\Console\SaveLines

and change the value from 0xc8 (200 decimal) to, say, 0x1f4 (500 lines).

http://www.swi-prolog.org/
http://www.swi.psy.uva.nl/cgi-bin/nph-download/SWI-Prolog/w32pl505.exe

© Graham G. Thomason 2003-2004 9

2.5 To compile and run STATECRUNCHER under SWI Prolog

It is assumed that STATECRUNCHER source has been installed as instructed, and that SWI-

Prolog has been installed.

In the StCr\StCr2Sand\boot directory, double click on the file
boot_sc_swipro_win.pl

STATECRUNCHER is recompiled by SWI-Prolog every time it is started up. This only takes a

few seconds on a modern machine.

First SWI Prolog should start up, then STATECRUNCHER will be boot loaded (many files will

be loaded), and you should end up with the following (details may differ slightly):

To exit:

 At the SC: prompt, enter quit

 Close the Window (or, in good Prolog tradition, type halt.).

2.6 To compile and run STATECRUNCHER under WinProlog

It is assumed that STATECRUNCHER source has been installed as instructed, and that

WinProlog has been installed.

Start up WinProlog, e.g. using a short cut, with the following command and parameters (read

as one line):
"D:\Program Files\WIN-PROLOG-4010\PRO386W.EXE" /B512

/L1024 /P50000 /H3000 /T1024

This is a considerable amount of memory, and the startup may be slow (a few minutes) on an

older (say, 1998) computer, but once WinProlog has started up, it will perform well.

Open (under the File button)
boot_sc_winpro_win.pl

in the StCr\StCr2Sand\boot directory, and Compile it (under the Run button). Then

minimize the boot_sc_winpro_win.pl window, and in the console window, type

?- cruncher.

This will give STATECRUNCHER's SC: prompt.

 To exit STATECRUNCHER, enter quit (without a full stop).

 To exit WinProlog, select File, Exit, or close the application window.

% F:\KWinPro\StCr\StCr2sand\va_sc\zva_sc.pl compiled 0.00 sec, 4,888 bytes

% F:\KWinPro\StCr\StCr2sand\zt_sc\zt_sc_1.pl compiled 0.00 sec, 1,136 bytes

Boot load complete. Prolog system=swiprolog

% aux_load_sc.pl compiled 3.89 sec, 3,638,548 bytes

STATECRUNCHER (Version 1.05)

Copyright (C) Philips Electronics N.V., 2000-2003

SC:

10 © Graham G. Thomason 2003-2004

2.7 To run the STATECRUNCHER MS-DOS executable

Extract the Zip file into a directory of suggested name KWinPro.

If the full STATECRUNCHER development directory tree has been supplied, then the executable

and related files are to be found in the directory equivalent to
P:\KWinPro\StCr\StCr2Sand\BOOT_SC\StCrExe-Re105

Otherwise, they are in the top level directory.

The executable is
statecruncher.exe

It must be collocated with
statecruncher.ovl

Do not just double click on statecruncher.exe. It must be run with the parameters

specifying memory usage as for WinProlog. The following should be sufficient for most

purposes:
statecruncher.exe /B512 /L1024 /P50000 /H3000 /T1024

Make a shortcut to wherever you put statecruncher.exe on your system. The suggested

parameter settings are made in the shortcut file by right clicking it, selecting properties, and

editing the target to e.g. (read as one line):
F:\KWinPro\StCr\StCr2Sand\BOOT_SC\StCrExe-

Re105\statecruncher.exe /B512 /L1024 /P50000 /H3000

/T1024

The shortcut can best also be set to start in the current directory, which is set by clearing the

shortcut start in edit box.

This file, when edited as just mentioned, can conveniently be copied to any directory in which

the user is working on a model and used to start it up. (By working this way, the

STATECRUNCHER root command will not be needed). No other files (except the user's

models) are required to run the executable.

When STATECRUNCHER is started up, the prompt
SC:

is given and commands can be entered as described in the report. The command to quit is
SC:quit

© Graham G. Thomason 2003-2004 11

3. Getting started

In this section, we assume that you are able to run STATECRUNCHER and obtain its prompt

(SC:). It does not matter whether you are using the MS-DOS, SWI-Prolog or WinProlog

variety of STATECRUNCHER.

We will make the following model from scratch. It is functionally the same as the model of

section 1.1, but with slightly different naming. Remind yourself of the functionality of the

model from that section. We will call the model

get_started

and put it in directory (adapted for your path)

F:\KWinPro\StCr\StCr5ModelsUser\u5110_get_started

The u5110 naming relates the model to test model t5110, and gives us a convenient

ordering for our models when alphanumerically sorted. The solutions to this manual/tutorial

will be found in directory

F:\KWinPro\StCr\StCr6ModelsTutorial

Here is the model we will implement:

Figure 5. Model u5110_get_started\get_started

We will often use Greek letters for event names, for compactness on diagrams and to

distinguish them from states and variables. In a STATECRUNCHER source file, they will need

to be spelled out. The glossary (section 10) contains the names of the Greek letters.

statechart sc

a

a1

a2

β

α,γ

γ

12 © Graham G. Thomason 2003-2004

We will first implement the state machine hierarchy, without events or transitions. This is

always good practice. Create a file

get_started.scs.txt

in directory (equivalent to)

F:\KWinPro\StCr\StCr5ModelsUser\u5110_get_started

The ending .scs.txt stands for STATECRUNCHER Source. Enter the following text:

The default state of a cluster is its first member - here a1.

Start STATECRUNCHER and enter (adapting to your path)

 SC:root F:\KWinPro\StCr\StCr5ModelsUser\u5110_get_started

 SC:cp get_started

Note: If you are using the MS-DOS version of STATECRUNCHER and put a shortcut in the

same directory as the get_started.scs.txt file, you do not need the first command

above.

As long as you are working in the same directory, correcting and refining your model, with

the same invocation of STATECRUNCHER, you will not need to repeat the root command

when you recompile.

The listing that appears on the screen is also available in two parts, in two files that are

created in the same directory as the source file:

 get_started.scl.txt

 get_started.scv.txt

Observe in passing that two other files are created:

 get_started.sco.pl

 get_started.scd.pl

These are the compiled model, as PROLOG code, for use by the STATECRUNCHER engine.

The first file contains a basic structural parse of the model, and the second file contains a

symbol table, cross-reference table, and data store.

On compilation, there should be no errors, and one warning, that state a2 is unreferenced.

This can be ignored. If there are errors, check your source code carefully.

It is worth experimenting with a deliberate error, say calling state a2 "a3", or omitting it

altogether. You will get a machine path error. This means that there is a problem that the

states a1 and a2, declared in cluster a(a1,a2), are not found in the expected place.

statechart sc(a)

 cluster a(a1,a2)

 state a1;

 state a2;

© Graham G. Thomason 2003-2004 13

Now add the events and transitions. You can also add comments as shown, with // applying to

the rest of the line, as in C++, and /*...*/ enclosing a comment as in C.

Statements of code can be split across more than one line by ending the line with \ (as in

Unix shell commands), but in our model the separate statements (event declarations, state

declarations etc.) easily fit on one line. Do not put two statements on one line.

Compile this model. You only need the root command if you have a new invocation of

STATECRUNCHER.

 SC:root F:\KWinPro\StCr\StCr5ModelsUser\u5110_get_started

 SC:cp get_started

The screen output (also written to the files mentioned) is a compiler listing, and a symbol and

cross reference table. An entry such as

identifies symbol gamma in statechart scope ([sc]), as an event (eventdecl) at an

unnamed ([]) Point of Control and Observation, and is referenced (XREF) in leafstates a1

and a2, both in cluster a scope ([a,sc]). Scopes and Points of Control and Observation

will be described later.

We are now in a position to run the model, getting the configuration and processing events.

If you have previously compiled the model, but are in a new invocation of STATECRUNCHER,

enter

 SC:root F:\KWinPro\StCr\StCr5ModelsUser\u5110_get_started

 SC:run get_started

If you have just compiled the model is ready for the next command.

// My first model

statechart sc(a)

event alpha,beta,gamma;

 cluster a(a1,a2)

 state a1 {alpha,gamma->a2;}

 state a2 {beta->a1; gamma->a1;}

SYMB gamma [sc] eventdecl []

 XREF leafstate a1:[a,sc]

 XREF leafstate a2:[a,sc]

14 © Graham G. Thomason 2003-2004

To see the initial state of the machine, enter

 SC:gc

This stands for get configuration. The output is

As explained in section 1.1, we see the state occupancies (occupied and vacant). The parent of

states a1 and a2 is cluster a. Only one child state of a cluster can be occupied, and if it is, the

cluster is occupied. If no child states are occupied, the cluster is not occupied. This explains

why cluster a is also occupied. The current configuration has two transitionable events,

alpha and gamma. Since they are in statechart scope ([sc]), they can be entered without

scope in the next command we will give. The remaining items of output will be explained as

the subject matter arises throughout this manual.

To process event alpha, enter

 SC:pe alpha

The command has completed when a new prompt is given. Follow it up with the get

configuration command.

 SC:gc

The output is

State a1 is now vacant, and state a2 is occupied. The transitionable events have changed.

SC:gc

2 statechart sc

2 cluster a [sc] = OCC [] **

2 leafstate a1 [a, sc] = OCC [] **

2 leafstate a2 [a, sc] = VAC []

2 TRACE =[]

2 TREV [[alpha, [sc]], 0, [], []]

2 TREV [[gamma, [sc]], 0, [], []]

outworlds=[2]

number of outworlds=1

SC:gc

3 statechart sc

3 cluster a [sc] = OCC [] **

3 leafstate a1 [a, sc] = VAC []

3 leafstate a2 [a, sc] = OCC [] **

3 TRACE =[]

3 TREV [[beta, [sc]], 0, [], []]

3 TREV [[gamma, [sc]], 0, [], []]

outworlds=[3]

number of outworlds=1

© Graham G. Thomason 2003-2004 15

Experiment with more pe and gc commands, and see the machine transition (or not, as the

case may be).

To quit, enter

 SC:quit

If this leaves a Prolog prompt, close the window, or type

 ?- halt.

For a guide to all STATECRUNCHER commands, see chapter Table 4 and [StCrPrimer].

16 © Graham G. Thomason 2003-2004

4. Guide to operation

This section covers the functionality of STATECRUNCHER feature by feature. The reader is

assumed to be familiar with the concept of a STATECRUNCHER statechart from the previous

chapter. All statecharts in the following models are implicitly called "sc".

The model numbers as used in directory names in the following sections are of the type unnnn

(where n is a digit) and run in parallel to the test model numbers tnnnn, which are described in

[StCrTest]. Where the numbers correspond, the subject matter is similar, but the tutorial

model is not necessarily identical to the test model - it will often be simpler. The order of

presentation in this manual is not completely sequential with respect to these numbers, since it

is regarded as important to present the material in a the best order for learning, whilst

retaining established model numbering.

The tutorial models are identified for short as a "unnnn" model for convenience, but unlike

the test models, they cannot be run under this name - all it means is that they are found in a

directory unnnn_something and they must be compiled and run using the actual name of the

source file, which is what a user must always do when creating a new model.

© Graham G. Thomason 2003-2004 17

4.1 Variables, and parameterised and conditional transitions

We will implement the following model:

Figure 6. Variables, parameterised and transitional conditions

Features of the model are:

 Three variables are declared: b (which is a boolean), v1 and v2 (which are integers). The

integers will be declared as belonging to a range. (Enumerated value integers and strings

are also possible).

 Transitions are triggered by parameterised events. Trigger α(b) means event α with a

parameter b. The parameter is not a formal parameter as in other languages, but a

destination variable for the supplied parameter. When we give the transition this event

and a parameter, that parameter will be stored in variable b.

 Two transitions in this model are conditional. The condition is put in square brackets. The

trigger α(b)[b] means that the value of b must be true for the transition to be eligible.

The term [b] could have been any other expression yielding a boolean. The condition

expression need not refer to any parameters, but it often will, as here. There is also a

transition on gamma if v1 is greater than v2, where these variables happen to be

locations of the transition parameters.

 a

a1

a2
β

α(b)[b]

γ(v1,v2)[v1>v2]

a3

α(b)[!b]

b,v1,v2

18 © Graham G. Thomason 2003-2004

First implement the state machine hierarchy, without events or transitions. Create a file

param.scs.txt

in directory (equivalent to)

F:\KWinPro\StCr\StCr5ModelsUser\u5123_param

 Enter the following text :

Compile it (as in Chapter 3, Getting started).

 SC:root F:\KWinPro\StCr\StCr5ModelsUser\u5123_param

 SC:cp param

 Then upgrade it to the following:

See how our integer type, int10, specifies a range. Having specified the type (int10), we

declare integers v1 and v2. The boolean type bool is built-in, as are constants true and

false (equivalent to 1 and 0 respectively).

We arbitrarily initialise b, but not v1 or v2.

The type and integer declarations have been declared at cluster a scope. They could

have been put after the statechart statement; then they would have been at statechart

scope. We address these variables in a very local scope, in the scope of the source state of the

transitions, i.e. in a1, a2 and a3 scopes. It does not matter that these variables were not

defined in these scopes. Variables declared in ancestors of the place where they are used will

always be found. An outbound search mechanism will find the nearest variable. But if we

declare a variable deep in the hierarchy, we cannot address it from higher up in the hierarchy

without using some scoping operators. There is more on scoping in section 4.12.

statechart sc(a)

 cluster a(a1,a2,a3)

 state a1;

 state a2;

 state a3;

statechart sc(a)

event alpha,beta,gamma;

 cluster a(a1,a2,a3)

 enum int10 {0,..,10};

 int10 v1,v2;

 bool b=false;

 state a1 {alpha(b)[b]->a2; alpha(b)[!b]->a3;}

 state a2 {beta->a3;}

 state a3 {gamma(v1,v2)[v1>v2]->a1;}

© Graham G. Thomason 2003-2004 19

Run the model and get the initial configuration

 SC:run param

 SC:gc

This should be:

The line
 2 TREV [[alpha, [sc]], 1, [[r, 0, 1]], []]

tells us that there is a transitionable event alpha which takes 1 parameter, which takes

values in a range 0 to 1 ([r,0,1]).

Transition to state ac as follows

 SC:pe alpha p=0

 SC:gc

This gives us:

SC:gc

2 statechart sc

2 cluster a [sc] = OCC [] **

2 leafstate a1 [a, sc] = OCC [] **

2 leafstate a2 [a, sc] = VAC []

2 leafstate a3 [a, sc] = VAC []

2 VAR INTEGER b [a, sc] =0

2 VAR INTEGER v1 [a, sc] =unknown

2 VAR INTEGER v2 [a, sc] =unknown

2 TRACE =[]

2 TREV [[alpha, [sc]], 1, [[r, 0, 1]], []]

outworlds=[2]

number of outworlds=1

SC:gc

3 statechart sc

3 cluster a [sc] = OCC [] **

3 leafstate a1 [a, sc] = VAC []

3 leafstate a2 [a, sc] = VAC []

3 leafstate a3 [a, sc] = OCC [] **

3 VAR INTEGER b [a, sc] =0

3 VAR INTEGER v1 [a, sc] =unknown

3 VAR INTEGER v2 [a, sc] =unknown

3 TRACE =[]

3 TREV [[gamma, [sc]], 2, [[r, 0, 10], [r, 0, 10]], []]

outworlds=[3]

number of outworlds=1

20 © Graham G. Thomason 2003-2004

Now transition to a1 as follows

 SC:pe gamma p=[3,2]

 SC:gc

The output is:

Note that v1 and v2 now have values.

Experiment by transitioning to state ab on event alpha by providing a parameter value of 1

(=true).

To quit, enter

 SC:quit

If this leaves a Prolog prompt, close the window, or type

 ?- halt.

Remark on enumerated integers with tagnames:

Although not used in these examples, an integer type can be declared with tagnames as

follows:

 enum colour {red,green=3,blue};

Actual integral values are assigned as in C. After the declaration, the symbols red, green

and blue can be used in expressions.

SC:gc

4 statechart sc

4 cluster a [sc] = OCC [] **

4 leafstate a1 [a, sc] = OCC [] **

4 leafstate a2 [a, sc] = VAC []

4 leafstate a3 [a, sc] = VAC []

4 VAR INTEGER b [a, sc] =0

4 VAR INTEGER v1 [a, sc] =3

4 VAR INTEGER v2 [a, sc] =2

4 TRACE =[]

4 TREV [[alpha, [sc]], 1, [[r, 0, 1]], []]

outworlds=[4]

number of outworlds=1

© Graham G. Thomason 2003-2004 21

4.2 Nested cluster and history

We will implement the following model:

Figure 7. Nested cluster, self transitions, and history [model u5130]

The (H) symbol indicates that the cluster can on entry go into the historical state rather than

the default state (though history can be cleared, as will be shown). This is not quite the same

as a UML pseudo-state: STATECRUNCHER does not currently support these directly (they are

on the wish-list), but the functionality of pseudo-states can be imitated with the combination

of a history cluster and selective clear history actions.

Some transitions are from or to non-leaf states, i.e. their source states or target states are not

leaf states. A transition from a non-leaf state counts as if it is from any occupied descendant

state. A transition to a non-leaf state goes either to the historical state (i.e. to the state last

occupied in the cluster) or to the default state, depending on whether history is marked and

whether the historical state is available (the cluster may have never been entered, or the

history may have been cleared).

x

H

b1

b2

b

α

α

ζ

ζ

η

η

θ

θ
δ5

δ6 δ7
δ8

γ4 γ3

β4 β5 β6

β7 β8

β3

a

ω

{deep_clear(x);}

22 © Graham G. Thomason 2003-2004

Call the file nested_cluster.scs.txt in directory u5130_nested_cluster.

Prepare the hierarchy first, but include the history keyword, and compile it (as already

learned).

 SC:root F:\KWinPro\StCr\StCr5ModelsUser\u5130_nested_cluster

 SC:cp nested_cluster

The hierarchy is:

Now add the declarations and transitions:

Points to note

 A statement can be split over several lines using a backslash (with nothing following on

the line, and not commented out by use of the // comment symbol).

 A parent state is targeted using a $ operator, and a grandparent using $$.

 A child state is targeted using the dot operator, e.g. x.a and a grandchild by e.g.

x.b.b1 .

statechart sc(x)

cluster x(a,b)

 state a;

 cluster b(b1,b2) history

 state b1;

 state b2;

statechart sc(x)

event alpha;

event beta3,beta4,beta5,beta6,beta7,beta8;

event gamma3,gamma4;

event delta5,delta6,delta7,delta8;

event zeta, eta, theta;

event omega;

cluster x(a,b) {beta3->x.a; \

 beta5->x.b.b1; \

 beta7->x.b.b2; \

 gamma3->x.b; \

 omega->x.a{deep_clear(x);}; }

 state a { beta4->$x; zeta->b.b2; eta->b; theta->b.b1; }

 cluster b(b1,b2) history {gamma4->$x; \

 delta5->b.b1; \

 delta7->b.b2; \

 eta->a; }

 state b1 {alpha->b2; beta6->$$x; delta6->$b; theta->$a;}

 state b2 {alpha->b1; beta8->$$x; delta8->$b; zeta->$a;}

© Graham G. Thomason 2003-2004 23

 This model does not have cousin states, but to target a cousin state, the construction is e.g.

$a.a1 - see test model t5130, depicted in [StCrTest], for an example.

 The fragment {deep_clear(x);}, which clears history in all clusters in and below

cluster a, is called an action on the transition. A similar kind of action is an assignment,

described in section 4.6.

 Instead of history, we could have marked the cluster with deep history. In

models with deeper nesting, there would be a distinction, because deep history clusters

would keep history of descendants, recursively, as well. See test model t5200 for an

example.

Run the model (as learned in previous sections). Process events eta, alpha, eta. This

takes us through states a, b1, b2, and back to a. Then get the configuration. It is:

Observe the line formatted in bold print. Cluster b is vacant, but its historical state is b2. Now

process event eta. Get the configuration and observe that state b2 is entered, not b1.

Now reset the machine to its default state

 SC:rm

Process events eta, alpha, eta. as before. But now process omega, observing the

configuration. The history of cluster b has been cleared, - instead of b2 there is[]. Now

process event eta. The default state b1 is entered, not the historical state.

SC:gc

5 statechart sc

5 cluster x [sc] = OCC [] **

5 leafstate a [x, sc] = OCC [] **

5 cluster b [x, sc] = VAC b2

5 leafstate b1 [b, x, sc] = VAC []

5 leafstate b2 [b, x, sc] = VAC []

5 TRACE =[]

5 TREV [[beta4, [sc]], 0, [], []]

5 TREV [[zeta, [sc]], 0, [], []]

5 TREV [[eta, [sc]], 0, [], []]

5 TREV [[theta, [sc]], 0, [], []]

5 TREV [[beta3, [sc]], 0, [], []]

5 TREV [[beta5, [sc]], 0, [], []]

5 TREV [[beta7, [sc]], 0, [], []]

5 TREV [[gamma3, [sc]], 0, [], []]

5 TREV [[omega, [sc]], 0, [], []]

outworlds=[5]

number of outworlds=1

8 leafstate b1 [b, x, sc] = OCC [] **

6 leafstate b2 [b, x, sc] = OCC [] **

24 © Graham G. Thomason 2003-2004

4.3 Sets

Sets, like clusters, have members (which can be leafstates, clusters or sets). But if a set is

occupied, all its members are occupied. The cluster rule applies to members: if one of the

members is a cluster, and it is occupied, then only one member of the cluster will be occupied.

Sets enable us to model parallelism, and we may speak of the set members as parallel

machines. A set can have deep history. The symbol for a set is a rounded box with a tab on

the top left for the set name. The following diagram shows how set members may be depicted.

Figure 8. Set members

Transitions to sets may specify several specific target states in different members, or they may

omit some (in which case the default or historical state will be taken where appropriate), or

they may simply target the set, in which case all the target states will be selected using default

or historical considerations.

a

aa ab

s

d

 c

dba dbb

dab daa

eab eaa

e

ea

member is a cluster

 (containing two leafstates)

note symbol a in the member area

member is a leafstate

note no symbol outside the leaf state

(can be useful for self transition actions)

member is a set

(containing two clusters, each of

which contains two leafstates)

member is a cluster

(containing a cluster (containing two

leafstates))

bb ba
b

alternative: member is a cluster

 (containing two leafstates)

note no symbol outside the cluster

da

db

D
Note deep history marker

© Graham G. Thomason 2003-2004 25

We will implement the following model:

Figure 9. Set [model u5140]

Points to note

 There is no difference in structure between the members b1, b2, b3. The alternative

notation is used for member b1 so that it can be made clear that the transition on event γ

targets member b1, and not just set b.

 The transition from a on β targets b1.q (a nondefault state), b3.t (a default state), but

omits a target for member b2. The default state b2.r will be taken.

 The transition from a on θ targets the set only, not a member or anything in a member.

Default states will be taken.

 The transition from a on γ targets member b1 only. Default states will be taken in all

members.

 The transition on ε exits from a child of set member b3 explicitly. A transition on γ exits

from a nonleaf member. A transition on θ exits from the set as such. In all these cases, all

members of the set will be exited.

y

p

q

b1

b

b2 b3

r

s

t

u

π

π
ρ

ρ

τ
τ

γ

γ

β

δ

ε

θ

θ

a

26 © Graham G. Thomason 2003-2004

Call the file set.scs.txt in directory u5140_set. Prepare the hierarchy first and

compile it (as already learned).

 SC:root F:\KWinPro\StCr\StCr5ModelsUser\u5140_set

 SC:cp set

The hierarchy is:

Now add the declarations and transitions:

Points to note

 Multiple targets are addressed using the split operator, /\.

 Set b, being a sibling of state a, is targeted from state a without scoping operators:

theta->b. Members of the set require the child operator: gamma->b.b1. The

leafstates in the set are all a level deeper still, e.g. b.b1.q.

statechart sc(y)

 cluster y (a,b)

 state a;

 set b (b1,b2,b3)

 cluster b1(p,q)

 state p;

 state q;

 cluster b2(r,s)

 state r;

 state s;

 cluster b3(t,u)

 state t;

 state u;

statechart sc(y)

event beta,gamma,delta,epsilon,theta,pi,rho,tau;

 cluster y (a,b)

 state a {beta-> b.(b1.q/\b3.t); \

 delta->b.(b1.q/\b2.r/\b3.u); \

 gamma->b.b1; \

 theta->b; }

 set b (b1,b2,b3) {theta->a;}

 cluster b1(p,q) {gamma->$a;}

 state p {pi->q;}

 state q {pi->p;}

 cluster b2(r,s)

 state r {rho->s;}

 state s {rho->r;}

 cluster b3(t,u)

 state t {tau->u;}

 state u {tau->t; epsilon->$$a;}

© Graham G. Thomason 2003-2004 27

Run the model (as learned in previous sections). Process event beta. Use the gc command

to observe the leafstates in the set that are occupied:

Process events tau and epsilon . Observe how the whole set has been exited:

Experiment with the other transitions.

Remark

 We have seen how to target several target states of a transition. The reader might ask

about several source states. The question makes sense, because we might require that

several states in a set be occupied before we allow a transition out of the set. This is

achieved by making one of the source states the “master” and adding a condition that the

other states are occupied using the in() function, described in section 4.9.

SC:gc

3 statechart sc

3 cluster y [sc] = OCC [] **

3 leafstate a [y, sc] = VAC []

3 set b [y, sc] = OCC [] **

3 cluster b1 [b, y, sc] = OCC [] **

3 leafstate p [b1, b, y, sc] = VAC []

3 leafstate q [b1, b, y, sc] = OCC [] **

3 cluster b2 [b, y, sc] = OCC [] **

3 leafstate r [b2, b, y, sc] = OCC [] **

3 leafstate s [b2, b, y, sc] = VAC []

3 cluster b3 [b, y, sc] = OCC [] **

3 leafstate t [b3, b, y, sc] = OCC [] **

3 leafstate u [b3, b, y, sc] = VAC []

3 TRACE =[]

3 TREV [[pi, [sc]], 0, [], []]

3 TREV [[rho, [sc]], 0, [], []]

3 TREV [[tau, [sc]], 0, [], []]

3 TREV [[gamma, [sc]], 0, [], []]

3 TREV [[theta, [sc]], 0, [], []]

outworlds=[3]

number of outworlds=1

5 set b [y, sc] = VAC []

5 cluster b1 [b, y, sc] = VAC q

5 leafstate p [b1, b, y, sc] = VAC []

5 leafstate q [b1, b, y, sc] = VAC []

5 cluster b2 [b, y, sc] = VAC r

5 leafstate r [b2, b, y, sc] = VAC []

5 leafstate s [b2, b, y, sc] = VAC []

5 cluster b3 [b, y, sc] = VAC u

5 leafstate t [b3, b, y, sc] = VAC []

5 leafstate u [b3, b, y, sc] = VAC []

28 © Graham G. Thomason 2003-2004

4.4 Fired events

Events may be supplied by the user, with the pe command, or they may be generated in the

model, by an action which we call firing an event.

As with user-supplied events, fired events can take parameters.

We illustrate fired events in two contexts

 Where a transition in one part of a machine fires an event which will be responded to in a

parallel part of the machine to cause a transition there.

 An engagement between two parallel parts of a machine representing STATECRUNCHER's

client-server paradigm. This is considered in the next section (4.5).

Other aspects to fired events, for which we refer the interested reader to test models, are:

 A simple knock-on effect in a machine with no parallelism (see test model t5152).

 Fired events can also be used to generate loops (see test model t5240).

The model we first implement is as follows:

Figure 10. Fired event [model u5150]

Points to note

 The user will initially supply event α, and the system will fire event β. After this, when

we are in states a2 and b2, the user can supply event β, and the system will fire event α.

 We declare two boolean variables, bv1 and bv2, and use them as parameters when we

fire the event β.

 The transition labelled β(bvp1,bvp2)[bvp1&&(!bvp2)] receives the parameters

and puts them in its own locations (bvp1 and bvp2). The initial values of bv1 and bv2

(true and false respectively) will allow the transition on β(bvp1,bvp2) to take place,

because the condition evaluates to true. However, bv2 can be set to any value using the

self-transition on γ, so we can arrange for the condition to evaluate to false.

s

 b2

b

β(bvp1,bvp2)[bvp1&&(!bvp2)]

a

b1

 a2 a1

β{fire α }

α{fire β(bv1,bv2)}

α

bv1=true; bv2=false

γ(bv2)

bvp1, bvp2

© Graham G. Thomason 2003-2004 29

 Although we will initially fire event β via event α, β can be supplied by the user from the

start.

Call the file fire.scs.txt in directory u5150_fire. Prepare the hierarchy first and

compile it (as already learned).

 SC:root F:\KWinPro\StCr\StCr5ModelsUser\u5150_fire

 SC:cp fire

The hierarchy is:

Then add the declarations and transitions:

Run the model (as learned).

 Process event alpha, get the configuration, and observe that the transition on beta took

place as well as the one on alpha.

 Reset the model (command rm). Process event gamma with a parameter of 1 (command

pe gamma p=1). Now process event alpha. The condition on the receiving transition,

[bvp1&&(!bvp2)], is now false, and that transition does not take place.

 Experiment with other transitions. Apart from altering variable values, how many

different state occupancy configurations does the model have? Finding the configurations

is called exploring the model. The figure below shows the explored model.

statechart sc(s)

 set s(a,b)

 cluster a(a1,a2)

 state a1;

 state a2;

 cluster b(b1,b2)

 state b1;

 state b2;

statechart sc(s)

event alpha,beta,gamma;

bool bv1=true,bv2=false;

 set s(a,b)

 cluster a(a1,a2)

 state a1 {alpha->a2{fire beta(bv1,bv2);}; gamma(bv2);}

 state a2 {alpha->a1;}

 cluster b(b1,b2)

 bool bvp1,bvp2;

 state b1 {beta(bvp1,bvp2)[bvp1&&(!bvp2)]->b2;}

 state b2 {beta->b1 {fire alpha;};}

30 © Graham G. Thomason 2003-2004

Figure 11. Fired event model explored

Occupied states are shown shaded, in red.

s

b2
b β

a

b1

a2 a1

β{fire α }

α{fire β}

α

s

b2
b β

a

b1

a2 a1

β{fire α }

α{fire β}

α

s

b2
b β

a

b1

a2 a1

β{fire α }

α{fire β}

α

s

b2
b β

a

b1

a2 a1

β{fire α }

α{fire β}

α

β - in 2 steps

α

INACCESSIBLE

β α - in 3 steps
α

β - in 3 steps

© Graham G. Thomason 2003-2004 31

4.5 Client-server composition and PCOs

In this section, we see how to model one software component or function calling another,

using fired events. We introduce the concept of PCOs: Points of Control and Observation. We

will implement the following model:

Figure 12. Component composition

Points to note

 STATECRUNCHER's composition paradigm is closely analogous to the function call and

return of imperative languages such as ‘C’.

 The making of the function call is modeled by a fired event

 The response to this is modeled by a transition on the event that was fired

 The return statement is modeled by fired return event

 The response to this is modeled by a transition on the return event that was fired.

If there are many such calling sequences in a model, return names can be made unique to

a server function by affixing the function name to the event (e.g. return_max) or by

putting the return event in a sufficiently local scope (using STATECRUNCHER's scoping

capabilities.

 The client can be seen as an independent state machine, which can be driven through its

cycle with events alpha and return. It does not care who it is that responds to its firing of

β, nor who it is that provides the return event. A different server to the one shown

might be connected to the client, e.g. with more states and transitions between its initial

and final states (S1 an S2). Similarly the server is independent of its client, except for the

agreed interface of β and return.

 Event α is supplied externally to the client and server. Events β and return are part of

the agreed interface between the client and server. We indicate this by putting the events

C1 C2 C3

return α /fire β

comp

client

S1 S2

β/fire return server

pco_ext pco_comp

32 © Graham G. Thomason 2003-2004

on different PCOs. STATECRUNCHER's output will reveal the PCOs so that a test generator

program can distinguish, and if required, restrict itself to certain PCOs only. We put α on

pco_ext (for external) and β on pco_cmp (for composition). If we had more events

local to the server only, say, we could put them on pco_serv and so on, but we have

kept this model to the basics.

Call the file client_server.scs.txt in directory u5154_client_server.

Prepare the hierarchy first and compile it (as already learned).

 SC:root F:\KWinPro\StCr\StCr5ModelsUser\u5154_client_server

 SC:cp client_server

The hierarchy is:

Then supply the declarations and transitions:

Points to note

 PCOs are declared in their own declaration statements, and are used in event declarations.

 We haven't used capital letters for identifiers so far, but they are allowed. Identifiers are

as in 'C', so non-leading underscores are allowed too, but double underscores can have a

special meaning in connection with arrays, discussed later.

statechart sc(comp)

 set comp(client, server)

 cluster client(C1,C2,C3)

 state C1;

 state C2;

 state C3;

 cluster server(S1,S2)

 state S1;

 state S2;

statechart sc(comp)

PCO ext,cmp;

event alpha@ext;

event beta,return@cmp;

 set comp(client, server)

 cluster client(C1,C2,C3)

 state C1 {alpha->C2 {fire beta;}; }

 state C2 {return->C3;}

 state C3;

 cluster server(S1,S2)

 state S1 {beta->S2 {fire return;}; }

 state S2;

© Graham G. Thomason 2003-2004 33

Compile and run the model. The initial state is:

Point to note

 The TREV lines show the PCO on which the event has been declared. PCOs can

themselves be scoped; our PCOs are both in statechart scope, i.e. [sc].

Process event alpha and obtain the configuration:

Points to note

 The complete transaction between the server and client has run its course.

 This particular model has no reset event and has reached a dead end. There are no

transitionable events. This sort of situation could be an indication of deadlock in a real

system. A server would typically return to its initial state on completion, but we have left

this one in state S2 as we feel it more clearly expresses the client-server paradigm.

SC:gc

2 statechart sc

2 set comp [sc] = OCC [] **

2 cluster client [comp, sc] = OCC [] **

2 leafstate C1 [client, comp, sc] = OCC [] **

2 leafstate C2 [client, comp, sc] = VAC []

2 leafstate C3 [client, comp, sc] = VAC []

2 cluster server [comp, sc] = OCC [] **

2 leafstate S1 [server, comp, sc] = OCC [] **

2 leafstate S2 [server, comp, sc] = VAC []

2 TRACE =[]

2 TREV [[alpha, [sc]], 0, [], [ext, [sc]]]

2 TREV [[beta, [sc]], 0, [], [cmp, [sc]]]

outworlds=[2]

number of outworlds=1

SC:pe alpha

SC:gc

5 statechart sc

5 set comp [sc] = OCC [] **

5 cluster client [comp, sc] = OCC [] **

5 leafstate C1 [client, comp, sc] = VAC []

5 leafstate C2 [client, comp, sc] = VAC []

5 leafstate C3 [client, comp, sc] = OCC [] **

5 cluster server [comp, sc] = OCC [] **

5 leafstate S1 [server, comp, sc] = VAC []

5 leafstate S2 [server, comp, sc] = OCC [] **

5 TRACE =[]

outworlds=[5]

number of outworlds=1

34 © Graham G. Thomason 2003-2004

4.6 Assignments on transitions and inexact variable scoping

In this section we show how assignments can be made on transitions. We also show that

variables of the same name can be declared in different scopes; they are then completely

separate variables.

We will implement the following model:

Figure 13. Assignment on transition with overloaded variable names [model u5160]

Points to note

 There can be several assignments (and other actions) on a transition.

 An arithmetic expression on a transition such as v+=3 in principle refers to a v in the

scope of the source state. So for a transition from state a1, it refers to a v declared in state

a1 scope. However, if there is no such variable in this scope, which is the situation here,

the nearest v will be used; it is the v in cluster a scope.

 An expression such as $v+=3 refers to a v in the parent scope. So for a transition from

state a1, it refers to a v declared in cluster a scope. This v exists.

 An expression such as $$v+=3 refers to a v in the grandparent scope. So for a transition

from state a1, it refers to a v declared in statechart sc scope. This v exists, and is distinct

from the v in cluster a scope.

 The rule about finding the nearest variable in scope, searching up the hierarchy, applies to

variables on the left hand side or right hand side of expressions.

a

a1

α{$v+=3; $$v=$v+6;}

γ($param){$v=$param;}

v=1

v=2

β{v+=3; $$v=v+6;}

γ(param){v=param;}

exact scoping

inexact scoping

a3

a2
no very-local v here

the global v

 v

the local v

 v
param

© Graham G. Thomason 2003-2004 35

Call the file assign.scs.txt in directory u5160_assign. Prepare the hierarchy first

and compile it (as already learned).

 SC:root F:\KWinPro\StCr\StCr5ModelsUser\u5160_assign

 SC:cp assign

The hierarchy is:

Then supply the declarations and transitions:

 Run the model and get the initial configuration:

statechart sc(a)

 cluster a(a1,a2,a3)

 state a1;

 state a2;

 state a3;

statechart sc(a)

event alpha,beta,gamma;

enum int1 {0,..,1000};

int1 v=1;

 cluster a(a1,a2,a3)

 int1 v=2;

 int1 param;

 state a1 {alpha->a2 {$v+=3;$$v=$v+6;}; \

 beta->a3 {v+=3;$$v=v+6;}; }

 state a2 {gamma($param)->a1{$v=$param;}; }

 state a3 {gamma(param)->a1{v=param;}; }

SC:gc

2 statechart sc

2 cluster a [sc] = OCC [] **

2 leafstate a1 [a, sc] = OCC [] **

2 leafstate a2 [a, sc] = VAC []

2 leafstate a3 [a, sc] = VAC []

2 VAR INTEGER param [a, sc] =unknown

2 VAR INTEGER v [a, sc] =2

2 VAR INTEGER v [sc] =1

2 TRACE =[]

2 TREV [[alpha, [sc]], 0, [], []]

2 TREV [[beta, [sc]], 0, [], []]

outworlds=[2]

number of outworlds=1

36 © Graham G. Thomason 2003-2004

Points to note

 The two variables called v are shown with their scope. A scope of [a,sc] is read from

right to left if we descend in the hierarchy: we get to this v by going to statechart sc and

cluster a.

 Variable expressions are evaluated from the perspective of the source state of the

transition. Note in passing that states are also listed with their scope. We have already

seen how we target states using scoping operators. The issue of states and their scope can

be a little confusing, because a scope is itself a state. Given a state, we say its scope is the

parent state. This explains output such as
leafstate a1 [a, sc] = VAC []

State expressions such as a.b are evaluated from the perspective of the scope part, or

parent, of the source state of a transition. This gives the most natural way to address

states: siblings require no operators, parents require a $, and child states require a dot.

Process event alpha. This will cause the following evaluations to take place

 $v+=3;

$v is the v in [a,sc] scope and was initialized to 2, so it gets the value 5.

 $$v=$v+6;

$$v is the v in [sc] scope and was initialized to 1. $v is as above and has the

value 5. So $$v gets the value 5+6=11.

There is now a transition on event gamma, taking a parameter, which is then assigned to an

exactly specified local v. Process it with some parameter value, say, 88 (pe gamma p=88):

Reset the model (command rm) and process event beta. The effect on the variables is the

same as when we processed event alpha, although one variable was addressed inexactly.

There is also a transition on event gamma, taking a parameter, which is then assigned to an

SC:gc

5 statechart sc

5 cluster a [sc] = OCC [] **

5 leafstate a1 [a, sc] = VAC []

5 leafstate a2 [a, sc] = OCC [] **

5 leafstate a3 [a, sc] = VAC []

5 VAR INTEGER param [a, sc] =unknown

5 VAR INTEGER v [a, sc] =5

5 VAR INTEGER v [sc] =11

5 TRACE =[]

5 TREV [[gamma, [sc]], 1, [[r, 0, 1000]], []]

outworlds=[5]

number of outworlds=1

7 VAR INTEGER param [a, sc] =88

7 VAR INTEGER v [a, sc] =88

© Graham G. Thomason 2003-2004 37

inexactly specified local v. The effect is as above, in the exactly specified case. Remember

that we could have placed our parameter directly into variable v, specifying the transition

with γ($v) rather than γ($param), but here we make a copy of the parameter.

38 © Graham G. Thomason 2003-2004

4.7 Orbits, self-transitions, upon-enter and upon-exit actions

When a transition takes place, (apart from some self-transitions), various states are exited and

various states are entered. In this section we show how an action can be attached to the

internal event of a state being exited or entered, which we call upon enter actions and upon

exit actions.

We also show how a transition course can be taken to a higher level than normal. Normally, a

transition course will be as low-flying as possible. A transition which causes more states to be

exited and entered, in our notation, is given a loop in the arc and is called an orbital

transition.

Self transitions are transitions with the same source and target state. They may nevertheless

cause a transition between states. They can be internal or external.

 Internal self-transitions are drawn on the inside of the state and never cause transitions

between states. As with other transitions, they are valid for processing if the state to

which they are attached is occupied; if not, they are totally discounted.

 There is no difference between leafstate and non-leafstate internal self-transitions. If

they are valid and there is an action attached to them, the action is performed.

 Internal transitions cannot be orbital.

 External self-transitions are drawn outside the state.

 If they are on a nonleaf state, they can cause transitions to default states, (but not in

clusters with history, because the current state is counted as the historical state). This

applies to the self-transition on ε3 in Figure 14 when state p2 is occupied.

 If they are on a leafstate, nothing is exited or entered (unless the self-transition is

orbital), but actions are executed, and they behave like internal transitions.

 External self transitions can be orbital (to any height of orbit). In this case they

always cause exiting and entering to the height of the orbit.

Self transitions can be parameterised, but we do not illustrate that here; an example was given

in section 4.4.

If there are actions on a transition, the order of action execution is:

1. Do the exit actions, starting with the source state

2. Do the on-transition actions

3. Do the enter actions, ending with the target state.

If several parallel states are exited and entered, we are in the realm of set-transit

nondeterminism, to be discussed later.

© Graham G. Thomason 2003-2004 39

Figure 14. Orbits, self-transitions, upon-enter and upon-exit actions [model u5170]

Points to note

 We often for compactness will use a shorter notation for events and transition actions:

event/action rather than event{action;}.

 The arrow symbolsand  indicate actions that take place when the state is exited or

entered. Imagine a transition from say, p1 to q1 (which event β could occasion). The

action on exiting p1 is v=v*10+1. This adds a digit 1 to the current value of v. On

exiting state p, we add the digit 2 to the value of v. Each exit or enter action is tracked in

this way. Variable v tracks a transition from p to q. Variable u tracks a transition from q

to p. The on-transition actions simply add digit 0 to u and v by multiplying by 10. This

gives us a complete record of the order of the actions that take place during a transition.

The variables can be reset without any transitioning by executing event ω.

 In addition to assignment actions we can have any other actions, e.g. fired event actions

(not used in this model, but see test model t5170 for an example).

 For more examples of orbits, see test model t6260, which includes an orbit that exits

members of a set without exiting the set itself.

a

p1

p2

p

α

α

u=u*10+5

v=v*10+1

u=u*10+5

v=v*10+1

u=u*10+4

v=v*10+2

q1

q2

q

α

α

v=v*10+5

u=u*10+1

v=v*10+5

u=u*10+1

v=v*10+4

u=u*10+2

γ

δ/u*=10;v*=10

β

γ

v=v*10+3

u=u*10+3

ε1{w++;}

β/

u*=10

v*=10

ω{u=0;v=0;w=0;}

ζ1/w++

unspecifiable
ε3 {w++;}

ε4 {w++;}

unspecifiable
ζ3/w++

ζ4/w++

40 © Graham G. Thomason 2003-2004

Call the file orbits.scs.txt in directory u5170_orbits. Prepare the hierarchy first

and compile it (as already learned).

 SC:root F:\KWinPro\StCr\StCr5ModelsUser\u5170_orbits

 SC:cp orbits

The hierarchy is:

Add the declarations and transitions, (perhaps compiling as individual transitions are added,

to check for typing errors).

statechart sc(a)

event alpha,beta,gamma,delta;

event epsilon1,epsilon3,epsilon4;

event zeta1,zeta3,zeta4;

event omega;

enum int {0,..,10000};

int u=0,v=0,w=0;

 cluster a(p,q) {upon enter{u=u*10+3;} upon exit{v=v*10+3;} \

 omega{u=0;v=0;w=0;}; }

 cluster p(p1,p2) {upon enter{u=u*10+4;} upon exit{v=v*10+2;} \

 delta->$$sc->q{u*=10;v*=10;}; \

 beta->q{u*=10;v*=10;}; gamma->q.q2; \

 epsilon1{w++;}; epsilon3->p{w++;}; \

 epsilon4->$a->p{w++;}; }

 state p1 {upon enter{u=u*10+5;} upon exit{v=v*10+1;} \

 zeta1{w++;}; zeta3->p1{w++;}; \

 zeta4->$p->p1{w++;}; alpha->p2; }

 state p2 {upon enter{u=u*10+5;} upon exit{v=v*10+1;} \

 alpha->p1; }

 cluster q(q1,q2) {upon enter{v=v*10+4;} upon exit{u=u*10+2;} \

 beta->p; gamma->p.p2; }

 state q1 {upon enter{v=v*10+5;} upon exit{u=u*10+1;} \

 alpha->q2; }

 state q2 {upon enter{v=v*10+5;} upon exit{u=u*10+1;} \

 alpha->q1;

statechart sc(a)

 cluster a(p,q)

 cluster p(p1,p2)

 state p1;

 state p2;

 cluster q(q1,q2)

 state q1;

 state q2;

© Graham G. Thomason 2003-2004 41

Points to note

 If there are upon enter actions and upon exit actions, the upon enter actions must be

specified first.

 An example of orbital notation is delta->$$sc->q.

Useful rules on orbital states

 If the transition arc to an orbital state crosses n hierarchical layers, use (n+1) $

characters in specifying it.

 If the transition arc to a target state crosses n hierarchical layers, use (n) $ characters

in specifying it.

 The hierarchical layers can be counted by counting the number of boxes crossed (but

not set member boundaries, i.e. the dotted line). Note, however, that a cluster member

of a set can be specified without drawing a box round it, so when counting boxes

exited, allow for an ‘invisible’ box in this case.

An alternative to counting $ operators is to use an absolute path. The :: operator takes us

to statechart scope, but it requires an argument, so statechart scope is a little inconvenient

to specify, and we must go the statechart parent and re-specify the statechart. In our

example, we could have used delta->::$sc->q.

So far, we have been precise about the orbital state. Where states have unique names, the

operators can be omitted and the correct state will be found by the outbound search for the

nearest state in scope. So we can also specify the example as simply delta->sc->q.

Compile and run the model.

Process event delta and notice in particular the values of the variables

The value of v shows that actions took place as follows

 v=v*10+1 on exiting p1

 v=v*10+2 on exiting p

 v=v*10+3 on exiting a

 v=v*10 as the transition action

 v=v*10+4 on entering q

 v=v*10+5 on entering q1

Variable u gained its value when cluster a was entered from the highest point in the transition

trajectory.

11 VAR INTEGER u [sc] =3

11 VAR INTEGER v [sc] =123045

11 VAR INTEGER w [sc] =0

42 © Graham G. Thomason 2003-2004

Reset the model (command rm) and process event beta. Observe and explain the new

variable values.

Reset the model and process event alpha, followed by event omega. The state is p2 and the

variables have been reset. Process from this state, resetting as required, the self transitions

epsilon1, epsilon3, epsilon4, observing at each stage the new state. Note that

epsilon3 and epsilon4 cause a transition to p1.

In state p1, experiment with events zeta1, zeta3, zeta4. Note that zeta4 causes p1 to

be exited and re-entered, as is seen by the values of u and v.

9 VAR INTEGER u [sc] =0

9 VAR INTEGER v [sc] =12045

9 VAR INTEGER w [sc] =0

© Graham G. Thomason 2003-2004 43

4.8 Meta-events

In the previous section, we saw how to attach actions to the internal event of a state being

exited or entered. This section shows how that the internal events are like any others, and can

be used to trigger transitions. They never take parameters. We call them meta-events.

Figure 15. Meta event (state entry/exit) [model u5180]

Points to note

 We respond in set member b to meta events in set member a, and address the states with

the usual scoping notation. The initiating event is in each case α.

 Event γ acts as a reset in member b. In state b1 we respond to various meta events we

might see. Having responded to one meta event, we can reset to state b1 and wait for the

next one.

s

b

exit($a.a1)

a

b1

 a1

γ

α

p1

p2

exit($a.p)

enter($a.a1)

p
α

j2

j1

j3

j

q1

q2

q

α

β

β

β

β

44 © Graham G. Thomason 2003-2004

Call the file meta.scs.txt in directory u5180_meta. Prepare the hierarchy first and

compile it (as already learned).

 SC:root F:\KWinPro\StCr\StCr5ModelsUser\u5180_meta

 SC:cp meta

The hierarchy is:

Add the declarations and transitions:

statechart sc(s)

set s(a,b)

 cluster a(a1,p,q)

 state a1;

 cluster p(p1,p2)

 state p1;

 state p2;

 cluster q(q1,q2)

 state q1;

 state q2;

 cluster b(b1,j)

 state b1;

 cluster j(j1,j2,j3)

 state j1;

 state j2;

 state j3;

statechart sc(s)

event alpha,beta,gamma;

set s(a,b)

 cluster a(a1,p,q)

 state a1 {alpha->p.p2;}

 cluster p(p1,p2) {alpha->q.q2;}

 state p1 {beta->p2;}

 state p2 {beta->p1;}

 cluster q(q1,q2) {alpha->a1;}

 state q1 {beta->q2;}

 state q2 {beta->q1;}

 cluster b(b1,j) {gamma->b.b1;}

 state b1 {exit ($a.a1)-> j.j1; \

 exit ($a.p) -> j.j2; \

 enter ($a.a1)-> j.j3; }

 cluster j(j1,j2,j3)

 state j1;

 state j2;

 state j3;

© Graham G. Thomason 2003-2004 45

Compile and run the model. Process event alpha, and observe the configuration:

The fact that leafstate j1 is occupied shows that the exit($a.a1) meta-event was

responded to.

Process events gamma and alpha, and observe that the exit($a.p) meta event was

responded to:

Process events gamma and alpha again and observe that the enter($a.a1)meta event

was responded to:

SC:gc

4 statechart sc

4 set s [sc] = OCC [] **

4 cluster a [s, sc] = OCC [] **

4 leafstate a1 [a, s, sc] = VAC []

4 cluster p [a, s, sc] = OCC [] **

4 leafstate p1 [p, a, s, sc] = VAC []

4 leafstate p2 [p, a, s, sc] = OCC [] **

4 cluster q [a, s, sc] = VAC []

4 leafstate q1 [q, a, s, sc] = VAC []

4 leafstate q2 [q, a, s, sc] = VAC []

4 cluster b [s, sc] = OCC [] **

4 leafstate b1 [b, s, sc] = VAC []

4 cluster j [b, s, sc] = OCC [] **

4 leafstate j1 [j, b, s, sc] = OCC [] **

4 leafstate j2 [j, b, s, sc] = VAC []

4 leafstate j3 [j, b, s, sc] = VAC []

4 TRACE =[]

4 TREV [[beta, [sc]], 0, [], []]

4 TREV [[alpha, [sc]], 0, [], []]

4 TREV [[gamma, [sc]], 0, [], []]

outworlds=[4]

number of outworlds=1

7 leafstate j1 [j, b, s, sc] = VAC []

7 leafstate j2 [j, b, s, sc] = OCC [] **

7 leafstate j3 [j, b, s, sc] = VAC []

10 leafstate j1 [j, b, s, sc] = VAC []

10 leafstate j2 [j, b, s, sc] = VAC []

10 leafstate j3 [j, b, s, sc] = OCC [] **

46 © Graham G. Thomason 2003-2004

4.9 Conditional actions and the in() function

We have already seen (section 4.1) how a transition can be conditional. In this section we will

see how a transition action can be conditional, even if the transition is unconditional. In fact,

any action can be conditional, so an upon entry action or upon exit action can be conditional

too.

Conditions are expressions evaluating to a boolean value. The expression can make use of the

function in(). This function takes a scoped state as an argument (in the same way a

transition target state is expressed), and returns true (=1) if that state is occupied, false (=0)

otherwise. It will normally be testing the occupancy of a state in a parallel part of the

machine. It is evaluated during execution just before the transition is considered for taking

place, and the value of the function at this time might not be the same as at the start of

processing a user event (e.g. if various events have been fired in the meantime).

Conditions on transitions are written in square brackets. Conditional actions use the if

keyword, and can have an else part. There is an if action and (optionally) an else action.

These actions can be assignments, function calls, fired events, or nested if actions.

We will implement the model in the following figure:

© Graham G. Thomason 2003-2004 47

Figure 16. Conditional actions and in() function [model u5190]

Points to note

 There is a conditional transition on α.

 There is a conditional action on the transition on β, and also on entering state a2.

 The transition on γ has an else part.

 The transition on δ has nested conditional actions.

 The conditional action of the transition on ε fires an event, putting cluster z in state z2.

 We can set the value of v (use in the conditions) using the setv event.

 We can reset variables and states using the η event.

s

 z2

z

a

z1
ζ2 ζ1

setv(v)

conditional action with else action

γ if (v%2==1){w=w*10+2; w=w*10+3;}

 else {w=w*10+4; w=w*10+5;}

δ if (v%2==1) {AC1} else {AC2}

where
AC1= if (v==3) {w=w*10+1;} else {w=w*10+2;}

AC2= if (v==4) {w=w*10+3;} else {w=w*10+4;}

ε if (v%2==1){fire ζ2;}

a1

conditional transition

α [in($z.z2)&&v==0]

unconditional transition, conditional action

β if (in($z.z2)&&v==0){w=w*10+1;}

reset for next demo-transition

η {u=0; v=0; w=0;fire ζ1;}

a2



if v>5

 u=u*10+1

else

 u=u*10+2

u=0 v=0 w=0

48 © Graham G. Thomason 2003-2004

Call the file cond_action.scs.txt in directory u5190_cond_action. Prepare the

hierarchy first and compile it (as already learned).

 SC:root F:\KWinPro\StCr\StCr5ModelsUser\u5190_cond_action

 SC:cp cond_action

The hierarchy is:

Add the declarations and transitions:

statechart sc(s)

set s(a,z)

 cluster a(a1,a2)

 state a1;

 state a2;

 cluster z(z1,z2)

 state z1;

 state z2;

statechart sc(s)

event alpha,beta,gamma,delta,epsilon,eta;

event setv;

event zeta1,zeta2;

enum int1 {0,..,10000};

int1 u=0,v=0,w=0;

set s(a,z)

 cluster a(a1,a2) {setv(v); eta->a.a1 {u=v=w=0; fire zeta1;}; }

 state a1 \

 {alpha [in($z.xxx.z2) && (v==0)]->a2; \

 beta-> a2 {if (in($z.z2) && (v==0)) {w=w*10+1;} }; \

 gamma-> a2 {if (v%2==1) {w=w*10+2;w=w*10+3;} \

 else {w=w*10+4;w=w*10+5;} }; \

 \

 delta-> a2 {if (v%2==1) \

 {if (v==3) {w=w*10+1;} else {w=w*10+2;}} \

 else \

 {if (v==4) {w=w*10+3;} else {w=w*10+4;}} }; \

 epsilon->a2 {if (v%2==1) {fire zeta2;}}; }

 state a2 {upon enter { if(v>5) {u=u*10+1;} else {u=u*10+2;}} }

 cluster z(z1,z2) {zeta2->z.z2; zeta1->z.z1;}

 state z1;

 state z2;

© Graham G. Thomason 2003-2004 49

Compile and run the model.

Conditional transition (revision) and conditional upon enter action: Process event alpha,

and note that no transition takes place. This is because we are not in state z2, which the

condition requires. (In fact alpha is not even shown as transitionable, because the condition

is known to be false). Process events zeta2 and alpha. This time a transition does take

place, and we are in state a2. When we entered state a2, the else part of a conditional action

was executed, and u got the value 2. The important lines of output showing what has

happened are:

Unconditional transition, conditional action: Reset the model, (command rm) and process

event beta. As we are not in state z2, the action does not take place (variable w remains at

0), but the transition goes ahead.

Reset the model, process events zeta2 and beta. Now the action does take place (variable

w gets the value 1).

Conditional transition action with else action: Reset the model and process event gamma.

As v2=0, (so v2 modulo 2 is also =0), the else action takes place (variable w becomes 45);

the transition goes ahead anyway.

5 leafstate a2 [a, s, sc] = OCC [] **

5 leafstate z2 [z, s, sc] = OCC [] **

5 VAR INTEGER u [sc] =2

4 leafstate a2 [a, s, sc] = OCC [] **

4 leafstate z1 [z, s, sc] = OCC [] **

4 VAR INTEGER w [sc] =0

6 leafstate a2 [a, s, sc] = OCC [] **

6 leafstate z2 [z, s, sc] = OCC [] **

6 VAR INTEGER w [sc] =1

6 leafstate a2 [a, s, sc] = OCC [] **

6 VAR INTEGER u [sc] =2

6 VAR INTEGER v [sc] =0

6 VAR INTEGER w [sc] =45

50 © Graham G. Thomason 2003-2004

Reset the model, process event setv with parameter 7 (command pe setv p=7), and

process event gamma. This time the if action takes place (w gets the value 23), and the

transition goes ahead as usual. Since v is now >6, u gets the value 1 on entry to a2 for a

change.

Nested conditional transition action: Reset the model and process event setv with

parameter 4 (syntax as given above). Now process event delta. We satisfy the else part of

the outer condition and the if part of the associated inner condition, and w gets the value 3.

Experiment with other values of v.

Conditional transition action firing an event: Reset the model and process event epsilon,

Since v2 modulo 2 is not equal to 1, the action does not take place and we remain in state z1.

Reset the model and process event setv with a parameter 1. Now process event epsilon;

the action takes place and we are in state z2.

7 leafstate a2 [a, s, sc] = OCC [] **

7 VAR INTEGER u [sc] =1

7 VAR INTEGER v [sc] =7

7 VAR INTEGER w [sc] =23

6 leafstate a2 [a, s, sc] = OCC [] **

6 VAR INTEGER u [sc] =2

6 VAR INTEGER v [sc] =4

6 VAR INTEGER w [sc] =3

4 leafstate z1 [z, s, sc] = OCC [] **

4 leafstate z2 [z, s, sc] = VAC []

4 VAR INTEGER u [sc] =2

4 VAR INTEGER v [sc] =0

4 VAR INTEGER w [sc] =0z2 [z, s, sc] = VAC []

6 leafstate z1 [z, s, sc] = VAC []

6 leafstate z2 [z, s, sc] = OCC [] **

6 VAR INTEGER u [sc] =2

6 VAR INTEGER v [sc] =1

6 VAR INTEGER w [sc] =0

© Graham G. Thomason 2003-2004 51

4.10 Strings and string functions

Strings are a type of constant/variable like boolean and enumerated integer types. Certain

operators can be used to make string expressions. Strings might be useful in producing

annotated and formatted output. We will implement the following model to illustrate them:

Figure 17. Strings and String Functions [model u5220]

Points to note

 Strings are expressed in double quotes. The empty string is "".

 Strings can be compared. The comparison is on the ASCII values. String "ab" is less than

string "bc". String "ab" is less than "abc".

 Although the above model does not illustrate it, string variables can be scoped, and might

be addressed e.g. as $$s2. For an example of scoped strings, see test model t5520.

 We have drawn the transitions as external, but as they are on a leafstate, they are as good

as internal, and will be implemented as such.

s1="azA"

sets1(s1) //direct parameter placement

sets2(s2) //direct parameter placement

setv(v) //direct parameter placement

α1 {s1="abcdef";}

α2 {s2="cd";}

α3 {s1=s1+s2;}

α4 {s1=s1-s2;}

α5 {s1=s1*v;}

α6 {s1=s1/3;} //illegal

α7 {s1="";}

β1 {if (s1==s2) {v++;}}

β2 {if (s1>s2) {v++;}}

β3 {if (s1>=s2) {v++;}}

γ1 {s1=upper_case(s1+"aA");}

γ2 {s1=lower_case(s1+"zZ");}

γ3 {v=length(s1);}

γ4 {s1=format(v,0);}

γ5 {s1=format(v,3);}

γ6 {s1=format(v,-3);}

a

etc.

s2="z"

v=3

all are self- transitions:

52 © Graham G. Thomason 2003-2004

Call the file strings.scs.txt in directory u5220_strings. Prepare the hierarchy

first and compile it (as already learned).

 SC:root F:\KWinPro\StCr\StCr5ModelsUser\u5220_strings

 SC:cp strings

The hierarchy is:

Add the declarations and transitions:

statechart sc(a)

 state a;

statechart sc(a)

event sets1,sets2,setv;

event alpha1, alpha2, alpha3, alpha4, alpha5, alpha6, alpha7;

event beta1, beta2, beta3;

event gamma1, gamma2, gamma3, gamma4, gamma5, gamma6;

enum int1 {0,..,1000};

int1 v=3;

string s1= "az" + "A";

string s2="z";

 state a { \

 sets1(s1); sets2(s2); setv(v); \

 \

 alpha1 {s1="abcdef";}; alpha2 {s2="cd";}; \

 alpha3 {s1=s1+s2;}; alpha4 {s1=s1-s2;}; \

 alpha5 {s1=s1*v;}; alpha6 {s1=s1/3;}; /* illegal */ \

 alpha7 {s1="";}; \

 \

 beta1 {if (s1==s2) {v++;}}; \

 beta2 {if (s1> s2) {v++;}}; \

 beta3 {if (s1>=s2) {v++;}}; \

 \

 gamma1 {s1=upper_case(s1+"aA");}; \

 gamma2 {s1=lower_case(s1+"zZ");}; \

 gamma3 {v=length(s1);}; \

 gamma4 {s1=format(v,0);}; \

 gamma5 {s1=format(v,3);}; \

 gamma6 {s1=format(v,-3);}; }

© Graham G. Thomason 2003-2004 53

Compile the model. Ignore the warning that state a is unreferenced. The warning would not

appear if the leafstate were the first or only leafstate in a cluster or set, but here it is somewhat

abnormally in the statechart directly. Run the model.

String values: Obtain the initial configuration and observe how strings are output. The ASCII

values are printed in a list, and the printable characters follow.

Setting strings in event parameters: Transitionable events taking string parameters are shown

by e.g.

Process event sets1 with a parameter of string "aAzZ". The formal way to do this is to give

the following (try it):

 pe sets1 p=[[ex_str, [97, 65, 122, 90]]]

If there were several more parameters, they would be inserted at the ellipsis:

 pe sets1 p=[[ex_str, [97, 65, 122, 90]],...]

However, provided the string looks like an identifier, the following is accepted (reset the

model and try it).

 pe sets1 p=aAzZ

String assignment on transition: A simple assignment is illustrated by events alpha1 and

alpha2. Reset the model and process these two events, giving:

Strings can be added: Without resetting after the last events, process event alpha3. The

strings are concatenated by the "+" operator:

Strings can be subtracted: Without resetting after the last events, process event alpha4. The

"-" operator removes the first occurrence of the second operand in the first:

2 VAR STRING s1 [sc] =[97, 122, 65] =azA

2 VAR STRING s2 [sc] =[122] =z

2 VAR INTEGER v [sc] =3

3 VAR STRING s1 [sc] =[97, 65, 122, 90] =aAzZ

6 VAR STRING s1 [sc] =[97, 98, 99, 100, 101, 102] =abcdef

6 VAR STRING s2 [sc] =[99, 100] =cd

8 VAR STRING s1 [sc] =[97, 98, 99, 100, 101, 102, 99, 100] =abcdefcd

8 VAR STRING s2 [sc] =[99, 100] =cd

10 VAR STRING s1 [sc] =[97, 98, 101, 102, 99, 100] =abefcd

10 VAR STRING s2 [sc] =[99, 100] =cd

2 TREV [[sets1, [sc]], 1, [[<string>]], []]

54 © Graham G. Thomason 2003-2004

Strings can be multiplied by a constant: Without resetting after the last events, process event

alpha5. The "*" operator causes the string to be repeated.

String division is illegal: Without resetting after the last events, process event alpha6. The

"/" operator is not supported and the string takes on a value of unknown.

String comparison: Reset the model (command rm) and process event beta1. Variable v

remains =3, because s1 and s2 are not equal. Process command

 pe sets1 p=z

Now s1 and s2 are both "z". Process beta1 again. This time v is incremented to 4:

Experiment with other string values and with the other beta transitions. The comparison is on

the ASCII values. String "ab" is less than "abc".

Conversion to upper case: Reset the model and process event gamma1.

 Conversion to lower case: Reset the model and process event gamma2.

Length of a string: Reset the model, set v to 0 with pe setv p=0, (optionally set s1 to

some string of your choice), and process event gamma3. Variable v is assigned to the length

of string s1.

12 VAR STRING s1 [sc] =[97, 98, 101, 102, 99, 100, 97, 98, 101,

 102, 99, 100, 97, 98, 101, 102, 99, 100] =abefcdabefcdabefcd

14 VAR STRING s1 [sc] =unknown

6 VAR STRING s1 [sc] =[122] =z

6 VAR STRING s2 [sc] =[122] =z

6 VAR INTEGER v [sc] =4

4 VAR STRING s1 [sc] =[65, 90, 65, 65, 65] =AZAAA

4 VAR STRING s1 [sc] =[97, 122, 97, 122, 122] =azazz

5 VAR INTEGER v [sc] =3

© Graham G. Thomason 2003-2004 55

Formatting an integer: Events gamma1, gamma2 and gamma3 show a variable being

formatted in various ways.

Event gamma1 just justifies the variable v (which has a reset value 3)

Event gamma2 right justifies v in a field width of 3. Note the leading spaces in the list (with

ASCII value 32), and after the second equals sign.

Event gamma3 left justifies v in a field width of 3. Note the trailing spaces.

4 VAR STRING s1 [sc] =[51] =3

6 VAR STRING s1 [sc] =[32, 32, 51] = 3

8 VAR STRING s1 [sc] =[51, 32, 32] =3

56 © Graham G. Thomason 2003-2004

4.11 Traces

There are two well-known ways of testing: white box and black box testing. White box

testing assumes access to the internals of the implementation under test (IUT), and so in our

case the ability to observe its state, and perhaps its variables. But with black box testing, only

certain outputs will be observable (typically return values of functions, or specific data that is

written into a user buffer). Certain transitions may produce no observable output at all. Some

transitions that might be distinguishable in a white box case, because the target states are

different, might not be immediately distinguishable in the black box case, because the outputs

are the same. We need a way to model observable outputs, and this is what traces are. By

calling the trace function, a trace is stored indicating that an output should be given by the

IUT. Traces are output as part of the get configuration command (gc). It is also possible to

request traces only with the get traces command (gt).

Traces items can be integers or strings. Traces can be cleared using a function in the model

(trace_clear()) or by a command (ct).

We will implement the following model:

Figure 18. Traces [model u5230]

 p

b

a

c

g

f

e

d

trace("ab",6);

ω1

ω2{trace_clear();}

ω3{trace_clear("clr");}

ω1

α {trace(2);}

γ {trace(v);}

δ {trace(v+1);}

ε {trace("cd",5,-7);}

ζ

β {trace(true);}

© Graham G. Thomason 2003-2004 57

Call the file traces.scs.txt in directory u5230_traces. Prepare the hierarchy first

and compile it (as already learned).

 SC:root F:\KWinPro\StCr\StCr5ModelsUser\u5230_traces

 SC:cp traces

The hierarchy is:

Add the declarations and transitions:

Compile and run the model. Process event alpha and get the trace (command gt).

Process event gamma and get the trace.

Note that traces are added to the list on the left.

statechart sc(p)

 cluster p(a,b,c,d,e,f,g)

 state a;

 state b;

 state c;

 state d;

 state e;

 state f;

 state g;

statechart sc(p)

enum int1 {0,..,1000};

int1 v=8;

event alpha,beta,gamma,delta,epsilon,zeta,omega1,omega2,omega3;

 cluster p(a,b,c,d,e,f,g) {omega1->p.a; \

 omega2->p.a {trace_clear(); }; \

 omega3->p.a {trace_clear("clr");}; }

 state a { alpha->b {trace(2);}; beta->c

{trace(true);}; }

 state b { gamma->d {trace(v);}; delta->e

{trace(v+1);}; }

 state c { epsilon->f {trace("cd",5,-7);}; zeta->g; }

 state d;

 state e;

 state f;

 state g { upon enter {trace("ab",6); } }

4 TRACE =[2]

6 TRACE =[8, 2]

58 © Graham G. Thomason 2003-2004

Clear the trace with the ct command and get the trace again.

Reset the model (command rm) and process events beta and epsilon, and get the trace.

On event epsilon, the trace call was trace("cd",5,-7). This shows that the first

parameter was added to the trace list (on the left) first, then the second and so on.

One of the traced items was a string. A string in the trace list is best kept to an identifier in

connection with an advanced feature of the command language (the ability to feed traces back

in to STATECRUNCHER).

Process event omega3 and get the trace. This transitions to state a and causes

trace_clear to be called, which clears the old trace and puts its own argument(s) into the

trace.

Process event omega2 which causes trace_clear to be called without arguments. The

trace is cleared.

Process events beta and zeta. The second part of the trace is added as an upon enter

action. Traces can be added wherever an action is allowed.

6 TRACE =[]

6 TRACE =[-7, 5, cd, 1]

8 TRACE =[clr]

10 TRACE =[]

14 TRACE =[6, ab, 1]

© Graham G. Thomason 2003-2004 59

4.12 Inexact state scoping

We have already seen inexact variable scoping (section 4.6), and mention has been made in

passing of inexact state scoping. This section reinforces the concept of inexact state scoping.

Inexact state scoping applies when the reference state is below the addressed state in the

hierarchy. A reference state is typically the parent of the source state of a transition. An

addressed state is typically the target state of a transition, but may be an orbital state, the

parameter of the in, clear, or deep _clear functions.

The clear and deep_clear and in functions also allow for inexact scoping, but since

these functions are normally called outside (i.e. in a parallel part of the machine to) the cluster

whose history is to be cleared, the case does not normally arise. History is set on cluster exit,

and to clear history while in the same cluster, which could be done with inexact scoping,

would be pointless. Therefore, we do not contrive a situation to illustrate inexact scoping with

these functions.

Inexact scoping never searches deeper into the hierarchy; the real state is found by an

outbound search. So references to parallel parts of a machine should be exact.

We will implement the following model:

60 © Graham G. Thomason 2003-2004

Figure 19. Inexact state scoping - [model u5250]

y

d

u

t

d1 d2 d3

s

r

q

p

δ->y->$$d.d1.q/\d2/\$$d.d3.u

inexact orbit (y) and one inexact state (d2)

in multiple target specification
n=n*10+3

x=x*10+3

n=n*10+2

x=x*10+2

n=n*10+1

x=x*10+1

n=n*10+1

x=x*10+1

n=n*10+4

x=x*10+4

a2

α->a

(inexact specification,

which is acceptable, the

exact specification

being α->$a)

a1

a

b

b

Note: same

name as parent b1 b2

β2->$b

ok
β1->b

Note: β1 does not give rise to fork nondeterminism

β1->b masked - not addressable this way

ω_a2

ω_b2

ω_ds

ω_v {x=0;n=0;}

© Graham G. Thomason 2003-2004 61

Call the file state_scoping.scs.txt in directory u5250_state_scoping.

Prepare the hierarchy first and compile it (as already learned).

 SC:root F:\KWinPro\StCr\StCr5ModelsUser\u5250_state_scoping

 SC:cp state_scoping

The hierarchy is:

Add the declarations and transitions:

statechart sc(y)

 cluster y(a,b,d)

 cluster a (a1,a2)

 state a1;

 state a2;

 cluster b(b1,b2,b)

 state b1;

 state b2;

 state b;

 set d(d1,d2,d3)

 cluster d1(p,q)

 state p;

 state q;

 cluster d2(r,s)

 state r;

 state s;

 cluster d3(t,u)

 state t;

 state u;

statechart sc(y)

enum vint {0,..,100000};

vint x=0,n=0;

event omega_a2, omega_b2, omega_ds, omega_v;

event alpha, beta1, beta2, delta;

 cluster y(a,b,d) {upon enter {n=n*10+4;} upon exit {x=x*10+4;} \

 omega_a2 -> y.a.a2; omega_b2 -> y.b.b2; \

 omega_ds -> y.d.d2.s; omega_v {x=0; n=0;}; }

 cluster a (a1,a2)

 state a1;

 state a2 {alpha->a;}

 cluster b(b1,b2,b)

 state b1;

 state b2 {beta1->b; beta2->$b;}

 state b;

 set d(d1,d2,d3) {upon enter {n=n*10+3;} upon exit{x=x*10+3;} }

 cluster d1(p,q)

 state p;

 state q;

 cluster d2(r,s) {upon enter {n=n*10+2;} upon exit{x=x*10+2;} }

 state r {upon enter {n=n*10+1;} upon exit{x=x*10+1;} }

 state s {upon enter {n=n*10+1;} upon exit{x=x*10+1;} \

 delta -> y -> $$d.d1.q/\d2/\$$d.d3.u; }

 cluster d3(t,u)

 state t;

 state u;

62 © Graham G. Thomason 2003-2004

Compile the model. Process event omega_a2 and check that state a2 has been entered (with

the gc command):

Process event alpha. Observe that the transition is processed, and that state a1 is entered,

showing that the transition was accepted with the inexact target state scope:

Process event omega_b, and check that state b2 has been entered.

Process event beta1, and observe that leafstate b has been entered (so the target was not the

parent of the same name).

Process events omega_ds and omega_v. Check that state y.d.d2.s is occupied, and that

the variables have been set to zero.

Process event delta, and check the occupation of set d and the variable values, which show

what has been entered and exited. The inexact orbit y was accepted, and inexact target state

d2 was accepted.

4 leafstate a1 [a, y, sc] = OCC [] **

3 leafstate a2 [a, y, sc] = OCC [] **

5 leafstate b2 [b, y, sc] = OCC [] **

6 leafstate b [b, y, sc] = OCC [] **

28 leafstate s [d2, d, y, sc] = OCC [] **

28 VAR INTEGER n [sc] =0

28 VAR INTEGER x [sc] =0

50 set d [y, sc] = OCC [] **

50 cluster d1 [d, y, sc] = OCC p **

50 leafstate p [d1, d, y, sc] = VAC []

50 leafstate q [d1, d, y, sc] = OCC [] **

50 cluster d2 [d, y, sc] = OCC s **

50 leafstate r [d2, d, y, sc] = OCC [] **

50 leafstate s [d2, d, y, sc] = VAC []

50 cluster d3 [d, y, sc] = OCC t **

50 leafstate t [d3, d, y, sc] = VAC []

50 leafstate u [d3, d, y, sc] = OCC [] **

50 VAR INTEGER n [sc] =321

50 VAR INTEGER x [sc] =123

© Graham G. Thomason 2003-2004 63

4.13 Introduction to nondeterminism

We have now introduced most of STATECRUNCHER's language features (but see arrays, a

recent addition in section 4.27). All the models so far have been deterministic, i.e. on

processing an event, they have produced one set of state occupancies, cluster histories,

variable values and traces. We now introduce some models where this is no longer the case -

they are nondeterministic models. Nondeterminism arises when not enough is known about an

implementation under test to be able to predict exactly what it will do, so we must allow for

some alternatives. For example, supposing a tuner produces notification messages while

tuning, tuning in progress, until it finds a station. We may not be able to predict how many

notifications will be generated, and if there are other possible events, their interleavings may

not be exactly known. STATECRUNCHER allows for differing outcomes to be produced by its

six forms of nondeterminism:

 fork nondeterminism, where an event triggers more than one transition form the same

source state.

 race nondeterminism, where an event triggers more than one transition in parallel parts of

a machine.

 set-transit nondeterminism, where the members of a set are entered and exited in various

orderings.

 set-action nondeterminism, where actions take place within members of a set, and are

carried out in various orderings.

 set-meta-event nondeterminism, where meta-events (internally generated exit and enter

events) are broadcast in various orderings.

 fired event (or: broadcast event) nondeterminism, where any form of nondeterminism

arises as a result of a fired event, so in mid-algorithm, rather than directly as a result of a

user event.

STATECRUNCHER models the different outcomes as worlds. Each world maintains its own set

of state occupancies, cluster histories, variable values, and traces. The get configuration (gc)

command produces output for all worlds.

The different forms of nondeterminism will now each be described in turn.

64 © Graham G. Thomason 2003-2004

4.14 Fork nondeterminism

Fork nondeterminism occurs where an event triggers more than one transition form the same

source state. STATECRUNCHER handles this by generating a world for each prong of the fork.

If any resultant worlds end up by being identical (in terms of state occupancies, cluster

histories and variable values), duplicates will be removed.

We will implement the following model:

Figure 20. Fork nondeterminism [model u5420]

The forks are emphasised by the double ellipses. The first fork is on event β, where the fork

leads to two different target states. Then on event γ there is another fork, but with two

transitions from different source states (b1 and b2) converging on the same target state. A

duplicate world will be discarded, and there will be 3 resultant worlds. On event δ, two

worlds do not respond (those in states c1 and c3); these will be left intact. Departing from

the world where c2 is occupied, there are 5 transitions, but they only lead to 4 new worlds,

because two transitions lead to an identical world. In all there are 6 worlds after event delta.

The model can effectively be reset by event alpha, which will be processed in all worlds,

but will take them to the same configuration, and duplicates will be removed, leaving one

world.

World numbers are arbitrary. Internally, the numbers are allocated sequentially as more and

more events, transitions and actions are processed, but some world numbers may never be

seen by the user as they are only used temporarily during processing. Worlds are not

presented in numerical order, and the order is not significant.

m α {v=0;}

a

d2

d3

δ {v=v*10+1+1}

v=v*10+1

d4

v=v*10+4

δ

δ

δ {v=v*10+2}

δ {v=v*10+3}

b1

b2

β

β

c1

c2

c3

γ

γ

γ

γ

© Graham G. Thomason 2003-2004 65

Call the file fork.scs.txt in directory u5420_fork. Prepare the hierarchy first and

compile it (as already learned).

 SC:root F:\KWinPro\StCr\StCr5ModelsUser\u5420_fork

 SC:cp fork

The hierarchy is:

Add the declarations and transitions:

statechart sc(m)

 cluster m(a,b1,b2,c1,c2,c3,d2,d3,d4)

 state a;

 state b1;

 state b2;

 state c1;

 state c2;

 state c3;

 state d2;

 state d3;

 state d4;

statechart sc(m)

event alpha,beta,gamma,delta;

enum vint {0,..,100000};

vint v=0;

 cluster m(a,b1,b2,c1,c2,c3,d2,d3,d4) {alpha->m.a{v=0;};}

 state a {beta->b1; beta->b2;}

 state b1 {gamma->c1; gamma->c2;}

 state b2 {gamma->c2; gamma->c3;}

 state c1;

 state c2 {delta->d2; \

 delta->d3{v=v*10+1+1;}; \

 delta->d3{v=v*10+2;}; \

 delta->d3{v=v*10+3;}; \

 delta->d4;}

 state c3;

 state d2 {upon enter {v=v*10+1;}}

 state d3;

 state d4 {upon enter {v=v*10+4;}}

66 © Graham G. Thomason 2003-2004

Compile and run the model. Process event beta. There are two worlds, one in state b1 and

the other in b2:

Process event gamma. There are 3 worlds, in states c1, c2 and c3 respectively.

SC:gc

3 statechart sc

3 cluster m [sc] = OCC [] **

3 leafstate a [m, sc] = VAC []

3 leafstate b1 [m, sc] = VAC []

3 leafstate b2 [m, sc] = OCC [] **

...

4 statechart sc

4 cluster m [sc] = OCC [] **

4 leafstate a [m, sc] = VAC []

4 leafstate b1 [m, sc] = OCC [] **

4 leafstate b2 [m, sc] = VAC []

...

outworlds=[3, 4]

number of outworlds=2

5 leafstate c1 [m, sc] = VAC []

5 leafstate c2 [m, sc] = OCC [] **

5 leafstate c3 [m, sc] = VAC []

...

6 leafstate c1 [m, sc] = OCC [] **

6 leafstate c2 [m, sc] = VAC []

6 leafstate c3 [m, sc] = VAC []

...

7 leafstate c1 [m, sc] = VAC []

7 leafstate c2 [m, sc] = VAC []

7 leafstate c3 [m, sc] = OCC [] **

...

outworlds=[5, 6, 7]

number of outworlds=3

© Graham G. Thomason 2003-2004 67

Process event delta. there are 6 worlds, in 5 states (c1, c3, d1, d2, d3), with 2 worlds of

differing variable values in state d3.

Fork nondeterminism is relatively fast (compared to other forms of nondeterminism). The

gpt command gets the elapsed processing time of the last event.

Process event alpha. This takes us to the initial state.

7 leafstate c3 [m, sc] = OCC [] **

...

6 leafstate c1 [m, sc] = OCC [] **

...

10 leafstate d4 [m, sc] = OCC [] **

10 VAR INTEGER v [sc] =4

...

12 leafstate d3 [m, sc] = OCC [] **

12 VAR INTEGER v [sc] =3

...

14 leafstate d3 [m, sc] = OCC [] **

14 VAR INTEGER v [sc] =2

...

18 leafstate d2 [m, sc] = OCC [] **

18 VAR INTEGER v [sc] =1

20 leafstate a [m, sc] = OCC [] **

20 VAR INTEGER v [sc] =0

SC:gpt

exec time=00h 00m 00s 160ms

68 © Graham G. Thomason 2003-2004

4.15 Fork nondeterminism differentiated by history and trace

In the preceding example, the distinguishing aspects of the worlds were state occupation and

variable values. The other distinguishing aspects are cluster history and traces, illustrated in

this section by fork nondeterminism (we could have chosen any other kind of

nondeterminism).

We will construct the following model:

Figure 21. Fork nondeterminism differentiated by history and trace [model u5422]

On event α, cluster p enters a non-default state. Then on event β, cluster p is exited and its

history is recorded (which is also the case even if we skip event α - the history is then state

p1). On event gamma there are three prongs to fork nondeterminism. Although they all end

up in the same state, one world has a different history to another, and one world has a

different trace to another.

Call the file fork_history.scs.txt in directory u5422_fork_history. Prepare

the hierarchy first and compile it (as already learned).

 SC:root F:\KWinPro\StCr\StCr5ModelsUser\u5422_fork_history

 SC:cp fork_history

The hierarchy is:

a

p1 p2

p H α

γ {clear(p);}

γ a1

γ (trace {123)}

δ

β

statechart sc(a)

 cluster a(p,a1)

 cluster p(p1,p2)

 state p1;

 state p2;

 state a1;

© Graham G. Thomason 2003-2004 69

Add the declarations and transitions:

Compile the model. Process events alpha and beta and get the configuration. Observe

cluster p's history.

Process event gamma. This yields three worlds: one with a trace (6), one with history cleared

(9) and one with neither of these things (7).

statechart sc(a)

event alpha,beta,gamma,delta;

 cluster a(p,a1)

 cluster p(p1,p2) history {beta->a1;}

 state p1 {alpha->p2;}

 state p2;

 state a1 {gamma{clear(p);}; \

 gamma; \

 gamma{trace(123);}; \

 delta->p; }

4 statechart sc

4 cluster a [sc] = OCC [] **

4 cluster p [a, sc] = VAC p2

4 leafstate p1 [p, a, sc] = VAC []

4 leafstate p2 [p, a, sc] = VAC []

4 leafstate a1 [a, sc] = OCC [] **

4 TRACE =[]

4 TREV [[gamma, [sc]], 0, [], []]

4 TREV [[delta, [sc]], 0, [], []]

6 cluster p [a, sc] = VAC p2

6 leafstate a1 [a, sc] = OCC [] **

6 TRACE =[123]

...

7 cluster p [a, sc] = VAC p2

7 leafstate a1 [a, sc] = OCC [] **

7 TRACE =[]

...

9 cluster p [a, sc] = VAC []

9 leafstate a1 [a, sc] = OCC [] **

9 TRACE =[]

...

outworlds=[6, 7, 9]

number of outworlds=3

70 © Graham G. Thomason 2003-2004

Give command to clear traces (ct). This causes duplicate worlds to be destroyed. World 7 is

the victim.

Process event delta. Cluster p is then occupied in two different ways in two different

worlds.

6 cluster p [a, sc] = VAC p2

6 leafstate a1 [a, sc] = OCC [] **

6 TRACE =[]

...

9 cluster p [a, sc] = VAC []

9 leafstate a1 [a, sc] = OCC [] **

9 TRACE =[]

...

outworlds=[6, 9]

number of outworlds=2

10 statechart sc

10 cluster a [sc] = OCC [] **

10 cluster p [a, sc] = OCC [] **

10 leafstate p1 [p, a, sc] = OCC [] **

10 leafstate p2 [p, a, sc] = VAC []

10 leafstate a1 [a, sc] = VAC []

10 TRACE =[]

10 TREV [[alpha, [sc]], 0, [], []]

10 TREV [[beta, [sc]], 0, [], []]

11 statechart sc

11 cluster a [sc] = OCC [] **

11 cluster p [a, sc] = OCC p2 **

11 leafstate p1 [p, a, sc] = VAC []

11 leafstate p2 [p, a, sc] = OCC [] **

11 leafstate a1 [a, sc] = VAC []

11 TRACE =[]

11 TREV [[beta, [sc]], 0, [], []]

outworlds=[10, 11]

number of outworlds=2

© Graham G. Thomason 2003-2004 71

4.16 Scoped events illustrated by fork nondeterminism

This model shows how to distinguish between

 different ways of expressing the same event (or other item) at the same point in the

hierarchy

 how an event or (other item) is automatically searched for in the hierarchy by the

outbound search mechanism.

Figure 22. Scoped events illustrated by fork nondeterminism [model t5510]

There are 4 events called α but in different scopes, which we can denote in expression form

with the corresponding scope in right-to-left list form as output:

::α scope[sc]

::x.α[x,sc] scope[x,sc]

::x.a.α scope[a,x,sc]

::x.a.b.c.d.α scope[d,c,b,a,x,sc]

x

b

p

r

s

t

e

a

β ::α

c

d

α

α

α

α

no α here

u

v

::x.α

::x.a.b.α

::x.a.α

::x.a.b.c.α

::x.a.b.c.d.α

references ::x.a.α

no α here

references ::x.a.α

references ::x.a.α

 fork-2

q

$α

 fork-1

same as above by

alternative notation

72 © Graham G. Thomason 2003-2004

The expressions beginning with :: (statechart scope) can be used anywhere in the model. But

these events can also be expressed by relative addressing, e.g. using the $ operator. We have

an instance where two expressions yield the same α at the same point in the hierarchy. We

have arranged for this to cause fork nondeterminism.

This should be distinguished from addressing a point in the hierarchy (by an absolute or

relative expression) where, strictly speaking, no α exists. This is the case when we address

::x.a.b.α. But by an outbound search, the α at ::x.a.α is found. Similarly

::x.a.b.c.α is converted to ::x.a.α. We have also arranged for transitions labeled

with these expressions to cause fork nondeterminism.

We now construct and run the model.

Call the file scoped_fork.scs.txt in directory u5510_scoped_fork. Prepare the

hierarchy first and compile it (as already learned).

 SC:root F:\KWinPro\StCr\StCr5ModelsUser\u5510_scoped_fork

 SC:cp scoped_fork

The hierarchy is:

statechart sc(x)

cluster x(a,p,q,r,s,t,u,v)

 cluster a(b)

 cluster b(c)

 cluster c(d)

 cluster d(e)

 state e;

 state p;

 state q;

 state r;

 state s;

 state t;

 state u;

 state v;

© Graham G. Thomason 2003-2004 73

Add the declarations and transitions:

Compile the model. Get the configuration and note the transitionable events:

The first alpha can be processed by

 SC:pe alpha

This results in one world where we are in state p.

statechart sc(x)

event alpha,beta; // ::alpha

cluster x(a,p,q,r,s,t,u,v) {beta->x.a;}

event alpha; // ::x.alpha

 cluster a(b) {::alpha->p; \

 ::x.alpha->q; \

 $alpha->r; \

 ::x.a.alpha->s; \

 ::x.a.b.alpha->t; \

 ::x.a.b.c.alpha->u; \

 ::x.a.b.c.d.alpha->v; }

 event alpha; // ::x.a.alpha

 cluster b(c)

 cluster c(d)

 cluster d(e)

 event alpha; // ::x.a.b.c.d.alpha

 state e;

 state p;

 state q;

 state r;

 state s;

 state t;

 state u;

 state v;

2 TREV [[beta, [sc]], 0, [], []]

2 TREV [[alpha, [sc]], 0, [], []]

2 TREV [[alpha, [x, sc]], 0, [], []]

2 TREV [[alpha, [a, x, sc]], 0, [], []]

2 TREV [[alpha, [d, c, b, a, x, sc]], 0, [], []]

3 leafstate p [x, sc] = OCC [] **

74 © Graham G. Thomason 2003-2004

Process beta and then the second alpha, by the command

 SC:pe [alpha,[x,sc]]

This gives rise to two worlds under fork nondeterminism, where states r and q are occupied:

Process beta and then the third alpha, by the command

 SC:pe [alpha,[a,x,sc]]

This gives rise to three worlds under fork nondeterminism, where states s, t and u are

occupied:

 Process beta and then the fourth alpha, by the command

 SC:pe [alpha,[d,c,b,a,x,sc]]

This gives rise to one world, where state v is occupied:

5 leafstate r [x, sc] = OCC [] **

...

6 leafstate q [x, sc] = OCC [] **

9 leafstate u [x, sc] = OCC [] **

...

10 leafstate t [x, sc] = OCC [] **

...

11 leafstate s [x, sc] = OCC [] **

15 leafstate v [x, sc] = OCC [] **

© Graham G. Thomason 2003-2004 75

4.17 Race nondeterminism

In STATECRUNCHER, race nondeterminism occurs where an event triggers more than one

transition in parallel parts of a machine. If the order in which these transitions is executed

affects the outcome, then a world will be generated for each outcome. The worlds may be

distinguished by state occupancy, cluster history, variable value or trace.

We consider a race where the winner is determined by a variable value:

Figure 23. Race nondeterminism - winner detected by variable value [model u5450]

Call the file race_var.scs.txt in directory u5450_race_var. Prepare the

hierarchy first and compile it (as already learned).

 SC:root F:\KWinPro\StCr\StCr5ModelsUser\u5450_race_var

 SC:cp race_var

The hierarchy is:

statechart sc(s)

 set s(a,b)

 cluster a(a1,a2)

 state a1;

 state a2;

 cluster b(b1,b2)

 state b1;

 state b2;

a

s

α {v=v*10+1;}

a1 a2

b

b1 b2

α {v=v*10+2;}

β {v=0;}

76 © Graham G. Thomason 2003-2004

Add the declarations and transitions:

Compile the model. Process event alpha. The worlds are distinguished by the variable

value, which reveals the order in which the transitions were executed. World 6 has v=12,

which reveals that the upper transition was executed first. In world 10, v=21 showing that the

lower transition was executed first.

Process event beta to effectively reset the model:

statechart sc(s)

event alpha,beta;

enum int1 {0,..,1000};

int1 v=0;

 set s(a,b) {beta->s{v=0;};}

 cluster a(a1,a2)

 state a1 {alpha->a2{v=v*10+1;};}

 state a2;

 cluster b(b1,b2)

 state b1 {alpha->b2{v=v*10+2;};}

 state b2;

6 statechart sc

6 set s [sc] = OCC [] **

6 cluster a [s, sc] = OCC [] **

6 leafstate a1 [a, s, sc] = VAC []

6 leafstate a2 [a, s, sc] = OCC [] **

6 cluster b [s, sc] = OCC [] **

6 leafstate b1 [b, s, sc] = VAC []

6 leafstate b2 [b, s, sc] = OCC [] **

6 VAR INTEGER v [sc] =12

...

10 statechart sc

10 set s [sc] = OCC [] **

10 cluster a [s, sc] = OCC [] **

10 leafstate a1 [a, s, sc] = VAC []

10 leafstate a2 [a, s, sc] = OCC [] **

10 cluster b [s, sc] = OCC [] **

10 leafstate b1 [b, s, sc] = VAC []

10 leafstate b2 [b, s, sc] = OCC [] **

10 VAR INTEGER v [sc] =21

...

12 statechart sc

12 set s [sc] = OCC [] **

12 cluster a [s, sc] = OCC [] **

12 leafstate a1 [a, s, sc] = OCC [] **

12 leafstate a2 [a, s, sc] = VAC []

12 cluster b [s, sc] = OCC [] **

12 leafstate b1 [b, s, sc] = OCC [] **

12 leafstate b2 [b, s, sc] = VAC []

12 VAR INTEGER v [sc] =0

...

© Graham G. Thomason 2003-2004 77

We now give examples from the test suite of race nondeterminism where the winner is

detected by meta event, fired event, and trace. We also show a race to a single target and a

race to start. These need not be implemented as an integral part of the user training

programme, but should be studied for the point being illustrated.

Figure 24. Race nondeterminism; winner detected by meta-event [model t5430]

In the above model, on event α, one ordering of the two transitions causes a2 to be entered

before b2, and the other ordering of the two transitions is the other way round. There will be

two worlds as a result. In one world, z2 will be occupied, and in the second world it will be

z3 that is occupied.

Figure 25. Race nondeterminism - winner detected by fired event [model t5440]

This model is very similar to the one above it. The difference is that instead of using the

internally generated enter() meta-events to trigger transitions in member z, we fire events

γ and δ manually (on the transition, not on entering a2 and b2) to trigger transitions in

member z.

a

s

z

α
a1 a2

enter($a.a2)

z1
z2

z3 enter($b.b2)

b
b1 b2

α

β

β

β

a

s

z

α {fire γ}
a1 a2

γ

z1
z2

z3

δ

b
b1 b2

α {fire δ}

β

β

β

78 © Graham G. Thomason 2003-2004

Figure 26. Race nondeterminism - winner detected by trace [model t5470]

In the above model the two transitions on event α generate different traces, so when both

have transitions have taken place, the order of the traces will distinguish worlds with different

orderings.

Figure 27. Race to a single target with traces [model t5472]
n

In this model there is a race distinguished by traces, but the race is to a single target. The first

transition to be processed causes the whole set to be exited and invalidates the other transition

at execution time. This illustrates an important principle: transitions are reconsidered for

validity just before execution, and do not run if they are in any way invalidated, which might

be because the source state has become vacant, or because the condition now evaluates to

false. The two worlds produced each have just the one trace produced by the only transition

to actually run.

Figure 28. Race to start (mutually exclusive transitions) [model t5474]

In this model, two transitions on α each block the other, and only the first transition in the

ordering will take place. Two worlds are produced: one in states a1 and b2, and one in a2

and b1.

s
α {trace(1);}

sys

a β

δ

{trace_clear();)

a1

c

a2

b1
b2

b γ

α {trace(2);}

a

s

α[in($b.b1)]

a1 a2

b
b1 b2

α[in($a.a1)]

β

β

a

s

α {trace("ab");}

b

a1 a2

b1 b2

α {trace("cd");}

β{trace(25);}

β{trace(36);}

γ

{trace_clear();}

© Graham G. Thomason 2003-2004 79

4.18 Set-transit nondeterminism

When a set is entered, all it members are entered (similarly when it is exited, but we take

entering as an example). The order in which the members are entered may be significant,

because of upon enter actions. STATECRUNCHER offers the facility to generate different

orderings of entering the members. The number of orderings can be controlled (see section

 4.24); we will work with the default which generates all orderings of a set with three

members, but not all orderings for larger sets.

We will implement the following model:

Figure 29. Set transit nondeterminism [model u5410]

a

b

p q

q2

q1

p2

p1

v=v+"8"

u=u+"1"

v=v+"0"

u=u+"3"

v=v+"7"

u=u+"2"

v=v+"9"

u=u+"4"

v=v+"6"

u=u+"5"

β

β

α

γ

ω{u="";v="";}

v=v+"8"

u=u+"1"

v=v+"0"

u=u+"3"

v assigned on transitions in this direction

u assigned on transitions in this direction

c

i j

j2

j1

i2

i1

u=u+"8"

v=v+"1"

u=u+"0"

v=v+"3"

u=u+"7"

v=v+"2"

u=u+"9"

v=v+"4"

u=u+"6"

v=v+"5"

u=u+"8"

v=v+"1"

u=u+"0"

v=v+"3"

80 © Graham G. Thomason 2003-2004

Call the file set_tran.scs.txt in directory u5410_set_tran. Prepare the

hierarchy first and compile it (as already learned).

 SC:root F:\KWinPro\StCr\StCr5ModelsUser\u5410_set_tran

 SC:cp set_tran

The hierarchy is:

Add the declarations and transitions etc.

We use strings rather than integers, because the integers would become large, and may be

output in exponential form, depending on the Prolog system.

statechart sc(a)

 cluster a(b,c)

 set b(p,q)

 cluster p(p1,p2)

 state p1;

 state p2;

 cluster q(q1,q2)

 state q1;

 state q2;

 set c(i,j)

 cluster i(i1,i2)

 state i1;

 state i2;

 cluster j(j1,j2)

 state j1;

 state j2;

statechart sc(a)

event alpha,beta,gamma,omega;

string u="", v="";

 cluster a(b,c) {omega {u=""; v="";};}

 set b(p,q) {upon enter {v=v+"6";} upon exit {u=u+"5";} \

 beta->c; alpha-> c.i.i2/\c.j.j2;}

 cluster p(p1,p2){upon enter {v=v+"7";} upon exit {u=u+"2";}}

 state p1 {upon enter {v=v+"8";} upon exit {u=u+"1";}}

 state p2 {upon enter {v=v+"8";} upon exit {u=u+"1";}}

 cluster q(q1,q2){upon enter {v=v+"9";} upon exit {u=u+"4";}}

 state q1 {upon enter {v=v+"0";} upon exit {u=u+"3";}}

 state q2 {upon enter {v=v+"0";} upon exit {u=u+"3";}}

 set c(i,j) {upon enter {u=u+"6";} upon exit {v=v+"5";} \

 beta->b; gamma-> b.(p.p2/\q.q2);}

 cluster i(i1,i2){upon enter {u=u+"7";} upon exit {v=v+"2";}}

 state i1 {upon enter {u=u+"8";} upon exit {v=v+"1";}}

 state i2 {upon enter {u=u+"8";} upon exit {v=v+"1";}}

 cluster j(j1,j2){upon enter {u=u+"9";} upon exit {v=v+"4";}}

 state j1 {upon enter {u=u+"0";} upon exit {v=v+"3";}}

 state j2 {upon enter {u=u+"0";} upon exit {v=v+"3";}}

© Graham G. Thomason 2003-2004 81

Compile and run the model. Process event alpha. This causes set b to be exited in two

orderings, then for each of those orderings, for set c to be entered in two different orderings.

There are 4 different orderings of the set transit, and the values of u will register them:

 exit (p2,p),(q2,q),b; enter c,(i,i2),(j,j2); u=1234567890

 exit (p2,p),(q2,q),b; enter c,(j,j2),(i,i2); u=1234569078

 exit (q2,q),(p2,p),b; enter c,(i,i2),(j,j2); u=3412567890

 exit (q2,q),(p2,p),b; enter c,(j,j2),(i,i2); u=3412569078

These orderings are produced in different worlds. When the get configuration command (gc)

is given, four blocks of output are given, one for each world. The integer at the start of each

line of output is the world number. From the user's perspective, the numbers are arbitrary, but

distinct.

If we transition back to set a with event gamma, say, then variable v will track another 4

orderings. And these will be done in the 4 existing worlds. That will produce 16 worlds. On a

slow machine (300 MHz), this may take a few seconds to process. The last lines of output are:

The order of transit in this last world was:

 exit (j2,j), (i2,i), c; enter: b, (p,p2), (q,q2).

Note that when a set member is exited, we exit the leafstate then always immediately follow

this by the set member, before moving on to the other member. So we never have an ordering

such as exit j2, exit i2, exit j, exit i. This would be too fine an interleaving, and would

exacerbate combinatorial explosion. We have bracketed tied orderings such as (j2,j) in the

above descriptions.

If event beta is now given, then there will be 64 worlds. The execution time for the last

event can be obtained with the command gpt (get processing time). On a 300 MHz machine,

running under SWI-Prolog, this gives

22 VAR STRING u [sc] =[49, ...] =1234569078

23 VAR STRING u [sc] =[51, ...] =3412569078

32 VAR STRING u [sc] =[49, ...] =1234567890

33 VAR STRING u [sc] =[51, ...] =3412567890

157 VAR STRING u [sc] =[49, ...] =1234569078

157 VAR STRING v [sc] =[51, ...] =3412567890

157 TRACE =[]

157 TREV [[omega, [sc]], 0, [], []]

157 TREV [[beta, [sc]], 0, [], []]

157 TREV [[alpha, [sc]], 0, [], []]

outworlds=[53, 54, 63, ... 156, 157]

number of outworlds=16

SC:gpt

exec time=00h 00m 26s 530ms

82 © Graham G. Thomason 2003-2004

If we process event omega, the variables are reset, and the number of worlds goes down from

64 to 1. This is an internal event and takes place rather faster:

Although our model does not show it, set transit nondeterminism is applied at several levels in

the hierarchy if necessary. Test model t6311 illustrates this, but it suffers to some extent

from combinatorial explosion, although event beta1 can be processed in under 15 minutes

(at 300MHz, SWI Prolog) producing 128 worlds.

SC:pe omega

SC:gpt

exec time=00h 00m 05s 210ms

© Graham G. Thomason 2003-2004 83

4.19 Set-action nondeterminism

In the last section, we saw set-transit nondeterminism. But what about when the transitions

are within the sets, and there is no transit in and out of the set? We still have to consider

orderings. We consider the following model, which has nested sets, and we warn in advance

for the beginnings of combinatorial explosion and poor performance. However, some more

efficient ways to obtain similar behaviour are also discussed.

Figure 30. Set action nondeterminism [model u5412]

When event α is given, all the set members undergo a local transition. (There is actually a

race between them, but there is no difference in outcome whatever the race order, and we

ignore the race. Race nondeterminism of this kind was considered in section 4.17).

We could make all these set members transition back with another request to process event α.

As the set members transition back, they generate values of v that record the order in which it

happened. Each order generates a different value of v. There are 5! = 120 orderings, although

this can be restricted, to be explained later (section 4.23).

Now event ω will do a similar thing in principle, although it is only attached to one transition.

But there is one difference in what happens: orderings will be hierarchically generated as

follows: the 3! =6 orderings within set a will be generated, and the 2! = 2 orderings within set

b will be generated. Then these 6 and 2 orderings will be regarded as single entities and

sy

i

 j l

k

a

n

m α,α_j

α,α_i

α,α_l

α,α_k

α,α_n

α,α_m

a1 a2 a3

p

 q s

r

b

u

t α,α_q

α,α_p

α,α_s

α,α_r

α,α_u

α,α_t

b1 b2 b3

ω

ω_race, ω1

ω_race, ω2

v=v*10

+1

v=v*10

+3

v=v*10

+2

v=v*10

+4

v=v*10

+6

v=v*10

+5

omitted or commented out for performance reasons

84 © Graham G. Thomason 2003-2004

ordered in 2! =2 different ways. So the total number of orderings will be 3!.2!.2! =24. We call

this set-action nondeterminism.

As it happens, on a 300MHz machine under SWI-Prolog, the 120 worlds of the race are

generated in 2
1
/2 minutes, and the 24 worlds of the set-action are generated in 5

1
/2 minutes.

But if there were to be further processing with nondeterminism of any kind, it would be better

to depart from 24 worlds than 120, if the 24 cover the needs of the user.

We will prepare the model and see this in action.

Call the file set_action.scs.txt in directory u5412_set_action. Prepare the

hierarchy first and compile it (as already learned).

 SC:root F:\KWinPro\StCr\StCr5ModelsUser\u5412_set_action

 SC:cp set_action

The hierarchy is:

statechart sc(sy)

set sy(a,b)

 set a(a1,a2,a3)

 cluster a1(i,j)

 state i;

 state j;

 cluster a2(k,l)

 state k;

 state l;

 cluster a3(m,n)

 state m;

 state n;

 set b(b1,b2)

 cluster b1(p,q)

 state p;

 state q;

 cluster b2(r,s)

 state r;

 state s;

© Graham G. Thomason 2003-2004 85

Add the declarations and transitions:

statechart sc(sy)

event alpha;

event alpha_i, alpha_j, alpha_k, alpha_l, alpha_m, alpha_n;

event alpha_p, alpha_q, alpha_r, alpha_s;

event omega, omega_vreset, omega_race, omega1, omega2;

enum vint {0,..,1000000};

vint v=0;

set sy(a,b) {omega->sy; omega_vreset {v=0;};}

 set a(a1,a2,a3) {omega_race->a; omega1->a;}

 cluster a1(i,j)

 state i { alpha, alpha_j->j;}

 state j {upon exit {v=v*10+1;} alpha, alpha_i->i;}

 cluster a2(k,l)

 state k { alpha, alpha_l->l;}

 state l {upon exit {v=v*10+2;} alpha, alpha_k->k;}

 cluster a3(m,n)

 state m { alpha, alpha_n->n;}

 state n {upon exit {v=v*10+3;} alpha, alpha_m->m;}

 set b(b1,b2) {omega_race->b; omega2->b;}

 cluster b1(p,q)

 state p { alpha, alpha_q->q;}

 state q {upon exit {v=v*10+4;} alpha, alpha_p->p;}

 cluster b2(r,s)

 state r { alpha, alpha_s->s;}

 state s {upon exit {v=v*10+5;} alpha, alpha_r->r;}

86 © Graham G. Thomason 2003-2004

Compile the model. Process event alpha. (This should be quick - a few seconds at most -

assuming the default race setting, medium race, is in place. This will be explained later). All

the local transitions will take place, and there will be one world:

Now process event omega (and if your machine is not too new, take a coffee). Then get the

configuration (command gc). There are 24 worlds. The last one is as follows:

7 statechart sc

7 set sy [sc] = OCC [] **

7 set a [sy, sc] = OCC [] **

7 cluster a1 [a, sy, sc] = OCC [] **

7 leafstate i [a1, a, sy, sc] = VAC []

7 leafstate j [a1, a, sy, sc] = OCC [] **

7 cluster a2 [a, sy, sc] = OCC [] **

7 leafstate k [a2, a, sy, sc] = VAC []

7 leafstate l [a2, a, sy, sc] = OCC [] **

7 cluster a3 [a, sy, sc] = OCC [] **

7 leafstate m [a3, a, sy, sc] = VAC []

7 leafstate n [a3, a, sy, sc] = OCC [] **

7 set b [sy, sc] = OCC [] **

7 cluster b1 [b, sy, sc] = OCC [] **

7 leafstate p [b1, b, sy, sc] = VAC []

7 leafstate q [b1, b, sy, sc] = OCC [] **

7 cluster b2 [b, sy, sc] = OCC [] **

7 leafstate r [b2, b, sy, sc] = VAC []

7 leafstate s [b2, b, sy, sc] = OCC [] **

7 VAR INTEGER v [sc] =0

...

173 statechart sc

173 set sy [sc] = OCC [] **

173 set a [sy, sc] = OCC [] **

173 cluster a1 [a, sy, sc] = OCC [] **

173 leafstate i [a1, a, sy, sc] = OCC [] **

173 leafstate j [a1, a, sy, sc] = VAC []

173 cluster a2 [a, sy, sc] = OCC [] **

173 leafstate k [a2, a, sy, sc] = OCC [] **

173 leafstate l [a2, a, sy, sc] = VAC []

173 cluster a3 [a, sy, sc] = OCC [] **

173 leafstate m [a3, a, sy, sc] = OCC [] **

173 leafstate n [a3, a, sy, sc] = VAC []

173 set b [sy, sc] = OCC [] **

173 cluster b1 [b, sy, sc] = OCC [] **

173 leafstate p [b1, b, sy, sc] = OCC [] **

173 leafstate q [b1, b, sy, sc] = VAC []

173 cluster b2 [b, sy, sc] = OCC [] **

173 leafstate r [b2, b, sy, sc] = OCC [] **

173 leafstate s [b2, b, sy, sc] = VAC []

173 VAR INTEGER v [sc] =54321

173 TRACE =[]

...

outworlds=[58, 63, 68, ... 168, 173]

number of outworlds=24

SC:gpt

exec time=00h 05m 38s 120ms

© Graham G. Thomason 2003-2004 87

This world, with v=54321, shows that the exit order was b2, b1, a3, a2, a1. Examine other

worlds and deduce the exit order. You will see orderings of (a3, a2, a1) but always next to

each other, and orderings of (b2, b1), but always next to each other, and sometimes the a's

will be before the b's. But you will never see an ordering such as a1, b1, a2, b2, b3.

The following are optional extras.

As a first optional extra, the reader can experiment with resetting the machine (command rm)

and the following sequence of events: alpha, omega1, omega2. On omega1, 6 worlds are

generated (quite fast), and on omega2 this is increased to 12 worlds (and again is quite fast).

If this kind of approach, where set action nondeterminism applies to one set at a time, is

adequate to model the Implementation Under Test, it is recommended, being quicker in

execution.

Another optional extra is to reset the machine and process the following sequence of events:

alpha, omega_race. In about 14 seconds (300MHz, SWI Prolog) 24 worlds are generated

just as in the omega case. Sets a and set b undergo their own internal set actions in various

orderings, and a race is run between the sets as single entities, in two ways, giving the same

effect as the omega case but via a different approach, which happens to be considerably

faster (in the implementation mentioned).

88 © Graham G. Thomason 2003-2004

4.20 Set meta-event nondeterminism

Another form of set nondeterminism arises from the internally generated exit and enter

events, which we call meta-events, that can occur in sets as the result of transitions on the

whole set. Meta-events were introduced in section 4.8.

Meta-event nondeterminism is very similar to set-action nondeterminism just considered. In

the figure below, on event sequence alpha, omega, many leaf-states in sets are exited, and

the associated meta-events are responded to in the lower part of the model.

Performance is particularly poor on event omega, as it affects nested sets, and the outer one

(sy) is bigger than in the previous set-action model. This is however, not a cause for alarm,

but rather for understanding of when performance is poor and when it is good. It should also

be noted that performance with nondeterminism switched off is always good, and by

controlling nondeterminism judiciously, good performance can generally be attained.

© Graham G. Thomason 2003-2004 89

Figure 31. Set meta-event nondeterminism [model u5414]

All meta-events associated with the transitions on event alpha are responded to in member

z, with variable v recording the sequence.

We will prepare the model and see this in action.

sy
ω

ω_race, ω1

i

 j l

k

a

n

m α,α_j

α,α_i

α,α_l

α,α_k

α,α_n

α,α_m

a1 a c3

p

 q s

r

b

u

t α,α_q

α,α_p

α,α_s

α,α_r

α,α_u

α,α_t

b1 b2 b3

ω_race, ω2

ω_x x

z

exl

exn

exj

exs

exu

exq

neutral

ω_neutral

exit(x.a.a1.j) {v=v*10+1;}

exit(x.a.a1.l) {v=v*10+2;}

exit(x.a.a1.n) {v=v*10+3;}

exit(x.b.b1.q) {v=v*10+4;}

exit(x.b.b1.s) {v=v*10+5;}

exit(x.b.b1.u{v=v*10+6;})

omitted or commented out for performance reasons

90 © Graham G. Thomason 2003-2004

Call the file set_mev.scs.txt in directory u5414_set_mev. Prepare the hierarchy

first and compile it (as already learned).

 SC:root F:\KWinPro\StCr\StCr5ModelsUser\u5414_set_mev

 SC:cp set_mev

The hierarchy is:

statechart sc(sy)

set sy(a,b)

 set a(a1,a2,a3)

 cluster a1(i,j)

 state i;

 state j;

 cluster a2(k,l)

 state k;

 state l;

 cluster a3(m,n)

 state m;

 state n;

 set b(b1)

 cluster b1(p,q)

 state p;

 state q;

© Graham G. Thomason 2003-2004 91

Add the declarations and transitions:

statechart sc(sy)

event alpha;

event alpha_i, alpha_j, alpha_k, alpha_l, alpha_m, alpha_n;

event alpha_p, alpha_q;

event omega, omega_x, omega_race, omega1, omega2;

event omega_neutral, omega_vreset;

enum vint {0,..,1000000};

vint v=0;

set sy(x,z) {omega->sy; omega_vreset {v=0;};}

 set x(a,b) {omega_x->x;}

 set a(a1,a2,a3) {omega_race->a; omega1->a;}

 cluster a1(i,j)

 state i {alpha, alpha_j->j;}

 state j {alpha, alpha_i->i;}

 cluster a2(k,l)

 state k {alpha, alpha_l->l;}

 state l {alpha, alpha_k->k;}

 cluster a3(m,n)

 state m {alpha, alpha_n->n;}

 state n {alpha, alpha_m->m;}

 set b(b1) {omega_race->b; omega2->b;}

 cluster b1(p,q)

 state p {alpha, alpha_q->q;}

 state q {alpha, alpha_p->p;}

 cluster z(neutral, exj,exl,exn, exq) \

 {omega_neutral -> z.neutral; \

 exit(x.a.a1.j) -> z.exj {v=v*10+1;}; \

 exit(x.a.a2.l) -> z.exl {v=v*10+2;}; \

 exit(x.a.a3.n) -> z.exn {v=v*10+3;}; \

 exit(x.b.b1.q) -> z.exq {v=v*10+4;}; }

 state neutral;

 state exj;

 state exl;

 state exn;

 state exq;

92 © Graham G. Thomason 2003-2004

Compile the model. Process event alpha. (This should be quick - a few seconds at most -

assuming the default race setting, medium race, is in place. This will be explained later).

All the local transitions have taken place, and there is one world. Cluster z is in its neutral

state. Variable v is zero.

6 statechart sc

6 set sy [sc] = OCC [] **

6 set x [sy, sc] = OCC [] **

6 set a [x, sy, sc] = OCC [] **

6 cluster a1 [a, x, sy, sc] = OCC [] **

6 leafstate i [a1, a, x, sy, sc] = VAC []

6 leafstate j [a1, a, x, sy, sc] = OCC [] **

6 cluster a2 [a, x, sy, sc] = OCC [] **

6 leafstate k [a2, a, x, sy, sc] = VAC []

6 leafstate l [a2, a, x, sy, sc] = OCC [] **

6 cluster a3 [a, x, sy, sc] = OCC [] **

6 leafstate m [a3, a, x, sy, sc] = VAC []

6 leafstate n [a3, a, x, sy, sc] = OCC [] **

6 set b [x, sy, sc] = OCC [] **

6 cluster b1 [b, x, sy, sc] = OCC [] **

6 leafstate p [b1, b, x, sy, sc] = VAC []

6 leafstate q [b1, b, x, sy, sc] = OCC [] **

6 cluster z [sy, sc] = OCC [] **

6 leafstate neutral [z, sy, sc] = OCC [] **

6 leafstate exj [z, sy, sc] = VAC []

6 leafstate exl [z, sy, sc] = VAC []

6 leafstate exn [z, sy, sc] = VAC []

6 leafstate exq [z, sy, sc] = VAC []

6 VAR INTEGER v [sc] =0

...

© Graham G. Thomason 2003-2004 93

Now process event omega. This takes 1m40s (300MHz, SWI-Prolog). Then get the

configuration (command gc). There are 12 worlds. The last one is as follows:

This world has v=4321, which shows the order of meta-event response was from the exiting

of states b1,a3,a2,a1 in that order. Examine other worlds and deduce the order of exiting

of states. As in the set-action case, you will see orderings of a3,a2,a1, and you would see

additional orderings of b states if there were any, and you will also see the a's before the b,

but you will never see an ordering such as a1,b1,a2,a3.

As in the previous section, some optional extras are offered.

As a first optional extra, the reader can experiment with resetting the machine (command rm)

and the following sequence of events: alpha, omega1, omega2. On omega1, 6 worlds are

generated (in 11 seconds, 300MHz, SWI Prolog). On omega2 (which is fast) set b is reset,

without increasing the number of worlds, because it only has one member. If this kind of

131 statechart sc

131 set sy [sc] = OCC [] **

131 set x [sy, sc] = OCC [] **

131 set a [x, sy, sc] = OCC [] **

131 cluster a1 [a, x, sy, sc] = OCC [] **

131 leafstate i [a1, a, x, sy, sc] = OCC [] **

131 leafstate j [a1, a, x, sy, sc] = VAC []

131 cluster a2 [a, x, sy, sc] = OCC [] **

131 leafstate k [a2, a, x, sy, sc] = OCC [] **

131 leafstate l [a2, a, x, sy, sc] = VAC []

131 cluster a3 [a, x, sy, sc] = OCC [] **

131 leafstate m [a3, a, x, sy, sc] = OCC [] **

131 leafstate n [a3, a, x, sy, sc] = VAC []

131 set b [x, sy, sc] = OCC [] **

131 cluster b1 [b, x, sy, sc] = OCC [] **

131 leafstate p [b1, b, x, sy, sc] = OCC [] **

131 leafstate q [b1, b, x, sy, sc] = VAC []

131 cluster z [sy, sc] = OCC [] **

131 leafstate neutral [z, sy, sc] = VAC []

131 leafstate exj [z, sy, sc] = OCC [] **

131 leafstate exl [z, sy, sc] = VAC []

131 leafstate exn [z, sy, sc] = VAC []

131 leafstate exq [z, sy, sc] = VAC []

131 VAR INTEGER v [sc] =4321

...

outworlds=[43, 51, 59, 67, 75, 83, 91, 99, 107, 115, 123, 131]

number of outworlds=12

SC:gpt

exec time=00h 01m 39s 750ms

94 © Graham G. Thomason 2003-2004

approach, where set meta-event nondeterminism applies to one set at a time, is adequate to

model the Implementation Under Test, it is recommended, being quicker in execution.

Another optional extra is to reset the machine and process the following sequence of events:

alpha, omega_race. In about 24 seconds (300MHz, SWI Prolog) 12 worlds are generated

just as in the omega case. Sets a and set b undergo their own internal set actions in various

orderings, and a race is run between the sets as single entities, in two ways, giving the same

effect as the omega case but via a different approach, which happens to be considerably

faster (in the implementation mentioned).

© Graham G. Thomason 2003-2004 95

4.21 Fired event and multiple nondeterminism

So far, the kinds of nondeterminism we have seen have all been illustrated separately. But

they can all take place in the same model as a result of processing one event. The initiating

event may not obviously be the cause of nondeterminism - it may be that nondeterminism

arises as a result of other events fired during transition processing. In that case we speak of

fired event (or: broadcast event) nondeterminism. We will implement the following model:

Figure 32. Multiple nondeterminism [model u5480]

This model can be used with event β to illustrate set-transit, fork, and race-condition

nondeterminism. But we can include fired event nondeterminism by starting with event α,

which causes β to be fired. To help with the explanation, we have named the transitions on β:

t1, t2 and t3. On event β there is a fork with prongs t2 and t3. One of these will be

chosen for one line of processing and one for another. But whichever is chosen, it must race

against t1, and so different orderings will be generated. STATECRUNCHER will start by

generating 4 sequences of transitions: <t1,t2>, <t2,t1>, <t1,t3> and <t3,t1>. Now

when t1 is processed in any of these sequences, set b2 is entered. This occasions set-transit

nondeterminism. The two members of the set will be entered in two different orderings. The

net effect is that starting from the initial configuration, 8 worlds are produced. Variable v

records the order in which key states are entered. Partially corroborating this are the resultant

states in set members c and z.

a

β

b1

s

c

z

β

c1
c2

α->a2 {fire β}

a1 a2

b

c3
β

b2

p q

q2

q1

p2

p1

enter($b.b2.p.p1)

z1
z2

z3 enter($c.c3)

v=v*10+7

v=v*10+6

v=v*10+4 v=v*10+5

v=v*10+2 v=v*10+3

v=v*10+1

γ

γ γ

γ

ω{v=0;}

t1

t2

t3

96 © Graham G. Thomason 2003-2004

Call the file multi_nd.scs.txt in directory u5480_multi_nd. Prepare the

hierarchy first and compile it (as already learned).

 SC:root F:\KWinPro\StCr\StCr5ModelsUser\u5480_multi_nd

 SC:cp multi_nd

The hierarchy is:

Add the declarations and transitions:

statechart sc(s)

 set s(a,b,c,z)

 cluster a(a1,a2)

 state a1;

 state a2;

 cluster b(b1,b2)

 state b1;

 set b2(p,q)

 cluster p(p1,p2)

 state p1;

 state p2;

 cluster q(q1,q2)

 state q1;

 state q2;

 cluster c(c1,c2,c3)

 state c1;

 state c2;

 state c3;

 cluster z(z1,z2,z3)

 state z1;

 state z2;

 state z3;

statechart sc(s)

event alpha,beta,gamma,omega;

enum int1 {0,..,1000};

int1 v=0;

 set s(a,b,c,z) {omega->s {v=0;};} // reset

 cluster a(a1,a2)

 state a1 {alpha->a2 {fire beta;};}

 state a2;

 cluster b(b1,b2)

 state b1 {beta->b2;}

 set b2(p,q) {upon enter {v=v*10+1;}}

 cluster p(p1,p2) {upon enter {v=v*10+2;}}

 state p1 {upon enter {v=v*10+4;} gamma->p2; }

 state p2 {upon enter {v=v*10+4;} gamma->p1; }

 cluster q(q1,q2) {upon enter {v=v*10+3;}}

 state q1 {upon enter {v=v*10+5;} gamma->q2; }

 state q2 {upon enter {v=v*10+5;} gamma->q1; }

 cluster c(c1,c2,c3)

 state c1 {beta->c2; beta->c3;}

 state c2 {upon enter {v=v*10+6;}}

 state c3 {upon enter {v=v*10+7;}}

 cluster z(z1,z2,z3)

 state z1 { enter($b.b2.p.p1)->z2; enter($c.c3)->z3; }

 state z2;

 state z3;

© Graham G. Thomason 2003-2004 97

Compile the model. Process event alpha. The eight worlds will be generated fairly quickly

(1.5 sec on a 300MHz machine running SWI-Prolog). Get the configuration (command gc).

The key configuration lines are:

We take world 66 as an example. Variable v indicates that the order in which states were

entered was c2,b2,p,p1,q,q1. This means that in this world transition t2 was taken in

the t2-t3 fork, and that in the t1-t2 race, t2 ran before t1. This is corroborated by the fact

that c2 is occupied rather than c3, and that z2 was entered rather than z3. The user should

examine some other worlds in the same way.

Process event omega to take the model back to its initial configuration. It yields one world.

18 leafstate c3 [c, s, sc] = OCC [] **

18 leafstate z2 [z, s, sc] = OCC [] **

18 VAR INTEGER v [sc] =124357

20 leafstate c3 [c, s, sc] = OCC [] **

20 leafstate z2 [z, s, sc] = OCC [] **

20 VAR INTEGER v [sc] =135247

29 leafstate c3 [c, s, sc] = OCC [] **

29 leafstate z3 [z, s, sc] = OCC [] **

29 VAR INTEGER v [sc] =713524

34 leafstate c3 [c, s, sc] = OCC [] **

34 leafstate z3 [z, s, sc] = OCC [] **

34 VAR INTEGER v [sc] =712435

49 leafstate c2 [c, s, sc] = OCC [] **

49 leafstate z2 [z, s, sc] = OCC [] **

49 VAR INTEGER v [sc] =124356

51 leafstate c2 [c, s, sc] = OCC [] **

51 leafstate z2 [z, s, sc] = OCC [] **

51 VAR INTEGER v [sc] =135246

61 leafstate c2 [c, s, sc] = OCC [] **

61 leafstate z2 [z, s, sc] = OCC [] **

61 VAR INTEGER v [sc] =613524

66 leafstate c2 [c, s, sc] = OCC [] **

66 leafstate z2 [z, s, sc] = OCC [] **

66 VAR INTEGER v [sc] =612435

98 © Graham G. Thomason 2003-2004

4.22 Transition prioritisation

We have seen fork nondeterminism where the transitions have the identical source state:

Figure 33. Fork nondeterminism with same source state

But how is the following situation to be handled? The transitions are named t1 and t2.

Figure 34. Hierarchical issue

There are three ways this could be handled:

(1) We could say it is fork nondeterminism, with one world ending up in state m.b2 and the

other in state b2.

(2) We could say that we prioritise and override by specialisation, saying that t1 takes

precedence and masks t2. In this case the model is deterministic. This is the approach

taken by UML, and is in line with overriding member methods in C++ derived classes.

(3) We could say that we prioritise and override by the more external transition, saying that

t2 takes precedence and masks t1. In this case the model is again deterministic. This

approach has the advantage that an external transition cannot be affected be perhaps

poorly understood internals of a deeply embedded machine. This is the approach taken by

[CHSM].

As pointed out by Lucas in [CHSM], under this scheme we can alter the precedence as

follows:

Figure 35. Forced prioritisation reversal giving specialisation

a

b1

b2

β

β

a b1

β

m

b2

β

 t1

t2

a b1

β

m

b2

β[!in(m.a)]

 t1

t2

© Graham G. Thomason 2003-2004 99

STATECRUNCHER implements option (2) and conforms with UML, since that is the standard

with which many designs comply. We will build the following model to illustrate the details

of this, including how transition conditions affect the transitions taken.

Figure 36. Transition prioritisation [model u5500]

This model also runs a race, to show that races are not affected by transition prioritisation. All

transitions t1-t8 are conditional on their own variable v1-v8, which can be set to true or

false by internal event τ1-τ8 and φ1-φ8 respectively. We can also set all these variables to

true or false in one go by events τ and φ, and then adjust selected ones specifically. This

gives us the ability to invalidate specific transitions, so as to see the prioritisation algorithm

under various circumstances. The value of v tells us about race ordering. We will see this in

practice.

a

aa

aq

ap

s

α[v3] {v=v*10+1;}

α[v4] {v=v*10+1;}

τ sets all vnn variables true

τ1-τ8 set a specific variable true

φ sets all vnn variables false

φ1-φ8 set a specific variable false

ω1 {v=0;}

a1
α[v1] {v=v*10+1;}

α[v2] {v=v*10+1;}

γ

a4

a3

a2

ω3 {v=0;}

ω2

 v v1 v2 v3 v4

 v5 v6 v7 v8

The transitions are named t1, t2 etc.

(many)

b

bb

bq

bp

α[v7] {v=v*10+2;}

α[v8] {v=v*10+2;}

b5
α[v5] {v=v*10+2;}

α[v6] {v=v*10+2;}

γ

b8

b7

b6

t1

t2

t3

t4

t5

t6

t7

t88

100 © Graham G. Thomason 2003-2004

Call the file trans_prio.scs.txt in directory u5500_trans_prio. Prepare the

hierarchy first and compile it (as already learned).

 SC:root F:\KWinPro\StCr\StCr5ModelsUser\u5500_trans_prio

 SC:cp trans_prio

The hierarchy is:

statechart sc(s)

set s (a,b)

 cluster a(aa,a1,a2,a3,a4)

 cluster aa(ap,aq)

 state ap;

 state aq;

 state a1;

 state a2;

 state a3;

 state a4;

 cluster b(bb,b5,b6,b7,b8)

 cluster bb(bp,bq)

 state bp;

 state bq;

 state b5;

 state b6;

 state b7;

 state b8;

© Graham G. Thomason 2003-2004 101

Add the declarations and transitions:

statechart sc(s)

event alpha,gamma,delta,omega1,omega2,omega3;

event tau, phi;

event tau1, tau2, tau3, tau4, tau5, tau6, tau7, tau8;

event phi1, phi2, phi3, phi4, phi5, phi6, phi7, phi8;

enum int1 {0,..,100};

int1 v=0;

bool v1=true, v2=true, v3=true, v4=true;

bool v5=true, v6=true, v7=true, v8=true;

set s (a,b) \

 {tau {v1=true; v2=true; v3=true; v4=true; \

 v5=true; v6=true; v7=true; v8=true;}; \

 \

 tau1{v1=true;}; tau2{v2=true;}; tau3{v3=true;}; tau4{v4=true;}; \

 tau5{v5=true;}; tau6{v6=true;}; tau7{v7=true;}; tau8{v8=true;}; \

 \

 phi {v1=false; v2=false; v3=false; v4=false; \

 v5=false; v6=false; v7=false; v8=false;};\

 \

 phi1{v1=false;}; phi2{v2=false;}; phi3{v3=false;}; phi4{v4=false;};\

 phi5{v5=false;}; phi6{v6=false;}; phi7{v7=false;}; phi8{v8=false;};\

 \

 omega1{v=0;}; omega2->s; omega3->s{v=0;}; }

 cluster a(aa,a1,a2,a3,a4)

 cluster aa(ap,aq) {alpha[v1]-> a1{v=v*10+1;}; \

 alpha[v2]-> a2{v=v*10+1;}; }

 state ap {alpha[v3]->$a3{v=v*10+1;}; \

 alpha[v4]->$a4{v=v*10+1;}; \

 gamma->aq; }

 state aq;

 state a1;

 state a2;

 state a3;

 state a4;

 cluster b(bb,b5,b6,b7,b8)

 cluster bb(bp,bq) {alpha[v5]->b5{v=v*10+2;}; \

 alpha[v6]->b6{v=v*10+2;}; }

 state bp {alpha[v7]->$b7{v=v*10+2;}; \

 alpha[v8]->$b8{v=v*10+2;}; \

 delta->bq; }

 state bq;

 state b5;

 state b6;

 state b7;

 state b8;

102 © Graham G. Thomason 2003-2004

Process event α and get the configuration. The number of worlds produced is 8. The key lines

of these worlds are shown below. We see that all the transitions are to a3, a4, b7, or b8, i.e.

they are the inner, specialised ones. In all cases two transitions were executed, as is seen by

the value of v, which is always 12 or 21, indicating whether a in set member a ran before or

after a transition in set member b. The 8 worlds come from 3 multiplicative factors: choose a

transition from t3 or t4, choose a transition from t7 or t7, and choose an ordering for these

two transitions.

Process event omega3 to effectively reset the machine (in this case). Then process event

phi7, to set v7 to false, and so invalidate transition t7. Then process event alpha and

get the configuration. Four worlds are produced. They are like the ones above, but with

worlds in b7 removed. The last world listed, for example, has the following details:

6 leafstate a4 [a, s, sc] = OCC [] **

6 leafstate b8 [b, s, sc] = OCC [] **

6 VAR INTEGER v [sc] =12

10 leafstate a4 [a, s, sc] = OCC [] **

10 leafstate b8 [b, s, sc] = OCC [] **

10 VAR INTEGER v [sc] =21

14 leafstate a4 [a, s, sc] = OCC [] **

14 leafstate b7 [b, s, sc] = OCC [] **

14 VAR INTEGER v [sc] =12

18 leafstate a4 [a, s, sc] = OCC [] **

18 leafstate b7 [b, s, sc] = OCC [] **

18 VAR INTEGER v [sc] =21

22 leafstate a3 [a, s, sc] = OCC [] **

22 leafstate b8 [b, s, sc] = OCC [] **

22 VAR INTEGER v [sc] =12

26 leafstate a3 [a, s, sc] = OCC [] **

26 leafstate b8 [b, s, sc] = OCC [] **

26 VAR INTEGER v [sc] =21

30 leafstate a3 [a, s, sc] = OCC [] **

30 leafstate b7 [b, s, sc] = OCC [] **

30 VAR INTEGER v [sc] =12

34 leafstate a3 [a, s, sc] = OCC [] **

34 leafstate b7 [b, s, sc] = OCC [] **

34 VAR INTEGER v [sc] =21

68 leafstate a3 [a, s, sc] = OCC [] **

68 leafstate b8 [b, s, sc] = OCC [] **

68 VAR INTEGER v [sc] =21

© Graham G. Thomason 2003-2004 103

Process event omega3 to effectively reset the machine, except that the value of v7 is not

reset. Process event phi8 so that v8 becomes false, and t8 is also invalidated. Process

event alpha and get the configuration. There are 8 worlds. We see that all the transitions are

to a3, a4, b5, or b6. The specialization rule that would normally say that transitions t7 and

t8 mask transitions t5 and t6 does not have any force when both t7 and t8 are invalidated

by their condition. So t5 and t6 come into view, and cause a fork and a race a transition

from set member a.

The reader can experiment with this model by resetting it, then setting other combinations of

values to variables v1-v8, and then processing event alpha. For a more extensive model on

the same theme, see test model t5500.

82 leafstate a4 [a, s, sc] = OCC [] **

82 leafstate b6 [b, s, sc] = OCC [] **

82 VAR INTEGER v [sc] =12

86 leafstate a4 [a, s, sc] = OCC [] **

86 leafstate b6 [b, s, sc] = OCC [] **

86 VAR INTEGER v [sc] =21

90 leafstate a4 [a, s, sc] = OCC [] **

90 leafstate b5 [b, s, sc] = OCC [] **

90 VAR INTEGER v [sc] =12

94 leafstate a4 [a, s, sc] = OCC [] **

94 leafstate b5 [b, s, sc] = OCC [] **

94 VAR INTEGER v [sc] =2

98 leafstate a3 [a, s, sc] = OCC [] **

98 leafstate b6 [b, s, sc] = OCC [] **

98 VAR INTEGER v [sc] =12

102 leafstate a3 [a, s, sc] = OCC [] **

102 leafstate b6 [b, s, sc] = OCC [] **

102 VAR INTEGER v [sc] =21

106 leafstate a3 [a, s, sc] = OCC [] **

106 leafstate b5 [b, s, sc] = OCC [] **

106 VAR INTEGER v [sc] =12

110 leafstate a3 [a, s, sc] = OCC [] **

110 leafstate b5 [b, s, sc] = OCC [] **

110 VAR INTEGER v [sc] =21

104 © Graham G. Thomason 2003-2004

4.23 Limited race nondeterminism

We have already seen that race (and set-transit) nondeterminism can hit performance. In this

section we learn how to limit race nondeterminism - even to switch it off if desired. We will

implement the following model:

Figure 37. Limited race nondeterminism [model t5520]

The transitions are named, and the order of the raced transitions on event α is registered in

variable v in the usual way. But before we run the race, we can either issue commands to

control the race, or execute internal ω_... events to control the race. The options are

 No race: Use command SC:nr or event ω_nr. Only one ordering will be generated.

The transition in the first set member will be executed first, then the one in the second

set member etc. The transition order is t1,t2,t3,t4.

a

α

b1

s

c

d

α
a1

b

ω1

b2

v=v*10+2

a2

v=v*10+1

α

c1 c2

v=v*10+3

α

d1 d2

v=v*10+4

ω_nr{no_race();}

ω_lr{low_race();}

ω_hr{high_race();}

ω_mr{med_race();}

ω_v{v=0;}

 v

t1

t2

t3

t4

© Graham G. Thomason 2003-2004 105

 Low race: Use command SC:lr or event ω_lr. Only two ordering will be

generated. One is as above, and the other is the reverse of that order. The orderings

are t1,t2,t3,t4 and t4,t3,t2,t1.

 Medium race (default): Use command SC:mr or event ω_mr. The number of

orderings generated is 2n. These orderings are all the cyclic and anticyclic rotation

operations on the no-race ordering. The orderings are (cyclic):

 (t1,t2,t3,t4), (t2,t3,t4,t1), (t3,t4,t1,t2), (t4,t1,t2,t3),

and (anticyclic):

 (t4,t3,t2,t1), (t3,t2,t1,t4), (t2,t1,t4,t3), (t1,t4,t3,t2).

 High race: Use command SC:hr or event ω_hr. All n! orderings are generated, i.e.

4! = 24 orderings in this case.

Call the file race_control.scs.txt in directory u5520_race_control. Prepare

the hierarchy first and compile it (as already learned).

 SC:root F:\KWinPro\StCr\StCr5ModelsUser\u5520_race_control

 SC:cp race_control

The hierarchy is:

statechart sc(s)

 set s(a,b,c,d)

 cluster a(a1,a2)

 state a1;

 state a2;

 cluster b(b1,b2)

 state b1;

 state b2;

 cluster c(c1,c2)

 state c1;

 state c2;

 cluster d(d1,d2)

 state d1;

 state d2;

106 © Graham G. Thomason 2003-2004

Add the declarations and transitions:

Compile and run the model. The default setting is medium race. Process event alpha and

get the configuration. There are 8 worlds, distinguished by variable v, which reveals the

transition ordering. For example, the last world has v=4321, which tells us that the transition

ordering was t4, t3, t2, t1.

statechart sc(s)

event alpha;

event omega1, omega_v;

event omega_nr;

event omega_lr;

event omega_mr;

event omega_hr;

enum int1{0,..,10000};

int1 v=0;

 set s(a,b,c,d) {omega1->s; \

 omega_v {v=0;}; \

 omega_nr {no_race();}; \

 omega_lr {low_race();}; \

 omega_mr {med_race();}; \

 omega_hr {high_race();}; }

 cluster a(a1,a2)

 state a1 {alpha->a2;}

 state a2 {upon enter {v=v*10+1;} }

 cluster b(b1,b2)

 state b1 {alpha->b2;}

 state b2 {upon enter {v=v*10+2;} }

 cluster c(c1,c2)

 state c1 {alpha->c2;}

 state c2 {upon enter {v=v*10+3;} }

 cluster d(d1,d2)

 state d1 {alpha->d2;}

 state d2 {upon enter {v=v*10+4;} }

10 VAR INTEGER v [sc] =2341

18 VAR INTEGER v [sc] =3412

26 VAR INTEGER v [sc] =4123

34 VAR INTEGER v [sc] =1234

42 VAR INTEGER v [sc] =3214

50 VAR INTEGER v [sc] =2143

58 VAR INTEGER v [sc] =1432

66 VAR INTEGER v [sc] =4321

© Graham G. Thomason 2003-2004 107

Reset the model (command rm) [or process events omega_v and omega1] and process

event omega_lr. This is the low race option, and it gives 2 worlds. The transition orders are

revealed by the values of variable v:

Reset the model and process event omega_nr. This is the no race option, and it gives 1

world. The transition orders are revealed by the value of variable v:

Reset the model and process event omega_hr. This is the high race option, and it gives 24

worlds. The transition orders are revealed by the values of variable v:

Reset the model and control the race nondeterminism on event alpha by STATECRUNCHER

commands at the prompt:

SC:nr, SC:lr, SC:mr, SC:hr.

12 VAR INTEGER v [sc] =1234

20 VAR INTEGER v [sc] =4321

10 VAR INTEGER v [sc] =1234

10 VAR INTEGER v [sc] =1234

18 VAR INTEGER v [sc] =2134

26 VAR INTEGER v [sc] =1324

34 VAR INTEGER v [sc] =3124

42 VAR INTEGER v [sc] =2314

50 VAR INTEGER v [sc] =3214

58 VAR INTEGER v [sc] =1243

66 VAR INTEGER v [sc] =2143

74 VAR INTEGER v [sc] =1423

82 VAR INTEGER v [sc] =4123

90 VAR INTEGER v [sc] =2413

98 VAR INTEGER v [sc] =4213

106 VAR INTEGER v [sc] =1342

114 VAR INTEGER v [sc] =3142

122 VAR INTEGER v [sc] =1432

130 VAR INTEGER v [sc] =4132

138 VAR INTEGER v [sc] =3412

146 VAR INTEGER v [sc] =4312

154 VAR INTEGER v [sc] =2341

162 VAR INTEGER v [sc] =3241

170 VAR INTEGER v [sc] =2431

178 VAR INTEGER v [sc] =4231

186 VAR INTEGER v [sc] =3421

194 VAR INTEGER v [sc] =4321

108 © Graham G. Thomason 2003-2004

4.24 Limited set nondeterminism

We illustrate controlling set-transit nondeterminism, but the settings we will introduce will

control set-meta-event and set action nondeterminism as well, since all these orderings are

derived from the same source.

We will implement the following model:

Figure 38. Limited set-transit nondeterminism [model u5530]

On entry into set c, four set members are entered, and the order in which this happens is

recorded by variable v in the usual way. But before the set is entered, we can either issue

commands to control the nondeterminism, or execute internal ω_... events to the same

effect. The options are:

 No set transit nondeterminism: Use command SC:nst or event ω_nst. Only one

ordering will be generated. The first-defined set member will be entered first, then the

second set member etc. The entry order is c1,c2,c3,c4.

 Low set transit nondeterminism: Use command SC:lst or event ω_lst. Only two

orderings will be generated. One is as above, and the other is the reverse of that order.

The orderings are c1,c2,c3,c4 and c4,c3,c2,c1.

β

a

sy

ω1

α

ω_nst{no_set_tran();}

ω_lst{low_set_tran();}

ω_hst{high_set_tran();}

ω_mst{med_set_tran();}

ω_v{v=0;}

c

p q
q2

q1

p2

p1

v=v*10+1 v=v*10+2

ρ

ρ ρ

ρ
r2

r1

v=v*10+3

ρ

ρ
s2

s1

v=v*10+4

ρ

ρ s r

© Graham G. Thomason 2003-2004 109

 Medium transit set nondeterminism (default): Use command SC:mst or event

ω_mst. The number of orderings generated is 2n. These orderings are all the cyclic

and anticyclic rotation operations on the basic ordering. The orderings are (cyclic):

 (c1,c2,c3,c4), (c2,c3,c4,c1), (c3,c4,c1,c2), (c4,c1,c2,c3),

and (anticyclic):

 (c4,c3,c2,c1), (c3,c2,c1,c4), (c2,c1,c4,c3), (c1,c4,c3,c2).

 High set transit nondeterminism: Use command SC:hst or event ω_hst. All n!

orderings are generated, i.e. 4! = 24 orderings in this case.

Call the file set_control.scs.txt in directory u5530_set_control. Prepare the

hierarchy first and compile it (as already learned).

 SC:root F:\KWinPro\StCr\StCr5ModelsUser\u5530_set_control

 SC:cp set_control

The hierarchy is:

statechart sc(sy)

 cluster sy(a,c)

 state a;

 set c(c1,c2,c3,c4)

 cluster c1(p1,p2)

 state p1;

 state p2;

 cluster c2(q1,q2)

 state q1;

 state q2;

 cluster c3(r1,r2)

 state r1;

 state r2;

 cluster c4(s1,s2)

 state s1;

 state s2;

110 © Graham G. Thomason 2003-2004

Add the declarations and transitions:

Compile the model. The default setting is medium set tran. Process event alpha and get the

configuration. There are 8 worlds, distinguished by variable v, which reveals the ordering of

set member entry. For example, the last world has v=1234, which tells us that the ordering of

set member entry was c1, c2, c3, c4.

statechart sc(sy)

enum int {0,..,100000};

int v=0;

event alpha, beta, rho, omega1, omega_v;

event omega_nst, omega_lst, omega_mst, omega_hst;

 cluster sy(a,c) {omega1->sy; \

 omega_v {v=0;}; \

 omega_nst {no_set_tran();}; \

 omega_lst {low_set_tran();}; \

 omega_mst {med_set_tran();}; \

 omega_hst {high_set_tran();}; }

 state a {alpha->c; }

 set c(c1,c2,c3,c4) {beta->a; }

 cluster c1(p1,p2) {upon enter {v=v*10+1;} }

 state p1 {rho->p2; }

 state p2 {rho->p1; }

 cluster c2(q1,q2) {upon enter {v=v*10+2;} }

 state q1 {rho->q2; }

 state q2 {rho->q1; }

 cluster c3(r1,r2) {upon enter {v=v*10+3;} }

 state r1 {rho->r2; }

 state r2 {rho->r1; }

 cluster c4(s1,s2) {upon enter {v=v*10+4;} }

 state s1 {rho->s2; }

 state s2 {rho->s1; }

7 VAR INTEGER v [sc] =1432

11 VAR INTEGER v [sc] =2143

15 VAR INTEGER v [sc] =3214

19 VAR INTEGER v [sc] =4321

23 VAR INTEGER v [sc] =4123

27 VAR INTEGER v [sc] =3412

31 VAR INTEGER v [sc] =2341

35 VAR INTEGER v [sc] =1234

© Graham G. Thomason 2003-2004 111

Reset the model (command rm) [or process events omega_v and omega1] and process

event omega_lst. This is the low set transit option, and it gives 2 worlds. The set member

entry orderings are revealed by the values of variable v:

Reset the model and process event omega_nr. This is the no set transit option, and it gives 1

world. The set member entry ordering is revealed by the value of variable v:

Reset the model and process event omega_hst. This is the high set transit option, and it

gives 24 worlds. The set member entry orderings are revealed by the values of variable v:

Reset the model and control the set transit nondeterminism on event alpha by

STATECRUNCHER commands at the prompt:

SC:nst, SC:lst, SC:mst, SC:hst.

7 VAR INTEGER v [sc] =4321

11 VAR INTEGER v [sc] =1234

7 VAR INTEGER v [sc] =1234

7 VAR INTEGER v [sc] =4321

11 VAR INTEGER v [sc] =4312

15 VAR INTEGER v [sc] =4231

19 VAR INTEGER v [sc] =4213

23 VAR INTEGER v [sc] =4132

27 VAR INTEGER v [sc] =4123

31 VAR INTEGER v [sc] =3421

35 VAR INTEGER v [sc] =3412

39 VAR INTEGER v [sc] =3241

43 VAR INTEGER v [sc] =3214

47 VAR INTEGER v [sc] =3142

51 VAR INTEGER v [sc] =3124

55 VAR INTEGER v [sc] =2431

59 VAR INTEGER v [sc] =2413

63 VAR INTEGER v [sc] =2341

67 VAR INTEGER v [sc] =2314

71 VAR INTEGER v [sc] =2143

75 VAR INTEGER v [sc] =2134

79 VAR INTEGER v [sc] =1432

83 VAR INTEGER v [sc] =1423

87 VAR INTEGER v [sc] =1342

91 VAR INTEGER v [sc] =1324

95 VAR INTEGER v [sc] =1243

99 VAR INTEGER v [sc] =1234

112 © Graham G. Thomason 2003-2004

4.25 Independence of race and set-transit control

Go back to section 4.21 on multiple nondeterminism and run the model there:

 with default settings, which will give (medium) race and set nondeterminism (8 worlds

produced)

 with set nondeterminism but no race (4 worlds produced)

 with race nondeterminism but no set-transit (4 worlds produced)

 with neither (2 world produced, due to fork nondeterminism).

Fork nondeterminism can only be “switched off” by removing or invalidating the forks that

are to be ignored in the model source code itself.

© Graham G. Thomason 2003-2004 113

4.26 Pruning on the basis of traces

We have seen how traces work (section 4.11). The reader can imagine how after a test, there

might be several worlds in existence, of which only a few correspond to the behaviour of an

IUT (Implementation Under Test). The test control program would accept the test a pass as

long as there was at least one world that did match the IUT. It would kill the other worlds

with the kill command, e.g.

 SC:kill 6

would kill world 6.

But there is a more efficient way, first suggested by Tim Trew. An event is sent to the IUT

first and the actual traces are obtained. Then STATECRUNCHER is asked to process an event,

and is at the same time given the expected trace. The high-level syntax of the process event

command is as follows (a question mark introduces an optional parameter):

STATECRUNCHER will automatically, on the fly, kill worlds in direct violation of

EXPECTEDTRACE. As an initial conservative approach, overtrace and undertrace are

tolerated. Overtrace is where too much trace is produced by STATECRUNCHER, but where the

IUT trace matches the leading part of it. Undertrace is where not enough trace is produced by

STATECRUNCHER, but it matches the leading part of the IUT trace. This will be seen in the

following model, which we will implement.

Figure 39. Pruning on the basis of traces [model u5550]

pe EVENT ?p=PARAMETERS ?t=EXPECTEDTRACE

a
α {trace("ab"); trace("cd");}

p

q

ρ {trace_clear}

α {trace("ab");}

r

ρ1 {trace_clear; trace("pq");}

s

t

α {trace("ab"); trace("cd");} trace("ef");}}

α {trace("ab"); trace("yz");}

u
α {trace("yz");}

114 © Graham G. Thomason 2003-2004

Call the file prune_traces.scs.txt in directory u5550_prune_traces. Prepare

the hierarchy first and compile it (as already learned).

 SC:root F:\KWinPro\StCr\StCr5ModelsUser\u5550_prune_traces

 SC:cp prune_traces

The hierarchy is:

Add the declarations and transitions:

Compile the model and process event alpha. The different worlds are distinguished by trace

and state, but the traces will determine our course of action.

Remember that traces are read from right to left when read from oldest to newest item.

Suppose the IUT gives a trace of [cd,ab]. One trace above matches this, one has overtrace

[ef,cd,ab], and one has undertrace [ab]. Two directly violate the trace: [yz] and

[yz,ab].

statechart sc(a)

cluster a(p,q,r,s,t,u)

 state p;

 state q;

 state r;

 state s;

 state t;

 state u;

statechart sc(a)

event alpha, rho, rho1;

cluster a(p,q,r,s,t,u){rho->a{trace_clear();}; \

 rho1->a{trace_clear(); trace("pq"); }; }

 state p {alpha->q {trace("ab"); trace("cd"); }; \

 alpha->r {trace("ab"); trace("yz"); }; \

 alpha->s {trace("ab"); trace("cd"); trace("ef"); }; \

 alpha->t {trace("ab"); }; \

 alpha->u {trace("yz"); }; }

 state q;

 state r;

 state s;

 state t;

 state u;

4 TRACE =[yz]

6 TRACE =[ab]

10 TRACE =[ef, cd, ab]

13 TRACE =[yz, ab]

16 TRACE =[cd, ab]

© Graham G. Thomason 2003-2004 115

 Reset the model and give command

 SC:pe alpha t=[cd,ab]

 Then get the configuration. There are 3 worlds, with traces as shown

The worlds with a trace match, or overtrace, or undertrace, are kept. Normally, only the world

with an exact match would be kept, but one could imagine an IUT capable of spontaneously

producing more trace, so justifying keeping STATECRUNCHER's worlds with overtrace. Some

creative use of a model might reverse the situation, requiring undertrace to be kept. We can in

any case kill worlds 6 and 10 if we wish, as follows:

 kill [6,10]

That leaves one world, which we show in full:

If we kill this world

 kill 16

then we are left with no worlds at all, and the model is dead. It can be reset by the rm

command, but this is not equivalent to processing an event. In testing, this situation will

almost certainly represent detecting a defect, perhaps a design defect, and might represent

deadlock.

6 TRACE =[ab]

10 TRACE =[ef, cd, ab]

16 TRACE =[cd, ab]

16 statechart sc

16 cluster a [sc] = OCC [] **

16 leafstate p [a, sc] = VAC []

16 leafstate q [a, sc] = OCC [] **

16 leafstate r [a, sc] = VAC []

16 leafstate s [a, sc] = VAC []

16 leafstate t [a, sc] = VAC []

16 leafstate u [a, sc] = VAC []

16 TRACE =[cd, ab]

16 TREV [[rho, [sc]], 0, [], []]

16 TREV [[rho1, [sc]], 0, [], []]

outworlds=[16]

number of outworlds=1

SC:gc

outworlds=[]

number of outworlds=0

SC:

116 © Graham G. Thomason 2003-2004

4.27 Arrays

A provisional implementation of arrays is available (unscoped in Release 1.04, allowing

scoping in Release 1.05). Array indices must be nonnegative integers. Arrays can be of type

boolean, declared integer type, or string. Internally, and in output, array elements are given a

constructed double underscore name, as will be seen, and the user should avoid declaring any

other variables that would clash with this.

IMPORTANT: The user is required to declare the array name as a scalar (i.e. without

square brackets), and any elements (with square brackets) that might be used in the model.

We will implement the following model:

Figure 40. Arrays [model u5581]

There are two arrays called a in this model in different scopes, a global one in scope, [sc],

and a local one in scope [m,sc]. There are also two variables called i in these two scopes,

which will be used to index the arrays.

a1

α / a[3]=20 simple assignment

β / a[i+1]=v+1 index is an expression = a
local

[7]

γ / a[i][4]=v+3 two dimensional = a
local

 [6][4]

δ / v=a[i+1][4]+1 array on RHS (right hand side) = a
local

 [7][4]

ε / ::a[i]=200 scoped array, unscoped index = a
global

 a[6]

ζ / ::a[::i]=300 scoped array and index = a
global

 [60]

η / a[::i]=80 unscoped scoped array, scoped index = a
local

 [60]

θ / v=::a[i]+1 RHS of above

ι / v=::a[::i]+1 RHS of above

κ / v= a[::i]+1 RHS of above

 a[3]=0, a[6]=0, a[7]=0, a[60]=0, a[61]=0

 a[6][4]=0, a[7][4]=9

m

 a[6]=0, a[60]=0  i=60

 i=6

many self-

transitions

 v=2

© Graham G. Thomason 2003-2004 117

Call the file arrays.scs.txt in directory u5581_arrays. Prepare the hierarchy first

and compile it (as already learned).

 SC:root F:\KWinPro\StCr\StCr5ModelsUser\u5581_arrays

 SC:cp arrays

The hierarchy is:

Add the declarations and transitions:

Compile the model. Process event alpha and get the configuration. Element 3 of the local

array a, i.e. in scope [m,sc], is assigned the value 20.

Process event beta. Element [i+1], referring to the local i, of the local array a is assigned

the value v+1. Since i=6 and v=2, we effectively have a[7]=3.

statechart sc(m)

 cluster m(a1)

 state a1;

statechart sc(m)

event alpha, beta, gamma, delta, epsilon, zeta;

event eta, theta, iota, kappa;

enum int {0,..,1000};

// ARRAY BASES MUST BE DECLARED

int a, a[6]=0, a[60]=0, i=60, v=2; // GLOBAL

 cluster m(a1)

 int a, a[3]=0, a[6]=0, a[7]=0, a[60]=0; // LOCAL

 int a[61]=0, a[6][4]=0, a[7][4]=9, i=6; // LOCAL

 state a1 {alpha {a[3]=20;}; \

 beta {a[i+1]=v+1;}; \

 gamma {a[i][4]=v+3;}; \

 delta {v=a[i+1][4];}; \

 epsilon {::a[i]=200;}; \

 zeta {::a[::i]=300;}; \

 eta {a[::i]=80;}; \

 theta {v=::a[i]+1;}; \

 iota {v=::a[::i]+1;}; \

 kappa {v=a[::i]+1;}; }

4 VAR INTEGER a__3 [m, sc] =20

6 VAR INTEGER a__7 [m, sc] =3

118 © Graham G. Thomason 2003-2004

Process event gamma. The effective assignment is a[6][4]=5 to the local array a.

Process event delta. We now have the array on the right hand side of an assignment. The

effective assignment is v=a[7][4]. We initialised this element to 9.

Process event epsilon. The scoping operator causes the global a, with scope [sc], to be

addressed. But the index is the local i, which has the value 6.

Process event zeta. Both array and index are the global ones. The global i has value 60.

 Process event eta. The array is local but the index is global. The global i has value 60.

 Process event theta. Here we assign to v with an array term as in event epsilon above.

 Process event iota. Here we assign to v with an array term as in event zeta above.

 Process event kappa. Here we assign to v with an array term as in event eta above.

22 VAR INTEGER v [sc] =81

8 VAR INTEGER a__6__4 [m, sc] =5

10 VAR INTEGER v [sc] =9

12 VAR INTEGER a__6 [sc] =200

14 VAR INTEGER a__60 [sc] =300

16 VAR INTEGER a__60 [m, sc] =80

18 VAR INTEGER v [sc] =201

20 VAR INTEGER v [sc] =301

© Graham G. Thomason 2003-2004 119

4.28 What else is there to STATECRUNCHER?

We have covered all the important features used in models. There are reference pages on the

syntax, on expression operators, and on functions in section 8. There are reports covering

STATECRUNCHER's algorithms, listed in section 11.

We have kept this manual to what is needed for normal model design. An advanced user may

wish to add a function for use in expressions in a model. This requires a knowledge of Prolog,

and of how functions are handled in STATECRUNCHER, described in [StCrGP4].

Another area of STATECRUNCHER is its command language. We have mentioned the

commands needed for ordinary model usage: compiling, processing events, getting the

configuration etc. In fact the commands provided make much more possible, e.g. efficiently

flattening a state space, and providing for intelligent transition tours, but this would normally

be done under control of a powerful separate program connected to STATECRUNCHER, and we

do not discuss such possibilities here. Section Table 4 contains a summary of all

STATECRUNCHER's commands, and [StCrPrimer] discusses them in more detail.

Another discipline that needs to be mastered is how to use STATECRUNCHER on real software

components. This is the subject of investigation at Philips Research as STATECRUNCHER is

trialled. It is often not trivial produce a good dynamic model of a software component - it

requires skill and experience. Once a model has been obtained, it is not generally such a

difficult task to represent it in STATECRUNCHER, though certain aspects of software behaviour

may present a challenge, and may suggest that extensions to STATECRUNCHER would be

desirable in the future.

120 © Graham G. Thomason 2003-2004

5. Modelname mode

This is a mode of working that is convenient when giving demonstrations of many models,

since the models can be referenced by a short model name, which is attached via a table in

STATECRUNCHER to the full path and file name of the model.

Modelname mode is not applicable to the MS-DOS executable version of STATECRUNCHER,

although pre-included demonstration models can be run this way using STATECRUNCHER's

root command to set the equivalent of the boot directory.

5.1 To prepare your file and an index to it

Create your file and give it the "STATECRUNCHER source" extension .scs.txt – e.g.

DualWindow.scs.txt or hier.scs.txt

Locate the file somewhere below the StCr4ModelsCE subdirectory, or in a same-level

subdirectory with your own name.

Edit (the equivalent to) file

 P:\KWinPro\StCr2Sand\ci_sc\ci_sc_2.pl.

This is a user file; the ci_sc_1.pl file is now reserved for STATECRUNCHER test/demo

models (and for the ci_current setting, concerning which see below).

You will see some existing file references such as
 ci_file(c710, '..\StCr4ModelsCe\Ce700\c710_CoreTV\CoreTVexample').

Choose an index to your file. Do not use indices of the form tnnnn, such as t5230, as the t

series is reserved for STATECRUNCHER tests. Avoid a clash with existing indices.

Create an index entry in an analogous way to the existing ones. The path is with respect to the

root defined in the boot file, and starts by going up a level and then down into the set of

models we are concerned with. Exclude the .scs.txt extension (as is the case for the

existing references).

Edit the file ci_sc_1.pl which is in the same directory as the ci_sc_2.pl file. Make

your file current by canceling or deleting any existing ci_current predicate and enabling

your setting. You can cancel by prefixing xx or by deleting the line. Example:

xxci_current(t5410).

 ci_current(c770).

The full stops are important.

© Graham G. Thomason 2003-2004 121

Unused ci_file... lines do not need to be cancelled.

5.2 Using modelname mode

Having modified the ci_sc files as instructed, run STATECRUNCHER in the normal way. At the

STATECRUNCHER prompt, enter

 SC: mm

Now models can be compiled and run using commands such as

 SC: cp t5110 a test/demo model

 SC: run t5110

 SC: cp c710 a user model

 SC: run c710

To reset the mode to filenames, enter

 SC: mf

122 © Graham G. Thomason 2003-2004

6. The STATECRUNCHER Release

1.02 loop

The Release 1.02 command loop has been superseded by a richer command language to

STATECRUNCHER, but is still available in later releases to date.

6.1 To prepare a model

Models are prepared as described in Ch. 5, Modelname mode.

6.2 To compile and validate your file

Step 0. Boot-load.

Boot-load Prolog and STATECRUNCHER. The boot-loading will include loading the new

ci_sc_1.pl and ci_sc_2.pl files. Scroll across all output and check there are no Prolog

error messages. Then scroll back to the Prolog prompt (?-) or STATECRUNCHER prompt

(SC:). If you have a STATECRUNCHER prompt, exit it with command quit to get to a Prolog

prompt.

Step 1. Compile the model source

Against the Prolog prompt, type scb. (Think of this as “StateCruncher Build”). Note that all

Prolog "queries" end with a full stop. You can also compile a non ci_current model by

entering scb(modelindex).

If the file cannot be found, fix the file reference in the ci_sc_2.pl file and start again. If

there are compilation or validation errors, correct them before proceeding. There is no need to

re-boot STATECRUNCHER as you correct errors - just edit and "scb." as necessary.

Compilation produces a Prolog-readable "object" file with extension .sco.pl and a listing

file with extension .scl.txt in the same directory as the model source file. This is loaded,

and if there are no errors, the validation phase is started, which produces a Prolog-readable

data file with extension .scd.pl and a listing file with extension .scv.txt.

© Graham G. Thomason 2003-2004 123

6.3 Exercising models

When you have compiled and validated a model, you can type

 craft(modelnumber).

e.g. craft(t5420). Remember the full stop.

 craftnp(modelnumber).

e.g. craftnp(t5420). Remember the full stop.

 craft.

This is equivalent to running craft with the ci_current number.

 craftnp.

This is equivalent to running craftnp with the ci_current number.

The craft command loads a (compiled and validated) model, enters the machine, and shows

the state and what events can be processed. It requires two items of input per top-level event

processing cycle:

 an event

 parameters to the event

The craftnp command assumes that no parameters are required, and only requires an event.

Note that the input must consist of Prolog-readable terms and so must end with a full-stop.

There are various options.

For an event:

 Enter the full form, including the scope in right-to-left form, e.g. [alpha,[aa,sc]].

This event has a local scope to a set or cluster aa in statechart sc.

 Enter the event name only, e.g. alpha. The scope is assumed to be [sc] - so this is a

good option if you call your statecharts "sc".

 The input quit. is reserved to stop the processing cycle. So try to avoid using an event

quit in your models, otherwise you must enter [quit,[sc]].

For parameters:

 Enter []. if you do not require parameters to this event

 You can enter the integers in a list (followed by a dot), (0=for false, 1 for true), e.g.
[0,2].

 For one parameter, you can just enter the integer (followed by a dot), e.g. 2.

 You can enter the full form: a list of STATECRUNCHER-wrapped constants or strings,

(followed by a dot), e.g.
 [[ex_co,int,1],[ex_co,int,0],[ex_str,[41,42]].

124 © Graham G. Thomason 2003-2004

7. The socket version of

STATECRUNCHER

The socket version is a special version used by Philips Research India - Bangalore to enable

STATECRUNCHER to communicate with a Linux machine on which TorX runs.

The socket version is currently only available with the Release 1.02 command loop, running

under SWI-Prolog. The Release 1.02 loop is available as a legacy facility in later releases to

date.

To load the socket version, change the aux_load_sc.pl file to load

cs_sc_8_socket.pl

rather than
cs_sc_8.pl

Then run under SWI-Prolog by double clicking on
 boot_sc_swipro_win.pl

To exit STATECRUNCHER's command loop and run as in Release 1.02, exit as follows:
 SC:mm

 SC:quit

The mm command is needed, because without it, STATECRUNCHER will interpret model

arguments as filenames, not model names.

Then you can execute Prolog goals craft or craftnp as in release 1.02.

The socket functionality is not available under the executable version, or WinProlog.

© Graham G. Thomason 2003-2004 125

8. Reference for STATECRUNCHER

syntax

The following reference grammar is given in railroad form.

8.1 Declarations and an overview of state statements

126 © Graham G. Thomason 2003-2004

Figure 41. Basic syntax of statechart / cluster / set and (leaf-)states

cluster

set

state

transition

block
history

cluster

 name

state-

name

)

 (

identifier

transition

block

set

 name

state-

name

)

 (

transition

block

state

 name

Note

The transition block will be described later; note that it is optional.

state statement

statechart

 name

identifier

state-

name

)

(

statechart

identifier

statechart statement

;

identifier

identifier

identifier

,

identifier

dhistory

,

history

history

dhistory

deep

history

dhistory

© Graham G. Thomason 2003-2004 127

8.2 Transitions

The following figures give a functional overview and then the syntax of the transition block.

The syntax is given in railroad diagram form where iterations are represented where

convenient by feed-backward constructions. This representation has been converted into a

purely feed-forward representation (not shown here) so that Prolog Definite Clause Grammar

(DCG) rules can be used as a parser.

A transition block is defined in the context of the source state of the transition. The enter

block and exit block pertain to that source state rather than the transition proper; they contain

actions to be executed whenever that state is entered or exited respectively. Transitions are

triggered by meta-events, i.e. ordinary declared events or internal events generated whenever

a state is entered or exited. Transitions can be conditional on the value of an expression

yielding a boolean. The action block per transition contains actions that accompany the

transition whenever it takes place; the actions can be conditional too.

128 © Graham G. Thomason 2003-2004

Figure 42. Overview of transition block (functional blocks rather than syntax)

enter

block
exit

block
transitions

meta-

events

con-

dition

route action

block

label

block

transition transition transition

upon

enter

action

block

action

block

upon

exit

state-

expr

enter

state-

expr

exit

event

assign

ment

event fire

state-expr clear

state-expr deep

 clear

(expre

ssion)

if action

block

else action

block

© Graham G. Thomason 2003-2004 129

Figure 43. Overview of transition block syntax (1)

enter

block

}

transition block

{ exit

block

transition

enter block

upon enter action

block

exit block

upon exit action

block

transition

; label

block

action

block

route

condition
meta-

event

meta event

enter

event

expression

() state

expression

exit () state

expression

,

if no route or action block, first square bracket must introduce a condition

(parameter

list

)

130 © Graham G. Thomason 2003-2004

Figure 44. Overview of transition block syntax (2)

;

[] boolean

expression

condition

->

TARGET STATE

state expression

allowing the split

operator, "/\"

->

ORBITAL STATE

state expression

disallowing the split

operator, "/\"

route

state

expression

state

expression

action block

label block

expression

statement

fire event

expression

if (boolean

expression

) action

block

action

block

else

[]

label-name

expression
=

identifier

,

{ }

(destination

parameter list

)

© Graham G. Thomason 2003-2004 131

8.3 Arithmetic operators

Operation Symbol Arity Precedence Associativity Position

Primary Suffixes

Array indexing [] dyadic 18 none circumfix

Function call () dyadic 17 none circumfix

Various monadic

plus + monadic 16 right prefix

minus - monadic 16 right prefix

logical not ! monadic 16 right prefix

post increment monadic 16 left postfix

post decrement monadic 16 left postfix

pre increment monadic 16 left postfix

pre decrement monadic 16 left postfix

Multiplicative

multiplication * dyadic 15 left infix

division / dyadic 15 left infix

modulo % dyadic 15 left infix

Additive

addition + dyadic 14 left infix

subtraction - dyadic 14 left infix

Relational

less than or equal <= dyadic 12 left infix

greater than or equal >= dyadic 12 left infix

less than < dyadic 12 left infix

greater than > dyadic 12 left infix

equal == dyadic 12 left infix

not equal != dyadic 12 left infix

Logical

short-circuit and && dyadic 7 left infix

xor ^^ dyadic 6 left infix

equivalence !^^ dyadic 6 left infix

short-circuit or || dyadic 5 left infix

Assignment

assign = dyadic 2 right infix

132 © Graham G. Thomason 2003-2004

multiply-assign *= dyadic 2 right infix

divide-assign /= dyadic 2 right infix

modulo-assign %= dyadic 2 right infix

add-assign += dyadic 2 right infix

subtract-assign -= dyadic 2 right infix

Table 1. Arithmetic operators

8.4 Scoping operators

General design

Various items in STATECRUNCHER can be declared or accessed outside their natural scope by

means of scoping operators. These operators can be used to form scoping expressions.

The operators (with their implementation names) are:

 $ (parent) back out one level from the current scope

 %% (ancestor) back out to a named parent

 :: (statechart scope) back out to the outermost level

 . (child) enter one named level deeper

The parent operator "$"

This is a monadic operator. The term "$a" means: "a" as it would be accessed if addressed in

the hierarchical state one level more global than the current one. This operator is right

associative, so "$$$a" takes us back three levels.

The ancestor operator "%%"

This is a dyadic operator. The term "a%%b" means: back out of the current level until a

hierarchical machine named "a" is found. At least one level is always backed out. Then

address "b" in that level. The operator is right associative, so that the expression "a%%b%%c"

reads: back out to level "a", then back out from there to level "b", and evaluate "c" in that

scope.

The statechart scope operator "::"

This is a monadic operator. The term "::a" means: address "a" at the statechart level.

The child operator "."

This is a dyadic operator. The term "a.b" means: enter the immediately deeper hierarchical

level "a" and address "b" in that scope. The operator is right associative, which means that

the expression "a.b.c" reads: enter "a", then "b" and address "c" in that scope.

Combining scoping operators

The monadic and dyadic operators combine with dyadic operations binding tighter.

© Graham G. Thomason 2003-2004 133

Effect of scoping operators on declarations

Scoping operators can be used when accessing (rather than declaring) any item, i.e. PCO's,

events, tagnames and variables and states.

Scoping operators can be used in declarations of PCO's, events, tagnames and variables (but

not states). They have the effect of declaring the item as if it were an ordinary declaration in

another part of the hierarchy. For example, to declare various items as if they all belonged one

level up in the hierarchy:

 PCO $pco1;

 event $alpha;

 enum $colour {red=1,green=3,blue=4};

 $colour $mycolour;

In the variable declaration

$colour $mycolour;

the variable has a scope determined by its own scoping expression, and a type affected by the

scoping expression on its tagname.

Operation

Symbol Arity Precedence Associativity Position

parent scope $ monadic 19 right prefix

statechart scope :: monadic 19 right prefix

named child scope

(evaluate arg2 in child

arg1 scope).

. dyadic 20 right infix

named ancestor scope

(evaluate arg2 in ancestor

arg1 scope, backing out

one level anyway, and then

as far as the first

occurrence of arg1).

%% dyadic 20 right infix

Table 2. Scoping operators

8.5 The split operator

This operator is used to define multiple target states.

Operation

Symbol Arity Precedence Associativity Position

split /\ dyadic 14 left infix

Table 3. The split operator

134 © Graham G. Thomason 2003-2004

8.6 Functions

Arguments are a comma separated list of expressions. P1, P2 refer to the first and second

parameter respectively. The return value is an integer (which may represent a boolean), or

string value.

Basic arithmetic

abs(P1) absolute value of a number

maximum(list) maximum of several numbers, e.g. i=maximum(v1,v2+1,v3)

minimum(list) minimum of several numbers, e.g. i=minimum(v1,v2+1,v3)

String related

format(P1,P2) Format integer expression P1 as text. P2 is the field width: -ve for left

justify, 0 for just fit, +ve for right justify.

length(P1) length of string

lower_case(P1) convert string to lower case

upper_case(P1) convert string to upper case

Casting

cast(P1) i=cast(j) allows an assignment that would otherwise be a type mismatch

Tracing

trace(list) add parameter(s) to the trace list

trace_clear() clear the trace list

System information

get_nworlds(P1) get_nworlds() or get_nworlds(1) gets the number of worlds at the start of

event processing. get_nworlds(2) gets the dynamic number of worlds.

Nondeterminism control

no_race() turn race nondeterminism off

low_race() allows only two race permutations, forwards and backwards.

med_race() allows 2N race permutations. Allows distinction of all triplet orderings

high_race() allows all N! race permutations

no_set_tran() turn set (e.g. set-transit) nondeterminism off

low_set_tran() allows only two set permutations, forwards and backwards.

med_set_tran() allows 2N set permutations. Allows distinction of all triplet orderings

high_set_tran() allows all N! set permutations

Special functions taking a state-expression argument

in(P1) returns true (=1) if the state specified is occupied, else false (=0)

clear(P1) clear history of the state specified

deep_clear(P1) clear history of the state specified and its descendants

Table 4. Functions

© Graham G. Thomason 2003-2004 135

9. Reference for STATECRUNCHER

commands

The table below shows abbreviated commands as well as unabbreviated ones. Where

abbreviated ones are not available, the arrow (→) refers the reader to the unabbreviated one.

Meta-syntax: An optional argument to a command is preceded by a question mark, (?).

Normal courier indicates a literal item; italics indicate a non-literal or explanation. A

choice is indicated by a vertical bar (|).

The important commands that were not possible in previous releases of STATECRUNCHER are

those that allow setting of state occupancies and variables and traces. These make a state-

space exploration algorithm possible. These are

 WORLD STATEKIND STATENAME MPATH = OCCUPANCY HISTORY

 WORLD VAR VARKIND VARIABLENAME MPATH = VALUE

 WORLD TRACE = TRACE

These commands are in STATECRUNCHER's own output format.

Abbrev.

Command

Command

 showing typical example and/or typical output

Main processing: high priority black box testing commands

pe ... process event EVENT ?p=PARAMETERS ?t=EXPECTEDTRACE

 pe gamma p=[4,xy] (statechart scope assumed)

 pe [alpha,[sc]] p=1

 pe [alpha,[sc]]

Parameters can also be supplied in STATECRUNCHER internal form, e.g.

 p=[[ex_co,int,4],[ex_str,[120,121]]]

Worlds in direct violation of EXPECTEDTRACE will be killed, but overtrace and

undertrace are tolerated.

gt get trace

 7 TRACE =[1,2]

ct clear trace

 (this also causes a world merge)

136 © Graham G. Thomason 2003-2004

Main processing: medium priority commands

gae get all events

(whether transitionable or not; not world-related)

 EVENT [theta2, [z3,z,s,sc]] [pco1,[z,s,sc]]

gate get all transitionable events

 (union from all worlds; no worlds shown)

 TREV [[delta,[sc]],0,[],[]]

 TREV [[gamma,[sc]],3,

 [[r,0,100000],[r,0,100000],[r,0,100000]],[]]

 TREV [[gamma,[sc]],1,[[r,0,100000]],[]]

 TREV [[gamma,[sc]],2,

 [[r,0,100000],[r,0,100000]],[]]

 TREV [[alpha,[sc]],0,[],[]]

gav get all variables

Gets the value-ranges, not the current value per world

 VAR INTEGER bool1 [sc] RANGE=[0, 1]

 VAR INTEGER col1 [sc] ENUM=[0, 7, 8, 4, 8]

 VAR INTEGER p1 [b2, b, s, sc] RANGE=[0, 9]

 VAR STRING str [sc]

gaw get all worlds

Gets the current worlds

 [2,7,8]

gc get config

 2 statechart sc

 2 cluster a [s, sc] =OCC [] **

 2 leafstate a1 [a, s, sc] =OCC [] **

 2 cluster a2 [a, s, sc] =VAC []

 2 VAR INTEGER bool1 [sc] =1

 2 VAR INTEGER col1 [sc] =8

 2 VAR INTEGER p1 [b2, b, s, sc] =unknown

 2 VAR STRING p5 [b2, b, s, sc] =unknown

 2 VAR STRING str [sc] =[98] =b

 2 TRACE =[]

 2 TREV [[zeta,[s,sc]],

 4,[[r,0,9],[e,0,7,8,4,8],[r,0,1],[<string>]],

 [pco1,[z3,z,s,sc]]]

 outworlds=[2,4]

 number of outworlds=2

gst get symbol table

 SYMB delta [sc] eventdecl []

 XREF leafstate b1:[b, s, sc]

 XREF leafstate z1:[z, s, sc]

kill ... kill WORLD | WORLDS

 kill 2

 kill [2,7,10]

© Graham G. Thomason 2003-2004 137

→ WORLD TRACE = TRACE

 input is as the output of get config

 this does not cause a world merge

(we will probably issue this kind of command several times before

requiring a world merge)

→ WORLD STATEKIND STATENAME MPATH = OCCUPANCY HISTORY

 input is as the output of get config

 this does not cause a world merge (we will probably change more)

→ WORLD VAR VARKIND VARIABLENAME MPATH = VALUE

 input is as the output of get config

 this does not cause a world merge (c.f. WORLD TRACE = TRACE)

cnw create new world

 Creates a new world in its default state

 - needed before writing variable/state/trace values to a new world

 34 (the new world number is returned)

mw merge worlds

 (useful when all trace/state/variable changes have been made)

gpt get processing time

(timing data is set on processing an event)

 exec time=00h 00m 00s 210ms

gd get date

(get date and time)

 DATE: 24 Apr 2003 16:01:40/649

Containment of combinatorial explosion: low priority commands

These commands limit the number of permutations used in set transit

nondeterminism and race nondeterminism. See [StCrMain] for more

explanation.

nst no set tran

lst low set tran

mst medium set tran

hst high set tran

nr no race

lr low race

mr medium race

hr high race

Compilation, loading, start-up, and finish: very low priority

root ... root ROOTDIRECTORY

Sets the root directory to be used with FILENAMEs

mm mode modelnames

Sets compilation etc. to work with model names. The directory structure

must be set up correctly.

138 © Graham G. Thomason 2003-2004

mf mode filenames

(Default). Sets compilation etc. to work with file names. Use the root

command to set the directory (can be null, then give a full path here).

cp ... compile FILENAME | MODELNAME

(also loads machine, and enters it (as of Rel 1.05))

ld ... load FILENAME | MODELNAME

(does not enter machine)

run ... run FILENAME | MODELNAME

=Load and enter machine

nm enter machine

Machine enters default state

xm exit machine

Leaves a pristine machine ready to be entered

um unload machine

Removes data and object code

rm reset machine

=exit and enter

quit quit

System/diagnostic: very low priority

help help

prolog prolog

 Gives a Prolog prompt; enter a Prolog goal

Table 5. STATECRUNCHER commands

Notes.

 By priority, we mean the priority given through the parse-attempt order, which will affect

the response time.

 If anything is to be set in nonexistent world, it is created (but a model must have been

loaded)

A typical sequence of commands

1. mm set model mode

2. run t5110 load model and enter machine

3. pe alpha process event alpha (in statechart scope)

4. gc get configuration

5. pe gamma process event gamma (in statechart scope)

6. gc get configuration

7. rm reset machine

© Graham G. Thomason 2003-2004 139

8. pe gamma process event gamma (in statechart scope)

9. quit quit STATECRUNCHER

The following error and warning messages may be given:

Command parsing

PR-E-020 COMMAND SYNTAX ERROR

Preliminary checks

PR-E-040 NO MODEL LOADED (compiler-produced part)

PR-E-041 NO MODEL LOADED (validator-produced part)

PR-E-042 MULTIPLE COMPILED FILES LOADED

PR-E-043 MULTIPLE VALIDATED FILES LOADED

PR-E-044 THERE WAS A COMPILATION ERROR

PR-E-045 THERE WAS A VALIDATION ERROR

PR-E-046 VERSION INCOMPATIBILITY

Command execution

PR-E-060 COMMAND EXECUTION ERROR

PR-E-061 WORLD IS NEITHER EXTANT NOR EXTINCT

Internal errors

PR-E-900 INTERNAL ERROR - NO COMMAND HANDLER

Table 6. Error and warning messages

140 © Graham G. Thomason 2003-2004

10. Glossary and abbreviations

α, Alpha: We have used the Greek alphabet for many event names. The English

names of the letters are as follows:

α alpha β beta γ gamma δ delta

ε epsilon ζ zeta η eta θ theta

ι iota κ kappa λ lambda μ mu

ν nu ξ xi ο omicron π pi

ρ rho σ sigma τ tau υ upsilon

φ phi χ chi ψ psi ω omega

Action: A STATECRUNCHER term for processing that is associated with a

transition (or the entering/exiting of a state). An action can be e.g.

- a "C"-like assignment to a variable

- the firing of an event

- the generation of output (a trace)

Black-box testing: Testing where system outputs can be observed, but not system

internals. In the case of state-based testing, the state (more precisely,

configuration) of the system will not be directly observable, and must be

deduced from traces (outputs generated when events are processed).

Broadcast-event: An event that is generated within a statechart which can be responded to

by the model (transitions can be triggered by it). The STATECRUNCHER

keyword to generate a broadcast event is fire event.

Broadcast-event nondeterminism: Also known as fired-event nondeterminism, this is

the form of nondeterminism that arises when an action associated with a

transition fires an event, which in turn gives rise (directly or indirectly) to

one of the other forms of nondeterminism (e.g. fork, race-condition, set-

transit).

CHSM: Concurrent Hierarchical finite State Machine. A language implemented by

Paul J Lucas [CHSM].

© Graham G. Thomason 2003-2004 141

Cluster: A hierarchical state and component of a statechart with the understanding

that if the cluster is occupied, exactly one of its members must be

occupied.

Configuration: The dynamic state of a statechart in a broad sense, comprising: occupancy

(occupied/vacant) of the states in the statechart, variable values, cluster

history, and trace values.

DCG: Definite Clause Grammar. This is the standard Prolog grammar notation,

which enables grammar rules to be written in Backus-Naur form.

Event: A signal (that has no time duration) which may be responded to in a

statechart model by the triggering of transitions.

Fire: The act of generating an event in an action associated with a transition:

“the action fires the event”. [Compare “triggering a transition”, which may

take place when the fired event is processed].

Fired-event nondeterminism: Also known as broadcast-event nondeterminism, this is the

form of nondeterminism that arises when an action associated with a

transition fires an event, which in turn gives rise (directly or indirectly) to

one of the other forms of nondeterminism (e.g. fork, race-condition, set-

transit).

Fork nondeterminism: The form of nondeterminism that arises when an event triggers

mutually exclusive transitions in the statechart, and which produce a

different outcome.

GP4: Generic Prolog Parsing and Prototyping Package. An underlying layer of

Prolog programs to provide parsing support (especially tokenization and

expression parsing).

Harness: A test harness is a tool that contains or accesses a test script so as to obtain

tests and their oracle, and communicates with an implementation under

test to run the tests. It compares actual with expected output, and logging

the results as pass or fail.

IUT: Implementation Under Test.

Leafstate: A state and a component of a statechart at the lowest hierarchical level.

142 © Graham G. Thomason 2003-2004

Machine engine: A program that holds a representation of a statechart and a configuration

of that statechart, and which can process an event and in so doing calculate

and assume the new configuration.

Meta-event: An event that is internally generated when a state is exited or entered, and

which can be used to trigger transitions in other parts of the statechart.

Nondeterminism: Dynamic behaviour of a system whereby there is more than one outcome

of processing an event. Distinguishing aspects of an outcome are: state

occupancy, cluster history, variable values, and traces.

Oracle: The pre-determined output of the system on a successful test, for

comparison purposes with the actual output.

PCO: Point of Control and Observation. These are used for systems such as

networked and client-server systems where inputs and outputs must be

partitioned according to which separate testing point can provide and

observe them.

Primer: The TorX terminology for the part of the tool chain that decides what

events (or transitions) are to be given to the explorer and indirectly to the

implementation under test to be processed.

Race-condition nondeterminism: The form of nondeterminism that arises when an

event triggers transitions in parallel parts of the statechart, and when the

order in which these events are processed will affect the outcome.

Set: A state and a component of a statechart with the understanding that if the

set is occupied, all its members must be occupied. This represents the

parallelism of a model.

Set-action nondeterminism: The form of nondeterminism that arises when actions (such as

variable assignments) in different members of a set are executed, when the

order in which this happens affects the outcome.

Set-transit nondeterminism: The form of nondeterminism that arises when a set is exited

or entered, when the order in which the members are exited or entered

affects the outcome.

© Graham G. Thomason 2003-2004 143

Set-meta-event nondeterminism: The form of nondeterminism that arises when

elements of a set are exited or entered, (generating enter and exit meta-

events), when the order in which this happens affects the outcome.

State: This word is used in two senses according to the context

- a statechart consists of a hierarchy of states, which may be sets,

clusters, or leaf-states

- a state is the occupancy (occupied/vacant) of a state in the above sense

Statechart: A concurrent, hierarchical representation of a dynamic behaviour model

consisting of states, events, transitions, and optionally variables and

statements for processing them.

STATECRUNCHER: A provisional name for a program that compiles statecharts, process

events, and provide state or trace information.

SUT: System Under Test. Modern literature generally employs the more precise

term "Implementation Under Test" (IUT).

Trace: The output generated on processing an event (or transition), corresponding

to the expected observable output of the Implementation Under Test.

Transition: The relation between the state of a system before and after that system has

processed any event that triggers that transition.

Trigger: The act of responding to an event by processing an associated transition:

“the event triggers the transition”. [Compare “firing an event”, which may

take place as an action on the transition].

UML: Universal Modelling Language, as set out by the Object Modelling Group.

UML is the industry standard for various modelling views on a system.

The dynamic modelling view uses statecharts.

White-box testing: Testing where system internals can be observed. In the case of state-

based testing, the state (more precisely, configuration) of the system can

be observed directly.

144 © Graham G. Thomason 2003-2004

11. References

STATECRUNCHER documentation and papers by the present author

Main Thesis [StCrMain] The Design and Construction of a State Machine System

that Handles Nondeterminism

Appendices

Appendix 1 [StCrContext] Software Testing in Context

Appendix 2 [StCrSemComp] A Semantic Comparison of STATECRUNCHER and

Process Algebras

Appendix 3 [StCrOutput] A Quick Reference of STATECRUNCHER's Output Format

Appendix 4 [StCrDistArb] Distributed Arbiter Modelling in CCS and

STATECRUNCHER - A Comparison

Appendix 5 [StCrNim] The Game of Nim in Z and STATECRUNCHER

Appendix 6 [StCrBiblRef] Bibliography and References

Related reports

Related report 1 [StCrPrimer] STATECRUNCHER-to-Primer Protocol

Related report 2 [StCrManual] STATECRUNCHER User Manual

Related report 3 [StCrGP4] GP4 - The Generic Prolog Parsing and Prototyping

Package (underlies the STATECRUNCHER compiler)

Related report 4 [StCrParsing] STATECRUNCHER Parsing

Related report 5 [StCrTest] STATECRUNCHER Test Models

Related report 6 [StCrFunMod] State-based Modelling of Functions and Pump Engines

© Graham G. Thomason 2003-2004 145

References

[CdR] Côte de Résyste

 http://fmt.cs.utwente.nl/CdR

Côte de Resyste (COnformance TEsting of REactive SYSTEms) is a

research and development project (1998-2002) funded by the Dutch

Technology Foundation STW (http://www.stw.nl/), and is a collaboration

between:

- the University of Eindhoven (http://www.tue.nl)

- the University of Twente (http://www.utwente.nl/)

- Philips (http://www.philips.com)

[CHSM] P.J. Lucas

 An Object-Oriented System for Implementing Concurrent, Hierarchical,

 Finite State Machines.

 MSc. Thesis, University of Illinois at Urbana-Champaign, 1993

[SWI-Prolog] http://www.swi-prolog.org

[WinProlog] http://www.lpa.co.uk/win.htm

