
M. Huba, S. Skogestad, M. Fikar, M. Hovd,
T. A. Johansen, B. Rohal’-Ilkiv

Editors

Selected Topics on
Constrained and Nonlinear

Control
Workbook

STU Bratislava – NTNU Trondheim

Copyright c© 2011 authors
Compilation: Miroslav Fikar
Cover: Tatiana Hubová
Printed and bounded in Slovakia by Miloslav Roubal ROSA, Dolný Kub́ın
and Tlačiareň Vrábel, Dolný Kub́ın

ISBN: 978-80-968627-3-3

Preface

This workbook was created within the NIL-I-007-d Project “Enhancing NO-
SK Cooperation in Automatic Control” (ECAC) carried out in 2009-2011 by
university teams from the Slovak University of Technology in Bratislava and
from the Norwegian University of Science and Technology in Trondheim. As
it is already given by the project title, its primary aim was enhancing co-
operation in academic research in the automatic control area in the partner
institutions. This was achieved by supporting broad spectrum of activities
ranging from student mobilities at the MSc. and PhD. level, staff mobilities,
organization of multilateral workshop and conferences, joint development of
teaching materials and publishing scientific publications. With respect to the
original project proposal, the period for carrying out the foreseen activi-
ties was reasonably shortened and that made management of the all work
much more demanding. Despite of this, the project has reached practically
all planned outputs – this workbook represents one of them – and we believe
that it really contributes to the enhancement of Slovak-Norwegian coopera-
tion and to improvement of the educational framework at both participating
universities. Thereby, I would like to thank all colleagues participating in
the project activities at both participating universities and especially pro-
fessor Sigurd Skogestad, coordinator of activities at the NTNU Trondheim,
associate professor Kataŕına Žáková for managing the project activities, and
professor Miroslav Fikar for the patient and voluminous work with collect-
ing all contribution and compilation of all main three project publications
(textbook, workbook, and workshop preprints).

Bratislava Mikuláš Huba
2.1.2011 Project coordinator

iii

Acknowledgements

The authors and editors are pleased to acknowledge the financial support the
grant No. NIL-I-007-d from Iceland, Liechtenstein and Norway through the
EEA Financial Mechanism and the Norwegian Financial Mechanism. This
book is also co-financed from the state budget of the Slovak Republic.

v

Contents

1 Problems in Anti-Windup and Controller Performance
Monitoring . 1
Morten Hovd and Selvanathan Sivalingam
1.1 Anti-Windup: Control of a Distillation Column with Input

Constraints . 1
1.1.1 Notation . 2
1.1.2 Some Background Material on Anti-windup 2
1.1.3 Decoupling and Input Constraints 9
1.1.4 The Plant Model used in the Assignment 10
1.1.5 Assignment . 11
1.1.6 Solution . 12
1.1.7 Simulations . 15
1.1.8 Anti-windup . 19
1.1.9 Matlab Code . 22

1.2 Anti-windup with PI Controllers and Selectors 27
1.2.1 Introduction to Selective Control 27
1.2.2 The Control Problem in the Assignment 29
1.2.3 Assignment . 30
1.2.4 Solution . 30

1.3 Stiction Detection . 34
1.3.1 Assignment . 35
1.3.2 Solution . 36
1.3.3 Conclusions . 44

1.4 Controller Performance Monitoring using the Harris Index . . 45
1.4.1 Assignment . 46
1.4.2 Solution . 46

References . 48

vii

viii Contents

2 Optimal Use of Measurements for Control, Optimization
and Estimation using the Loss Method: Summary of
Existing Results and Some New . 53
Sigurd Skogestad and Ramprasad Yelchuru and Johannes Jäschke
2.1 Introduction . 53
2.2 Problem Formulation . 54

2.2.1 Classification of Variables . 54
2.2.2 Cost Function . 54
2.2.3 Measurement Model . 55
2.2.4 Assumptions . 55
2.2.5 Expected Set of Disturbances and Noise 55
2.2.6 Problem . 56
2.2.7 Examples of this Problem . 56
2.2.8 Comments on the Problem . 56

2.3 Solution to Problem: Preliminaries . 57
2.3.1 Expression for uopt(d) . 57
2.3.2 Expression for J around uopt(d) 57
2.3.3 Expression for Ju around Moving uopt(d) 58
2.3.4 Optimal Sensitivities . 58

2.4 The Loss Method . 59
2.4.1 The Loss Variable z as a Function of Disturbances

and Noise . 59
2.4.2 Loss for Given H , Disturbance and Noise (Analysis) 59
2.4.3 Worst-case and Average Loss for Given H (Analysis) 60
2.4.4 Loss Method for Finding Optimal H 60

2.5 Reformulation of Loss Method to Convex Problem and
Explicit Solution . 63

2.6 Structural Constraints on H . 65
2.7 Some Special Cases: Nullspace Method and Maximum

Gain Rule . 66
2.7.1 No Measurement Noise: Nullspace Method (“full H”) 67
2.7.2 No Disturbances . 68
2.7.3 An Approximate Analysis Method for the General

Case: “Maximum Gain Rule” . 68
2.8 Indirect Control and Estimation of Primary Variable 70

2.8.1 Indirect Control of y1 . 71
2.8.2 Indirect Control of y1 Based on Estimator 71

2.9 Estimator for y1 Based on Data . 72
2.9.1 Data Approach 1 . 72
2.9.2 Data Approach 2: Loss Regression 72
2.9.3 Modification: Smoothening of Data 75
2.9.4 Numerical Tests . 76
2.9.5 Test 1. Gluten Test Example from Harald Martens . 76
2.9.6 Test 2. Wheat Test Example from Bjorn Alsberg

(Kalivas, 1997) . 77

Contents ix

2.9.7 Test 3. Our Own Example . 78
2.9.8 Comparison with Normal Least Squares 79

2.10 Discussion . 80
2.10.1 Gradient Information . 80
2.10.2 Relationship to NCO tracking 80

2.11 Appendix . 81
References . 86

3 Measurement polynomials as controlled variables –
Exercises . 91
Johannes Jäschke and Sigurd Skogestad
3.1 Introduction . 91
3.2 Simple excercise . 91
3.3 Isothermal CSTR Case Study . 92
3.4 Solution . 93

3.4.1 Component Balance . 93
3.4.2 Optimization Problem . 94
3.4.3 Optimality Conditions . 94
3.4.4 Eliminating Unknowns k1, k2 and cB 95
3.4.5 The Determinant . 95
3.4.6 Maple Code . 96

4 Multi-Parametric Toolbox . 101
Michal Kvasnica
4.1 Multi-Parametric Toolbox . 101

4.1.1 Download and Installation . 102
4.2 Computational Geometry in MPT . 103

4.2.1 Polytopes . 103
4.2.2 Polytope Arrays . 106
4.2.3 Operations on Polytopes . 107
4.2.4 Functions Overview . 113

4.3 Exercises . 115
4.4 Solutions . 122
4.5 Model Predictive Control in MPT . 131

4.5.1 Basic Usage . 133
4.5.2 Closed-loop Simulations . 134
4.5.3 Code Generation and Deployment 135
4.5.4 Advanced MPC using MPT and YALMIP 136
4.5.5 Analysis . 141
4.5.6 System Structure sysStruct . 147
4.5.7 Problem Structure probStruct 151

4.6 Exercises . 156
4.7 Solutions . 162
References . 166

x Contents

5 Implementation of MPC Techniques to Real Mechatronic
Systems . 171
Gergely Takács and Tomáš Polóni and Boris Rohal’-Ilkiv and
Peter Šimončič and Marek Honek and Matúš Kopačka and Jozef
Csambál and Slavomı́r Wojnar
5.1 Introduction . 172
5.2 MPC Methods for Vibration Control . 173

5.2.1 Introduction . 173
5.2.2 Hardware . 174
5.2.3 Quadratic Programming based MPC 177
5.2.4 Newton-Raphson’s Suboptimal MPC 183
5.2.5 Multi-Parametric MPC . 194
5.2.6 Conclusion . 198

5.3 AFR Control . 200
5.3.1 Introduction . 200
5.3.2 Hardware Description . 201
5.3.3 AFR Model Design . 206
5.3.4 Predictive Control . 216
5.3.5 Results of a Real-Time Application of a Predictive

Control . 219
5.3.6 Conclusion . 222

References . 222

6 Laboratory Model of Coupled Tanks . 229
Vladimı́r Žilka and Mikuláš Huba
6.1 Introduction . 229
6.2 Coupled Tanks – Hydraulic Plant . 230

6.2.1 Identification . 232
6.2.2 Sensors Calibration . 235
6.2.3 Automatic Calibration and Identification. 236
6.2.4 Some Recommendation for Users 239

References . 241

7 Constrained PID Control Tasks for Coupled Tanks
Control . 247
Vladimı́r Žilka and Mikuláš Huba
7.1 Introduction . 247
7.2 Basic P and PI controllers . 248

7.2.1 PI-controller . 250
7.2.2 PI1 controller . 251

7.3 Linearization around a fixed operating point 255
7.4 Exact Feedback Linearization . 257
7.5 PD2 controller . 260
7.6 Conclusion . 269
References . 269

Contents xi

8 Remote Laboratory Software Module for Thermo Optical
Plant . 275
Pavol Bisták
8.1 Introduction . 275
8.2 Technical Requirements . 276

8.2.1 Server . 276
8.2.2 Client Computer . 276

8.3 Installation . 276
8.3.1 Server Installation . 276
8.3.2 Client Installation . 277

8.4 Running the Client Server Application 277
8.5 Client User Interface . 279

8.5.1 Settings . 280
8.5.2 Server IP Address and Control Buttons 281

8.6 Running the Experiment . 283
8.7 Rules for Creation of Models in Simulink 284
8.8 Conclusion . 286

9 Constrained PID control Tasks for Controlling the
Thermo Optical Plant . 291
Peter Ťapák and Mikuláš Huba
9.1 Thermo-optical Plant uDAQ28/LT – Quick Start 292

9.1.1 Installation in Windows Operating System 292
9.2 Light Channel Control . 298

9.2.1 Feedforward Control . 299
9.2.2 I0 Controller . 302
9.2.3 Filtered Predictive I0 Controller 308
9.2.4 PI0 and FPI0 Controllers . 313
9.2.5 PI1 controller . 319
9.2.6 Filtered Smith Predictor (FSP) 321

References . 327

List of Contributors

Pavol Bisták
Institute of Control and Industrial Informatics, Faculty of Electrical
Engineering and Information Technology, Slovak University of Technology
in Bratislava, e-mail: pavol.bistak@stuba.sk

Jozef Csambál
Institute of Measurement, Automation and Informatics, Faculty of Me-
chanical Engineering, Slovak University of Technology in Bratislava, e-mail:
jozef.csambal@stuba.sk

Marek Honek
Institute of Measurement, Automation and Informatics, Faculty of Me-
chanical Engineering, Slovak University of Technology in Bratislava, e-mail:
marek.honek@stuba.sk

Morten Hovd
Department of Engineering Cybernetics, Norwegian University of Science
and Technology, Trondheim, Norway, e-mail: morten.hovd@itk.ntnu.no

Mikuláš Huba
Institute of Control and Industrial Informatics, Faculty of Electrical
Engineering and Information Technology, Slovak University of Technology
in Bratislava, e-mail: mikulas.huba@stuba.sk

Johannes Jäschke
Department of Chemical Engineering, Norwegian University of Science and
Technology, Trondheim, Norway, e-mail: jaschke@chemeng.ntnu.no

Matúš Kopačka
Institute of Measurement, Automation and Informatics, Faculty of Me-
chanical Engineering, Slovak University of Technology in Bratislava, e-mail:
matus.kopacka@stuba.sk

Michal Kvasnica

xiii

pavol.bistak@stuba.sk
jozef.csambal@stuba.sk
marek.honek@stuba.sk
morten.hovd@itk.ntnu.no
mikulas.huba@stuba.sk
jaschke@chemeng.ntnu.no
matus.kopacka@stuba.sk

xiv List of Contributors

Institute of Information Engineering, Automation and Mathematics,
Faculty of Chemical and Food Technology, Slovak University of Technology
in Bratislava, e-mail: michal.kvasnica@stuba.sk

Tomáš Polóni
Institute of Measurement, Automation and Informatics, Faculty of Me-
chanical Engineering, Slovak University of Technology in Bratislava, e-mail:
tomas.poloni@stuba.sk

Boris Rohal’-Ilkiv
Institute of Measurement, Automation and Informatics, Faculty of Me-
chanical Engineering, Slovak University of Technology in Bratislava, e-mail:
boris.rohal-ilkiv@stuba.sk

Peter Šimončič
Institute of Measurement, Automation and Informatics, Faculty of Me-
chanical Engineering, Slovak University of Technology in Bratislava, e-mail:
peter.simoncic@stuba.sk

Selvanathan Sivalingam
Department of Engineering Cybernetics, Norwegian University of Science and
Technology, Trondheim, Norway, e-mail: selvanathan.sivalingam@itk.ntnu.no

Sigurd Skogestad
Department of Chemical Engineering, Norwegian University of Science and
Technology, Trondheim, Norway, e-mail: skoge@chemeng.ntnu.no

Gergely Takács
Institute of Measurement, Automation and Informatics, Faculty of Me-
chanical Engineering, Slovak University of Technology in Bratislava, e-mail:
gergely.takacs@stuba.sk

Peter Ťapák
Institute of Control and Industrial Informatics, Faculty of Electrical
Engineering and Information Technology, Slovak University of Technology
in Bratislava, e-mail: peter.tapak@stuba.sk

Slavomı́r Wojnar
Institute of Measurement, Automation and Informatics, Faculty of Me-
chanical Engineering, Slovak University of Technology in Bratislava, e-mail:
slawomir.wojnar@stuba.sk

Ramprasad Yelchuru
Department of Chemical Engineering, Norwegian Univer-
sity of Science and Technology, Trondheim, Norway, e-mail:
ramprasad.yelchuru@chemeng.ntnu.no

Vladimı́r Žilka
Institute of Control and Industrial Informatics, Faculty of Electrical
Engineering and Information Technology, Slovak University of Technology
in Bratislava, e-mail: vladimir.zilka@stuba.sk

michal.kvasnica@stuba.sk
tomas.poloni@stuba.sk
boris.rohal-ilkiv@stuba.sk
peter.simoncic@stuba.sk
selvanathan.sivalingam@itk.ntnu.no
skoge@chemeng.ntnu.no
gergely.takacs@stuba.sk
peter.tapak@stuba.sk
slawomir.wojnar@stuba.sk
ramprasad.yelchuru@chemeng.ntnu.no
vladimir.zilka@stuba.sk

Chapter 1

Problems in Anti-Windup and Controller
Performance Monitoring

Morten Hovd and Selvanathan Sivalingam

Abstract This chapter provides assignments for control engineering students
on the topics of anti-windup and controller performance monitoring. The as-
signments are provided with detailed problem setups and solution manuals.
Windup has been recognized for decades as a serious problem in control
applications, and knowledge of remedies for this problem (i.e., anti-windup
techniques) is essential knowledge for control engineers. The first problem in
this chapter will allow students to acquire and apply such knowledge. The
subsequent problems focus on different aspects of Controller Performance
Monitoring (CPM), an area that has seen rapid developments over the last
two decades. CPM techniques are important in particular for engineers work-
ing with large-scale plants with a large number of control loops. Such plants
are often found in the chemical processing industries.

1.1 Anti-Windup: Control of a Distillation Column with
Input Constraints

This assignment lets the student apply three different controller design meth-
ods to the control of a 2×2 distillation column model. Subsequently, the con-
troller implementations should be modified to account for input constraints.

Morten Hovd
Department of Engineering Cybernetics, Norwegian University of Science and Tech-
nology, e-mail: morten.hovd@itk.ntnu.no

Selvanathan Sivalingam
Department of Engineering Cybernetics, Norwegian University of Science and Tech-
nology, e-mail: morten.hovd@itk.ntnu.no

1

morten.hovd@itk.ntnu.no
morten.hovd@itk.ntnu.no

2 Morten Hovd and Selvanathan Sivalingam

1.1.1 Notation

Consider a linear continuous-time state space model given by

ẋ = Ax +Bu

y = Cx +Du

where x is the state vector, u is the input vector, and y is the output vector,
and A,B,C,D are matrices of appropriate dimension. The corresponding
transfer function model is given by

G(s) = C(sI −A)−1B +D

The following equivalent shorthand notation is adopted from Skogestad and
Postlethwaite (2005), and will be used when convenient

G(s) =

[
A B
C D

]

1.1.2 Some Background Material on Anti-windup

In virtually all practical control problems, the range of actuation for the
control input is limited. Whenever the input reaches the end of its range
of actuation (the control input is saturated), the feedback path is broken.
If the controller has been designed and implemented without regard for this
problem, the controller will continue operating as if the inputs have unlimited
range of actuation, but further increases in the controller output will not be
implemented on the plant. The result may be that there is a large discrepancy
between the internal states of the controller and the input actually applied to
the plant. This problem often persists even after the controlled variable has
been brought back near its reference value, and controllers that would work
fine with unlimited inputs or with small disturbances, may show very poor
performance once saturation is encountered.

The problem described is typically most severe when the controller has
slow dynamics – integral action is particularly at risk (since a pure integration
corresponds to a time constant of infinity). An alternative term for integral
action is reset action, since the integral action ’resets’ the controlled variable
to its reference value at steady state. When the input saturates while there
remains an offset in the controlled variable, the integral term will just continue
growing, it ’winds up’. The problem described above is therefore often termed
reset windup, and remedial action is correspondingly termed anti-reset windup
or simply anti-windup.

1 Problems in Anti-Windup and Controller Performance Monitoring 3

Anti-windup techniques remain an active research area, and no attempt is
made here to give a comprehensive review of this research field. The aim is
rather to present some important and useful techniques that should be known
to practising control engineers.

1.1.2.1 Simple PI Control Anti-windup

A simple PI controller with limited actuation range for the control inputs (i.e.,
controller outputs), may be implemented as illustrated in Fig. 1.1. Here, the
actual input implemented on the plant is feed back to the controller through
the low pass filter 1/(τIs + 1). If the actual plant input is not measured, it
suffices to know the range of actuation for the input. The actual input can
then easily be calculated.

Kp

1
τIs+1

umax

umin
+

uu~
Saturation

yref - y

Fig. 1.1 Simple anti-windup scheme for a PI controller.

From Fig. 1.1, it is easy to see that when the plant input is not saturated
(when ũ = u), we get

u = Kp
τIs+ 1

τIs
(yref − y) (1.1)

That is, we get the normal behaviour of a PI controller. On the other hand,
consider the case when the input is in saturation at its upper limit umax:

ũ = K(yref − y) +
1

τIs+ 1
umax (1.2)

The internal feedback path in the controller is now broken, there is no open
integrator in the controller, and the controller state goes to umax with a
time constant τI . Thus, the integrating state does not wind up. Note also
that when the controller state has reached its stationary value of umax, the

4 Morten Hovd and Selvanathan Sivalingam

controller output will stay at its maximum value until the measurement y
has crossed the reference value yref .

This anti-windup scheme is straight forward and simple to implement pro-
vided any actuator dynamics is fast compared to the PI controller time con-
stant τI .

1.1.2.2 Velocity Form of PI Controllers

The PI controller in (1.1) is in position form, i.e., the controller output cor-
responds to the desired position/value of the plant input. Alternatively, the
controller output may give the desired change in the plant input.

Whereas the equations for PI controllers in position form are often ex-
pressed in continuous time (even though the final implementation in a plant
computer will be in discrete time), the velocity form of the PI controller is
most often expressed in discrete time. Let the subscript denote the discrete
time index, and ek = yref − yk be the control offset at time k. The discrete
time equivalent of (1.1) may then be expressed as

∆uk = uk − uk−1 =
T

τI
ek−1 +Kp(ek − ek−1) (1.3)

where T is the sample interval. Here ∆uk represents the change in the plant
input at time k. If this change is sent to the actuator for the plant input,
instead of the desired position of the input, the windup problem goes away.
This is because desired changes that violate the actuation constraints simply
will not have any effect. Note that the actuator should implement
new desired value = present value + ∆uk

If the previous desired value is used instead of present value above, the velocity
form of the controller will not remove windup problems.

The velocity form can also be found for more complex controllers, in par-
ticular for PID controllers. However, derivative action is normally rather fast,
and the effects thereof quickly die out. It is therefore often not considered
necessary to account for the derivative action in anti-windup of PID con-
trollers.

1.1.2.3 Anti-windup in Cascaded Control Systems

For ordinary plant input, it is usually simple to determine the range of actu-
ation. For instance, a valve opening is constrained to be within 0 and 100%,
maximum and minimum operating speeds for pumps are often well known,
etc. In the case of cascaded control loops, the ’plant input’ seen by the outer
loop is actually the reference signal to the inner loop, and the control is
typically based on the assumption that the inner loop is able to follow the
reference changes set by the outer loop. In such cases, the ’available range of

1 Problems in Anti-Windup and Controller Performance Monitoring 5

actuation’ for the outer loop may be harder to determine, and may depend
on operating conditions. An example of this problem may be a temperature
control system, where the temperature control loop is the outer loop, and
the inner loop is a cooling water flow control loop with the valve opening
as the plant input. In such an example, the maximum achievable flowrate
may depend on up- and downstream pressures, which may depend on cooling
water demand elsewhere in the system.

Possible ways of handling anti-windup of the outer loop in such a situation
include

• Using conservative estimates of the available range of actuation, with the
possibility of not fully utilising plant capacity in some operating scenaria.

• The controller in the inner loop may send a signal informing the controller
in the outer loop when it is in saturation (and whether it is at its maximum
or minimum value). The controller in the outer loop may then stop the
integration if this would move the controller output in the wrong direction.

• Use the velocity form of the controller, provided the reference signal for
the inner loop is calculated as present plant output + change in reference
from outer loop. If the reference signal is calculated as ’reference at last
time step + change in reference from outer loop’, windup may still occur.

• For PI controllers, use the implementation shown in Fig. 1.1, where the
’plant input’ used in the outer loop is the plant measurement for the inner
loop.

Note that the two latter anti-windup schemes above both require a clear
timescale separation between the loops (the inner loop being faster than the
outer loop), otherwise performance may suffer when the plant input (in the
inner loop) is not in saturation. There is usually a clear timescale separation
between cascaded loops.

1.1.2.4 Hanus’ Self-conditioned Form

Hanus’ self-conditioned form (Hanus et al (1987); Skogestad and Postleth-
waite (2005)) is a quite general way of preventing windup in controllers.
Assume a linear controller is used, with state space realization

v̇ = AKv +BKe (1.4)

ũ = CKv +DKe (1.5)

where v are the controller states, e are the (ordinary) controller inputs, and
ũ is the calculated output from the controller (desired plant input). The
corresponding controller transfer function may be expressed as

K(s)
s
=

[
AK BK

CK DK

]
= CK(sI −AK)−1BK +DK (1.6)

6 Morten Hovd and Selvanathan Sivalingam

The corresponding implementation of the same controller in Hanus’ self-
conditioned form is illustrated in Fig. 1.2, where K̃(s) given by

ũ = K̃(s)

[
e
u

]

K(s)
s
=

[
AK −BKD−1

K CK 0 BKD−1
K

CK DK 0

]
(1.7)

umax

umin

uu~

Saturation

e

~

Fig. 1.2 Illustration of anti-windup with the controller K(s) implemented in its
self-conditioned form K̃(s).

From (1.7) we see that when the plant input u is not saturated, i.e., when
ũ = u, the controller dynamics are given by (1.5). When the plant input is
saturated, the steady state controller output will be

ũ = −CK(AK −BKD−1
K CK)−1u+De (1.8)

If BKD−1
K CK ≫ AK , we get

ũ ≈ u+DKe (1.9)

and thus the plant input will stay at its limit until the corresponding element
of DKe changes sign.

Clearly, the use of this anti-windup methodology requiresDK to be invert-
ible, and hence also of full rank. Thus, the controller must be semi-proper.
The rate at which the controller states converge towards the steady state so-
lution (when in saturation) is given by the eigenvalues of AK −BKD−1

K CK .
This matrix obviously has to be stable. A small (but non-singular) DK will
generally make the convergence fast.

In Hanus et al (1987), self-conditioning is presented in a more general
setting, potentially accounting also for time-varying or non-linear controllers.
However, only in the case of linear time-invariant controllers do the resulting
controller equations come out in a relatively simple form.

1 Problems in Anti-Windup and Controller Performance Monitoring 7

1.1.2.5 Anti-windup in Observer-based Controllers

Many advanced controllers are (or may be) implemented as a combination of
static state feedback controllers and a state observer/estimator. This is the
case for LQG/H2-optimal controllers as well as H∞-optimal controllers.

For such controllers, anti-windup is achieved by ensuring that the state
observer/estimator receives the actual plant input that is implemented on the
plant. This is illustrated in Fig. 1.3

uu~

State

feedback umax

umin

Saturation

Plant

Plant model

Measurements,

y

+

_

Model

update

State

estimator /

observer

State estimates

Calculated

measurements

Fig. 1.3 Illustration of anti-windup for controllers based on static state feedback
combined with state estimation.

In many applications it is desired to have offset-free control at steady state.
This requires the use of integral action. This is often incorporated in a state
estimator/state feedback control design as illustrated in Fig. 1.4.

The state estimator only estimates actual plant states, whereas the state
feedback is designed for a model where integrators (which integrate the con-
trol offset) are appended to the plant model. When implementing the con-
troller, the integrators are a part of the controller (in the control system).
The values of the integrators are thus directly available in the control system,
and clearly there is no need to estimate these states.

8 Morten Hovd and Selvanathan Sivalingam

Plant

State

estimator

State

feedback

controller

State estimates

Measure-

ments

Plant

inputs
_

+

References

Integrator(s)

Model for

state feedback

Controller design

Fig. 1.4 State estimator and static state feedback augmented with integral action.

However, when integration is incorporated in this way, the integrating
states may wind up even if the actual input values are sent to the state
estimator. Fig. 1.5 illustrates how the anti-windup signal to the integrators
must represent the range of movement available for the integrating states,
i.e., with the contribution from the (actual) state feedback removed.

Plant

Kint

Kstate

+

+

State

estimator

Integrator(s)

w/ anti-windup

Reference

Actual

input

Measure-

ments

_

_

(Kint)
-1

Controller

Fig. 1.5 Implementation of anti-windup for state estimator and static state feedback
augmented with integral action.

1 Problems in Anti-Windup and Controller Performance Monitoring 9

Remark. Note that if Hanus’ self-conditioned form is used for the anti-
windup, this requires a non-singularD-matrix, resulting in a PI block instead
of a purely integrating block. The size of this D-matrix may affect controller
performance (depending on how and whether it is accounted for in the ’state’
feedback control design).

1.1.3 Decoupling and Input Constraints

Decouplers are particularly prone to performance problems due to input con-
straints. This is not easily handled by standard anti-windup, because much of
the input usage can be related to counteracting interactions. Therefore, if an
output is saturated, but other outputs are adjusted to counteract the effects
of the ’unsaturated’ output, severe performance problems may be expected.

One way of ensuring that the decoupler only tries to counteract interactions
due to the inputs that are actually implemented on the plant, is to implement
the decoupler as illustrated in Fig. 1.6.

2

1

12

11

21

22

Controller,

loop 1

Controller,

loop 2

Unsaturated

inputs

r1

r2

_

_

Saturated

inputs

Plant

y1

y2

Fig. 1.6 Implementation of decoupler in order to reduce the effect of input satura-
tion. The decoupler will only attempt to counteract interactions due to inputs that
are actually implemented on the plant.

The implementation in Fig. 1.6 is easily extended to systems of dimension
higher than 2 × 2. When the inputs are unsaturated, the ’Decoupler with
saturation’ in Fig. 1.1 corresponds to the decoupling compensator W (s) =
G(s)−1G̃(s), where G̃(s) denotes the diagonal matrix with the same diagonal

10 Morten Hovd and Selvanathan Sivalingam

elements as G(s). The precompensated plant therefore becomes GW = G̃,
i.e., we are (nominally) left only with the diagonal elements of the plant.

Note that if the individual loop controllers ki(s) contain slow dynamics
(which is usually the case, PI controllers are often used), they will still need
anti-windup. In this case the anti-windup signal to the controller should not
be the saturated input, but the saturated input with the contribution from the
decoupling removed, i.e., the decoupling means that the saturation limitations
for the individual loop controllers ki(s) are time variant.

1.1.4 The Plant Model used in the Assignment

The model used is the detailed LV model of a distillation column given in
(13.19) of Skogestad and Postlethwaite (2005):

y(s) =

[
A B Bd

C D Dd

] [
u(s)
d(s)

]
(1.10)

A =




−0.005131 0 0 0 0
0 −0.07366 0 0 0
0 0 −0.1829 0 0
0 0 0 −0.4620 0.9895
0 0 0 −0.9895 −0.4620




B =




−0.629 0.624
0.055 −0.172
0.030 −0.108
−0.186 −0.139
−1.230 −0.056




C =

[
−0.7223 −0.5170 0.3386 −0.1633 0.1121
−0.8913 −0.4728 0.9876 0.8425 0.2186

]
, D =

[
0 0
0 0

]

Bd =




−0.062 −0.067
0.131 0.040
0.022 −0.106
−0.188 0.027
−0.045 0.014



, Dd = D

where the two measurements are the top and bottom product concentrations,
the first input is the reflux flowrate at the top of the distillation column, the
second input is the boilup rate at the bottom of the distillation column, the
first disturbance is the feed flowrate, and the second disturbance is the feed
composition. The time scale in the model is in minutes. For further informa-
tion about the model and the scalings applied, please refer to Skogestad and
Postlethwaite (2005).

1 Problems in Anti-Windup and Controller Performance Monitoring 11

1.1.5 Assignment

1. Model implementation
Implement the LV model in Simulink.
Use saturation blocks (found in the discontinuities library) of ±0.5
for the inputs to the LV model. You may use manual switch blocks (found
in the signal routing library) to make it possible to choose whether the
saturation should be turned on or off for the simulations. The disturbance
input is modelled as white noise (independently normally distributed ran-
dom variables) with variance 0.001. The measurement noise is white noise
with variance 0.0004.

2. Controller design
Design three different controllers for the model:

a. A controller based on two PI/PID loops.
b. A controller based on dynamic decoupling.
c. A controller based on multi-variable controller synthesis (LQG/H2/H∞).

All the controllers should be designed to give zero stationary deviation.
The dominant time constant for the closed loop should be around one
minute.
PI/PID controller design should be well known. The multi-variable con-
troller design method chosen is also assumed known – all the three con-
troller synthesis methods proposed above are of the state estimator / state
feedback type. Decoupling is also a relatively common controller design,
see Wade (1997) for a thorough description of decoupling for 2×2 systems
if necessary.

3. Simulation (with disturbances)
Simulate each of the three controllers in Simulink.
Use the following reference signals:
y1,ref : square pulse, amplitude 1, frequency 0.005Hz
y2,ref : 0
Simulate each controller design both without and with saturation in the
inputs. Discuss the results of the simulation.

4. Anti-windup (and simulation)
Implement anti-windup for all three controllers.
Simulate with the reference changes and noise variances prescribed above.
Plot the results and compare to the performance without anti-windup
(make comparable plots with and without anti-windup implemented).
Comment on the results.

12 Morten Hovd and Selvanathan Sivalingam

1.1.6 Solution

1.1.6.1 Model Implementation

The model is implemented in Simulink as illustrated in Fig. 1.7. Note that the
state-space model for the distillation column has been implemented with the
disturbance as the second input, in accordance with (1.10). A manual switch
is used to include/exclude saturation of the manipulated variable, and clearly
this switch will have to be set in accordance with the case to be simulated.

The Matlab code to define the model is listed in Section 1.1.9.1.

1.1.6.2 Controller Designs

PI Controllers

The PI controllers without anti-windup are implemented using transfer func-
tion blocks in Simulink, cf. Fig. 1.8. Alternatively, the PID Controller block
in the ’Continuous’ library can be used, but one should be aware that the
tuning parameters in that block does not correspond to the ’standard’ pro-
portional gain and integral time parameters (consult Simulink documentation
for details).

The Matlab code used to define the controller numerator and denomina-
tor polynomials are given in subsection 1.1.9.2. Note that the sign of the
proportional gain is adjusted to ensure negative feedback.

Dynamic Decoupler

The dynamic decoupler is here implemented in two different ways, both as a
’standard’ decoupler W (s) = G−1(s)G̃(s), where G̃(s) is the diagonal matrix
corresponding to the diagonal elements of G(s), and using the inverted decou-
pler structure shown in Fig. 1.6. Note that G(s) here represents the transfer
function matrix from manipulated variables (only) to the measurements, i.e.,

Out1

1

State−Space

x’ = Ax+Bu
 y = Cx+DuSaturation

Measurement noise

Manual Switch

Disturbance

In1

1

Fig. 1.7 Implementation of distillation column model in Simulink

1 Problems in Anti-Windup and Controller Performance Monitoring 13

without the disturbance inputs. Note also that in order to invert G(s), a full
rank D matrix is necessary. Small diagonal elements are therefore added to
the D matrix – and it will be necessary to check that these do not intro-
duce right half plane zeros, which would lead to unstable poles after system
inversion.

The Matlab Control Systems Toolbox allows using the command inv(G)

to find the inverse of G(s). Alternatively, a state space formula for the inverse
can be found in Skogestad and Postlethwaite (2005).

The ’standard’ decoupler is simulated by simply putting the PI controllers
and the decoupler W (s) (represented by a state space model block) in series.
The inverted decoupler with PI controllers is shown in Fig. 1.9. Note that
anti-windup of the PI controllers is not included in this figure. Note also
that fast low-pass filters are introduced in order to break so-called ’algebraic
loops’ in the Simulink simulation. Such algebraic loops are a problem only
in simulation, not in a physical implementation. If the low-pass filters are
significantly faster than the rest of the dynamics in the system, they should
have little effect on simulation results. However, very fast low-pass filters
could lead to a stiff simulation problem, causing long simulation times or
requiring the use of special purpose integration routines.

LQG Controller

The Simulink setup for the LQG controller is shown in Fig. 1.10. The Kalman
filter part of the LQG controller is designed with the physical model states,
and the specified noise covariances. The LQ regulator part of the LQG con-
troller is designed with a model that is augmented with integrators in order to
include integral action. The weights used in the LQ design are found by trial
and error in order to (approximately) achieve the specified closed loop band-
width. The overall simulation setup, including integrating controller states,
LQG controller and distillation column model, is shown in Fig. 1.11 Note that
provided the Kalman filter is provided with the saturated input values, it will
provide good state estimates also when the inputs are saturated. However,

Controller
output

1

PI2

k2num(s)

k2den(s)

PI1

k1num(s)

k1den(s)

Measurement

2

Reference

1

Fig. 1.8 Implementation of PI controllers without anti-windup.

14 Morten Hovd and Selvanathan Sivalingam

u
1

e2

e1 Transfer Fcn3

k1num(s)

k1den(s)

Transfer Fcn2

k2num(s)

k2den(s)

Transfer Fcn1

g12num(s)

g11num(s)

Transfer Fcn

g21num(s)

g22num(s)

Fast lag
to break algebraic loop1

1

0.01s+1

Fast lag
to break algebraic loop

1

0.01s+1

u_measured
3

y
2

yref
1

y

yref

y1ref

y1

y2ref

y2

Fig. 1.9 Simulink implementation of inverted decoupler, without anti-windup of PI
controllers

Out1

1

Integrator1

1
s

C

C* u

B

K*u

A

A* u

−lqrK

−lqrK* u
KFL* u

In3

3

In2

2

In1

1

Fig. 1.10 Simulink implementation of LQG controller. Input 1 are the values of the
augmented integrating states (which are available to the controller), whereas input 2
is the measurement vector.

To Workspace

u

Square

LV w/saturation

In1

Out1

Out2

LQGint

In1

In2

In3

Out1

Integrator

1
s

Constant

0 y

yref

Measurement

Measurement

Measurement

Measured input

Fig. 1.11 Overall simulation setup for LQG controller with integrating states.

no anti-windup is provided for the integrating states of the (augmented) LQ
regulator.

1 Problems in Anti-Windup and Controller Performance Monitoring 15

1.1.7 Simulations

1.1.7.1 PI Controller

The responses in the controlled outputs, when no saturation is present are
shown in Fig. 1.12. We observe that the setpoint changes are followed quickly.
However, there is some interaction between the two loops, causing offset in
loop 2 following setpoint changes in loop 1. These interactions are counter-
acted relatively quickly by the controllers.

The corresponding responses when the input is constrained between ±0.5
are shown in Fig. 1.13. It is obvious that the saturation severely degrades
control performance.

1.1.7.2 Decoupler

The responses in the controlled outputs, when no saturation is present, are
shown in Fig. 1.14. The observed performance is good (and could probably
have been further improved by more careful design of the PI controllers), and
the decoupling is practically perfect, with no observable interaction between
the two outputs. Note that these results do not depend on whether a standard
or an inverted decoupler implementation is used.

The response with the standard decoupler when the input is constrained
between ±0.5 are shown in Fig. 1.15. Clearly, performance is horrible, and the
interactions between the outputs extreme. Note, however, that the system (in

0 50 100 150 200 250 300 350 400 450 500
−1.5

−1

−0.5

0

0.5

1

1.5
Output 1

0 50 100 150 200 250 300 350 400 450 500
−2

−1

0

1

2
Output 2

Fig. 1.12 Responses with PI controllers, in the absence of saturation.

16 Morten Hovd and Selvanathan Sivalingam

0 50 100 150 200 250 300 350 400 450 500
−2

−1

0

1

2
Output 1

0 50 100 150 200 250 300 350 400 450 500
−2

−1

0

1

2
Output 2

Fig. 1.13 Responses with PI controllers, with saturation in the inputs.

0 50 100 150 200 250 300 350 400 450 500
−2

−1

0

1

2
Output 1

0 50 100 150 200 250 300 350 400 450 500
−2

−1

0

1

2
Output 2

Fig. 1.14 Responses with decoupler, in the absence of saturation.

this case) remains stable – although the responses leave the window displayed
in the figure.

The corresponding response with the inverted decoupler are shown in
Fig. 1.16. We see that the performance is much better than with the stan-
dard decoupler, although there is still significant interactions between the
outputs. These responses still suffer from the absence of anti-windup for the
PI controllers used for the individual loops.

1 Problems in Anti-Windup and Controller Performance Monitoring 17

0 50 100 150 200 250 300 350 400 450 500
−8

−6

−4

−2

0

2
Output 1

0 50 100 150 200 250 300 350 400 450 500
−2

−1

0

1

2
Output 2

Fig. 1.15 Responses with the standard decoupler, with saturation in the inputs.

0 50 100 150 200 250 300 350 400 450 500
−2

−1

0

1

2
Output 1

0 50 100 150 200 250 300 350 400 450 500
−2

−1

0

1

2
Output 2

Fig. 1.16 Responses with the inverted decoupler, with saturation in the inputs.

1.1.7.3 LQG Controller with Integral Action

The responses in the outputs when using the LQG controller are shown in
Fig. 1.17. We observe that the performance is good, and there is very little
interaction between the outputs.

The corresponding responses when the input is constrained between ±0.5
are shown in Fig. 1.18. Note that the Kalman filter is here supplied the

18 Morten Hovd and Selvanathan Sivalingam

0 50 100 150 200 250 300 350 400 450 500
−1.5

−1

−0.5

0

0.5

1

1.5
Output 1

0 50 100 150 200 250 300 350 400 450 500
−2

−1

0

1

2
Output 2

Fig. 1.17 Responses with the LQG controller with integral action, in the absence of
saturation.

0 50 100 150 200 250 300 350 400 450 500
−4

−2

0

2

4
Output 1

0 50 100 150 200 250 300 350 400 450 500
−2

−1

0

1

2
Output 2

Fig. 1.18 Responses with the LQG controller with integral action, with saturation
in the inputs.

actual (constrained, saturated) input values, but there is no anti-windup for
the augmented integrators. The performance is significantly poorer than for
the case without saturation.

1 Problems in Anti-Windup and Controller Performance Monitoring 19

Out1

1

Transfer Fcn1

1

Ti2.s+1

Transfer Fcn

1

Ti1.s+1

Gain1

Kp2

Gain

Kp1

In3

3

In2

2

In1

1

Fig. 1.19 Implementation of two PI controllers with simple anti-windup technique
in Simulink.

1.1.7.4 Conclusion on Simulation Results

The simulations show that all three controller types are able to achieve good
control of the plant. For all three controllers, the performance is significantly
degraded in the presence of saturation, although to different degrees for the
different controllers.

1.1.8 Anti-windup

In this section, anti-windup is implemented for all three controllers, and the
simulations re-run.

1.1.8.1 PI Controllers

The simple PI anti-windup scheme in Fig. 1.1 is used. This simple anti-
windup scheme is implemented in Simulink as illustrated in Fig. 1.19. The
figure shows the implementation of both PI controllers, where input 1 is the
reference, input 2 is the measurement, and input 3 is the actual (measured)
values of the manipulated variables. The results when using this anti-windup
technique are shown in Fig. 1.20. We see that the performance is markedly
improved due to anti-windup, although output 2 is not able to return to its
setpoint due to saturation.

1.1.8.2 Decoupler

Although the inverse decoupler reduces the problems of input saturation com-
pared to ordinary decoupling, anti-windup is still necessary if integral action

20 Morten Hovd and Selvanathan Sivalingam

0 50 100 150 200 250 300 350 400 450 500
−1.5

−1

−0.5

0

0.5

1

1.5
Output 1

0 50 100 150 200 250 300 350 400 450 500
−2

−1

0

1

2
Output 2

Fig. 1.20 Response with PI controllers with anti-windup.

u
1

k2(Hanus)

x’ = Ax+Bu
 y = Cx+Du

k1(Hanus)

x’ = Ax+Bu
 y = Cx+Du

e2

e1

Transfer Fcn1

g12num(s)

g11num(s)

Transfer Fcn

g21num(s)

g22num(s)

Fast lag
to break algebraic loop1

1

0.01s+1

Fast lag
to break algebraic loop

1

0.01s+1

u_measured
3

y
2

yref
1

y

yref

y1ref

y1

y2ref

y2

Fig. 1.21 Simulink implementation of inverse decoupler with anti-windup for outer
PI controllers.

is used in the controllers for the individual loops that result after decoupling
compensation. This is the common case, which also is used in this example.
However, even if simple PI controllers are used in the individual loops, we
may can no longer use the simple anti-windup scheme in Fig. 1.1. Rather, we
have to calculate the range of manipulated (input) variable movement that is
available, after accounting for the action of the decoupling elements. This is
is illustrated by the Simulink implementation in Fig. 1.21. Note that here the
anti-windup of the PI controllers has been achieved using the so-called Hanus
form. This could equivalently have been done using the scheme in Fig. 1.1.

The resulting responses when using the inverted decoupler with anti-
windup are shown in Fig. 1.22. Comparing to Fig. 1.16, we see that the

1 Problems in Anti-Windup and Controller Performance Monitoring 21

0 50 100 150 200 250 300 350 400 450 500
−1.5

−1

−0.5

0

0.5

1

1.5
Output 1

0 50 100 150 200 250 300 350 400 450 500
−2

−1

0

1

2
Output 2

Fig. 1.22 Responses with inverted decoupler with anti-windup.

responses are significantly improved, although far from as good as in the
unconstrained case in Fig. 1.14.

1.1.8.3 LQG Controller with Integral Action

The LQG controller with integral action and anti-windup is implemented as
illustrated in Fig. 1.5. The Simulink implementation is shown in Fig. 1.23.
Note the fast low-pass filter used to break the ’algebraic loop’ in the anti-
windup loop of the controller. Due to the order of execution in digital control
systems, this is not required in practice, but significantly simplifies numerical
integration in continuous-time simulations. The time constant of these low-
pass filters should be significantly shorter than any other dynamics in the
system – but very short time constants may lead to a numerically ’stiff’
system.

When anti-windup is included in the LQG controller with integral action,
the results in Fig. 1.24 are obtained. The results are drastically improved
compared to the case without anti-windup, and are quite similar to what was
obtained for the decoupler with anti-windup above.

22 Morten Hovd and Selvanathan Sivalingam

1.1.8.4 Conclusions on Anti-windup

The results obtained clearly illustrate the benefits of anti-windup when the
manipulated variables saturate, for all three controller types studied in this
assignment.

1.1.9 Matlab Code

1.1.9.1 Definition of Model and External Signals

1 %%%

2 % %

3 % Assignment: Controller design %

4 % and anti-windup - Solution %

5 % %

6 % Model and signal definitions %

7 %%%

8 clc

9 clear all

10 close all

11

To Workspace

u

Square

Parallel integrators
in Hanus’ form

x’ = Ax+Bu
 y = Cx+Du

LV w/saturation

In1

Out1

Out2

LQGint

In1

In2

In3

Out1

Out2

Gain

−lqrKii* u

Fast low−pass
to break algebraic loop

x’ = Ax+Bu
 y = Cx+Du

Constant

0

(lqrKs)*x

K*u

y

yref

Measurement

Measurement

Measurement

Controller

output

Measured input

Estimated

states

Fig. 1.23 Simulink implementation of LV distillation column with LQG controller.
The LQG controller has integral action (shown separately from the rest of the LQC
controller) and anti-windup.

1 Problems in Anti-Windup and Controller Performance Monitoring 23

12 %%%

13 % Reference signals %

14 % Parameters in signal generator blocks for %

15 % references %

16 %%%

17 y1amp = 1;

18 y1freq = 0.005;

19 y2amp = 0;

20 y2freq = 0.005;

21

22 %%%

23 % System parameters %

24 % Distillation column model %

25 %%%

26 A = [-0.005131 0 0 0 0 ;

27 0 -0.07366 0 0 0 ;

28 0 0 -0.1829 0 0 ;

29 0 0 0 -0.4620 0.9895 ;

30 0 0 0 -0.9895 -0.4620];

31 B = [-0.629 0.624 ;

32 0.055 -0.172 ;

33 0.030 -0.108 ;

34 -0.186 -0.139 ;

35 -1.230 -0.056];

36 C = [-0.7223 -0.5170 0.3386 -0.1633 0.1121 ;

0 50 100 150 200 250 300 350 400 450 500
−1.5

−1

−0.5

0

0.5

1

1.5
Output 1

0 50 100 150 200 250 300 350 400 450 500
−2

−1

0

1

2
Output 2

Fig. 1.24 Responses with LQG controller with integral action and anti-windup.

24 Morten Hovd and Selvanathan Sivalingam

37 -0.8913 -0.4728 0.9876 0.8425 0.2186];

38 Bd = [-0.062 -0.067 ;

39 0.131 0.040 ;

40 0.022 -0.106 ;

41 -0.188 0.027 ;

42 -0.045 0.014];

43 D = [0 0 ;

44 0 0];

45 sys = ss(A,B,C,D);

46 G = tf(sys); % Used in decoupler

47

48 %%%

49 % White noise disturbances %

50 % and measurement noise %

51 %%%

52 kw = 0.001;

53 Wvar = kw*ones(2,1); %Disturbance variance

54 QXU = eye(7);

55 kv = 0.0004;

56 Vvar = kv*ones(2,1); %Measurementn noise variance

1.1.9.2 Simple PI Controller without Anti-windup

1 %%%

2 % PI controller %

3 %%%

4 s = tf(’s’);

5 Kp1 = 0.5; Kp2 = -0.5; % Signs are decided through

6 % dcgain(A,B,C,D), which results in

7 % [88.3573 -86.8074; 108.0808 -107.9375]

8 Ti1 = 2; Ti2 = 2;

9 k1 = Kp1*(Ti1*s+1)/(Ti1*s); [k1num,k1den] = tfdata(k1); k1num

= k1num{1,:}; k1den = k1den{1,:};

10 k2 = Kp2*(Ti2*s+1)/(Ti2*s); [k2num,k2den] = tfdata(k2); k2num

= k2num{1,:}; k2den = k2den{1,:};

1.1.9.3 Decoupling

1 % Transfer function matrix G(s) defined in file model.m,

2 % which must be run before this file.

1 Problems in Anti-Windup and Controller Performance Monitoring 25

3 % Similarly, the individual PI controllers used with the

decouplers are

4 % (in this case) identical to the controllers used for (

ordinary) PI control. The file

5 % PIcont.m should therefore also run before this file

6

7 %%%

8 % Dynamic decoupling controller %

9 %%%

10 Gdiag = [G(1,1) 0 ;

11 0 G(2,2)];

12 % We need a non-singular D-matrix to calculate inv(G).

13 % Find an approximate G using a new D-matrix that does not

14 % introduce poles in the right-half plane

15 dd = [1e-3 0 ;

16 0 -1e-3];

17 Gapp = ss(A,B,C,dd);

18 %tzero(Gapp) % Check for zeros..

19 W = inv(Gapp)*Gdiag;

20 W = minreal(W);

21 [Wa,Wb,Wc,Wd] = ssdata(W);

22

23 %%%

24 % Anti-windup for dynamic decoupling %

25 %%%

26 % Note that all elements share the same denominator

27 [g11num,g11den] = tfdata(sys(1,1));

28 g11den = g11den{1,:}; g11num = g11num{1,:};

29 [g12num,g12den] = tfdata(sys(1,2));

30 g12den = g12den{1,:}; g12num = g12num{1,:};

31 [g21num,g21den] = tfdata(sys(2,1));

32 g21den = g21den{1,:}; g21num = g21num{1,:};

33 [g22num,g22den] = tfdata(sys(2,2));

34 g22den = g22den{1,:}; g22num = g22num{1,:};

35

36 % Using Hanus’ self-conditioned form for anti-windup

37 % of PI controllers

38 [k2a,k2b,k2c,k2d]=ssdata(k2);

39 [k1a,k1b,k1c,k1d]=ssdata(k1);

40

41 k1aw = k1a-k1b*inv(k1d)*k1c;

42 k1bw = [zeros(size(k1b)) k1b*inv(k1d)];

43 uz = size(k1b*inv(k1d));

44 k1cw = k1c;

45 k1dw = [k1d zeros(uz)];

26 Morten Hovd and Selvanathan Sivalingam

46

47 k2aw = k2a-k2b*inv(k2d)*k2c;

48 k2bw = [zeros(size(k2b)) k2b*inv(k2d)];

49 uz = size(k2b*inv(k2d));

50 k2cw = k2c;

51 k2dw = [k2d zeros(uz)];

1.1.9.4 LQG Controller

1 %%%

2 % LQG controller with integral action %

3 %%%

4

5 % Augment plant with 2 integrators

6 ny = size(C,1);

7 [nx,nu] = size(B); % n=5, m=2

8 Zxx = zeros(nx,nx); Zxu = zeros(nx,nu);

9 Zux = zeros(nu,nx); Zuu = zeros(nu,nu);

10 Aint = [A Zxu; -C Zuu]; % Augment plant with integrators

11 Bint = [B; -D]; % Augment plant with integrators (at

plant output)

12

13

14 states = 5; % use old system

15 % -> old number of states

16

17 % Kalman filter (only for true states -

18 % not needed for integrators)

19

20 Q = [kw*eye(2)];

21 R = kv*eye(2);

22 sys_d = ss(A,[B Bd],C,[D D]); % D is zero anyway

23 [kestold,KFL,P,M,Z] = kalman(sys_d,Q,R);

24

25 % LQR control

26 states = 7;

27 Q = 5*eye(states);

28 R = 1*eye(2);

29 N = 0;

30 [lqrK,S,e] = lqr(Aint,Bint,Q,R); % Shows that we only need

31 % the A and B matrices

32 % for LQR control

33

34 lqrKs = lqrK(:,1:nx); % Plant state feedback part

35 lqrKint = lqrK(:,nx+1:nx+ny); % Integrator state feedback part

1 Problems in Anti-Windup and Controller Performance Monitoring 27

36 lqrKii = inv(lqrKint);

37

38 Aki = zeros(2,2); %State space representation of two

integrators in parallel...

39 Bki = eye(2);

40 Cki = eye(2);

41 Dki = 1e-3*eye(2); %... with a small non-singular D term to

make the Hanus form implementable

42

43 Ahki = Aki-Bki*inv(Dki)*Cki; %Two integrators in parallel in

Hanus’ form

44 Bhki = [zeros(ny,ny) Bki*inv(Dki)];

45 Chki = Cki;

46 Dhki = [Dki zeros(ny,nu)];

47

48 %%

49 % Fast low-pass dynamics to break algebraic loop in Simulink

50 Af = -1000*eye(2);

51 Bf = eye(2);

52 Cf = 1000*eye(2);

53 Df = zeros(2,2);

1.2 Anti-windup with PI Controllers and Selectors

Selectors and ’overrides’ are often used in plants when operational objectives
change with operating conditions. Clearly, selectors makes the control system
non-linear, and mistakes are easily made when designing such control systems,
leading to sustained oscillations or even instability. It may reasonably be
argued that more advanced control techniques, specifically MPC, can be a
good alternative to regulatory control systems in which standard single-loop
controllers (i.e., PI) are combined with selectors, since changes in the set of
active constraints are handled relatively easily with MPC.

This assignment will address a particular problem of windup when us-
ing selectors. This windup is not caused by constraints in the manipulated
variable, but occurs for inactive (’deselected’) controllers, due to the absence
of feedback when the controller is not selected. In this assignment a simple
remedy to this problem is tested.

1.2.1 Introduction to Selective Control

Selective control is sometimes used when there are more than one candidate
controlled variable for a manipulated variable. For each of the candidate
controlled variables a separate controller is the used, and the value of the

28 Morten Hovd and Selvanathan Sivalingam

manipulated variable that is implemented is selected among the controller
outputs. A simple example of selective control with pressure control on one
side and flow control on the other side of a valve is shown in Fig. 1.25.
Normally one selects simply the highest or lowest value. A few points should
be made about this control structure:

• Clearly, a single manipulated variable can control only one controlled vari-
able at the time, i.e., the only variable that is controlled at any instant is
the variable for which the corresponding controller output is implemented.
It might appear strange to point out such a triviality, but discussions with
several otherwise sensible engineers show that many have difficulty com-
prehending this. Thus, one should consider with some care how such a
control structure will work.

• The selection of the active controller is usually based on the controller
outputs, not the controller inputs. Nevertheless the local operators and
engineers often believe that the selection is based on the controller inputs,
or that “the control switches when the a measurement passes its setpoint”.
In principle, the selection of the active controller may also be based on
the controller inputs1. Some type of scaling will then often be necessary,
in order to compare different types of physical quantities (e.g., comparing
flowrates and pressures).

• If the controllers contain integral action, a severe problem that is similar
to “reset windup” can occur unless special precautions are taken. The con-
trollers that are not selected, should be reset (for normal PID controller
this is done by adjusting the value of the controller integral) such that for
the present controller measurement, the presently selected manipulated
variable value is obtained. Commonly used terms for this type of function-
ality are “putting the inactive controllers in tracking mode” or “using a
feedback relay”. This functionality should be implemented with some care,
as faulty implementations which permanently lock the inactive controllers
are known to have been used. On a digital control system, the controllers
should do the following for each sample interval:

1. Read in the process measurement.
2. Calculate new controller output.
3. The selector now selects the controller output to be implemented on the

manipulated variable.
4. The controllers read in the implemented manipulated variable value.
5. If the implemented manipulated variable value is different from the con-

troller output, the internal variables in the controller (typically the integral
value) should be adjusted to obtain the currently implemented manipu-
lated variable value as controller output, for the current process measure-
ment.

1 Provided appropriate scaling of variables is used, the auctioneering control structure
may be a better alternative to using selective control with the selection based on
controller inputs.

1 Problems in Anti-Windup and Controller Performance Monitoring 29

<

PT

PIC

FT

FIC
Disturbance

Pressure

controller

Flow

controller Low select

Flow

transmitter

Pressure

transmitter

Valve

Fig. 1.25 Schematic of simple plant with two controllers and a selector. Note that
the applied control signal is fed back to the controllers.

For PI controllers, the simple PI anti-windup scheme in Fig. 1.1 may be
used.

1.2.2 The Control Problem in the Assignment

Consider the small plant depicted in Fig. 1.25. In normal operation, the flow
controller should be active, but the pressure controller should take over if
the downstream pressure becomes too high. This is achieved by selecting the
lower of the two controller outputs, and applying that as the valve opening.
A downstream disturbance affects both pressure and flow, and can cause the
pressure control to take priority over the flow control.

In Fig. 1.25, solid arrows indicate process flows (in pipelines), dashed lines
indicate signal transmission, and the dash-dotted lines indicate ’feedback’
from the signal actually applied to the valve back to the controllers, for
avoiding windup. In this assignment we will only study the effects of the
selector, but one should note that there is little additional complexity involved
in also having limited range of actuation of the valve, e.g., to the range ±1.

A simple model of the plant is given as

[
f(s)
p(s)

]
=

[5
10s+1
10

100s+1

]
u(s) +

[−1
20s+1

2
20s+1

]
d(s) (1.11)

30 Morten Hovd and Selvanathan Sivalingam

where f is the flowrate, p is the pressure, u is the valve position, and d is
the disturbance. Note that these variables, as always when using transfer
function models, are expressed in deviation variables, and thus both negative
valve positions, pressures and flowrates do make sense2.

1.2.3 Assignment

1. Model implementation
Implement the a model of the plant in Simulink. The two controllers may
both be given the setpoint zero. The disturbance should be modelled as a
square wave with period 500.

2. Controller tuning
Tune each of the PI controllers, without taking saturation or the selector
into account. Any tuning methodology could be used (this should not
be very difficult anyway, since the plant in each of the loops is Strictly
Positive Real). However, completely unrealistic tunings should be avoided
(i.e., for asymptotically stable plants like in this example, the closed loop
time constant should not be orders of magnitude faster than the open loop
time constant).

3. Simulation without anti-windup
Implement the resulting PI controllers in Simulink – without accounting
for windup, and simulate with the disturbance active and both controllers
operating (i.e., with the selector).
Comment on the results of the simulation.

4. Simulation with anti-windup
Implement the PI controllers with anti-windup, and redo the simulation.
Comment on the results and compare to the simulation results without
anti-windup.

1.2.4 Solution

1.2.4.1 Model Implementation

The Simulink implementation of the plant model, with the disturbance,
and including PI controllers (without anti-windup) and selector, is shown
in Fig. 1.26

2 In addition, the variables are scaled, so not too much emphasis should be placed
on the magnitude of the variables

1 Problems in Anti-Windup and Controller Performance Monitoring 31

1.2.4.2 Controller Tuning

Not much effort has been put into the controller tuning. For each of the
controllers, the integral time Ti has been set equal to the (dominant) time
constant of the open loop, and a proportional gain of 1 is used. These tuning
parameters are found to result in reasonable responses to setpoint changes
for each individual loop.

1.2.4.3 Simulation without Anti-windup

The system has been simulated with the disturbance active. The response in
the controlled outputs are shown in Fig. 1.27. We observe large variations in
the controlled variables, including variations where the measurement is larger
than the setpoint (0 for both loops). The corresponding controller outputs
are shown in Fig. 1.28. We observe that the pressure controller winds up
so severely, that it needs a long time to wind down again, and therefore
only is selected (active) for a short period during each disturbance cycle.
This explains the long periods where the pressure measurement is above the
setpoint. There are also large deviations in the flow measurement, but since
the flow controller is selected most of the time, the deviations in the flow
measurement are quite quickly removed.

Transfer Fcn1

Tif.s

kf*[Tif 1](s)

Transfer Fcn

2

20s+1

Save disturbance

d

Pressure setpoint
(deviation variable)

0

Pressure controller output

up

Pressure controller

Tip.s

kp*[Tip 1](s)

Pressure
(deviation variable)

p

Pressure

10

100s+1

MinMax

min

Input applied
(deviation variable)

ur

Flow setpoint
(deviation variable)

0

Flow disturbance

−1

20s+1Flow controller output

uf
Flow

(deviation variable)

f

Flow

5

10s+1

Disturbance

Fig. 1.26 Simulink implementation of model and control system, without anti-
windup

32 Morten Hovd and Selvanathan Sivalingam

0 200 400 600 800 1000 1200 1400 1600 1800 2000
−4

−3

−2

−1

0

1

2

3

4

Flow
Pressure
Disturbance

Fig. 1.27 Responses in controlled variables, without anti-windup.

1.2.4.4 Simulation with Anti-windup

The simple anti-windup technique for PI controllers described in Hovd and
Sivalingam (2011) is used, and is implemented as illustrated in Fig. 1.29.
Note that if we want to account for saturation in the valve in addition to the
effect of the selector, this could easily be done in the simulation by putting a
saturation element in series after the selector, before sending the ’anti-windup
signal’ to each controller. In a real life implementation, it would be preferable
to use for anti-windup a direct measurement of the valve position.

The simulated responses in the controlled variables, when including anti-
windup, are shown in Fig. 1.30, and the corresponding responses in the con-
troller outputs are shown in Fig. 1.31. We see that only small deviations of

0 200 400 600 800 1000 1200 1400 1600 1800 2000
−2

0

2

4

6

8

10

12

Flow controller output
Pressure controller output
Input applied

Fig. 1.28 Responses in controller outputs, without anti-windup.

1 Problems in Anti-Windup and Controller Performance Monitoring 33

Transfer Fcn2

1

Tip.s+1

Transfer Fcn1

1

Tif.s+1

Transfer Fcn

2

20s+1

Save disturbance

d

Pressure setpoint
(deviation variable)

0

Pressure controller output

up

Pressure
(deviation variable)

p

Pressure

10

100s+1

MinMax

min

Input applied
(deviation variable)

ur

Gain1

kf* u

Gain

kp* u

Flow setpoint
(deviation variable)

0

Flow disturbance

−1

20s+1Flow controller output

uf
Flow

(deviation variable)

f

Flow

5

10s+1

Disturbance

Fig. 1.29 Simulink implementation of model and control system, with anti-windup

the controlled variables above their setpoints occur. There is no appreciable
windup effect, and active control quickly switches to the other controller upon
reversal of the sign of the disturbance. For the inactive control loop, there
are still large deviations below the setpoint, i.e., in the ’safe’ direction. This
is clearly unavoidable when controlling only one variable at the time.

Comparing to the simulations without anti-windup, we observe much bet-
ter control of deviations in the controlled variables above the loop setpoints.
Anti-windup is therefore very important when the value of a manipulated
variable is determined by selecting between the outputs of several controllers
– especially if good control in one direction is required for safety.

The simulations also illustrates the error in the widely held belief that
’the active control switches to the variable whose value is above setpoint’. In
Fig. 1.27 we can easily find periods where both controlled variables are above
the setpoint, and in Fig. 1.30 we see that the active control actually switches
when both controlled variables are below their setpoint. This is of course due
to the selection of the active controller being determined by the values of the
controller outputs rather than the values of the measurements or setpoints.

34 Morten Hovd and Selvanathan Sivalingam

0 200 400 600 800 1000 1200 1400 1600 1800 2000
−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

Flow
Pressure
Disturbance

Fig. 1.30 Responses in controlled variables, with anti-windup.

0 200 400 600 800 1000 1200 1400 1600 1800 2000
−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

Flow controller output
Pressure controller output
Input applied

Fig. 1.31 Responses in controller outputs, with anti-windup.

1.3 Stiction Detection

In process control, valves are commonly used as manipulated variables. Stic-
tion in control valves is a common cause for poor control performance, often
causing continuous oscillations in the loop. This assignment will study the
detection of valve stiction, using a few of the available stiction detection meth-
ods. Background on stiction detection methods can be found in Sivalingam
and Hovd (2011).

A Simulink model is used to simulate a simple control loop with a (possi-
bly) sticking valve. A printout of the Simulink model is shown in Fig. 1.32.
The submodel Intstiction contains the integration from net force acting
on the valve to the valve velocity, as well as the calculation of the friction

1 Problems in Anti-Windup and Controller Performance Monitoring 35

force, based on the simple model described in Sivalingam and Hovd (2011).
The submodel is shown in Fig. 1.33. For simulations without stiction, the
submodel Intstiction is replaced by the simple integration (from net force
to velocity), with a positive kd in Fig. 1.32 used to simulate viscous (linear)
friction.

1.3.1 Assignment

Prepare by downloading required software (if not already installed) and the
data series used in the assignment.

1. Download the Higher Order Spectral Analysis (hosa) toolbox from Matlab
Central, and/or the file bicoherence.m from Dr. MAA Shoukat Choud-
hury’s website teacher.buet.ac.bd/shoukat/.

2. Download the Matlab data files Set1data.mat – Set4data.mat from
http://www.itk.ntnu.no/ansatte/Hovd_Morten/NIL/.

Each of the Matlab data files contain three arrays of variables: i) OP , the
controller output, ii) PV , the process (measured) variable, and iii) tp, the
corresponding time index.

For each of the data sets, do the following:

1. Plot both OP and PV versus time. Do these plots indicate oscillations
caused by stiction?

2. Use the cross-correlation method to detect (possible) stiction. Comment
on the result.

3. Use the OP − PV plot to detect stiction. If the plot is hard to interpret,
try time-shifting the data series relative to each other. Comment on the
result.

Transfer Fcn

1

60s+1

To Workspace3

procoutm

To Workspace2

contout

To Workspace1

procout

To Workspace

valpos

Sine Wave

Disturbance

Sawtooth signal

Reference

1

PID Controller

(with Approximate

Derivative)

PID

Kp

kp

Ki

ki

Kd

kd

Intstiction

In1 Out1

Integrator1

1

s

Integrator

1

s

Band−Limited

White Noise

Valve velocity Valve position

Fig. 1.32 Simulink model for simulating simple loop with sticky valve

36 Morten Hovd and Selvanathan Sivalingam

Out1

1

To Workspace3

dout

To Workspace2

intinput

To Workspace1

posinput

To Workspace

velocity

Sign

MATLAB Fcn

MATLAB
Function

Integrator

1
s

Fs

Fs

Fc

Fc

In1

1

Fig. 1.33 Simulink submodel for calculating friction force and valve velocity

4. Use glstat.m (from the hosa toolbox) and/or bicoherence.m to detect
stiction. Comment on the result.

1.3.2 Solution

The data series contain an initial setpoint change (from 0 to 1). It may
therefore be advisable to select parts of the data series after the PV has
come close to the setpoint. The length of the selected data series should
contain multiple oscillations. You may also use the Matlab function detrend

to remove any linear trends in the data.

1.3.2.1 Data Set 1

The time plots of OP and PV for data set 1 are shown in Fig. 1.34. The
OP resembles the sawtooth shape, and PV resembles the square wave shape,
that together are held to be typical of stiction.

The cross-correlation function for data set 1 is shown in Fig. 1.35. This is
nearly an odd-valued function, and this test therefore indicates the presence
of stiction.

The OP −PV plot for data set 1 is shown in Fig. 1.36, for approximately
two oscillation periods. Despite the imperfect trend removal, the plot clearly
shows the signals ’oscillating around an open area’, and sharp corners in the
plots. This test therefore also indicates the presence of stiction.

1 Problems in Anti-Windup and Controller Performance Monitoring 37

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
−0.5

0

0.5

1

1.5

2

2.5

Time

O
P

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
−0.5

0

0.5

1

1.5

2

2.5

Time

P
V

Fig. 1.34 OP and PV for data set 1.

−1000 −800 −600 −400 −200 0 200 400 600 800 1000
−1500

−1000

−500

0

500

1000

1500

Fig. 1.35 The OP to PV cross-correlation function for data set 1.

The routines bicoherence.m and glstat.m are both run to detect the
presence of nonlinearity in the output. Default parameters are used for both
routines. Elements 5001-9096 of the PV data series are used (a data series of
length a power of 2 is used since these routines are based on the FFT). The
command
[bic,waxis,NGI,NLI,bic_f_max] = bicoherence(pv)

gives NGI = −0.0014 and NLI = 0.4394. Since both these indices are re-

38 Morten Hovd and Selvanathan Sivalingam

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

OP

P
V

Fig. 1.36 OP -PV plot for data set 1.

quired to be positive in order to indicate significant non-linearity, no stiction
is indicated. In contrast, the command
[sg,sl]=glstat(pv,0.51,128)

shows that the signal is non-Gaussian (the Pfa, probability of false alarm,
is zero). However, the estimated inter-quartile range R is quite close to the
theoretical value for a linear system, and thus glstat does not find any clear
sign of non-linearity.

1.3.2.2 Data Set 2

The time plots of OP and PV for data set 2 are shown in Fig. 1.37. The OP
resembles the sawtooth shape, but here PV also resembles a sawtooth shape,
and stiction is therefore not readily identifiable from the time plots.

The cross-correlation function for data set 2 is shown in Fig. 1.38. This is
nearly an even-valued function, and this test therefore does not indicate the
presence of stiction.

The OP −PV plot for data set 2 is shown in Fig. 1.39. The plot looks like
an ellipsoid seen from the side, but due to the angle it is difficult to assess
whether there are any sharp corners in the plot. In Fig. 1.40, the PV time
series is therefore shifted by 30 samples. The plot is a little messy, since the
time shifting destroys the correspondence between the effects of measurement
noise in the OP and PV time series. However, the sharp corners in the plot
are now clearly identifiable, indicating the presence of stiction.

1 Problems in Anti-Windup and Controller Performance Monitoring 39

7000 7100 7200 7300 7400 7500 7600 7700 7800 7900 8000
−1

0

1

2

3

Time

O
P

7000 7100 7200 7300 7400 7500 7600 7700 7800 7900 8000
0

0.5

1

1.5

2

Time

P
V

Fig. 1.37 OP and PV for data set 2.

−100 −80 −60 −40 −20 0 20 40 60 80 100
−800

−600

−400

−200

0

200

400

600

800

Fig. 1.38 The OP to PV cross-correlation function for data set 2.

The routine bicoherence.m returns a negative value for NGI and a posi-
tive value for NLI, and therefore nonlinearity has not been detected for this
PV time series either. The routine glstat.m finds no clear indication of PV
being non-Gaussian, the probability of false alarm being estimated to 0.8665.
None of these routines can therefore detect stiction in the loop.

40 Morten Hovd and Selvanathan Sivalingam

−1.5 −1 −0.5 0 0.5 1 1.5
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

OP

P
V

Fig. 1.39 OP -PV plot for data set 2.

−1.5 −1 −0.5 0 0.5 1 1.5
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

OP(k)

P
V

(k
+

30
)

Fig. 1.40 OP -PV plot for data set 2, with the PV data series shifted 30 samples.

1.3.2.3 Data Set 3

The time plots of OP and PV for data set 3 are shown in Fig. 1.41. The OP
resembles the sawtooth shape, but here PV also resembles a sawtooth shape,
and stiction is therefore not readily identifiable from the time plots. The
oscillations are of modest amplitude (around an order of magnitude larger
than the measurement noise).

1 Problems in Anti-Windup and Controller Performance Monitoring 41

7000 7050 7100 7150 7200 7250 7300
0.9

0.95

1

1.05

1.1

Time

O
P

7000 7050 7100 7150 7200 7250 7300
0.8

0.9

1

1.1

Time

P
V

Fig. 1.41 OP and PV for data set 3.

−30 −20 −10 0 10 20 30
−10

−8

−6

−4

−2

0

2

4

6

8

10

Fig. 1.42 The OP to PV cross-correlation function for data set 3.

The cross-correlation function for data set 3 is shown in Fig. 1.42. This
is an almost perfectly even-valued function, and this test therefore does not
indicate the presence of stiction.

The OP − PV plot for data set 3 is shown in Fig. 1.43. The plot looks
like an ellipsoid seen from the side, but due to the angle it is difficult to
assess whether there are any sharp corners in the plot. In Fig. 1.44, the PV
time series is therefore shifted by 5 samples. Again, we find that the plot is a

42 Morten Hovd and Selvanathan Sivalingam

−0.04 −0.03 −0.02 −0.01 0 0.01 0.02 0.03 0.04
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

OP

P
V

Fig. 1.43 OP -PV plot for data set 3.

−0.04 −0.03 −0.02 −0.01 0 0.01 0.02 0.03 0.04
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

OP(k)

P
V

(k
+

5)

Fig. 1.44 OP -PV plot for data set 3, with the PV data series shifted 5 samples.

little messy, since the time shifting destroys the correspondence between the
effects of measurement noise in the OP and PV time series. Furthermore,
since the measurement noise is here of significant magnitude compared to the
amplitude of the oscillations, it is also in this plot not possible to identify any
sharp corners in the plot.

The routine bicoherence.m returns a negative value for NGI and a posi-
tive value for NLI, and therefore nonlinearity has not been detected for this

1 Problems in Anti-Windup and Controller Performance Monitoring 43

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

0.5

1

1.5

Time

O
P

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
−0.5

0

0.5

1

1.5

2

Time

P
V

Fig. 1.45 OP and PV for data set 4.

PV time series either. Similarly, the routine glstat.m finds no clear indica-
tion of PV being non-Gaussian, the probability of false alarm being estimated
to 1.0. None of these routines can therefore detect stiction in the loop.

1.3.2.4 Data Set 4

The time plots of OP and PV for data set 4 are shown in Fig. 1.45. Here both
OP and PV look like noisy sinusoidal signals, without any clear indication
of stiction.

The cross-correlation function for data set 4 is shown in Fig. 1.46. This is
nearly an even-valued function, and this test therefore does not indicate the
presence of stiction.

The OP − PV plot for data set 3 is shown in Fig. 1.43. The plot looks
like a smooth ellipsoid (when disregarding the obvious effects of noise), and
therefore does not indicate the presence of stiction.

Again the routine bicoherence.m returns a negative value for NGI and a
positive value for NLI, and therefore nonlinearity has not been detected for
this PV time series. Similarly, the routine glstat.m finds no clear indication
of PV being non-Gaussian, the probability of false alarm being estimated to
1.0. None of these routines therefore indicate stiction in the loop.

44 Morten Hovd and Selvanathan Sivalingam

−500 −400 −300 −200 −100 0 100 200 300 400 500
−100

−80

−60

−40

−20

0

20

40

60

80

100

Fig. 1.46 The OP to PV cross-correlation function for data set 4.

−0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

OP

P
V

Fig. 1.47 OP -PV plot for data set 4.

1.3.3 Conclusions

1. Data set 1 is a ’traditional’ stiction example, as seen from Fig. 1.34. The
oscillations are here at a significantly lower frequency than the dominant
dynamics of the plant.

2. Data set 2 is obtained with the same stiction model parameters, but with
a higher proportional gain in the controller. The oscillations are therefore

1 Problems in Anti-Windup and Controller Performance Monitoring 45

faster – in a similar frequency range as the dominant dynamics of the
plant.

3. Data set 3 is also obtained with the same stiction model parameters. How-
ever, here integral action is used in the valve positioner. This results in
rather fast oscillations – so fast that the oscillations in the output are
small due to the low plant gain at high frequencies. Note, however, that
the oscillations in the valve position due to the stick jump are nevertheless
significant in magnitude, and may result in premature wear on the valve.

4. Data set 4 is obtained with a sinusoidal external disturbance, and the
control loop itself is linear

We find that the cross-correlation method therefore perform well on data
sets 1 and 4, and the OP-PV plot (at least when allowing for time-shifting
between the OP and PV data series) perform well on data sets 1, 2, and 4.
The methods using only the PV (bicoherence.m and glstat.m) failed to
detect significant nonlinearity for sets 1, 2, and 3, while correctly finding no
indication of nonlinearity for data set 4. One should note, however, that

• It is not really fair to compare a stiction detection method using only PV
to methods using both OP and PV.

• Both bicoherence.m and glstat.m have tunable parameters that may
help in detecting nonlinearity in some (or all?) of these cases. However, in
the absence of any clear recommendations on how to select these parame-
ters, we have chosen to use default values throughout.

None of the methods tested were able to detect stiction in data set 3. Logging
the actual valve position (which must be measured – at least locally – in order
to implement a valve positioner) would be very helpful for detection of stiction
when the stiction (in combination with the valve positioner) results in such
fast oscillations.

1.4 Controller Performance Monitoring using the Harris
Index

In large-scale chemical plants, the number of control loops is simply too high
for operators or engineers to continuously monitor the performance of each
loop. Studies show that disappointingly many control loops perform poorly.
The need for automated tools to assess control performance is therefore clear.
In this assignment, one of the most popular performance monitoring methods,
the Harris Index, will be illustrated. More background on the Harris Index
and its modifications can be found in Sivalingam and Hovd (2011).

In this assignment the Harris Index is used to assess the performance of
a simple control loop. The sampling interval of the loop is 1 (time unit) and
the open-loop dominant time constant is estimated to be around 100 (the

46 Morten Hovd and Selvanathan Sivalingam

knowledge of the dominant time constant is not known for calculating the
Harris Index, but is used in one of the more common modifications of the
index). The plant is strictly proper, but there is otherwise no time delay from
input to output, i.e., h(0) = 0, h(1) 6= 0 where h(k) is the impulse response
coefficient for lag k. The plant is open loop stable and has no zeros outside
the unit disk.

1.4.1 Assignment

1. Download the Matlab data file cpmsim.mat from
http://www.itk.ntnu.no/ansatte/Hovd_Morten/NIL/. The file contains
the measurement (OP) of a control loop. Since the setpoint is 0, the mea-
surement and control offset are equivalent.

2. Calculate the Harris Index (or Normalized Harris Index) for the control
loop. Is there scope for significant improvements in control performance?

3. Select a reasonable value for the desired closed loop dominant time con-
stant. Instead of the minimum variance benchmark used in the Harris
Index, use a modified benchmark reflecting a desired closed loop time con-
stant to assess control performance.

The calculations involved are relatively simple, and appropriate Matlab
routines may be programmed by the student. Alternatively, the Matlab rou-
tines ar and impulse may be useful.

1.4.2 Solution

First the mean of the data series OP is removed with the command opd

= detrend(op,’constant’). Next, a 10th-order auto-regressive model from
the (unmeasured) disturbance to the controlled variable is identified using
the command mod=ar(opd,10). The routine ar() finds parameters for the
model

y(k) + α1y(k − 1) + α2y(k − 2) + · · ·+ α(10)y(k − 10) = a(k) (1.12)

m
A(q−1)y(k) = d(k)

where y(k) is the measurement at time k, and a(k) is the (unmeasured) distur-
bance. Note that the leading coefficient of the polynomial A(q−1), α(0) = 1.
The coefficients of the polynomial A(q−1) are found in mod.a, and the es-
timated variance of a(k) is found in mod.NoiseVariance. The AR model
is converted to an impulse response model by simple polynomial long divi-

1 Problems in Anti-Windup and Controller Performance Monitoring 47

−100 −50 0 50 100 150 200 250 300 350
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time

Im
pu

ls
e

re
sp

on
se

 c
oe

ffi
ci

en
t

Fig. 1.48 Calculated impulse response

sion, or using the command [h,t] = impulse(mod). The resulting impulse
response is plotted in Fig. 1.48.

It can be seen that the model is (as expected) semi-proper. There is no time
delay from manipulated variable to the controlled variable, so the minimum
variance can be found from

σ2
mv = h(0)2σ2

a (1.13)

We thus find σ2
mv = 2.489·10−4. The actual variance of the output is found to

be σ2
y = 7.95 ·10−3. We thus find a Harris index of HI = 31.94 or a normalized

Harris Index of NHI = 0.969. We conclude that there is a significant scope
for improved control performance.

A frequently quoted rule of thumb is that the closed loop time constant
should be 2-3 time faster than the open loop time constant. However, this
clearly cannot apply to integrating processes (with infinite time constant),
and in practice will depend on the available range and speed of actuation
for the manipulated variable. Nevertheless, the rule of thumb would indicate
that a closed loop time constant of 40 is reasonable, considering the open
loop dominant time constant of 100. This corresponds to a desired closed
loop (discrete time) pole of µ = e−1/40 = 0.9753. The modified benchmark
variance therefore becomes

σ2
mod =

(
1 +

µ2

1− µ2

)
σ2
a = 5.103 · 10−3 (1.14)

48 Morten Hovd and Selvanathan Sivalingam

With this modified benchmark variance, we find a modified Harris index of
HImod = 1.49, or NHImod = 0.327. Thus, with the chosen closed loop time
constant as basis for comparison, the motivation for retuning the controller
is significantly reduced, as the observed variance is not much larger than the
’acceptable’ variance.

Acknowledgements The authors are pleased to acknowledge the financial support
by a grant No. NIL-I-007-d from Iceland, Liechtenstein and Norway through the EEA
Financial Mechanism and the Norwegian Financial Mechanism.

The contributions of Anders Fougner and Anders Willersrud in preparing the anti-
windup assignment are also gratefully acknowledged.

References

Hanus R, Kinnaert M, Henrotte JL (1987) Conditioning technique, a general anti-
windup and bumpless transfer method. Automatica 23(6):729–739

Hovd M, Sivalingam S (2011) A short introduction to anti-windup. In: Huba M,
Skogestad S, Fikar M, Hovd M, Johansen TA, Rohal’-Ilkiv B (eds) Selected Top-
ics on Constrained and Nonlinear Control. Textbook, STU Bratislava – NTNU
Trondheim

Sivalingam S, Hovd M (2011) Controller performance monitoring and assessment.
In: Huba M, Skogestad S, Fikar M, Hovd M, Johansen TA, Rohal’-Ilkiv B (eds)
Selected Topics on Constrained and Nonlinear Control. Textbook, STU Bratislava
– NTNU Trondheim

Skogestad S, Postlethwaite I (2005) Multivariable Feedback Control. Analysis and
Design. John Wiley & Sons Ltd, Chichester, England

Wade HL (1997) Inverted decoupling – a neglected technique. ISA Transactions 36:3–
10

1 Problems in Anti-Windup and Controller Performance Monitoring 49

Comments – Remarks

50 Morten Hovd and Selvanathan Sivalingam

Comments – Remarks

1 Problems in Anti-Windup and Controller Performance Monitoring 51

Comments – Remarks

52 Morten Hovd and Selvanathan Sivalingam

Comments – Remarks

Chapter 2

Optimal Use of Measurements for
Control, Optimization and Estimation
using the Loss Method: Summary of
Existing Results and Some New

Sigurd Skogestad and Ramprasad Yelchuru and Johannes Jäschke

Abstract The objective of this chapter is to study the optimal use of mea-
surements and measurements combinations, c = Hy in optimization and
estimation based on the loss method.

2.1 Introduction

In this paper we consider a (steady-state) unconstrained quadratic optimiza-
tion problem with linear measurement relationships. The main objective is
to find a linear measurement combination, c = Hy, such that control of
these indirectly leads to close-to-optimal operation with a small loss L, in
spite of unknown disturbances, d, and measurement noise (error), ny. If the
original optimization problem is constrained, then we assume that any ac-
tive constraints are kept constant (controlled) and we consider the lower-
dimensional unconstrained subspace. Depending on the disturbance range
considered, there may be several constrained regions, and the procedure of
finding H needs to be repeated in each constrained region. Switching be-
tween the regions will then be needed, and we will show that monitoring the
controlled variables c = Hy in neighboring regions can be used for switching.

Sigurd Skogestad
Department of Chemical Engineering, Norwegian University of Science and Technol-
ogy in Trondheim, Norway, e-mail: skoge@chemeng.ntnu.no

Ramprasad Yelchuru
Department of Chemical Engineering, Norwegian University of Science and Technol-
ogy in Trondheim, Norway, e-mail: ramprasad.yelchuru@chemeng.ntnu.no

Johannes Jäschke
Department of Chemical Engineering, Norwegian University of Science and Technol-
ogy in Trondheim, Norway, e-mail: jaschke@chemeng.ntnu.no

53

skoge@chemeng.ntnu.no
ramprasad.yelchuru@chemeng.ntnu.no
jaschke@chemeng.ntnu.no

54 Sigurd Skogestad and Ramprasad Yelchuru and Johannes Jäschke

What we here call the “loss method” is the same as what is called the
“exact local method” in these papers (Halvorsen et al (2003); Alstad et al
(2009)).

The new material in this summary paper is mainly related to using data
(Y ,X) as the basis, and for example, to use the “loss”method for regression,
see section 5, data approach 1 and 2.

2.2 Problem Formulation

2.2.1 Classification of Variables

• u - inputs (degrees of freedom) for optimization and control (it does not
actually matter what they are as long as they form an independent set)

• d - disturbances, including parameter changes.
• y - all available measurements (will later call a subset of these for x in ac-

cordance with statistics notation). The manipulated variables (MVs, often
the same as the inputs u) are generally included in the measurement set
y. This will allow, for example, for simple control policies where the inputs
are kept constant. Of course, the set y also includes measured disturbances
(dm, a subset of d).

• ny - measurement noise (error) for y, ym = y + ny.
• p - prices = weights that enter into cost function (do not affect y)

2.2.2 Cost Function

The objective is to choose the input u to minimize the quadratic cost function

J(u,d) = uTQ1u+ dTQ2d+ uTQ3d (2.1)

Note that for simplicity, we have not included linear terms in the cost func-
tion. Any linear term in u can be removed by shifting the zero point for u

to be at the optimal point. On the other hand, a linear term in d cannot be
counteracted by choosing the input u, so excluding it does not change the
solution. The same applies to any constant term in the cost.

If we compare (2.1), with a second-order Taylor series expansion of the
cost around a nominal point (u∗,d∗), then we have that

Q1 =
1

2
J∗

uu,Q2 = J∗
ud,Q3 =

1

2
J∗

dd

2 Measurements for Control, Optimization and Estimation 55

and u represents deviation from the optimal point (u∗,d∗) = (0, 0) at which
J∗

u = 0.

2.2.3 Measurement Model

A linear model is assumed for the effect on u and d on measurements y

(deviation variables)

y = Gyu+G
y
dd = G̃

[
u

d

]
(2.2)

2.2.4 Assumptions

• No constraints (u spans unconstrained subspace)
• We want to find as many controlled variables as there are degrees of free-

dom, nc = dim(c) = dim (u) = nu. Then HGy is a square nu×nu matrix
• We use at least as many measurements as there are degrees of freedom,

ny ≥ nu = nc.

2.2.5 Expected Set of Disturbances and Noise

We write d = W d d′ where W d is a diagonal matrix giving the expected
magnitude of each disturbance and d′ is a normalization vector of unit mag-
nitude.

Similarly, ny = Wny ny′

where Wny is a diagonal matrix with the mag-
nitude of the noise for each measurement, and the vector ny′

is of unit mag-
nitude.

More precisely, the combined normalization vectors for disturbances and
measurement noise are assumed to have 2-norm less than 1,

∣∣∣∣
∣∣∣∣
d′

ny′

∣∣∣∣
∣∣∣∣
2

≤ 1 (2.3)

The choice of the 2-norm (rather than, for example, the vector infinity-
norm) is discussed in the Appendix of Halvorsen et al (2003).

56 Sigurd Skogestad and Ramprasad Yelchuru and Johannes Jäschke

2.2.6 Problem

Given that
H (y + ny)︸ ︷︷ ︸

ym

= cs (constant = 0 nominally) (2.4)

find the optimal H such that “magnitude” of the loss

L = J(u,d)− Jopt(d) (2.5)

is minimized for the “expected” d and ny.
The “expected” set of the disturbances and noise is defined above.
The “magnitude” of the loss still needs to be defined. Two possibilities are

considered.

• Worst-case loss, Lwc.
• Average loss, Lavg.

2.2.7 Examples of this Problem

1. Identify controlled variables, c = Hy (“squaring down”). Then use feed-
back control to adjust u such that cm = Hym = cs.

2. Find invariants for quadratic optimization problems.
3. Obtain estimate of primary variables, c = ŷ1 = Hy.

Problem: Given that ŷ1 = Hy find optimal H such that magnitude of
||y1 − ŷ1|| is minimized for the expected d’s and ny’s.

2.2.8 Comments on the Problem

1. The controlled variables are c = Hy and the objective is to find the
non-square nc × ny matrix H (note that nc = nu). In general, H is a
“full” combination matrix. However, it may also be interesting to consider
control of individual measurements, in which caseH is a“selection”matrix
with nu number of columns with single 1 and the rest of columns are zero
(mathematically HHT = I).

2. Minimizing (the magnitude of) the loss L is close to but not quite the same
as minimizing the cost J . In some cases they give identical results in terms
of the optimal H, for example, if we consider the average loss or cost for
given disturbances (because then the same cost function is subtracted).
So it seems it is the same for the 2-norm (Frobenius) of M (see below).
However, there will be some difference if we consider the worst-case loss
or cost.

2 Measurements for Control, Optimization and Estimation 57

2.3 Solution to Problem: Preliminaries

The objective is to derive the solution to the above problem. It has been
previously been known as the “exact local method”, but we will here call it
the loss method. However, first we need some preliminaries

2.3.1 Expression for uopt(d)

We want to find the optimal input u for a given disturbance d. Expanding
the gradient Ju around the nominal point (u∗,d∗) = (0, 0) gives

Ju = J∗
u + J∗

uuu+ J∗
udd = J∗

u︸︷︷︸
=0

+ [J∗
uu J∗

ud]

[
u

d

]

where J∗
u = Ju(u

∗,d∗) = 0 because the nominal point is assumed to be
optimal. To remain optimal, u = uopt(d), we must have Ju = 0 and we
derive

uopt = −J−1
uuJudd (2.6)

where we have dropped the superscript ∗ (either because we consider small
deviations or because we assume that the problem is truly quadratic).

2.3.2 Expression for J around uopt(d)

Consider a given disturbance d. Then expanding the cost J around a“moving”
uopt(d) gives

J(u,d) = J(uopt(d),d)︸ ︷︷ ︸
Jopt(d)

+ Ju︸︷︷︸
=0

(u−uopt)+
1

2
(u−uopt)

TJuu(u−uopt) (2.7)

Here Ju = 0 (since we are expanding around an optimal point), so we get
the following expression for the loss

L(u, d) = J(u, d)− Jopt(d) =
1

2
zTz =

1

2
||z||22 (2.8)

where
z = J1/2

uu (u− uopt(d)) (2.9)

58 Sigurd Skogestad and Ramprasad Yelchuru and Johannes Jäschke

2.3.3 Expression for Ju around Moving uopt(d)

A similar expansion, but now of the gradient gives

Ju = Ju(uopt)︸ ︷︷ ︸
=0

+Juu(u− uopt) = Juu(u− uopt) (2.10)

Combining this with (2.9) gives z = J−1/2
uu Ju and we have the “Johannes

expression” for the loss

L(u, d) = J(u, d)− Jopt(d) =
1

2

∣∣∣
∣∣∣J−1/2

uu Ju

∣∣∣
∣∣∣
2

2
(2.11)

From these expressions we see that minimizing the loss L is equivalent to

minimizing ||z||2, which is equivalent to minimizing
∣∣∣
∣∣∣J1/2

uu (u − uopt)
∣∣∣
∣∣∣
2
or

∣∣∣
∣∣∣J− 1

2
uu Ju

∣∣∣
∣∣∣
2
.

Thus, we have the important conclusion that minimizing the loss is equiv-
alent to minimizing the weighted 2-norm of the gradient Ju, with the weight
being given by the matrix J−1/2

uu . However, for the “normal” case when there
are no restrictions (like fixing some elements to zero) on the matrix H , we

will show below that the weight J−1/2
uu does not have any effect on the optimal

H.

2.3.4 Optimal Sensitivities

Note from (2.6) that we can write uopt = F ud where F u = −J−1
uuJud. More

generally, we can write
yopt = Fd (2.12)

where F is the optimal sensitivity of the outputs (measurements) with respect
to the disturbances. Here, F can be obtained using (2.2) and (2.6),

yopt = Gyuopt +G
y
dd = (−GyJ−1

uuJud +G
y
d)d

that is,
F = (−GyJ−1

uuJud +G
y
d) (2.13)

However, Juu can be difficult to obtain, especially if one relies on numerical
methods, and also taking the difference can introduce numerical inaccuracy.
Thus, for practical use it is often better to obtain F from its definition,
F = dyopt/dd, by numerically reoptimizing the model for the disturbances.

2 Measurements for Control, Optimization and Estimation 59

2.4 The Loss Method

Now we are finally ready to derive the main results.

2.4.1 The Loss Variable z as a Function of
Disturbances and Noise

We start from the loss expression in (2.8) with ||z||22 where z = J1/2
uu (u−uopt).

We want to write z as a function of d and ny, The first step is to write u−uopt

as a function of c− copt. We have c = Hy, so

c = Hy = HGyu+HG
y
dd

copt = Hyopt = HGyuopt +HG
y
dd

Thus, c− copt = HGy(u− uopt), or

(u − uopt) = (HGy)−1(c− copt)

where G = HGy is the transfer function from u to c.
The next step is to express (c−copt) as a function of d and ny. From (2.4)

we have that H(y + ny) = cs (constant), or

c = Hy = −Hny + cs

Here, cs = 0, since we assume the nominal point is optimal. From (2.12)
we have that copt = HFd. Since the signs for ny and d do not matter for
the expressions we derive below (we can have both positive and negative
changes), we derive

c− copt = H(Fd+ny) = H(FW dd
′ +Wnyny′

) = H [FW d Wny]

[
d′

ny′

]

Note that W d and Wny are usually diagonal matrices, representing the mag-
nitude of the disturbances and measurement noises, respectively.

2.4.2 Loss for Given H, Disturbance and Noise
(Analysis)

In summary, we have derived that for the given normalized disturbances d′

and for the given normalized measurement noises ny′

the loss is given by

60 Sigurd Skogestad and Ramprasad Yelchuru and Johannes Jäschke

L =
1

2
zTz (2.14)

where

z = J1/2
uu (u − uopt) = J1/2

uu (HGy)−1HY︸ ︷︷ ︸
M(H)

[
d′

ny′

]
(2.15)

Y = [FW d Wny] (2.16)

2.4.3 Worst-case and Average Loss for Given H

(Analysis)

The above expressions give the loss for the given d and ny′

, but the issue is
the find the “magnitude” of the loss for the set bounded as

∣∣∣∣
∣∣∣∣
[
d′

ny′

]∣∣∣∣
∣∣∣∣
2

≤ 1 (2.17)

Here “magnitude” can be defined in different ways, and the worst case loss
(Halvorsen et al, 2003) and average loss (Kariwala et al, 2008) for a given H

are given by

Lwc =
1

2
σ̄(M)2 (2.18)

Lavg =
1

6(ny + nd)
‖M‖2F (2.19)

where
M(H) = J1/2

uu (HGy)−1HY (2.20)

Here σ̄(M) denotes the singular value (induced 2-norm) of the matrixM(H),
and ‖M‖F denotes the Frobenius norm (normal 2-norm) of the matrix M .
Use of the norm ofM to analyze the loss is known as the“exact local method”.

2.4.4 Loss Method for Finding Optimal H

The optimal H can be found by minimizing either the worst-case loss (2.18)
or the average loss (2.19). Fortunately, (Kariwala et al, 2008) prove that the
H that minimizes the average loss in equation (2.19) is super optimal, in the
sense that the same H minimizes the worst case loss in (2.18). Hence, only
minimization of the Frobenius norm in (2.19) is considered in the rest of the
paper. The scaling factor 1

6(ny+nd)
does not have any effect on the solution

2 Measurements for Control, Optimization and Estimation 61

of the equation (2.19) and hence it is omitted in the problem formulation.
Similarly, the square does not effect the optimal solution and can be omitted.

In summary, the problem is to find the combination matrix H that mini-
mizes the Frobenius norm of ||M || in (2.19), that is,

min
H

∥∥∥J1/2
uu (HGy)−1HY

∥∥∥
F

(2.21)

where Y = [FW d Wny]. We call this the minimum loss method for finding
optimal linear measurement combinations, c = Hy.

The objective in (2.21) is to find the nonsquare nu×ny matrixH (note that
nu = nc). In most cases it may be recast as a convex optimization problem
as given in (2.23) below. The exception is if H has a specified structure, for
example, H is a selection matrix, which is discussed in Section 2.6.

Further Comments

1. Using the norm of M to analyze the loss is known as the “exact local
method”and finding the optimalH is the“exact local method optimization
problem”. However, in this paper we simply call it the “loss method”.

2. To include changes in the weights in the cost function p (prices), we need
to find the optimal sensitivity to price changes, yopt = F pp The corrected
setpoint for the variables c = Hy is then

cs = Hyopt = HF pp (2.22)

3. The effect (transfer function) from cs to z is Mn = J1/2
uu (HGy)−1, and

from cs to u is G−1 = (HGy)−1. Since there are extra degrees of freedom
in H which are not set by the optimization problem, either of these (Mn

or G) can be selected freely; see below for details.

Exercise 2.1. Consider a scalar case (nu = nc = 1) with no disturbances
(F = 0) and assume that the measurements y have been scaled such
that Wny = I (noise of equal magnitude on all outputs). For the scalar

case, J1/2
uu does not matter for the optimization problem which becomes

minH
∣∣∣∣(HGy)−1H

∣∣∣∣2
F
and we want to find the optimal H .

(a) Consider the case with 2 measurements, so Gy =

[
g1
g2

]
(column vector)

and H = [h1 h2] (row vector), and solve the problem analytically. Also
compute the optimal norm, j =

∣∣∣∣(HGy)−1H
∣∣∣∣
F
.

(b) Derive the result more generally for the scalar case with any number of
measurements, by making use of the definition of the induced 2-norm (sin-

gular value), which for a vector gives, ||Gy||2 =
√
GyT

Gy = maxh
||Gyh||2
||h||2

62 Sigurd Skogestad and Ramprasad Yelchuru and Johannes Jäschke

(note that for a vector the Frobenius norm (F)and 2-norm (2) are the
same).

(c) Use the analytical formula presented below, to derive the general result
for the multivariable case (nu = nc > 1).

Solution 2.1.

(a) Two measurements.

HGy = [h1h2]

[
g1
g2

]
= h1g1 + h2g2 (scalar)

j2 =
∣∣∣∣(HGy)−1H

∣∣∣∣ ||2F = (h2
1+h2

2)/(h1g1+h2g2)
2 = (1+x2)/(g1+xg2)

2

where x = h2/h1. Set d(j2)/dx = 0 to find the optimal x. After a lit-
tle simplification x − (1 + x2)g2/(g1 + xg2) = 0 which gives x = g2/g1.
Conclusion:

h2/h1 = g2/g1

that is, we prefer to control the measurements corresponding to large el-
ements in Gy. Also find: jopt = 1/

√
(g2

1 + g2
2) which we note is equal to

1/ ||Gy||F
(b) Any number of measurements: Let h = HT be a column vector. Gy is

already a column vector. Since HGy = hTGy is a scalar, it is equal to

its transpose and we have that HGy = GyT

h. Our optimization problem
then becomes

min
H

j = min
h

∣∣∣∣∣

∣∣∣∣∣
h

(GyT

h)

∣∣∣∣∣

∣∣∣∣∣
F

= 1/


max

h

∣∣∣
∣∣∣GyT

h

∣∣∣
∣∣∣
2

||h||2


 = 1/ ||Gy||2

We have here made use of the induced 2-norm and the fact that both the
Frobenius- and 2-norm are the same for a vector. Thus the optimal j is
the inverse of the 2-norm of Gy, which generalizes the solution found for
the case with two measurements. The optimal h = cGy (where c is any
scalar since only the relative magnitudes matter), that is,

HT = cGy

which generalizes the result above.
(c) Multivariable case (c is no longer required to be a scalar). From (2.25) we

derive with Y = I (F = 0 and measurement noise of magnitude 1 for all
outputs) that an optimal solution is

HT = Gy

which generalizes the results above. Thus, for the case where only mea-
surement noise is a concern, and all the measurements have the same noise

2 Measurements for Control, Optimization and Estimation 63

magnitude, the optimal is to select the measurements according the gain
matrix Gy. This means that “sensitive”measurements, with large elements
in Gy are preferred for control.

2.5 Reformulation of Loss Method to Convex Problem
and Explicit Solution

We consider here the “normal” case where H is a “full” matrix (with no
structural constraints).

Theorem 2.1 (Reformulation as a convex problem). The problem in
equation (2.21) may seem non-convex, but for the normal case where H is
a “full” matrix (with no structural constraints), it can be reformulated as a
constrained quadratic programming problem (Alstad et al, 2009)

min
H

||HY ||F
s.t. HGy = J1/2

uu

(2.23)

Proof. From the original problem in equation (2.21), we have that the optimal
solution H is non-unique because if H is a solution then H1 = DH is also a
solution for any non-singular matrix D of size nc × nc. This follows because

J1/2
uu (H1G

y)−1H1Y = J1/2
uu (HGy)−1D−1DHY = J1/2

uu (HGy)−1HY

One implication is that we can freely choose G = HGy, which is a nc × nc

matrix representing the effect of u on c (c = Gu). Thus, in (2.21) we may
use the non-uniqueness of H to set the first part of the expression equal to
the identity matrix, which is equivalent to setting HGy = J1/2

uu . This identity
must then be added as a constraint in the optimization as shown in (2.23).
⊓⊔

The reason for the non-uniqueness is that since ny ≥ nc, H is “fat”nc×ny

matrix (with more columns than rows).

Theorem 2.2 (Analytical solution). Under the assumption that Y Y T is
full rank, an analytical solution for the problem in (2.23) is (Alstad et al,
2009)

HT = (Y Y T)−1Gy(GyT

(Y Y T)−1Gy)−1J1/2
uu (2.24)

Proof. The result is proved in (Alstad et al, 2009) and is based on first vector-
izing the problem and then using standard results from constrained quadratic
optimization.

The analytical solution in Theorem 2.2, results in a H satisfying HGy =
J1/2

uu . However, recall that the optimal solution H is non-unique, and we may
use it to derive a simplified analytical solution.

64 Sigurd Skogestad and Ramprasad Yelchuru and Johannes Jäschke

Theorem 2.3 (Simplified analytical solution). Under the assumption
that Y Y T is full rank, another analytical solution for the problem in (2.23)
is

HT = (Y Y T)−1Gy (2.25)

Proof. This follows trivially from Theorem 2.2, since if HT is a solution then

so is HT
1 = HTD and we simply select D = (GyT

(Y Y T)−1Gy)−1J1/2
uu =

J−1/2
uu GyT

(Y Y T)−1Gy, which is a nc × nc matrix. ⊓⊔
Note that the analytical expressions in Theorems 2.2 and 2.3 require Y Y T

to be full rank. This implies that they generally do not apply to the case with
no measurement error, W ny = 0, but otherwise they apply for any number
of measurements. One exception (but not so common in practice), when the
analytical expressions for H do apply also for W y = 0, is when ny ≤ nd,

because Y Y T then remains full rank.

Corollary 2.1 (Important insight). Theorem 2.3 gives the very important
insight that Juu is not needed for finding the optimal H, provided we have
the normal case where H can be any nc × ny matrix.

This means that in (2.21) we can replace J1/2
uu by any non-singular matrix,

and still get an optimal H. This can greatly simplify practical calculations,
because Juu may be difficult to obtain numerically because it involves the
second derivative. On the other hand, we found that F , which enters in Y , is
relatively straightforward to obtain numerically. Although Juu is not needed
for finding the optimal H, it would be required for finding a numerical value
for the loss.

The analytical solutions are useful, in particular for their insights they
yield, but for practical calculations it is usually faster and more robust to
compute the optimal H by solving the convex quadratic optimization prob-
lems. In addition, the convex optimization problems do not need the require-
ment that Y Y T is non-singular. Based on the insight in Corollary 2.1, the
quadratic optimization in Theorem 2.1 (Alstad et al, 2009), can be further
reformulated to a more general form (Yelchuru and Skogestad, 2010)

Theorem 2.4 (Generalized convex formulation). An optimal H for the
problem in (2.23) is

min
H

||HY ||F
s.t. HGy = Q

(2.26)

where Q is any non-singular nc×nc matrix, for example, Q = I, but Q must
be fixed while minimizing ||HF ||F .
Proof. The result follows from Corollary 2.1, but can more generally be de-

rived as follows. The problem in (2.23) is to minimize

∥∥∥∥∥∥
(J1/2

uu (HGy)−1

︸ ︷︷ ︸
X

HY)

∥∥∥∥∥∥
F

.

2 Measurements for Control, Optimization and Estimation 65

The reason why we can omit the nc × nc matrix X, is that if H is an opti-
mal solution then so is H1 = DH where D is any nonsingular nc × nc (see
proof of Theorem 2.1). However, note that the matrix X, or equivalently the
matrix Q, must be fixed during the optimization, so it needs to be added as
a constraint. ⊓⊔

The fact that Q can be chosen freely (Theorem 2.4) can be useful for
numerical reasons, or finding improved bounds for cases with constraints on
H (see below).

Once we have found an optimal H using any of the Theorems above,
we can use the non-uniqueness of optimal H to find another H1 = DH

with desired property or structure. For example, one can select D such that
G = HGy = I. Alternatively, one can specify selected elements in H1, for
example, H1 = [I K]. In the latter case, write H = [H lHr] and assume
H l is full rank, then H1 = [I K] = [DH l DHr], and we find db = H−1

l

and K = H−1
l Hr.

Required information

To find the optimal “full”H using the loss method we need four pieces of in-
formation. First, for the measurements we need the optimal disturbance sen-
sitivity (F) and input sensitivity (Gy). These are obtained from the model.
Next, we must specify the disturbance magnitudes (Wd) and the noise magni-
tudes (Wny). The matrix Juu is not needed except when there are structural
constraints, as discussed in the next section.

Note that changes (disturbances) in the prices (parameters) in the cost
function do not change the optimal H, based on the assumption that we still
have a quadratic optimization problem with constant weights. However, as
given in (2.22) the setpoint for c needs to be adjusted, cs = HF pp and for
this we need for the measurements the optimal price sensitivity (F p) which
can be obtained from the model.

2.6 Structural Constraints on H

In the previous section we considered the normal case where H may be any
“full” matrix. In terms of selecting controlled variables, c = Hy, this means
that any combination of measurements are allowed. However, in practice there
may be constraints on H, for example, one wants to use a subset of the
measurements or one want to use a decentralized structure for H .

We will consider the following special cases

Case 1. No restrictions on H. This is the case already considered where
Theorems 2.1– 2.4 hold.

66 Sigurd Skogestad and Ramprasad Yelchuru and Johannes Jäschke

Note that key for deriving Theorems 2.1– 2.4 was that if H is a solution
then so is H1 = DH where D is any non-singular matrix.

Case 2. H contains a subset of the measurements but is otherwise full.
Theorems 2.1– 2.4 hold also in this case.
The reason is that H1 = DH will have the same structure as H for
any nonsingular D. This is because if H has columns equal to zero, then
these columns will remain zero in DH even if D is “full”. For example, if

H =

[
0 x 0 x x

0 x 0 x x

]
then we can still allow a full D =

[
x x

x x

]
(where x is

any number) and keep the structure of H in H1 = DH .
Case 3. H contains measurements from disjoint set, so H has a block

diagonal (decentralized) structure. Theorems 2.1– 2.4 do not hold in this
case.
The reason is that for H1 = DH to have the same structure, D must

have a structure similar to H . For example, let H =

[
x x x 0 0
0 0 0 x x

]
then

D =

[
x 0
0 x

]
(where x is any number) and if H =

[
x x x x x

0 0 0 x x

]
then

D =

[
x x

0 x

]
.

Thus, for case 3 we do not have a convex problem formulation, that is, we
need to solve the nonconvex problem in (2.21) (with additional constraints
on the structure of H). This is not surprising as decentralized control is
generally a nonconvex problem. Nevertheless, Theorems 2.1 and 2.4, with
additional constraints on the structure of H , give convex optimization
problems that provide upper bounds on the optimal H for case 3. In
particular, in Theorem 2.4 4 we may make use of the extra degree of
freedom provided by the matrix Q (Yelchuru and Skogestad, 2010).
Also note that, as opposed to cases 1 and 2, Juu is needed to find the
optimal solution for case 3. This may seem a bit surprising.

Case 4. Decentralized control using single measurements, that is nys = nc

where nys is the number of selected measurements). Theorems 2.1– 2.4
hold also in this case.
This is a special case of case 3 where we use the fewest number of measure-
ments. This case is different from case 2 in that H is a diagonal matrix.
The reason why Theorems 2.1– 2.4 hold in this case, is that we can still
keep D full because the “non-zero” part of H is square and we can to
change it to anything, so we can treat it a special case of “full H”.

2.7 Some Special Cases: Nullspace Method and
Maximum Gain Rule

The general optimization problem is

2 Measurements for Control, Optimization and Estimation 67

min
H

∣∣∣
∣∣∣J1/2

uu (HGy)−1HY)
∣∣∣
∣∣∣
F

(2.27)

where Y = [FW dW ny]. The objective is to find the nonsquare nc × ny

matrix H (note that nu = nc). We will here consider some special cases
of this problem, which historically were developed before the convex and
analytical solutions presented above.

2.7.1 No Measurement Noise: Nullspace Method (“full
H”)

For the special case with no measurement noise, W ny = 0, and with more
(independent) measurements than (independent) inputs and disturbances,
ny ≥ nu + nd, it is possible to find H such that

HF = 0 (2.28)

that is, the loss is zero. This is called the “nullspace method” (Alstad and
Skogestad, 2007) because H is in the nullspace of F . In this case, Gy and
W d do not matter for finding the optimal H .

The nullspace method is very simple and has been found to be very useful
in applications. Since the nullspace method neglects the effect of measurement
error, it is important to use preselect a subset of the measurements that are
expected to be insensitive to measurement errors.

Also, one cannot include too many disturbances, because otherwise one
cannot satisfy the requirement ny ≥ nu + nd.

One limitation with the analytical formulas in (2.24) and (2.25) is that
they do not give the nullspace method as a special case. This is because
Y = [FW d Wny] at most has rank nd when W ny = 0. Thus, the ny × ny

matrix Y Y T at most has rank nd and is not invertible because this would
require the rank to be ny. However, the convex optimization problems in
Theorems 2.1 and 2.4 do give the nullspace method as a special case.

Comment: In general, with measurement noise included or with few mea-
surements (so ny < nu + nd), it is not possible to make HY zero.

Explicit Expression for H for Nullspace Method

The following explicit expression applies for H (Alstad and Skogestad, 2007):

H = [JuuJud](G̃
y
)−1 (2.29)

Proof. Here is a proof which is much simpler than that given in (Alstad and
Skogestad, 2007): Want to find c = Hy with zero loss.

68 Sigurd Skogestad and Ramprasad Yelchuru and Johannes Jäschke

1. Measurement relationship: y = G̃
y
[
u

d

]
. Inverting this:

[
u

d

]
= (G̃

y
)−1y (2.30)

2. Optimality condition (NCO):

Ju = 0 (2.31)

3. First-order expansion of gradient:

Ju = J∗
u + J∗

uuu+ J∗
udd = [J∗

uu J∗
ud]

[
u

d

]

where we use Ju∗ = 0.

4. (2.30) and (2.31) then give: [Juu Jud]G̃
−1

y y = 0 and it follows that

H = [Juu Jud](G̃
y
)−1. ⊓⊔

2.7.2 No Disturbances

The case with no disturbances has limited practical significance, but is nev-
ertheless and interesting limiting cases.

We assume there are no disturbances, W d = 0, and we scale the measure-
ments y so that they all have unity measurement noise, W ny = I. From the
analytical expression (2.25), we then have that an optimal solution is

HT = Gy (2.32)

This gives the important insight that we prefer sensitive measurements.

2.7.3 An Approximate Analysis Method for the
General Case: “Maximum Gain Rule”

The maximum gain rule is an approximate analysis method for a given H .
If we want to compare (analyze) alternative choices for H , for example, al-
ternative choices of individual measurements, then the “maximum gain rule”
is effective and gives considerable insight. The maximum gain rule has also
been used to find “optimal” H, especially for the case where one wants to
control individual measurements, and Yu and Kariwala have devised efficient
branch and bound methods for solving this problem.

2 Measurements for Control, Optimization and Estimation 69

In the “maximum gain rule” one considers the scaled gain matrix G =
HGy from u to c. To derive the maximum gain rule, we return to the loss
expression

J =
1

2
zTz

where
z = J1/2

uu (u− uopt) = J1/2
uu G−1(c− copt)

c− copt = H(Fd+ ny)

G = HGy

Here, c − copt may be viewed as the “optimal” (or expected) variation in
the selected variables, c = Hy, caused by disturbances and measurement
noise. The magnitude of c − copt = HFd + Hny is obtained by adding
the magnitude of the contributions from HFd and Hny, and we assume
in the following that c − copt = W cc

′ where W c is a diagonal matrix for
the expected optimal variation (“optimal span”) in c and we assume that all

||c′||2 ≤ 1 are allowed. c−copt translates into changes in the inputs (u−uopt)

by the transformation u = G−1c and to a loss through the matrix J1/2
uu . We

want (u−uopt) small, so we want the norm of G−1 small. More specifically,
the largest (worst-case) value of ||z||2 for any allowed ||c′||2 ≤ 1 is equal to

σ̄(J1/2
uu G−1W c), and we want this as small as possible. From singular value

properties we have that the σ̄(A−1) = 1/σ(A), that is we want to maximize

smin(W−1
c GJ−1/2

uu).
We have then derived the maximum gain rule: Under the assumption

that ||c′||2 ≤ 1 , the worst-case loss is given by Lmax = 1
2

1
σ2(Gs)

where

Gs = S1GS2 (2.33)

and
S1 = W−1

c = diag(1/|ci − copt,i|)

S2 = J−1/2
uu

Note that S1 includes the sum of the optimal variation (as given by the F -
matrix) and the expected measurement error. Thus, to minimize the loss we
should select c = Gu with a large minimum singular value of the scaled gain
matrix Gs.

The only “non-exact”step in deriving this rule comes from the assumption
that all ||c′||2 ≤ 1 are allowed, which means that we neglect some of the
variations in (c−copt) that are correlated. Nevertheless, since the presence of
measurement noise means that there is always some uncorrelated variation,
at least if we consider individual measurements, c = y, this implies that we
can safely exclude candidate c’s with a small gain, that is, with a small value
of σ(Gs).

70 Sigurd Skogestad and Ramprasad Yelchuru and Johannes Jäschke

Note that Juu enters into the maximum gain rule, whereas it is actually not
required when H is the optimal full matrix, see (2.26). However, in general
Juu must be included, see case 3 in the discussion following (2.26).

• Do we need the maximum gain rule?

One can analyze the loss with alternatives choices for c using the “exact local
method”, so why do we need the maximum gain rule? The motivation for
using the maximum gain rule is at least threefold

1. It is simpler to compute.
2. It given insight, in particular that we want to control “sensitive” variables

with a large scaled gain: Select variables c where the “optimal variation”
(c − copt) (from disturbances, and including measurement noise) is small
compared to the “achievable variation”(c = Gu) (from inputs).

3. The scaled gain matrix is Gs = S1GS2. Here, the gain matrix G is ob-
tained by linearizing in a single operating point. To find the “scaling”
matrices S1 and S2 we need to reoptimize for the disturbances (to find
c − copt needed for S1) and to find the second derivative with respect to

the inputs (to find S2 = J−1/2
uu), which can be rather involved calculations.

If this information missing, then one may often get good results by esti-
mating the optimal variations to find S1 (for example, based on operating
data) and by setting S2 = I (one should in this case scale the inputs so
that their expected effect on the cost is similar).

This maximum gain rule has also proven to work surprisingly well on
many applications. Nevertheless, if one has data for the optimal sensitivity
(F), then our recommendation is to use the “exact local method” instead of
the maximum gain rule. This is because one can analyze alternative choices
for c (and H) more exactly by computing the norm (Frobenius norm or max.

singular value) of M =
[
J1/2

uu (HGy)−1HY
]
. Kariwala and Cao (2009) have

derived efficient branch and bound algorithms for finding the measurement
choice (optimal structured H) that minimize either the norm of M as well
as the scaled gain, σ(Gs). Although the computation times for minimizing
the latter are somewhat lower, the benefit is not sufficiently large to justify
using the maximum gain rule, provided we have the necessary information
available for the first method.

2.8 Indirect Control and Estimation of Primary Variable

These two problems are very similar, and can be written as a special case of
the loss method, involving the same matrices.

2 Measurements for Control, Optimization and Estimation 71

2.8.1 Indirect Control of y1

The objective is to keep the primary output y1 close to its setpoint, so the
cost function is

J = (y1 − y1,s)
2

However, y1 is not measured, but we have to use some other measurements
y. Thus, we want to achieve indirect control of y1 by keeping c = Hy at a
given setpoint.

To find the optimal “full” H using the loss method we need four pieces
of information; F , Gy,Wd,Wny . In our case, the optimal sensitivity is F =
(dyopt/dd) = (dy/dd)y1

It may be obtained by simulations where we keep
y1 constant for the various disturbances. Instead of using simulations, we
may write y1 = G1u + Gd1d, and then (Hori et al, 2005) Juu = Gt

1G1,
Jud = GT

1 Gd1
, F = (−GyJ−1

uuJud +G
y
d) = (−GyG−1

1 Gd1
+G

y
d).

In addition, we need to handle setpoint changes for the primary variable,
y1,s, which requires changes in the setpoint for c. Note that y1,s only affects
the cost function and may be viewed as a price variable p, so from (2.22)
the required change in the setpoint is ∆cs = HFp∆y1,s, where Fp may be
obtained from the model (exercise: derive the expression!).

2.8.2 Indirect Control of y1 Based on Estimator

Note that we still have not used the available degrees of freedom in H . To
simplify the setpoint adjustment, we may use the degrees of freedom in H

to make HFp = I, or equivalently, c = y1. This means that c should be
an estimate of y1. Note that y1 = G1u and c = HG1u (setting d = 0 for
simplicity). These two gains need to be identical, so we use the extra degrees
of freedom in H to make

HGy = G1 (2.34)

It is then easy to include changes in setpoint; we just control c at y1,s.

Some comments on this estimator

• What kind of estimator is this? If we look at the problem formulation, then
we see that it is be the optimal estimator in the following sense: When we
control y1 at the estimate (using the unconstrained degrees of freedom)
then this minimizes the deviation from the given value (setpoint), for the
expected range of disturbances and measurement noise.

• For practical purposes, when obtaining the model, it may be smart to let
the primary outputs be the degrees of freedom, u = y1 that is, to use

72 Sigurd Skogestad and Ramprasad Yelchuru and Johannes Jäschke

“closed-loop data” (this may seem strange, but it is OK). Then we have
G1 = I.

2.9 Estimator for y1 Based on Data

The idea is to use the same approach as for the previous problem, but using
data instead of a model. The objective is to estimate y1 based on measure-
ments y (which we from now on will call x to follow statistics notation). That
is, we want to find

y1 = Hx

(where x = y). The available information is given by the data Y all =
[Y 1;X]. Note that the data must first be centered.

To use our method, we first need to know the expected optimal variation
Y . Here “optimal” means that y1 is constant. In addition, we also need to
obtain Gy and G1 from the data. This means that the data must contain
“non-optimal” variations in u, and not only contain optimal data where u =
uopt(d).

Comment: The setup is the same as for the previous problem, expect that
it is not clear how noise in y1 can be included. It is a bit similar to “imple-
mentation error”which has been neglected since we assumed integral action.

2.9.1 Data Approach 1

Here we assume that Y all is obtained from two different sources of data.

1. “Optimal” data with constant y1(X = Y opt): This is closed-loop data for
y with y1 constant for various disturbances (d) and also with noise. It
should be representative data for the expected operation. This directly
gives the matrix Y = Y opt (including the weights) needed in (2.26).

2. “Non-optimal” data with constant d: This is data for x and y1 collected
with varying u. From this data we directly obtainGy and G1. By selecting
u = y1, one may also here used closed-loop data (but with y1 varying), in
this case G1 = I.

3. Find optimal H using (2.26) with HGy = I.

2.9.2 Data Approach 2: Loss Regression

More generally, we do not have separate “optimal” and “non-optimal” data.
Instead, we have combined data Y all where y1 and x vary simultaneously.

2 Measurements for Control, Optimization and Estimation 73

Note that we here use the notation from statistics/chemometrics and call the
measurements y for x.

We can then do a two-step procedure. In the first step, we “split up” the
data Y all data to find G1, G

y and Y opt, and in step 2 we proceed as“normal”
to find the optimal H .

Step 1A. We rearrange the data Y all such that the y1 values are in the
first rows, and the x = y-measurements are in the rest (called X),

Y all = [Y 1;X]

Step 1B. We now want to separate the data into “optimal” and “nonop-
timal” data. The data can generally be transformed by multiplying by a
(real) unitary matrix V , because ||[HY all]|| = ||[HY allV]|| for the 2-
norm. Thus, we can use the SVD of

Y 1 = U1S1V
T
1

to transform the data to (“split up the data”)

Y allV 1 =

[
G1 0
Gy Xopt

]

Now, we have G1, G
y and Y = Xopt and can proceed as normal using

our derived formulas, see earlier.
Step 2. Find the optimal H by solving the convex optimization in (2.26)

with Y = Xopt and the constraint HGy = G1.

% Loss method

% step 1A

Yall = [Y1; X];

% step 1B

[u,s,v]=svd(Y1);

Yall1 = Yall*v;

[r1,c1]=size(Yall);

[r2,c2]=size(Y1);

ny=r2;

G1=Yall1(1:ny,1:ny);

Gy=Yall1(ny+1:r1,1:ny);

Xopt = Yall1(ny+1:r1,ny+1:c1);

% step 2,

%Hopt = (pinv(Xopt*Xopt’)*Gy)’; %analytical expression

[Hopt,loss]=soc_avg(Gy,Xopt);

D=Hopt*Gy*inv(G1);

Hoptloss=inv(D)*Hopt;

74 Sigurd Skogestad and Ramprasad Yelchuru and Johannes Jäschke

Comments

• Alternatively in step 2, provided Y Y T has full rank, we may use the
analytical expression HT = (Y Y T)−1Gy in (2.25) and then “rescale”H
to get a new H1 = DH which satisfies H1G

y = G1, which gives H1 =
G1(HGy)−1H . If Y Y T does not have full tank one may use some pseudo
inverse (similar to PCR). This adds degrees of freedom to the method. It
has not been tested out but some preliminary results are promising.

• The method seems a bit similar to PLS in that we use the data for y1 to
affect the x-data (we get Xopt from X by using the SVD of Y 1, and also
use Gy when minimizing HXopt.

2.9.2.1 Modification for Case with Too Few Experiments (e.g.
Spectroscopic Data)

If we start with a model, then the data matrix Y = [FW d Wny] is a “fat”
matrix; this is clear since the noise magnitude matrix Wny is a square matrix
(usually diagonal). Thus, there exists no matrix H such that HY = 0.

However, if we start with data and have many measurements (e.g., spec-
troscopic data), then Y = Xopt is likely a thin matrix, and there will exist an
(or actually, infinitely many) H such that HY = 0. Since the experimental
data Y contains measurement noise, this means that H is “fitting” the noise.
The proposed method will then be very similar to least squares, although
the constraint HGy = G1 can make it different (as seen from the numerical
examples below).

Extra step 1C. To fix this up, one may add“artificial”measurement noise
to get a better representation of the actual measurement noise. Since there
will always be some independent noise for each measurement, it is suggested
to add a diagonal matrix Wny to the original data

Xextended = [XoptWny]

where Xopt was found in Step 1B above.
The problem is now to choose Wny . One approach is to estimate it from

the data using a preprocessing step. For example, one may do some prelimi-
nary regression and from this obtain an estimate of the noise.

A very simple approach, which is tested on some applications below, is to
assume that the measurements have been scaled (for example, by the norm
of the variation in each measurement), such that they have similar expected
magnitudes. Thus, we use Wny = wnY where wn is a scalar.

noise = wn*eye(rx);

Xoptnoise = [Xopt noise];

[Hopt,loss]=soc_avg(Gy,Xoptnoise);

% etc......

2 Measurements for Control, Optimization and Estimation 75

wn is a tuning parameter but a systematic approach is the following: Plot
the singular values of Xopt and select wn such that the singular values of
Xextended follow the same trend.

2.9.3 Modification: Smoothening of Data

The loss regression method is based on the loss method where it is assumed
that a model is available. When we are using data, then the model has to
be extracted first (step 1), and this step of the method is not based on a
rigorous approach to the final objective, which is to use the model for future
predictions.

Therefore, it is likely that this step may be improved, One possible modi-
fications is suggested next, although it seems from the later numerical tests
that it actually may have no effect.

2.9.3.1 Smoothening of y1

The above procedure (including step 1) assumes that all the noise is in the
x = y. One way of dealing noise in y1 is to run through the procedure twice.

First, we go through the procedure (steps 1 and 2) and find the optimal
H0.

Next, we go through the procedure again, but with a modified step 1A
where use H0 to estimate the smoothened (fitted) values of y1 that corre-
spond to the measured X,

Y smooth
1 = H0X

and then we use this smoothened data in the other steps,

Y all = [Y smooth
1 ;X]

Y1smooth = Hoptloss*X;

% then redo step 1 and 2

Yallsmooth = [Y1smooth; X];

[u,s,v]=svd(Y1smooth);

% etc....

However, from the numerical examples this smoothening has no effect on
the results, which in some sense is good, but on the other hand it does not
offer any extra degrees of freedom.

76 Sigurd Skogestad and Ramprasad Yelchuru and Johannes Jäschke

2.9.4 Numerical Tests

The Matlab files for these tests can be found at the home page of S. Skogestad,
and the commands are also listed in the Appendix.

The objective is to find H (called beta in PLS Matlab) such that y = Hx.
Note that PLS in all cases has an extra degree of freedom because it fits
y = Hx+h0 where h0 is nonzero. This may help for the fitting, but not for
validation. In any case, all the data is centered, so we can assume h0 is close
to 0.

2.9.5 Test 1. Gluten Test Example from Harald
Martens

Data: GlutenStarchNIR
1 y1 (gluten), 100 x (NIR absorbents), 100 data set).
This data has no noise on y1.
We first chose to use the 50 first data set for calibration and the 50 last

for validation. Table 2.1 shows the fit ||Y 1 −HX||F to calibration and val-
idation data. The best result for the traditional methods is PCR with 33

Table 2.1 Spectroscopic Example: Calibration and Validation data

Cal Val Method
0.0000 0.4758 Least squares (ls)
0.0738 0.3471 PCR-41 (tol=1.e-4)
0.1323 0.3142 PCR-33 (tol=2.e-4)
0.1890 0.4106 PCR-12 (tol=1.e-3)
0.0898 0.3608 PLS-8
0.0941 0.3445 PLS-7
0.1303 0.4987 PLS-6
0.0000 0.4735 min.loss
0.0000 0.4735 min.loss w/smooth y1
0.1442 0.3271 min.loss w/noise=5.e-4
0.1011 0.3115 min.loss w/noise=2.e-4

principal components (corresponding to a tolerance of 2e-4 when taking the
pseudo inverse), which gives a validation fit of 0.3142. PLS can use much
fewer components, but the fit is not as good (validation error is 0.3445) as
PCR. As expected, the minimum loss method given perfect fit to the data
and gives results identical to least squares. Thus, noise has to be added, and
a noise level of 2.e-4 gives an error to the validation data (0.3115) which is
even better than the best PCR

Use of smoothened y1-data has no effect, which is expected as the fit to
the calibration data is perfect.

2 Measurements for Control, Optimization and Estimation 77

Table 2.2 Spectroscopic Example: Calibration and Validation data (with sets inter-
changed)

Cal Val Method
0.0000 0.6763 Least squares (ls)
0.1687 0.3873 PCR-12 (tol=5.e-4)
0.1652 0.2357 PLS-7
0.0000 0.6785 min.loss
0.1476 0.3798 min.loss w/noise=5.e-4

Table 2.3 Spectroscopic Example: Calibration (99 measurements) and Validation
data (1 rotating measurement)

Cal (avg.) Val Method
0.0000 3.0681 Least squares (ls) = min.loss
0.2689 0.3609 PCR (tol=5.e-4)
0.2769 0.3129 PLS-7
0.2471 0.3556 min.loss. w/noise=5.e-4

However, if we interchange the calibration and validation data set, then the
results are very different; see Table 2.2. The best is now PLS-7 (val=0.2357),
whereas minimum loss with noise is at 0.3798.

Finally, one data set was excluded at a time and used for validation. The
average norm of the calibration fit and the norm of the validation fit for the
100 runs are given in Table 2.3. Again the PLS method is best (val=0.3129),
whereas the minimum loss method with noise is the second best (val=0.2556).

2.9.6 Test 2. Wheat Test Example from Bjorn Alsberg
(Kalivas, 1997)

Data: wheat spectra
2 y1, 701 x, 100 data set.
The calibration data contains 50 measurements and the validation data

set 50 measurements (specified in files I received).
The results are shown in Table 2.4. The loss method is the best (validation

error 2.9 compared to 3.1 for the traditional methods), but the differences
are small.

The difference between the methods is small for this test case and in
this case the loss method gives better validation (2.9033) than least squares
(3.1092) in spite of the fact that the calibration fit is perfect in both cases.
This is a case where one would expect it to help to add artificial noise to the
loss method. The reason is that we have 701 x’s but only 50 data sets for
calibration, so the data would not be expected to contain sufficient informa-
tion about the expected noise. However, the numerical results do not confirm
this, and the fit gets worse when we add noise.

78 Sigurd Skogestad and Ramprasad Yelchuru and Johannes Jäschke

Y 1 contains both the two y-variables (water and protein); presumably
better fit can be obtained by fitting one at a time.

Table showing the fit ||Y 1 −HX||F to calibration and validation data:

Table 2.4 Wheat Spectra Calibration and Validation data

Cal. Val. Method
0.0000 3.1092 least squares (= PCR -50)
0.3136 3.0871 PCR-47 (tol=1.1 e-3)
0.0052 3.1052 PLS-35
0.0000 2.9033 min.loss
0.0000 2.9033 min.loss + noise=1.e-8
0.0069 3.1099 min.loss + noise=1.e-4

Again, smoothening of y1 has no effect, which again is not surprising since
the fit was perfect.

2.9.7 Test 3. Our Own Example

The data contains 2 y1, 7 x, 2 d.

G1 =

[
1 0
0 1

]
Gd1

=

[
0 0
0 0

]
gy1

= [0.2034563] gy2
= [00.213489] Gy =

[gTy1
, gTy2

] gd1
= [004568− 9] gd2

= [00− 3− 55918] Gyd
= [gTd1

; gTd2
]

8 (or 32) noisy data set generated from ideal data [GyG
y
d] (4 data sets)

with 2 (or 8) different noise sets to get a total of 8 data sets. We here generate
the data by adding noise to data from a model (“calibration set”) and the
“validation set” is the noise-free data. To center the data I used opposite
sign when the data was “repeated”. The noise was generated using randn
command in Matlab.

It was found that when tested on a single example then almost any of the
methods could be the winner. To avoid this effect, the comparison was run
many times (with different random noise).

Table 2.5 shows the average value of ||Y 1 −HX||F for 8 data sets after
running 250 times. The best method is PCR (val=0.4931), PLS with 4 com-
ponents (val=0.5137) is the best PLS. This is not surprising since we know
that the data contains 4 directions. The new loss method is not doing so well
in this case (val=1.055), which is not so surprising since with only 8 data
sets there is limited information about the noise. Note that it is even worse
than least squares (val=0.9985). As expected, the improvement by adding
noise was significant (val=0.5850), but it is still not quite as good as PCR
and PLS.

Surprisingly, smoothening of y1 had absolutely no effect in this case, even
when I added noise on the y1-data (results not shown).

2 Measurements for Control, Optimization and Estimation 79

Table 2.5 Our own example: 8 data sets in each run (average of 500 runs)

w/noise(cal) no noise(val) Method
0.2934 0.9985 LS (=PCR-8)
0.5496 0.4931 PCR (tol=1, most cases PCR-5)
0.5102 0.5137 PLS-4
0.3150 1.0552 loss method (no noise)
0.3150 1.0552 loss method (smooth y1)
0.4205 0.5850 loss method (noise=0.5)

Now, to show that the loss method does better when there is more data,
Table 2.6 shows the average value of ||Y 1 −HX||F for 32 data sets after
running 300 times.

Table 2.6 Our own example: 32 data sets in each run (average of 300 runs)

w/noise(cal) no noise(val) Method
1.4826 0.3560 LS (=PCR-8)
1.4970 0.3560 PCR (most cases PCR-6)
1.5256 0.3698 PLS-4
1.7700 0.2690 loss method (no noise)
1.7700 0.2690 loss method (smooth y1)
1.7703 0.2687 loss method (noise=0.5)

The loss method is the winner (val = 0.269) in spite of the fact that it has
no “tuning” parameters.

Here there is little effect of adding artificial noise with the loss method,
presumable because we have enough data.

2.9.8 Comparison with Normal Least Squares

Normal least square solution. Problem: Find H such that the magnitude of
||Y 1 −HY ||2 is minimized for the given set of data for Y 1 and Y .

Solution: H = Y 1pinv(Y). This minimizes ||Y 1 −HY ||2 and, for cases
where this H is not unique, minimizes ||H ||2.

This is the same as finding H to minimize ||[I H]Y all||, which we know
is not the optimal solution

Proof. The data matrix is Y all = [Y 1;Y] Assume that we seek Hall to
minimize ||HallY all||2. We have degrees of freedom in Hall, so we set Hall =
[I −H]. Then we want to minimize ||Hall[Y 1;Y]||2 = ||−Y 1 +HY || the
best solution is given by the pseudo inverse, H = Y 1pinv(Y) which is the
usual least square solution. ⊓⊔

So why is least squares not optimal?

80 Sigurd Skogestad and Ramprasad Yelchuru and Johannes Jäschke

The “problem” (objectives function) for normal least squares is to get the
best match of the available data, ie., minimize ||Y 1 −HX||, and it does not
consider how the estimate y1 = Hx is going to be used in the future.

So why is the loss approach expected to be better?
In the loss approach, the problem is:
Given that ŷ1 = Hx, find an optimal H such that the average magnitude

of ||y1 − ŷ1||2 is minimized for the expected future ds and nys (which are
assumed 2-norm bounded).

Here, we use the data to obtain Y = Y opt, G
y and G1 (step 1). This step

may possibly be improved but it seems reasonable.
The main advantage is that in step 2, we obtain the estimate y1 = Hy that

will work best “on average” for the expected disturbances and measurement
noise (as are indirectly given by the data in Y opt, that is, we consider the
future use of the estimator and not just fitting of the data).

2.10 Discussion

2.10.1 Gradient Information

How can we use the proposed approach in practice, for example, to find the
optimal policy for a marathon runner. We need to be able to distinguish
between “optimal data” (Y opt) and “nonoptimal data” to find Gy and G1. A
simple approach is to set y1 = Ju (that is, we want to estimate the gradient).
Then we know that optimal data corresponds to y1 = Ju = 0 and we can
do exactly as above (Data approach 1 or 2). However, note that this means
that we need some non-optimal data where we know the value of Ju.

2.10.2 Relationship to NCO tracking

Finally, some ideas related to NCO tracking.
The NCO-idea is to set the Gradient= 0. An important difference com-

pared to the proposed loss approach, is that in NCO-tracking one tries to
find an expression for u (“open-loop implementation” similar to deadbeat
control).

On the other hand in the loss method (self-optimizing control), we “stop”
when we have the expression for the gradient c = Ju. the implementation to
find u that gives Ju = 0 is by feedback control!

From (2.10) and (2.11) we see that we want to minimize (u−uopt) or Ju

(but weighted by Juu). Recall here that in the full-H case, Juu is not needed.
Still, it remains unclear if this means that we can just minimize ||Ju||?

2 Measurements for Control, Optimization and Estimation 81

Another problem with NCO idea to “Control gradient to zero” is that this
is not really possible since gradient can not be measured. Thus, it needs to be
estimated. For the case with no noise the estimate Ju is same as “nullspace
method”, so c = Hy = Ju!

For noisy case not so clear, but may as well use c = Hy.

2.11 Appendix

1

2 % This is file matlab-test-cases.m

3 % Load data from C:\Documents and Settings\skoge\My Documents\

MATLAB

4

5 % ---

6 % Test case 1. Martens data:

7 load GlutenStarchNIR

8 % X: Variablene 13-112 er NIR absorbanser (log(1/T) fra

850-1048 nm).

9 % y1: Variabel 4 er kvantitiv analytt-konsentrasjon (gluten),

10 % Matrix: 100 rows 112 cols: regular MATLAB matrix

11 % VarLabels: 112 rows 17 cols: MATLAB character string

12 % ObjLabels: 100 rows 7 cols: MATLAB character string

13 Yall=Matrix’;

14 XX = Yall(13:112,:);

15 YY = Yall(4,:);

16 X = XX(:,1:50);

17 X0= XX(:,51:100);

18 Y1= YY(:,1:50);

19 Y10=YY(:,51:100);

20

21 % repeated Martens

22 % 100 times where I take out data each time

23 %for nsis=1:98

24 %X = XX(:,[1:nsis nsis+2:100]); X0 = XX(:,nsis+1);

25 %Y1 = YY(:,[1:nsis nsis+2:100]); Y10 = YY(:,nsis+1);

26 % Two end cases are handled separately

27 %nsis=0

28 %X = XX(:,[nsis+2:100]); X0 = XX(:,nsis+1);

29 %Y1 = YY(:,[nsis+2:100]); Y10 = YY(:,nsis+1);

30 %nsis=99

31 %X = XX(:,[1:nsis]); X0 = XX(:,nsis+1);

32 %Y1 = YY(:,[1:nsis]); Y10 = YY(:,nsis+1)

33

82 Sigurd Skogestad and Ramprasad Yelchuru and Johannes Jäschke

34 % Jump to.. MATLAB code starts here

35

36 % ---

37 % Test case 2.

38 % Bjørn Alsberg data (epost 15.11 2010)

39 load wheat_spectra

40 %Your variables are:

41 %X Y idxcal idxval moist protein

42 Xwheat=X’; Ywheat=Y’; % 2 y’s, 701 x’s, 100 data set

43 X =Xwheat(:,idxcal); Y1 =Ywheat(:,idxcal); % 50 calibration

sets

44 X0=Xwheat(:,idxval); Y10=Ywheat(:,idxval); % 50 validation sets

45 %X =Xwheat(:,idxval); Y1 =Ywheat(:,idxval); % 50 calibration

sets - switched

46 %X0=Xwheat(:,idxcal); Y10=Ywheat(:,idxcal); % 50 validation

sets - switched

47

48

49 % Jump to.. MATLAB code starts here

50

51 % ---

52 % Test case 3. Own example

53

54 G1 = [1 0; 0 1]

55 Gd1= [0 0; 0 0]

56 gy1 =[0.2 0 3 4 5 6 3]

57 gy2 =[0 0.2 1 3 4 8 9]

58 Gy = [gy1’,gy2’]

59 gd1 =[0 0 4 5 6 8 -9]

60 gd2 =[0 0 -3 -5 5 9 18]

61 Gyd = [gd1’,gd2’]

62

63 Y10 = [G1 Gd1]

64 X0 = [Gy Gyd]

65

66 Y100=Y10;

67 na=0; aa=a*0;

68

69 % Run repeatedly from here for several cases

70

71 Y10=Y100;

72

73 % 8 data sets

74 Noise = 0.5*randn(7,8)

75 X = [X0 -X0] + Noise

2 Measurements for Control, Optimization and Estimation 83

76 Y1 = [Y10 -Y10] % use Y10 and -Y10 to get centered data

77

78 %%32 data sets

79 %X = [X0 -X0]

80 %Noise = 0.5*randn(7,32)

81 %X = [X X X X] + Noise

82 %Y1 = [Y10 -Y10] % use Y10 and -Y10 to get centered data

83 %Y1 = [Y1 Y1 Y1 Y1]

84 %%NoiseY= 0.0*randn(2,32) % with 2 y1’s

85 %%Y1 = [Y1 Y1 Y1 Y1] + NoiseY

86 % 100 times where I take out data each time

87

88 %--

89 % MATLAB code starts here

90

91 % Least squares (= PCR with default tol)

92 method1=’ LS’;

93 Hls = Y1*pinv(X);

94 res=Hls*X;

95 res0=Hls*X0;

96 a11=norm(res-Y1);

97 a12=norm(res0-Y10);

98

99 % PCR (vary tol)

100 % PCR: To find cut-off to find no. of components, semilogy(svd(

X))

101 method6=’ PCR’;

102 tol=1.e-4

103 Hpcr = Y1*pinv(X,tol);

104 npcr=rank(pinv(X,tol)) % no. of components used in PCR

105 res=Hpcr*X;

106 res0=Hpcr*X0;

107 a61=norm(res-Y1);

108 a62=norm(res0-Y10);

109

110 % Weighted least squares (to get relative noise assumption

rather than additive noise)

111 method5=’ weightedLS’;

112 [rx,cx]=size(X);

113 mag=[];

114 for i = 1:rx

115 mag=[mag norm(X(i,:))]; % the magnitudes are about 0.8

116 end

117 Xs = inv(diag(mag))*X;

118 Hlss1 = Y1*pinv(Xs);

84 Sigurd Skogestad and Ramprasad Yelchuru and Johannes Jäschke

119 Hlss = Hlss1*inv(diag(mag));

120 ress=Hlss*X;

121 ress0=Hlss*X0;

122 a51=norm(ress-Y1) ;

123 a52=norm(ress0-Y10) ;

124

125 % pls

126 npls=35

127 %npls=npcr

128 [XL,yl,XS,YS,beta,PCTVAR] = plsregress(X’,Y1’,npls);

129 % Note that PLS has an additional bias/centering parameter.

130 yfit = [ones(size(X’,1),1) X’]*beta;

131 yfit0 = [ones(size(X0’,1),1) X0’]*beta;

132 a71=norm(yfit-Y1’);

133 a72=norm(yfit0-Y10’);

134 method7=’ PLS’;

135

136 % Loss method

137 % step 1

138 Yall = [Y1; X];

139 [u,s,v]=svd(Y1);

140 Yall1 = Yall*v;

141 [r1,c1]=size(Yall);

142 [r2,c2]=size(Y1);

143 ny=r2;

144 G1=Yall1(1:ny,1:ny);

145 Gy=Yall1(ny+1:r1,1:ny);

146 Xopt = Yall1(ny+1:r1,ny+1:c1);

147

148 % step 2,

149 %Hopt = (pinv(Xopt*Xopt’)*Gy)’; %analytical expression

150 [Hopt,loss]=soc_avg(Gy,Xopt);

151 D=Hopt*Gy*inv(G1); %

152 Hopt4=inv(D)*Hopt;

153 resb=Hopt4*X;

154 resb0=Hopt4*X0 ;

155 a41=norm(resb-Y1) ;

156 a42=norm(resb0-Y10) ;

157 method4=’ loss ’;

158

159 % NEW modified loss method for case with noise on Y: redo step

1.

160 % New estimate of Y1.

161 Y1smooth = Hopt4*X;

162 % then redo step 1 and 2

2 Measurements for Control, Optimization and Estimation 85

163 Yallsmooth = [Y1smooth; X];

164 [u,s,v]=svd(Y1smooth);

165 Yallsmooth = Yall*v;

166 G1smooth=Yallsmooth(1:ny,1:ny);

167 Gysmooth=Yallsmooth(ny+1:r1,1:ny);

168 Xsmooth = Yallsmooth(ny+1:r1,ny+1:c1);

169 % step 2

170 [Hopt,loss]=soc_avg(Gysmooth,Xsmooth);

171 D=Hopt*Gysmooth*inv(G1smooth); %

172 Hopt10=inv(D)*Hopt;

173 resa=Hopt10*X;

174 resa0=Hopt10*X0 ;

175 a101=norm(resa-Y1) ;

176 a102=norm(resa0-Y10) ;

177 method10=’ loss w/smooth’;

178

179 % loss method: add artificial noise weights

180 noisemag=2.e-4

181 %noisemag=tol

182 % Noise Alt.1 just additive noise:

183 noise = noisemag*eye(rx);

184 Xoptnoise = [Xopt noise];

185 % Noise Alt2. Add noise proportional to variation in each

output

186 %[rx,cx]=size(Xopt);

187 %mag=[];

188 %for i = 1:rx

189 %mag=[mag norm(Xopt(i,:))]; % the magnitudes are about 0.8

190 %end

191 %noise = noisemag*diag(mag);

192 %Xoptnoise = [Xopt noise];

193

194 % step 2- with artificial noise

195 % semilogy(svd(X))

196 % semilogy(svd([X X0])

197 [Hopt,loss]=soc_avg(Gy,Xoptnoise);

198 D=Hopt*Gy*inv(G1); %

199 Hopt9=inv(D)*Hopt;

200 resb=Hopt9*X;

201 resb0=Hopt9*X0 ;

202 a91=norm(resb-Y1) ;

203 a92=norm(resb0-Y10) ;

204 method9=’ loss w/noise’;

205

206 % Summary of results

86 Sigurd Skogestad and Ramprasad Yelchuru and Johannes Jäschke

207 methods=[method1 method5 method6 method7 method4 method10

method9]

208 a =[a11 a12; a51 a52; a61 a62; a71 a72; ; a41 a42; a101 a102;

a91 a92]’

209

210 % For repeated case 1 and case 3:

211 na=na+1

212 aa=aa+a;

213 aaa=aa/na

214 % For repeated case 1

215 end

Acknowledgements The authors are pleased to acknowledge the financial support
from the NIL-I-007-d project and the Norwegian Research Council

References

Alstad V, Skogestad S (2007) Null space method for selecting optimal measurement
combinations as controlled variables. Ind Eng Chem Res 46:846–853

Alstad V, Skogestad S, Hori E (2009) Optimal measurement combinations as con-
trolled variables. Journal of Process Control 19(1):138–148

Halvorsen IJ, Skogestad S, Morud JC, Alstad V (2003) Optimal selection of controlled
variables. Ind Eng Chem Res 42

Hori ES, Skogestad S, Alstad V (2005) Perfect steady-state indirect control. Industrial
& Engineering Chemistry Research 44(4):863–867

Kariwala V, Cao Y (2009) Bidirectional branch and bound for controlled vaiable
selection. part ii: Exact local method for self-optimizing control. Computers and
Chemical Engineering 33:1402–1414

Kariwala V, Cao Y, Janardhanan S (2008) Local self-optimizing control with average
loss minimization. Ind Eng Chem Res 47:1150–1158

Yelchuru R, Skogestad S (2010) Miqp formulation for optimal controlled variable
selection in self optimizing control. In: PSE Asia, 2010. July 25-28, Singapore

2 Measurements for Control, Optimization and Estimation 87

Comments – Remarks

88 Sigurd Skogestad and Ramprasad Yelchuru and Johannes Jäschke

Comments – Remarks

2 Measurements for Control, Optimization and Estimation 89

Comments – Remarks

90 Sigurd Skogestad and Ramprasad Yelchuru and Johannes Jäschke

Comments – Remarks

Chapter 3

Measurement polynomials as controlled
variables – Exercises

Johannes Jäschke and Sigurd Skogestad

Abstract In this chapter we present two exercises for finding controlled
variables, which are polynomials in the measurements. Detailed solutions
and maple source code are included so that the reader can easily follow the
procedure.

3.1 Introduction

To illustrate concepts from described in the textbook, we present some small
problem and go through the solution step by step. The reader is encouraged
to experiment on his own to understand the ideas better.

For solving the CSTR case study, the multires package is required1

3.2 Simple excercise

Exercise 3.1 (Cox 1992). Check whether the two polynomials f1 = 2x2 +
3x+ 1 and f2 = 7x2 + x+ 3 have a common root in C.

Solution 3.1. The resultant is the determinant of the Sylvester matrix:

Johannes Jäschke
Department of Chemical Engineering, NTNU Trondheim, Norway, e-mail:
jaschke@chemeng.ntnu.no

Sigurd Skogestad
Department of Chemical Engineering e-mail: skoge@chemeng.ntnu.no

1 The software can be downloaded at www-sop.inria.fr/galaad/software/multires

91

jaschke@chemeng.ntnu.no
skoge@chemeng.ntnu.no
www-sop.inria.fr/galaad/software/multires

92 Johannes Jäschke and Sigurd Skogestad

Res(f1, f2) = det







2 0 7 0
3 2 1 7
1 3 3 1
0 1 0 3





 = 153 6= 0 (3.1)

There exist no common root since the resultant is nonzero.

Maple code for the Sylvester matrix example

1 with(LinearAlgebra):

2 f1 := 2*x^2+3*x+1;

3 f2 := 7*x^2+x+3;

4 Syl := SylvesterMatrix(f1,f2);

5 Res := Determinant(Syl);

3.3 Isothermal CSTR Case Study

Consider a CSTR as in Figure 3.1, with a feed stream containing component
A and with two first order chemical reactions,

A −→ B r1 = k1cA

B −→ C r2 = k2cB .
(3.2)

Of the products formed, B is the desired procuct, while C is an undesired
side product. The manipulated variable is the feed stream q, which can be
adjusted to achieve profitable performance. The operational objective is to
maximize the concentration of the desired product.

cAF

cA, cB , cC

q

q

Fig. 3.1 Isothermal CSTR

3 Measurement polynomials as controlled variables – Exercises 93

It is assumed that the unmeasured disturbances are k1 and k2, and all other
variables are known except of cB, which is assumed difficult to measure. The
unmeasured variables are summarized in Table 3.1, and all measurements

Symbol Description

k1 Reaction constant for reaction 1
k2 Reaction constant for reaction 2
cB Concentration of desired product

Table 3.1 Unmeasured variables

and known parameters are shown in Table 3.2. The task is to find a con-

Symbol Description Type Value Unit

q Feed flow rate Known input varying m3/min
cA Outlet concentration A Measurement varying kmol/m3

cC Outlet concentration C Measurement varying kmol/m3

V Tank volume Known parameter 0.9 m3

cAF Feed concentration A Known parameter 10.0 kmol/m3

cBF Feed concentration B Known parameter 0.0 kmol/m3

cCF Feed concentration C Known parameter 0.0 kmol/m3

Table 3.2 Known variables: Inputs, measurements and parameters

trolled variable which can be controlled using the total flow rate, and which
maximizes the desired concentration.
Subtasks:

1. Set up the steady state component balances
2. Set up the optimization problem
3. Write the optimality conditions
4. Calculate the reduced gradient
5. Eliminate the unknown Variables

3.4 Solution

3.4.1 Component Balance

We do a The steady state component balances for the system read:

g1 = qcAF − qcA − k1cAV = 0

g2 = qcBF − qcB + k1cAV − k2cBV = 0

g2 = qcCF − qcC + k2cBV = 0

(3.3)

94 Johannes Jäschke and Sigurd Skogestad

3.4.2 Optimization Problem

The objective function is
J = −cB, (3.4)

which we want to minimize subject to the process model:

min J

s.t.

g1 = 0

g2 = 0

g3 = 0

(3.5)

3.4.3 Optimality Conditions

We write the Lagrangian

L = J(z) + λTg(z), (3.6)

where z = (cA, cB, cC , q)
T. The first order optimality conditions are then

∇zJ(z) +∇zg(z) = 0

g(x) = 0
(3.7)

Next we calculate the null-space of the constraints N = [n1, n2, n3, n4]
T with

n1 = (cAF − cA)/(q + k1V) (3.8)

n2 = −−qcBF − cBFk1V + qcB + cBk1V − k1V cAF + k1cAV

(q + k2V)(q + k1V)
(3.9)

n3 = −
(
−cCF q

2 − cCF qk1V − cCFk2V q − cCFk2V
2k1 + cCq

2 + cCqk1V

+ cCk2V q + cCk2V
2k1 − k2V qcBF − k2V

2cBF k1 + k2V qcB + k2V
2cBk1

− k2V
2k1cAF + k2V

2k1cA
)
/ ((q + k2V)(q + k1V)q)

(3.10)

n4 = 1 (3.11)

Eliminate Lagrangian multipliers using the null space, we write the opti-
mality conditions:

cv = N(z)T∇zJ(z) = 0

g(z) = 0
(3.12)

3 Measurement polynomials as controlled variables – Exercises 95

Since we control cv to zero, we need to consider only the numerator, which is

Num(cv) := −qcBF − cBFk1V + qcB + cBk1V − k1V cAF + k1cAV ; (3.13)

This expression cannot be used for control yet, because it contains unknown
variables. These have to be eliminated in the next step.

3.4.4 Eliminating Unknowns k1, k2 and cB

We use the package multires to construct the matrix for the toric resultant

M =











































−qcBF q −cBFV − V cAF + cAV V 0 0 0

qcBF −q cAV 0 0 −V 0

qcAF − qcA 0 −cAV 0 0 0 0

0 0 qcBF −q cAV 0 −V

0 0 qcAF − qcA 0 −cAV 0 0

qcCF − qcC 0 0 0 0 V 0

0 0 qcCF − qcC 0 0 0 V











































(3.14)

3.4.5 The Determinant

The (factorized) determinant of M is

c̃ = q3cAV
4(cAF cA + cAF cCF − cAF cC − c2A) (3.15)

We see that the pre-factor q3cAV
4 is nonzero under operation, so the condi-

tion for optimal operation is only the last factor:

c = cAF cA + cAF cCF − cAF cC − c2A = 0 (3.16)

Now the we have ended up with a controlled variable combination which con-
tains only known variables. It may be confirmed by the reader that controlling
c to zero leads to the same solution as solving the optimization problem (3.5).

96 Johannes Jäschke and Sigurd Skogestad

3.4.6 Maple Code

The maple code for the CSTR example is given below

Maple code for the CSTR example

1 ###

2 ## This is the file mapleCSTR.mpl

3 ## Simple CSTR

4 ## Johannes Jaeschke"

5 ## Nov. 2010

6 ##

7

8 with(LinearAlgebra):with(VectorCalculus):

9 # Define the cost to minimize

10 J :=-cB;

11

12 # Setting up the constraints

13 g1 :=q*cAF - q*cA - k1*cA*V;

14 g2 :=q*cBF - q*cB + k1*cA*V - k2*cB*V;

15 g3 :=q*cCF - q*cC + k2*cB*V;

16 g :=[g1,g2,g3];

17

18 # Derive to obtain first order optimality constraints

19 Jac := Jacobian(g,[cA,cB,cC,q]);

20 gradT := Jacobian([J],[cA,cB,cC,q]);

21

22 # Calculate the null space of the constraints

23 N := NullSpace(Jac): N := N[1];

24

25 # Transpose and mutlitpy

26 G := Transpose(gradT):

27 NT := Transpose(N):

28 # The reduced gradient is then:

29 Cv := VectorMatrixMultiply(NT,G):

30 cv := simplify(numer(Cv[1])): # pick only numerator

31

32 # Unknown variables to be eliminated

33 read("multires.mpl"):

34 varlist := [k2,k1,cB]; #unknown variables

35 polylist:= [cv,g1,g2,g3]; #optimality conditions

36 BigMat := spresultant(polylist,varlist); #Construct resultant matrix

37 LargeMat:= det(BigMat); # Calculate determinant

38 c := factor(LargeMat); # factorize the CV

39 save Jac,grad,N,Cv,cv,c, "invariant"; # save results

3 Measurement polynomials as controlled variables – Exercises 97

Comments – Remarks

98 Johannes Jäschke and Sigurd Skogestad

Comments – Remarks

3 Measurement polynomials as controlled variables – Exercises 99

Comments – Remarks

100 Johannes Jäschke and Sigurd Skogestad

Comments – Remarks

Chapter 4

Multi-Parametric Toolbox

Michal Kvasnica

Abstract This chapter introduces the Multi-Parametric Toolbox (MPT) for
Matlab, which is a freely-available tool for Model Predictive Control and
computational geometry. MPT simplifies and automates many tasks a control
engineer has to go through when designing and validating optimal control
laws based on the MPC principle. The toolbox provides easy-to-use access to
various tasks ranging from modeling of dynamical systems, through control
synthesis, up to verification and code deployment. The purpose of this chapter
is twofold. First, the toolbox is introduced and its functionality is explained
by means of simple, illuminating examples. Then, a set of advanced exercises
is provided for the reader to practice and master their skills.

4.1 Multi-Parametric Toolbox

Optimal control of constrained linear and piecewise affine systems has gar-
nered great interest in the research community due to the ease with which
complex problems can be stated and solved. The aim of the Multi-Parametric
Toolbox (MPT) is to provide efficient computational means to obtain feed-
back controllers for these types of constrained optimal control problems in
a Matlab programming environment. As the name of the tool hints, it is
mainly focused on calculation of feedback laws in the parametric fashion in
which the feedback law takes a form of a PWA look-up table. But the toolbox
is also able to formulate and solve MPC problems on-line in the receding hori-
zon fashion, i.e. by solving the optimization problem for a particular value of
the initial condition at each time step.

Michal Kvasnica
Faculty of Chemical and Food Technology, Slovak University of Technology
in Bratislava, e-mail: michal.kvasnica@stuba.sk

101

michal.kvasnica@stuba.sk

102 Michal Kvasnica

In short, the Multi-Parametric Toolbox can be described as being a free
Matlab toolbox for design, analysis and deployment of MPC-based con-
trol laws for constrained linear, nonlinear and hybrid systems. Efficiency of
the code is guaranteed by the extensive library of algorithms from the field
of computational geometry and multi-parametric optimization. The toolbox
offers a broad spectrum of algorithms compiled in a user friendly and ac-
cessible format: starting from modeling systems which combine continuous
dynamics with discrete logic (hybrid systems), through design of control laws
based on different performance objectives (linear, quadratic, minimum time)
to the handling of systems with persistent additive and polytopic uncertain-
ties. Users can add custom constraints, such as polytopic, contraction, or
collision avoidance constraints, or create custom objective functions. Result-
ing optimal control laws can either be embedded into control applications
in the form of a C code, or deployed to target platforms using Real Time
Workshop.

MPT can also be viewed as a unifying repository of hybrid systems de-
sign tools from international experts utilizing state-of-the-art optimization
packages. The list of included software packages includes packages for linear
programming (CDD, GLPK), quadratic programming (CLP), mixed-integer
linear programming (GLPK), and semi-definite programming (SeDuMi). In
addition, MPT ships with a dedicated solver for computing projections of
convex polytopes, called ESP, a boolean optimization package ESPRESSO,
as well as with the HYSDEL modeling language.

The main factor which distinguishes this toolbox from other alternatives
is the big emphasis on efficient formulation of the problems which are being
solved. This means that the toolbox provides implementation of novel control
design and analysis algorithms, but also offers the user an easy way to use
them without the need to be an expert in the respective fields. MPT aims
at providing tools which can be used in the whole chain of the process of
successful control design. It allows users not only to design optimization-
based controllers, but also to formally verify that they behave as desired,
investigate the behavior of the closed-loop system, and to post-process the
resulting feedback laws in order to simplify them without loosing prescribed
design properties.

4.1.1 Download and Installation

MPT is freely available for download from the project web site at http://control.ee.ethz.ch/˜mpt.
After download, follow the installation instructions and add all MPT’s sub-
directories to Matlab path. To start off, check your MPT installation by
running the following command:

>> mpt_init

http://control.ee.ethz.ch/~mpt

4 Multi-Parametric Toolbox 103

which should provide the output similar to this one:

looking for available solvers...

MPT toolbox 2.6.3 initialized...

LP solver: CDD Criss-Cross

QP solver: quadprog

MILP solver: GLPKCC

MIQP solver: YALMIP

Vertex enumeration: CDD

Any questions, suggestions and/or bug reports should be communicated to
mpt@control.ee.ethz.ch.

4.2 Computational Geometry in MPT

4.2.1 Polytopes

First we introduce the computational geometry features of MPT. MPT con-
tains a rich library for manipulating convex geometrical objects known as
polytopes.

Definition 4.1 (Convex Set). A set C ⊆ Rn is convex if the line segment
connecting any two points in C lies entirely in C, i.e. θx1 + (1− θ)x2 ⊆ C for
all x1, x2 ∈ C and θ ∈ R, 0 ≤ θ ≤ 1.

Definition 4.2 (Polyhedron). Convex set represented as the intersection
of a finite number of closed half-spaces aTi x ≤ bi, i.e. P = {x ∈ Rn | Ax ≤ b}
with

A =



aT1
...

aTm


 , b =



b1
...
bm


 (4.1)

is called a polyhedron.

Definition 4.3 (Polytope). Polytope is a bounded polyhedron.

In general, polytopes can be described in two possible representations:

1. The H-representation, i.e. P = {x | Ax ≤ b}, where the input data A and
b are matrices representing the defining half-spaces aTi x ≤ bi, or

2. the V-representation, i.e. P = convh{x1, . . . , xm}, where convh denotes
the convex hull operator, i.e. convh{x1, . . . , xm} = {x | x = λ1x1 + · · ·+
λmxm, 0 ≤ λi ≤ 1,

∑
λi = 1}. Here, the input data are the vertices

x1, . . . , xm of the polytope.

104 Michal Kvasnica

In MPT, polytopes are constructed using the polytope constructor1:

% define a triangle using inequalities

% x1 + x2 <= 1

% -x1 + x2 <= 1

% -x2 <= 0

A = [1 1; -1 1; 0 -1];

b = [1; 1; 0];

TH = polytope(A, b)

% define the triangle using vertices

x1 = [1; 0]; x2 = [-1; 0]; x3 = [0; 1];

TV = polytope([x1 x2 x3]’) % notice the transpose!

Calling the constructor returns a polytope object which can be processed in
multiple ways. Let us start by simple plots:

% plot the first polytope in a new window using red color

figure; plot(TH, ’r’);

% plot the first polytope in a new window using green color

figure; plot(TV, ’g’)

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x
1

x 2

(a)

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x
1

x 2

(b)

Fig. 4.1 Plot of polytopes TH (left) and TV (right).

The output of these commands is shown in Figure 4.1. It appears that the
two polytopes are equal. But how to check this in an automated fashion?
Easily, use the standard equivalence == Matlab operator:

% are they really equal?

TH == TV

ans =

1 See help polytope for more information.

4 Multi-Parametric Toolbox 105

1

Other supported operators include P <= Q, which checks whether the poly-
tope P is a subset of Q, and P >= Q which checks whether P is a superset of
Q.

Another frequent operation is to check whether a given point is contained
in the polytope. The isinside function provides a YES/NO answer to this
question:

x = [0.5; 0.5];

% is this point contained in our first triangle?

isinside(TH, x)

ans =

1

% of course, the function also works for V-polytopes:

isinside(TV, x)

ans =

1

% now try a point outside the triangle:

x = [10; 10];

isinside(TV, x)

ans =

0

Regardless of whether the polytope was constructed using inequalities
or vertices, it is always possible to extract both the H- as well as the V-
representation. To compute the extremal vertices of a given polytope, use
the extreme function (see also help polytope/extreme):

E = extreme(TH)

ans =

0 1

1 0

-1 0

To extract the H-representation, use the double command:

[A, b] = double(TV)

A =

0.7071 0.7071

-0.7071 0.7071

106 Michal Kvasnica

0 -1.0000

b =

0.7071

0.7071

0

Notice that in this output all rows of A,b have been automatically normalized
such that the 2-norm of each row is equal to one to improve numerics.

4.2.2 Polytope Arrays

Instances of the polytope object can be concatenated into arrays. Currently,
only one-dimensional arrays are supported by MPT and it does not matter
if the elements are stored row-wise or column-wise. An array of polytopes
is created using standard Matlab concatenation operators [,], e.g. A =

[B, C, D].
It does not matter whether the concatenated elements are single poly-

topes or polyarrays. To illustrate this, assume that we have defined polytopes
P1, P2, P3, P4, P5 and polyarrays A = [P1 P2] and B = [P3 P4 P5].
Then the following polyarrays M and N are equivalent:

M = [A B]

N = [P1 P2 P3 P4 P5]

Individual elements of a polyarray can be obtained using the standard refer-
encing (i) operator, i.e.

P = M(2)

will return the second element of the polyarray M which is equal to P2 in this
case. More complicated expressions can be used for referencing:

Q = M([1,3:5])

will return a polyarray Q which contains first, third, fourth and fifth element
of polyarray M.

If the user wants to remove some element from a polyarray, he/she can
use the referencing command as follows:

M(2) = []

which will remove the second element from the polyarray M. Again, multiple
indices can be specified, e.g.

M([1 3]) = []

will erase first and third element of the given polyarray. If some element of a
polyarray is deleted, the remaining elements are shifted towards the start of
the polyarray. This means that, assuming N = [P1 P2 P3 P4 P5], after

4 Multi-Parametric Toolbox 107

N([1 3]) = []

the polyarray N = [P2 P4 P5] and the length of the array is 3. No empty
positions in a polyarray are allowed. Similarly, empty polytopes are not being
added to a polyarray.

A polyarray is still a polytope object, hence all functions which work on
polytopes support also polyarrays. This is an important feature mainly in the
geometric functions. Length of a given polyarray is obtained by

l = length(N)

A polyarray can be flipped by the following command:

Nf = fliplr(N)

i.e. if N = [P1 P2 P3 P4 P5] then Nf = [P5 P4 P3 P2 P1].

4.2.3 Operations on Polytopes

Next, we review some standard operations on polytopes.

4.2.3.1 Chebyshev Ball

The Chebychev’s ball of a polytope P = {x ∈ Rn | Ax ≤ b} is the largest
hyperball inscribed in P , i.e. Br(xc) = {x ∈ R

n | ‖x − xc‖2 ≤ r}, such that
Br ⊆ P . The center and radius of such a hyperball can be easily found by
solving the following LP:

max r (4.2a)

subj. to Aixc + r‖Ai‖2 ≤ bi, (4.2b)

where Ai denotes the i-th row of A. The polytope P is empty if and only if
the LP (4.2) is infeasible. If r = 0, then the polytope is lower dimensional.
Note that the center of the Chebychev Ball is not unique, in general, i.e. there
can be multiple solutions (e.g. for rectangles).

Given a polytope object P, the center and radius of its Chebyshev’s ball
can be computed by calling the chebyball function:

>> [xc, r] = chebyball(P)

A sample Chebyshev’s ball inscribed in a 2D polytope is shown in Figure 4.2.

4.2.3.2 Affine Transformations

Consider a polytope P = {x ∈ Rn | Ax ≤ b} and an affine function f(x) =
Fx + g with F ∈ Rn×n and g ∈ Rn, F non-singular. Then the image of the

108 Michal Kvasnica

x
1

x 2

Fig. 4.2 Illustration of the Chebychev’s ball.

polytope P under the function f(x) is the polytope Q

Q = {Fx+ g | Ax ≤ b}. (4.3)

To see that Q is indeed a polytope, define y = Fx + g. For invertible F we
get x = F−1y − F−1g. Substituting this expression into {y | Ax ≤ b} we get

Q = {y | (AF−1)︸ ︷︷ ︸
Ã

y ≤ (b+AF−1g)︸ ︷︷ ︸
b̃

}, (4.4)

which is again a polytope in the H-representation {y | Ãy ≤ b̃}. Note that
dimensions of x and y are the same since F is assumed to be a square,
non-singular matrix. This (direct) affine transformation of a polytope can by
obtained by MPT using its range function:

>> Q = range(P, F, g)

Two special cases of affine transformations are scalar scaling and translation.
Scaling a polytope P with a scalar α ∈ R is achieved by

>> Q = alpha*P

Translation of P by a vector t ∈ Rn is obtained by

>> Q = P + t

Applying the linear transformation Fx to polytope P can also be achieved
by multiplying the polytope by a (square) matrix F :

>> Q = F*P

Needless to say, all these operators can be combined together, i.e.

4 Multi-Parametric Toolbox 109

>> Q = alpha*F*P + t

The inverse image of P under the affine map Fx+ g (with F not necessarily
non-singular) is given by

Q = {x | Fx+ g ∈ P}. (4.5)

If P is given in its H-representation, then

Q = {x | A(Fx+ g) ≤ b} = {x | (AF)︸ ︷︷ ︸
Ã

x ≤ (b−Ag)︸ ︷︷ ︸
b̃

}. (4.6)

The command to compute the inverse image in MPT is called domain:

Q = domain(P, F, g)

4.2.3.3 Orthogonal Projection

Given a polytope P = {x ∈ Rn, y ∈ Rm | A [xy] ≤ b} ⊂ Rn+m, the orthogonal
projection of P onto the x-space is defined as

projx(P) , {x ∈ R
n | ∃y ∈ R

m s.t. A [xy] ≤ b}. (4.7)

In MPT, the orthogonal projection of a polytope P on some of its coordinates
is achieved by calling the projection method:

>> Q = projection(P, coordinates_to_project_on)

As an example, take a unit box in 3D, centered at the origin, and project it
on its 2nd and 3rd coordinate:

>> P = unitbox(3)

>> Q = projection(P, [2 3])

It should be noted that computing projections is considered a hard problem,
in general. MPT implements several projection methods and automatically
chooses the best depending on the dimension of P . An example of projecting
a 3D polytope onto a 2D plane is shown in Figure 4.3.

4.2.3.4 Intersection

The intersection of two polytopes P1 = {x ∈ Rn | A1x ≤ b1} and P2 = {x ∈
Rn | A2x ≤ b2} of the same dimension is the polytope

Q =
{
x |

[
A1

A2

]
x ≤

[
b1
b2

] }
. (4.8)

This operation is implemented in MPT using the overloaded & operator:

110 Michal Kvasnica

Fig. 4.3 Illustration of orthogonal projection.

>> Q = P1 & P2

Note that MPT only computes full-dimensional intersections. Full dimen-
sionality of the result Q can be checked by isfulldim(Q). An example of the
intersection operation is shown in Figure 4.4.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x
1

x 2

Fig. 4.4 Full-dimensional intersection of two polytopes.

4.2.3.5 Convex Hull

The convex hull of two or more polytopes Pi, i = 1, . . . ,m is the smallest
convex set which contains them, i.e.:

Q = convh{vert(P1), . . . , vert(Pm)}, (4.9)

4 Multi-Parametric Toolbox 111

where vert(Pi) denotes the extremal vertices of the i-th polytope. Given an
array of polytopes, their convex hull can be computed as follows:

>> Q = hull([P1 P2 P3 P4])

An example of the convex hull operation is depicted in Figure 4.5.

−3 −2 −1 0 1 2 3 4 5
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

x
1

x 2

(a) 3 random 2D polytopes.

−3 −2 −1 0 1 2 3 4 5
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

x
1

x 2
(b) Convex hull of the polytopes (yel-
low).

Fig. 4.5 Illustration of convex hull.

4.2.3.6 Minkowski Addition

The Minkowski addition (also called set addition) between two polytopes P1

and P2 is defined as

P1 ⊕ P2 = {x1 + x2 | x1 ∈ P1, x2 ∈ P2} (4.10)

and is implemented in MPT using the overloaded + (plus) operator:

>> Q = P1 + P2

Illustration of Minkowski addition is given in Figure 4.6.

4.2.3.7 Pontryagin Difference

The Pontryagin difference (also called set erosion or set dilation) between
two polytopes P1 and P2 is given by

P1 ⊖ P2 = {x1 | x1 + x2 ∈ P1, ∀x2 ∈ P2}. (4.11)

In MPT, this operation is implemented by means of the overloaded - (minus)
operator:

112 Michal Kvasnica

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

x
1

x 2

(a) Polytopes P1 and P2

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

x
1

x 2

(b) Minkowski addition P1 ⊕ P2.

Fig. 4.6 Illustration of Minkowski addition.

>> Q = P1 - P2

Important to notice is that, in general, the Pontryagin difference and the
Minkowski sum operations are not dual to each other, i.e. (P1−P2)+P2 6= P1.
Graphical interpretation of Pontryagin difference is shown in Figure 4.7.

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

x
1

x 2

(a) Polytopes P1 and P2

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

x
1

x 2

(b) Pontryagin difference P1 ⊖P2.

Fig. 4.7 Illustration of Pontryagin difference.

4.2.3.8 Set Difference

The set difference between two polytopes P1 and P2 is the set

P1 \ P2 = {x | x ∈ P1, x /∈ P2}, (4.12)

and is implemented by the overloaded \ (backslash) operator:

>> Q = P1 \ P2

4 Multi-Parametric Toolbox 113

Note that the set difference of two convex sets can, in general, be non-convex.
In such a case the output will be an array of polytopes. An example of the
set difference operation is shown in Figure 4.8.

x
1

x 2 P1

P2

(a) Polytopes P1 and P2

x
1

x 2

Q1

Q2

Q3

Q4

(b) Set difference Q = P1 \ P2.

Fig. 4.8 Illustration of the set difference operation.

4.2.4 Functions Overview

A compact overview of the functions and operators described above is given
in Tables 4.1 and 4.2. For more information, see the output of help mpt,
help polytope and references therein.

Table 4.1 Computational geometry functions

P=polytope(A,b) Constructor for the polytope P = {x ∈ Rn | Ax ≤ b}.
P=polytope(V) Constructor for creating a V-represented polytope
double(P) Access the H-representation, e.g. [A,b]=double(P).
extreme(P) Access the V-representation, e.g. V=extreme(P).
display(P) Displays details about the polytope P.
nx=dimension(P) Returns dimension of a given polytope P
nc=nconstr(P) For a polytope P = {x | Ax ≤ b} returns number of

constraints of the A matrix (i.e. number of rows).
[,] Horizontal concatenation of polytopes into an array,

e.g. PA=[P1,P2,P3].
() Subscripting operator for polytope arrays,

e.g. PA(i) returns the i-th polytope in PA.
length(PA) Returns number of elements in a polytope array PA.
end Returns the final element of an array.
[c,r]=chebyball(P) Center c and radius r of the Chebychev ball inside P.
bool=isfulldim(P) Checks if polytope P is full dimensional.
bool=isinside(P,x) Checks if x ∈ P. Works also for polytope arrays.

114 Michal Kvasnica

Table 4.2 Operators defined for polytope objects

P == Q Check if two polytopes are equal (P = Q).
P ∼= Q Check if two polytopes are not-equal (P 6= Q).
P >= Q Check if P ⊇ Q.
P <= Q Check if P ⊆ Q.
P > Q Check if P ⊃ Q.
P < Q Check if P ⊂ Q.
P & Q Intersection of two polytopes, P ∩ Q.
P | Q Union of two polytopes, P ∪ Q.
P + Q Minkowski sum, P ⊕Q (cf. (4.10)).
P - Q Pontryagin difference, P ⊖Q (cf. (4.11)).
P \ Q Set difference operator (cf. (4.12)).
B=bounding_box(P) Minimal hyper-rectangle containing a polytope P.
Q=range(P,A,f) Affine transformation of a polytope.

Q = {Ax+ f | x ∈ P}.
Q=domain(P,A,f) Compute polytope that is mapped to P.

Q = {x | Ax+ f ∈ P}.
R=projection(P,dim) Orthogonal projection of P onto coordinates

given in dim (cf. (4.7))

4 Multi-Parametric Toolbox 115

4.3 Exercises

Exercise 4.1. Perform following tasks:

1. Create a polytope P as the 2D unit box centered at the origin, i.e. P =
{(x1, x2)

T | − 1 ≤ x1 ≤ 1, − 1 ≤ x2 ≤ 1}.
2. Create an another polytope Q as the convex hull of points v1 = (−1, 0)T ,

v2 = (1, 0)T , v3 = (0, 1)T .
3. Plot P in red and Q in blue (don’t forget to use figure to open a new

plot).
4. Is P a subset of Q? Check this using vertices of Q.
5. Is Q as subset of P? Check this using vertices of P.

Exercise 4.2. MPT offers an easy way to perform affine transformations of
polytopes. These include:

• Shifting the polytope P in the direction given by a vector v leads a new
polytope R = {x+ v | x ∈ P}. It can by obtained by:
v = [0.8; 1.4]; R = P + v

• Scaling P by a scalar factor α 6= 0 gives R = {αx | x ∈ P}:
alpha = 0.6; R = alpha*P

• Affine transformation of P by an invertible matrix M gives R = {Mx | x ∈
P}:
M = [1.5 0; 0 1]; R = M*P

Now practice on the triangle defined in Exercise 1:

1. Let Q1 denote the shift of Q in the direction of the vector (0.5, − 0.2)T

2. Let Q2 be Q1 scaled by a factor of 0.8
3. Let Q3 represent Q2 rotated by 45o

4. Plot Q in red, Q1 in green, Q2 in blue and Q3 in magenta. Moreover, plot
all polytopes in the same graph using wireframe.

Hints:

• Rotation is achieved by applying the following matrix transformation with
θ being the angle in radians:

M =

[
cos(θ) −sin(θ)
sin(θ) cos(θ)

]
(4.13)

• To plot several polytopes in the same graph, do it in a standard Matlab

fashion, i.e. plot(P1, ’r’, P2, ’b’, ’P3’, ’g’)

• To plot using wireframe, use additional options:

opts = struct(’wire’, 1, ’linewidth’, 3);

plot(P1, ’r’, P2, ’b’, P3, ’g’, opts)

116 Michal Kvasnica

Exercise 4.3. Now concentrate only on Q and Q3 from the previous exercise.
It is obvious from the plot that these two polytopes overlap, i.e. they have a
non-empty intersection. To check this, use dointersect:

dointersect(Q3, Q)

ans =

1

Since the intersection of any two polytopes is again a polytope, the intersec-
tion can be computed explicitly by calling the overloaded & operator:

Q4 = Q3 & Q

To visualize the intersection, we plot Q4 in solid yellow and Q3 and Q using
wireframes:

% a combined solid and wireframe plot cannot be achieved

% by a single command, therefore we split it in two steps:

opts = struct(’wire’, 1, ’linewidth’, 3);

plot(Q4, ’y’);

hold on; plot(Q, ’r’, Q3, ’m’, opts); hold off

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x
1

x 2

Fig. 4.9 Intersection of polytopes Q3 and Q.

Now practice: Plot the intersection of Q, Q2 and Q3.
Hint: you can use & in a chain, i.e. Q & Q2 & Q3.

Exercise 4.4. The set difference operation between polytopes P and Q is
defined as
P \Q = {x | x ∈ P, x /∈ Q}. In MPT, this is achieved by using the \ operator:

D = Q3 \ Q;

plot(D, ’g’)

hold on; plot(Q, ’r’, Q3, ’m’, opts); hold off

4 Multi-Parametric Toolbox 117

Notice that the set difference between two convex sets is not necessarily con-
vex. In fact, the example above illustrates such case and we have D represented
as an array of two polytopes:

D

D=

Polytope array: 2 polytopes in 2D

The number of elements of D can be determined by length(D) and its com-
ponents can be accessed using standard Matlab indexing, e.g.

D1 = D(1);

D2 = D(2);

D3 = D(end); % same as D(2)

You can also create a polytope array on your own, e.g.

polyarray = [D(1) Q D(2) Q3]

Now practice: Plot the set difference between Q and Q3 (notice that ordering
makes a difference). How many polytopes define the difference?

Exercise 4.5. The Minkowski addition operation P1 ⊕P2, described in Sec-
tion 4.2.3.6, is easy to implement of the polytopes P1 and P2 are given in
their V-representation, i.e. P1 = convh{x1, . . . , xm}, P2 = convh{y1, . . . , yp}.
Then

P1 ⊕ P2 = convh{xi + yj , ∀i, ∀j}. (4.14)

Now assume that P1 and P2 are as follows:

>> P1 = unitbox(2)

>> P2 = unitbox(2)*0.1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x
1

x 2

Fig. 4.10 Set difference between Q3 and Q.

118 Michal Kvasnica

i.e. hypercubes (in 2D), centered at the origin. The task is to implement
Minkowski addition via (4.14). Hint: use the extreme function to enumerate
vertices of P1 and P2. Compare your result to the output of MPT’s internal
implementation, i.e. to P1+P2.

Exercise 4.6. Recall that Minkowski addition of two polytopes is given by
P1 ⊕ P2 = {x + y | x ∈ P1, y ∈ P2 }. Assume that the polytopes are given
by their H-representation, i.e. P1 = {x | A1x ≤ b1}, P2 = {y | A2y ≤ b2}.
Define a new variable z = x+ y. Then we have

P1 ⊕ P2 = {x+ y | x ∈ P1, y ∈ P2} (4.15a)

= {x+ y | A1x ≤ b1, A2y ≤ b2} (4.15b)

= {z | z = x+ y,A1x ≤ b1, A2y ≤ b2} (4.15c)

= {z | A1x ≤ b1, A2(z − x) ≤ b2} (4.15d)

=
{
z |

[0 A1

A2 −A2

] [
z
x

]
≤

[
b1
b2

]}
(4.15e)

= {z | Ã [zx] ≤ b̃} (4.15f)

= {z | ∃x, s.t. Ã [zx] ≤ b̃}. (4.15g)

Note that in (4.15d) we have eliminated the variable y by replacing it with
z − x. The last line (4.15g) states that the Minkowski difference can be in
fact computed by projecting the polytope

[
0 A1

A2 −A2

]
[zx] ≤

[
b1
b2

]
onto the z-

space, cf. (4.7). Your task is to implement this projection-based procedure
and compare its output to MPT’s native algorithm, available by running
P1+P2. Assume the following input data:

>> P1 = polytope([-1 -1; -1 1; 1 -1; 1 1])

>> P2 = polytope([-0.1 -0.1; 0.1 -0.1; 0 0.1])

Exercise 4.7. The Pontryagin difference operation discussed in Section 4.2.3.7
was so far defined under the assumption that C and B in (4.11) are single
polytopes. However, the operation is also well-defined when C is a polytope
array, i.e. C = ∪iCi. In such a case, the difference G = C ⊖ B can be obtained
by the following procedure:

1. H = convh(C)
2. D = H⊖ B
3. E = H \ C
4. F = E ⊕ (−B)
5. G = D \ F
The algorithm is explained graphically in Figure 4.11. Assume the following
input data:

>> C1 = polytope([0 -2; 0 2; 2 4; 2 -4; 4 2; 4 -2])

>> C2 = polytope([-4 -2; -4 2; -2 4; -2 -4; 0 -2; 0 2])

4 Multi-Parametric Toolbox 119

>> C = [C1 C2]

>> B = 0.5*unitbox(2)

and implement the procedure above using MPT’s basic operators summarized
in Table 4.2. Compare the output to the default implementation of C-B.

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

x
1

x 2

C2 C1

P1

(a) Polygone C =
⋃

j
Cj

and polytope B.

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

x
1

x 2

(b) Convex hull H =
convh(C).

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

x
1

x 2

H

D

(c) Set D = H⊖ B.

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

x
1

x 2

E

(d) Set E = H \ C.

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

x
1

x 2 F

(e) Set F = E ⊕ (−B).

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

x
1

x 2

D

F

(f) Pontryagin Difference
G = D \ F .

Fig. 4.11 Pontryagin difference for non-convex sets.

Exercise 4.8. Given an autonomous linear discrete-time system x(k + 1) =
Ax(k), the set of initial conditions x(0) ∈ Xi and a target region Xf , the
following question is of imminent importance when investigating safety: will
the system states hit the target region in N steps? We will employ the MPT
polytope library to give a yes/no answer to such a question by computing
forward reachable sets.

The set of states x(k + 1) which are reachable, in one time step, from
x(k) ∈ Xk is given by

Xk+1 = {Ax | x ∈ Xk} (4.16)

When Xk is anH-polytope given byXk = {x |Mx ≤ L},Xk+1 is represented

Xx+1 = {x | MA−1x ≤ L} (4.17)

In MPT, given a polytope Xk, the one-step reachable set Xk1 is easily com-
puted by applying the affine matrix transformation

Xk1 = A*Xk

120 Michal Kvasnica

Assume the following input data:

A = [0.5, -0.75; 0.75, 0.5];

Xi = unitbox(2) + [3; 0]; % unit box centered at [3; 0]

Xf = 0.5*unitbox(2); % box with sides of +/- 0.5

% centered at [0; 0]

N = 10

Now answer the following questions:

1. Will the system states, starting from Xi, hit the target region in N steps?
2. If no, by how much would N need to be increased?
3. Plot the initial set, the terminal region and the reachable sets.

Hints:

• Apply (4.17) in a loop for k = 1:N starting with X1 = Xi.
• Use a growing array to store the intermediate results, e.g.

R = polytope;

for k = 1:N

% compute polytope P

R = [R P]; % add P at the end of the array

end

• Use the dointersect function to detect hit of the target (remember Ex-
ercise 5).

• You can plot the whole polytope array R in one shot by plot(R).

Exercise 4.9. Given is a discrete-time, LTI system xk+1 = Axk +Buk sub-
ject to constraints xmin ≤ xk ≤ xmax, umin ≤ uk ≤ umax. Take the following
data:

A =

[
1 1
0 1

]
, B =

[
1
0.5

]
, xmin =

[
−5
−5

]
, xmax =

[
5
5

]
, umin = −1, umax = 1

Let’s stabilize the system by an LQR feedback uk = −Kxk with K = dlqr(A,

B, eye(2), 1), which gives K =
[
0.52 0.94

]
. Obviously, such a controller

doesn’t take constraints into account.

However, there are some states for which all constraints are satisfied, e.g.

x = [0.1; 0.1]; % clearly satisfies state constraints

u = -K*x = -0.146; % clearly satisfies input constraints

and some for which they are violated, e.g.:

x = [1; 1]; % satisfies state constraints

u = -K*x = -1.46 % but violates input constraints

4 Multi-Parametric Toolbox 121

Now comes the question: what is the set of states for which all constraints
hold? Can it be represented by a polytope?

As you might have guessed, the answer can be found using the MPT’s poly-
tope library. In fact, the set of states for which all state and input constraints
are satisfied can be represented by

Ψ = {x | xmin ≤ xk ≤ xmax, umin ≤ uk ≤ umax}, (4.18)

Using the fact that uk = −Kxk leads to

Ψ = {x | xmin ≤ xk ≤ xmax, umin ≤ −Kxk ≤ umax}, (4.19)

which can be rewritten using a compact matrix formulation as

Ψ =
{
x
∣∣ [

I
−I

]
x ≤ [xmax

−xmin
] ,

[−K
K

]
x ≤ [umax

−umin
]
}

(4.20)

which clearly is an intersection of two polytopes in the x space, hence a poly-
tope itself.

Can you compute and plot the set Ψ using the numerical data above? Verify
constraint satisfaction by checking the extremal vertices of Ψ .

Exercise 4.10. We still consider the LQR case from the previous example.
We have seen that for any state x ∈ Ψ the LQR feedback u = −Kx respects
constraints. But for how long? Let’s investigate one of the corner points of
Ψ :

E = extreme(PSI); x = E(1, :)’; u = -K*x

u =

1.0000

What is now the successor state xk+1 = Axk +Buk?

xn = A*x + B*u

xn =

2.1713

-3.3287

But this point is outside of Ψ !

isinside(PSI, xn)

ans =

0

which means that for this new state some constraints would be violated:

u = -K*xn

u =

2.0002

122 Michal Kvasnica

In other words, Ψ does not possess the set invariance property. In simple
words, a set Φ∞ is invariant if, for all starting points x0 inside such set, all
future trajectories xk remain in the set ∀k ≥ 0. Set invariance is crucial for
MPC in order to guarantee stability of the closed-loop system.

Now that we checked that Ψ is not invariant, can we compute its invariant
subset Φ∞? Following definition might help:

Φ∞ = {xk | xk ∈ Ψ, (A−BK)xk ∈ Ψ, ∀k ≥ 0} (4.21)

Following iterative algorithm can be used to compute Φ∞:

Step 1: k = 1, Ψk = Ψ

Step 2: repeat

Step 3: Ψk+1 = {x | x ∈ Ψk, (A−BK)x ∈ Ψk}
Step 4: k = k + 1

Step 5: until Ψk 6= Ψk−1

Step 6: Φ∞ = Ψk

The only non-trivial stage is Step 3. Remember the forward reach sets of
Example 4? Take a look again at (4.16) and you should spot some similarities.
In fact, the set computed in Step 3 is the one-step backwards reachable set,
i.e. the subset of Ψk which remains in Ψk for one time step. Since forward
reach sets were computed by Xk+1 = AXk, we can compute the backward
set by Xk+1 = A−1Xk, intersected with Xk itself, i.e.

PSI(k+1) = PSI(k) & inv(A-B*K)*PSI(k)

The rest of the solution should be clear. You will, however, need to replace
repeat-until by a while-end statement and negate the stopping condition
accordingly.

Now it’s your turn: compute the invariant subset of PSI and plot it.

Note that many theoretical subtleties were untold in this story. One of them
being that the presented algorithm has no guarantee of finite-time conver-
gence, there you should place an upper limit on the number of iterations. 10
is a safe choice.

4.4 Solutions

Solution 4.1 (for Exercise 4.1).

1. Create a polytope P as the 2D unit box centered at the origin, i.e. P =
(x1, x2)

T | − 1 ≤ x1 ≤ 1, − 1 ≤ x2 ≤ 1.

4 Multi-Parametric Toolbox 123

% convert all inequalities into the form [a1 a2]*[x1; x2]

<= b:

% x_1 <= 1 i.e. [1 0]*[x1; x2] <= 1

% -x_1 <= 1 i.e. [-1 0]*[x1; x2] <= 1

% x_2 <= 1 i.e. [0 1]*[x1; x2] <= 1

% -x_2 <= 1 i.e. [0 -1]*[x1; x2] <= 1

% now stack all inequalities into a matrix:

A = [1 0; -1 0; 0 1; 0 -1];

b = [1; 1; 1; 1];

P = polytope(A, b);

2. Create an another polytope Q as the convex hull of points v1 = (−1, 0)T ,
v2 = (1, 0)T , v3 = (0, 1)T .

v1 = [-0.5; 0]; v2 = [0.5; 0]; v3 = [0; 0.5];

Q = polytope([v1 v2 v3]’); % don’t forget the transpose!

3. Plot P in red and Q in blue (don’t forget to use figure to open a new
plot).

figure; plot(P, ’r’)

figure; plot(Q, ’b’)

4. Is P a subset of Q? Check this using vertices of Q. Or a one-liner...

P <= Q

ans =

0

5. Is Q as subset of P? Check this using vertices of P. Or a one-liner...

Q <= P

ans =

1

Solution 4.2 (for Exercise 4.2).

1. Let Q1 denote the shift of Q in the direction of the vector (0.5, − 0.2)T

Q1 = Q + [0.5; -0.2];

2. Let Q2 be Q1 scaled by a factor of 0.8

Q2 = 0.8*Q1;

3. Let Q3 represent Q2 rotated by 45o

th = 45/180*pi; M = [cos(th) -sin(th); sin(th) cos(th)];

Q3 = M*Q2;

4. Plot Q in red, Q1 in green, Q2 in blue and Q3 in magenta. Moreover, plot
all polytopes in the same graph using wireframe.

124 Michal Kvasnica

opts = struct(’wire’, 1, ’linewidth’, 3);

plot(Q, ’r’, Q1, ’g’, Q2, ’b’, Q3, ’m’, opts)

axis equal

−1 −0.5 0 0.5 1

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

x
1

x 2

Fig. 4.12 Resulting plot for Exercise 4.2.

Solution 4.3 (for Exercise 4.3). Plot the intersection of Q, Q2 and Q3:

% quick way:

I = Q & Q2 & Q3

% longer way:

I = Q & Q2;

I = I & Q3;

opts = struct(’wire’, 1, ’linewidth’, 3);

plot(I, ’y’);

hold on; plot(Q, ’r’, Q1, ’g’, Q2, ’b’, Q3, ’m’, opts); hold

off

Solution 4.4 (for Exercise 4.4). Plot the the set difference between Q and
Q3

D = Q \ Q3;

plot(D, ’g’);

hold on; plot(Q, ’r’, Q3, ’m’, opts); hold off

4 Multi-Parametric Toolbox 125

−1 −0.5 0 0.5 1 1.5
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x
1

x 2

Fig. 4.13 Intersection of polytopes Q, Q2, and Q3.

How many polytopes define the difference?

length(D)

ans =

3

Solution 4.5 (for Exercise 4.5).

% input data

P1 = unitbox(2);

P2 = unitbox(2)*0.1;

−1.5 −1 −0.5 0 0.5 1
−0.5

0

0.5

1

x
1

x 2

Fig. 4.14 Set difference between Q and Q3.

126 Michal Kvasnica

% enumerate extremal vertices

V1 = extreme(P1);

V2 = extreme(P2);

nv1 = size(V1, 1); % number of vertices of P1

% initialize the store of vertices

V = [];

% for each vertex of V1, add v1+V2 to the store

for i = 1:size(V1, 1)

v1 = V1(i, :);

V = [V; repmat(v1, nv1, 1)+V2];

end

% compute the minkowski addition as convex hull

sum = polytope(V);

% is the output equal to MPT’s native implementation?

sum == (P1+P2)

ans =

1

Solution 4.6 (for Exercise 4.6). Here is a general solution:

P1 = polytope([-1 -1; -1 1; 1 -1; 1 1]);

P2 = polytope([-0.1 -0.1; 0.1 -0.1; 0 0.1]);

[A1, b1] = double(P1);

[A2, b2] = double(P2);

At = [zeros(size(A1, 1), size(A2, 2)), A1; A2, -A2];

bt = [b1; b2];

Pt = polytope(At, bt);

sum = projection(Pt, 1:size(A2, 2));

% is the sum equal to the output of P1+P2?

sum == (P1+P2)

ans =

1

Solution 4.7 (for Exercise 4.7). The implementation literally follows the
five steps listed in Exercise 4.7:

4 Multi-Parametric Toolbox 127

% input data

C1 = polytope([0 -2; 0 2; 2 4; 2 -4; 4 2; 4 -2]);

C2 = polytope([-4 -2; -4 2; -2 4; -2 -4; 0 -2; 0 2]);

C = [C1 C2];

B = 0.5*unitbox(2);

% the algorithm

H = hull(C);

D = H-B;

E = H\C;

F = E+(-B);

G = D\F;

% is the output equal to C-B?

G == (C-B)

ans =

1

Solution 4.8 (for Exercise 4.8). Hit or miss in 10 steps?

% input data

Xi = unitbox(2) + [3; 0];

Xf = 0.5*unitbox(2);

A = [0.5, -0.75; 0.75, 0.5];

N = 10;

% initialize the data storage

S = Xi;

for k = 1:N

% compute the set Xk1 = A*Xk

r = A*S(end);

% add Xk1 at the end of S

S = [S r];

end

% plot the sets (remember that Xi is part of S)

plot(Xf, ’k’, S)

% hit or miss?

if dointersect(Xf, S)

disp(’Target hit’)

else

disp(’Target missed’)

128 Michal Kvasnica

end

−4 −3 −2 −1 0 1 2 3 4
−3

−2

−1

0

1

2

3

4

x
1

x 2

Fig. 4.15 Reachable sets for N = 10 show a miss.

If a miss, how large must N be for a hit?

N = 0;

S = Xi;

while ~dointersect(S, Xf)

N = N + 1;

r = A*S(end);

S = [S r];

end

plot(Xf, ’k’, S);

N

Solution 4.9 (for Exercise 4.9).

% input data

A = [1 1; 0 1]; B = [1; 0.5]; K = dlqr(A, B, eye(2), 1);

xmax = [5; 5]; xmin = [-5; -5]; umax = 1; umin = -1;

% set of states which satisfy state and input constraints

X = polytope([eye(2); -eye(2)], [xmax; -xmin]);

U = polytope([-K; K], [umax; -umin]);

PSI = X & U

% plot the set

plot(PSI)

% compute extremal vertices of PSI

4 Multi-Parametric Toolbox 129

E = extreme(PSI);

% check that input and state constraints hold for each vertex

for i = 1:size(E, 1)

x = E(i, :)’;

u = -K*x;

if isinside(unitbox(1), u) && isinside(X, x)

fprintf(’Vertex %d OK\n’, i);

else

fprintf(’Constraints violated for vertex %i!\n’, i);

end

end

−4 −3 −2 −1 0 1 2 3 4
−3

−2

−1

0

1

2

3

4

x
1

x 2

Fig. 4.16 Target hit if N ≥ 12.

−6 −4 −2 0 2 4 6
−4

−3

−2

−1

0

1

2

3

4

x
1

x 2

Fig. 4.17 Set of states for which the LQR controller satisfies all constraints.

130 Michal Kvasnica

Solution 4.10 (for Exercise 4.10).

% the sets X and U were defined in the previous example

PSI = X & U;

k = 1;

% the algorithm has no guarantee of finite-time convergence

kmax = 10;

while k < kmax

PSI(k+1) = inv(A-B*K)*PSI(k) & PSI(k);

k = k + 1;

if PSI(k) == PSI(k-1), break, end

end

PHI = PSI(end)

% plot all sets

plot(PSI)

% or a one-liner:

PHI = mpt_infset((A-B*K), PSI(1), kmax)

−6 −4 −2 0 2 4 6
−4

−3

−2

−1

0

1

2

3

4

x
1

x 2

Fig. 4.18 The invariant subset Φ∞ (the innermost region).

4 Multi-Parametric Toolbox 131

4.5 Model Predictive Control in MPT

We consider the class of discrete-time, time-invariant systems given by the
state-space representation

x(t+ 1) = f(x(t), u(t)), (4.22)

where x(t) is the state vector at time t, x(t + 1) is the successor state, u(t)
denotes the control input. Moreover, f(·, ·) is the state-update function which
depends on the type of the model, which can either describe a linear time-
invariant (LTI) system with

f(x(t), u(t)) = Ax(t) +Bu(t), (4.23)

or a Piecewise Affine (PWA) system with

f(x(t), u(t)) = Aix(t) +Biu(t) + fi if
[
x(t)
u(t)

]
∈ Di, (4.24)

where the state-update matrices change according to the position of the state-

input vector, i.e. the tuple (Ai, Bi, fi) is valid if
[
x(t)
u(t)

]
∈ Di, where Di, i =

1, . . . , D are polytopes of the state-input space. Furthermore, it is assumed
that the system variables are subject to constraints

x(t) ∈ X , u(t) ∈ U , ∀t ≥ 0, (4.25)

where X and U are polytopic sets.
In MPC, optimal control actions are calculated by formulating and solving

a suitable optimization problem, which usually takes the following form:

min
UN

‖PNxN‖p +
N−1∑

k=0

‖Qxk‖p + ‖Ruk‖p (4.26a)

s.t. x0 = x(t), (4.26b)

xk+1 = f(xk, uk), k = 0, . . . , N − 1 (4.26c)

xk ∈ X , k = 0, . . . , N (4.26d)

uk ∈ U , k = 0, . . . , N − 1 (4.26e)

where xk and uk denote, respectively, the state and input predictions at time
instants t+ k, initialized by the measurements of the current state x(t), and
PN , Q, R are penalty matrices. The prediction is carried out over a finite
prediction horizon N . In addition, ‖Pz‖p with p = 2 stands for the square of
the weighted 2-norm of z, i.e. zTPz. Similarly, p = 1 and p = ∞ denote the
1- and ∞-norms of some vector.

The aim of MPC is to find the vector UN := [uT
0 , u

T
1 , . . . , u

T
N−1]

T of optimal
control inputs which minimizes the cost function (4.26a). If f(·, ·) in (4.26c)

132 Michal Kvasnica

is linear as in (4.23), the MPC formulation can be rewritten as a Quadratic
Program (QP) if p = 2, or as a Linear Program (LP) if p ∈ {1,∞}. Finally,
if the predictions in (4.26c) are governed by a PWA system, the optimization
problem can be stated as a mixed integer QP (MIQP) for p = 2, or as a
mixed integer LP (MILP) for p = 1 or p = ∞, see e.g. Borrelli (2003).

MPC is usually implemented in the receding horizon (RHMPC) fashion.
At each sampling instant t, measurements (or estimates) of x(t) are obtained
first. Then, the optimal control sequence UN(x(t)) is calculated by assuming
x(t) as the initial condition for problem (4.26). Subsequently, only the first el-
ement of the sequence is extracted, i.e. u0(x(t)) = [I, 0, . . . , 0]UN and u0(x(t))
is fed back to the plant. The whole procedure then repeats at subsequent time
instants ad infinitum. This introduces feedback into the scheme.

As explained in the introduction, numerical values of UN can be obtained
by solving (4.26) as a corresponding LP/QP/MILP/MIQP problem on-line
at each sampling time for a particular value of x(t). An alternative is to “pre-
calculate” the optimal solution to all possible values of the initial condition
x(t):

Theorem 4.1 (Borrelli (2003)). Consider the MPC optimization prob-
lem (4.26) with f(·, ·) in (4.26c) being either linear as in (4.23), or piecewise
affine as in (4.24). Then the optimizer UN(x(t)) is a piecewise affine function
of x(t), i.e.

UN (x(t)) = Fix(t) +Gi, ∀x(t) ∈ Ri (4.27)

where different feedback gains Fi, Gi switch depending on which region Ri =
{x(t) | Hix(t) ≤ Ki}, i = 1, . . . , Nreg, contains the state x(t).

Theorem 4.1 suggests that the RHMPC feedback UN(x(t)) can be con-
structed off-line and stored as a lookup table, which consists of the regionsRi

and the associated feedback gains Fi, Gi. The advantage of such an approach
is that value of UN(x(t)) for a particular value of x(t) can be obtained by
simply evaluating the table, as captured by Algorithm 1. The algorithm tra-

Algorithm 1 Sequential table traversal
INPUT: Regions Ri, feedback laws Fi, Gi, number of regions Nreg, state measure-

ment x(t)
OUTPUT: Optimal RHMPC control input u0(x(t))
1: for r = 1, . . . , Nreg do

2: if Hrx(t) ≤ Kr then

3: UN (x(t)) = Frx(t) +Gr

4: u0(x(t)) = [I, 0, . . . , 0]UN (x(t))
5: return u0(x(t))
6: end if

7: end for

verses through the regions sequentially, stopping once it finds a region which

4 Multi-Parametric Toolbox 133

contains x(t). In such case the optimal control action is calculated by evalu-
ating the corresponding control law and returned back. Clearly, in the worst
case, the algorithm has to search through all regions. But since the operations
performed in Steps 2–4 only consist of simple matrix multiplications and ad-
ditions, for a large class of problems running Algorithm 1 is faster compared
to obtaining u0(x(t)) by solving (4.26) on-line as an LP/QP/MILP/MIQP
using off-the-shelf solvers. The second benefit is that the explicit representa-
tion of the feedback law allows to further analyze and post-process the MPC
controller. For instance, as will be shown in the next section, lookup table-
styled controllers allow stability of the closed-loop system to be rigorously
analyzed by searching for a certain types of Lyapunov functions.

4.5.1 Basic Usage

MPT is a MATLAB-based toolbox which allows for user-friendly design, sim-
ulation, analysis, and deployment of MPC-based controllers. Control design
is divided into two intuitive steps. At first, the model of the plant is entered
either in the LTI form (4.23) or as a PWA system (4.24). We will illustrate
the procedure on the double integrator example given by the state-space rep-
resentation x(t + 1) = [1 1

0 1]x(t) + [1
0.5]u(t), which is subject to constraints

−5 ≤ x(t) ≤ 5, −1 ≤ u(t) ≤ 1. The plant model can then be entered using
the command-line interface:

sysStruct.A = [1 1; 0 1]; sysStruct.B = [1; 0.5];

sysStruct.C = eye(2); sysStruct.D = zeros(2, 1);

sysStruct.xmin = [-5; -5]; sysStruct.xmax = [5; 5];

sysStruct.umin = -1; sysStruct.umax = 1;

With the prediction model at hand, the user then defines parameters of
the MPC optimization problem (4.26): the prediction horizon N , penalty
matrices PN , Q, R and the norm p:

probStruct.N = 3;

probStruct.P_N = [1 0; 0 1];

probStruct.Q = [1 0; 0 1];

probStruct.R = 1;

probStruct.norm = 1; % can be 1, 2, or Inf

Finally, the MPC controller is synthesized. To solve (4.26) explicitly for
all possible initial conditions, one would call

>> ctrl = mpt_control(sysStruct,probStruct,’explicit’)

For the double integrator example and the MPC setup as above, the MPT
toolbox constructed the explicit representation of UN as a function of x(t)

134 Michal Kvasnica

(cf. (4.27)) in just 0.9 seconds2, generating 50 regions. If, instead, the aim is
to design an on-line MPC controller, the calling syntax is

>> ctrl = mpt_control(sysStruct,probStruct,’online’)

In both cases the result is stored in the ctrl variable, which represents
an MPC controller object. The object-oriented philosophy of the Multi-
Parametric Toolbox then allows to process the ctrl object in a number of
ways. The basic one is to ask the controller to provide the optimal value of
the control action u0 for a given initial condition x(t). In MPT, the controller
object behaves as a function, which allows for the following intuitive syntax:

>> x = [-4; 1]; % measured state

>> u = ctrl(x); % evaluation of the controller

If the ctrl object denotes an explicit MPC controller, the optimal control
action u is calculated by traversing the lookup table. For the example above,
the MPT implementation of Algorithm 1 only takes 2 miliseconds to execute.

If, on the other hand, the object represents an on-line MPC controller, the
optimal control input is obtained by solving (4.26) as an optimization problem
(in this case an LP) with x being its initial condition. MPT toolbox is shipped
with several freely available LP/QP/MILP/MIQP solvers to perform this task
without further effort from the users. Clearly, as solving the optimization
problem is more difficult compared to a simple table lookup, execution of the
u = ctrl(x) took 50 miliseconds.

4.5.2 Closed-loop Simulations

MPT provides several functions to perform closed-loop simulations of MPC-
based controllers. The most general approach is to use the specially crafted
Simulink block, which allows MPC controllers to be used for virtually any
type of simulations. A screenshot of such a block is shown in Figure 4.19
where the controller is connected in a feedback fashion. The Simulink block
supports both explicit as well as on-line MPC controllers.

Another option is to use command-line interfaces, which perform closed-
loop simulations according to the receding horizon principle:

>> [X, U] = sim(ctrl, simmodel, x0, Tsim)

>> [X, U] = simplot(ctrl, simmodel, x0, Tsim)

The sim function takes a controller object (representing either an explicit
or an on-line MPC controller), the simulation model, the initial condition,
and the number of simulation steps as the inputs and provides closed-loop
evolution of system states and control actions as the output. The simplot

function behaves in a similar fashion, but, in addition, generates a graphical

2 2.4 GHz CPU, 2GB RAM, MATLAB 7.4, MPT 2.6.2

4 Multi-Parametric Toolbox 135

Fig. 4.19 MPT controller block in Simulink.

plot of the closed-loop trajectories as can be seen in Figure 4.20. Note that
the simulation model simmodel can be different from the prediction model
used to design the MPC controller. This allows to verify the controller’s
performance in situations with model-plant mismatch.

0 10 20 30
−4

−3

−2

−1

0

1
Evolution of states

Sampling Instances

S
ta

te
s

x

1

x
2

0 10 20 30
−4

−3

−2

−1

0

1
Evolution of outputs

Sampling Instances

O
ut

pu
ts

y

1

y
2

0 10 20 30
−1

−0.5

0

0.5

1
Evolution of control moves

Sampling Instances

In
pu

ts

u

1

0 10 20 30
0

0.5

1

1.5

2
Active dynamics

Sampling Instances

D
yn

am
ic

s

Fig. 4.20 Closed-loop simulation using the simplot function.

4.5.3 Code Generation and Deployment

As discussed in Section 4.5, if the MPC problem (4.26) is solved off-line and
the explicit representation of the feedback law UN(x(t)) is obtained as a

136 Michal Kvasnica

lookup table, the optimal control action can be obtained at each sampling
instant by Algorithm 1. As the algorithm only performs trivial arithmetic
operations, it can be implemented using any high- or low-level programming
language. Simplicity of the individual operations also allows the table to
be traversed using low computational power. This makes the approach of
high practical relevance when applying MPC to systems with fast dynamics
using low-cost hardware. To push into this direction, the MPT toolbox can
automatically generate real-time executable C-code version of Algorithm 1.
The export can be initiated by calling

>> mpt_exportC(ctrl, ’target_filename’)

The function generates the files target_filename.cand target_filename.h
which will contain, respectively, the table evaluation code and the table data
(the regions Ri and the feedback gains Ki and Li, cf. (4.27)). The code can
be subsequently linked to any application written in the C language.

Another option is to use the Real-Time Workshop (RTW), which is a
de-facto standard code generation tool supporting different types of digital
signal processors and other CPUs. MPT provides a RTW-compatible C-code
implementation of the Algorithm 1, which makes code generation and de-
ployment a single click operation. To use this option, the controller is first
embedded into the Simulink environment using a provided block as shown
in Section 4.5.2. The block is subsequently connected to signals from A/D
and D/A converters to close the control loop. Then, one simply clicks on
the respective icon in the Simulink window to initiate RTW, which compiles
the overall control scheme including the lookup table and then automatically
downloads it to any supported target CPU.

4.5.4 Advanced MPC using MPT and YALMIP

In the previous section we have shown how to formulate, solve, analyze and
deploy MPC controllers using the MPT toolbox. The control design was based
on two main input objects – the sysStruct structure, which contains infor-
mation about the system dynamics, and the probStruct structure, which
defined parameters of the MPC optimization problem (4.26).

Although intuitive and easy to use, the command-line interface outlined
in Section 4.5.1 only allows for basic MPC design. In particular, the MPC
problem to be formulated and solved can only be adjusted by changing the
prediction horizon or the penalty matrices in (4.26a). In this section we de-
scribe a new addition to the Multi-Parametric Toolbox which allows more
advanced MPC setups to be formulated easily and with low human effort.

The new framework for advanced model predictive control utilizes the
YALMIP package, which is a versatile modeling language for construction of
generic optimization problems in MATLAB. The design procedure goes as

4 Multi-Parametric Toolbox 137

follows. First, given the model and problem structures, MPT formulates the
basic MPC problem (4.26) using YALMIP symbolic decision variables by a
single function call:

>> [C, obj, V] = mpt_ownmpc(sysStruct, proStruct)

which returns constraints (4.26c)–(4.26e) in the variable C and the objective
function (4.26a) in obj formulated using symbolic variables V.x and V.u.
These variables represent the prediction of systems states and inputs through
the finite horizon N stored as cell arrays, i.e. V.x{k} denotes xk−1, and
V.u{k} stands for uk−1 for some index k.

Subsequently, the user can modify the MPC problem by adding or custom
constraints and/or by changing the objective function. To illustrate this con-
cept, consider again the double integrator example of the previous section.
The closed-loop profile of control actions shown in the lower left of Figure 4.20
reveals an abrupt change of the control signal from u = 0.8 to u = 0 at time
instant t = 2. Such a large change can be mitigated, for instance, by adding a
constraint which only allows the control signal to change by a certain quantity
(say by 0.5) from step to step. This can be achieved by adding the constraints
−0.5 ≤ (uk −uk+1) ≤ 0.5 to the MPC setup (4.26). In MPT, this is achieved
by using a standard YALMIP syntax:

>> C = C + [-0.5 <= V.u{k} - V.u{k+1} <= 0.5]

with k = 1 : N . More examples of constraint modification are presented in
the sequel.

Once completed, modified constraints and performance objective are passed
back to MPT, which converts them into a valid controller object:

>> ctrl = mpt_ownmpc(sysStruct, probStruct, C, obj, V, type)

If the object should represent an on-line MPC controller, then type=’online’.
If type=’explicit’, then an explicit representation of the solution to the
optimization problem represented by constraints C and objective obj is pre-
computed for all possible initial conditions and stored as a lookup table. In
both cases the ctrl variable represents a valid controller object, which can be
further post-processed or deployed as real-time executable code as illustrated
in the previous section.

In the sequel we present several examples illustrating how the concept of
adding new constraints can be used to achieve typical control tasks.

4.5.4.1 Terminal Constraints

One way of ensuring that the MPC controller will provide closed-loop stability
is to add a terminal state constraint xN = 0. This requirement can be easily
added to the set of constraints by

>> C = C + [V.x{end} == 0]

138 Michal Kvasnica

0 10 20 30
−4

−3

−2

−1

0

1
Evolution of states

Sampling Instances

S
ta

te
s

x

1

x
2

0 10 20 30
−4

−3

−2

−1

0

1
Evolution of outputs

Sampling Instances

O
ut

pu
ts

y

1

y
2

0 10 20 30
−1

−0.5

0

0.5

1
Evolution of control moves

Sampling Instances

In
pu

ts

u

1

0 10 20 30
0

0.5

1

1.5

2
Active dynamics

Sampling Instances
D

yn
am

ic
s

Fig. 4.21 Closed-loop simulation using the simplot function.

where V.x{end} represents the final predicted state xN . Another option is to
use terminal set constraints, i.e. to require that xN ∈ T for some polytope
T = {x | Hx ≤ K}. This type of constraints can also be introduced easily by

>> C = C + [H*V.x{end} <= K]

4.5.4.2 Time-varying Constraints

In the optimization problem (4.26), constraints (4.26d) and (4.26e) are time-
invariant. To make these constraints time-varying, one can exploit the fact
that the symbolic decision variables V.x and V.u are stored as cell arrays
indexed by the prediction index k:

>> C = C + [-5 <= V.x{1} <= 5]

>> C = C + [-6 <= V.x{2} <= 6]

>> C = C + [-1 <= V.x{3} <= 1]

Such a construction will force the predicted states to stay within of given
time-varying bounds.

4 Multi-Parametric Toolbox 139

4.5.4.3 Move Blocking

Move blocking is a popular technique frequently used to reduce complexity
of MPC optimization problems by eliminating some degrees of freedom from
the sequence UN = [uT

0 , u
T
1 , . . . , u

T
N−1]

T . In practice, usually three types of
move blocking are used:

1. Keeping first Nc moves u0, . . . , uNc
free and fixing the remained uNc+1 =

uNc+2 = · · ·uN−1 = 0. This can be achieved by

>> C = C + [V.u(Nc+1:N-1) == 0]

2. First Nc moves are free, while the remaining control moves are driven by
a state feedback u = Kx, i.e. uNc+k = Kxk, k = 1, . . . , N −Nc − 1:

for k = Nc+1:N-1

C = C + [V.u{k} == K*x{k}]

end

3. Introduce blocks of control moves which are to stay fixed, e.g. u0 = u1 = u2

and u3 = u4:

>> C=C+[V.u{1}==V.u{2}]+[V.u{2}==V.u{3}]

>> C=C+[V.u{4}==V.u{5}]

The optimal values of u0 and u3 obtained by solving the corresponding
optimization problems then pre-determine the values of u1, u2, and u4.

4.5.4.4 Contraction Constraints

Another way of achieving closed-loop stability is to incorporate a contrac-
tion constraint ‖xk+1‖p ≤ α‖xk‖p, which requires the controller to push the
predicted states towards the origin with some fixed decay rate 0 ≤ α ≤ 1:

for k = 1:N-1

C=C+[norm(V.x{k+1},1) <= a*norm(V.x{k},1)]

end

Notice, however, that norm constraints are nonconvex and the resulting op-
timization problem will contain binary variables, having negative impact on
the time needed to solve the optimization probStruct.

4.5.4.5 Logic Constraints

Constraints involving logic implication and equivalence can be also formu-
lated and automatically translated to a corresponding mixed-integer rep-
resentation by YALMIP. Take again the double integrator example of the

140 Michal Kvasnica

previous section. In order to make the controller less aggressive, one can re-
quire the first optimal control move to satisfy −0.5 ≤ u0 ≤ 0.5, but this
constraint should only be imposed if the state is contained in a small box
around the origin. If the state is outside of this interval, the control action is
to respect −1 ≤ u0 ≤ 1, which is the default constraint already contained in
the sysStruct structure. To formulate such a control goal with MPT, one
can make use of the implies operator YALMIP provides:

>> C = C + [implies(H*V.x{1} <= K, -0.5 <= V.u{1} <= 0.5)]

where H=[eye(2); -eye(2)] and K=[1;1;1;1] represent the area of inter-
est, i.e. the box

[−1
−1

]
≤ x(t) ≤ [11]. When such a constraint is added to

the control setup, an explicit MPC controller can be calculated by ctrl =

mpt_ownmpc(sysStruct, probStruct, C, obj, V) as a lookup table. Re-
gions of the table and a PWA representation of the optimal feedback law are
depicted in Figure 4.22.

Notice that the implies operator only works one way, i.e. if x(t) is in the
box delimited by Hx(t) ≤ K, then −0.5 ≤ u0 ≤ 0.5 will hold. To restrict the
control action to stay within of these limits if and only if x(t) is in the box,
the iff operator can be used:

>> C = C + [iff(H*V.x{1}<=K,-0.5<=V.u{1}<=0.5)]

The lookup table corresponding to such a constraint modification is visualized
in Figure 4.23.

−5 −4 −3 −2 −1 0 1 2 3 4 5

−4

−3

−2

−1

0

1

2

3

4

x
1

x 2

Controller partition with 111 regions.

(a) Regions of the lookup table con-
sisting of 111 regions.

−5

0

5

−4
−2

0
2

4

−1

−0.5

0

0.5

1

x
2

Value of the control action U
1
 over 111 regions

x
1

U
* 1(x

)

(b) PWA function u0(x(t)). Notice
that the control action stays within
the interval (−0.5, 0.5) if −1 ≤ x(t) ≤
1.

Fig. 4.22 Visualization of the lookup table for the control setup with the one-way
logic implication constraint (−1 ≤ x(t) ≤ 1) ⇒ (−0.5 ≤ u0 ≤ 0.5).

4 Multi-Parametric Toolbox 141

−5 −4 −3 −2 −1 0 1 2 3 4 5

−4

−3

−2

−1

0

1

2

3

4

x
1

x 2

Controller partition with 115 regions.

(a) Regions of the lookup table con-
sisting of 115 regions.

−5

0

5

−4
−2

0
2

4

−1

−0.5

0

0.5

1

x
2

Value of the control action U
1
 over 115 regions

x
1

U
* 1(x

)

(b) PWA function u0(x(t)). Notice
that the control action stays within
the interval (−0.5, 0.5) if and only if
−1 ≤ x(t) ≤ 1.

Fig. 4.23 Visualization of the lookup table for the control setup with the login
equivalence constraint (−1 ≤ x(t) ≤ 1) ⇔ (−0.5 ≤ u0 ≤ 0.5).

4.5.5 Analysis

The toolbox offers broad functionality for analysis of hybrid systems and
verification of safety and liveliness properties of explicit control laws. In ad-
dition, stability of closed-loop systems can be verified using different types of
Lyapunov functions.

4.5.5.1 Reachability Analysis

MPT can compute forward N -steps reachable sets for linear and hybrid sys-
tems assuming the system input either belongs to some bounded set of inputs,
or when the input is driven by some given explicit control law.

To compute the set of states which are reachable from a given set of initial
conditions X0 in N steps assuming system input u(k) ∈ U0, one has to call:

R = mpt_reachSets(sysStruct, X0, U0, N);

where sysStruct is the system structure, X0 is a polytope which defines the
set of initial conditions (x(0) ∈ X0), U0 is a polytope which defines the set
of admissible inputs and N is an integer which specifies for how many steps
should the reachable set be computed. The resulting reachable sets R are
returned as a polytope array. We illustrate the computation on the following
example:

Example 4.1. First we define the dynamical system for which we want to
compute reachable sets

142 Michal Kvasnica

% define matrices of the state-space object

A = [-1 -4; 4 -1]; B = [1; 1]; C = [1 0]; D = 0;

syst = ss(A, B, C, D);

Ts = 0.02;

% create a system structure by discretizing the continous-

time model

sysStruct = mpt_sys(syst, Ts);

% define system constraints

sysStruct.ymax = 10; sysStruct.ymin = -10;

sysStruct.umax = 1; sysStruct.umin = -1;

Now we can define a set of initial conditions X0 and a set of admissible inputs
U0 as polytope objects.

% set of initial states

X0 = polytope([0.9 0.1; 0.9 -0.1; 1.1 0.1; 1.1 -0.1]);

% set of admissible inputs

U0 = unitbox(1,0.1); % inputs should be such that |u| <= 0.1

Finally we can compute the reachable sets.

N = 50;

R = mpt_reachSets(sysStruct, X0, U0, N);

% plot the results

plot(X0, ’r’, R, ’g’);

The reachable sets (green) as well as the set of initial conditions (red) are
depicted in Figure 4.24.

−0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1 1.2
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x
1

x 2

Reachable sets (green), set of initial states (red)

Fig. 4.24 Reachable sets for Example 4.1.

4 Multi-Parametric Toolbox 143

To compute reachable sets for linear or hybrid systems whose inputs are
driven by an explicit control law, the following syntax can be used:

R = mpt_reachSets(ctrl, X0, N);

where ctrl is the controller object as generated by mpt_control, X0 is a poly-
tope which defines a set of initial conditions (x(0) ∈ X0), and N is an integer
which specifies for how many steps should the reachable set be computed.
The resulting reachable sets R are again returned as polytope array.

Example 4.2. In this example we illustrate the reachability computation on
the double integrator example

% load system and problem parameters

Double_Integrator

% compute explicit controller

ctrl = mpt_control(sysStruct, probStruct);

% define the set of initial conditions

X0 = unitbox(2,1) + [3;0];

% compute the 5-Steps reachable set

N = 5;

R = mpt_reachSets(ctrl, X0, N);

% plot results

plot(ctrl.Pn, ’y’, X0, ’r’, R, ’g’);

The reachable sets (green) as well as the set of initial conditions (red) are
depicted on top of the controller regions (yellow) in Figure 4.25.

−6 −4 −2 0 2 4 6
−4

−3

−2

−1

0

1

2

3

4

x
1

x 2

Reachable sets (green), set of initial conditions X0 (red), controller regions (yellow)

Fig. 4.25 Reachable sets for Example 4.2.

144 Michal Kvasnica

4.5.5.2 Verification

Reachability computation can be directly extended to answer the following
question: Do the states of a dynamical system (whose inputs either belong
to some set of admissible inputs, or whose inputs are driven by an explicit
control law) enter some set of “unsafe” states in a given number of steps?

Example 4.3. In this example we show how to answer the verification ques-
tion for the first case, i.e. system inputs belong to some set of admissible
inputs (u(k) ∈ U0). Although we use a linear system here, exactly the same
procedure applies to hybrid systems in PWA representation as well.

% define matrices of the state-space object

A = [-1 -4; 4 -1]; B = [1; 1]; C = [1 0]; D = 0;

syst = ss(A, B, C, D);

Ts = 0.02;

% create a system structure by discretizing the continous-

time model

sysStruct = mpt_sys(syst, Ts);

% define system constraints

sysStruct.ymax = 10; sysStruct.ymin = -10;

sysStruct.umax = 1; sysStruct.umin = -1;

% define the set of initial condintions as a polytope object

X0 = polytope([0.9 0.1; 0.9 -0.1; 1.1 0.1; 1.1 -0.1]);

% set of admissible inputs as a polytope object

U0 = unitbox(1,0.1); % inputs should be such that |u| <= 0.1

% set of final states (the ‘‘unsafe’’ states)

Xf = unitbox(2,0.1) + [-0.2; -0.2];

% number of steps

N = 50;

% perform verification

[canreach, Nf] = mpt_verify(sysStruct, X0, Xf, N, U0);

If the system states can reach the set Xf, canreach will be true, otherwise
the function will return false. In case Xf can be reached, the optional second
output argument Nf will return the number of steps in which Xf can be
reached from X0.

Example 4.4. It is also possible to answer the verification question if the sys-
tem inputs are driven by an explicit control law:

4 Multi-Parametric Toolbox 145

% load dynamical system

Double_Integrator

% compute explicit controller

expc = mpt_control(sysStruct, probStruct);

% define set of initial condintions as a polytope object

X0 = unitbox(2,1) + [3;0];

% set of final states (the ‘‘unsafe’’ states)

Xf = unitbox(2,0.1) + [-0.2; -0.2];

% number of steps

N = 10;

% perform verification

[canreach, Nf] = mpt_verify(expc, X0, Xf1, N);

4.5.5.3 Invariant Set Computation

For controllers for which no feasibility guarantee can be given a priori, the
function mpt_invariantSet can compute an invariant subset of a controller,
such that constraints satisfaction is guaranteed for all time.

ctrl_inv = mpt_invariantSet(ctrl)

4.5.5.4 Lyapunov-type Stability Analysis

In terms of stability analysis, MPT offers functions which aim at identifying
quadratic, sum-of-squares, piecewise quadratic, piecewise affine or piecewise
polynomial Lyapunov functions. If such a function is found, it can be used
to show stability of the closed-loop systems even in cases where no such
guarantee can be given a priori based on the design procedure. To compute
a Lyapunov function, one has to call

ctrl_lyap = mpt_lyapunov(ctrl, lyaptype}

where ctrl is an explicit controller and lyaptype is a string parameter which
defines the type of a Lyapunov function to compute. Allowed values of the
second parameter are summarized in Table 4.3. Parameters of the Lyapunov
function, if one exists, will be stored in

lyapfunction = ctrl_lyap.details.lyapunov

146 Michal Kvasnica

lyaptype Type of Lyapunov function
’quad’ Common quadratic Lyapunov function
’sos’ Common sum-of-squares Lyapunov function
’pwa’ Piecewise affine Lyapunov function
’pwq’ Piecewise quadratic Lyapunov function
’pwp’ Piecewise polynomial Lyapunov function

Table 4.3 Allowed values of the functiontype parameter in mpt_lyapunov.

4.5.5.5 Complexity Reduction

MPT also addresses the issue of complexity reduction of the resulting explicit
control laws. As explained in more detail in Section 4.5, the on-line evalua-
tion of explicit control laws involves checking which region of the controller
contains a given measured state. Although such an effort is usually small,
it can become prohibitive for complex controllers with several thousands or
even more regions. Therefore MPT allows to reduce this complexity by sim-
plifying the controller partitions over which the control law is defined. This
simplification is performed by merging regions which contain the same ex-
pression of the control law. By doing so, the number of regions may be greatly
reduced, while maintaining the same performance as the original controller.
The results of the merging procedure for a sample explicit controller of a
hybrid system is depicted in Figure 4.26.

−10 −8 −6 −4 −2 0 2 4 6 8 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

x
1

x 2

(a) Regions of an explicit controller before
simplification (252 regions).

−10 −8 −6 −4 −2 0 2 4 6 8 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

x
1

x 2

(b) Regions of an explicit controller after
simplification (39 regions).

Fig. 4.26 Region merging results.

To simplify the representation of a given explicit controller by merging
regions which contain the same control law, one has to call:

ctrl_simple = mpt_simplify(ctrl)

4 Multi-Parametric Toolbox 147

If the function is called as indicated above, a heuristic merging will be used.
It is also possible to use optimal merging based on boolean minimization:

ctrl_simple = mpt_simplify(ctrl, ’optimal’)

Note, however, that the optimal merging can be prohibitive for dimensions
above 2 due to an exponential complexity of the merging procedure Geyer
(2005). See clipping method (Kvasnica et al, 2011a) in Textbook and ap-
proach based on separation functions (Kvasnica et al, 2011b) in Preprints
for alternative ways with better convergence properties and larger reduction
ratio.

4.5.6 System Structure sysStruct

LTI dynamics can be captured by the following linear relations:

x(k + 1) = Ax(k) +Bu(k) (4.28a)

y(k) = Cx(k) +Du(k) (4.28b)

where x(k) ∈ Rnx is the state vector at time instance k, x(k + 1) denotes
the state vector at time k + 1, u(k) ∈ Rnu and y(k) ∈ Rny are values of the
control input and system output, respectively. A, B, C and D are matrices of
appropriate dimensions, i.e. A is a nx×nx matrix, dimension of B is nx×nu,
C is a ny × nx and D a ny × nu matrix.

Dynamical matrices are stored in the following fields of the system struc-
ture:

sysStruct.A = A

sysStruct.B = B

sysStruct.C = C

sysStruct.D = D

Example 4.5. Assume a double integrator dynamics sampled at 1 second:

x(k + 1) =

[
1 1
0 1

]
x(k) +

[
1
0.5

]
u(k) (4.29a)

y(k) =

[
1 0
0 1

]
x(k) +

[
0
0

]
u(k) (4.29b)

In MPT, the above described system can be defined as follows:

148 Michal Kvasnica

sysStruct.A = [1 1; 0 1];

sysStruct.B = [1; 0.5];

sysStruct.C = [1 0; 0 1];

sysStruct.D = [0; 0]

4.5.6.1 Import of Models from External Sources

MPT can design control laws for discrete-time constrained linear, switched
linear and hybrid systems. Hybrid systems can be described in Piecewise-
Affine (PWA) or Mixed Logical Dynamical (MLD) representations and an
efficient algorithm is provided to switch from one representation to the other
form and vice-versa. To increase user’s comfort, models of dynamical systems
can be imported from various sources:

• Models of hybrid systems generated by the HYSDEL language
• MLD structures generated by the function mpt_pwa2mld

• Nonlinear models defined by mpt_nonlinfcn template
• State-space and transfer function objects of the Control toolbox,
• System identification toolbox objects
• MPC toolbox objects

In order to import a dynamical system, one has to call

sysStruct = mpt_sys(object, Ts)

where object can be either a string (in which case the model is imported
from a corresponding HYSDEL source files), or it can be a variable of one of
the above mentioned object types. The second input parameter Ts denotes
sampling time and can be omitted, in which case Ts = 1 is assumed.

Example 4.6. The following code will first define a continuous-time state-
space object which is then imported to MPT:

% sampling time

Ts = 1;

% continuous-time model as state-space object

di = ss([1 1; 0 1], [1; 0.5], [1 0; 0 1], [0; 0]);

% import the model and discretize it

sysStruct = mpt_sys(di, Ts);

Note 4.1. If the state-space object is already in discrete-time domain, it is
not necessary to provide the sampling time parameter Ts to mpt_sys. Af-
ter importing a model using mpt_sys it is still necessary to define system
constraints as described previously.

4 Multi-Parametric Toolbox 149

MPT allows to define following types of constraints:

• Min/Max constraints on system outputs
• Min/Max constraints on system states
• Min/Max constraints on manipulated variables
• Min/Max constraints on slew rate of manipulated variables

4.5.6.2 Constraints on System Outputs

Output equation is in general driven by the following relation for PWA sys-
tems

y(k) = Cix(k) +Diu(k) + gi (4.30)

and by
y(k) = Cx(k) +Du(k) (4.31)

for LTI systems. It is therefore clear that by choice of C = I one can use these
constraints to restrict system states as well. Min/Max output constraints have
to be given in the following fields of the system structure:

sysStruct.ymax = outmax

sysStruct.ymin = outmin

where outmax and outmin are ny × 1 vectors.

4.5.6.3 Constraints on System States

Constraints on system states are optional and can be defined by

sysStruct.xmax = xmax

sysStruct.xmin = xmin

where xmax and xmin are nx × 1 vectors.

4.5.6.4 Constraints on Manipulated Variables

Goal of each control technique is to design a controller which chooses a proper
value of the manipulated variable in order to achieve the given goal (usually
to guarantee stability, but other aspects like optimality may also be consid-
ered at this point). In most real plants values of manipulated variables are
restricted and these constraints have to be taken into account in controller
design procedure. These limitations are usually saturation constraints and
can be captured by min / max bounds. In MPT, constraints on control input
are given in:

sysStruct.umax = inpmax

sysStruct.umin = inpmin

150 Michal Kvasnica

where inpmax and inpmin are nu × 1 vectors.

4.5.6.5 Constraints on Slew Rate of Manipulated Variables

Another important type of constraints are rate constraints. These limitations
restrict the variation of two consecutive control inputs (δu = u(k)−u(k−1))
to be within of prescribed bounds. One can use slew rate constraints when
a “smooth” control action is required, e.g. when controlling a gas pedal in a
car to prevent the car from jumping due to sudden changes of the controller
action. Min/max bounds on slew rate can be given in:

sysStruct.dumax = slewmax

sysStruct.dumin = slewmin

where slewmax and slewmin are nu × 1 vectors.

Note 4.2. This is an optional argument and does not have to be defined. If it
is not given, bounds are assumed to be ±∞.

4.5.6.6 Systems with Discrete Valued Inputs

MPT allows to define system with discrete-valued control inputs. This is
especially important in a framework of hybrid systems where control inputs
are often required to belong to certain set of values. We distinguish two cases:

1. All inputs are discrete
2. Some inputs are discrete, the rest are continuous

4.5.6.7 Purely Discrete Inputs

Typical application of discrete-valued inputs are various on/off switches,
gears, selectors, etc. All these can be modelled in MPT and taken into account
in controller design. Defining discrete inputs is fairly easy, all that needs to
be done is to fill out

sysStruct.Uset = Uset

where Uset is a cell array which defines all possible values for every control
input. If the system has, for instance, 2 control inputs and the first one is
just an on/off switch (i.e. u1 = {0, 1}) and the second one can take values
from set {−5, 0, 5}, it can be defined as follows:

sysStruct.Uset{1} = [0, 1]

sysStruct.Uset{2} = [-5, 0, 5]

4 Multi-Parametric Toolbox 151

where the first line corresponds to u1 and the second to u2. If the system to
be controlled has only one manipulated variable, the cell operator can be
omitted, i.e. one could write:

sysStruct.Uset = [0, 1]

The set of inputs doesn’t have to be ordered.

4.5.6.8 Mixed Inputs

Mixed discrete and continuous inputs can be modelled by appropriate choice
of sysStruct.Uset. For each continuous input it is necessary to set the corre-
sponding entry to [-Inf Inf], indicating to MPT that this particular input
variable should be treated as a continuous input. For a system with two ma-
nipulated variables, where the first one takes values from a set {−2.5, 0, 3.5}
and the second one is continuous, one would set:

sysStruct.Uset{1} = [-2.5, 0, 3.5]

sysStruct.Uset{2} = [-Inf Inf]

4.5.6.9 Text Labels

State, input and output variables can be assigned a text label which overrides
the default axis labels in trajectory and partition plotting (xi, ui and yi,
respectively). To assign a text label, set the following fields of the system
structure, e.g. as follows:

sysStruct.xlabels = {’position’, ’speed’};

sysStruct.ulabels = ’force’;

sysStruct.ylabels = {’position’, ’speed’};

Each field is an array of strings corresponding to a given variable. If the user
does not define any (or some) labels, they will be replaced by default strings
(xi, ui and yi). The strings are used once polyhedral partition of the explicit
controller, or closed-loop (open-loop) trajectories are visualized.

4.5.7 Problem Structure probStruct

Problem structure probStruct is a structure which states an optimization
problem to be solved by MPT.

152 Michal Kvasnica

4.5.7.1 Quadratic Cost Problems

In case of a performance index based on quadratic forms, the optimal control
problem takes the following form:

min
u(0),...,u(N−1)

x(N)TPNx(N) +
N−1∑

k=0

u(k)TRu(k) + x(k)TQx(k)

subj. to

x(k + 1) = fdyn(x(k), u(k), w(k))

umin ≤ u(k) ≤ umax

∆umin ≤ u(k)− u(k − 1) ≤ ∆umax

ymin ≤ gdyn(x(k), u(k)) ≤ ymax

x(N) ∈ Tset

If the problem is formulated for a fixed prediction horizon N , we refer to
it as to Constrained Finite Time Optimal Control (CFTOC) problem. If N
is infinity, the Constrained Infinite Time Optimal Control (CITOC) problem
is formulated. Objective of the optimization is to choose the manipulated
variables such that the performance index is minimized.

4.5.7.2 One and Infinity Norm Problems

The optimal control problem with a linear performance index is given by:

min
u(0),...,u(N−1)

||PNx(N)||p +
N−1∑

k=0

||Ru(k)||p + ||Qx(k)||p

subj. to

x(k + 1) = fdyn(x(k), u(k), w(k))

umin ≤ u(k) ≤ umax

∆umin ≤ u(k)− u(k − 1) ≤ ∆umax

ymin ≤ gdyn(x(k), u(k)) ≤ ymax

x(N) ∈ Tset

4 Multi-Parametric Toolbox 153

where:
u vector of optimized control inputs
N prediction horizon
p norm indicator (can be 1, 2, or Inf)
Q weighting matrix on the states
R weighting matrix on the manipulated variables

PN weight imposed on the terminal state
umin, umax constraints on the manipulated variable(s)

∆umin, dumax constraints on slew rate of the manipulated variable(s)
ymin, ymax constraints on the system outputs

Tset terminal set
the function fdyn(x(k), u(k), w(k)) is the state-update function and is dif-

ferent for LTI and for PWA systems (see Section 4.5.6 for more details).

4.5.7.3 Mandatory Fields

In order to specify which problem the user wants to solve, mandatory fields
of the problem structure probStruct are listed in Table 4.4.

probStruct.N prediction horizon
probStruct.Q weights on the states
probStruct.R weights on the inputs
probStruct.norm 1, 2 or Inf norms in the cost
probStruct.subopt_lev level of optimality

Table 4.4 Mandatory fields of the problem structure probStruct.

4.5.7.4 Level of Optimality

MPT can handle different setups of control problems. Specifically:

1. The cost-optimal solution that leads a control law which minimizes a given
performance index. This strategy is enforced by

probStruct.subopt_lev = 0

The cost optimal solution for PWA systems is currently supported only for
linear performance index, i.e. probStruct.norm = 1 or probStruct.norm
= Inf.

2. Another possibility is to use the minimum-time setup, i.e. the control law
will push a given state to an invariant set around the origin as fast as
possible. This strategy usually leads to simpler control laws, i.e. fewer
controller regions are generated. This approach is enforced by

probStruct.subopt_lev = 1

154 Michal Kvasnica

3. The last option is to use a low-complexity control scheme. This approach
aims at constructing a one-step solution and subsequently a PWQ or PWA
Lyapunov function computation is performed to verify stability properties.
The approach generally results in a small number of regions and asymp-
totic stability as well as closed-loop constraint satisfaction is guaranteed.
If one wants to use this kind of solution, he/she should set:

probStruct.subopt_lev = 2

4.5.7.5 Optional Fields

Optional fields are summarized next.
probStruct.Qy: used for output regulation. If provided the additional term
‖Q(y − yref)‖p is introduced in the cost function and the controller will
regulate the output(s) to the given references (usually zero, or provided by
probStruct.yref.
probStruct.tracking: 0 – no tracking, resulting controller is a state regu-
lator which drives all system states (or outputs, if probStruct.Qy is given)
towards origin. 1 – tracking with ∆u-formulation. The controller will drive
the system states (or outputs, if probStruct.Qy is given) to a given reference.
The optimization is performed over the difference of manipulated variables
(u(k) − u(k − 1)), which involves an extension of the state vector by nu
additional states where nu is the number of system inputs. 2 – tracking with-
out ∆u-formulation. The same as probStruct.tracking=1 with the excep-
tion that the optimization is performed over u(k), i.e. no ∆u-formulation is
used and no state vector extension is needed. Note, however, that offset-free
tracking cannot be guaranteed with this setting. Default setting is prob-

Struct.tracking = 0.
probStruct.yref: instead of driving a state to zero, it is possible to refor-
mulate the control problem and rather force the output to zero. To ensure
this task, define probStruct.Qy which penalizes the difference of the actual
output and the given reference.
probStruct.P_N: weight on the terminal state. If not specified, it is assumed
to be zero for quadratic cost objectives, or PN = Q for linear cost.
probStruct.Nc: the control horizon. Specifies the number of free control
moves in the optimization problem.
probStruct.Tset: a polytope object describing the terminal set. If not pro-
vided and probStruct.norm = 2, the invariant LQR set around the origin
will be computed automatically to guarantee stability properties.

Since MPT 2.6 it is possible to denote certain constraints as soft. This
means that the respective constraint can be violated, but such a violation is
penalized. To soften certain constraints, it is necessary to define the penalty
on violation of such constraints:

4 Multi-Parametric Toolbox 155

• probStruct.Sx - if given as a ”nx”x ”nx”matrix, all state constraints will
be treated as soft constraints, and violation will be penalized by the value
of this field.

• probStruct.Su - if given as a ”nu”x ”nu”matrix, all input constraints will
be treated as soft constraints, and violation will be penalized by the value
of this field.

• probStruct.Sy - if given as a ”ny” x ”ny” matrix, all output constraints
will be treated as soft constraints, and violation will be penalized by the
value of this field.

In addition, one can also specify the maximum value by which a given
constraint can be exceeded:

• probStruct.sxmax - must be given as a ”nx”x 1 vector, where each element
defines the maximum admissible violation of each state constraints.

• probStruct.sumax - must be given as a ”nu”x 1 vector, where each element
defines the maximum admissible violation of each input constraints.

• probStruct.symax - must be given as a ”ny”x 1 vector, where each element
defines the maximum admissible violation of each output constraints.

The aforementioned fields also allow to specify that only a subset of state,
input, or output constraint should be treated as soft constraints, while the
rest of them remain hard. Say, for instance, that we have a system with 2
states and we want to soften only the second state constraint. Then we would
write:

probStruct.Sx = diag([1 1000])

probStruct.sxmax = [0; 10]

Here probStruct.sxmax(1)=0 tells MPT that the first constraint should be
treated as a hard constraint, while we are allowed to exceed the second con-
straints by at most 10 and every such violation will be penalized by the factor
of 1000.

156 Michal Kvasnica

4.6 Exercises

Exercise 4.11. Consider a model of two liquid tanks given by the following
discrete-time state-space model:

x(t+ 1) =

[
−0.0315 0
0.0315 −0.0351

]
x(t) +

[
0.0769

0

]
u(k)

y(t) =
[
0 1

]
x(t)

where the state vector x(t) =
[
h1

h2

]
represents the deviations of liquid levels

from some steady-state levels and u(t) is the deviation of the liquid inflow
from the steady-state value. The state, input, and output variables are as-
sumed to be constrained as follows:

•
[−21
−21

]
≤ x(t) ≤ [3.53.5]

• −17 ≤ u(t) ≤ 3
• −21 ≤ y(t) ≤ 3.5

Perform following tasks:

1. Create a sysStruct representation of such a system by filling out the
structure fields as described in Section 4.5.6.

2. Assign symbolic labels level 1, level 2 to the two state variables, in-
flow to the input, and level 2 to the output variable.

3. Verify that sysStruct contains valid entries by running

>> mpt_verifySysStruct(sysStruct);

If sysStruct is mis-configured, the verification function will output an
error.

4. Simulate the evolution of the system for 5 steps, starting from the initial
condition x(0) =

[−5
−10

]
and using the control inputs u(t) = −2, t =

1, . . . , 10. (hint: use the mpt_simSys function, see help mpt_simSys for
more details).

Exercise 4.12. For the two-tanks system defined in the previous exercise
we would like to synthesize an MPC controller which would minimize the
following performance objective:

min

N∑

k=0

xT
k Qxk + uT

kRuk. (4.32)

Assume N = 6, Q = [1 0
0 1], and R = 1. Create a problem structure

probStruct which will reflect this settings (do not forget to set prob-

Struct.norm=2 to indicate that a quadratic performance objective should
be used). Verify consistency of the generated structure by running

>> mpt_verifyProbStruct(probStruct)

4 Multi-Parametric Toolbox 157

Exercise 4.13. Consider again the two-tanks setup from the previous two
exercises. Finally we will synthesize an MPC controller. To do that, run

>> ctrl = mpt_control(sysStruct, probStruct, ’online’)

The ’online’ flag indicates that we will use an on-line MPC controller. After
the controller object is constructed, we can obtain the optimal control input
associated to a given initial state by running

>> uopt = ctrl(x)

Now answer following questions:

1. What is the optimal control action for x(0) =
[−5
−10

]
?

2. Which input corresponds to x(0) = [0
12.5]? Can you give the answer even

before running the code in Matlab? (hint: take a look at state constraints
in sysStruct.xmax)

3. Plot the closed-loop evolution of system states and control inputs for 10
steps, starting from the initial condition x(0) =

[−5
−10

]
.

Exercise 4.14. Assume again the setup from the previous exercise, but
change the probStruct.R penalty to 10. Run again the closed-loop simu-
lation and explain what has changed.

We also have a good news for you. MPT provides a simple command to
visualize a closed-loop simulation:

simplot(ctrl, x0, number_of_simulation_steps)

If you only want to compute the numerical data, use the sim command:

[X, U, Y] = sim(ctrl, x0, number_of_simulation_steps)

Exercise 4.15. Now we will practice with explicit MPC controllers. In the
explicit approach the MPC problem is “pre-solved” and the optimal control
action is computed for all possible initial conditions. The solution then takes
a form of a look-up table, which consists of polyhedral regions with associ-
ated affine feedback laws. Evaluation of such controllers then reduces to a
mere table lookup, which can be performed much faster compared to on-line
controllers.

We consider control of the double integrator, described by the following
state-space realization:

xk+1 =

[
1 1
0 1

]
xk +

[
1
0.5

]
uk

yk =
[
1 0

]
xk

which is subject to constraints −1 ≤ uk ≤ 1 and
[−5
−5

]
≤ xk ≤ [55].

First step for you is to create the corresponding sysStruct structure for
such a system (make sure to run clear to wipe the workspace). When you
have that, create the probStruct structure, assuming the following assign-
ment:

158 Michal Kvasnica

• prediction horizon 5
• quadratic type of the performance objective
• Q = I2 and R = 1

Finally, create two controller objects, one called controller_online and
representing an on-line MPC controller, and the other one controller_explicit
where the solution will be pre-calculated.

Hint: use either ’online’ or ’explicit’ string flags as the third input to
mpt_control().

Once you have both controllers, verify that they are indeed equivalent.
Which control action does controller_online give for x0 = [-3; 0]? And
what is the value of controller_explicit for the same state? Of course, the
two values should be identical, since the two controllers represent the same
optimization problem.

The only difference is in the evaluation speed. To see it in a more prominent
fashion, fire up closed-loop simulations for both controllers using the sim()

command and with x0 = [-3; 0] as the initial state. In both cases measure
the execution time using tic and toc functions. What do you see? (keep
in mind that this will measure the execution time of the whole closed-loop
simulation. More interesting is the average execution time of one simulation
step.)

Exercise 4.16. Probably the best way to understand an explicit MPC con-
troller is to visualize it. We just quickly remind that such an controller consists
of several polytopic regions with associated affine feedback laws of the form
u = Kix+ Li.

We start by inspecting the controller’s regions:

close all

plot(controller_explicit)

This figure tells us two important properties of the underlying MPC formu-
lation. First, we see how many regions there are in total. Quite intuitively,
the higher number of regions, the more complex the MPC problem is and
the more computationally demanding is its implementation in real time. But
even more important is the portion of the colored area compared to the white
space surrounding it. Any point from within of the colored patches is a feasible
initial point, i.e. one for which there exists a solution satisfying constraints for
the whole prediction horizon N . On the other hand, any point from the white
areas is infeasible. Again, this information is quite important for real-time
implementation, as you can easily reject “bad” initial conditions.

Let’s verify these statements by running u = controller_explicit(x0)

once for x0 = [-4; -1] and the other time for x0 = [-4; -2]. Do the re-
sults support our claim about feasibility? What would happen if we use u

= controller_online(x0) instead? Can you give an answer even prior to
running the command?

Now we move to plotting the associated feedback laws by

4 Multi-Parametric Toolbox 159

close all

plotu(controller_explicit)

Again, such a graphical information is valuable to control engineers, because
it gives us an insights into the “internals” of the optimal solution to a given
MPC optimization problem. Specifically, we can see for which range of initial
conditions the controller responds by a saturated control action. To see this in
an even more clear way, run the view(2) command to watch the result “from
the top”. You will see dark blue regions which represent all initial conditions
for which the optimal control action is saturated at u = umin = -1, dark red
ones where u = umax = 1, and the rainbow stripe in between with -1 < u

< 1.

Exercise 4.17. Visualization is not the only way to analyze explicit MPC
controllers. MPT provides a wide range of analysis functions. For instance,
one can try to compute a Piecewise Quadratic Lyapunov function as a cer-
tificate that the controller provides closed-loop stability guarantees:

>> L = mpt_lyapunov(controller_explicit, ’pwq’);

When you run this command, you should see the following output:

mpt_getPWQLyapFct: Partition is not invariant and

therefore it cannot be asymptotically stable !!

The reason for this is that the controller is not invariant. We have already
seen what invariance means in Example 6 of the MPT Polytope Library part
of this workshop. In simple terms, the problem is that there are some initial
states for which there exists a feasible control move at the beginning, e.g.

>> x = [-5; 4]

>> u = controller_explicit(x)

u =

-1

but then the successor state x+ = Ax+Bu becomes infeasible:

>> xp = model.A*x + model.B*u

xp =

-2.0000

3.5000

>> u = controller_explicit(xp)

MPT_GETINPUT: NO REGION FOUND FOR STATE x = [-2;3.5]

u =

160 Michal Kvasnica

[]

To see this graphically, run

>> x = [-5; 4];

>> simplot(controller_explicit, struct(’x0’, x))

You will see that the closed-loop trajectory leaves the colored area, which
means that constraint satisfaction is not guaranteed for all time for this initial
point.

On the other hand, the state x = [-5; 0] belongs to the invariant subset,
as shown by the existence of the following closed-loop simulation, also shown
on the figure below:

>> x = [-5; 0];

>> simplot(controller_explicit, struct(’x0’, x))

−5 −4 −3 −2 −1 0 1 2 3 4 5
−4

−3

−2

−1

0

1

2

3

4

x
1

x 2

Closed−Loop Trajectory for initial state [−5,0]

Fig. 4.27 Closed-loop simulation illustrating that the state x = [-5; 0] belongs to
the invariant subset.

To isolate the invariant subset of the given explicit controller, run

>> inv_controller = mpt_invariantSet(controller_explicit)

Ok, but what is the difference between the two controllers? Specifically,
which part of controller_explicit was NOT invariant (i.e. which sub-
set of regions of controller_explicit is not contained in the regions of
inv_controller)? To see that, we compute the set difference between the
regions of the two controllers:

>> NI = controller_explicit.Pn \ inv_controller.Pn;

and we plot it:

% plot regions of the invariant subset in yellow

4 Multi-Parametric Toolbox 161

% and the states which are not invariant in red

>> plot(inv_controller.Pn, ’y’, NI, ’r’)

You should see the figure similar to the one below.

−6 −4 −2 0 2 4 6
−5

−4

−3

−2

−1

0

1

2

3

4

5

x
1

x 2

Fig. 4.28 Set of invariant states (yellow) and those which are not invariant (the two
small red patches in the upper-left and lower-right corners).

With the invariant controller available in inv_controller, we can return
back to stability analysis:

>> L = mpt_lyapunov(inv_controller, ’pwq’);

This time the Lyapunov function is found:

mpt_getPWQLyapFct: SUCCESS:

Found Piecewise Quadratic Lyapunov function.

which shows that the explicit controller inv_controller will definitely ren-
der the closed-loop system stable. You can check this fact by running a bunch
of closed-loop simulations using the point-and-click interface:

>> simplot(inv_controller)

Since the controller is invariant and guarantees stability, do you expect to
find a starting point for which the simulation would fail?

162 Michal Kvasnica

4.7 Solutions

Solution 4.11 (for Exercise 4.11).

% it’s always wise to wipe the sysStruct variable

clear sysStruct

% plant dynamics

sysStruct.A = [-0.0315, 0; 0.0315, -0.0315];

sysStruct.B = [0.0769; 0];

sysStruct.C = [0 1];

sysStruct.D = 0; % must be specified even if it is zero

% constraints

sysStruct.xmin = [-21; -21];

sysStruct.xmax = [3.5; 3.5];

sysStruct.umin = -17;

sysStruct.umax = 3;

sysStruct.ymin = -21;

sysStruct.ymax = 3.5;

% symbolic labels

sysStruct.StateName = {’level 1’, ’level 2’};

sysStruct.InputName = {’inflow’};

sysStruct.OutputName = {’level 2’};

% verify the setup

mpt_verifySysStruct(sysStruct);

% simulate the evolution for 5 steps

x = [-5; -10]; % initial state

u = -2*ones(10, 1); % inputs to use in the simulation

X = x’; % store of the simulated states

for k = 1:5

x = mpt_simSys(sysStruct, x, u(k));

X = [X; x];

x = x’;

end

% plot the state trajectories

t = 0:size(X, 1)-1;

plot(t, X)

Solution 4.12 (for Exercise 4.12).

probStruct.N = 6;

4 Multi-Parametric Toolbox 163

probStruct.Q = eye(2);

probStruct.R = 1;

probStruct.norm = 2;

mpt_verifyProbStruct(probStruct);

Solution 4.13 (for Exercise 4.13).

1. What is the optimal control action for x(0) =
[−5
−10

]
?

% we assume sysStruct and probStruct have been defined

ctrl = mpt_control(sysStruct, probStruct, ’online’);

% optimal "u" associated to x0 = [-5; -10]:

u = ctrl([-5; -10])

u =

-0.0121

2. Which input corresponds to x(0) = [0
12.5]? Can you give the answer even

before running the code in Matlab? (hint: take a look at state constraints
in sysStruct.xmax)

u = ctrl([0; 12.5])

u =

NaN

Here, the NaN output indicates that the MPC problem was infeasible for
a given initial condition. In fact, the second element of x(0) violates the
second state constraint:

[0; 12.5] <= sysStruct.umax

3. Plot the closed-loop evolution of system states and control inputs for 10
steps, starting from the initial condition x(0) =

[−5
−10

]
.

% closed-loop simulation:

x = [-5; -10]; % initial state

X = x’; % store for closed-loop states

U = []; % store for closed-loop inputs

for k = 1:5

u = ctrl(x); % obtain optimal control action

x = mpt_simSys(sysStruct, x, u); % simulate the system

X = [X; x];

U = [U; u];

x = x’;

end

% plot the results

164 Michal Kvasnica

tx = 0:size(X, 1)-1;

figure; plot(tx, X);

tu = 0:size(U, 1)-1;

figure; stairs(tu, U);

Solution 4.14 (for Exercise 4.14). By enlarging the input penalty, the
regulation process is slowed down, i.e. it takes longer for the states to reach the
zero levels. Conversely, by enlarging the probStruct.Q penalty, the controller
will react more aggressively.

Solution 4.15 (for Exercise 4.15).

clear

% prediction sysStruct for the double integrator

sysStruct.A = [1, 1; 0, 1];

sysStruct.B = [1; 0.5];

sysStruct.C = [1 0];

sysStruct.D = 0;

% constraints

sysStruct.umin = -1;

sysStruct.umax = 1;

sysStruct.xmin = [-5; -5];

sysStruct.xmax = [5; 5];

% objective function

probStruct.N = 5;

probStruct.norm = 2;

probStruct.Q = eye(2);

probStruct.R = 1;

% on-line controller

controller_online = mpt_control(sysStruct, probStruct, ’

online’);

% explicit controller

controller_explicit = mpt_control(sysStruct, probStruct, ’

explicit’);

% initial state for the closed-loop simulations

x0 = [-3; 0];

% timing of the on-line controller

tic;

X = sim(controller_online, x0);

4 Multi-Parametric Toolbox 165

t = toc; t/size(X, 1)

% timing of the explicit controller

tic;

X = sim(controller_explicit, x0);

t = toc; t/size(X, 1)

Solution 4.16 (for Exercise 4.16).

% run ex_2 to load all necessary data

close all

% plot the controller regions

plot(controller_explicit)

% plot the two initial conditions of interest

x1 = [-4; -1];

x2 = [-4; -2];

hold on

plot(x1(1), x1(2), ’kx’, x2(1), x2(2), ’ko’, ’markersize’,

12);

% optimal control action associated to x1

%

% since x1 is contained in one of the regions,

% we expect a feasible answer

u = controller_explicit(x1)

% check that x1 is indeed in one of the regions

isinside(controller_explicit.Pn, x1)

% optimal control action associated to x2

%

% since x2 is outside of the colored area,

% there should be no control action associated

% to this state, in which case u = []

u = controller_explicit(x2)

% check that x2 is indeed outside of the regions

isinside(controller_explicit.Pn, x2)

% now plot the feedback laws

close all

plotu(controller_explicit)

% rotate the graph manually to inspect it

166 Michal Kvasnica

% finally, look at it from the top

view(2)

Acknowledgements The authors are pleased to acknowledge the financial support
of the Scientific Grant Agency of the Slovak Republic under the grants 1/0071/09 and
1/0537/10 and of the Slovak Research and Development Agency under the contracts
No. VV-0029-07 and No. LPP-0092-07. It is also supported by a grant No. NIL-I-007-
d from Iceland, Liechtenstein and Norway through the EEA Financial Mechanism
and the Norwegian Financial Mechanism.

References

Borrelli F (2003) Constrained Optimal Control Of Linear And Hybrid Systems, Lec-
ture Notes in Control and Information Sciences, vol 290. Springer

Geyer T (2005) Low Complexity Model Predictive Control in Power Electronics and
Power Systems. Dr. sc. thesis, ETH Zurich, Zurich, Switzerland, available from
http://control.ee.ethz.ch/index.cgi?page=publications;action=details;id=2124

Kvasnica M, Fikar M, Čirka L’, Herceg M (2011a) Complexity reduction in explicit
model predictive control. In: Huba M, Skogestad S, Fikar M, Hovd M, Johansen
TA, Rohal’-Ilkiv B (eds) Selected Topics on Constrained and Nonlinear Control.
Textbook, STU Bratislava – NTNU Trondheim, pp 241–288

Kvasnica M, Rauová I, Fikar M (2011b) Separation functions used in simplification
of explicit mpc feedback laws. In: Huba M, Skogestad S, Fikar M, Hovd M, Jo-
hansen TA, Rohal’-Ilkiv B (eds) Preprints of the NIL workshop: Selected Topics
on Constrained and Nonlinear Control, STU Bratislava – NTNU Trondheim, pp
48–53

http://control.ee.ethz.ch/index.cgi?page=publications;action=details;id=2124

4 Multi-Parametric Toolbox 167

Comments – Remarks

168 Michal Kvasnica

Comments – Remarks

4 Multi-Parametric Toolbox 169

Comments – Remarks

170 Michal Kvasnica

Comments – Remarks

Chapter 5

Implementation of MPC Techniques to
Real Mechatronic Systems

Gergely Takács and Tomáš Polóni and Boris Rohal’-Ilkiv and Peter
Šimončič and Marek Honek and Matúš Kopačka and Jozef Csambál and
Slavomı́r Wojnar

Abstract This chapter is focused on the implementation details of model pre-
dictive control for mechatronic systems with fast dynamics. From the very

Gergely Takács
Institute of Measurement, Automation and Informatics, Faculty of Me-
chanical Engineering, Slovak University of Technology in Bratislava, e-mail:
gergely.takacs@stuba.sk

Tomáš Polóni
Institute of Measurement, Automation and Informatics, Faculty of Mechanical Engi-
neering, Slovak University of Technology in Bratislava, e-mail: tomas.poloni@stuba.sk

Boris Rohal’-Ilkiv
Institute of Measurement, Automation and Informatics, Faculty of Me-
chanical Engineering, Slovak University of Technology in Bratislava, e-mail:
boris.rohal-ilkiv@stuba.sk

Peter Šimončič
Institute of Measurement, Automation and Informatics, Faculty of Me-
chanical Engineering, Slovak University of Technology in Bratislava, e-mail:
peter.simoncic@stuba.sk

Marek Honek
Institute of Measurement, Automation and Informatics, Faculty of Mechanical Engi-
neering, Slovak University of Technology in Bratislava, e-mail: marek.honek@stuba.sk

Matúš Kopačka
Institute of Measurement, Automation and Informatics, Faculty of Me-
chanical Engineering, Slovak University of Technology in Bratislava, e-mail:
matus.kopacka@stuba.sk

Jozef Csambál
Institute of Measurement, Automation and Informatics, Faculty of Mechanical Engi-
neering, Slovak University of Technology in Bratislava, e-mail: jozef.csambal@stuba.sk

Slavomı́r Wojnar
Institute of Measurement, Automation and Informatics, Faculty of Me-
chanical Engineering, Slovak University of Technology in Bratislava, e-mail:
slawomir.wojnar@stuba.sk

171

gergely.takacs@stuba.sk
tomas.poloni@stuba.sk
boris.rohal-ilkiv@stuba.sk
peter.simoncic@stuba.sk
marek.honek@stuba.sk
matus.kopacka@stuba.sk
jozef.csambal@stuba.sk
slawomir.wojnar@stuba.sk

172 Gergely Takács et al

wide application possibilities of MPC and the numerous examples of mecha-
tronic systems, two real-life laboratory examples have been selected. First
an active vibration attenuation system is discussed, with numerous hardware
implementation details. This is then followed by a detailed discussion of the
implementation of three very different stabilizing MPC approaches: tradi-
tional quadratic programming based MPC, pre-computed explicit MPC and
a sub-optimal approach called Newton-Raphson’s MPC. Details are given on
software and code implementation using coding examples in the Matlab and
C programming environment. The next section of this chapter deals with a
very different practical example: a spark ignition engine example. This section
will introduce the details of a full laboratory setup, hardware implementation
details and practical issues regarding the use of MPC for the real-time control
of air-fuel ratio in automotive engines.

5.1 Introduction

The merits of well designed control algorithms have been long recognized by
the industry, where a performance improvement of a fraction point leads to
significantly increased revenue or decreased production cost.

Performance is not the only criterion to judge the qualities of a control
strategy. Every real actuator and process has inherent physical limits, which
are to be constrained in order to preserve safety, further influence production
output or to safeguard equipment. As claimed by Rossiter (2003), the only
control method capable of handling process constraints on an algorithmic
level is model predictive control (MPC). MPC has been used for decades in
applications, where sampling rates are in the order of several minutes or even
hours: for example in the petrochemical industry. Now the situation turns
to applications with very short sampling periods in orders of milliseconds
mainly in mechatronic systems.

This chapter contributes to experimental implementation and real-time
verification of chosen efficient MPC techniques applied for control of fast
mechatronic systems, namely laboratory vibration system (subsection 5.2)
and internal combustion engine (subsection 5.3).

The section 5.2 discusses the implementation properties of three differ-
ent MPC approaches on an experimental laboratory model. This device is
basically a simple lightly damped mechanical structure. The algorithms con-
sidered here include the traditional infinite horizon dual-mode quadratic pro-
gramming based MPC (QPMPC), pre-computed optimal multi-parametric
MPC (MPMPC) and the efficient albeit sub-optimal Newton-Raphson’s MPC
(NRMPC).

The control of automotive internal combustion engines is one of most com-
plex control problems due to nonlinearities and variable time delays. This is
reflected in the time variability of the model parameters in different regions

5 Implementation of MPC Techniques to Real Mechatronic Systems 173

of the engine operating space. The section 5.3 analyzes the practical aspects
of real-time implementation of a multi-model MPC technique to cope with
the problem of nonlinearities and variable time delays in controlling of the SI
engine air-fuel ratio.

In both sections the main practical software and hardware aspects of the
suggested real-time solutions are discussed in details.

5.2 Implementation of Various MPC Methods for the
Vibration Control of Lightly Damped Cantilevers

5.2.1 Introduction

The algorithmic support of active vibration suppression applications is usu-
ally limited to simple positive position feedback (PPF) or for example strain-
rate feedback (SRF) control (Song et al, 2002). Other essential strategies
include PID or linear-quadratic (LQ) control (Preumont, 2002). Because of
the simplicity of these approaches, no issues regarding computational imple-
mentability arise. Even though these control schemes are often sufficient in
certain applications, the advantages of MPC cannot be overlooked in vibra-
tion damping.

Unfortunately the fast dynamics of vibration attenuation systems require
very short sampling times, which limit the use of computationally intensive
on-line calculations usually associated with MPC. Traditional quadratic pro-
gramming based MPC (QPMPC) has been successfully implemented by Wills
et al (2008), where the problems raised by the fast sampling were tackled by
implementing a machine code optimized quadratic programming solver on
a specialized hardware. While this algorithm handles process constraints, it
fails to address the important consequences of stability and constraint feasi-
bility.

The stability and constraint feasibility of model predictive control algo-
rithms may be guaranteed through the deployment of terminal constraints
(Maciejowski, 2002). This unfortunately reduces the range in which the con-
trol algorithm may operate, by assigning a region of attraction of all feasible
initial conditions in the state-space. Amongst others, the size of this region
is dependent on the prediction horizon.

Clamped cantilever beams actuated by piezoelectric strips are a very spe-
cial case in the eye of the control engineer. Model predictive control with
guaranteed constraint stability and feasibility applied on such and similar
systems raises not only questions associated with algorithm speed but also
with minimal useful prediction horizon length. Due to the stability require-
ment, the useful range the stable MPC controller can operate is severely lim-

174 Gergely Takács et al

ited, calling for extremely long prediction horizons (Takács and Rohal’-Ilkiv,
2009).

This is partly caused by the large relative deflections compared to the max-
imal possible control effort by the piezoelectric actuators, and short sampling
times. Optimization of prediction dynamics introduced by Cannon and Kou-
varitakis (2005) offers a remedy to this problem, as it maximizes the region
of attraction which defines the useful controller range, however this idea is
executed for for a computationally efficient albeit sub-optimal MPC approach
called Newton-Raphson’s MPC.

This subsection describes the practical implementation of different MPC
methods onto systems of active vibration control with under-damped dynam-
ics. Three MPC methods are introduced here:

• traditional dual-mode quadratic-programming basedMPC (QPMPC) with
stability and feasibility guarantees

• a computationally efficient sub-optimal control strategy introduced by
Kouvaritakis et al (2000), Kouvaritakis et al (2002) and Cannon and Kou-
varitakis (2005), called Newton-Raphson MPC (NRMPC)

• and finally an optimal multi-parametric programming based MPC ap-
proach (MPMPC)

This section places focus on practical implementation details, while sug-
gesting the simplest possible solutions. Therefore no customized on-line
quadratic programming solvers or algorithms of multi-parametric program-
ming are discussed here. All methods will be implemented in Matlab/Simulink,
if possible using off the shelf solutions for off and on-line solvers. Typically
the problem setup will be carried out in Matlab, while the on-line problem
is running on an xPC Target platform system. We will begin our discussion
with introducing the experimental system used as an example.

5.2.2 Brief Description of the Experimental Hardware

A clamped cantilever beam may represent many real life under-damped flex-
ible structures, such as helicopter rotor beams, antenna masts, manipulating
arms and solar panels on space structures. The experimental setup considered
as an example to demonstrate different MPC implementations may represent
the vibration attenuation of any of the aforementioned physical systems.

The aim of the MPC based vibration control system is to minimize beam
tip vibrations, while respecting constraints set by the maximal allowable volt-
age levels on the piezoelectric patches. Since piezoelectric materials are prone
to depolarization, maximal voltage input levels are set. Additional require-
ments placed on the control system are the need for guaranteed stability and
constraint feasibility.

5 Implementation of MPC Techniques to Real Mechatronic Systems 175

5.2.2.1 Hardware Description

The beam is made of aluminium marked by the designation EN AW 1050A.
Its dimensions are 550×40×3mm. The four piezoelectric patches bonded to
the beam surface are identical, of the make MIDÉ QP16. Wafers marked with
PZT1/2 in Fig. 5.1 are connected counter phase and are used in actuator
mode for control. The rest of the patches are short circuited and are not
utilized in the upcoming implementation examples.

Fig. 5.1 Simplified schematics of the control and measuring chain applied to the
vibrating clamped cantilever beam.

Piezoelectric actuators are connected to 20V/V gain MIDÉ EL-1225 power
amplifiers, which in turn receive low level analogue voltage input from a cable
terminal fed to a high speed National Instruments PCI-6030E measuring
card. This measuring card is a part of a computer running Matlab xPC
Target real time control environment. Development of the control algorithms
and measuring tasks is carried out using a host computer running Matlab
Simulink, and is connected to the target computer via Ethernet.

Beam tip deflection is measured using a KEYENCE LK - G 82 industrial
LASER triangulation system, indicated as“Laser triangulation”on the figure.
Digital low band pass filtering and signal processing is realized in a propri-
etary unit, which outputs an analogue voltage signal to the cable terminal
and finally the measuring card. The LASER system settings are controlled
via the host computer, using a proprietary settings software via USB pro-
tocol. The control and measuring chain is demonstrated by the simplified
schematics in Fig. 5.1.

Note that the capacitive sensor is not utilized as a feedback signal in these
examples, a direct readout using the laser triangulation system is considered.

176 Gergely Takács et al

(a) Laboratory test bench. (b) Piezoelectric actuators.

Fig. 5.2 A photo of the laboratory test bench with the piezoelectric actuators bonded
on the beam.

A photo of the laboratory test bench with the piezoelectric actuators
bonded on the beam is visible In Fig. 5.2.

5.2.2.2 System Identification

To predict future system behaviour, a second order linear-time invariant
state-space mathematical model of the vibrating system is considered. To
obtain this model, Lara et al (2003) used a direct phenomenological model of
the system, or for example it is possible to utilize the results of finite element
modeling (FEM) harmonic analysis to acquire the state-space representation
as well (Dong et al, 2006).

An experimental identification procedure will be utilized to obtain a dis-
crete linear time invariant state-space system in the form:

xk+1 = Axk +Buk yk = Cxk +Duk (5.1)

where yk represents the beam tip deflection in millimeters and uk is the high
level voltage signal directly fed to the piezoelectric actuators. As in most real
systems, direct control feed-through is not considered, therefore matrix D is
set to equal zero.

The experimental procedure involved measurements in the frequency do-
main. The system has been excited by an amplified chirp signal entering the
actuators PZT1 and PZT2. The amplitude of this signal has been set to reach
maximal allowable levels of ± 120 V, in order to minimize vibration caused
by the surroundings. Since the first eigenfrequency of the beam is 8.127Hz,
the chirp signal frequency started from 0.1Hz up to 20Hz. The measured
signal has been sampled 5000Hz, and subsequently re-sampled for different
models.The predictions are generated by the following state-space system
sampled by 100Hz:

5 Implementation of MPC Techniques to Real Mechatronic Systems 177

A =

[
0.9981 −1.2233
0.0021 0.9985

]
B =

[
6.697E−6

−8.001E−6

]

C = [−0.5774 − 0.7069] (5.2)

5.2.3 Quadratic Programming based MPC

5.2.3.1 Introduction

This subsection will elaborate on the practical implementation of a dual-
mode quadratic programming based MPC controller with stability and fea-
sibility guarantees. The on-line quadratic programming solver considered in
this application is called qpOASES and it has been introduced by Ferreau
et al (2008) and subsequently Ferreau (2006). This solution has been chosen
for its easy implementation properties and the fact that unlike generic QP
solvers, it has been fine tuned for MPC applications. The problem setup,
creating prediction and cost prediction matrices is carried out in the Mat-
lab scripting environment. The final problem parameters are passed onto the
Simulink interface of the qpOASES solver.

Stability in the traditional QPMPC formulation is guaranteed through
suitably formulated state feedback and terminal cost function matrices. The
deployment of dual mode predictions is the part of the formulation as well: the
first mode considers nc free control moves, while the second mode assumes the
LQ control law (Chen and Allgöver, 1998; Mayne et al, 2000a). Feasibility of
process constraints is ensured beyond the prediction horizon by the inclusion
of a constraint checking horizon.

First let us begin with the setup of the problem. For this, the code shall
be implemented in the Matlab m-script language:

5.2.3.2 Setup

First it is required to specify certain parameters for the QP controller. Some
of these parameters are: the sampling period Ts, if it is an off-line simulation
a stop time is required as well, and it is also essential to state the prediction
horizon nc. In case symmetric bounds on the input are assumed, the con-
straints are set using umax. This is basically the polarization voltage of the
piezoelectric transducers.

Ts=0.01;

T=0.5

nc=70;

run=T/Ts;

178 Gergely Takács et al

umax = 120;

where run is the runtime in case an off-line simulation is needed.
In the next step, it is required to load and specify a prediction model and

possibly an initial state for Kalman filtering or simulation purposes. In this
example the model is loaded from a saved system identification file:

load n4s2A;

A=n4s2.A;

B=n4s2.B;

C=n4s2.C;

nx=length(A);

X1(:,1)=zeros(1,nx);

Penalization for the inputs and states needs to be stated as well. The input
penalization can be determined by direct experimentation with the algorithm,
or simply evaluating different linear-quadratic controllers in simulation and
determining a good balance between controller performance and aggressive-
ness. In this case the input penalty has been found by using an LQ controller
with the settings R = 1e − 4 and Q = C′ ∗ C, while balancing the input
somewhat above the constraints.

R=1e-4;

Q=C’*C;

5.2.3.3 Prediction Matrices

It is possible to pass the information to a stand-alone function. This custom
function uses the system model, penalty matrices, the constraints, a hori-
zon and possibly a system order information. Its output are the properly
formulated prediction matrices and possibly the re-formulated constraints:

[H,F,G,Ac,b0,Bx,Ki,Nc] = predmodelqp(A,B,C,R,Q,umax,nc,nx);

Now let us begin with examining what such a function may do, in order
to generate the prediction matrices and cost function prediction matrices for
the on-line run.

As in most vibration damping applications, this implementation assumes
a symmetric constraint on the input:

ul=-uh;

This is followed by calculating the unconstrained linear-quadratic optimal
gain, along with the terminal weighting matrix:

[K,S,e]=dlqr(A,B,Q,R);

K=-K;

Qe=dlyap((A+B*K)’,(Q+K’*R*K));

5 Implementation of MPC Techniques to Real Mechatronic Systems 179

The forced and free state prediction matrices are calculated through a set
of nested loops according to the following script:

M2=zeros(nc*nx);

for n=1:nc;

M1(n*nx-nx+1:n*nx,:)=[(A^n)];

for na=0:nx:(nc*nx); %na=0:nx:(nc*nx)

m2(nx*(n-1)+(na+1):nx*(n-1)+(na+nx),n)=[(A^(na/nx))*B];

end;

end;

M2=m2(1:nx*nc,:);

where several other possible solutions may exist. These solutions can be equiv-
alently good, and while their runtime may differ this should not be an issue
in an off-line problem setup process.

The last n rows of the matrices M1 and M2 are also selected:

M1l=M1(nx*nc-(nx-1):nx*nc,:);

M2l=M2(nx*nc-(nx-1):nx*nc,:);

The next step is to create the cost prediction matrices. One has to begin
with initialization:

H1=0;

F1=0;

G1=A^0*Q;

This is then followed by creating the cost prediction matrices H , F and G
- first by running the following loop to get partial results:

for i=0:nc-2

H1t=M2(1+i*nx:i*nx+nx,:)’*Q*M2(1+i*nx:i*nx+nx,:);

H1=H1+H1t;

F1t=M2(1+i*nx:i*nx+nx,:)’*Q*M1(1+i*nx:i*nx+nx,:);

F1=F1+F1t;

G1t=M1(1+i*nx:i*nx+nx,:)’*Q*M1(1+i*nx:i*nx+nx,:);

G1=G1+G1t;

end

And finally assembling cost prediction matrices H , F and G:

H=H1+M2(1+(nc-1)*nx:(nc-1)*nx+nx,:)’*Qe*M2(1+(nc-1)*nx:(nc-1)*

nx+nx,:)+R*eye(nc);

F=F1+M2(1+(nc-1)*nx:(nc-1)*nx+nx,:)’*Qe*M1(1+(nc-1)*nx:(nc-1)*

nx+nx,:);

G=G1+M1(1+(nc-1)*nx:(nc-1)*nx+nx,:)’*Qe*M1(1+(nc-1)*nx:(nc-1)*

nx+nx,:);

To ensure feasibility and stability beyond the prediction horizon, the con-
straint checking horizon is calculated as well. This process is started up by
an initialization procedure:

180 Gergely Takács et al

Ki=K;

Ki(2,:)=K*(A+B*K);

i=1;

Nc=0;

u=uh+1;

The length of the constraint checking horizon is computed in the following
loop:

while (u > uh);

Ki(i+2,:)=K*(A+B*K)^(i+1);

f=Ki(i+2,:);

Am=[Ki(1:(i+1),:);-Ki(1:(i+1),:)];

b=[uh*ones((i+1),1); -ul*ones((i+1),1)];

x0=linprog(-f,Am,b);

u=Ki(i+2,:)*x0;

Nc=Nc+1;

i=i+1;

end

This can be followed by defining the constraints and re-formulating them
to be useful for direct quadratic programming solution. This formulation
assumes symmetric input constraints:

Ac1=[eye(nc)];

b0=[uh*ones(nc+Nc,1); -ul*ones(nc+Nc,1)];

Bx1=zeros((nc-1),nx);

for i=0:Nc

Ac1(nc+i,:)=[Ki(i+1,:)*M2l];

Bx1(nc+i,:)=[-Ki(i+1,:)*M1l];

end

Ac=[Ac1;-Ac1];

Bx=[Bx1; -Bx1];

5.2.3.4 Re-formulating for the Simulink Interface

This sub-subsection introduces a way to reformulate the prediction matrices,
so they can be used directly with the Simulink interface of qpOASES. First
the cost prediction matrix H is re-formulated, so it is suitable to pass on to
the qpOASES problem:

Hqp=[];

for i=1:nc

Hqpt=H(i,:);

5 Implementation of MPC Techniques to Real Mechatronic Systems 181

Hqp=[Hqp Hqpt];

end

Passing on F is possible with the original formulation. The cost matrix Ac
needs to be transformed likewise:

AcQPh=Ac(1:nc+Nc,:);

AcQP=[];

for i=1:(nc+Nc)

AcQPt=AcQPh(i,:);

AcQP=[AcQP AcQPt];

end

where the matrices need to be divided in the usual C programming style,
along with constraint matrices Bx and b0:

BxQP=Bx(1:nc+Nc,:);

b0QP=b0(1:nc+Nc,:);

F

H

FF

u
1

qpOASES

qpOASES _SQProblem

obj,
status ,

nWSR
Simple symmetric

bounds

−C−

Matrix constraint
 Ac

AcQP

Matrix
Multiply 2

Matrix
Multiply

Matrix
Multiply

Matrix
Multiply

Lo

Hi

Gain1

−K−

Cost H

Hqp

Cost F

F

Bx

BxQP

Auh comp

b0QP

x1

H

A

u_pred

lb

ub

ub
lbA

Bx*x

ubA

u1

Fig. 5.3 Parsing the MPC problem to the qpOASES interface

182 Gergely Takács et al

5.2.3.5 Off-line Simulation

In case an off-line simulation is necessary for results verification or other
purposes, we may use the Matlab default quadratic solver, named quadprog.
To do this, one needs to launch a cycle with one iteration for each sampling
instant and supply the optimization problem to the solver in the following
fashion:

for k=1:run;

[U1(:,k),f,status1(1,k),output]=quadprog(H,F*(X1(:,k)),Ac,b0+

Bx*X1(:,k),[],[],[],[],[],options);

X1(:,k+1)=A*X1(:,k)+B*(U1(1,k))’;

Y1(k)=C*X1(:,k);

end

where X1 is the matrix containing the states and Y 1 is the vector containing
the deflection data. The last two lines assume that there is no need for state
observation, this is to make the simulation simpler.

If the cost is needed as well, one needs to include either one of the following
lines in the code:

J(k,:)= U1(:,k)’*H*U1(:,k)+2*(X1(:,k))’*F’*U1(:,k)+X1(:,k)’*G

*X1(:,k);

J2(k,:)= X1(:,k)’*Q*X1(:,k)+U1(1,k)’*R*U1(1,k);

The optimization procedure can be fine-tuned by:

options = optimset(’LargeScale’,’off’,’Display’,’off’,’TolFun’

,1e-12);

It is also possible to substitute the Matlab built-in quadprog function with
the qpOASES Matlab interface. After compilation the sequential qpOASES
solver can be simply called by using the following code:

for k=1:run;

[objOA,U2(:,k),yd,status2(1,k),nWSRout2(1,k)]=

qpOASES_sequence(’i’,H,F*X2(:,k),Ac,’’,’’,’’,b0+Bx*X2(:,

k),10);

X2(:,k+1)=A*X2(:,k)+B*U2(1,k);

Y2(k)=C*X2(:,k);

end

5.2.3.6 Controller Loop in Simulink

The QPMPC controller loop is featured in Fig. 5.3. The controller loop con-
tains means for A/D and D/A conversion, state observation, data logging
and others. The block containing the QPMPC controller takes the actual ob-
server state as an input, and outputs controller voltage. It may be required to

5 Implementation of MPC Techniques to Real Mechatronic Systems 183

output such variables as iteration data or cost function, but that is reserved
for diagnostic purposes. The state observation in this example is carried out
via a product-default Kalman filter.

The subsystem marked as QPMPC in Fig. 5.3 is featured in its full detail
in Fig. 5.4. Here it is visible how the predicited cost matrices calculated in
the problem setup stage are parsed onto the qpOASES interface. One shall
refer to the qpOASES documentation for details.

Input

xPC Target
 TET

TET

Unit Delay

z
1

QPMPC control

x u

PCI−6030E DA

PCI−6030E
National Instr.
Analog Output

1

PCI−6030E AD

PCI−6030E
National Instr.

Analog Input
1

Laser Setting

1.5

Kalman Filter

Kalman
Filter ZZZX_estX_estX_estX_estX_estX_est

Data Logging

File Scope
Id: 2

Amplifier Compensation

1/20

Estimated
state

Deflection

Deflection

Input

Fig. 5.4 Block scheme of the QPMPC controller in Simulink, for the active vibration
cancellation application

5.2.4 Newton-Raphson’s Suboptimal MPC

5.2.4.1 Introduction

This subsection will introduce the practical implementation of the Newton-
Raphson MPC algorithm into the vibration attenuation of lightly damped
structures. As with the other cases, problem setup will be carried out using
the Matlab script language, while the on-line part of the algorithm will be
implemented in the C language, combined with the xPC Target software
prototyping interface.

The computationally efficient NRMPC formulation with guaranteed stabil-
ity and feasibility of constraints has been first introduced by Kouvaritakis et al
(2000). In this approach the on-line optimization task is performed through
the Newton-Raphson root search algorithm. Although this is a sub-optimal
approach, its application to vibration suppression systems is attractive.

184 Gergely Takács et al

Optimality levels may be enhanced by extending NRMPC by a simple
explicit additional optimization, as introduced by Kouvaritakis et al (2002).
The further development of NRMPC introduced by Cannon and Kouvari-
takis (2005) proves to be essential for systems with a significant asymmetry
in actuator capabilities and deformation range . The optimization of predic-
tion dynamics formulated by Cannon and Kouvaritakis (2005) recovers the
maximal possible ellipsoidal region of attraction.

The algorithm described by Kouvaritakis et al (2000), Kouvaritakis et al
(2002) and Cannon and Kouvaritakis (2005) serves as a basis for the practi-
cal implementation applied to the active vibrating system. For more details
on the theory behind the NRMPC approach, the reader shall refer to the
aforementioned publications.

Let us begin with initializing the off-line part of the NRMPC code:

5.2.4.2 Initialization of the Off-line Code

The controller structure is obtained by evaluating linear matrix inequalities
(LMI) defined by the invariance and feasibility conditions. LMI are parsed
using YALMIP introduced by L ofberg (2004) to the SeDuMi optimization
software suite as formulated by Sturm (1999).

The first portion of the off-line code initializes the algorithm. Amongst
others, simulation stop time is defined along with the desired deflection, which
in the case of the vibration attenuation example is always zero. A linear time-
invariant state space model is loaded from a file. Sampling time is also defined
as Ts:

Tstop=60;

yd=0;

load m2ss.mat;

A=m2ss.A; B=m2ss.B; C=m2ss.C; D=m2ss.D;

Ts=0.01;

Other types of settings and tuning parameters are also declared at the
beginning of the script file. Symmetric input constraints are stated as uh.
State penalties are set as Q = CTC which includes the output deflection in
the computed cost. Input weighting is declared as the variable R:

uh=120;

Q=C’*C;

R=1e-4;

Prediction cost performance bound γ is stated, which is necessary to be
limited in order to preserve numerical stability of the process. A tolerance
limit is also set, which is used to modify the behavior of YALMIP regarding
the handling of strict inequalities.

tolerance=1e-8;

5 Implementation of MPC Techniques to Real Mechatronic Systems 185

gamma=1e6;

Dimensionality of the problem is determined, to allow the use of different
state-space models for generating predictions:

dim=size(An); dim=dim(1,1);

[w.dim]=size(B); w.dim(1,3)=w.dim(1,1);

w.dim(1,4)=w.dim(1,2)*w.dim(1,3);

w.dim(1,5)=size(Q,1);

Matrix square-roots of the penalization variables are computed. These are
required in the construction of the invariance condition. The closed loop linear
quadratic gain is calculated as well, and it makes use of the prediction model
and penalties introduced earlier:

sqrtR = sqrtm(R); sqrtQ = sqrtm(Q);

K=-dlqr(An,B,Q,sqrtR*sqrtR);

Phi0=(An+B*K);

5.2.4.3 Off-line Variables and Constraints

Four optimization variables are declared, according to the dimensionality of
the problem. Matrix N is fully parametrized and square, while the rest of the
optimization variables are real valued and symmetric:

Xq = sdpvar(w.dim(1,1),w.dim(1,1));

Yq = sdpvar(w.dim(1,1),w.dim(1,1));

N = sdpvar(w.dim(1,1),w.dim(1,1),’full’);

M = sdpvar(w.dim(1,2),w.dim(1,1));

The LMI constrain the semi-definite programming problem. The set com-
mand instructs the parser YALMIP to construct a constraint in an LMI
form:

Inv1 = [Yq,Xq;Xq,Xq];

Inv3 = [Phi0*Yq+B*M Phi0*Xq;N+Phi0*Yq+B*M Phi0*Xq];

if (gamma<1/tolerance)

gInv=gamma*eye(w.dim(1,5)+w.dim(1,2));

zInv=zeros(w.dim(1,5)+w.dim(1,2),2*w.dim(1,1));

Inv2=blkdiag(sqrtQ,sqrtR)*[Yq,Xq; K*Yq+M,K*Xq];

F = set([gInv,zInv,Inv2; zInv’,

Inv1,Inv3; Inv2’,Inv3’,Inv1] > 0);

else

F = set([Inv1 Inv3; Inv3’ Inv1] > 0);

end

The if construct checks whether there is an input constraint defined or not.
If yes, the feasibility condition is translated to the proper LMI and added to

186 Gergely Takács et al

the set of constraints defining the SDP problem. Input constraints are defined
by:

if ~isempty(uh)

F = F + set([uh^2 [K*Yq+M K*Xq];

[K*Yq+M K*Xq]’ Inv1] > 0);

end

5.2.4.4 Solver Setup and Off-line Solution Initiation

Options are passed to the LMI parser and also to the solver, in this case
SeDuMi. Strict inequality constraints are relaxed and perturbed by the shift
setting:

ops = sdpsettings(’verbose’,0);

ops = sdpsettings(ops,’shift’,10*tolerance);

ops = sdpsettings(ops,’solver’,’sedumi’,’sedumi.eps’,0)

Solution of the above defined SDP problem is initiated by the solvesdp
YALMIP command. The LMI defining constraints are passed onto the solver
as the variable F , options are contained in the ops parameter.

The aim of this optimization problem is to maximize the volume of the
ellipsoids defining the region of attraction and target set. This can be carried
out by utilizing the fact, that the volume of an ellipsoid is proportional to its
determinant:

maxε = −(detP)1/m (5.3)

where P is the optimization parameter in general and m is the dimension
of P . In this case optimization objectives and parameters are Y q and Xq,
defining the projection and intersection of the augmented ellipsoid into x
space. It is desirable to maximize the volumes of ellipsoids defined by Y q and
Xq at the same time, by including them in a block diagonal construct.

Optimization parameters Y q,Xq,N andM are converted into the standard
double precision matrix format, from the YALMIP optimization variable no-
tation:

info = solvesdp(F,-geomean(blkdiag(Yq,Xq)),ops);

Yq = double(Yq); Xq = double(Xq);

N = double(N); M = double(M);

5.2.4.5 Factoring, Storing and Preparing Parameters for the
On-line NRMPC Run

After the optimization variables are available, the parameters used in the
on-line NRMPC run have to be factored out and stored:

5 Implementation of MPC Techniques to Real Mechatronic Systems 187

[V,XiU] = lu(eye(w.dim(1,1)) - Yq/Xq);

XiU = XiU’;

Qzi = [inv(Xq),XiU;XiU’,-V\(Yq*XiU)];

Qz = [Yq,V;V’,-(Xq*XiU)\V];

Code segments -V\(Yq*XiU) and -(Xq*XiU)\V actually implement mathe-
matical operations −V −1YqXiU and −(XqXiU)−1V .

The full, optimized shift matrices A0 and C0 are calculated according to:

A0 = (Xq*XiU)\(N/V’);

C0 = M/V’;

Q11=inv(Xq)

Q12=XiU;

Q21=XiU’;

Q22=-V\(Yq*XiU);

Kt=[K C0];

where code segment (Xq*XiU)\(N/V’) is equivalent to the operation
(XqXiU)−1KV T−1.

A matrix right division is used in the segment M/V’ to implement the
operation M/V T−1. After this respective partitions of Qz are stored in vari-
ables for the needs of the on-line NRMPC code. It is true that partitions Q12,
Q21 are related in symmetry.

5.2.4.6 Cost Transformation

The following code segment is related to cost transformation, and the result-
ing conversion of augmented states. The cost to be minimized in the on-line
NRMPC run has been expressed as JNRMPC = fT f which can be only true
in the case the augmented states are transformed to make the cost equivalent
with the original MPC formulation.

Mx = dlyap(Phi0’,Q+K’*R*K);

Mc = dlyap(A0’,C0’*(R+B’*Mx*B)*C0);

In order to minimize an equivalent transformed cost and still having the
same simple function, the augmented states z have to be transformed in the
on-line optimization task

[V,D]=eig(Mc);

d=sqrt(max(diag(D),tolerance));

invT=V*diag(1./d)/V;

invTT=blkdiag(eye(w.dim(1,1)),invT);

Select parameters are passed onto the on-line formulation, while some mi-
nor practical operations are performed in the final code segment.

Pt=invTT’*Qzi*invTT;

188 Gergely Takács et al

[R,S]=eig(Pt(dim+1:2*dim,dim+1:2*dim));

Sm=diag(S);

Q21=Pt(dim+1:2*dim,1:dim);

5.2.4.7 The Newton-Raphson Root Search Algorithm

The first problem in the on-line formulation is to find λ. For this, one needs to
use the Newton-Raphson procedure. The underlying concept is very simple
(Anstee, 2006) and in relation to the NRMPC procedure it can be stated as:

dΦ(λ)

dλ
=

0− Φ(λ)

λn−1 − λn
(5.4)

The procedure itself is also trivial and is represented by the following algo-
rithm:

At each sampling instant initialize with λ = 0 and perform an iteration
which calculates:

λn+1 = λn − Φ(λ)
dΦ(λ)
dλ

(5.5)

until the change in λ is smaller than the pre-determined tolerance, where
subscript n denotes the iterations of the Newton-Raphson procedure.

One may take advantage of expressing the matrix Q̂f as the an eigenval-
ue/eigenvector decomposition::

Q̂i
f = RΛiRT (5.6)

where R,Λ is defined by the eigenvalue - eigenvector decomposition of Q̂f and
i is the i-th power or inverse. Using the decomposition (5.6) we may denote
M as:

M = Rdiag(1./(1− λSv))R
T (5.7)

where “diag” denotes a diagonalization operation, Sv is a vector of eigen-
values gained from Λ and ./ denotes the piecewise division operation. This
substitutes the inversion of the full matrix expression (I − λQ̂f) in the on-
line algorithm. This expression occurs not only in evaluating the perturbation
vector f , but also in the function Φ(λ) and its first derivative.

Let mv = (1 − λSv) and mi = diag(1./m
(−i)
v), then:

Φ(λ) = xT
kW1m

2W2xk +W3 (5.8)

dΦ(λ)

dλ
= 2xT

kW4m
3W2xk (5.9)

5 Implementation of MPC Techniques to Real Mechatronic Systems 189

The equation yielding the perturbation vector f will successively transform
to

f = λRm1W4xk (5.10)

Matrices W1, W2, W3 can be calculated offline, therefore saving some time
avoiding unnecessary multiplications at every NR iteration and sample time.
Matrix W4 can be calculated before the NR process for the actual sample
time initiates:

W1 = Q̂xfR

W2 = WT
1

W3 = W1Λ
−1

W4 = −xT
kW3W2 + xT

k Q̂xxk − 1

5.2.4.8 Real-time Code Implementation to C

The on-line part of the NRMPC controller is simple. The algorithm does not
contain full matrix inversions, only essential piecewise inversions. Matrix and
vector operations within the NRMPC on-line algorithm are performed using
the Basic Linear Algebra Subprograms (BLAS) package.

The Simulink scheme implementing the NRMPC controller gains its feed-
back signal directly from a block reading the analogue input of the measure-
ment card. The scheme is visible in Fig. 5.5. The output from this block is
scaled according to the current settings of the LASER head, so its output
is given directly in millimetres. The File Scope block ensures real-time data
logging onto the xPC Target PC hard drive, which can be later re-used for
measurement processing.

Feedback measurement passes through a product default Kalman filter,
a part of the Signal Processing Blockset toolbox (MathWorks, 2007). The
Kalman filter is always enabled, and the number of filters is set to one. Initial
condition is assumed to be zero.

The estimated state, conforming to the dimensions of model considered
when creating the NRMPC controller, is passed onto a custom S-Function
block implementing the on-line NRMPC code in C language. This block takes
parameters R, T, Sm, Q21, Q11,K and C0 as its set-up and starting param-
eters. All of these parameters are the result of running the Matlab script
responsible for initialization and off-line NRMPC algorithm evaluation. The
S-Function block has the core C program and two custom functions (See
5.2.4.9) specified as modules.

The C program is contained within this S-Function, which has been created
using the S-Function Builder. In addition to the specified parameters includ-
ing their data type, input and output ports are declared. Here the input is the
estimated state, and output the scalar controller variable. Discrete sampling

190 Gergely Takács et al

xPC Target
 TET

TET

Unit Delay

z
1

PCI−6030E DA

PCI−6030E
National Instr.
Analog Output

1

PCI−6030E AD

PCI−6030E
National Instr.

Analog Input
1

NRMPC
Colntroller

enrmpcx0
u

iter

LASER

1.5

Kalman Filter

Kalman
Filter ZZZX_estX_estX_estX_estX_estX_est

Data Logging

File Scope
Id: 2

Amplifier
Compensation

1/20

Estimated
state

Deflection

Deflection

TET
Input

Input

Fig. 5.5 Block scheme of the NRMPC controller in Simulink, for the active vibration
cancellation application

time depends on the application. The NRMPC block provides voltage output
directly, therefore have to be compensated by the amplifier gain.

5.2.4.9 Custom C functions

In addition to the main C code and BLAS functions, there are two additional
custom C functions. One performs element wise division of two vectors, while
the other one is an algorithm-specific operation, scaling the elements of a
vector by a scalar value and subtracting it from 1. Both of these functions
have to be declared similarly to the BLAS routines as externals. Function
declarations are as follows:

extern double ddot_(int *,double *,int *,double *,int *);

extern void dediv_(int *, double *, double *, double *);

Element-wise division of two vectors is performed by the following func-
tion:

void dediv_(int *n,double *x,double *y,double *z)

{

int i = 0;

for (i; i < *n; i++)

{

z[i]=x[i]/y[i];

}

}

5 Implementation of MPC Techniques to Real Mechatronic Systems 191

where vectors x and y have a common dimension of n. Their elements are
indexed with the locally declared variable i. The function takes the dimension
n and vectors x and y as its input, and places the result in vector z.

After the unknown λ is calculated by the algorithm, each element of vector
x is scaled by it. This simple scaling operation is extended by an additional
step for computational efficiency. Each scaled element of x is subtracted from
1, and the result is placed in the vector y:

void descal_(int *n,double *lamN,double *x,double *y)

{

int i = 0;

for (i; i < *n; i++)

{

y[i]=1-*lamN*x[i];

}

}

The function takes scalar dimension n, vector x and scalar λ as its input. The
output is placed in y, where the dimensions of both vectors are n. An inside
loop performs the formerly described simple operation, where the elements
are indexed with the locally defined variables i.

5.2.4.10 The On-line NRMPC Code in C language

A pre-requisite for the correct functionality of this code is the correct call-
ing of external BLAS functions and the xPC optimized BLAS code library.
The two external custom functions described in 5.2.4.9 are also needed to be
present and properly declared at compilation time.

At the on-line control process, the following real-time NRMPC algorithm
is called on and evaluated at each sampling interval:

Local variables are declared at the beginning of the code. The BLAS func-
tions require character variables, where for example transposition of matrices
is controlled by N and T - as in not to transpose and transpose. Some of
these functions also require to mark, whether the upper or lower triangular
portion of a symmetric matrix is to be read in.

The order of the system is declared, just as some common values as zero,
one or minus one. The value of λ is set to zero at starting time, tolerance and
error thresholds are also stated. Finally local matrix and vector variables are
declared as well:

char *chn="N",*cht="T", *chu="U", *chl="L";

int onei=1, order=2;

double one=1.0, mone=-1.0, zero=0.0, lamN=0,...

...tol=1e-5, err=2e-5;

192 Gergely Takács et al

double W0, W2, fval, fderval;

double tempv[2], tempm[4], vec[2], tempv2[2],...

... W1[2], W1d[2], W1dd[2], m[2], f[2];

After the local variable declarations are expressed, the following mathe-
matical operation is performed in two steps:

W0 = xT
0 Q11x0 − 1 (5.11)

where x0 marks the current observed state, and Q11 is a partition of the
matrix defining the invariant ellipsoid, as calculated in the off-line process.
W0 is a by-product, resulting the logical simplification of matrix operations.
The first code line creates a temporary vector, a result of the matrix-vector
operation Q11x0 while the second finishes the task by evaluating the rest:

dsymv_(chu,&order,&one,Q11,&order,...

...x0,&onei,&zero,tempv2,&onei);

W0 = ddot_(&order,x0,&onei,tempv2,&onei)-1;

In case the resulting vector will be W0 ≤ 0, the following code portion
calculates the next by-product, a vector re-used in later code portions:

v = −(RTQ21x0)./S (5.12)

where v denotes the vector result of this operation, and ./ is an element-
wise division. This operation is carried out in two steps. First, a general
matrix-matrix multiplication saves the result of RTQ21 into a temporary
matrix. Then the expression v is calculated by multiplying the result with
the negative of the current state measurement, and its elements divided by
vector S:

if(W0>=0){

dgemm_(cht,chn,&order,&order,&order,&one,...

...R,&order,Q21,&order,&zero,tempm,&order);

dgemv_(chn,&order,&order,&mone,tempm,&order,

...x0,&onei,&zero,W1,&onei);

dediv_(&order,W1,Sm,vec);

Another partial result is calculated, by evaluating a dot product of two
vectors and adding W0 to the result:

W2 = -ddot_(&order,vec,&onei,W1,&onei)+W0;

where in case W2 ≥ 0, the perturbation vector can be directly calculated by
evaluating:

f = −Rv (5.13)

where f is the perturbation vector, R is an input from the off-line optimiza-
tion, and v is a vector product re-calculated at each sampling interval.

5 Implementation of MPC Techniques to Real Mechatronic Systems 193

if(W2 >= tol)

{dgemv_(chn,&order,&order,&mone,R,&order,...

...vec,&onei,&zero,f,&onei);}

The other option in the else construct is to evaluate for the unknown λ
using the Newton-Raphson procedure. This conditional statement launches a
while loop, which cycles through the NR procedure, until the floating point
absolute value of error is larger than the pre-set tolerance.

The first part of this code segment serves only to evaluate the matrices
used in the NR loop. These simplifications increase computational speed and
are based on the assumptions about function Φ(λ) and its i-th derivatives.

The second part of the following code segment is the Newton-Raphson
algorithm itself. Here the first step is to evaluate the value of Φ(λ) and its
derivative. The ratio of the function value and its derivative is the error,
which is subtracted from the result for λ from the previous step:

else{

while(fabs(err)>=tol){

descal_(&order,&lamN,Sm,m);

dediv_(&order,W1,m,W1d);

dediv_(&order,W1d,m,W1dd);

fval=ddot_(&order,vec,&onei,W1dd,&onei)+W2;

fderval=2*ddot_(&order,W1d,&onei,W1dd,&onei);

err=fval/fderval;

lamN=lamN-err;}

Since the value of λ has been acquired in the previous step, the only task
left is to evaluate for the perturbation vector f , which in this case can be
also stated as:

f = −λTRW1d (5.14)

This single mathematical operation is divided into three parts for the C
code. First the value of λ is negated, then a temporary vector is created from
the product of vtemp−λRW1d. The final step is to calculate f by multiplying
this temporary vector by T from the left, f = Tvtemp:

lamN=-lamN;

dgemv_(chn,&order,&order,&lamN,R,...

...&order,W1d,&onei,&zero,&tempv,&onei);

dsymv_(chu,&order,&one,T,&order,...

...tempv,&onei,&zero,f,&onei);}

With the perturbation value calculated in the previous step, the final task
is only to evaluate the current control move according to u = Kx0 + C0f .
This is performed in the C code by summing up results of two vector dot
operations:

u[0] = ddot_(&order,K,&onei,x0,&onei)+

194 Gergely Takács et al

+ddot_(&order,C0,&onei,f,&onei);}

The other option implies that the loop is already optimal, thus the pertur-
bation f = 0. There is no need for optimization, this is part of an ”if - than -
else” decision. In this case the fixed feedback matrix is used to calculate the
control move from the observed state by evaluating u = Kx0. This is again
a simple vector dot product:

else{

u[0] = ddot_(&order,K,&onei,x0,&onei);}

5.2.5 Multi-Parametric MPC

5.2.5.1 Introduction

This subsection introduces the use of multi-parametric programming based
MPC in active vibration attenuation.

The Multi-Parametric Toolbox (MPT) is a freely available and distributed
Matlab toolbox for the design, analysis and rapid deployment of PWA con-
trollers Kvasnica et al (2004, 2006). The multi-parametric control laws cre-
ated via the MPT toolbox are not only usable in Matlab, but it is possible to
deploy them onto rapid software prototyping platforms using the Real-Time
Workshop. More details about the MPT toolbox can be found in Chapter 4.

This workbook assumes the current release (Version 2.6.2) of the toolbox,
available online1. Matlab is assumed to be used for multi-parametric con-
troller calculation and simulations, while the real time code is assumed to be
implemented using the xPC Target protocol and Simulink.

5.2.5.2 Off-line Controller Computation

The control objective assumed in this example is to regulate toward origin,
since the beam equilibrium is located at the origin of the state space. Let the
cost function to be set as a quadratic (2-norm). Penalization and constraints
are identical to the NRMPC and QPMPC case: input penalty R = 10E−4,
state penalty matrix was set to Q = CTC. Input constraints are set to ±120V
and output or state constraints are not engaged.

We begin with loading the system model:

load n4s2A.mat

sysStruct.A = n4s2.A;

sysStruct.B = n4s2.B;

1 Software package and extended documentation is available at:
http://control.ee.ethz.ch/˜mpt/

http://control.ee.ethz.ch/~mpt/

5 Implementation of MPC Techniques to Real Mechatronic Systems 195

sysStruct.C = n4s2.C;

sysStruct.D = 0;

The process is followed by naming the state variables and setting con-
straints on the inputs. Output constraints are set to infinity, therefore prac-
tically they are neglected:

sysStruct.StateName{1} = ’x1’;

sysStruct.StateName{2} = ’x2’;

sysStruct.umin = -120;

sysStruct.umax = 120;

sysStruct.ymin = -inf;

sysStruct.ymax = inf;

Sub-optimality level is zero, this means that the software generates an
optimal controller with a quadratic cost function - the norm is set to 2. Input
and state penalties are defined as well along with the controller horizon:

probStruct.norm=2;

probStruct.subopt_lev=0;

probStruct.Q=sysStruct.C’*sysStruct.C;

probStruct.R=1e-4;

probStruct.N=70;

xPC Target
 TET

TET
Unit Delay

z

1
PCI−6030E DA

PCI−6030E
National Instr.
Analog Output

1

PCI−6030E AD

PCI−6030E
National Instr.

Analog Input
1

MPMPC Colntroller

mpmpcx0
u

r

LASER
Gain

1.5

Kalman Filter

Kalman
Filter ZZZX_estX_estX_estX_estX_estX_est

Data Logging

File Scope
Id: 2

Amplifier
Compensation

−K−

Estimated
State Position

Input

Input

Fig. 5.6 Block scheme of the MPMPC controller in Simulink, for the active vibration
cancellation application

The next step is the most important of all, that is the calculation of the con-
troller regions. The main calling function takes the system and the problem
structure as an argument and outputs the multi-parametric MPC problem:

196 Gergely Takács et al

ctrlex=mpt_control(sysStruct,probStruct);

Regions of the controller can be determined by:

regions=length(ctrlex);

The controller can be saved in its original structure, so it can be later
loaded into the workspace or used in off-line simulations via the standard
Matlab interface:

save ctrlex.mat ctrlex;

The export of the controller into a C code is very simple and straightfor-
ward, and it can be carried out using the following command:

mpt_exportc(ctrlex);

One may need such data as the volume of the region of attraction. This for
example may be used to compare different controller designs or models. The
total volume of the region of attraction is the sum of the individual volumes,
and can be simply calculated by:

result.areareach=sum(volume(ctrlex.Pn))

The maximal absolute deflection of the beam can be calculated by creating
a convex hull around the region of attraction, transforming this into a vertex
representation and by multiplying the individual edges of the region of at-
traction with the output matrix C we may get the direct output equivalents.
The maximum of this is the maximal possible deflection at the beam tip:

[P,Pn]=hull(ctrlex.Pn);

result.V=extreme(P);

result.maxdef=max(abs(sysStruct.C*result.V’)’);

5.2.5.3 On-line Controller Computation

MPT Toolbox features rapid code deployment functionality. The controller
stored as a Matlab multi-field variable and can be exported as a stand alone
C code by using the command mpt exportc(ctrl), where ctrl is the controller
name. This C code can be then integrated into a given application.

The MPMPC controller has been integrated into a custom S-Function
block. The function code built through the S-Function Builder takes the state
vector as its input and has a single output, the direct controller voltage. The
core code is very simple, and involves calling the routine supplied by the MPT
Toolbox in the form:

double region;

region = mpt_getInput(x0,u);

5 Implementation of MPC Techniques to Real Mechatronic Systems 197

−4 −3 −2 −1 0 1 2 3 4
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x1

x2

Fig. 5.7 MPMPC controller regions plotted in two dimensional state-space.

where x0 is the state vector obtained through an observer block, u is the con-
troller output. An additional variable region returns the index number of the
polyhedral region corresponding to the acquired current state measurement.

For the correct functionality of the S-Function block the sampling rate is
defined, so is the external function declaration of the MPMPC routine:

extern double mpt_getInput(double *,double *);

and a declaration of the C source file as well:

mpt_getInput.c

The process of associating a state with a region and the corresponding
PWL function is repeated at each sampling interval and is implemented in the
source file mpt getInput.c, a part of the MPT Toolbox. The controller look-up
tables are included in a separate file referenced in this work asmpt getInput h
and declared within the function source itself.

The block scheme implementing the MPMPC controller loop along with
data acquisition, D/A, A/D conversion and other functional parts is featured
in Fig. 5.6.

Fig. 5.7 shows multi-parametric MPC controller regions plotted in a two
dimensional state-space. Controller partitions shown on the image belong
to a controller based on the second order model of the experimental device
and conforming to the example presented here. Prediction horizon here is
70 steps. The region of attraction is divided into 10099 polyhedral regions
with associated control laws. The figure shows partitions without additional
optimization or merging.

198 Gergely Takács et al

−4
−2

0
2

4

−2
−1

0
1

2
−40

−20

0

20

40

x
1

x
2

U
* 1(x

)

Fig. 5.8 MPMPC controller input in volts.

MPMPC controller action expressed in Volts is plotted against the state
space in two dimensions in Fig. 5.8. Note how the control law is essentially
reduced to a switching behaviour. In fact many real and simple vibration
control systems utilize this highly simplified saturated effect.

Fig. 5.9 shows the plot of the quadratic cost function value J∗, related to
the polytopic controller regions in state-space.

5.2.6 Conclusion

This section has been dealing with the implementation of model predictive
control algorithms in the engineering field of active vibration attenuation. Due
to the nature of the problem very short sampling times are required, moreover
large actuator asymmetry can render the MPC problem quite formidable.

If the control process is augmented with guaranteed stability and feasibility
requirements, the useful states are limited inside a portion of the otherwise
infinitely large state-space. This portion of the state-space is called the region
of attraction. If the expected deformations of under-damped systems belong
to a wide scale region, we have to ensure a matching region of attraction.

A good example of such and similar vibrational systems are for example
helicopter rotor beams or solar panels in a microgravity environment. This
chapter introduced a simple laboratory system, which emulated the physical
properties and dynamic behaviour of the aforementioned class of engineering

5 Implementation of MPC Techniques to Real Mechatronic Systems 199

−5

0

5

−4
−2

0
2

4
0

50

100

150

200

250

300

350

x
1

x
2

J* (x
)

Fig. 5.9 MPMPC cost function J∗(x).

problems. Details have been given on the hardware implementation of this
laboratory test bench, so the if interested one may replicate the setup.

This has been followed by the introduction of three different MPC imple-
mentations: traditional dual-mode infinite horizon quadratic programming
based MPC, pre-computed explicit multi-parametric programming based
MPC and finally a sub-optimal method called Newton-Raphson’s MPC. All
of these methods are computationally efficient in some way or other: either
by design or by implementation details.

A thorough detail is given on all three methods. Although their imple-
mentation is connected with the vibration detail, this section may be used as
a guide to create a functional MPC controller for any application. Not only
the on-line part of the algorithms is discussed in detail, but the off-line part
as well. The approach utilized in this chapter is down to Earth and simple,
lacking any sort of over-complicated theoretical discussions. Moreover (espe-
cially in the case of the QP and MP based implementations) if possible off
the shelf and freely available solutions have been preferred.

200 Gergely Takács et al

5.3 Implementation of Predictive Control of Air-Fuel
Ratio in Spark Ignition Engine

5.3.1 Introduction

A run of a spark ignition engine (SI) is highly dependent on the mixture of
the sucked air and injected fuel present in the cylinder, waiting to be ignited
by the spark. Incorrect ratio of this two components may lead to the poor
engine power, ineffective functionality of the catalytic converter resulting in
higher level of emissions polluting the environment and in the extreme case
this can lead to the engine stoppage. Due to this reason it is crucial to keep
the air/fuel ratio (AFR) at the stoichiometric level, which means, that both,
the air and the fuel are completely combusted. Due to above mentioned rea-
sons and all the time tightening emission standards the car producers are
improving the control of the air/fuel ratio.
Traditional control of air/fuel ratio is based on a feedforward control using
predefined tables determining how much fuel has to be injected into a cylin-
der, based on the information from the mass air flow meter. This fuel amount
is subsequently corrected using the information from the lambda probe, so
the stoichiometric mixture can be reached. Due to a lambda probe position
(at the engine exhaust) a delay arises, causing an improper feedback cor-
rection at the unstable engine regimes, like acceleration, or deceleration. On
the other side, this kind of control guarantees stability and robustness at all
conditions and therefore is still preferred by car producers, despite its disad-
vantages in control.
The academic field have started to publish other kinds of air/fuel control,
mostly model-based ones. The model-based approaches are bringing good
quality of control, but are also more sensitive to the model precision and is-
sues with stability and robustness appear. A survey through popular ”mean
value engine modeling” is described in Bengtsson et al (2007). This analytical
way of engine modeling is very clear, but requires exact knowledge of the sys-
tem and the model error has to be taken into account explicitly. Other ways
of a model acquisition are based on the experimental identification (black box
modeling). Works of Zhai et al (2010), Zhai and Yu (2009) and Hou (2007)
are specialized in employment of neural networks, while Mao et al (2009) uses
for engine modeling CARIMA models.
In the engine control itself became popular fuzzy logic (Hou (2007)), neural
network control (Arsie et al (2008)) and model predictive control (MPC) ap-
proaches (Lorini et al (2006) and Muske and Jones (2006)). General topics
on an issue of stability and robustness in MPC can be found in Mayne et al
(2000b), or Zeman and Rohal-Ilkiv (2003).
Our approach, introduced in Polóni et al (2007) is utilizing an analytical
model predictive controller with a penalization of a terminal state. It uses
a multi-model approach using a weighted net (sugeno-type fuzzy logic) of

5 Implementation of MPC Techniques to Real Mechatronic Systems 201

autoregressive models (ARX) as a system model. The ARX models were
identified in the particular working points of the engine as black box mod-
els. This method of engine modeling offers an easy way of ”global nonlinear
system model”acquisition with subsequent utilization in the model based sys-
tem control. The preliminary real-time predictive control results presented in
this paper indicate that the proposed controller could be suitable alternative
toward the air/fuel ratio control through the look-up tables.

5.3.2 Hardware Description

The engine test bench consists of several components, building up together a
flexible and freely programmable system, perfectly suitable for engine control
and research.
One part of the test bench is a combustion engine itself, rigidly connected to
the eddy current brake. As an interface and a communication part is utilized
a rapid control prototyping system based on dSpace hardware. This allows to
execute the designed controllers of the air/fuel ratio on the engine, instead
of the original electronic control unit (ECU).

5.3.2.1 Combustion Engine

For the experiments and measurements has been used a spark ignition engine
from the Volkswagen Polo 1.4 16V (Fig. 5.10). It is a four-cylinder in-line
engine with a DOHC valve train.

Engine characteristics:

• Engine code: AUA
• Volume: 1390ccm
• Number of cylinders: 4
• Number of valves: 16
• Bore x stroke: 76.5 x 75.6mm
• Compression ratio: 10.5
• Power: 55kW (75k) at 5000 rpm
• Torque: 126Nm at 3800 rpm
• Injection system: multipoint, sequential, 1 injector per valve
• Ignition: electronic, independent injectors
• Fuel: Natural 95
• Emissions processing: three way catalys

The original Bosch ECU has been completely replaced by a rapid proto-
typing system. It is dedicated for the control of power stages, as injectors and
ignitors, as described in the Subsection 5.3.2.3.

202 Gergely Takács et al

Fig. 5.10 Spark ignition engine VW Polo 1.4 with a brake

5.3.2.2 Engine Brake (Dynamometer)

For the sake of identification experiments resulting in acquisition of the local
ARX models of the air and fuel path it was necessary to keep the engine at
predefined working points. This aim has been reached by utilizing a Schenck
dynamometer (Fig. 5.11), loading the engine and so keeping it at the desired
revolutions.

The operation of a used brake is based on an eddy current principle. The
braking torque is excited by the electromagnetic induction of a coil, which
excites eddy currents in the brake’s rotor. The brake supports predefined
braking profiles, and also manual control of the braking moment. The brak-
ing moment is measured by a tensometric force sensor fixed to an arm.

Basic brake features:

• maximal revolutions: 10 000 rpm covered by a voltage output: 0 - 10V
• maximal braking torque: 750Nm covered by a voltage output: 0 - 10V

5 Implementation of MPC Techniques to Real Mechatronic Systems 203

The control unit of a brake is an independent device allowing the manual
brake control by analog voltage signals. It includes the following circuits:

• “thyristor phase” control circuit (braking moment)
• revolutions measurement circuit
• braking moment measurement circuit

The“thyristor phase”control circuit is based on the integrated circuit (IC)
TCA785. Function of this IC is a phase control of a brake’s power stage. The
control voltage span is 0 - 10V, corresponding to the braking moment. The
braking moment is used for the aim of:

• regulation to constant revolutions, based on a discrete PI controller
• regulation to a particular braking moment

Fig. 5.11 Engine brake

5.3.2.3 Rapid Control Prototyping System

The computational unit necessary for the real-time implementation of the
MPC control is based on a powerful and freely programmable control system
based on dSpace and RapidPro units; or “Rapid Control Prototyping System”
(RCP), (Fig. 5.13, dSPACE GmbH. (2009)).
It is built up on the processor board ds1005 and hardware-in-loop platform

204 Gergely Takács et al

dS2202 HIL.

The main components are (Fig. 5.12):

• DS1005 PPC Board - processor module
• DS2202 HIL I/O Board - module of input/output interface
• DS4121 ECU Interface Board - interface for the communication with the

ECU

DS1005 PPC Board

DS1005 PPC Board is a core processor module of the dSpace system. It has
a huge computational power for the real-time applications and creates an
interface between the input/output circuits and the host computer. DS1005
is suitable for the systems with fast dynamics with a high computational
load.
Basic features:

• processor PowerPC 750GX, 1 GHz
• fully programmable from Simulink environment
• fast communication between dSpace modules over PHS bus

Module DS2202 HIL I/O Board

The DS2202 HIL I/O Board module has been designed for the hardware-in-
the-loop simulations in automobile industry applications. It supports mea-
surements and and control of various peripheral devices typical for different
automobile systems.
Module features:

• 20 D/A channels a 16 A/D channels
• 38 digital inputs and 16 digital outputs
• supports 12 to 42V voltage systems

Modul DS4121

Module DS4121 is an interface between the ECU or RapidPro unit and the
dSpace modular system. It has a support for two independent ECUs. The
flexibility of this solution allows to control the power stages of the engine,
gearbox, or the valve train for a up to 12 cylinder engine.

5 Implementation of MPC Techniques to Real Mechatronic Systems 205

Module features:

• supports the communication with 8-, 16- and 32-bit architecture of micro
controllers

• has 2 LVDS channels for fast communication
• includes interfaces for MATLAB/Simulink

Fig. 5.12 Modules: DS1005; DS2202; DS4121

The RCP ensures sufficient headroom for the real-time execution of com-
plex algorithms (Arsie et al (2008)) and lets all engine tasks to be controlled
directly. Also, the customized variants of the controller can be performed
immediately.

Typical RCP system consists of:

• A math modeling program (prepared in Simulink)
• Symbolic input/output blocks
• A real-time target computer (embedded computer with an analog and

digital I/O)
• A host PC with communication links to target computer
• A graphical user interface (GUI) which enables to control the real time

process

The RCP system enables to use a support in the form of embedded func-
tions which make the preparation of algorithms easy and fast. It is a great
help, because one can then concentrate on significant problems (development
and debugging of algorithms) without the spending time on not so important
tasks (how to handle features of RCP system at low level programming).

The RCP is equipped with many input and output ports implemented on
the terminal board (Fig. 5.14), managing the whole communication, between
the main computational unit and the engine.
To the RapidPro is directly connected the knock sensor and the broadband
lambda probe. The crankshaft and camshaft sensors are attached through
a converter case, developed during the project lifetime. It is utilized by air
temperature and pressure sensor and the cooling water and oil temperature
sensor, as well. Among other functions it indicates correct functionality of
injectors, igniters and oil pressure sensor. Actual battery voltage is displayed.
The security circuits protect the engine by switching off the power stages and
the fuel pump, if an error occurs.

206 Gergely Takács et al

Fig. 5.13 Rapid control prototyping scheme

5.3.3 AFR Model Design

5.3.3.1 Air/Fuel Ratio

The model of the air/fuel ratio dynamics λ of a spark ignition engine is based
on the mixture, defined as mass ratio of the air and fuel in a time step k. Due
to the fact, that the air mass flow is measured as an absolute value, it was
necessary to integrate this amount during the particular time and express the
air and fuel quantity as relative mass densities (grams/cylinder). Hence, the
air/fuel ratio is defined, as:

λ(k) =
ma(k)

Lthmf (k)
(5.15)

Where ma(k) and mf (k) are relative mass amounts of air and fuel in a
cylinder and Lth ≈ 14.64 is the theoretical amount of air necessary for the
ideal combustion of a unit amount of fuel.
Considering the λ(k) modeling, the engine has been divided into two subsys-
tems with independent inputs, namely into:

air path with the air throttle position
as the disturbance input, and

fuel path with the input of fuel injector opening time.

5 Implementation of MPC Techniques to Real Mechatronic Systems 207

Fig. 5.14 RapidPro unit with a terminal board

Fig. 5.15 Case with converters and security circuits

Another disturbance-like acting quantity were engine revolutions, implicitly
included in the engine model, particularly for each working point. The output
ratio of both paths is the value of λ.

208 Gergely Takács et al

5.3.3.2 SI Engine Modeling using ARX Models

The engine modeling is based on the weighted linear local model with single
input single output (SISO) structure (Polóni et al (2008)). The parameters
of local linear ARX models with weighted validity (Murray-Smith and Jo-
hanssen (1997)) are identified to model AFR nonlinear dynamics. The prin-
ciple of this nonlinear modeling technique is in partitioning of the engine’s
working range into smaller working points.

A net of local ARX models weighted for a particular working point φ is
defined, as:

∑nM

h=1 ρh(φ(k))Ah(q)y(k) =∑nM

h=1 ρh(φ(k))Bh(q)u(k) +
∑nM

h=1 ρh(φ(k))ch + e(k)
(5.16)

defined by polynomials Ah and Bh:

Ah(q) = 1 + ah,1q
−1 + . . .+ ah,ny

q−ny

Bh(q) = bh,1+dh
q−1−dh + . . .+ bh,nu+dh

q−nu−dh
(5.17)

where symbolics q−i denotes a sample delay, e.x. q−iy(k) = y(k − i), ah,i
and bh,(j+dh) are parameters of h-th local function and dh is its delay. Pa-
rameter nM represents the number of local models.

The ρh denotes a weighting function for a particular ARX model (see
Sec. 5.3.3.4) and e(k) is a stochastic term with a white noise properties.
The engine working point itself is defined by engine revolutions nen and the
throttle valve position tr, hence: φ(k) = [nen(k), tr(k)]

T . The absolute term
ĉh of the equation is computed from the steady state values of the system
output ye,h and the system input ue,h, as:

ĉh = ye,h + ye,h

ny∑

i=1

âh,i − ue,h

nu∑

j=1

b̂h,j (5.18)

The model output is computed from the equation:

ys(k) =
∑nM

h=1 ρh(φ(k))

·
(∑ny

i=1 âh,iq
−iys(k) +

∑nu
j=1 b̂h,(j+dh)q

−j−dhu(k) + ĉh

)
(5.19)

Introducing the estimated parameter vector θ̂h and the regression vector
γ(k), equation (5.19) becomes:

ys(k) = γT (k)

nM∑

h=1

ρh(φ(k))θ̂h +

nM∑

h=1

ρh(φ(k))ĉh (5.20)

5 Implementation of MPC Techniques to Real Mechatronic Systems 209

5.3.3.3 Model Identification

Parameters of the local ARX models have been estimated from the data
acquired from the exhaust gas oxygen sensor and an air flow sensor. The
identification has been designed so, that the dynamics of the air path and
fuel path stayed uncoupled. Dynamics of both paths were measured indi-
rectly.
The first experiment started at the stoichiometric value of λa in the opera-
tion point φ. To excite the air path dynamics, the throttle valve position was
oscillating around its steady position according to a pseudo-random binary
signal (PRBS, Fig. 5.16), while the fuel injectors were delivering constant fuel
mass mf,e. The change in λa value has been recorded. During the experiment
the engine had been braked at constant revolutions.
The PRBS signal is a signal changing its value binary, that means from one
level to another with a pseudo-randomly changing period (Fig. 16(a)). This
period has to be chosen with respect to the identified system so, that for
even smallest change in PRBS a clear system response can be noticed. This
condition has to be ensured, to excite the entire system dynamics and con-
sequently to perform a relevant system identification. The Fig. 16(b) shows
an example of a correctly identified system with a good fit, compared to the
original data (system output).
The identification of the fuel path dynamics has been done similarly, but with
the fixed throttle valve delivering a constant air massma,e. The PRBS is vary-
ing the fuel injectors’ opening time. In both experiments it was necessary to
wisely propose a PRBS, so that the air/fuel mixture is always ignitable.
The local ARX models can be subsequently determined from the measured
values of instantaneous λa(k) and λf (k) belonging to the air path and fuel
path, utilizing relative air and fuel mass densities, as:

ma(k) = ma,e(φ)λa(k) (5.21)

mf (k) =
mf,e(φ)

λf (k)
(5.22)

The final formula describing the aif/fuel ratio dynamics is built up of local
linear ARX models of the air and fuel paths is in the form:

λs(k) =
1

Lth

·
[
γT
a (k)

∑nA
h=1

ρa,h(φ(k))θ̂a,h+
∑nA

h=1
ρa,h(φ(k))ĉa,h

γT
f
(k)

∑nF
h=1

ρf,h(φ(k))θ̂f,h+
∑nF

h=1
ρf,h(φ(k))ĉf,h

]
(5.23)

Where:

γ is the regression vector of system inputs and outputs
nA is the amount of working points
ρ is the interpolation function
φ is the vector of a working point

210 Gergely Takács et al

θ is the vector of ARX parameters
c is the absolute term of an ARX model

In accordance with the general model structure presented, the key variables
used for the air- and fuel path are defined in the Table 5.1 and coupled with
the general variables used in the presented formulas.

Table 5.1 Symbol connection between general expression and the model

general air-path fuel-path operating
symbol model model point
y(k) ma(k) mf (k)
u(k) tr(k) uf (k)
γ(k) γa(k) γf (k)

θ̂h θ̂a,h θ̂f,h
ρh(φ(k)) ρa,h(φ(k)) ρf,h(φ(k))
ĉh ĉa,h ĉf,h
φ(k) [ne(k), tr(k − δ)]T

The schematics of the engine identification, described above in this Section
is depicted in Fig 5.19. The particular identification results of the air- and
fuel paths are shown in Fig. 5.17 and Fig. 5.18, respectively. The figures show
static characteristics of both engine paths, defining the relative amount of air
and fuel flowing through the engine as a function of throttle valve opening
angle, or the injector opening time, in the case of fuel injectors; at specific
engine revolutions. The step responses of both engine subsystems for various
engine revolutions are depicted, as well.
The identified model parameters are situated in Tab. 5.2 and 5.3. These are
at the same time the final results of the identification and they used for the
prediction of future states of the system in the controller.

5 Implementation of MPC Techniques to Real Mechatronic Systems 211

200 205 210 215
18.5

19

19.5

20

20.5

21

21.5

T
h
ro
tt
le

v
a
lv
e
p
o
si
ti
o
n

Time (s)

(a) Excitation PRBS signal

200 205 210 215

−10

−5

0

5

10

L
a
m
b
d
a
(-
)

Time (s)

measurement

model, fit:74.61%

(b) Response curve of the simulated system to the PRBS excitation

Fig. 5.16 ARX identification at a particular working point (air path)

212 Gergely Takács et al

18 19 20 21 22 23 24

80

100

120

140

160

R
el
a
ti
v
e
a
m
o
u
n
t
o
f
a
ir

(m
g
/
cy

li
n
d
er
)

Throttle valve position (deg)

1500 rpm

2000 rpm

2500 rpm

(a) Static characteristics of the air path

0 0.5 1 1.5 2 2.5 3 3.5
0

5

10

15

A
ir

m
a
ss

fl
ow

(m
g
/
cy

li
n
d
er
)

Time (s)

OP1: 13.44mg/cylinder @ 1500rpm

OP2: 09.84mg/cylinder @ 1500rpm

OP3: 07.12mg/cylinder @ 1500rpm

OP4: 12.52mg/cylinder @ 2000rpm

OP5: 11.39mg/cylinder @ 2000rpm

OP6: 09.41mg/cylinder @ 2000rpm

OP7: 10.50mg/cylinder @ 2500rpm

OP8: 10.41mg/cylinder @ 2500rpm

OP9: 09.17mg/cylinder @ 2500rpm

(b) Response curve of the air path in the operating points

Fig. 5.17 Results of the air path identification

5 Implementation of MPC Techniques to Real Mechatronic Systems 213

5 5.5 6 6.5 7 7.5 8 8.5 9
6.5

7

7.5

8

8.5

9

9.5

10

10.5

R
el
a
ti
v
e
a
m
o
u
n
t
o
f
fu
el

(m
g
/
cy

li
n
d
er
)

Injector opening time (ms)

1500 rpm

2000 rpm

2500 rpm

(a) Static characteristics of the fuel path

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

OP1: 1.54g/s @ 1500rpm
OP2: 1.36g/s @ 1500rpm
OP3: 1.32g/s @ 1500rpm
OP4: 1.42g/s @ 2000rpm
OP5: 1.42g/s @ 2000rpm
OP6: 1.29g/s @ 2000rpm
OP7: 1.12g/s @ 2500rpm
OP8: 1.21g/s @ 2500rpm
OP9: 1.15g/s @ 2500rpm

Time (s)

(b) Response curve of the fuel path in the operating points

Fig. 5.18 Results of the fuel path identification

2
1
4

G
erg

ely
T
a
k
á
cs

et
a
l

Table 5.2 Air path model parameters

h,OP θ̃a,h = [ãh,1 ãh,2 ãh,3 ãh,4 ãh,5 b̃h,1 b̃h,2]
T ch tr(◦) ma,e(mg/v.) ot.(rpm)

1 -0.5558 0.1253 -0.0095 0.0235 0.0204 0.5164 7.6000 - 72.2300 18 122.5 1500
2 -0.3492 0.0299 -0.0104 0.0119 -0.0024 0.6424 6.0450 - 37.8500 20 141.5 1500
3 -0.2938 0.0698 0.0331 0.0251 0.0295 0.5599 5.5910 - 0.1069 22 157.5 1500
4 -0.2399 0.0288 0.0148 0.0188 0.0175 2.8360 7.6770 -109.9813 19 107.5 2000
5 -0.2534 0.0522 0.0292 0.0274 0.0266 2.3090 7.7400 - 98.4255 21 127.5 2000
6 -0.1782 0.0245 0.0054 0.0032 -0.0023 2.6220 5.4040 - 60.9862 23 145.0 2000
7 -0.2118 0.0221 0.0126 0.0247 0.0188 2.2820 6.8110 - 98.1203 20 95.7 2500
8 -0.1633 0.0186 -0.0175 0.0146 -0.0220 3.1980 5.4450 - 98.2250 22 114.1 2500
9 -0.1364 0.0486 0.0383 0.0167 0.0464 3.2560 6.0385 - 89.0348 24 130.3 2500

Table 5.3 Fuel path model parameters

h,OP θ̃a,h = [ãh,1 ãh,2 ãh,3 ãh,4 ãh,5 b̃h,1 b̃h,2]
T ch u(ms) mf,e(mg/v.) ot.(rpm)

1 -0.2516 -0.0827 -0.0771 -0.0636 -0.0431 0.1463 0.5987 -0.9737 6.658 8.2735 1500
2 -0.2132 -0.0728 -0.0636 -0.0441 -0.0373 0.1474 0.6242 -0.7749 8.166 9.7026 1500
3 -0.2470 -0.0602 -0.0607 -0.0377 -0.0448 0.1467 0.5805 -0.8746 9.296 10.7074 1500
4 -0.1571 -0.0402 -0.0835 -0.0181 -0.0579 0.3897 0.5257 -0.4549 5.668 7.3588 2000
5 -0.1888 -0.0475 -0.0865 -0.0203 -0.0601 0.3509 0.4987 -0.9676 7.275 8.7353 2000
6 -0.1555 -0.0299 -0.0667 -0.0183 -0.0428 0.4020 0.4820 -0.7991 8.625 9.9395 2000
7 -0.1217 -0.0218 -0.0471 -0.0077 -0.0168 0.5273 0.3537 0.7585 4.987 6.5651 2500
8 -0.1715 0.0025 -0.0562 -0.0081 -0.0227 0.5931 0.3097 -0.0154 6.437 7.7898 2500
9 -0.1935 0.0083 -0.0478 -0.0136 -0.0041 0.6168 0.2477 0.0373 7.663 8.8919 2500

5 Implementation of MPC Techniques to Real Mechatronic Systems 215

nen

tr

uf

Comb. engine

(real process) λa, λf

identification

ms,a

Air path

Fuel path

ms,f

1

Lth

λs

Fig. 5.19 Scheme of the identification process

5.3.3.4 Weighting Functions

The full working range of the engine has been covered by discrete amount of
local linear models (LLMs), identified at particular working points. Due to a
request of a smooth and continuous global engine model, design of weighting
functions, defining validity of each local model according to an instantaneous
working point of the engine was crucial. There were designed particular in-
terpolation functions for every LLM, assigning it 100% validity exactly at
the belonging working point with decreasing trend depending on the change
of the throttle valve opening tr or the engine revolutions nen. The Gaussian
functions were used as the local weighting functions, due to their suitable
shape fulfilling approximation properties. Each one is defined, as:

ρ̃h(φ(k)) =

exp

[
−
[
∆nen(k) ∆tr(k)

]
[1

σ2
h,1

0

0 1
σ2
h,2

][
∆nen(k)
∆tr(k)

]]
(5.24)

The choice of tuning parameters σh,1 = 250 and σh,2 = 0.8 used in the
weighting functions has been chosen experimentally, awaiting continuous and

216 Gergely Takács et al

smooth output of the modeled system. At the same time it has been found
out, that there can be used identical weighting functions for weighting of an
air and fuel path parameters, as well.
All the weighting functions were at the end normalized (5.25), so the sum
of values of all weighting functions belonging to a particular working point
(Fig. 5.20), equals exactly one, or:

∑nM

h=1 ρh(φ(k)) = 1.

ρh(φ(k)) =
ρ̃h(φ(k))∑nM

h=1 ρ̃h(φ(k))
(5.25)

1500

2000

2500

18

20

22

24

0

0.2

0.4

0.6

0.8

n
en

 (rpm)t
r
 (deg)

re
l.

w
ei

gh
t (

−
)

Fig. 5.20 Relative weighting Gaussian functions

5.3.4 Predictive Control

The strategy of an “exceeding oxygen amount” control using a predictive
controller is based on a prediction of a controlled quantity λ and subsequent
minimization of a chosen cost function on the horizon Np expressed in a
standard quadratic form. The value of λ is predicted by utilization of partially
linear models of the air and fuel path. Through the independent air path
model the proper amount of fuel is predicted and enters the cost function J .
Hence, the target of the cost function minimization is to determine such a
control law, that the measured system output λ is stoichiometric. The second
modeled subsystem, the fuel-path, is an explicit component of the objective
function where the amount of the fuel is the function of optimized control
action (Polóni et al (2008)).

5 Implementation of MPC Techniques to Real Mechatronic Systems 217

5.3.4.1 Predictive Model

The applied control strategy is based on the knowledge of the internal model
(IM) of air-path, predicting the change of air flow through the exhaust pipe,
and consequently, setting the profile of desired values of the objective function
on the control horizon. In this case we will consider the state space (SS)
formulation of the system, therefore it is necessary to express linear local
ARX models in parameter varying realigned SS model:

x(a,f)(k + 1) = A(a,f)(φ)x(a,f)(k) +B(a,f)(φ)u(a,f)(k)

ms,(a,f)(k) = C(a,f)x(a,f)(k) (5.26)

The weighted parameters of a multi-ARX models are displayed in matrices
Aa,f and Ba,f for both subsystems. This is a non-minimal SS representation
whose advantage is, that no state observer is needed. The “fuel pulse width
control” is tracking the air mass changing on a prediction horizon from IM of
the air-path, by changing the amount of injected fuel mass. Due to tracking
offset elimination, the SS model of the fuel-path (5.26) (index f), with its
state space vector xf , is written in augmented SS model form to incorporate
the integral action

x̃f (k + 1) = Ãf (φ)x̃f (k) + B̃f (φ)∆uf (k) (5.27)

or[
xf (k + 1)
uf (k)

]
=

[
Af (φ) Bf (φ)

0 1

] [
xf (k)

uf(k − 1)

]
+

+

[
Bf (φ)

1

]
∆uf(k)

ms,f (k) = C̃f x̃f (k) +Df∆uf (k) (5.28)

or

ms,f (k) =
[
Cf Df

]
x̃f (k) +Df∆uf (k)

The prediction of the air mass (m−→a) on the prediction horizon (N) is solely

dependent on the throttle position (t−→r) and is computed as

m−→a(k) = Γa(φ)xa(k) +Ωa(φ) t−→r(k − 1) (5.29)

where the xa denotes the state space vector of the air path.
Due to the unprecise modeling (IM strategy), biased predictions of the air

mass future trajectory and consequently biased fuel mass might occur. This
error can be compensated by the term L[m̂f (k) −ms,f (k)] in the fuel mass
prediction equation (m−→f)

218 Gergely Takács et al

m−→f (k) = Γf (φ)x̃f (k) +Ωf (φ)∆ u−→f (k − 1)+

+ L[m̂f(k)−ms,f (k)]
(5.30)

The matrices of free response Γa, Γf and forced response Ωa, Ωf are
computed from models (5.26) and (5.27), respectively (Maciejowski (2000)).
Since there is only λ(k) measurable in equation (5.15), the value of ma(k)
needs to be substituted using IM of the air-path, then

m̂f (k) =
1

Lth

ms,a(k)

λ(k)
(5.31)

The estimate m̂f (k) is used to compensate for possible bias errors of pre-
dicted m−→f (k) in (5.30).

5.3.4.2 Cost Function

The main part of a cost function is a sum of deviations of predicted outputs
from a set point, i.e. a weight of a future control deviations. Its another
elements are a penalization of control increments r; and a p penalizing a
deviation between a predicted and desired end state.

To eliminate a the steady state control error, the criterion (5.32) is defined
through the control increments. That guarantees in a steady state, that Jλ =
0 also for the system with no integration properties, what is the case of the
fuel path

Jλ =
∥∥∥

m−→a(k)

Lth
− m−→f (k)

∥∥∥
2

2
+ r‖∆ u−→f (k − 1)‖22

+p‖x̃f (N)− x̃f,r(N)‖22
(5.32)

The chosen MPC approach utilizes the state space representation and its
structure uses a control deviation for the correction of the prediction.

Due to a disturbance d(k), the steady state values of u and x have to
be adapted so, that the assumption J = 0 is valid. This problem solves an
explicit inclusion of the disturbance into the model.

The fuel injectors are controlled by a fuel pulse width, what is at the
same time the control uf . The optimal injection time can be computed by
minimization of a cost function (5.32), which has after expansion by the fuel
path prediction equation, form:

Jλ =∥∥∥
m−→a

Lth
− Γf x̃f (k) +Ωf∆ u−→f (k − 1) + L[m̂f(k)−ms,f (k)]

∥∥∥
2

2

+r
∥∥∥∆ u−→f (k − 1)

∥∥∥
2

2
+ p‖x̃f (N)− x̃f,r(N)‖22

(5.33)

An analytical solution of dJλ

∆u−→
= 0 of (5.33) without constraints leads to a

definition determining the change of fuel injector opening time in a step (k),

5 Implementation of MPC Techniques to Real Mechatronic Systems 219

as:

∆u =
(

ΩTΩ + Ir + pΩT
xNΩxN

)

−1

·
[

ΩT [w(k)− Γ x̃(k) − L(y(k) − ys(k))]− pΩT
xN

AN x̃(k) + pΩT
xN

x̃f,r(N)
] (5.34)

Hence, the absolute value of the control action in a step k is given by a
sum of a newly computed increment in a control (5.34) and an absolute value
of the control in a step (k − 1):

uf (k) = uf (k − 1) +∆uf (k) (5.35)

5.3.5 Results of a Real-Time Application of a
Predictive Control

The ability to control the mixture concentration at stoichiometric level us-
ing MPC is demonstrated through the real-time SI engine control (Fig. 5.21).
This has been performed using the AFR predictive control strategy described

Combustion

Engine

MPC

Controller

tr

uf

ne

λ

Fig. 5.21 Control scheme

in the previous section, designed in Matlab/Simulink environment and com-
piled as a real-time application for a dSpace platform. It has been applied
to the VW Polo engine (Fig. 5.10), 1390 cm3 with 55kW@5000 rpm, not
equipped with a turbocharger or an exhaust gas recirculation system. The

220 Gergely Takács et al

control period was 0.2 s. The result of an identification are 9 local linear mod-
els (LLM) for each, air and fuel path, dependent on a throttle valve opening
and engine revolutions.

20 40 60 80 100 120 140 160 180

22

23

20 40 60 80 100 120 140 160 180

2000

2500

20 40 60 80 100 120 140 160 180
0.8

1

1.2

20 40 60 80 100 120 140 160 180

6

8

10
x 10

−3

t r
(d

eg
)

n
e
n
(r
p
m
)

λ
(-
)

In
j.
ti
m
e
(s
)

Time (s)

real

desired

Fig. 5.22 Results of a real-time control of the SI engine (without“desired final state”
penalization)

The primary target of a control (Fig. 5.23) was to hold the air/fuel ratio
in a stoichiometric region (λ = 1), in the worst case to keep the mixture
ignitable (0.7 ≤ λ ≤ 1.2).
During the experiment, the change in throttle valve opening, between 21 and
22 degrees (Fig. 5.23, variable tr) and the change of engine revolutions (Fig.
5.23, variable nen), has been performed, at the same time. These changes
simulate varying working regimes of an engine, which is adapting its run to
a daily traffic. Changes in tr and nen quantities are determining the engine
load, at the same time, ensuring, that the engine passes through several work-
ing points during its operation. As mentioned in Section 5.3.3.2, the engine
revolutions are not included among explicit variables of local models, but they
build together with a delayed throttle valve position a vector of an working
point φ(k).
The quality of control is sufficient (Fig. 5.23, variable λ), with exceptional
acceptable overshoots in both directions. These overshoots of the controlled
variable λ have been caused by smaller model precision, due to its distance
from the working point, at which the system identification has been per-
formed. This effect is caused by the approximation of a particular model

5 Implementation of MPC Techniques to Real Mechatronic Systems 221

20 40 60 80 100 120 140 160

21

22

t r (
de

g)

20 40 60 80 100 120 140 160

2000
2300
2600

n en
 (

rp
m

)

real
desired

20 40 60 80 100 120 140 160
0.8

1

1.2

λ
(−

)

20 40 60 80 100 120 140 160
5

7

9
x 10

−3

In
j.

tim
e

(s
)

t[s]

Fig. 5.23 Results of a real-time control of the SI engine

from the other working points’ models.
The overshoots were also diminished by an introduction of a penalization of
a “difference from the terminal state”. This means, that into cost function is
added a member, comprising the difference, between the instantaneous and
the desired terminal state of a state vector. As it can be seen, skipping this
member in a cost function reduces the quality of control significantly (Fig.
5.22). The corresponding control action computed by the controller is shown
in (Fig. 5.23, variable Inj.time).

The initial engine warm-up (to 80 ◦C) eliminated model-plant mismatch
caused by temperature dependent behavior of the engine.

The control has been performed by choosing the penalization r = 0.1.
Utilizing the member p‖x̃f(N)− x̃f,r(N)‖22 of a cost function by setting p =
1.0 allowed us to shorten the control horizon to Np = 20 what significantly
unloaded the computational unit and stabilized the controlled output of the
engine on this shortened horizon, as well. The best control has been achieved
in the neighborhood of working points, what is logically connected to the most
precise engine model at those points. In other working points the control is
still good enough, with small deviations from the stoichiometric mixture.

222 Gergely Takács et al

5.3.6 Conclusion

Considering the preliminary results from the real-time experiments at the
engine, it can be concluded, that the idea of the AFR model predictive con-
trol based on local ARX models is suitable and applicable for the SI engine
control. Proposed flexible design of a predictive controller offers easy tuning
possibilities, extension of the global engine model to other working regimes
of the engine and implementation of constraints. This fact also indicates the
next project step, which is the overshoot elimination in the λ - control by the
identification of wider net of “local engine models”.

Acknowledgements The authors gratefully acknowledge the financial support granted
by the Slovak Research and Development Agency under the contracts LPP-0096-07,
LPP-0075-09 and LPP-0118-09. This research is also supported by the grant from
Iceland, Liechtenstein and Norway through the EEA Financial Mechanism and the
Norwegian Financial Mechanism. This grant is co-financed from the state budget of
the Slovak Republic.

References

Anstee R (2006) The Newton-Rhapson Method. Lecture notes
Arsie I, Iorio SD, Noschese G, Pianese C, Sorrentino M (2008) Optimal air-fuel ratio.

dSpace Magazine (1):20–23
Bengtsson J, Strandh P, Johansson R, Tunestal P, Johansson B (2007) Hybrid model-

ing of homogenous charge compression ignition (HCCI) engine dynamics -a survey.
International journal of control 80(11):1814–1847

Cannon M, Kouvaritakis B (2005) Optimizing Prediction Dynamics for Robust MPC.
IEEE Transactions on Automatic Control 50(11):1892–1597

Chen H, Allgöver F (1998) A quasi-infinite horizon nonlinear model predictive control
scheme with guaranteed stability. Automatica 34(10):1205–1217

Dong X, Meng G, Peng J (2006) Vibration control of piezoelectric smart structures
based on system identification technique: Numerical simulation and experimental
study. Journal of Sound and Vibration 273:680–693

Ferreau H (2006) An online active set strategy for fast solution of parametric quadratic
programs with applications to predictive engine control. Master’s thesis, University
of Heidelberg

Ferreau H, Bock H, Diehl M (2008) An online active set strategy to overcome the
limitations of explicit mpc. International Journal of Robust and Nonlinear Control
18(8):816–830

dSPACE GmbH (2009) HelpDesk Application
Hou Z (2007) Air fuel ratio control for gasoline engine using neural network multi-step

predictive model. 3rd international conference on intelligent computing, Qingdao,
China

Kouvaritakis B, Rossiter J, Schuurmans J (2000) Efficient robust predictive control.
IEEE Transactions on Automatic Control 45(8):1545–1549

Kouvaritakis B, Cannon M, Rossiter J (2002) Who needs QP for linear MPC anyway?
Automatica 38:879–884

5 Implementation of MPC Techniques to Real Mechatronic Systems 223

Kvasnica M, Grieder P, Baotić M (2004) Multi-Parametric Toolbox (MPT). Online,
available: http://control.ee.ethz.ch/

Kvasnica M, Grieder P, Baotic M, Christophersen FJ (2006) Multi-Parametric Tool-
box (MPT). Extended documentation

Lara A, Burch JC, Schloss JM, Sadek IS, Adali S (2003) Piezo patch sensor/actuator
control of the vibrations of a cantilever under axial load. Composite Structures
62:423–428

L ofberg J (2004) YALMIP: A toolbox for modeling and optimization in MATLAB.
In: Proceedings of the CACSD Conference, Taipei, Taiwan

Lorini G, Miotti A, Scattolini R (2006) Modeling, simulation and predictive control
of a spark ignition engine. In: Predimot (ed) Predictive control of combustion
engines, TRAUNER Druck GmbH & CoKG, pp 39–55

Maciejowski J (2002) Predictive Control with Constraints, 1st edn. Prentice Hall
Maciejowski JM (2000) Predictive control with constraints. University of Cambridge
Mao X, Wang D, Xiao W, Liu Z, Wang J, Tang H (2009) Lean limit and emissions

improvement for a spark-ignited natural gas engine using a generalized predictive
control (GPC)-based air/fuel ratio controller. Energy & Fuels (23):6026–6032

MathWorks T (2007) Matlab signal processing blockset v6.6 (r2007b). Software.
Mayne DQ, Rawlings JB, Rao CV, Scokaert POM (2000a) Constrained model pre-

dictive control: Stability and optimality. Automatica 36:789–814
Mayne DQ, Rawlings JB, Rao CV, Scokaert POM (2000b) Constrained model pre-

dictive control: Stability and optimality. Automatica (36):789–814
Murray-Smith R, Johanssen TA (1997) Multiple model approaches to modelling and

control. Taylor & Francis
Muske KR, Jones JCP (2006) A model-based SI engine air fuel ratio controller. Amer-

ican Control Conference, Minneapolis, USA
Polóni T, Rohal’-Ilkiv B, Johansen TA (2007) Multiple ARX model-based air-fuel

ratio predictive control for SI engines. In: IFAC Workshop on advanced fuzzy and
neural control, Valenciennes, France, conference paper MO5-3

Polóni T, Johansen TA, Rohal’-Ilkiv B (2008) Identification and modeling of air-
fuel ratio dynamics of a gasoline combustion engine with weighted arx model
network. Transaction of the ASME (Journal of Dynamic Systems, Measurement,
and Control) 130(6), 061009

Preumont A (2002) Vibration Control of Active Structures, 2nd edn. Kluwer Aca-
demic Publishers

Rossiter JA (2003) Model-based predictive control: a practical approach, 1st edn.
CRC Press LCC

Song G, Qiao PZ, Bibienda WK, Zhou GP (2002) Active vibration damping of com-
posite beam using smart sensors and actuators. Journal of Aerospace Engineering
15(3):97–103

Sturm JF (1999) Using SeDuMi 1.02, a MATLAB toolbox for optimization over
symmetric cones. Optimization Methods and Software - Special issue on Interior
Point Methods 11-12:625–653

Takács G, Rohal’-Ilkiv B (2009) MPC with guaranteed stability and constraint feasi-
bility on flexible vibrating active structures: a comparative study. In: Proceedings
of The eleventh IASTED International Conference on Control and Applications,
Cambridge, United Kingdom.

Wills AG, Bates D, Fleming AJ, Ninness B, Moheimani SOR (2008) Model predictive
control applied to constraint handling in active noise and vibration control. IEEE
Transactions on Control Systems Technology 16(1):3–12

Zeman J, Rohal-Ilkiv B (2003) Robust min-max model predictive control of linear
systems with constraints. IEEE International Conference on Industrial Technology,
pp 930 – 935

http://control.ee.ethz.ch/

224 Gergely Takács et al

Zhai YJ, Yu DL (2009) Neural network model-based automotive engine air/fuel ratio
control and robustness evaluation. Engineering Applications of Artificial Intelli-
gence (22):171Ű180

Zhai YJ, Ding-WenYu, Hong-YuGuo, DLYu (2010) Robust air/fuel ratio control with
adaptive DRNN model and AD tuning. Engineering Applications of Artificial In-
telligence (23):283–289

5 Implementation of MPC Techniques to Real Mechatronic Systems 225

Comments – Remarks

226 Gergely Takács et al

Comments – Remarks

5 Implementation of MPC Techniques to Real Mechatronic Systems 227

Comments – Remarks

228 Gergely Takács et al

Comments – Remarks

Chapter 6

Laboratory Model of Coupled Tanks

Vladimı́r Žilka and Mikuláš Huba

Abstract This chapter gives introduction into work with frequently used
hydro-system of coupled tanks. The chapter explains analytical modelling
for one and two-level systems of coupled tanks, including the experimental
identification of system’s parameters and sensor’s calibration.

6.1 Introduction

To be able to use their knowledge in solving practical tasks, for graduates it is
important to develope skills in applying control theory related to linear and
non linear systems to real plants control. This may be just partially achieved
by computer simulations and the feedback received in such a way is never
complete. Therefore, it is important to acquire already during the university
studies some practice and experience related competences in designing and
testing of controllers on real systems.

Due to the simple manipulation, easily understandable and observable pro-
cesses and their time constants, one of many systems used at universities fre-
quently as pedagogical instruments in control education the system of coupled
tanks has to be mentioned. The theoretical design of controllers included in
this publication comprehends two basic configurations: control of one, or of
two coupled tanks. In considering coupled tanks, one of possible configura-
tions is the coupling in series with interaction, when the liquid’s level in one
of the tanks influences the other tank’s liquid’s level as the liquid may flow

Vladimı́r Žilka
Faculty of Electrical Engineering and Information Technology, Slovak University of
Technology in Bratislava, e-mail: vladimir.zilka@stuba.sk

Mikuláš Huba
Faculty of Electrical Engineering and Information Technology, Slovak University of
Technology in Bratislava, e-mail: mikulas.huba@stuba.sk

229

vladimir.zilka@stuba.sk
mikulas.huba@stuba.sk

230 Vladimı́r Žilka and Mikuláš Huba

between the tanks in both direction. The other two-tank consideration is the
cascade coupling with one-way influence, where the tanks are placed one un-
der another. The liquid from the bottom tank can not flow into the upper
one, plus the upper tank’s inflow impact does not depend on the liquid’s level
in the lower tank. Due to the available equipment, in the practical part of
this chapter we will consider just coupling in series with mutual interaction
of tanks.

In order to be able to demonstrate theoretical aims of the control algorithm
design and verify real processes by simulation using their models, we need to
know the process model and its parameters. Sometimes, the simplest possible
model is required, but for some tasks, the most accurate model possible is
wellcommed. In case of inaccurate mathematical model, the accociated con-
troller (if not sufficiently robust) would function only in simulations. That’s
why we will be dealing from now with the analytical description of the real
scheme necessary for construction of the model, with the identification of the
proposed model parameters, as well as with confrontation of the model with
the real process and with control processes associated with control design
based on considered models.

6.2 Coupled Tanks – Hydraulic Plant

Coupled tanks represent one of the most common examples of non-linear
system. The task is usually related to basic manipulation required for dealing
with the available physical system. System considered in our publication is
shown in Fig. 6.1. This hydraulic system is composed of 2 pumps and 3
coupled tanks, each of them with the own drain. It was designed according
to Žilka (2007).

(a) Front view (b) Back view

Fig. 6.1 Coupled tanks uDAQ28/3H2. Front and back view.

6 Laboratory Model of Coupled Tanks 231

The system is easily connectable to the PC via USB interface. There is
no need of additional data acquisition cards hence the controlling is per-
formed directly from the Matlab/SIMULINK or Scilab/Scicos environment.
By switching the valves between the tanks and between the tanks and the
lower reservoir, it enables to create different configurations, e.g. the one-level
system, two-levels system with one inflow and one drain, or the multi-input-
multi-output (MIMO) system with several inflows and outflows and the mu-
tual tanks’ coupling.

At the beginning we will start with the easiest model – we will imagine
only one tank where the level of liquid is influenced only by inflow from the
pump and drain from the valve. This valve is only two positions (open/close).
This kind of connection’s model can be seen in Fig. 6.2.

(a) One–tank system (b) Coupled Tanks

Fig. 6.2 Models of tanks

The liquid’s level is denoted as x1, with the liquid’s inflow u1, tank’s cross-
sections A1 and the valve’s outflow coefficient c1. This tank model can be
described by various differential equations acquired through the application
of the law of substance preservation. Thus it applies for the given tank that
the change in volume V is defined by the difference between the inflow and
outflow. If we know the inflow u1 and we define the outflow as uout then

∆V = u1 − uout

V = x1A1

A1
dx1

dt
= u1 − uout

To determine uout we can use the Toricelli formula which defines the speed
of the liquid outflowing the tank’s aperture vout. With the outflow, we have
to take into account the co-actor as well µ – for the water 0.63. Plus if we
already know the cross-sections the valve’s aperture Avo, we can put down
the following:

232 Vladimı́r Žilka and Mikuláš Huba

vout =
√
2gx1

A1
dx1

dt
= u1 − µAvo

√
2gx1

Now by applying the substitution and defining the flow coefficient of the valve
c1

c1 =
µAvo

A1

√
2g

The resulting differential equation for the one-level system would be

ẋ1 =
1

A1
u1 − c1

√
x1

y1 = x1 (6.1)

In this way we can derive the differential equations for coupled tanks.
System is then composed of two mutually interacting tanks with two possible
pumps. Each tank would have a separate inflow u1 a u2, separate outflow
depending on x1 and x2 and the flow between the tanks specified by difference
of the levels and the constant c12. Such tank model can be then described by
differential equations

ẋ1 =
1

A1
u1 − c12 sign(x1 − x2)

√
|x1 − x2| − c1

√
x1

ẋ2 =
1

A2
u2 + c12 sign(x1 − x2)

√
|x1 − x2| − c2

√
x2

y1 = x1

y2 = x2 (6.2)

The liquid’s levels in the first and second tank are denoted as x1, x2 and the
level surfaces as A1, A2. For Simulink model see Fig. 6.3. In block MatlabFcn
following equation was made

c_{12}sign(u(1)-u(2))sqrt(abs(u(1)-u(2)))

6.2.1 Identification

For simulating or controlling the real system it is indispensable to know all
parameters of its mathematical model. While the measurement of the level
surfaces in tanks does not represent a serious problem, to determine the
values of the valve’s flow coeficient is usually a bit more difficult. By taking
the more detailed view on (6.1) or (6.2) we will realize that we can define
at least two approaches for determining parameters c1, c2 and c12. One is

6 Laboratory Model of Coupled Tanks 233

Fig. 6.3 Coupled tanks - Simulink model.

based on measurement with constant inflow, the other on experiment with
zero inflow – tank’s emptying.

In the first approach based on measuring steady state under constant in-
flow the resulting state equation reduces to (6.1) is

1

A1
u1 = c1

√
x1

c1 =
u1

A1
√
x1

(6.3)

The second approach is based on evaluating transients under zero inflow –
i.e. during tanks’ emptying. The flow coefficient c1 of the valve can be easily
obtained from (6.1). If the pump is off, the state equation (6.1) reduces to

ẋ1 = −c1
√
x1

y1 = x1

In this case, by integrating above equation, c1 can be get as

c1 =
2
√
x1init − 2

√
x1final

∆t1
(6.4)

where x1init represents the initial level of the liquid before opening the valve
and x1final its final level when we finish experiment by closing the valve.
Finally, ∆t1 represents the duration of the experiment.

The second way of determination c1 does not require to know the exact
inflow from the pump, which can leads to higher accuracy. This way is also

234 Vladimı́r Žilka and Mikuláš Huba

faster. Time required to prepare and perform the measurement takes just
about minute.

In both cases it is convenient to perform several measurements at different
level heights x1 and to define the resulting value c1 as a mean value. It is
caused mainly by the fact that the solenoid valves do not have aperture of
a simple circular shape, which, together with the relatively low pressure and
low level height may lead uncertain and to slightly fluctuating values of the
valve constant c1.

Indetermining the valve constant c12 describing interconnection between
the tanks we can use similar approach. The difference would only be in the
fact that during the experiment the outflow valves from tank 1 and 2 will be
closed and before its beginning one tank will be filled to the maximum level
and the other one made empty. We stop the measurement just before the
complete alignment of both levels. The resulting relation defined from (6.2)
for c12 will be

c12 =

√
|h10 − h20| −

√
|h11 − h21|

∆t12

With h10, h20 as the initial liquid’s levels in the first or second tank, h11, h21 as
the final liquid’s levels after finishing the experiment and t12 as the duration
of the measured interval.

It is important to mention that in case with the tank’s outflow orifice not
being exactly at the same altitude as the valve’s drain orifice (but lower), we
have to consider this difference. Then it is to consider that the real liquid’s
level in the tank producing the resulting pressure at the valve orifice is

x1 = x1tank + x1offset

where x1tank represents the hight of the water collumn in the first tank and
x1offset denotes the offset between tank orifice and valve outflow.

The pump identification seems to be easier. It may be based on determining
time periods, in which the tank with closed valves will be completely filled
under consideration of different pump’s input voltage.

q1 =
A1x1

∆t1

It is vital to choose various working points in whole pump’s working scale.
Finally, since the pump is a reasonably nonlinear element, we approximate
the measured pump characteristic by the curve fitting methods, e.g. with
the polynomials of third or fourth degree. The input-output characteristic of
the first pump, the inverse input-output characteristic of the pump and the
characteristic of the first valve are depicted in Fig. 6.6.

6 Laboratory Model of Coupled Tanks 235

6.2.2 Sensors Calibration

To measure the height of liquid’s level in the plant in Fig. 6.1 the pressure
sensors are used. These have several advantages: they are easy to change in
a case of failure, they don’t require any maintenance, they don’t corrode and
water sediments don’t attach to them. On the other hand, the measurement
depends on the surrounding pressure, thus it is recommended to perform
at least at the beginning of the measurement day, the calibration of these
sensors. It consists of the definition of offset and sensor’s gain values, what
should be done for each liquid’s level separately. The dependency is linear.
The basic scheme of the conversion of raw signals on liquid’s levels in meters
can be found in Fig. 6.4. (All the necessary parameters for signal adjustment
lay in one array denoted as calibParams. Array ”pumps”contains the pump’s
entrances (performance in % from 0% to 100%) and field ”valves” contains
the valves configuration 0 – close, 1 – open, for each valve.)

Fig. 6.4 Basic diagram for calibration and configuration.

Under manual calibration we will partially fill the calibrated tank and
empty it subsequently. Raw integer number from each output is sensor offset
x1empty. This is specified in engineering units (EU). Afterwards, we fill up
the tank to the maximum height of liquid’s level and we define the output’s
value x1empty in EU. We deduct, once again, the value of sensor’s outputs.
The conversion to liquid’s level in meters is defined by the relation

sensorGain1 =
(x1full − x1empty)

∆x1

x1 =
x1actual − x1empty

sensorGain1
(6.5)

236 Vladimı́r Žilka and Mikuláš Huba

Here, x1actual is the actual value of liquid’s level in EU, x1empty is the output
in EU at the zero liquid level and x1full is the value of the output in EU at
maximum liquid level and ∆x1 is the height of the maximum liquid level. For
example, if we know that at the zero level x1empty = 800EU, at the maximum
level ∆x1 = 0.25m and output 3300EU, for the output 2300EU it holds:

sensorGain1 =
3300− 800

0.25
= 10000EUm−1

x1 =
2300− 800

10000
= 0.15m

After the calibration it is suitable to perform identification of system’s pa-
rameters. It consists of the estimation of the flow coefficients of valves and of
the pump’s parameters according to the above-mentioned process.

6.2.3 Automatic Calibration and Identification

The above mentioned procedure of calibration and identification is obviously
time consuming and also not easy to calculate manually. To perform the such
long time step-by-step measurements of the pump’s characteristics plus to
save the measured values subsequently after each measurement and evaluate
them afterwards, we have to sacrifice an enormous quantity of time. That’s
all is the reason why we developed the software package for automatic iden-
tification of system’s individual parameters and for identification of all valve
and pump parameters. The control is very easy – only one click is needed to
get the required identification in the menu. Menu’s environment can be seen
in Fig. 6.5.

As the processes were described in details in the previous chapter, the
individual functionalities will be mentioned now just shortly. At the identifi-
cation of the valve 1,2 or 3, the tank is fill up to the height of approximately
24.5 cm, then we wait till the liquid’s level is stabilized and the tank is af-
terwards emptied to 0.8 cm. (At almost zero level, the valve’s behaviour is
strictly non-linear and as we are not planning to regulate the level under 1 cm,
we don’t consider the lowest boundary). The measured values are saved, to-
gether with all used constants, into the mat file in the following format:

valveValvenumber-year-month-day-hour-minute-second.mat.
For example: valve1-2009-12-20-16-26-43.mat and so on. We don’t

consider the first and the last measurement sample, from the other values
with the step approximately 1.5 cm – we use each sixth sample, define the
value c1 as well as the possible offset value of the valve offset1.

At the end we define the mean value of offset and of flow coefficient and
we save those two values together with the time course of emptying into
the valve1, valve2 and valve3.mat. We apply them directly to the proposed
model, we simulate the emptying and we draw the comparison of simulation

6 Laboratory Model of Coupled Tanks 237

Fig. 6.5 Menu of the software module for calibration and identification.

and real data into the graph of emptying characteristics such as Fig. 6.6. This
procedure allows us to check visually quality of the valve’s identification on
the graph. The registration to the actual mat file allows us to read variables
in the program according to our choice, at the direction of the model or at
the work with the real system.

The previous identification may sometimes look better than the new one –
that’s why the measurements are stored in the mentioned file with date and
time – that way we are able to see the history at any time. We apply the
similar procedure at the other measurements as well.

Basically in the same way we identify the valve between the tanks. After
the measurement is launched, the first tank is filled and the second emptied,
the interconecting valve is opened afterwards and the measurement is per-
formed until the leveling of two liquid’s levels. Then we perform the second
measurement, the second tank is filled up and the first emptied. We iden-
tify again the flow coefficient and we use those two measurements to define
the mean coefficient c12. We save the measured values, following the above-
mentioned procedure, just this time the mat file will be named valve12.mat
– for the actual value and valve12day-time.mat for archiving. We’ll use the
identified coefficient for the simulation and we draw the comparison of model’s
course and the real into the graph. In case of lesser compliance, we repeat
the procedure.

238 Vladimı́r Žilka and Mikuláš Huba

2 4 6 8 10 12
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
x 10

−5

pump voltage [V]

pu
m

p
ou

tp
ut

 [m
3 /s

]

The input − output characteristic of the pump
 and approximation with 4rd degree polynomial

Real i−o characteristic
Approximation

(a) IO characteristic

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

x 10
−5

2

4

6

8

10

12

14

pu
m

p
1

vo
lta

ge
 [V

]

pump 1 output [m3/s]

The inverse i−o characteristic of the pump 1
 and approximation with 4rd degree polynomial

Real i−o characteristic
Approximation

(b) Inverse IO characteristic

0 0.05 0.1 0.15 0.2 0.25

0.018

0.02

0.022

0.024

0.026

0.028

0.03

0.032

0.034

0.036

0.038

level [m]

flo
w

 c
oe

ffi
ci

en
t o

f t
he

 v
al

ve

The characteristic of the flow coefficient of the valve

identification − 2cm steps
identification − steady states
approximation

(c) Determining c1 by the first method

0 5 10 15 20 25 30 35 40 45
0

0.05

0.1

0.15

0.2

0.25

t [s]

le
ve

l [
m

]

Outflow characteristic for real system and model − tank 1

Real system
Simulation

(d) Determining c1 by the second method

Fig. 6.6 Measured Input-Output pump characteristic and its approximation by the
4th degree polynomial and inverse input-output pump characteristic and its approx-
imation by the 4th degree polynomial (above). Determination of the valve coefficient
c1 with two approaches – comparing the measurement and approximative data for
tank 1 (below).

The measurement of pump’s characteristics is more time-consuming. In
order to achieve the required accuracy, we continue with increasing the pump
input by the step 3% of the maximal range 100% up to the moment where
the pump starts slowly to draw the liquid. (In our case it will be around 19
– 21 %.) At lower inputs, the pump is not working.

At the beginning of measurement, we empty the tank, and then fill it up
by given input up to the fullest state, or during 60 seconds. That’s because
at the lowest levels of input, the filling up would take too much time. After
the last measurement – for full input, we define the maximum inflow of the
pump as well. We put the given inflows and power tensions into the field and
save them, at the end of experiment, by same way as valves, into the mat
files. The first pump’s name will obviously start by pump1 and the second
one by pump2.

6 Laboratory Model of Coupled Tanks 239

During the individual steps, we include into the measurement the artificial
break of 40 s, to prevent the changes in pump’s parameters, its heating or to
partially isolate the previous measurement from the actual one. We draw the
measured IO or inverse IO characteristics into the graph and compare them
with the approximations acquired thanks to curve fitting functions.

As the buttons’ names indicate, by the above-described procedures we can
identify all valves, both pumps and all system’s parameters.

To clean the older data, in order to delete the measured and saved val-
ues more easily, we can use the script cleaning which will preserve only the
measured values and will delete all the mat files that contain the date in the
name. That’s why one has to be very careful when using it. We should use it
only if we are sure, that we don’t want to archive the older values.

After we get all the required parameters, we only have to load them and
have a model that will use them correctly. The basic program would after-
wards look as follows:

load ’calibParams’; % offsets and gains of pressure sensors

load ’valve1’; % parameters of drain valve from tank 1

load ’valve2’; % parameters of drain valve from tank 1

load ’valve12’; % parameters of valve between tank 1 & 2

load ’pump1’; % pump 1 parameters

load ’pump2’; % pump 2 parameters

A = 0.001; % tank area

T = 0.25; % sampling period

open(’model.mdl’); % open simulink model

Pump’s subblock is depicted in Fig. 6.7 where function block ’U->Q1’ con-
tains:

PU1(1)*u(1)^4+PU1(2)*u(1)^3+PU1(3)*u(1)^2+PU1(4)*u(1)+PU1(5)

This 4 degree polynomial enables linearization of the pump. The input for
this function is inflow from controller (in m3 s−1). Function convert this input
to Volts. The ’Gain4’ changes Volts to %, because the pump input in matlab
block is in %.

There is also treshold. For too small input (smaller than 10−6m3 s−1) push
to output 0. This feaure respects the fact that the pump can not process
smaller inputs.

6.2.4 Some Recommendation for Users

At the end we would like to add some recommendations that may help you
in keeping your plant in optimal work.

Use always distilled water, even in the case you need to add just small
amount of it. In this way you may reasonably prolonged intervals between
clearings.

240 Vladimı́r Žilka and Mikuláš Huba

Fig. 6.7 Pump implementation in simulink.

For removing sediments from the walls of the tanks use a soft brash appro-
priate for bottle cleaning. Pump out the water containing such sediments and
flush the system several times by clean water. After that you need to pump
out also the standard water used for cleaning and again fill the container by
the distilled one.

For eliminating the evaporation fill in the water into tanks that are covered
and have smaller evaporation area.

After a longer period without use it may happen that some valve does not
open or close. In such a case it is necessary to repeat open/close procedure
several times (even when it does not function) and then slightly hit the metal
screws in the valve centre. This may help to release the valve.

When you know that the system will not be used for a longer time, pump
out all water.

When you keep all these rules, the system does not require any mainte-
nance. Only in extreme situations when the system was not used for longer
time period without pumping out all water, the sediments may not only cover
the walls of containers, but even tubes, pressure sensors and valves. When
facing problems with pressure sensor, after emptying the containers by a gen-
tle pull remove the sensor from the tube and clean the tube by a thin wooden
tool. When the sediments clog up the valve, it is necessary to unscrew fit-
tings from both sides and to flush the valve under pressure, e.g. by a rubber
ball filled by water. As it was, however, mentioned above, in case of regular
maintenance and storing such problems will not occur.

Acknowledgements The work has been partially supported by the Slovak Grant
Agency grants No. VG-1/0656/09 and VG-1/0369/10. It was also supported by a
grant (No. NIL-I-007-d) from Iceland, Liechtenstein and Norway through the EEA
Financial Mechanism and the Norwegian Financial Mechanism. This project is also
co-financed from the state budget of the Slovak Republic.

6 Laboratory Model of Coupled Tanks 241

References

Žilka V (2007) Nonlinear controllers for a fluid tank system. Master’s thesis, Fac-
ulty of Electrical Engineering and IT, Slovak University of Technology, Bratislava,
Slovakia, (in Slovak)

242 Vladimı́r Žilka and Mikuláš Huba

Comments – Remarks

6 Laboratory Model of Coupled Tanks 243

Comments – Remarks

244 Vladimı́r Žilka and Mikuláš Huba

Comments – Remarks

6 Laboratory Model of Coupled Tanks 245

Comments – Remarks

Chapter 7

Constrained PID Control
Tasks for Coupled Tanks Control

Vladimı́r Žilka and Mikuláš Huba

Abstract This chapter treats basic issues of linear and non-linear controller’s
design applied to control of hydraulic plant of availabe three-tank-system.
Controllers based on approximation of the given non-linear system by the
first order linear system by step responses are proposed and compared with
controllers based on the analytical linearization of the nonlinear model in a
fixed operating point, by the input-output linearization in the actual state
(exact linearization) and around a generalized operating point are developed
and verified for the one-level and two-level system.

7.1 Introduction

A plant to be controlled may be modelled and identified in many ways. It is
e.g. possible to derive mathematical models of the plant that for a given data
show nice matching but when used for the controller design, the resulting
performance will be pure. In case of inaccurate, or inappropriate mathemati-
cal model, the resulting regulators would function only in simulations. That’s
why we will be dealing from now with the description of the real plant, estima-
tion of its model, identification of its parameters as well as with confrontation
of results achieved in control of the plant with the performance required in
the controller design.

In the next paragraph, we will show some examples of simple P, PI and
PD controllers for different tanks’ configurations, from the simplest one tank

Vladimı́r Žilka
Faculty of Electrical Engineering and Information Technology, Slovak University of
Technology in Bratislava, e-mail: vladimir.zilka@stuba.sk

Mikuláš Huba
Faculty of Electrical Engineering and Information Technology, Slovak University of
Technology in Bratislava, e-mail: mikulas.huba@stuba.sk

247

vladimir.zilka@stuba.sk
mikulas.huba@stuba.sk

248 Vladimı́r Žilka and Mikuláš Huba

system, with closed output valves, through one-level systems with one inflow
and one outflow up to two-level system linearized by generalized input-output
linearization and controlled by the PD2 controller.

7.2 Basic P and PI controllers

At the beginning, it would be the best to introduce the simplest case of
hydraulic system’s configuration. In doing so we will consider one-level system
which has all the valves closed. The pump feeding the liquid into this tank
will represent the actuator. Under control, such system behaves as simple
integrator. Considering 6.1 we will define differential equations of such system
in the following form:

ẋ1 =
1

A1
u1

y1 = x1 (7.1)

Obviously, we are dealing with linear system with the transfer function

F1(s) =
Y1 (s)

U1 (s)
=

1

A1s

i.e. with integrator having the integral time constant A1 (gain 1/A1). From
theory we know that to stabilize such a system (7.1), P-controller with a gain
P1 would be sufficient. The closed loop transfer function will be:

G(s) =
P1F1(s)

1 + P1F1(s)
=

P1

A1s+ P1

If we want to control this system, we can request it to behave as the first
order linear system with the transfer function

G(s) =
1

T1s+ 1

In such a case, the P-controller’s gain results as

P1 =
A1

T1

It is clear that by choosing the time constant T1, we are able to define
the dynamics of the closed loop that might also be expressed by its closed
loop pole α = −1/T1. By decreasing this time constant, when the closed loop
pole is being shifted to −∞, we can speed up the transients processes. And
contrary, by increasing T1, when the pole is shifted towards the origin, we

7 Constrained PID Control Tasks for Coupled Tanks Control 249

can slow down them. In increasing the P-controller gain we have to be careful
and speed-up the transients only until certain limit.

Fig. 7.1 Impact of the P controller tuning on the tranient responses

The limitations are mainly given by factors as nonmodelled dynamics,
plant uncertainty, measurement noise and control signal saturation. For
shorter time constant T1, saturation of the control signal typically occur and
for T1 → 0 the control signal tends to rectangular pulse of the minimum time
control (Fig. 7.1). P-controller for integrator plant represents solution of the
dynamical class 0.

If we increase the amplification of controller too much, the sensitivity of the
circuit to the measurement and quantisation noise will increase and this can
lead to system’s destabilization, increased wear of active elements or damage
– in this case, by switching the pump on and off over a too long period to
maximum or zero voltage.

On the other hand, too small controller gain can slow down the transient
processes, or, in an extreme case, the pump will even not start to move. In
order to get some insight, which controller gain may be applied without lead-
ing to parasitic oscillations, it is necessary to approximate the non-modelled
loop dynamics that can be characterized by equivalent dead time Td. This
can be identified as the time between a control signal step and beginning of
the reaction of the measured output. Then, it is recommended not to use
shorter time constants (“faster” poles) as those given by

T1 = e1Td;α = −1/
(
e1Td

)
(7.2)

For the given hydraulic system, notice that the pump is reacting only to
positive values of the input voltage. So, its control is only possible in one way
– to increase the liquid’s level in tank. That’s why it is necessary to empty
the tank before the experiment, or after it.

250 Vladimı́r Žilka and Mikuláš Huba

7.2.1 PI-controller

Now, let’s consider situation with opened outflow valve characterized with the
flow coefficient c1. In this case the one-level system will be in the form 6.1.
This system does no longer behave as pure integrator. Let’s try to control
it, at the beginning, with P-controller, designed in the previous part. By
examining few operating point, we will realize that P-controller can’t control
this system without the permanent control error. It is no surprise, if we
take into account that the opened outflow requires permanent inflow, but
the zero control error leads to zero inflow. With zero control error generates
the P-controller zero action, but considering the fact that the liquid outflows
from the tank, it decreases the liquid’s level below the desired values. To
compensate the outgoing liquid we have to use more advanced controllers.

The easiest way to compensate the outgoing water is to add parallel signal
to the output of the controller. Such constant signal set usually manually
was originally called as reset (offset). Later, this was replaced by automatic
reset denoted today as the integral action and produced directly by the con-
troller. By this modification we will obtain the PI-controller. The goal of
the integral action is to integrate the control error values multiplicated by
a suitable constant what will continuously increase the controller output –
until the complete removal of the control error. The transfer function of such
PI-controller is:

R(s) = P +
I

s

where P represents the gain of the proportional action of the controller and
I is the gain of the integral action.

An easy experimental way to set up the PI-controller’s parameters may
be based on measured step-responses of the system. The step-responses of
the system contain information about the basic dynamic attributes of the
system and this is why it enables us to set up the controller’s parameters
better than by the frequently used trial and error method. At the same
time, we have to realize that the step-response method was developed for
the responses of linear system to a unit step. Our system (6.1) is, however, a
nonlinear one. We can’t thus talk about the system’s step-responses for the
whole scope of liquid’s levels. The obtained information will depend on the
choice of concrete operating point, in which the step will be measured. For
the PI-controller design having the best attributes in the most ample areas,
it may seem to be useful to choose the operating point approximately in the
middle of the working area.

In the surroundings of chosen operating point we will approximate our
non-linear system (6.1) by the first order linear model. This will be obtained
by the step-response method from step responses measured firstly by setting
up by appropriate input pump voltage the liquid’s level approximatelly to the
the middle of the tank hight and here to stabilize it for some time, optimally
few centimeters under the middle. When the liquid’s level will be stabilized,

7 Constrained PID Control Tasks for Coupled Tanks Control 251

we will switch the pump input to higher voltage by approximately 1V step
and wait again for the liquid’s level to stabilize (it should stabilize few cen-
timeters over the middle). From the measured step-response we will find out
by constructing tangent at the origin the approximate value of time constant
T1n and the value of the approximative plant gain K1 = ∆y/∆u.

So, in a close surroundings of the operating point corresponding to the
input voltage about u1 = 4V the system may be approximated by linear
transfer function

F1(s) =
K1

T1ns+ 1

Then, in the previous paragraph mentioned P-controller design may now
be used as well. When the open loop transfer function was in the case of the P-
controller design given as 1/T1s the closed loop had the transfer 1/ (T1s+ 1).
Now, we will design controller to yield the same open loop transfer function
as previously, i.e. 1/T1s, what yields

R1(s) =
1

T1s
· 1

F1(s)
=

T1ns+ 1

K1T1s
=

T1n

K1T1
+

1

K1T1s

Thus the P and I actions will be

P1 =
T1n

K1T1

I1 =
1

K1T1

After calculating and testing this tuning we recommend you to experiment
a bit and to track the influence of the changes of P1 and I1 on the control
performance. You may observe that the achieved dynamics is differnt from the
one possible pulse at saturation that was typical for the P controller design.
This soultion represents basic part of the PI controller of the dynamical class
0 (it should yet be completed by a prefilter with the time constant T1n – then
the control signal after a setpoint step exponentially increases monotonically
to its new steady-state value). Attempts to achieve faster dynamics may be
connected with strong overshooting of the output signal.

7.2.2 PI1 controller

Improved dynamics for larger setpoint steps without producing windup effect
is possible to achieve by the so called PI1 controller that typically has one
interval of the control signal at the saturation limit. This controller is based on
reconstruction of the equivalent input or output disturbances by appropriate
observer using inverse or parallel plant model. Since the hydraulic plant (6.1)

252 Vladimı́r Žilka and Mikuláš Huba

is stable, inversion of the plant dynamics may be directly derived also for the
nonlinear model as

û1 = A1 [ẏ1 + c1
√
y1] (7.3)

The input disturbance v may then be reconstructed by comparing the recon-
structed plant input û1 and the controller output according to

v̂ =
û1 − u

1 + Tfs
(7.4)

and then compensated at the P-controller output uP . Such a compensation
may be treated as a special case of nonlinear disturbance observer in Fig. 7.2.
Besides of the P-controller gain, the new tuning parameter Tf may be used to
increase system robustness against uncertainties and non-modelled dynamics
and to filter measurement noise.

Fig. 7.2 Rejection of the input disturbances v by correction of the P controller
output in the nonlinear PI1 controller for system dy/dt = g(y)(u + v) − f(y)

You may test your integral controller by filling to different levels also the
second tank and then opening or closing the inteconnecting valve among the
tanks.

The controller structure in Simulink is depicted in Fig. 7.4. Control pro-
gram, which work with results of automatic calibration and indentification is
listed below.

7.2.2.1 Programs for Matlab/Simulink

clc;

clear all;

close all;

7 Constrained PID Control Tasks for Coupled Tanks Control 253

0 50 100 150 200 250 300 350
0

0.05

0.1

0.15

0.2

0.25

time [s]

le
ve

l [
m

]

PI1 controller − system output

0 50 100 150 200 250 300 350
0

0.5

1

1.5

x 10
−5

time [s]

pu
m

p
po

w
er

 [m
3 /s

)]

PI1 − controller output

Fig. 7.3 Typical setpoint and disturbance steps in the loop with PI1 controller con-
tain one step at saturation after setpoint steps

254 Vladimı́r Žilka and Mikuláš Huba

e

w

ur rozsah

h1

s+a

Tfil.s+1

1

Ks

1

Tfil.s+1

Subsystem

U h1

Saturation1Saturation Q−>U

f(u) 100/12Kr

a/Ks

Constant

w

e

w

ur rozsah

h1
1

Tfil.s+1

Subsystem

U h1

Saturation1Saturation

S1*beta1*sqrt(u(1)+posun)

S1*beta1*sqrt(u(1)+posun)

Q−>U

f(u)

Integrator

1
s

S1/Tfil

1/Tfil

100/12Kr

Constant

w

Fig. 7.4 Control structure for linear and nonliner PI1 implemented in Matlab /
Simulink

load ’../../basics/calibParams’; % sensor calibration

parameters

load ’../../basics/valve1’; % parameters of the valve 1

load ’../../basics/valve2’;

load ’../../basics/valve12’;

load ’../../basics/pump1’; % parameters of the pump 1

T = 0.25; % sampling period

S1=0.001; % tank area

posun = posun1; % offset 1

beta1=c1; % output valve coeff.

beta12 = 0;

beta2 = 0;

Qmin=0;

Qmax=q_max1; % control signal constraints

7 Constrained PID Control Tasks for Coupled Tanks Control 255

w11=0.10; % setpoint values for tank 1 level - 3 steps

w12=0.20;

w13=0.10;

Td = 0.996; % dead time

Ks = 1/S1; % plant gain

h10 = w11; % operating point choise

a = beta1/(2*sqrt(h10+posun)) % linearization around operating

point

alfae=-0.2; % directly given closed loop pole

% alfae =-(exp(-(1+a*Td))/Td+a)

% closed loop pole based on dead time

estimate

% alfae = -(1+a*Td*exp(1+a*Td))/(Td*exp(1+a*Td))

Kr = -(a+alfae)/Ks; % P controller gain

Tfil =-1/alfae; % obsever filter time constant

c1 = beta1/(2*sqrt(h10+posun))

Gp = tf([Ks],[1 c1],’inputdelay’,Td)

% plant model around the operating point c1=a

sim(’PI1real2_zilka.mdl’);

str_datum = num2str(floor(clock));

str_datum = (strrep(str_datum, ’ ’, ’-’));

file_name = sprintf(’reg_PI1-%s’, str_datum);

eval ([’save ’, file_name]);

7.3 Linearization around a fixed operating point

Analytical linearization around a fixed operating point shows one of the sim-
plest ways of designing controller for the one level system. Linearized model
may be determined directly from the system’s equation (6.1). For a chosen
working point and its closest environment, the non-linear system will behave
as linear and therefore we can use this as the basic possibility for deriving
linear controllers, e.g. the PI one.

While making this linearization we talk about approximation of the non-
linear system

256 Vladimı́r Žilka and Mikuláš Huba

ẋ1 = f(x1, u1)

y1 = g(x1)

by a linear system

∆x1 = A∆x1 +B∆u1

∆y = C∆x1

where ∆x1 = x1 − x10 , ∆u1 = u1 − u10 , ∆y1 = y1 − y10 and x10 , u10 , y10 is
our fixed operating point. It is to stress that the linearization is considered
around a steady state, state, input and output are replaced by deviations
from it as: ∆x1, ∆u1 and ∆y1 and the matrices A, B and C are in general
given as:

A =

(
∂f

∂x1

)

x1=x10
,u1=u10

,B =

(
∂f

∂u1

)

x1=x10
,u1=u10

,C =

(
∂g

∂x1

)

x1=x10
,u1=u10

In case on one level hydraulic system (6.1)we get by such a linearization

∆ẋ1 =
1

A1
∆u1 −

c1
2
√
x10

∆x1

∆y1 = ∆x1 (7.5)

We would like to point that (7.5) is not valid for x10 = 0. Taking into account
that our system (7.5) is linear, we can consider its velocity transfer function

F1(s) =
∆Y1(s)

∆U1(s)
=

1
A1

s+ c1
2
√
x10

Now for this system we propose PI-controller (for the first order linear sys-
tem). Transfer function of the controller should again be made in such a
way to yield an open transfer function 1/T1s what may e.g. be achieved by
choosing

R1(s) =
1

T1s
· 1

F1(s)
=

s+ c1
2
√
x10

1
AT1s

=
A1

T1
+

A1c1
2T1

√
x10s

where

P1 =
A1

T1

I1 =
A1c1

2T1
√
x10

are gains of P1 a I1 action of the controller. Note that the time constant
T1 can be easily obtained from step-response of the system. We should not

7 Constrained PID Control Tasks for Coupled Tanks Control 257

omit the fact, that by designing the controller, we proceed from the system
(7.5), which works with deviations from steady state, not with the absolute
varaibles. That’s why the controller is using them as well, i.e. it holds

R1(s) =
∆U1(s)

∆E1(s)

where ∆U1(s) and ∆E1(s) are Laplace transforms of the deviations of the
controller output, ∆u1 = u1 − u10 and of the control error, ∆e1 = e1 − e10 ,
from steady states u10 a e10 . Of course, for control error in steady state is
e10 = 0. In this case ∆e1 = e1, but at the controller output one still has
to consider deviation signal ∆u1. The system (6.1), which we are in fact
controlling, has as its input directly u. So, we need to arrange the controller
output by adding the stabilized steady-state value u10 and thus obtaining
directly u1

u1 = ∆u1 + u10

The value u10 represents the stabilized value of the pump’s voltage, at which
the liquid’s level or liquid’s volume in the tank has the stabilized value x10 .
The numerical value u10 is, off course, needed at the implementation of the
controller. We’ll define it based on system’s (6.1). In a steady-state all time
derivatives are zero, thus ẋ1 = 0. After substituting into (6.1) we’ll obtain
u10 defined as

u10 = A1c1
√
x10

7.4 Exact Feedback Linearization

In this task, we would like to control the liquid’s level for different operating
points. By appropriate gain scheduling it is possible to have various operating
points and the associated controllers and then to switch between them, but
as more practical it seems to schedule the controller parameters continuously.
This is usually done by the input-output feedback linearization. In general,
it is supposed a non-linear system in the following form:

ẋ = f(x, u)

y = g(x)

where the state x ∈ Rn, the input u ∈ Rm, the output y ∈ Rp. Find, if
possible, a static state feedback

u = ϕ(v, x)

258 Vladimı́r Žilka and Mikuláš Huba

in such a way that the system would be from point of view of new input v
and output y linear. For the solution to exist, it has to be given that the
system’s relative degree ri is natural number. The system’s relative degree
ri is a natural number that defines the number of output’s derivations yi we
have to perform in order to obtain the direct dependence on the output u. In
case of non-existence of such number, we say that the output has the infinite
relative degree.

ri = min{k ∈ N ;
∂y

(k)
i

∂u
6= 0}

More information can be found for example in Conte et al (2007).
For system (6.1) we may say

ẏ1 =
1

A1
u1 − c1

√
x1 (7.6)

that it has the relative degree 1. But also the system (6.2) has the relative
degree 1 because

ẏ1 =
1

A1
u1 − c12 sign(x1 − x2)

√
|x1 − x2| − c1

√
x1

ẏ2 =
1

A2
u2 + c12 sign(x1 − x2)

√
|x1 − x2| − c2

√
x2

the basic condition is satisfied. The problem of the static-state feedback lin-
earization is solvable if

rank
∂(y

(r1)
1 , ..., (y

(rp)
p)

∂u
= p

where ri are the relative degrees of outputs yi, for i = 1, ..., p. Static-state
feedbacks can be found by solving equation

y
(ri)
i = vi

The proof, technical details and additional references can be found in Conte
et al (2007).

For the system (6.1), the static-state feedback that solves the linearization
problem can be found by solving the equation

ẏ1 = v1

for u1 that is

u1 = A1v1 +A1c1
√
x1 (7.7)

7 Constrained PID Control Tasks for Coupled Tanks Control 259

When we apply this, the feedback we get from the original system (6.1) linear
system ẏ1 = v1 with transfer function:

F1(s) =
1

s

Now it is enough to design controller which will provide the required loop
behavior. It will be necessary for it to have opened loop transfer function
1

T1s
. When we talk about simple first degree integrator, in this case it is

enough use simple P-controller. Its gain will be

P1 =
1

T1

For the two-level system (6.2) we will do the same. By requiring

ẏ1 = v1

ẏ2 = v2

the solution will be given equations for u1 and u2

u1 = A1v1 +A1c12 sign(x1 − x2)
√

|x1 − x2|+A1c1
√
x1

u2 = A2v2 −A2c12 sign(x1 − x2)
√
|x1 − x2|+A2c2

√
x2

Similarly to previous case, after application of these feedbacks we obtain
two independent (decoupled) systems ẏ1 = v1, ẏ2 = v2 having the transfer
functions

F1(s) =
1

s

F2(s) =
1

s

We can continue again in the same way as with the one level system. As we
now have two independent liear systems, for each level we can design separate
P-controller.

P1 =
1

T1

P2 =
1

T2

We would like to recall as well the special case of two tanks connection. It
differs from (6.1) in the way that the outflow from the first tank is at zero –
valve 1 is closed, the second pump is turned off and the liquid’s height in the
second tank is controller by controlling the inflow into the first tank. We can
write down the system equations as it follows:

260 Vladimı́r Žilka and Mikuláš Huba

ẋ1 =
1

A1
u1 − c12

√
x1 − x2

ẋ2 = c12
√
x1 − x2 − c2

√
x2

y = x2 (7.8)

The above-mentioned system has the relative degree r = 2. That’s why we
have to proceed, when looking for the feedback, from the equation:

ÿ = v1

so, u1 can be defined as

u1 =
2A1

c12
v1
√
x1 − x2 +A1c12

√
x1 − x2 − 2A1c2

√
x2 +A1c2

x1√
x2

Different from the previous examples, by application of this feedback we
obtain from the original system (7.8), linear system ÿ = v1 with transfer
function

F (s) =
1

s2

Thus, we would have to apply a different approach to continuous gainschedul-
ing of the controller paramters based on (7.9), whereby the new input v1
should be computed in a way respecting all basic performance limitations
– nonmodelled dynamics, model uncertainty, meausrement and quantization
noise and the contorl signal constraints.

7.5 PD2 controller

In reality, the control signal is always constrained, what can be expressed as

ur ∈ [U1, U2]; U1 < 0 < U2 (7.9)

So, despite to the fact that the control signal is usually generated by linear
controllers, the input to the plant ur is modified by a nonlinear function that
can be denoted as the saturation function

ur(t) = sat {u(t)} ; sat {u} =





U2 u > U2 > 0

u U1 ≤ u ≤ U2

U1 u < U1 < 0

(7.10)

In the classical period of control (up to late 60s in the 20th century),
the constraints in the control were treated by a huge amount of papers.
Then, in the subsequent decades in the main stream of the control theory

7 Constrained PID Control Tasks for Coupled Tanks Control 261

the problem of constraints practically disappeared. Just a limited number
of authors dealing with the anti-windup design continued to investigate this
important feature. Today, the problem of constraints is again in the focus
of the research activities and it is hardly possible to give here just a brief
overview of different approaches.

For the sake of brevity, we will show here briefly one possible approach
to controlling the coupled tanks combining constrained pole assignment con-
trol Huba and Bisták (1999); Huba (1999); Huba et al (1999); Huba (2001,
2005, 2006, 2010, 2011a,c) with extended exact linearization method that is
based on transformation of the existing nonlinear system by (7.9) into the
double integrator one and in controlling such double integrator system by the
PD2 controller that fully considers the existing control saturation limits.

Let us start with considering the double integrator system

d2ȳ(t)

dt2
= Ksū (t) (7.11)

For y = ȳ − w ; w being the reference input, x(t) = [y(t), d(t)] ; d = dy/dt
the system state and

u = Ksū; Ui = KsŪi; i = 1, 2 (7.12)

being the normalized control, it can be described in the state space as

dx(t)

dt
= Ax(t) + bu(t); A =

(
0 1
0 0

)
; b =

(
0
1

)
(7.13)

The linear pole assignment PD-controller is given as

u = rtx ; rt = [r0; r1] ; ū = u/Ks (7.14)

The PD2 controller is composed from the linear pole assignment controller
used for the relatively low velocities and given as

u =
at [α2I − A]

atb
x (7.15)

r0 = −α1α2 ; r1 = α1 + α2 (7.16)

For d ∈
[
d20, d

1
0

]
the corresponding constrained pole assignment controller

is again given by (7.15), (7.16) and with limiter (7.10). For higher velocities
d the nonlinear algorithm is used that moves the representative point in the
state space towards the so called Reference Braking Trajectory and guaran-
teeing braking with dynamics specified by one of the closed loop poles and
without overshooting. The controller for the double integrator is then given
as

262 Vladimı́r Žilka and Mikuláš Huba

u =

[
1− α2

y − yb
d

]
Uj (7.17)

ūr = sat {u/Ks} (7.18)

j = (3 + sign (y)) /2 (7.19)

When controlling the nonlinear system (7.9), it is at first necessary to
transform by means of inverse equation to (7.9) the existing saturation limits
(e.g. 0 and 5 V) into the limits valid for the fictive controller input v1. Then,
using information about the plant state and the new saturation limits con-
sidered in (7.19), the fictive control signal v1 is computed by means of (7.15),
or (7.19) and by using (7.9) the real control signal is achieved.

When substituting for x1, x2 in the above transformations directly the
actual level values, we use standard approach of the exact linearization. Due
to the non-modeled dynamics it is, however, better to work with generalized
operating points for x1, x2 defined somewhere between the actual and the
final state as

xi = wi ∗mi + (1−mi)hi ;mi ∈ 〈0, 1〉 ; i = 1, 2 (7.20)

In this way we are using a method that represents combination of the exact
linearization and of linearization around fixed operation point.

Example of transient responses are in Fig. 7.5 and Fig. 7.6. The tradition-
ally used tuning derived by the conditions of the triple real pole

α1,2 = −0.321/Td (7.21)

used in older works, the closed loop poles were now chosen according to Huba
(2011b) as

α1,2 = −0.321/Td (7.22)

where Td = 0.8s is the identified loop dead time, was now confronted with
newer one Huba (2011b) derived by the performance portrait method. The
dynamics of the control signal changes is obviously from the dynamical class
2. But, due to the plant character the second pulse in the control transients
is not so dominant as the first one, what is a typical feature of all stable
systems.

The controller structure in Simulink is depicted in Fig. 7.7. Control pro-
gram which works with results of automatic calibration and indentification
is listed below.

7.5.0.2 Program for Matlab/Simulink

clc;

clear all;

close all;

7 Constrained PID Control Tasks for Coupled Tanks Control 263

0 50 100 150 200 250 300 350
0

0.05

0.1

0.15

0.2

0.25

time [s]

le
ve

l [
m

]

PD2 controller − levels 1−2

h
1

h
2

w

0 50 100 150 200 250 300 350
0

0.5

1

1.5

x 10
−5

time [s]

pu
m

p
po

w
er

 [m
3 /s

)]

PD2 − controller output

Fig. 7.5 Typical setpoint steps in the loop with PD2 controller with tuning (7.21)
may contain up to two step at saturation limits after larger setpoint steps at its output,
but for stable systems the 2nd interval at saturation corresponding to braking the
transient may disappear or not reach the saturation

264 Vladimı́r Žilka and Mikuláš Huba

0 50 100 150 200 250 300 350
0

0.05

0.1

0.15

0.2

0.25

time [s]

le
ve

l [
m

]

PD2 controller − levels 1−2

h
1

h
2

w

0 50 100 150 200 250 300 350
0

0.5

1

1.5

x 10
−5

time [s]

pu
m

p
po

w
er

 [m
3 /s

)]

PD2 − controller output

Fig. 7.6 Typical setpoint steps in the loop with PD2 controller with tuning (7.22)
derived by the performance portrait method Huba (2011b) gives a bit tighter control
and faster dynamics of transient responses than the traditionally used tuning (7.21)
what may be e.g. observed by longer period at the maximal level of h1 in the first
tank and yet more by higher noise amplification

7 Constrained PID Control Tasks for Coupled Tanks Control 265

dr

yr = h2

w

h1

w

ur

h2

h1

Step2

Step1

Step

Saturation1Saturation REAL

rozsah
h1

h2

beta2*sqrt(u(1)+posun)

beta12*sqrt(u(1)−u(2))

Q−>U

f(u)

Mux

MATLAB
Function

100/12

Fig. 7.7 Control structure for nonliner PD1 implemented in Matlab / Simulink.
Matlab function block call PD2(u(1),u(2),u(3),u(4))

global alfa1 alfa2 Q1min Q1max m1c m2c beta1 beta12 beta2 posun

S1

% alfa1, alfa2 = closed loop poles

% Q1min Q1max = limit values for the pump input

% m1c,m2c = waighting coefficients for specifying operating

points for

% linearization

% m1c,m2c=0 corresponds to exact linearization, i.e.

linearization around

% actual state - leading to overshooting thanks to nonmodelled

dynamics

% m1c,m2c=1 corresponds to linearization around reference state

- too slow

% closed loop dynamics

% recommended to work with m1c,m2c>0 (0.1-0.2)

% beta1 beta12 beta2 = valve coefficients (just beta12 % beta2

required)

% posun = offset of the output valve (difference between tank

bottom and

% valve output orifice

% S1 = tank area

load ’../../basics/calibParams’;

load ’../../basics/valve1’;

load ’../../basics/valve2’;

load ’../../basics/valve12’;

266 Vladimı́r Žilka and Mikuláš Huba

load ’../../basics/pump1’;

T = 0.25;

% sampling period

S1=0.001; % tank area

posun = posun2; % offset 2

m1c=0.12; m2c=0.12;

beta1=0;beta12=b12;beta2=c2; % valves flow coeff.

Q1min=0;

Q1max=q_max1;

w11=0.05;

w12=0.10;

w13=0.05;

% setpoint values for tank 2 level - 3 steps

D=0.996;

% considered dead time

c=1;

alfae=-0.321/(c*D);

% closed loop pole choice c>1 is used for PID2 controller

tuning

Tfil=-1/alfae;

Tfd=Tfil/10;

% Time constants for Disturbance Observer filter and derivative

filter

alfa1=alfae;alfa2=alfa1;

% tuning for controller with real poles

sim(’PD2_REAL_zilka.mdl’);

str_datum = num2str(floor(clock));

str_datum = (strrep(str_datum, ’ ’, ’-’));

file_name = sprintf(’reg_PD2-%s’, str_datum);

eval ([’save ’, file_name]);

Finally, also PD2 algorithm (PD2.m).

function out = PD2(dr,yr,w,h1m);

% constrained pole assignment controller for double integrator

plant

% dr = dh2/dt - estimated according to the first state equation

7 Constrained PID Control Tasks for Coupled Tanks Control 267

% yr = h2 - measured level in tank 2

% w = reference value for tank 2

% h1m=h1 - measured level in tank 1

global alfa1 alfa2 Q1min Q1max m1c m2c beta1 beta12 beta2 posun

S1

% alfa1, alfa2 = closed loop poles

% Q1min Q1max = limit values for the pump input

% beta1 beta12 beta2 = valve coefficients (just beta1 % beta12

required)

% posun = offset of the output valve (difference between tank

bottom and

% valve output orifice

% ************signals transformations*************

h2m=yr; y = yr-w;

%s hifting reference state to the origin

w1 = ((beta2/beta12)^2)*(w+posun)+w;

% steady state level in tank 1

% corresponding to setpoint reference level w in tank 2

% posun = valve orifice offset

h1=m1c*w1+(1-m1c)*h1m;

h2=m2c*w+(1-m2c)*h2m;

% h1,h2 =operating points for linearization of tank 1 and 2

% m1c,m2c = waighting coefficients for specifying

% operating points for linearization

% m1c,m2c=0 correspond to exact linearization,

% i.e. linearization around actual state - leading

% to overshooting thanks to nonmodelled dynamics

% m1c,m2c=0 correspond to linearization around reference state

-

% too slow closed loop dynamics

% recommended to work with m1c,m2c>0 (0.1-0.2)

h12=abs(h1-h2);

z=sign(h1-h2);

a = beta12/(2*S1*sqrt(h12));

b = -(-beta12^2-1/2*(-2*beta2*h2-beta2*posun+beta2*h1)*beta12

/((h1-h2)^(1/2)*(h2+posun)^(1/2))+1/2*beta2^2);

% transformation to the normal form for output y=h2

% real control ur of pump with constraints Q1min, Q1max

% replaced by fictive input of a double integrator

% with limits Q12 and Q11

268 Vladimı́r Žilka and Mikuláš Huba

Q12 = a*Q1max-b;

Q11 = a*Q1min-b;

% limit values of fictive input signal of double integrator

**************control algorithm*************

% control algorithm for constrained control

% of double integrators with real

% closed loop poles alfa1, alfa2

if (Q11*Q12>0)

if (h1m+h2m>w+w1)

u=Q1min;

else

u=Q1max;

end

ur=u;

else

if y>0

Q1j = Q12;

else

Q1j = Q11;

end

d1=Q11/alfa1;

d2=Q12/alfa1;

if(dr>d2) & (dr<d1)

u=(-alfa1*alfa2*y+(alfa1+alfa2)*dr);

% linear pole assignment

else

u=((1-alfa2*(y-0.5*(dr*dr/(Q1j)+Q1j/(alfa1*alfa1)))/dr)*

Q1j);

% nonlinear pole assignment

end

% constraining output

if (u>Q12)

u=Q12;

end

if (u<Q11)

u=Q11;

end

% ***********inverse transformation***********

% inverse transformation from the fictive

7 Constrained PID Control Tasks for Coupled Tanks Control 269

% double integrator input u to

% real input ur

ur = (u+b)/a;

end

out = ur;

7.6 Conclusion

We have described the basic possibilities of control of available hydraulic sys-
tem established by different configuration of one or two containers with one
or two pumps. It is important to mention, that in case of control of real sys-
tem with the mentioned controllers we will not obtain the ideally supposed
results. Certainly, due to modelling errors we will register some deviations
between supposed and real transients. The control performance will depend
on the accuracy of identification and robustness of controller. As we will never
be able to define the system’s parameters with 100% precision, the system
wild never behave as the perfect integrator and P-controller will not assure
the necessary quality of control. That’s why we propose to design the robust
controllers having sufficient robustness against influence of disturbances, un-
certainties and measurement noise. At the same time, these controllers should
also respect the available system’s limits. Such proposals for one-level system
can be found for example Huba (2003); Pan et al (2005); Halás (2006); Almu-
tairi and Zribi (2006); Žilka et al (2009). Further development of the above-
mentioned procedures, as e.g. the disturbance decoupling problem of coupled
tanks was studied in Žilka and Halás (2010) and non-interacting control of
coupled tanks in Žilka and Halás (2011).

Acknowledgements The work has been partially supported by the Slovak Grant
Agency grants No. VG-1/0656/09 and VG-1/0369/10. It was also supported by a
grant (No. NIL-I-007-d) from Iceland, Liechtenstein and Norway through the EEA
Financial Mechanism and the Norwegian Financial Mechanism. This project is also
co-financed from the state budget of the Slovak Republic.

References

Almutairi NB, Zribi M (2006) Sliding mode control of coupled tanks. Mechatronics
16(7):427 – 441

Conte G, Moog C, Perdon A (2007) Algebraic Methods for Nonlinear Control Systems.
Theory and Applications, 2nd edn. Communications and Control Engineering,
Springer-Verlag, London

Halás M (2006) Quotients of noncommutative polynomials in nonlinear control sys-
tems. In: 18th European Meeting on Cyberntetics and Systems Research, Vienna,
Austria

270 Vladimı́r Žilka and Mikuláš Huba

Huba M (1999) Dynamical classes in the minimum time pole assignment control. In:
Computing Anticipatory Systems - CASYS ’98, Woodbury: American Institute of
Physics, pp 499–512

Huba M (2001) Constrained control of the two tank system. In: 9th Mediterranean
Conference on Control and Automation, Dubrovnik, pp 93–98

Huba M (2003) Gain scheduled PI level control of a tank with variable cross section.
In: 2nd IFAC Conference on Control Systems Design, Bratislava, Slovakia

Huba M (2005) P- und pd-polvorgaberegler für regelstrecken mit begrenzter stell-
grösse. Automatisierungstechnik AT 53(6):273–283

Huba M (2006) Constrained pole assignment control. In: Current Trends in Nonlinear
Systems and Control, L. Menini, L. Zaccarian, Ch. T. Abdallah, Edts., Birkhäuser,
Boston, pp 163–183

Huba M (2010) Designing robust controller tuning for dead time systems. In: IFAC
Int. Conf. System Structure and Control, Ancona, Italy

Huba M (2011a) Basic notions of robust constrained pid control. In: Selected topics
on constrained and nonlinear control. M. Huba, S. Skogestad, M. Fikar, M. Hovd,
T.A. Johansen, B. Roha¿-Ilkiv Editors, STU Bratislava - NTNU Trondheim

Huba M (2011b) Constrained pole assignment controller for sopdt plant. complex
poles. In: NIL Workshop on constrained and nonlinear control. M. Huba, S. Sko-
gestad, M. Fikar, M. Hovd, T.A. Johansen, B. Roha¿-Ilkiv Editors, STU Bratislava
- NTNU Trondheim

Huba M (2011c) Robust controller tuning for constrained double integrator. In: NIL
Workshop on constrained and nonlinear control. M. Huba, S. Skogestad, M. Fikar,
M. Hovd, T.A. Johansen, B. Roha¿-Ilkiv Editors, STU Bratislava - NTNU Trond-
heim

Huba M, Bisták P (1999) Dynamic classes in the pid control. In: Proceedings of the
1999 American Control Conference, San Diego: AACC

Huba M, Sovǐsová D, Oravec I (1999) Invariant sets based concept of the pole assign-
ment control. In: European Control Conference ECC’99, Duesseldorf: VDI/VDE

Pan H, Wong H, Kapila V, de Queiroz MS (2005) Experimental validation of a non-
linear backstepping liquid level controller for a state coupled two tank system.
Control Engineering Practice 13(1):27 – 40

Žilka V, Halás M (2010) Disturbance decoupling of coupled tanks: From theory to
practice. In: IFAC Symposium on System, Structure and Control - CSSS 2010,
Ancona, Italy

Žilka V, Halás M (2011) Noninteracting control of coupled tanks: From theory to
practice. In: 13th International Conference on Computer Aided Systems Theory -
EUROCAST 2011, Las Palmas, Gran Canaria

Žilka V, Halás M, Huba M (2009) Nonlinear controllers for a fluid tank system.
In: R. Moreno-Dı́az, F. Pichler, A. Quesada-Arencibia (Eds.): Computer Aided
Systems Theory - EUROCAST 2009, Springer, Berlin, Germany, Lecture Notes in
Computer Science, pp 618–625

7 Constrained PID Control Tasks for Coupled Tanks Control 271

Comments – Remarks

272 Vladimı́r Žilka and Mikuláš Huba

Comments – Remarks

7 Constrained PID Control Tasks for Coupled Tanks Control 273

Comments – Remarks

274 Vladimı́r Žilka and Mikuláš Huba

Comments – Remarks

Chapter 8

Remote Laboratory Software Module for
Thermo Optical Plant

Pavol Bisták

Abstract Virtual and remote laboratories play an important role in the
education process of engineers. Their expansion is closely connected to the
growth of Internet. This contribution describes how it is possible to install and
use the remote laboratory for the thermo optical plant. It explains the process
of installation both the server and the client applications. Then the user
interface of the client application is discussed in details. An administrator of
the remote laboratory can modify existing control structures therefore there
are special rules included in one section how to create new Simulink block
diagrams in order to be compatible with the remote laboratory software.
Thus one can set up the remote laboratory easily and it can be modified to
her/his needs quickly.

8.1 Introduction

The remote laboratory software module for the uDAQ28/LT thermo optical
plant is represented by the client server application which main task is to
enable remote experiments via Internet. Although the software has been de-
signed to co-operate with the uDAQ28/LT real plant its usage is not limited
only to this real system. The server part of the software is created by the
program application written in the Java programming language. The server
application should be installed on the computer that directly controls the
real plant. The client part of the software is realized in the form of a Web
page with embedded Java applet. This provides a user friendly environment
to carry out remote experiments.

Pavol Bisták
Institute of Control and Industrial Informatics, Slovak University of Technology in
Bratislava, e-mail: pavol.bistak@stuba.sk

275

pavol.bistak@stuba.sk

276 Pavol Bisták

Fig. 8.1 Remote laboratory overview

8.2 Technical Requirements

8.2.1 Server

• Windows operating system (XP, Vista, Seven)
• Java Virtual Machine
• Matlab with Simulink
• fixed IP address
• free port No. 23

8.2.2 Client Computer

• Internet browser with Java applet support

8.3 Installation

8.3.1 Server Installation

First it is necessary to check whether a Java Run Time (JRE) environment is
installed on the server computer. By default Java is installed into the Program
Files folder. To check the Java installation you can also open the Command
Window (Start/Run/cmd) and type ’java’ command to see whether the Java
installation exists or no. If there is no Java installed on the server computer
you should download the installation file from the www.javasoft.com and
install it.

8 Remote Laboratory Software Module for Thermo Optical Plant 277

The proper installation of the uDAQ28/LT thermo optical plant is another
preposition. The installation should be carried out according to the guide on
the installation CD. To check if the control of the real plant works locally
it is possible to run one of the predefined experiments from the installation
CD.

In the case the above mentioned requirements are fulfilled the server ap-
plication could be installed. Open the Server folder on the installation CD
and double click the server install.bat file. During the process of installation
there will be a new folder called RemLabWorkspace created in the root di-
rectory of the C: drive. Necessary Matlab files will be copied into this folder.
Moreover the server application RemLabServer.exe will be copied into the
RemLabWorkspace folder. Before running the server application it is recom-
mended to check the setting of the serial port (in supplied block diagrams
that are placed in the directory C:\RemLabWorkspace).

Warning: Do not delete or move the folder C:\RemLabWorkspace. This
folder is fixed working directory of the server application. The RemLab-
Server.exe application file can be moved from the C:\RemLabWorkspace
folder to any different place and it is also possible to create a shortcut placed
at the desktop in order to run it quickly.

8.3.2 Client Installation

The client application is created in the form of a Java applet inserted into a
Web page. For the testing purposes the installation is not needed because it
can be run directly from the installation CD by clicking the client.html file
placed in the Client\Application folder.

But the client application is aimed for a Web publication when it can
be accessible for all potential users. In this case it is necessary to upload the
content of the Client\Application folder to the desired Web server. Then after
setting the correct Internet address the client application is downloaded into
the Web browser window that enables running of Java applets.

8.4 Running the Client Server Application

The run of a client server application must be synchronized. First it is
necessary to run the server part of the application. After the server has
been successfully installed it is possible to run it by a double click to the
RemLabServer.exe file that is (after the correct installation) placed in the
C:\RemLabWorkspace folder. Depending on the server computer safety set-
tings it can happen that the system will ask for confirmation of a trust to
the application.

278 Pavol Bisták

Fig. 8.2 Server application waiting for client connection

It can be noticed that the run of the server application invokes the run
of Matlab application automatically. After starting the server is held in the
state of waiting for the connection from the client. After the client connects
to the server it starts to fulfill client’s demands. The server usually runs
without breaking (if the safety issues are covered). In the case it is necessary to
finish the server application, it can be done by closing the RemLabServer.exe
application window and closing manually the Matlab application.

If the server starts successfully it is possible to connect to it from the client
application. To run the client application means simply to open the starting
Web page client.html placed in the Client\Application folder. Usually the
client application is installed on a Web server. Then it is necessary to set
the corresponding Web page address into the Web browser. Depending on
the Web browser safety settings it could be required to confirm a trust in
running the Java applets.

Fig. 8.3 Start of the client application after downloading Java applets

8 Remote Laboratory Software Module for Thermo Optical Plant 279

8.5 Client User Interface

The client application serves as the control panel for remote experiments. Its
interface must provide remote users with tools that will enable to exploit all
functions of the server side. Generally this interface allows its users to connect
to the server, set parameters of experiments, control the run of experiments,
visualize experiments in the form of animations, graphs, numerical data and
finally to save data for later processing.

Fig. 8.4 Graphical user interface of client application

The graphical user interface of the client application can be divided to four
quadrants. The two upper quadrants cover a graphical visualization of data
from the running experiment. In the left upper quadrant the experiment is
animated by the series of pictures selected from a database according to the
current state values of the experiment.

In the upper right quadrant there are experiment data displayed in the
form of graphs. There are graphs of input (desired), output and control val-
ues. These responses give an overview how the experiments evolves. More
detailed responses can be acquired after saving the numerical data and dis-
playing them using different software for graphs (Matlab, e.g.). In the dis-
played graphs the scale of the axis is continuously modified according to the
actual values of the displayed data. Below the graphs there is a Legend for
individual responses. When the rules for creation of block diagrams (Sec-
tion 8.7) will be kept the blue curve will represent the input signal, the red
curve will be the control value and the green one is for the output value of
the real system.

The two lower quadrants can be characterized as alphanumerical ones be-
cause they serve for input and display of textual and numerical data of ex-

280 Pavol Bisták

periments. Beside this there is a group of buttons placed in the bottom part
of the interface that enables to control the whole client application.

The lower left sector Settings assures the setting of the following experi-
ment parameters: the name of the controlled model, model parameters, input
(desired) value, sampling period, duration of experiment and the name of a
data file to which the state variables of the running experiment can be saved.

The lower right sector Output displays the experiment outputs in the nu-
merical form. If the user does not want to exploit the possibility to save data
into the data file it is possible to copy data from the field Output through the
clipboard to arbitrary program for further processing. Besides this the field
Output displays also the application state messages (whether the connection
has been successful, if no then why, the state of saving data to the external
file, etc.). Further it shows warnings and error messages in the case they are
generated by the system.

The buttons for the control of running the application are placed at the
bottom part of the interface and play the role of a connection establishment
or cancellation, running the experiment, saving the experiment data, clearing
the interface before running a new experiment. Besides the control buttons
there is also the textual field in the bottom part to which it is necessary to
enter the IP address before the connection is established.

8.5.1 Settings

The following parameters can be set up using the lower left sector Settings :

• Model Scheme – the name of the Simulink file (.mdl) that represents the
block diagram model of the experiment. This file must be placed on the
server computer in the specified folder C:\RemLabWorkspace that was
created during the server installation. The block diagram must keep the
rules written in Section 8.7. The user should be informed about the existing
names of .mdl files that are available.

• Model Parameters – the name of the parameter file that is represented by
Matlab .m file. Also this file must be placed on the server computer in the
folder C:\RemLabWorkspace. Usually it contains the values of constants
and calculations of initial parameters necessary for running the experiment
(block diagram model).

• Input(Desired Value) – input value of the block diagram that in the case
of controller represents a desired value of the output value. Because the
real system has limits included in the block diagram it has only sense to
set the desired value from the certain interval of values.

• Sample Time – sampling period. Model state variables are measured and
changed only in the regular instants characterized by this value. The min-
imal sampling period is given by physical possibilities of the system.

8 Remote Laboratory Software Module for Thermo Optical Plant 281

• Running Time – duration of the experiment. It limits the time how long a
selected block diagram with specified parameters will be running. During
this time the model state variables are visualized by the help of graphs
and animations. Also the numerical values of the model state variables are
displayed in the field Output.

• Save to File – the name of the file placed on the user computer to which
time sequences of the model state variables will be saved after pressing the
button Save. It is necessary to enter the whole path (C:\output.mat, e.g.).
If the file does not exist it will be created.

Fig. 8.5 Settings

Warning: When entering any parameter the corresponding field is high-
lighted by yellow color that indicates data editing. The new parameter is
valid only if the editing is finished by pressing the Enter key.

8.5.2 Server IP Address and Control Buttons

Fig. 8.6 Control buttons

There are a field for setting the server IP address and following control
buttons in the bottom part of the client interface:

• Server IP – the field for setting the server IP address in the form of four
three-digit numbers separated by points. The IP address should be fixed
and the user should know it. For testing purposed it is possible to start
the client application on the server computer. In this case it is necessary
to enter the value 127.0.0.1 or the string localhost.

• Connect – this button realize the connection to the server. A user is in-
formed about the result of the connection in the field Output. When the
connection is successful the message is Connected to server.... In the op-
posite case (wrong IP setting, e.g.) the message is Could not connect to

282 Pavol Bisták

remote host (some time it takes a longer period). In the case when some-
one is already connected to the server, the connection with another client
will be not realized because in one time only one user can operate a real
hardware. This time the message is: Server busy – disconnecting

Fig. 8.7 Connection

• Disconnect – the button that cancels the connection with the server and
thus the server is free to accept connection from another user. There is a
message Disconnected in the field Output when the client is disconnected.
If a client is not active for longer period or because of network failure
she/he could be disconnected from the server automatically. She/he is
informed by the message Connection timeout or network error occurred.
Disconnected from server.....

Fig. 8.8 Automatic disconnection

• Run – it serves for running the block diagram specified in the Model
Scheme parameter. First all parameters are sent to the server where also
the parameters from the file given in the Model Parameters field are read
into the Matlab and consequently the experiment starts with continuous
data transfer and visualization that takes until the time set in the Running
Time field is over. In the Output field the message Simulation starts... will
appear and the transfer data characterizing the experiment states begin
to be displayed. The button is available only after a successful connection
to the server.

• Clear – its task is to clear display fields of the client application, namely
the Output and Graphs sectors. The application will be then prepared for
the next run within the existing connection to the server.

• Save – this button is available after the duration (Running Time) of the
experiment is over. When it is activated the time sequences of the model

8 Remote Laboratory Software Module for Thermo Optical Plant 283

Fig. 8.9 Experiment run

state variables coming from the just finished experiment begin to save into
the file specified by the Save to File parameter. In the Output field the
user is informed about the process and success of saving data. The format
of the saved file is identical with the Matlab workspace data format (.mat
file) and therefore it possible to read data into the Matlab environment
later on and process the saved data more carefully.

Fig. 8.10 Saving data into the file

8.6 Running the Experiment

The sequence of running the experiment is following:

1. The basic assumption is that the server is running. If it does not it is
necessary to run it as it was written in Section 8.4.

2. Start the client application according to the guide in Section 8.4.
3. Set the IP address of the server into the Server IP field.
4. Press the Connect button and check if the message Connected to server...

appeared in the Output field (Fig. 8.7).
5. Set the the parameters in the lower left sector Settings.

• Select the block diagram and initial parameters by entering the names
of corresponding files (Model Scheme, Model Parameters)

• Set the desired value, sampling period and duration of the experiment

6. Press the Run button to start the operation of the selected block diagram.
This will cause running the remote experiment. During the period of the

284 Pavol Bisták

experiment running (specified in Running Time) it is not possible to in-
teract with the experiment and it is necessary to wait until it finishes to
take over the control of the application again. Depending on the network
traffic and the load of the server it could happened that the experiment
does not run correctly or the data are not transferred to the client. In this
case the button Run must be pressed repeatedly.

7. When it is required that data from the just finished experiment have to
be saved set the name of the data file into the Save to File field and press
the Save button. It is necessary to wait for the end of the saving process
that is announced in the Output field (Fig. 8.10). Then it is possible to
process the data saved in the specified file using another application.

8. In the case of repeating the experiment with new parameters clear the
Output and Graphs fields by pressing the Clear button and repeat this
procedure starting from the point 5.

9. Press the button Disconnect when it is not desired to continue working
with remote experiments. This will free resources of the remote laboratory
for other users. To finish the client application close the corresponding
window of the Internet browser.

8.7 Rules for Creation of Models in Simulink

Remote laboratory administrators can create new block diagrams and placed
them (together with initial parameter files) on the server in the fixed given
folder C:\RemLabWorkspace. Thus remote users can have more possibilities
to select the type of the experiment when choosing the corresponding names
of files (.mdl and .m files) in the Model Scheme and Model Parameters fields.
To assure the application is working correctly several simple rules must be
kept when creating these new block diagrams.

Fig. 8.11 Supplied block diagram

The block diagram depicted in the Fig 8.11 can be found in the C:\RemLab-

Workspace folder after successful installation. The core of this block diagram

8 Remote Laboratory Software Module for Thermo Optical Plant 285

is created by the Thermo-optical Plant I/O Interface block that represents the
physical model of the uDAQ28/LT thermo optical plant. The blocks drawn
by the orange color are important for the correct operation of the remote
laboratory software module. These are input/output blocks of this block di-
agram and the client application is programmed in that way that it could
exchange the data with these blocks. The following three rules have to be
kept where the first two are related to input parameters and the third one to
input/output parameters of the block diagram:

1. The sampling period of an individual block as well as the whole block
diagram is given by the global variable denoted as Ts. This denotation
must be kept everywhere. If a variable with this name is used in the initial
parameter file (.m file) or somewhere in the block diagram (.mdl file) its
value will be overwritten by the value set in the Sample Time field of the
client application.

2. The desired value is given by the global variable denoted as w (the Final
value parameter of the Step block in the supplied block diagram, e.g.).
This denotation must be kept everywhere. If a variable with this name
is used in the initial parameter file (.m file) or somewhere in the block
diagram (.mdl file) its value will be overwritten by the value set in the
Input(Desired Value) field of the client application.

3. Signals that should be displayed in the client application interface have
to be gathered using the multiplexer block into the only one Scope block
whose name is identical with the name Scope and its settings coincide with
those of Fig. 8.13.

Fig. 8.12 Gathering signals into the Scope block

When creating new block diagrams it is recommended to start with the
supplied block diagram (Fig. 8.11) and modify its structure while keeping
the blocks drawn by the orange color unchanged. Thus it is possible to add
an arbitrary controller to the thermo optical plant block that can be re-
alized in the Simulink. The block diagram in the Fig. 8.11 and its initial
parameter file have been developed by a simple modification of the original
files (PI1 windupless.mdl a init PI1 windupless.m) that are supplied on the
installation CD of the uDAQ28/LT thermo optical plant.

Warning: Time responses from the supplied block diagram and the pa-
rameter file should not be the optimal ones. First it is necessary to identify

286 Pavol Bisták

Fig. 8.13 Scope block parameter settings

each individual piece of the uDAQ28/LT thermo optical plant and conse-
quently to modify parameters of the controller in the initial parameter file.

8.8 Conclusion

Remote laboratory software module extends possibilities how to exploit the
thermo optical plant in that way that thank to the Internet it is accessible
for greater number of interested persons. If the safety conditions are kept it
can run 24 hours per day. Thus the time and distance barrier are decreased
and the effectiveness of the real plant usage is enhanced.

To increase the accessibility of the remote laboratory it is recommended
to include the starting Web page of the client application into a Learning
Management System (LMS) or into other system for Web pages administra-
tion and provide the detailed description of the remote experiments that are
available (introduce the file names of block diagrams and initial parameters
that can be chosen). It is also advantageous to provide users with the value of
the server IP address (if its value is not predefined in the client application).

The client application is universal so it can be easily modified to create
an user interface for remote control of other real plants. This has been suc-
cessfully tested for hydraulic plant, magnetic levitation system and rotational
pendulum.

8 Remote Laboratory Software Module for Thermo Optical Plant 287

Comments – Remarks

288 Pavol Bisták

Comments – Remarks

8 Remote Laboratory Software Module for Thermo Optical Plant 289

Comments – Remarks

290 Pavol Bisták

Comments – Remarks

Chapter 9

Constrained PID control
Tasks for Controlling the Thermo Optical
Plant

Peter Ťapák and Mikuláš Huba

Abstract Tuning of simple controllers respecting input constraints will be
considered in this chapter and verified by controlling simple physical device
of thermo-optical plant. The chapter starts with short user’s manual and
installation guide to the uDAQ28/LT device which will be used as a real
plant to apply the control on. In the introduction, several fundamental con-
trollers of the Dynamical class 0 (DC0) will be considered that avoid control
saturation by guaranteeing monotonic transients among steady states at the
controller output. Processes of the DC0 are typically met in situations, where
the dynamics of transients may be neglected, i.e. it is not connected with a
reasonable energy accumulation. In such cases, the ideal control response
following a setpoint step may also converge to step function (not having a
saturation phase). Controllers of the DC0 may also be successfully applied
to any stable plant, but in such situations it is no more possible to speed up
the control signal transient up to the step function, just to keep it monotonic
that guarantees that all such controllers may again be successfully treated
by the linear theory as well. In the second part, basic structures of the DC1
will be introduced that may already typically have one constrained period
in their control signal step responses. Here, control structures with integral
action based on disturbance observers will be introduced that do not exhibit
windup phenomenon and so enable simpler one-step tuning that in the case
of traditional linear controllers extended by the anti-windup circuitry.

Peter Ťapák
Institute of Control and Industrial Informatics
Faculty of Electrical Engineering and IT, Slovak University of Technology
Ilkovičova 3, 812 19 Bratislava, Slovakia, e-mail: peter.tapak@stuba.sk

Mikuláš Huba
Institute of Control and Industrial Informatics
Faculty of Electrical Engineering and IT, Slovak University of Technology
Ilkovičova 3, 812 19 Bratislava, Slovakia, e-mail: mikulas.huba@stuba.sk

291

peter.tapak@stuba.sk
mikulas.huba@stuba.sk

292 Peter Ťapák and Mikuláš Huba

9.1 Thermo-optical Plant uDAQ28/LT – Quick Start

This section gives a short guide to uDAQ28/LT plant. Get familiar with
thermo-optical plant interface. For more information on the device please re-
fer to the user’s manual. This device offers measurement of eighth process
variables (temperature and its filtered value, ambient temperature, light in-
tensity, its filtered value and its derivative, the ventilator speed of rotation
and its motor current). The temperature and the light intensity control chan-
nels are interconnected by three manipulated variables: the bulb voltage (the
heat and light source), the light-diode voltage (the light source) and the ven-
tilator voltage (the system cooling). The plant can be easily connected to
standard computers via USB, when it enables to work with the sampling pe-
riods 40-50 ms and larger. Within the Matlab/Simulink scheme the plant is
represented as a single block, limiting use of costly and complicated software
package for the real time control.

9.1.1 Installation in Windows Operating System

9.1.1.1 Device Driver Installation

New hardware is detected automatically by operating system and Found New
Hardware Wizard will start after plugging device into electrical power network
and connecting it to PC by USB cable (Fig. 9.1). Choose driver installation
from specific location (Fig. 9.2)

Directory driver from the package of supporting software is needed to
select as device driver location path (Fig. 9.3). Complete installation requires
two cycles of adding new hardware (USB Serial Converter and USB Serial
Port is installed into operating system, Found New Hardware Wizard starts
automatically second time). The user is informed on successful completion of
installation, see the window on the Fig. 9.4.

When the device has been installed, (virtual) serial port is available on
the list of hardware devices, labeled as USB Serial Port. One can get to its
settings through Device Manager (Start / Settings / Control Panel / System
/ Hardware / Device Manager) if Ports (COM & LPT) / USB Serial Port is
selected (Fig. 9.5). The port has automatically assigned by the system one of
com port numbers (which is not in use). If the assigned number is bigger than
4, it is necessary to change it to different com port number from the range
1-4, which is not in use at the moment. It is possible to perform on the tab
Port Settings / Advanced / COM Port Number (Fig. 9.6). The last action
after installation to be done is setting parameter Latency Timer (msec) on
value 1, which minimizes data loss during data transfer. Parameter Latency
Timer (msec) is available on the same tab as COM Port Number (Fig. 9.6).
In the case that all com port numbers from the range 1-4 are already in use by

9 Constrained PID control Tasks for Controlling the Thermo Optical Plant 293

Fig. 9.1 Found new hardware wizard

Fig. 9.2 Install driver from specific location selection

294 Peter Ťapák and Mikuláš Huba

Fig. 9.3 Driver location selection

Fig. 9.4 Successful completion of installation

9 Constrained PID control Tasks for Controlling the Thermo Optical Plant 295

Fig. 9.5 Device manager – USB serial port

Fig. 9.6 Assignment COM port number to USB Serial Port, Latency Timer setting

other applications or programs, first assign (change) com port number bigger
than 4 to one of those programs and then assign available number from 1 to
4 to USB Serial Port.

296 Peter Ťapák and Mikuláš Huba

9.1.1.2 Driver and Software Package Installation in Matlab

To install driver and software package in Matlab, follow these instructions:

• Before installation it is good to make sure that any unterminated process
matlab.exe is not in the memory; if it is, terminate it (tab Processes in
Task Manager, activated by keys CTRL+ALT+DEL)

• Run Matlab
• Change the working directory to the directory from the package of sup-

porting software where installation file udaq setup.p is located (e.g. by
typing command cd e:\dirname)

• Run file udaq setup.p by typing command ’udaq setup’

After successful completion of installation there is directory matlabroot/u-
daq/udaq28LT and particular subdirectories and files copied on the local hard
drive. (matlabroot represents the name of the directory displayed after typing
command ’matlabroot’ in Matlab command window) Two mdl files are open
after installation in Matlab: udaq28LT iov2.mdl, located in matlabroot/u-
daq/udaq28LT/examples and the library containing two blocks (drivers), rep-
resented by mdl file matlabroot/udaq/udaq28LT/blks/udaq28LT lib.mdl. You
can create your own simulation mdl file that communicates with thermo-
optical plant by copying the driver block from the library (or from other
functioning mdl file) into your own mdl file.

9.1.1.3 Thermo-optical Plant Communication Interface

Thermo-optical plant communication interface is represented in Matlab by
one of the blocks udaq28LT v1R13 (Fig. 9.7) or udaq28LT v2R13 located
in the library matlabroot/udaq/udaq28LT/blks/udaq28LT lib.mdl. Double
clicking on the udaq28LT v1R13 block brings up the block parameters menu
(Fig. 9.8).

9.1.1.4 Measurement and Communication System

The inputs and outputs of the communication interface refer to these signals.

Inputs: Bulb 0-5V to 0-20W of light output
Fan 0-5V to 0-6000 fan rpm
LED 0-5V to 0-100% of LED light output
T, D microprocessor inputs for the purpose

of calculation of the first light
light channel derivative (sample period
the microprocessor samples light channel
with – minimal possible value is 1ms and
coefficient of actual sample for the

9 Constrained PID control Tasks for Controlling the Thermo Optical Plant 297

8
Fan rpm1

7
Fan current1

6
Derivative

of light intensity1

5
Filtered light intensity1

4
Light intensity1

3
Filtered temperature1

2
Temperature1

1
Ambient temperature1

udaq28LT_v2R13

Clock1

5
D_filt1

4
Ts_deriv1

3
LED1

2
Fan1

1
Bulb1

Fig. 9.7 Communication interface block in Simulink

discrete filter of the first order with
accuracy of 3 decimal positions)

Outputs: Ambient temperature
Temperature sensor PT100

range 0− 100 ◦C
accuracy: better than 99%

Filtered temperature (1st order filter with time constant cca 20 s)
Light intensity
Filtered light intensity (1st order filter with time constant cca 20 s)
Filtered derivative of the first light intensity channel
Current consumption by fan (0-50mA)
Fan revolutions (0-6000 rpm)

Operating temperatures range: 0− 70 ◦C
Power supply: 12V/2ADC (external adapter)
Communication interface: USB – virtual serial port

298 Peter Ťapák and Mikuláš Huba

Fig. 9.8 User dialog window of communication interface

Data transfer speed: 250 kbit/s

9.2 Light Channel Control

The non-filtered and filtered light channels of uDAQ/28LT plant are going
to be controlled in this section. Simple alternatives to linear I-controllers will
be practiced.

9 Constrained PID control Tasks for Controlling the Thermo Optical Plant 299

Fig. 9.9 Basic electrical diagram of thermo-optical plant uDAQ28/LT

9.2.1 Feedforward Control

Tasks:

• Identify non-filtered light channel parameters.
• Control non-filtered light channel using inverse process gain.
• Analyze the steady state error for various setpoint changes.
• Measure the I/O characteristics of the non-filtered light channel.

Let us start with getting to know the light channel characteristics. The
non-filtered light channel represents a very fast process which can be approx-
imated as memoryless plant. In an ideal case static feedforward control with
inverse process gain should be sufficient for such process. Measure one point
of the I/O characteristic to obtain the process gain.

The basic I/O Simulink model (matlabroot/udaq/udaq28LT/examples/
udaq28LT iov2.mdl) can be used. As other alternative use the exnum com-
mand and choose experiment no.1 which opens up basic I/O Simulink model
of the plant. Set the bulb voltage to us = 2.5V and run the experiment for
2 s. Put down the steady state value of the light intensity. By default it is
represented by the yellow transient in the light intensity scope (Fig. 9.10).

The steady state value of the light intensity in this example is approxi-
mately ys = 20. The process gain can be than computed as K = ys/us. In
this example it gives

K =
ys
us

=
20

2.5
= 8 (9.1)

Modify the Simulink model to use the inverse process gain to control the
plant (Fig. 9.11). Do not forget to add the input saturation in the model,

300 Peter Ťapák and Mikuláš Huba

Fig. 9.10 Basic Simulink model for the udaq28/LT plant

because the bulb voltage is limited from 0V to 5V. Add the setpoint signal
to the light intensity scope. Set the simulation time to infinity.

Fig. 9.11 Static feedforward control

9 Constrained PID control Tasks for Controlling the Thermo Optical Plant 301

Make multiple setpoint steps in a wide operational range. It can be done
while the experiment is running.

Fig. 9.12 Experimental results – Light intensity scope

You should observe a steady state error in several working points. The
smallest steady state error can be seen around the point where the process
gain was measured. It is not difficult to conclude that the process parameters
vary through the operational range, in other words the I/O characteristics of
the non-filtered light channel is not linear.

The exnum command can be used to measure I/O characteristics of the
plant and to obtain the process parameters in multiple working points. Choose
the experiment no.2 for I/O characteristics measurement. The following fig-
ures will give you the information on the I/O characteristic, the process gain
and dead time through the operational range. Short delay in a light intensity
change can be observed after a bulb voltage step. The uDAQ28/LT device
converts bulb voltage steps into a steep ramp to prevent undesired distur-
bances in the plant. Let us approximate this delay as a dead time. After
running the I/O characteristics measurement plot the step responses from

302 Peter Ťapák and Mikuláš Huba

which the I/O characteristics of the light channel was obtained by the fol-
lowing commands:

stairs(yl(:,1),yl(:,2))

xlabel(’t[s]’)

ylabel(’light intensity’)

title(’Step responses of non-filtered light channel’)

0 1 2 3 4 5
0

10

20

30

40

50

60

70
Input−output characteristic

u

y

Fig. 9.13 I/O characteristics measurement results

9.2.2 I0 Controller

Tasks:

• Add a disturbance observer to the feedforward control to compensate
steady state error.

• Use the I/O characteristics measurement results to tune the controller by
hand.

• Tune the controller using the performance portrait method.
• Make a step disturbance by a LED voltage step during the experiments.

9 Constrained PID control Tasks for Controlling the Thermo Optical Plant 303

0 10 20 30 40 50 60 70
2

4

6

8

10

12

14

16

18
Gain of open loop

y

K

Fig. 9.14 Process gain in multiple operating points as function of the output variable

• Compare the results with various controller tuning.

The disturbance observer can be added to the static feedforward control
to compensate the steady state error. To obtain a structure equivalent to
I-controller, the pre-filter with time constant equal to the observer time con-
stant has to be added as well. Let us denote the controller as I0-controller
(Fig. 9.17) and the controller with pre-filter as FI0.

Tuning of the I0 and FI0-controller requires information on a process gain
and approximation of the non-modeled dynamics – usually by the dead time.
The approximation of the delay in this example is Td = 0.4. The filter time
constant of the disturbance observer is restricted by the parasitic time delays
of the non-modeled dynamics in the process. Use following formula to set up
the disturbance observer filter time constant:

Tfil = eTd (9.2)

Try to use multiple process gains for controller tuning, to improve con-
trol quality. Use the lowest, the average and the maximum process gain from
Fig. 9.13. Choose experiment no.3 with the exnum command to control non-
filtered optical channel by FI0-controller. You will be prompted for the pro-
cess gain value and the delay time constant. In Fig. 9.18 there is the Simulink
model which should pop up when the correct experiment starts. The exper-

304 Peter Ťapák and Mikuláš Huba

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75
Dead time

u

T
d

Fig. 9.15 Dead time in multiple operating points as function of the input variable

Fig. 9.16 Step responses of the non-filtered optical channel – overview and a detail
of one step response. These are the responses to 0.5V bulb voltage steps made in 3s
intervals.

9 Constrained PID control Tasks for Controlling the Thermo Optical Plant 305

Fig. 9.17 FI0-controller, structure equivalent for Tp = Tf to I-controller

iment will run with multiple setpoint steps. Feel free to modify the model
to make your own setpoint steps sequence. The goal is to achieve quick non-
overshooting transients.

u

ni_rec

1

Tfil.s+1

Transfer Fcn3

1

Tfil.s+1

Transfer Fcn2

1

Tfil.s+1
Transfer Fcn1

Thermo−optical
Plant

I/O Interface

Temperature1
Saturation1Repeating

Sequence

1/K

P reg1

Light
intensity1

0

LED

1/K

Gain2

1
Gain1

0

Fan

Fig. 9.18 FI0-controller – Simulink model

The experimental results can be plot using following commands.

figure

stairs(yl(:,1),yl(:,2), ’k’)

hold on

stairs(yl(:,1),yl(:,4), ’k:’)

xlabel(’t[s]’)

ylabel(’light intensity’)

legend(’system output’, ’setpoint’)

Using the recommended three process gains in the experiment you should
obtain similar results to Fig. 9.19, 9.20 Fig. 9.21,9.22, and Fig. 9.23,9.24.

For the plant used in this example the desired control quality was achieved
when the process gain K = 17 was used. The control results can be seen in
Fig. 9.23.

306 Peter Ťapák and Mikuláš Huba

0 10 20 30 40 50 60
0

10

20

30

40

50

60

70

time[s]

Li
gh

t i
nt

en
si

ty

Light channel output

System output
Setpoint

Fig. 9.19 Experimental results for K=3

From the experience with the previous experiments one can assume that
a higher value of the process gain leads to lower overshoot with slower tran-
sients and vice versa. After getting some experience with the controller, let us
practice robust controller tuning. At first put down the intervals in which the
process gain and the dead time range. The data from Fig. 9.14 and Fig. 9.15
can be used. In this example the dead time Td ranges in interval [0.4,0.7]
and the process gain ranges in interval [3,17]. Now determine the interval in
which normalized variable κ ranges. κ represents normalized variable

κ = K0/K (9.3)

where K0 stands for the process gain used in the controller, K corresponds to
real process gain, which varies through the operational range. The goal is to
fit the uncertainty box into area of performance portrait (Fig. 9.25) where the
controller gives monotonic transients. Try to use two limit values of process
gain for K0, in this example it gives

K0 = Kmin = 3 (9.4)

which leads to κ = [3/17, 1].
For the maximal value of K0

9 Constrained PID control Tasks for Controlling the Thermo Optical Plant 307

0 10 20 30 40 50 60
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

time[s]

Control signal

B
ul

b
vo

lta
ge

Fig. 9.20 Experimental results for K=3

K0 = Kmax = 17 (9.5)

it gives κ = [1, 17/3].

Ω = Td/Tf (9.6)

Calculate filter time constant Tf for both selections of K0. For K0 (9.4) it
yields

Ω = 0.0649 (9.7)

Tf = Td/Ω = 0.7/0.0649 = 10.7825 (9.8)

For K0 (9.5) it yields
Ω = 0.3679 (9.9)

Tf = Td/Ω = 0.7/0.3679 = 0.7e = 1.9028 (9.10)

Verify controller tuning by real experiment for various setpoint steps. Add
a disturbance using a LED to verify input disturbance compensation. You
should observe similar transients using both controller tunings (Fig. 9.26).
The 2V LED voltage step was made at time 105 s. Following table summarizes
the robust FI0-controller tuning for various overshooting tolerances.

Questions:

308 Peter Ťapák and Mikuláš Huba

0 10 20 30 40 50 60
0

5

10

15

20

25

30

35

40

45

time[s]

Li
gh

t i
nt

en
si

ty

Light channel output

System output
Setpoint

Fig. 9.21 Experimental results for K=10

Table 9.1 Controller tuning

ǫy[%] 10 5 4 2 1 0.1 0.01 0.001 0 0

τ = κ/Ω 1.724 1.951 2.0 2.162 2.268 2.481 2.571 2.625 2.703 2.718
q = Ω/κ 0.58 0.515 0.5 0.465 0.441 0.403 0.389 0.381 0.37 0.368

• What type of plant is FI0-controller suitable to control for?
• Which plant’s parameter restricts the controller’s dynamics?
• Was there any overshooting in the experiments?
• Why the performance of different controller tunings in Fig. 9.26 is almost

the same?

9.2.3 Filtered Predictive I0 Controller

Tasks:

• Add a dead time to the non-filtered light channel output.
• Modify the I0-controller to compensate the delay.
• Tune the controller using a performance portrait.

9 Constrained PID control Tasks for Controlling the Thermo Optical Plant 309

0 10 20 30 40 50 60
0

0.5

1

1.5

2

2.5

3

3.5

time[s]

Control signal

B
ul

b
vo

lta
ge

Fig. 9.22 Experimental results for K=10

• Make a disturbance by a LED voltage step during the experiments.
• Compare the control quality with the FI0-controller using a real experi-

ment.

Tuning of the closed loop systems involving dead-time still represents a
challenging domain of control research. an increase of the dead-time values
with respect to the dominant plant time constant leads in the loops with PID
controllers to rapid performance deterioration. Therefore filtered predictive
I0 (FPrI0)-controller will be used in this exercise. Under the FPrI0-controller
controller we will understand the static feedforward control with the gain
1/K0 extended by the input disturbance reconstruction and compensation
(Fig. 9.27) with the disturbance observer filter time constant Tf and by the
pre-filter with the time constant Tp = Tf .

Robust tuning of the FPrI0-controller may again be done by the perfor-
mance portrait. The information on plant parameters is needed. For the plant
used in this exercises the performance portrait for undelayed plant output is
in Fig. 9.29, the delayed plant output performance was analyzed in Fig. 9.30.
Compare the performance of filtered predictive I0-controller vs FI0-controller.
Use additional transport delay when controlling a non-filtered optical chan-
nel. In the following example 5 s transport delay was added to the non-filtered
light channel output, so the transport delay of the plant ranges from 5.4 to

310 Peter Ťapák and Mikuláš Huba

0 10 20 30 40 50 60
0

5

10

15

20

25

30

35

40

45

time[s]

Li
gh

t i
nt

en
si

ty

Light channel output

System output
Setpoint

Fig. 9.23 Experimental results for K=17

5.7 s. The process gain still range in interval [3,17]. For 1% overshooting tol-
erance it yields to filtered predictive I0-controller parameters:

Td0 = 6.48 (9.11)

Tf = 4.28 (9.12)

K0 = 14.15 (9.13)

For FI0-controller it gives

Td0 = 5.7 (9.14)

Tf = eTd0 ≈ 16 (9.15)

K0 = 17 (9.16)

The performance of both controllers is compared in Fig. 9.31, 9.32. Feel
free to make this experiment with larger dead time e.g. 10 s.

Questions:

• What type of plant is FPrI0-controller suitable to control for?
• Was there any overshooting in output and input transients during the

experiments?
• Which controller performed better in disturbance rejection?

9 Constrained PID control Tasks for Controlling the Thermo Optical Plant 311

0 10 20 30 40 50 60
0

0.5

1

1.5

2

2.5

3

3.5

time[s]

Control signal

B
ul

b
vo

lta
ge

Fig. 9.24 Experimental results for K=17

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

I
0
 Step Response: NonOvershooting & Monotonic Control

T
d/T

f

κ
K

0
=K

min

K
0
=K

max

Fig. 9.25 Performance portrait for FI0-controller

312 Peter Ťapák and Mikuláš Huba

0 20 40 60 80 100 120 140
0

10

20

30

40

50

60

70

time[s]

Li
gh

t i
nt

en
si

ty

Setpoint
K

min
K

max

Fig. 9.26 Real experimental results for FI0-controller

Fig. 9.27 FPrI0-controller

9 Constrained PID control Tasks for Controlling the Thermo Optical Plant 313

u

ni_rec

Transport
Delay1

Transport
DelayTransfer Fcn4

1

Tp.s+1

Transfer Fcn2

1

Tf.s+1

Transfer Fcn1
1

Tf.s+1

Thermo −optical
Plant

I/O Interface

Temperature 1

Step

Saturation 1Repeating
Sequence

P reg1

1/K0

Light
intensity1

Gain2

1/K0

Gain1
1

Fan

0

Fig. 9.28 FPrI0-controller - Simulink model

T
d/T

d0

κ

PrI
0
MO y

0
 Setp. ε=0.01; Tf=2.3516; K0=17.4675; Td0=5.8065; IAE0mean=22.5849

TV0mean=0.00042767

1 2 3 4 5 6

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

Fig. 9.29 Performance portrait – FPrI0-controller

9.2.4 PI0 and FPI0 Controllers

Tasks:

• Identify the parameters of filtered light channel.
• Use PI0-controller to compensate the delay of the filtered light channel.
• Tune the controller using a performance portrait.
• Make a disturbance by a LED voltage step during the experiments with

the filtered light channel.

314 Peter Ťapák and Mikuláš Huba

T
d/T

d0

κ

PrI
0
MO y

1
 Setp. ε=0.01; Tf=4.2811; K0=14.1525; Td0=6.4865; IAE1mean=29.9608

TV0mean=5.0295e−005

1 2 3 4 5 6

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

Fig. 9.30 Performance portrait – FPrI0-controller

• Compare the control quality with the I0-controller using a real time ex-
periment.

In practice it is often not efficient and sufficient to compensate large time
constant’s influence just by restricting the closed loop bandwidth. Active
compensation of dominant loop time constant leads to control structures
such as PI0-controller (Fig. 9.33, 9.34).

The output of filtered optical channel will be used to practice FPI0-
controller tuning. An analogue first order filter is used for non-filtered light
channel filtering. The process can so be approximated as

G(s) =
K

T1s+ 1
e−Tds (9.17)

The time constant T1 represents a analogue filter time constant, dead
time Td is used to approximate the lag between a bulb voltage step and the
corresponding change in the light intensity. Obtain the parameters of filtered
light channel. The exnum command with experiment no.5 can be used.

For the plant used in this example it gives

9 Constrained PID control Tasks for Controlling the Thermo Optical Plant 315

0 50 100 150 200 250 300 350 400 450
0

10

20

30

40

50

60

70

time[s]

Li
gh

t i
nt

es
ity

Setpoint
FPrI

0
FI

0

Fig. 9.31 FPrI0 – controller vs FI0-controller under 5s transport delay, plant output

K ∈ [8.8728, 19.8939]

T1 ∈ [17.0096, 25.8687]

Td ∈ [0, 0.6]

The dead time Td is relatively small comparing to the process time constant
T1 (we have so-called lag dominant plant), thus it can be neglected in further
calculations. Figs. 9.35 and 9.36 show how the process gain and time constant
vary through the operational range independence on the plant input.

Again the controller tuning can be done using the performance portrait
method (Fig. 9.37). It is best to choose

T10 = max(T1)

K10 = max(K) (9.18)

which for this plants is

T10 = 25.8687

K0 = 19.8939 (9.19)

Try multiple disturbance observer filter time constants Tf . In this example
following Tf/T10 ratios were used:

316 Peter Ťapák and Mikuláš Huba

0 50 100 150 200 250 300 350 400 450
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

time[s]

C
on

tr
ol

 s
ig

na
l

FPrI

0

FI
0

Fig. 9.32 FPrI0-controller vs FI0-controller under 5s transport delay, control signal

Fig. 9.33 FPI0 controller

9 Constrained PID control Tasks for Controlling the Thermo Optical Plant 317

u

ni_rec

Transfer Fcn2

T10.s+1

Tf.s+1

Transfer Fcn1
1

Tf.s+1

Thermo −optical
Plant

I/O Interface

Temperature 1

Step Saturation 3

Light
intensity1LED

0

Gain3

1/K0

Gain2

1/K0

Gain1
1

Fan

0

Fig. 9.34 PI0-controller: Simulink Model; to get FPI0 controller you need to add
pre-filter to the reference setpoint input

0 1 2 3 4 5
0

2

4

6

8

10

12

14

16

18

20
Gains corresponding to approximation of step responses produced by incremental input changes

Bulb voltage

P
ro

ce
ss

 g
ai

n

Measured gains
Mean gain

Fig. 9.35 Process gain in several operation points as function of the plant input

Tf/T10 = {0.8, 0.6, 0.06} (9.20)

Tf/T10 = 0.8 and Tf/T10 = 0.6 should give transients of the undelayed system
output with up to 2% overshooting and the delayed system output should
not overshoot. Tf/T10 = 0.06 corresponds to controller tuning where

Tf = e1 ·max(Td) = 1.6310 (9.21)

318 Peter Ťapák and Mikuláš Huba

0 1 2 3 4 5
0

5

10

15

20

25

30
Process time constants

Bulb voltage

P
ro

ce
ss

 ti
m

e
co

sn
ta

nt

Measured time constants
Mean time constant

Fig. 9.36 Process time constant in several operation points as function of the plant
input

This tuning can yield to transients with approximately 10% overshooting
of the undelayed system output and the delayed system output should not
overshoot (see the performance portrait in Fig. 9.37).

Compare the results with the FI0-controller (Fig. 9.17). Use the following
FI0-controller tuning:

K0 = max(K)

Tf = e1 ·max(T1) (9.22)

Make several setpoint steps, make a LED voltage step as well when the
system output is settled. Do not forget to keep more time between setpoint
steps when using I0-controller. It is useful to make a simulation first to deter-
mine setpoint step time interval sufficient to settle the system output between
them. The experiments results are shown inf Figs. 9.38, 9.39, 9.40. Compare
the overshooting for setpoint step and disturbance step. The detailed view
on these transients is shown in Figs. 9.41, 9.42, 9.43, and 9.44.

Questions:

• What type of plant are PI0 and FPI0-controllers suitable to control for?
• Analyze the amount of overshooting in the experiments.
• Which controller performed better in disturbance rejection?

9 Constrained PID control Tasks for Controlling the Thermo Optical Plant 319

0.02 0.
02

0.
02

0.
02

0.05 0.
05

0.
05

0.
05

0.1

0.
1

0.
1

0.
1

0.2

0.
2

0.
2

0.
2

0.5

0.
5

1 1251020

−
−

−
>

 T
f/T

10

−−−> T
1
/T

10

FPI
0
: u−TV

0
, y

0
−TV

0

0.5 1 1.5 2

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0.02

0.
02

0.02

0.05

0.
05

0.05

0.1
0.20.51

2

−−−> T
1
/T

10

FPI
0
: y

1
−TV

0

0.5 1 1.5 2

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Fig. 9.37 Performance portrait of the FPI0-controller.

• Was there any advantage of using FI0 over FPI0 – e.g. in noise sensitivity?

9.2.5 PI1 controller

Tasks:

• Control the filtered light channel output by PI1-controller.
• Analyze the control quality for various controller tunings.
• Compare results with control performance of previous controllers.

The PI1-controller structure and Simulink model are in Figs. 9.45, 9.46.
PI1 may also be used for controlling unstable plant. To cover all stable and
unstable plants by one transfer function, it is necessary to use the pole-zero
form instead of the time-constant one and to express the plant as

G (s) =
Ks

s+ a
e−Tds (9.23)

For robust controller tuning, the performance portrait method could again be
used. For simple nominal tuning use the following rules based on the notion
of the so called equivalent poles αe of the proportional controller and αe,I of

320 Peter Ťapák and Mikuláš Huba

0 200 400 600 800 1000 1200 1400
0

10

20

30

40

50

60

time [s]

Li
gh

t i
nt

en
si

ty

System output, Comparison of the delayed system output

FPI

0
 T

f
/T

10
=0.8

FPI
0
 T

f
/T

10
=0.6

FPI
0
 T

f
/T

10
=0.06

FI
0
 controller

setpoint

Fig. 9.38 Experimental results – delayed system output

the controller with disturbance compensation (I-action):

αe = −(1 + aTd)
2/(4Td) (9.24)

αeI = αe/1.3 (9.25)

P = −(αeI + a)/Ks (9.26)

Tf = e1Td (9.27)

Plant parameters from FOPTD approximation (9.18) can be used, whereby
Ks = K/T and a = 1/T . The experimental results for the plant used in this
chapter are in Figs. 9.47, 9.48, 9.49, 9.49.

Questions:

• Which process gain used for controller tuning gave better control quality?
• What was the most obvious difference in control quality compared to DC0

controllers?
• What was the most obvious difference in control signal shape compared to

DC0 controllers?
• Was there any overshooting in the experiments?

9 Constrained PID control Tasks for Controlling the Thermo Optical Plant 321

0 200 400 600 800 1000 1200 1400
0

10

20

30

40

50

60

time [s]

Li
gh

t i
nt

en
si

ty

System output, Comparison of the undelayed system output

FPI
0
 T

f
/T

10
=0.8

FPI
0
 T

f
/T

10
=0.6

FPI
0
 T

f
/T

10
=0.06

I
0
 controller

setpoint

Fig. 9.39 Experimental results – undelayed system output

9.2.6 Filtered Smith Predictor (FSP)

Tasks:

• Control the filtered light channel output by FSP.
• Analyze the control quality for various controller tunings.
• Compare results with control performance of PI1-controller .

The FSP was originally proposed in Normey-Rico et al. (1997) for stable
FOPDT processes to improve robustness of the traditional SP. Later, the
disturbance filter Fr(s) has been also proposed to decouple the reference
setpoint and the disturbance response and to stabilize the controller loop in
case of unstable and integral plants Normey-Rico and Camacho (2009). It
may be interpreted as a structure with the dynamical feedforward control
and the reference plant model Aström and Hägglund (2005); Visioli (2006),
or the 2DOF IMC structure. The unified approach to designing FSPs for
the FOPDT plants introduced in Normey-Rico et al (2009); Normey-Rico
and Camacho (2009) considers compensation of an output disturbance by
correction of the reference value, whereby the disturbance is reconstructed by
using the PPM. However, despite to the proclaimed unification, it separately
presents solutions corresponding to stable, integral and unstable plants.

Use FSP structure from Fig. 9.51 with filter

322 Peter Ťapák and Mikuláš Huba

0 200 400 600 800 1000 1200 1400
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

time [s]

B
ul

b
V

ol
ta

ge

Controller output

FPI

0
 T

f
/T

10
=0.8

FPI
0
 T

f
/T

10
=0.6

FPI
0
 T

f
/T

10
=0.06

FI
0
 controller

Fig. 9.40 Experimental results – control signal

Fr1(s) =
1 + β11s

1 + Tfs
(9.28)

Use FOPDT approximation (9.18), whereby Ks = K/T and a = 1/T .
Choose Ks0 = max(Ks), θ = max(Td), T10 = maxT1,a0 = min(a). Set up
the experiments in the same way as in the previous exercise to be able to
compare the results. For controller tuning use following rules.

The P-action should be set to

Kp = (1/Tr − a0)/Ks0 (9.29)

Filter parameter β11 set to

β11 = T10

(
1− (1 − Tf/T10)(1 − Tr/T10)e

−θ/T10

)
(9.30)

Try multiple Tr and Tf settings e.g. Tr = T10/{2, 4, 8, 16},Tf = Tr/{2, 4, 8}.
In this example various Tr settings were used. The filter time constant was
set to Tf = Tr/4. Experimental results are shown in Figs. 9.52, 9.53.

Questions:

• Was there any overshooting in the experiments?
• How did the increasing of parameter Tr affect control quality?

9 Constrained PID control Tasks for Controlling the Thermo Optical Plant 323

80 100 120 140 160 180 200 220 240 260 280

46

48

50

52
Li

gh
t i

nt
en

si
ty

time [s]

FPI
0
 T

f
/T

10
=0.8

80 100 120 140 160 180 200 220 240 260 280

46

48

50

52

Li
gh

t i
nt

en
si

ty

time [s]

FPI
0
 T

f
/T

10
=0.6

80 100 120 140 160 180 200 220 240 260 280

46

48

50

52

Li
gh

t i
nt

en
si

ty

time [s]

FPI
0
 T

f
/T

10
=0.06

80 100 120 140 160 180 200 220 240 260 280

46

48

50

52

Li
gh

t i
nt

en
si

ty

time [s]

FI
0
 controller

Fig. 9.41 Experimental results detail – delayed system output, setpoint step

324 Peter Ťapák and Mikuláš Huba

60 80 100 120 140 160 180 200 220 240 260 280

46

48

50

52
Li

gh
t i

nt
en

si
ty

time [s]

FPI
0
 T

f
/T

10
=0.8

60 80 100 120 140 160 180 200 220 240 260 280

46

48

50

52

Li
gh

t i
nt

en
si

ty

time [s]

FPI
0
 T

f
/T

10
=0.6

60 80 100 120 140 160 180 200 220 240 260 280

46

48

50

52

Li
gh

t i
nt

en
si

ty

time [s]

FPI
0
 T

f
/T

10
=0.06

60 80 100 120 140 160 180 200 220 240 260 280

46

48

50

52

Li
gh

t i
nt

en
si

ty

time [s]

I
0
 controller

Fig. 9.42 Experimental results detail – undelayed system output, setpoint step

9 Constrained PID control Tasks for Controlling the Thermo Optical Plant 325

1000 1020 1040 1060 1080 1100 1120 1140

30

32

34

36

38
Li

gh
t i

nt
en

si
ty

time [s]

FPI
0
 T

f
/T

10
=0.8

1000 1020 1040 1060 1080 1100 1120 1140

30

32

34

36

38

Li
gh

t i
nt

en
si

ty

time [s]

FPI
0
 T

f
/T

10
=0.6

1000 1020 1040 1060 1080 1100 1120 1140

30

32

34

36

38

Li
gh

t i
nt

en
si

ty

time [s]

FPI
0
 T

f
/T

10
=0.06

1000 1020 1040 1060 1080 1100 1120 1140

30

32

34

36

38

Li
gh

t i
nt

en
si

ty

time [s]

FI
0
 controller

Fig. 9.43 Experimental results detail – delayed system output, disturbance step

326 Peter Ťapák and Mikuláš Huba

1000 1020 1040 1060 1080 1100 1120 1140

30

32

34

36

38
Li

gh
t i

nt
en

si
ty

time [s]

FPI
0
 T

f
/T

10
=0.8

1000 1020 1040 1060 1080 1100 1120 1140

30

32

34

36

38

Li
gh

t i
nt

en
si

ty

time [s]

FPI
0
 T

f
/T

10
=0.6

1000 1020 1040 1060 1080 1100 1120 1140

30

32

34

36

38

Li
gh

t i
nt

en
si

ty

time [s]

FPI
0
 T

f
/T

10
=0.06

1000 1020 1040 1060 1080 1100 1120 1140

30

32

34

36

38

Li
gh

t i
nt

en
si

ty

time [s]

FI
0
 controller

Fig. 9.44 Experimental results detail – undelayed system output, disturbance step

9 Constrained PID control Tasks for Controlling the Thermo Optical Plant 327

KR

-

-

-

+

+

+++

v

ur y

uf

ua

vf

ew

a/Ks

u

^

afu

d1

1

+sT f

1

1

+

+

sT

as

K fs

as

Ks

+

+

-

Fig. 9.45 PI1-controller

u

ni_rec

s+a

Tfil.s+1

Transfer Fcn1
1

Tfil.s+1

Thermo −optical
Plant

I/O Interface

Temperature 1

Step

Saturation 3Repeating
Sequence

P−asction

P

Light
intensity1

1/Ks

Gain1
1

Fan

0

FF

a/Ks

Fig. 9.46 PI1-controller, Simulink model

• Which controller performed better in comparison with PI1-controller?

References

Aström, K. and Hägglund, T. (2005). Advanced PID control. In ISA-The Instru-

mentation, Systems, and Automation Society. Research Triangle Park, NC.
Normey-Rico, J.E., Bordons, C., and Camacho, E.F. (1997). Improving the robustness

of dead-time compensating pi controllers. Control Engineering Practice, 5, 801–
810.

Normey-Rico, J.E. and Camacho, E.F. (2009). Unified approach for robust dead-time
compensator design. J. Process Control, 19, 38–47.

Normey-Rico, J.E., Guzman, J., Dormido, S., Berenguel, M., and Camacho, E.F.
(2009). An unified approach for dtc design using interactive tools. Control Engi-

neering Practice, 17, 1234–1244.
Visioli, A. (2006). Practical PID Control. Springer, London.

328 Peter Ťapák and Mikuláš Huba

0 20 40 60 80 100
0

10

20

30

40

50

60

70

time [s]

Li
gh

t i
nt

en
si

ty

PI
1
 controller − output of filtered light channel, K=19

delayed output
undelayed output
setpoint

Fig. 9.47 PI1-controller, filtered light channel control for K = 19

9 Constrained PID control Tasks for Controlling the Thermo Optical Plant 329

0 20 40 60 80 100
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

time [s]

B
ul

b
vo

lta
ge

 [V
]

PI
1
 controller − control signal, K=19

Fig. 9.48 PI1-controller, filtered light channel control for K = 19

330 Peter Ťapák and Mikuláš Huba

0 20 40 60 80 100
0

10

20

30

40

50

60

70

time [s]

Li
gh

t i
nt

en
si

ty

PI
1
 controller − output of filtered light channel, K=9

delayed output
undelayed output
setpoint

Fig. 9.49 PI1-controller, filtered light channel control for K = 9

9 Constrained PID control Tasks for Controlling the Thermo Optical Plant 331

0 20 40 60 80 100
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

time [s]

B
ul

b
vo

lta
ge

 [V
]

PI
1
 controller − control signal, K=9

Fig. 9.50 PI1-controller, filtered light channel control for K = 9

Fig. 9.51 Modified P-FSP with the primary loop using 2DOF P-controller with the
disturbance filters

332 Peter Ťapák and Mikuláš Huba

0 20 40 60 80 100
0

5

10

15

20

25

30

35

40

45

time [s]

Li
gh

t i
nt

en
si

ty

Filtered light channel output

T

r
=T

1
/4

T
r
=T

1
/6

T
r
=T

1
/8

setpoint

Fig. 9.52 FSP for filtered optical channel – system output

9 Constrained PID control Tasks for Controlling the Thermo Optical Plant 333

0 20 40 60 80 100
0

1

2

3

4

5

T
r
=T

1
/4

time [s]

B
ul

b
vo

lta
ge

 [V
]

0 20 40 60 80 100
0

1

2

3

4

5

time [s]

B
ul

b
vo

lta
ge

 [V
]

T
r
=T

1
/6

0 20 40 60 80 100
0

1

2

3

4

5

T
r
=T

1
/8

time [s]

B
ul

b
vo

lta
ge

 [V
]

Fig. 9.53 FSP for filtered optical channel – control signal

334 Peter Ťapák and Mikuláš Huba

Comments – Remarks

9 Constrained PID control Tasks for Controlling the Thermo Optical Plant 335

Comments – Remarks

336 Peter Ťapák and Mikuláš Huba

Comments – Remarks

9 Constrained PID control Tasks for Controlling the Thermo Optical Plant 337

Comments – Remarks

	1 Problems in Anti-Windup and Controller Performance Monitoring
	Morten Hovd and Selvanathan Sivalingam
	1.1 Anti-Windup: Control of a Distillation Column with Input Constraints
	1.1.1 Notation
	1.1.2 Some Background Material on Anti-windup
	1.1.3 Decoupling and Input Constraints
	1.1.4 The Plant Model used in the Assignment
	1.1.5 Assignment
	1.1.6 Solution
	1.1.7 Simulations
	1.1.8 Anti-windup
	1.1.9 Matlab Code

	1.2 Anti-windup with PI Controllers and Selectors
	1.2.1 Introduction to Selective Control
	1.2.2 The Control Problem in the Assignment
	1.2.3 Assignment
	1.2.4 Solution

	1.3 Stiction Detection
	1.3.1 Assignment
	1.3.2 Solution
	1.3.3 Conclusions

	1.4 Controller Performance Monitoring using the Harris Index
	1.4.1 Assignment
	1.4.2 Solution

	References

	2 Optimal Use of Measurements for Control, Optimization and Estimation using the Loss Method: Summary of Existing Results and Some New
	Sigurd Skogestad and Ramprasad Yelchuru and Johannes Jäschke
	2.1 Introduction
	2.2 Problem Formulation
	2.2.1 Classification of Variables
	2.2.2 Cost Function
	2.2.3 Measurement Model
	2.2.4 Assumptions
	2.2.5 Expected Set of Disturbances and Noise
	2.2.6 Problem
	2.2.7 Examples of this Problem
	2.2.8 Comments on the Problem

	2.3 Solution to Problem: Preliminaries
	2.3.1 Expression for u u u uopt(d d d d)
	2.3.2 Expression for J J J J around u u u uopt(d d d d)
	2.3.3 Expression for J J J Ju around Moving u u u uopt(d d d d)
	2.3.4 Optimal Sensitivities

	2.4 The Loss Method
	2.4.1 The Loss Variable z z z z as a Function of Disturbances and Noise
	2.4.2 Loss for Given H H H H, Disturbance and Noise (Analysis)
	2.4.3 Worst-case and Average Loss for Given H H H H (Analysis)
	2.4.4 Loss Method for Finding Optimal H H H H

	2.5 Reformulation of Loss Method to Convex Problem and Explicit Solution
	2.6 Structural Constraints on H H H H
	2.7 Some Special Cases: Nullspace Method and Maximum Gain Rule
	2.7.1 No Measurement Noise: Nullspace Method (``full H H H H'')
	2.7.2 No Disturbances
	2.7.3 An Approximate Analysis Method for the General Case: ``Maximum Gain Rule''

	2.8 Indirect Control and Estimation of Primary Variable
	2.8.1 Indirect Control of y y y y1
	2.8.2 Indirect Control of y y y y1 Based on Estimator

	2.9 Estimator for y y y y1 Based on Data
	2.9.1 Data Approach 1
	2.9.2 Data Approach 2: Loss Regression
	2.9.3 Modification: Smoothening of Data
	2.9.4 Numerical Tests
	2.9.5 Test 1. Gluten Test Example from Harald Martens
	2.9.6 Test 2. Wheat Test Example from Bjorn Alsberg (Kalivas, 1997)
	2.9.7 Test 3. Our Own Example
	2.9.8 Comparison with Normal Least Squares

	2.10 Discussion
	2.10.1 Gradient Information
	2.10.2 Relationship to NCO tracking

	2.11 Appendix
	References

	3 Measurement polynomials as controlled variables – Exercises
	Johannes Jäschke and Sigurd Skogestad
	3.1 Introduction
	3.2 Simple excercise
	3.3 Isothermal CSTR Case Study
	3.4 Solution
	3.4.1 Component Balance
	3.4.2 Optimization Problem
	3.4.3 Optimality Conditions
	3.4.4 Eliminating Unknowns k1,k2 and cB
	3.4.5 The Determinant
	3.4.6 Maple Code

	4 Multi-Parametric Toolbox
	Michal Kvasnica
	4.1 Multi-Parametric Toolbox
	4.1.1 Download and Installation

	4.2 Computational Geometry in MPT
	4.2.1 Polytopes
	4.2.2 Polytope Arrays
	4.2.3 Operations on Polytopes
	4.2.4 Functions Overview

	4.3 Exercises
	4.4 Solutions
	4.5 Model Predictive Control in MPT
	4.5.1 Basic Usage
	4.5.2 Closed-loop Simulations
	4.5.3 Code Generation and Deployment
	4.5.4 Advanced MPC using MPT and YALMIP
	4.5.5 Analysis
	4.5.6 System Structure sysStruct
	4.5.7 Problem Structure probStruct

	4.6 Exercises
	4.7 Solutions
	References

	5 Implementation of MPC Techniques to Real Mechatronic Systems
	Gergely Takács and Tomáš Polóni and Boris Rohal'-Ilkiv and Peter Šimončič and Marek Honek and Matúš Kopačka and Jozef Csambál and Slavomír Wojnar
	5.1 Introduction
	5.2 MPC Methods for Vibration Control
	5.2.1 Introduction
	5.2.2 Hardware
	5.2.3 Quadratic Programming based MPC
	5.2.4 Newton-Raphson's Suboptimal MPC
	5.2.5 Multi-Parametric MPC
	5.2.6 Conclusion

	5.3 AFR Control
	5.3.1 Introduction
	5.3.2 Hardware Description
	5.3.3 AFR Model Design
	5.3.4 Predictive Control
	5.3.5 Results of a Real-Time Application of a Predictive Control
	5.3.6 Conclusion

	References

	6 Laboratory Model of Coupled Tanks
	Vladimír Žilka and Mikuláš Huba
	6.1 Introduction
	6.2 Coupled Tanks – Hydraulic Plant
	6.2.1 Identification
	6.2.2 Sensors Calibration
	6.2.3 Automatic Calibration and Identification
	6.2.4 Some Recommendation for Users

	References

	7 Constrained PID ControlTasks for Coupled Tanks Control
	Vladimír Žilka and Mikuláš Huba
	7.1 Introduction
	7.2 Basic P and PI controllers
	7.2.1 PI-controller
	7.2.2 PI1 controller

	7.3 Linearization around a fixed operating point
	7.4 Exact Feedback Linearization
	7.5 PD2 controller
	7.6 Conclusion
	References

	8 Remote Laboratory Software Module for Thermo Optical Plant
	Pavol Bisták
	8.1 Introduction
	8.2 Technical Requirements
	8.2.1 Server
	8.2.2 Client Computer

	8.3 Installation
	8.3.1 Server Installation
	8.3.2 Client Installation

	8.4 Running the Client Server Application
	8.5 Client User Interface
	8.5.1 Settings
	8.5.2 Server IP Address and Control Buttons

	8.6 Running the Experiment
	8.7 Rules for Creation of Models in Simulink
	8.8 Conclusion

	9 Constrained PID control Tasks for Controlling the Thermo Optical Plant
	Peter Ťapák and Mikuláš Huba
	9.1 Thermo-optical Plant uDAQ28/LT – Quick Start
	9.1.1 Installation in Windows Operating System

	9.2 Light Channel Control
	9.2.1 Feedforward Control
	9.2.2 I0 Controller
	9.2.3 Filtered Predictive I0 Controller
	9.2.4 PI0 and FPI0 Controllers
	9.2.5 PI1 controller
	9.2.6 Filtered Smith Predictor (FSP)

	References

