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Summary 
 

This document is a user manual and training course for users of STATECRUNCHER. 

STATECRUNCHER is a state transition language in which a dynamic model of a system (i.e. a 

statechart) can be written and exercised. Given a dynamic model of a system, 

STATECRUNCHER provides an oracle to state based tests. It specialises in its handling of 

nondeterminism. It has been integrated by Philips Research India - Bangalore into a tool chain 

to provide automated generation and execution of tests. This report assumes a basic 

knowledge of UML dynamic modelling, and shows how to implement them in 

STATECRUNCHER, describing both syntax and semantics. 
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1. Introduction 

This document is a user manual for STATECRUNCHER . It covers the syntax and explains the 

semantics, mainly by example. Both the STATECRUNCHER modelling language and the main 

user commands that can be sent to it are treated. 

 

It does not cover advanced commands that would probably only be given under program 

control (by a primer), except in a reference section, nor at all the art of producing good 

models from a software specification, nor does it cover software component composition 

issues, except for a basic client-server paradigm. These are or will be the subjects of separate 

studies. 

 

STATECRUNCHER and some proposals for extensions are the subject of a number of pending 

patents (PHGB-020195, PHGB-020196, PHGB-030116). 

 

1.1 What STATECRUNCHER is and does 

STATECRUNCHER is a state machine system that handles nondeterminism. As a language 

system, it provides a means to textually describe and compile UML dynamic models and 

produce an executable exhibiting the state behaviour of the model. This in turn provides an 

oracle to state based tests. A very simple deterministic model is shown below. 

 

 

 

 

 

 

 

 

 

 

Figure 1. A very simple deterministic model and its source code 

 

This model is always in one of two states aa or ab. The initial, or default, state is aa (marked 

by the arrow). Transitioning between aa and ab occurs if the model is in state aa and is 

given event α or γ to process. Transitioning between ab and aa occurs if the model is in state 

ab and is given event β or γ to process. The fact that α and γ are on the same transition in 

one direction, but that β and γ are on separate transitions in the other direction, simply shows 

flexibility in how the model is written; the effect is the same in cases like this whether the 

events are put on the same transition or separate transitions. If the model is in state aa and it 

is given event β to process, there is no change in state. Similarly if it is in state ab and it is 

 

statechart sc 

a 

aa 

ab 

β 

α,γ 

γ 

 

statechart sc(a) 

event alpha,beta,gamma; 

   cluster a(aa,ab) 

      state aa {alpha,gamma->ab;}        

      state ab {beta->aa; gamma->aa;}  

STATECRUNCHER source code 
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given event α to process. All this behaviour is assumed to be what we require and expect of a 

real system: the System Under Test (SUT), also referred to as an Implementation Under Test 

(IUT), especially when there may be several implementations of one specified system. 

 

If we compile and run this model, and get the initial configuration (with the gc command), 

the output is : 

 

The fact that leafstate aa is occupied, and ab is vacant can be seen. The double asterisks 

draw attention to occupied states. Cluster a is occupied is because it is the parent of aa and 

ab; this will be explained later. The output also shows transitionable events (the TREV lines), 

showing that events alpha and gamma will trigger a transition. The rest of the output will be 

explained in due course. 

 

If we now give a command to process event gamma (pe gamma), and then get the new 

configuration (gc) , the new configuration is seen: 

 

What we have is a tool giving the result of a test -  a test oracle. But it is not a test generator 

because the user had to decide what event to give STATECRUNCHER to process. Now since 

STATECRUNCHER outputs what events it will transition on (and it can also give all its events 

on request), one can imagine STATECRUNCHER being connected to another program that 

decides on the events to be processed. Such a tool is called a test generator or primer. The 

SC:gc 

2    statechart sc 

2       cluster a [sc] = OCC []  ** 

2          leafstate aa [a, sc] = OCC []  ** 

2          leafstate ab [a, sc] = VAC [] 

2    TRACE =[] 

2    TREV [[alpha, [sc]], 0, [], []] 

2    TREV [[gamma, [sc]], 0, [], []] 

 

outworlds=[2] 

number of outworlds=1 

SC:pe gamma 

SC:gc 

3    statechart sc 

3       cluster a [sc] = OCC []  ** 

3          leafstate aa [a, sc] = VAC [] 

3          leafstate ab [a, sc] = OCC []  ** 

3    TRACE =[] 

3    TREV [[beta, [sc]], 0, [], []] 

3    TREV [[gamma, [sc]], 0, [], []] 

 

outworlds=[3] 

number of outworlds=1 
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primer will also pass the events to be tested, and their oracle, to a test harness. The test 

harness will (directly or indirectly) call the Implementation Under Test and obtain its new 

state, and compare this with the test oracle, and log a pass or fail. This is the basis of 

automated test execution. 

 

A possible toolset working as described above to go with STATECRUNCHER is TorX [CdR]. 

 

A system to be tested may be a formal component. The following diagram shows the 

processes applied to a specification and then a model as it is compiled, validated and deployed 

in a testing tool chain such as TorX. 

 

 

 

 

 

 

 

 

 

 

Figure 2. Compilation, Validation and Application to a Testing Tool Chain 

 

1.2 STATECRUNCHER and Prolog 

STATECRUNCHER is currently implemented in Prolog. STATECRUNCHER's own syntax is 

independent of Prolog, and STATECRUNCHER can be run in a mode that hides Prolog 

completely, but it is generally somewhat more convenient to develop a model using a Prolog 

environment. The ordinary user does not need to know Prolog as a language at all, however 

STATECRUNCHER is run. 

 

STATECRUNCHER can be run: 

 As an MS-DOS executable. Apart from a startup message, the user will not be aware 

of any connection with Prolog. 

 Under SWI-Prolog  - a public domain system, (but read the conditions), reference 

[SWI-Prolog]. 

 Under WinProlog - a commercial system, reference [WinProlog]. 

 

STATECRUNCHER 

Compiler/ 
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1.3 Notation 

UML describes a detailed notation for diagrams, but for historical reasons, (and perhaps also 

compactness) this manual differs in respect of certain features: 
 

 on entry to a state (UML “entry/”) is a solid triangle pointing in to the state, e.g. 

 on exit from a state (UML “exit/”) is a solid triangle pointing out of the state, e.g. 

 events declared in a part of the hierarchy are denoted by the symbol , e.g. 

 variables are declared in a part of the hierarchy by the symbol, e.g. 

 PCOs (Points of Control and Observation) are declared by the symbol , e.g. 

 

1.4 Related documentation by the present author 

 For the underlying parsing technique: [StCrGP4] 

 For detail of STATECRUNCHER parsing: [StCrParsing] 

 For detail of STATECRUNCHER system and design: [StCrMain] 

 For detail of the STATECRUNCHER-primer protocol: [StCrPrimer] 

 For test models: [StCrTest] 

 

 

This manual is self-sufficient as a basic tutorial without reference to other documentation, but 

references will be given for amplification on the material in many instances. 

v=6 

v=6 

ζ1 

pco1 

v=6 
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2. Installation 

2.1 Hardware requirements 

The supported platforms are Windows 98 and above. The disk usage is about 20MB (though 

this includes much test material and can be pruned away to about 1 MB). 

 

STATECRUNCHER will run on older, slower machines, but the following will be noticed: 

 run-time response for deterministic models will still be fast, by human standards at least. 

 run-time response time when there are many worlds in existence will be slow. 

 compile time for models with long statements will be noticeably slow. 

 

STATECRUNCHER compilation of models runs rather slowly on a 120 MHz laptop, runs 

adequately on a 300 MHz machine (on which it was largely developed), and runs all the better 

on more modern machines. There will always be a performance bottleneck under highly 

nondeterministic situations, since there is potential for combinatorial explosion. If possible, 

keep the number of worlds that models generate to below, say, 100. 

 

2.2 Installation overview 

There are various implementations of STATECRUNCHER: 

 As an MS-DOS executable, using an embedded WinProlog kernel. Apart from a 

startup message, the user will not be aware of any connection with Prolog. 

 Under SWI-Prolog  - a public domain system, (but read the conditions), reference 

[SWI-Prolog]. 

 Under WinProlog - a commercial system from Logic Programming Associates (LPA), 

reference [WinProlog]. 

 

There is also a special socket version under SWI-Prolog, (not relevant to a learner), described 

in section  5. 

 

In order to run STATECRUNCHER under SWI-Prolog or WinProlog, you need the 

STATECRUNCHER source. The MS-DOS executable does not need a Prolog system or the 

STATECRUNCHER source. 

 

All versions work with the same modelling language and the same command language though 

there are some alternative ways of working, e.g. modelname mode, which are not available in 

the MS-DOS executable version). The executable runs in an MS-DOS window, which has the 
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disadvantage that is may not be scrollable. It is possible, however, under later versions of 

Windows, to set an MS-DOS window to more than the default 24 lines.  

 

We consider installation of SWI-Prolog and of each STATECRUNCHER system, taking the 

process as far as starting up STATECRUNCHER and obtaining a STATECRUNCHER command 

prompt ( SC: ). After this stage, the difference between the systems becomes largely 

irrelevant. Follow a path in the tree below according to your way of working. 
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Figure 3. Diagram of installation routes 

 

An MS-DOS executable 
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run instructions 

Follow instructions on installation 
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2.3 To install STATECRUNCHER source from the zip file 

STATECRUNCHER is supplied in a zip file. Create a directory KWinPro. Extract 

STATECRUNCHER from the zip file into it; that should generate a directory structure at least as 

shown, (though there will be more subdirectories if supplied, e.g. containing documentation). 

The structure below KWinPro is best regarded as fixed. The path to and including KWinPro is 

not fixed and can be user defined (in a STATECRUNCHER loader file, aux_load_sc.pl). 

 

 

 

 

 

 

 

 

 

 

Figure 4. Installation directory structure 

 

Edit (the equivalent to) file 
 P:\KWinPro\StCr\StCr2Sand\Boot_sc\aux_load_sc.pl 

 

Edit the boot_root lines to reflect the actual location in your directory hierarchy 

boot_root(gp4,'P:\Kwinpro\GP4\GP4Sand1\'). 

boot_root(sc, 'P:\Kwinpro\StCr\StCr2Sand\').   

(Ignore any xxboot_root lines - they are effectively disabled and have no effect). 

 

2.4 Downloading and installing SWI-Prolog 

The SWI Prolog site is: 

http://www.swi-prolog.org/ 

 

Read and heed the license details. Do not distribute public domain and Philips proprietary 

software together without permission from Philips IP&S. 

 

Versions at or above 5.0.3 should be suitable. Download SWI-Prolog for Windows: 

SWI-Prolog/XPCE for MS-Windows 

Install as instructed with standard options. This includes accepting .pl as the Prolog 

extension (sorry, Perl users). 

 

Preferably, increase the capacity of the main window with regedit. Go to 

HKEY_CURRENT_USER\Software\SWI\Plwin\Console\SaveLines 

and change the value from 0xc8 (200 decimal) to, say,  0x1f4 (500 lines). 

 

 

 

 

http://www.swi-prolog.org/
http://www.swi.psy.uva.nl/cgi-bin/nph-download/SWI-Prolog/w32pl505.exe
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2.5 To compile and run STATECRUNCHER under SWI Prolog 

It is assumed that STATECRUNCHER source has been installed as instructed, and that SWI-

Prolog has been installed. 

 

In the StCr\StCr2Sand\boot directory, double click on the file 
boot_sc_swipro_win.pl 

 

STATECRUNCHER is recompiled by SWI-Prolog every time it is started up. This only takes a 

few seconds on a modern machine. 

 

First SWI Prolog should start up, then STATECRUNCHER will be boot loaded (many files will 

be loaded), and you should end up with the following (details may differ slightly):  

 

To exit:  

 At the SC: prompt, enter quit 

 Close the Window (or, in good Prolog tradition, type halt.). 

 

2.6 To compile and run STATECRUNCHER under WinProlog 

It is assumed that STATECRUNCHER source has been installed as instructed, and that 

WinProlog has been installed. 

 

Start up WinProlog, e.g. using a short cut, with the following command and parameters (read 

as one line): 
"D:\Program Files\WIN-PROLOG-4010\PRO386W.EXE" /B512 

/L1024 /P50000 /H3000 /T1024 

 

This is a considerable amount of memory, and the startup may be slow (a few minutes) on an 

older (say, 1998) computer, but once WinProlog has started up, it will perform well. 

 

Open (under the File button) 
boot_sc_winpro_win.pl 

in the StCr\StCr2Sand\boot directory, and Compile it (under the Run button). Then 

minimize the boot_sc_winpro_win.pl window, and in the console window, type 

?- cruncher. 

This will give STATECRUNCHER's SC: prompt. 

 To exit STATECRUNCHER, enter quit (without a full stop). 

 To exit WinProlog, select File, Exit, or close the application window. 

%   F:\KWinPro\StCr\StCr2sand\va_sc\zva_sc.pl compiled 0.00 sec, 4,888 bytes 

%   F:\KWinPro\StCr\StCr2sand\zt_sc\zt_sc_1.pl compiled 0.00 sec, 1,136 bytes 

 

Boot load complete. Prolog system=swiprolog 

%  aux_load_sc.pl compiled 3.89 sec, 3,638,548 bytes 

 

STATECRUNCHER (Version 1.05) 

Copyright (C) Philips Electronics N.V., 2000-2003 

SC: 



   

10  © Graham G. Thomason 2003-2004 

 

 

2.7 To run the STATECRUNCHER  MS-DOS executable 

Extract the Zip file into a directory of suggested name KWinPro.  

 

If the full STATECRUNCHER development directory tree has been supplied, then the executable 

and related files are to be found in the directory equivalent to 
P:\KWinPro\StCr\StCr2Sand\BOOT_SC\StCrExe-Re105 

Otherwise, they are in the top level directory. 

 

The executable is 
statecruncher.exe 

It must be collocated with 
statecruncher.ovl 

Do not just double click on statecruncher.exe. It must be run with the parameters 

specifying memory usage as for WinProlog. The following should be sufficient for most 

purposes: 
statecruncher.exe /B512 /L1024 /P50000 /H3000 /T1024 

Make a shortcut to wherever you put statecruncher.exe on your system. The suggested 

parameter settings are made in the shortcut file by right clicking it, selecting properties, and 

editing the target to e.g. (read as one line): 
F:\KWinPro\StCr\StCr2Sand\BOOT_SC\StCrExe-

Re105\statecruncher.exe /B512 /L1024 /P50000 /H3000 

/T1024 

 

The shortcut can best also be set to start in the current directory, which is set by clearing the 

shortcut start in edit box. 

 

This file, when edited as just mentioned, can conveniently be copied to any directory in which 

the user is working on a model and used to start it up. (By working this way, the 

STATECRUNCHER root command will not be needed). No other files (except the user's 

models) are required to run the executable. 

 

When STATECRUNCHER is started up, the prompt  
SC: 

is given and commands can be entered as described in the report. The command to quit is 
SC:quit 
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3. Getting started 

In this section, we assume that you are able to run STATECRUNCHER and obtain its prompt 

( SC: ). It does not matter whether you are using the MS-DOS, SWI-Prolog or WinProlog 

variety of STATECRUNCHER. 

 

We will make the following model from scratch. It is functionally the same as the model of 

section  1.1, but with slightly different naming. Remind yourself of the functionality of the 

model from that section. We will call the model 

get_started 

and put it in directory (adapted for your path) 

F:\KWinPro\StCr\StCr5ModelsUser\u5110_get_started 

 

The u5110 naming relates the model to test model t5110, and gives us a convenient 

ordering for our models when alphanumerically sorted. The solutions to this manual/tutorial 

will be found in directory 

F:\KWinPro\StCr\StCr6ModelsTutorial 

 

Here is the model we will implement: 

 

 

 

 

 

 

 

 

 

 

Figure 5. Model u5110_get_started\get_started 

 

We will often use Greek letters for event names, for compactness on diagrams and to 

distinguish them from states and variables. In a STATECRUNCHER source file, they will need 

to be spelled out. The glossary (section  10) contains the names of the Greek letters. 

 

 

statechart sc 

a 

a1 

a2 

β 

α,γ 

γ 
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We will first implement the state machine hierarchy, without events or transitions. This is 

always good practice. Create a file 

get_started.scs.txt 

in directory (equivalent to) 

F:\KWinPro\StCr\StCr5ModelsUser\u5110_get_started 

 

The ending .scs.txt stands for STATECRUNCHER Source. Enter the following text: 

 

 

 

 

 

 

The default state of a cluster is its first member - here a1. 

 

Start STATECRUNCHER and enter (adapting to your path) 

  SC:root F:\KWinPro\StCr\StCr5ModelsUser\u5110_get_started 

  SC:cp get_started 

 

Note: If you are using the MS-DOS version of STATECRUNCHER and put a shortcut in the 

same directory as the get_started.scs.txt file, you do not need the first command 

above. 

 

As long as you are working in the same directory, correcting and refining your model, with 

the same invocation of STATECRUNCHER, you will not need to repeat the root command 

when you recompile. 

 

The listing that appears on the screen is also available in two parts, in two files that are 

created in the same directory as the source file: 

  get_started.scl.txt 

  get_started.scv.txt 

 

Observe in passing that two other files are created: 

  get_started.sco.pl 

  get_started.scd.pl 

These are the compiled model, as PROLOG code, for use by the STATECRUNCHER engine. 

The first file contains a basic structural parse of the model, and the second file contains a 

symbol table, cross-reference table, and data store. 

 

On compilation, there should be no errors, and one warning, that state a2 is unreferenced. 

This can be ignored. If there are errors, check your source code carefully. 

 

It is worth experimenting with a deliberate error, say calling state a2 "a3", or omitting it 

altogether. You will get a machine path error. This means that there is a problem that the 

states a1 and a2, declared in cluster a(a1,a2), are not found in the expected place. 

statechart sc(a) 

   cluster a(a1,a2) 

      state a1;      

      state a2; 
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Now add the events and transitions. You can also add comments as shown, with // applying to 

the rest of the line, as in C++, and /*...*/ enclosing a comment as in C. 

 

Statements of code can be split across more than one line by ending the line with \ (as in 

Unix shell commands), but in our model the separate statements (event declarations, state 

declarations etc.) easily fit on one line. Do not put two statements on one line. 

 

 

 

 

 

 

 

 

 

Compile this model. You only need the root command if you have a new invocation of 

STATECRUNCHER. 

  SC:root F:\KWinPro\StCr\StCr5ModelsUser\u5110_get_started 

  SC:cp get_started 

 

The screen output (also written to the files mentioned) is a compiler listing, and a symbol and 

cross reference table. An entry such as 

 

 

 

 

   

identifies symbol gamma in statechart scope ( [sc] ), as an event ( eventdecl ) at  an 

unnamed ( [] ) Point of Control and Observation, and is referenced ( XREF )  in leafstates a1 

and a2, both in cluster a scope ( [a,sc] ). Scopes and Points of Control and Observation 

will be described later. 

 

We are now in a position to run the model, getting the configuration and processing events. 

 

If you have previously compiled the model, but are in a new invocation of STATECRUNCHER, 

enter  

  SC:root F:\KWinPro\StCr\StCr5ModelsUser\u5110_get_started 

  SC:run get_started 

 

If you have just compiled the model is ready for the next command. 

// My first model 

 

statechart sc(a) 

event alpha,beta,gamma; 

   cluster a(a1,a2) 

      state a1 {alpha,gamma->a2;}        

      state a2 {beta->a1; gamma->a1;}  

SYMB gamma      [sc]              eventdecl              [] 

     XREF leafstate    a1:[a,sc] 

     XREF leafstate    a2:[a,sc] 
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To see the initial state of the machine, enter 

  SC:gc 

This stands for get configuration. The output is 

 

 

 

 

 

 

 

 

 

 

 

 

As explained in section  1.1, we see the state occupancies (occupied and vacant). The parent of 

states a1 and a2 is cluster a. Only one child state of a cluster can be occupied, and if it is, the 

cluster is occupied. If no child states are occupied, the cluster is not occupied. This explains 

why cluster a is also occupied. The current configuration has two transitionable events, 

alpha and gamma. Since they are in statechart scope ( [sc] ), they can be entered without 

scope in the next command we will give. The remaining items of output will be explained as 

the subject matter arises throughout this manual. 

 

To process event alpha, enter 

  SC:pe alpha 

 

The command has completed when a new prompt is given. Follow it up with the get 

configuration command. 

  SC:gc 

The output is 

 

State a1 is now vacant, and state a2 is occupied. The transitionable events have changed. 

 

SC:gc  

2    statechart sc 

2       cluster a [sc] = OCC []  ** 

2          leafstate a1 [a, sc] = OCC []  ** 

2          leafstate a2 [a, sc] = VAC [] 

2    TRACE =[] 

2    TREV [[alpha, [sc]], 0, [], []] 

2    TREV [[gamma, [sc]], 0, [], []] 

 

outworlds=[2] 

number of outworlds=1 

SC:gc 

3    statechart sc 

3       cluster a [sc] = OCC []  ** 

3          leafstate a1 [a, sc] = VAC [] 

3          leafstate a2 [a, sc] = OCC []  ** 

3    TRACE =[] 

3    TREV [[beta, [sc]], 0, [], []] 

3    TREV [[gamma, [sc]], 0, [], []] 

 

outworlds=[3] 

number of outworlds=1 
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Experiment with more pe and gc commands, and see the machine transition (or not, as the 

case may be). 

 

To quit, enter 

  SC:quit 

If this leaves a Prolog prompt, close the window, or type 

  ?- halt. 

 

For a guide to all STATECRUNCHER commands, see chapter  Table 4 and [StCrPrimer]. 
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4. Guide to operation 

This section covers the functionality of STATECRUNCHER feature by feature. The reader is 

assumed to be familiar with the concept of a STATECRUNCHER statechart from the previous 

chapter. All statecharts in the following models are implicitly called "sc". 

 

The model numbers as used in directory names in the following sections are of the type unnnn 

(where n is a digit) and run in parallel to the test model numbers tnnnn, which are described in 

[StCrTest]. Where the numbers correspond, the subject matter is similar, but the tutorial 

model is not necessarily identical to the test model - it will often be simpler. The order of 

presentation in this manual is not completely sequential with respect to these numbers, since it 

is regarded as important to present the material in a the best order for learning, whilst 

retaining established model numbering. 

 

The tutorial models are identified for short as a "unnnn" model for convenience, but unlike 

the test models, they cannot be run under this name - all it means is that they are found in a 

directory unnnn_something and they must be compiled and run using the actual name of the 

source file, which is what a user must always do when creating a  new model. 
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4.1 Variables, and parameterised and conditional transitions 

We will implement the following model: 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Variables, parameterised and transitional conditions 

 

Features of the model are: 

 Three variables are declared: b (which is a boolean), v1 and v2 (which are integers). The 

integers will be declared as belonging to a range. (Enumerated value integers and strings 

are also possible). 

 Transitions are triggered by parameterised events. Trigger α(b) means event α with a 

parameter b. The parameter is not a formal parameter as in other languages, but a 

destination variable for the supplied parameter. When we give the transition this event 

and a parameter, that parameter will be stored in variable b. 

 Two transitions in this model are conditional. The condition is put in square brackets. The 

trigger α(b)[b] means that the value of b must be true for the transition to be eligible. 

The term [b] could have been any other expression yielding a boolean. The condition 

expression need not refer to any parameters, but it often will, as here.  There is also a 

transition on gamma if v1 is greater than v2, where these variables happen to be 

locations of the transition parameters. 

 

 

 a 

a1 

a2 
β 

α(b)[b] 

γ(v1,v2)[v1>v2] 

a3 

α(b)[!b] 

b,v1,v2 
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First implement the state machine hierarchy, without events or transitions. Create a file 

param.scs.txt 

in directory (equivalent to) 

F:\KWinPro\StCr\StCr5ModelsUser\u5123_param 

 

 Enter the following text : 

 

 

 

 

 

 

 

Compile it (as in Chapter  3, Getting started). 

  SC:root F:\KWinPro\StCr\StCr5ModelsUser\u5123_param 

  SC:cp param 

 

 Then upgrade it to the following: 

 

 

 

 

 

 

 

 

 

 

 

 

See how our integer type, int10,  specifies a range. Having specified the type (int10), we 

declare integers v1 and v2. The boolean type bool  is built-in, as are constants true and 

false (equivalent to 1 and 0 respectively). 

 

We arbitrarily initialise b, but not v1 or v2. 

 

The type and integer declarations have been declared at cluster a scope. They could 

have been put after the statechart statement; then they would have been at statechart 

scope. We address these variables in a very local scope, in the scope of the source state of the 

transitions, i.e. in a1, a2 and a3 scopes. It does not matter that these variables were not 

defined in these scopes. Variables declared in ancestors of the place where they are used will 

always be found. An outbound search mechanism will find the nearest variable. But if we 

declare a variable deep in the hierarchy, we cannot address it from higher up in the hierarchy 

without using some scoping operators. There is more on scoping in section  4.12. 

 

statechart sc(a) 

   cluster a(a1,a2,a3) 

      state a1;      

      state a2; 

      state a3; 

statechart sc(a) 

event alpha,beta,gamma; 

   cluster a(a1,a2,a3) 

      enum int10 {0,..,10}; 

      int10 v1,v2; 

      bool  b=false; 

 

      state a1 {alpha(b)[b]->a2; alpha(b)[!b]->a3;}   

      state a2 {beta->a3;} 

      state a3 {gamma(v1,v2)[v1>v2]->a1;} 
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Run the model and get the initial configuration 

  SC:run param 

  SC:gc 

 

This should be: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The line 
  2    TREV [[alpha, [sc]], 1, [[r, 0, 1]], []] 

tells us that there is a transitionable event alpha which takes 1 parameter, which takes 

values in a range 0 to 1  ([r,0,1] ). 

 

Transition to state ac as follows 

  SC:pe alpha p=0 

  SC:gc 

 

This gives us: 

 

SC:gc 

2    statechart sc 

2       cluster a [sc] = OCC []  ** 

2          leafstate a1 [a, sc] = OCC []  ** 

2          leafstate a2 [a, sc] = VAC [] 

2          leafstate a3 [a, sc] = VAC [] 

2    VAR  INTEGER b [a, sc] =0 

2    VAR  INTEGER v1 [a, sc] =unknown 

2    VAR  INTEGER v2 [a, sc] =unknown 

2    TRACE =[] 

2    TREV [[alpha, [sc]], 1, [[r, 0, 1]], []] 

 

outworlds=[2] 

number of outworlds=1 

SC:gc 

3    statechart sc 

3       cluster a [sc] = OCC []  ** 

3          leafstate a1 [a, sc] = VAC [] 

3          leafstate a2 [a, sc] = VAC [] 

3          leafstate a3 [a, sc] = OCC []  ** 

3    VAR  INTEGER b [a, sc] =0 

3    VAR  INTEGER v1 [a, sc] =unknown 

3    VAR  INTEGER v2 [a, sc] =unknown 

3    TRACE =[] 

3    TREV [[gamma, [sc]], 2, [[r, 0, 10], [r, 0, 10]], []] 

 

outworlds=[3] 

number of outworlds=1 
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Now transition to a1 as follows 

  SC:pe gamma p=[3,2] 

  SC:gc 

 

The output is: 

 

Note that v1 and v2 now have values. 

 

Experiment by transitioning to state ab on event alpha by providing a parameter value of 1 

(=true). 

 

To quit, enter 

  SC:quit 

If this leaves a Prolog prompt, close the window, or type 

  ?- halt. 

 

Remark on enumerated integers with tagnames: 

Although not used in these examples, an integer type can be declared with tagnames as 

follows: 

  enum colour   {red,green=3,blue}; 

Actual integral values are assigned as in C. After the declaration, the symbols red, green 

and blue can be used in expressions. 

SC:gc 

4    statechart sc 

4       cluster a [sc] = OCC []  ** 

4          leafstate a1 [a, sc] = OCC []  ** 

4          leafstate a2 [a, sc] = VAC [] 

4          leafstate a3 [a, sc] = VAC [] 

4    VAR  INTEGER b [a, sc] =0 

4    VAR  INTEGER v1 [a, sc] =3 

4    VAR  INTEGER v2 [a, sc] =2 

4    TRACE =[] 

4    TREV [[alpha, [sc]], 1, [[r, 0, 1]], []] 

 

outworlds=[4] 

number of outworlds=1 



   

© Graham G. Thomason 2003-2004  21
 

4.2 Nested cluster and history 

We will implement the following model: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Nested cluster, self transitions, and history [model u5130] 

 

The (H) symbol indicates that the cluster can on entry go into the historical state rather than 

the default state (though history can be cleared, as will be shown). This is not quite the same 

as a UML pseudo-state: STATECRUNCHER does not currently support these directly (they are 

on the wish-list), but the functionality of pseudo-states can be imitated with the combination 

of a history cluster and selective clear history actions. 

 

Some transitions are from or to non-leaf states, i.e. their source states or target states are not 

leaf states. A transition from a non-leaf state counts as if it is from any occupied descendant 

state. A transition to a non-leaf state goes either to the historical state  (i.e. to the state last 

occupied in the cluster) or to the default state, depending on whether history is marked and 

whether the historical state is available (the cluster may have never been entered, or the 

history may have been cleared).  
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Call the file nested_cluster.scs.txt in directory u5130_nested_cluster.  

Prepare the hierarchy first, but include the history keyword, and compile it (as already 

learned). 

  SC:root F:\KWinPro\StCr\StCr5ModelsUser\u5130_nested_cluster 

  SC:cp nested_cluster 

 

The hierarchy is: 

 

 

 

 

 

 

 

 

Now add the declarations and transitions: 

 

Points to note 

 A statement can be split over several lines using a backslash (with nothing following on 

the line, and not commented out by use of the // comment symbol).   

 A parent state is targeted using a $ operator, and a grandparent using $$. 

 A child state is targeted using the dot operator, e.g. x.a and a grandchild by e.g. 

x.b.b1 . 

statechart sc(x) 

 

cluster x(a,b) 

   state a; 

   cluster b(b1,b2) history  

      state b1; 

      state b2; 

statechart sc(x) 

event alpha; 

event beta3,beta4,beta5,beta6,beta7,beta8; 

event gamma3,gamma4; 

event delta5,delta6,delta7,delta8; 

event zeta, eta, theta; 

event omega; 

 

cluster x(a,b) {beta3->x.a;                   \ 

                beta5->x.b.b1;                \ 

                beta7->x.b.b2;                \ 

                gamma3->x.b;                  \ 

                omega->x.a{deep_clear(x);};   } 

 

   state a { beta4->$x;  zeta->b.b2;  eta->b;  theta->b.b1; } 

 

   cluster b(b1,b2) history {gamma4->$x;      \ 

                             delta5->b.b1;    \ 

                             delta7->b.b2;    \ 

                             eta->a;          } 

 

      state b1 {alpha->b2;  beta6->$$x;  delta6->$b;  theta->$a;} 

 

      state b2 {alpha->b1;  beta8->$$x;  delta8->$b;  zeta->$a;} 
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 This model does not have cousin states, but to target a cousin state, the construction is e.g. 

$a.a1 - see test model t5130, depicted in [StCrTest], for an example. 

 The fragment {deep_clear(x);}, which clears history in all clusters in and below 

cluster a, is called an action on the transition. A similar kind of action is an assignment, 

described in section  4.6. 

 Instead of history, we could have marked the cluster with deep history. In 

models with deeper nesting, there would be a distinction, because deep history clusters 

would keep history of descendants, recursively, as well. See test model t5200 for an 

example. 

 

Run the model (as learned in previous sections). Process events eta, alpha, eta. This 

takes us through states a, b1, b2, and back to a. Then get the configuration. It is: 

 

Observe the line formatted in bold print. Cluster b is vacant, but its historical state is b2. Now 

process event eta. Get the configuration and observe that state b2 is entered, not b1. 

 

Now reset the machine to its default state 

  SC:rm 

 

Process events eta, alpha, eta. as before. But now process omega, observing the 

configuration. The history of cluster b has been cleared, - instead of b2 there is[]. Now 

process event eta. The default state b1 is entered, not the historical state. 

SC:gc 

5    statechart sc 

5       cluster x [sc] = OCC []  ** 

5          leafstate a [x, sc] = OCC []  ** 

5          cluster b [x, sc] = VAC b2 

5             leafstate b1 [b, x, sc] = VAC [] 

5             leafstate b2 [b, x, sc] = VAC [] 

5    TRACE =[] 

5    TREV [[beta4, [sc]], 0, [], []] 

5    TREV [[zeta, [sc]], 0, [], []] 

5    TREV [[eta, [sc]], 0, [], []] 

5    TREV [[theta, [sc]], 0, [], []] 

5    TREV [[beta3, [sc]], 0, [], []] 

5    TREV [[beta5, [sc]], 0, [], []] 

5    TREV [[beta7, [sc]], 0, [], []] 

5    TREV [[gamma3, [sc]], 0, [], []] 

5    TREV [[omega, [sc]], 0, [], []] 

 

outworlds=[5] 

number of outworlds=1 

8             leafstate b1 [b, x, sc] = OCC []  ** 

6             leafstate b2 [b, x, sc] = OCC []  ** 
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4.3 Sets 

Sets, like clusters, have members (which can be leafstates, clusters or sets). But if a set is 

occupied, all its members are occupied. The cluster rule applies to members: if one of the 

members is a cluster, and it is occupied, then only one member of the cluster will be occupied. 

Sets enable us to model parallelism, and we may speak of the set members as parallel 

machines. A set can have deep history. The symbol for a set is a rounded box with a tab on 

the top left for the set name. The following diagram shows how set members may be depicted. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. Set members 

 

Transitions to sets may specify several specific target states in different members, or they may 

omit some (in which case the default or historical state will be taken where appropriate), or 

they may simply target the set, in which case all the target states will be selected using default 

or historical considerations.  
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We will implement the following model: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9. Set [model u5140] 

 

Points to note 

 There is no difference in structure between the members b1, b2, b3. The alternative 

notation is used for member b1 so that it can be made clear that the transition on event γ 

targets member b1, and not just set b. 

 The transition from a on β targets b1.q (a nondefault state), b3.t (a default state), but 

omits a target for member b2. The default state b2.r will be taken. 

 The transition from a on θ targets the set only, not a member or anything in a member. 

Default states will be taken. 

 The transition from a on γ targets member b1 only. Default states will be taken in all 

members. 

 The transition on ε exits from a child of set member b3 explicitly. A transition on γ exits 

from a nonleaf member.  A transition on θ exits from the set as such. In all these cases, all 

members of the set will be exited. 
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Call the file set.scs.txt in directory u5140_set. Prepare the hierarchy first and 

compile it (as already learned). 

  SC:root F:\KWinPro\StCr\StCr5ModelsUser\u5140_set 

  SC:cp set 

 

The hierarchy is: 

 

Now add the declarations and transitions: 

 

Points to note 

 Multiple targets are addressed using the split operator, /\. 

 Set b, being a sibling of state a, is targeted from state a without scoping operators: 

theta->b. Members of the set require the child operator: gamma->b.b1. The 

leafstates in the set are all a level deeper still, e.g. b.b1.q. 

statechart sc(y) 

      cluster y (a,b) 

         state a; 

         set b (b1,b2,b3) 

            cluster b1(p,q)  

               state p; 

               state q; 

            cluster b2(r,s) 

               state r; 

               state s; 

            cluster b3(t,u) 

               state t; 

               state u; 

statechart sc(y) 

event beta,gamma,delta,epsilon,theta,pi,rho,tau; 

      cluster y (a,b) 

         state a    {beta-> b.(b1.q/\b3.t);       \ 

                     delta->b.(b1.q/\b2.r/\b3.u); \ 

                     gamma->b.b1;                 \ 

                     theta->b;                    } 

         set b (b1,b2,b3) {theta->a;} 

            cluster b1(p,q) {gamma->$a;} 

               state p {pi->q;} 

               state q {pi->p;} 

            cluster b2(r,s) 

               state r {rho->s;} 

               state s {rho->r;} 

            cluster b3(t,u) 

               state t {tau->u;} 

               state u {tau->t; epsilon->$$a;} 
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Run the model (as learned in previous sections). Process event beta. Use the gc command 

to observe the leafstates in the set that are occupied: 

 

Process events tau and epsilon . Observe how the whole set has been exited: 

 

Experiment with the other transitions. 

 

Remark 

 We have seen how to target several target states of a transition. The reader might ask 

about several source states. The question makes sense, because we might require that 

several states in a set be occupied before we allow a transition out of the set. This is 

achieved by making one of the source states the “master” and adding a condition that the 

other states are occupied using the in() function, described in section  4.9. 

SC:gc 

3    statechart sc 

3       cluster y [sc] = OCC []  ** 

3          leafstate a [y, sc] = VAC [] 

3          set b [y, sc] = OCC []  ** 

3             cluster b1 [b, y, sc] = OCC []  ** 

3                leafstate p [b1, b, y, sc] = VAC [] 

3                leafstate q [b1, b, y, sc] = OCC []  ** 

3             cluster b2 [b, y, sc] = OCC []  ** 

3                leafstate r [b2, b, y, sc] = OCC []  ** 

3                leafstate s [b2, b, y, sc] = VAC [] 

3             cluster b3 [b, y, sc] = OCC []  ** 

3                leafstate t [b3, b, y, sc] = OCC []  ** 

3                leafstate u [b3, b, y, sc] = VAC [] 

3    TRACE =[] 

3    TREV [[pi, [sc]], 0, [], []] 

3    TREV [[rho, [sc]], 0, [], []] 

3    TREV [[tau, [sc]], 0, [], []] 

3    TREV [[gamma, [sc]], 0, [], []] 

3    TREV [[theta, [sc]], 0, [], []] 

 

outworlds=[3] 

number of outworlds=1 

5          set b [y, sc] = VAC [] 

5             cluster b1 [b, y, sc] = VAC q 

5                leafstate p [b1, b, y, sc] = VAC [] 

5                leafstate q [b1, b, y, sc] = VAC [] 

5             cluster b2 [b, y, sc] = VAC r 

5                leafstate r [b2, b, y, sc] = VAC [] 

5                leafstate s [b2, b, y, sc] = VAC [] 

5             cluster b3 [b, y, sc] = VAC u 

5                leafstate t [b3, b, y, sc] = VAC [] 

5                leafstate u [b3, b, y, sc] = VAC [] 
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4.4 Fired events 

Events may be supplied by the user, with the pe command, or they may be generated in the 

model, by an action which we call firing an event. 

 

As with user-supplied events, fired events can take parameters. 

 

We illustrate fired events in two contexts 

 Where a transition in one part of a machine fires an event which will be responded to in a 

parallel part of the machine to cause a transition there. 

 An engagement between two parallel parts of a machine representing STATECRUNCHER's  

client-server paradigm. This is considered in the next section ( 4.5). 

 

Other aspects to fired events, for which we refer the interested reader to test models, are: 

 A simple knock-on effect in a machine with no parallelism (see test model t5152). 

 Fired events can also be used to generate loops (see test model t5240). 

 

The model we first implement is as follows: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10. Fired event [model u5150] 

 

Points to note 

 The user will initially supply event α, and the system will fire event β. After this, when 

we are in states a2 and b2,  the user can supply event β, and the system will fire event α. 

 We declare two boolean variables, bv1 and bv2, and use them as parameters when we 

fire the event β.  

 The transition labelled β(bvp1,bvp2)[bvp1&&(!bvp2)] receives the parameters 

and puts them in its own locations (bvp1 and bvp2). The initial values of bv1 and bv2 

(true and false respectively) will allow the transition on β(bvp1,bvp2) to take place, 

because the condition evaluates to true. However, bv2 can be set to any value using the 

self-transition on γ, so we can arrange for the condition to evaluate to false. 
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 Although we will initially fire event β via event α, β can be supplied by the user from the 

start.  

 

Call the file fire.scs.txt in directory u5150_fire. Prepare the hierarchy first and 

compile it (as already learned). 

  SC:root F:\KWinPro\StCr\StCr5ModelsUser\u5150_fire 

  SC:cp fire 

 

The hierarchy is: 

 

Then add the declarations and transitions: 

 

Run the model (as learned). 

 Process event alpha, get the configuration, and observe that the transition on beta took 

place as well as the one on alpha. 

 Reset the model (command rm). Process event gamma with a parameter of 1 (command 

pe gamma p=1). Now process event alpha. The condition on the receiving transition, 

[bvp1&&(!bvp2)], is now false, and that transition does not take place. 

 Experiment with other transitions. Apart from altering variable values, how many 

different state occupancy configurations does the model have? Finding the configurations 

is called exploring the model. The figure below shows the explored model. 

statechart sc(s) 

   set s(a,b) 

      cluster a(a1,a2) 

         state a1; 

         state a2; 

      cluster b(b1,b2) 

         state b1; 

         state b2; 

statechart sc(s) 

event alpha,beta,gamma; 

bool bv1=true,bv2=false; 

  set s(a,b) 

     cluster a(a1,a2) 

        state a1 {alpha->a2{fire beta(bv1,bv2);}; gamma(bv2);} 

        state a2 {alpha->a1;} 

     cluster b(b1,b2) 

     bool bvp1,bvp2; 

        state b1 {beta(bvp1,bvp2)[bvp1&&(!bvp2)]->b2;} 

        state b2 {beta->b1 {fire alpha;};} 
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Figure 11. Fired event model explored 

 

Occupied states are shown shaded, in red. 
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4.5 Client-server composition and PCOs 

In this section, we see how to model one software component or function calling another, 

using fired events. We introduce the concept of PCOs: Points of Control and Observation. We 

will implement the following model: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12. Component composition 

 

Points to note 

 STATECRUNCHER's composition paradigm is closely analogous to the function call and 

return of imperative languages such as ‘C’. 

 The making of the function call is modeled by a fired event 

 The response to this is modeled by a transition on the event that was fired 

 The return statement is modeled by fired return event 

 The response to this is modeled by a transition on the return event that was fired. 

If there are many such calling sequences in a model, return names can be made unique to 

a server function by affixing the function name to the event (e.g. return_max) or by 

putting the return event in a sufficiently local scope (using STATECRUNCHER's scoping 

capabilities. 

 

 The client can be seen as an independent state machine, which can be driven through its 

cycle with events alpha and return. It does not care who it is that responds to its firing of 

β, nor who it is that provides the return event. A different server to the one shown 

might be connected to the client, e.g. with more states and transitions between its initial 

and final states (S1 an S2). Similarly the server is independent of its client, except for the 

agreed interface of β and return. 

 

 Event α is supplied externally to the client and server. Events β and return are part of 

the agreed interface between the client and server. We indicate this by putting the events 

C1 C2 C3 

return α /fire β 

comp 

client 

S1 S2 

β/fire return server 

pco_ext pco_comp 
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on different PCOs. STATECRUNCHER's output will reveal the PCOs so that a test generator 

program can distinguish, and if required, restrict itself to certain PCOs only. We put α on 

pco_ext (for external) and β on pco_cmp (for composition). If we had more events 

local to the server only, say, we could put them on pco_serv and so on, but we have 

kept this model to the basics. 

 

Call the file client_server.scs.txt in directory u5154_client_server. 

Prepare the hierarchy first and compile it (as already learned). 

  SC:root F:\KWinPro\StCr\StCr5ModelsUser\u5154_client_server 

  SC:cp client_server 

 

The hierarchy is: 

 

Then supply the declarations and transitions: 

 

Points to note 

 PCOs are declared in their own declaration statements, and are used in event declarations. 

 We haven't used capital letters for identifiers so far, but they are allowed. Identifiers are 

as in 'C', so non-leading underscores are allowed too, but double underscores can have a 

special meaning in connection with arrays, discussed later. 

 

statechart sc(comp) 

  set comp(client, server) 

     cluster client(C1,C2,C3) 

        state C1; 

        state C2; 

        state C3; 

     cluster server(S1,S2) 

        state S1; 

        state S2; 

statechart sc(comp) 

PCO ext,cmp; 

event alpha@ext; 

event beta,return@cmp; 

 

  set comp(client, server) 

     cluster client(C1,C2,C3) 

        state C1 {alpha->C2 {fire beta;}; } 

        state C2 {return->C3;} 

        state C3; 

     cluster server(S1,S2) 

        state S1 {beta->S2 {fire return;}; } 

        state S2; 
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Compile and run the model. The initial state is: 

 

Point to note 

 The TREV lines show the PCO on which the event has been declared. PCOs can 

themselves be scoped; our PCOs are both in statechart scope, i.e. [sc]. 

 

Process event alpha and obtain the configuration: 

 

Points to note 

 The complete transaction between the server and client has run its course.  

 This particular model has no reset event and has reached a dead end. There are no 

transitionable events. This sort of situation could be an indication of deadlock in a real 

system. A server would typically return to its initial state on completion, but we have left 

this one in state S2 as we feel it more clearly expresses the client-server paradigm. 

SC:gc 

2    statechart sc 

2       set comp [sc] = OCC []  ** 

2          cluster client [comp, sc] = OCC []  ** 

2             leafstate C1 [client, comp, sc] = OCC []  ** 

2             leafstate C2 [client, comp, sc] = VAC [] 

2             leafstate C3 [client, comp, sc] = VAC [] 

2          cluster server [comp, sc] = OCC []  ** 

2             leafstate S1 [server, comp, sc] = OCC []  ** 

2             leafstate S2 [server, comp, sc] = VAC [] 

2    TRACE =[] 

2    TREV [[alpha, [sc]], 0, [], [ext, [sc]]] 

2    TREV [[beta, [sc]], 0, [], [cmp, [sc]]] 

 

outworlds=[2] 

number of outworlds=1 

SC:pe alpha 

SC:gc 

5    statechart sc 

5       set comp [sc] = OCC []  ** 

5          cluster client [comp, sc] = OCC []  ** 

5             leafstate C1 [client, comp, sc] = VAC [] 

5             leafstate C2 [client, comp, sc] = VAC [] 

5             leafstate C3 [client, comp, sc] = OCC []  ** 

5          cluster server [comp, sc] = OCC []  ** 

5             leafstate S1 [server, comp, sc] = VAC [] 

5             leafstate S2 [server, comp, sc] = OCC []  ** 

5    TRACE =[] 

 

outworlds=[5] 

number of outworlds=1 
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4.6 Assignments on transitions and inexact variable scoping 

In this section we show how assignments can be made on transitions. We also show that 

variables of the same name can be declared in different scopes; they are then completely 

separate variables. 

 

We will implement the following model: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13. Assignment on transition with overloaded variable names [model u5160] 

 

Points to note 

 There can be several assignments (and other actions) on a transition. 

 An arithmetic expression on a transition such as v+=3 in principle refers to a v in the 

scope of the source state. So for a transition from state a1, it refers to a v declared in state 

a1 scope. However, if there is no such variable in this scope, which is the situation here, 

the nearest v will be used; it is the v in cluster a scope.  

 An expression such as $v+=3 refers to a v in the parent scope. So for a transition from 

state a1, it refers to a v declared in cluster a scope. This v exists. 

 An expression such as $$v+=3 refers to a v in the grandparent scope. So for a transition 

from state a1, it refers to a v declared in statechart sc scope. This v exists, and is distinct 

from the v in cluster a scope. 

 The rule about finding the nearest variable in scope, searching up the hierarchy, applies to 

variables on the left hand side or right hand side of expressions. 

 

 

a 

a1 

α{$v+=3; $$v=$v+6;}  

γ($param){$v=$param;} 

v=1  

v=2 

β{v+=3; $$v=v+6;}  

γ(param){v=param;} 

exact scoping  

inexact scoping 

a3 

a2 
no very-local v here 

the global v 

 v 

the local v 

 v 
param 
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Call the file assign.scs.txt in directory u5160_assign. Prepare the hierarchy first 

and compile it (as already learned). 

  SC:root F:\KWinPro\StCr\StCr5ModelsUser\u5160_assign 

  SC:cp assign 

 

The hierarchy is: 

 

Then supply the declarations and transitions: 

 

 Run the model and get the initial configuration: 

 

statechart sc(a) 

  cluster a(a1,a2,a3) 

    state a1;  

    state a2; 

    state a3; 

statechart sc(a) 

event alpha,beta,gamma; 

enum int1 {0,..,1000}; 

int1 v=1; 

  cluster a(a1,a2,a3) 

  int1 v=2; 

  int1 param; 

    state a1 {alpha->a2 {$v+=3;$$v=$v+6;};   \ 

              beta->a3  {v+=3;$$v=v+6;};     }   

 

    state a2 {gamma($param)->a1{$v=$param;}; }  

                                    

    state a3 {gamma(param)->a1{v=param;};    } 

SC:gc 

2    statechart sc 

2       cluster a [sc] = OCC []  ** 

2          leafstate a1 [a, sc] = OCC []  ** 

2          leafstate a2 [a, sc] = VAC [] 

2          leafstate a3 [a, sc] = VAC [] 

2    VAR  INTEGER param [a, sc] =unknown 

2    VAR  INTEGER v [a, sc] =2 

2    VAR  INTEGER v [sc] =1 

2    TRACE =[] 

2    TREV [[alpha, [sc]], 0, [], []] 

2    TREV [[beta, [sc]], 0, [], []] 

 

outworlds=[2] 

number of outworlds=1 
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Points to note 

 The two variables called v are shown with their scope. A scope of [a,sc] is read from 

right to left if we descend in the hierarchy: we get to this v by going to statechart sc and 

cluster a. 

 Variable expressions are evaluated from the perspective of the source state of the 

transition. Note in passing that states are also listed with their scope. We have already 

seen how we target states using scoping operators. The issue of states and their scope can 

be a little confusing, because a scope is itself a state. Given a state, we say its scope is the 

parent state. This explains output such as 
leafstate a1 [a, sc] = VAC [] 

State expressions such as a.b are evaluated from the perspective of the scope part, or 

parent, of the source state of a transition. This gives the most natural way to address 

states: siblings require no operators, parents require a $, and child states require a dot. 

 

Process event alpha. This will cause the following evaluations to take place 

 $v+=3; 

$v is the v in [a,sc] scope and was initialized to 2, so it gets the value 5. 

 $$v=$v+6; 

$$v is the v in [sc] scope and was initialized to 1. $v is as above and has the 

value 5. So $$v gets the value 5+6=11. 

 

There is now a transition on event gamma, taking a parameter, which is then assigned to an 

exactly specified local v. Process it with some parameter value, say, 88 (pe gamma p=88): 

 

 

 

 

Reset the model (command rm) and process event beta. The effect on the variables is the 

same as when we processed event alpha, although one variable was addressed inexactly. 

There is also a transition on event gamma, taking a parameter, which is then assigned to an 

SC:gc 

5    statechart sc 

5       cluster a [sc] = OCC []  ** 

5          leafstate a1 [a, sc] = VAC [] 

5          leafstate a2 [a, sc] = OCC []  ** 

5          leafstate a3 [a, sc] = VAC [] 

5    VAR  INTEGER param [a, sc] =unknown 

5    VAR  INTEGER v [a, sc] =5 

5    VAR  INTEGER v [sc] =11 

5    TRACE =[] 

5    TREV [[gamma, [sc]], 1, [[r, 0, 1000]], []] 

 

outworlds=[5] 

number of outworlds=1 

7    VAR  INTEGER param [a, sc] =88 

7    VAR  INTEGER v [a, sc] =88 
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inexactly specified local v. The effect is as above, in the exactly specified case. Remember 

that we could have placed our parameter directly into variable v, specifying the transition 

with γ($v) rather than γ($param),  but here we make a copy of the parameter. 
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4.7 Orbits, self-transitions, upon-enter and upon-exit actions 

When a transition takes place, (apart from some self-transitions), various states are exited and 

various states are entered. In this section we show how an action can be attached to the 

internal event of a state being exited or entered, which we call upon enter actions and upon 

exit actions. 

 

We also show how a transition course can be taken to a higher level than normal. Normally, a 

transition course will be as low-flying as possible. A transition which causes more states to be 

exited and entered, in our notation, is given a loop in the arc and is called an orbital 

transition. 

 

Self transitions are transitions with the same source and target state. They may nevertheless 

cause a transition between states. They can be internal or external. 

 Internal self-transitions are drawn on the inside of the state and never cause transitions 

between states. As with other transitions, they are valid for processing if the state to 

which they are attached is occupied; if not, they are totally discounted. 

 There is no difference between leafstate and non-leafstate internal self-transitions. If 

they are valid and there is an action attached to them, the action is performed.  

 Internal transitions cannot be orbital. 

 

 External self-transitions are drawn outside the state. 

 If they are on a nonleaf state, they can cause transitions to default states, (but not in 

clusters with history, because the current state is counted as the historical state). This 

applies to the self-transition on ε3 in  Figure 14 when state p2 is occupied. 

 If they are on a leafstate, nothing is exited or entered (unless the self-transition is 

orbital), but actions are executed, and they behave like internal transitions. 

 External self transitions can be orbital (to any height of orbit). In this case they 

always cause exiting and entering to the height of the orbit. 

 

Self transitions can be parameterised, but we do not illustrate that here; an example was given 

in section  4.4.  

 

If there are actions on a transition, the order of action execution is: 

1. Do the exit actions, starting with the source state 

2. Do the on-transition actions 

3. Do the enter actions, ending with the target state. 

If several parallel states are exited and entered, we are in the realm of set-transit 

nondeterminism, to be discussed later. 
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Figure 14. Orbits, self-transitions, upon-enter and upon-exit actions [model u5170] 

 

Points to note 

 We often for compactness will use a shorter notation for events and transition actions: 

event/action rather than event{action;}. 

 The arrow symbolsand  indicate actions that take place when the state is exited or 

entered. Imagine a transition from say, p1 to q1 (which event β could occasion). The 

action on exiting p1 is v=v*10+1. This adds a digit 1 to the current value of v. On 

exiting state p, we add the digit 2 to the value of v. Each exit or enter action is tracked in 

this way. Variable v tracks a transition from p to q. Variable u tracks a transition from q 

to p. The on-transition actions simply add digit 0 to u and v by multiplying by 10. This 

gives us a complete record of the order of the actions that take place during a transition. 

The variables can be reset without any transitioning by executing event ω. 

 In addition to assignment actions we can have any other actions, e.g. fired event actions 

(not used in this model, but see test model t5170 for an example). 

 For more examples of orbits, see test model t6260, which includes an orbit that exits 

members of a set without exiting the set itself. 

a 

p1 

p2 

p 

α 

α 

u=u*10+5 

v=v*10+1 

u=u*10+5 

v=v*10+1 

 

u=u*10+4 

v=v*10+2 

q1 

q2 

q 

α 

α 

v=v*10+5 

u=u*10+1 

v=v*10+5 

u=u*10+1 

 

v=v*10+4 

u=u*10+2 

γ 

δ/u*=10;v*=10 

β 

γ 

v=v*10+3 

u=u*10+3 

ε1{w++;} 

β/ 

u*=10 

v*=10 

ω{u=0;v=0;w=0;} 

ζ1/w++ 

unspecifiable 
ε3 {w++;} 

ε4 {w++;} 

unspecifiable 
ζ3/w++ 

ζ4/w++ 
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Call the file orbits.scs.txt in directory u5170_orbits. Prepare the hierarchy first 

and compile it (as already learned). 

  SC:root F:\KWinPro\StCr\StCr5ModelsUser\u5170_orbits 

  SC:cp orbits 

 

The hierarchy is: 

 

Add the declarations and transitions, (perhaps compiling as individual transitions are added, 

to check for typing errors). 

statechart sc(a) 

 

event alpha,beta,gamma,delta; 

event epsilon1,epsilon3,epsilon4; 

event zeta1,zeta3,zeta4; 

event omega; 

 

enum int {0,..,10000}; 

int u=0,v=0,w=0; 

 

  cluster a(p,q)     {upon enter{u=u*10+3;}   upon exit{v=v*10+3;}  \ 

                      omega{u=0;v=0;w=0;};                          } 

 

    cluster p(p1,p2) {upon enter{u=u*10+4;}   upon exit{v=v*10+2;}  \ 

                      delta->$$sc->q{u*=10;v*=10;};                 \ 

                      beta->q{u*=10;v*=10;};  gamma->q.q2;          \ 

                      epsilon1{w++;};         epsilon3->p{w++;};    \ 

                      epsilon4->$a->p{w++;};                        } 

 

      state p1       {upon enter{u=u*10+5;}   upon exit{v=v*10+1;}  \ 

                      zeta1{w++;};            zeta3->p1{w++;};      \ 

                      zeta4->$p->p1{w++;};    alpha->p2;            } 

  

      state p2       {upon enter{u=u*10+5;}   upon exit{v=v*10+1;}  \ 

                      alpha->p1;                                    } 

 

    cluster q(q1,q2) {upon enter{v=v*10+4;}   upon exit{u=u*10+2;}  \ 

                      beta->p;                gamma->p.p2;          } 

 

      state q1       {upon enter{v=v*10+5;}   upon exit{u=u*10+1;}  \ 

                      alpha->q2;                                    } 

 

      state q2       {upon enter{v=v*10+5;}   upon exit{u=u*10+1;}  \ 

                      alpha->q1; 

statechart sc(a) 

  cluster a(p,q) 

    cluster p(p1,p2) 

      state p1; 

      state p2; 

    cluster q(q1,q2) 

      state q1; 

      state q2; 
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Points to note 

 If there are upon enter actions and upon exit actions, the upon enter actions must be 

specified first. 

 An example of orbital notation is delta->$$sc->q. 

Useful rules on orbital states 

 If the transition arc to an orbital state crosses n hierarchical layers, use (n+1) $ 

characters in specifying it. 

 If the transition arc to a target state crosses n hierarchical layers, use (n) $ characters 

in specifying it. 

 The hierarchical layers can be counted by counting the number of boxes crossed (but 

not set member boundaries, i.e. the dotted line). Note, however, that a cluster member 

of a set can be specified without drawing a box round it, so when counting boxes 

exited, allow for an ‘invisible’ box in this case. 

An alternative to counting $ operators is to use an absolute path. The :: operator takes us 

to statechart scope, but it requires an argument, so statechart scope is a little inconvenient 

to specify, and we must go the statechart parent and re-specify the statechart. In our 

example, we could have used delta->::$sc->q. 

 

So far, we have been precise about the orbital state. Where states have unique names, the 

operators can be omitted and the correct state will be found by the outbound search for the 

nearest state in scope. So we can also specify the example as simply delta->sc->q. 

 

Compile and run the model. 

 

Process event delta and notice in particular the values of the variables 

 

The value of v shows that actions took place as follows 

  v=v*10+1 on exiting p1 

  v=v*10+2 on exiting p 

  v=v*10+3 on exiting a 

  v=v*10   as the transition action 

  v=v*10+4 on entering q 

  v=v*10+5 on entering q1 

 

Variable u gained its value when cluster a was entered from the highest point in the transition 

trajectory. 

 

11   VAR  INTEGER u [sc] =3 

11   VAR  INTEGER v [sc] =123045 

11   VAR  INTEGER w [sc] =0 
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Reset the model (command rm) and process event beta. Observe and explain the new 

variable values. 

 

 

Reset the model and process event alpha, followed by event omega. The state is p2 and the 

variables have been reset. Process from this state, resetting as required, the self transitions 

epsilon1, epsilon3, epsilon4, observing at each stage the new state. Note that 

epsilon3 and epsilon4 cause a transition to p1. 

 

In state p1, experiment with events zeta1, zeta3, zeta4. Note that zeta4 causes p1 to 

be exited and re-entered, as is seen by the values of u and v. 

 

 

 

9    VAR  INTEGER u [sc] =0 

9    VAR  INTEGER v [sc] =12045 

9    VAR  INTEGER w [sc] =0 
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4.8 Meta-events 

In the previous section, we saw how to attach actions to the internal event of a state being 

exited or entered. This section shows how that the internal events are like any others, and can 

be used to trigger transitions. They never take parameters. We call them meta-events. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 15. Meta event (state entry/exit) [model u5180] 

 

Points to note 

 We respond in set member b to meta events in set member a, and address the states with 

the usual scoping notation. The initiating event is in each case α. 

 Event γ acts as a reset in member b. In state b1 we respond to various meta events we 

might see. Having responded to one meta event, we can reset to state b1 and wait for the 

next one. 

 

s 
 

 

b 

exit($a.a1) 

a 

b1 

 a1 

γ 

α 

p1 

p2 

exit($a.p) 

enter($a.a1) 

p 
α 

j2 

j1 

j3 

j 

q1 

q2 

q 

α 

β 

β 

β 

β 



   

44  © Graham G. Thomason 2003-2004 

Call the file meta.scs.txt in directory u5180_meta. Prepare the hierarchy first and 

compile it (as already learned). 

  SC:root F:\KWinPro\StCr\StCr5ModelsUser\u5180_meta 

  SC:cp meta 

 

The hierarchy is: 

 

Add the declarations and transitions: 

statechart sc(s) 

set s(a,b) 

   cluster a(a1,p,q) 

      state a1; 

 

      cluster p(p1,p2) 

         state p1; 

         state p2; 

 

      cluster q(q1,q2) 

         state q1;  

         state q2; 

 

   cluster b(b1,j) 

      state b1; 

      cluster j(j1,j2,j3)  

         state j1; 

         state j2; 

         state j3; 

statechart sc(s) 

event alpha,beta,gamma; 

set s(a,b) 

   cluster a(a1,p,q) 

      state a1              {alpha->p.p2;} 

 

      cluster p(p1,p2)      {alpha->q.q2;} 

         state p1 {beta->p2;}  

         state p2 {beta->p1;} 

 

      cluster q(q1,q2)      {alpha->a1;} 

         state q1 {beta->q2;}  

         state q2 {beta->q1;} 

 

   cluster b(b1,j) {gamma->b.b1;} 

      state b1      {exit  ($a.a1)-> j.j1;   \ 

                     exit  ($a.p) -> j.j2;   \ 

                     enter ($a.a1)-> j.j3;   } 

      cluster j(j1,j2,j3)  

         state j1; 

         state j2; 

         state j3; 
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Compile and run the model. Process event alpha, and observe the configuration: 

 

The fact that leafstate j1 is occupied shows that the exit($a.a1) meta-event was 

responded to. 

 

Process events gamma and alpha, and observe that the exit($a.p) meta event was 

responded to: 

 

Process events gamma and alpha again and observe that the enter($a.a1)meta event 

was responded to: 

 

SC:gc 

4    statechart sc 

4       set s [sc] = OCC []  ** 

4          cluster a [s, sc] = OCC []  ** 

4             leafstate a1 [a, s, sc] = VAC [] 

4             cluster p [a, s, sc] = OCC []  ** 

4                leafstate p1 [p, a, s, sc] = VAC [] 

4                leafstate p2 [p, a, s, sc] = OCC []  ** 

4             cluster q [a, s, sc] = VAC [] 

4                leafstate q1 [q, a, s, sc] = VAC [] 

4                leafstate q2 [q, a, s, sc] = VAC [] 

4          cluster b [s, sc] = OCC []  ** 

4             leafstate b1 [b, s, sc] = VAC [] 

4             cluster j [b, s, sc] = OCC []  ** 

4                leafstate j1 [j, b, s, sc] = OCC []  ** 

4                leafstate j2 [j, b, s, sc] = VAC [] 

4                leafstate j3 [j, b, s, sc] = VAC [] 

4    TRACE =[] 

4    TREV [[beta, [sc]], 0, [], []] 

4    TREV [[alpha, [sc]], 0, [], []] 

4    TREV [[gamma, [sc]], 0, [], []] 

 

outworlds=[4] 

number of outworlds=1 

7                leafstate j1 [j, b, s, sc] = VAC [] 

7                leafstate j2 [j, b, s, sc] = OCC []  ** 

7                leafstate j3 [j, b, s, sc] = VAC [] 

10               leafstate j1 [j, b, s, sc] = VAC [] 

10               leafstate j2 [j, b, s, sc] = VAC [] 

10               leafstate j3 [j, b, s, sc] = OCC []  ** 
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4.9 Conditional actions and the in() function 

We have already seen (section  4.1) how a transition can be conditional. In this section we will 

see  how a transition action can be conditional, even if the transition is unconditional. In fact, 

any action can be conditional, so an upon entry action or upon exit action can be conditional 

too. 

 

Conditions are expressions evaluating to a boolean value. The expression can make use of the 

function in(). This function takes a scoped state as an argument (in the same way a 

transition target state is expressed), and returns true (=1) if that state is occupied, false (=0) 

otherwise. It will normally be testing the occupancy of a state in a parallel part of the 

machine. It is evaluated during execution just before the transition is considered for taking 

place, and the value of the function at this time might not be the same as at the start of 

processing a user event (e.g. if various events have been fired in the meantime). 

 

Conditions on transitions are written in square brackets. Conditional actions use the if 

keyword, and can have an else part. There is an if action and (optionally) an else action. 

These actions can be assignments, function calls, fired events, or nested if actions. 

 

We will implement the model in the following figure: 
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Figure 16. Conditional actions and in() function [model u5190] 

 

Points to note 

 There is a conditional transition on α. 

 There is a conditional action on the transition on β, and also on entering state a2. 

 The transition on γ has an else part. 

 The transition on δ has nested conditional actions. 

 The conditional action of the transition on ε fires an event, putting cluster z in state z2. 

 We can set the value of v (use in the conditions) using the setv event. 

 We can reset variables and states using the η event. 

s 
 

 z2 

z 

a 

z1 
ζ2 ζ1 

setv(v)  

conditional action with else action 

γ if (v%2==1){w=w*10+2; w=w*10+3;} 

  else       {w=w*10+4; w=w*10+5;} 

 

δ if (v%2==1) {AC1} else {AC2} 

where 
AC1= if (v==3) {w=w*10+1;} else {w=w*10+2;} 

AC2= if (v==4) {w=w*10+3;} else {w=w*10+4;} 

 

ε if (v%2==1){fire ζ2;} 

   

a1 

conditional transition 

α [in($z.z2)&&v==0] 

unconditional transition, conditional action 

β if (in($z.z2)&&v==0){w=w*10+1;} 

 

reset for next demo-transition 

η {u=0; v=0; w=0;fire ζ1;} 

a2 

 

if v>5 

 u=u*10+1 

else 

 u=u*10+2 

u=0 v=0 w=0 
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Call the file cond_action.scs.txt in directory u5190_cond_action. Prepare the 

hierarchy first and compile it (as already learned). 

  SC:root F:\KWinPro\StCr\StCr5ModelsUser\u5190_cond_action 

  SC:cp cond_action 

 

The hierarchy is: 

 

Add the declarations and transitions: 

statechart sc(s) 

set s(a,z) 

  cluster a(a1,a2)  

     state a1; 

     state a2; 

  cluster z(z1,z2)  

     state z1;  

     state z2; 

statechart sc(s) 

event alpha,beta,gamma,delta,epsilon,eta; 

event setv; 

event zeta1,zeta2; 

 

enum int1 {0,..,10000}; 

int1 u=0,v=0,w=0; 

 

set s(a,z) 

  cluster a(a1,a2) {setv(v);  eta->a.a1 {u=v=w=0; fire zeta1;}; } 

 

     state a1                                                       \ 

       {alpha [in($z.xxx.z2) && (v==0)]->a2;                        \ 

        beta->   a2 {if (in($z.z2) && (v==0)) {w=w*10+1;} };        \ 

        gamma->  a2 {if (v%2==1) {w=w*10+2;w=w*10+3;}               \ 

                     else        {w=w*10+4;w=w*10+5;} };            \ 

                                                                    \ 

        delta->  a2 {if (v%2==1)                                    \ 

                        {if (v==3) {w=w*10+1;} else {w=w*10+2;}}    \ 

                     else                                           \ 

                        {if (v==4) {w=w*10+3;} else {w=w*10+4;}} }; \ 

        epsilon->a2 {if (v%2==1) {fire zeta2;}};                    } 

 

     state a2 {upon enter { if(v>5) {u=u*10+1;} else {u=u*10+2;}}   } 

 

  cluster z(z1,z2) {zeta2->z.z2; zeta1->z.z1;} 

     state z1;  

     state z2; 
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Compile and run the model. 

 

Conditional transition (revision) and conditional upon enter action: Process event alpha, 

and note that no transition takes place. This is because we are not in state z2, which the 

condition requires. (In fact alpha is not even shown as transitionable, because the condition 

is known to be false). Process events zeta2 and alpha. This time a transition does take 

place, and we are in state a2. When we entered state a2, the else part of a conditional action 

was executed, and u got the value 2. The important lines of output showing what has 

happened are: 

 

 

Unconditional transition, conditional action: Reset the model, (command rm) and process 

event beta. As we are not in state z2, the action does not take place (variable w remains at 

0), but the transition goes ahead. 

 

 

 

 

 

 

Reset the model, process events zeta2 and beta. Now the action does take place (variable 

w gets the value 1). 

 

 

 

 

 

 

Conditional transition action with else action: Reset the model and process event gamma. 

As v2=0, (so v2 modulo 2 is also =0), the else action takes place (variable w becomes 45); 

the transition goes ahead anyway. 

 

 

 

 

 

 

 

5             leafstate a2 [a, s, sc] = OCC []  ** 

5             leafstate z2 [z, s, sc] = OCC []  ** 

5    VAR  INTEGER u [sc] =2 

4             leafstate a2 [a, s, sc] = OCC []  ** 

4             leafstate z1 [z, s, sc] = OCC []  ** 

4    VAR  INTEGER w [sc] =0 

 

6             leafstate a2 [a, s, sc] = OCC []  ** 

6             leafstate z2 [z, s, sc] = OCC []  ** 

6    VAR  INTEGER w [sc] =1 

 

6             leafstate a2 [a, s, sc] = OCC []  ** 

6    VAR  INTEGER u [sc] =2 

6    VAR  INTEGER v [sc] =0 

6    VAR  INTEGER w [sc] =45 
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Reset the model, process event setv with parameter 7 (command pe setv p=7), and 

process event gamma. This time the if action takes place (w gets the value 23), and the 

transition goes ahead as usual. Since v is now >6, u gets the value 1 on entry to a2 for a 

change. 

 

 

 

 

 

 

Nested conditional transition action: Reset the model and process event setv with 

parameter 4 (syntax as given above). Now process event delta. We satisfy the else part of 

the outer condition and the if part of the associated inner condition, and w gets the value 3. 

 

 

 

 

Experiment with other values of v. 

 

 

Conditional transition action firing an event: Reset the model and process event epsilon, 

Since v2 modulo 2 is not equal to 1, the action does not take place and we remain in state z1. 

 

 

 

 

 

 

 

Reset the model and process event setv with a parameter 1. Now process event epsilon; 

the action takes place and we are in state z2. 

 

 

 

 

 

 

 

7             leafstate a2 [a, s, sc] = OCC []  ** 

7    VAR  INTEGER u [sc] =1 

7    VAR  INTEGER v [sc] =7 

7    VAR  INTEGER w [sc] =23 

 

6             leafstate a2 [a, s, sc] = OCC []  ** 

6    VAR  INTEGER u [sc] =2 

6    VAR  INTEGER v [sc] =4 

6    VAR  INTEGER w [sc] =3 

4             leafstate z1 [z, s, sc] = OCC []  ** 

4             leafstate z2 [z, s, sc] = VAC [] 

4    VAR  INTEGER u [sc] =2 

4    VAR  INTEGER v [sc] =0 

4    VAR  INTEGER w [sc] =0z2 [z, s, sc] = VAC [] 

6             leafstate z1 [z, s, sc] = VAC [] 

6             leafstate z2 [z, s, sc] = OCC []  ** 

6    VAR  INTEGER u [sc] =2 

6    VAR  INTEGER v [sc] =1 

6    VAR  INTEGER w [sc] =0 
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4.10 Strings and string functions 

Strings are a type of constant/variable like boolean and enumerated integer types. Certain 

operators can be used to make string expressions. Strings might be useful in producing 

annotated and formatted output. We will implement the following model to illustrate them: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 17. Strings and String Functions [model u5220] 

 

Points to note 

 Strings are expressed in double quotes. The empty string is "". 

 Strings can be compared. The comparison is on the ASCII values. String "ab" is less than 

string "bc". String "ab" is less than "abc". 

 Although the above model does not illustrate it, string variables can be scoped, and might 

be addressed e.g. as $$s2. For an example of scoped strings, see test model t5520. 

 We have drawn the transitions as external, but as they are on a leafstate, they are as good 

as internal, and will be implemented as such. 

s1="azA" 

sets1(s1)   //direct parameter  placement 

sets2(s2)   //direct parameter  placement 

setv(v)     //direct parameter  placement 

 

α1 {s1="abcdef";} 

α2 {s2="cd";} 

α3 {s1=s1+s2;} 

α4 {s1=s1-s2;} 

α5 {s1=s1*v;} 

α6 {s1=s1/3;} //illegal 

α7 {s1="";} 

 

β1 {if (s1==s2) {v++;}} 

β2 {if (s1>s2) {v++;}} 

β3 {if (s1>=s2) {v++;}} 

 

γ1 {s1=upper_case(s1+"aA");} 

γ2 {s1=lower_case(s1+"zZ");} 

γ3 {v=length(s1);} 

 

γ4 {s1=format(v,0);} 

γ5 {s1=format(v,3);} 

γ6 {s1=format(v,-3);} 

 

 

 

 

a 

etc. 

s2="z" 

v=3 

all are self- transitions: 
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Call the file strings.scs.txt in directory u5220_strings. Prepare the hierarchy 

first and compile it (as already learned). 

  SC:root F:\KWinPro\StCr\StCr5ModelsUser\u5220_strings 

  SC:cp strings 

 

The hierarchy is: 

 

Add the declarations and transitions: 

 

statechart sc(a) 

  state a; 

statechart sc(a) 

event sets1,sets2,setv; 

event alpha1, alpha2, alpha3, alpha4, alpha5, alpha6, alpha7; 

event beta1,  beta2,  beta3;  

event gamma1, gamma2, gamma3, gamma4, gamma5, gamma6; 

 

enum int1 {0,..,1000}; 

int1 v=3; 

string s1= "az" + "A"; 

string s2="z"; 

 

  state a {                                                      \ 

       sets1(s1);  sets2(s2);  setv(v);                          \ 

                                                                 \ 

       alpha1 {s1="abcdef";};  alpha2 {s2="cd";};                \ 

       alpha3 {s1=s1+s2;};     alpha4 {s1=s1-s2;};               \ 

       alpha5 {s1=s1*v;};      alpha6 {s1=s1/3;}; /* illegal */  \ 

       alpha7 {s1="";};                                          \ 

                                                                 \ 

       beta1 {if (s1==s2) {v++;}};                               \ 

       beta2 {if (s1> s2) {v++;}};                               \ 

       beta3 {if (s1>=s2) {v++;}};                               \ 

                                                                 \ 

       gamma1 {s1=upper_case(s1+"aA");};                         \ 

       gamma2 {s1=lower_case(s1+"zZ");};                         \ 

       gamma3 {v=length(s1);};                                   \ 

       gamma4 {s1=format(v,0);};                                 \ 

       gamma5 {s1=format(v,3);};                                 \ 

       gamma6 {s1=format(v,-3);};                               } 
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Compile the model. Ignore the warning that state a is unreferenced. The warning would not 

appear if the leafstate were the first or only leafstate in a cluster or set, but here it is somewhat 

abnormally in the statechart directly. Run the model. 

 

String values: Obtain the initial configuration and observe how strings are output. The ASCII 

values are printed in a list, and the printable characters follow. 

 

 

Setting strings in event parameters: Transitionable events taking string parameters are shown 

by e.g. 

Process event sets1 with a parameter of string "aAzZ". The formal way to do this is to give 

the following (try it): 

  pe sets1 p=[[ex_str, [97, 65, 122, 90]]] 

If there were several more parameters, they would be inserted at the ellipsis: 

  pe sets1 p=[[ex_str, [97, 65, 122, 90]],...] 

However, provided the string looks like an identifier, the following is accepted (reset the 

model and try it). 

  pe sets1 p=aAzZ   

 

 

String assignment on transition: A simple assignment is illustrated by events alpha1 and 

alpha2. Reset the model and process these two events, giving: 

 

 

Strings can be added: Without resetting after the last events, process event alpha3. The 

strings are concatenated by the "+" operator: 

 

 

Strings can be subtracted: Without resetting after the last events, process event alpha4. The 

"-" operator removes the first occurrence of the second operand in the first: 

2    VAR  STRING  s1 [sc] =[97, 122, 65] =azA 

2    VAR  STRING  s2 [sc] =[122] =z 

2    VAR  INTEGER v [sc] =3 

3    VAR  STRING  s1 [sc] =[97, 65, 122, 90] =aAzZ 

6    VAR  STRING  s1 [sc] =[97, 98, 99, 100, 101, 102] =abcdef 

6    VAR  STRING  s2 [sc] =[99, 100] =cd 

8 VAR STRING  s1 [sc] =[97, 98, 99, 100, 101, 102, 99, 100] =abcdefcd 

8 VAR STRING  s2 [sc] =[99, 100] =cd 

10   VAR  STRING  s1 [sc] =[97, 98, 101, 102, 99, 100] =abefcd 

10   VAR  STRING  s2 [sc] =[99, 100] =cd 

2    TREV [[sets1, [sc]], 1, [[<string>]], []] 
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Strings can be multiplied by a constant: Without resetting after the last events, process event 

alpha5. The "*" operator causes the string to be repeated. 

 

 

String division is illegal: Without resetting after the last events, process event alpha6. The 

"/" operator is not supported and the string takes on a value of unknown. 

 

 

String comparison: Reset the model (command rm) and process event beta1. Variable v 

remains =3, because s1 and s2 are not equal. Process command  

  pe sets1 p=z  

Now s1 and s2 are both "z". Process beta1 again. This time v is incremented to 4: 

Experiment with other string values and with the other beta transitions. The comparison is on 

the ASCII values. String "ab" is less than "abc". 

 

 

Conversion to upper case: Reset the model and process  event gamma1. 

 

 

 Conversion to lower case: Reset the model and process  event gamma2. 

 

 

Length of a string: Reset the model, set v to 0 with pe setv p=0, (optionally set s1 to 

some string of your choice), and process event gamma3. Variable v is assigned to the length 

of string s1. 

 

 

12   VAR  STRING  s1 [sc] =[97, 98, 101, 102, 99, 100, 97, 98, 101, 

 102, 99, 100, 97, 98, 101, 102, 99, 100] =abefcdabefcdabefcd 

14   VAR  STRING  s1 [sc] =unknown 

6    VAR  STRING  s1 [sc] =[122] =z 

6    VAR  STRING  s2 [sc] =[122] =z 

6    VAR  INTEGER v [sc] =4 

4    VAR  STRING  s1 [sc] =[65, 90, 65, 65, 65] =AZAAA 

4    VAR  STRING  s1 [sc] =[97, 122, 97, 122, 122] =azazz 

5    VAR  INTEGER v [sc] =3 
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Formatting an integer: Events gamma1, gamma2 and gamma3 show a variable being 

formatted in various ways. 

 

Event gamma1 just justifies the variable v (which has a reset value 3) 

 

 

 

Event gamma2 right justifies v in a field width of 3. Note the leading spaces in the list (with 

ASCII value 32), and after the second equals sign. 

 

 

 

Event gamma3 left justifies v in a field width of 3. Note the trailing spaces. 

 

 

 

4    VAR  STRING  s1 [sc] =[51] =3 

6    VAR  STRING  s1 [sc] =[32, 32, 51] =  3 

8    VAR  STRING  s1 [sc] =[51, 32, 32] =3 
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4.11 Traces 

There are two well-known ways of testing: white box and black box testing. White box 

testing assumes access to the internals of the implementation under test (IUT), and so in our 

case the ability to observe its state, and perhaps its variables. But with black box testing, only 

certain outputs will be observable (typically return values of functions, or specific data that is 

written into a user buffer).  Certain transitions may produce no observable output at all. Some 

transitions that might be distinguishable in a white box case, because the target states are 

different, might not be immediately distinguishable in the black box case, because the outputs 

are the same. We need a way to model observable outputs, and this is what traces are. By 

calling the trace function, a trace is stored indicating that an output should be given by the 

IUT. Traces are output as part of the get configuration command (gc). It is also possible to 

request traces only with the get traces command (gt). 

 

Traces items can be integers or strings. Traces can be cleared using a function in the model 

(trace_clear()) or by a command (ct). 

 

We will implement the following model: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 18. Traces [model u5230] 

 

  p 

b 

a 

c 

g 

f 

e 

d 

trace("ab",6); 

ω1 

ω2{trace_clear();} 

ω3{trace_clear("clr");} 

 

ω1 

 

 

α {trace(2);} 

 

γ {trace(v);} 

 

δ {trace(v+1);} 

 

ε {trace("cd",5,-7);} 

 

ζ 

 

β {trace(true);} 
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Call the file traces.scs.txt in directory u5230_traces. Prepare the hierarchy first 

and compile it (as already learned). 

  SC:root F:\KWinPro\StCr\StCr5ModelsUser\u5230_traces 

  SC:cp traces 

 

The hierarchy is: 

 

Add the declarations and transitions: 

 

 

Compile and run the model. Process event alpha and get the trace (command gt). 

 

 

Process event gamma and get the trace. 

Note that traces are added to the list on the left. 

statechart sc(p) 

   cluster p(a,b,c,d,e,f,g) 

      state a; 

      state b; 

      state c; 

      state d; 

      state e; 

      state f; 

      state g; 

statechart sc(p) 

 

enum int1 {0,..,1000}; 

int1 v=8; 

 

event alpha,beta,gamma,delta,epsilon,zeta,omega1,omega2,omega3; 

   cluster p(a,b,c,d,e,f,g) {omega1->p.a;                        \ 

                             omega2->p.a {trace_clear();     };  \ 

                             omega3->p.a {trace_clear("clr");}; } 

      state a { alpha->b {trace(2);};            beta->c  

{trace(true);}; } 

      state b { gamma->d {trace(v);};            delta->e 

{trace(v+1);};  } 

      state c { epsilon->f {trace("cd",5,-7);};  zeta->g; }  

      state d; 

      state e; 

      state f; 

      state g { upon enter {trace("ab",6); } } 

4    TRACE =[2] 

6    TRACE =[8, 2] 
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Clear the trace with the ct command and get the trace again. 

 

 

Reset the model (command rm) and process events beta and epsilon, and get the trace. 

On event epsilon, the trace call was trace("cd",5,-7). This shows that the first 

parameter was added to the trace list (on the left) first, then the second and so on. 

 

 

One of the traced items was a string. A string in the trace list is best kept to an identifier in 

connection with an advanced feature of the command language (the ability to feed traces back 

in to STATECRUNCHER). 

 

 

Process event omega3 and get the trace. This transitions to state a and causes 

trace_clear to be called, which clears the old trace and puts its own argument(s) into the 

trace. 

 

 

Process event omega2 which causes trace_clear to be called without arguments. The 

trace is cleared. 

 

 

Process events beta and zeta. The second part of the trace is added as an upon enter 

action. Traces can be added wherever an action is allowed. 

 

 

 

6    TRACE =[] 

6    TRACE =[-7, 5, cd, 1] 

8    TRACE =[clr] 

10   TRACE =[] 

14   TRACE =[6, ab, 1] 
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4.12 Inexact state scoping 

We have already seen inexact variable scoping (section  4.6), and mention has been made in 

passing of inexact state scoping. This section reinforces the concept of inexact state scoping.  

 

Inexact state scoping applies when the reference state is below the addressed state in the 

hierarchy. A reference state is typically the parent of the source state of a transition. An 

addressed state is typically the target state of a transition, but may be an orbital state, the 

parameter of the in,  clear, or deep _clear functions. 

 

The clear and deep_clear and in functions also allow for inexact scoping, but since 

these functions are normally called outside (i.e. in a parallel part of the machine to) the cluster 

whose history is to be cleared, the case does not normally arise. History is set on cluster exit, 

and to clear history while in the same cluster, which could be done with inexact scoping, 

would be pointless. Therefore, we do not contrive a situation to illustrate inexact scoping with 

these functions. 

 

Inexact scoping never searches deeper into the hierarchy; the real state is found by an 

outbound search. So references to parallel parts of a machine should be exact. 

 

We will implement the following model: 
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Figure 19. Inexact state scoping - [model u5250] 
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Call the file state_scoping.scs.txt in directory u5250_state_scoping. 

Prepare the hierarchy first and compile it (as already learned). 

  SC:root F:\KWinPro\StCr\StCr5ModelsUser\u5250_state_scoping 

  SC:cp state_scoping 

 

The hierarchy is: 

 

Add the declarations and transitions: 

statechart sc(y) 

  cluster y(a,b,d)  

      cluster a (a1,a2) 

         state a1; 

         state a2; 

      cluster b(b1,b2,b) 

         state b1; 

         state b2; 

         state b; 

     set d(d1,d2,d3) 

         cluster d1(p,q) 

            state p; 

            state q; 

         cluster d2(r,s) 

            state r; 

            state s; 

         cluster d3(t,u) 

            state t; 

            state u; 

statechart sc(y) 

enum vint {0,..,100000}; 

vint x=0,n=0; 

event omega_a2, omega_b2, omega_ds, omega_v; 

event alpha,    beta1,    beta2,    delta; 

 

  cluster y(a,b,d) {upon enter {n=n*10+4;}   upon exit  {x=x*10+4;} \ 

                    omega_a2 ->  y.a.a2;     omega_b2 ->  y.b.b2;   \ 

                    omega_ds ->  y.d.d2.s;   omega_v {x=0; n=0;};   } 

      cluster a (a1,a2) 

         state a1; 

         state a2          {alpha->a;} 

      cluster b(b1,b2,b) 

         state b1; 

         state b2          {beta1->b; beta2->$b;} 

         state b; 

     set d(d1,d2,d3)       {upon enter {n=n*10+3;} upon exit{x=x*10+3;} } 

         cluster d1(p,q) 

            state p; 

            state q; 

         cluster d2(r,s)   {upon enter {n=n*10+2;} upon exit{x=x*10+2;} } 

            state r        {upon enter {n=n*10+1;} upon exit{x=x*10+1;} } 

            state s        {upon enter {n=n*10+1;} upon exit{x=x*10+1;} \ 

                            delta -> y -> $$d.d1.q/\d2/\$$d.d3.u;       } 

         cluster d3(t,u) 

            state t; 

            state u; 
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Compile the model. Process event omega_a2 and check that state a2 has been entered (with 

the gc command): 

 

 

Process event alpha. Observe that the transition is processed, and that state a1 is entered, 

showing that the transition was accepted with the inexact target state scope:  

 

 

Process event omega_b, and check that state b2 has been entered. 

 

 

Process event beta1, and observe that leafstate b has been entered (so the target was not the 

parent of the same name). 

 

 

Process events omega_ds and omega_v. Check that state y.d.d2.s is occupied, and that 

the variables have been set to zero. 

 

 

Process event delta, and check the occupation of set d and the variable values, which show 

what has been entered and exited. The inexact orbit y was accepted, and inexact target state 

d2 was accepted. 

4             leafstate a1 [a, y, sc] = OCC []  ** 

3             leafstate a2 [a, y, sc] = OCC []  ** 

5             leafstate b2 [b, y, sc] = OCC []  ** 

6             leafstate b [b, y, sc] = OCC []  ** 

28               leafstate s [d2, d, y, sc] = OCC []  ** 

28   VAR  INTEGER n [sc] =0 

28   VAR  INTEGER x [sc] =0 

50         set d [y, sc] = OCC []  ** 

50            cluster d1 [d, y, sc] = OCC p  ** 

50               leafstate p [d1, d, y, sc] = VAC [] 

50               leafstate q [d1, d, y, sc] = OCC []  ** 

50            cluster d2 [d, y, sc] = OCC s  ** 

50               leafstate r [d2, d, y, sc] = OCC []  ** 

50               leafstate s [d2, d, y, sc] = VAC [] 

50            cluster d3 [d, y, sc] = OCC t  ** 

50               leafstate t [d3, d, y, sc] = VAC [] 

50               leafstate u [d3, d, y, sc] = OCC []  ** 

50   VAR  INTEGER n [sc] =321 

50   VAR  INTEGER x [sc] =123 
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4.13 Introduction to nondeterminism 

We have now introduced most of STATECRUNCHER's language features (but see arrays, a 

recent addition in section  4.27). All the models so far have been deterministic, i.e. on 

processing an event, they have produced one set of state occupancies, cluster histories, 

variable values and traces. We now introduce some models where this is no longer the case - 

they are nondeterministic models. Nondeterminism arises when not enough is known about an 

implementation under test to be able to predict exactly what it will do, so we must allow for 

some alternatives. For example, supposing a tuner produces notification messages while 

tuning, tuning in progress, until it finds a station. We may not be able to predict how many 

notifications will be generated, and if there are other possible events, their interleavings may 

not be exactly known. STATECRUNCHER allows for differing outcomes to be produced by its 

six forms of nondeterminism: 

 fork nondeterminism, where an event triggers more than one transition form the same 

source state. 

 race nondeterminism, where an event triggers more than one transition in parallel parts of 

a machine. 

 set-transit nondeterminism, where the members of a set are entered and exited in various 

orderings. 

 set-action nondeterminism, where actions take place within members of a set, and are 

carried out in various orderings. 

 set-meta-event nondeterminism, where meta-events (internally generated exit and enter 

events) are broadcast in various orderings. 

 fired event (or: broadcast event) nondeterminism, where any form of nondeterminism 

arises as a result of a fired event, so in mid-algorithm, rather than directly as a result of a 

user event. 

 

STATECRUNCHER models the different outcomes as worlds. Each world maintains its own set 

of state occupancies, cluster histories, variable values, and traces. The get configuration (gc) 

command produces output for all worlds. 

 

The different forms of nondeterminism will now each be described in turn. 
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4.14 Fork nondeterminism 

Fork nondeterminism occurs where an event triggers more than one transition form the same 

source state. STATECRUNCHER handles this by generating a world for each prong of the fork. 

If any resultant worlds end up by being identical (in terms of state occupancies, cluster 

histories and variable values), duplicates will be removed. 

 

We will implement the following model: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 20. Fork nondeterminism [model u5420] 

 

The forks are emphasised by the double ellipses. The first fork is on event β, where the fork 

leads to two different target states. Then on event γ there is another fork, but with two 

transitions from different source states (b1 and b2) converging on the same target state. A 

duplicate world will be discarded, and there will be 3 resultant worlds. On event δ, two 

worlds do not respond (those in states c1 and c3); these will be left intact. Departing from 

the world where c2 is occupied,  there are 5 transitions, but they only lead to 4 new worlds, 

because two transitions lead to an identical world. In all there are 6 worlds after event delta. 

The model can effectively be reset by event alpha, which will be processed in all worlds, 

but will take them to the same configuration, and duplicates will be removed, leaving one 

world. 

 

World numbers are arbitrary. Internally, the numbers are allocated sequentially as more and 

more events, transitions and actions are processed, but some world numbers may never be 

seen by the user as they are only used temporarily during processing. Worlds are not 

presented in numerical order, and the order is not significant. 
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Call the file fork.scs.txt in directory u5420_fork. Prepare the hierarchy first and 

compile it (as already learned). 

  SC:root F:\KWinPro\StCr\StCr5ModelsUser\u5420_fork 

  SC:cp fork 

 

The hierarchy is: 

 

 

Add the declarations and transitions: 

 

statechart sc(m) 

   cluster m(a,b1,b2,c1,c2,c3,d2,d3,d4) 

      state a; 

      state b1; 

      state b2; 

      state c1; 

      state c2; 

      state c3; 

      state d2; 

      state d3; 

      state d4; 

statechart sc(m) 

event alpha,beta,gamma,delta; 

enum vint {0,..,100000}; 

vint v=0; 

   cluster m(a,b1,b2,c1,c2,c3,d2,d3,d4) {alpha->m.a{v=0;};} 

      state a  {beta->b1;  beta->b2;} 

      state b1 {gamma->c1; gamma->c2;} 

      state b2 {gamma->c2; gamma->c3;} 

      state c1; 

      state c2 {delta->d2;               \ 

                delta->d3{v=v*10+1+1;};  \ 

                delta->d3{v=v*10+2;};    \ 

                delta->d3{v=v*10+3;};    \ 

                delta->d4;} 

      state c3; 

      state d2 {upon enter {v=v*10+1;}} 

      state d3; 

      state d4 {upon enter {v=v*10+4;}} 
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Compile and run the model. Process event beta. There are two worlds, one in state b1 and 

the other in b2: 

 

 

Process event gamma. There are 3 worlds, in states c1, c2 and c3 respectively. 

 

 

SC:gc 

3    statechart sc 

3       cluster m [sc] = OCC []  ** 

3          leafstate a [m, sc] = VAC [] 

3          leafstate b1 [m, sc] = VAC [] 

3          leafstate b2 [m, sc] = OCC []  ** 

... 

 

4    statechart sc 

4       cluster m [sc] = OCC []  ** 

4          leafstate a [m, sc] = VAC [] 

4          leafstate b1 [m, sc] = OCC []  ** 

4          leafstate b2 [m, sc] = VAC [] 

... 

 

outworlds=[3, 4] 

number of outworlds=2 

5          leafstate c1 [m, sc] = VAC [] 

5          leafstate c2 [m, sc] = OCC []  ** 

5          leafstate c3 [m, sc] = VAC [] 

... 

6          leafstate c1 [m, sc] = OCC []  ** 

6          leafstate c2 [m, sc] = VAC [] 

6          leafstate c3 [m, sc] = VAC [] 

... 

7          leafstate c1 [m, sc] = VAC [] 

7          leafstate c2 [m, sc] = VAC [] 

7          leafstate c3 [m, sc] = OCC []  ** 

... 

outworlds=[5, 6, 7] 

number of outworlds=3 
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Process event delta. there are 6 worlds, in  5 states (c1, c3, d1, d2, d3), with 2 worlds of 

differing variable values in state d3. 

 

 

Fork nondeterminism is relatively fast (compared to other forms of nondeterminism). The 

gpt command gets the elapsed processing time of the last event. 

 

 

Process event alpha. This takes us to the initial state. 

 

7          leafstate c3 [m, sc] = OCC []  ** 

... 

 

6          leafstate c1 [m, sc] = OCC []  ** 

... 

 

10         leafstate d4 [m, sc] = OCC []  ** 

10   VAR  INTEGER v [sc] =4 

... 

 

12         leafstate d3 [m, sc] = OCC []  ** 

12   VAR  INTEGER v [sc] =3 

... 

 

14         leafstate d3 [m, sc] = OCC []  ** 

14   VAR  INTEGER v [sc] =2 

... 

 

18         leafstate d2 [m, sc] = OCC []  ** 

18   VAR  INTEGER v [sc] =1 

 

20         leafstate a [m, sc] = OCC []  ** 

20   VAR  INTEGER v [sc] =0 

SC:gpt 

exec time=00h 00m 00s 160ms 
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4.15 Fork nondeterminism differentiated by history and trace 

In the preceding example, the distinguishing aspects of the worlds were state occupation and 

variable values. The other distinguishing aspects are cluster history and traces, illustrated in 

this section by fork nondeterminism (we could have chosen any other kind of 

nondeterminism). 

 

We will construct the following model: 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 21. Fork nondeterminism differentiated by history and trace [model u5422] 

 

On event α, cluster p enters a non-default state. Then on event β, cluster p is exited and its 

history is recorded (which is also the case even if we skip event α - the history is then state 

p1). On event gamma there are three prongs to fork nondeterminism. Although they all end 

up in the same state, one world has a different history to another, and one world has a 

different trace to another. 

 

 

Call the file fork_history.scs.txt in directory u5422_fork_history. Prepare 

the hierarchy first and compile it (as already learned). 

  SC:root F:\KWinPro\StCr\StCr5ModelsUser\u5422_fork_history 

  SC:cp fork_history 

 

The hierarchy is: 

 

a 

p1 p2 

p H α  

γ {clear(p);} 

γ a1 

γ (trace {123)} 

δ 

β 

statechart sc(a) 

  cluster a(p,a1)   

     cluster p(p1,p2)  

        state p1; 

        state p2; 

     state a1; 
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Add the declarations and transitions: 

 

 

Compile the model. Process events alpha and beta and get the configuration. Observe 

cluster p's history. 

 

 

Process event gamma. This yields three worlds: one with a trace (6), one with history cleared 

(9) and one with neither of these things (7). 

 

statechart sc(a) 

event alpha,beta,gamma,delta; 

  cluster a(p,a1)   

     cluster p(p1,p2) history {beta->a1;} 

        state p1 {alpha->p2;} 

        state p2; 

     state a1     {gamma{clear(p);};   \ 

                   gamma;              \ 

                   gamma{trace(123);}; \ 

                   delta->p;           } 

4    statechart sc 

4       cluster a [sc] = OCC []  ** 

4          cluster p [a, sc] = VAC p2 

4             leafstate p1 [p, a, sc] = VAC [] 

4             leafstate p2 [p, a, sc] = VAC [] 

4          leafstate a1 [a, sc] = OCC []  ** 

4    TRACE =[] 

4    TREV [[gamma, [sc]], 0, [], []] 

4    TREV [[delta, [sc]], 0, [], []] 

6          cluster p [a, sc] = VAC p2 

6          leafstate a1 [a, sc] = OCC []  ** 

6    TRACE =[123] 

... 

7          cluster p [a, sc] = VAC p2 

7          leafstate a1 [a, sc] = OCC []  ** 

7    TRACE =[] 

... 

9          cluster p [a, sc] = VAC [] 

9          leafstate a1 [a, sc] = OCC []  ** 

9    TRACE =[] 

... 

outworlds=[6, 7, 9] 

number of outworlds=3 
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Give command to clear traces (ct). This causes duplicate worlds to be destroyed. World 7 is 

the victim. 

 

 

Process event delta. Cluster p is then occupied in two different ways in two different 

worlds. 

 

 

 

6          cluster p [a, sc] = VAC p2 

6          leafstate a1 [a, sc] = OCC []  ** 

6    TRACE =[] 

... 

9          cluster p [a, sc] = VAC [] 

9          leafstate a1 [a, sc] = OCC []  ** 

9    TRACE =[] 

... 

outworlds=[6, 9] 

number of outworlds=2 

10   statechart sc 

10      cluster a [sc] = OCC []  ** 

10         cluster p [a, sc] = OCC []  ** 

10            leafstate p1 [p, a, sc] = OCC []  ** 

10            leafstate p2 [p, a, sc] = VAC [] 

10         leafstate a1 [a, sc] = VAC [] 

10   TRACE =[] 

10   TREV [[alpha, [sc]], 0, [], []] 

10   TREV [[beta, [sc]], 0, [], []] 

 

11   statechart sc 

11      cluster a [sc] = OCC []  ** 

11         cluster p [a, sc] = OCC p2  ** 

11            leafstate p1 [p, a, sc] = VAC [] 

11            leafstate p2 [p, a, sc] = OCC []  ** 

11         leafstate a1 [a, sc] = VAC [] 

11   TRACE =[] 

11   TREV [[beta, [sc]], 0, [], []] 

 

outworlds=[10, 11] 

number of outworlds=2 
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4.16 Scoped events illustrated by fork nondeterminism 

This model shows how to distinguish between 

 different ways of expressing the same event (or other item) at the same point in the 

hierarchy 

 how an event or (other item) is automatically searched for in the hierarchy by the 

outbound search mechanism. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 22. Scoped events illustrated by fork nondeterminism [model t5510] 

 

There are 4 events called α but in different scopes, which we can denote in expression form 

with the corresponding scope in right-to-left list form as output: 

::α   scope[sc] 

::x.α[x,sc]  scope[x,sc] 

::x.a.α  scope[a,x,sc] 

::x.a.b.c.d.α scope[d,c,b,a,x,sc] 

x 

b 

p 

r 

s 

t 

e 

a 

β ::α 

c 

d 

α 

α 

α 

α 

no α here 

u 

v 

::x.α 

::x.a.b.α 

::x.a.α 

::x.a.b.c.α 

::x.a.b.c.d.α 

references ::x.a.α 

no α here 

references ::x.a.α 

references ::x.a.α 

 fork-2 

q 

$α 

 fork-1 

same as above by 

alternative notation 
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The expressions beginning with :: (statechart scope) can be used anywhere in the model. But 

these events can also be expressed by relative addressing, e.g. using the $ operator. We have 

an instance where two expressions yield the same α at the same point in the hierarchy. We 

have arranged for this to cause fork nondeterminism. 

 

This should be distinguished from addressing a point in the hierarchy (by an absolute or 

relative expression) where, strictly speaking, no α exists. This is the case when we address 

::x.a.b.α. But by an outbound search, the α at ::x.a.α is found. Similarly 

::x.a.b.c.α is converted to ::x.a.α. We have also arranged for transitions labeled 

with these expressions to cause fork nondeterminism. 

 

We now construct and run the model. 

 

Call the file scoped_fork.scs.txt in directory u5510_scoped_fork. Prepare the 

hierarchy first and compile it (as already learned). 

  SC:root F:\KWinPro\StCr\StCr5ModelsUser\u5510_scoped_fork 

  SC:cp scoped_fork 

 

The hierarchy is: 

 

statechart sc(x) 

cluster x(a,p,q,r,s,t,u,v) 

   cluster a(b)  

      cluster b(c) 

         cluster c(d) 

            cluster d(e) 

               state e; 

   state p; 

   state q; 

   state r; 

   state s; 

   state t; 

   state u; 

   state v; 
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Add the declarations and transitions: 

 

 

Compile the model. Get the configuration and note the transitionable events: 

 

 

The first alpha can be processed by 

  SC:pe alpha 

This results in one world where we are in state p. 

 

 

statechart sc(x) 

event alpha,beta;                        // ::alpha 

 

cluster x(a,p,q,r,s,t,u,v) {beta->x.a;} 

event alpha;                             // ::x.alpha 

 

   cluster a(b) {::alpha->p;            \ 

                 ::x.alpha->q;          \ 

                 $alpha->r;             \ 

                 ::x.a.alpha->s;        \ 

                 ::x.a.b.alpha->t;      \ 

                 ::x.a.b.c.alpha->u;    \ 

                 ::x.a.b.c.d.alpha->v; } 

   event alpha;                          // ::x.a.alpha 

 

      cluster b(c) 

         cluster c(d) 

            cluster d(e) 

            event alpha;                 // ::x.a.b.c.d.alpha 

 

               state e; 

   state p; 

   state q; 

   state r; 

   state s; 

   state t; 

   state u; 

   state v; 

2    TREV [[beta, [sc]], 0, [], []] 

2    TREV [[alpha, [sc]], 0, [], []] 

2    TREV [[alpha, [x, sc]], 0, [], []] 

2    TREV [[alpha, [a, x, sc]], 0, [], []] 

2    TREV [[alpha, [d, c, b, a, x, sc]], 0, [], []] 

3          leafstate p [x, sc] = OCC []  ** 
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Process beta and then the second alpha, by the command 

  SC:pe [alpha,[x,sc]] 

This gives rise to two worlds under fork nondeterminism, where states r and q are occupied: 

 

 

Process beta and then the third alpha, by the command 

  SC:pe [alpha,[a,x,sc]] 

This gives rise to three worlds under fork nondeterminism, where states s, t and u are 

occupied: 

 

 Process beta and then the fourth alpha, by the command 

  SC:pe [alpha,[d,c,b,a,x,sc]] 

This gives rise to one world, where state v is occupied: 

 

5          leafstate r [x, sc] = OCC []  ** 

... 

6          leafstate q [x, sc] = OCC []  ** 

9          leafstate u [x, sc] = OCC []  ** 

... 

10         leafstate t [x, sc] = OCC []  ** 

... 

11         leafstate s [x, sc] = OCC []  ** 

15         leafstate v [x, sc] = OCC []  ** 
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4.17 Race nondeterminism 

In STATECRUNCHER, race nondeterminism occurs where an event triggers more than one 

transition in parallel parts of a machine. If the order in which these transitions is executed 

affects the outcome, then a world will be generated for each outcome. The worlds may be 

distinguished by state occupancy, cluster history, variable value or trace. 

 

We consider a race where the winner is determined by a variable value: 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 23. Race nondeterminism  - winner detected by variable value [model u5450] 

 

Call the file race_var.scs.txt in directory u5450_race_var. Prepare the 

hierarchy first and compile it (as already learned). 

  SC:root F:\KWinPro\StCr\StCr5ModelsUser\u5450_race_var 

  SC:cp race_var 

 

The hierarchy is: 

 

statechart sc(s) 

   set s(a,b) 

      cluster a(a1,a2)  

         state a1; 

         state a2; 

      cluster b(b1,b2) 

         state b1; 

         state b2; 

a 

s 

α {v=v*10+1;} 

a1 a2 

b 

b1 b2 

α {v=v*10+2;} 

β {v=0;} 
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Add the declarations and transitions: 

 

Compile the model. Process event alpha. The worlds are distinguished by the variable 

value, which reveals the order in which the transitions were executed. World 6 has v=12, 

which reveals that the upper transition was executed first. In world 10, v=21 showing that the 

lower transition was executed first. 

 

 

Process event beta to effectively reset the model: 

statechart sc(s) 

event alpha,beta; 

enum int1 {0,..,1000}; 

int1 v=0; 

   set s(a,b)          {beta->s{v=0;};} 

      cluster a(a1,a2)  

         state a1      {alpha->a2{v=v*10+1;};} 

         state a2; 

      cluster b(b1,b2) 

         state b1      {alpha->b2{v=v*10+2;};} 

         state b2; 

6    statechart sc 

6       set s [sc] = OCC []  ** 

6          cluster a [s, sc] = OCC []  ** 

6             leafstate a1 [a, s, sc] = VAC [] 

6             leafstate a2 [a, s, sc] = OCC []  ** 

6          cluster b [s, sc] = OCC []  ** 

6             leafstate b1 [b, s, sc] = VAC [] 

6             leafstate b2 [b, s, sc] = OCC []  ** 

6    VAR  INTEGER v [sc] =12 

... 

 

10   statechart sc 

10      set s [sc] = OCC []  ** 

10         cluster a [s, sc] = OCC []  ** 

10            leafstate a1 [a, s, sc] = VAC [] 

10            leafstate a2 [a, s, sc] = OCC []  ** 

10         cluster b [s, sc] = OCC []  ** 

10            leafstate b1 [b, s, sc] = VAC [] 

10            leafstate b2 [b, s, sc] = OCC []  ** 

10   VAR  INTEGER v [sc] =21 

... 

12   statechart sc 

12      set s [sc] = OCC []  ** 

12         cluster a [s, sc] = OCC []  ** 

12            leafstate a1 [a, s, sc] = OCC []  ** 

12            leafstate a2 [a, s, sc] = VAC [] 

12         cluster b [s, sc] = OCC []  ** 

12            leafstate b1 [b, s, sc] = OCC []  ** 

12            leafstate b2 [b, s, sc] = VAC [] 

12   VAR  INTEGER v [sc] =0 

... 



   

© Graham G. Thomason 2003-2004  77
 

We now give examples from the test suite of race nondeterminism where the winner is 

detected by meta event, fired event, and trace. We also show a race to a single target and a 

race to start. These need not be implemented as an integral part of the user training 

programme, but should be studied for the point being illustrated. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 24. Race nondeterminism; winner detected by meta-event [model t5430] 
 

In the above model, on event α, one ordering of the two transitions causes a2 to be entered 

before b2, and the other ordering of the two transitions is the other way round. There will be 

two worlds as a result. In one world, z2 will be occupied, and in the second world it will be 

z3 that is occupied. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 25. Race nondeterminism - winner detected by fired event [model t5440] 
 

This model is very similar to the one above it. The difference is that instead of using the 

internally generated enter() meta-events to trigger transitions in member z,  we fire events 

γ  and δ manually (on the transition, not on entering a2 and b2) to trigger transitions in 

member z. 
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Figure 26. Race nondeterminism - winner detected by trace [model t5470] 
 

In the above model the two transitions on event α generate different traces, so when both 

have transitions have taken place, the order of the traces will distinguish worlds with different 

orderings. 

 

 

 

 

 

 

 

 

 

 

 

Figure 27. Race to a single target with traces [model t5472] 
n 

In this model there is a race distinguished by traces, but the race is to a single target. The first 

transition to be processed causes the whole set to be exited and invalidates the other transition 

at execution time. This illustrates an important principle: transitions are reconsidered for 

validity just before execution, and do not run if they are in any way invalidated, which might 

be because the source state has become vacant, or because the condition now evaluates to 

false.  The two worlds produced each have just the one trace produced by the only transition 

to actually run. 

 

 

 

 

 

 

 

 

Figure 28. Race to start (mutually exclusive transitions) [model t5474] 
 

In this model, two transitions on α each block the other, and only the first transition in the 

ordering will take place. Two worlds are produced: one in states a1 and b2, and one in a2 

and b1. 
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α {trace(1);} 
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4.18 Set-transit nondeterminism 

When a set is entered, all it members are entered (similarly when it is exited, but we take 

entering as an example). The order in which the members are entered may be significant, 

because of upon enter actions. STATECRUNCHER offers the facility to generate different 

orderings of entering the members. The number of orderings can be controlled (see section 

 4.24); we will work with the default which generates all orderings of a set with three 

members, but not all orderings for larger sets. 

 

We will implement the following model: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 29. Set transit nondeterminism [model u5410] 
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Call the file set_tran.scs.txt in directory u5410_set_tran. Prepare the 

hierarchy first and compile it (as already learned). 

  SC:root F:\KWinPro\StCr\StCr5ModelsUser\u5410_set_tran 

  SC:cp set_tran 

 

The hierarchy is: 

 

Add the declarations and transitions etc. 

 

We use strings rather than integers, because the integers would become large, and may be 

output in exponential form, depending on the Prolog system. 

statechart sc(a) 

  cluster a(b,c) 

    set b(p,q) 

      cluster p(p1,p2) 

        state p1; 

        state p2; 

      cluster q(q1,q2) 

        state q1; 

        state q2; 

    set c(i,j) 

      cluster i(i1,i2) 

        state i1; 

        state i2; 

      cluster j(j1,j2) 

        state j1; 

        state j2; 

statechart sc(a) 

event alpha,beta,gamma,omega; 

string u="", v=""; 

  cluster a(b,c) {omega {u=""; v="";};} 

    set b(p,q)        {upon enter {v=v+"6";} upon exit {u=u+"5";} \ 

                                beta->c; alpha-> c.i.i2/\c.j.j2;} 

      cluster p(p1,p2){upon enter {v=v+"7";} upon exit {u=u+"2";}} 

        state p1      {upon enter {v=v+"8";} upon exit {u=u+"1";}} 

        state p2      {upon enter {v=v+"8";} upon exit {u=u+"1";}} 

      cluster q(q1,q2){upon enter {v=v+"9";} upon exit {u=u+"4";}} 

        state q1      {upon enter {v=v+"0";} upon exit {u=u+"3";}} 

        state q2      {upon enter {v=v+"0";} upon exit {u=u+"3";}} 

 

    set c(i,j)        {upon enter {u=u+"6";} upon exit {v=v+"5";} \ 

                                 beta->b; gamma-> b.(p.p2/\q.q2);} 

      cluster i(i1,i2){upon enter {u=u+"7";} upon exit {v=v+"2";}} 

        state i1      {upon enter {u=u+"8";} upon exit {v=v+"1";}} 

        state i2      {upon enter {u=u+"8";} upon exit {v=v+"1";}} 

      cluster j(j1,j2){upon enter {u=u+"9";} upon exit {v=v+"4";}} 

        state j1      {upon enter {u=u+"0";} upon exit {v=v+"3";}} 

        state j2      {upon enter {u=u+"0";} upon exit {v=v+"3";}} 
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Compile and run the model. Process event alpha. This causes set b to be exited in two 

orderings, then for each of those orderings, for set c to be entered in two different orderings. 

There are 4 different orderings of the set transit, and the values of u will register them: 

  exit (p2,p),(q2,q),b;  enter c,(i,i2),(j,j2); u=1234567890 

  exit (p2,p),(q2,q),b;  enter c,(j,j2),(i,i2); u=1234569078 

  exit (q2,q),(p2,p),b;  enter c,(i,i2),(j,j2); u=3412567890 

  exit (q2,q),(p2,p),b;  enter c,(j,j2),(i,i2); u=3412569078 

These orderings are produced in different worlds. When the get configuration command (gc) 

is given, four blocks of output are given, one for each world. The integer at the start of each 

line of output is the world number. From the user's perspective, the numbers are arbitrary, but 

distinct. 

 

If we transition back to set a with event gamma, say, then variable v will track another 4 

orderings. And these will be done in the 4 existing worlds. That will produce 16 worlds. On a 

slow machine (300 MHz), this may take a few seconds to process. The last lines of output are: 

 

The order of transit in this last world was: 

  exit (j2,j), (i2,i), c;  enter: b, (p,p2), (q,q2). 

 

Note that when a set member is exited, we exit the leafstate then always immediately follow 

this by the set member, before moving on to the other member. So we never have an ordering 

such as exit j2, exit i2, exit j, exit i. This would be too fine an interleaving, and would 

exacerbate combinatorial explosion. We have bracketed tied orderings such as (j2,j) in the 

above descriptions. 

 

If event beta is now given, then there will be 64 worlds. The execution time for the last 

event can be obtained with the command gpt (get processing time). On a 300 MHz machine, 

running under SWI-Prolog, this gives 

 

22   VAR  STRING  u [sc] =[49, ...] =1234569078 

23   VAR  STRING  u [sc] =[51, ...] =3412569078 

32   VAR  STRING  u [sc] =[49, ...] =1234567890 

33   VAR  STRING  u [sc] =[51, ...] =3412567890 

157  VAR  STRING  u [sc] =[49, ...] =1234569078 

157  VAR  STRING  v [sc] =[51, ...] =3412567890 

157  TRACE =[] 

157  TREV [[omega, [sc]], 0, [], []] 

157  TREV [[beta, [sc]], 0, [], []] 

157  TREV [[alpha, [sc]], 0, [], []] 

 

outworlds=[53, 54, 63, ... 156, 157] 

number of outworlds=16 

SC:gpt 

exec time=00h 00m 26s 530ms 
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If we process event omega, the variables are reset, and the number of worlds goes down from 

64 to 1. This is an internal event and takes place rather faster: 

 

 

Although our model does not show it, set transit nondeterminism is applied at several levels in 

the hierarchy if necessary. Test model t6311 illustrates this, but it suffers to some extent 

from combinatorial explosion, although event beta1 can be processed in under 15 minutes 

(at 300MHz, SWI Prolog) producing 128 worlds. 

 

 

SC:pe omega 

SC:gpt 

exec time=00h 00m 05s 210ms 
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4.19 Set-action nondeterminism 

In the last section, we saw set-transit nondeterminism. But what about when the transitions 

are within the sets, and there is no transit in and out of the set? We still have to consider 

orderings. We consider the following model, which has nested sets, and we warn in advance 

for the beginnings of combinatorial explosion and poor performance. However, some more 

efficient ways to obtain similar behaviour are also discussed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 30. Set action nondeterminism [model u5412] 

 

When event α is given, all the set members undergo a local transition. (There is actually a 

race between them, but there is no difference in outcome whatever the race order, and we 

ignore the race.  Race nondeterminism of this kind was considered in section  4.17). 

 

We could make all these set members transition back with another request to process event α. 

As the set members transition back, they generate values of v that record the order in which it 

happened. Each order generates a different value of v. There are 5! = 120 orderings, although 

this can be restricted, to be explained later (section  4.23). 

 

Now event ω will do a similar thing in principle, although it is only attached to one transition. 

But there is one difference in what happens: orderings will be hierarchically generated as 

follows: the 3! =6 orderings within set a will be generated, and the 2! = 2 orderings within set 

b will be generated. Then these 6 and 2 orderings will be regarded as single entities and 
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ordered in 2! =2 different ways. So the total number of orderings will be 3!.2!.2! =24. We call 

this set-action nondeterminism. 

 

As it happens, on a 300MHz machine under SWI-Prolog, the 120 worlds of the race are 

generated in 2
1
/2 minutes, and the 24 worlds of the set-action are generated in 5

1
/2 minutes. 

But if there were to be further processing with nondeterminism of any kind, it would be better 

to depart from 24 worlds than 120, if the 24 cover the needs of the user. 

 

We will prepare the model and see this in action. 

 

Call the file set_action.scs.txt in directory u5412_set_action. Prepare the 

hierarchy first and compile it (as already learned). 

  SC:root F:\KWinPro\StCr\StCr5ModelsUser\u5412_set_action 

  SC:cp set_action 

 

The hierarchy is: 

 

statechart sc(sy) 

set sy(a,b) 

   set a(a1,a2,a3) 

      cluster a1(i,j) 

         state i; 

         state j; 

      cluster a2(k,l) 

         state k; 

         state l; 

      cluster a3(m,n) 

         state m; 

         state n; 

   set b(b1,b2) 

      cluster b1(p,q) 

         state p; 

         state q; 

      cluster b2(r,s) 

         state r; 

         state s; 
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Add the declarations and transitions: 

 

statechart sc(sy) 

event alpha; 

event alpha_i, alpha_j, alpha_k, alpha_l, alpha_m, alpha_n; 

event alpha_p, alpha_q, alpha_r, alpha_s; 

event omega, omega_vreset, omega_race, omega1, omega2; 

 

enum vint {0,..,1000000}; 

vint v=0; 

 

set sy(a,b)  {omega->sy; omega_vreset {v=0;};} 

 

   set a(a1,a2,a3) {omega_race->a; omega1->a;} 

 

      cluster a1(i,j) 

         state i   {                      alpha, alpha_j->j;} 

         state j   {upon exit {v=v*10+1;} alpha, alpha_i->i;} 

 

      cluster a2(k,l) 

         state k   {                      alpha, alpha_l->l;} 

         state l   {upon exit {v=v*10+2;} alpha, alpha_k->k;} 

 

      cluster a3(m,n) 

         state m   {                      alpha, alpha_n->n;} 

         state n   {upon exit {v=v*10+3;} alpha, alpha_m->m;} 

 

   set b(b1,b2)    {omega_race->b; omega2->b;} 

 

      cluster b1(p,q) 

         state p   {                      alpha, alpha_q->q;} 

         state q   {upon exit {v=v*10+4;} alpha, alpha_p->p;} 

 

      cluster b2(r,s) 

         state r   {                      alpha, alpha_s->s;} 

         state s   {upon exit {v=v*10+5;} alpha, alpha_r->r;} 
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Compile the model. Process event alpha. (This should be quick - a few seconds at most - 

assuming the default race setting, medium race,  is in place. This will be explained later). All 

the local transitions will take place, and there will be one world: 

 

Now process event omega (and if your machine is not too new, take a coffee). Then get the 

configuration (command gc). There are 24 worlds. The last one is as follows: 

7    statechart sc 

7       set sy [sc] = OCC []  ** 

7          set a [sy, sc] = OCC []  ** 

7             cluster a1 [a, sy, sc] = OCC []  ** 

7                leafstate i [a1, a, sy, sc] = VAC [] 

7                leafstate j [a1, a, sy, sc] = OCC []  ** 

7             cluster a2 [a, sy, sc] = OCC []  ** 

7                leafstate k [a2, a, sy, sc] = VAC [] 

7                leafstate l [a2, a, sy, sc] = OCC []  ** 

7             cluster a3 [a, sy, sc] = OCC []  ** 

7                leafstate m [a3, a, sy, sc] = VAC [] 

7                leafstate n [a3, a, sy, sc] = OCC []  ** 

7          set b [sy, sc] = OCC []  ** 

7             cluster b1 [b, sy, sc] = OCC []  ** 

7                leafstate p [b1, b, sy, sc] = VAC [] 

7                leafstate q [b1, b, sy, sc] = OCC []  ** 

7             cluster b2 [b, sy, sc] = OCC []  ** 

7                leafstate r [b2, b, sy, sc] = VAC [] 

7                leafstate s [b2, b, sy, sc] = OCC []  ** 

7    VAR  INTEGER v [sc] =0 

... 

173  statechart sc 

173     set sy [sc] = OCC []  ** 

173        set a [sy, sc] = OCC []  ** 

173           cluster a1 [a, sy, sc] = OCC []  ** 

173              leafstate i [a1, a, sy, sc] = OCC []  ** 

173              leafstate j [a1, a, sy, sc] = VAC [] 

173           cluster a2 [a, sy, sc] = OCC []  ** 

173              leafstate k [a2, a, sy, sc] = OCC []  ** 

173              leafstate l [a2, a, sy, sc] = VAC [] 

173           cluster a3 [a, sy, sc] = OCC []  ** 

173              leafstate m [a3, a, sy, sc] = OCC []  ** 

173              leafstate n [a3, a, sy, sc] = VAC [] 

173        set b [sy, sc] = OCC []  ** 

173           cluster b1 [b, sy, sc] = OCC []  ** 

173              leafstate p [b1, b, sy, sc] = OCC []  ** 

173              leafstate q [b1, b, sy, sc] = VAC [] 

173           cluster b2 [b, sy, sc] = OCC []  ** 

173              leafstate r [b2, b, sy, sc] = OCC []  ** 

173              leafstate s [b2, b, sy, sc] = VAC [] 

173  VAR  INTEGER v [sc] =54321 

173  TRACE =[] 

... 

outworlds=[58, 63, 68, ... 168, 173] 

number of outworlds=24 

SC:gpt 

exec time=00h 05m 38s 120ms 
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This world, with v=54321, shows that the exit order was b2, b1, a3, a2, a1. Examine other 

worlds and deduce the exit order. You will see orderings of (a3, a2, a1) but always next to 

each other, and orderings of (b2, b1), but always next to each other, and sometimes the a's 

will be before the b's. But you will never see an ordering such as a1, b1, a2, b2, b3. 

 

 

 

The following are optional extras. 

 

As a first optional extra, the reader can experiment with resetting the machine (command rm) 

and the following sequence of events: alpha, omega1, omega2. On omega1, 6 worlds are 

generated (quite fast), and on omega2 this is increased to 12 worlds (and again is quite fast). 

If this kind of approach, where set action nondeterminism applies to one set at a time,  is 

adequate to model the Implementation Under Test, it is recommended, being quicker in 

execution. 

 

Another optional extra is to reset the machine and process the following sequence of events: 

alpha, omega_race. In about 14 seconds (300MHz, SWI Prolog) 24 worlds are generated 

just as in the omega case.  Sets a and set b undergo their own internal set actions in various 

orderings, and a race is run between the sets as single entities, in two ways, giving the same 

effect as the omega case but via a different approach, which happens to be considerably 

faster (in the implementation mentioned). 
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4.20 Set meta-event nondeterminism 

Another form of set nondeterminism arises from the internally generated exit and enter 

events, which we call meta-events, that can occur in sets as the result of transitions on the 

whole set. Meta-events were introduced in section  4.8. 

 

Meta-event nondeterminism is very similar to set-action nondeterminism just considered. In 

the figure below, on event sequence alpha, omega, many leaf-states in sets are exited, and 

the associated meta-events are responded to in the lower part of the model.  

 

Performance is particularly poor on event omega, as it affects nested sets, and the outer one 

(sy) is bigger than in the previous set-action model. This is however, not a cause for alarm, 

but rather for understanding of when performance is poor and when it is good. It should also 

be noted that performance with nondeterminism switched off is always good, and by 

controlling nondeterminism judiciously, good performance can generally be attained. 



   

© Graham G. Thomason 2003-2004  89
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 31. Set meta-event nondeterminism [model u5414] 

 

All meta-events associated with the transitions on event alpha are responded to in member 

z, with variable v recording the sequence. 

 

We will prepare the model and see this in action. 
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Call the file set_mev.scs.txt in directory u5414_set_mev. Prepare the hierarchy 

first and compile it (as already learned). 

  SC:root F:\KWinPro\StCr\StCr5ModelsUser\u5414_set_mev 

  SC:cp set_mev 

 

The hierarchy is: 

 

statechart sc(sy) 

set sy(a,b) 

   set a(a1,a2,a3) 

      cluster a1(i,j) 

         state i; 

         state j; 

      cluster a2(k,l) 

         state k; 

         state l; 

      cluster a3(m,n) 

         state m; 

         state n; 

   set b(b1) 

      cluster b1(p,q) 

         state p; 

         state q; 
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Add the declarations and transitions: 

 

statechart sc(sy) 

 

event alpha; 

event alpha_i, alpha_j, alpha_k, alpha_l, alpha_m, alpha_n; 

event alpha_p, alpha_q; 

event omega, omega_x, omega_race, omega1, omega2; 

event omega_neutral, omega_vreset; 

 

enum vint {0,..,1000000}; 

vint v=0; 

 

set sy(x,z)                 {omega->sy; omega_vreset {v=0;};} 

 

  set x(a,b)                {omega_x->x;} 

 

      set a(a1,a2,a3)       {omega_race->a; omega1->a;} 

 

         cluster a1(i,j) 

            state i         {alpha, alpha_j->j;} 

            state j         {alpha, alpha_i->i;} 

 

         cluster a2(k,l) 

            state k         {alpha, alpha_l->l;} 

            state l         {alpha, alpha_k->k;} 

 

         cluster a3(m,n) 

            state m         {alpha, alpha_n->n;} 

            state n         {alpha, alpha_m->m;} 

 

      set b(b1) {omega_race->b; omega2->b;} 

 

         cluster b1(p,q) 

            state p         {alpha, alpha_q->q;} 

            state q         {alpha, alpha_p->p;} 

 

   cluster z(neutral, exj,exl,exn, exq)                      \ 

                       {omega_neutral  -> z.neutral;         \ 

                        exit(x.a.a1.j) -> z.exj {v=v*10+1;}; \ 

                        exit(x.a.a2.l) -> z.exl {v=v*10+2;}; \ 

                        exit(x.a.a3.n) -> z.exn {v=v*10+3;}; \ 

                        exit(x.b.b1.q) -> z.exq {v=v*10+4;}; } 

      state neutral; 

      state exj; 

      state exl; 

      state exn; 

      state exq; 
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Compile the model. Process event alpha. (This should be quick - a few seconds at most - 

assuming the default race setting, medium race,  is in place. This will be explained later).  

 

All the local transitions have taken place, and there is one world. Cluster z is in its neutral 

state. Variable v is zero. 

6    statechart sc 

6       set sy [sc] = OCC []  ** 

6          set x [sy, sc] = OCC []  ** 

6             set a [x, sy, sc] = OCC []  ** 

6                cluster a1 [a, x, sy, sc] = OCC []  ** 

6                   leafstate i [a1, a, x, sy, sc] = VAC [] 

6                   leafstate j [a1, a, x, sy, sc] = OCC []  ** 

6                cluster a2 [a, x, sy, sc] = OCC []  ** 

6                   leafstate k [a2, a, x, sy, sc] = VAC [] 

6                   leafstate l [a2, a, x, sy, sc] = OCC []  ** 

6                cluster a3 [a, x, sy, sc] = OCC []  ** 

6                   leafstate m [a3, a, x, sy, sc] = VAC [] 

6                   leafstate n [a3, a, x, sy, sc] = OCC []  ** 

6             set b [x, sy, sc] = OCC []  ** 

6                cluster b1 [b, x, sy, sc] = OCC []  ** 

6                   leafstate p [b1, b, x, sy, sc] = VAC [] 

6                   leafstate q [b1, b, x, sy, sc] = OCC []  ** 

6          cluster z [sy, sc] = OCC []  ** 

6             leafstate neutral [z, sy, sc] = OCC []  ** 

6             leafstate exj [z, sy, sc] = VAC [] 

6             leafstate exl [z, sy, sc] = VAC [] 

6             leafstate exn [z, sy, sc] = VAC [] 

6             leafstate exq [z, sy, sc] = VAC [] 

6    VAR  INTEGER v [sc] =0 

... 
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Now process event omega. This takes 1m40s (300MHz, SWI-Prolog). Then get the 

configuration (command gc). There are 12 worlds. The last one is as follows: 

 

This world has v=4321, which shows the order of meta-event response was from the exiting 

of states b1,a3,a2,a1 in that order. Examine other worlds and deduce the order of exiting 

of states. As in the set-action case, you will see orderings of a3,a2,a1, and you would see 

additional orderings of b states if there were any, and you will also see the a's before the b, 

but you will never see an ordering such as a1,b1,a2,a3. 

 

 

 

 

As in the previous section, some optional extras are offered. 

 

As a first optional extra, the reader can experiment with resetting the machine (command rm) 

and the following sequence of events: alpha, omega1, omega2. On omega1, 6 worlds are 

generated (in 11 seconds, 300MHz, SWI Prolog). On omega2 (which is fast) set b is reset, 

without increasing the number of worlds, because it only has one member. If this kind of 

131  statechart sc 

131     set sy [sc] = OCC []  ** 

131        set x [sy, sc] = OCC []  ** 

131           set a [x, sy, sc] = OCC []  ** 

131              cluster a1 [a, x, sy, sc] = OCC []  ** 

131                 leafstate i [a1, a, x, sy, sc] = OCC []  ** 

131                 leafstate j [a1, a, x, sy, sc] = VAC [] 

131              cluster a2 [a, x, sy, sc] = OCC []  ** 

131                 leafstate k [a2, a, x, sy, sc] = OCC []  ** 

131                 leafstate l [a2, a, x, sy, sc] = VAC [] 

131              cluster a3 [a, x, sy, sc] = OCC []  ** 

131                 leafstate m [a3, a, x, sy, sc] = OCC []  ** 

131                 leafstate n [a3, a, x, sy, sc] = VAC [] 

131           set b [x, sy, sc] = OCC []  ** 

131              cluster b1 [b, x, sy, sc] = OCC []  ** 

131                 leafstate p [b1, b, x, sy, sc] = OCC []  ** 

131                 leafstate q [b1, b, x, sy, sc] = VAC [] 

131        cluster z [sy, sc] = OCC []  ** 

131           leafstate neutral [z, sy, sc] = VAC [] 

131           leafstate exj [z, sy, sc] = OCC []  ** 

131           leafstate exl [z, sy, sc] = VAC [] 

131           leafstate exn [z, sy, sc] = VAC [] 

131           leafstate exq [z, sy, sc] = VAC [] 

131  VAR  INTEGER v [sc] =4321 

... 

outworlds=[43, 51, 59, 67, 75, 83, 91, 99, 107, 115, 123, 131] 

number of outworlds=12 

SC:gpt 

exec time=00h 01m 39s 750ms 
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approach, where set meta-event nondeterminism applies to one set at a time,  is adequate to 

model the Implementation Under Test, it is recommended, being quicker in execution. 

 

Another optional extra is to reset the machine and process the following sequence of events: 

alpha, omega_race. In about 24 seconds (300MHz, SWI Prolog) 12 worlds are generated 

just as in the omega case.  Sets a and set b undergo their own internal set actions in various 

orderings, and a race is run between the sets as single entities, in two ways, giving the same 

effect as the omega case but via a different approach, which happens to be considerably 

faster (in the implementation mentioned). 
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4.21 Fired event and multiple nondeterminism 

So far, the kinds of nondeterminism we have seen have all been illustrated separately. But 

they can all take place in the same model as a result of processing one event. The initiating 

event may not obviously be the cause of nondeterminism - it may be that nondeterminism 

arises as a result of other events fired during transition processing. In that case we speak of 

fired event (or: broadcast event) nondeterminism. We will implement the following model: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 32. Multiple nondeterminism [model u5480] 

 

This model can be used with event β to illustrate set-transit, fork, and race-condition 

nondeterminism. But we can include fired event nondeterminism by starting with event α, 

which causes β to be fired. To help with the explanation, we have named the transitions on β: 

t1, t2 and t3. On event β there is a fork with prongs t2 and t3. One of these will be 

chosen for one line of processing and one for another. But whichever is chosen, it must race 

against t1, and so different orderings will be generated. STATECRUNCHER will start by 

generating 4 sequences of transitions: <t1,t2>, <t2,t1>, <t1,t3> and <t3,t1>. Now 

when t1 is processed in any of these sequences, set b2 is entered. This occasions set-transit 

nondeterminism. The two members of the set will be entered in two different orderings. The 

net effect is that starting from the initial configuration, 8 worlds are produced. Variable v 

records the order in which key states are entered. Partially corroborating this are the resultant 

states in set members c and z. 

a 

β 

b1 

s 

c 

z 

β 

c1 
c2 

α->a2 {fire β} 

a1 a2 

b 

c3 
β 

b2 

p q 

q2 

q1 

p2 

p1 

enter($b.b2.p.p1) 

z1 
z2 

z3 enter($c.c3) 

v=v*10+7 

v=v*10+6 

v=v*10+4 v=v*10+5 

v=v*10+2 v=v*10+3 

v=v*10+1 

γ 

γ γ 

γ 

ω{v=0;} 

t1 

t2 

t3 



   

96  © Graham G. Thomason 2003-2004 

 

Call the file multi_nd.scs.txt in directory u5480_multi_nd. Prepare the 

hierarchy first and compile it (as already learned). 

  SC:root F:\KWinPro\StCr\StCr5ModelsUser\u5480_multi_nd 

  SC:cp multi_nd 

 

The hierarchy is: 

 

Add the declarations and transitions: 

statechart sc(s) 

   set s(a,b,c,z) 

      cluster a(a1,a2) 

         state a1; 

         state a2;    

      cluster b(b1,b2)            

         state b1; 

         set b2(p,q) 

            cluster p(p1,p2) 

               state p1; 

               state p2; 

            cluster q(q1,q2) 

               state q1; 

               state q2; 

      cluster c(c1,c2,c3) 

         state c1; 

         state c2; 

         state c3; 

     cluster z(z1,z2,z3) 

         state z1; 

         state z2; 

         state z3; 

statechart sc(s) 

event alpha,beta,gamma,omega; 

enum int1 {0,..,1000}; 

int1 v=0; 

   set s(a,b,c,z) {omega->s {v=0;};}  // reset 

      cluster a(a1,a2) 

         state a1          {alpha->a2 {fire beta;};} 

         state a2;    

      cluster b(b1,b2)            

         state b1          {beta->b2;} 

         set b2(p,q)            {upon enter {v=v*10+1;}} 

            cluster p(p1,p2)    {upon enter {v=v*10+2;}} 

               state p1         {upon enter {v=v*10+4;} gamma->p2; } 

               state p2         {upon enter {v=v*10+4;} gamma->p1; } 

            cluster q(q1,q2)    {upon enter {v=v*10+3;}} 

               state q1         {upon enter {v=v*10+5;} gamma->q2; } 

               state q2         {upon enter {v=v*10+5;} gamma->q1; } 

      cluster c(c1,c2,c3) 

         state c1          {beta->c2; beta->c3;} 

         state c2               {upon enter {v=v*10+6;}} 

         state c3               {upon enter {v=v*10+7;}} 

     cluster z(z1,z2,z3) 

         state z1 { enter($b.b2.p.p1)->z2;  enter($c.c3)->z3; } 

         state z2; 

         state z3; 
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Compile the model. Process event alpha. The eight worlds will be generated fairly quickly 

(1.5 sec on a 300MHz machine running SWI-Prolog). Get the configuration (command gc). 

The key configuration lines are: 

 

We take world 66 as an example. Variable v indicates that the order in which states were 

entered was c2,b2,p,p1,q,q1. This means that in this world transition t2 was taken in 

the t2-t3 fork, and that in the t1-t2 race, t2 ran before t1. This is corroborated by the fact 

that c2 is occupied rather than c3, and that z2 was entered rather than z3. The user should 

examine some other worlds in the same way. 

 

Process event omega to take the model back to its initial configuration. It yields one world. 

18            leafstate c3 [c, s, sc] = OCC []  ** 

18            leafstate z2 [z, s, sc] = OCC []  ** 

18   VAR  INTEGER v [sc] =124357 

 

20            leafstate c3 [c, s, sc] = OCC []  ** 

20            leafstate z2 [z, s, sc] = OCC []  ** 

20   VAR  INTEGER v [sc] =135247 

 

29            leafstate c3 [c, s, sc] = OCC []  ** 

29            leafstate z3 [z, s, sc] = OCC []  ** 

29   VAR  INTEGER v [sc] =713524 

 

34            leafstate c3 [c, s, sc] = OCC []  ** 

34            leafstate z3 [z, s, sc] = OCC []  ** 

34   VAR  INTEGER v [sc] =712435 

 

49            leafstate c2 [c, s, sc] = OCC []  ** 

49            leafstate z2 [z, s, sc] = OCC []  ** 

49   VAR  INTEGER v [sc] =124356 

 

51            leafstate c2 [c, s, sc] = OCC []  ** 

51            leafstate z2 [z, s, sc] = OCC []  ** 

51   VAR  INTEGER v [sc] =135246 

 

61            leafstate c2 [c, s, sc] = OCC []  ** 

61            leafstate z2 [z, s, sc] = OCC []  ** 

61   VAR  INTEGER v [sc] =613524 

 

66            leafstate c2 [c, s, sc] = OCC []  ** 

66            leafstate z2 [z, s, sc] = OCC []  ** 

66   VAR  INTEGER v [sc] =612435 
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4.22 Transition prioritisation 

We have seen fork nondeterminism where the transitions have the identical source state: 

 

 

 

 

 

 

 

Figure 33. Fork nondeterminism with same source state 

 

But how is the following situation to be handled? The transitions are named t1 and t2. 

 

 

 

 

 

 

Figure 34. Hierarchical issue 

 

There are three ways this could be handled: 

 

(1) We could say it is fork nondeterminism, with one world ending up in state m.b2 and the 

other in state b2.  

 

(2) We could say that we prioritise and override by specialisation, saying that t1 takes 

precedence and masks t2. In this case the model is deterministic. This is the approach 

taken by UML, and is in line with overriding member methods in C++ derived classes.  

 

(3) We could say that we prioritise and override by the more external transition, saying that 

t2 takes precedence and masks t1. In this case the model is again deterministic. This 

approach has the advantage that an external transition cannot be affected be perhaps 

poorly understood internals of a deeply embedded machine. This is the approach taken by 

[CHSM]. 

 

As pointed out by Lucas in [CHSM], under this scheme we can alter the precedence as 

follows: 

 

 

 

 

 

Figure 35. Forced prioritisation reversal giving specialisation 
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STATECRUNCHER implements option (2) and conforms with UML, since that is the standard 

with which many designs comply. We will build the following model to illustrate the details 

of this, including how transition conditions affect the transitions taken. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 36. Transition prioritisation [model u5500] 

 

This model also runs a race, to show that races are not affected by transition prioritisation. All 

transitions t1-t8 are conditional on their own variable v1-v8,  which can be set to true or 

false by internal event τ1-τ8 and φ1-φ8 respectively. We can also set all these variables to 

true or false in one go by events τ and φ, and then adjust selected ones specifically. This 

gives us the ability to invalidate specific transitions, so as to see the prioritisation algorithm 

under various circumstances. The value of v tells us about race ordering. We will see this in 

practice. 
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Call the file trans_prio.scs.txt in directory u5500_trans_prio. Prepare the 

hierarchy first and compile it (as already learned). 

  SC:root F:\KWinPro\StCr\StCr5ModelsUser\u5500_trans_prio 

  SC:cp trans_prio 

 

The hierarchy is: 

 

statechart sc(s) 

set s (a,b) 

  cluster a(aa,a1,a2,a3,a4) 

     cluster aa(ap,aq) 

        state ap; 

        state aq; 

     state a1; 

     state a2; 

     state a3; 

     state a4; 

  cluster b(bb,b5,b6,b7,b8) 

     cluster bb(bp,bq) 

        state bp; 

        state bq; 

     state b5; 

     state b6; 

     state b7; 

     state b8; 
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Add the declarations and transitions: 

statechart sc(s) 

 

event alpha,gamma,delta,omega1,omega2,omega3; 

event tau, phi; 

event tau1,  tau2,  tau3,  tau4,  tau5,  tau6,  tau7,  tau8; 

event phi1,  phi2,  phi3,  phi4,  phi5,  phi6,  phi7,  phi8; 

 

enum int1 {0,..,100}; 

int1 v=0; 

bool v1=true,  v2=true,  v3=true,  v4=true; 

bool v5=true,  v6=true,  v7=true,  v8=true; 

 

set s (a,b)                                                           \ 

  {tau {v1=true;         v2=true;         v3=true;         v4=true;   \ 

        v5=true;         v6=true;         v7=true;         v8=true;}; \ 

                                                                      \ 

   tau1{v1=true;};  tau2{v2=true;};  tau3{v3=true;};  tau4{v4=true;}; \ 

   tau5{v5=true;};  tau6{v6=true;};  tau7{v7=true;};  tau8{v8=true;}; \ 

                                                                      \ 

   phi {v1=false;        v2=false;        v3=false;        v4=false;  \ 

        v5=false;        v6=false;        v7=false;        v8=false;};\ 

                                                                      \ 

   phi1{v1=false;}; phi2{v2=false;}; phi3{v3=false;}; phi4{v4=false;};\ 

   phi5{v5=false;}; phi6{v6=false;}; phi7{v7=false;}; phi8{v8=false;};\ 

                                                                      \ 

   omega1{v=0;}; omega2->s; omega3->s{v=0;};                          } 

 

  cluster a(aa,a1,a2,a3,a4) 

 

     cluster aa(ap,aq)  {alpha[v1]-> a1{v=v*10+1;};  \ 

                         alpha[v2]-> a2{v=v*10+1;};  } 

  

        state ap        {alpha[v3]->$a3{v=v*10+1;};  \ 

                         alpha[v4]->$a4{v=v*10+1;};  \ 

                         gamma->aq;                  } 

        state aq; 

     state a1; 

     state a2; 

     state a3; 

     state a4; 

 

  cluster b(bb,b5,b6,b7,b8) 

 

     cluster bb(bp,bq)  {alpha[v5]->b5{v=v*10+2;};   \ 

                         alpha[v6]->b6{v=v*10+2;};   } 

 

        state bp        {alpha[v7]->$b7{v=v*10+2;};  \ 

                         alpha[v8]->$b8{v=v*10+2;};  \ 

                         delta->bq;                  } 

        state bq; 

     state b5; 

     state b6; 

     state b7; 

     state b8; 
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Process event α and get the configuration. The number of worlds produced is 8. The key lines 

of these worlds are shown below. We see that all the transitions are to a3, a4, b7, or b8, i.e. 

they are the inner, specialised ones. In all cases two transitions were executed, as is seen by 

the value of v, which is always 12 or 21, indicating whether a in set member a ran before or 

after a transition in set member b. The 8 worlds come from 3 multiplicative factors: choose a 

transition from t3 or t4, choose a transition from t7 or t7, and choose an ordering for these 

two transitions. 

 

 

Process event omega3 to effectively reset the machine (in this case). Then process event 

phi7, to set v7 to false, and so invalidate transition t7. Then process event alpha and 

get the configuration. Four worlds are produced. They are like the ones above, but with 

worlds in b7 removed. The last world listed, for example, has the following details: 

6             leafstate a4 [a, s, sc] = OCC []  ** 

6             leafstate b8 [b, s, sc] = OCC []  ** 

6    VAR  INTEGER v [sc] =12 

 

10            leafstate a4 [a, s, sc] = OCC []  ** 

10            leafstate b8 [b, s, sc] = OCC []  ** 

10   VAR  INTEGER v [sc] =21 

 

14            leafstate a4 [a, s, sc] = OCC []  ** 

14            leafstate b7 [b, s, sc] = OCC []  ** 

14   VAR  INTEGER v [sc] =12 

 

18            leafstate a4 [a, s, sc] = OCC []  ** 

18            leafstate b7 [b, s, sc] = OCC []  ** 

18   VAR  INTEGER v [sc] =21 

 

22            leafstate a3 [a, s, sc] = OCC []  ** 

22            leafstate b8 [b, s, sc] = OCC []  ** 

22   VAR  INTEGER v [sc] =12 

 

26            leafstate a3 [a, s, sc] = OCC []  ** 

26            leafstate b8 [b, s, sc] = OCC []  ** 

26   VAR  INTEGER v [sc] =21 

 

30            leafstate a3 [a, s, sc] = OCC []  ** 

30            leafstate b7 [b, s, sc] = OCC []  ** 

30   VAR  INTEGER v [sc] =12 

 

34            leafstate a3 [a, s, sc] = OCC []  ** 

34            leafstate b7 [b, s, sc] = OCC []  ** 

34   VAR  INTEGER v [sc] =21 

68            leafstate a3 [a, s, sc] = OCC []  ** 

68            leafstate b8 [b, s, sc] = OCC []  ** 

68   VAR  INTEGER v [sc] =21 
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Process event omega3 to effectively reset the machine, except that the value of v7 is not 

reset. Process event phi8 so that v8 becomes false, and t8 is also invalidated. Process 

event alpha and get the configuration. There are 8 worlds. We see that all the transitions are 

to a3, a4, b5, or b6. The specialization rule that would normally say that transitions t7 and 

t8 mask transitions t5 and t6 does not have any force when both t7 and t8 are invalidated 

by their condition. So t5 and t6 come into view, and cause a fork and a race a transition 

from set member a. 

 

 

The reader can experiment with this model by resetting it, then setting other combinations of 

values to variables v1-v8, and then processing event alpha. For a more extensive model on 

the same theme, see test model t5500. 

82            leafstate a4 [a, s, sc] = OCC []  ** 

82            leafstate b6 [b, s, sc] = OCC []  ** 

82   VAR  INTEGER v [sc] =12 

 

86            leafstate a4 [a, s, sc] = OCC []  ** 

86            leafstate b6 [b, s, sc] = OCC []  ** 

86   VAR  INTEGER v [sc] =21 

 

90            leafstate a4 [a, s, sc] = OCC []  ** 

90            leafstate b5 [b, s, sc] = OCC []  ** 

90   VAR  INTEGER v [sc] =12 

 

94            leafstate a4 [a, s, sc] = OCC []  ** 

94            leafstate b5 [b, s, sc] = OCC []  ** 

94   VAR  INTEGER v [sc] =2 

 

98            leafstate a3 [a, s, sc] = OCC []  ** 

98            leafstate b6 [b, s, sc] = OCC []  ** 

98   VAR  INTEGER v [sc] =12 

 

102           leafstate a3 [a, s, sc] = OCC []  ** 

102           leafstate b6 [b, s, sc] = OCC []  ** 

102  VAR  INTEGER v [sc] =21 

 

106           leafstate a3 [a, s, sc] = OCC []  ** 

106           leafstate b5 [b, s, sc] = OCC []  ** 

106  VAR  INTEGER v [sc] =12 

 

110           leafstate a3 [a, s, sc] = OCC []  ** 

110           leafstate b5 [b, s, sc] = OCC []  ** 

110  VAR  INTEGER v [sc] =21 
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4.23 Limited race nondeterminism 

We have already seen that race (and set-transit) nondeterminism can hit performance. In this 

section we learn how to limit race nondeterminism - even to switch it off if desired. We will 

implement the following model: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 37. Limited race nondeterminism [model t5520] 

 

The transitions are named, and the order of the raced transitions on event α is registered in 

variable v in the usual way. But before we run the race, we can either issue commands to 

control the race, or execute internal ω_... events to control the race. The options are 

 

 No race: Use command SC:nr or event ω_nr. Only one ordering will be generated. 

The transition in the first set member will be executed first, then the one in the second 

set member etc. The transition order is t1,t2,t3,t4. 
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 Low race: Use command SC:lr or event ω_lr. Only two ordering will be 

generated. One is as above, and the other is the reverse of that order. The orderings 

are t1,t2,t3,t4 and t4,t3,t2,t1. 

 

 Medium race (default): Use command SC:mr or event ω_mr. The number of 

orderings generated is 2n.  These orderings are all the cyclic and anticyclic rotation 

operations on the no-race ordering. The orderings are (cyclic):  

  (t1,t2,t3,t4),  (t2,t3,t4,t1),  (t3,t4,t1,t2),  (t4,t1,t2,t3), 

and (anticyclic): 

 (t4,t3,t2,t1), (t3,t2,t1,t4), (t2,t1,t4,t3), (t1,t4,t3,t2). 

 

 High race: Use command SC:hr or event ω_hr. All n! orderings are generated, i.e. 

4! = 24 orderings in this case. 

 

 

Call the file race_control.scs.txt in directory u5520_race_control. Prepare 

the hierarchy first and compile it (as already learned). 

  SC:root F:\KWinPro\StCr\StCr5ModelsUser\u5520_race_control 

  SC:cp race_control 

 

The hierarchy is: 

 

statechart sc(s) 

   set s(a,b,c,d)  

      cluster a(a1,a2) 

         state a1; 

         state a2; 

      cluster b(b1,b2) 

         state b1; 

         state b2; 

      cluster c(c1,c2) 

         state c1; 

         state c2; 

      cluster d(d1,d2) 

         state d1; 

         state d2; 
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Add the declarations and transitions: 

 

 

Compile and run the model. The default setting is medium race. Process event alpha and 

get the configuration. There are 8 worlds, distinguished by variable v, which reveals the 

transition ordering. For example, the last world has v=4321, which tells us that the transition 

ordering was t4, t3, t2, t1. 

 

 

statechart sc(s) 

event alpha; 

event omega1, omega_v; 

event omega_nr; 

event omega_lr; 

event omega_mr; 

event omega_hr; 

 

enum int1{0,..,10000}; 

int1 v=0; 

 

   set s(a,b,c,d)        {omega1->s;                    \ 

                          omega_v  {v=0;};              \ 

                          omega_nr      {no_race();};   \ 

                          omega_lr      {low_race();};  \ 

                          omega_mr      {med_race();};  \ 

                          omega_hr      {high_race();}; } 

 

      cluster a(a1,a2) 

         state a1        {alpha->a2;} 

         state a2        {upon enter {v=v*10+1;} } 

      cluster b(b1,b2) 

         state b1        {alpha->b2;} 

         state b2        {upon enter {v=v*10+2;} } 

      cluster c(c1,c2) 

         state c1        {alpha->c2;} 

         state c2        {upon enter {v=v*10+3;} } 

      cluster d(d1,d2) 

         state d1        {alpha->d2;} 

         state d2        {upon enter {v=v*10+4;} } 

10   VAR  INTEGER v [sc] =2341 

18   VAR  INTEGER v [sc] =3412 

26   VAR  INTEGER v [sc] =4123 

34   VAR  INTEGER v [sc] =1234 

42   VAR  INTEGER v [sc] =3214 

50   VAR  INTEGER v [sc] =2143 

58   VAR  INTEGER v [sc] =1432 

66   VAR  INTEGER v [sc] =4321 
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Reset the model (command rm) [or process events omega_v and omega1] and process 

event omega_lr. This is the low race option, and it gives 2 worlds. The transition orders are 

revealed by the values of variable v: 

 

 

Reset the model and process event omega_nr. This is the no race option, and it gives 1 

world. The transition orders are revealed by the value of variable v: 

 

 

Reset the model and process event omega_hr. This is the high race option, and it gives 24 

worlds. The transition orders are revealed by the values of variable v: 

 

 

Reset the model and control the race nondeterminism on event alpha by STATECRUNCHER 

commands at the prompt: 

SC:nr,  SC:lr,  SC:mr,  SC:hr. 

12   VAR  INTEGER v [sc] =1234 

20   VAR  INTEGER v [sc] =4321 

10   VAR  INTEGER v [sc] =1234 

10   VAR  INTEGER v [sc] =1234 

18   VAR  INTEGER v [sc] =2134 

26   VAR  INTEGER v [sc] =1324 

34   VAR  INTEGER v [sc] =3124 

42   VAR  INTEGER v [sc] =2314 

50   VAR  INTEGER v [sc] =3214 

58   VAR  INTEGER v [sc] =1243 

66   VAR  INTEGER v [sc] =2143 

74   VAR  INTEGER v [sc] =1423 

82   VAR  INTEGER v [sc] =4123 

90   VAR  INTEGER v [sc] =2413 

98   VAR  INTEGER v [sc] =4213 

106  VAR  INTEGER v [sc] =1342 

114  VAR  INTEGER v [sc] =3142 

122  VAR  INTEGER v [sc] =1432 

130  VAR  INTEGER v [sc] =4132 

138  VAR  INTEGER v [sc] =3412 

146  VAR  INTEGER v [sc] =4312 

154  VAR  INTEGER v [sc] =2341 

162  VAR  INTEGER v [sc] =3241 

170  VAR  INTEGER v [sc] =2431 

178  VAR  INTEGER v [sc] =4231 

186  VAR  INTEGER v [sc] =3421 

194  VAR  INTEGER v [sc] =4321 
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4.24 Limited set nondeterminism 

We illustrate controlling set-transit nondeterminism, but the settings we will introduce will 

control set-meta-event and set action nondeterminism as well, since all these orderings are 

derived from the same source. 

 

We will implement the following model: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 38. Limited set-transit nondeterminism [model u5530] 

 

On entry into set c, four set members are entered, and the order in which this happens is 

recorded by variable v in the usual way. But before the set is entered, we can either issue 

commands to control the nondeterminism, or execute internal ω_... events to the same 

effect. The options are: 

 

 No set transit nondeterminism: Use command SC:nst or event ω_nst. Only one 

ordering will be generated. The first-defined set member will be entered first, then the 

second set member etc. The entry order is c1,c2,c3,c4. 

 

 Low set transit nondeterminism: Use command SC:lst or event ω_lst. Only two 

orderings will be generated. One is as above, and the other is the reverse of that order. 

The orderings are c1,c2,c3,c4 and c4,c3,c2,c1. 
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 Medium transit set nondeterminism (default): Use command SC:mst or event 

ω_mst. The number of orderings generated is 2n.  These orderings are all the cyclic 

and anticyclic rotation operations on the basic ordering. The orderings are (cyclic):  

  (c1,c2,c3,c4),  (c2,c3,c4,c1),  (c3,c4,c1,c2),  (c4,c1,c2,c3), 

and (anticyclic): 

 (c4,c3,c2,c1), (c3,c2,c1,c4), (c2,c1,c4,c3), (c1,c4,c3,c2). 

 

 High set transit nondeterminism: Use command SC:hst or event ω_hst. All n! 

orderings are generated, i.e. 4! = 24 orderings in this case. 

 

 

Call the file set_control.scs.txt in directory u5530_set_control. Prepare the 

hierarchy first and compile it (as already learned). 

  SC:root F:\KWinPro\StCr\StCr5ModelsUser\u5530_set_control 

  SC:cp set_control 

 

The hierarchy is: 

 

statechart sc(sy) 

   cluster sy(a,c)  

      state a; 

      set c(c1,c2,c3,c4)  

         cluster c1(p1,p2)  

             state p1; 

             state p2; 

         cluster c2(q1,q2) 

             state q1; 

             state q2; 

         cluster c3(r1,r2) 

             state r1; 

             state r2; 

         cluster c4(s1,s2) 

             state s1; 

             state s2; 
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Add the declarations and transitions: 

 

Compile the model. The default setting is medium set tran. Process event alpha and get the 

configuration. There are 8 worlds, distinguished by variable v, which reveals the ordering of 

set member entry. For example, the last world has v=1234, which tells us that the ordering of 

set member entry was c1, c2, c3, c4. 

 

statechart sc(sy) 

enum int {0,..,100000}; 

int v=0; 

 

event alpha, beta, rho, omega1, omega_v; 

event omega_nst, omega_lst, omega_mst, omega_hst; 

 

   cluster sy(a,c)        {omega1->sy;                     \ 

                           omega_v     {v=0;};             \ 

                           omega_nst   {no_set_tran();};   \ 

                           omega_lst   {low_set_tran();};  \ 

                           omega_mst   {med_set_tran();};  \ 

                           omega_hst   {high_set_tran();}; } 

 

      state a              {alpha->c;  } 

 

      set c(c1,c2,c3,c4)   {beta->a; } 

         cluster c1(p1,p2) {upon enter {v=v*10+1;} } 

             state p1      {rho->p2; } 

             state p2      {rho->p1; } 

         cluster c2(q1,q2) {upon enter {v=v*10+2;} } 

             state q1      {rho->q2; } 

             state q2      {rho->q1; } 

         cluster c3(r1,r2) {upon enter {v=v*10+3;} } 

             state r1      {rho->r2; } 

             state r2      {rho->r1; } 

         cluster c4(s1,s2) {upon enter {v=v*10+4;} } 

             state s1      {rho->s2; } 

             state s2      {rho->s1; } 

7    VAR  INTEGER v [sc] =1432 

11   VAR  INTEGER v [sc] =2143 

15   VAR  INTEGER v [sc] =3214 

19   VAR  INTEGER v [sc] =4321 

23   VAR  INTEGER v [sc] =4123 

27   VAR  INTEGER v [sc] =3412 

31   VAR  INTEGER v [sc] =2341 

35   VAR  INTEGER v [sc] =1234 
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Reset the model (command rm) [or process events omega_v and omega1] and process 

event omega_lst. This is the low set transit option, and it gives 2 worlds. The set member 

entry orderings are revealed by the values of variable v: 

 

 

Reset the model and process event omega_nr. This is the no set transit option, and it gives 1 

world. The set member entry ordering is revealed by the value of variable v: 

 

 

Reset the model and process event omega_hst. This is the high set transit option, and it 

gives 24 worlds. The set member entry orderings are revealed by the values of variable v: 

 

 

Reset the model and control the set transit nondeterminism on event alpha by 

STATECRUNCHER commands at the prompt: 

SC:nst,  SC:lst,  SC:mst,  SC:hst. 

 

7    VAR  INTEGER v [sc] =4321 

11   VAR  INTEGER v [sc] =1234 

7    VAR  INTEGER v [sc] =1234 

7    VAR  INTEGER v [sc] =4321 

11   VAR  INTEGER v [sc] =4312 

15   VAR  INTEGER v [sc] =4231 

19   VAR  INTEGER v [sc] =4213 

23   VAR  INTEGER v [sc] =4132 

27   VAR  INTEGER v [sc] =4123 

31   VAR  INTEGER v [sc] =3421 

35   VAR  INTEGER v [sc] =3412 

39   VAR  INTEGER v [sc] =3241 

43   VAR  INTEGER v [sc] =3214 

47   VAR  INTEGER v [sc] =3142 

51   VAR  INTEGER v [sc] =3124 

55   VAR  INTEGER v [sc] =2431 

59   VAR  INTEGER v [sc] =2413 

63   VAR  INTEGER v [sc] =2341 

67   VAR  INTEGER v [sc] =2314 

71   VAR  INTEGER v [sc] =2143 

75   VAR  INTEGER v [sc] =2134 

79   VAR  INTEGER v [sc] =1432 

83   VAR  INTEGER v [sc] =1423 

87   VAR  INTEGER v [sc] =1342 

91   VAR  INTEGER v [sc] =1324 

95   VAR  INTEGER v [sc] =1243 

99   VAR  INTEGER v [sc] =1234 
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4.25 Independence of race and set-transit control 

 

Go back to section  4.21 on multiple nondeterminism and run the model there: 

 with default settings, which will give (medium) race and set nondeterminism (8 worlds 

produced) 

 with set nondeterminism but no race (4 worlds produced) 

 with race nondeterminism but no set-transit (4 worlds produced) 

 with neither (2 world produced, due to fork nondeterminism). 

 

Fork nondeterminism can only be “switched off” by removing or invalidating the forks that 

are to be ignored in the model source code itself. 
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4.26 Pruning on the basis of traces 

We have seen how traces work (section  4.11). The reader can imagine how after a test, there 

might be several worlds in existence, of which only a few correspond to the behaviour of an 

IUT (Implementation Under Test). The test control program would accept the test a pass as 

long as there was at least one world that did match the IUT. It would kill the other worlds 

with the kill command, e.g.  

  SC:kill 6 

would kill world 6. 

 

But there is a more efficient way, first suggested by Tim Trew. An event is sent to the IUT 

first and the actual traces are obtained. Then STATECRUNCHER is asked to process an event, 

and is at the same time given the expected trace. The high-level syntax of the  process event 

command is as follows (a question mark introduces an optional parameter): 

 

STATECRUNCHER will automatically, on the fly, kill worlds in direct violation of 

EXPECTEDTRACE. As an initial conservative approach, overtrace and undertrace are 

tolerated. Overtrace is where too much trace is produced by STATECRUNCHER, but where the  

IUT trace matches the leading part of it. Undertrace is where not enough trace is produced by 

STATECRUNCHER, but it matches the leading part of the IUT trace. This will be seen in the 

following model, which we will implement. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 39. Pruning on the basis of traces [model u5550] 

pe EVENT  ?p=PARAMETERS  ?t=EXPECTEDTRACE  

 

a 
α {trace("ab"); trace("cd");} 

p 

q 

ρ {trace_clear} 

 

α {trace("ab");} 

r 

ρ1 {trace_clear; trace("pq");} 

s 

t 

α {trace("ab"); trace("cd");} trace("ef");}} 

α {trace("ab"); trace("yz");} 

u 
α {trace("yz");} 
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Call the file prune_traces.scs.txt in directory u5550_prune_traces. Prepare 

the hierarchy first and compile it (as already learned). 

  SC:root F:\KWinPro\StCr\StCr5ModelsUser\u5550_prune_traces 

  SC:cp prune_traces 

 

The hierarchy is: 

 

Add the declarations and transitions: 

 

Compile the model and process event alpha. The different worlds are distinguished by trace 

and state, but the traces will determine our course of action. 

 

Remember that traces are read from right to left when read from oldest to newest item. 

Suppose the IUT gives a trace of [cd,ab]. One trace above matches this, one has overtrace 

[ef,cd,ab], and one has undertrace [ab]. Two directly violate the trace: [yz] and 

[yz,ab]. 

statechart sc(a) 

cluster a(p,q,r,s,t,u) 

   state p; 

   state q; 

   state r; 

   state s; 

   state t; 

   state u; 

statechart sc(a) 

event alpha, rho, rho1; 

 

cluster a(p,q,r,s,t,u){rho->a{trace_clear();};                  \ 

                       rho1->a{trace_clear(); trace("pq");  };  } 

 

   state p {alpha->q {trace("ab"); trace("cd");              }; \ 

            alpha->r {trace("ab"); trace("yz");              }; \ 

            alpha->s {trace("ab"); trace("cd"); trace("ef"); }; \ 

            alpha->t {trace("ab");                           }; \ 

            alpha->u {trace("yz");                           }; } 

   state q; 

   state r; 

   state s; 

   state t; 

   state u; 

4    TRACE =[yz] 

6    TRACE =[ab] 

10   TRACE =[ef, cd, ab] 

13   TRACE =[yz, ab] 

16   TRACE =[cd, ab] 
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 Reset the model and give command 

  SC:pe alpha t=[cd,ab] 

 Then get the configuration. There are 3 worlds, with traces as shown 

 

 

The worlds with a trace match, or overtrace, or undertrace, are kept. Normally, only the world 

with an exact match would be kept, but one could imagine an IUT capable of spontaneously 

producing more trace, so justifying keeping STATECRUNCHER's worlds with overtrace. Some 

creative use of a model might reverse the situation, requiring undertrace to be kept. We can in 

any case kill worlds 6 and 10 if we wish, as follows: 

  kill [6,10] 

That leaves one world, which we show in full: 

 

 

If we kill this world 

  kill 16 

then we are left with no worlds at all, and the model is dead. It can be reset by the rm 

command, but this is not equivalent to processing an event. In testing, this situation will 

almost  certainly represent detecting a defect, perhaps a design defect, and might represent 

deadlock. 

 

6    TRACE =[ab] 

10   TRACE =[ef, cd, ab] 

16   TRACE =[cd, ab] 

 

16   statechart sc 

16      cluster a [sc] = OCC []  ** 

16         leafstate p [a, sc] = VAC [] 

16         leafstate q [a, sc] = OCC []  ** 

16         leafstate r [a, sc] = VAC [] 

16         leafstate s [a, sc] = VAC [] 

16         leafstate t [a, sc] = VAC [] 

16         leafstate u [a, sc] = VAC [] 

16   TRACE =[cd, ab] 

16   TREV [[rho, [sc]], 0, [], []] 

16   TREV [[rho1, [sc]], 0, [], []] 

 

outworlds=[16] 

number of outworlds=1 

SC:gc 

outworlds=[] 

number of outworlds=0 

SC: 
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4.27 Arrays 

A provisional implementation of arrays is available (unscoped in Release 1.04, allowing 

scoping in Release 1.05). Array indices must be nonnegative integers. Arrays can be of type 

boolean, declared integer type, or string. Internally, and in output, array elements are given a 

constructed double underscore name, as will be seen, and the user should avoid declaring any 

other variables that would clash with this. 

 

IMPORTANT: The user is required to declare the array name as a scalar (i.e. without 

square brackets), and any elements (with square brackets) that might be used in the model. 

 

We will implement the following model: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 40. Arrays [model u5581] 

 

There are two arrays called a in this model in different scopes, a global one in scope, [sc], 

and a local one in scope [m,sc]. There are also two variables called i in these two scopes, 

which will be used to index the arrays. 

a1 

α / a[3]=20   simple assignment 
    

β / a[i+1]=v+1  index is an expression = a
local

[7] 

 

γ / a[i][4]=v+3  two dimensional = a
local

 [6][4] 

 

δ / v=a[i+1][4]+1  array on RHS (right hand side) = a
local

 [7][4] 
 

ε / ::a[i]=200  scoped array, unscoped index = a
global

 a[6] 

 

ζ / ::a[::i]=300  scoped array and index = a
global

 [60] 

 

η / a[::i]=80  unscoped scoped array, scoped index = a
local

 [60] 

 

θ / v=::a[i]+1  RHS of above 

 

ι / v=::a[::i]+1  RHS of above 

 

κ / v= a[::i]+1  RHS of above 
 

 a[3]=0, a[6]=0, a[7]=0, a[60]=0, a[61]=0 

 a[6][4]=0, a[7][4]=9 

m 

 a[6]=0, a[60]=0  i=60 

 i=6 

many self-

transitions 

 v=2 
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Call the file arrays.scs.txt in directory u5581_arrays. Prepare the hierarchy first 

and compile it (as already learned). 

  SC:root F:\KWinPro\StCr\StCr5ModelsUser\u5581_arrays 

  SC:cp arrays 

 

The hierarchy is: 

 

Add the declarations and transitions: 

 

Compile the model. Process event alpha and get the configuration. Element 3 of the local 

array a, i.e. in scope [m,sc], is assigned the value 20. 

 

 

Process event beta. Element [i+1], referring to the local i, of the local array a is assigned 

the value v+1. Since i=6 and v=2, we effectively have a[7]=3. 

 

statechart sc(m) 

  cluster m(a1)   

    state a1; 

statechart sc(m) 

event alpha, beta, gamma, delta, epsilon, zeta; 

event eta, theta, iota, kappa; 

enum int {0,..,1000}; 

 

// ARRAY BASES MUST BE DECLARED 

int    a, a[6]=0, a[60]=0, i=60, v=2;             // GLOBAL 

 

  cluster m(a1)   

    int a, a[3]=0, a[6]=0,    a[7]=0,    a[60]=0; // LOCAL 

    int a[61]=0,   a[6][4]=0, a[7][4]=9, i=6;     // LOCAL 

    state a1 {alpha   {a[3]=20;};          \ 

              beta    {a[i+1]=v+1;};       \ 

              gamma   {a[i][4]=v+3;};      \ 

              delta   {v=a[i+1][4];};      \ 

              epsilon {::a[i]=200;};       \ 

              zeta    {::a[::i]=300;};     \ 

              eta     {a[::i]=80;};        \ 

              theta   {v=::a[i]+1;};       \ 

              iota    {v=::a[::i]+1;};     \ 

              kappa   {v=a[::i]+1;};       } 

4    VAR  INTEGER a__3 [m, sc] =20 

6    VAR  INTEGER a__7 [m, sc] =3 
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Process event gamma. The effective assignment is a[6][4]=5 to the local array a. 

 

 

Process event delta. We now have the array on the right hand side of an assignment. The 

effective assignment is v=a[7][4]. We initialised this element to 9. 

 

 

Process event epsilon.  The scoping operator causes the global a, with scope [sc], to be 

addressed. But the index is the local i, which has the value 6. 

 

 

Process event zeta. Both array and index are the global ones. The global i has value 60. 

 

 

 Process event eta. The array is local but the index is global. The global i has value 60. 

 

 

 Process event theta. Here we assign to v with an array term as in event epsilon above. 

 

 

 Process event iota. Here we assign to v with an array term as in event zeta above. 

 

 

 Process event kappa. Here we assign to v with an array term as in event eta above. 

 

 

22   VAR  INTEGER v [sc] =81 

8    VAR  INTEGER a__6__4 [m, sc] =5 

10   VAR  INTEGER v [sc] =9 

12   VAR  INTEGER a__6 [sc] =200 

14   VAR  INTEGER a__60 [sc] =300 

16   VAR  INTEGER a__60 [m, sc] =80 

18   VAR  INTEGER v [sc] =201 

20   VAR  INTEGER v [sc] =301 
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4.28 What else is there to STATECRUNCHER? 

We have covered all the important features used in models. There are reference pages on the 

syntax, on expression operators, and on functions in section  8. There are reports covering 

STATECRUNCHER's algorithms, listed in section  11. 

 

We have kept this manual to what is needed for normal model design. An advanced user may 

wish to add a function for use in expressions in a model. This requires a knowledge of Prolog, 

and of how functions are handled in STATECRUNCHER, described in  [StCrGP4]. 

 

Another area of STATECRUNCHER is its command language. We have mentioned the 

commands needed for ordinary model usage: compiling, processing events, getting the 

configuration etc. In fact the commands provided make much more possible, e.g. efficiently 

flattening a state space, and providing for intelligent transition tours, but this would normally 

be done under control of a powerful separate program connected to STATECRUNCHER, and we 

do not discuss such possibilities here. Section  Table 4 contains a summary of all 

STATECRUNCHER's commands, and [StCrPrimer] discusses them in more detail. 

 

Another discipline that needs to be mastered is how to use STATECRUNCHER on real software 

components. This is the subject of investigation at Philips Research as STATECRUNCHER is 

trialled. It is often not trivial produce a good dynamic model of a software component - it 

requires skill and experience. Once a model has been obtained, it is not generally such a 

difficult task to represent it in STATECRUNCHER, though certain aspects of software behaviour 

may present a challenge, and may suggest that extensions to STATECRUNCHER would be 

desirable in the future. 
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5. Modelname mode 

This is a mode of working that is convenient when giving demonstrations of many models, 

since the models can be referenced by a short model name, which is attached via a table in 

STATECRUNCHER to the full path and file name of the model. 

 

Modelname mode is not applicable to the MS-DOS executable version of STATECRUNCHER, 

although pre-included demonstration models can be run this way using STATECRUNCHER's 

root command to set the equivalent of the boot directory. 

 

5.1 To prepare your file and an index to it 

Create your file and give it the "STATECRUNCHER source" extension .scs.txt  – e.g. 

DualWindow.scs.txt or hier.scs.txt 

 

Locate the file somewhere below the StCr4ModelsCE subdirectory, or in a same-level 

subdirectory with your own name. 

 

Edit (the equivalent to) file 

  P:\KWinPro\StCr2Sand\ci_sc\ci_sc_2.pl. 

This is a user file; the ci_sc_1.pl file is now reserved for STATECRUNCHER test/demo 

models (and for the ci_current setting, concerning which see below). 

 

You will see some existing file references such as 
  ci_file(c710, '..\StCr4ModelsCe\Ce700\c710_CoreTV\CoreTVexample'). 

 

Choose an index to your file. Do not use indices of the form tnnnn, such as t5230, as the t 

series is reserved for STATECRUNCHER tests. Avoid a clash with existing indices. 

 

Create an index entry in an analogous way to the existing ones. The path is with respect to the 

root defined in the boot file, and starts by going up a level and then down into the set of 

models we are concerned with.  Exclude the .scs.txt extension (as is the case for the 

existing references). 

 

Edit the file ci_sc_1.pl which is in the same directory as the ci_sc_2.pl file. Make 

your file current by canceling or deleting any existing ci_current predicate and enabling 

your setting. You can cancel by prefixing xx or by deleting the line. Example: 
 

xxci_current(t5410). 

  ci_current(c770).  
 

The full stops are important. 
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Unused ci_file... lines do not need to be cancelled. 

 

5.2 Using modelname mode 

Having modified the ci_sc files as instructed, run STATECRUNCHER in the normal way. At the 

STATECRUNCHER prompt, enter 

  SC: mm 

 

Now models can be compiled and run using commands such as 

  SC: cp t5110  a test/demo model 

  SC: run t5110 

  SC: cp c710  a user model 

  SC: run c710 

 

To reset the mode to filenames, enter 

  SC: mf 
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6. The STATECRUNCHER Release 

1.02 loop 

 

The Release 1.02 command loop has been superseded by a richer command language to 

STATECRUNCHER, but is still available in later releases to date. 

 

6.1 To prepare a model 

Models are prepared as described in Ch.  5, Modelname mode. 

 

6.2 To compile and validate your file 

Step 0. Boot-load. 

Boot-load Prolog and STATECRUNCHER. The boot-loading will include loading the new 

ci_sc_1.pl and ci_sc_2.pl files. Scroll across all output and check there are no Prolog 

error messages. Then scroll back to the Prolog prompt (?-) or STATECRUNCHER prompt 

(SC:). If you have a STATECRUNCHER prompt, exit it with command quit to get to a Prolog 

prompt. 

 

Step 1. Compile the model source 

Against the Prolog prompt, type scb.  (Think of this as “StateCruncher Build”). Note that all 

Prolog "queries" end with a full stop. You can also compile a non ci_current model by 

entering scb(modelindex). 

 

If the file cannot be found, fix the file reference in the ci_sc_2.pl file and start again. If 

there are compilation or validation errors, correct them before proceeding. There is no need to 

re-boot STATECRUNCHER as you correct errors - just edit and "scb." as necessary. 

 

Compilation produces a Prolog-readable  "object" file with extension .sco.pl and a listing 

file with extension .scl.txt in the same directory as the model source file. This is loaded, 

and if there are no errors, the validation phase is started, which produces a Prolog-readable 

data file with extension .scd.pl and a listing file with extension .scv.txt. 
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6.3 Exercising models 

When you have compiled and validated a model, you can type 

 

 craft(modelnumber). 

e.g. craft(t5420).  Remember the full stop. 

 

 craftnp(modelnumber). 

e.g. craftnp(t5420).  Remember the full stop. 

 

 craft. 

This is equivalent to running craft with the ci_current number.  

 

 craftnp.  

This is equivalent to running craftnp with the ci_current number. 

 

The craft command loads a (compiled and validated) model, enters the machine, and shows 

the state and what events can be processed. It requires two items of input per top-level event 

processing cycle: 

 an event 

 parameters to the event 

The craftnp command assumes that no parameters are required, and only requires an event. 

 

Note that the input must consist of Prolog-readable terms and so must end with a full-stop. 

There are various options. 

 

For an event: 

 Enter the full form, including the scope in right-to-left form, e.g. [alpha,[aa,sc]]. 

This event has a local scope to a set or cluster aa in statechart sc. 

 Enter the event name only, e.g. alpha. The scope is assumed to be [sc] - so this is a 

good option if you call your statecharts "sc". 

 The input quit. is reserved to stop the processing cycle. So try to avoid using an event 

quit in your models, otherwise you must enter [quit,[sc]]. 

 

For parameters: 

 Enter []. if you do not require parameters to this event 

 You can enter the integers in a list (followed by a dot), (0=for false, 1 for true), e.g. 
[0,2]. 

 For one parameter, you can just enter the integer (followed by a dot), e.g. 2. 

 You can enter the full form: a list of STATECRUNCHER-wrapped constants or strings, 

(followed by a dot), e.g. 
   [[ex_co,int,1],[ex_co,int,0],[ex_str,[41,42]]. 

 



   

124  © Graham G. Thomason 2003-2004 

7. The socket version of 

STATECRUNCHER 

The socket version is a special version used by Philips Research India - Bangalore to enable 

STATECRUNCHER to communicate with a Linux machine on which TorX runs. 

 

The socket version is currently only available with the Release 1.02 command loop, running 

under SWI-Prolog. The Release 1.02 loop is available as a legacy facility in later releases to 

date. 

 

To load the socket version, change the aux_load_sc.pl file to load  

cs_sc_8_socket.pl 

rather than 
cs_sc_8.pl 

 

Then run under SWI-Prolog by double clicking on  
 boot_sc_swipro_win.pl 

 

To exit STATECRUNCHER's command loop and run as in Release 1.02, exit as follows: 
  SC:mm 

  SC:quit 

The mm command is needed, because without it, STATECRUNCHER will interpret model 

arguments as filenames, not model names. 

 

Then you can execute Prolog goals craft or craftnp as in release 1.02. 

 

The socket functionality is not available under the executable version, or WinProlog. 
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8. Reference for STATECRUNCHER 

syntax 

The following reference grammar is given in railroad form. 

 

8.1 Declarations and an overview of state statements 
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Figure 41. Basic syntax of statechart / cluster / set and (leaf-)states 

 

 

 

cluster 

 

set 

 

state 

transition 

block 
history 

cluster 

 name 

state- 

name 

 

) 
 

 ( 

identifier 

transition 

block 

set 

 name 

state- 

name 

 

) 
 

 ( 

transition 

block  

state 

 name 

Note 

The transition block will be described later; note that it is optional. 

state statement 

statechart 

 name 

identifier 

state- 

name 

 

) 
 

( 
 

statechart 

identifier 

statechart statement 

; 

identifier 

identifier 

identifier 

, 

identifier 

dhistory 

 

, 

history 

 

history 

dhistory 

 

deep 
 

history 

dhistory 
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8.2 Transitions 

The following figures give a functional overview and then the syntax of the transition block. 

The syntax is given in railroad diagram form where iterations are represented where 

convenient by feed-backward constructions. This representation has been converted into a 

purely feed-forward representation (not shown here) so that Prolog Definite Clause Grammar 

(DCG) rules can be used as a parser. 

 

A transition block is defined in the context of the source state of the transition. The enter 

block and exit block pertain to that source state rather than the transition proper; they contain 

actions to be executed whenever that state is entered or exited respectively. Transitions are 

triggered by meta-events, i.e. ordinary declared events or internal events generated whenever 

a state is entered or exited. Transitions can be conditional on the value of an expression 

yielding a boolean. The action block per transition contains actions that accompany the 

transition whenever it takes place; the actions can be conditional too. 
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Figure 42. Overview of transition block (functional blocks rather than syntax) 
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Figure 43. Overview of transition block syntax (1) 
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Figure 44. Overview of transition block syntax (2) 
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8.3 Arithmetic operators 

Operation Symbol Arity Precedence Associativity Position 

Primary Suffixes      

Array indexing [] dyadic 18 none circumfix 

Function call () dyadic 17 none circumfix 

Various monadic      

plus + monadic 16 right prefix 

minus - monadic 16 right prefix 

logical not ! monadic 16 right prefix 

post increment  monadic 16 left postfix 

post decrement  monadic 16 left postfix 

pre increment  monadic 16 left postfix 

pre decrement  monadic 16 left postfix 

Multiplicative      

multiplication * dyadic 15 left infix 

division / dyadic 15 left infix 

modulo % dyadic 15 left infix 

Additive      

addition + dyadic 14 left infix 

subtraction - dyadic 14 left infix 

Relational      

less than or equal <= dyadic 12 left infix 

greater than or equal >= dyadic 12 left infix 

less than < dyadic 12 left infix 

greater than > dyadic 12 left infix 

equal == dyadic 12 left infix 

not equal != dyadic 12 left infix 

Logical      

short-circuit and && dyadic 7 left infix 

xor ^^ dyadic 6 left infix 

equivalence !^^ dyadic 6 left infix 

short-circuit or || dyadic 5 left infix 

Assignment      

assign = dyadic 2 right infix 
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multiply-assign *= dyadic 2 right infix 

divide-assign /= dyadic 2 right infix 

modulo-assign %= dyadic 2 right infix 

add-assign += dyadic 2 right infix 

subtract-assign -= dyadic 2 right infix 
 

Table 1. Arithmetic operators 

 

8.4 Scoping operators 

 

General design 

Various items in STATECRUNCHER can be declared or accessed outside their natural scope by 

means of scoping operators. These operators can be used to form scoping expressions. 

The operators (with their implementation names) are: 

 $  (parent) back out one level from the current scope 

 %%  (ancestor) back out to a named parent 

 ::  (statechart scope) back out to the outermost level 

 .  (child) enter one named level deeper 

 

The parent operator "$" 

This is a monadic operator. The term "$a" means: "a" as it would be accessed if addressed in 

the hierarchical state one level more global than the current one. This operator is right 

associative, so "$$$a" takes us back three levels. 

 

The ancestor operator "%%" 

This is a dyadic operator. The term "a%%b" means: back out of the current level until a 

hierarchical machine named "a" is found. At least one level is always backed out. Then 

address "b" in that level. The operator is right associative, so that the expression "a%%b%%c" 

reads:  back out to level "a", then back out from there to level "b", and evaluate "c" in that 

scope. 

 

The statechart scope operator "::" 

This is a monadic operator. The term "::a" means: address "a" at the statechart level. 

 

The child operator "." 

This is a dyadic operator. The term "a.b" means: enter the immediately deeper hierarchical 

level "a" and address "b" in that scope. The operator is right associative, which means that 

the expression "a.b.c" reads: enter "a", then "b" and address "c" in that scope. 

 

Combining scoping operators 

The monadic and dyadic operators combine with dyadic operations binding tighter. 
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Effect of scoping operators on declarations 

Scoping operators can be used when accessing (rather than declaring) any item, i.e. PCO's, 

events, tagnames and variables and states. 

 

Scoping operators can be used in declarations of PCO's, events, tagnames and variables (but 

not states). They have the effect of declaring the item as if it were an ordinary declaration in 

another part of the hierarchy. For example, to declare various items as if they all belonged one 

level up in the hierarchy: 

        PCO $pco1; 

        event $alpha; 

        enum $colour {red=1,green=3,blue=4}; 

        $colour $mycolour; 

 

In the variable declaration 

$colour $mycolour;  

the variable has a scope determined by its own scoping expression, and a type affected by the 

scoping expression on its tagname. 

 

Operation 

 

Symbol Arity Precedence Associativity Position 

parent scope $ monadic 19 right prefix 

statechart scope :: monadic 19 right prefix 

named child scope 

(evaluate arg2 in child 

arg1 scope). 

. dyadic 20 right infix 

named ancestor scope 

(evaluate arg2 in ancestor 

arg1 scope, backing out 

one level anyway, and then 

as far as the first 

occurrence of arg1). 

%% dyadic 20 right infix 

 

Table 2. Scoping operators 

 

8.5 The split operator 

This operator is used to define multiple target states. 
 

Operation 

 

Symbol Arity Precedence Associativity Position 

split /\ dyadic 14 left infix 
 

Table 3. The split operator 
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8.6 Functions 

Arguments are a comma separated list of expressions. P1, P2 refer to the first and second 

parameter respectively. The return value is an integer (which may represent a boolean), or 

string value. 
 

Basic arithmetic 

abs(P1) absolute value of a number 

maximum(list) maximum of several numbers, e.g. i=maximum(v1,v2+1,v3) 

minimum(list) minimum of several numbers, e.g. i=minimum(v1,v2+1,v3) 
  

String related 

format(P1,P2) Format integer expression P1 as text. P2 is the field width: -ve for left 

justify, 0 for just fit, +ve for right justify.  

length(P1) length of string 

lower_case(P1) convert string to lower case 

upper_case(P1) convert string to upper case 
  

Casting  

cast(P1) i=cast(j) allows an assignment that would otherwise be a type mismatch 
  

Tracing  

trace(list) add parameter(s) to the trace list 

trace_clear() clear the trace list 
  

System information 

get_nworlds(P1) get_nworlds() or get_nworlds(1) gets the number of worlds at the start of  

event processing. get_nworlds(2) gets the dynamic number of worlds. 
  

Nondeterminism control 

no_race() turn race nondeterminism off 

low_race() allows only two race permutations, forwards and backwards. 

med_race() allows 2N race permutations. Allows distinction of all triplet orderings 

high_race() allows all N! race permutations 

  

no_set_tran() turn set (e.g. set-transit) nondeterminism off 

low_set_tran() allows only two set permutations, forwards and backwards. 

med_set_tran() allows 2N set permutations. Allows distinction of all triplet orderings 

high_set_tran() allows all N! set permutations 
  

Special functions taking a state-expression argument 

in(P1) returns true (=1) if the state specified is occupied, else false (=0) 

clear(P1) clear history of the state specified 

deep_clear(P1) clear history of the state specified and its descendants 

Table 4. Functions 
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9. Reference for STATECRUNCHER 

commands 

The table below shows abbreviated commands as well as unabbreviated ones. Where 

abbreviated ones are not available, the arrow (→) refers the reader to the unabbreviated one.  

 

Meta-syntax: An optional argument to a command is preceded by a question mark, (?). 

Normal courier indicates a literal item; italics indicate a non-literal or explanation. A 

choice is indicated by a vertical bar ( | ). 

 

The important commands that were not possible in previous releases of STATECRUNCHER are 

those that allow setting of state occupancies and variables and traces. These make a state-

space exploration algorithm possible. These are  

 WORLD STATEKIND STATENAME MPATH = OCCUPANCY HISTORY 

 WORLD VAR VARKIND VARIABLENAME MPATH = VALUE 

 WORLD TRACE = TRACE 

These commands are in STATECRUNCHER's own output format. 

 

Abbrev. 

Command 

Command 

 showing typical example and/or typical output 

  

  

Main processing: high priority black box testing commands 

pe ... process event EVENT  ?p=PARAMETERS  ?t=EXPECTEDTRACE  

     pe gamma        p=[4,xy]   (statechart scope assumed) 

     pe [alpha,[sc]] p=1 

     pe [alpha,[sc]] 

Parameters can also be supplied in STATECRUNCHER internal form, e.g. 

     p=[[ex_co,int,4],[ex_str,[120,121]]] 

Worlds in direct violation of EXPECTEDTRACE will be killed, but overtrace and 

undertrace are tolerated. 

gt get trace 

     7   TRACE =[1,2] 

ct clear trace 

 (this also causes a world merge) 
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Main processing: medium priority commands 

gae get all events  

(whether transitionable or not; not world-related) 

     EVENT [theta2, [z3,z,s,sc]] [pco1,[z,s,sc]] 

gate get all transitionable events 

        (union from all worlds; no worlds shown) 

   TREV [[delta,[sc]],0,[],[]] 

   TREV [[gamma,[sc]],3, 

          [[r,0,100000],[r,0,100000],[r,0,100000]],[]] 

   TREV [[gamma,[sc]],1,[[r,0,100000]],[]] 

   TREV [[gamma,[sc]],2, 

          [[r,0,100000],[r,0,100000]],[]] 

   TREV [[alpha,[sc]],0,[],[]] 

gav get all variables 

Gets the value-ranges, not the current value per world 

     VAR INTEGER bool1 [sc] RANGE=[0, 1] 

     VAR INTEGER col1 [sc] ENUM=[0, 7, 8, 4, 8] 

     VAR INTEGER p1 [b2, b, s, sc] RANGE=[0, 9]  

     VAR STRING  str [sc]  

gaw get all worlds  

Gets the current worlds 

     [2,7,8] 

gc get config 

     2   statechart sc 

     2      cluster a [s, sc] =OCC []  ** 

     2         leafstate a1 [a, s, sc] =OCC []  ** 

     2         cluster a2 [a, s, sc] =VAC [] 

     2   VAR  INTEGER bool1 [sc] =1 

     2   VAR  INTEGER col1 [sc] =8 

     2   VAR  INTEGER p1 [b2, b, s, sc] =unknown 

     2   VAR  STRING  p5 [b2, b, s, sc] =unknown 

     2   VAR  STRING  str [sc] =[98] =b 

     2   TRACE =[] 

     2   TREV [[zeta,[s,sc]], 

         4,[[r,0,9],[e,0,7,8,4,8],[r,0,1],[<string>]],  

         [pco1,[z3,z,s,sc]]] 

     outworlds=[2,4] 

     number of outworlds=2 

gst get symbol table 

     SYMB delta      [sc]      eventdecl     [] 

        XREF leafstate    b1:[b, s, sc] 

        XREF leafstate    z1:[z, s, sc] 

kill ... kill WORLD | WORLDS 

     kill 2 

     kill [2,7,10] 
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→ WORLD TRACE = TRACE 

     input is as the output of get config 

     this does not cause a world merge  

(we will probably issue this kind of command several times before 

requiring a world merge) 

→ WORLD STATEKIND STATENAME MPATH = OCCUPANCY HISTORY  

     input is as the output of get config 

     this does not cause a world merge  (we will probably change more) 

→ WORLD VAR  VARKIND VARIABLENAME MPATH = VALUE 

     input is as the output of get config 

     this does not cause a world merge  (c.f. WORLD TRACE = TRACE) 

cnw create new world 

     Creates a new world in its default state 

            - needed before writing variable/state/trace values to a new world 

     34 (the new world number is returned) 

mw merge worlds 

     (useful when all trace/state/variable changes have been made) 

gpt get processing time 

(timing data is set on processing an event) 

     exec time=00h 00m 00s 210ms 

gd get date 

(get date and time) 

     DATE:   24 Apr 2003 16:01:40/649 

  

Containment of combinatorial explosion: low priority commands 

These commands limit the number of permutations used in set transit 

nondeterminism and race nondeterminism. See [StCrMain] for more 

explanation. 

nst no set tran 

lst low set tran 

mst medium set tran 

hst high set tran 

nr no race 

lr low race 

mr medium race 

hr high race 

  

  

Compilation, loading, start-up, and finish: very low priority 

root ... root ROOTDIRECTORY 

Sets the root directory to be used with FILENAMEs 

mm mode modelnames 

Sets compilation etc. to work with model names. The directory structure 

must be set up correctly. 
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mf mode filenames 

(Default). Sets compilation etc. to work with file names. Use the root 

command to set the directory (can be null, then give a full path here). 

cp ... compile FILENAME | MODELNAME 

(also loads machine, and enters it (as of Rel 1.05)) 

ld ... load FILENAME | MODELNAME 

(does not enter machine) 

run ... run FILENAME | MODELNAME 

=Load and enter machine 

nm enter machine 

Machine enters default state 

xm exit machine  

Leaves a pristine machine ready to be entered 

um unload machine  

Removes data and object code 

rm reset machine 

=exit and enter 

quit quit 

 

  

  

System/diagnostic: very low priority 

help help 

 

prolog prolog 

    Gives a Prolog prompt; enter a Prolog goal 
 

Table 5. STATECRUNCHER commands 

 

Notes. 

 By priority, we mean the priority given through the parse-attempt order, which will affect 

the response time. 

 If anything is to be set in nonexistent world, it is created (but a model must have been 

loaded) 

 

 

A typical sequence of commands 

1. mm   set model mode 

2. run t5110 load model and enter machine 

3. pe alpha  process event alpha (in statechart scope) 

4. gc   get configuration 

5. pe gamma  process event gamma (in statechart scope) 

6. gc   get configuration 

7. rm   reset machine 
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8. pe gamma  process event gamma (in statechart scope) 

9. quit  quit STATECRUNCHER 

 

The following error and warning messages may be given: 

 

Command parsing 

 

PR-E-020 COMMAND SYNTAX ERROR 

 

Preliminary checks 

 

PR-E-040 NO MODEL LOADED (compiler-produced part) 

PR-E-041 NO MODEL LOADED (validator-produced part) 

PR-E-042 MULTIPLE COMPILED FILES LOADED 

PR-E-043 MULTIPLE VALIDATED FILES LOADED 

PR-E-044 THERE WAS A COMPILATION ERROR 

PR-E-045 THERE WAS A VALIDATION ERROR 

PR-E-046 VERSION INCOMPATIBILITY 

 

Command execution 

 

PR-E-060 COMMAND EXECUTION ERROR 

PR-E-061 WORLD IS NEITHER EXTANT NOR EXTINCT 

 

Internal errors 

 

PR-E-900 INTERNAL ERROR - NO COMMAND HANDLER 
 

Table 6. Error and warning messages 
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10. Glossary and abbreviations 

α, Alpha: We have used the Greek alphabet for many event names. The English 

names of the letters are as follows: 

α  alpha β  beta γ  gamma δ  delta 

ε  epsilon ζ  zeta η  eta θ  theta 

ι  iota κ  kappa λ  lambda μ  mu 

ν  nu ξ  xi ο  omicron π  pi 

ρ  rho σ  sigma τ  tau υ  upsilon 

φ  phi χ  chi ψ  psi ω  omega 

 

Action: A  STATECRUNCHER term for processing that is associated with a 

transition (or the entering/exiting of a state). An action can be e.g.  

- a "C"-like assignment to a variable 

- the firing of an event 

- the generation of output (a trace) 

 

Black-box testing: Testing where system outputs can be observed, but not system 

internals. In the case of state-based testing, the state (more precisely, 

configuration) of the system will not be directly observable, and must be 

deduced from traces (outputs generated when events are processed). 

 

Broadcast-event:  An event that is generated within a statechart which can be responded to 

by the model (transitions can be triggered by it). The  STATECRUNCHER 

keyword to generate a broadcast event is fire event. 

 

Broadcast-event  nondeterminism: Also known as fired-event nondeterminism, this is 

the form of nondeterminism that arises when an action associated with a 

transition fires an event, which in turn gives rise (directly or indirectly) to 

one of the other forms of nondeterminism (e.g. fork, race-condition, set-

transit). 

 

CHSM: Concurrent Hierarchical finite State Machine. A language implemented by 

Paul J Lucas [CHSM]. 
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Cluster: A hierarchical state and component of a statechart with the understanding 

that if the cluster is occupied, exactly one of its members must be 

occupied. 

 

Configuration: The dynamic state of a statechart in a broad sense, comprising: occupancy 

(occupied/vacant) of the states in the statechart, variable values, cluster 

history, and trace values. 

 

DCG: Definite Clause Grammar. This is the standard Prolog grammar notation, 

which enables grammar rules to be written in Backus-Naur form. 

 

Event: A signal (that has no time duration) which may be responded to in a 

statechart model by the triggering of transitions. 

 

Fire:  The act of generating an event in an action associated with a transition: 

“the action fires the event”. [Compare “triggering a transition”, which may 

take place when the fired event is processed]. 

 

Fired-event  nondeterminism:  Also known as broadcast-event nondeterminism, this is the 

form of nondeterminism that arises when an action associated with a 

transition fires an event, which in turn gives rise (directly or indirectly) to 

one of the other forms of nondeterminism (e.g. fork, race-condition, set-

transit). 

 

Fork nondeterminism: The form of nondeterminism that arises when an event triggers 

mutually exclusive transitions in the statechart, and which produce a 

different outcome. 

 

GP4: Generic Prolog Parsing and Prototyping Package. An underlying layer of 

Prolog programs to provide parsing support (especially tokenization and 

expression parsing). 

 

Harness: A test harness is a tool that contains or accesses a test script so as to obtain 

tests and their oracle, and communicates with an implementation under 

test to run the tests. It compares actual with expected output, and logging 

the results as pass or fail. 

 

IUT: Implementation Under Test. 

 

Leafstate: A state and a component of a statechart at the lowest hierarchical level. 
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Machine engine: A program that holds a representation of a statechart and a configuration 

of that statechart, and which can process an event and in so doing calculate 

and assume the new configuration. 

 

Meta-event: An event that is internally generated when a state is exited or entered, and 

which can be used to trigger transitions in other parts of the statechart. 

 

Nondeterminism: Dynamic behaviour of a system whereby there is more than one outcome 

of processing an event. Distinguishing aspects of an outcome are: state 

occupancy, cluster history, variable values, and traces. 

 

Oracle: The pre-determined output of the system on a successful test, for 

comparison purposes with the actual output. 

 

PCO: Point of Control and Observation. These are used for systems such as 

networked and client-server systems where inputs and outputs must be 

partitioned according to which separate testing point can provide and 

observe them. 

 

Primer: The TorX terminology for the part of the tool chain that decides what 

events (or transitions) are to be given to the explorer and indirectly to the 

implementation under test to be processed. 

 

Race-condition nondeterminism: The form of nondeterminism that arises when an 

event triggers transitions in parallel parts of the statechart, and when the 

order in which these events are processed will affect the outcome. 

 

Set: A state and a component of a statechart with the understanding that if the 

set is occupied, all its members must be occupied. This represents the 

parallelism of a model. 

 

Set-action  nondeterminism: The form of nondeterminism that arises when actions (such as 

variable assignments) in different members of a set are executed, when the 

order in which this happens affects the outcome. 

 

Set-transit  nondeterminism: The form of nondeterminism that arises when a set is exited 

or entered, when the order in which the members are exited or entered 

affects the outcome. 
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Set-meta-event  nondeterminism: The form of nondeterminism that arises when 

elements of a set are exited or entered, (generating enter and exit meta-

events), when the order in which this happens affects the outcome. 

 

State: This word is used in two senses according to the context 

- a statechart consists of a hierarchy of states, which may be sets, 

clusters, or leaf-states 

- a state is the occupancy (occupied/vacant) of a state in the above sense 

 

Statechart: A concurrent, hierarchical representation of a dynamic behaviour model 

consisting of states, events, transitions, and optionally variables and 

statements for processing them. 

 

STATECRUNCHER:  A provisional name for a program that compiles statecharts, process 

events, and provide state or trace information. 

 

SUT: System Under Test. Modern literature generally employs the more precise 

term "Implementation Under Test" (IUT). 

 

Trace: The output generated on processing an event (or transition), corresponding 

to the expected observable output of the Implementation Under Test. 

 

Transition: The relation between the state of a system before and after that system has 

processed any event that triggers that transition. 

 

Trigger: The act of responding to an event by processing an associated transition: 

“the event triggers the transition”. [Compare “firing an event”, which may 

take place as an action on the transition].  

 

UML: Universal Modelling Language, as set out by the Object Modelling Group. 

UML is the industry standard for various modelling views on a system. 

The dynamic modelling view uses statecharts. 

 

White-box testing: Testing where system internals can be observed. In the case of state-

based testing, the state (more precisely, configuration) of the system can 

be observed directly. 
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