
Multi-View Stereo Documentation
Release 1

Jean-Paul Chièze

August 23, 2013

CONTENTS

1 User guide 1
1.1 Overview . 1
1.2 Licenses: . 2
1.3 Installation . 2
1.4 Quick start . 2
1.5 Hints about images: . 3
1.6 Script mvs . 3
1.7 Script add . 6
1.8 Script ccdwiths . 8
1.9 Examples . 8
1.10 Troubleshooting . 8
1.11 Acknowledgments and history . 9

2 Tools 11
2.1 merge-ply . 11
2.2 cat-ply . 12
2.3 merge-bundler . 12
2.4 check-bundle . 12
2.5 check-matches . 13
2.6 get-clusters . 13
2.7 adj2metis . 13
2.8 visu-sift . 13
2.9 visu-matches . 14
2.10 calctransform . 14
2.11 convply . 14
2.12 convbundler . 15
2.13 drawcameras . 15
2.14 calcamera . 15
2.15 projection . 15
2.16 metis2cluster . 16

3 Dealing with large image sets 17
3.1 Simple optimisations: . 17
3.2 Manual clustering: . 17
3.3 Automatic clustering: . 18

4 Internals 21
4.1 config . 21
4.2 bundler . 22

i

4.3 cmvs . 22
4.4 pmvs . 23
4.5 preprocess . 23
4.6 myimage . 24
4.7 camdb . 24
4.8 fileutils . 24
4.9 myoptions . 26
4.10 runutils . 27

5 Triangulation 29
5.1 Introduction . 29
5.2 delaunay . 29
5.3 triangclean . 30
5.4 Utility tools . 32
5.5 Examples . 33
5.6 Programming Documentation . 33

6 Indices and tables 35

Module Index 37

Index 39

ii

CHAPTER

ONE

USER GUIDE

1.1 Overview

Our goal is : given a set of photographs of a scene, taken at different viewpoints, make a 3D representation of the scene.
The method is based on PMVS2 (Patch_Based Multi_View Stereopsis, http://www.di.ens.fr/pmvs/) by Furukawa &
Ponce.

PMVS2 itself needs some pre-processing, so software includes the source of PMVS2 and of a certain number of other
external programs.

The main steps to achieve 3D recontruction are:

• compute features in the images (for example Sift keys). Several programs proposed :

– vlfeat-sift (VisionLab Features Library, http://www.vlfeat.org).

– siftfeat a program by Rob Hess, based on opencv (http://blogs.oregonstate.edu/hess/code/sift/).

– a personnal program using feature extractors of OpenCV library version 2.4.

• find matching points between images : program KeyMatchFull from bundler-v0.4
(http://phototour.cs.washington.edu/bundler/), with modifications to add parallelism.

• use stereo information to compute camera 3D parameters: program bundler from bundler-v0.4 by
Noah Snavely (http://phototour.cs.washington.edu/bundler/) with, in some circumstances, parallel extension
(http://grail.cs.washington.edu/projects/mcba/)

• divide the image set in clusters with CMVS from Yasutaka Furukawa, to speed up next step
(http://www.di.ens.fr/cmvs/).

• produce a representation of the scene as a dense set of surface patches with PMVS2 from Yasutaka Fu-
rukawa and Jean Ponce (http://www.di.ens.fr/pmvs/)

Note: source code for CMVS and PMVS2 is a version modified by Pierre Moulon, mainly for portability reasons
(TheFrenchLeaf-CMVS-PMVS-b4185d1, https://github.com/TheFrenchLeaf/CMVS-PMVS).

We also propose a program, based on module Delaunay-3d of CGAL-4.1 (Computational Geometry Algorithms Li-
brary, http://www.cgal.org), to make a facet representation of the surface.

The python script mvs will control the whole process from input images to dense points.

The script add allows one to add images, but only at the very first steps of the process.

The surface construction involves two separate programs (see below).

1

http://www.di.ens.fr/pmvs/
http://www.vlfeat.org
http://blogs.oregonstate.edu/hess/code/sift/
http://phototour.cs.washington.edu/bundler/
http://phototour.cs.washington.edu/bundler/
http://grail.cs.washington.edu/projects/mcba/
http://www.di.ens.fr/cmvs/
http://www.di.ens.fr/pmvs/
https://github.com/TheFrenchLeaf/CMVS-PMVS
http://www.cgal.org

Multi-View Stereo Documentation, Release 1

1.2 Licenses:

All the components of this software that we developped are under the GPL licence This software also includes third
parties programs. They are all under GPL or at least open source. Refer to the license information for each of them.

The GPL (v3+, http://www.gnu.org/copyleft/gpl.html) is an Open Source license that, gives you the right to use, copy
and modify the code freely. If you distribute your software based on our software, you are obliged to distribute the
modifications you made, and you are furthermore obliged to distribute the source code of your own software under the
GPL.

As a modified version of do_intersect from include/CGAL/Triangle_3_Segment_3_do_intersect.h is
included in the triangulation part, the CGAL licenses are included in the distribution (see CGAL/LICENSES/).

1.3 Installation

On a linux system :

• extract the source from the tar file:

tar zxf inria-mvs-v1.3-svnjj-mm-yyyy.src.tgz

• enter inria-mvs

• if BLAS, LAPACK or OpenCV are not in standard locations, or if you have installed CGAL (4.1), create a file
local-config.cmake (use local-config.cmake.example as example)

• create a build directory, for example Linux

• enter this directory and run:

cmake ..
make
make install

• everything should be installed in ./Linux/install{bin,lib,doc,tools}.

1.4 Quick start

You must create a working directory and provide a set of overlapping jpeg images. You can give the directory contain-
ing the images or a file containing the paths to images.

Important note: the jpeg files must contain EXIF info, specially with fields ‘focalLength’, ‘Make’ and ‘Model’.

If $bin is the directory corresponding to Linux/install/bin, just run:

$bin/mvs -i image-dir -w work-dir

You will get .ply files in work-dir/pmvs/models. They can be viewed, for example, with meshlab.

If you are satisfied of the result, be happy, otherwise read more of this documentation and experiment with the software
to increase your expertise level...

If you get a message WARNING! Cameras missing in ccdwidth database you need to add the
sensor width (in mm) of your camera to the database by running the command given in the message, for example:

2 Chapter 1. User guide

http://www.gnu.org/copyleft/gpl.html

Multi-View Stereo Documentation, Release 1

$bin/ccdwidths -c "Canon/Canon EOS 50D" -w 22.71

A good place to find the sensor width is http://www.dpreview.com.

You can download examples.tgz for a first try of the software.

1.5 Hints about images:

The result is very dependant on how the photographs are taken. Remember that the program has to find corresponding
points between images, that means detect “remarkable” points in each image and find enough similar ones between
images.

• Use the same camera with the same focal for all photographs of the scene.

• Move the camera around the scene with rotation or translation steps

ensuring that matched points be visible in at leat 3 images. - Parts of uniform color or texture will not give enough
good points. - Moving elements may mess up the reconstruction. - Avoid heterogeneous viewpoints : several pictures
should be taken at a similar distance. - Variable lighting conditions could make the matching harder. - If you have
hight resolution pictures (> 2Mpixels), you should do points detection on a reduced size (see option -maxsize below).

1.6 Script mvs

This script does all the job in 8 steps that can be executed separately :

1. extract image features. Various algorithms can be used for feature extraction, such as Sift, SURF, Harris, but
Sift seems to give the best results.

2. feature matching (program p-KeyMatchFull) : find feature points common to each pair of images

1. make option file for bundler

2. run bundler : compute cameras position and orientation.

3. prepare data for CMVS

4. exec CMVS

5. generate options for PMVS2

6. run PMVS2 program.

1.6.1 Arguments:

mvs [-v] [-n] [-cpus nb_cpus] [-i input] [-w workdir] [-s steps-range] [-pre-process samples-list] [-maxsize n] [-
shrink n] [-ccdwidth def_ccdwidth] [-cv siftfeat-options] [-vl vlsift-options] [-ocv opencv-keytype] [-match nbim]
[-ff] [-pba] [-bdlpair init_bundler_pair] [-nocmvs] [-maxnbim nbim] [-pmvs pmvs-num] [-ssh hosts-file] [-csize n]
[-minvis nb_visible_imgs]

3D scene reconstruction from a set of images. Input images are processed to produce a 3D representation of the scene
as a cloud of points in PLY format.

• -v: verbose mode

• -n: fake execution

• -cpus nb_cpus: Nb of CPUs to use (default = all)

1.5. Hints about images: 3

http://www.dpreview.com

Multi-View Stereo Documentation, Release 1

• -i input: image dir or file of image paths (only used by step 1).

• -w workdir: working dir

• -s steps-range: steps : n or n1-n2, where step number range from 1 to 8: 1: extractFeatures, 2:
matchKeys, 3: makeOptions, 4: execBundler, 5: bundle2PMVS, 6: execCmvs, 7: execGenOptions,
8: execPmvs.

Option -s 0 with -pre-process means ‘do only pre-processing’.

• -pre-process samples-list: use a few images to estimate distorsion, and apply correction to images

• -maxsize n: max image size for feature extraction (use a shrinked copy if necessary)

• -shrink n: max input image size : do all processing on resized images.

• -ccdwidth def_ccdwidth: ccdwidth for images without camera model info

• -cv siftfeat-options: Options for siftfeat as “std” of “def” or string of options (std = “”; def = “-d -s
1.6 -c 0 -r 3”).

• -vl vlsift-options: Options for vlSift as “std” or “def” (default) or string of options (std = “”; def =
“–first-octave 0 –peak-thresh 0 –edge-thresh 3.5”)

• -ocv opencv-keytype: Use points detector/extractor from opencv ([’surf’, ‘sift’, ‘hsurf’, ‘ssift’,
‘osift’, ‘ssurf’, ‘hsift’, ‘orb’, ‘ofreak’, ‘osurf’])

• -match nbim: max preceding images to check against current in KeyMatchFull (all images by de-
fault).

• -ff: fixed focal length and no distorsion estimation

• -pba: Use parallel version of bundler (warning : you should first apply a distorsion correction to
images, with -pre-process, for example)

• -bdlpair init_bundler_pair: Force bundler tu use this image pair for initialization.

• -nocmvs: Don’t clusterize images with cmvs

• -maxnbim nbim: max nb of images per cluster (for cmvs)

• -pmvs pmvs-num: option file number for pmvs (0 for option-0000)

• -ssh hosts-file: hostnames for execution of PMVS on cmvs clusters

• -csize n: csize option for pmvs2 (2 or 1)

• -minvis nb_visible_imgs: (pmvs2) each 3D point must be visible in at least nb_visible_imgs images
to be reconstructed; default 3

Notes:

1. If run without option -s, the program will skip steps already done by a previous add command

2. Addition of images made by a previous command add will become definitive (except if you force
start from step 1)

3. image list is saved in <workdir>/orig-list.txt.

4. Default behaviour is equivalent to -cv std -s 1-8 -csize 2 -minvis 3

Input data and working directory can be specified in different ways:

• if argument of -i is a file, it must contain paths to the images and option -w is mandatory to specify the working
directory.

• if argument of -i is a directory with a subdirectory named photos, option -w if not allowed; images must be in
photos and a working directory named result will be created in the input directory.

4 Chapter 1. User guide

Multi-View Stereo Documentation, Release 1

• if argument of -i is a directory without photos, it must contain the images and option -w is mandatory.

A file named history will be created in the working directory to record the different steps of the program. It is
overwritten at execution of step~1. It contains arguments, start and end times of each run, and elapsed time of each
step.

1.6.2 Detailed description:

The different steps of the process can be executed separately with option -s. The argument can be a step number (1 ..
8) or a range (n1-n2). Of course a step cannot be executed before the previous one.

Pre-process: This special step is used to speed up bundler, but it should only be applied to images taken with the same
camera and the same focal. It is invoked by the -pre-process option. The argument is a file containing paths to
a few images. The program will estimate distortion coefficients and apply the same distortion correction to all
images, so that the parallel version of bundler can be used on the result. To check the validity of this method, you
can first run steps 1-4 on the sample list and use check-bundler (see doc) to verify that estimated coefficients
of cameras are close enough:

$y/mvs -i sample-list -w $workdir -s 1-4
$y/tool check-bundle -coefs $workdir/bundle/bundle.out

Step 1: Do feature extraction on images. Options -i is mandatory. If -pre-process is given, the images will first be
undistorted. A file orig-list.txt containing the absolute images paths is created in the working directory,
so that option -i will be ignored in other steps.

Images are copied, eventually modified (options -pre-process or -shrink), to the working directory with names
of the form num.jpg, where num is a number written on 8 digits startint at zero.

Features are written to files with same basename and extension .key.gz .

• -maxsize s : feature extraction will be done on reduced images (max dimension shrinked to s). 1000 to
1500 should be a good value for s. On large images, feature extraction will produce too many points and
take a too long time.

• -shrink s [shrink images before starting. All the process will] be applied to these modified images. Will
probably not give results as good as -maxsize, but may be useful for quick tests.

• -ccdwidth w : supply a default ccdwidth for images without camera info.

• -cv “options” : use program cv-sift/siftfeat for feature extraction.

options is either “std” or “def” or a space separated list of siftfeat arguments (see $bin/cv-
sift/siftfeat -h).

“def” = “-d -s 1.6 -c 0 -r 3”

“std” = no options (use built-in values)

• -vl “options” : use program vlfeat/sift. options is either “std” or “def” or a space separated list of
arguments (see $bin/vlfeat/sift -h).

“def” = “–first-octave 0 –peak-thresh 0 –edge-thresh 3.5”

“std” = no options (use built-in values)

• -ocv keytype : use program cvkeys which provides various combination of feature detectors/extractors
from the OpenCV lib, version 2.4. The recommended value for keytype is sift

If no feature extractor is specified, -cv std is used.

Note: feature extraction is done in parallel and may use a lot of memory. You may specify a number of cpu’s
lower than the maximum (option -cpus).

1.6. Script mvs 5

Multi-View Stereo Documentation, Release 1

Step 2: For each pair of images, find matching keypoints. The program is parallelized (with OPENMP), but the
execution time is in N*N.

• -match nbim : only try to match each image with the nbim previous ones. This will considerably speed-up
the program, but it supposes that images are almost correctly ordered.

The matching information is written to matches.init.txt.

Step 3: Just build options.txt, the options file for bundler

• -ff : set option preventing bundler from calculating distortion and estimating real focal length.

• -bdlpair : force bundler tu use the given pair as initial one.

Step 4: Run bundler. Uses matches.init.txt and keypoints files to produce bundle/bundle.out

• -pba : use parallel version of bundler. The distortion coefficient are only partially estimated. Should be
used with undistorted images (see abaove -pre-process), or the final result of PMVS2 will be bad.

Step 5: Prepare data for CMVS and PMVS2 (program Bundle2PMVS from bundler package). Images without key-
point match will be ignored.

• make a copy without ignored images of bundle/bundle.init.out to pmvs/bundle.rd.out

• write projection matrices of valid cameras to .txt files in pmvs/txt

• write the list of valid images to pmvs/list.rd.txt

• use coefficients in bundle/bundle.out to undistort valid images and copy them to
pmvs/visualize.

• write image neighborhood information to pmvs/vis.dat for use by CMVS.

Step 6: Run cmvs to find cluster of images. Each cluster will be processed independantly by PMVS2

• -nocmvs: don’t run cmvs!

• -maxnbim n : define maximum number of images allowed in a cluster (default 100)

Step 7: Create option files for PMVS2. Files are named option-nnnn, where nnnn is the CMVS cluster number on 4
digits, starting at 0. If -nocmvs is specified, option-nocmvs will be created instead.

• -nocmvs : The option file will be option-nocmvs.

• -csize n : set option csize of pmvs2 (default 2)

• -minvis n [set option minImageNum of pmvs2 (default 3);] It is the minimum number of images a patch
must be visible in.

Step 8: Run pmvs2. From option files and data in pmvs/txt and pmvs/visualize, build dense 3D patches
and store the result in directory pmvs/models (files option-nnnn with extensions .ply, .patch, .pset). Program
pmvs2 uses pthreads library. Option files (option-nnnn) are processed sequentially.

• -pmvs n : execute pmvs2 only for option file option-000n

• -ssh hosts-file : use hosts given in hosts-file to dispatch execution of pmvs for all availeble option files.
The localhost may be specified as localhost or by its hostname. Only the first definition of localhost will
be used.

1.7 Script add

Allows to add images. Does an incremental update on steps 1 and 2. Other steps must be re-run with all images.

6 Chapter 1. User guide

Multi-View Stereo Documentation, Release 1

1.7.1 Arguments:

add [-v] [-n] [-cpus nb_cpus] [-i input] -w workdir [-s steps-range] [-undo] [-valid] [-maxsize n] [-shrink n] [-cv
siftfeat-options] [-vl vlsift-options] [-ocv opencv-keytype] [-ccdwidth def_ccdwidth] [-match nbim]

Add images to an already pocessed sequence. The programm can only execute the first 2 steps of the whole process.
Steps 3 to 8 must be executed by the normal command (‘mvs’).

• -v: verbose mode

• -n: fake execution

• -cpus nb_cpus: Nb of CPUs to use (default = all)

• -i input: image dir or file of image paths

• -w workdir: working dir

• -s steps-range: steps : n or n1-n2, where step number range from 1 to 2: 1: extractFeatures, 2:
matchKeys

• -undo: go back to the original state (preceding add). Needs only -w.

• -valid: Make the last additions definitive

• -maxsize n: max image size for sift

• -shrink n: max input image size (resize before processing)

• -cv siftfeat-options: Options for siftfeat as “std” of “def” (default) or string of options (std = “”; def
= “-d -s 1.6 -c 0 -r 3”).

• -vl vlsift-options: Options for vlSift as “std” or “def” (default) or string of options (std = “”; def =
“–first-octave 0 –peak-thresh 0 –edge-thresh 3.5”)

• -ocv opencv-keytype: Use points detector/extractor from opencv ([’surf’, ‘sift’, ‘hsurf’, ‘ssift’,
‘osift’, ‘ssurf’, ‘hsift’, ‘orb’, ‘ofreak’, ‘osurf’])

• -ccdwidth def_ccdwidth: ccdwidth for images without camera model info

• -match nbim: max preceding images to check against current in KeyMatchFull (all images by de-
fault).

NB: The modifications can be removed with -undo as long as you don’t execute the commande ‘mvs’

The program first makes a backup copy of files list.txt, list_features.txt, matches.init.txt.

See description of steps 1 and 2 in documentation of mvs.

Images and key files are added in the working directory; new values are added to matches.init.txt. But the
additions are temporary and overwritten by each execution of the script, until option -valid is given. On the contrary,
option -undo will revert to the original state. If one of these 2 options is given, no step is executed. Example:

$bin/mvs -i src -w work
$bin/add -i add-dir -w work
$bin/add -w work -valid
$bin/mvs -s 3-8‘‘

1.7. Script add 7

Multi-View Stereo Documentation, Release 1

1.8 Script ccdwiths

ccdwidths [-c camera-name] [-i ref-image] [-w ccdwith]

Without arguments, list contents of camera database extensions, else add the given ccdwith to the camera
database extension file

• -c camera-name: camera identifier “<Camera make>/<Camera model>” as given by exif image
metadata

• -i ref-image: image from which to extract the camera identifier.

Only one of -c -i is allowed

• -w ccdwith: camera ccd width in mm.

Example:

$bin/ccdwidths -c "Canon/Canon EOS 50D" -w 22.71

1.9 Examples

• Simple example:

$bindir/mvs -i $images -w $workdir

Result in $workdir/pmvs/models/option-0000.ply

• add some new images and recompute:

$bindir/add -i $newimages -w $workdir
$bin/add -valid -w $workdir
$bindir/mvs -w $workdir -s 3-8

• pre-undistort images to use parallel version of bundler.

$bindir/mvs -i $images -w $workdir -pre-process sample-list -pba

• on an ordered image set:

$bindir/mvs -i $images -w $workdir -match 10

1.10 Troubleshooting

1.10.1 Execution errors:

If an error occurs during execution, try to run the underlying command by hand. Option -v or -n will show what
is exactly executed. The directory corresponding to intall/lib should be added to LD_LIBRARY_PATH (to
DYLD_LIBRARY_PATH on Mac OS).

8 Chapter 1. User guide

Multi-View Stereo Documentation, Release 1

1.10.2 Bad results:

Sometimes the resulting ply shows a poor or bad reconstruction. The most frequent symptom is that bundler (step
4) eliminates too many of the input images. This can be verified with check-bundle (see ‘ images without
matched points ‘), or by comparing the number of “good” images in file pmvs/list.rd.txt (made at step
5) with the number of input images in file orig-list.txt.

The result of bundler depends on the contents of matches.init.txt:

• Run check-matches to analyze this file : option -grp will show if key matching defines a connected graph.

• Visualize the matched points between pairs of images with visu-matches (calls $bindir/cvdraw which needs
OpenCV >= 2.4)

You can also vizualise keypoints with visu-sift.

To get better results:

• If matches.init.txt is bad, you can try to change the feature extractor program or its options or modify
-maxsize.

• Tell bundler which initial pair of images to use (option -bdlpair). Use for example, “BEST pair” given by
check-matches.

It may also happen that pmvs2 gives bad results because of bad distorsion correction on some images. Undistorted
images used by pmvs2 are stored in pmvs/visualize.

In my experience, the result may be very sensitive to the feature extractor used, or even to the conditions of its
compilation.

Of course the quality of images is fundamental. A good rule of thumb is that each reference point (i.e point detected
by the feature extrcator) should be visible in at least 3 images.

1.11 Acknowledgments and history

This work was initiated by Jean Ponce, scientific leader of the INRIA-ENS research team WILLOW
(http://www.inria.fr/equipes/willow, http://www.di.ens.fr/willow), to make use of software PMVS easier.

PMVS was developped by Jean Ponce and Yasutaka Furukawa. See http://www.di.ens.fr/pmvs/ page and following
papers:

• 1. Furukawa and J. Ponce. Accurate, Dense, and Robust Multi-View Stereop-
sis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 32(8), 2010.
(http://www.di.ens.fr/willow/pdfscurrent/journee2010_sdp.pdf)

• 1. Furukawa and J. Ponce. Accurate Camera Calibration from Multi-View Stereo and
Bundle Adjustment. International Journal of Computer Vision, 84(3), september 2009.
(http://www.di.ens.fr/willow/pdfs/ijcv08a.pdf)

• 1. Furukawa and J. Ponce. Accurate camera calibration from multi-view stereo and bun-
dle adjustment. In IEEE Conference on Computer Vision and Pattern Recognition, 2008.
(http://www.di.ens.fr/willow/pdfs/cvpr08a.pdf)

Yves Ubelmann used this software, in particular for archeological sites. His feedback and data samples were of great
help.

Recently, Jean Ponce suggested to convert the dense patch model of PMVS to a trianglularized surface with the
Delaunay triangulation of CGAL. Many aspects of the programs follow his suggestions.

And the invaluable advices of Monique Teillaud (Senior researcher in team GEOMETRICA, INRIA Sophia Antipolis)
about CGAL programming saved me a lot of time and effort.

1.11. Acknowledgments and history 9

http://www.inria.fr/equipes/willow
http://www.di.ens.fr/willow
http://www.di.ens.fr/pmvs/
http://www.di.ens.fr/willow/pdfscurrent/journee2010_sdp.pdf
http://www.di.ens.fr/willow/pdfs/ijcv08a.pdf
http://www.di.ens.fr/willow/pdfs/cvpr08a.pdf

Multi-View Stereo Documentation, Release 1

10 Chapter 1. User guide

CHAPTER

TWO

TOOLS

2.1 merge-ply

merge-ply [-v][-n][-f][-wp] -d basename [-o global-ply] [-cl | [-s 1st-num] [-nb nb-sets]]
Converts points of image clusters to the coordinate system of one set.
Working directories are named ’basename-xx’, where xx is the cluster number on 2 digits.
They must contain orig-list.txt (list of paths to original imges),
pmvs/bundle.rd.out and pmvs/models/option-000.ply.
Image lists must have common images.
Points of each set are saved in a separate file (n*basename*-xx.ply in current directory).
If -o is given, all files are concatenated in global-ply.

• -v : verbose

• -n : dry run (just print the commands)

• -d : basename of working directories (names $basename-nn)

• -s : number of 1st cluster (>=1, default 1)

• -nb : number of clusters (default 2)

• -cl : order of clusters is given in file clusters-basename (ignore -s and -nb)

• -f : force to overwrite results.

• -wp : make also ply files of points used to compute transformation matrices.

With option -cl, order of clusters is given by file clusters-basename. This file has 1 line of the form n0 n1 n2
... per cluster. n0 is the cluster number (starting at 1). The line with n0 alone defines the reference cluster (= the
reference coordinate system). There must be images common to cluster n0 and n1 and images common to n1 and
n2, and so on. Points of n0 will be converted to the coord system of n1 and then to the one of n2, and so on.

Without option -cl, the cluster order is given by the cluster numbers. So, -s 1 -n 3 is equivalent to the cluster file:

1
2 1
3 2 1

The script first calls calctransform_ to compute all the needed transformation matrices, and then calls convply_ to
apply them. The script skips computation of existing result files (matrices and .ply). Use -f to force overwriting of
files.

11

Multi-View Stereo Documentation, Release 1

2.2 cat-ply

cat-ply [-patch] -o result ply-file+ Concatenate ply files and write to result.ply

• -patch : also cat .patch files to result.patch

2.3 merge-bundler

merge-bundler [-v][-n] -d basename [-f] [-o result-dir] [-s 1st-num] [-nb nb-sets]
Converts bundler results of different clusters to the coordinate system
of one set, and merges all data in a result directory.
Directories must contain pmvs/newbundle.rd.out pmvs/txt/, pmvs/visualize/, pmvs/list.rd.txt.
They are named ’basename-xx’, where xx is a 2 digits number that determines their order.

• -v : verbose.

• -n : dry run (just print the commands).

• -d : basename of working directories (names will be $basename-nn).

• -s : num of 1st set (>=1, default 1).

• -nb : number of sets (default 2).

• -o : merge results in result-dir.

• -cl : order of clusters is given in file clusters-basename (ignore -s and -nb)

• -f : force to overwrite files.

2.4 check-bundle

check-bundle [-zmin file] [-draw][-m|-wm file] [-coefs][-pcoefs][-p cam-num dimx dimy] bundler-file

• -zmin : writes in file.ply points between zmin and zmin +0.2 deltaz

• -draw : writes in xb00*.pgm matched points of the corresponding image

• -p : print 2d and 3d points for camera cam-num and image dimension dimx dimy (set the 2d origin at top left
corner)

• -pcoefs : print cameras params (focal, k1, k2)

• -coefs : print average coefs of cameras (focal, k1 k2)

• -m : print matrix of relations between images, with nb of matched points.

• -wm : write adjacency matrix of the graph, with nb of matched points in each slot.

This script is supposed to help you analyze the result of bundler when results are not satisfactory. It mainly gives
information on the dependencies between images. These dependencies are much more accurate than those obtained in
matches.init.txt.

The script prints the upper triangle of the dependency matrix : line k starts with the image number and the total
number of matched points, followed by matching images with the number of matches in the pair.

Option -grp will show the unreferenced images (first line) and the independant graphs. A good set of images should
be represented by only one graph.

12 Chapter 2. Tools

Multi-View Stereo Documentation, Release 1

2.5 check-matches

check-matches [-n nb-images][-v][-grp] <matches.init.txt Display information about image match-
ing from matches.init.txt.

• -v : print image pairs

• -grp : print list of images in matching graphs (1st line = list of isolated images)

• -n : check image indices against nb of images

2.6 get-clusters

get-clusters [-o nb-overlap*[*-rec**]][-minp min-match-nb][-v][-grp][-G|-Gm file][-ext im0 im1] matches.init.txt
Extract clusters from matches.init.txt

• -v : print image pairs

• -Gm : write connectivity matrix (needed by clustering).

• -grp : print image groups

• -G : write dot graph

• -minp : eliminate pairs with too few matches

• -ext : only consider images in range [im0,im1[

• -o : simulate partial matching with max nb of images to check (for tests)

• -rec : associated with -o, try to reconnect clusters (tests)

2.7 adj2metis

Usage ./adj2metis [-wm|wn [-i]] < adj-matrix >metis-graph-file Convert an adjacency matrix to a metis graph.

• -wm : weight edges with nb of matched points

• -wn : weight edges with degrees of their vertices

• -i: invert weights

2.8 visu-sift

visu-sift [-d srcdir | -f jpegfile] [-r] For each jpeg image in srcdir, or for jpegfile :
write a BW version of the file in ./x*filename*.pgm,
and draw sift points from source file in green or red

• -d : make keypoint images for all images in workdir

• -f : make keypoint image of the file (uses the associated .key.gz)

• -r : draw red points instead of green.

2.5. check-matches 13

Multi-View Stereo Documentation, Release 1

2.9 visu-matches

visu-matches [-m match-file] -n imgnum1 imgnum2 [-o prefix] [-v|-draw]
Write in prefix><num1.pgm and prefix><num2.pgm matched key points
according to matchfile (default matches.init.txt)
The script must be executed in the workdir (= with match-file and images).

• -n : image nums of a pair

• -o : prefix for resulting images (def xm)

• -v: print key pairs on stdout

• -draw :

– print matching points to match* -points.txt

– put the 2 images side by side in xmatch.png and join matching points

– do the same in ximatch.png after removing outliers

2.10 calctransform

calctransform -d target-dir src-dir -l imglist1 imglist2 [-nc max-nb] [-wm output-matrix] [-wp output-points] [-v]

Uses files pmvs/bundle.rd.out to compute the matrix to convert a PMVS model in src-dir into the coordi-
nate system of target-dir model.

• -d target-dir src-dir: directories containing bundle/bundle.out for target and src models

• -l imglist1 imglist2: files containing original lists of images. They must have common images

• -nc max-nb: use max-nb common images (def all common ones)

• -wm output-matrix: file for saving transform matrix

• -wp output-points: write ply file of points used to compute transform.

• -v: verbose

Example:

$bindir/tool calctransform -d j-01 j-02 -l j-01/orig-list.txt j-02/orig-list.txt -wm M-j-0201

2.11 convply

convply -m matrix1,...,matrixn -i input-ply [-o out-ply]

Successively apply the given transform matrices to convert a 3D PMVS2 model

• -m matrix1,...,matrixn: transformation matrices to apply successively to move from coord system n
to 1

• -i input-ply: ply file to convert

• -o out-ply: ply output file (default result.ply)

Example:

14 Chapter 2. Tools

Multi-View Stereo Documentation, Release 1

$bindir/tool convply -m M-j-0302,M-j-0201 -i j-03/pmvs/models/option-0000.ply -o nj-03.ply

2.12 convbundler

convbundler -m matrix1,...,matrixn -d work-dir

• -m matrix1,...,matrixn: transformation matrices to apply successively to move from coord system n to 1

• -d work-dir: directory containing files to convert (pmvs/bundle.rd.out pmvs/txt/)

2.13 drawcameras

drawcameras -o output-ply -i bundler-file

Make a ply file of cameras positions.

• -o output-ply: ply file for cameras positions

• -i bundler-file: bundler file (bundle/bundle.out or pmvs/bundle.rd.out)

Example:

$bindir/tool drawcameras -i pmvs/bundle.rd.out -o pmvs/cameras.ply

2.14 calcamera

calcamera [-s dimx dimy] [-m projection-matrix] [-v] points-file

Compute the projection matrix for 2d/3d point pairs given by the user.

• -s dimx dimy: image x y dimensions

• -m projection-matrix: file to store the projection matrix

• -v: verbose mode

• points-file: lines of 2d/3d corespondent point coordinates as ‘x y X Y Z’

Prints K (intrinsics), R (rotation) and t (translation) for the camera
K is of the form:
xfocal skew-angle x0
0 xfocal y0
0 0 1

2.15 projection

projection -d srcdir -i image [-b numcam] [-p proj-matrix] [-pts points-file] [-col zoom]

• -d srcdir: directory containing bundle/ and pmvs/

• -i image: image for projection

• -b numcam: use camera <numcam> from bundle.rd.out (default -b 0)

2.12. convbundler 15

Multi-View Stereo Documentation, Release 1

• -p proj-matrix: use projection matrix stored in given file

• -pts points-file: ply file containing 3d points

• -col zoom: draw squares of size 2n+1 with original color of points

2.16 metis2cluster

metis2cluster -l img-list -o out_name -g metis-graph -c metis-nb-clusters [-n] [-ply] [-dot] [-b bundle-file] [-ax]

Build cluster data (lists of images, clusters dependencies) for Multi-View Stereo programs.

• -l img-list: list of paths of original images

• -o out_name: basename for results (lst<name>-01,lst<name>-02 ...,clusters-<name>

• -g metis-graph: file basename of the metis files (i.e without the .metis extension)

• -c metis-nb-clusters: nb of clusters made by gpmetis (file <metis-graph>.metis.part.<nb>)

• -n: simulation : do not write files

• -ply: print cluster cam positions in .ply files

• -dot: print cluster data in .dot files

• -b bundle-file: bundle-file used for camera positions when writing dot files

• -ax: alternate conection algorithm : choose images directly connected to a cluster, rather than a
connected subgraph

Results are clusters-<out_base>, lst<out_base>-01 (cluster 1 images list), xlst<out_base>-01 (short list
for mvs pre-process), ...

Example:

If metis data is test.metis and test.metis.part.2:

$bindir/tool metis2cluster -l orig-list.txt -o test -g test -c 2

16 Chapter 2. Tools

CHAPTER

THREE

DEALING WITH LARGE IMAGE SETS

Execution time can increase rapidly as the number of images grows. In particular, step 2 (feature matching), is in
O(N2).

For example, on a host with 48Gb of memory and 24 cpus at 2.6Mhz, the main elapsed times for a set of 90
1200x900 images (about 2000 keypoints / image) are:

- step 1 (extractFeatures) took 11.719s
- step 2 (matchKeys) took 49.144s
- step 3 (makeOptions) took 0.001s
- step 4 (execBundler) took 425.344s
- step 5 (bundle2PMVS) took 2.065s
- step 6 (execCmvs) took 1.058s
- step 7 (execGenOptions) took 0.008s
- step 8 (execPmvs) took 104.782s

3.1 Simple optimisations:

• keep the number of key points reasonable (use option -maxsize). About 3000 key points seems to be enough.

• if you have OpenCV >= 2.4, try -ocv sift; it seems to make features extraction and key matching faster.

• try -pre-process + -pba to speedup bundler

• if images are mostly ordered, use -match to speedup step 2 (for example -match 8). Use check-matches (see
doc) to check the result:

$bindir/tool check-matches -grp $workdir/matches.init.txt

This will display list of images in each matching graph. The first line lists images without match. Normally
there should be only 2 lines : the first one empty, and the second one containing all images. But more than 2
lines with one containing almost all images could be acceptable. The quality of matches.init.txt has also an
influence on bundler.

Another important solution is clustering input data.

3.2 Manual clustering:

This method supposes that you can easily build groups of overlapping images. Each group must have a few (about
10) images of an other one to be able to compute the transformation matrices necessary to merge the resulting sets of

17

Multi-View Stereo Documentation, Release 1

3D points.

You must follow some naming conventions if you want to use the provided scripts.

Given a basename $base, and N images lists, named lst-$base-01 to lst-$base-nn, you must create
ditectories $base-01 ... $base-nn and a file clusters-$base.

The cluster file has N lines of cluster numbers that describe the dependences between the clusters. The reference
cluster (= the reference coordinate system), must be alone on a line. For example, suppose cluster 1 is the reference,
the line 3 2 1 means that there are common images between clusters 3 and 2 and between 2 and 1. To convert points
of cluster 3 to the reference coordinate system, we will apply the transformation from 3 to 2, and then from 2 to 1.

Once all the clusters have been processed by mvs, you can merge the results with merge-ply.

Example:

$bindir/mvs -i lst-test-01 -w test-01
$bindir/mvs -i lst-test-02 -w test-02
$bindir/mvs -i lst-test-03 -w test-03
cat <<EOF >clusters-test
1
2 1
3 2 1
EOF
$bindir/tool merge-ply -d test -o all-test.ply -cl

This will create ./ntest-01.ply ./ntest-02.ply ./ntest-03.ply and all-test.ply.

3.3 Automatic clustering:

This is an attempt to automatically clusterize a large set of images. It is very experimental and is given without any
guarantee!

NB: the program gpmetis from ParMETIS (http://glaros.dtc.umn.edu/gkhome/metis/parmetis/overview) is required.

3.3.1 Algorithm:

1. Extract key points from all images:

$binddir/mvs -i $datadir -w $workdir -s 1

2. Use matches.init.txt to build a connected graph of images relations (2 images are connected if they
have matching points). This is the critical part. As we want to avoid O(N2) operations, we suppose that most
of time, consecutive images have matching points:

• First run the key matching program with a limited neighbourhood (4 to 8). We should obtain a “small”
number of independant clusters.

• Try to find a few images (tipically 4) that reconnect the clusters. We hope that the number of tests will not
be too large.

This operation is done by n-KeyMatchFull:

n-KeyMatchFull list_features.txt out-matchfile [min-match [[max-overlap] old-match-file]]

• list_features.txt : file created in workdir at step 1

• out-matchfile : match file, similar to matches.init.txt

18 Chapter 3. Dealing with large image sets

http://glaros.dtc.umn.edu/gkhome/metis/parmetis/overview

Multi-View Stereo Documentation, Release 1

• min-match : minimum number of matched points between 2 images (default 16).

• max-overlap : number of consecutive image to check for matches (default 8)

• old-match-file : don’t calculate initial matches, and directlly the cluster reconnection step.

cd $workdir
n-KeyMatchFull list_features.txt matches.init.txt

3. Split this graph in N subgraphs :

• make the matching graph adjacency matrix (see get-clusters):

$bindir/tool get-clusters matches.init.txt -Gm mybase

• Convert adjacency matrix to metis graph (see adj2metis):

$bindir/tool adj2metis <mybase.mat >mybase.metis

• Split the graph into N parts with gpmetis (http://glaros.dtc.umn.edu/gkhome/metis/parmetis/overview).
For example, with N = 5:

gpmetis -ptype=kway -contig -ncuts=2 -objtype=cut mybase.metis 5

The resulting file will be base.metis.part.5 (line k give the cluster number of image k).

4. Use the initial graph to extend each subgraph with a few images that can interconnect it with another subgraph
(see metis2cluster):

$bindir/tool metis2cluster -l orig-list.txt -o mybase -g mybase -c 5

We will obtain clusters-mybase, lstmybase-01 xlstmybase-01 ... lstmybase-05
xlstmybase-05.

1. Run mvs on each cluster. For example:

mkdir mybase-01
$bindir/mvs -i lstmybase-01 -w mybase-01 -pre-process xlstmybase-01 -pba

2. Merge results (see merge_ply_):

$bindir/tool merge-ply -d mybase -cl -o mybase-all.ply

3.3. Automatic clustering: 19

http://glaros.dtc.umn.edu/gkhome/metis/parmetis/overview

Multi-View Stereo Documentation, Release 1

20 Chapter 3. Dealing with large image sets

CHAPTER

FOUR

INTERNALS

4.1 config

This module contains parameters of the application.

exception BadParamException
Bad parameter or file. The execution cannot continue

class Config()

Parameters of the application :

• progs : names of external progs called by the application

• params : configuration parameters

• bundlerOptions : default options for bundler

• execList : tasks to execute in given order

exception ExecAbortException
Programm terminated with error

exception MissingInputFile
Missing input file

getStatus()
Retrieve state of last add operation from file workdir/add-status

initConf(**args)

isFocalPredef()
Get focal computed by pre-process from file workdir/pre-processed.txt.

Returns: None if no file or null focal in file, value of focal otherwise.

prepSteps(l, firststep, log, maxstep=None)
Set exec flags in steps list.

Input []

• l is a 1 or 2 elements list (1st and last step, 1 to 8)

• firststep = minimum value required for 1st step number.

• maxstep = max possible step if < 8

Returns : (stat,istart); stat = True if correct, istart = index in step table (0-7)

21

Multi-View Stereo Documentation, Release 1

setStatus(level)
Writes the status of an add operation to file workdir/add-status

4.2 bundler

Execute tasks corresponding to the 4 first steps (up to bundler).

class Bundler(lst, binpath=None, add_num=0)
Process programs of the bundler package

bundle2PMVS()

Prepare data for pmvs

• input : list.txt, bundle/bundle.out

• output : (in pmvs/) bundle.rd.out, list.rd.txt, pmvs_options.txt, vis.dat, txt/*.txt, visualize/*.jpg,
prep_pmvs.sh

doBundler()
Sequence of programs to execute from the bundler package

execBundler()

Execute bundler program

• input : list.txt, options.txt, matches.init.txt

• output : out, bundle/*.out, bundle/*.ply, constraints.txt, pairwise_scores.txt, matches.*,
nmatches.*

extractFeatures()
Extract camera focal length from input images and calculate key-points. Start features extraction program
in parallel on al cpu’s.

•copy-rename images to workdir

•make list.txt, list_features.txt, *.key.gz (sift keys),

makeOptions()
Builds the option file (options.txt) for bundler

matchKeys(keylistfile)

Call the key matching program.

• input : list_features.txt

• output : matches.init.txt

4.3 cmvs

Call cmvs

class Cmvs()
Process programs of the cmvs package

doCmvs()
Optionally run the 2 steps of CMVS : cmvs, genOptions

execCmvs()

22 Chapter 4. Internals

Multi-View Stereo Documentation, Release 1

Execute cmvs

• input : (in pmvs/) bundle.rd.out list.rd.txt pmvs_options.txt txt/*.txt visualize/*.jpg

• output : pmvs/centers-*.ply pmvs/ske.dat pmvs/vis.dat (overwrite vis.dat from bundle2PMVS)

execGenOptions()

Make option files for pmvs

• input : pmvs/ske.dat

• output : pmvs/pmvs.sh pmvs/option-*

4.4 pmvs

Call pmvs2

class Pmvs()
Process programs of the pmvs2 package

doPmvs()
Optionally execute pmvs2

execPmvs()

Call pmvs2 program

• input : (in pmvs/) /option-*, vis.dat, visualize/*.jpg, txt/*.txt

• output : (in pmvs/) models/{*.ply, *.patch, *.pset}

4.5 preprocess

get_distorsion()
Compute average focal and distorsion coefficients from a bundle file (workdir/bundle/bundle.out). Ignore
focals that differ from 1st focal by more than 10% (outliers ?)

Returns: (focal,k1,k2) as strings

get_focal()
Retrieve the focal of the first camera from workdir/list.txt

Returns []

• the focal value as a float

Raise an exception if not available.

save_focal(s, sk1=None, sk2=None)
Store focal and distorsion coefficients in file workdir/pre-processed.txt

Input:

• s : the focal value as a string

• sk1, sk2 (optionals) : distorsion coefs as strings

undistort(src, sfocal, sk1, sk2)
Undistort images and copy them to workdir.

Input:

4.4. pmvs 23

Multi-View Stereo Documentation, Release 1

• src : the original images (as given by option **-i**)

• sfocal, sk1, sk2 : focal and distorsion coeffs (strings)

Output: in files named by images number on 8 digits in workdir (00000000.jpg, ...)

4.6 myimage

class MyImage(fileDef)
Interface for image list operations

extractFocal()
Open the image file and extract focal.

extractSiftKeys()

Extract feature keys from the image The jpeg file is converted to a BW pnm image, eventually with a
smaller size. Keys data is written to a compressed text file in directory workdir, with same name as
image and extension *.key.gz*.

getInfo()
Return parameters associated to an image as a dictionnary of param-name:value pairs

4.7 camdb

class CcdWidths()

Database of some cameras ccd widths as a dictionary

• keys are of the form Make/Model where Make and Model are respectively the camera maker and the
model as they appear in the exif header of photos

• values are the width in mm of the CCD sensor

To add a new entry you must know the ccd width in mm of the sensor. But this is rarely present in the
specifications of the camera. The best place to find the width in mm is http://www.dpreview.com : select the
maker in the cameras menu.

4.8 fileutils

backupFilesMaybe(paths)
Make a backup copy of each file of the list, if the backup does not yet exist

execInDir(workdir, args, **kwargs)

•Execute a command in directory workdir

•Log the command in verbose mode

•Don’t execute it in simulation mode

execMaybe(name, func, *args)
Execute a step of the MVS suite if validated by the user at script start.

Input:

• name : the execution step name

24 Chapter 4. Internals

http://www.dpreview.com

Multi-View Stereo Documentation, Release 1

• func : the boolean function to call if the step is marked executable in Config.validExec

• args : arguments for func

Returns: True if step is skipped, the return value of *func* otherwise.

getFilteredFileList(dir, rexp)
Retrive files of a given directory that match a regular expression.

Input:

• dir : the directory to list

• rexp : compiled regular expression

Returns: Sorted list of files. Each list element is a dictionnary {‘dir’ : dir, ‘name’ : filename}

getImagelist(src, firstnum=0)
Return the list of image files

Input:

• src : original images (directory of list of paths, as given to option **-i**)

• firstnum : number of first image to return

Returns:

images as a list of dictionnary with items

• ‘dir’ : directory component

• ‘name’ : basemname of original

• ‘newname’ : name (%08d) that the file will have when copied to working directory

mkdirsMaybe(*paths)
Create a list of directories if they don’t exist

progPath(progName)
Return the absolute path of a given program name supposed to be in the bin directory of the software

readBackup(file)
Return (as a list) the content of the backup file associated to file (= with extension *.save*).

readFileMaybe(file)
Read a file if possible.

Returns the list of lines; empty list if the file cannot be read.

restoreBackupFiles(dirs)
Silently restores all backup file in each dir of the list

rmBackupFiles(dirs)
Silently remove all backup file in each dir of the list

rmNoerr(paths)
Silently remove a list of files

stripReadFileMaybe(file)
Read a file if possible and strip lines leading and trailing spaces.

Returns the list of stripped lines; empty list if the file cannot be read.

validAdd()

Make addition operation definitive : remove all files created by -add (backups and status file)

4.8. fileutils 25

Multi-View Stereo Documentation, Release 1

validName(rexp, x)
Check a name against a regular expression

Input:

• rexp : compiled regular expression (result of re.compile)

• x : the string to check

Returns: True if x matchex rexp

4.9 myoptions

doc_of_options(options)
Build a doc string from options list (removes some rst tags)

Input []

• options = list of option definitions (see parse_args below)

Returns: tuple made of usage line and concatenation of detailed options help strings.

parse_args(options, argv, usage=<function usage at 0x2a8e578>)
Retrieve options from command line arguments (argv), according to a list of tuples (options).

Input:

• options : a list of 5 elements tuples describing each option

– 1st element : the option string (for ex -i). If None, option is only used for making the doc string.

– 2nd element: number of arguments of the option.

– 3rd element : True if option is mandatory.

– 4th element : argument name(s).

– 5th element : description string.

• argv [the list of command line arguments. Arguments starting with] ‘-‘ arte considered options and
checked against options.

• usage : the usage function to call (myoptions.usage() by default).

Returns: (list of (option-strings,arg-value), list of non options arguments).

prepare_doc(options, before=’n’, after=”, name=None)
Returns a string mde of options documentation with optional strings prepended and appended. The resulting
string is stored in a global variable for use by usage()

sphinxdoc_of_options(options)
Build a doc string in sphinx format from options list

Input []

• options = list of option definitions (see parse_args below)

Returns: tuple made of usage line and concatenation of detailed options help strings.

usage(msg=None)
Prints the optional msg string, followed by the cur_doc string, that must have been built with prepare_doc

26 Chapter 4. Internals

Multi-View Stereo Documentation, Release 1

4.10 runutils

save_history(argv, start, elapsedtime, cputime, add_mode=False)
Write information to the history file work-dir/history.

Input:

• start : True if the command is starting, False if at end of command

• argv : the arg list of the command, to be written if start is True

• elapsedtime, cputime : written if start is False

The file is overwritten if step 1 is executed, otherwise the data is appended to the file.

verifSteps(steps, firststep, usage, maxstep=None)
Verifies validity of the steps argument string. Check that files needed by 1st step exist in workdir.

Input:

• steps : the steps string (‘d’ or ‘d1-d2’)

• firststep : minimum first step allowed

• usage : usage function to call in case of error

• maxstep : maximum step allowed (None = 8)

Returns: call usage if string is incorrect, raises an exception if some required files are missing.

4.10. runutils 27

Multi-View Stereo Documentation, Release 1

28 Chapter 4. Internals

CHAPTER

FIVE

TRIANGULATION

5.1 Introduction

Given a dense set of 3D patches produced by PMVS2 (http://www.di.ens.fr/pmvs/), we want to build a triangle facets
representation of the surface of the scene.

The programs use the Delaunay-3d module of CGAL library, version 4.1 : Computational Geometry Algorithms
Library, http://www.cgal.org

The surface generation needs two programs :

1. delaunay

• make a delaunay 3D triangulation of PMVS + camera poinrs.

• as PMVS returns the list of points visible from each camera, we can draw a path from a camera to the
points it sees, and find which tetrahedrons are crossed.

2. triangclean

• use a criterion based on the number of rays crossing a tetrahedron to eliminate useless tetrahedrons.

• find facets of remaining tetrahedrons that belong to the surface..

5.2 delaunay

This program builds a Delaunay triangulation and compute information about tetrahedrons visibility. It is based on
the CGAL library (http://www.cgal.org).

We first build a delaunay triangulation on the points given by PMVS2 plus the positions of cameras. Then we
compute the number of intersections of each tetrahedron with rays between each camera and the corresponding
PMVS2 visible points.

The loop on camera is parallelized with OPENMP.

delaunay1 is the sequential version of delaunay.

There is also a program delaunayb which gets it’s data from the bundler result (2nd argument should be
pmvs/bundle.rd.out).

5.2.1 Arguments:

delaunay cam_points points-basename [-D debug-level] [-o outfile] [-a coef_min coef_max]
Make a delaunay triangulation with PMVS points and camera positions,

29

http://www.di.ens.fr/pmvs/
http://www.cgal.org
http://www.cgal.org

Multi-View Stereo Documentation, Release 1

and compute intersections of tetrahedrons with rays issued from camera points.

• cam_points : ply file of camera positions, with color attribute (generated by tool drawcameras.py).

• points-basename : basename for .ply and .patch files

• -D : debug level, level / 10 for display, level % 10 for interactivity

• -o : result file (default output.cgal).

• -a : add a point (barycenter) to “large” tretrahedrons, i.e with an edge >= coef_min*average-edge-length and
<= coef_max*average-edge-length.

option -D is only for debug purpose and small points sets.

5.2.2 Detailed description:

• input data : input data comes from 3 files:

– the .ply file of the camera positions and normals. This file is made by drawcameras.

– the .ply file of PMVS2 points (with normals and colors), for example pmvs/models/option-0000.ply.

– the .patch file made by PMVS2 and giving visible points for each camera, for example
pmvs/models/option-0000.patch

• output data : it is a binary file defined by option -o, which defaults to output.cgal. Conventionally its extension
should be .cgal. It will contain all the information : delaunay triangulation, PMVS2 points (with normals and
colors), cameras, number of ray intersections with tetrahedrons ... This file can be quite big.

• messages : The program will print some statistics, execution times and information about the data. The number
of valid cameras is less than number of cameras when some cameras have no visible points. Delaunay
triangulation will remove duplicate points.

Points from PMVS2 are normally dense, but may be sparse in some regions. Most tetrahedrons are small, but they are
larger in sparse regions. And there are generally artificial large tetrahedrons on the boundary of the scene. You may
want to try to fill sparse region, but not obviously empty regions. To do so we propose to add barycenters of
“medium” size tetrahedrons to the set of points. Affected tetrahedrons are those having their longest edge bounded by
a minimum and maximum value.

These value are equal to the average edge length multiplied by the 2 coefficients of option -a. All this is done, of
course, before insertion of camera points. But be careful, this operation may give bad results.

5.3 triangclean

This program will make a surface reconstruction of a scene from the result of program delaunay described above.

5.3.1 Arguments:

triangclean input_cgal out_ply [-e extract-mode] [-i min_intersect | -mxf nb-intersections] [-iw] [-a normals-angle]
[-ct] [-lg lg_coef] [-s surf_coef][-sm lambda nb_iter]
Extract, from the result of program delauny, the facets of the surface of the scene,
and write the result to a ply file in binary format The program first eliminates empty tretrahedrons
and then determines facets belonging to the surface.

• input_cgal : data generated by program delaunay.

• out_ply : .ply output file.

30 Chapter 5. Triangulation

Multi-View Stereo Documentation, Release 1

• -e [extraction mode :]

– 0 = use removed tretrahedrons

– 1 = use kept tretrahedrons

– 2 = extract all facets of removed tretrahedrons (for test purpose)

– 3 = extract all facets of kept tetrahedrons (for test purpose)

• -i : remove tetrahedrons with at least min_intersect rays going through them.

• -iw : use a number of intersections larger than min_intersect for “large” tetrahedrons

• -mxf : use maxflow algorithm, with a threshold of nb-intersections, to remove tetras

• -a [remove facets that do not satisfy a constraint on normal angles.]

– if normals-angle > 0, rm facets where the angle between the facet normal and a vertex normal is
greater than angle

– if normals-angle < 0, rm facets where the angle between the facet normal and the sum of vertex
normals is greater than |angle|. Angle value from 0 to 180; default value 180 means “no angle
constraint”.

• -ct : remove tetrahedrons that have 3 facets on the surface (rough patches).

• -sm [try to smooth the surface. Replace each point p by lambda * p + (1 - lambda) * neighbours_mean; repeat
nb_iter times.] if lambda <= 0., use default value of 0.8; if nb_iter < 0, do a weighted mean based on
normal angles.

• -lg : remove tetrahedrons with too long edges (greater than lg_coef * mean-edge-length. Default value of 0.14
if lg_coef = 0.

• -s : remove tetrahedrons with too large facets (surface greater than surf_coef * mean-edge-length *
mean-edge-length. Default value of 0.01 if surf_coef = 0.

5.3.2 Description:

The algorithm is as follows:

1. Find tetrahedrons to remove according to their number of intersecting rays (computed by delaunay), 2
possibilities :

• Remove tetrahedrons having a number of intersections greater or equal to the value given by option -i (1 by
default). This number can be weighted by the tetrahedron size (option -iw).

• Minimize an energy function with min-cut/max-flow algorithm (option -mxf):

E(x) =
∑
v∈ν αvxv +

∑
(u,v)∈ε β(u, v) | xu − xv |

ν being the set of cells we want to remove, nv the number of rays crossing node v and n0 the number of
inersections threshold, the cost αv is defined by nv − n0. The smoothness coefficient β represents the
similarity between adjacent tetrahedrons u and v.

1. Optionally (-ct), add to this list tetrahedrons having 3 faces adjacent to infinite tetrahedrons (rough patches).

2. Find facets canditate for the surface. Two possibilities (option -e):

• (-e 0, default) for each removed tetrahedron, find “mirror” facets of its facets adjacent to a non removed finite
tetrahedron. This is a bit faster, because the number of removed tetrahedrons is less than the number of valid
ones.

• (-e 1) for each kept tetrahedron, find facets that are adjacent to an infinite or to a removed tetrahedron.

5.3. triangclean 31

Multi-View Stereo Documentation, Release 1

1. Ignore some of the selected facets, considered as artefacts, accordingg to following optional criterions :

• too long facet : an edge is longer than some threshold proportionnal to the average edge length (-lg coef).

• too wide facet : its surface is greater than a threshold proportional to the square of the average edge length (-s
coef).

• too badly oriented facet : the angle of its delaunay normal with one of the PMVS normals at the vertices or
with the average vertices normal is too great (-a angle).

Unfortunately, there is no rule to choose optimal parameters.

5.4 Utility tools

Here are some graphical tools that will bring some little help to analyze results of PMVS2 and triangulation.

Valid cameras are drawn in green, and bad ones (with no visible points) in red.

These programs will be slow on large data sets.

5.4.1 camtest

camtest file.cgal facets.ply [-b x1 y1 x2 y2] View the results of PMVS and triangulation in an OpenGL window .

• -b : Only draw rays to points in the XY box.

To see which points are visible by a camera : hit keyboard key S. This will toggle drawing red rays from current
camera to its visible points.

For more readability, you can restrict target points to an XY box.

Use the Select function (shift+LeftMouse) to print the xy ccordinates of a point of the scene.

5.4.2 camtest0

camtest0 cameras.ply model-basename*[*-b** x1 y1 x2 y2]
Display PMVS points and cameras, and draw rays to visible points.
model-basename is the basename of files .ply and .patch built by PMVS2.

• -b : Only draw rays to points in the XY box.

5.4.3 cmpcgal

cmpcgal {points1.ply points2.ply | data1.cgal data2.cgal} [-b x1 y1 x2 y2
Alternatively display 2 datasets for comparison,
either facets (.ply) or delaunay (.cgal) files.

• -b : display points inside xy box

5.4.4 hist

hist input.cgal Repartition of number of intersections
Each line gives the nb of tetrahedrons more intersections than given after ’>’.

32 Chapter 5. Triangulation

Multi-View Stereo Documentation, Release 1

5.5 Examples

Notations :

• $bindir = intallation bin directory

• $workdir = working directory for multi-view-stereo programs.

cd $workdir/pmvs
$bindir/tool drawcameras -i bundle.rd.out -o cameras.ply

Visualize how cameras see points:

$bindir/camtest0 cameras.ply models/option-000

Triangulation:

$bindir/delaunay cameras.ply models/option-000
$bindir/triangclean output.cgal scene.ply

Extraction variant:

$bindir/triangclean output.cgal scene2.ply -i 5

Compare results:

$bindir/cmpcgal scene.ply scene2.ply

5.6 Programming Documentation

The internal programs documentation, made with Doxygen, is available here in html and as
triangulation-refman.pdf in pdf.

5.5. Examples 33

http://www.stack.nl/~dimitri/doxygen/download.html

Multi-View Stereo Documentation, Release 1

34 Chapter 5. Triangulation

CHAPTER

SIX

INDICES AND TABLES

• Index

• Module Index

• Search Page

35

Multi-View Stereo Documentation, Release 1

36 Chapter 6. Indices and tables

MODULE INDEX

A
add, 7

B
bundler, 22

C
calcamera, 15
calctransform, 14
camdb, 24
ccdwidths, 8
cmvs, 22
config, 21
convbundler, 15
convply, 14

D
drawcameras, 15

F
fileutils, 24

M
metis2cluster, 16
mvs, 3
myimage, 24
myoptions, 26

P
pmvs, 23
preprocess, 23
projection, 15

R
runutils, 27

37

Multi-View Stereo Documentation, Release 1

38 Module Index

INDEX

A
add (module), 7

B
backupFilesMaybe() (in module fileutils), 24
BadParamException, 21
bundle2PMVS() (bundler.Bundler method), 22
Bundler (class in bundler), 22
bundler (module), 22

C
calcamera (module), 15
calctransform (module), 14
camdb (module), 24
CcdWidths (class in camdb), 24
ccdwidths (module), 8
Cmvs (class in cmvs), 22
cmvs (module), 22
Config (class in config), 21
config (module), 21
convbundler (module), 15
convply (module), 14

D
doBundler() (bundler.Bundler method), 22
doc_of_options() (in module myoptions), 26
doCmvs() (cmvs.Cmvs method), 22
doPmvs() (pmvs.Pmvs method), 23
drawcameras (module), 15

E
ExecAbortException, 21
execBundler() (bundler.Bundler method), 22
execCmvs() (cmvs.Cmvs method), 22
execGenOptions() (cmvs.Cmvs method), 23
execInDir() (in module fileutils), 24
execMaybe() (in module fileutils), 24
execPmvs() (pmvs.Pmvs method), 23
extractFeatures() (bundler.Bundler method), 22
extractFocal() (myimage.MyImage method), 24
extractSiftKeys() (myimage.MyImage method), 24

F
fileutils (module), 24

G
get_distorsion() (in module preprocess), 23
get_focal() (in module preprocess), 23
getFilteredFileList() (in module fileutils), 25
getImagelist() (in module fileutils), 25
getInfo() (myimage.MyImage method), 24
getStatus() (in module config), 21

I
initConf() (in module config), 21
isFocalPredef() (in module config), 21

M
makeOptions() (bundler.Bundler method), 22
matchKeys() (bundler.Bundler method), 22
metis2cluster (module), 16
MissingInputFile, 21
mkdirsMaybe() (in module fileutils), 25
mvs (module), 3
MyImage (class in myimage), 24
myimage (module), 24
myoptions (module), 26

P
parse_args() (in module myoptions), 26
Pmvs (class in pmvs), 23
pmvs (module), 23
prepare_doc() (in module myoptions), 26
preprocess (module), 23
prepSteps() (in module config), 21
progPath() (in module fileutils), 25
projection (module), 15

R
readBackup() (in module fileutils), 25
readFileMaybe() (in module fileutils), 25
restoreBackupFiles() (in module fileutils), 25
rmBackupFiles() (in module fileutils), 25

39

Multi-View Stereo Documentation, Release 1

rmNoerr() (in module fileutils), 25
runutils (module), 27

S
save_focal() (in module preprocess), 23
save_history() (in module runutils), 27
setStatus() (in module config), 21
sphinxdoc_of_options() (in module myoptions), 26
stripReadFileMaybe() (in module fileutils), 25

U
undistort() (in module preprocess), 23
usage() (in module myoptions), 26

V
validAdd() (in module fileutils), 25
validName() (in module fileutils), 25
verifSteps() (in module runutils), 27

40 Index

	User guide
	Overview
	Licenses:
	Installation
	Quick start
	Hints about images:
	Script mvs
	Script add
	Script ccdwiths
	Examples
	Troubleshooting
	Acknowledgments and history

	Tools
	merge-ply
	cat-ply
	merge-bundler
	check-bundle
	check-matches
	get-clusters
	adj2metis
	visu-sift
	visu-matches
	calctransform
	convply
	convbundler
	drawcameras
	calcamera
	projection
	metis2cluster

	Dealing with large image sets
	Simple optimisations:
	Manual clustering:
	Automatic clustering:

	Internals
	config
	bundler
	cmvs
	pmvs
	preprocess
	myimage
	camdb
	fileutils
	myoptions
	runutils

	Triangulation
	Introduction
	delaunay
	triangclean
	Utility tools
	Examples
	Programming Documentation

	Indices and tables
	Module Index
	Index

