MotionChip™ II TML Programming	ΤE	C	Н	N	0	S	0	F	Т
				Us	ser	' M	lan	nua	al
						F	Prelii	mina	ary
© Technosoft 2006									

TECHNOSOFT

MotionChip[™] II TML Programming

P091.055.MCII.TML.UM.0806

Technosoft S.A.

Buchaux 38 CH-2022 BEVAIX Switzerland Tel.: +41 (0) 32 732 5500 Fax: +41 (0) 32 732 5504 <u>contact@technosoftmotion.com</u> <u>www.technosoftmotion.com/</u>

Read This First

Whilst Technosoft believes that the information and guidance given in this manual is correct, all parties must rely upon their own skill and judgment when making use of it. Technosoft does not assume any liability to anyone for any loss or damage caused by any error or omission in the work, whether such error or omission is the result of negligence or any other cause. Any and all such liability is disclaimed.

All rights reserved. No part or parts of this document may be reproduced or transmitted in any form or by any means, electrical or mechanical including photocopying, recording or by any information-retrieval system without permission in writing from Technosoft S.A.

About This Manual

This book presents the Technosoft Motion Language (in short **TML**) and how to use it for the programming of drives built around **MotionChip II**. The book includes the following information:

- TML basic concepts
- Motion programming
- Functional description of the TML instructions
- Communication channels and protocols
- Detailed description of each TML instruction including: syntax, binary code and examples.

Scope of This Manual

The TML programming of drives based on **MotionChip II** involves 2 steps:

- Step 1 Parameters setup
- Step 2 Motion programming

The goal of first step is to set the TML parameters in accordance with the user application data. This step is described in the user manual *MotionChip II Configuration Setup*.

This manual describes the second step – Motion programming.

Both steps can be performed using **IPM Motion Studio** – a development platform offering easyto-use graphical programming for devices based on MotionChip II. The output from IPM Motion Studio is a TML program, which can be downloaded into the non-volatile memory of the drive and can be started automatically after power on.

Depending on your application configuration, you have the following options for splitting the tasks between your host and your drive based on MotionChip II:

- 1. *Host control is absent*. The complete motion application is programmed in the drive using TML
- 2. *Host control is done via I/O handshake*. The host commands are set via digital or analogue signals. The drive answers also using digital signals
- 3. *Minimal host control via a communication channel*. The host control is reduced at calling motion functions implemented in the drive non-volatile memory and requesting

© Technosoft 2006

|||

status information. The motion functions from the drive memory can be developed separately using IPM Motion Studio

- 4. Extended host control via a communication channel. The host sends all the TML commands needed to program the motion, but does not perform the drive setup. This is done via a TML program executed automatically after power-on. The TML program can be developed using IPM Motion Studio.
- 5. *Full host control via a communication channel.* In this case the host performs both the drive setup and the motion programming. There is no TML program stored in the drive.

You need this manual only if you plan to use options 4 or 5. The options 1 to 3 can be handled using IPM Motion Studio platform and its user-friendly, graphical programming.

Remarks:

- The 3rd option requires the host to handle a limited number of TML instructions, typically
 just for calling functions and asking/getting status data. You can quickly find the code of
 these instructions and how to pack them into communication messages by using the IPM
 Motion Studio tool Binary Code Viewer.
- Option 5 requires a good understanding of how to determine the TML parameters values. This information is presented in the user manual **MotionChip II Configuration Setup**.

Notational Conventions

This document uses the following conventions:

- TML Technosoft Motion Language
- Program examples are shown with a special font. Here is an example:

ENIO#36; //Configure dual function pin as I/O line 36
user_1 = IN#36; //Read I/O line 36 data into variable user_1

Related Documentation from Technosoft

- *MotionChip II Configuration Setup* (part no. P091.055.MCII.STP.UM.xxxx) describes the MotionChip II operation and how to setup its registers and parameters starting from the user application data. This is a technical reference manual for all the MotionChip II registers, parameters and variables.
- *MotionChip II Data sheet* (part no. P091.055. MCII-QFP100.DST.xxxx) presents the MotionChip II features and specifications, and how to interface it with typical external devices
- IPM Motion Studio User Manual (part no. P091.088.E075.UM.xxxx) describes how to use the IPM Motion Studio – the complete development platform for MotionChip II including: motion system setup & tuning wizard, motion sequence programming wizard, testing and debugging tools like: data logging, watch, control panels, on-line viewers of TML registers, parameters and variables, etc.

© Technosoft 2006

MotionChip II TML Programming

IV

If you Need Assistance ...

If you want to	Contact Technosoft at
Visit Technosoft online	World Wide Web: <u>http://www.technosoftmotion.com/</u>
Receive general information or assistance	World Wide Web: <u>http://www.technosoftmotion.com/</u> Email: <u>contact@technosoftmotion.com</u>
Ask questions about product operation or report suspected problems	
Make suggestions about or	Mail: Technosoft SA
report errors in documentation	Buchaux 38 CH 2022 Bevaix-NE Switzerland

V

Trademarks

MotionChip is a trademark of Technosoft SA.

This page is empty

© Technosoft 2006

MotionChip II TML Programming

VI

Contents

1.	TML Basic Concepts	.1
Т	ML Overview	. 1
Т	ML Environment	. 1
Pi	rogram Execution	. 2
Т	ML Program Structure	. 3
Т	ML Instruction Coding	. 5
T	ML Data 1.1.1. TML Registers 1.1.2. TML Parameters 1.1.3. TML Variables 1.1.4. User variables	.7 .8 .9
TI	ML Development tools	10
Μ	lemory Map	10
A	UTORUN mode	14
2.	TML description	19
М	lotion programming and control	20 25 26 30 33 35 40 46 50

© Technosoft 2006

VII

Assignment & Data Transfer	
2.1.17. Setup 16-bit variable	
2.1.18. Setup 32-bit variable	
Arithmetic & Logic Operations	72
Multi-axis control	
2.1.19. Axis ID. Group ID	
2.1.20. Data transfers between axes	
2.1.21. Remote control	
Miscellaneous commands	
Internal units and scaling factors	
3. Communication Channels and Protocols	
Communication channels	
Communication protocols	
3.1.1. Axis Identification in a Multiple-axis Network	
3.1.1. Axis Identification in a Multiple-axis Network3.1.2. Serial communication protocol3.1.3. CAN-bus Communication Protocol	
3.1.2. Serial communication protocol	
3.1.2. Serial communication protocol 3.1.3. CAN-bus Communication Protocol	

VIII

© Technosoft 2	006
----------------	-----

Figures

Figure 1.1 Typical structure of a TML Program	4
Figure 1.2. Memory map MotionChip II based on TMS320LF2407A	13
Figure 1.3. Memory map MotionChip II based on TMS320LF2406	14
Figure 2.1. Position profile parameters	20
Figure 2.2. Position profile. On-the-fly change of motion parameters	22
Figure 2.3. Position profile. Automatic elimination of round-off errors	24
Figure 2.4. Speed profile parameters	25
Figure 2.5. Reference generation in contouring modes	27
Figure 2.6. Reference profile in test modes	50
Figure 2.7. Electrical angle setup in test modes with brushless AC motors	51
Figure 3.1. Serial RS-232 communication between a host and the MotionChip II	85
Figure 3.2. Multi-drop network using serial RS-485 communication	85
Figure 3.3. Multi-drop network using CAN-bus communication	86
Figure 3.4. Multi-drop network using CAN-bus communication with host connected through 232 to an axis used as communication relay	n RS- 86
Figure 3.5. Message Structure	88
Figure 3.6. Serial communication message format	89
Figure 3.7. Serial message contents when TML instruction "kpp = 5" is sent	90
Figure 3.8. Serial message contents for "Give Me Data" value of kpp	91
Figure 3.9. Serial message contents for "Take Data" value of kpp	91
Figure 3.10. CAN message structure	94
Figure 3.11. CAN message contents when TML instruction "kpp = 0x1234" is sent	95
Figure 3.12. CAN message contents when TML instruction "?POSERR" is sent	96
Figure 3.13. CAN message contents for "Take Data" value of POSERR	97

© Technosoft 2006

MotionChip II TML Programming

IX

Tables

9 19 20 23 25 28 31
20 23 25 28
23 25 28
25 28
28
. 31
34
37
43
48
53
. 61
. 87
. 88
. 99
100
101
101
102
103
103
104
105
105
106

Х

© Technosoft 2006

1. TML Basic Concepts

1.1 TML Overview

The Technosoft Motion Language (TML) is a high-level language allowing you to:

- Setup a drive built with MotionChip II for a given application
- Program and execute motion sequences

The setup part consists in assigning the right values for the TML registers and parameters. Through this process you can:

- Describe your application configuration (as motor and sensors type)
- Select specific operation settings (as motor start mode, PWM mode, sampling rates, etc.)
- Setup the controllers' parameters (current, speed, position), etc.

The next part is for motion programming. Here the TML allows you to:

- Set various motion modes (profiles, contouring, electronic gearing or camming, etc.)
- Change the motion modes and/or the motion parameters on-the-fly
- Execute homing sequences
- Control the program flow through:
 - Conditional jumps and calls of TML functions
 - TML interrupts generated on pre-defined or programmable conditions (protections triggered, detection of transitions on limit switch or capture inputs, etc.)
 - o Waits for programmed events to occur
- Handle digital I/O and analogue input signals
- Execute arithmetic and logic operations
- Perform data transfers between axes
- Control motion of an axis from another one via motion commands sent between axes
- Send commands to a group of axes (multicast). This includes the possibility to start simultaneously motion sequences on all the axes from the group

Due to a powerful instruction set, the motion programming in TML is quick and easy even for complex motion applications. The result is a high-level motor-independent program which once conceived may be used in other applications too.

1.2 TML Environment

The TML environment includes three basic components:

- 1. "TML processor"
- 2. Trajectory generator
- 3. Motor control kernel

The software-implemented "TML processor" represents the core of the TML environment. It decodes and executes the TML commands. Like any processor, it includes specific elements as program counter, stack, ALU, interrupt management and registers.

1

© Technosoft 2006

The trajectory generator computes the position, speed, torque or voltage reference at each sampling step, depending on the selected motion mode.

The motor-control kernel implements the control loops including: the acquisition of the feedback sensors, the controllers, the PWM commands, the protections, etc.

When the "motion processor" executes a motion command, it translates them into actions upon the trajectory generator and/or the motor control kernel.

1.3 Program Execution

The TML programs are executed sequentially, one instruction after the other. A 16-bit instruction pointer (IP) controls the program flow. As the binary code of a TML instruction may have up to 5 words, during its execution the IP is increased accordingly. When the execution of a TML instruction ends, the IP always points to the next TML instruction, or more exactly to the first word of its binary code.

The sequential execution may be interrupted by one of the following causes:

- A TML command received through a communication channel (on-line commands);
- A branch to the interrupt service routine (ISR) when a TML interrupt occurs;
- The need to send the master position to the slave axes when the current axis is set as master for electronic gearing or camming
- A GOTO or CALL instruction;
- A return from a TML function RET or from a TML interrupt RETI;
- During the execution of the instructions: WAIT! (wait event), SEG (new contour segment) and data transfers between axes of type local_variable = [x]remote_variable, which all keep the IP unchanged (i.e. loop on the same instruction) until a specific condition is achieved
- After execution of the END instruction.

The on-line commands have the highest priority and act like interrupts: when an on-line command is received through any communication channel, it starts to be executed immediately after the current TML instruction is completed.

If an on-line command is received during a wait loop, e.g. when WAIT! or SEG commands are processed, the wait loop is temporary suspended, to permit the execution of the on-line command.

The TML works with 3 types of commands, presented in Table 1.1.

Table 1.1 Type of TML commands

TML Command Type	Execution		
	From a TML program	Send via communication	
Immediate		\checkmark	
Sequential		-	
On-line	-		

2

© Technosoft 2006

The immediate commands may be send via a communication channel, or can reside a TML program. These commands don't require any wait loops to complete. Their execution is straightforward and can't be interrupted by other TML commands.

The sequential commands require a wait loop to complete i.e. will not permit IP to advance until the wait condition becomes true. In this category enter commands like:

WAIT!; // Wait a programmed event to occur

SEG *Time*, *Increment*; // Set a contour segment with parameters *Time* and *Increment* to be executed when the previous one ends

local_variable = [x]remote_variable; // Get value of remote_variable
from axis x and put it in local_variable

The sequential commands can reside only in a TML program saved in the local memory.

Remark: If a sequential command is sent via a communication channel, it is immediately executed as if the wait loop condition is always true.

The on-line commands may be sent only via a communication channel. These commands can't be included in a TML program. The on-line commands do not have an associated mnemonic and syntax rules as they are do not need to be recognized by the TML compiler.

Remark: Some of the on-line commands are implemented in debugging tools like the **Command Interpreter** from **IPM Motion Studio**, which was specifically designed to allow sending commands via a communication channel. In this manual, these commands are presented with a "mnemonic" like that used in the Command Interpreter.

1.4 TML Program Structure

The main section of a TML program starts with the instruction BEGIN and ends with the instruction END. It is divided into two parts:

- Setup part
- Motion programming part

The setup part starts after BEGIN and lasts until the ENDINIT instruction, meaning "END of INITitialization". This part of the TML program consists mainly of assignment instructions, which shall set the TML registers and the TML parameters in accordance with your application data. When the ENDINIT command is executed, key features of the TML environment are initialized according with the setup data. After the ENDINIT execution, the basic configuration involving the motor and sensors types or the sampling rates, cannot be changed unless a reset is performed.

Remark: The **MotionChip II Configuration Setup** user manual specifies which TML parameters may not change after execution of the ENDINIT instruction

The motion programming part starts after the ENDINIT instruction until the END instruction. All the TML programs (the main section) should end with the TML instruction END. When END instruction is encountered, the sequential execution of a TML program is stopped.

© Technosoft 2006

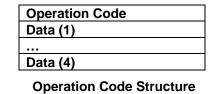
MotionChip II TML Programming

3

Apart from the main section, a TML program also includes the TML interrupt vectors table, the interrupt service routines (ISRs) for the TML interrupts and the TML functions. A typical structure for a TML program is presented in **Figure 1.1**

BEGIN; /	/ TML program start		
	/ Setup part of the main section		
ENDINIT; /	/ end of initialization		
	/ Motion programming part of the main section		
END; /	/ end of the main section		
<pre>InterruptTable: / @Int0_Axis_disable_I @Int1_PDPINT_ISR; @Int2_Software_Prote</pre>			
@Int3_Control_Error_ @Int4_Communication_:	ISR;		
<pre>@Int5_Wrap_Around_IS @Int6_Limit_Switch_P</pre>	ositive_ISR;		
<pre>@Int7_Limit_Switch_N @Int8_Capture_ISR;</pre>			
<pre>@Int9_Motion_Complet @Int10_Update_Contou:</pre>	r_Segment_ISR;		
@Intl1_Event_Reach_I Int0_Axis_disable_ISR:	// Int0_Axis_disable_ISR body		
 RETI;	// RETurn from TML ISR		
 Int11_Event_Reach_ISR:	// Int11_Event_Reach_ISR body		
RETI;	// RETurn from TML ISR		
Function1:	<pre>// Start of the first TML function named Function1</pre>		
 RET;	// RETurn from TML function named Function 1		
FunctionX:	// Start of the last TML function named FunctionX		
 RET;	// RETurn from the last TML function named Function X		

Figure 1.1 Typical structure of a TML Program


4

© Technosoft 2006

1.5 TML Instruction Coding

The TML instruction code consists of 1 to 5, 16-bit words. The first word is the operation code. The rest of words (if present) represent the instruction data words. The operation code is divided into two fields: Bits 15-9 represent the code for the operation category.

For example all TML instructions that perform addition of two integer variables share the same operation category code. The remaining bits 8-0 represent the operand ID that is specific for each instruction.

Operation Category Operand ID

15 9 8 0

1.6 TML Data

The TML works with the following categories of data:

- TML registers
- TML parameters
- TML variables
- User variables

All TML data are identified by their name. The names of the TML registers, parameters or variables are predefined and do not require to be declared. The names of the user variables are at your choice. You need to declare the user variables before using them.

The TML uses the following data types:

- int 16-bit signed integer
- uint 16-bit unsigned integer
- fixed 32-bit fixed-point data with the 16MSB for the integer part and the 16LSB for the factionary part.
- long **32-bit signed integer**
- ulong 32-bit unsigned integer

The data type uint or ulong are reserved for the TML predefined data. The user-defined variables are always signed. Hence you may declare them of type: int, fixed or long.

Remark: An unsigned TML data means that in the MotionChip II firmware its value is interpreted as unsigned. Typical examples: register values, time-related variables, protection limits for signals that may have only positive values like temperature or supply voltage, etc. However, the same

© Technosoft 2006

5

data will interpreted as signed if it is used in a TML instruction whose operands are treated as signed values.

Each TML data has an associated address. This represents the address of the data memory location where the TML data exists. In TML the data components may be addressed in 2 ways:

• direct, using their name in the TML instruction mnemonic

Example:

CPOS = 2000; // write 2000 in CPOS parameter (command position)

 indirect, using a pointer variable. The pointer value is the address of the data component to work with

Example:

Remark: direct addressing may be used with all TML data having addresses between 0x200 and 0x3FF. This covers most of the TML data including the user-defined variables. There are however some TML data with extended addresses placed outside this range typically between 0x800 and 0x9FF. These variables shall be addressed either using the indirect addressing presented above or by using another direct addressing mode specifically foreseen for writing values in the variables with extended addresses:

• direct with extended address, using the TML data name

Example:

CPOS, dm = 2000; // write 2000 in CPOS using direct mode with extended address

In the TML instructions the operands (variables) are grouped into 2 categories:

- V16. In this category enter all the 16-bit data from all the categories: TML registers, TML parameters, TML variables, and user parameters. From the execution point of view, the TML makes no difference between them
- V32. In this category enter all the 32-bit data either long or fixed from all the categories: TML registers, TML parameters, TML variables, and user parameters. From the execution point of view, the TML makes no difference between them

Remarks:

• It is possible to address only the high or low part of a 32-bit data, using the suffix (H) or (L) after the variable name.

Examples:

CPOS(L) = 0x4321; // write hexadecimal value 0x4321 in low part of CPOSCPOS(H) = 0x8765; // write hexadecimal value 0x8765 in high part of CPOS// following the last 2 commands, CPOS = 0x87654321

6

© Technosoft 2006

- The TML compiler always checks the data type. It returns an error if an operand has an incompatible data type or if the operands are not of the same type
- A write operation using indirect addressing is performed on one or two words function of the data type. If the data is a 16-bit integer, the write is done at the specified address. If the data is fixed or long the write is performed at the specified address and the next one. A fixed data is recognized by the presence of the do, for example: 2. or 1.5. A long variable is automatically recognized when it's size is outside the 16-bit integer range or in case of smaller values by the presence of the suffix L, for example: 200L or -1L.

Examples:

• In an indirect addressing, if the pointer variable if followed by + sign, it is automatically incremented by 1 or 2 depending on the data type: 1 for integer, 2 for fixed or long data.

Examples:

1.6.1 TML Registers

There are 3 categories of TML registers:

- Configuration registers
- Command registers
- Status registers

The configuration registers contain essential configuration information like motor and sensors type, or basic operation settings like PWM mode, motor start method, etc. The configuration registers must be set up during the setup part before the ENDINIT instruction

The command registers hold configuration settings that can be changed during motion. These settings refer to the activation/deactivation of software protections, to the use of TML interrupts and to communication options.

7

© Technosoft 2006

The status registers provide information about: communication, active motion mode and control loops, system protections, TML interrupts. The status registers can be used to detect events and to make decisions in a TML program.

Configuration registers (R/W):

SCR – System Configuration Register. It's used to define the basic application configuration: motor and sensors types, presence of brake circuit.

OSR – Operating Settings Register. Used to define specific system operating settings, as: current offset detection mode, Brushless AC motor start procedure, PWM special features.

Command registers (R/W):

CCR - Communication Control Register. Contains settings for SPI.

ICR – Interrupt Control Register. Used to disable/enable TML interrupts.

PCR.5-0 – Protections Control Register. Used to activate different protections in the system, as: maximum current, l^2t , over- and under-voltage and over-temperature.

Status registers (RO):

AAR - Axis Address Register. Keeps the Axis ID and the group ID.

CBR – CAN Baud rate Register. Keeps the current settings for CAN-bus baud-rate.

CER – Communication Error Register. Contains error flags for the communication channels.

CSR – Communication Status Register. Contains status flags for the communication channels.

ISR - Interrupt Status Register. Contains interrupt flags set by the TML interrupt conditions.

MCR – Motion Command Register. Contains information about the motion modes: reference mode, active control loops, positioning type - absolute or relative, etc.

MSR – Motion Status Register. It's used internally by the TML kernel; the register bits give indications about motion progress and specific motion events as software protections, control error, wrap-around, limit switches, captures, contour segments, events, axis status, etc.

PCR.13-8 - Protections Control Register. Used to examine the status of different protections in the system, as: over-current, $l^2 t$, over- and under-voltage and TEMP1, TEMP2 inputs over limits.

The TML registers have reserved mnemonics, but no especially dedicated instructions. Hence, in a TML program, registers are treated like any other TML parameter or variable.

The configuration and command registers can be read or written. The status registers can only be read.

1.6.2 TML Parameters

The TML parameters allow you to setup the parameters of the TML environment according with your application data. Though most of the TML parameters have their own address, there are some that share the same memory address. They are used in application configurations that exclude each other, and thus are not needed at the same time.

© Technosoft 2006

MotionChip II TML Programming

8

Some TML parameters must be setup during the initialization phase. They are used to define the real-time kernel, including the PWM frequency and the control loops sampling periods, and should not be changed after the execution of the ENDINIT command. The other parameters can be initialized, used and changed any time, before or after the ENDINIT command.

1.6.3 TML Variables

The TML variables provide you status information about the TML environment like the motor position, speed and current, the position, speed and current commands, etc. These values may be used to take decisions in the motion program or for analysis and debug.

The TML variables are read-only (RO). Modifying their value during motion execution may cause an improper operation of the motion system. There are however, specific situations when some TML variables may also be written (R/W variables).

Most of the TML variables are internally initialized after power-on, or during the setup phase at the execution of the ENDINIT command.

Activating the on-chip logger module, real-time data tracking can also be implemented for any of these variables.

1.6.4 User variables

Besides the TML pre-defined variables, you can also define your own user variables. You can use your variables in any TML instruction accepting variables of the same type.

The user variables type can be: integer, fixed (point) or long (integer) (see **Table 1.2**).

Table 1.2. TML data type

Туре	Format	Representation	Range
Int	Signed integer	16 bits	-32768 32767 (0x8000 0x7FFF)
Long	Signed long integer	32 bits	-2147483648 2147483647 (0x80000000 0x7FFFFFFF)
Fixed	(Integer part).(fractional part)	32 bits	-32768.999969,32767.999969 (0xFFFF.FFFF,0x7FFF.FFFF)

The address of the user variables is automatically set in order of declaration starting with 0x03B0. First integer variable takes address 0x3B0, next one 0x3B1, etc. An int variable takes one memory location. A long or fixed variable takes 2 consecutive memory locations. In this case the variable address is the lowerst one.

9

Example:

// user_var1 address is 0x3B0
<pre>// user_var2 address is 0x3B1</pre>
// user_var3 address is 0c3B3
// user_var4 address is 0x3B5

Remark: you have to declare a user variable before using it first time.

© Technosoft 2006

1.7 TML Development tools

As mentioned earlier, a TML program has 2 parts: the **setup** and the **motion programming**.

You should always start with the setup part. This consists in assigning the right values for the TML registers and parameters according with your application data: motor and sensors type, operating conditions, controller settings, etc.

Once the setup process is completed, you can start programming your application motion.

You can do these steps either by writing directly the TML program by using a higher-level tool like **IPM Motion Studio** which generates automatically the TML program starting from your input data.

IPM Motion Studio is an integrated development platform specifically designed to help you develop and test motion applications in TML. It comes with a user-friendly interface allowing you to introduce your motor data, select different operation options for the drive and perform a series of validation tests including identification of the motor parameters, operation conditions and the controllers tuning. Based on this information the IPM Motion Studio automatically generates the TML instructions needed to set the right values into the TML registers and parameters.

For the motion programming, IPM Motion Studio offers the **Motion wizard** – a collection of userfriendly dialogues through which you can quickly define your motion application. The Motion wizard automatically generates TML source code (TML instructions) based on your inputs.

IPM Motion Studio is a complete development platform. Embedded code development tools allow you to further edit or directly compile, link and generate executable code to be downloaded to the drive. Finally, advanced graphics tools – like data logger, control panel and view/watch of TML parameters, registers and memory – can be used to analyze the behavior of the motion system.

1.8 Memory Map

The MotionChip II works with 2 separate address spaces: one for TML programs and the other for data memory. Each space accommodates a total of 64K 16-bit word.

The first 16K of the TML program space (0 to 3FFFh) are reserved and can't be used. The next 16K, from 4000h to 7FFFh are mapped to a serial SPI-connected EEROM with the maximum size 32K bytes (seen as 16K 16-bit words). This space can be used to store TML programs, cam tables or other user data in a non-volatile memory. The recommended way to organize the EEPROM memory space is:

- TML program at the beginning of the EEPROM memory, starting with first address 4000h.
- Cam tables, after the TML program
- Other data until the end of the EEPROM

Remarks:

• If the MotionChip II is set in AUTORUN mode, it checks the contents of the first EEPROM location at address 4000h. If the data read matches with the binary code of the TML instruction BEGIN (the first instruction in a TML program), then the instruction pointer IP is set to 4000h and the TML program from the EEPROM is executed

© Technosoft 2006

10

- The overall dimension of a TML program includes apart from the main section, the TML interrupt vectors table, the interrupt service routines (ISRs) for the TML interrupts and the TML functions
- IPM Motion Studio, uses the last 68 words of the EEPROM space/read some data about the drive like: product ID, firmware ID, etc.

The next 2K of the TML program space from 8000h to 87FFh represents the Motion Chip II internal SRAM memory. From it, the first 200h, from 8000h to 81FFh are reserved for the internal use. The rest from 8200h to 87FFh may be used to temporary store TML programs.

The MotionChip II firmware can be programmed on two versions of DSP made by Texas Instruments: TMS320LF2407A or TMS320LF2406A.

The TMS320LF2406A has no external interface, hence only the internal SRAM may be used as TML program memory in the address range 8200h to 87FFh. The remaining TML program memory space from 8800h to FFFFh is invalid.

The TMS320LF2407A offers the possibility to connect an external SRAM, which can be mapped in the last 32K more exactly in the address range 8800h to FFFFh (all TML program memory accesses in the address range 0x8000 to 0x87FF are using the internal SRAM). By connecting a 32Kx16 external SRAM, the total TML program space in SRAM memory becomes from 8200h to FFFFh.

The data memory space is used to store the TML data (registers, parameters, variables), the cam tables during runtime (after being copied from the EEPROM memory) and for data acquisitions. The TML data are stored in reserved area, while the others are using the same Motion Chip II internal SRAM memory.

In the data memory space, the internal SRAM is mapped at a different address range 800h to FFFh From this the first 200h, from 800h to 9FFh (corresponding to 8000h to 81FFh in TML program memory space) are reserved for the internal use. The rest from A00h to FFFh corresponding to 8200h to 87FFh in the TML program memory space) may be used for data acquisitions and/or to store cam tables during runtime. As this space is available in both the TML program space and the data space it is the user responsibility to decide how to split it between the two and to avoid overlapping them.

In the case of TMS320LF2407A, if an external SRAM is connected it can be mapped both on the TML program space and in the data space. Typically, the external SRAM is mapped at the same addresses in both the TML program and the data space. Therefore the data memory extends with the external SRAM space from 0x8000 to 0xFFFF.

The recommended way to organize the SRAM memory (both for TML programs and data) is:

A) For MotionChip II based on TMS320LF2406A:

- Data acquisitions at the beginning of the internal SRAM memory, starting from address A00h
- Cam tables, only if used, after the data acquisitions until the end of the internal SRAM.

Typically, you should start by checking if or how much space you need to reserve for cam tables, and use the rest of the SRAM for data acquisitions

© Technosoft 2006

11

Remark: You may also store TML programs in the internal SRAM memory. However, this will further reduce the limited space available for data acquisitions and cam tables. Therefore it is highly preferable to store the TML programs in the EEPROM space. Typically, you may want to use the SRAM memory instead of the EEPROM memory for TML programs only during the application development in order to speed-up testing due to a faster access

B) For MotionChip II based on TMS320LF2407A:

- Data acquisitions at the beginning of the external SRAM memory not overlapped with the internal SRAM, starting from address 8000h
- TML programs (for faster testing instead of using the EEPROM)
- Cam tables, only if used, after the data acquisitions until the end of the internal SRAM.

Remarks:

- In IPM Motion Studio, if you chose to download and execute a TML program from the SRAM memory the default start address proposed is C000h i.e. half of the overall external SRAM space
- Data acquisitions may start directly from address 8000h, if this is the beginning of the external SRAM. When used as data memory, the external SRAM is also visible in the range 8000h to 87FFh. When used as program memory, the same address range is mapped into the internal SRAM. However, if you plan to examine the memory contents using an IPM Motion Studio tool like View | Memory, be aware that the values displayed in the range 8000h to 87FFh do not represent the data acquisition results but the internal SRAM values.

MotionChip II TML Programming

12

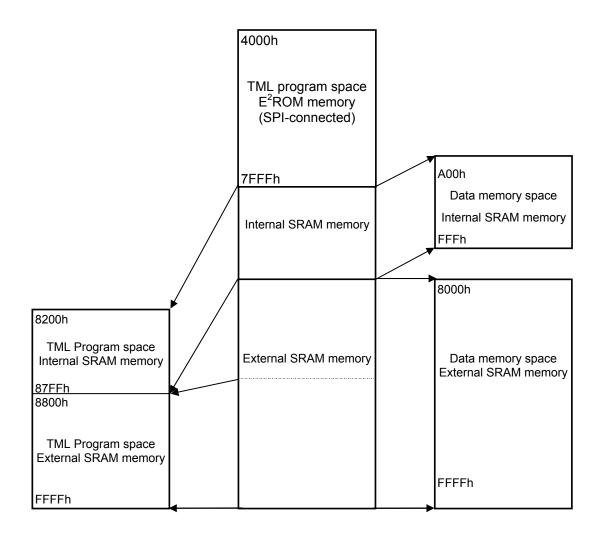


Figure 1.2. Memory map MotionChip II based on TMS320LF2407A

13

©	Technosoft 2006
---	-----------------

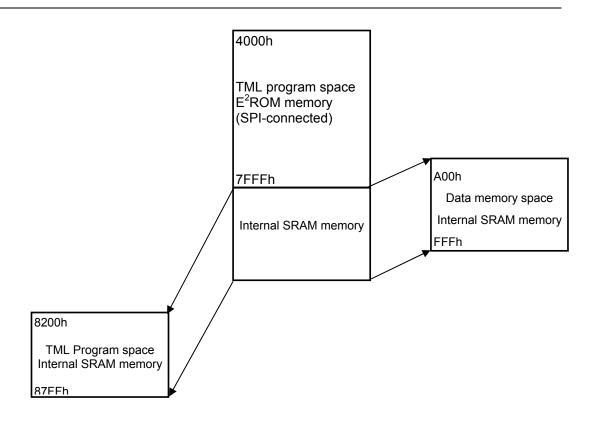


Figure 1.3. Memory map MotionChip II based on TMS320LF2406

1.9 AUTORUN mode

After power on the MotionChip II checks the status of its analogue input ADCIN9. If this input is low, the MotionChip II is set in the **AUTORUN** mode.

In the **AUTORUN** mode, the MotionChip II, reads the first EEPROM memory location at address 0x4000 and checks if the binary code corresponds to the TML instruction BEGIN. If this condition is true, the TML program saved in the EEPROM memory is executed starting with the next instruction after BEGIN.

If analogue input ADCIN9 is high, the MotionChip II enters in the **slave** mode where it waits to receive commands via a communication channel. Even if there is a valid TML program in the EEPROM, this is not executed.

During a TML program execution, the MotionChip II can enter in the **slave** mode and thus stopping the TML program execution after the execution of the END command or after receiving STOPx (x=0,1,2 or 3) command from an external device, via a communication channel.

© Technosoft 2006

MotionChip II TML Programming

14

1.10 Logger feature

Step to follow, in order to use the logger features:

- Setup the logger header
- Setup the logger pointer
- If the drive is in Axison state, the data acquisition is done at each current or speed/position loop period, depending by logger configuration

The following table presents the map of logger buffer.

Buffer	Logger buffer address	Name	Description		
	LOG_START_ADDR+0	N_POINTS	Number of points left to be acquired. During the acquisition this value is decremented to 0.		
	LOG_START_ADDR+1	INT_CNT	Internal sampling counter. It must be initialized with the same value as sampling multiplier		
	LOG_START_ADDR+2	S_MULTPL	Sampling multiplier		
der	LOG_START_ADDR+3	FREE_LOC	The address of next free buffer location. It must be initialized with		
Hea			LOG_START_ADDR + 4 + NO_16B_VARS		
Logger Header	LOG_START_ADDR+4	ADDR1	1 st 16-bit location address which it will be acquired		
Log	LOG_START_ADDR+5	ADDR2	2 nd 16-bit location address which it will be acquired		
	LOG_START_ADDR+6	ADDR3	3 rd 16-bit location address which it will be acquired		
	LOG_START_ADDR+3+ NO_16B_VARS	ADDRn	Last 16-bit location address which it will be acquired		
	LOG_START_ADDR+4+ NO_16B_VARS	END_LIST	End of address list = 0 value		
	LOG_START_ADDR+5+ NO_16B_VARS		1 st 16-bit data acquired - first point		
ū	LOG_START_ADDR+6+ NO_16B_VARS		2 nd 16-bit data acquired - first point		
Buff					
Data Buffer	LOG_START_ADDR+6+ 2 * NO_16B_VARS		1 st 16-bit data acquired - second point		
	LOG_START_ADDR+7+ 2 * NO_16B_VARS		2 nd 16-bit data acquired - second point		

15

© Technosoft 2006

ſ	LOG_START_ADDR +4+	Last 16-bit data acquired - last point
	NO_16B_VARS +	
	(N_POINTS *	
	NO_16B_VARS)	

Note: 1. The *LOG_START_ADDR* must have the bits 0 and 1 set to 0, i.e. a value multiple of 4.

- 2. NO_16B_VARS = number of 16-bit locations which must be acquired.
- 3. A 32-bit variable can be acquired as 2 x 16-bit variables

Address	Name	Description	
0x0365	LOG_PTR	Internal pointer to logger buffer.	
		Bits 15-2 = bits 15-2 of LOG_START_ADDR	
		Bits 1-0 = logger active in:	
		01 – Speed/ Position control loop	
		10 – Current control loop	

Example for the acquisition of *APOS* and *ATIME* variables in speed/position loop period. The acquisition buffer starts at the address 0x0A00.

Buffer	Address: data (hex)	Name	Description		
	0A00: 012C	N_POINTS	Acquisition of 300 points		
	0A01: 0004	0A01: 0004 INT_CNT Internal counter. I value as sampling			
ader	0A02: 0004	S_MULTPL	Sampling multiplier = 4, i.e. 1 acquisition point at 4 samplings		
Logger Header	0A03: 0A09	FREE_LOC	The address of next free buffer location		
gger	0A04: 0228	ADDR1	The address of APOS variable (32-bits) - low part		
Lo	0A05: 0229	ADDR2	The address of APOS variable (32-bits) - high part		
	0A06: 02C0	ADDR3	The address of ATIME variable (32-bits) - low part		
	0A07: 02C1	ADDR4	The address of ATIME variable (32-bits) - high part		
	0A08: 0000	END_LIST	End of address list = 0 value		
	0A09: xxxx		Acquired value – APOS(L) – first point		
Data Buffer	0A0A: xxxx		Acquired value – APOS(H) – first point		
	0A0B: xxxx		Acquired value – ATIME(L) – first point		

16

© Technosoft 2006

0A0C: xxxx	Acquired value – ATIME(H) – first point
0A0D: xxxx	Acquired value – APOS(L) – second point
0A0E: xxxx	Acquired value – APOS(L) – second point
0A0F: xxxx	Acquired value – ATIME(L) – second point
0A10: xxxx	Acquired value – ATIME(H) – second point
0EB8: xxxx	Acquired value – ATIME(H) – last point

Address: data (hex)	Name	Description	
0365: 0A01	LOG_PTR	Internal pointer to logger buffer.	
		Bits 15-2 = 00001010000000(bin)	
		= bits 15-2 of LOG_START_ADDR	
		Bits 1-0 = 01(bin)	
		= logger active in Speed/ Position control	
		loop	

When the acquisition is done in speed/ position control loop the acquisition period is:

Acquisition period [s] = SLPER [bits] * <Sampling multiplier> [bits] * <PWM period>[s] When the acquisition is done in current control loop the acquisition period is:

Acquisition period [s] = CLPER [bits] * <Sampling multiplier> [bits] * <PWM period>[s]

17

Example:

- SLPER = 20
- <Sampling multiplier> = 4
- <PWM period> = 50×10^{-6} [s]

Acquisition period [s] = $20 \times 4 \times 50 \times 10^{-6}$ [s] = 4×10^{-3} [s]

This page is empty

© Technosoft 2006

MotionChip II TML Programming

18

2. TML description

This chapter describes the TML - Technosoft Motion Language. The TML provides instructions for the following categories of operations:

- Motion programming and control
- Program flow control
- I/O handling
- Assignment and data transfer
- Arithmetic and logic manipulation
- Data transfer between axes
- Miscellaneous

2.1 Motion programming and control

These instructions allow you to program the MotionChip II built-in motion controller in order to set different motion modes and trajectories. **Table 2.1** summarizes all the motion modes supported. These are divided into 2 categories function of how the motion reference is generated:

- Motion modes with reference provided by an external device via an analog input, pulse & direction signals, a master encoder or via a communication channel
- Motion modes with reference computed by the internal reference generator. In this category enter all the other motion modes

Motion Modes	Control Type			
Motion modes	Position	Speed	Torque	Voltage
Position profiles		_	_	_
Speed profiles	-		_	-
Contouring (point to point with linear interpolation)			\checkmark	V
External reference read from the analogue input	V	\checkmark	√ SL	√ SL
REFERENCE or set by an external device via a communication channel			√FL	√ SL
	,	1		
Pulse and direction	V	\checkmark	—	—
Electronic Gearing/Camming – master			_	_
Electronic Gearing – slave		-	-	-
Electronic Camming – slave		-	-	-
Stop	-			V
Test (limited ramp)	-	-	√FL	√FL

19

Table 2.1. Motion modes

© Technosoft 2006

2.1.1 Position Profile Modes

In the position profile modes, the motor is controlled in position. You specify the position to reach (relative or absolute), the acceleration/deceleration rate and the slew (travel) speed. The reference generator computes the position trajectory, which results with a trapezoidal or triangular speed profile. During motion, you can change on the fly all the profile parameters (see par. 2.1.10)

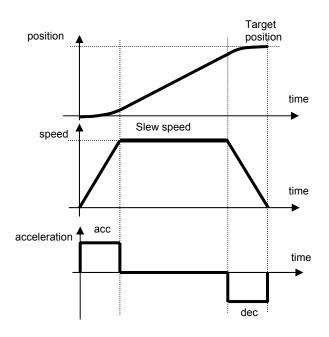


Figure 2.1. Position profile parameters

Once programmed, the motion profile parameters are memorized. If you intend to use the same values as previously defined for the acceleration rate, the slew speed, the position increment or position to reach you don't need to set these again, each time you program a new position profile.

Depending on the control structure used, four position profile modes are possible:

Position Profile	Controlled Loops			
Motion Modes	Position	Speed	Torque	
PP3			\checkmark	
PP2			_	
PP1		-		
PP0	\checkmark	-	—	

20

Table 2.2. Position Profile - Motion Modes

© Technosoft 2006

The selection of one of the above position profile modes, must match with the setup data. For example, you can choose to perform a position control with or without closing the speed loop and with torque/current loop closed. In the first case, the position controller provides a speed command for the speed controller who on its turn provides a current command for the current controller. In this case, you should use the TML instruction MODE PP3. In the second case, the position controller provides directly the current command for the current controller and you should use the TML instruction MODE PP3. In the second case, the cases, it is not possible to switch on the fly between MODE PP3 and MODE PP1. During the setup phase you have to chose one option and set the parameters accordingly. Then during the motion programming, you need to use the appropriate motion mode.

Remarks:

- As in most applications the current/torque control is needed, the IPM Motion Studio does not cover the setup options where current loop is not closed. Therefore, using IPM Motion Studio, you can chose only between 2 options: position loop with speed loop and current loop (MODE PP3) and position loop without speed loop and with current loop (MODE PP1).
- Closing all the loops offers a good control of the motor speed while closing only position and current loop may provide better performances for high-dynamic applications requiring quick positioning moves. When position loop is closed without the speed loop (MODE PP1) you can increase the position loop bandwidth 2-3 times more compared with the case when all the 3 loops are closed (MODE PP3).

Related TML Parameters

CPOS	Command position (long) – desired position (absolute or relative) in position units ¹
CSPD	Command speed (fixed) – desired slew speed in speed units
CACC	Command acceleration (fixed) – desired acceleration / deceleration in acceleration units

Related TML Variables

TPOS	Target position (long) – position reference computed by the reference generator at each slow loop (position/speed loop) sampling period when a
TSPD	position profile mode is performed. Measured in position units Target speed (fixed) – speed reference computed by the reference generator at each slow loop sampling period when a position profile mode
TACC	is performed. Measured in speed units Target acceleration (fixed) – acceleration/deceleration reference computed by the reference generator at each slow loop sampling period when a
APOS	position profile mode is performed. Measured in acceleration units Actual position (long) – motor position measured in position units

¹ See par. 2.8 for details about the MCII internal units and their correspondence with the International Standard (IS) units

© Technosoft 2006

21

ASPD Actual speed (fixed) – motor speed measured in speed units

Related TML Instructions				
CPR	Command position is relative			
СРА	Command position is absolute			
MODE PPx	Set position profile mode $x (x = 0, 1, 2, 3)$			
TUM1	Generate new trajectory starting from the actual values of position and speed reference (i.e. don't update the reference values with motor position and speed)			
TUM0	Generate new trajectory starting from the actual values of motor position and speed (i.e. update the reference values with motor position and speed)			
UPD	Update motion mode and parameters. Start motion			
STOP0, STOP1, STOP2 or STOP3 – Stop motion using methods 0 to 3				

In all position profile modes, the motion parameters CPOS, CSPD, CACC can be changed any time during motion. The reference generator automatically re-computes the position trajectory in order to reach the new commanded position, using the new values for slew speed and acceleration.

Figure 2.2 shows an example where slew speed and acceleration rate are changed, while the commanded position is kept the same.

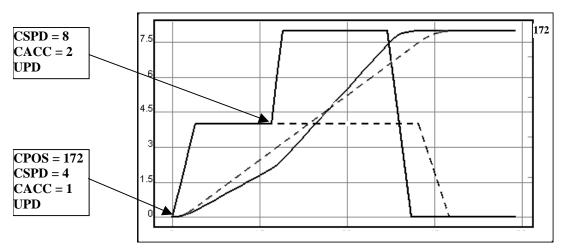


Figure 2.2. Position profile. On-the-fly change of motion parameters

There is no restriction for the commanded position. If during motion, a new position command is issued that requires reversing the motor, the reference generator does automatically the following operations:

22

stops the motor with the programmed deceleration rate

© Technosoft 2006

- accelerates the motor in the opposite direction till the slew speed is reached, or till the motor has to decelerate
- stops the motor on the commanded position

In position profile modes, the reference generator automatically eliminates the round-off errors, which may appear when the commanded position cannot be reached with the programmed slew speed and acceleration/deceleration rate. This situation is illustrated by the example below.

Example:

The commanded position is 258 counts, with the slew speed 18 counts/sampling and the acceleration rate 4 counts/sampling². To reach the slew speed, two options are available:

- Accelerate to 16 in 4 steps, then from 16 to 18 in a 5th step. Acceleration space is 49 counts
- Accelerate from 0 to 2 in 1st step, then from 2 to 18 in 4 steps. Acceleration space is 41 counts

For the deceleration phase, the options and spaces are the same. But, no matter which option is used for the acceleration and deceleration phases, the space that remains to be done at constant speed is not a multiple of 18, i.e. the position increment at each step.

So, when to start the deceleration phase? **Table 2.3** presents the possible options, and the expected errors.

Acceleration Space	Deceleration Space	Space to do at constant speed	Time to go at constant speed	Deceleration starts after	Target position Error
[counts]	[counts]	[counts]	[sampling steps]	[samplings]	[counts]
49 counts	49 counts	258 – 2 * 49	160/18 = 8.8	5 + 8 = 13	- 16
10 00umo	le counte	= 160 counts	100/10 0.0	5 + 9 = 14	+ 2
49 counts	41 counts	258 – 49 – 41	168/18 = 9.3	5 + 9 = 14	- 6
49 Counts	41 Counts	= 168 counts	100/10 - 9.5	5 + 10 = 15	+ 12
41 counts	49 counts	258 – 41 – 49	168/18 = 9.3	5 + 9 = 14	- 6
41 Counts	49 Counts	= 168 counts	100/10 - 9.5	5 + 10 = 15	+12
41 counto	41 counts	258 – 2 * 41	176/19 - 0 7	5 + 9 = 14	-14
41 counts	4 i counts	= 176 counts	176/18 = 9.7	5 + 10 = 15	+4

Table 2.3. Round-off error example. Options and expected errors.

TML comes with a different approach. It monitors the round-off errors and automatically eliminates them by introducing, during deceleration phase, short periods where the target speed is kept constant. Hence, the target position is always reached precisely, without any errors.

23

© Technosoft 2006

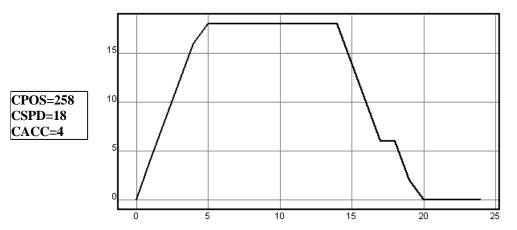


Figure 2.3. Position profile. Automatic elimination of round-off errors

Figure 2.3 shows the target speed generated by TML for the above example. During the deceleration phase, the target speed:

- decelerates from 18 to 6 in 3 steps (target position advances by 36 counts)
- is kept constant for 1 step (target position advances by 6 counts)
- decelerates from 6 to 2 in one step (target position advances by 4 counts)
- decelerates from 2 to 0 in the last step (target position advances by 1 count)

Hence the deceleration space is 47 counts, which, added to 49 counts for acceleration phase and to the 162 counts for constant speed, gives exactly the 258-count commanded position.

Programming Example

```
CACC = 1.5;
                 // command acceleration = 1.5
                 // encoder counts/sampling<sup>2</sup>
CSPD = 20.;
                 // command speed = 20 counts/sampling
CPOS = 20000;
                 // command position = 20000 counts
                 // command position is absolute
CPA;
MODE PP3;
                 // set position profile mode 3
                // keep the position and speed reference
TUM1;
                 // update - start the motion
UPD;
                 // set event on motion complete
!MC;
                 // wait for the event to occur
WAIT!;
```

Remarks:

- Once a position profile is started, you can find when the motion is completed, by setting an event on motion complete and waiting until this event occurs (see for details par. 2.2)
- The TML instruction TUM1 must always be executed AFTER setting the motion mode and BEFORE executing the UPD command. When a motion mode command is executed it includes the TUM0 command. However, as the new motion mode becomes active only after the UPD command, if TUM1 command is set, it overwrites TUM0 set together with the motion mode

© Technosoft 2006

24

2.1.2 Speed Profile Modes

In the speed profile, the motor is controlled in speed. You specify the acceleration/deceleration rate and the jog speed. The speed sign specifies the direction. The motor accelerates until the jog speed is reached. During motion, you can change on the fly the jog speed and the acceleration/deceleration rate. Use a stop command to stop the motion.

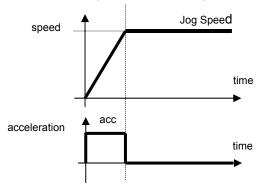


Figure 2.4. Speed profile parameters

Depending on the control structure used, two speed profile modes are possible:

Table 2.4. S	Speed Profile -	Motion	Modes
10010 2.4.0	pood i romo	101011011	1110000

Speed Profile	Controlled Loops		
Motion Modes	Position	Speed	Torque
SP1	-	\checkmark	
SP0	-	\checkmark	-

Like in the position profile modes, the selection of one of the above speed profile modes, must match with the setup data.

Remarks:

- As in most applications the current/torque control is needed, the IPM Motion Studio does not cover the setup options where current loop is not closed. Therefore, using IPM Motion Studio, you have only one option: speed loop with current loop closed (MODE SP1).
- You can switch on the fly between a position control mode closing all the loops like MODE PP3 and a speed control mode closing speed and current loops like MODE SP1. However if you use a position control mode closing only position and current loop like MODE PP1, because in this case the speed loop is disabled switching between the position and speed control may create problems and therefore it is not recommended

Related TML Parameters

CSPD	Command speed (fixed) – desired jog speed in speed units . Sign gives direction.
CACC	Command acceleration (fixed) – desired acceleration / deceleration in acceleration units

© Technosoft 2006

25

Related TML Variables

TPOS	Target position (long) – position reference computed by the reference generator at each slow loop (position/speed loop) sampling period, while performing a speed profile. TPOS is computed by integrating the speed profile. Measured in position units
TSPD	Target speed (fixed) – speed reference computed by the reference generator at each slow loop sampling period, while performing a speed profile. Measured in speed units
TACC	Target acceleration (fixed) – acceleration/deceleration reference computed by the reference generator at each slow loop sampling period, while performing a speed profile. Measured in acceleration units
APOS	Actual position (long) – motor position measured in position units
ASPD	Actual speed (fixed) – motor speed measured in speed units
Related TML Instruc	tions

MODE SPx	Set speed profile mode $x (x = 0, 1)$.
TUM1	Generate new trajectory starting from the actual values of position and
	speed reference (i.e. don't update the reference values with motor position and speed)
TUM0	Generate new trajectory starting from the actual values of motor position and speed (i.e. update the reference values with motor position and speed)
UPD STOP0, STOP1, STO	Update motion mode and parameters. Start motion P2 or STOP3 – Stop motion using methods 0 to 3.

Programming Example

CACC	= 1;	11	command acceleration = 1.0 counts/sampling ²
CSPD	= -25.5;	11	command speed = -25.5 counts/sampling
		11	negative command speed = negative direction
MODE	SP1;	11	set speed profile mode 1
UPD;		//	update - start the motion

2.1.3 Position/Speed/Torque/Voltage Contouring Modes

In contouring mode, you can program an arbitrary profile whose contour is described by a succession of linear segments. Depending on the reference type, four options are available:

- **Position contouring** the motor is controlled in position. The arbitrary profile represents a position reference
- **Speed contouring** the motor is controlled in speed. The arbitrary profile represents a speed reference
- **Torque contouring** the motor is controlled in torque. The arbitrary profile represents a current reference
- Voltage contouring the motor is controlled in voltage. The arbitrary profile represents a voltage reference

© Technosoft 2006

26

The position contouring and the speed contouring have been foreseen for normal operation. You may use them together with the position profile and the speed profile to generate the desired position or speed trajectory. You can switch between these four motion modes at any moment.

The torque contouring and the voltage contouring have been foreseen only for setup tests. The torque contouring may be used, for example, to check the response of the current controllers to other input signals than the step signal used in the Current Controller Tuning Test. The voltage contouring may be used, for example, to check the motors behavior under a constant voltage or any other voltage shape.

A contouring segment has 2 parameters: the time and the reference increment. The time parameter represents the segment duration expressed in **time units** i.e. in number of slow (position/speed) loop sampling periods. The reference increment represents the amount of reference variation per time unit i.e. per sampling period.

Figure 2.5. Reference generation in contouring modes

Example:

A position contouring segment starts at position 0 and reaches position 2000 encoder counts in 1 second. Considering a slow-loop sampling period 1ms, the contouring segment data are:

Time = $1000 (1000 \times 1 \text{ms} = 1 \text{s})$ Reference increment per sampling = $2 (1000 \times 2 = 2000)$

In position or speed contouring, the starting point is either the current value of the target position/speed (if TUM1 command is set between the motion mode setting and the UPD command), or the actual value of the motor position/speed (if TUM1 is omitted)

In torque/voltage contouring, the starting value is set by the user in the high part of the TML parameter EREF i.e. in EREF(H). After reset, the default value of EREF(H) is zero.

27

© Technosoft 2006

The contouring modes require a local memory where to place the sequence of contour segments to be executed. First, the contouring mode must be set and the first segment should be provided. Then the contouring mode can be activated with the UPD command.

Once a contouring mode is activated, the rest of the segments are automatically executed. The sequence of contour segments must end with a segment where the time interval is 0.

When a sequence of contour segments is executed, the TML instruction pointer IP advances as the segments are executed. When the reference generator starts working with a new segment, at TML program level the IP advances to the execution of the next contour segment instruction. The execution of a TML instruction for a contour segment means to copy the segment data into a local buffer and then wait (i.e. loop on the same instruction) until the previous segment, currently under execution at reference generator level will end. This procedure permits to immediately start the execution of the next contour segment when the current one ends because the next segment data are already available in a local buffer. Each time the reference generator starts to execute a new segment, the IP advances to the next contour segment and its data are transferred into the local buffer.

Table 2.5 presents the possible contouring modes.

Category	Motion Modes	Controlled Loops		
Category		Position	Speed	Torque
	PC3			
Position Contouring	PC2			_
	PC1	\checkmark	-	
	PC0	\checkmark	-	-
Speed Contouring	SC1	_		
	SC0	_		-
Torque Contouring	TC	-	_	
Voltage Contouring	VC	-	-	-

Table 2.5. Contouring Modes

Remarks:

- The selection of one of the above position contouring modes or speed contouring modes must match with the setup data like in the case of position and speed profiles (see par. 2.1.1 and 2.1.2 for details)
- As in most applications the current/torque control is needed, the IPM Motion Studio does not cover the setup options where current loop is not closed. Therefore, using IPM Motion Studio, you can choose for position contouring only 2 options: position loop with speed loop and current loop (MODE PC3) and position loop without speed loop and with current loop (MODE PC1), and for speed contouring only the option with both speed and current loop closed (MODE SP1)

Related TML Parameters

REF0(H)	Starting value (int) – torque/voltage contouring in torque/voltage units
Time	Value or variable (uint) – segment time interval in time units

© Technosoft 2006

28

Increment	 Value or variable (fixed) – segment reference increment per time unit measured in: speed units for a position contouring segment acceleration units for a speed contouring segment current units / time units for torque contouring voltage units / time units for voltage contouring
Related TML Variabl	
TPOS	Target position (long) – position reference computed by the reference generator at each slow loop (position/speed loop) sampling period when position or speed contouring is performed. During speed contouring, TPOS is computed by integrating TSPD. Measured in position units
TSPD	Target speed (fixed) – speed reference computed by the reference generator at each slow loop sampling period when position or speed contouring is performed. Measured in speed units
TACC	Target acceleration (fixed) – acceleration/deceleration reference computed by the reference generator at each slow loop sampling period when position or speed contouring is performed. Measured in acceleration units
IQREF	Current reference – computed by the reference generator at each slow loop sampling period when torque contouring is performed. Measured in current units
UQREF	Voltage reference – computed by the reference generator at each slow loop sampling period when voltage contouring is performed. Measured in voltage command units
APOS ASPD IQ	Actual position (long) – motor position measured in position units Actual speed (fixed) – motor speed measured in speed units Motor current – measured in current units
Related TML Instruc	tions
MODE PCx MODE SCx MODE TC MODE VC	Set position contouring mode x (x = 0, 1, 2, 3) Set speed contouring mode x (x = 0, 1) Set torque contouring Set voltage contouring. Voltage reference represents motor voltage for DC motor, and quadrature component (Q-axis) of the voltage vector for AC
SEG Time, Increme	motors nt Set a contour segment with parameters Time and Increment
TUM1	Generate new trajectory starting from the actual values of position and speed reference (i.e. don't update the reference values with motor position and speed)
TUM0	Generate new trajectory starting from the actual values of motor position and speed (i.e. update the reference values with motor position and speed)
UPD	Update motion mode and parameters. Start motion
STOP0, STOP1, STC	PP2 or STOP3 – Stop motion using methods 0 to 3

© Technosoft 2006

29

Programming Example (see Figure 2.5)

MODE PC3;	// set position contouring mode 3
SEG 2, 4.;	// set 1st segment. Increment position reference
/	<pre>// with 4 counts/sampling in the next 2 samplings</pre>
	// update - start motion
	// set 2 nd segment
	// set 3 rd segment
SEG 2, 0.;	// set 4 th segment
SEG 0, 0.;	// end contour sequence

Remarks:

- At the end of a contouring sequence, the last reference value is kept constant
- The TML parameter REF0, used to set the initial value for the torque or voltage contouring mode is also used (under the name EREF) in the external mode as reference set on-line via a communication channel by an external device (see par 2.1.4)
- The SEG 0,0 command signals the end of a contouring sequence, time value being zero.
- The TML command SEG is a **sequential** command. This means that SEG command must be executed only as part of a TML program and not as a command sent on-line via a communication channel. If a host sends contouring segments on-line, each time a segment command is received, it starts to be executed immediately, canceling previous segment processing. Therefore the generated trajectory is incorrect.

2.1.4 External Position/Speed/Torque/Voltage Modes

In the external modes, you can drive your motor using a reference provided by an external device, in one of the following ways:

- As an analogue signal connected to a dedicated analogue input of the MotionChip II named REFERENCE (10-bit resolution)
- As a continuously updated data sent by the external device via a communication channel into the dedicated TML variable EREF

In both cases, depending on the reference type, you can have:

- Position external modes, where the motor is controlled in position and the external reference is interpreted as a position reference
- Speed external modes, where the motor is controlled in speed and the external reference is interpreted as a speed reference
- Torque external modes, where the motor is controlled in torque and the external reference is interpreted as a current reference.
- Voltage external modes, where the motor is controlled in voltage and the external reference is interpreted as a voltage reference.

The position and speed external modes have been foreseen for normal operation. With the torque external mode you can set your drive as a torque amplifier. The voltage external mode is foreseen for test purposes.

© Technosoft 2006

30

The torque and voltage external modes with analogue reference have two options:

- torque/voltage slow reference is read at each slow-loop (position/speed) sampling period
- torque/voltage fast reference is read at each fast-loop (torque/current) sampling period

In the torque and voltage external modes with reference set via communication in the TML variable EREF, only slow option is available i.e. reference is read at each slow-loop (position/speed) sampling period.

By default, after power on, the external mode with reference set via communication in EREF is enabled. In order to activate the external mode with reference read from a dedicated analogue input, you need to execute the TML command EXTREF 1.

Before enabling an external mode with analogue reference, during the setup phase, you need to establish how to interpret a value read from the analogue input. Put in other words, you need to set the associated TML parameters in order to get the desired range for a position, speed, current or voltage command.

Table 2.6 External Modes

Catagory	Motion Modes	Controlled Loops		
Category	MOLION MODES	Position	Speed	Torque
	PE3			
Position External	PE2		\checkmark	-
FOSILION EXTERNAL	PE1		-	
	PE0		-	_
Speed External	SE1	-	\checkmark	
	SE0	-	\checkmark	_
Torque External Slow	TES	-	-	
Torque External Fast	TEF	-	-	
Voltage External Slow	VES	_	—	_
Voltage External Fast	VEF	—	_	_

Table 2.6 presents the possible external modes.

Remarks:

- The selection of one of the above position external modes or speed external modes must match with the setup data like in the case of position and speed profiles (see par. 2.1.1 and 2.1.2 for details)
- As in most applications the current/torque control is needed, the IPM Motion Studio does not cover the setup options where current loop is not closed. Therefore, using IPM Motion Studio, you can choose for position external only 2 options: position loop with speed loop and current loop (MODE PE3) and position loop without speed loop and with current loop (MODE PE1), and for speed external only the option with both speed and current loop closed (MODE SE1)

Related TML Parameters

© Technosoft 2006

MotionChip II TML Programming

31

EREF 32-bit TML parameter needed only for the external modes with reference set on-line via a communication channel. EREF is where the external device must write the reference. Depending on the reference type, EREF is seen as a: 32-bit long value representing the position reference in **position units** for the external position modes 32-bit fixed value representing the speed reference in speed units for the external speed modes 16-bit integer value read from EREF(H) representing the current or voltage reference in current units or voltage units for the external torque or voltage modes Examples: EREF = 2000;// External position mode. Reference is set to 2000 position units // External speed mode. Reference is set to 1.5 speed units EREF = 1.5;EREF(H) = 5000; // External torque mode. Reference is set to 5000 current units CADIN, SFTDIN, AD50FF 16-bit TML parameters needed only for the external modes with analogue reference. Are used to define the desired range for the position. speed, current or voltage command that corresponds to the analogue input range. For details regarding how to set these parameters see MotionChip Il Configuration Setup user manual Related TML Variables AD5 16-bit unsigned integer value representing the value read from the analogue input REFERENCE. The output of the 10-bit A/D converter is set in the 10 MSB (most significant bits) of the AD5 TPOS Target position (long) - position reference updated at each slow loop (position/speed loop) sampling period, when position external mode is performed. TPOS is set function of the analogue input value or with the EREF value. Measured in position units TSPD Target speed (fixed) - speed reference updated at each slow loop sampling period when position or speed external mode is performed. TSPD is set function of the analogue input value or with the EREF value during external speed mode and is computed from TPOS in external position mode. Measured in **speed units** TACC Target acceleration (fixed) - acceleration or deceleration reference computed by the reference generator at each slow loop sampling period from the position or speed external references. Measured in acceleration units IQREF Current reference - updated at each fast or slow loop function of the analogue input value or set with EREF value, when torgue external mode is performed. Measured in current units

32

© Technosoft 2006

UQREF	Voltage reference – updated at each fast or slow loop function of the analogue input value or set with EREF value, when voltage external mode is performed. Measured in voltage command units
APOS	Actual position (long) – motor position measured in position units
ASPD	Actual speed (fixed) – motor speed measured in speed units
IQ	Motor current – measured in current units
Related TML Instruct	ions
MODE PEX	Set external position mode x (x = 3, 2, 1, 0)
MODE SEX	Set external speed mode x (x = 1, 0)
MODE TES	Set external torque mode slow
MODE TEF	Set external torque mode fast
MODE VES	Set external voltage mode fast
EXTREF 0	Set external voltage mode fast
EXTREF 1	Set external reference type: provided on-line in EREF via communication
EXTREF 1	Set external reference type: read from analog input
EXTREF 2	Set external reference type: read from second encoder input
UPD	Update motion mode and parameters. Start motion
STOP0, STOP1, STO	PP2 or STOP3 – Stop motion using methods 0 to 3

Programming Example

EXTREF 1;	//	external reference read from analog input
MODE SE1;	//	set speed external mode 1
UPD;	//	update – activate new mode

Remarks:

- TML instruction EXTREF 2 sets a third way of providing an external reference: using incremental encoder signals connected to the MotionChip II 2nd encoder inputs. This external mode is used only for electronic gearing and camming modes and will be presented later on
- TML instructions EXTREF 0, 1 or 2 are exclusive. After power on, EXTREF 0 is set by default. After an EXTREF 1 command, EXTREF 0 is disabled and all the external reference modes are read from the analogue input

2.1.5 Position/Speed Pulse & Direction Modes

In the pulse & direction modes, you can drive your motor using a "Pulse & Direction" command provided by an external device. The "Pulse & Direction" command consists of 2 digital signals that must be connected to especially dedicated inputs:

- Pulse a sequence of pulses. Each pulse represents a position unit. The sum of the
 pulses indicates the position displacement to be performed. The variation of number of
 pulses per time unit represents a speed reference.
- *Direction* a digital signal, which indicates the reference sign. Depending on Direction value the pulses are counted up or down

© Technosoft 2006

33

Hence the pulse and direction signals can be interpreted either as a position reference or as a speed reference. Depending on the reference type you can have:

- Position pulse & direction modes, where the motor is controlled in position.
- Speed pulse & direction modes, where the motor is controlled in speed.

 Table 2.7 presents the possible pulse & direction modes.

Category	Motion Modes	Controlled Loops		
Category		Position	Speed	Torque
	PPD3	\checkmark	\checkmark	
Position Pulse &	PPD2	\checkmark		—
Direction	PPD1	\checkmark	-	
	PPD0	\checkmark	-	-
Speed Pulse &	SPD1	-		
Direction	SPD0	-		-

Table 2.7 Pulse & Direction Modes

Remarks:

- The selection of one of the above position pulse & direction modes or speed pulse & direction modes must match with the setup data like in the case of position and speed profiles (see par. 2.1.1 and 2.1.2 for details)
- As in most applications the current/torque control is needed, the IPM Motion Studio does not cover the setup options where current loop is not closed. Therefore, using IPM Motion Studio, you can choose for position pulse & direction only 2 options: position loop with speed loop and current loop (MODE PPD3) and position loop without speed loop and with current loop (MODE PPD1), and for speed pulse & direction only the option with both speed and current loop closed (MODE SPD1)

Related TML Variables

TPOS	Target position (long) – position reference computed by the reference generator at each slow loop (position/speed loop) sampling period when position or speed pulse & direction modes are performed. Measured in position units
TSPD	Target speed (fixed) – speed reference computed by the reference generator at each slow loop sampling period when position or speed pulse & direction modes are performed. Measured in speed units
TACC	Target acceleration (fixed) – acceleration/deceleration reference computed by the reference generator at each slow loop sampling period when position or speed pulse & direction modes are performed. Measured in acceleration units

© Technosoft 2006

34

APOS	Actual position (long) – motor position measured in position units
ASPD	Actual speed (fixed) – motor speed measured in speed units

Related TML Instructions

MODE PPDx	Set position pulse & direction mode $x (x = 3, 2, 1, 0)$
MODE SPDx	Set speed pulse & direction mode $x (x = 1, 0)$
UPD	Update motion mode and parameters. Start motion
STOP0, STOP1, STOP2 or STOP3 – Stop motion using methods 0 to 3	

Programming Example

MODE PPD3;	11	set pulse & dir mode 3
UPD;	//	update - activate new mode. Motion starts
	//	when external device provides pulses

2.1.6 Electronic Gearing Modes

In the electronic gearing modes, one drive is set as master and other drives are set as slaves. The slaves follow the master position with a programmable ratio. The slaves can get the master position in two ways:

- The master sends its position via a communication channel. This option requires having the drives connected on a CAN-bus or RS-485 network. The master sends either the motor position (if OSR.15 = 0 i.e. bit 15 from OSR register is 0) or the position reference (if OSR.15 = 1), once at each slow loop (speed/position loop) sampling time interval
- The signals of the encoder connected to the master drive are also connected to the 2nd encoder input of the slave drives.

In both cases the slaves perform a position control. They compute the master position increment and multiply it with their programmed gear ratio. The result represents the increment of the reference position for the slaves, which is added to previous reference position to obtain the new reference position for the slaves.

Remarks:

- You need to program a drive as master in electronic gearing only if the master position is sent via a communication channel. If actual position is sent, the master can work in any motion mode. If target position is sent, the master should work in a mode that generates a target position
- By default the slow loop sampling period is set at 1ms. If you intend to use the RS-485 to send a master position, be aware that the transmission time for this operation at maximum baudrate of 115200 is close to 1ms and therefore occupies almost the entire communication bandwidth. One way to reduce the overall communication charge is to increase with 50-100% the slow-loop sampling period

Master mode

© Technosoft 2006

35

The master mode can be enabled with the TML command SGM followed by an UPD (update) and can be disabled by the TML command RGM followed by an UPD. In both cases, this has no effect on the motion executed by the master.

When a drive is set as master, it starts sending its actual position APOS or its target position TPOS to the axis or the group of axes specified in the TML parameter SLAVEID. This contains either the axis ID of one slave or the value of a group ID+256 i.e. the group of slaves to which the master should send its position.

Before enabling the master operation for electronic gearing, you need to initialize the slaves with the master position by setting the master to send its (actual or target/reference) position to the slaves in the dedicated TML parameter MPOS0. This initialization is necessary to make sure that the slaves got the latest master position before entering in the slave mode.

Examples:

Remark: Make sure when the master position initialization is performed that all slave drives are powered and in communication. Otherwise the initialization with master position will fail.

Slave mode

When a drive should work as slave for electronic gearing, the following settings must be checked or performed before enabling the electronic gearing slave mode:

1) Set gear ratio. This is specified via 3 TML variables: GEAR, GEARSLAVE and GEARMASTER

GEARSLAVE and GEARMASTER represent the numerator and denominator of the Slave / Master ratio. GEARSLAVE is a signed integer, while GEARMASTER is an unsigned integer. GEARSLAVE sign indicates the direction of movement: positive – same as the master, negative – reversed to the master. GEAR is a fixed value containing the result of the gear ratio i.e. the result of the division GEARSLAVE / GEARMASTER. In order to eliminate any cumulative errors the electronic gearing slave mode includes an automatic compensation of the round off errors when the gear ratio has an irrational value like: Slave = 1, Master = 3, giving a ratio of 1/3 = 0.33333 which can't be represented exactly.

Example: in order to implement a gear ratio of 2/3, you need to set:

GEARSLAVE = 2;	<pre>// gear ratio numerator</pre>
GEARMASTER = $3;$	// gear ratio denominator
GEAR= 0.66667;	// gear ratio value

2) Enable master position calculation from 2nd encoder inputs, if the master position is provided via its encoder signals.

This operation is done with TML instruction EXTREF 2. The initial value of the master position is set by default to 0. It may be changed to a different value by writing the desired value in data memory at location 0x81C. This operation can be performed by the following TML code:

```
© Technosoft 2006
```

36

user_var = 0x81C;	$\prime\prime$ set user variable user_var with 0x81C - the address of the
master	// position computed from 2 nd encoder inputs
user_var),dm = initial	_value; // write initial_value in data memory (dm) at
	<pre>// address pointed by user_var i.e. in the master position</pre>

Remarks:

- The initial master value is a 32-bit long integer value. However, if the initial value to write is small enough to be represented as a 16-bit integer (i.e. between –32768 and +32767) add after the initial value an L (for example: 200L) to indicate that this value is a long not an integer. This will initialize the 16MSB part too (i.e. the next memory location 0x81D)
- Initialization of the drives for reading the master position from the 2nd encoder inputs requires one speed/position sampling period (typically 1ms). After EXTREF 2 command do not enable immediately the slave operation. Introduce a wait time of 1 speed/position sampling period (see for details par. 2.2)

3) Set master resolution e.g. the number of encoder counts per one revolution of the master motor. The slaves need the master resolution to compute correctly the master position and speed (i.e. position increment). This operation can be performed by the following TML code:

user_var = 0x81A; // set user variable user_var with 0x81A - the address of the
master
// resolution parameter

Remark: The master resolution is a 32-bit long integer value. If master position is not cyclic (i.e. the resolution is equal with the whole 32-bit range of position), set master resolution to 0x80000001. When this value is used, no modulo operation is performed on the position counted from the 2^{nd} encoder inputs.

4) Enable synchronization with the master if the master position is provided via communication. When the synchronization is enabled, the slave performs a slight adjustment of the moments when the speed/position loop control is performed to synchronize them with the moments when the master sends its position. This allows the slaves to always have a new master position before starting to use it. In order to:

- Enable the synchronization with the master, set TML variable EFLEVEL = 0;
- Disable the synchronization with the master, set TML variable EFLEVEL = 0xFFFF;

Remark: The synchronization must be enabled only <u>after</u> the master starts sending its position and must be disabled <u>before</u> or immediately after the master stops sending its position. Do not leave a slave with the synchronization enabled while the master is disabled. During this period the motor control performance is slightly degraded

5) Enable operation in one of the electronic gearing slave modes. Depending on the control structure, the following four motion modes are possible for the slaves.

Table 2.8. Electronic Gearing Slave - Motion Modes

© Technosoft 2006

37

Electronic Gearing	Controlled Loops			
Slave Motion Modes	Position	Speed	Torqu e	
GS3				
GS2	\checkmark		_	
GS1	\checkmark	_		
GS0		_	-	

Remarks:

- The selection of one of the above electronic gearing modes must match with the setup data like in the case of position and speed profiles
- As in most applications the current/torque control is needed, the IPM Motion Studio does not cover the setup options where current loop is not closed. Therefore, using IPM Motion Studio, you can chose only between 2 options: position loop with speed loop and current loop (MODE GS3) and position loop without speed loop and with current loop (MODE GS1).

Related TML Parameters

SLAVEID	the axis or group ID to which the master sends its position. When group ID is used, the SLAVEID is set with group ID value + 256 (int)
MREF	Slave location where the master sends its position (long). Measured in
	master position units
MPOS0	Slave location where the previous master position is stored (long). The
	master increment is computed on each slave axis as MREF - MPOSO.
	Measured in master position units
GEAR	Slave(s) gear ratio value (fixed). Negative values means opposite direction
GEARMASTER	Denominator of gear ratio (uint)
GEARSLAVE	Numerator of gear ratio (int). Negative values means opposite direction
MASTERRES	Master resolution used by slave(s) (long) Set at extended address 0x81A.
	Can be read/written using indirect addressing commands. Measured in
	master position units
APOS2	Master position computed from 2 nd encoder inputs on slave axes (long).
	Set at extended address 0x81C. Can be read/written using indirect
	addressing commands. Measured in master position units
MSPD	Master speed computed from 2 nd encoder inputs on slave axes (long). Set
	at extended address 0x820. Can be read/written using indirect addressing
	commands. Measured in master speed units
EFLEVEL	Set to 0 enables and set to 0xFFFF disables the synchronization of the
	slave(s) with the master when master position is sent via communication
	(int)
Related TML Variable	25
TPOS	Target position (long) - position reference computed by the reference

© Technosoft 2006

38

generator at each slow loop (position/speed loop) sampling period when

	electronic gearing slave modes are performed. Measured in position
TSPD	units Target speed (fixed) – speed reference computed by the reference generator at each slow loop sampling period when electronic gearing slave modes are performed. Measured in speed units
TACC	Target acceleration (fixed) – acceleration/deceleration reference computed by the reference generator at each slow loop sampling period when electronic gearing slave modes are performed. Measured in acceleration units
APOS ASPD	Actual position (long) – motor position measured in position units Actual speed (fixed) – motor speed measured in speed units
Related TML Instruc	tions
SGM	Set electronic gearing master mode
RGM	Reset electronic gearing master mode
EXTREF 0	Receive master position via a communication channel
EXTREF 2	Read master position from second encoder input
MODE GSx	Set electronic gear slave mode $x (x = 3, 2, 1, 0)$
TUM1	Generate new trajectory starting from the actual values of position and speed reference (i.e. don't update the reference values with motor position and speed)
TUM0	Generate new trajectory starting from the actual values of motor position and speed (i.e. update the reference values with motor position and speed)
UPD	Update motion mode and parameters. Start motion
STOP0, STOP1, STO	P2 or STOP3 – Stop motion using methods 0 to 3

Programming Example

```
// On slave axis (Axis ID = 1):
     GEAR = 0.66667; // set gear ratio value
     GEARMASTER = 3; // set gear ration denominator
     GEARSLAVE = 2;
                      // set gear ratio numarator
     EXTREF 0;
                      //receive master position via a
                      //communication channel
     EIR = 0 \times 081A;
                      // set EIR variable with address of MASTERRES
     (EIR),dm = 2000L; // set MASTERRES = 2000
     MODE GS3;
                      //set gear slave mode 3
     TUM1;
                 // keep the position and speed reference (optional)
     UPD;
                 // update - activate gear slave mode. Slave starts
                 // following the master position
// On master axis:
     SLAVEID 1;
                       // slave axis has Axis ID = 1
                       // set electronic gearing master mode
     SGM;
     SRB OSR,0xFFFF,0x8000; // send target position
      [1]MPOS0 = TPOS; // set master target position on slave axis
     UPD;
                       // update - activate new mode. Master starts
                       // sending its position
```

© Technosoft 2006

39

Remark: When a drive is set in an electronic gearing slave mode, it starts to add the position increment (computed from the master position increment and the gear ratio) to its current position. Hence electronic gearing mode is a relative move, which on each slave starts from its current position. If needed, the slave position may be modified before enabling the slave operation using the SAP 0 TML command (see par. 2.1.10 for details)

2.1.7 Electronic Camming Modes

In the electronic camming mode, one drive is set as master and other drives are set as slaves. The slaves execute a cam profile function of the master position. A cam table describes the cam profile. The cam table consists of 2 columns of points: X for the master and Y for the slave.

The slaves can get the master position in two ways:

- The master sends its position via a communication channel. This option requires having the drives connected on a CAN-bus or RS-485 network. The master sends either the motor position (if OSR.15 = 0 i.e. bit 15 from OSR register is 0) or the position reference (if OSR.15 =1), once at each slow loop (speed/position loop) sampling time interval
- The signals of the encoder connected to the master drive are also connected to the 2nd encoder input of the slave drives.

In both cases the slaves perform a position control. The master position represents the input in the cam table. The output of the cam table is the slave position reference. Between the cam table points, linear interpolation is performed.

Remarks:

- You need to program a drive as master in electronic camming only if the master position is sent via a communication channel. If actual position is sent, the master can work in any motion mode. If target position is sent, the master should work in a mode that generates a target position
- By default the slow loop sampling period is set at 1ms. If you intend to use the RS-485 to send a master position, be aware that the transmission time for this operation at maximum baudrate of 115200 is close to 1ms and therefore occupies almost the entire communication bandwidth. One way to reduce the overall communication charge is to increase with 50-100% the slow-loop sampling period

Master mode

The master mode is the same as for electronic gearing. It can be enabled with the TML command SGM followed by an UPD (update) and can be disabled by the TML command RGM followed by an UPD. In both cases, this has no effect on the motion executed by the master. No other initialization is needed for electronic camming.

When a drive is set as master, it starts sending its actual position APOS or its target position TPOS to the axis or the group of axes specified in the TML parameter SLAVEID. This contains either the axis ID of one slave or the value of a group ID+256 i.e. the group of slaves to which the master should send its position

Slave mode

© Technosoft 2006

MotionChip II TML Programming

40

When a drive should work as slave for electronic camming, the following settings must be checked or performed before enabling the electronic camming slave mode:

1) Load a previously defined cam table into SRAM program memory.

The cam table contains equally spaced values for X at: 1, 2, 4, 8, 16, 32, 64 or 128. Between the points of the table, linear interpolation is performed. It is not mandatory to define the cam table for 360 degrees of the master. You may also define shorter cam tables, which for example may be active between angles 120 and 200 degrees of the master. In this case, the slave position remains unchanged outside the active area of the cam. You can continuously run the master in any direction with the slaves performing a glitch free transition when the cam table is restarted.

A cam table has the following format:

- 1st word (1 word = 16-bit data):
 - Bits 15-13 the power of 2 of the interpolation step. For example, if these bits have the binary value 010 (2), the interpolation step is 2² = 4, hence the master X values are spaced from 4 to 4: 0, 4, 8, 12, etc.
 - Bits 12-0 the length -1 of the table. The length represents the number of points
- 2nd and 3rd words: the master start position (long), expressed in **master position units**. 2nd word contains the low part, 3rd word the high part
- 4th and 5th words: Reserved. Must be set to 0
- Next pairs of 2 words: the slave Y positions (long), expressed in **position units**. The 1st word from the pair contains the low part and the 2nd word from the pair the high part
- Last word: the cam table checksum, representing the sum modulo 65536 of all the cam table data except the checksum word itself

Once define, a cam table must be downloaded into the EEPROM memory of the drive. Before enabling an electronic camming slave mode, the cam table must be copied from the EEPROM into the SRAM program memory. This operation can be done using the TML command:

INITCAM LoadAddress, RunAddress

where LoadAddress is the EEPROM memory address where the cam table was loaded and RunAddress is the SRAM program memory address where to copy the cam table. After the execution of this command the TML variable CAMSTART takes the value of the RunAddress.

Remarks:

- When electronic camming slave mode is performed, only the cam table from the SRAM program memory is used to compute the slave position
- It is possible to download in the EEPROM memory several cam tables. You can use INITCAM command to copy one or all of them into the SRAM program memory. In the last case, in order to switch between several cam tables all you need to do is to change the value of the TML parameter CAMSTART which points to the beginning of the cam table to be used when electronic camming slave mode is activated
- LoadAddress and RunAddress values be expressed as decimal values

© Technosoft 2006

41

In IPM Motion Studio, you can quickly create or import a cam table using its menu command Tools | Edit CAM files. For example, you can specify your cam table in a simple text file as 2 columns of values (expressed in master and slave **position units**): first column for the X points, next one for the Y points. Using the Import feature, IPM Motion Studio translates your data into the cam table format mentioned above (files with extension .cam). You can create as many cam tables as you like. Then using the menu command **Project | Settings - General** tab, you can choose from the list of all cam tables defined, the cam(s) to be used in your application, named active cams. Using menu command **Application | Download CAM**, you can download the active cams into the EEPROM and finally in the Motion Wizard, the electronic camming dialogue, you can select from the **Use Table** list of active cams, which one to be used. Following this selection the TML instruction INITCAM is generated with LoadAddress and RunAddress values automatically computed by IPM Motion Studio

Remarks:

- Some applications may require starting the electronic cam from the Y position corresponding to the current position of the master. You can find the Y position (cam table output) before activation of the electronic camming slave mode (in order to move the motors to this position) in the following way:
 - Activate a position profile mode, for example to keep the current position
 - Set TML parameter GEAR = 0, then wait one slow loop sampling period (see par 2.2)
 - Read the Y position from TML variable EREF

In order to stop computing Y when electronic cam slave mode is not active, set GEAR to a non-zero value, for example: GEAR=0.5. TML parameter GEAR is also used in electronic gearing slave mode to keep the gear ratio value.

• You can define a cam offset for each slave in order to shift the cam profile versus the master position. Let's take for example a cam table defined between master angles: 100 to 250 degrees. If you define a 50 degrees cam offset, the cam profile will execute between master angles: 150 and 300 degrees. The following relation exists between: the master position (MREF), the cam offset (CAMOFF), the cam table X input (MPOS0) and the master resolution (MASTERRES):

MPOSO = (MREF - CAMOFF) % MASTERRES

2) Enable master position calculation from 2nd encoder inputs, if the master position is provided via its encoder signals.

This operation is done with TML instruction EXTREF 2. The initial value of the master position is set by default to 0. It may be changed to a different value by writing the desired value in data memory at location 0x81C.

This operation can be performed by the following TML code:

user_var = 0x81C; // set user variable user_var with 0x81C - the address of the
master

// position computed from 2nd encoder inputs

© Technosoft 2006

42

Remarks:

- The initial master value is a 32-bit long integer value. However, if the initial value to write is small enough to be represented as a 16-bit integer (i.e. between –32768 and +32767) add after the initial value an L (for example: 200L) to indicate that this value is a long not an integer. This will initialize the 16MSB part too (i.e. the next memory location 0x81D)
- Initialization of the drives for reading the master position from the 2nd encoder inputs requires one speed/position sampling period (typically 1ms). After EXTREF 2 command do not enable immediately the slave operation. Introduce a wait time of 1 speed/position sampling period (see for details par. 2.2)
- 3) Set master resolution e.g. the number of encoder counts per one revolution of the master motor. The slaves need the master resolution to compute correctly the master position and speed (i.e. position increment). This operation can be performed by the following TML code:

user_var = 0x81A; // set user variable user_var with 0x81A - the address of the
master

Remark: The master resolution is a 32-bit long integer value. If master position is not cyclic (i.e. the resolution is equal with the whole 32-bit range of position), set master resolution to 0x80000001. When this value is used, no modulo operation is performed on the position counted from the 2^{nd} encoder inputs.

- 4) Enable synchronization with the master if the master position is provided via communication. When the synchronization is enabled, the slave performs a slight adjustment of the moments when the speed/position loop control is performed to synchronize them with the moments when the master sends its position. This allows the slaves to always have a new master position before starting to use it. In order to:
 - Enable the synchronization with the master, set TML variable EFLEVEL = 0;
 - Disable the synchronization with the master, set TML variable EFLEVEL = 0xFFFF;

Remark: The synchronization must be enabled only <u>after</u> the master starts sending its position and must be disabled <u>before</u> or immediately after the master stops sending its position. Do not leave a slave with the synchronization enabled while the master is disabled. During this period the motor control performance is slightly degraded

5) Enable operation in one of the electronic camming slave modes. Depending on the control structure, the following four motion modes are possible for the slaves.

Electronic Cam Slave	Controlled Loops			
Motion Modes	Position	Speed	Torqu	
			E	

43

 Table 2.9. Electronic Cam Slave - Motion Modes

© Technosoft 2006

CS3	\checkmark	\checkmark	
CS2	\checkmark		-
CS1		-	
CS0		-	-

Remarks:

- The selection of one of the above electronic camming modes must match with the setup data like in the case of position and speed profiles (see par. 2.1.1 and 2.1.2 for details)
- As in most applications the current/torque control is needed, the IPM Motion Studio does not cover the setup options where current loop is not closed. Therefore, using IPM Motion Studio, you can chose only between 2 options: position loop with speed loop and current loop (MODE CS3) and position loop without speed loop and with current loop (MODE CS1).

Related TML Parameters

SLAVEID	the axis or group ID to which the master sends its position. When group ID is used, the SLAVEID is set with group ID value + 256 (int)
MREF	Slave location where the master sends its position (long). Measured in master position units
CAMOFF	Cam offset (long). The cam table X input MPOS0 is computed by subtracting cam offset from the master position. Measured in master position units
MASTERRES	Master resolution used by slave(s) (long) Set at extended address 0x81A. Can be read/written using indirect addressing commands. Measured in master position units
APOS2	Master position computed from 2 nd encoder inputs on slave axes (long). Set at extended address 0x81C. Can be read/written using indirect addressing commands. Measured in master position units
MSPD	Master speed computed from 2 nd encoder inputs on slave axes (long). Set at extended address 0x820. Can be read/written using indirect addressing commands. Measured in master speed units
EFLEVEL	Set to 0 enables and set to 0xFFFF disables the synchronization of the slave(s) with the master when master position is sent via communication (int)
Related TML Variable	es
MPOS0	Cam table X input (long). MPOS0 = (MREF – CAMOFF) % MASTERRES. Measured in master position units.
CAMSTART	SRAM program memory start address for a cam table. When several cam tables are used, switching between them resumes to set CAMSTART to the right address i.e. the beginning of next the cam table to use. CAMSTART is automatically set by the INITCAM command, which copies the cam table from the EEPROM to the SRAM memory
TPOS	Target position (long) – position reference computed by the reference generator at each slow loop (position/speed loop) sampling period when

© Technosoft 2006

44

	electronic camming slave modes are performed. Measured in position		
TÊDD	units		
TSPD	Target speed (fixed) – speed reference computed by the reference		
	generator at each slow loop sampling period when electronic camming		
TA 00	slave modes are performed. Measured in speed units		
TACC	Target acceleration (fixed) – acceleration/deceleration reference computed		
	by the reference generator at each slow loop sampling period when		
	electronic camming slave modes are performed. Measured in		
1500	acceleration units		
APOS	Actual position (long) – motor position measured in position units		
ASPD	Actual speed (fixed) – motor speed measured in speed units		
Related TML Instruc	tions		
SGM	Set electronic camming master mode		
RGM	Reset electronic camming master mode		
INITCAM LoadAddre	ss, RunAddress Copy cam table from E ² ROM starting with		
	LoadAddress into SRAM starting at RunAddress		
EXTREF 0	Receive master position via a communication channel		
EXTREF 2	Read master position from second encoder input		
MODE CSx	Set electronic camming slave mode $x (x = 3, 2, 1, 0)$		
TUM1	Generate new trajectory starting from the actual values of position and		
	speed reference (i.e. don't update the reference values with motor position		
	and speed)		
тимо	Generate new trajectory starting from the actual values of motor position		
	and speed (i.e. update the reference values with motor position and		
	speed)		
UPD	Update motion mode and parameters. Start motion		
STOP0, STOP1, STO	P2 or STOP3 – Stop motion using methods 0 to 3		
Programming Exam	ble		

Programming Example

// Or	n slave axis (Axis	ID	= 1):
	INITCAM 0x4500,0x	xE5	00;// copy cam table from E2ROM at address
		11	0x4500 to SRAM at address 0xE500
	EXTREF 0;	11	receive master position via a
		//(communication channel
	$EIR = 0 \times 081A;$	//	set EIR variable with address of MASTERRES
	(EIR), dm = 2000L	;//	set MASTERRES = 2000
	MODE CS3;	11	set cam slave mode 3
	UPD;	//	update - activate cam slave mode. Slave
		//	starts following the master position
// Or	n master axis:		
	SLAVEID 1;	//	slave axis has Axis ID = 1
	SGM;	//	set electronic camming master mode
	UPD;	//	update - activate new mode. Master starts
		11	sending its actual position (APOS)

In the electronic camming mode, the slave computes a position increment, which is added to its current position.

© Technosoft 2006

45

When the master moves in the positive direction, the slave position increment is:

- **DY** = **Y Y**_**1**, if in the cam, where Y = f(X) is the actual cam table output and Y_1 = f(X_1) is the previous cam table output. In the cam condition is when both X and X_1 inputs are between the minimum (Xmin) and maximum (Xmax) input values
- **DY** = **Y Ymin, on cam entry,** where Y = f(X) is the actual cam table output and Ymin = f(Xmin) is the first cam table output point. On cam entry condition is when actual X is inside cam table i.e. X > Xmin, but the previous X_1 was outside the cam table i.e. X_1 < Xmin
- **DY** = Ymax Y_1, on cam exit, where Ymax = f(Xmax) is the last cam table output point and Y_1 = f(X_1) is the previous cam table output. On cam exit condition is when actual X is outside cam table i.e. X > Xmax, but previous X_1 was inside the cam i.e. X_1 < Xmax
- **DY** = **Ymax Y**_1 + **Y Ymin, if in the cam with master rollover**, where Y = f(X) is the actual cam table output, Y_1 = f(X_1) is the previous cam table output, Ymax = f(Xmax) is the last cam table output point, Ymin = f(Xmin) is the first cam table output point. In the cam with master rollover condition is when both X and X_1 inputs are inside the cam table, but X < X_1 because the master position has rolled over

When the master moves in the negative direction, the slave position increment is:

- DY = Y Y_1, if in the cam, where Y = f(X) is the actual cam table output and Y_1 = f(X_1) is the previous cam table output. In the cam condition is when both X and X_1 inputs are between the minimum (Xmin) and maximum (Xmax) input values
- DY = Ymin Y_1, on cam exit, where Ymin = f(Xmin) is the first cam table output point and Y_1 = f(X_1) is the previous cam table output. On cam exit condition is when actual X is outside cam table i.e. X < Xmin, but the previous X_1 was inside the cam table i.e. X_1 > Xmin
- **DY = Y Ymax, on cam entry**, where Y = f(X) is the actual cam table output and Ymax = f(Xmax) is the last cam table output point. On cam entry condition is when actual X is inside cam table i.e. X < Xmax, but previous X_1 was outside the cam i.e. X_1 > Xmax
- DY = Ymin Y_1 + Y Ymax, if in the cam with master rollover, where Y = f(X) is the actual cam table output, Y_1 = f(X_1) is the previous cam table output, Ymax = f(Xmax) is the last cam table output point, Ymin = f(Xmin) is the first cam table output point. In the cam with master rollover condition is when both X and X_1 inputs are inside the cam table but X > X_1 because the master position has rolled over

If needed, the slave position may be modified before enabling the slave operation using the SAP $_0$ TML command (see par. 2.1.8 for details)

2.1.8 Motor Commands. Stop Modes

You can apply one of following commands to the motor:

- Activate/deactivate the control loops and the power stage PWM output commands (AXISON / AXISOFF)
- Stop the motor in one of the four possible modes: STOP3, STOP2, STOP1, STOP0

© Technosoft 2006

46

- Issue an update command, immediate (UPD) or when a previously programmed event occurs (UPD!)
- Change the values of the motor position and the position reference

The **AXISON** command activates the control loops and the PWM output commands. After power on, the AXISON command has to be executed at least once, after the ENDINIT (end of initialization) command. During operation, AXISON command may be used to restore the normal drive operation following an AXISOFF command. Typically, the AXISON command can be used in the error treatment routines, to restore the normal operation after the error cause was detected and eliminated.

At first AXISON after power on, the reference generator starts from the initial conditions. However, when AXISON is set after an AXISOFF command, the reference generator resumes its calculations from the same conditions left when the AXISOFF command was executed. If the values for the speed reference were high when the AXISOFF command was issued, at next AXISON command, a still motor may suddenly face a large speed reference. This may lead to a high reaction, which may stress the motion system mechanical parts. In order to avoid this situation, it is recommended to reprogram the (remaining) motion, without using TUM1 (i.e. updating the target position and target speed with the actual values of the position and speed), and only then set the AXISON command.

Example: A motor controlled in speed, was stopped with an AXISOFF command. In order to resume the normal operation, the TML program can be:

CACC = 0.5; // only if you want to change the previous acceleration value CSPD = 100; // only if you want to change the previous speed value MODE SP1; // set again the speed profile mode 1 UPD; // update motion mode & parameters. Motion is prepared but will not start // as the drive continues to be in the AXISOFF condition AXISON; // motion starts. The initial value for target speed is 0 because was // updated with the actual motor speed which is 0 because the motor is still

Remarks:

- During AXISON condition, the Motion Status Register bit 13 is set (MSR.13 = 1)
- In IPM Motion Studio, the AXISON command is automatically included in the motion programs, after the drive setup parameters and before the motion sequences you program using the Motion Wizard. Therefore it is not necessary to include it at the beginning of a motion programming sequence

The **AXISOFF** command deactivates the control loops, the reference generator and the PWM output commands (all the switching devices are off). However, all the measurements remain active and therefore the motor currents, speed, position as well as the supply voltage continue to be updated and monitored. If the AXISOFF command is applied during motion, it leaves the motor free running. Typically, the AXISOFF command is used when an error condition is detected, for example when a protection is triggered.

Remark: The AXISOFF command is automatically generated when the Enable input goes from enabled to disabled status. If the Enable input returns to the enabled status, no other command (like AXISON) is automatically generated. However, if needed, you can generate automatically the

© Technosoft 2006

47

AXISON command when Enable input returns to the enable status, by setting the AXISON command in the TML interrupt service routine called each time when the Enable input status changes.

The TML offers you 4 ways to stop a motor. Table 2.10 presents these stop modes.

Stop Modes	Action
STOP3	Set speed control and decelerate with the rate set in
	TML parameter CACC until speed is 0
STOP2	Set speed control and force speed reference to 0
STOP1	Set torque control and force current reference to 0
STOP0	Set voltage control and force motor voltage to 0

Table 2.10. Stop Modes

Select STOP3 to stop the motor smoothly, with a deceleration rat set in TML parameter CACC. When this command is executed, the drive is automatically set in speed profile mode (MODE SP1) with jog speed command = 0. When the speed reference arrives at zero, the motion complete condition is set

Select STOP2 to stop very abruptly the motor. When this command is executed, the drive is automatically set in speed external mode (MODE SE1) with on-line speed reference set to 0.

Remark: *STOP3* or *STOP2* modes may not work correctly if in the setup data you have set your drive for position control without closing the speed loop. In this case, you'll close the speed loop using a speed controller whose parameters have not been properly set.

Select STOP1 to stop the motor when the drive performs torque control. When this command is executed, the drive is set in torque external mode (MODE TES) with on-line current reference set to 0.

Select STOPO to stop the motor when the drive performs voltage control. When this command is executed, the drive is set in voltage external mode (MODE VES) with on-line voltage reference set to 0. STOPO is foreseen only for test purposes. During normal operation, the drive performs at least torque control. Voltage control may occur only during setup tests or if you have specifically set the drive in voltage contouring, voltage external or voltage test modes.

Remarks:

- In order to restart after a STOPx (x = 0,1,2,3) command, the motion mode has to be set again, even if it is not changed. Setting a motion mode disables the stop mode and allows the motor to move
- *STOPx* (x = 0,1,2,3) commands always set *TUMO* mode to perform an update of the target/reference position and speed with the actual motor position and speed
- When a host sends via a communication channel a STOPx command, this stops the execution of any TML program from the local memory, in order to avoid the risk of overwriting the STOPx command from the TML program
- Use with caution STOP2, STOP1 and STOP0 commands. These cause abrupt stops that may generate an important energy towards the supply. If the power supply can't absorb

© Technosoft 2006

48

the energy generated by the motor, it is necessary to foresee an adequate surge capacitor in parallel with the drive supply to limit the over voltage.

When an immediate update command UPD is executed, the last motion mode programmed together with the latest motion parameters are taken into consideration. During motion execution, you can freely change the motion mode and/or its parameters. These changes will have no effect until an update command is executed.

If you intend to perform an update when a specific condition occurs, you can set an event which monitors the condition, followed by an update on event command upp!. When the monitored condition occurs, the update will be automatically performed. Once you have set an update on event upp!, you can either wait for the monitored event to occur, or perform other operations.

The TML command **SAP** offers you the possibility to set / change the referential for position measurement by changing simultaneously the motor position APOS and the target position TPOS values, while keeping the same position error.

You can specify the new position either as an immediate value or via a 32-bit long variable. SAP command can be executed at any moment during motion. When SAP command is executed, the following operations are performed:

• Under TUM1, i.e. if TUM1 command has been executed after the last motion mode setting and before the last UPD, the target/reference position TPOS is set equal with the new position value and the actual motor position APOS is set equal with the new position reference minus the position error (POSERR)

TPOS = new_value; APOS = TPOS - POSERR;

• Under TUM0, i.e. if TUM1 command has not been executed after the last motion mode setting and before the last UPD, the actual motor position APOS is set equal with the new position value and the target/reference position TPOS is set equal with the new position plus the position error (POSERR)

APOS = new_value; TPOS = APOS + POSERR;

The TML command **STA** sets the target position equal with the actual position: TPOS = APOS.

Remark: The target position update with the actual position is automatically performed each time a new motion mode is set without TUM1. Together with the target position the target speed is also updated with the actual speed

Related Instructions

AXISON	Set axis ON. Activate control loops and PWM commands
AXISOFF	Set axis OFF. Deactivate control loops and PWM commands
STOPx	Set stop mode x (x = 3, 2, 1, 0)
UPD	Update immediate motion mode and parameters. Start motion
UPD!	Update the motion mode and parameters a programmed event occurs
SAP V32	Set V32 in the actual or target position. V32 is either a 32-bit immediate
	value or a long TML data (user variable) containing the value to set

© Technosoft 2006

49

Programming Example

command acceleration = 1.5 encoder counts/sampling ²
command speed = 20 counts/sampling
command position = 2000 counts
command position is relative
set position profile mode 3
keep the position and speed reference
update - start the motion
stop smoothly with CACC = 1.5
set event on motion complete
wait for the event to occur
STOP3 disables TUM1. Hence APOS = 0 and
TPOS = APOS + POSERR
set again the position profile mode 3
update - restart motion after a STOP command

2.1.9 Torque/Voltage Test Modes

The torque and voltage test modes have been designed to facilitate the testing during the setup phase. In these test modes, either a voltage or a torque (current) command can be set using a test reference consisting of a limited ramp (see **Figure 2.6**).

For AC motors (like for example the brushless motors), the test mode offers also the possibility to rotate a voltage or current reference vector with a programmable speed (see **Figure 2.7**). As a result, these motors can be moved in an "open-loop" mode without using the position sensor. The main advantage of this test mode is the possibility to conduct in a safe way a series of tests, which can offer important information about the motor parameters, drive status and the integrity of the its connections.

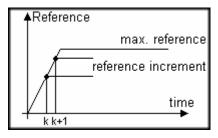


Figure 2.6. Reference profile in test modes

50

© Technosoft 2006

MotionChip II TML Programming

STA

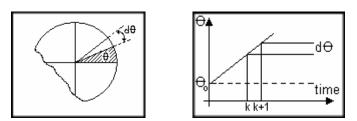


Figure 2.7. Electrical angle setup in test modes with brushless AC motors

Remark: The Motion test is a special test mode to be used only in some special cases for drives setup. The Motion Test mode is not supposed to be used during normal operation

Related Parameters

REFTST	maximum value of the test reference in torque or voltage units (int)
RINCTST	reference increment at each slow-loop sampling period (int)
THTST	initial value for the electrical angle in electrical angle units (int)
TINCTST	electrical angle increment at each fast-loop sampling period (int)

Related Instructions

MODE TT	Set torque test mode
MODE VT	Set voltage test mode
UPD	Update motion mode and parameters. Start motion

2.1.10 Motion Mode Changing

The TML allows switching all motion modes on the fly, except for the test modes.

This feature is especially useful for position/speed control applications, where the target reference is provided by the internal trajectory generator using position/speed profile modes, position/speed contouring modes, electronic gearing, electronic cam and stop modes.

On the fly changes of the motion modes are possible because the target reference is updated each time the motion mode changes. Whenever a new motion mode is set, the target position and the target speed reference are set to the actual values of the motor position and motor speed i.e. TPOS = APOS and TSPD = ASPD.

This default target update mode (TUM0) is particularly useful to perform precise relative positioning triggered by an external event, because the input data for the relative position profile computation are the real motor position and speed.

There are however situations when the target reference update is not desired. In these cases you can overwrite the default target update mode by adding the TML instruction TUM1 between the motion mode setting and the update commands.

© Technosoft 2006

51

The TUM1 command is particularly useful for open-loop applications, where there is no position/speed feedback. Here using TUM1 the target reference is preserved when motion modes are changed. As in the speed profile or speed contouring modes, the trajectory generator computes the target position by integrating the target speed, it is possible to do on the fly transitions from these modes to position profile or position contouring modes, even in the absence of motor feedback, under TUM1.

© Technosoft 2006

MotionChip II TML Programming

52

2.2 **Program flow control**

In the TML you can control the program flow in 3 ways:

- By setting an event to be monitored and waiting the event occurrence
- Through conditional or unconditional GOTO and CALL instructions
- Through the TML interrupts which can be triggered in certain conditions

2.2.1 Events

You can define an event (a condition) to be monitored and to perform one of the following actions:

- Change the motion mode and/or the motion parameters, when the programmed event occurs
- Stop the motion with one of the 4 possible stop modes, when the programmed event occurs
- Wait for the program event to occur

Remark: Only a single event can be monitored at a time. The programmed event is automatically erased if the event is reached or if a new event is programmed.

There are 18 events, which can be programmed, one at a time, for monitoring. **Table 2.11** presents them.

No.	Mnemonic	Event Description
1	!MC	When the actual motion is completed
2	!APU value32 !APU var32	When the actual (motor) absolute position is equal or under a 32-bit long value or the value of a long variable
3	!APO value32 !APO var32	When the actual (motor) absolute position is equal or over a 32- bit long value or the value of a long variable
4	!RPU value32 !RPU var32	When the actual (motor) relative position is equal or under a 32- bit long value or the value of a long variable
5	!RPO value32 !RPO var32	When the actual (motor) relative position is equal or over a 32- bit long value or the value of a long variable;
6	!SU value32 !SU var32	When the actual (motor) speed is equal or under a 32-bit fixed value or the value of a fixed variable
7	!SO value32 !SO var32	When the actual (motor) speed is equal or over a 32-bit fixed value or the value of a fixed variable
8	!RT value32 !RT var32	After a wait time (measured from the event setting) equal with a 32-bit long value or the value of a long variable. The time unit is the slow-loop sampling period
9	!AT value32 !AT var32	When absolute time is equal with a 32-bit long value or the value of a long variable. The time unit is the slow-loop sampling period
10	!RU value32 !RU var32	When position or speed or torque or voltage target reference is equal or under a 32-bit value or the value of a long/fixed variable
11	!RO value32 !RO var32	When position or speed or torque or voltage target reference is equal or over a 32-bit value or the value of a long/fixed variable
12	!CAP	When the selected capture input is triggered

Table 2.11. Programmable Event Triggers

© Technosoft 2006

53

13	!LSP	When positive limit switch input (LSP) is triggered
14	!LSN	When negative limit switch input (LSN) is triggered
15	!IN#n 0	When digital input #n goes low;
16	!IN#n 1	When digital input #n goes high;
17	!VU var32a, value32 !VU var32a, var32b	When value of the long/fixed variable var32a is equal or under a 32-bit long/fixed value or the value of long/fixed variable var32b
18	!VO var32a, value32 !VO var32a, var32b	When value of the long/fixed variable var32a is equal or over a 32-bit long/fixed value or the value of long/fixed variable var32b

You can combine the events with the motion programming in order to define the moment when a new motion mode and/or motion parameters must be updated (i.e. enabled) as the moment when a programmed event will occur. This involves the following operations:

- Definition of an event
- Programming of a new motion mode and/or new motion parameters
- Setting of an update on event (UPD!) command or one of the stop modes on event: STOP0!, STOP1!, STOP2! Or STOP3!
- Wait for the event to occur (WAIT!)

Remarks:

- After you have programmed a new motion mode and/or new motion parameters with an update on event or a stop on event, it is recommended to introduce a wait until the programmed event occurs. Otherwise, the TML program will continue with the next instructions that may override the event set for monitoring.
- If the TML command WAIT! is executed and the programmed event doesn't occur, the TML program will remain in a loop. In order to get it out of the loop, you can send via a communication channel a GOTO command to a preset location, which will move the program execution outside the wait loop
- The TML command WAIT! is a sequential command. This means that the WAIT! command must be executed only as part of a TML program and not as a command sent on-line via a communication channel. If a host sends a WAIT! command on-line, the wait condition is disregarded

Programming Examples:

1)	<pre>!IN#4 0 CPOS=2000; CPR; MODE PP3 UPD!; WAIT!;</pre>	 // set event when input IO#4 goes low // command position is 2000 // command position is relative // set position profile mode 3 // when the event will occur, execute the move // wait the event to occur
2)	!CAP; STOP3!;	// set event when a capture input is triggered// smooth stop when event occurs

WAIT!; // wait the event to occur

© Technosoft 2006

54

- 3) !RT 100; // set a wait time event of 100 slow-loop periods
 - WATT!;
- // i.e. 100 ms for the default sampling values
- // wait the event to occur

2.2.1.1 When the actual motion is completed

The motion complete condition is set in the following conditions:

- During position profiles execution, when the target position reference (computed by the reference generator, at each step) reaches the commanded position
- During a STOP3 command, when the target speed (computed by the reference • generator) reaches zero

By setting a motion complete event and waiting for its occurrence, you can start the next move after the actual profile generation is completed.

Remark: One way to execute successive position profiles where each move waits the previous one to finish is to start the first move, and then program all the other moves with update on event (UPD!) where the selected event is: when the actual motion is completed.

2.2.1.2 Function of motor position

The monitored events are: when the absolute or the relative actual (motor) position is equal or over/under a 32-bit long value or the value of a long variable. The comparison value is expressed in position units

Remark: The motor relative position is defined as the motor displacement from the beginning of the actual movement. For example if a position profile was started with the absolute motor position 50000 counts, when the absolute motor position reaches 60000 counts, the relative motor position is 10000 counts.

2.2.1.3 Function of motor speed

The monitored events are when the actual (motor) speed is equal or over/under a 32-bit fixed value or the value of a fixed variable. The comparison value is expressed in speed units

2.2.1.4 After a wait time

The monitored event is when a 32-bit relative time counter is equal with a 32-bit long value or the value of a long variable. The comparison value is expressed in time units, i.e. in slow-loop sampling periods. When the wait time event is set, the 32-bit relative time counter is reset and restarts counting from zero.

Remark: After setting a wait time event, in order to effectively execute the time delay, you need to wait for the event to occur, using for example the wait on event command WAIT!

© Technosoft 2006

55

It is also possible to set an event when a 32-bit absolute time counter is equal with a 32-bit long value or the value of a long variable. Like in the relative case, the comparison value is expressed in **time units**

Remark:

- Both the relative and the absolute time counters are started ONLY after the execution of the ENDINIT (end of initialization) command. Therefore you should not set wait events or absolute time events before executing this command
- In the case of an absolute time event, be aware that the 32-bit absolute time counter rolls over when it reaches the maximum value of 2³²-1

2.2.1.5 Function of reference

The monitored event is when TML variable TREF is equal or over/under with a 32-bit value or the value of a 32-bit variable.

The TML variable TREF represents:

- The position reference, when position control is performed
- The speed reference, when speed control is performed
- The current/torque reference, when torque control is performed
- The voltage reference, when voltage control is performed

Depending on the reference type selection, the comparison value is a:

- 32-bit long integer value for position reference, expressed in **position units**
- 32-bit fixed value for speed reference, expressed in speed units
- 32-bit long integer value where the current reference is in the 16MSB part and the 16LSB part is 0, where the 16MSB value is expressed in current units
- 32-bit long integer value where the voltage reference is in the 16MSB part and the 16LSB part is 0, where the 16 MSB value is expressed in **voltage command units**

Remarks:

- Setting an event based on the position or speed reference is particularly useful for open loop operation where motor position and speed is not available
- It is the user responsibility to know in which mode the drive operates when this event is set and to set the comparison value accordingly.

56

2.2.1.6 Function of inputs status

You can define events function of the following inputs status:

- Capture inputs
- Limit switch inputs
- General purpose digital inputs

© Technosoft 2006

Capture inputs

The MotionChip II has two capture inputs: IN#5/Z1/CAPI and IN#34/H2/Z2/2CAPI. These can be programmed to sense either a low to high or high to low transition. Typically, on the IN#5/Z1/CAPI input is connected the motor encoder index and on the IN#34/H2/Z2/2CAPI input is connected the master encoder index (when available)

When the programmed transition occurs on IN#5/Z1/CAPI input, the actual (motor) position is captured and stored in a dedicated variable named CAPPOS. When the programmed transition occurs on IN#34/H2/Z2/2CAPI input, the master position APOS2 is captured and stored in a dedicated variable named CAPPOS2.

When the position sensor is an incremental encoder, the captured position is very accurate as the whole process is done in less than 200 ns.

The master position can be captured only in the following conditions:

- The encoder signals from the master are connected to the 2nd encoder inputs
- The drive is set as slave either in electronic gearing or electronic camming with the option to read the master position from 2nd encoder inputs

In order to set an event on a capture input, you need to:

1) Enable the capture input for the detection of a low->high or a high-> low transition. The TML instructions for enabling the capture inputs are:

• To enable detection of a high to low transition

ENCAPIO; //Activate CAPI input to detect a falling transition EN2CAPIO; //Activate 2CAPI input to detect a falling transition

• To enable detection of a low -> high transition

ENCAPI1; //Activate CAPI input to detect a rising transition EN2CAPI1; //Activate 2CAPI input to detect a rising transition

2) Set a capture event, with the TML instruction: !CAP;

3) Wait for the event to occur, with the TML instruction: WAIT!;

Remarks:

- If both capture inputs are activated in the same time, the capture event is set by the capture input that is triggered first.
- A capture input is automatically disabled, after the programmed transition was detected. In order to reuse a capture input, you need to enable it again.

If you have a capture input enabled, and you want to disable it, before sensing the transition, use the following TML instructions:

DISCAPI; //Deactivate CAPI input. Set CAPI pin as digital input. DIS2CAPI; //Deactivate 2CAPI input. Set 2CAPI pin as digital input.

© Technosoft 2006

57

Limit switch inputs

The MotionChip II has two limits switch inputs: IN#2/LSP and IN#24/LSN, first for the positive direction and the second for negative direction. Their goal is to protect against accidental moves outside the working area. Limit switches working mode is presented in detail par. 2.3.3

Like the capture inputs, the limit switch inputs can be programmed to sense either a low to high or high to low transition. When the programmed transition occurs, the actual (motor) position is captured and stored in the dedicated variable named CAPPOS. The position capture is done with a maximum delay of 5 μ s.

In many applications, in order to determine the working area, the initialization procedure requires to move the motor until one or both limit switches are reached. You can program events on both positive or negative limit switches to detect when then these have been reached.

In order to set an event on a limit switch input, you need to:

1) Enable the limit switch input capability to detect a low->high or a high-> low transition. The TML instructions for enabling transition detection on the limit switch inputs are:

• To enable detection of a high to low transition

ENLSP0;	//Activate LSP input capability to detect a falling transition
ENLSN0;	//Activate LSN input capability to detect a falling transition

• To enable detection of a low -> high transition

ENLSP1;	//Activate LSP input capability to detect a rising transition
ENLSN1;	//Activate LSN input capability to detect a rising transition

2) Set a limit switch event, with the TML instructions:

!LSP;	// set event when transition is detected on positive limit switch
!LSN;	// set event when transition is detected on negative limit switch

3) Wait for the event to occur, with the TML instruction: WAIT!;

Remarks:

- Both limit switch inputs can be set in the same time to detect transitions, as each input has its own event and TML interrupt
- A limit switch input capability to detect transitions is automatically disabled, after the programmed transition was detected. In order to reuse it, you need to enable it again.

If you have a limit switch input enabled to detect transitions, and you want to disable this capability, before sensing the transition, use the following TML instructions:

DISLSP; //Deactivate LSP input capability to detect transitions DISLSN; //Deactivate LSN input capability to detect transitions

Remark: The main task of the limit switches is to protect against accidental moves outside the working area, by blocking moves in the wrong direction. For their main task, the limit switches are active on level, i.e. as long as a limit switch is activated, it will stop any move in the wrong

© Technosoft 2006

58

direction. This task is always performed, independently of the fact if the limit switch is enabled or not to detect transitions.

General purpose digital inputs

You can program an event on any general-purpose digital input. The event can be set when the input goes high (after a low to high transition) or low (after a high to low transition)

In order to set an event when the digital input IN#n goes high, use:

!IN#n 1; //set event when input #n goes high

In order to set an event when the digital input IN#n goes low, use:

!IN#n 0; //set event when input # goes low

where number "n" is the input number.

2.2.1.7 Function of a variable value

You can set an event function of the value of a selected variable. The selected variable for this event can be any 32-bit TML variable. The monitored events are:

• When variable var_name is equal or over a 32-bit value or the value of variable

!VU var_name, value; // set event when var_name is equal or under value
!VU var_name, variable;//set event when var_name is equal or under variable

• When variable var_name is equal or over a 32-bit value or the value of variable

!VO var_name, value; // set event when var_name is equal or over value
!VO var_name, variable;//set event when var_name is equal or over variable

2.2.2 GOTO, CALL

The TML offers the possibility to make unconditional or conditional jumps to a specific label and also unconditional or conditional calls of TML subroutines/functions.

The conditional instructions test the value of a variable for the following conditions: < 0, <= 0, >0, >=0, =0, |= 0. The GOTO or CALL is executed only if the test condition is true.

In all the cases, the jump location is defined via a label. A label can be any user-defined string of up to 32 characters, which starts from the first column of a text line and ends with a colon (:). A label contains the TML program address of the next TML instruction. In the case of the CALL instructions, the label name represents the TML subroutine called. This is because, in TML a subroutine or function is defined as follows:

TML_subroutine_name: // Label with subroutine name. This is the subroutine start point

... // TML instructions. The subroutine body

RET; // Return from subroutine. Subroutine exit point

© Technosoft 2006

59

Programming Examples

```
GOTO label1, var1, LT; // jump to label1 if var1 < 0
GOTO label2, var1, LEQ; // jump to label2 if var1 <= 0
GOTO label3, var1, GT; // jump to label3 if var1 > 0
GOTO label4; // unconditional jump to label4
CALL fct1, var2, GEQ; // call function fct1, if var2 >= 0
CALL fct1, var2, NEQ; // call function fct1, if var2 != 0
CALL fct1; // unconditional call of function fct1
fct1:
...
```

```
RET;
```

Remarks:

- All labels mentioned in the GOTO or CALL instructions must exist i.e. must be defined somewhere in the TML program
- The variable tested in the conditional GOTO and CALL can be of any type, 16 or 32-bit
- When you call a TML subroutine, the return address pointed by the IP (instruction pointer) is saved into the TML stack. When RET is executed, the IP is set with the last value from the TML stack, hence the TML program execution continues with the next instruction after the CALL. The TML stack dimension is 12 words. Each CALL and TML interrupt uses one word of the TML stack.
- The body of the TML subroutines, must be placed outside the main TML program i.e. after the END instruction (see Figure 1.1)

2.2.3 Interrupts

The TML interrupts offer the possibility of selecting up to 12 interrupt conditions that can be monitored in the same time. Unlike the events, where the programmed event is expected to occur and is waited for, the TML interrupts' main goal is to provide a way of reacting to unexpected events as are most of the conditions in **Table 2.12**

The TML interrupt mechanism is the following:

- Conditions that may generate TML interrupts are continuously monitored
- When an interrupt condition occurs, a flag (bit) is set in the Interrupt status register (ISR)
- If the interrupt condition is enabled i.e. the same bit (as position) is set in the Interrupt control register (ICR) and also if the interrupts are globally enabled (EINT instruction was executed), the interrupt condition is qualified and it generates an interrupt
- The interrupt causes a jump to the associated interrupt service routine. On entry in this routine, the TML interrupts are globally disabled (DINT) and the interrupt flag is reset
- The interrupt service routine ends with the TML instruction RETI, which returns to normal program execution and in the same time globally enables the TML interrupts (EINT)

The interrupt service routines (ISR) of the TML interrupts are similar with the TML subroutines: the starting point is a label and the ending point is the TML instruction RETI (return from interrupt). The use of the TML interrupts requires defining an interrupt table. This starts with a

```
© Technosoft 2006
```

60

label whose value must be assigned in the dedicated TML variable INITABLE, and then is followed by the values of the labels (i.e. the starting points) of all the ISR. Like the TML functions, the TML interrupt service routines must be positioned after the end of the main program (see the programming example below).

TML Interrupt No.	Condition Description
0	When ENABLE input changes. Both transitions are monitored
1	When power-stage hardware protection is triggered
2	When at least one software-monitored protection: over-current, l^2t , over temperature motor, over temperature drive, over-voltage or under-voltage is triggered
3	When control error protection is triggered i.e. the difference between the target reference and actual feedback value goes over a programmed limit
4	When a communication error occurs
5	When 32-bit actual (motor) position wraps-around
6	When positive limit switch input (LSP) has detected a programmed transition
7	When negative limit switch input (LSN) has detected a programmed transition
8	When a capture input (CAPI or 2CAPI) has detected a programmed transition
9	When motion is completed
10	When a new contour segment can be provided
11	When a programmed event has occurred

 Table 2.12. TML Interrupt Conditions

Remarks:

- 1. By default, during the execution of the ISR, the TML interrupts are disabled. If you want to enable in this period some of the TML interrupts, set accordingly the interrupt mask in the ICR register and insert the EINT instruction that enables globally the interrupts
- 2. The interrupt conditions set the flags in the ISR register independently of the fact that the interrupts are disabled or enabled. If an interrupt flag is set while the interrupt is disabled, the flag remains set. If later on, the interrupt is enabled, due to the flag set by a previous condition, a TML interrupt is generated. In order to avoid this situation, before enabling an interrupt, it is recommended to reset the corresponding interrupt flag.
- 3. Use only the TML instruction *SRB* to set/reset bits in the interrupt control (ICR) and the interrupt status (ISR) registers. TML command *SRB* provides a safe mechanism which avoids errors when data of these registers is simultaneously modified by the user and internally due to a change in a monitored condition

Related TML Parameters

INITABLE Must be initialized with the start address of the interrupt table

Related TML Instructions

EINT DINT	Globally enables the TML interrupts. Sets ICR.15 = 1 Globally disables the TML interrupts. Sets ICR.15 = 0
SRB ICR, ANDm, OR	m Individually enable/disable TML interrupts, by setting/resetting bits from ICR register according with AND mask ANDm and OR mask ORm
SRB ISR, ANDm, 0;	Reset interrupt flags in the ISR register according with AND mask ANDm

© Technosoft 2006

61

RETI Return from a TML interrupt service routine

Programming Example

// TML program start BEGIN; . . . // set interrupt table start address INTTABLE = InterruptTable; SRB ICR, 4095, 4; // unmask INT2 Software Protection . . . ENDINIT; // end of initialization . . . EINT; // globally enable the TML interrupts . . . // end of the main section END; // start of the interrupt table InterruptTable: @Int0_Axis_disable_ISR; @Int1_PDPINT_ISR; @Int2_Software_Protection_ISR; @Int3_Control_Error_ISR; @Int4_Communication_Error_ISR; @Int5_Wrap_Around_ISR; @Int6_Limit_Switch_Positive_ISR; @Int7_Limit_Switch_Negative_ISR; @Int8_Capture_ISR; @Int9_Motion_Complete_ISR; @Int10_Update_Contour_Segment_ISR; @Int11_Event_Reach_ISR; IntO Axis disable ISR: // Int0 Axis disable ISR body . . . RETI; // RETurn from TML ISR . . . Int2_Software_Protection_ISR;: // Int11 Event Reach ISR body // set axis OFF if a protection is triggered AXISOFF; // RETurn from TML ISR RETI; . . . // Int11 Event Reach ISR body Int11_Event_Reach_ISR: . . . // RETurn from TML ISR RETI;

62

© Technosoft 2006

2.3 I/O Programming

2.3.1 General I/O

The MotionChip II has a total of 40 pins that can be set as I/O lines. These pins are numbered from #0 to #39. All of them share the I/O function with an alternate function like: PWM output command, receive and transmit for serial and CAN-bus communication, encoder inputs, etc. Most of the 40 pins are set by default for the alternate functions and cannot be used as general-purpose I/O. Some of the remaining I/O lines are used for special functions like the Enable input and the Ready or Error output. Finally only 8 I/O lines remain available and may be used as general-purpose I/O. By default 4 are set as general-purpose inputs and the other 4 as general-purpose outputs.

The 4 general-purpose inputs are: #36, #37, #38 and #39. You can read their status with the TML command:

user_var = IN#n; // read input #n in the user variable user_var

where user_var is a 16-bit integer user defined variable and n is the input number: 36 to 39. If the input is low (0 logic), user_var is set to 0, else user_var is set to a non-zero value.

Programming Example

user_var = IN#36;	// read input #36 in user_var
GOTO label1, user_var, NEQ;	<pre>// go to label1 if input #36 is high (1 logic)</pre>
user_var = IN#39;	// read input #39 in user_var
GOTO label2, user_var, EQ;	// go to label2 if input #39 is low (0 logic)

The 4 general-purpose outputs are: #28, #29, #30, #31. You can set them high (1 logic) or low (0 logic) with the following commands:

ROUT#n;	<pre>// Set low the output line #n</pre>
SOUT#n;	// Set high the output line #n

where n is the output number: 28-31.

You can also read simultaneously the 4 general-purpose inputs and set simultaneously the 4 general-purpose outputs, with the TML instructions:

user_var = INPORT, 0xF;	// user_var (bits 3-0) = status of IN#39, 38, 37, 36
OUTPORT user_var;	// OUT#28,29,30,31 = user_var (bits 3-0)

In the first TML instruction, the status of the 4 inputs is saved in the 4LSB of the 16-bit user variable, while the 12MSB are set to 0. If an input line is low, the corresponding bit in the user variable is zero. If an input line is high, the corresponding bit in the user variable is one. The correspondence with the input lines is the following:

IN#36 -> bit 0, IN#37 -> bit 1, IN#38 -> bit 2, IN#39 -> bit 3 of the user variable

In the second TML instruction, you can set the 4 outputs according with the 4LSB from the user variable. The 12MSB of the user variable must be set to zero. If a bit in the user variable is zero, the corresponding output line is set low. If a bit in the user variable is one, the corresponding output line is set high. The correspondence with the output lines is the following:

© Technosoft 2006

63

User variable Bit 0 -> OUT#28, bit 1 -> OUT#29, bit 2 -> OUT#30, bit 3 -> OUT#31

Remark: When reading inputs or setting outputs keep in mind that the I/O status refers to the MotionChip II pin. If your drive has either the inputs or outputs inverted, you must reverse the logic levels presented above. For example, if the general-purpose outputs are inverted, the OUTPORT command with the 4LSB bits at zero, sets the 4 output lines high. The command SOUT#n will set low the output line #n and the command ROUT#n, will set the same output high.

If you application require more inputs or more outputs you have the possibility to change some of the general-purpose outputs into inputs and vice versa, using the following commands:

SETIO#n	OUT;	//Set the I/O line #n as an input
SETIO#n	IN;	//Set the I/O line #n as an output

where n is the I/O number.

Remark: An I/O line status change must be done only after carefully checking if your drive was designed to support it.

You can further extend the number of I/O in some special situations, by enabling the I/O function for some pins set by default with the alternate function. For example if your drive was designed to control only DC motors and uses just 4 PWM output commands, the remaining PWM output commands may be transformed into general-purpose I/O. This can be done with the command:

ENIO#n; // Enable the use of pin #n as an I/O line

The reverse is also possible i.e. to disable the I/O function and activate the alternate function

DISIO#n; // Disable the use of pin #n as an I/O line

Remark: Enabling or disabling I/O lines must be done only after carefully checking if your drive was designed to support it

2.3.2 Captures

The MotionChip II has two capture inputs: IN#5/Z1/CAPI and IN#34/H2/Z2/2CAPI. These can be programmed to sense either a low to high or high to low transition. Typically, on the IN#5/Z1/CAPI input is connected the motor encoder index and on the IN#34/H2/Z2/2CAPI input is connected the master encoder index (when available)

When the programmed transition occurs on IN#5/Z1/CAPI input, the actual (motor) position is captured and stored in a dedicated variable named CAPPOS. When the programmed transition occurs on IN#34/H2/Z2/2CAPI input, the master position APOS2 is captured and stored in a dedicated variable named CAPPOS2.

When the position sensor is an incremental encoder, the captured position is very accurate as the whole process is done in less than 200 ns.

The master position can be captured only in the following conditions:

- The encoder signals from the master are connected to the 2nd encoder inputs
- The drive is set as slave either in electronic gearing or electronic camming with the option to read the master position from 2nd encoder inputs

You can set either an event or a TML interrupt on a capture input. In both cases you need to:

© Technosoft 2006

64

- 1) Enable the capture input for the detection of a low->high or a high-> low transition. The TML instructions for enabling the capture inputs are:
 - To enable detection of a high to low transition

ENCAPIO; //Activate CAPI input to detect a falling transition EN2CAPIO; //Activate 2CAPI input to detect a falling transition

• To enable detection of a low -> high transition

ENCAPI1; //Activate CAPI input to detect a rising transition

EN2CAPI1; //Activate 2CAPI input to detect a rising transition

- 2) Set:
 - A capture event with !CAP, then wait until the event occurs with WAIT!;, or
 - Enable the TML capture interrupt with SRB ICR 0xFFFF, 0x100; which sets ICR.8 =1.

Remarks:

- If both capture inputs are activated in the same time, the capture event and the TML capture interrupt flag is set by the capture input that is triggered first.
- A capture input is automatically disabled, after the programmed transition was detected. In order to reuse a capture input, you need to enable it again.

If you have a capture input enabled, and you want to disable it, before sensing the transition, use the following TML instructions:

DISCAPI; //Deactivate CAPI input. Set CAPI pin as digital input. DIS2CAPI; //Deactivate 2CAPI input. Set 2CAPI pin as digital input.

2.3.3 Limit switches

The MotionChip II has two limits switch inputs: IN#2/LSP and IN#24/LSN, first for the positive direction and the second for negative direction. Their goal is to protect against accidental moves outside the working area.

The limit switch inputs are active on level, more exactly when the input level is high. When a limit switch input is active, it stops the motor when it attempts to move towards the protected direction but allows the motor to move in the opposite direction. Therefore, with the positive limit switch active, movement is possible only in the negative direction; with the negative limit switch active, movement is possible only in the positive direction.

Like the capture inputs, the limit switch inputs can be programmed to sense either a low to high or high to low transition. When the programmed transition occurs, the actual (motor) position is captured and stored in the dedicated variable named CAPPOS. The position capture is done with a maximum delay of 5 μ s.

In many applications, in order to determine the working area, the initialization procedure requires to move the motor until one or both limit switches are reached. You can set for each limit switch input, either an event or a TML interrupt to detect when it has been reached.

In order to set an event or a TML interrupt on a limit switch input, you need to:

© Technosoft 2006

65

1) Enable the limit switch input capability to detect a low->high or a high-> low transition. The TML instructions for enabling transition detection on the limit switch inputs are:

• To enable detection of a high to low transition

ENLSP0;	//Activate LSP input capability to detect a falling transition
ENLSN0;	//Activate LSN input capability yo detect a falling transition

• To enable detection of a low -> high transition

ENLSP1;	//Activate LSP input capability to detect a rising transition
ENLSN1;	//Activate LSN input capability to detect a rising transition

2) Set

- A limit switch event, with the TML instructions: !LSP or !LSN, then wait until the event occurs with WAIT!;, or
- Enable LSP or LSN TML interrupt with SRB ICR 0xFFFF, 0x40; which sets ICR.6 =1 or with SRB ICR 0xFFFF, 0x80; which sets ICR.7 =1

Remarks:

- Both limit switch inputs can be set in the same time to detect transitions, as each input has its own event and TML interrupt
- A limit switch input capability to detect transitions is automatically disabled, after the programmed transition was detected. In order to reuse it, you need to enable it again.

If you have a limit switch input enabled to detect transitions, and you want to disable this capability, before sensing the transition, use the following TML instructions:

DISLSP;	//Deactivate LSP input capability to detect transitions
DISLSN;	//Deactivate LSN input capability to detect transitions

Remarks:

- The main task of the limit switches i.e. to protect against accidental moves outside the working area is performed, independently of the fact if the limit switches are enabled or not to detect transitions
- You can disable the limit switches by executing the following TML code, once at the beginning of the TML program:

user_var = 0x0832;	// Set variable user_var with value 0x0832
(user_var),dm = 1;	// Write 1 at data memory address 0x0832

Following this command, the active levels on limit switch inputs will no longer block the movement in the wrong direction. The capability to detect transitions remains unchanged

• You can read the status of the limit switches inputs like any other general purpose inputs using the TML instructions:

<pre>var = IN#2;</pre>	// read status of the positive limit switch input
var = $IN#24;$	// read status of the negative limit switch input

© Technosoft 2006

66

2.4 Assignment & Data Transfer

2.4.1 Setup 16-bit variable

The TML instructions presented in this paragraph help you to program assignment operations involving the transfer of a 16-bit value from a source to a 16-bit destination.

The source can be:

- A 16-bit immediate value
- A 16-bit TML data: TML register, parameter, variable or user variable (direct or negate)
- The high or low part of a 32-bit TML data: TML parameter, variable or user variable

• A memory location indicated through a pointer variable

The destination can be:

- A 16-bit TML data: TML register, TML parameter or user variable
- A memory location indicated through a pointer variable

Programming Examples

1) Source: 16-bit immediate value, Destination: 16-bit TML data. The immediate value can be decimal or hexadecimal

user_var = 100;	<pre>// set user variable user_var with value 100</pre>
user_var = 0x100;	// set user variable user var with value 0x100 (256)

2) Source: 16-bit TML data, Destination: 16-bit TML data.

var_dest = var_source; // copy value of var_source in var_dest var_dest = -var_source;// copy negate value of var source in var dest

3) Source: high or low part of a 32-bit TML data, Destination: 16-bit TML data. The 32-bit TML data can be either long or fixed

<pre>int_var = long_var(L);</pre>	// copy low part of long_var in int_var
int_var = fixed_var(H);	// copy high part of fixed_var in int_var

4) Source: a memory location indicated through a pointer variable, Destination: 16-bit TML data. The memory location can be of 3 types: SRAM data memory (dm), SRAM memory for TML programs (pm), EEPROM SPI-connected memory for TML programs (spi). If the pointer variable is followed by a + sign, after the assignment, the pointer variable is incremented by 1

© Technosoft 2006

67

Remark: Check the memory map (par. 1.8) for the valid address ranges of the 3 memory types: EEPROM memory for TML programs, SRAM memory for TML programs, SRAM data memory.

5) Source: 16-bit immediate value (decimal or hexadecimal) or 16-bit TML data. Destination: a memory location indicated through a pointer variable. The memory location can be of 3 types: SRAM data memory (dm), SRAM memory for TML programs (pm), EEPROM SPI-connected memory for TML programs (spi). If the pointer variable is followed by a + sign, after the assignment, the pointer variable is incremented by 1

$p_var = 0x4500;$	<pre>// set 0x4500 in pointer variable p_var</pre>
(p_var),spi = -5;	<pre>// write value –5 in the EEPROM memory location 0x4500</pre>
(p_var+),spi = var1;	// write var1 value in the EEPROM memory location 0x4500
	// p_var = 0x4501
p_var = 0x8200; /	/ set 0x8200 in pointer variable p_var
$(p_var), pm = 0x10;$	// write value 0x10 in SRAM program memory location 0x8200
(p_var+),pm = var1;	// write var1 value in SRAM program memory location 0x8200
	/ p_var = 0x8201
$p_var = 0xA00;$	<pre>// set 0xA00 in pointer variable p_var</pre>
(p_var),dm = 50;	// write value 50 in the SRAM data memory location 0xA00
(p_var+),dm = var1;	// write var1 value in the SRAM data memory location 0xA00
	// p_var = 0xA01

Remark: When the source is either an immediate value or another TML data and the destination is a TML data, the destination address must be between 0x200 and 0x3FF. This happens for most of the TML data, including all the user-defined variables, which take addresses between 0x3B0 to 0x3FF. There are however a limited number of TML parameters and variables having an **extended address** situated between 0x800 and 0x9FF. For these TML data, you should use either indirect addressing via a pointer variable, or the following commands that support extended addressing:

int_var,dm = 100; // write 100 in int_var using extended addressing int_var,dm = 0x100; // with 0x100(256) in int_var using extended addressing var_dest,dm = var_source; // copy value of var_source in var_dest using

// extended addressing

2.4.2 Setup 32-bit variable

The TML instructions presented in this paragraph help you to program assignment operations involving the transfer of a 16 or 32-bit value from a source to a 32-bit destination.

The source can be:

• A 32-bit immediate value

© Technosoft 2006

68

- A 32-bit TML data: TML parameter, variable or user variable (direct or negate)
- A 16-bit immediate value or a 16-bit TML data: TML register, parameter, variable or user variable to be set in the high or low part of the destination: a 32-bit TML data
- A 16-bit TML data: TML register, parameter, variable or user variable left shifted by 0 to 16

• A memory location indicated through a pointer variable The destination can be:

- A 32-bit TML data: TML parameter or user variable
- A memory location indicated through a pointer variable

Programming Examples

1) Source: 32-bit immediate value, Destination: 32-bit TML data. The immediate value can be decimal or hexadecimal. The destination can be either a long or a fixed variable

```
long_var = 100000; // set user variable long_var with value 100000
long_var = 0x100000; // set user variable long_var with value 0x100000
fixed_var = 1.5; // set user variable fixed_var with value 1.5 (0x18000)
fixed_var = 0x14000; // set user variable fixed_var with value 1.25 (0x14000)
```

2) Source: 32-bit TML data, Destination: 32-bit TML data.

var_dest = var_source; // copy value of var_source in var_dest var_dest = -var_source;// copy negate value of var_source in var_dest

Remark: source and destination must be of the same type i.e. both long or both fixed

3) Source: 16-bit immediate value (decimal or hexadecimal) or 16-bit TML data, Destination: high or low part of a 32-bit TML data. The 32-bit TML data can be either long or fixed

$long_var(L) = -1;$	<pre>// write value –1 (0xFFFF) into low part of long_var</pre>
$fixed_var(H) = 0x2000;$	<pre>// write value 0x2000 into high part of fixed_var</pre>
long_var(L) = int_var;	<pre>// copy int_var into low part of long_var</pre>
fixed_var(H) = int_var;	<pre>// copy int_var into high part of fixed_var</pre>

4) Source: 16-bit TML data left shifted 0 to 16. Destination: 32-bit TML data. The 32-bit TML data can be either long or fixed

long_var = int_var << 0; // copy int_var left shifted by 0 into long_var fixed_var(H) = int_var << 16;// copy int_var left shifted by 16 fixed_var</pre>

Remarks:

- The left shift operation is done with sign extension. If you intend to copy the value of an integer TML data into a long TML data preserving the sign use this operation with left shift 0
- If you intend to copy the value of a 16-bit unsigned data into a 32-bit long variable, assign the 16-bit data in low part of the long variable and set the high part with zero.

Examples:

```
var = 0xFFFF; // As integer, var = 1, as unsigned integer var = 65535
lvar = var << 0; // lvar = -1 (0xFFFFFFF), the 16MSB of lvar are all set to 1 the</pre>
```

© Technosoft 2006

69

// sign bit of var lvar(L) = var; // lvar(L) = 0xFFFF lvar(H) = 0; // lvar(H) = 0. lvar = 65535 (0x0000FFFF)

5) Source: a memory location indicated through a pointer variable, Destination: 32-bit TML data. The memory location can be of 3 types: SRAM data memory (dm), SRAM memory for TML programs (pm), EEPROM SPI-connected memory for TML programs (spi). If the pointer variable is followed by a + sign, after the assignment, the pointer variable is incremented by 2. The destination can be either a long or a fixed TML data

Remark: Check the memory map (par. 1.8) for the valid address ranges of the 3 memory types: EEPROM memory for TML programs, SRAM memory for TML programs, SRAM data memory.

6) Source: 32-bit immediate value (decimal or hexadecimal) or a 32-bit TML data. Destination: a memory location indicated through a pointer variable. The memory location can be of 3 types: SRAM data memory (dm), SRAM memory for TML programs (pm), EEPROM SPI-connected memory for TML programs (spi). If the pointer variable is followed by a + sign, after the assignment, the pointer variable is incremented by 2

```
// set 0x4500 in pointer variable p var
p_var = 0x4500;
(p_var), spi = 200000; // write 200000 in the EEPROM memory location 0x4500
(p_var+), spi = var1; // write var1 value in the EEPROM memory location 0x4500
                         // p var = 0x4502
                       // set 0x8200 in pointer variable p var
p var = 0x8200;
                       // write value 3.5 in SRAM program memory location 0x8200
(p var), pm = 3.5;
(p_var+), pm = var1; // write var1 value in SRAM program memory location 0x8200
                       // p var = 0x8202
p_var = 0xA00;
                        // set 0xA00 in pointer variable p var
                        // write -1 (0xFFFFFFF) in the SRAM data memory 0xA00
(p_var), dm = -1L;
(p_var+), dm = var1; // write var1 value in the SRAM data memory location 0xA00
                        // p_var = 0xA02
```

When this operation is performed having as source an immediate value, the TML compiler checks the type and the dimension of the immediate value and based on this generates the binary code for a 16-bit or a 32-bit data transfer. Therefore if the immediate value has a decimal point, it is

© Technosoft 2006

70

automatically considered as a fixed value. If the immediate value is outside the 16-bit integer range (-32768 to +32767), it is automatically considered as a long value. However, if the immediate value is inside the integer range, in order to execute a 32-bit data transfer it is necessary to add the suffix L after the value, for example: 200L or -1L.

Examples:

Remark: When the source is either an immediate value or another TML data and the destination is a TML data, the destination address must be between 0x200 and 0x3FF. This happens for most of the TML data, including all the user-defined variables, which take addresses between 0x3B0 to 0x3FF. There are however a limited number of TML parameters and variables having an **extended address** situated between 0x800 and 0x9FF. For these TML data, you should use either indirect addressing via a pointer variable, or the following commands that support extended addressing:

71

© Technosoft 2006

2.5 Arithmetic & Logic Operations

The TML offers the possibility to perform the following operations with the TML data:

- Addition
- Subtraction
- Multiplication
- Left and right shift
- Logic AND and OR

In all the cases, except the multiplication, the result of the operation is saved into the left side operand. For the multiplication, the result is saved in a dedicated 48-bit register named PROD.

For all the operations, except the logic AND and OR, the left side operand can be any 16 or 32-bit TML data. The logic AND and OR are performed only with 16-bit data.

Addition: The right-side operand is added to the left-side operand

The left side operand can be:

- A 16-bit TML data: TML parameter or user variable
- A 32-bit TML data: TML parameter or user variable

The right side operand can be:

- A 16-bit immediate value
- A 16-bit TML data: TML parameter, variable or user variable
- A 32-bit immediate value, if the left side operand is a 32-bit TML data
- A 32-bit TML data: TML parameter, variable or user variable, if the left side operand is a 32-bit data too

Programming Examples

```
int_var += 10;  // int_var1 = int_var1 + 10
int_var += int_var2;  // int_var = int_var + int_var2
long_var += -100;  // long_var = long_var + (-100) = long_var - 100
long_var += long_var2; // long_var = long_var + long_var2
fixed_var += 10.;  // fixed_var = fixed_var + 10.0
fixed_var += fixed_var2; // fixed_var = fixed_var + fixed_var2
```

Subtraction: The right-side operand is subtracted from the left-side operand

The left side operand can be:

- A 16-bit TML data: TML parameter or user variable
- A 32-bit TML data: TML parameter or user variable

The right side operand can be:

- A 16-bit immediate value
- A 16-bit TML data: TML parameter, variable or user variable
- A 32-bit immediate value, if the left side operand is a 32-bit TML data

© Technosoft 2006

72

• A 32-bit TML data: TML parameter, variable or user variable, if the left side operand is a 32-bit data too

Programming Examples

```
int_var -= 10;  // int_var1 = int_var1 - 10
int_var -= int_var2;  // int_var = int_var - int_var2
long_var -= -100;  // long_var = long_var - (-100) = long_var + 100
long_var -= long_var2; // long_var = long_var - long_var2
fixed_var -= 10.;  // fixed_var = fixed_var - 10.0
fixed_var -= fixed_var2; // fixed_var = fixed_var - fixed_var2
```

Multiplication: The 2 operands are multiplied and the result is saved in a dedicated 48-bit register named PROD. The result of the multiplication can be left or right-shifted with 0 to 15 bits, before being stored in the PROD register. At right shifts, high order bits are sign-extended and the low order bits are lost. At left shifts, high order bits are lost and the low order bits are zeroed. The result is preserved in the PROD register until the next multiplication.

The first (left) operand can be:

- A 16-bit TML data: TML parameter, variable or user variable
- A 32-bit TML data: TML parameter, variable or user variable

The second (right) operand can be:

- A 16-bit immediate value
- A 16-bit TML data: TML parameter, variable or user variable

Programming Examples

```
long_var * -200 << 0; // PROD = long_var * (-200)
fixed_var * 10 << 5; // PROD = fixed_var * 10 * 2<sup>5</sup> i.e. fixed_var *320
int_var1 * int_var2 >> 1; // PROD = (int_var1 * int_var2) / 2
long_var * int_var >> 2; // PROD = (long_var * int_var) / 4
long_var = PROD; // save 32LSB of PROD in long_var
long_var = PROD(H); // save 32MSB of PROD in long_var i.e. bits 47-15
```

Left and right shift: The operand is left or right shifted with 0 to 15. The result is saved in the same operand. At right shifts, high order bits are sign-extended and the low order bits are lost. At left shifts, high order bits are lost and the low order bits are zeroed.

The right shift is performed with sign-extension.

The operand can be:

- A 16-bit TML data: TML parameter, variable or user variable
- A 32-bit TML data: TML parameter, variable or user variable
- The 48-bit PROD register with the result of the last multiplication

© Technosoft 2006

73

Programming Examples

```
long_var << 3; // long_var = long_var * 8
int_var = -16; // int_var = -16 (0xFFF0)
int_var >> 3; // int_var = int_var / 8 = -2 (0xFFFE)
PROD << 1; // PROD = PROD * 2</pre>
```

Logic AND and OR: A logic AND is performed between the operand and a 16-bit data (the AND mask), followed by a logic OR between the result and another 16-bit data (the OR mask).

The operand is a 16-bit TML data: TML register, TML parameter or user variable

The AND and OR masks are 16-bit immediate values, decimal or hexadecimal.

Programming Examples

The SRB instruction modifies the TML data in specific conditions that avoid the interference with changes done in parallel by the MotionChip II firmware. This is particularly useful for the TML registers, which have bits that can be manipulated both at firmware level and at TML level by the user. A typical example is the interrupt flag register (IFR) where the interrupt flags set and reset by both the firmware and the user. The SRB instruction allows you to set/reset bits in a "safe" way without the risk of altering the settings done in parallel by the firmware.

Remark: In the SRB instruction, the address of the operand must be between 0x200 and 0x3FF. This happens for most of the TML data, including all the user-defined variables, which take addresses between 0x3B0 to 0x3FF. There are however a limited number of TML parameters and variables having an **extended address** situated between 0x800 and 0x9FF. For these TML data, you should use the **SRBL** instruction, for setting and resetting bits:

74

© Technosoft 2006

2.6 Multi-axis control

This group of instructions includes:

- Data transfer operations between drives connected in a network
- Remote control commands through which a drive which acts like a host, effectively controls one or more drives operation

2.6.1 Axis ID. Group ID

In multiple-axis configurations, each axis (drive) needs to be identified through a unique number – the **axis ID**. This is a number between 1 and 255. The axis ID is initially set at power on by reading the MotionChip II analogue input lines ADCIN10 to ADCIN14, as follows:

- Axis ID = 255 if all the analogue inputs ADCIN10 to ADCIN14 are high;
- Axis ID = 1 to 31, if at least one of the ADCIN10 to ADCIN14 inputs is low. The axis ID value depends on the analogue inputs combination (see **Table 3.1**)

Later on, you can change the axis ID to any of the 255 possible values, using the TML instruction AXISID, followed by an integer value between 1 and 255.

Apart from the Axis ID, each drive has also a **group ID**. The group ID represents a way to identify a group of drives, for a multicast transmission. Each drive can be programmed to be member of one or several of the 8 possible groups. When a TML command is sent to a group, all the axes members of this group, will receive the command. For example, if the drive is member of group 1 and group 3, he will receive all the messages that in the group ID include group 1 and group 3. This feature allows a host to send a command simultaneously to several axes, for example to start or stop the axes motion in the same time.

The group ID is like the axis ID an 8-bit value. A TML command can be sent to 8 different groups. Each group is defined as having one of the 8 bits of the group ID value set to 1 (see **Table 3.2**)

The group ID of an axis can have any value between 0 and 255. If for example the group ID is 11 (1011b) this means that the axis will receive all messages sent to groups 1, 2 and 4. You can set a drive to be member of one group using the TML instruction GROUPID, followed by an integer value between 1 and 8. You can add/remove an axis to group using the TML instructions ADDGRID / REMGRID followed by an integer value between 1 and 8.

Remark: By default all the drives are set as members of group 1.

2.6.2 Data transfers between axes

There are 2 categories of data transfer operations between axes:

- 1. Read data from a remote axis. A variable or a memory location from the remote axis is saved into a local variable
- 2. Write data to a remote axis. A variable or a memory location of a remote axis or group of axes is written with the value of a local variable

In a read data from a remote axis operation:

© Technosoft 2006

75

- The source is placed on a remote axis and can be:
 - A 16-bit TML data: TML register, parameter, variable or user variable
 - A memory location indicated through a pointer variable
- The destination is placed on the local axis and can be:
 - A 16-bit TML data: TML register, parameter or user variable

Programming Examples

1) Source: remote 16-bit TML data, Destination: local 16-bit TML data.

local_var = [2]remote_var; // set local_var with value of remote_var from axis 2

Remark: If remote_var is a user variable, it has to be declared in the local axis too. Moreover, for correct operation, remote_var must have the same address in both axes, which means that it must be declared on each axis on the same position. Typically, when working with data transfers between axes, it is advisable to establish a block of user variables that may be the source, destination or pointer of data transfers, and to declare these data on all the axes as the first user variables. This way you can be sure that these variables have the same address on all the axes.

2) Source: remote memory location pointed by a remote pointer variable, Destination: 16-bit TML data. The remote memory location can be of 3 types: SRAM data memory (dm), SRAM memory for TML programs (pm), EEPROM SPI-connected memory for TML programs (spi). If the pointer variable is followed by a + sign, after the assignment, the pointer variable is incremented by 1 if the destination is a 16-bit integer or by 2 if the destination is a 32-bit long or fixed

<pre>local_var = [2](p_var),spi;</pre>	<pre>// local_var = value of EEPROM program memory</pre>
	// location from axis 2, pointed by p_var from axis 2
long_var = [3](p_var+),dm;	<pre>// local long_var = value of SRAM data memory</pre>
	// locations from axis 3, pointed by p_var from axis
3	
	// p_var is incremented by 2
int_var = [4](p_var+),pm;	// local int var = value of SRAM program memory
	// location from axis 4, pointed by p var from axis 4;
	// p var is incremented by 1

Remark: When the remote source is a TML data, its address must be between 0x200 and 0x3FF. This happens for most of the TML data, including all the user-defined variables, which take addresses between 0x3B0 to 0x3FF. There are however a limited number of TML parameters and variables having an **extended address** situated between 0x800 and 0x9FF. For these TML data, you should use either indirect addressing via a pointer variable, or the following command that supports extended addressing:

local_var = [2]remote_var,dm;

// set local_var with value of remote_var
// from axis 2 using extended addressing

In a write data to a remote axis or group of axes operation:

- The source is placed on the local drive and can be:
 - A 16-bit TML data: TML register, parameter, variable or user variable

```
© Technosoft 2006
```

76

- The destination is placed on the remote axis or group of axes and can be:
 - A 16-bit TML data: TML register, parameter or user variable
 - A memory location indicated through a pointer variable

Programming Examples

1) Source: local 16-bit TML data, Destination: remote 16-bit TML data.

```
[2]remote_var = local_var; // set remote_var from axis 2 with local_var value
[G2]remote_var = local_var; // set remote_var from group 2 with local_var value
```

2) Source: 16-bit TML data, Destination: remote memory location pointed by a remote pointer variable. The remote memory location can be of 3 types: SRAM data memory (dm), SRAM memory for TML programs (pm), EEPROM SPI-connected memory for TML programs (spi). If the pointer variable is followed by a + sign, after the assignment, the pointer variable is incremented by 1 if the source is a 16-bit integer or by 2 if the source is a 32-bit long or fixed

[2](p_var),spi = local_var;	// set local_var value in EEPROM program memory
	// location from axis 2, pointed by p_var from axis 2
[G3](p_var+),dm = long_var;	// set local long_var value in SRAM data memory
	// location from group 3 of axes, each location being
	// pointed its own p_var, which is incremented by 2
[4](p_var+),pm = int_var;	// set local int_var value in SRAM program memory
	// location from axis 4, pointed by p var from axis 4;
	// p_var is incremented by 1

Remark: When the remote destination is a TML data, its address must be between 0x200 and 0x3FF. This happens for most of the TML data, including all the user-defined variables, which take addresses between 0x3B0 to 0x3FF. There are however a limited number of TML parameters and variables having an **extended address** situated between 0x800 and 0x9FF. For these TML data, you should use either indirect addressing via a pointer variable, or the following command that supports extended addressing:

2.6.3 Remote control

The TML includes 2 powerful instructions through which you can program a drive to issue TML commands to another drive or group of drives. You can include these instructions in the TML program of a drive, which can act like a host and can effectively control the operation of the other drives from the network. These TML instructions are:

```
[axis]{TML command;};
[group]{TML command;};
```

where TML command can be any single axis TML instructions whose instruction code can be represented in maximum 4 words (1 operation code + 3 data words). A single axis TML instruction is defined as an instruction which does not transfer data or send TML commands to other axes i.e. it is not one of the TML instructions presented in this paragraph.

© Technosoft 2006

77

Remark: Most of the TML instructions, enter in the category of those that can be sent to another axis or group of axes.

Programming Examples

2.7	Miscellaneous commands
[5]{STOP3;};	<pre>// all axes from group 1 will start to move simultaneously // send an STOP3 command to axis 5</pre>
[G1]{CPOS=2000;}; [G1]{UPD};	<pre>// send a new CPOS command to all axes from group 1 // send an UPDate command to all the axes from group 1</pre>

In this category enter the following TML instructions:

NOP;// No operationBEGIN;// first instruction in the main section of a TML program.END;// marks the end of a TML programSCIBR value;// change RS-232/RS-485 baudrate. Value specifies the new baudrate
// follows: 0 – 9600, 1 – 19200, 2 – 38400, 3 – 56000, 4 – 115200
SPIBR value; // change SPI baudrate with the EEPROM. Value specifies the new
// baudrate as: 0 for 1 MHz, 2 for 2MHz, 3 for 5MHz
CANBR value; // change CANbus baudrate Value specifies the new baudrates as:
// 0xF36C for 125 kHz, 0x736C for 250 kHz, 0x3273 for 500 kHz,
// 0x412A for 800 kHz and 0x1273 for 1MHz
CHECKSUM, dm start, stop, user_var; // compute the sum modulo 65535 of
// SRAM data memory locations from addresses start to stop
CHECKSUM, pm start, stop, user_var; // compute the sum modulo 65535 of
// SRAM TML program memory locations from addresses start to stop
CHECKSUM, spi start, stop, user_var; // compute the sum modulo 65535 of
// EEPROM TML program memory locations from addresses start to stop

Remarks:

as

- 1. It is mandatory to end the main section of a TML program with an END command. This stops the execution of the TML program resident in the memory. All ML subroutines and interrupt service routines should be added after the END command. **IPM Motion Studio** automatically handles these requirements when it generates the TML program to compile and download into the drive.
- 2. The END commands is also useful when you intend to change the TML program from the EEPROM of a drive set in AUTORUN mode (i.e. which starts to execute automatically after reset the TML program from the EEPROM memory) you should do the following:
 - Send to the drive the command END, to stop the current program execution. In order to disable the power stage, send also an AXISOFF command
 - Download the new program
 - Reset the drive. The new program will start to execute
- 3. When a drive is set in AUTORUN mode, it checks the first EEPROM memory location at address 0x4000 to contain the binary code of the TML instruction BEGIN. If this is true, the drive continues to execute the next TML instructions from the EEPROM, otherwise it

© Technosoft 2006

78

puts the drive in a wait. Therefore, for correct operation in AUTORUN mode, it is important to have the TML program downloaded in EEPROM starting with first address 0x4000 and having the first TML instruction BEGIN.

2.8 Internal units and scaling factors

This paragraph describes the MotionChip II internal units (IU) and their correspondence with the international standard units (SI).

The values you set in the TML parameters must be always in internal units. As the TML parameters may represent various signals: position, speed, current, voltage, etc. in order to correctly identify each category of internal units, these have been named after their category. For example the **position units** are the internal units for position, the **speed units** are the internal units for speed, etc.

Position units

In the TML environment the internal position units (IU) are encoder counts.

The correspondence with the international standard (SI) units is:

$$Position[rad] = \frac{2 \times \pi}{4 \times No_encoder_lines} \cdot Position[i.u.]$$

where:

No_encoder_lines - is the number of encoder lines per revolution

Speed units

In TML environment the internal speed units (IU) are encoder counts/slow loop sampling period i.e. the position variation over one position/speed loop sampling period

The correspondence with the international standard (SI) units is:

Speed[rad / s] =
$$\frac{2 \times \pi}{4 \times No_encoder_lines \times Ts_S} \cdot Speed[i.u.]$$

where:

No_encoder_lines - is the number of encoder lines per revolution

Ts_S – is the slow loop sampling period [s]

Acceleration units

In TML environment the internal acceleration units (IU) are encoder counts/slow loop sampling^2

The correspondence with the international standard (SI) units is:

Acceleration[rad / s^2] =
$$\frac{2 \times \pi}{4 \times No_encoder_lines \times Ts_S^2}$$
 · Acceleration[i.u.]

where:

No_encoder_lines - is the number of encoder lines per revolution

© Technosoft 2006

79

Ts_S – is the speed loop sampling period [s]

Current units

The correspondence with the international standard (SI) units is:

$$Current[A] = \frac{2ImaxPS}{65472} \cdot Current[i.u.]$$

where:

ImaxPS - is the power stage peak current i.e. the maximum measurable current [A]

Typically, a motor phase current is measured through transducers that provide a voltage proportional with the current value. This is connected to a MotionChip II analogue input. The currents are both positive and negative, therefore the current transducer output is offset by half in order to get zero current at half A/D input scale. The power stage peak current is the current corresponding to half of the maximum value for the analogue input i.e. half of 3.3V. After A/D conversion 3.3V is 65472.

Voltage command units

The significance of the voltage commands as well as the scaling factors, depend on the motor technology and the control method used.

For a brushed DC motor the voltage command is the voltage to apply between the motor phases.

For a brushless DC motor (BLDC) i.e. a brushless motor with trapezoidal control (more exactly with commutation on Hall sensors causing trapezoidal BEMF), the voltage command is the voltage to apply between 2 of the 3 motor phases. These are the 2 phases that are supplied at one moment.

For a brushless AC motor (PMSM) i.e. a brushless motor with sinusoidal control (field oriented vector control generating sinusoidal currents and voltages), the voltage commands are the amplitude of the sinusoidal phase voltages.

For the brushed DC and brushless DC motors, the correspondence with the international standard (SI) units is:

Voltage command[V] = $\frac{Vdc}{32767}$ · Voltage command[i.u.]

where:

Vdc - is the rated DC-link/supply voltage [V]

In MotionChip II, the output voltage of each inverter is leg is set via a command in the range (-32767, + 32767). The minimum value means that that lower transistor is all the time ON and upped one is OFF, hence the inverter output voltage is 0. The maximum value means that the upper transistor is all the time ON and the lower one is OFF, hence the inverter output voltage is equal with the DC link/supply voltage (minus a slight voltage drop).

© Technosoft 2006

80

In the case of a brushed DC or brushless DC motor, a voltage command for of let's say 16384 (half of positive scale), means that on one leg the command is +16384 and on the other leg it is negated that is -16384. This means that one motor leg is connected to a potential of $\frac{3}{4}$ of the DC link/supply voltage, while the other motor leg is connected to $\frac{1}{4}$ of the DC-link/supply voltage. The difference i.e. the motor voltage is half of the inverter supply.

For the brushless AC motor, the correspondence with the international standard (SI) units is:

Voltage command[V] = $\frac{1.1 \times Vdc}{65534} \cdot Voltage command[i.u.]$

In the case of a brushless AC motor, the voltage commands are sinusoidal with mid point and amplitude equal with $\frac{1}{2}$ of the DC-link/supply voltage. The 1.1 factor comes from a MotionChip II advanced PWM control technique which add another 10% on the voltages applied on the motor

DC-link/supply voltage units

The correspondence with the international standard (SI) units for DC-link/supply voltage is:

$$Voltage[V] = \frac{VdcMaxMeasurable}{65472} \cdot Voltage[i.u.]$$

where:

VdcMaxMeasurable - is the maximum measurable DC-link/supply voltage [V]

Typically, the DC-link/supply voltage is measured through a voltage divisor connected to an analogue input of the MotionChip II. The maximum measurable DC-link/supply voltage is the DC-link/supply voltage that corresponds to the MotionChip II maximum value for the analogue input i.e. 3.3V, which after A/D conversion is 65472.

Time units

In TML environment the internal time units (IU) are expressed in slow loop sampling periods.

The correspondence with the international standard (SI) units is:

$$Time[s] = Ts _ S \cdot Time[i.u.]$$

where:

Ts_S – is the speed loop sampling period

For example, if Ts_S is 1ms, one second is 1000 in internal time units.

Current increment units

The correspondence with the international standard (SI) units for current increment is:

 $Current Increment[A/s] = \frac{2ImaxPS}{65472 \times Ts_S} \cdot Current Increment[i.u.]$

where:

ImaxPS – is the power stage maximum current [A] Ts_S – is the speed loop sampling period [s]

© Technosoft 2006

81

Voltage (command) increment units

Like in the case of the voltage command units, the correspondence with the international standard (SI) units of the voltage increment units depends on the on the motor technology and the control method used.

For the brushed DC and brushless DC motors, the correspondence with the international standard (SI) units is:

Voltage Increment[V / s] = $\frac{Vdc}{32767 \times Ts _S}$ Voltage Increment[i.u.]

For the brushless AC motor, the correspondence with the international standard (SI) units is:

Voltage increment[V / s] = $\frac{1.1 \times Vdc}{65534 \times Ts _S}$ Voltage increment[i.u.]

where:

Vdc – is the DC-link/supply voltage [V] Ts_S – is the speed loop sampling period [s]

Electrical angle units

The correspondence with the international standard (SI) units is:

Electrical angle[rad] = $\frac{\pi}{32768}$ Electrical angle[i.u.]

The electrical angle is the mechanical angle divided by the number of pole pairs. For example when a brushless motor with 2 pairs does half of revolution (i.e. 180 mechanical degrees) this corresponds to 360 electrical degrees

Electrical angle increment units

The correspondence with the international standard (SI) units is:

Motor speed [rad/s] = $\frac{\pi}{32767 \times Ts_C \times pp}$ Electrical angle increment[i.u.]

where:

pp – is the number of pair poles

Ts_C – is the current loop sampling period [s]

Temperature units

The correspondence with the international standard (SI) units is:

Temperature [°C] =
$$\frac{3.3V}{\text{TempSensorGain}[V/^{\circ}C] \times 65472}$$
 (Temperature [i.u.] - TempOffset[i.u.])

where:

TemperatureSensorGain – expresses the sensor output voltage variation when the temperature modifies with one degree Celsius.

© Technosoft 2006

82

TempOffset – is the temperature sensor voltage output at 0°C expressed in internal units $\left[V\right]$

$$\mathsf{FempOutputAt0oC[V]} = \frac{3.3}{65472} \cdot \mathsf{TempOffset[i.u.]}$$

Master Position units

When the master position is sent via a communication channel, the master position units depend on the type of position sensor present on the master axis.

When the master position is an encoder the correspondence with the international standard (SI) units is:

Master_position[rad] = $\frac{2 \times \pi}{4 \times No_encoder_lines}$ Master_position[i.u.]

where:

No_encoder_lines - is the master number of encoder lines per revolution

Master Speed units

The master speed is computed in internal units (IU) as master position units /slow loop sampling period i.e. the master position variation over one position/speed loop sampling period.

When the master position is an encoder, the correspondence with the international standard (SI) units is:

Master_speed[rad/s] = $\frac{2 \times \pi}{4 \times No_encoder_lines \times Ts_S}$ Master_speed[i.u.]

where:

No_encoder_lines - is the master number of encoder lines per revolution

Ts_S – is the slave slow loop sampling period [s]

© Technosoft 2006

MotionChip II TML Programming

83

3. Communication Channels and Protocols

3.1 Communication channels

The Motion Chip II accepts two types of communication channels:

- Serial RS-232 or RS-485
- CAN-bus

The serial RS-232 communication channel can be used to connect a host with a single MotionChip II based drive (see **Figure 3.1**). The serial RS-485 and the CAN-bus communication channels can be used to create a distributed control network with a host and up to 255 MotionChip II based drives (see **Figure 3.2** and **Figure 3.3**).

When CAN-bus communication is used, any MotionChip II based drive from the network may also be connected through RS-232 with a host (see **Figure 3.4**). In this structure, the axis connected to the host, apart from executing the commands received from host or other axes acts also as a retransmission relay which:

- Receives through RS-232, commands from host for another axis and retransmits them to the destination through CAN-bus
- Receives through CAN-bus data requested by host from another axis and retransmits them to the host through RS-232

This flexibility enables a host to program and monitor a CAN-bus network using only one RS-232 connection, without the need to have a CAN-bus interface. In this case the CAN-bus protocol is completely transparent for the host.

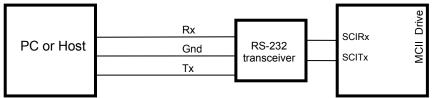


Figure 3.1. Serial RS-232 communication between a host and the MotionChip II

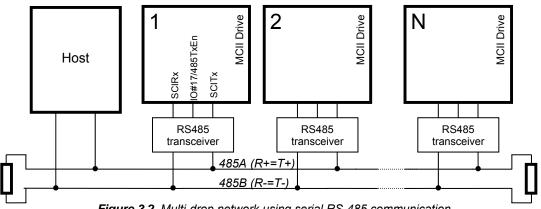


Figure 3.2. Multi-drop network using serial RS-485 communication

© Technosoft 2006

85

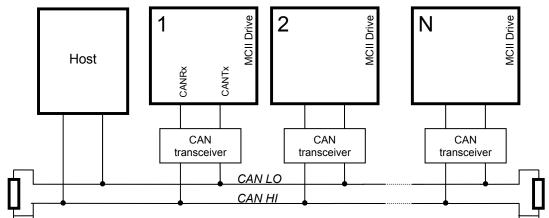


Figure 3.3. Multi-drop network using CAN-bus communication

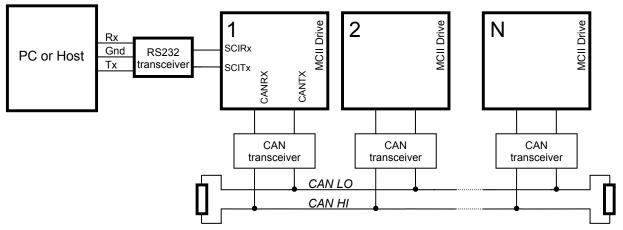


Figure 3.4.Multi-drop network using CAN-bus communication with host connected through RS-232 to an axis used as communication relay

3.2 Communication protocols

3.2.1 Axis Identification in a Multiple-axis Network

In multiple-axis configurations, each axis (drive) needs to be identified through a unique number – the **axis ID**. This is a number between 1 and 255. The axis ID is initially set at power on by reading the MotionChip II analogue input lines ADCIN10 to ADCIN14, as follows:

- Axis ID = 255 if all the analogue inputs ADCIN10 to ADCIN14 are high;
- Axis ID = 1 to 31, if at least one of the ADCIN10 to ADCIN14 inputs is low. The axis ID value depends on the analogue inputs combination (see **Table 3.1**)

© Technosoft 2006

86

Later on, you can change the axis ID to any of the 255 possible values, using the TML instruction AXISID, followed by an integer value between 1 and 255.

ADCIN10	ADCIN11	ADCIN12	ADCIN13	ADCIN14	AXISID
HIGH	HIGH	HIGH	HIGH	HIGH	255
HIGH	HIGH	HIGH	HIGH	LOW	1
HIGH	HIGH	HIGH	LOW	HIGH	2
HIGH	HIGH	LOW	HIGH	LOW	3
HIGH	HIGH	LOW	HIGH	HIGH	4
HIGH	HIGH	LOW	HIGH	LOW	5
HIGH	HIGH	LOW	LOW	HIGH	6
HIGH	HIGH	LOW	LOW	LOW	7
HIGH	LOW	HIGH	HIGH	HIGH	8
HIGH	LOW	HIGH	HIGH	LOW	9
HIGH	LOW	HIGH	LOW	HIGH	10
HIGH	LOW	HIGH	LOW	LOW	11
HIGH	LOW	LOW	HIGH	HIGH	12
HIGH	LOW	LOW	HIGH	LOW	13
HIGH	LOW	LOW	LOW	HIGH	14
HIGH	LOW	LOW	LOW	LOW	15
LOW	HIGH	HIGH	HIGH	HIGH	16
LOW	HIGH	HIGH	HIGH	LOW	17
LOW	HIGH	HIGH	LOW	HIGH	18
LOW	HIGH	HIGH	LOW	LOW	19
LOW	HIGH	LOW	HIGH	HIGH	20
LOW	HIGH	LOW	HIGH	LOW	21
LOW	HIGH	LOW	LOW	HIGH	22
LOW	HIGH	LOW	LOW	LOW	23
LOW	LOW	HIGH	HIGH	HIGH	24
LOW	LOW	HIGH	HIGH	LOW	25
LOW	LOW	HIGH	LOW	HIGH	26
LOW	LOW	HIGH	LOW	LOW	27
LOW	LOW	LOW	HIGH	HIGH	28
LOW	LOW	LOW	HIGH	LOW	29
LOW	LOW	LOW	LOW	HIGH	30
LOW	LOW	LOW	LOW	LOW	31

Table 3.1 Axis ID values

Apart from the Axis ID, each drive has also a **group ID**. The group ID represents a way to identify a group of drives, for a multicast transmission. Each drive can be programmed to be member of one or several of the 8 possible groups. When a TML command is sent to a group, all the axes members of this group, will receive the command. For example, if the drive is member of group 1 and group 3, he will receive all the messages that in the group ID include group 1 and group 3. This feature allows a host to send a command simultaneously to several axes, for example to start or stop the axes motion in the same time.

The group ID is like the axis ID an 8-bit value. A TML command can be sent to 8 different groups. Each group is defined as having one of the 8 bits of the group ID value set to 1 (see **Table 3.2**)

© Technosoft 2006

MotionChip II TML Programming

87

Group No.	Group ID value
1	1 (0000 0001b)
2	2 (0000 0010b)
3	4 (0000 0100b)
4	8(0000 1000b)
5	16 (0001 0000b)
6	32 (0010 0000b)
7	64 (0100 0000b)
8	128 (1000 0000b)

Table 3.2. Definition of the groups

The group ID of an axis can have any value between 0 and 255. If for example the group ID is 11 (1011b) this means that the axis will receive all messages sent to groups 1, 2 and 4. You can set a drive to be member of one group using the TML instruction GROUPID, followed by an integer value between 1 and 8. You can add/remove an axis to group using the TML instructions ADDGRID / REMGRID followed by an integer value between 1 and 8.

Remark: By default all the drives are set as members of group 1.

When a TML Instruction is send through the serial or CAN-bus channel, the message consists of the axis or group ID followed by the instruction code (see **Figure 3.5**.).

Axis/Group ID
Operation Code
Data (1)
Data (4)

Figure 3.5. Message Structure

In a serial or CAN message, the axis or group ID is 16-bit word with the following structure:

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	0	0	G	ID7	ID6	ID5	ID4	ID3	ID2	ID1	ID0	0	0	0	Н
				7	6	5	4	3	2	1	0				

Where:

- Bit 0 HOST bit. In a network configuration the HOST bit indicates the destination axis for messages received by the relay axis: 0 – relay axis, 1 – host. Messages received by the relay axis with HOST bit set to 1, will be retransmitted through RS-232 to the host. Messages received by the relay axis with HOST bit set to 0, will be interpreted as commands for this axis and will be executed. On RS-485, the host and the drives have different axis ID, the HOST bit has as no significance and must be set to 0.
- Bits 11-8 ID7-ID0: the 8-bit value of an axis or group ID
- Bit 12 GROUP bit: 0 ID7-ID0 value is an axis ID, 1 ID7-ID0 value is a group ID

© Technosoft 2006

88

3.2.2 Serial communication protocol

Serial settings and message packaging

The RS-232/RS-485 serial communication is done using 8 data bits, 2 stop bits, no parity at the following baud rates: 9600 (default after reset), 19200, 38400, 56600 and 115200. The messages exchanged through serial communication are packed in the following format:

Byte 1: Message length
Byte 2: Axis/Group ID – high byte
Byte 3: Axis/Group ID – low byte
Byte 4: Operation code – high byte
Byte 5: Operation code – low byte
Byte 6: Data (1) – high byte
Byte 7: Data (1) – low byte
Byte 8: Data (2) – high byte
Byte13: Data (4) – low byte
Last byte: Checksum

Figure 3.6. Serial communication message format

The message length byte contains the total number of bytes of the message minus 2. Put in other words, the length byte value is the number of bytes of the: axis/group ID (2bytes), the operation code (2 bytes) and the data words (variable from 0 to 8 bytes). The checksum byte is the sum modulo 256 of all the bytes of the message except the checksum byte itself.

Message types on serial communication

The serial communication protocol is based on two types of messages:

- Type A: Messages that don't require an answer (a return message). In this category enter for example the messages containing commands for parameter settings, commands that start or stop motion execution, etc.
- Type B: Messages that require an answer. In this category enter the messages containing commands that ask to return data, for example the value of TML parameters, registers, or variables.

The type B message has two components:

- A request message sent through the TML command "Give Me Data".
- An answer message sent through the TML command "Take Data"

The "Give Me Data" request message includes the following information:

"Give Me Data" Message Contents

Axis ID (destination axis)
Operation Code: B004h for 16-bit data
B005h for 32-bit data
Data(1): Sender Axis ID
Data(2): Requested Data Address

© Technosoft 2006

89

The "Take Data" answer message includes the following information:

Axis ID (destination axis)
Operation Code: B404h for 16-bit data
B405h for 32-bit data
Data(1): Sender Axis ID
Data(2): Requested Data Address
Data(3): Data Requested 16LSB
Data(4): Data Requested 16MSB (for 32-bit data)

Example 1:

A host is connected to a drive via RS-232 and sends a type A message with the TML instruction "kpp = 5" (set proportional part of the position controller with value 5).

The axis ID of host and of the drive are 255 = 0FFh. The TML instruction code is:

Operation Code = 205Eh	
Data (1) = 0005h	

The serial message package must have the following contents:

Byte 1: 06h – length: ID=2,Opcode=2,Data=2
Byte 2: 0Fh – high byte of ID = 0FF0h
Byte 3: F0h – low byte of ID = 0FF0h
Byte 4: 20h – high byte of OpCode = 205Eh
Byte 5: 5Eh – low byte of OpCode = 205Eh
Byte 6: 00h – high byte of Data(1) = 0005h
Byte 7: 05h – low byte of Data(1) = 0005h)
Byte 8: 88h – checksum

Figure 3.7. Serial message contents when TML instruction "kpp = 5" is sent

The host receives from the drive a byte 0x4F as confirmation that the message was received OK.

Remarks:

- 1. If the host wants to sent the same TML instruction "kpp = 5" to another drive with axis ID=1, drive connected via CAN-bus with the drive having axis ID=255, the destination ID becomes 0010h instead of 0FF0h. Hence the modifications are: byte 2: 00h, byte 3: 10h, checksum byte adjusted accordingly (99h).
- If the host is connected via RS-485 with a drive, the two devices must have different axis ID values. For example if the host ID = 255 and the drive ID = 1, the message is the same as in the previous remark.

Example 2:

A host is connected to a drive via RS-232 and wants to get the value of the kpp parameter from the drive. The ID of host and drive are 255 = 0FFh.

Let's suppose that the kpp value returned by the drive is 288 (120h). The host has to send a "Give Me Data" TML command with the following instruction code:

© Technosoft 2006

90

Operation Code = B004h (16-bit value) Data(1) = 0FF1h (sender ID = destination ID + HOST bit set) Data(2) = 025Eh (kpp variable address)

The" Take Data" answer will have the following instruction code:

Operation Code = B404h (16-bit value)	
Data(1) = 0FF0h (sender ID)	
Data(2) = 025Eh (kpp variable address)	
Data(3) = 0120h (kpp variable value)	

The serial message send by the host with "Give Me Data" TML command must have the following contents:

Byte 1: 08h – length ID=2,Opcode=2,Data=4
Byte 2: 0Fh – high byte of ID = 0FF0h
Byte 3: F0h – low byte of ID = 0FF0h
Byte 4: B0h – high byte of OpCode = B004h
Byte 5: 04h – low byte of OpCode = B004h
Byte 6: 0Fh – high byte of Data(1) = 0FF1h
Byte 7: F1h – low byte of Data(1) = 0FF1h
Byte 8: 02h – high byte of Data(2) = 025Eh
Byte 9: 5Eh – low byte of Data(2) = 025Eh
Byte 8: 1Bh – checksum

Figure 3.8. Serial message contents for "Give Me Data" value of kpp

The host receives from the drive a byte 0x4F as confirmation that the message was received OK.

The serial message received by the host with "Take Data" TML command must have the following contents:

Byte 1: 0Ah – length ID=2,Opcode=2,Data=6
Byte 2: 0Fh – high byte of ID = 0FF1h
Byte 3: F1h – low byte of ID = 0FF1h
Byte 4: B4h – high byte of OpCode = B404h
Byte 5: 04h – low byte of OpCode = B404h
Byte 6: 0Fh – high byte of Data(1) = 0FF0h
Byte 7: F0h – low byte of Data(1) = 0FF0h
Byte 8: 02h – high byte of Data(2) = 025Eh
Byte 9: 5Eh – low byte of Data(2) = 025Eh
Byte 10: 01h – high byte of Data(3) = 0120h
Byte 11: 20h – low byte of Data(3) = 0120h
Byte 12: 42h – checksum

Figure 3.9. Serial message contents for "Take Data" value of kpp

© Technosoft 2006

91

Remarks:

- 1. If the host wants to get the value of the kpp parameter from another drive with axis ID=1, connected via CAN-bus with the drive having axis ID=255, the destination ID becomes 0010h in instead of 0FF0h in the "Give Me Data" message. "Take Data" message also will have 0010h in instead of 0FF0h as sender ID. Hence the modifications are:
 - "Give Me Data": byte 2: 00h, byte 3: 10h, checksum byte adjusted accordingly;
 - "Take Data": byte 6: 00h, byte 7: 10h, checksum byte adjusted accordingly;
- If the host is connected via RS-485 with a drive, the 2 devices must have different axis ID values. For example if the host ID = 255 and the drive ID = 1, the modifications compared with the above examples are:
 - "Give Me Data": byte 2: 00h, byte 3: 10h, byte 7: F0h (in sender ID the host bit = 0) and the checksum byte adjusted accordingly;
 - "Take Data": byte 3: F0h, byte 6: 00h, byte 7: 10h and the checksum byte adjusted accordingly.

RS-232 communication protocol

The RS-232 protocol is full duplex, allowing simultaneous transmission in both directions. After each command (Type A or B) sent by the host, the drive will confirm the reception by sending one acknowledge-Ok byte. This byte is: 'O' (ASCII code of capital letter "o", 0x4F). If the host receives the 'O' byte, this means that the drive has received correctly (checksum verification was passed) the last message sent, and now is ready to receive the next message.

Remark: If the destination axis for the message is not the axis connected with the host via RS-232 (e.g. the relay axis), but another axis connected with the relay axis via CAN-bus, the reception of the acknowledge-Ok byte from the relay axis doesn't mean that the message was received by the destination axis, but just by the relay axis. Depending on the CAN-bus baud rate and the amount of traffic on this bus, the host may need to consider introducing a delay before sending the next message to an axis connected on the CAN-bus. This delay must provide the relay axis the time necessary to retransmit the message via CAN-bus.

If any error occurs during the message reception, for example the checksum computed by the drive axis doesn't match with the one sent by the host, the drive will not send the acknowledge-**O**k byte. If the host doesn't receive any acknowledge byte for at least 2ms after the end of the checksum byte transmission, this means that at some point during the last message transmission, one byte was lost and the synchronization between the host and the relay axis is gone. In order to restore the synchronization the host should do the following:

- 1. Send a SYNC byte having value 0x0D (higher values are also accepted)
- 2. Wait a programmed timeout (typically 2ms) period for an answer;
- 3. If the drive sends back the same SYNC byte, the synchronization is restored and the host can send again the last message, else go to step 1

Repeat steps 1 to 3 until the drive answers with a SYNC byte or until 15 SYNC bytes are sent. If after 15 SYNC bytes the drive still doesn't answer, then there is a serious communication problem and the serial link must be checked.

When a host sends a type A message through RS-232 it has to:

- Send the message;
- Wait the acknowledge-OK byte 'O' from the drive;

© Technosoft 2006

92

When a host sends a type B message through RS-232 it has to:

- Send a message with "Give Me Data" command;
- Wait the acknowledge-OK byte 'O' from the drive connected via RS-232 (relay axis);
- Wait the response message from the drive to which the message is addressed. The answer contains the command "Take Data".

When the relay axis returns a "Take Data" message it doesn't expect to receive an acknowledge byte from the host. It is the host task to monitor the communication. If the host gets the response message with a wrong checksum, it is the host duty to send again the "Give Me Data" request.

RS-485 communication protocol

The RS-485 protocol is half duplex. If two devices start by mistake to transmit in the same time, both transmissions are corrupted. Therefore for a correct operation, in an RS-485 network it is mandatory to have a master, which controls the transmission. This means that only the master can initiate a transmission, while all the other devices from the network may transmit only when the master asks them to provide some data. Usually you should set as master your host.

After each command (Type A or B) sent by the host to one drive, the drive will confirm the reception by sending one acknowledge-Ok byte. This byte is: 'O' (ASCII code of capital letter "o", 0x4F). If the host receives the 'O' byte, this means that the drive has received correctly (checksum verification was passed) the last message sent, and now is ready to receive the next message.

The acknowledge-Ok byte is not sent when the host broadcasts a message to a group of drives.

If any error occurs during the message reception, for example if the checksum computed by the drive axis doesn't match with the one sent by the host, the drive will not send the acknowledge-Ok byte. If the host doesn't receive any acknowledge byte for at least 2ms after the end of the checksum byte transmission, this means that at some point during the last message transmission, one byte was lost and the synchronization between the host and the relay axis is gone. In order to restore the synchronization the host should do the following:

- 1. Send a 15 SYNC byte having value 0x0D (higher values are also accepted)
- 2. Wait a programmed timeout (typically 2ms) period for an answer;
- 3. If the drive sends back the same SYNC byte, the synchronization is restored and the host can send again the last message, else go to step 1

If the drive still doesn't answer, then there is a serious communication problem and the serial link must be checked

When a host sends a type A message through RS-485 it has to:

- Send the message;
- Wait the acknowledge-OK byte 'O' from the drive, only if the message destination was a single drive;

When a host sends a type B message through RS-485 it has to:

- Send a message with "Give Me Data" command;
- Wait the acknowledge-OK byte 'O' from the drive;
- Wait the response message from the drive, which contains the command "Take Data".

Remark: it is not possible to send a "Give Me Data" command to a group of axes.

© Technosoft 2006

93

When the drive returns a "Take Data" message it doesn't expect to receive an acknowledge byte from the host. It is the host task to monitor the communication. If the host gets the response message with a wrong checksum, it is the host duty to send again the "Give Me Data" request.

3.2.3 CAN-bus Communication Protocol

CAN-bus communication settings and message packaging

The Technosoft drives implements the CAN 2.0B protocol that uses 29 bits for the identifier. Below you can see how the information to be sent is packed in a CAN-bus message:

CAN message identifier:

_28							0
Operation Code (7MSB)	Group bit	Axis/Group ID	0	0	0	Host bit	Operation code (9LSB)

CAN message data bytes:

CAN Message Data Byte No.	TML Data Word
0	Data word (1) – low byte
1	Data word (1) – high byte
2	Data word (2) – low byte
3	Data word (2) – high byte
4	Data word (3) – low byte
5	Data word (3) – high byte
6	Data word (4) – low byte
7	Data word (4) – high byte

Figure 3.10. CAN message structure

Where G is the group bit and H is the host bit.

The CAN-bus communication offers the possibility to work on a semi-duplex network like in a fullduplex one. The CAN controller automatically solves the conflicts that occur while two axes try to transmit messages in the same time. In an RS-485 network, such an event usually corrupts both messages, while in a CAN-bus the higher priority message always wins. The lower priority message is automatically sent after the transmission of the first message ends. Hence, in a CANbus network, all the limitations mentioned for RS-485 are eliminated.

Message types on CAN-bus communication

The CAN-bus communication protocol is based on two types of messages:

- Type A: Messages that don't require an answer (a return message). In this category enter for example the messages containing commands for parameter settings, commands that start or stop motion execution, etc.
- Type B: Messages that require an answer. In this category enter the messages containing commands that ask to return data, for example the value of TML parameters, registers, or variables.

© Technosoft 2006

94

The type B message has two components:

- A request message sent through the TML command "Give Me Data".
- An answer message sent through the TML command "Take Data"

The "Give Me Data" request message includes the following information:

	Identifier:	Operation	Code	and	Axis	ID	(destination
axis)							
Data v	word (1): \$	Sender Axis	s ID				
Data v	word (2): I	Request Da	ta Add	ress			

The Operation Code for the "Give Me Data" request is B004h for 16-bit data and B005h for 32-bit data.

The "Take Data" answer message includes the following information:

CAN Identifier: Operation Code and Axis ID (destination				
axis)				
Data word (1): Sender Axis ID				
Data word (2): Request Data Address				
Data word (3): Data Requested 16 LSB				
Data word (4): Data Requested 16 MSB (for 32-bit data)				

The Operation Code for the "Take Data" request is B404h for 16-bit data and B405h for 32-bit data.

Example 1:

A host is directly connected on a CAN-bus network with Technosoft drives and wants to send to the drive with the axis ID=5 the TML instruction "kpp = 0x1234" (set proportional part of the position controller with value 1234 hexa).

The code of the TML instruction is:

Operation Code = 205Eh
Data word (1) = 1234h

The CAN Message Identifier have the following content:

28

Operation Code (7MSB of 205Eh)	Group bit	Axis/Group ID	0	0	0		Operation code (9LSB of 205Eh)	
0010000	0	00000101	0	0	0	0	001011110	0400A05Eh

Consequently, the CAN message for "kpp = 0x1234" is:

	Value	Description
Identifier	0400A05E	CAN Message Identifier
Byte 0	34	low byte of Data word (1) = 1234h
Byte 1	12	high byte of Data word (1) = 1234h

Figure 3.11. CAN message contents when TML instruction "kpp = 0x1234" is sent

© Technosoft 2006

95

MotionChip II TML Programming

0

Example 2:

A host is directly connected on a CAN-bus network of Technosoft drives and wants to get the value of the position error from the drive with the axis ID=5. The host ID=3.

The position error is a 16-bit TML variable named POSERR situated at the memory address 0 x 0 22 A

The code of the TML instruction for "Give Me Data" is:

Operation Code = B004h
Data word (1) = 0031h
Data word (2) = 022Ah

The CAN Message Identifier for request command "Give Me Data" have the following content: 28 0

Consequently, the CAN message for the TML instruction "?POSERR" (e.g. "Give Me Data of POSERR) is:

	Value	Description
Identifier	1600A004	CAN Message Identifier
Byte 0	31	low byte of Data word (1) = 0031h
Byte 1	00	high byte of Data word (1) = 0031h
Byte 2	2A	low byte of Data word (2) = 022Ah
Byte 3	02	high byte of Data word (2) = 022Ah

Figure 3.12. CAN message contents when TML instruction "?POSERR" is sent

Supposing that the position error value is 2, the code of the TML instruction "Take Data" is:

Operation Code = B404h
Data word (1) = 0050h
Data word (2) = 022Ah
Data word (3) = 0002h

The CAN message Identifier for command "Take Data" will have the following content: 28

Operation Code (7MSB of B004h)	Group bit	Axis/Group ID	0	0	0		Operation code (9LSB of B004h)	
1011010	0	00000011	0	0	0	1	000000100	16806204h

96

© Technosoft 2006

	Value	Description
Identifier	16806204	CAN Message Identifier
Byte 0	50	low byte of Data word (1) = 0050h
Byte 1	00	high byte of Data word (1) = 0050h
Byte 2	2A	low byte of Data word (2) = 022Ah
Byte 3	02	high byte of Data word (2) = 022Ah
Byte 4	02	low byte of Data word (2) = 0002h
Byte 5	00	high byte of Data word (2) = 0002h

Consequently, the CAN message for the answer to the "?POSERR" request is:

Figure 3.13. CAN message contents for "Take Data" value of POSERR

97

Remark: A "Give Me Data" command can't be sent to a group of axes.

© Technosoft 2006

This page is empty

© Technosoft 2006

MotionChip II TML Programming

98

4. TML instruction set

The chapter describes the complete set of TML instructions, grouped by functionality. In each group the instructions are ordered alphabetically, mnemonic, syntax and description are given for each instruction.

TML instructions are divided in groups as follows:

- Motion mode setting group (**Table 4.1**)
- Event group (Table 4.2)
- Program flow (decision) group (Table 4.3)
- I/O group (Table 4.4)
- Assignment group (**Table 4.5**)
- Arithmetic and logic group (Table 4.6)
- Configuration and command group (Table 4.7)
- Multiple axis group (**Table 4.8**)
- Miscellaneous group (Table 4.9).
- On-line group (Table 4.10)

Table 4.1. Motion	mode	setting	group
-------------------	------	---------	-------

Mnemonic	Syntax	Description
MODE	MODE CS0	Set MODE Cam Slave 0 ()
	MODE CS1	Set MODE Cam Slave 1 (T)
	MODE CS2	Set MODE Cam Slave 2 (S)
	MODE CS3	Set MODE Cam Slave 3 (S, T)
	MODE GS0	Set MODE Gear Slave 0 ()
	MODE GS1	Set MODE Gear Slave 1 (T)
	MODE GS2	Set MODE Gear Slave 2 (S)
	MODE GS3	Set MODE Gear Slave 3 (S,T)
	MODE PC0	MODE Position Contouring 0 ()
	MODE PC1	MODE Position Contouring 1 (T)
	MODE PC2	MODE Position Contouring 2 (S)
	MODE PC3	MODE Position Contouring 3 (S,T)
	MODE PE0	MODE Position External 0 ()
	MODE PE1	MODE Position External 1 (T)
	MODE PE2	MODE Position External 2 (S)
	MODE PE3	MODE Position External 3 (S,T)
	MODE PP0	MODE Position Profile 0 ()
	MODE PP1	MODE Position Profile 1 (T)
	MODE PP2	MODE Position Profile 2 (S)
	MODE PP3	MODE Position Profile 3 (S,T)

© Technosoft 2006

99

MODE PPD0	MODE Position Pulse & Dir 0 ()
MODE PPD1	MODE Position Pulse & Dir 1 (T)
MODE PPD2	MODE Position Pulse & Dir 2 (S)
MODE PPD3	MODE Position Pulse & Dir 3 (S,T)
MODE SC0	MODE Speed Contouring 0 ()
MODE SC1	MODE Speed Contouring 1 (T)
MODE SE0	MODE Speed External 0 ()
MODE SE1	MODE Speed External 1 (T)
MODE SP0	MODE Speed Profile 0 ()
MODE SP1	MODE Speed Profile 1 (T)
MODE SPD0	MODE Speed Pulse & Dir 0 ()
MODE SPD1	MODE Speed Pulse & Dir 1 (T)
MODE TC	MODE Torque Contouring
MODE TEF	MODE Torque External Fast loop
MODE TES	MODE Torque External Slow loop
MODE TT	MODE Torque Test
MODE VC	MODE Voltage Contouring
MODE VEF	MODE Voltage External Fast loop
MODE VES	MODE Voltage External Slow loop
MODE VT	MODE Voltage Test

Table 4.2. Event group

Mnemonic	Syntax	Description
!APO	!APO V32	! if Relative Position Over V32
	!APO val32	! if Relative Position Over val32
!APU	!APU V32	! if Relative Position Under V32
	!APU val32	! if Relative Position Under val32
!AT	!AT V32	! if Absolute Time >= V32
	!AT val32	! if Absolute Time >= val32
!CAP	!CAP	! if Capture triggered
!IN	!IN#n 0	! if Input #n is 0
	!IN#n 1	! if Input #n is 1
!LSN	!LSN	! if Limit Switch Negative active
!LSP	!LSP	! if Limit Switch Positive active
!MC	!MC	!(set event) if Motion Complete
!RO	!RO V32	! if Reference Over V32
	!RO val32	! if Reference Over val32
!RPO	!RPO V32	! if Relative Position Over V32
	!RPO val32	! if Relative Position Over val32
!RPU	!RPU V32	! if Relative Position Under V32
	!RPU val32	! if Relative Position Under val32

© Technosoft 2006

100

!RT	!RT V32	! if Relative Time >= V32	
	!RT val32	! if Relative Time >= val32	
!RU	!RU V32	! if Reference Under V32	
	!RU val32	! if Reference Under val32	
!SO	!SO V32	! if Speed Over V32	
	!SO val32	! if Speed Over val32	
!SU	!SU V32	! if Speed Under V32	
	!SU val32	! if Speed Under val32	
!VO	!VO V32A, V32B	! if V32A Over V32B	
	!VO V32A, val32	! if V32A Over val32	
!VU	!VU V32A, V32B	! if V32A Under V32B	
	!VU V32A, val32	! if V32A Under val32	
WAIT!	WAIT!	Wait until event occurs	

Table 4.3. Program flow (decision) group

Mnemonic	Syntax	Description
CALL	CALL Label	Unconditional CALL of a function
	CALL Label, V16, Flag	CALL function if V16 Flag 0
	CALL Label, V32, Flag	CALL function if V32 Flag 0
GOTO	GOTO Label	Unconditional GOTO to label
	GOTO Label, V16, Flag	GOTO label if V16 Flag 0
	GOTO Label, V32, Flag	GOTO label if V32 Flag 0
RET	RET	Return from TML function
RETI	RETI	Return from TML Interrupt Service Routine

Table 4.4. I/O group

Mnemonic	Syntax	Description
DIS2CAPI	DIS2CAPI	Disable 2nd CAPI capture input
DISCAPI	DISCAPI	Disable CAPI capture input
DISIO#n	DISIO#n	Disable IO#n
DISLSN	DISLSN	Disable LSN limit switch
DISLSP	DISLSP	Disable LSP limit switch
EN2CAPI0	EN2CAPI0	Enable 2nd CAPI capture for 1->0
EN2CAPI1	EN2CAPI1	Enable 2nd CAPI capture for 0->1
ENCAPI0	ENCAPI0	Enable CAPI capture for 1->0
ENCAPI1	ENCAPI1	Enable CAPI capture for 0->1
ENIO#n	ENIO#n	Enable IO#n
ENLSN0	ENLSN0	Enable LSN limit switch for 1->0
ENLSN1	ENLSN1	Enable LSN limit switch for 0->1
ENLSP0	ENLSP0	Enable LSP limit switch for 1->0

© Technosoft 2006

101

ENLSP1	ENLSP1	Enable LSP limit switch for 0->1
OUTPORT	OUTPORT V16	Set OUT#28-31 with V16 value (4LSB)
ROUT#n	ROUT#n	Reset IO#n output to 0
SETIO#n	SETIO#n IN	Set IO#n as input
	SETIO#n OUT	Set IO#n as output
SOUT#n	SOUT#n	Set IO#n output to 1
=	V16D = IN#n	Read input #n
	V16D = IN1/IN2,ANDm	Read IN#4 to IN#11 with ANDm
	V16D = INPUT1, ANDm	Read IN#25 to IN#32 with ANDm
	V16D = INPUT2, ANDm	Read IN#33 to IN#39 with ANDm
	V16D = INPORT#n	Read one input from IN#33 to 39
	V16D = INPORT,ANDm	Read IN#36-39 in V16D (4LSB)

Table 4.5. Assignment group

Mnemonic	Syntax	Description
=	(V16D), TM = V16S	(V16D) from TM = V16S
	(V16D), TM = V32S	(V16D) from TM = V32S
	(V16D), TM = val16	(V16D) from TM = val16
	(V16D), TM = val32	(V16D) from TM = val32
	(V16D+), TM = V16S	(V16D) from TM = V16S then V16D += 1
	(V16D+), TM = V32S	(V16D) from TM = V32S then V16D += 2
	(V16D+), TM = val16	(V16D) from TM = val16 then V16D += 1
	(V16D+), TM = val32	(V16D) from TM = val32 then V16D += 2
	V16 = label	V16 = address of a TML label
	V16 = val16	V16 = val16
	V16D = (V16S), TM	V16D = (&V16S) from TM
	V16D = (V16S+), TM	V16D = (&V16S) from TM then V16S += 1
	V16D = V16S	V16D = V16S
	V16D = -V16S	V16D = -V16S
	V16D = V32S(H)	V16D = V32S(H)
	V16D = V32S(L)	V16D = V32S(L)
	V16D, dm = V16S	V16D from dm = V16S (la)
	V16D, dm = val16	V16 from dm = val16 (la)
	V32 = val32	V32 = val32
	V32(H) = val16	V32(H) = val16
	V32(L) = val16	V32(H) = val16
	V32D = (V16S), TM	V32D = (V16S) from TM
	V32D = (V16S+), TM	V32D = (V16S) from TM then V16D += 2
	V32D = V32S	V32D = V32S
	V32D = -V32S	V32D = -V32S
	V32D =V16S << N	V32D = V16S left-shifted by N

© Technosoft 2006

102

V32D(H) = V16S	V32D(H) = V16
V32D(L) = V16S	V32D(L) = V16
V32D, dm = V32S	V32D from dm = V32S (la)
V32D, dm = val32	V32 from dm = val32 (la)

Table 4.6. Arithmetic & Logic group

Mnemonic	Syntax	Description
+=	V16 += val16	Add val16 to V16
	V16D += V16S	Add V16S to V16D
	V32 += val32	Add val32 to V32
	V32D += V32S	Add V32S to V32D
-=	V16 -= val16	Subtract val16 from V16
	V16D -= V16S	Subtract V16S from V16D
	V32 -= val32	Subtract val32 from V32
	V32D -= V32S	Subtract V32S from V32D
*	V16 * val16 << N	PROD = (V16 * val16) >> N
	V16 * val16 >> N	PROD = (V16 * val16) >> N
	V16A * V16B << N	PROD = (V16A * V16B) << N
	V16A * V16B >> N	PROD = (V16A * V16B) >> N
	V32 * V16 << N	PROD = (V32 * V16) << N
	V32 * V16 >> N	PROD = (V32 * V16) >> N
	V32 * val16 << N	PROD = (V32 * val16) << N
	V32 * val16 >> N	PROD = (V32 * val16) >> N
<<=	PROD <<= N	Left shift PROD by N
	V16 <<= N	Left shift V16 by N
	V32 <<= N	Left shift V32 by N
>>=	PROD >>= N	Right shift PROD by N
	V16 >>= N	Right shift V16 by N
	V32 >>= N	Right shift V32 by N
SRB	SRB V16,ANDm,ORm	Set / Reset Bits of a V16
	SRBL V16,ANDm,ORm	Set / Reset Bits of a V16 (la)

Table 4.7. Configuration and Command group

Mnemonic	Syntax	Description
AXISOFF	AXISOFF	AXIS is OFF (deactivate control)
AXISON	AXISON	AXIS is ON (activate control)
CPA	CPA	Command Position is Absolute
CPR	CPR	Command Position is Relative
DINT	DINT	Disable TML Interrupts
EINT	EINT	Enable TML Interrupts

© Technosoft 2006

103

ENDINIT	ENDINIT	END of Initialization
EXTREF	EXTREF 0	External Reference read from variable EREF updated on-line
	EXTREF 1	External Reference read from REFERENCE input
	EXTREF 2	External Reference read from second encoder input
RAOU	RAOU	Reset Automatic Origin Update
RESET	RESET	RESET DSP controller
RGM	RGM	Reset axis as Gear/Cam Master
SAOU	SAOU	Set Automatic Origin Update
SAP	SAP V32	Set Actual Position = V32
	SAP val32	Set Actual Position = val32
SEG	SEG D_time, D_ref	Segment D_time, D_ref
	SEG V16, V32	Segment V16, V32
SGM	SGM	Set axis as Gear/Cam Master
STA	STA	Set Target position = Actual position
STOP0	STOP0	STOP motion in mode 0
STOP0!	STOP0!	STOP0 when ! (event occurs)
STOP1	STOP1	STOP motion in mode 1
STOP1!	STOP1!	STOP1 when ! (event occurs)
STOP2	STOP2	STOP motion in mode 2
STOP2!	STOP2!	STOP2 when ! (event occurs)
STOP3	STOP3	STOP motion in mode 3
STOP3!	STOP3!	STOP3 when ! (event occurs)
TUM0	TUM0	Set Target Update Mode 0
TUM1	TUM1	Set Target Update Mode 1
UPD	UPD	Update motion immediate
UPD!	UPD!	Update when ! (event occurs)

Table 4.8.	Communication	&	Multiple	axis group
------------	---------------	---	----------	------------

Mnemonic	Syntax	Description
=	[A/G] { Instr1; Instr2;}	Send a series of TML instructions to [A/G]
	[A/G] (V16D),TM = V16S	[A/G] (V16D),TM = local V16S
	[A/G] (V16D),TM = V32S	[A/G] (V16D),TM = local V32S
	[A/G] (V16D+),TM = V16S	[A/G] (V16D),TM = local V16S then V16D += 1
	[A/G] (V16D+),TM = V32S	[A/G] (V16D),TM = local V32S then V16D += 2
	[A/G] V16D = V16S	[A/G] V16D = local V16S
	[A/G] V16D,dm = V16S	[A/G] V16D,dm = local V16S (la)
	[A/G] V32D = V32S	[A/G] V32D = local V32S
	[A/G] V32D,dm = V32S	[A/G] V32D,dm= local V32S (la)
	V16D = [A] (V16S),TM	Local V16D = [A] (V16S), dm
	V16D = [A] (V16S+),TM	Local V16D = [A] (V16S), dm then V16S += 1
	V16D = [A] V16S	Local V16D = [A] V16S

104

		
	V16D = [A] V16S,dm	Local V16D = [A] V16S, dm (la)
	V32D = [A] V32S,dm	Local V32D = [A] V32S, dm (la)
	V32D = [A] (V16S),TM	Local V32D = [A] (V16S),TM
	V32D = [A] (V16S+),TM	Local V32D = [A] (V16S),TM then V16S += 2
	V32D = [A] V32S	Local V32D = [A] V32S
ADDGRID	ADDGRID V16	Add Group ID = V16
	ADDGRID val16	Add Group ID = val16
AXISID	AXISID val16	AXIS ID = val16
	AXISID V16	AXIS ID = V16
CANBR	CANBR val16	Set CAN-bus Baud-Rate
GROUPID	GROUPID val16	GROUP ID = val16
REMGRID	REMGRID V16	Remove Group ID = V16
	REMGRID val16	Remove Group ID = val16

Table 4.9. Miscellaneous group

Mnemonic	Syntax	Description
BEGIN	BEGIN	BEGIN of a TML program
CHECKSUM	CHECKSUM, TM Start, Stop, V16D	V16D=Checksum between Start and Stop addresses from TM
INITCAM	INITCAM addrS, addrD	Copy CAM table from SPI (addrS address) to RAM (addrD address)
END	END	END of a TML program
NOP	NOP	No Operation
SCIBR	SCIBR V16	Set SCI Baud Rate
	SCIBR val16	Set SCI Baud Rate
SPIBR	SPIBR V16	Set SPI Baud Rate
	SPIBR val16	Set SPI Baud Rate

Table 4.10 On line group

Mnemonic	Syntax	Description
?	?V16	GiveMeData - 16-bit from SRAM data memory
	?V32	GiveMeData - 32-bit from SRAM data memory
		GiveMeData - 16-bit from SRAM program memory
		GiveMaData - 32-bit from SRAM program memory
		GiveMeData - 16-bit from EEPROM program memory
		GiveMeData - 32-bit from EEPROM program memory
		TakeData requested with GiveMeData - 16-bit data
		TakeData requested with GiveMeData - 32-bit data
		Get a 16-bit TML data (address range 200-3FFh)
		Get a 32-bit TML data (address range 200-3FFh)
		Take the 16-bit TML data requested with Get a 16-bit TML
		Take the 32-bit TML data requested with Get a 32-bit TML

© Technosoft 2006

105

Take a 32-bit TML data (address range 200-3FFh)
Get version
Answer to Get version

4.1 TML instruction set description

This paragraph presents for each TML instruction: mnemonic, arguments, binary code and programming examples. TML instructions are ordered alphabetically. Instructions descriptions may contain specific symbols. Their significance is presented in Table 4.11. The information is grouped as follows:

- instruction name
- syntax
- operands
- type
- binary code
- description
- execution
- example

Symbols	Description
&Label	Address of TML program label
&V16	Address of a 16-bit integer variable
&V32	Address of a 32-bit long or fixed variable
(V16)	Memory location at address equal with V16 value
(la)	Long addressing. Source/destination operand provided with 16-bit address. Some TML instructions using 9-bit short addressing are doubled with their long addressing equivalent
9LSB(&V16)	The 9 LSB (less significant bits) of the address of a 16-bit integer
9LSB(&V32)	The 9 LSB (less significant bits) of the address of a 32-bit long or fixed
A	Axis ID
A/G	Axis ID or Group ID
ANDdis	16-bit AND mask. See Table MCRx & AND/OR masks for DISIO#n and
	Table MCRx & PxDIR addresses
ANDen	16-bit AND mask. See Table MCRx & AND/OR masks for ENIO#n and
	Table MCRx & PxDIR addresses
ANDin	16-bit AND mask. See Table AND/OR masks for SETIO#n IN
ANDm	16-bit user-defined AND mask
ANDout	16-bit AND mask. See Table AND/OR masks for SETIO#n OUT
ANDrst	16-bit AND mask. See Table AND/OR masks for ROUT#n

© Technosoft 2006

106

ANDset	16-bit AND mask. See Table AND/OR masks for SOUT#n
Bit_mask	16-bit AND mask. See Tables PxDIR & Bit_mask for V16=IN#n and
	table MCRx & PxDIR addresses
D_ref	32-bit fixed value
D_time	16-bit value
Flag	Condition Flag for GOTO/CALL
LengthMLI	Length of a TML instruction code in words – 1
MCRx	See Tables MCRx & AND/OR masks for ENIO#n / DISIO#n and
	Table MCRx & PxDIR addresses
ORdis	16-bit OR mask. See Table MCRx & AND/OR masks for DISIO#n and
	Table MCRx & PxDIR addresses
ORen	16-bit OR mask. See Table MCRx & AND/OR masks for ENIO#n and
	Table MCRx & PxDIR addresses
ORin	16-bit OR mask See Table AND/OR masks for SETIO#n IN
ORm	16-bit user-defined OR mask
ORout	16-bit OR mask. See Table AND/OR masks for SETIO#n OUT
ORrst	16-bit OR mask. See Table AND/OR masks for ROUT#n
ORset	16-bit OR mask. See Table AND/OR masks for SOUT#n
PxDIR	See Table PxDIR & Bit_msk for V16=IN#n and Table MCRx & PxDIR addresses
РМ	Data memory space: 200 – 3FFh/800 – 9FFh (internal), 8000 – FFFFh (external)
DM	Program memory space: 8000 – FFFFh (external)
SPI	SPI-E2ROM memory space: 4000h – 7FFFh (external)
ТМ	Type of memory. When used in syntax TM should be replaced by <i>DM</i> or <i>PM</i> or <i>SPI</i> . When used in code, see Table TM values.
VAR16	16-bit integer variable
VAR16D	16-bit integer variable used as destination
VAR16S	16-bit integer variable used as source
VAR32	32-bit long or fixed variable
VAR32(L)	16LSB of a 32-bit long or fixed variable (seen as a 16-bit integer)
VAR32(H)	16MSB of a 32-bit long or fixed variable (seen as a 16-bit integer)
VAR32D	32-bit long or fixed variable used as destination
VAR32S	32-bit long or fixed variable used as source
value16	16-bit integer value
value32	32-bit long or fixed value
value32(L)	16LSB of a 32-bit long or fixed value
value32(H)	16MSB of a 32-bit long or fixed value

107

Name	?	Get data - On line commands send by a host + the answers
		(On-line group)

Syntax

GiveMeData - 16-bit from SRAM data memory
GiveMeData - 32-bit from SRAM data memory
GiveMeData - 16-bit from SRAM program memory
GiveMaData - 32-bit from SRAM program memory
GiveMeData - 16-bit from EEPROM program memory
GiveMeData - 32-bit from EEPROM program memory
TakeData requested with GiveMeData - 16-bit data
TakeData requested with GiveMeData - 32-bit data
Get a 16-bit TML data (address range 200-3FFh)
Get a 32-bit TML data (address range 200-3FFh)
Take the 16-bit TML data requested with Get a 16-bit TML
Take the 32-bit TML data requested with Get a 32-bit TML
Get version
Answer to Get version request

Operands VAR16: integer variable VAR32: long/fixed variable

Туре	TML program	On-line
	-	Х

Binary code

?VAR16 – GiveMeData – 16-bit from SRAM data memory

1 0 1 0 0 0 0 0 0 0 1 0 0 Expeditor AxisID Data memory address from where to read data requested (&VAR16)	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	1	0	1	1	0	0	0	0	0	0	0	0	0	1	0	0
Data memory address from where to read data requested $(\&)(AR16)$							Ex	pedito	r Axisl	ID						
			Dat	a men	nory a	ddress	from	where	to rea	d data	reque	ested (&VAR	(16)		

?VAR32 - GiveMeData - 32-bit from SRAM data memory

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
1	0	1	1	0	0	0	0	0	0	0	0	0	1	0	1
-		_			-	Ex	pedito	or Axis	ID	-	-		_	-	
		Dat	a men	nory ad	ddress	from v	where	to read	d data	reque	sted (a	&VAR	32)		

© Technosoft 2006

108

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
1	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0
							pedito								
		SR	AM pro	ogram	memo	ory add	dress fi	rom w	here to	o read	data	reques	sted		
ive	MeDat	a – 32		om SR		ML pro	ogram	mem	ory						
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
1	0	1	1	0	0	0	0	0	0	0	0	0	0	0	1
							pedito								
		SR	AM pro	ogram	memo	ory add	dress fi	om w	here to	o read	data	reques	sted		
_															
							progr	_	emory		_	_	_		_
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
1	0	1	1	0	0	0	0	0	0	0	0	1	0	0	0
							pedito								
		EEPF	ком р	rogran	n mer	nory a	ddress	from	where	to rea	ad dat	a requ	ested		
							progr				_	-	-		_
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
									-					1	-
1	0	1	1	0	0	0	0	0	0	0	0	1	0	0	1
	0	1		0	0	Ex	0 cpedito	0 r Axis	0	0	0	1	0	1	1
	0	1		0	0	Ex	0	0 r Axis	0	0	0	1	0	1	1
1		1 EEPF	ROM p	0 rogran	0 n mer	Ex nory a	0 pedito ddress	0 r Axis from	0	0	0	1	0	1	1
1 ake	Data r	1 EEPF eques	ROM p	0 rograr	0 n mer reMeD	Ex nory a	0 pedito ddress 16-bit	0 r Axis from data	0 ID where	0 to rea	0	1 a requ	0 ested	1	
1 ake 15	Data r	1 EEPF eques 13	ROM p ted wi 12	0 rograr ith Giv 11	0 n mer reMeD 10	Ex nory a ata – 9	0 ddress 16-bit 8	0 r Axis from data 7	0 ID where 6	0 to rea 5	0 ad data	1 a requ 3	0 ested 2	0	0
1 ake	Data r	1 EEPF eques	ROM p	0 rograr	0 n mer reMeD	Ex nory a ata – 9 0	0 ddress 16-bit 8 0	0 r Axis from data 7 0	0 ID where 6 0	0 to rea	0 ad data	1 a requ	0 ested	0	
1 ake 15	Data r 14 0	EEPF eques 13 1	ROM p ted wi 12 1	0 rograr ith Giv 11 0	0 n mer 7eMeD 10 1	Ex nory a ata – 9 0 Ex	0 ddress 16-bit 8 0 spedito	0 r Axis from data 7 0 r Axis	0 Where 6 0	0 to rea 5 0	0 ad data 4 0	1 a requ 3 0	0 ested 2 1	0 1 0	0
1 ake 15	Data r 14 0	EEPF eques 13 1	ROM p ted wi 12 1	0 rograr ith Giv 11 0	0 n mer 7eMeD 10 1	Ex nory a ata – 9 0 Ex m or E	0 pedito ddress 16-bit 8 0 pedito EPRC	0 r Axis from data 7 0 r Axis M me	0 D where 6 0 D mory a	0 to rea 5 0	0 ad data 4 0	1 a requ 3 0	0 ested 2 1	0 1 0	0
1 ake 15	Data r 14 0	EEPF eques 13 1	ROM p ted wi 12 1	0 rograr ith Giv 11 0	0 n mer 7eMeD 10 1	Ex nory a ata – 9 0 Ex m or E	0 ddress 16-bit 8 0 spedito	0 r Axis from data 7 0 r Axis M me	0 D where 6 0 D mory a	0 to rea 5 0	0 ad data 4 0	1 a requ 3 0	0 ested 2 1	0 1 0	0
1 ake 15 1	Data r/ 14 0 S	1 EEPF eques 13 1 RAM (ted wi 12 1 data, S	0 ith Giv 11 0 RAM	0 reMeD 10 1 progra	Ex nory a ata – 9 0 Ex m or E	0 ddress 16-bit 8 0 EPRC ata rec	0 r Axis from data 7 0 r Axis DM me jueste	0 D where 6 0 D mory a	0 to rea 5 0	0 ad data 4 0	1 a requ 3 0	0 ested 2 1	0 1 0	0
ake 15 1	Data ro 14 0 S	1 EEPF eques 13 1 RAM (ted wi	0 ith Giv 11 0 GRAM	0 reMeD 10 1 progra	Ex nory a ata – 9 0 Ex m or E D ata –	0 ddress 16-bit 8 0 spedito EPRC ata rec 32-bit	0 r Axis from data 7 0 r Axis 0M me jueste data	0 D where 6 0 D mory a d	0 to rea 5 0 addres	0 ad data 4 0 ss of d	a requ 3 0 lata re	0 ested 2 1 queste	0 1 0 ed	0
1 ake 15 1 ake 15	Data ro 14 0 S Data ro 14	1 EEPF eques 13 RAM (eques 13	ted wi 12 1 data, S ted wi 12	0 ith Giv 11 0 SRAM	0 reMeD 10 1 progra reMeD 10	Ex nory a ata – 9 0 Ex m or E D ata –	0 ddress 16-bit 8 0 spedito EPRC ata rec 32-bit 8	0 r Axis from data 7 0 r Axis DM me jueste data 7	0 D where 6 0 D mory a d	0 to rea 5 0 addres 5	0 ad data 4 0 ss of d	a requ 3 0 lata re 3	0 ested 2 1 queste	0 1 0 ed	0
ake 15 1	Data ro 14 0 S	1 EEPF eques 13 1 RAM (ted wi	0 ith Giv 11 0 GRAM	0 reMeD 10 1 progra	Ex nory a ata – 9 9 0 Ex m or E D ata – 9 9 0	0 ddress 16-bit 8 0 cpedito cEPRC ata rec 32-bit 8 0	0 r Axis from data 7 0 r Axis DM me jueste data 7 0	0 D where 6 0 D mory a d 6 0	0 to rea 5 0 addres	0 ad data 4 0 ss of d	a requ 3 0 lata re	0 ested 2 1 queste	0 1 0 ed	0
1 ake 15 1 ake 15	Data ru 14 0 S Data ru 14 0	1 EEPF eques 13 1 RAM (eques 13 1 RAM (13 13 13 13 13 13 1	ROM p ted wi 12 1 data, S ted wi 12 1	0 ith Giv 11 0 RAM ith Giv 11 0	0 reMeD 10 1 progra reMeD 10 1	Ex nory a ata – 9 0 Ex m or E D ata – 9 0 Ex	0 ddress 16-bit 8 0 cpedito EPRC ata rec 32-bit 8 0 cpedito	0 r Axisi from data 7 0 r Axisi DM me jueste data 7 0 r Axisi	0 D where 6 0 c mory a d 6 0 D	0 to rea 5 0 addres 5 0	0 ad data 4 0 ss of d 4 0	1 a requ 3 0 lata re 3 0	0 ested 2 1 queste 2 1	0 1 0 ed 1 0	0
1 ake 15 1 ake 15	Data ru 14 0 S Data ru 14 0	1 EEPF eques 13 1 RAM (eques 13 1 RAM (13 13 13 13 13 13 1	ROM p ted wi 12 1 data, S ted wi 12 1	0 ith Giv 11 0 RAM ith Giv 11 0	0 reMeD 10 1 progra reMeD 10 1	Ex nory a ata – 9 0 Ex m or E 9 0 Ex m or E	0 spedito ddress 16-bit 8 0 spedito EPRC 32-bit 8 0 spedito EPRC	0 r Axisi from data 7 0 m Axisi ueste data 7 0 r Axisi 0 m me	0 D where 6 0 D mory a d D mory a	0 to rea 5 0 addres 5 0 addres	0 ad data 4 0 ss of d 4 0	1 a requ 3 0 lata re 3 0	0 ested 2 1 queste 2 1	0 1 0 ed 1 0	0
1 ake 15 1 ake 15	Data ru 14 0 S Data ru 14 0	1 EEPF eques 13 1 RAM (eques 13 1	ROM p ted wi 12 1 data, S ted wi 12 1	0 ith Giv 11 0 RAM ith Giv 11 0	0 reMeD 10 1 progra reMeD 10 1	Ex nory a 9 0 Ex m or E D ata – 9 0 Ex m or E 0 Ex m or E	0 ddress 16-bit 8 0 cpedito EPRC ata rec 32-bit 8 0 cpedito cpedito cePRC ata rec 32-bit 8 0	0 r Axis from data 7 0 r Axis 0 M me jueste data 7 0 r Axis 0 M me ed – 1	6 0 0 0 0 0 d 6 0 6 0 6 0 8 0 6 0 8 0 0 0 0 8 0 0 0 0	0 to rea 5 0 addres 5 0 addres	0 ad data 4 0 ss of d 4 0	1 a requ 3 0 lata re 3 0	0 ested 2 1 queste 2 1	0 1 0 ed 1 0	0
1 ake 15 1 ake 15	Data ru 14 0 S Data ru 14 0	1 EEPF eques 13 1 RAM (eques 13 1	ROM p ted wi 12 1 data, S ted wi 12 1	0 ith Giv 11 0 RAM ith Giv 11 0	0 reMeD 10 1 progra reMeD 10 1	Ex nory a 9 0 Ex m or E D ata – 9 0 Ex m or E 0 Ex m or E	0 spedito ddress 16-bit 8 0 spedito EPRC 32-bit 8 0 spedito EPRC	0 r Axis from data 7 0 r Axis 0 M me jueste data 7 0 r Axis 0 M me ed – 1	6 0 0 0 0 0 d 6 0 6 0 6 0 8 0 6 0 8 0 0 0 0 8 0 0 0 0	0 to rea 5 0 addres 5 0 addres	0 ad data 4 0 ss of d 4 0	1 a requ 3 0 lata re 3 0	0 ested 2 1 queste 2 1	0 1 0 ed 1 0	0
1 ake 15 1 ake 15 1	Data r 14 0 S Data r 14 0 S	EEPF eques 13 1 RAM (eques 13 1 RAM (COM p ted wi 12 1 data, S ted wi 12 1 data, S	0 ith Giv 11 0 SRAM ith Giv 11 0	0 n mer 2000 10 1 progra 2000 10 1 1 progra	Ex nory a ata – 9 0 Ex m or E 0 ata – 9 0 Ex 9 0 Ex Data re Data re	0 ddress 16-bit 8 0 EPRC ata rec 32-bit 8 0 EPRC ata rec 22-bit 8 0 EPRC ata rec 32-bit 8	0 r Axis from data 7 0 r Axis DM me jueste data 7 0 r Axis DM me ed – 1 ed – 1	0 1D where 6 0 1D mory a 6 0 1D mory a 6LSB 6MSB	0 to rea 5 0 addres 5 0 addres	0 ad data 4 0 ss of d ss of d	1 a requ 3 0 lata re 3 0	0 ested 2 1 queste 2 1	0 1 0 ed 1 0	0
1 ake 15 1 ake 15 1	Data r 14 0 S Data r 14 0 S	EEPF eques 13 1 RAM (eques 13 1 RAM (COM p ted wi 12 1 data, S ted wi 12 1 data, S	0 ith Giv 11 0 SRAM ith Giv 11 0	0 n mer reMeD 10 1 progra 2 0 0 10 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0	Ex nory a ata – 9 0 Ex m or E 0 ata – 9 0 Ex 9 0 Ex Data re Data re	0 ddress 16-bit 8 0 cpedito EPRC ata rec 32-bit 8 0 cpedito cpedito cePRC ata rec 32-bit 8 0	0 r Axis from data 7 0 r Axis DM me jueste data 7 0 r Axis DM me ed – 1 ed – 1	0 1D where 6 0 1D mory a 6 0 1D mory a 6LSB 6MSB	0 to rea 5 0 addres 5 0 addres	0 ad data 4 0 ss of d ss of d	1 a requ 3 0 lata re 3 0 lata re	0 ested 2 1 queste 2 1	0 1 0 ed 1 0	0
1 ake 15 1 ake 15 1	Data r 14 0 S Data r 14 0 S	EEPF eques 13 1 RAM (eques 13 1 RAM (COM p ted wi 12 1 data, S ted wi 12 1 data, S	0 ith Giv 11 0 SRAM ith Giv 11 0	0 n mer 2000 10 1 progra 2000 10 1 1 progra	Ex nory a ata – 9 0 Ex m or E 0 ata – 9 0 Ex 9 0 Ex Data re Data re	0 ddress 16-bit 8 0 EPRC ata rec 32-bit 8 0 EPRC ata rec 22-bit 8 0 EPRC ata rec 32-bit 8	0 r Axis from data 7 0 r Axis DM me jueste data 7 0 r Axis DM me ed – 1 ed – 1	0 where 6 0 1D mory a d 6 0 1D mory a 6LSB 6MSB e in ra 6	0 to rea 5 0 addres 5 0 addres 5 0 addres 5 5	0 ad data 4 0 ss of d ss of d ss of d 200-3F 4	1 a requ 3 0 lata re 3 0 lata re	0 ested 2 1 queste 2 1 queste	0 1 0 ed 1 0	0

Expeditor AxisID

Get a 32-bit TML data (the TML data address must be in range 200-3FFh)

© Technosoft 2006

109

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
1	0	1	0	0	1	0			(9	9LSBs	of &V	'AR321	D)		
						Ex	pedito	or Axis	ID						
Take	the 16	6-bit T	ML da	ta req	ueste	d with	Get 1	6-bit 7	ГML d	ata					
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
1	0	1	0	1	0	0			(9	9LSBs	of &V	'AR16l	D)		
						Ex	pedito	or Axisl	ID						
						Da	ata reo	queste	d						
Take	the 32	2-bit T	ML da	ta req	ueste	d with	Get 3	2-bit 1	ГML d	lata					
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
1	0	1	0	1	1	0			(9	9LSBs	of &V	'AR32l	D)		
						Ex	pedito	or Axis	ID						
					[Data re	equest	ed – 1	6 LSB	3					
					Γ	Data re	quest	ed – 1	6 MSE	3					
Get v	rsior	ו													
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
1	1	0	1	1	0	0	0	0	0	0	0	0	0	0	1
						Ex	pedito	or Axis	ID						
	ver to	get ve	rsion	reque	st										
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
1	1	0	1	1	0	0	0	0	0	0	0	0	0	0	1
								or Axis							
						e of fir									
			ASC	CII cod	e of la	st digit	+ revi	ision le	etter of	f the fi	rmwar	e ID			

Description These instructions allow a host to interrogate a MotionChip II based drive in order to find the contents of any TML data as well as the value of any memory location from the TML program space (EEPROM or SRAM) or from the SRAM data space. The Get version command offers the possibility to check find which is the firmware version of the drive. The firmware version has the form: FxyzA, where xyz is the firmware number (3 digits) and A is a letter for the revision

Execution Return the answer messages

© Technosoft 2006

MotionChip II TML Programming

110

			!APO Set event when motor absolute position is over a given value												
Name	9	!Al	(Event group)												
													(8	vent g	group)
Synta	ax	_							_			_	-		
				alue32						if Abs					
		<u>!</u> A	PO V	AR32					! i	if Abs	P ositio	nOver	VAR	32	
Opera	ands	VA	AR32:	long va	ariable	:									
		va	lue32	: 32-bit	long i	mmed	iate va	alue							
Туре				rogran	n	On-li	ine								
				X		X									
Binar	y cod	е													
!APO	value	232	12 11 10 9 8 7 6 5 4 3 2 1 0												
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	1	1	1	0	0	0	0	1	0	0	1	0	0	1	0
0	0	0	0	0	0	1	0	0	0	1	0	1	0	0	0
								(value	,						
						HIM	/ORD	(value	32)						
	VAR	32													
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	1	1	1	0	0	0	1	1	0	0	1	0	0	1	0
0	0	0	0	0	0	1	0	0	0	1	0	1	0	0	0
	•	•	•	•	•	•	&VA	-	•	•	•	•	•	•	
Desc	riptior	n Pr	oaram	n the d	letectio	on of t	he ev	ent wł	nen th	e mot	or pos	sition i	s area	ter that	on the
								• · · · · · ·			•. p•••		- g		an me
					5. AII	update	e on e	event (JPD!)	must	be us		
									comm	and (l				ed in	these
				n order					comm	and (l				ed in	these
Exec	ution	ca	ses, ir		to act	ivate a	in <i>upd</i>	<i>late</i> op	comm eratio	and (l n whe	n the i	monitc	ored ev	ed in ent oc	these curs.
Exec	ution	ca	ses, ir	n order the s	to act	ivate a	in <i>upd</i>	<i>late</i> op	comm eratio	and (l n whe	n the i	monitc	ored ev	ed in ent oc	these curs.
Exec	ution	ca Ac re:	ses, ir ctivate spectiv	n order the s	to act etting	ivate a of an	an <i>upd</i> even	<i>late</i> op t whe	comm eratio n mot	and ((n whe tor po	n the i	monito >= va	ored ev alue32	ed in rent oc or V	these curs.
Exec	ution	ca Ac re: Th	ses, ir ctivate spectiv ie bits	n order the s vely.	to act etting d 11 of	ivate a of an f the Ti	an <i>upd</i> even ML mo	<i>late</i> op t whe otion s	comm eratio n mot tatus i	and ((n whe tor po registe	n the i sition er (MS	monitc >= va R) are	red ev alue32 reset.	ed in vent oc or V	these curs.
Exec	ution	ca Ac re: Th	ses, ir ctivate spectiv ie bits	the svely. 14 and	to act etting d 11 of	ivate a of an f the Ti	an <i>upd</i> even ML mo	<i>late</i> op t whe otion s	comm eratio n mot tatus i	and ((n whe tor po registe	n the i sition er (MS	monitc >= va R) are	red ev alue32 reset.	ed in vent oc or V	these curs.
Exec		ca Ac re: Th Th	ses, ir ctivate spectiv ie bits	the svely. 14 and the svely.	to act etting d 11 of	of an of an the Tl s a pre	n <i>upd</i> even ML mo vious	late op t whe otion s progra ratic	comm eratio n mot tatus r amme on co	and ((n whe tor po registe d ever	n the i sition er (MS nt that	monito >= va R) are has oo	alue32 reset. ccurre	ed in vent oc or V d.	these curs. AR32,
		ca Ac re: Th Th	ses, ir ctivate spectiv ie bits is ope	the svely. 14 and the svely.	to act etting d 11 of	of an f the Tl s a pre //Ac //(c	n <i>upd</i> even ML mo evious ccele	late op t whe otion s progra ratic s/sam	comm eratio n mot tatus r amme amme on co nplin	and ((n whe tor po registe d ever	n the i sition er (MS nt that d for	monito >= va R) are has or spee	red ev alue32 reset. ccurred ed pr	ed in vent oc or V d.	these curs. AR32,
		CA	ses, ir spectivate spectiv ie bits iis ope CC = SPD =	the svely. 14 and ration 1.5; 20;	to act etting d 11 of	ivate a of an f the TI s a pre //Ac //(c //Sp	even even ML mo evious ccele count	t whe t whe ption s progra ratic s/san comma	comm eratio n mot tatus r amme on co oplin and (and (I in whe tor po registe d ever mmano (g ²) count	n the i sition er (MS ht that d for ts/sa	monito >= va R) are has of spee	red ev alue32 reset. ccurred ed pr	ed in vent oc or V d.	these curs. AR32,
		Ca Ac Th Th CA Ca	ses, ir spectivate spectiv ie bits iis ope CC = SPD = DDE S	the svely. 14 and ration 1.5; 20;	to act etting d 11 of	ivate a of an f the TI s a pre //Ac //(c //Sp //Se	even even ML mo evious ccele count peed et Sp	date op t whe ption s progra ratic s/san comma eed I	comm eratio n mol tatus r amme on co aplin and (Profi	and (I in whe tor po registed d ever count le Mo	n the i sition er (MS ht that d for ts/sa	monito >= va R) are has of spee	red ev alue32 reset. ccurred ed pr	ed in vent oc or V d.	these curs. AR32,
		CA Ac Th Th CA CA CS MC	ses, ir spectivate spectivate bits is ope CC = SPD = DDE S PD;	the svely. 14 and eration 1.5; 20; P1;	to act etting d 11 of	ivate a of an f the TI s a pre //Ac //(c //Sp //Se //Up	even ML mo evious ccele count ccele count ccele count ccele count	date op t whe ption s progra ratic s/san comma eed I imme	comm eratio n mot tatus r amme on co oplin and (Profi ediat	and (n whe tor po registe d ever count le Mo	n the i sition er (MS nt that d for ts/sa ode 1	monitc >= va R) are has or spec mplin	red ev alue32 reset. ccurred ed pr	ed in ventoc or V. d. ofile	these curs. AR32,
		CA Ac Th Th CA CA CS MC UH CS	ses, ir spectivate spectivate bits ope cc = SPD = SPD = SPD = SPD =	the svely. 14 and eration 1.5; 20; P1; 40;	to act etting d 11 of erases	ivate a of an f the TI s a pre //Ac //Cs //Ss //Us //Us	ML mo even ML mo evious ccele count count ccele count	t whe btion s progra ratic s/san comma eed I imme eed c	comm eratio n mot tatus r amme on co nplin and (Profi ediat	and ((n whe tor po registe d ever ommand g ²) count .le Mo .e .nd (o	n the i sition er (MS nt that d for ts/sa ode 1 count	monitc >= va R) are has of spee mplin	red ev alue32 reset. ccurred ed pr ng) mplin	ed in ventoc or V. d. ofile g)	these curs. AR32,
		CA Ac Th Th CA CA CS MC UH CS	ses, ir spectivate spectivate bits ope cc = SPD = SPD = SPD = SPD =	the svely. 14 and eration 1.5; 20; P1;	to act etting d 11 of erases	ivate a of an f the TI s a pre //Ac //(c //Sg //Se //Ug //Ne //Ne	ML mo even ML mo evious ccele count beed et Sp odate ew sp et ev	t whe btion s progra ratic s/san comma eed F imme eed c ent v	comm eratio n mot tatus r amme on co nplin and (Profi ediat	and (n whe tor po registe d ever count le Mo	n the i sition er (MS nt that d for ts/sa ode 1 count	monitc >= va R) are has of spee mplin	red ev alue32 reset. ccurred ed pr ng) mplin	ed in ventoc or V. d. ofile g)	these curs. AR32,
		CA Free Th Th CA CA CA CA CA CA CA CA CA CA CA CA CA	ses, ir spectivate spectivate bits ope cc = SPD = SPD = SPD = SPD = APO 6	the svely. 14 and eration 1.5; 20; P1; 40;	to act etting d 11 of erases	ivate a of an f the TI s a pre //Ac //(c //Sg //Se //Ug //Ne //Ne //Se	ML mo even ML mo evious ccele count beed et Sp beat evident evident evident evident evident evident evident evident evident even	t whe t whe ption s progra ratic s/san comma eed I imme eed c ent v s)	comm eratio n mot tatus r amme on con plin and (Profi ediat comma when	and (I in whe tor po registed d ever ommand (g ²) count le Mo e absol	n the i sition er (MS nt that d for ts/sa ode 1 count	monitc >= va R) are has of spee mplin	red ev alue32 reset. ccurred ed pr ng) mplin	ed in ventoc or V. d. ofile g)	these curs. AR32,
		CA Free Th Th CA CA CA CA CA CA CA CA CA CA CA CA CA	ses, ir spectivate spectivate bits ope cc = SPD = SPD = SPD = SPD =	the svely. 14 and eration 1.5; 20; P1; 40;	to act etting d 11 of erases	ivate a of an f the TI s a pre //Ac //(c //Sg //Se //Ug //Ne //Ne //Se	ML mo even ML mo evious ccele count beed et Sp beat evident evident evident evident evident evident evident evident evident even	t whe btion s progra ratic s/san comma eed F imme eed c ent v	comm eratio n mot tatus r amme on con plin and (Profi ediat comma when	and (I in whe tor po registed d ever ommand (g ²) count le Mo e absol	n the i sition er (MS nt that d for ts/sa ode 1 count	monitc >= va R) are has of spee mplin	red ev alue32 reset. ccurred ed pr ng) mplin	ed in ventoc or V. d. ofile g)	these curs. AR32,

111

	9	!AI	PU		Set ev	ent wł	hen mo	otor at	solute	e positi	on is	under	-	n valu Event	
Synta	ax		NPU Vá NPU V	alue32 AR32						if AbsF if AbsF					
Opera	ands			long v 32-bit			liate va	lue							
Туре				rograr X	n	On-l X									
Binar	ry code	!													
APU! 15	value3 14	2 13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	1	1	1	0	0	0	0	1	0	0	0	0	0	1	1
0	0	0	0	0	0	1		0	0	1	0	1	0	0	0
							VORD		,						
						1 11 V	VOIND	value	52)						
	VAR32		40		40	•	•	-	•	-		•	•		•
<u>15</u> 0	14 1	<u>13</u> 1	12 1	11 0	10 0	9 0	8	<u>7</u> 1	6 0	5 0	<u>4</u> 0	3	2	1	0
0	0	0		0	0	1					U				-
	•		0		U U		U U	0	0	1	0	1	0	0	0
		U	0	U	U	I	0 &VA	0 R32	0	1	0	1	0	0	0
	ription ution	Pr sp ca Ac res	ogram ecified ises, ir ctivate spectiv ne bits	the d value order the s vely. 15 and	letectione. An to act etting d 14 of	on of t <i>update</i> ivate a of an f the T	&VA the even e on e an upd n even ML mo	R32 ent whe event of ate op t whe otion s	nen th comm eratio n mor tatus	e moto and (l n when tor pos	or pos JPD!) n the i sition r (MS	sition is must monito <= va R) are	s sma be us red ev alue32 reset.	ller th sed in vent of or V	an th thes
	ution	Pr sp ca Ac res Th Th CA CS UP CS	ogram pecifiec spectivate spectiv ne bits nis ope CC = PD = DE SE D; PD =	the d value order the s vely. 15 and ration 1.5; -20; 21; -40;	letection to act etting d 14 of erase	on of t update ivate a of an f the T s a pre //Ac //Ac //Sc //Us //Se //Us	&VA the even e on e an upd a even ML mo evious ccele count peed et Sp podate ew sp	R32 ent whe event of ate op t whe otion s progra ratic s/san comma eed f imme eed of	nen th comm peratio n mo tatus n amme on co mplin and (Profi ediat	e moto and (L n when tor pos registe d even g ²) count le Mo e nd (co	or pos JPD!) in the i sition r (MS t that t for t s/sa ode 1	sition is must monito <= va R) are has ou spee mplir	s sma be us red ev alue32 reset. ccurred ed pr ng)	ller th sed in vent of or V d.	an thes ccurs ⁄AR3
Exec	ution	Pr sp ca Ac re: Th Th CA CS: MOI UPI CS: 1A	ogram pecifiec spectivate spectiv ne bits nis ope CC = PD = DE SE D; PD =	the d value order the s vely. 15 and ration 1.5; -20;	letection to act etting d 14 of erase	on of t update ivate a of an f the T s a pre //Ac //Ac //Sc //Us //Se //Us	&VA the even e on e an upd a even ML mo evious ccele count peed et Sp podate ew sp	R32 ent whe event of ate op t whe otion s progra ratic s/san comma eed f imme eed of	nen th comm peratio n mo tatus n amme on co mplin and (Profi ediat	e moto and (L n when tor pos registe d even g ²) count le Mo	or pos JPD!) in the i sition r (MS t that t for t s/sa ode 1	sition is must monito <= va R) are has ou spee mplir	s sma be us red ev alue32 reset. ccurred ed pr ng)	ller th sed in vent of or V d.	an thes ccurs ⁄AR3

112

Name	!AT		Set ev	ent wi	nen ab	solute	time	is grea	iter tha	an a gi		alue E <i>vent</i>	grou
Syntax											-		
	!AT va							if Abso					
	!AT <i>V</i> /	R32					!	if Abso	olute T i	me >=	VAR	32	
Operands	VAR32 value32	•			iate va	alue							
Туре	TML	prograr	n	On-l	ine								
		X		Х									
Binary code													
AT value32													
<u>15 14</u>	13 12	11	10	9	8	7	6	5	4	3	2	1	0
0 1	1 1	0	0	0	0	1	0	0	1	1	0	0	0
0 0	0 0	0	0	1	0	1	1	0	0	0	0	0	0
					VORD		,						
				HIV	VORD	(value	32)						
AT VAR32 15 14 0 1	<u>13 12</u> 1 1	<u>11</u> 0	<u>10</u> 0	9	8	7	6 0	5	4	3	2	1	0
0 0	0 0	0	0	1	0	1	1	0	0	0	0	0	0
		v	v	•	&VA	•	•	Ŭ	v	v	v	v	v
Description	Program the specture cases,	cified v in orde	alue. / to act	An <i>upc</i> ivate a	date or an upd	n ever late op	<i>it</i> com eratio	mand on whe	(UPD n the i	!) mus monito	t be u ored ev	sed in /ent o	thes ccurs
Execution	Activate VAR32 The bits This op	, respe s 15 an	ctively. d 14 of	f the T	ML mo	otion s	tatus	registe	r (MS	R) are	reset.		32 0
Example	CACC =	1.5;			ccele			ommano	d for	spe	ed pr	ofil	е
	CSPD	= 20;		//Sp				count			ng)		
		CD1 ·		110					-de 1				
	MODE	SPII			et Sp	eed I	Profi		Jue				
	UPD;			//Up	et Sp pdate	eed I imme	Profi ediat	e				,	
		= 40;		//U] //Ne //Se	et Sp pdate ew sp et ev	eed I imme eed o ent v	Profi ediat comma vhen		count Lute	.s/sat			r

113

Name	!CAP Set ev	vent when a ca	pture is tri	ggere	d		(E	Event g	group)
Syntax	!CAP		! i	if CAP	ture tr	iggere	d		
Operands	-								
Туре	TML program	On-line X]						
Binary code									
15 14 0 1 Description	131211101100Program the detecti encoder index – CA triggered by the DS these cases, in orde occurs.	API, or from s P. An <i>update</i>	second en on event	coder comm	– 2C nand (API) v UPD!)	vas d must	etecte be us	d and sed in
Execution	Activate the setting o The bits 15 and 14 of				-				
Example	This operation erases CACC = 1.5; CSPD = 20; MODE SP1; UPD; ENCAPI0; CSPD = 40; !CAP; UPD!;	s a previous p //Accelera //(counts //Speed cd //Set Sped //Update a //Activate //transita //New sped //Set even //Update d	ation co /samplin ommand (ed Profi immediat e CAPI i ions. ed comma nt when	ommand ug ²) count le Mo ce nput und (o captu	d for ts/sa ode 1 to t count	spee mplin rigge s/sam	ed pr ng) er a nplin	ofile falli g)	

© Technosoft 2006

Name	!IN#n Set ev	ent when data fro	om input #n is 0 or	1 (Event group)
Syntax	!IN#n 0 !IN#n 1		! if In put# <i>n</i> is ! if In put# <i>n</i> is	5 0
Operands	<i>n</i> : bit-port number (0·	<=n<=39)		
Туре	TML program X	On-line X		
Binary code				
	3 12 11 10 1 1 0 0	9 8 7 0 0 1 <i>PxDATDIR</i> Bit_mask	6 5 4 1 0 1	3 2 1 0 1 0 1 1
! IN# n 1				
	<u> 3 12 11 10</u> 1 1 0 0	9 8 7 0 0 1	<u>6 5 4</u> 1 0 1	<u>3 2 1 0</u> 1 0 1 0
		PxDATDIR		
		Bit_ mask		
Description	becomes 0, respectiv	ely 1. An update	on event comman	ad from input bit-port #n d (UPD!) must be used in /hen the monitored event
Execution	Activate the setting becomes 0 (!IN#n 0) The bits 15 and 14 of This operation erases	or 1 (!IN#n 1), res f the TML motion	spectively. status register (M \$,
Example	CACC = 1.5; CSPD = 20; MODE SP1; UPD; CSPD = 40; !IN#38 1; UPD!;	//(counts/sa //Speed comm //Set Speed //Update imm //New speed	mpling ²) and (counts/s Profile Mode ediate command (coun if INput#38 is	1 ts/sampling)

115

PxDAT & Bit_ma	sk for !IN#n 0 a	and !IN#n 1
#n	PxDATDIR	Bit_mask
#0	0x7098	0x0001
#1	0x7098	0x0002
#2	0x7098	0x0004
#3	0x7098	0x0008
#4	0x7098	0x0010
#5	0x7098	0x0020
#6	0x7098	0x0040
#7	0x7098	0x0080
#8	0x709A	0x0001
#9	0x709A	0x0002
#10	0x709A	0x0004
#11	0x709A	0x0008
#12	0x709A	0x0010
#13	0x709A	0x0020
#14	0x709A	0x0040
#15	0x709A	0x0080
#16	0x709C	0x0001
#17	0x709C	0x0002
#18	0x709C	0x0004
#19	0x709C	8000x0

#n	PxDATDIR	Bit_mask
#20	0x709C	0x0010
#21	0x709C	0x0020
#22	0x709C	0x0040
#23	0x709C	0x0080
#24	0x709E	0x0001
#25	0x7095	0x0001
#26	0x7095	0x0002
#27	0x7095	0x0004
#28	0x7095	0x0008
#29	0x7095	0x0010
#30	0x7095	0x0020
#31	0x7095	0x0040
#32	0x7095	0x0080
#33	0x7096	0x0001
#34	0x7096	0x0002
#35	0x7096	0x0004
#36	0x7096	0x0008
#37	0x7096	0x0010
#38	0x7096	0x0020
#39	0x7096	0x0040

© Technosoft 2006

MotionChip II TML Programming

116

Name	•	!	LSN			Se	t ev	ent w	hen	ne	gative	e limi	t s	witch	beco	mes	s ac		Even	nt a	roup)
Synta	x		!LSN										! if	Limit	: S witc	h N e	egat	ive ac			
Opera	ands		_																		
Туре			TML	pr X	ograr (n		On-													
Binar	y code	9																			
15	14	13	12		11	1	0	9	8		7	6		5	4		3	2	1		0
0	1	1	1		0	(0	0	0		0	0		0	0		1	1	0		0
	ription		Progra becom cases,	in	activ orde	/e. r to	An acti	<i>upda</i> ivate a	te oi an uj	n e pda	event ate o	com perat	ma ion	and (whe	UPD! n the) m moi	ust nito	be us red ev	ed vent	in i oco	these curs.
Exect	ution		Activat The bit This or	ts 1	15 an	d 1	4 of	the T	ML	mo	tion s	status	sre	egiste	r (MS	R) a	are	reset.		tiv	e.
Exam	ple		CACC CSPD MODE UPD; ENLSN edge CSPD !LSN; UPD!;	= SF J1;	1.5 -20 21;	;		//A4 //(4 //S9 //U9 //N4 //N4 //N4 //N4	ccel cour peec et s pdat egat egat et e each	lei nts d c Spe ze ze ze spe eve	cati s/sa comm eed imm re eed ent	on c mpli and Prof edia Limi	ing (c ii] ite it	nmano g ²) count le Mo e Sw nd (o	d for cs/sa ode i itch count	s amp l t t s/	pee lin tri sam	ed pr	ofi s g)	ri	sing

© Technosoft 2006

Name	•	!L	SP		Set ev	ent wh	ien po	sitive	limit sv	witch t	becom	ies act		Event	group)				
Synta	X	!L	.SP						! if LimitSwitchPositive active										
Opera	ands	-																	
Туре				rogran X	n	On-li X													
Binar	y code	9																	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0				
0	1	1	1	0	0	0	0	0	0	0	0	1	1	0	1				
	ription	be ca	ecome ases, ir	the d s activ order	e. An to act	<i>updat</i> ivate a	e on e in upda	event ate op	comm peration	and (n whe	UPD!) n the i	must monito	be us red ev	ed in ent oc	these curs.				
Execu	ution	Tł	ne bits	the se 15 and tration	d 14 of	the TI	ML mo	tion s	tatus r	egiste	r (MS	R) are	reset.		е.				
Exam	ple	Ci Mi Ui Ei Ci	SPD = ODE S PD; NLSP1	P1;			//p //S //U //T //T //N //S	profi Speed Set S Jpdat Sosit Set e Set e Set e	le (d com peed e im ive l g edg peed event	count mand Prof media Limit ge comm if F	s/san (cou ile te Swi nand Posit	mplin nts/s Mode tch t (cour	ampl:	ing) ers ampli	-				

© Technosoft 2006

Name	e	! M	С		Set ev	ent wl	nen the	e actu	al mot	ion is	compl	eted		Event	group)	
													(group)	
Synta	ax															
		!N	IC						!(set ev	ent) if	Motio	ר C om	plete		
Oper	ands	-														
Tuno				roaran	n	On-l	ino	_								
Туре		-	<u>TML p</u>	X X		<u> </u>		-								
	_															
Bina	ry code	•														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
0	1	1	1	0	0	0	0	0	0	0	0	1	1	1	1	
Desc	ription	со	mplete	ed. An	updat	e on e		omma	nd (U	PD!) r	nust b	e usec	l in the	ese ca	nce is ses, in	
Exec	ution	Th	ne bits	15 an	d 14 o	f the T	vent wl ML mo evious	tion s	tatus	registe	er (MS	r) are	reset		ted.	
Exam	nple															
		CA	ACC =	1.5;	;					ion	comm s/sa		for	pos	ition	
		CS	SPD =	40;										profi	ile	
		~		F 0 0 0			//(cour	its/s	ampli	ing)					
			POS = PA;	5000	; 0,						and (and i			ē		
			DDE P	P3;					-		Profi					
		UI	PD;							media		-	-			
			POS =	1000)00;						comma					
			AC;								n Mot	ionCo	omple	ete		
		UI	PD!;				//t	pdat	ate on event							

© Technosoft 2006

Name	;	!R	0		Set ev	vent wl	hen the	e refer	ence i	s grate	er thar	n a giv	en val (E	ue Event	group
Synta	X		RO val RO VA										/alue32 /AR32		
Opera	ands			long v : 32-bit			liate va	alue							
Гуре				orograr X	n	On-l X									
	y code														
	alue3		10	11	10	0	0	7	e	F	4	2	n	4	0
15 0	14 1	<u>13</u> 1	12 1	11 0	10 0	9 0	8	7	6 0	5 0	4	3	2	1	0
0	0	0	0	0	0	1	0	1	0	1	0	1	1	1	0
•	v	U	v	v	v	-	VORD	•	•		v			•	v
							VORD								
									- /						
	/AR32		4.0		4.0	•	•	_	•	_		•	•		•
15	14	13	12	11	10	9	8	7	6	5	4	3	2 0	1	0
0	1	<u>1</u> 0	1 0	0	0	0	0	1	0	0 1	1 0	1	1	1	0
0	0	U	U	U	U	1	&VA	-	U		U	1			0
Descr	ription	sp	oecifieo ases, ir	d value	e. An to act erence a po a sp a tor	update tivate a value sition eed re rque re	e <i>on e</i> an <i>upd</i>	event late op le: nce ce ce	comm	and (l	JPD!)	must	is grea be us ored ev	ed in	these
Execı	ution	V/ Tł	AR32, ne bits	respection 15 and	ctively. d 14 o	f the T	ML mo	otion s	tatus r	egiste	r (MS	R) are	is >= reset. ccurred		e32 o

120

Examples :

a) In case of a position reference:

CACC = 1.5;	<pre>//Acceleration command for position //profile (counts/sampling²)</pre>
CSPD = 20;	<pre>//Speed command for position profile //(counts/sampling)</pre>
CPOS = 100000;	//Position command (counts)
CPA;	//Position command is Absolute
MODE PP3;	//Set Position Profile Mode 3
UPD;	//Update immediate
CSPD = 40;	<pre>//New speed command for position //profile (counts/sampling)</pre>
!RO 20000;	<pre>//Set event if Reference >= 20000 //(counts) - position reference</pre>
UPD!;	//Update on event

b) In case of a speed reference:

CACC = 0.005;	//Acceleration command for speed
	//profile (counts/sampling ²)
CSPD = 20;	//Speed command (counts/sampling)
MODE SP1;	//Set Speed Profile Mode 1
UPD;	//Update immediate
CACC = 0.5;	//New acceleration command for speed
	//profile (counts/sampling ²)
!RO 10.;	//Set event if Reference >= 10.
	<pre>//(counts/sampling) - speed reference</pre>
UPD!;	//Update on event

c) In case of a torque reference:

MODE TT; REFTST = 3968;	//Set Torque Test Mode //Reference saturation value in test
	//mode
RINCTST = 10;	<pre>//Reference increment value in test //mode</pre>
UPD;	//Update immediate
CACC = 0.005;	<pre>//Acceleration command for speed //profile (counts/sampling²)</pre>
CSPD = 20;	//Speed command (counts/sampling)
MODE SP1;	//Set Speed Profile Mode 1
!RO 2500;	<pre>//Set event if Reference >= 2500</pre>
UPD!;	//(bits) - torque reference //Update on event

© Technosoft 2006

121

d) In case of a voltage reference:

MODE VT; REFTST = 19353;	//Set Voltage Test Mode //Reference saturation value in test //mode
RINCTST = 194;	<pre>//Reference increment value in test //mode</pre>
UPD;	//Update immediate
CACC = 0.05;	<pre>//Acceleration command for position //profile (counts/sampling²)</pre>
CSPD = 20;	<pre>//profile (counts/sampling) //Speed command for position profile //(counts/sampling)</pre>
CPOS = 80000;	//Position command (counts)
CPA;	//Position command is Absolute
MODE PP3;	//Set Position Profile Mode 3
!RO 15000;	<pre>//Set event if Reference >= 15000 //(bits) - voltage reference</pre>
UPD!;	//Update on event

122

© Technosoft 2006

	9	!F	RPO		Set ev	vent wł	hen th	e relat	ive po	sition i	s grea	ater tha			alue <i>group)</i>		
Synta	ax		RPO va RPO V		2		! if RelPositionOver <i>value32</i> ! if RelPositionOver <i>VAR32</i>										
Opera	ands		/AR32: alue32				liate v	alue									
Туре		E		orograr X	n		Dn-line X										
Binar	ry cod	е															
	value					_	_	_	_	_	_	_	_	_	-		
15	14	13	12	11	10	9	8	7	6 0	5 0	4	3	2 1	1	0		
0	1 0	1 0	1	0	0	1	0	1	0	1	1	1	0	0	0		
	Ū	Ū	•	Ŭ	Ū		-)(value	-				Ŭ		Ŭ		
						HIV	VORD	(value	32)								
RPO <u>15</u> 0	VAR3 14 1	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
0	0	1 0	1 0	0	0	0 1	1 0	1 1	0	0	1 1	0 1	1 0	0 1	0		
0				-		-	0	-	0	0		0	1				
Desc	0 riptior	0 tl tl	Program han the hese ca boccurs.	0 n the o speci ases, i	0 detecti fied va n orde	1 ion of alue. A er to ad	the e	1 AR32 Vent w date or e an u	0 0 vhen t n even odate	0 1 he rela t comi operat	1 nand ion wl	0 1 cositio (UPD) nen th	1 0 n valu !) mus e mor	1 ie is i it be u nitored	0 greater used in d event		
Desc	0	0 Fin Fin til co A Vin T	Program han the	0 a the c ases, i the se respectively the se 15 an	0 detecti fied va n orde etting o ctively d 14 o	1 ion of alue. A er to ac of an e	0 &V/ the e ctivate event	1 AR32 vent w date or an up when t otion s	0 0 vhen t odate the rel	0 1 he rela t comi operat ative p	1 mand ion wl	0 1 cositio (UPD) nen th n valu R) are	1 0 n valu !) mus e mor e is >: reset.	1 it be u nitored	0 greater used in d event		
Desc Exec	0 riptior ution	0 F ti C F V T	Program han the hese ca occurs. Activate /AR32, The bits	0 a special ases, i the se respective the se respective 15 an eration	0 detecti fied va n orde etting o ctively d 14 o	1 ion of alue. A er to ac of an e	the e an upo ctivate	vent w date or an up when t otion s progr.	0 0 vhen t odate the rel status amme	0 1 he rela t com operat ative p registe d ever	1 mand ion wl positio r (MS it that	0 1 cositio (UPD) nen th n valu R) are has or	1 0 n valu !) mus e mor e is >: reset. ccurre	1 it be u nitored = valu	greater used in d event		
Desc Exec	0 riptior ution	0 F ti ti ti c C.	Program han the hese ca occurs. Activate /AR32, The bits This ope	0 1 the special ases, i the se respective 15 an eration	0 detecti fied va n orde etting o ctively d 14 o	1 ion of alue. A er to ac of an e	the example the example ctivate event ML m evious	vent w late or an up when t otion s progr Accel profi	0 0 vhen t n even odate the rel status amme	0 1 he relative pregisted d ever	1 mand ion wl positio or (MS at that s/sat	0 1 cositio (UPD) nen th n valu R) are has or nd fc mplir	1 0 n valu) mus e mor e is >: reset. ccurre	1 it be u nitored = valu d.	greater used in d event ue32 or		
Desc	0 riptior ution	0 F til c F V T T C. C	Program han the hese ca occurs. Activate /AR32, The bits This ope	0 1 the second sec	0 detecti fied va n orde etting o ctively d 14 o erase	1 ion of alue. A er to ac of an e	the example the example ctivate event ML m evious	vent w late or an up when t otion s progr Accel profi 'Speed (cour Posit	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 1 he relative pregister d ever	1 ative p mand ion wl positio or (MS at that for .s/sat for .ng) .nd (0 1 cositio (UPD) nen th n valu R) are has or mplin posit	1 0 n valu) mus e mor e is >: reset. ccurre or po 1g ²) tion as 0	1 it be u nitored = valu d. siti	greater used in d event ue32 or		
Desc Exec	0 riptior ution	0 F H H H H C C C C C	Program han the hese ca boccurs. Activate /AR32, The bits This ope ACC = SPD = POS =	0 1 1 1 1 1 1 1 1	0 detecti fied va n orde etting o ctively d 14 o erase	1 ion of alue. A er to ac of an e	the example the example ctivate went ML m evious	vent w late or e an up when t otion s progr Accel profi Speed (cour Posit Posit	0 0 vhen t odate the rel status amme lerat le (d com nts/s cion	0 1 he relative pregisted even	1 ative p mand ion wl positio or (MS at that for ng) .nd (.nd i	0 1 Doositio (UPD) nen th n valu R) are has or mplin posit count s Rel	1 0 n valu !) mus e mor e is >: reset. ccurre or po ng ²) tion :s0 .ativ	1 it be u nitored = valu d. siti	greater used in d event ue32 or		

UPD;	//Update immediate
CSPD = 40;	//New speed command (counts/sampling)
!RPO 60000;	//Set event when relative position
UPD!;	<pre>//set event when relative position //>= 60000 (counts) //Update on event</pre>

© Technosoft 2006

Name	;	!F	RPU		Set ev	vent wł	nen th	e relat	ive po	sition i	s sma	ller th			alue group
Synta	ax		RPU <i>va</i> RPU V										r <i>value</i> r VAR		
		•		AN32					• •	i Ken	031101	Unde		52	
Opera	ands		/AR32: alue32				iate v	alue							
Гуре		Г	TMI n	orogran	n	On-l	ine								
ype				X		<u>X</u>									
Binar	y code	9													
RPU	value	32													
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	1	1	1	0	0	0	0	1	0	0	0	0	1	0	1
0	0	0	0	0	0			1)(value	0	1	1	1	0	1	0
								(value							
15 0 0	14 1 0	13 1 0	12 1 0	11 0 0	10 0 0	9 0 1	8 1 0 &VA	7 1 1 R32	6 0 0	5 0 1	4 0 1	3 0 1	2 1 0	1 0 1	0 1 0
	ription ution	ti ti o ∧ ∨ T	Program nan the nese ca occurs. Activate (AR32, The bits This ope	e specif ases, in the se respec 15 and	fied va n orde etting o ctively. d 14 o	alue. A er to ac of an e f the T	n <i>upc</i> ctivate vent, ML m	late or an up when otion s	the rel	<i>t</i> comi operat ative p registe	mand ion wl positio	(UPD) nen th n valu R) are	!) mus e mon e is <: reset.	t be ι itorec = valu	ised ir I even
Exam	ple	(C M U	CACC = CSPD = CPOS = CPR; MODE P JPD; CSPD = RPU -	= -20 = -100 PP3; = -40;	;)000;	//Se //Pc //Pc //Se //Up //Ne	et sp ositi ositi et Po odate ew sp		comma omman omman on Pro ediate	nd d (co d is ofile e nd (c	ounts Rela Mod) tive e 3 s/sam			50000
© Tecl															

UPD!; //Update on event

© Technosoft 2006

MotionChip II TML Programming

126

	!RT			Set ev	ent wh	nt when relative time is greater than a given value (Event grou								group)
Syntax		Turk							if Dala	ti vo Ti			20	
		T valı T VAF						-				value VAR3		
			102					•	ii Nela			VANC	~~	
Operands			long v 32-bit		e immed	iate va	alue							
Туре		rMI p	rograr	n	On-l	ine								
.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			X		X									
Binary code	•													
RT value32					-	-	_	-	_		-	-		-
15 14 0 1	<u>13</u> 1	12 1	11 0	10 0	9 0	8 0	7	6 0	5	4	3	2	1	0
0 0	0	0	0	0	1	0	1	1	0	0	0	0	1	0
• •	•	•	v	Ŭ	•	-)(value	•	v	Ŭ	v	•		v
							(value	,						
15 14 0 1	<u>13</u>	12 1	11 0 0	10 0	9 0	8 1	7	6 0	5 1	4	3 1	2 0	1 0	0
0 0	0	0	U	0	1	0	1	1	0	0	0	0	1	0
	0	0	U	0	1	-	1 R32	1	0	0	0	0	1	0
0 0 Description	Pro the cas Act	ogram e spec ses, ir tivate spectiv	n the d cified v n order the se vely.	etectio alue. / to ac	on of th An <i>upc</i> tivate a of an e	&VA	ent wh n ever date op	en the nt com perations system	e syste imand on whe n relati	em rela (UPD n the ve tim	ative t !) mus monito e >= '	ime is st be u pred ev value3	greate sed ir vent o 2 or V	er thar these ccurs.
0 0 Description	Pro the cas Act res The	ogram e spec ses, ir tivate spectiv e bits	the d bified v n order the se vely. 15 and	etectio alue. to ac etting o	on of th An <i>upc</i> tivate a of an e f the T	&VA ne eve date o an upo event v ML mo	R32 ent wh <i>n ever</i> date op when s	en the nt com peratic system	e syste imand on whe n relati registe	em rela (UPD in the ve tim er (MS	ative t !) mus monito e >= ⁻ R) are	ime is st be u pred ev value3 e reset	greate sed ir vent o 2 or V	er thar these ccurs.
0 0 Description Execution	Pro the cas Act res The The	ogram spec ses, ir tivate spectiv e bits is ope	the d sified v order the se vely. 15 and eration	etectio alue. to ac etting o	on of th An <i>upo</i> tivate a of an e f the T s a pre	&VA ne eve date o date	R32 ent wh n ever date op when s otion s progr	en the nt com peratic system status amme	e syste mand on whe n relati registe d ever	em rela (UPD n the ve tim er (MS nt that	ative t !) mus monito e >= R) are has o	ime is st be u pred ev value3 e reset	greate sed ir vent o 2 or V	er thar these ccurs.
0 0 Description Execution	Pro the cas Act res The The	ogram spec ses, ir tivate pectiv e bits is ope	the d bified v order the se vely. 15 and eration	etectio alue. to ac etting o	on of th An <i>upo</i> tivate a of an e f the T s a pre	&VA	R32 ent wh n ever date op when s otion s progr	en the nt com peratic system status amme	e syste mand on whe n relati registe d ever	em rela (UPD n the ve tim er (MS nt that	ative t !) mus monito e >= R) are has o	ime is st be u pred ev value3 e reset	greate sed ir vent o 2 or V	er thar these ccurs.
0 0 Description Execution	Pro the cas Act res The Thi CAC	ogram spec ses, ir tivate pectiv e bits is ope	the d bified v order the sevely. 15 and eration 0.5; 20;	etection alue • to ac • tting of d 14 o erase	on of th An <i>upo</i> tivate a of an e f the T s a pre	&VA	R32 ent wh n ever date op when s otion s progr	en the nt com peratic system status amme elera	e syste mand on whe n relati registe d ever	em rela (UPD n the ve tim er (MS nt that	ative t !) mus monito e >= ' R) are has o	ime is st be u pred ev value3 e reset	greate sed ir vent o 2 or V	er thar these ccurs.
0 0 Description Execution	Pro the cas Act res The Thi CAC	ogram spec ses, ir pectiv e bits is ope CC = 2D = DS =	the d bified v order the se vely. 15 and eration	etection alue • to ac • tting of d 14 o erase	on of th An <i>upo</i> tivate a of an e f the T s a pre	&VA	R32 ent wh n ever date of when s otion s progr	en the or com peratic system status amme elera ed con	e syste mand on whe n relati registe d ever	em rela (UPD n the ve tim er (MS nt that comm d (cou	ative t !) mus monito e >= ' R) are has o has o has o	ime is st be u pred ev value3 e reset. ccurre	greate sed ir vent o 2 or V	er thar these ccurs.
0 0 Description Execution	Pro the cas Act res The Thi CAC CSE CPC CPF	ogram spec ses, ir pectiv e bits is ope CC = 2D = DS =	the d bified v n order the sevely. 15 and eration 0.5; 20; 1000	etection alue • to ac • tting of d 14 o erase	on of th An <i>upo</i> tivate a of an e f the T s a pre	&VA	R32 ent wh n ever date of when s otion s progr acco special sitio	en the orratic system status amme elera ed con n com	e syste mand on whe registe d ever	em rela (UPD n the ve tim er (MS nt that comm d (cou is F	ative t !) mus monito e >= ' R) are has o has o has o has latt	ime is st be u ored ev value3 e reset. ccurre	greate sed ir vent o 2 or V	er thar these ccurs.
0 0 Description Execution	Pro the cas Act res The Thi CAC CSE CPC CPF MOI UPI	cogram spective ses, ir tivate spective e bits is ope cc = cc = cc = cc = cc = cc = cc = cc	the d bified v n order the sevely. 15 and eration 0.5; 20; 1000	etection alue • to ac • tting of d 14 o erase	on of th An <i>upo</i> tivate a of an e f the T s a pre	&VA	R32 ent wh n ever date of when s otion s progr acco sitions sitions itions itions acco sitions sitions	en the nt com peratic system status amme elera elera n com n com ition	e syste mand on whe registe d ever ation mand mand p Pro: liate	em rela (UPD n the ve tim er (MS nt that comm d (cou is F file	ative t !) mus monito e >= ' R) are has o has o has o has latt	ime is st be u ored ev value3 e reset. ccurre	greate sed ir vent o 2 or V	er thar these ccurs.
	Pro the case Act res The Thi CAC CSE CPC CPF MOI UPI CSE ! RT	cogram spective spect	the d bified v order the sevely. 15 and eration 0.5; 20; 1000 23; 30;	etection alue • to ac • tting of d 14 o erase	on of th An <i>upo</i> tivate a of an e f the T s a pre	&VA ne eve date of an upc event v ML me evious //Set //Pos //Set //Pos //Set //Upd //New //Set	R32 ent wh n ever date of vhen s progr acco sitions sitions intions acco sitions spectrum acco sitions spectrum acco sitions spectrum acco sitions spectrum spectrum acco sitions spectrum spectrum acco sitions spectrum spectrum acco sitions spectrum spectrum acco sitions spectrum sp	en the nt com peratic system status amme elera ad con n con ition ition	e syste mand on whe registe d ever ation mand mand Pro: liate ommand r Pro:	em rela (UPD n the ve tim er (MS nt that comm d (cou is F file	ative t !) mus monito e >= ' R) are has o has o has o has o has o has o has o	ime is st be u ored ev value3 e reset. ccurre	greate sed ir vent o 2 or V d.	er than these ccurs. /AR32
0 0 Description Execution	Pro the case Act res The Thi CAC CSE CPC CPF MOI UPI CSE ! R1 UP	ogram spectivate spective e bits is ope CC = PD = CC = PD = CC = PD = CC = CC = CC = CC = CC = CC = CC = C	the d bified v order the sevely. 15 and eration 0.5; 20; 1000 23; 30;	etection alue • to ac • tting of d 14 o erase	on of th An <i>upo</i> tivate a of an e f the T s a pre	&VA	R32 ent wh n ever date of vhen s progr acco sitions sitions intions acco sitions spectrum acco sitions spectrum acco sitions spectrum acco sitions spectrum spectrum acco sitions spectrum spectrum acco sitions spectrum spectrum acco sitions spectrum spectrum acco sitions spectrum sp	en the nt com- peratic system status amme elera ed con n com ition immed ed con n con ition	e syste mand on whe registe d ever ation mand mand i Pro: liate ommand Rela ent	em rela (UPD n the ve tim er (MS nt that comm d (cou is F file d ative	ative t !) mus monito e >= ' R) are has o has o has o has o and) elat Mode e Tim	ime is st be u ored ev value3 e reset. ccurre	greate sed ir vent o 2 or V d.	er than these ccurs. /AR32

Name	•	!RU Set event when the reference is smaller than a given value <i>(Event)</i>											group		
Synta	IX		RU val RU VA							•	value. VAR3				
Opera	ands			long v : 32-bit			liate va	alue							
Гуре				orograr X	n	On-l X									
	y code														
15	alue32 14	2 13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	1	1	1	0	0	0	0	1	0	0	0	Ō	0	0	1
0	0	0	0	0	0	1	0	1	0	1	0	1	1	1	0
						LOV	VORD	(value	32)						
						HIV	VORD	(value	32)						
	/AR32														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	1	1	1	0	0	0	1	1	0	0	0	0	0	0	1
0	0	0	0	0	0	1	0 &VA	1 	0	1	0	1	1	1	0
	ription	sp ca Th	pecified ases, in e refer • a • a • a	the d value order rence position speed torque voltag	e. An r to ac value o on refe d refer e refer ge refe	update tivate a can be erence ence ence rence	e on e an upd :	event late op	comm peratio	and (l n whe	JPD!) n the r	must nonito	be us ored ev	ed in ent o	these ccurs.
Execı	ution	V		the s respect 15 and	ctively										e32 o

128

Examples : a) In case of a position reference:

//Acceleration command for position
//profile (counts/sampling ²)
//Speed command for position
<pre>//profile (counts/sampling)</pre>
//Position command (counts)
//Position command is Relative
//Set Position Profile Mode 3
//Update immediate
//New speed command for position
<pre>//profile (counts/sampling)</pre>
<pre>//Set event if Reference <= -20000</pre>
//(counts) - position reference
//Update on event

b) In case of a speed reference:

CACC = 0.005;	//Acceleration command for speed
	//profile counts/sampling ²)
CSPD = -20;	//Speed command (counts/sampling)
MODE SP1;	//Set Speed Profile Mode 1
UPD;	//Update immediate
CACC = 0.5;	//New acceleration command for speed
	//profile (counts/sampling ²)
!RU -10.;	//Set event if Reference <=-10.
	<pre>//(counts/sampling) - speed reference</pre>
UPD!;	//Update on event

In case of a torque reference: c)

MODE TT;	//Set Torque Test Mode
REFTST = -3968;	//Reference saturation value in test
	//mode
RINCTST = $-10;$	//Reference increment value in test
	//mode
UPD;	//Update immediate
CACC = 0.005;	//Acceleration command for speed
	<pre>//profile (counts/sampling²)</pre>
CSPD = -20;	//Speed command (counts/sampling)
MODE SP1;	//Set Speed Profile Mode 1
!RU -2500;	//Set event if Reference <= -2500
	//(bits) - torque reference
UPD!;	//Update on event

d) In case of a voltage reference:

MODE VT;	//Set Voltag	ge Test Mode			
REFTST = -19353;	//Reference //mode	saturation	value	in	test
	////////				

© Technosoft 2006

129

RINCTST = $-194;$	<pre>//Reference increment value in test //mode</pre>
UPD;	//Update immediate
CACC = 0.05;	<pre>//Acceleration command for position //profile (counts/sampling²)</pre>
CSPD = 20;	<pre>//Speed command for position profile //(counts/sampling)</pre>
CPOS = 80000;	//Position command (counts)
CPA;	//Position command is Absolute
MODE PP3;	//Set Position Profile Mode 3
!RU -15000;	<pre>//Set event if Reference <= -15000 //(bits) - voltage reference</pre>
UPD!;	//Update on event

© Technosoft 2006

Name	!SO	Set event when speed is over a given value (Event gro										group)
Syntax	!SO value32 !SO VAR32	2					if S pee if S pee			932	·	<u> </u>
Operands	VAR32: fixed value32: 32-		-	diate v	alue							
Туре	TML progr X	am	On-l X									
Binary code												
ISO value32	13 12 11	10	٥	0	7	6	5	4	2	2	1	0
0 1	<u>13 12 11</u> 1 1 0	<u> 10 </u> 0	9	8 0	7	6 0	0	4	3	2 1	1	0
0 0	0 0 0	0	1	0	0	0	1	0	1	1	0	0
					(value							
			HIV	VORD	(value	32)						
ISO VAR32												
	<u>13 12 11</u>		9	8	7	6	5	4	3	2	1	0
0 1	1 1 0	0	0	1	1	0	0	1	0	1	1	0
0 0	0 0 0	0	1	0 &VA	0	0	1	0	1	1	0	0
Description Execution	Program the specified val cases, in ord Activate the respectively. The bits 15 a This operatio	ue. An er to ac setting and 14 o	update tivate a of ar	e on e an upd n ever ML mo	event of late op nt who otion s	comm eratio en mo tatus	and (I in whe otor s registe	JPD!) n the i beed r (MS	must monito >= va R) are	be us red ev lue32 reset.	ed in ent oc or V	these curs.
Example	CACC = 0. CSPD = 20 CPOS = 10 CPA; MODE PP3; UPD; CACC = 1; !SO 15; UPD!;	; 0000;		//: //1 //: //: //:	Set s Posit Set P Updat Set n Set e	peed ion osit e im ew a event	erati comma comma comma ion F media ccele if s ever	and nd (nd i rofi te rati peed	count s Abs le Mc on	s) olute de 3	e.	

131

Name	!S	U		Set ev	ent wł	nen sp	eed is	under	r a giv	en valı	ue	(E	Event	group)
Syntax	10								f 0	ام مرا الم				
									•	ed U nd				
	!3	SU VA	R32					! [T Spee	ed U nd	er vai	732		
Operands			fixed v : 32-bit			diate v	alue							
Гуре		TML p	orogran	n	On-l	ine								
.,			X		X									
Binary cod	e													
SU value3		40		4.0	•	•	_	•	-		•	•		•
15 14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0 1 0 0	1 0	1 0	0	0	0	0	1 0	0	0	0	0	1	1	1 0
0 0	U	U	U	U	-	-	(value	•		U			U	U
							(value (value							
SU VAR32 15 14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0 1	1	1	0	0	0	1	1	0	0	0	0	1	1	1
0 0	0	0	0	0	1	0 &VA	0	0	1	0	1	1	0	0
Descriptior Execution	sp ca Ac re	oecifieo ases, ir ctivate spectiv		e. An to act setting	<i>update</i> ivate a of ar	e on e an upo n evel	event o late op nt who	comma peration en mo	and (l n whe otor s	JPD!) n the r beed	must nonito <= va	be us ored ev Ilue32	ed in ent oo or V	these ccurs.
Example			15 and eration											
-vanihie	CI CI MO UI	SPD =	= 0.00 = -20; = -100 PP3;			 	Set s Posit Posit	ccele peed ion o	comm comma comma	and .nd (o .nd is	count s Abs	s) solute	2	
	! !	ACC = SU -1 PD!;				//1	Updat Set n Set e	osit e im ew ac vent e on	media ccele if s	ratio		-15		

Name	!VO Set event when a selected variable is equal or over a given value (Event group
Syntax	!VO VAR32A, <i>value32</i> ! if Var32AOver <i>value32</i>
	!VO VAR32A, VAR32B ! if Var32AOver VAR32B
Operands	<i>VAR32A:</i> long variable <i>VAR32B</i> : long variable <i>value32</i> : 32-bit long immediate value
Туре	TML program On-line X X
Binary code	
IVO VAR32A	
15 14	<u>13 12 11 10 9 8 7 6 5 4 3 2 1 0</u>
0 1	
	&VAR32A LOWORD(value32)
	HIWORD(value32)
VO VAR32A	
15 14	<u>13 12 11 10 9 8 7 6 5 4 3 2 1 0</u>
0 1	<u>1 1 0 0 0 1 1 0 0 1 0 0</u>
	&VAR32A &VAR32B
Description	Program the detection of the event when the selected variable (any 32-bit TM variable) is greater than the specified value or the value of another 32-bit variable
	An <i>update on event</i> command (UPD!) must be used in these cases, in order to activate an <i>update</i> operation when the monitored event occurs.
Execution	An update on event command (UPD!) must be used in these cases, in order to

133

	!VU :	Set ever	nt when	n a sele	ected v	/ariab	ole is	equal	or und	er a gi		alue Event g	group
Syntax													
	!VU VA	λR32A, ι	/alue32	2					2AUno				
	!VU VA	R32A, 1	VAR32	В			!	if V ar3	2A U no	der VA	R32B		
Operands	VAR32	<i>VAR32A:</i> long variable <i>VAR32B</i> : long variable <i>value32</i> : 32-bit long immediate value											
Туре	TML	TML programOn-lineXX											
Binary code													
!VU VAR32A	. value32												
15 14	13 12	11	10	9	8	7	6	5	4	3	2	1	0
0 1	1 1	0	0	0	0	1	0	0	0	0	0	0	1
					VAR		`						
				LOW									
				HIVVC	DRD(v	aiues	82)						
VU VAR32A	. VAR32B												
										_	-		•
15 14	13 12	11	10	9	8	7	6	5	4	3	2	1	0
<u>15 14</u> 0 1	13 12 1 1	0	10 0	9 0	8 1	7 1	6 0	5 0	4 0	3 0	2 0	1	0 1
	-	1 1		0 8	1 VAR3	1 32A		1	1	1			1
	-	1 1		0 8	1	1 32A		1	1	1			1
0 1	1 1 Program variable variable order to Activate or VAR The bits	0 m the de b) is sn c. An up o activate	0 etection haller t date or e an up tting of spective 14 of t	0 8 8 h of the than th <i>n even</i> odate o an eve ely. the TM	1 VAR3 VAR3 e ever he spe t com peration ent wh L moti	1 32A 32B nt who ecified mand on who en tho ion sta	0 en th d val (UP nen th e sel atus	e sele lue or D!) m ne mor ected	0 ected v the v ust be nitored variabler (MS	o variable value used event le (VA R) are	e (any of and in the occur R32A) reset.	0 32-bi other se cas s. <= va	t TMI 32-bi ses, ii
0 1 Description	1 1 Program variable variable order to Activate or VAR The bits	0 n the de b) is sn c. An <i>up</i> o activate c the set 32B, res s 15 and eration of	0 etection haller t date or e an up tting of spective 14 of t	0 8 8 h of the than th <i>n even</i> odate o an eve ely. the TM	1 VAR3 VAR3 VAR3 VAR3 vertice vertice	1 32A 32B ant who ecified mand on who nen the ion sta rogra	0 en th d val (UP nen th e sel atus i mme	e sele lue or D!) m ected registe d ever	0 ected v the v ust be nitored variabler (MS	0 variable value used event le (VA R) are has or has or	e (any of and in the coccur R32A) reset. ccurrec	0 32-bi other se cas s. <= va	t TMI 32-bi ses, in alue32
	11Program variable order to Activate or VAR: The bits This op	0 m the de b) is sn c. An <i>up</i> o activate the set 32B, res s 15 and eration of = 0.5;	0 etection haller t date or e an up tting of spective 14 of t	0 8 8 h of the than th <i>n even</i> odate o an eve ely. the TM	1 VAR3 VAR3 VAR3 VAR3 verte <	1 32A 32B ant who ecified mand on who en the ion stand rogra	0 en th d val (UP nen th e sel atus mme	e sele lue or D!) m ected registe d ever ion c profi mand	0 ected v inter the v ust be nitored variable er (MS) er (MS) et that	0 variable value used event le (VA R) are has of has of count	e (any of and in the coccur R32A) reset. ccurrec	0 32-bi other se cas s. <= va	t TMI 32-bi ses, ir
0 1 Description	1 1 Program variable variable order to order to or VAR: The bits This op CACC = CSPD =	0 m the de b) is sn c. An <i>up</i> o activate the set 32B, res s 15 and eration of = 0.5;	0 etection haller t date or e an up tting of spective 14 of t erases	0 8 8 h of the than th <i>n even</i> odate o an eve ely. the TM	1 VAR3 VAR3 VAR3 VAR3 verte <	1 32A 32B at whe ecified mand on whe ion when the ion state rogra	0 en th d val (UP nen th e sel atus mme erat ion com	e sele ue or D!) m e mor ected d ever ion c profi mand count	0 ected v the v ust be hitored variabler (MS) er (MS) er (MS)	o variable value used event le (VA R) are has or count posit	e (any of and in the coccur R32A) reset. ccurrec	0 32-bi other se cas s. <= va	t TMI 32-bi ses, in alue32

CPA; MODE PP3; UPD;	//Position command is Absolute //Set Position Profile Mode 3 //Update immediate
CSPD = 30;	<pre>//New speed command for position //profile (counts/sampling²)</pre>
!VU APOS, -10000;	<pre>//Set event when APOS is equal or //under -10000 (counts)</pre>
UPD!;	//Update on event

135

Name	=	Assignment instruction for 16 bits TML variables	
			(Assignment group)

Syntax

J		
	VAR16D = label	set VAR16D to value of a label
	VAR16D = value16	set VAR16D to value16
	VAR16D = VAR16S	set VAR16D to VAR16S value
	VAR16D = VAR32S(L)	set VAR16D to VAR32S(L) value
	VAR16D = VAR32S(H)	set VAR16D to VAR32S(H) value
	VAR16D, dm = value16	set VAR16D from dm to value16
	VAR16D, dm = VAR16S	set VAR16D from dm to VAR16S
	VAR16D = (VAR16S), TypeMem	set VAR16D to &(VAR16S) from TM
	VAR16D = (VAR16S+), TypeMem	set VAR16D to &(VAR16S) from TM, then
	. ,	VAR16S += 1
	(VAR16D), TypeMem = value16	set &(VAR16D) from TM to value16
	(VAR16D), TypeMem = VAR16S	set &(VAR16D) from TM to VAR16S
	(VAR16D+), TypeMem = value16	set &(VAR16D) from TM to value16, then
		VAR16D += 1
	(VAR16D+), TypeMem = VAR16S	set &(VAR16D) from TM to VAR16S, then
		VAR16D += 1
	VAR32D(L) = value16	set VAR32D low word to value16
	VAR32D(L) = VAR16S	set VAR32D (L) to VAR16 value
	VAR32D(H) = value16	set VAR32D high word to value16
	VAR32D(H) = VAR16S	set VAR32D (H) to VAR16 value

Legend: D (destination), S (source).

Operands*label*: 16-bit address of a TML instruction label
value16: 16-bit integer immediate value
VAR16x: integer variable
VAR32x(L): the low word of VAR32x long variable
VAR32x(H): the high word of VAR32x long variable
Dm: data memory operand
TypeMem: memory operand.
(VAR16x): contents of variable VAR16x, representing a 16-bit address of another
variable

Туре	TML program	On-line
	Х	Х

© Technosoft 2006

136

Binary code

VAR	16D =	label													
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	0	1	0	0	0	0			(9	LSBs	4 of &V	AR16L	D)		
	1	•				•	&la	bel					,		
VAR1	16D =	value1	16												
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	0	1	0	0	0	0			(9	LSBs	4 of &V	AR16L	D)		
							valu	e16							
VAR1	16D =	VAR1	6 S												
15	14	13	12	11	10	9	8	7	6	5	4 of &V	3	2	1	0
0	0	1	0	1	0	0			(9	LSBs	of &V	AR16L))		
							&VAI	R16S							
															•
	16D =	VAR3	2S(L)												
15	14	13	12	11	10	9	8	7	6	5	4 of & V	3	2	1	0
0	0	1	0	1	0	0			(9	LSBs	of &V	AR16L	D)		
							&VAI	R32S							
VAR1	16D =	VAR3	2S(H)												
15	14	13	12	11	10	9	8	7	6	5	4 of &V	3	2	1	0
0	0	1	0	1	0	0				LSBs	of &V	AR16L	D)		
						8	VAR 3	32S + 1							
VAR1		m = va													
15	14	13	12	11	10	9	8		6	5	4	3	2	1	0
1	0	0	1	0	0	0	0	0	0	0	0	0	1	0	0
							&VAF								
							valu	e16							
		m = V.													
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
1	0	0	1	0	0	0	0	0	0	0	1	0	1	0	0
							&VAF								
							&VAI	R16S							
	_														
		(VAR1						_	_	_			_	_	_
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
1	0	0	1	0	0	0	1	1	0	0	0	Туре	Mem	0	0
							&VAI								
							&VAF	R16D							
					_										

VAR16D = (VAR16S+), TypeMem

© Technosoft 2006

137

15 1															
_1	14	13	12	11	10	9		7	6	5	4	3		1	0
	0	0	1	0	0	0	1 &VAF	0	0	0	0	Туре	Mem	0	0
							&VAF								
							d VAI	TOD							
(VAF	R16D),		Mem =	value	16										
` 15	-		12		10	9	8	7	6	5	4	3	2	1	0
1	0	0	1	0	0	0	0	1	0	1	0	3 Туре	Mem	0	0
								R16D							
							valu	e16							
		T			~~										
(VAR 15	16D), 1 14	1 ypew 13	12 1em		05 10	9	Q	7	6	5	Λ	2	2	1	0
1	0	0	1	0	0	<u> </u>	8	1	<u>6</u> 0	5	4	Type	2 Mem	0	0
-	v	•	•	v	v	•		R16D	•	•	•	1900	in on	•	•
							&VAF								
,															
-	16D+)							_	_	_			_		_
15	14				10	9		7	6	5	4	3	2 Mem	1	0
1	0	0	1	0	0	0	0	0	0	1	0	Туре	Mem	0	0
							&VAF valu								
							vaiu	610							
(VAR	16D+)	. Tvpe	Mem :	= VAR	16S										
` 15	14		12		10	9	8	7	6	5	4	3	2	1	0
1	0	0	1	0	0	0	0	0	0	1	1	Туре	2 Mem	0	0
								R16D							
							&VAF	R16S							
	2200/1	\	··~ 4 C												
) = val		11	10	0	0	7	6	5	Λ	2	2	1	0
15	14	13	12	<u>11</u>	<u>10</u>	9	8	7	6	5 01 SBs	4	3 AR321	2	1	0
				11 0	10 0	9 0	8 valu		6 (9	5 DLSBs	4 of & <i>V</i>	3 AR321	2 D)	1	0
15	14	13	12			9 0			6 (9	5 DLSBs	4 of & <i>V</i>	3 'AR32L	2 D)	1	0
15 0	14	13 1 = VAI	12 0 R16S	0	0		valu	e16							
15 0 VAR3 15	14 0 32D(L) 14	13 1 = VAI	12 0 R16S	0	0		valu	e16							
15 0 VAR3	14 0 32D(L) 14	13 1 = VAI	12 0 R16S	0	0		<u>valu</u> 8	<u>e16</u> 7					2 D) 2 D)		
15 0 VAR3 15	14 0 32D(L) 14	13 1 = VAI	12 0 R16S	0	0		valu	<u>e16</u> 7							
15 0 VAR3 15 0	14 0 32D(L) 14 0	13 1 = VAI 13 1	12 0 R16S 12 0	0	0		<u>valu</u> 8	<u>e16</u> 7							
15 0 VAR3 15 0 VAR3	14 0 32D(L) 14 0 32D(H)	<u>13</u> 1 = VAI <u>13</u> 1 = val	12 0 R16S 12 0 ue16	0 11 1	0 10 0	9 0	valu 8 &VAF	e16 7 R16S	6 (9	5 DLSBs	4 of & <i>V</i>	3 AR321	2 D)	1	0
15 0 VAR3 15 0 VAR3 15	14 0 32D(L) 14 0 32D(H) 14	13 1 = VAI 13 1 = val 13	12 0 R16S 12 0 ue16 12	0	0 10 0	9 0 9	<u>valu</u> 8	<u>e16</u> 7	<u>6</u> (9	5 DLSBs 5	4 of & V 4	3 AR321 3	2 D) 2		
15 0 VAR3 15 0 VAR3	14 0 32D(L) 14 0 32D(H)	<u>13</u> 1 = VAI <u>13</u> 1 = val	12 0 R16S 12 0 ue16	0 11 1	0 10 0	9 0	valu 8 &VAF	e16 7 R16S 7	<u>6</u> (9	5 DLSBs 5	4 of & V 4	3 AR321	2 D) 2	1	0
15 0 VAR3 15 0 VAR3 15	14 0 32D(L) 14 0 32D(H) 14	13 1 = VAI 13 1 = val 13	12 0 R16S 12 0 ue16 12	0	0 10 0	9 0 9	valu 8 &VAF 8	e16 7 R16S 7	<u>6</u> (9	5 DLSBs 5	4 of & V 4	3 AR321 3	2 D) 2	1	0
15 0 VAR3 15 0 VAR3 15 0 VAR3	14 0 32D(L) 14 0 32D(H) 14 0 32D(H)	13 1 = VAI 13 1 = val 13 1 = VA	12 0 R16S 12 0 ue16 12 0 R16S	0 11 1 1 0	0 10 0 10 0	9 0 9 0	8 &VAF 8 valu	e16 7 R16S 7 e16	6 (9 (9)	5 DLSBs 5 .SBs c	4 of & V 4	3 AR321 3 R32D	2)) 2 +1)	1	0
15 0 VAR3 15 0 VAR3 15 0	14 0 32D(L) 14 0 32D(H) 14 0	13 1 = VAI 13 1 = val 13 1	12 0 R16S 12 0 ue16 12 0	0	0 10 0	9 0 9	valu 8 &VAF 8	e16 7 R16S 7	<u>6</u> (9	5 DLSBs 5	4 of & V 4	3 AR321 3	2 D) 2	1	0
15 0 VAR3 15 0 VAR3 15 0 VAR3 15	14 0 32D(L) 14 0 32D(H) 14 0 32D(H)	13 1 = VAI 13 1 = val 13 1 = VAI 13	12 0 R16S 12 0 ue16 12 0 R16S	0 11 1 1 0	0 10 0 10 0	9 0 9 0	8 &VAF 8 valu	e16 7 R16S 7 e16 7	6 (9 (9)	5 DLSBs 5 .SBs c 5	4 of &V 4	3 AR321 3 R32D	2)) 2 +1)	1	0 0 0

0 0	1	0 1	0 0		(9LSBs of 8	&VAR32	2D+1)
				&VAR16S			
Descriptio							uction for a specified s are covered.
Execution	(des	tination varia	able) = sou	rce value			
TypeMem							
DM 01	-						
PM 00 SPI 10	-						
]						
Example1	int	Var1;					
	Lab						
		1 = Labeli	1;				
		Before i	instructio	า	Af	ter insti	ruction
		Label1	0x12	234	-	bel1	0x1234
		Var1	Х		Va	ır1	0x1234
Example2							
		Var1;					
	 Var	1 = 26438	;				
			instructio	1		ter inst	
Example3		Var1	Х		Va	Iri	26438
Ехатрісо	int	Varl, Var	r2;				
	•••	0 11 1.					
	Var	2 = Var1;					
		Before i	instructio	า	Af	ter insti	ruction
		Var2	0x56		Va		0x56AB
_		Var1	х		Va	ır1	0x56AB
Example4	int	Var1;					
		g Var3;					
	Var	1 = Var3(1)	L);				
		Before i	instructio	า	Af	ter insti	ruction
		Var3		ABCD98	Va		0x56ABCD98
		Var1	Х		Va	ır1	0xCD98
Example5	int	Var1;					
	1110						
© Technoso	ft 2006			139	Mat	tionChin	II TML Programming
	11 2000			109	IVIO	ισηστιρ	n nvil Frogramming

	long Var3;	
	<pre>Var1 = Var3(H);</pre>	
	Before instructionVar30x56ABCD98Var1x	After instructionVar30x56ABCD98Var10x56AB
Example6	int Varl;	
	 Varl, dm = 3321;	
	Before instruction Var1 x	After instruction Var1 3321
Example7	int Var1, Var2; Var1, dm = Var2;	
	Before instructionVar10x0A01Var2x	After instructionVar10x0A01Var20x0A01
Example8	int Var1, pVar2; Var1 = (pVar2), dm;	
	Before instructionpVar20x0A01Data memory0x0A010x0A010x1234Var1x	After instructionpVar20x0A01Data memory0x0A010x0A010x1234Var10x1234
Example9	int Varl, pVar2;	
	Varl = (pVar2+), dm;	
	Before instructionpVar20x0A01Data memory0x0A010x0A010x1234Var1x	After instructionpVar20x0A02Data memory0x0A010x0A010x1234Var10x1234

Example10

int pVar1;

© Technosoft 2006

140

(pVar1), spi = 0x5422; **Before instruction** After instruction pVar1 0x5100 pVar1 0x5100 SPI memory SPI memory 0x5100 0x5100 0x5422 х Example11 int pVar1; (pVar1+), spi = 0x5422; **Before instruction** After instruction 0x5101 pVar1 0x5100 pVar1 SPI data memory SPI data memory 0x5100 0x5100 0x5422 Х Example12 int pVar1, Var2; . . . (pVar1), pm = Var2; **Before instruction** After instruction 0x8200 0x8200 pVar1 pVar1 Var2 0xA987 Var2 0xA987 program memory program memory 0x8200 0xA987 0x8200 Х Example13 int pVar1, Var2; . . . (pVar1+), pm = Var2; **Before instruction** After instruction 0x8200 0x8201 pVar1 pVar1 Var2 0xA987 Var2 0xA987 program memory program memory 0x8200 0x8200 0xA987 Х Example14 long Var5; . . . Var5(H) = 0xAA55 ;**Before instruction** After instruction 0x12344321 0xAA554321 Var5 Var5 Example15 long Var5; © Technosoft 2006 141 MotionChip II TML Programming Var5(L) = 0xAA55;

. . .

Before instruction						
Var5	0x12344321					

After instructionVar50x1234AA55

Example16

int Var1; long Var5; ... Var5(H) = Var1;

> Before instruction Var1 0x77

After Instru
Var1
Var5

After instr <u>uction</u>								
Var1	0x7711							
Var5	0x77114321							

Example17

int Var1; long Var5; ... Var5(L) = Var1;

Var5

Before instruction

Var1	0x7711
Var5	0x12344321

142

After instruction								
Var1	0x7711							
Var5	0x12347711							

© Technosoft 2006

Name	 Assignment instruction for 16 bits TML variables 								
		(IO group)							
Syntax									
-	VAR16D = IN#n	read input #n into VAR16D							
	VAR16D = INPUT1, ANDm	read inputs IN#25 to IN#32 into VAR16D with ANDm							
	VAR16D = INPUT2, ANDm	read input IN#33 to IN#39 into VAR16D with ANDm							

read IN#36 to IN#39 into VAR16D with 0xF as ANDm

Operands

Var16D: integer variable

VAR16D = INPORT, 0xF

IN#n : the source is input bit-port number n (0=<n<=39) *INPUT1*: the source is 8 input lines status of IO inputs #25 to #32 *INPUT2*: the source is 8 input lines status of IO inputs #33 to #39 *ANDm*: a 16-bit mask used to indicate which bits are read from the input ports *INPORT*: the source is 4 input lines status of IO inputs #39, #37 and #36

The variable VAR16D must be a valid variable name, defined in the current TML application. The selection of the IN#n line is specific for each Technosoft drive.

Туре	TML program	On-line
	Х	Х

Binary code

VAR16D = IN#n

	UD - 1														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	1	1	0	0	0	0			(9	LSBs	of &V/	R16D)		
	PxDATDIR														
0	0	0	0	0	0	0	0				Bit_n	nask			

VAR1	/AR16D = INPUT1, ANDm														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	1	1	0	0	0	0	0 (9LSBs of &VAR16D)								
0	1	1	1	0	0	0	0	1	0	0	1	0	1	0	1
0	0	0	0	0	0	0	0 ANDm								

VAR16D = INPUT2, ANDm

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	1	1	0	0	0	0	(9LSBs of & <i>VAR16D</i>)								
0	1	1	1	0	0	0	0	1	0	0	1	0	1	1	0
0	0	0	0	0	0	0	0 ANDm								

© Technosoft 2006

143

VAR16D = INPORT, ANDm

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	1	1	0	1	0	0			(9	LSBs	of &VA	R16D)		
	ANDm														

Description Assign the value (status) of input #n or groups of input to the 16-bit destination variable.

Execution (destination variable) = source input (input lines) status

P	xDATDIR & Bit	_mask
#n	PxDATDIR	Bit_mask
#0	0x7098	0x0001
#1	0x7098	0x0002
#2	0x7098	0x0004
#3	0x7098	8000x0
#4	0x7098	0x0010
#5	0x7098	0x0020
#6	0x7098	0x0040
#7	0x7098	0x0080
#8	0x709A	0x0001
#9	0x709A	0x0002
#10	0x709A	0x0004
#11	0x709A	8000x0
#12	0x709A	0x0010
#13	0x709A	0x0020
#14	0x709A	0x0040
#15	0x709A	0x0080
#16	0x709C	0x0001
#17	0x709C	0x0002
#18	0x709C	0x0004
#19	0x709C	8000x0

#n	PxDATDIR	Bit_mask
#20	0x709C	0x0010
#21	0x709C	0x0020
#22	0x709C	0x0040
#23	0x709C	0x0080
#24	0x709E	0x0001
#25	0x7095	0x0001
#26	0x7095	0x0002
#27	0x7095	0x0004
#28	0x7095	0x0008
#29	0x7095	0x0010
#30	0x7095	0x0020
#31	0x7095	0x0040
#32	0x7095	0x0080
#33	0x7096	0x0001
#34	0x7096	0x0002
#35	0x7096	0x0004
#36	0x7096	0x0008
#37	0x7096	0x0010
#38	0x7096	0x0020
#39	0x7096	0x0040

Example1

int Var1;

Var1 = IN#14;

Before instruction

IN#14 state	logic	1
Var1		Х

After instruction

IN#14 state	logic	1
Var1		0x0040

Bit#6 of Var1 has logic value of IN#14. Remaining bits are set

© Technosoft 2006

144

to 0.

Example2

int Var1;

... Var1 = INPUT1, 0x00E7;

	Before ins	truction	Α	fter instruction	
	IN#	32 31 30 29 28	27 26 25 IN	N# 32 31 3	30 29 28 27 26 25
	Logic	0 1 1 0 1		ogic 0 1	1 0 1 1 0 1
	state		st	tate	
	Var1	x	V	′ar1	0x0065
	IN#	32 31 30	29 28 27	26 25	
	Port state	0 1 1	0 1 1	01 E	Bitwise
	And_Mas	1 1 1	0 0 1	1 1 ^{op}	peration
	k Var1	0 1 1	0 0 1	0 1	
Example3	vari	0 1 1	0 0 1	0 1	
	Var1;				
Va	r1 = INPUT2	2, 0x00E7;			
	Before ins	truction	After	r instruction	
		39 38 37 36 35		39 38 37 3	6353433
	Input		Innut		
	state	1 0 0 1 1	0 1 state		1 0 1
	1				
	Var1	X	Var1	0x0	045
	IN#	39 38 37	36 35 34	33	
				·	
	Input state	1 0 0	1 1 0	1 Bitwis	e
	And_Mas k	1 1 0	0 1 1	1 operati	on
	Var1	1 0 0	0 1 0	1	
Example4	vari	1 0 0	0 1 0	•	
	Var1;				
Va	ar1 = INPOR	(I, UXF;			
	Before ins	truction	After instru	ction	
	IN#	39 38 37 36	IN#	39 38 3	37 36
	Input state	1 0 1 1	Logic state		1 1
	Var1	X	Var1	0x00	0B
A T			4.45		
© Technosoft 2006			145	MotionChip	II TML Programming

Syntax $VAR32D = value32$ $VAR32D = VAR32S$ $VAR32D = VAR32S$ $VAR32D = VAR16S << N$ $VAR32D = VAR16S << N$ $VAR32D, DM = value32$ $VAR32D, DM = value32$ $VAR32D, DM = VAR32S$ $VAR32D, DM = VAR32S$ $VAR32D = (VAR16S), TypeMem$ $VAR32D = (VAR16S+), TypeMem$ $VAR32D to & (VAR16S), TypeMem$ $VAR32D = (VAR16D), TypeMem = value32(VAR16D), TypeMem = value32(VAR16D), TypeMem = value32(VAR16D), TypeMem = value32(VAR16D+), TypeMem = value32VAR32S, then VAR16D + = 2Operandsvalue32: 32-bit long immediate valueVAR32X: long variableDM: data memory operand(VAR16X): contents of variable VAR16x, representing a 16-bit addrevariableType\overline{TML program On-line}XBinary codeVAR32D$		aved in the 4LSB of the an input line is low, the . If an input line is high,	0. If an zero. If a	set to ble is z	B are varia	12MS in the	ile the ing bit	ble wh spond	varia corre			
Syntax VAR32D = value32 set VAR32D to value32 VAR32D = VAR32S set VAR32D to VAR32S value32 VAR32D = VAR16S << N set VAR32D to VAR16S < VAR32D, DM = value32 set long VAR32D from value32 VAR32D, DM = VAR32S set long VAR32D from value32 VAR32D = (VAR16S), TypeMem set VAR32D to & (VAR16S + 2 VAR32D = (VAR16S+), TypeMem set VAR32D to & (VAR16S + 2 (VAR16D), TypeMem = value32 set & (VAR16D) from value32 (VAR16D), TypeMem = value32 set & (VAR16D) from value32 (VAR16D), TypeMem = value32 set & (VAR16D) from value32 (VAR16D+), TypeMem = value32 set & (VAR16D) from value32 (VAR16D+), TypeMem = VAR32S set & (VAR16D) from value32, then VAR16D + 2 (VAR16D+), TypeMem = VAR32S set & (VAR16D) from value32, then VAR16D + 2 (VAR16D+), TypeMem = VAR32S set & (VAR16D) from value32, then VAR16D + 2 Operands value32: 32-bit long immediate value VAR32S, then VAR16D + 2 VXR16D+), TypeMem = VAR32S set & (VAR16D) from value32, then VAR16D + 2 Operands value32: 100 value32 Binary code VAR32D VAR32D = value32 1 1										=	e	Name
VAR32D = value32 set VAR32D to value32 VAR32D = VAR32S set VAR32D to VAR32S value32 VAR32D = VAR16S << N	ment group)	(Assignmen						0				
VAR32D = value32 set VAR32D to value32 VAR32D = VAR32S set VAR32D to VAR32S value32 VAR32D = VAR16S << N											x	Synta
VAR32D = VAR16S << Nset VAR32D to VAR16S << NVAR32D, DM = value32set long VAR32D from value32VAR32D, DM = VAR32Sset long VAR32D from VAR32SVAR32D = (VAR16S), TypeMemset VAR32D to &(VAR16S) TMVAR32D = (VAR16S+), TypeMemset VAR32D to &(VAR16S) TM, then VAR16S += 2 (VAR16D), TypeMem = value32(VAR16D), TypeMem = value32set &(VAR16D) from value32(VAR16D), TypeMem = value32set &(VAR16D) from value32(VAR16D+), TypeMem = value32set &(VAR16D) from value32(VAR16D+), TypeMem = value32set &(VAR16D) from value32, then VAR16D += 2 value32, then VAR16D += 2Operandsvalue32: 32-bit long immediate value VAR32S; long variable DM: data memory operand (VAR16x): contents of variable VAR16x, representing a 16-bit addre variableType $\overline{TML program On-line \\ X X \end{bmatrix}$ Binary codeVAR32DVAR32D = value32115 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 0 1 0 1 0 (9LSBs of &VAR32D)		set VAR32D to value32	Se				ue32) = val	AR32L	V		•
VAR32D, DM = value32 set long VAR32D from value32 VAR32D, DM = VAR32S set long VAR32D from VAR32S VAR32D = (VAR16S), TypeMem set VAR32D to &(VAR16S) VAR32D = (VAR16S), TypeMem set VAR32D to &(VAR16S) VAR32D = (VAR16S), TypeMem set VAR32D to &(VAR16S) VAR32D = (VAR16D), TypeMem = value32 set & (VAR16D) from value32 (VAR16D), TypeMem = value32 set & (VAR16D) from value32 (VAR16D+), TypeMem = value32 set & (VAR16D) from value32, then VAR16D += 2 (VAR16D+), TypeMem = VAR32S set & (VAR16D) from value32, then VAR16D += 2 Operands value32: 32-bit long immediate value VAR32S, then VAR16D += 2 Operands value32: 32-bit long immediate value VAR32S, then VAR16D += 2 Operands value32: contents of variable VAR16x, representing a 16-bit addre variable Type TML program On-line X J X X Binary code VAR32D = value32 15 14 13 12 11 0 9 8 6 5 4 2 1 0 0 1 0 1 0 (9LSBs of &VAR32D) 1	value	set VAR32D to VAR32S value	Se				R32S	P = VA	AR32L	V		
value32value32VAR32D, DM = VAR32Sset long VAR32D from VAR32SVAR32D = (VAR16S), TypeMemset VAR32D to &(VAR16S TMVAR32D = (VAR16S+), TypeMemset VAR32D to &(VAR16S TM, then VAR16S += 2 (VAR16D), TypeMem = value32(VAR16D), TypeMem = value32set &(VAR16D) from value32(VAR16D), TypeMem = VAR32Sset &(VAR16D) from VAR32S(VAR16D+), TypeMem = value32 (VAR16D+), TypeMem = value32set &(VAR16D) from value32, then VAR16D += 2 VAR32S, then VAR16D += 2Operandsvalue32: 32-bit long immediate value VAR32S: long variable DM: data memory operand (VAR16x): contents of variable VAR16x, representing a 16-bit addre variableType \overline{M} \overline{N} Binary code \overline{N} \overline{N} VAR32D = value32 \overline{N} \overline{N} 15141312110010(9LSBs of &VAR32D)	<< N	set VAR32D to VAR16S << N	Se			<< N	R16S	P = VA	AR32L	V		
VAR32D = (VAR16S), TypeMem $VAR32D = (VAR16S), TypeMem$ $VAR32D = (VAR16S), TypeMem$ $VAR32D = (VAR16S), TypeMem$ $VAR32D = (VAR16S), TypeMem$ $VAR32D = (VAR16D), TypeMem = value32$ $(VAR16D), TypeMem = VAR32S$ $(VAR16D), TypeMem = value32$ $(VAR16D), TypeMem = value32$ $(VAR16D), TypeMem = value32$ $VAR32S$ $(VAR16D), TypeMem = VAR32S$ $VAR32S$ $VAR16D + , TypeMem = VAR32S$ $VAR32S, then VAR16D + = 2$ $(VAR16D) + , TypeMem = VAR32S$ $VAR32S, then VAR16D + = 2$ $VAR32S = value32$ $Type$ $Type$ $TML program On-line X$ $Type TML program On-line X$ $Type TML program On-line X$ $Type S = value32$ $Type TML program On-line Y$ $TML program On-line Y$ $TML program On-line Y$ $Type S = value32$ $Type TML program On-line Y$ $TML program On-line Y$ $Type S = value32$ $Type$	m <i>DM</i> to	set long VAR32D from <i>I</i> value32				9 32	= valu	D, DM :	AR32[V		
VAR32D = (VAR16S+), TypeMemTMVAR32D = (VAR16D), TypeMem = value32set VAR32D to &(VAR16S)(VAR16D), TypeMem = value32set &(VAR16D) from(VAR16D), TypeMem = VAR32Sset &(VAR16D) from(VAR16D+), TypeMem = value32set &(VAR16D) from(VAR16D+), TypeMem = value32set &(VAR16D) from(VAR16D+), TypeMem = VAR32Sset &(VAR16D) from(VAR16D+), TypeMem = VAR32Sset &(VAR16D) fromVAR32S, then VAR16D += 2(VAR16D+), TypeMem = VAR32SOperandsvalue32: 32-bit long immediate valueVAR32X: long variableDM: data memory operandTypeMem: memory operand(VAR16x): contents of variable VAR16x, representing a 16-bit addreVariableXType $\overline{\text{TML program}}$ On-lineXXXBinary codeVAR32D = value32151413121100100100101010101010101010010010010010000000000000 </td <td>m <i>DM</i> to</td> <td>set long VAR32D from I VAR32S</td> <td></td> <td></td> <td></td> <td>32S</td> <td>= VAR</td> <td>D, DM :</td> <td>AR32[</td> <td>V</td> <td></td> <td></td>	m <i>DM</i> to	set long VAR32D from I VAR32S				32S	= VAR	D, DM :	AR32[V		
$TM, then VAR16S += 2$ $(VAR16D), TypeMem = value32$ $(VAR16D), TypeMem = VAR32S$ $(VAR16D), TypeMem = VAR32S$ $(VAR16D+), TypeMem = value32$ $(VAR16D+), TypeMem = value32$ $(VAR16D+), TypeMem = VAR32S$ $VAR32S, then VAR16D += 2$ $(VAR16D+), TypeMem = VAR32S$ $VAR32S, then VAR16D += 2$ $VAR32S = value32$ $Type \qquad TML program On-line X X$ Binary code $VAR32D = value32$ $15 14 13 12 11 10 9 8 7 6 5 4 3 2 1$ $0 0 1 0 0 1 0$ $(9LSBs of & VAR32D)$	R16S) from	set VAR32D to &(VAR16S TM			eMem), Тур	R16S	$\mathcal{O} = (V\mathcal{A})$	AR32L	V		
value 32 $(VAR16D)$, TypeMem = VAR32Sset & (VAR16D) from VAR32S $(VAR16D+)$, TypeMem = value32set & (VAR16D) from value32, then VAR16D += 2 $(VAR16D+)$, TypeMem = VAR32Sset & (VAR16D) from VAR32S, then VAR16D += 2Operandsvalue32: 32-bit long immediate value VAR32S; long variable DM: data memory operand (VAR16x): contents of variable VAR16x, representing a 16-bit addre variableTypeTML program On-line X XXSet & 3 2 1OperandsVAR32D = value3215 14 13 12 11 10 9 8 7 6 5 4 3 2 1(9LSBs of &VAR32D)	R16S) from	set VAR32D to &(VAR16S TM, then VAR16S += 2		m	oeMei	+), Ty	R16S	$\mathcal{O} = (VA)$	AR32L	V		
VAR32S (VAR16D+), TypeMem = value32 (VAR16D+), TypeMem = vAR32SVAR32S set &(VAR16D) from 	m <i>TM</i> to	· · · · · · · · · · · · · · · · · · ·			ue32	n = val	beMen	D), Ty	/AR16	(V		
value 32, then VAR16D += 2(VAR16D+), TypeMem = VAR32Sset &(VAR16D) from VAR32S, then VAR16D += 2Operandsvalue 32: 32-bit long immediate value VAR32X: long variable DM: data memory operand (VAR16x): contents of variable VAR16x, representing a 16-bit addre variableType $\overline{\text{TML program}}$ On-line XBinary codeVAR32D = value32 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 0 1 0 0 1 0 (9LSBs of &VAR32D)	m <i>TM</i> to				R32S	n = VA	beMer	D), Ty	/AR16	(V		
VAR32S, then VAR16D += 2Operandsvalue32: 32-bit long immediate value VAR32x: long variable DM: data memory operand (VAR16x): contents of variable VAR16x, representing a 16-bit addre variableType $\overline{\text{TML program}}$ Non-line XOn-line XType $\overline{\text{TML program}}$ Non-line <td></td> <td>set &(VAR16D) from value32, then VAR16D += 2</td> <td></td> <td>2</td> <td>alue32</td> <td>em = va</td> <td>уреМе</td> <td>D+), T</td> <td>/AR16</td> <td>(V</td> <td></td> <td></td>		set &(VAR16D) from value32, then VAR16D += 2		2	alue32	em = va	уреМе	D+), T	/AR16	(V		
VAR32x: long variable DM: data memory operand TypeMem: memory operand (VAR16x): contents of variable VAR16x, representing a 16-bit addre variable Type TML program On-line X X Binary code VAR32D = value32 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 0 1 0 0 1 0 (9LSBs of &VAR32D)		set &(VAR16D) from VAR32S, then VAR16D += 2		S	AR32	em = V	уреМе	D+), T	/AR16	(V		
X X Binary code VAR32D = value32 15 14 13 12 11 10 9 8 7 6 5 4 3 2 15 14 13 12 14 13 15 14 14 13 15 14 15 14 16 0 17 10 18 12 19 10 10 0 11 0	ddress of a	representing a 16-bit addres	l6x, rep		ł	e erand perano	variabl ory op nory o	long v memo n: mer	AR32x: M: data peMei AR16x	VA DN Ty (V)	inds	Opera
X X Binary code VAR32D = value32 15 14 13 12 11 10 9 8 7 6 5 4 3 2 10 0 11 0 12 11 10 0 14 13 15 14 13 12 14 13 15 14 16 0 17 10 18 10 19 10					ine	On-l	n	roarar	TML r	Г		Tvpe
VAR32D = value32 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 0 1 0 0 1 0 (9LSBs of & VAR32D)												11.0
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 0 1 0 0 1 0 (9LSBs of &VAR32D) 1										e	/ code	Binary
0 0 1 0 0 1 0 (9LSBs of & <i>VAR32D</i>)									32	/alue3	2D = v	VAR3
	1 0	<u>54321</u>	6	7	8				12	13		
		(9LSBs of &VAR32D)				_	1	0	0	1	0	0
HIWORD(value32)												

146

		20												
VAR32D = 15 14		25 12	11	10	9	8	7	6	5	Л	3	2	1	0
0 0	1	0	1	1	0	<u> </u>					AR32			0
0 0		U			U	&\/Δ	R32S	(0101)		
						av A	1020							
VAR32D =		6S << N	J											
15 14		12	11	10	9	8	7	6	5	4	3	2	1	0
1 0	0	0	1	0	0	1	0	1	1					
	Ţ	Ţ		-		&VAI	R32D	<u> </u>				1		
						&VA	R16S							
VAR32D,	dm = v	alue32												
15 14	13	12	11	10	9			6	5	4	3	2	1	0
1 0	0	1	0	0	0	0	0	0	0	0	0	1	0	1
							R32D							
)(value							
					HIV	VORD	(value	32)						
VAR32D,							_		_					-
15 14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
1 0	0	1	0	0	0	0	0	0	0	1	0	1	0	1
							R32D							
						& VAI	R32S							
VAR32D =	. /// • •	169) T	vnoM	om										
15 14	13	12	ypeiwi 11	10	9	8	7	6	5	4	3	2	1	0
13 14	0	1	0	0	0	1	1	0	0	0		eMem	0	1
	Ŭ		v	U	U	-	R16S	U	U	U	турс		v	•
							R32D							
						0.17.1	.020							
VAR32D =	• (VAR ⁻	16S+),		l em										
15 14	`13	12	11	10	9	8	7	6	5	4	3	2	1	0
1 0	0	1	0	0	0	1	0	0	0	0	Туре	eMem	0	1
•	•	•				&VA	R16S							
						&VAI	R32D							
(VAR16D)														
15 14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
1 0	0	1	0	0	0	0	1	0	1	0	Туре	eMem	0	1
							R16D							
)(value							
					HIV	VORD	(value	32)						
	T.	Mare-		20										
(VAR16D)					•	0	7	e	F		2	n	4	^
15 14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Toobpoor	++ 000C					1/	17		N	Antion	Chin II '			mina

147

1	0	0	1	0	0	0	0	1	0	1	1	ТуреМет	0	1
	&VAR16D													
	&VAR32S													

(VAR16D+), TypeMem = value32

15	14 [′]	13	12	11	10	9	8	7	6	5	4	3	2	1	0
1	0	0	1	0	0	0	0	0	0	1	0	Туре	Mem	0	1
							&VAF	R16D							
						LOV	VORD	(value	32)						
						HIV	VORD	(value	32)						

(VAR16D+), TypeMem = VAR32S

<u></u> 15	14 [′]	13	12	11	10	9	8	7	6	5	4	3	2	1	0
1	0	0	1	0	0	0	0	0	0	1	1	Туре	Mem	0	1
							&VAF	R16D							
							&VAF	732S							

Description Assign the 32-bit value of the source operand to the 32-bit destination variable

Execution (destination variable) = source value

TypeMem								
DM	01							
PM	00							
SPI	10							

Example1

long Var1;

Var1 = 0x1122AABB;

Example2	Before Var1	instruction x	After instructionVar10x1122AABB	
Examplez	long Var1, V	ar2;		
	Var1 = Var2;			
	Before Var2 Var1	instruction 0xAABC1234 x	After instructionVar20xAABC1234Var10xAABC1234	
Example3				
	int Varl;			
	long Var2;			
© Technosoft 2	2006	148	MotionChip II TML Programm	ning

	Var2 = Var1 << 4;
	Before instructionVar10x9876Var2x
Example4	long Var1;
	Varl, dm = 0x1122AABB;
	Before instruction Var1 x
Example5	
-	long Varl, Var2;
	 Var1, dm = Var2;
	Before instruction
	Var2 0xAABC1234 Var1 x
Example6	
	long Varl; int pVar2;

Exar

Long	g Varl;
int	pVar2;

. . .

Var1 = (pVar2), dm;

Before instruction

pVar2	0x96AB
Data memory	
0x96AB	0x1234
0x96AC	0xABCD
Var1	х

After instruction	struction
-------------------	-----------

After instruction

After instruction

After instruction

0x9876

0x00098760

0x1122AABB

0xAABC1234

0xAABC1234

Var1

Var2

Var1

Var2

Var1

pVar2	0x96AB
Data memory	
0x96AB	0x1234
0x96AC	0xABCD
Var1	0xABCD1234

Example7

long Var1; int pVar2; • • • Var1 = (pVar2+), dm;

Before instruction

pVar2	0x0A02
Data memory	
0x0A02	0x1234
0x0A03	0xABCD
Var1	х

After instruction

pVar2	0x0A04
Data memory	
0x0A02	0x1234
0x0A03	0xABCD
Var1	0xABCD1234

© Technosoft 2006

149

Example8

int pVar1;

.... (pVar1), spi = 0x5422AFCD;

Before instruction

pVar1	0x5100
SPI memory	
0x5100	х
0x5101	Х

After instruction
pVar1
SPI memory
0x5100
0x5101

0x5100
0xAFCD
0x5422

Example9

int pVar1; long Var2; ...

(pVar1), pm = Var2;

Before	instructio	n
n\/ar1		0

Belore mon donom	
pVar1	0x8200
Var2	0xA98711EF
program memory	
0x8200	Х
0x8201	х

After instruction	
pVar1	0x8200
Var2	0xA98711EF
program memory	
0x8200	0x11EF
0x8201	0xA987

Example10

int pVar1;

(pVar1+), pm = 0x5422AFCD;

Before instruction	
pVar1	0x8200
program memory	
0x8200	Х
0x8201	x

After instruction	
pVar1	0x8202
program memory	
0x8200	0xAFCD
0x8201	0x5422

Example11

int pVar1; long Var2; ... (pVarl+), pm = Var2;

Before instruction										
pVar1	0x8200									
Var2	0xA98711EF									
program memory										
0x8200	x									

150

After instruction	
pVar1	0x8202
Var2	0xA98711EF
program memory	
0x8200	0x11EF

© Technosoft 2006

0x8201 x 0x8201 0xA987				
	0x8201	0x8201	0xA987	

© Technosoft 2006

151

Name	 Assignment instruction for a 16 bits TML local variable with data from another axis – multiple axis instruction (get data from another axis) (Multiple axis group)
Syntax	(Malipie axis group)

VAR16D = [Axis] VAR16S	local VAR16D = [Axis] VAR16S
VAR16D = [Axis] VAR16S, DM	local VAR16D = [Axis] VAR16S, DM
VAR16D = [Axis] (VAR16S), TypeMem	local $VAR16D = [Axis] \& (VAR16S),$ TM
VAR16D = [Axis] (VAR16S+), TypeMem	local VAR16D = $[Axis] \& (VAR16S),$ TM, then V16S+=1

Operands VAR16x: integer variable Axis: 8-bit ID for source axis DM: data memory operand TypeMem: memory operand. One of dm (0x1), pm (0x0) or spi (0x2) values (VAR16x): contents of variable VAR16x, representing a 16-bit address of a variable

Туре	TML program	On-line
	Х	-

Binary code

VAR16D = [Axis] VAR16S

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
1	1	1	0	0	0 0 (9LSBs of & <i>VAR16S</i>)										
0	0	0	0		Axis 0 0						0	0			
							&VAF	R16D							

VAR16D = [Axis] VAR16S, dm

15	14	13	12	11	<u>11 10 9 8 7 6 5 4 3 2 1 0</u>										
1	0	0	1	1	1 1 0 0 0 0 0 0 0 1 0 0									0	
0	0	0	0		Axis 0 0 0 0										
&VAR16S															
	&VAR16D														

VAR16D = [Axis] (VAR16S), TypeMem

15	14	13	12	11	1 10 9 8 7 6 5 4 3 2 1 0											
1	0	0	1	1	1 1 0 1 1 0 0 <i>TypeMem</i> 0									0		
0	0	0	0		Axis 0 0 0 0										0	
&VAR16S																
&VAR16D																

© Technosoft 2006

152

VAR16D = [Axis] (VAR16S+), TypeMem 14 15 13 12 11 10 9 8 7 6 5 4 3 2 1 0 0 0 1 1 1 0 1 0 0 0 0 **TypeMem** 0 0 1 Axis 0 0 0 0 0 0 0 0 &VAR16S &VAR16D Description Bring the 16-bit value of the source operand from an external axis and assign it to the 16-bit destination local variable. Execution (local 16-bit destination variable) = external source 16-bit value, from another axis TypeMem DM 01 ΡM 00 SPI 10 Example1 int VarLoc, VarExt; . . . VarLoc = [15]VarExt; **Before instruction** After instruction VarLoc on local axis VarLoc on local axis 0x1234 х 0x1234 VarExt on axis 15 0x1234 VarExt on axis 15 Example2 int VarLoc, VarExt; . . . VarLoc = [15]VarExt, dm; **Before instruction** After instruction 0x1234 VarLoc on local axis VarLoc on local axis Х 0x1234 VarExt on axis 15 VarExt on axis 15 0x1234 Example3 int VarLoc, pVarExt; VarLoc = [15](pVarExt), dm; **Before instruction** After instruction pVarExt on axis 15 0x1234 pVarExt on axis 15 0x1234 At dm address 0x1234 0xFEDC At dm address 0x1234 0xFEDC on axis 15 on axis 15 VarLoc on local axis х VarLoc on local axis 0xFEDC

Example4

© Technosoft 2006

153

int VarLoc, pVarExt; ... VarLoc = [15](pVarExt+), dm;

Before instruction

pVarExt on axis 15 At dm address 0x1234 on axis 15 VarLoc on local axis

0x1234	
0xFEDC	
х	

154

After instruction

pVarExt on axis 15 At dm address 0x1234 on axis 15 VarLoc on local axis

0x1235 0xFEDD
0xFEDC

© Technosoft 2006

Name	= Assignment instruction for a 32 bits TML local variable with data from
	another axis – multiple axis instruction (get data from another axis))
	(Multiple axis group)

Syntax

VAR32D = [Axis] VAR32S	lc
VAR32D = [Axis] VAR32S, DM	lc
VAR32D = [Axis] (VAR16S), TypeMem	lc
VAR32D = [Axis] (VAR16S+), TypeMem	lc

local VAR32D = [A] VAR32Slocal VAR32D = [A] VAR32S, DM local VAR32D = [A] & (VAR16S), TM local VAR32D = [A] & (VAR16S), TM, then V16S+=2

Operands VAR32x: long variable VAR32x Axis: 8-bit ID for source axis DM: data memory operand TypeMem: memory operand. One of dm (0x1), pm (0x0) or spi (0x2) values (VAR16x): contents of variable VAR16x, representing a 16-bit address of a variable

Туре	TML program	On-line
	Х	-

Binary code

VAR32D = [Axis] VAR32S

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
1	1	1	0	0	1	0			(9)LSBs	of &V	AR32	S)		
0	0	0	0		Axis						0	0	0	0	
					&VAR32D										

VAR32D = [Axis] VAR32S, dm

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
1	0	0	1	1	1	0	0	0	0	0	0	0	1	0	1
0	0	0	0		Axis									0	0
					& VAR32S										
					& VAR32D										

VAR32D = [Axis] (VAR16S), TypeMem

15	14	13	`12	11	10	9	8	7	6	5	4	3	2	1	0
1	0	0	1	1	1	0	1	1	0	0	0	Туре	Mem	0	1
0	0	0	0				0	0	0	0					
					& VAR16S										
			& VAR32D												

VAR32D = [Axis] (VAR16S+), TypeMem

© Technosoft 2006

155

15	14	13	12	11	10	9	8	7	6	5		4	3	2	1	0
1	0	0	1	1	1	0	1	0	0	0		0	Туре	eMem	0	1
0	0	0	0					xis					0	0	0	0
								<u>R16S</u>								
							& VA	R32D								
Descrip	otion	Br	ring the	e 32-bit	value	of th	e sour	ce op	erand	from	an	exter	nal a	xis and	assig	n it t
		th	e 32-b	it destir	nation	local	variat	le								
Execut	ion	(lo	ocal 32	-bit des	stinatio	on vai	riable)	= exte	ernal s	sourc	e 32	2-bit v	alue,	from a	nothe	er axis
ТуреМе	em															
)1															
	00															
SPI ′	10															
Examp	le1	-		_												
		10	ng va	arLoc,	var	EXt;										
			rLoc	= [15]Var	Ext;										
	Befo	ore in	struct	ion					Afte	r inst	ruct	tion		_		
			local		Х					oc or			s		34AB	
	VarE	Ext on	axis 1	5	0x12	234AI	BCD		VarE	ext on	axis	s 15		0x12	34AB	CD
Examp	le2	_														
				arLoc,	Varl	Ext;										
		 Va		= [15]Var	Ext,	dm;									
	Befo	re ins	structi	on					Afte	r inst	ruct	tion				
			local a		Х				VarL	oc or	ı loc	al axi	s		E1A2	
	VarE	xt on	axis 1	5	0xF(DE1A	2B3		VarE	Ext on	axis	s 15		0xF0	E1A2	B3
Examp	le3															
			-	arLoc;												
		ın	t pVa	arExt;												
		Va	rLoc	= [15](pVa	arEx	t), ċ	lm;								
	Befo	re ins	structi	on					Afte	r inst	ruct	tion				
	pVar	Ext or	n axis	15	0x12	234			pVar	Ext o	n ax	is 15		0x12	34	
				x1234	0xFl	EDC				m ad		s 0x1	234	0xFE	DC	
		kis 15		4005				_		xis 15		•	005	0.00	~~	
		n add kis 15		x1235	0x22	233				m ado xis 15		S UX1	235	0x22	33	
			local a	axis	x					OC OF		al axi	s	0x22	33FEI	DC
					<u> </u>								-			
Examp	le4	lo	ng Va	arLoc;												
© Techn	0soft	2006					1	56			Mo	tionC	hin II	TML Pro	oarami	mina
	0301	2000					1.				IVIO		прп		oyiaiill	miy

int pVarExt;

VarLoc = [15](pVarExt+), dm;

Before instruction

pVarExt on axis 150x1At dm address 0x12340xFon axis 15At dm address 0x12350x2on axis 15VarLoc on local axisx

34	0x1234 0xFEDC	
35	0x2233	
	x	

After instruction

pVarExt on axis 15	0x1236
At dm address 0x1234	0xFEDF
on axis 15	
At dm address 0x1235	0x2233
on axis 15	
VarLoc on local axis	0x2233FEDC

157

Name	=	Assignment instruction for a 16 bits TML external variable with data sent
		from the local axis – multiple axis instruction (send data to another axis)
		(Multiple axis group)

Syntax

[Axis/Group] VAR16D = VAR16S	[A/G] VAR16D = local VAR16S
[Axis/Group] VAR16D,dm = VAR16S	[A/G] VAR16D, dm = local VAR16S
[Axis/Group] (VAR16D), TypeMem = VAR16S	[A/G] &(VAR16D), TM = local VAR16S
[Axis/Group] (VAR16D+), TypeMem = VAR16S	[A/G] & (VAR16D), TM = local VAR16S,
	then V16D+=1

Operands *VAR16x*: integer variable *Axis/Group*: 8-bit ID for source axis or group of axes *dm*: data memory operand *TypeMem*: memory operand. One of dm (0x1), pm (0x0) or spi (0x2) values (*VAR16x*): contents of variable VAR16x, representing a 16-bit address of a variable

Туре	TML program	On-line
	Х	-

Binary code

[Axis/Group] VAR16D = VAR16S

⁻ 15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
1	0	1	1	1	0	0			(9	LSBs	of &V	AR16	D)		
0	0	0	0		Axis/Group							0	0	0	0
					&VAR16S										

[Axis/Group] VAR16D,dm = VAR16S

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
1	0	0	1	1										0	0
0	0	0	0				Axis/0	Group				0	0	0	0
							&VAF	R16D							
	&VAR16S														

[Axis/Group] (VAR16D), TypeMem = VAR16S

1 5	14	13	12	í 11	<u>11 10 9 8 7 6 5 4 3 2</u>									1	0
1	0	0	1	1	1 0 0 0 1 0 1 TypeMem								0	0	
0	0	0	0				Axis/0	Group				0	0	0	0
							&VAF	R16D							
&VAR16S															

[Axis/Group] (VAR16D+), TypeMem = VAR16S

© Technosoft 2006

158

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
1	0	0	1	1	0	0	0	0	0	1	1		eMem	0	0	
0	0	0	0		1 1		Axis/C	Group				0	0	0	0	
							&VAF									
							&VAF	R16S								
Desc	ription		Send the 16-bit local value of the source operand to an external axis and assign to the 16-bit destination external variable (external 16-bit destination variable from another axis) = local source 16-bit value													
Exec	ution	(e	xterna	l 16-bi	t destin	ation	variab	le fron	n ano	ther a	kis) = I	local so	ource	16-bit v	/alue	
Typel DM PM SPI	Mem 01 00 10															
Exam	ple1	in	t Var	Loc,	VarE	kt;										
		 [G		Ext	= Varl	Loc;										
		Va Va	e fore i arLoc c arExt elongin	on loca on a	al axis Ill axe		x1234		,	After i VarLoo VarExt from g	c on lo c on	cal axi all a	s axes	0x123 0x123		
Exam	ple2				VarEz dm =		Loc;									
		Va	e fore i arLoc c arExt o	on loca	al axis	0) x	x1234		,	After i VarLoo VarExt	c on lo	cal axi	s	0x123 0x123		
Exam	ple3				pVarl t), dr		VarLo	c;								
		Va p\ be At	elongin : dm ac	on loca on a g to gi ddress xes be	al axis all axe	s 0: 4 x	xFEDC x1234			pVarE: belong At dm	c on lo xt on ing to addre axes	ction cal axi all a group ess 0x1 belong	axes 8 234	0xFED 0x123 0xFED	4	

159

Example4

int VarLoc, pVarExt;

[G8](pVarExt+), dm = VarLoc;

Before instruction

VarLoc on local axis pVarExt on all axes belonging to group 8 At dm address 0x1234 on all axes belonging to group 8

s	0xFEDC 0x1234	
4 g	x	

160

After instruction

VarLoc on local axis pVarExt on all axes belonging to group 8 At dm address 0x1234 on all axes belonging to group 8

5	0xFEDC 0x1235
J	0xFEDC

© Technosoft 2006

Nam	ne	 Assignment instruction for a 32 bits TML external variable with data sent from the local axis – multiple axis instruction (send data to another axis) 													
			1	from th	ne loca	I axis -	– mult	iple axi					to ano Aultiple		
									(U	omm	inicali		nuilipie	axis	yroup
Synta	ax														
- j		[/	xis/Gr	oup] V	/AR32	D = VA	R32S	;		[A/G]	long V	'AR321	D = loca	al VA	R328
		-			/AR32								32D, L		
										VAR3					
			xis/Gr		(VAF	R16D),	Тур	peMem				AR16E	D), TI	/ =	loo
			AR325			160.1	τ.			VAR3		10100) –		اما
			xis/Gr AR32S		(VAR	16D+)	, ту	peMen					D), <i>TI</i> DS+=2	/ =	loc
Oper	ands	VA	R32x:	long	/ariable	e VAR	32x								
-		Ax	<i>is</i> : 8-b	it ID fo	or sour	ce axis		oup of	axes						
					ory ope										
					nory o				•••			- 40	L:4 - 1	aluc -	
		•	AR16x riable): cor	itents	of va	Table	VAR1	6x, re	eprese	enting	a 16	-bit ad	dress	of
Tuna			TMI n	roarar	n	On-l	ne								
Туре	!		TML p	rograr X	n	On-l	ine								
Туре	ļ		-		n	On-l –	ne								
	ry cod	e	-		n	<u>On-I</u>	ne								
Binar	ry cod			X		<u>On-I</u>	ine								
[Axis	ry cod s/Grou	p] VAI	<u>;</u> R32D =	X = VAR	.32S			7	6	5	4	3	2	1	0
Binar	ry cod /Grou 14	p] VAI 13	R32D =	X		<u>On-l</u> – 9 0	ne 8	7	6 (9	<u>5</u> 0LSBs	4 s of & <i>V</i>	<u>3</u> (AR32)	2 D)	1	0
Binar [Axis 15	ry cod s/Grou	p] VAI	<u>;</u> R32D =	X = VAR 11	32S 10	9	8					3 / <u>AR32</u> / 0		10	0
Binar [Axis <u>15</u> 1	ry cod /Grou 14 0	p] VAI 13 1	R32D = 12 1	X = VAR 11	32S 10	9		Group				AR32	D)		-
Binar [Axis <u>15</u> 1 0	ry cod 5/Grou 14 0 0	p] VAI 13 1 0	R32D = 12 1 0	X = VAR 11 1	32S 10 1	9	8 Axis/0	Group				AR32	D)		-
Binar [Axis <u>15</u> 1 0 [Axis	ry cod ;/Grou 14 0 0	p] VAI 13 1 0 p] VAI	R32D = 12 1 0 R32D,	x 11 1 dm =	32S 10 1 VAR3	9 0 2S	8 Axis/(&VAF	Group R32S	9)	DLSBs	of &V	(AR32) 0	D) 0	0	0
Binar Axis 15 1 0 [Axis 15	ry cod ;/Grou 14 0 0 0 ;/Grou 14	p] VAI 13 1 0 p] VAI	R32D = 12 1 0 R32D, 12	x 11 1 dm = 11	32S 10 1 VAR32 10	9 0 2S 9	8 Axis/C &VAF 8	Group R32S 7	(9 6	DLSBs	of & <i>V</i>	(AR32) 0 3	D) 0	0	0
Binar [Axis <u>15</u> 1 0 [Axis <u>15</u> 1	ry cod /Grou 14 0 0 0 /Grou 14 0	p] VAI 13 1 0 p] VAI 13 0	R32D = 12 1 0 R32D, 12 1	x 11 1 dm =	32S 10 1 VAR3	9 0 2S	8 Axis/(&VAF 8 0	Group R32S 7 0	9)	DLSBs	of &V	(AR32) 0 3 0	D) 0 2 1	0 1 0	0
Binar [Axis 15 1 0 [Axis 15	ry cod ;/Grou 14 0 0 0 ;/Grou 14	p] VAI 13 1 0 p] VAI	R32D = 12 1 0 R32D, 12	x 11 1 dm = 11	32S 10 1 VAR32 10	9 0 2S 9	8 Axis/(&VAF 8 0 Axis/(Group R32S 7 0 Group	(9 6	DLSBs	of & <i>V</i>	(AR32) 0 3	D) 0	0	0
Binar [Axis 15 1 0 [Axis 15 1	ry cod /Grou 14 0 0 0 /Grou 14 0	p] VAI 13 1 0 p] VAI 13 0	R32D = 12 1 0 R32D, 12 1	x 11 1 dm = 11	32S 10 1 VAR32 10	9 0 2S 9	8 Axis/(&VAF 8 0 Axis/(& VAI	Group R32S 7 Group R32D	(9 6	DLSBs	of & <i>V</i>	(AR32) 0 3 0	D) 0 2 1	0 1 0	0
Binar [Axis 15 1 0 [Axis 15 1	ry cod /Grou 14 0 0 0 /Grou 14 0	p] VAI 13 1 0 p] VAI 13 0	R32D = 12 1 0 R32D, 12 1	x 11 1 dm = 11	32S 10 1 VAR32 10	9 0 2S 9	8 Axis/(&VAF 8 0 Axis/(Group R32S 7 Group R32D	(9 6	DLSBs	of & <i>V</i>	(AR32) 0 3 0	D) 0 2 1	0 1 0	0
Binar [Axis 15 1 0 [Axis 15 1 0	ry cod //Grou 14 0 //Grou 14 0 0	p] VAI 1 0 p] VAI 13 0 0	R32D = 12 1 0 R32D, 12 1 0	x 11 1 dm = 11 1	32S 10 1 VAR3 10 0	9 0 2S 9 0	8 Axis/C &VAF 8 0 Axis/C & VAI & VAI	Group R32S 7 Group R32D	(9 6	DLSBs	of & <i>V</i>	(AR32) 0 3 0	D) 0 2 1	0 1 0	0
Binar [Axis 15 1 0 [Axis 15 1 0	ry cod /Grou 14 0 0 0 /Grou 14 0	p] VAI 1 0 p] VAI 13 0 0	R32D = 12 1 0 R32D, 12 1 0	x 11 1 dm = 11 1	32S 10 1 VAR3 10 0	9 0 2S 9 0	8 Axis/C &VAF 8 0 Axis/C & VAI & VAI	Group R32S 7 Group R32D	(9 6	DLSBs	of & <i>V</i>	(AR32) 0 3 0	D) 0 2 1	0 1 0	0
Binar [Axis 15 1 0 [Axis 15 1 0 [Axis	ry cod //Grou 14 0 //Grou 14 0 0 //Grou	p] VAI 1 0 p] VAI 13 0 0	R32D = 12 1 0 R32D, 12 1 0 R16D	x = VAR 11 1 dm = 11 1 , Type	32S 10 1 VAR3: 10 0	9 0 2S 9 0 = VAF	8 <u>Axis/(</u> <u>&VAF</u> 8 0 <u>Axis/(</u> <u>&VAF</u> <u>8</u> 0 <u>Axis/(</u> <u>8</u> VAF <u>8</u> 0 <u>Axis/(</u> <u>8</u> 0 <u>Axis/(</u> <u>8</u> 0 <u>Axis/(</u> <u>8</u> 0 <u>Axis/(</u> <u>8</u> 0 <u>Axis/(</u> <u>8</u> <u>8</u> 0 <u>Axis/(</u> <u>8</u> <u>8</u> <u>8</u> <u>8</u> <u>8</u> <u>8</u> <u>8</u> <u>8</u>	Group R32S 7 0 Group R32D R32S	6 0	5 0	4 1	AR321 0 3 0 0	D) 0 2 1 0	0	0
Binar [Axis 15 1 0 [Axis 15 1 0 [Axis 15	ry cod /Grou 14 0 0 /Grou 14 0 0 /Grou 14 14	p] VAI 13 0 p] VAI 13 0 0 0	R32D = 12 1 0 R32D, 12 1 0 R16D) 12	x 11 1 dm = 11 1 , Type 11	32S 10 1 VAR32 10 0	9 0 2S 9 0 = VAF 9 0	8 <u>Axis/(</u> &VAF 8 0 <u>Axis/(</u> & VAI & VAI 232S 8	Group R32S 7 0 Group R32D R32D R32S 7 1	6 6	5 0 5	4 4 1	AR321 0 3 0 0	D) 0 2 1 0 2 2 2	0	0
Binar [Axis 15 1 0 [Axis 15 1 0 [Axis 15 1	ry cod /Grou 14 0 0 /Grou 14 0 0 /Grou 14 0 0 /Grou	p] VAI 13 0 p] VAI 13 0 0 P] (VA 13 0	R32D = 12 1 0 R32D, 12 1 0 R16D) 12 1	x 11 1 dm = 11 1 , Type 11	32S 10 1 VAR32 10 0	9 0 2S 9 0 = VAF 9 0	8 <u>Axis/(</u> &VAF 8 0 <u>Axis/(</u> & VAI & VAI 32S 8 0	Group R32S 7 0 Group R32D R32D R32S 7 1 Group R16D	6 6	5 0 5	4 4 1	AR321 0 3 0 0 0 3 7 <i>ype</i>	D) 0 2 1 0 2 2 eMem	0 1 0 0	0 0 1 0

161

15	14	13	12	<i>"</i> 11	10	9	8	7	6	5	4	3	2	1	0
1	0	0	1	1	0	0	0	0	0	1	1	Туре	eMem	0	1
0	0	0	0				Axis/0	Group				0	0	0	0
							& VAI								
							& VAI	R32S							
Desc	riptio						e of the			rand to	o an e	xternal	axis a	nd as	sign it
Typel	Mem								-						
DM	01														
PM	00														
SPI	10														
Exect	ution	(e	externa	l 32-bit	destir	natior	n variab	le fron	n ano	ther ax	(is) = I	ocal so	ource 3	2-bit	value
_															
Exam	ple1	1.0		mT o a	Vor										
		10	ong va	arLoc,	var	ĽΧί,									
		[1	.5]Var	Ext =	Var	Loc;									
	Bef	ore in	struct	ion					After	instru	uction				
			n local		0x1	234A	BCD]	VarLo	bc on l	ocal a	xis	0x12	34AB	CD
			axis 1		X	-			VarE	xt on a	xis 15			34AB	
Exam	nlo?							-							
Слан	ipiez	lc	ong Va	arLoc,	Var	Ext;									
		[1	.5]Var	Ext,	dm =	Var	Loc;								
	Bef	ore in	structi	on					After	instru	iction				
			local		0xF	0E1A	2B3	7		oc on l			0xF0	E1A2	B3
	Varl	Ext on	axis 1	5	х				VarE	xt on a	xis 15		0xF0	E1A2	B3
Exam	nle3							-							
Exam	ipico		0	arLoc; arExt;											
		[1	.5](pV	/arExt	.), d	m =	VarLo	c;							
	Bef	ore in	structi	on				_	After	instru	iction				
			local a		-		EDC			oc on l				33FEI	DC
			n axis		0x1	234			•	Ext on			0x12		
)x1234	х					n addr	ess ()	(1234	0xFE	DC	
		axis 15		\v102E	~			-	on ax			(100E	0,000	22	
		im add axis 15)x1235	x				on ax	n addro vie 15	55 U)	1235	0x22	55	
Exam			,					J	onax	13 10					
	10104														

[Axis/Group] (VAR16D+), TypeMem = VAR32S

© Technosoft 2006

162

long VarLoc; int pVarExt; ... [15](pVarExt+), dm = VarLoc;

Before instruction

VarLoc on local axis pVarExt on axis 15 At dm address 0x123 on axis 15 At dm address 0x123 on axis 15

5	0x2233FEDC	
	0x1234	
234	x	
235	X	

After instruction

VarLoc on local axis	0x2233FEDC
pVarExt on axis 15	0x1236
At dm address 0x1234	0xFEDC
on axis 15	
At dm address 0x1235	0x2233
on axis 15	

163

Nam	е		 Get data from memory (16-bit/32-bit) with direct addressing (On-line group) 													
Synta	x	_														
Opera	ands	-														
Туре			TML p	orograr –	n	On-										
Binar	y cod	е														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
1	0	0	1	0	0	0	0	0	0	0	0	Туре	Mem	0	0	
						Des	stinatio									
							16-bit	value								

Description The instructions request, via a communication channel, from a remote drive the value contained in the memory location(s) with address specified directly in the code. The address can be in data memory, program memory or SPI memory.

164

TypeMem									
DM	01								
PM	00								
SPI	10								

Execution Request from the remote drive, the remote drive sends the value requested.

© Technosoft 2006

Nam	 Get data from memory (16-bit/32-bit) with indirect addressing (On-line group) 														
Synta	x	_													
Opera	ands	_													
Туре		[TML p	orograr –	n	On- X									
Binar	y cod	е													
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
1	0	0	1	0	0	0	0	1	0	0	0	Туре	Mem	0	0
							tinatio								
						LO\	NORD	(value	e32)						

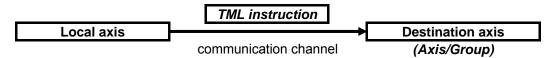
Description The instructions request, via a communication channel, from a remote drive the value contained in the memory location(s) with address specified in *VAR16* variable. The address contained in *VAR16* can be in data memory, program memory or SPI memory.

HIWORD(value32)

TypeMem								
DM	01							
ΡM	00							
SPI	10							

Execution Request from the remote drive, the remote drive sends the requested value.

© Technosoft 2006


165

Name	– Se	end a TML instruct	ion to ano	ther axis	s			
						& Multip	le avis d	aroun)
			(0		ncation	a munip		gioup)
Syntax	[Axis/Group] {TMI	L Instruction;}						
Operands	Axis/Group ID: the TML Instruction: destination axis/g	any of the single		- ·		des, to b	e send	to the
Туре	TML program	On-line]					
Type	X	X						
	^	▲ ∧	l					
Binary code								
45 44 4	0 40 44 4		7 0	~		<u> </u>		•

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
1	0	0	1	0	1	0				leng	th(<i>ML</i>) – 1			
0	0	0	A/G				Axis/	Group	0	0	0	0			
				T	ML ins	tructio	n word	d 1 (op	eratio	n code	e)				
					ΤN	1L inst	ructior	n word	2 (da	ta)					
				Τ٨	/L inst	ructior	1 word	(leng	th(<i>ML</i>	/)) (da	ta)				

Description This multiple axis operation allows one to send TML commands from one axis to another one. When this code is encountered, the TML instruction included in it is sent to the destination axis, and will be executed as an on-line TML command received by that axis.

Execution

Send the "TML Instruction" through the multiple-axis communication channel.

Example

[G8] {STOP3;}//Send to all axes that belong to group 8 the command //to execute a motion stop of type 3.

© Technosoft 2006

166

Name	=- S	otinvo		luo fo	r TN/I	variab							
Name	_ - 3	etinve				variau	162			(A	ssign	ment g	group)
Syntax	VAR16D VAR32D					VAR1 VAR3				alue			
Operands	VAR16x VAR32x				R32x								
Туре	TML p	rogran K	ו וווי	On-l	ine								
Binary code													
VAR16D = -V	AR16S												
	13 12	11	10	9	8	7	6	5	4	3	2	1	0
0 0	1 1	0	0	0	<u></u> &\/Δ	R16S	(5	LSBS	of &V/	4R16L)		
					uv A	100							
VAR32D = -V	AR32S												
	13 12	11	10	9	8	7	6	5	4	3	2	1	0
0 0	1 1	0	1	0	<u></u> .ε.ν/Δ	R32S	(9	ISBS	of &V/	AR32L)		
					<u>av</u> Ai	1020							
Description	Assign to	o the v	ariable	its in	verse	value							
Execution	variable =	= - vari	able										
Example	int Var long Va Varl =	r2;	.1 •										
	Var1 = Var2 =												
		3efore ∕ar1	instru	iction 1256					After i Var1		tion 1256		
		/ar2	ľ	-224					Var2		256		

167

Nam	e	+:	= A	dd a v	alue to	o a TM	L vari	able				(Arithn	netic&l	Logic	group
Synta	ax														
-		۱	/AR16	+= val	ue16		add	to VA	R16 v	alue16	6				
		١	/AR16L) += V	AR163	S	add	to VA	R16D	VAR1	6S val	lue			
		١	/AR32	+= val	ue32		add	to VA	R32 v	alue32	2				
		۱	/AR321	⊃ += V	AR323	S	add	to VA	R32D	VAR3	2S va	lue			
Oper	ands	V	/AR16x	: intea	er vari	able									
			/AR32x												
		V	alue16	: 16-bi	it imme	ediate	intege	er value	Э						
		V	alue32	: 32-bi	it imme	ediate	long v	alue							
Туре		Ľ	TML p	orogran	n	On-l	ine								
				Х		Х									
	ry coo														
VAR [^] 15	16 += 14	value [®] 13	16 12	11	10	9	8	7	6	5	4	3	2	1	0
0	0	1	1	1	0	0		-		(9LSB					0
•	v	<u> </u>	<u> </u>		v	Ŭ	valu	e16		(0202)			/		
VAR	16D +	= VAR	16S												
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	1	0	0	0	0	0			(9	9LSBs	of &V	'AR16l	D)		
							&VAI	R16S							
VAR	32 +=	value	32												
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	0	1	1	1	1	0				(9LSB	s of &\	/AR32	?)		
								(value							
						HIV	VORD	(value:	32)						
		= VAR		44	10	0	0	7	c	E	4	2	2	4	•
<u>15</u> 0	14	13	12	11 0	<u>10</u> 1	9 0	8	7	6	<u>5</u> 9LSBs	4 of 8 V	3	<u>2</u>	1	0
U		U	U	U		U	&VAI	2328	(;	92308		AN321	<i>_</i>)		
							a v Ai	1020							
Jesc	riptio	n Δ,	dd to th	ne dest	inatio	n varia	hle th	e value	of th		Ce vai	riable (or valu	e Sto	ore th

Execution destination variable = destination variable + source variable / value

© Technosoft 2006

168

Example

int Var1, Var2, Var3; long Var10, Var11, Var12;

...
Var1 += 125;
Var3 += Var2;
Var10 += 128000;
Var12 += Var11;

Before instruction

Var1	1256
Var2	-22450
Var3	22500
Var10	-1201
Var11	25
Var12	12500
Varia	12000

After instruction

Var1	1381
Var2	-22450
Var3	50
Var10	126799
Var11	25
Var12	12525

© Technosoft 2006

169

		-=	: 5	Subtrac	t a val	ue froi	m a TN	/L var	iable		(Arithm	etic&l	Logic g	group)
Syntax															
-		V	/AR16	-= valu	ie16		subt	ract fr	om V	′AR16 v	alue1/	6			
		V	/AR16[) -= V/	4R165	5	subt	ract fr	om V	'AR16D	VAR	16S va	lue		
		V	/AR32	-= valu	<i>ie32</i>		subt	ract fr	om V	′AR32 v	alue3/	2			
		V	/AR32[) -= V/	4 <i>R</i> 32S	5	subt	ract fr	om V	AR32D	VAR	32S va	lue		
Operan	ds	V Va	AR16x AR32x alue16: alue32:	: long : 16-b	variab it imm	le ediate			e						
Туре			TML p	roorar	n	On-l	ine								
ijhe				X		<u>X</u>		-							
Binary o			6		<u> </u>										
	-= va 14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	1	0	0	1	0	0		<u> </u>		(9LSBs					U
	- 1	•	•		•	•	valu	e16		(02020			/		
VAR16					40	•	•	-	•	-		•	•		•
-	14	13	<u>12</u> 1	11	10	9	8	7	6	5 9LSBs	4	3	2	1	0
0	1	0	1	0	0	0	&VAF	2160	(9L2BS	UI & V	ARIOL)		
							avar	103							
VAR32	-= Vá	alue3	2												
	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	1	0	0	1	1	0				(9LSBs	s of &۱	/AR32)		
						LOV	VORD	(value	32)						
						HIV	VORD	value,	32)						
			_												
VAR32						-	-	_	-	_	-	-	-	-	-
		13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	1	0	1	0	1	0	&VAF	2220	(9LSBs	OT & V	AR32L)		
Descrip Executi		S	tore the	e resul	t in the	e desti	ion va nation	riable variat	ole.	alue of				ole or	value.
		U	ວແມ່ດແບ	ni vali		UCOIII		vaiiau	10 - D		anau		107		

170

Example

int Var1, Var2, Var3; long Var10, Var11, Var12;

Varl -= 125; Var3 -= Var2; Var10 -= 128000; Var12 -= Var11;

Before instruction

Var1	1256
Var2	-22450
Var3	22500
Var10	-1201
Var11	25
Var12	12500
Varia	12000

After instruction

Var1	1131
Var2	-22450
Var3	44950
Var10	-129201
Var11	25
Var12	12475

© Technosoft 2006

171

Name	*	N	/lultipli	cation	operat	tion					(Arith	metic&	Logic g	grou
Syntax														
- j	V	AR16	* VAL	UE16 :	>> N			F	PROD	= (VA	R16*	value16	5) >> N	1
	V	AR16	* VAL	UE16 ·	<< N					•		value16	,	
	V	AR16A	4 * VA	R16B	>> N					•		*VAR1	,	
	V	AR16A	4 * VA	R16B	<< N			F	PROD	= (VA	R16A	*VAR1	6B) <<	N
	V	AR32	* VAL	UE16 :	>> N			F	PROD	= (VA	R32*1	value16	5) >> N	1
	V	AR32	* VAL	UE16 ·	<< N			F	PROD	= (VA	R32*ı	value16	5) << N	1
	V	AR32	* VAR	16 >>	Ν			F	PROD	= (VA	R32*	VAR16) >> N	
	V	AR32	* VAR	16 <<	Ν			F	PROD	= (<i>VA</i>	R32*	VAR16) << N	
Operands	VA	AR16x	: integ	jer vari	able									
-				variab										
				it imm				Э						
				it imm	ediate	long v	alue							
	N:	result	t shift f	factor										
Type	<u> </u>	TML p	rograi	m	On-l	ine								
			orograi X	m	On-l X									
Binary cod VAR16 * VA	e ALUE1	6 >> I	X N		X		7	6	5	4	3	2	1	0
Binary cod	e		X	m 10 1			 7 0	6	5	4	3	2 	<u>1</u> :N≤15)	0
Binary cod /AR16 * V <i>A</i> 15 14	e ALUE1 13	6 >> I 12	X N 11	10	X 9	8					3			0
Binary cod VAR16 * VA 15 14	e ALUE1 13	6 >> I 12	X N 11	10	X 9	8 0 &VA	0				3			0
Binary code VAR16 * VA 15 14 1 0	e ALUE1 13 0	6 >> 1 <u>12</u> 0	X 11 1	10	X 9	8 0 &VA	0 R16				3			0
Binary code VAR16 * VA 15 14 1 0 VAR16 * VA 15 14	e ALUE1 13 0 ALUE1 13	6 >> 1 12 0 6 << 1 12	X 11 1 N 11	10 1 1	9 0 9	8 0 &VA VAL	0 R16 JE16 7	6	5	0	3	N (0≤ 2	<u>N≤15)</u>	0
1 0 VAR16 * VA	e ALUE1 13 0 ALUE1	6 >> 12 0 6 <<	X 11 1 1	10 1	9 0	8 0 &VA VAL0 8 0	0 <i>R</i> 16 <i>J</i> E16 7 0	0	0	0		N (0≤ 2	N≤15)	
Binary cod VAR16 * VA 15 14 1 0 VAR16 * VA 15 14	e ALUE1 13 0 ALUE1 13	6 >> 1 12 0 6 << 1 12	X 11 1 N 11	10 1 1	9 0 9	8 0 &VA VAL 8 0 &VA	0 R16 JE16 7 0 R16	6	5	0		N (0≤ 2	<u>N≤15)</u>	
Binary cod VAR16 * VA 15 14 1 0 VAR16 * VA 15 14	e ALUE1 13 0 ALUE1 13	6 >> 1 12 0 6 << 1 12	X 11 1 N 11	10 1 1	9 0 9	8 0 &VA VAL 8 0 &VA	0 <i>R</i> 16 <i>J</i> E16 7 0	6	5	0		N (0≤ 2	<u>N≤15)</u>	
Binary code VAR16 * VA 15 14 1 0 VAR16 * VA 15 14 1 0	e ALUE1 13 0 ALUE1 13 0	6 >> 1 12 0 6 << 1 12 0	X 11 1 N 11 1	10 1 1	9 0 9	8 0 &VA VAL 8 0 &VA	0 R16 JE16 7 0 R16	6	5	0		N (0≤ 2	<u>N≤15)</u>	
Binary code VAR16 * VA 15 14 1 0 VAR16 * VA 15 14 1 0 VAR16A * V	e ALUE1 13 0 ALUE1 13 0 /AR16	6 >> 1 12 0 6 << 1 12 0 B >> 1	X 11 1 1 N 11 1 N	10 1 10 10	9 0 9 0	8 0 &VA VAL 8 0 &VA VAL	0 R16 JE16 7 0 R16 JE16	0 6 0	5 1	4 0	3	<u>N</u> (0≤ <u>2</u> <u>N</u> (0≤	<u>1</u> N≤15) N≤15)	0
Binary cod VAR16 * VA 15 14 1 0 VAR16 * VA 15 14	e ALUE1 13 0 ALUE1 13 0 /AR16 13	6 >> 1 12 0 6 << 1 12 0	X 11 1 N 11 1	10 1 1	9 0 9 0 9 0	8 0 &VA VAL 8 0 &VA	0 R16 JE16 7 0 R16	0 6 0	0 5 1 5	0		<u>N</u> (0≤ 2 <u>N</u> (0≤ 2	<u>N≤15)</u> 1 N≤15) 1	
Binary code VAR16 * VA 15 14 1 0 VAR16 * VA 15 14 1 0 VAR16A * V 15 14	e ALUE1 13 0 ALUE1 13 0 /AR16	6 >> 1 12 0 6 << 1 12 0 B >> 1 12	X 11 1 1 N 11 N 1 N	10 1 10 1 1 10	9 0 9 0	8 0 &VA VAL0 8 0 &VA VAL0 8	0 R16 JE16 7 0 R16 JE16 7 1	0 6 0	5 1	0 4 0	3	<u>N</u> (0≤ 2 <u>N</u> (0≤ 2	<u>1</u> N≤15) N≤15)	0

© Technosoft 2006

•••

VAR	16A *	VAR1	6B <<	Ν											
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
1	0	0	0	1	1	0	0	1	0	1	0		N (0≤	N≤15)	
							&VAF								
							&VAF	R16B							
	20 * V		16	а											
15	.32 V. 14	ALUE 13	16 >> I 12	N 11	10	9	8	7	6	5	4	3	2	1	0
1	0	0	0	1	1	0	1	0	Ŏ	0	0		N (0≤		U
•	•	•					&VA	•	•		•				
							VALU								
VAR	32 * V	ALUE	16 << I												
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
1	0	0	0	1	1	0	1	0	0	1	0		N (0≤	N≤15)	
							<u>&VA</u>								
							VALU	JE10							
VAR	32 * V	AR16	>> N												
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
1	0	0	0	1	1	0	1	1	0	0	0		 N (0≤		
							&VA	R32						/	
							&VA	R16							
	32 * V						-	_	-	_			-		
15	14	13	12	<u>11</u> 1	<u>10</u> 1	9	8	7	6 0	5	4	3	2	 N≤15)	0
1	0	0	0	I		0	&VA		U		U		₩ (0≤	NS15)	
							&VA								
Desc	criptio	n M	lultiply	two va	alues a	and sto	ore the	result	t (ever	ntually s	shifted	d) in tl	he PRC	DD (pro	oduct)
	-	re	egister	of the	TML e	enviror	ment.			-					
_		_													
Exec	cution						erand	* seco	ond op	perand)	shift	ed to	left or	right v	vith a
		S	pecified	a numi	ber of	DITS									
Exar	nple1			-											
			nt Var												
		Τ(ong va	11 4 /											
		Va	 arl *	0x12	5;										
		Va	ar2 =	PROD	;										
						-					_	-			
					e ins <u>tr</u>					After					
			,	Var1		0x125				Var1	0:	x1256	i	005	
											0	x1256 x0000		C6E	

© Technosoft 2006

173

Example2

int Varl; long Var2;

. . . Var1 * 0x125 << 12; Var2 = PROD(H);

Before instruction

Var1	0x1256
PROD	х
Var2	Х

Example3

int Var2, Var3; long Var4; • • • Var2 * Var3 >> 4; Var4 = PROD;

Before instruction

Var2	0x1256
Var3	0x125
PROD	Х
Far4	X

Example4

int Var2, Var3; long Var7; . . . Var2 * Var3 << 8; Var7 = PROD(H);

Before instruction Va

Var2	0x1256
Var3	0x125
PROD	Х
Var7	Х

Example5

long Var1, Var2; . . . Var1 * 0x125; Var2 = PROD;

Before instruction

Var1	0x001256AB
PROD	Х
Var2	х

After instruction

Var1	0x1256
PROD	0x00014FC6E000
Var2	0x00014FC6

After instruction

Var2	0x1256
Var3	0x125
PROD	0x00000014FC6
Var4	0x00014FC6

After instruction

After instruction

0x1256

Var1

PROD

Var2

Var2	0x1256
Var3	0x125
PROD	0x000014FC6E00
Var7	0x000014FC

ır1	0x001256AB				
ROD	х				
ır2	Х				

MotionChip II TML Programming

0x000014FD31B7 0x14FD31B7

© Technosoft 2006

174

Example6

long Var1, Var2; ... Var1 * 0x125 << 12;

Var2 = PROD(H);

Before instruction

Var1	0x001256AB
PROD	х
Var2	х

Example7

long Var2, Var9; int Var3; ... Var2 * Var3 >> 4; Var9 = PROD(H);

Before instruction

Var2	0x001256AB
Var3	0x125
PROD	х
Var9	Х

Example8

long Var2, Var9; int Var3; ... Var2 * Var3 << 8; Var9 = PROD;

Before instruction Var2 0x0012

Var2	0x001256AB
Var3	0x125
PROD	х
Var9	Х

After instruction

Var1	0x001256AB
PROD	0x014FD31B7000
Var2	0x014FD31B

After instruction

Var2	0x001256AB
Var3	0x125
PROD	0x0000014FD31B
Var9	0x0000014F

After instruction

Var2	0x001256AB
Var3	0x125
PROD	0x0014FD31B700
Var9	0xFD31B700

© Technosoft 2006

175

Name	>>=	Shift rig	ht						(/	Arithm	etic &	Logic g	ıroup)
Syntax VAR16 >>= N VAR32 >>= N PROD >>= N						shift <i>VAR16</i> right by <i>N</i> shift <i>VAR32</i> right by <i>N</i> shift <i>PROD</i> (product reg.) right by <i>N</i>							
Operands	VAR32	: intege : long va produc factor	ariabl	е									
Туре	TML	progran X	1	On- X									
Binary code													
VAR16 >>= 15 14 1 0	N <u>13 12</u> 0 0	11	<u>10</u> 0	9	8	7	6	5	4	3	2 N (0≤	<u>1</u> N≤15)	0
					&VA	-							
VAR32 >>= 15 14	N <u>13 12</u> 0 0	11	<u>10</u> 0	9	8	7	6	5	4	3	2 N (0≤	<u>1</u> N≤15)	0
		•	U	Ū	&VA	-	Ŭ	Ŭ	Ū				
PROD >>= N 15 14	13 12	11	10	9	8	7	6	5	4	3	2	1	0
1 0	0 0	1	0	0	0	1	0	0	0		N (0≤	N≤15)	
Description	signific	hift the ant bits ered as	with	the s	ign bit								
Execution	Value =	= Value	shifte	d to rig	ht with	N bit	S						
Example1	int Va	arl;											
	 Varl >	>= 4;											
		Before	inst	ructior	า			After	r instru	uctior	า		
		Var1		0x125				Var1		x0125			
						<u>'6</u>					TML D		

176

Example2 long Var1;

... Var1 >>= 12;

Before instruction 0x1256ABAB Var1

After instruction

0x0001256A Var1

Example3 PROD >>= 4;

Before instruction PROD 0x12560000ABCD

After instruction PROD 0x012560000ABC

© Technosoft 2006

177

Name	<<= Shi	ft left					(/	Arithm	etic & I	_ogic g	roup)
Syntax VAR16 <<= N VAR32 <<= N PROD <<= N Operands VAR16: integer variable VAR32: long variable					sł	hift VA	R16 le R32 le 20D (p	eft by I	V	right by	' N
Туре	N: shift fac		On-line X								
Binary code											
VAR16 <<= N 15 14 1 0		11 10 1 0	9 8 0 0 &V/	7 0 AR16	6 0	5 1	4 0	3	2 N (0<	1 N<15)	0
VAR32 <<= N 15 14 1 0		<u>11 10</u> 1 0	9 8 0 1 &V/	7 0 AR32	6 0	5 1	4	3	2 N (0<	1 N<15)	0
PROD <<= N 15 14 1 0		<u>11 10</u> 1 0	9 8 0 0	7	6	5	4	3	2 N (0<	1 N<15)	0
Description		he source c bits with 0.	perand, w	ith the	speci	fied nu	umber	of bit	s (N). I	-ill the	least
Execution	Value = Va	alue shifted	to left with	N bits							
Example1	int Varl … Varl <<=										
		efore ins <u>tru</u>	ction <1256			After Var1	instru 0>	uctior <2560	<u> </u>		

178

Example2

long Varl; ... Varl <<= 12;

Before instruction						
Var1	0x1256ABAB					

After instruction

Var1 0x6AABAB000

Example3

PROD <<= 4;

Before instruction PROD 0x12560000ABCD After instruction PROD 0x2560000ABCD0

© Technosoft 2006

179

Name		ADDGI	RID		Add	group	ID				(Λ.	Aultinle	e axis g	aroup)
											(//	iuitipie	axis (ji Oup)
Syntax		ADDGF		ue16			Ac	ld valı	ue16 to	o GRC)		
		ADDGF							ue of V				ID	
Operands		value16 VAR16:				ediate	e value							
Туре		TML p	orogran	n	On-l	ine								
			X		Х									
Binary co	de													
ADDGRID				4.0	•	•	_	•	_		•	•		•
15 14	13	12	11	<u>10</u> 0	9 0	8	7	6 1	5	4	3	2	1	0
	v	U	•	v	v	-	ie16		U	Ŭ	v	Ŭ	v	
ADDGRID) VAR	16												
15 14	-		11	10	9	8	7	6	5	4	3	2	1	0
0 0	0	0	1	0	0	1 &VA	0 R16	1	0	0	0	0	0	0
Descripti		In multip local axi After the axis an messag Only the coding. Up to 8 An axis address	s. e execu es add e lower Each b groups can l ed to o	ution of sed by ressed r 8 bits it corre (1 to 8 belong one axis	this c to gro to gro of the spond to a to a s or to	comma comn oups c ne val ds to a be de ny of o a gro	and, th nunica of axes <i>ue16</i> of group fined/a the g oup of a	e new tion d or <i>VAI</i> added, roups axes.	/ group lrivers R16 pa /remov . A m	o ID va in or arame ved in nultiple	alue is der to ters a a mult	recog acce re use iple ax	nized l pt or ed for kis stru	by the reject group icture.
Execution	n (Group_II	J = Group	oup_ID	+ val	ue16	(or vali	ue of \	VAR16	<i>5</i>).				
Example		GROUPII ADDGRII ADDGRI [G4] {	D 2; D 4;		//fi //to //fi //to //(0	rom n o gro rom n o gro GROUP	axis low or oups 1 low or oups 1 PID 11 top m	n, th and n, th , 2)	e loc 2 GF e loc and 4	cal a ROUPI cal a 4	xis h D = 3 xis h	oelon 3) oelon	gs	
		(21010	, i			ing t					41		

180

Name	AXISID)		Set a	axis ID	value				(۸	<i>Aultiple</i>	e axis g	group)
Syntax	AXISID AXISID								addres vith va		VAR16	3	
Operands	value16 VAR16:				ediate	value	:						
Туре		orogram X		On-l X									
Binary code													
AXISID value	16 13 12	11	10	9	8	7	6	5	4	3	2	1	0
0 0	0 0	1	0	0	0	0	0	0	0	0	0	0	1
					Valu	e16							
	<u>^</u>												
AXISID VAR1 15 14	6 13 12	11	10	9	8	7	6	5	4	3	2	1	0
	0 0	1	0	0	1	0	0	0	0	0	0	0	1
	0		v	•	&VA	-	v	v	v	•	•	v	
Description	In multip After the axis. The	e execu	ition o	f thes	se com	nmanc	ls, the	e new	ID va	lue is	recogr	nized I	
Execution	Axis_ID i	s set to	value	16 or	value	of VA	R16.						
Example	AXISID	10;		// 1	from 1	now d	on, t	che l	ocal	axis	ID i	s 10	
	[10] { <i>I</i>	AXISID	9;}	11	change instr the a	ucti	on is	s ser	nd and				
	 [9] {CS	SPD =	30;}	// s		a cor	nmanc	l to	axis	9 (p:	revio	us az	kis

181

Name		АХ	(ISOF	F		Set t	he axi	s OFF	-	(C	onfig	gura	tion	ano	l con	nma	nd g	group)
Syntax		A	XISOF	F					AXIS	is C	DFF	(dea	ictiv	vate	conti	ol)		
Operan	ds	-																
Туре			TML p	rograr K	n	On-l X												
Binary	code	•																
15 ⁻	14 0	13 0	12 0	<u>11</u> 0	10 0	9 0	8	7	6		5 0	4		3	2		<u>1</u> 1	0
Descrip		ref hiç Th sa Vd	ference gh imp ie rea mpling Ic, etc)	e gen edanc I-time J loops) conti	l deacti erator i ce statu kernel s are a nues to PFF, and	modul s). I cont ctive. b be po	e. The tinues Only erform	e PW to b acquis ed.	M out e act sition	ive, of n	s are bot	e als th s	so c low	leact and	tivate d hig	ed (gh	put freq	in the uency
Exampl	le																	
		#i ENI	DINIT pop: A C U !: W. A !: W. G	; XISON ODE S SPD = PD; RT 1(AIT!; XISOF RT 2(AIT!;	SP1 ; = 20.; ; FF;)000;	of //st	setur /// //? //? //? //?	o fil prog work setup updat Set e WAIT deact Set e WAIT rest	e mode ref ce event unti civat unti cart	e ; Eere il e tl e the	ence if 1 even the if 1 even	e sp Rela nt o con Rela	pee ati occ ntr ati	d veT urs ol veT	ime			

© Technosoft 2006

Name	AXISON		Set f	he axi	s ON		(Cont	figurati	ion an	d com	mand	group)
Syntax	AXISON					AXIS i	s ON	(activa	ate cor	ntrol)		
Operands	_											
Туре	TML pro	gram	On-I X									
Binary code												
	1 <u>3 12</u>	<u>11 10</u> 0 0	9	8	7 0	6	5	4	3	2	1	0
Description	This comm reference										ion) a	nd the
Execution	Sets the ax	is ON, ai	nd activ	ates th	e con	trol.						
Example	CSF UPE !RT WAI AXI !RT WAI	//ei SON; DE SP1 PD = 20	nd of //s [:] ; ;;	setup tart //s //s //s //s //s	o fil prog work setup updat Set e WAIT deact	e ram mode p ref ce event unti civat	; erenc if l eve e the	Rela Rela ent o Rela ent o	eed tive: ccurs trol tive: ccurs	ſime S ſime		

183

Name	BEGI	١		Begii	n a TM	IL pro	ogram	seque	nce	(\ \ \;		0000	aroup)
Syntax										(MIS	scellan	eous	group)
	BEGIN	I					Begin	ning o	f a TM	IL prog	gram		
Operands	-												
Туре	TML	prograr X	n	On-li –	ine								
Binary code													
15 14	13 12	11	10	9	8	7	6	5	4	3	2	1	0
0 1	1 0	0	1	0	0	1	0	0	1	1	1	0	0
Description	instruc The TM	ommano tions. /L instru id instru	uction	decodi	ing se	ction	will rec						
Execution	Begin a	sequer	nce of	TML in	structi	ons.							
Example	ENDIN] Loop:	ude "d	//end N; SP1 ;	d of : //st ;	setup art : //w //s	fil prog vork setu upda	le ram mode p ref te	;			1		

© Technosoft 2006

Name	e	C	ALL		Call a	TML f	unctio	n							
													(Dec	ision g	group)
Syntax	v														
Oymaz	^	С	ALL L	abel				Unc	conditio	onal C	ALL o	faTM	1L fund	ction	
		C	ALL L	abel, \	/AR16	. Flag		CA	LL if \	VAR16	6 Flag (0			
				abeĺ, \		•					2 Flag (
Opera	nde		abol: 1	6-bit pi	roaran	mom		Idroce							
Opera	nus			intege			iory ac	uiess							
				long v											
				e of '=			=', '<',	'<=' re	lationa	al facto	ors.				
Туре			TML p	rogran	n	On-	line								
.) 0				X		X									
Binary	y code														
CALL	Label														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	1	1	1	0	1	0	0	0	0	0	0	0	0	0	1
							&La	abel							
CALL	Label,	VAF	R16. FI	aq											
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	1	1	1	0	1	0	0				Flag				1
							&VA								
							&La	abel							
CALL	Label,	VAF	832. FI	ad											
15	14	13	12	11 1	10	9	8	7	6	5	4	3	2	1	0
0	1	1	1	0	1	0	1				Flag				1
							&VA								
							&La	abel							

Description This instruction allows the execution of a TML function (subroutine).

A TML function starts with a label and ends with RET instruction. The function can contain any TML instruction. When a conditional CALL instruction is encountered, the condition is checked and, if it is true (i.e. the tested variable is in the specified relation with 0), a call of to the specified label is executed. If condition is false, the next TML instruction is executed.

Specific sequences can be called from different points of the TML program. Use a RET instruction to end the execution of a function and to continue the TML sequence following the CALL instruction.

© Technosoft 2006

185

Execution Calls a TML function (subroutine) located at the address Label. Unconditional call. IP -> TOS Label -> IP Conditional call. If VarXX Flag 0 then IP -> TOS

Label -> IP nust be an existing label nam

The label must be an existing label name, defined in the TML program (a 16-bit program memory address), otherwise an error will occur. The variable must be an existing TML variable name (an integer or long variable), defined in the TML program, otherwise an error will occur. The flag imposes the test condition for the variable var.

In case of a conditional decision instruction (CALL Label, VAR16/32, Flag) the variable specified is compared to 0, using one of the following test conditions:

variable.EQ.0	// variable = 0 (EQUAL)
variable.NEQ.0	// variable != 0 (NON EQUAL)
variable.LT.0	// variable < 0 (LESS THAN)
variable.LEQ.0	// variable <= 0 (LESS OR EQUAL)
variable.GT.0	// variable > 0 (GREATER THAN)
variable.GEQ.0	// variable >= 0 (GREATER OR EQUAL)

The CALL instruction is executed only if the test condition is satisfied.

F	lag
LT	0x0090
LEQ	0x0088
EQ	0x00C
	0
NEQ	0x00A0
GT	0x0084
GEQ	0x0082

Example1

CALL fct1, i_var1, GEQ; //call function fct1, if i_var1 >= 0
CALL fct1, i_var1, EQ; //call function fct1, if i_var1 = 0
CALL fct1, i_var1, NEQ; //call function fct1, if i_var1 != 0
CALL fct1; //unconditional call of function fct1
fct1:
...
RET;

Example2

int my_pos;

© Technosoft 2006

186

```
my_{pos} = 2000;
CALL MOVEP;
                  // execute a first motion of 2000
                  //counts
My_pos = 4000;
CALL MOVEP, ASPD, GT; // execute a second motion of 4000
                        //counts, if motor speed > 0
. . .
MOVEP:
            \ensuremath{{\prime}}\xspace // function to move up to a specified position
      CACC = 1.5;
                        // acceleration = 1.5counts/sampling2
      CSPD = -20.;
                        // slew speed = -20counts/sampling
                        // position command (input argument)
      CPOS = my_pos;
      UPD;
                        // start the motion
      RET;
                        // exit from function MOVEP
. . .
END;
```

187

Nam	е	C	ANB	र		Set	the ba	aud rat	e			<i>(</i> 1	Aultiple	e axis :	group)
Synta	ix		CANBR	t value	16				S	Set the	baud ı	rate fo	or CAN	-bus	
Opera	ands	ı	alue16/	: 16-bi	t integ	ger imi	nediat	e valu	е						
Туре		E		orograr X	n		-line X								
Binar	y cod	е													
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	0	0	0	1	0	0	0	0	0	0	0	0	1	0	0
							Val	ue16							

Description This command is used to setup the baud rate for CAN communication parameters channel. It also sets the CBR register.

Baud rate	Value 16
[kb]	
125	0xF36C
250	0x736C
500	0x3273
800	0x412A
1000	0x1273

Execution CBR register = value16. Program the CAN controller accordingly.

Example In order to configure the baud rate at 1 Mb for the CAN communication channel use the following assignment instruction:

CANBR 0x1273;

© Technosoft 2006

MotionChip II TML Programming

188

Name	CHECKSUM	Assignmer of the cheo			a 16 bit	s TML		ible wit		
Syntax	CHECKSUM, Ty	vpeMem Sta	art, Stop, V				(sum (om TN	
Operands	<i>TypeMem</i> : memo Start: Start addre Stop: Stop addre <i>VAR16D</i> : integer	esses from T esses from T	ТуреМет ГуреМет							
Туре	TML program	On-lir X	ne							
Binary code										
	TypeMem Start, S	• •		_	_	_		_	_	_
	<u>13 12 11</u> 0 1 1	<u>10 9</u> 0 0 0	8 7 1 0	6 Type	5 eMem	4	<u>3</u> 0	2	1	0
	• • • •		& VAR16D	Type		U	U	U	U	U
		St	tart addres	s						
		St	top addres	S						
Description	The selected 16 the all memory address –1.									
Execution	(16-bit destination Start address and			um of	data lo	ocated	l in T	ypeMe	m be	tween
	TypeMem DM 01 PM 00 SPI 10									
Example	int Varl;									
	CHECKSUM, SPI	0x5000,	0x5007,	VAR1	;					
Var1	instruction	x		After i Var1	instruct	tion		0xD45	5F	
ТуреМ	em start address	0xB004		Туре№	1em st	art ad	dress	0xB00)4	
© Technosoft 2	006		189		N	lotionC	hip II 1	TML Pro	ogrami	ming

0x5000			0x5000		
TypeMem 0x5001	address	0x0FF1	TypeMem 0x5001	address	0x0FF1
TypeMem 0x5002	address	0x0366	TypeMem 0x5002	address	0x0366
TypeMem 0x5003	address	0x0404	TypeMem 0x5003	address	0x0404
TypeMem 0x5004	address	0x0C09	TypeMem 0x5004	address	0x0C09
TypeMem 0x5005	address	0x0010	TypeMem 0x5005	address	0x0010
TypeMem 0x5006	address	0x00E7	TypeMem 0x5006	address	0x00E7
TypeMem 0x5007	address	0x0008	TypeMem 0x5007	address	0x0008

© Technosoft 2006

Nam	е	CI	PA		Absolı	ute cor	nmano	d posit		(Confi	igurati	on and	l comr	nand g	group)
Synta	X	С	РА					Con	nmanc	d P osit	ion is	Absolu	ute		
Opera	ands	-													
Туре				rogran X	1	On-li X									
Binar	y code	9													
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	1	0	1	1	0	0	1	0	0	0	0	1	0	0	1
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
	ription	at po	osolute osition	e execu value of the i	s. So motor	, posi (stored	tion re d in the	eferen e APOS	ces w s varia	vill be able).	comp	ared			
Execu	ution	Si	ubsequ	uent po	sition	comm	ands a	are coi	nsider	ed as	absolu	ute.			
Exam	ple	CS CP CP	A; DE PE	40; 50000);	//(c //Sp //(c //Pc //Pc //Se	count count count cositi cositi cositi	s/sam comma s/sam on co on co	nplin and f nplin omman omman om Pr	or po g) d (co d is ofile	ositi ounts Abso	on pr) lute		-	lile

© Technosoft 2006

Name	CP	R	F	Relativ	ve com	imand	l positi	on	(Confi	igurati	ion and	d comr	nand	group)
Syntax	СР	R					Cor	nmano	d P osit	ion is	Relativ	ve		
Operands	_													
Туре	Т		rogram X	1	On-li X									
Binary code														
15 14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0 1	0	1	1	0 1	0 1	<u>1</u> 1	0 1	0	0	0	1	0	0 1	1
1 1 0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
 Description After the execution of this instruction, all position commands will be considered a relative values. Depending on the target update mode setting (using instruction TUMO or TUM1), the position value will be relative to the actual and respective target motor position. Execution Subsequent position commands are considered as relative. Example 														
	CSP CPO CPA MOD UPD CPO CPR TUM	D = DE PP DE PP D; DS = C; DS = C; D; D; D; D; D; D; D; D; D; D; D; D; D;	40000 93; 80000		//pr //Sg //(c //Pc //Pc //Ug //Ne //Pc //Ta //Se //Ug	cofil peed count positi et Po podate w Po positi arget et ev podate	e (cc comma s/sar on cc on cc sitic on cc upda ent : on e	ounts and f mplin omman on Pr ediat on co omman ate m if IN event	/samp or po g) d (co d is ofile e mmano d is ode (put#3	pling positi Absc Mod d (cc Rela 38 is	on pr)) lute le 3 punts)	cofil		

192

Nam	e	D	NT		Disabl	e TML	interr	unts							
	•				Diodol	0 11112		apto		(Confi	gurati	on and	l comr	nand g	group)
Synta	X	D	INT					Disa	able T	ML IN	F errup	ıts			
Opera	ands	-													
Туре						On-l	ine								
				Х		Х									
Binar	y code	9													
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	0	0	0	0	1	0	0	0	0	0	1	0	0	0	0
Descr	ription			e execu structio						TML ir	nterrup	ots are	disab	led. U	se the

Execution Disable TML interrupts.

©	Technosoft 2006

193

Nam	е	D	IS2C/	API		Disa	ble Inc	dex2 c	apture	;					
														(I/O g	group)
Synta	IX	[DIS2CA	PI				DIS	able 2	nd CA	P ture	Index			
Opera	ands	_													
Туре		E		orogran X	n	On-l X									
Binar	y code	9													
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	0	0	0	0	1	0	0	1	0	1	0	0	0	0	0
Desci	0001010100000riptionAfter the execution of this instruction the index2 capture connected to 2CAPI pin is disabled. Use the EN2CAPI0 or EN2CAPI1 instructions to re-enable this capture. In the disabled mode, the index2 capture is reprogrammed and can be used as a general purpose I/O pin. By default, it is re-programmed as an input pin. Index2Capture captures the master position. The master position can be captured only in the following conditions:•The encoder signals from the master system are connected to the 2nd encoder input of the drive•The drive is set as slave either in electronic gearing or electronic camming with option Read master position from 2nd encoder input activated														d as a ptured e 2nd nming
		fo N a Y tı	encoder input of the driveThe drive is set as slave either in electronic gearing or electronic camming												
Execu	ution	Ľ	Disable index2 input capture.												

© Technosoft 2006

Name	e	DI	SCAI	PI		Disat	ole ind	lex cap	oture					(1/0 (group)
Synta	x	D	ISCAF	21				DIS	able C	AP tur	e Inde	ex			group)
Opera	inds	-													
Туре			TML p	rogran X	n	On-li X	ne								
Binary	y code	!													
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	0	0	0	0	1	0	0	1	0	0	0	0	0	0	1
Descr	iption	dis Us In ge In Ca ne pro	sabled se the the di eneral dex ca order apture eed to	ENCA sablec purpos pture of to er transit disal med tr	PI1 in ndex of defau motor ure in n or C re in urs. Us	structi captur ilt, it is positio put, s apture out as se Disa	ons to e is re re-pro on. pecify transi s this able or	re-ena program ogram the t ition hi is a	able th amme med a type co igh-> l utoma	nis cap d and s an ir of tran ow. N tically	oture. can b nput p sition lormal done	e used in. to loc lly, you e whe	pin, is d as a ok for: u don't n the urpose		
Execu	ition	Di	sable i	index i	nput ca	pture.									

© Technosoft 2006

Nam	e	0	DISIO		Disab	le inpu	it bit-p	ort							
						•	•							(I/O g	group)
Synta	ax		DISIO#	'n				DIS	able I	O#n					
Oper	ands		n: the ir	nput/ou	tput bi	t-port ı	numbe	er (0<=	n<=3	9)					
Туре			TML	orograr	n	On-	line								
		ĺ		X		Х									
Bina	y cod	e													
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	1	0	1	1	1	0	0	0	0	0	0	0	0	0	0
								Rx							
								Ddis							
							OR	dis							
Desc	rintior		∆fter th		rution	of this	s instr	uction	the	I/O hit	-nort	#n is	disahl	ed Us	se the

Description After the execution of this instruction, the I/O bit-port #n is disabled. Use the ENIO#n instruction to re-enable this I/O bit-port. In the disabled mode, the associated pin is reprogrammed and can be used for its primary function on the DSP.

Execution Disable I/O bit-port number n (0<=n<=39).

© Technosoft 2006

MotionChip II TML Programming

196

MCRx & AND/OR masks for DISIO#n #n MCRx ANDdis ORdis												
#n	MCRx	ANDdis	ORdis									
#0	0x7090	0xFFFF	0x0001									
#1	0x7090	0xFFFF	0x0002									
#2	0x7090	0xFFFF	0x0004									
#3	0x7090	0xFFFF	0x0008									
#4	0x7090	0xFFFF	0x0010									
#5	0x7090	0xFFFF	0x0020									
#6	0x7090	0xFFFF	0x0040									
#7	0x7090	0xFFFF	0x0080									
#8	0x7090	0xFFFF	0x0100									
#9	0x7090	0xFFFF	0x0200									
#10	0x7090	0xFFFF	0x0400									
#11	0x7090	0xFFFF	0x0800									
#12	0x7090	0xFFFF	0x1000									
#13	0x7090	0xFFFF	0x2000									
#14	0x7090	0xFFFF	0x4000									
#15	0x7090	0xFFFF	0x8000									
#16	0x7092	0xFFFF	0x0001									
#17	0x7092	0xFFFF	0x0002									
#18	0x7092	0xFFFF	0x0004									
#19	0x7092	0xFFFF	0x0008									

#n	MCRx	ANDdis	ORdis
#20	0x7092	0xFFFF	0x0010
#21	0x7092	0xFFFF	0x0020
#22	0x7092	0xFFFF	0x0040
#23	0x7092	0xFFFF	0x0080
#24	0x7092	0xFFFF	0x0100
#25	0x7094	0xFFFF	0x0001
#26	0x7094	0xFFFF	0x0002
#27	0x7094	0xFFFF	0x0004
#28	0x7094	0xFFFF	0x0008
#29	0x7094	0xFFFF	0x0010
#30	0x7094	0xFFFF	0x0020
#31	0x7094	0xFFFF	0x0040
#32	0x7094	0xFFFF	0x0080
#33	0x7094	0xFFFF	0x0100
#34	0x7094	0xFFFF	0x0200
#35	0x7094	0xFFFF	0x0400
#36	0x7094	0xFFFF	0x0800
#37	0x7094	0xFFFF	0x1000
#38	0x7094	0xFFFF	0x2000
#39	0x7094	0xFFFF	0x0000

© Technosoft 2006

MotionChip II TML Programming

197

Nam	е	DI	SLSN	١		Disa	ble ne	gative	limit s	witch				(1/0 (group)
Synta	IX	D	ISLSN	l				DIS	able L	imit S	witch I	Negati	ve	<u>(" - (</u>	<u> p</u>
Opera	ands	-													
Туре				rogran X	n	On-l X									
Binar	y cod	e													
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	1	0	1	1	1	0	0	0	0	0	0	0	0	0	0
0	1	1	1	0	0	0	0	0	1	1	1	0	0	0	1
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Desci	riptior	Us de In us	se the tection the di sed as	n. sabled	N0 or I mode out pin	ENLS e, the i , usat	SN1 in negati ble to g	struction ve limi get the	ons to t switc e statu	re-er ch pin is of tl	is re-p he lim	he ne brogra	gative mmed	limit and c	l. switch can be se the

Execution Disable negative limit switch.

© Technosoft 2006

Nam	е	DI	SLSF)		Disal	ble po	sitive I	imit sv	vitch					
														(I/O g	group)
Synta	X	D	ISLSP	I				DIS	able L	imit S v	witch I	P ositiv	е		
Opera	ands	_													
Туре	Type TML program X Binary code						ine								
Binar	y code	•													
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	1	0	1	1	1	0	0	0	0	0	0	0	0	0	0
0	1	1	1	0	0	0	0	0	1	1	1	0	0	0	0
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Descr	ription	Us de In us	se the tectior the di ed as	n. sablec	P0 or I mode out pin	ENLS e, the , usab	SP1 in positiv le to g	e limit get the	ons to switc statu	o re-ei h pin is of tl	nable is re-p he limi	the po program	ositive nmed	limit and c	switch an be se the

Execution Disable positive limit switch.

© Technosoft 2006

Nam	e	F	INT		Enabl	e TML	interr	ints							
Itali		_						apto		(Conf	iaurati	on and	1 com	nond	aroup)
										(00111	iyurali	un and		nanu g	(ioup)
Synta	ах														
		F	INT					Fna	hle T	ML INT	Terrun	ts			
		-									renup	10			
•															
Oper	ands	_													
Туре			TML p	progran	n	On-l	line								
71				X		Х	,								
				Λ		~	•								
Binai	ry cod	е													
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	0	0	0	0	1	0	1	0	0	0	1	0	0	0	0
	-			-			1 -	-	-	-	-		-		
Deee	rintion	• •	ftor th		ution	of thio	inotra	otion	the T		torrup		ho on	ablad	lf on
Desc	riptior			e exec											
				t flag is								•			
		fr	om the	e ICR i	registe	er is a	ctive, ⁻	the co	rresp	onding	TML	interru	ipt ser	vice r	outine
	will be called and executed. The														
												u			

Execution Enable TML interrupts.

DINT instruction.

© Technosoft 2006

]	
Name	EN2CAPI0				Enable index2 capture on falling-edge front								(I/O group)		
Syntax EN2CAPI0				Enable 2ndCAPture Index 1->0											
Operands		_													
Туре		TML program			On-line X										
Binary coo	de														
15 14	13	3 12	11	10	9	8	7	6	5	4	3	2	1	0	
0 0	0	0	0	1	0	0	0	0	1	0	0	0	0	0	
Descriptio		 After the execution of this instruction, the DSP will detect the first transition from 1 to 0 on the index2 capture input (pin 2CAPI) for drives where the second encoder input is available. Index2 Capture captures the master position. The master position can be captured only in the following conditions: The encoder signals from the master are connected to the second encoder input of the drive The drive is set as slave either in electronic gearing or electronic camming with option Read master position from second encoder input activated When the programmed transition occurs, the following happens: The value of the master position will be stored in the CAPPOS2 system variable; An event is detected, and the <i>update event</i> and the <i>wait event bits</i> of the MSR register are set if a capture triggered (ICAP) instruction was executed prior the occurrence of the capture; If an update on event was programmed, a motion update is performed; The corresponding status bit in the MSR register (Bit 8, position capture) is set, and will determine the execution of the associated interrupt service routine if the corresponding mask bit from the ICR register is set. The DSP index capture pin is programmed as a general input data pin(bit-port #34 in TML). 													
Execution		Enable	index2	captur	e on f	alling-e	dge	front (transit	ion fro	om 1 to	0).			

201

Example

CACC = 0.5;	<pre>//Acceleration command for speed profile //(counts/sampling²)</pre>
CSPD = 20;	//Speed command (counts/sampling)
MODE SP1;	//Set Speed Profile Mode 1
UPD;	//Update immediate
EN2CAPI0;	<pre>//Activate 2CAPI input to trigger a falling //transition</pre>
CSPD = 30;	<pre>//New acceleration command for speed profile //(counts/sampling²)</pre>
!CAP;	//Set event if CAPture is triggered
UPD!;	//Update on event

202

Name	EN2CAPI1			Enable index2 capture on rising-edge front											
													(I/O group)		
Syntax EN2CAPI1			Enable 2ndCAPture Index 0->1												
Operands	_														
Туре	TML program			On-line X											
Binary code	L		<u>.</u>												
	13	12		10	9	8	7	6	5	4	3	2	1	0	
0 0	0	0	0	1	0	1	0	0	1	0	0	0	0	0	
	 After the execution of this instruction, the DSP will detect the first transition from 0 to 1 on the index2 capture input (pin 2CAPI) for drives where the second encoder input is available. Index2 Capture captures the master position. The master position can be captured only in the following conditions: The encoder signals from the master are connected to the second encoder input of the drive The drive is set as slave in electronic gearing or electronic camming with option Read master position from second encoder input activated When the programmed transition occurs, the following happens: The value of the master position will be stored in the CAPPOS2 system variable; An event is detected, and the <i>update event</i> and the <i>wait event bits</i> of the MSR register are set if a capture triggered (ICAP) instruction was executed prior the occurrence of the capture; If an update on event was programmed, a motion update is performed; The corresponding interrupt bit in the ISR register (Bit 8, position capture) is set, and will determine the execution of the associated interrupt service routine if the corresponding mask bit from the ICR register is set. The DSP index capture pin is programmed as a general input data pin(bit-port #34 in TML). A capture input is automatically disabled after the programmed transition was detected and the position was captured. In order to reuse a capture input, you need to enable it again. 								ocoder g with ystem of the ecuted ure) is ervice it-port						

203

Execution Enable index2 capture on rising-edge front (transition from 0 to 1).

Example

CACC = 0.5;	<pre>//Acceleration command for speed profile //(counts/sampling²)</pre>
CSPD = 20;	//Speed command (counts/sampling)
MODE SP1;	//Set Speed Profile Mode 1
UPD;	//Update immediate
EN2CAPI1;	<pre>//Activate 2CAPI input to trigger a rising //transitions.</pre>
CSPD = 30;	//New acceleration command for speed profile
0010 007	//(counts/sampling ²)
!CAP;	//Set event if CAPture is triggered
UPD!;	//Update on event

204

Name	E	INCAP	10		Enat	ole ind	ex ca	pture c	on fallir	ng-edg	je fron	t	(1/0	group)	
Syntax		ENCAPI	0				En	able C	AP ture	e Inde	x 1-> 0				
Operands	-	-													
Туре	-	TML pi	rogram K		On-li X										
Binary code	,		-			-									
15 14 0 0	<u>13</u> 0	12	11 0	<u>10</u>	9 0	8	7	6	5 0	4	3	2	1	0	
Description		 an evregis the correction of the correc	ne inde pture c ure, the ralue of vent is ter are occurre update corresp and w ne if th OSP ind TML).	ex capt apture follow f the n detec e set i nce of e set i nce of e on ev onding onding ill de e corre dex ca	ture in es the ving ha notor p ted, an f a ca f the c vent w g statu g inten termin espon apture	put (C motor apper cosition nd the apture apture vas pro- us bit i rrupt l ie the ding r pin is	API p actua s: n will <i>upda</i> trigge c c pgram n the pit in t e exec nask b progr	in). al posit be stor te ever ered (!(med, a MSR ro the ISF cution bit from amme	ion. red in 1 nt and CAP) i a motio egiste R regis of the of the d as a	the CA the w instruct on upd r (Bit 8 ster (B e asso CR reg gene	APPOS ait eve ction w late is b, posit sit 8, p pociated jister is ral inpu	S syste nt bits as ex perfor ion ca ositior inter s set. ut data	em val s of the ecute med; pture) n capt rupt s		
Execution	I	Enable ir	ndex ca	apture	on fal	lling-e	dge fr	ont (tra	ansitio	n from	1 to 0).			
Example		CACC = CSPD = MODE SI UPD; ENCAPIO CSPD = !CAP;	20; P1; 0;		//(c //Sp //Se //Up //Ac //tr //Ne //(c	count eed t Sp date ctiva cansi w ac count	g-edge front (transition from 1 to 0). eleration command for speed profile ints/sampling ²) d command (counts/sampling) Speed Profile Mode 1 te immediate vate CAPI input to trigger a falling sitions. acceleration command for speed profi ints/sampling ²) event if CAPture is triggered								

205

	UPD!; //Update on event												
Name	ENCAPI1	Enable index capture on rising-edge front											
		(I/O group)											
Syntax	ENCAPI1	Enable CAPture Index 0->1											
Operands	_												
Туре	TML program	On-line X											
Binary code													
15 14 0 0	<u>13 12 11 10</u> 0 0 0 1	9 8 7 6 5 4 3 2 1 0 0 1 0 0 0 0 0 0 0 1											
0 0													
Description	 to 1 on the index actual position. On capture, the follo The value variable; An event is MSR regis executed pr If an update The correspis set The correspis set, and vroutine if the The DSP ir (bit-port #5 	of the motor position will be stored in the CAPPOS system detected, and the <i>update event</i> and the <i>wait event bits</i> of the ter are set if a capture triggered (!CAP) instruction was ior the occurrence of the capture; on event was programmed, a motion update is performed; bonding status bit in the MSR register (Bit 8, position capture) will determine the execution of the associated interrupt service e corresponding mask bit from the ICR register is set. ndex capture pin is programmed as a general input data pin in TML).											
Execution	Enable index capture on rising-edge front (transition from 0 to 1).												
Example	Enable index capture on rising-edge front (transition from 0 to 1). CACC = 0.5; //Set acceleration command CSPD = 20; //Ser speed command (counts/sampling) MODE SP1; //Set Speed Profile Mode 1 UPD; //Update immediate ENCAPI1; //Activate CAPI input to trigger a rising //transitions. CSPD = 50; //Set new acceleration command !CAP; //Set event if CAPture is triggered												

206

UPD!; //Update on event

© Technosoft 2006

207

Name		END	Er	nd of TML	prograr	n				(Mi	scellar	neous g	group)	
Syntax		END				EN) of a	TML p	orogra	m				
Operand	S	_												
Туре			rogram X	On-										
Binary co	ode													
15 14				10 9	8	7	6	5	4	3	2	1	0	
0 0	0	0	0	0 0	0	0	0	0	0	0	0	0	1	
Descripti														
Remarks		comr adde 2. If you (e.g. the E a. S e; cr b. C c. D	nand. Al d after th u intend which st 2ROM n end to xecution. ommand ompile th ownload	bry to en I the TML the END co to change arts to ex- nemory) y the drive In order the new pro- the new pro- the new pro- the new pro- the new pro-	subrou ommance the pr accute a ou shou the co to disa ogram orogram	utines l. rograr autom ild do omma able t	and n of a atical the fo and E he po	interru y afte ollowin END, f wer s	ipt se set f r rese g: to sto tage,	rvice or sta t the op the send	routine nd-alo TML p e curre	es shou ne ope rogram ent pro	uld be ration from ogram	
Executio	n	End a TI	ML progr	am.										

208

Name		E	ENDIN	IT			End	of th	e in	itia	lizat		•				•		mand	group)
Syntax			ENDIN	іт						EN	ID c	of IN	l IT ial	izat	tion					
Operan	nds	-	_																	
Туре			TML	orogra X		On-	line -]											
Binary	code	•																		
15	14	13	12	11	10)	9	8		7		6	5		4	3		2	1	0
0	0	0	0	0	0		0	0		0		0	1		0	0		0	0	0
Descrip	otion		The EN															•		

escription The ENDINIT instruction will indicate the end of the initialization part of the TML program. This instruction must be preceded by all the initializations (TML instructions) needed to setup the motion system configuration structure and parameters.

When executed, this instruction uses these parameters and settings in order to setup the operating environment of the motion system (real-time sampling periods, PWM parameters, sensor-related parameters, etc.).

The following settings must be done before executing the ENDINIT instruction.

Category	Name	Remarks
Registers	SCR	
	OSR	
Parameters	PWMPER	
	DBT	
	CLPER	
	SLPER	

Remarks:

- 1. Only one ENDINIT instruction may be executed in a TML program.
- The ENDINIT instruction activates the real-time interrupts and the measurement from A/D channels, but no PWM outputs or controllers. Use the AXISON command in order to activate them, too.

The AXISON command must be executed after the ENDINIT command!

Execution End the initialization part of the TML program.

© Technosoft 2006

209

Name		E	NIO Enable input bit-port (I/O group												
Syntax		I	ENIO#	ŧn				En	able IC	D#n					
Operan	ds	r	: the i	nput/ou	itput k	oit-port	numb	er (0<=	=n<=3	9)					
Туре			TML	progra X	m		-line X								
Binary	code	•													
15 ⁻	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	1	0	1	1	1	0	0	0	0	0	0	0	0	0	0
				MCRx ANDen											
								Ren							
Descrip	otion			ne exec e DISIC						•		enab	led.		
		lı Ç	n the Jenera	enable Il-purpo	d moo se I/C	de, the) bit. Tl	asso he EN	ciated IIO#n ii	pin is nstruct	progra tion do	ammeo es not	chan	ge the	bit-po	
			(input or output). By default, after reset, the bit-port is set as an input port. Use the SETIO#n OUT instruction to change it to an output bit-port or, alternatively, the SETIO#n IN to change it to an input bit-port.												
Executi	on	E	Enable the use of the IO#n signal as an I/O line (0<=n<=39).												
Exampl	е	E	Enable the use of the IO#n signal as an I/O line (0<=n<=39).												

210

© Technosoft 2006

MCRx & AND/OR masks for ENIO#n											
#n	MCRx	ANDen	ORen								
#0	0x7090	0xFFFE	0x0000								
#1	0x7090	0xFFFD	0x0000								
#2	0x7090	0xFFFB	0x0000								
#3	0x7090	0xFFF7	0x0000								
#4	0x7090	0xFFEF	0x0000								
#5	0x7090	0xFFDF	0x0000								
#6	0x7090	0xFFBF	0x0000								
#7	0x7090	0xFF7F	0x0000								
#8	0x7090	0xFEFF	0x0000								
#9	0x7090	0xFDFF	0x0000								
#10	0x7090	0xFBFF	0x0000								
#11	0x7090	0xF7FF	0x0000								
#12	0x7090	0xEFFF	0x0000								
#13	0x7090	0xDFFF	0x0000								
#14	0x7090	0xBFFF	0x0000								
#15	0x7090	0x7FFF	0x0000								
#16	0x7092	0xFFFE	0x0000								
#17	0x7092	0xFFFD	0x0000								
#18	0x7092	0xFFFB	0x0000								
#19	0x7092	0xFFF7	0x0000								

#n	MCRx	ANDen	ORen
#20	0x7092	0xFFEF	0x0000
#21	0x7092	0xFFDF	0x0000
#22	0x7092	0xFFBF	0x0000
#23	0x7092	0xFF7F	0x0000
#24	0x7092	0xFEFF	0x0000
#25	0x7094	0xFFFE	0x0000
#26	0x7094	0xFFFD	0x0000
#27	0x7094	0xFFFB	0x0000
#28	0x7094	0xFFF7	0x0000
#29	0x7094	0xFFEF	0x0000
#30	0x7094	0xFFDF	0x0000
#31	0x7094	0xFFBF	0x0000
#32	0x7094	0xFF7F	0x0000
#33	0x7094	0xFEFF	0x0000
#34	0x7094	0xFDFF	0x0000
#35	0x7094	0xFBFF	0x0000
#36	0x7094	0xF7FF	0x0000
#37	0x7094	0xEFFF	0x0000
#38	0x7094	0xDFFF	0x0000
#39	0x7094	0xFFFF	0x0000

© Technosoft 2006

MotionChip II TML Programming

211

Nam	e	E	ENLSN	1 0 Er	nable fa	lling	g-edge	e front	detec	tion or	n nega	ative lir	nit swi		group)
Synta	ax		ENLSN	0				Ena	able Li	mit S w	vitch N	legativ	e 1-> ()	
Oper	ands	-	-												
Туре		[rogram	C	n-lii	ne								
Bina	ry cod	e [X		X									
15	14	13	12	11 ·	10 9)	8	7	6	5	4	3	2	1	0
0	1	0	1	1	1 (0	0	0	0	0	0	0	0	0
0	1	1	1	0	0 0)	0	0	1	1	1	0	0	0	1
1	1	1	1	1	1 1		1	1	1	1	1	1	0	1	1
1	0	0	0	0	0 0)	0	0	0	0	0	0	0	0	1
			 After the execution of this instruction, the DSP will detect the first transition from 1 to 0 on the negative limit switch input. In this case, the following happens: the <i>update event</i> and the <i>wait event bits</i> of the MSR register are set if a negative limit switch triggered (!LSN) instruction was executed prior the occurrence of the transition; if an update on event was programmed, a motion update is performed; the corresponding status bit in the MSR register (Bit 7) is set; the corresponding interrupt bit in the ISR register (Bit 7) is set, and will determine the execution of the associated interrupt service routine if the corresponding mask bit from the ICR register is set; the negative limit switch pin is reprogrammed in the disabled mode and can be used as an input pin, usable to get the status of the limit switch signal. Use the DISLSN instruction to disable this function. Use the LSN variable in order to examine the status of the negative limit switch pin. 												
Exec	ution	I	Enable f	alling-ed	ge front	det	tectio	n on n	egativ	e limit	switcl	า.			
Exan	nple		Enable falling-edge front detection on negative limit switch. CACC = 1.5; //Set acceleration command CSPD = -20; //Speed command (counts/sampling) MODE SP1; //Set Speed Profile Mode 1 UPD; //Update immediate ENLSN0; //Negative Limit Switch triggers falling edge CSPD = 20; //Set new speed command (counts/sampling) !LSN; //Set event if Negative LimitSwitch is reached UPD!; //Update on event												

212

Nam	е	E	ENLSN1 Enable rising-edge front detection on negative limit switch (I/O group)												
							-				-				group)
Synta	IX	E	ENLSN	1				Ena	able L i	mit S v	vitch N	legativ	'e 0->1	I	
Opera	ands	_													
Туре		F		rogram X		On-li X									
Binar	y cod	e		<u> </u>											
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	1	0	1	1	1	0	0	0	0	0	0	0	0	0	0
0	1	1	1	0	0	0	0	0	1	1	1	0	0	0	1
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
1	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1
		 After the execution of this instruction, the DSP will detect the first transition from 0 to 1 on the negative limit switch input. In this case, the following happens: the <i>update event</i> and the <i>wait event bits</i> of the MSR register are set if a negative limit switch triggered (!LSN) instruction was executed prior the occurrence of the transition; if an update on event was programmed, a motion update is performed; the corresponding status bit in the MSR register (Bit 7) is set; the corresponding interrupt bit in the ISR register (Bit 7) is set, and will determine the execution of the associated interrupt service routine if the corresponding mask bit from the ICR register is set; the negative limit switch pin is reprogrammed in the disabled mode and can be used as an input pin, usable to get the status of the limit switch signal. Use the DISLSN instruction to disable this function. Use the LSN variable in order to examine the status of the negative limit switch 													
Exect	ution	р	in.	ising-ed									0		
				ising-eu	ye no	JILUE	ເອບແບເ		syauve	5 111111	SWILCI	ı.			
Exam	ipie	CACC = 1.5; //Set acceleration command CSPD = -20; //Set speed command (counts/sampling) MODE SP1; //Set Speed Profile Mode 1 UPD; //Update immediate ENLSN1; //Negative Limit Switch triggers rising edge CSPD = 20; //Set new speed command (counts/sampling) !LSN; //Set event if Negative LimitSwitch is reached UPD!; //Update on event													

213

Name		ENLSP0 Enable falling-edge front detection on positive limit switch													
Manie		Ľ	NLOF	v 🗆			ց-եսց։				n posi		nt Swill		group)
Syntax	(E	ENLSP)				Ena	able Li	mit S w	vitch F	ositive	e 1-> 0		
Operar	nds	_													
Туре		F		rogram		On-li									
Binary	code	•		<u>x</u>		<u> </u>									
	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	1 1	<u>0</u> 1	1	1 0	1 0	0	0 0	0	0 1	0	0	0	0	0	0
1	1	1	1	1	1	0 1	1	1	1	1	1	1	0	1	1
1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Descri	ption	 After the execution of this instruction, the DSP will detect the first transition from 1 to 0 on the positive limit switch input. In this case, the following happens: The <i>update event</i> and the <i>wait event bits</i> of the MSR register are set if a positive limit switch triggered (!LSP) instruction was executed prior the occurrence of the transition; If an update on event was programmed, a motion update is performed; The corresponding status bit in the MSR register (Bit 6) is set; The corresponding interrupt bit in the ISR register (Bit 6) is set, and will determine the execution of the associated interrupt service routine if the corresponding mask bit from the ICR register is set; The positive limit switch pin is reprogrammed in the disabled mode and can be used as an input pin, usable to get the status of the limit switch signal. 													
Execut Examp		<pre>Use the LSP variable in order to examine the status of the positive limit switch pin. Enable falling-edge front detection on positive limit switch. CACC = 1.5; //Set acceleration command CSPD = 20; //Set speed command (counts/sampling) MODE SP1; //Set Speed Profile Mode 1 UPD; //Update immediate ENLSP0; //Positive Limit Switch triggers falling edge CSPD = -20; //Set new speed command (counts/sampling) !LSP; //Set event if Positive LimitSwitch is reached</pre>													

214

UPD!; //Update on event

© Technosoft 2006

215

Nam	е	E	ENLSP1 Enable rising-edge front detection on positive limit switch (I/O group)												
							-							(I/O g	group)
Synta	X	I	ENLSP	1				Ena	able Li	mit S w	vitch P	ositive	e 0-> 1		
Opera	ands	-	-												
Туре		F		orogram	1	On-l									
		L		X		Х									
Binar	y code	e													
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	1	0	1	1	1	0	0	0	0	0	0	0	0	0	0
0	1	1	1	0	0	0	0	0	1	1	1	0	0	0	0
1	1 0	<u>1</u> 0	1	1 0	<u>1</u> 0	1 0	1 0	<u>1</u> 0	1 0	1 0	1 0	1 0	1	1 0	1
	•	v	v	•	•			•					. •	•	<u> </u>
		 After the execution of this instruction, the DSP will detect the first transition from 0 to 1 on the positive limit switch input. In this case, the following happens: the <i>update event</i> and the <i>wait event bits</i> of the MSR register are set if a positive limit switch triggered (!LSP) instruction was executed prior the occurrence of the transition; if an update on event was programmed, a motion update is performed; the corresponding status bit in the MSR register (Bit 6) is set; the corresponding interrupt bit in the ISR register (Bit 6) is set, and will determine the execution of the associated interrupt service routine if the corresponding mask bit from the ICR register is set; the positive limit switch pin is reprogrammed in the disabled mode and can be used as an input pin, usable to get the status of the limit switch signal. 													
		ι	Use the DISLSP instruction to disable this function. Use the LSP variable in order to examine the status of the positive limit switch pin.												
Execu	ution	Enable rising – edge front detection on positive limit switch.													
Exam	ple	<pre>Enable rising - edge front detection on positive limit switch. CACC = 1.5; //Acceleration command for speed profile CSPD = 20; //Speed command (counts/sampling) MODE SP1; //Set Speed Profile Mode 1 UPD; //Update immediate ENLSP1; //Positive Limit Switch triggers rising edge CSPD = -20; //New speed command (counts/sampling) !LSP; //Set event if Positive LimitSwitch is reached</pre>													

216

UPD!; //Update on event

© Technosoft 2006

217

Nam	е	E	XTRE	F		Set e	externa	al refe	rence		igurati	on and	d comr	nand g	group)
Synta	ax	E	EXTRE	F value	9			Set	EXTe	rnal R	EFere	nce ty	ре		
Opera	ands	ν	<i>alue</i> : tv	vo bits	value										
Туре				orogram X	1	On-l X									
Binar	y cod	e													
EXTR 15 0 1 0 EXTR 15 0 1 0 EXTR 15 0 1 0	14 1 0 8EF 1 14 1 1 0	13 0 1 0 13 0 1 0 13 0 1 0 1 0	12 1 1 0 12 1 1 0 12 1 1 1 1 0	11 1 0 11 1 1 0 11 1 1 0	10 0 1 0 10 0 1 0 10 0 10 0 1 0	9 0 1 0 9 0 1 0 9 0 1 0 1 0	8 1 0 8 1 1 0 8 8 1 1 0	7 0 0 7 0 0 0 0 7 0 1 1	6 0 0 6 0 1 1 1 6 0 0 0 0	5 0 1 0 5 0 1 0 5 0 1 0 1 0	4 0 1 0 4 0 1 0 4 0 1 0 1 0	3 1 1 0 3 1 1 0 3 1 1 1 0	2 0 1 0 2 0 1 0 2 0 1 0 1 0	1 0 1 0 1 0 1 0 1 0 1 0	0 1 1 0 1 1 0 1 1 0
	riptior	n T	his ins value: value value varia	•	n sets externa odated externa	the ty al refe l on-lin al refer	pe of e rence e rence i	extern read f	al refe from E	REF S	s depe ystem ENCE	ending variat input	on the	e para	meter
Exec		S	Sets the	extern	al refe	erence	type t	based	on <i>va</i>	lue's v	alue ((0, 1 or	2)		
Exam	ple	E	CXTREF	1;		the refer									ogue

218

Name	GOTO					mp to a		addro	200				
1401115	5010				Jui		a TIVIL	auure			(Dec	ision g	group)
											, -		- 1/
Syntax	00T0 [/]	- h - l				11				م ا د ا			
	GOTO L								SOTO t		el .		
	GOTO L GOTO L			•					6 Flag 2 Flag				
	GOTOL		ANJ	z, riay		60		VARS	z riay	0			
Operands	Label: 16	6-bit pr	ogran	n mem	ory ad	dress							
-	VAR16:	integer	[·] varia	ıble	-								
	VAR32:	0			,	(.) .	1-4						
	Flag: on	e ot '=	, ·!=′,	·>´, '>=	≓, <i>'<</i> ',	<=' re	ationa	al facto	ors.				
Туре	TML p	rogram	n	On-li	ine								
71		X		X									
Binary code													
GOTO Label													
	3 12	11	10	9	8	7	6	5	4	3	2	1	0
	1 1	0	1	0	0	0	0	0	0	0	0	0	0
	&Label												
GOTO Label,	VAR16, F	lag											
	3 12	11	10	9	8	7	6	5	4	3	2	1	0
0 1	1 1	0	1	0	0				Flag				0
						R16 abel							
					QLC								
GOTO Label, 15 14 1	VAR32, F ∣3 12	lag 11	10	9	8	7	6	5	4	3	2	1	0
r 1 1	1 1	0	1	0	0 1	/	U	5	Flag	5	۷.	1	0
			-	-	-	R32							
						abel							
Description	This inst When a												
	and, if it												
	to the sp												
	executed												
F weent:	lu nora o ta	TM	الم مرا	n ot ar	le c = t	مما مد ۱۰		1	l				
Execution	Jumps to <i>Uncondi</i>			ruction	iocate	ed at ti	he add	aress	Lapel.				
		Label -											
	Conditio												
	I	lf VarX			n								
		I	_abel	-> IP									

219

The label must be an existing label name, defined in the TML program (a 16-bit program memory address), otherwise an error will occur. The *VAR16/VAR32* must be an existing TML variable name (an integer or long variable), defined in the TML program, otherwise an error will occur. The flag imposes the test condition for the variable *VAR16/VAR32*.

In case of a conditional decision instruction (GOTO Label, VAR16/32, Flag) the variable specified is compared to 0, using one of the following test conditions:

variable.EQ.0	// variable = 0 (EQUAL)
variable.NEQ.0	// variable != 0 (NON EQUAL)
variable.LT.0	// variable < 0 (LESS THAN)
variable.LEQ.0	// variable <= 0 (LESS OR EQUAL)
variable.GT.0	// variable > 0 (GREATER THAN)
variable.GEQ.0	<pre>// variable >= 0 (GREATER OR EQUAL)</pre>

The GOTO instruction is executed only if the test condition is satisfied.

Example1

GOTO label1, i_var	2, LT; //	jump to	b labell i	.f i_var2 < 0
GOTO label2, i_var	2, LEQ; //	jump to	o label2 i	f i_var2 <= 0
GOTO label3, i_var	2, GT; //	jump to	o label3 i	.f i_var2 > 0
GOTO label4;	//	uncondi	itional ju	mp to label4

Example2

GOTO MOVEP;	// jump unconditionally
GOTO MOVEP, ASPD, GT;	<pre>// jump if motor speed > 0</pre>
MOVEP:	<pre>// program sequence to move to a //specified position</pre>
CACC = 1.5;	<pre>// acceleration = 1.5 //(counts/sampling²)</pre>
CSPD = -20.; CPOS = my_pos; UPD; GOTO Exit;	<pre>// slew speed = -20 (counts/sampling) // position command // start motion // exit</pre>
Exit:	//label

220

Name	GROUPID			Se	et group		e Aultiple	axis g	group)			
Syntax	GROUPID value	16	Set GROUP ID address									
Operands	<i>value16</i> : 16-bit in	teger immediat	te value									
Туре	TML program X	On-line X										
Binary code												
15 14	13 12 11 1	10 9 8	7	6	54	3	2	1	0			
0 0	0 0 1	0 0 0	0	0	0 0	0	0	1	0			
		Val	lue16									
Description	In multiple axis s the local axis.	structures, this	comma	and allow	vs one t	o chang	ge the	group	ID of			
	After the execution and is used by the addressed to gro	ne communicat										
	Only the lower 8 bit corresponds structure.											
	An axis can belong to any of the 8 groups. A multiple-axis message can be addressed to one or more of the axes.											
Execution	Group_ID = value16.											
Example		local axis from now c					gs to	gro	up 3			
	 [G3] {stop3;}	// stop	b the	motior	n for	all a	ixes	belor	nging			
to		//group	3									

221

Name	INITCAN		Init CAM	l table fo	r elect	tronic	camr	ning ı			on neous g	aroup)	
									(IVII)	scellal	ieous g	(loup)	
Syntax													
	INITCAM L	_oadAd	dress, R	unAddre	SS					n Lo a	ldAddr	ress to	
							RunA	ddre	SS				
Operands	LoadAddre	ss: SP	I drive m	emory, t	ype E	² PRC	M						
-	RunAddres												
Туре		TML program On-line											
туре		gram		-	-								
					-4								
Binary code													
INITCAM Loa	dAddress. F	RunAdo	dress										
		<u>11 1</u>		8	7	6	5	4	3	2	1	0	
	0 1	1 (0	0	1	0	0	0	0	0	0	
				Load ad Run add									
Description	The INITC												
	memory to electronic				nory w	vhere	the	CAM	lable	must	reside	while	
			•		مططعم	aa (d			nhar) a	<u>د ح</u> 20			
	The Load where the						ecima	ai nur	nber) c	NER		emory	
	The RunA						ner) s	necifi	es adr	Iress	in the	RAM	
	memory of												
	Note that i	in order											
	must be do		t be crea	ated or in	norto	d hof	ore						
			t be sele										
			ust be o										
	comma selecte		wnloads	into the	e drive	es' E'	ŕRON	l mer	nory a	ll the	active	cams	
			t be sele	ected fro	m the	Use	Table	e list o	of came	s avail	able in	to the	
		M mem											
Evenution	Convert	l tabla f	rom dui-	o'o ODI	00000	n, ta -	driver'-		1				
Execution	Copy CAM	i table i	rom anve	es SPIT	nemor	y 10 C	inves		memo	Jry.			
Example	INITCAM	18864	2560:	110	זימר (י אעי	able	≤ fr	om SPI	- mom	orv		
		10004	,25001						to RAN				
					addre								
	UPD;			//	Jpdat	le ir	umed	Late					
© Technosoft 2	006			222				Motior	Chip II		rogram	mina	

Nam	Name MODE CS									Set ca	am slav			node g	group)
Synta	ax							Cat					Claura	•	
										n MOE					
			IODE (IODE (n MOE n MOE					
			IODE (n MOE					Г)
														0 (0,	.,
Opera	ands	-													
-			TN 41			0		_							
Туре			TML p	orogran X	n	On-l X									
				^		^									
Binar	y cod	е													
	-														
	E CS0							_		_					•
15	14	13	12	11	10	9	8 1	7	6	5	4	3	2	1	0
0	1 0	0 1	1 1	1 0	0 1	0	1	0 1	0 1	0	0	1 0	0 1	0 1	1 0
1	0	0	0	0	1	0	0	0	0	0	0	0	1	1	0
<u>-</u>	•		Ū						•	•					<u> </u>
	E CS1														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	1	0	1	1	0	0	1	0	0	0	0	1	0	0	1
1	0	1 0	1 0	0	1 1	0	1 1	1 0	1 0	0	0	0	1	1 1	0
1	0	U	U	U	1	U	1	U	U	U	U	U	1	1	U
MOD	E CS2														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	1	0	1	1	0	0	1	0	0	0	0	1	0	0	1
1	0	1	1	0	1	1	0	1	1	0	0	0	1	1	0
1	0	0	0	0	1	1	0	0	0	0	0	0	1	1	0
MOD	E CS3														
15	E C33 14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	1	0	1	1	0	0	1	0	0	0	0	1	0	0	1
1	0	1	1	0	1	1	1	1	1	0	0	0	1	1	0
1	0	0	0	0	1	1	1	0	0	0	0	0	1	1	0

Description MODE CS0/CS1/CS2/CS3 instruction set the axis to operate in the slave camming mode.

© Technosoft 2006

223

In this mode, the reference values received from the master are differentiated and used to obtain the position reference for the slave axis based on the active CAM Table.

See Motion Programming chapter for details about camming reference parameters and implementation.

Depending on the selected option (CS0, CS1, CS2 or CS3), some of the internal control loops – speed and current – are activated or not (depending on the system structure) – see below table.

Note that for all the control loops needed to implement the selected mode (position [, speed] [, current]), one must define the corresponding parameters.

The selected motion mode will become effective at the first motion update command (immediate update – UPD, or update on event, UPD!).

Execution Sets the slave camming mode operation for the axis (reference type). Four cases are possible:

MODE	Position controller	Speed controller	Current controller
CS0	\checkmark	-	-
CS1	\checkmark	-	\checkmark
CS2	\checkmark	\checkmark	-
CS3	\checkmark	√	\checkmark

Example

EXTREF 0;	
$EIR = 0 \times 081A;$	
(EIR), dm = 2000;	
$EIR = 0 \times 081B;$	
(EIR), dm = 0;	
MODE CS3;	<pre>//Set as slave, position mode 3</pre>
TUM1;	//Set Target Update Mode 1
UPD;	//Update immediate
EFLEVEL = 0;	//Activate synchronization

224

© Technosoft 2006

Nam	е	M	ODE	GS		Set g	gear sl	ave m	ode			(M	otion r	node (group)
Synta	IX														
			ODE								E Gea		.,		
			ODE										/e 1 (T	,	
													/e 2 (S		
		IV	ODE	683				Set	axis ir		DE Gea	ar Siav	/e 3 (S	, I)	
Operands –															
Туре				orograr	n	On-l									
				Х		Х									
Binary code															
MODE GS0															
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	1	0	1	1	0	0	1	0	0	0	0	1	0	0	1
1	0	1	1	0	1	0	0	1	1	0	0	0	1	0	1
1	0	0	0	0	1	0	0	0	0	0	0	0	1	0	1
	- 004														
15	E GS1 14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	1	0	1	1	0	0	1	0	0	0	0	1	0	0	1
1	0	1	1	0	1	0	1	1	1	0	0	0	1	0	1
1	0	0	0	0	1	0	1	0	0	0	0	0	1	0	1
MODI	E GS2														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	1	0	1	1	0	0	1	0	0	0	0	1	0	0	1
1	0	1	1	0	1	1	0	1	1	0	0	0	1	0	1
1	0	0	0	0	1	1	0	0	0	0	0	0	1	0	1
морі	E GS3														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	1	0	1	1	0	0	1	0	0	0	0	1	0	0	1
1	0	1	1	0	1	1	1	1	1	0	0	0	1	0	1
1	0	0	0	0	1	1	1	0	0	0	0	0	1	0	1
Description MODE GS0/GS1/GS2/GS3 instruction set the axis to operate in the slave gear mode. In this mode, the reference values must be sent from the master and															

MODE GS0/GS1/GS2/GS3 instruction set the axis to operate in the slave gear mode. In this mode, the reference values must be sent from the master and stored into the variable MREF. Multiplied with the parameter GEAR, these values will be used as position reference for the axis.

© Technosoft 2006

225

See Motion Programming chapter for details about gearing reference parameters and implementation.

Depending on the selected option (GS0, GS1, GS2 or GS3), some of the internal control loops – speed and current – are activated or not (depending on the system structure).

Note that for all the control loops needed to implement the selected mode (position [, speed] [, current]), one must define the corresponding parameters.

The selected motion mode will become effective at the first motion update command (immediate update – UPD, or update on event, UPD!).

Execution Sets the slave gear mode operation for the axis (reference type). Four cases are possible:

MODE	Position controller	Speed controller	Current controller
GS0	\checkmark	-	-
GS1	√	-	\checkmark
GS2	√	√	-
GS3	\checkmark	√	\checkmark

Example

GEAR = 2.00000; GEARMASTER = 1; GEARSLAVE = 2; EXTREF 0;	<pre>//Gearing factor for master axis //Gearing factor for slave axis //Set axis as Gear Slave without read //master position from 2nd Encoder Input</pre>
EIR = 0x081A; (EIR),dm = 2000; EIR = 0x081B; (EIR),dm = 0; MODE GS3; UPD; EFLEVEL = 0xFFFF;	//Set as slave, position mode 3 //Update immediate (enable gear mode) //Deactivate synchronization

226

© Technosoft 2006

Nam	e	M	ODE	PC		Posit	ion co	ntouri	ng mo	tion m	ode	(M	otion n	node g	group)
Synta	ах	M	ODE I ODE I ODE I ODE I	PC1 PC2				MO MO	DE Po DE Po	sition sition	Conto Conto	uring uring uring uring	1 (T)	I	
Opera	ands	-													
Туре		TML program X			On-l X										
Binar	y cod	e													
MOD	E PC0														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	1	0	1	1	0	0	1	0	0	0	0	1	0	0	1
1	0	1	1	1	1	0	0	1	1	0	0	0	0	1	0
1	0	0	0	0	1	0	0	0	0	0	0	0	0	1	0
-	E PC1	40	40	44	40	0	0	7	c	F	4	2	n	4	•
<u>15</u> 0	14 1	13 0	12 1	11 1	10 0	9 0	8 1	7 0	6 0	5 0	4	3	2 0	<u>1</u> 0	0
1	0	1	1	1	1	0	ו 1	1	1	0	0	0	0	1	0
1	0	0	0	0	1	0	1	0	0	0	0	0	0	1	0
MOD	E PC2														I
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	1	0	1	1	0	0	1	0	0	0	0	1	0	0	1
1 1	0	1 0	1 0	1 0	1 1	1	0	1 0	1 0	0	0	0	0	<u>1</u> 1	0
	E PC3 14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	1	0	1	1	0	0	1	0	0	0	0	1	0	0	1
1	0	1	1	1	1	1	1	1	1	0	0	0	0	1	0
1	0	0	0	0	1	1	1	0	0	0	0	0	0	1	0
Description MODE PC0/PC1/PC2/PC3 instruction defines the position control operating in the contouring reference motion mode. In this mode, the reference module will perform linear interpolation based on motion segments, described using the SEG instruction.															

227

The reference will represent a position reference value in position control structures. The reference will be generated in the slow control loop (position/speed loop).

See Motion Programming chapter for details about contouring reference parameters and implementation.

Depending on the selected option (PC0, PC1, PC2 or PC3), some of the internal control loops – speed and current – are activated or not (depending on the system structure).

Note that for all the control loops needed to implement the selected mode (position [, speed] [, current]), one must define the corresponding parameters.

The selected motion mode will become effective at the first motion update command (immediate update – UPD, or update on event, UPD!).

Execution Sets the position contouring motion mode. Four cases are possible:

MODE	Position / User controller	Speed controller	Current controller			
PC0	\checkmark	-	-			
PC1	\checkmark	-	\checkmark			
PC2	\checkmark	\checkmark	-			
PC3	\checkmark	\checkmark	\checkmark			

228

Example

MODE PC3;	//Set Position Contouring Mode 3						
SEG 100U, 5.00000;	//Set 1^{st} motion segment. Increment						
	//position reference with 5 counts for						
	//the next 100 sampling periods						
UPD;	//Update immediate						
	//Set 2 st motion segment.						
	//Set 3 st motion segment.						
SEG 100U, 10.00000;	//Set 4^{st} motion segment.						
SEG 0, 0.;	//End of contouring mode						

© Technosoft 2006

Nam	е	M	ODE	PE		Posit	tion ex	ternal	motio	n mod	е	(M	otion r	node g	group)
Syntax MODE PE0 MODE PE1 MODE PE2 MODE PE3								MO MO	DE Po DE Po	sition sition	Exterr Exterr	nal 0 (nal 1 ([*] nal 2 (\$ nal 3 (\$	Г) S)		
Opera	ands	_													
Туре		TML program			On-l X										
Binary code															
MOD	E PE0														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	1	0	1	1	0	0	1	0	0	0	0	1	0	0	1
1	0	1	1	1	1	0	0	1	1	0	0	0	0	0	0
1	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0
MOD	E PE1														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	1	0	1	1	0	0	1	0	0	0	0	1	0	0	1
1	0	1	1	1	1	0	1	1	1	0	0	0	0	0	0
1	0	0	0	0	1	0	1	0	0	0	0	0	0	0	0
	E PE2	40	40		40	•	•	-	•	-		•	•		•
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0 1	1	0	1 1	1 1	0	0	1	0 1	0	0	0	1 0	0	0	1
1	0 0	1 0	0	0	1	1	0	0	1 0	0	0	0	0	0	0
	E PE3 14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	14	0	1	1	0	0	1	0	0	0	0	1	0	0	1
1	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0
1					1		1	-	-				0		
Desc															

229

The reference will represent a position reference value, in position control structures. The reference will be generated in the slow control loop (position/speed loop).

See Motion Programming chapter for details about external reference parameters and implementation.

Depending on the selected option (PE0, PE1, PE2 or PE3), some of the internal control loops – speed and current – are activated or not (depending on the system structure).

Note that for all the control loops needed to implement the selected mode (position [, speed] [, current]), one must define the corresponding parameters.

The selected motion mode will become effective at the first motion update command (immediate update – UPD, or update on event, UPD!).

Execution Sets the position external motion mode (reference type). Four cases are possible:

MODE	Position controller	Speed controller	Current controller
PE0	\checkmark	-	-
PE1	\checkmark	-	\checkmark
PE2	\checkmark	\checkmark	-
PE3	\checkmark	\checkmark	\checkmark

Example

//	set position external mode, with speed and
11	current loops active
//	set target update mode 1
//	update immediate

230

Nam	е	M	ODE	PP		Posi	tion pr	ofile m	notion	mode		(M	otion r	mode g	group,
Synta	ax														
•		Μ	IODE I	PP0				MO	DE Po	osition	Profile	e 0 ()			
		Μ	IODE I	PP1			MODE Position Profile 1 (T)								
		Μ	IODE I	PP2				MODE Position Profile 2 (S)							
		Μ	IODE I	PP3				MODE Position Profile 3 (S,T)							
Opera	ands	_													
Туре			TMI n	rogran	n	On-l	ine								
. , , , ,				X		<u> </u>									
		L			I										
Binar	y cod	е													
15	E PP0 14	13	12	11	10	9	0	7	6	5	٨	2	2	1	0
0	14	0	1	1	0	0	8	7 0	6 0	0	4	3	2	1	0
1	0	1	1	1	1	0	0	1	1	0	0	0	0	0	1
1	0	0	0	0	1	0	0	0	0	0	0	0	0	0	1
•	v	•	•	Ū		•	•	•	•	•	•		•	•	
MOD	E PP1														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	1	0	1	1	0	0	1	0	0	0	0	1	0	0	1
1	0	1	1	1	1	0	1	1	1	0	0	0	0	0	1
1	0	0	0	0	1	0	1	0	0	0	0	0	0	0	1
MOD	E PP2														
15	= PP2 14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	1	0	1	1	0	0	1	0	0	0	0	1	0	0	1
1	0	1	1	1	1	1	0	1	1	0	0	0	0	0	1
1	0	0	0	0	1	1	0	0	0	0	0	0	0	0	1
<u> </u>	v	•	•	Ū			•	•	•	•	•	•	•	•	
MOD	E PP3														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	1	0	1	1	0	0	1	0	0	0	0	1	0	0	1
1	0	1	1	1	1	1	1	1	1	0	0	0	0	0	1
1	0	0	0	0	1	1	1	0	0	0	0	0	0	0	1
Desc	riptior	pr	ofile re	P P0/Pf eference value	ce mot	tion mo	ode. In	this n	node, '	the ret					

231

The reference will represent a position reference value. The reference will be generated in the slow control loop (position/speed loop). See Motion Programming chapter for details about profile reference parameters and implementation.

Depending on the selected option (PP0, PP1, PP2 or PP3), some of the internal control loops – speed and current – are activated or not (depending on the system structure) – see below table.

Note that for all the control loops needed to implement the selected mode (position [, speed] [, current]), one must define the corresponding parameters.

The selected motion mode will become effective at the first motion update command (immediate update – UPD, or update on event, UPD!).

Execution Sets the position profile motion mode (reference type). Four cases are possible:

MODE	Position controller	Speed controller	Current controller
PP0	\checkmark	-	-
PP1	\checkmark	-	\checkmark
PP2	\checkmark	\checkmark	-
PP3	\checkmark	\checkmark	\checkmark

Example

CACC = 0.5;	//Acceleration command for position
	//profile (counts/sampling ²)
CSPD = 20;	//Speed command for position profile
	//(counts/sampling)
CPOS = 100000;	//Position command (counts)
CPA;	//Position command is Absolute
MODE PP3;	//Set Position Profile Mode 3
TUM1;	//Set Target Update Mode 1
UPD;	//Update immediate

232

Nam	е	M	ODE	PPD		Posi	tion pu	lse&d	irectio	n moti	on mo		otion r	node g	group
Syntax MODE PPD0 MODE PPD1 MODE PPD2								MO	DE Po	sition	Exterr	nal 0 (nal 1 (1 nal 2 (S	Γ)		
			IODE I									nal 3 (S			
Opera	ands	_													
Туре		Γ	TML p	rogran	n	On-l	ine								
				X		Х									
Binary code															
MODI	E PPD	0													
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	1	0	1	1	0	0	1	0	0	0	0	1	0	0	1
1 1	0	1 0	1 0	1 0	1 1	0	0	<u>1</u> 0	1 0	0	0	0	1	0	0
MODI 15 0	E PPD 14 1	1 13 0	<u>12</u>	11 1	10 0	9	8	70	6	5	4	3	2	1 0	0
1	0	1	1	1	1	0	1	1	1	0	0	0	1	0	0
1	0	0	0	0	1	0	1	0	0	0	0	0	1	0	0
	E PPD		40	44	40	•	0	7	0	F		2	0		•
15 0	14 1	13 0	12 1	11 1	10 0	9 0	8 1	7 0	6 0	5 0	4	3 1	2 0	1 0	0 1
1	0	1	1	1	1	1	0	1	1	0	0	0	1	0	0
1	0	0	0	0	1	1	0	0	0	0	0	0	1	0	0
MODI	E PPD	3													
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	1	0	1	1	0	0	1	0	0	0	0	1	0	0	1
1	0	1	1	1	1	1	1	1	1	0	0	0	1	0	0
1	0	0	0	0	1	1	1	0	0	0	0	0	1	0	0
Desci	riptior		ODE F								s the p	ositior	n contr	ol ope	erating
			this m ulse an							ne refe	rence	value	s from	the sp	oecifi

233

The reference will represent a position reference value, in position control structures. The reference will be generated in the slow control loop (position/speed loop).

See Motion Programming chapter for details about pulse and direction reference parameters and implementation.

Depending on the selected option (PPD0, PPD1, PPD2 or PPD3), some of the internal control loops – speed and current – are activated or not (depending on the system structure) – see below table.

Note that for all the control loops needed to implement the selected mode (position [, speed] [, current]), one must define the corresponding parameters.

The selected motion mode will become effective at the first motion update command (immediate update – UPD, or update on event, UPD!).

Execution Sets the position / user pulse & direction motion mode (reference type). Four cases are possible:

MODE	Position controller	Speed controller	Current controller
PPD0	\checkmark	-	-
PPD1	\checkmark	-	\checkmark
PPD2	\checkmark	√	-
PPD3	\checkmark	\checkmark	\checkmark

Example

MODE PPD3; //Set Position mode 3 with Pulse & Direction //reference UPD; //Update immediate

234

Nam	e	MODE SC				Speed contouring motion mode (Motion mode group							group)		
Synta	ix		IODE (MODE Speed Contouring 0 () MODE Speed Contouring 1 (T)									
Opera	ands	-													
Type TML program X				On-l X											
Binar	y cod	e													
MOD	E SCO														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	1	0	1	1	0	0	1	0	0	0	0	1	0	0	1
1	0	1	1	1	0	1	0	1	1	0	0	0	0	1	0
1	0	0	0	0	0	1	0	0	0	0	0	0	0	1	0
MODE SC1									•						
15	14	13	12 1	11	10	9 0	8 1	7	6	5	4	3	2	1	0
0	1	<u>0</u> 1	1	1	0	-	1	0 1	0 1	0	0	0	0	0 1	0
1	0	0	0	0	0	1	1	0	0	0	0	0	0	1	0
1 0 0 0 1 1 0 0 0 0 1 0 Description MODE SC0/SC1 instruction defines the speed control operating in the contouring reference motion mode. In this mode, the reference module will perform linear interpolation based on motion speed segments described using the SEG instruction. The reference will represent a speed reference value, in speed control structures. The reference is generated in the slow control loop (position/speed loop). See Motion Programming Chapter for details about contouring reference															

Depending on the selected option (SC0, SC1), the internal current control loop – is activated/deactivated (depending on the system structure).

Note that if the current control loop is needed to implement the selected mode (MODE SC1), one must define the corresponding parameters.

The selected motion mode will become effective at the first motion update command (immediate update – UPD, or update on event, UPD!).

© Technosoft 2006

235

Execution Sets the speed contouring motion mode (reference type). Two cases are possible:

MODE	Current controller
SC0	-
SC1	√

Example

MODE SC1;		//Set	Speed Contouring Mode 1
TUM1;			Target Update Mode 1
SEG 100U,			1 st motion segment. Increment
	//sp	eed re	ference with 5 counts/sampling
	//fc	or the	next 100 sampling periods
UPD;		· · ±	ate immediate
SEG 100U,	5.00000;	//Set	2 st motion segment.
SEG 200U,			3 st motion segment.
SEG 100U,	-10.00000;	//Set	4 st motion segment.
SEG 200U,	10.00000;	//Set	5 st motion segment.
SEG 0, 0.	;	//Enc	l of contouring mode

236

Nam	ame MODE SE					Speed external motion mode (Motion mode group						group)			
Synta	Syntax MODE SE0 MODE SE1								•	beed E beed E		• • •	1		
Operands –															
Туре	e TML program X					On-l X									
Binar	y code	9													
MODI 15	E SE0 14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	1	0	1	1	0	0	1	0	0	0	0	1	0	0	
1	0	1	1	0	0	1	0	1	1	0	0	0	0	0	0
1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
MODE SE1 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0															
0	1	0	1	1	0	Ő	1	0	0	Ō	0	1	0	0	
1	0	1	1	0	0	1	1	1	1	0	0	0	0	0	0
1	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0
Desc	Description MODE SE0/SE1 instruction defines the speed control operating in the external reference motion mode.														
	In this mode, the reference module will use an external reference, as previously defined by the EXTREF instruction. The reference will represent a speed reference value, in speed control structures. The reference will be generated in the slow control loop (position/speed loop).									speed					

See Motion Programming chapter for details about external reference parameters and implementation.

Depending on the selected option (SE0, SE1), the internal current control loop is activated or not (depending on the system structure).

Note that if the current control loop is needed to implement the selected mode (MODE SE1), one must define the corresponding parameters.

The selected motion mode will become effective at the first motion update command (immediate update – UPD, or update on event, UPD!).

© Technosoft 2006

237

Execution Sets the speed external motion mode (reference type). Two cases are possible:

MODE	Current controller
SE0	-
SE1	\checkmark

Example

MODE	SE1	;
UPD;		

//Set Speed External Mode 1 //Update immediate

238

Nam	e	M	ODE	SP		Spee	ed prot	file mo	otion m	ode		(M	otion r	node g	group)
Synta	ax		IODE \$			MODE Speed Profile 0 () MODE Speed Profile 1 (T)									
Oper	ands	-													
Туре	e TML program X					On-l X									
Binar	y cod	е													
MODE SP0					•	•	_		_		•	•		•	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	1	0	1	1	0	0	1	0	0	0	0	1	0	0	1
1	0	1	1	1	0	1	0	1	1	0	0	0	0	0	1
1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	1
MOD	E SP1														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	1	0	1	1	0	0	1	0	0	0	0	1	0	0	1
1	0	1	1	1	0	1	1	1	1	0	0	0	0	0	1
1	0	0	0	0	0	1	1	0	0	0	0	0	0	0	1
Description MODE SP0/SP1 instruction defines the speed control operating in the profile reference motion mode.															
	In this mode, the reference module will generate a ramp speed profile. The reference will represent a speed reference value, in speed control structures. The reference is generated in the slow control loop (position/speed loop).														
		See Motion Programming chapter for details about speed profile reference parameters and implementation.													

Depending on the selected option (SP0, SP1), the internal current control loop is activated or not (depending on the system structure).

Note that if the current control loop is needed to implement the selected mode (MODE SP1), one must define the corresponding parameters.

The selected motion mode will become effective at the first motion update command (immediate update – UPD, or update on event, UPD!).

© Technosoft 2006

239

Execution Sets the speed profile motion mode (reference type). Two cases are possible:

MODE	Current controller
SP0	-
SP1	\checkmark

Example:

CACC = 0.5;	//Acceleration command for speed profile
	//(counts/sampling ²)
CSPD = -20;	//Speed command (counts/sampling)
MODE SP1;	//Set Speed Profile Mode 1
UPD;	//Update immediate

240

© Technosoft 2006

Nam	е	M	MODE SPD Speed pulse & direction motion mode (Motion mode group)														
Synta	ax		ODE \$							beed E beed E		•			<u> </u>		
Opera	ands	_															
Туре				rogran X	n	On-l X											
Binar	y cod	e															
MODI 15	E SPD 14		13 12 11 10 9 8 7 6 5 4 3 2 1 0 0 1 1 0 0 </td														
0	1																
1	0	1	1	1	0	1	0	1	1	0	0	0	1	0	0		
1	0	0	0	0	0	1	0	0	0	0	0	0	1	0	0		
MODI 15	E SPD 14	1 13	12	11	10	9	8	7	6	5	4	3	2	1	0		
0	1	0	1	1	0	0	1	0	0	0	0	1	0	0			
1	0	1	1	1	0	1	1	1	1	0	0	0	1	0	0		
1	0	0	0	0	0	1	1	0	0	0	0	0	1	0	0		
Desc	riptior																
						preser genei											
						iming (ement		er for c	letails	about	pulse	and c	directio	on refe	erence		
						elected ependi						ernal c	urrent	contro	ol loop		

241

command (immediate update - UPD, or update on event, UPD!).

Note that if the current control loop is needed to implement the selected mode (MODE SPD1), one must define the corresponding parameters.

The selected motion mode will become effective at the first motion update

Execution Sets the speed pulse & direction motion mode (reference type). Two cases are possible:

242

MODE	Current controller
SPD0	-
SPD1	\checkmark

Example

MODE SPD1; //Set Speed mode 1 with Pulse & Direction //reference UPD; //Update immediate

© Technosoft 2006

Nam	е	MODE TC Torque contouring motion mode (Motion mode group)														
Synta	x	М	ODE T	C				МО	DE To	orque (Contou	uring				
Opera	ands	_														
Туре			TML pi	rogran K	n	On-l										
Binar	y code	•														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
0	1	0	1 1	1	0	0	1	0	0	0	0	1 0	0	0 1	1	
1	0	1	-	0	0	0	1	-	-	0	0	0	0	1	1	
Desci	ription	rei In mo rej Th Se pa	000010000011MODE TC instruction defines the torque control operating in the contouring reference motion mode.In this mode, the reference module will perform linear interpolation based on motion speed segments, described using the SEG instruction. The reference will represent a torque reference value, in torque control structures.The reference will be generated in the slow control loop (position/speed loop).See Motion Programming chapter for details about contouring reference parameters and implementation.Note that the current control loop is needed to implement the selected mode, thus one must define the corresponding parameters.													
						on moo te upda								tion ı	update	
Execu	ution	Se	ts the t	torque	conto	ouring	motior	mode	e (refer	rence f	ype).					
Exam	ple	MODE TC; //Set Torque Contouring Mode 1 REF0 = 0.00000; //Initial reference SEG 200U, 2.00000;; //Set 1 st motion segment. Increment //torque reference with 2 bits for the //next 200 sampling periods UPD; //Update immediate SEG 100U, -1.00000; //Set 2 st motion segment. SEG 200U, 0.00000; //Set 3 st motion segment. SEG 100U, -1.00000; //Set 4 st motion segment.														
© Tecl	nnosoft	2006					24	13		Ν	/lotion(Chip II	TML Pr	ogram	ming	

SEG 0, 0.; //End of contouring mode

© Technosoft 2006

MotionChip II TML Programming

244

Name	M	MODE TEF, TES Torque external motion mode (Motion mode group)												
Syntax		ODE 1 ODE 1							orque E orque E					
Operands	_													
Туре			rogran X	n	On-l X									
Binary code														
MODE TEF														
15 14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0 1	0	1	1	0	0	1	0	0	0	0	1	0	0	1
1 0	1	1	0	0	0	1	1	1	1	0	0	0	0	0
1 0	0	0	0	0	0	1	0	0	1	0	0	0	0	0
MODE TES														
15 14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0 1	0	1	1	0	0	1	0	0	0	0	1	0	0	1
1 0	1	1	0	0	0	1	1	1	0	0	0	0	0	0
1 0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
Description	ref	ferenc	e moti	on mo	de.						•	-		ternal

reference input. In **MODE TES** there are also possible the other external modes as previously defined by the EXTREF instruction. The reference will represent a torque reference value, in torque control structures.

See Motion Programming chapter for details about external reference parameters and implementation.

Depending on the selected option (TEF or TES), the reference is generated in the fast control loop or in the slow control loop. This is based to the fact that normally, an external torque reference needs to be updated in the fast control loop (where the current controllers are activated).

Note that the current control loop is needed to implement the selected mode, thus one must define the corresponding parameters.

The selected motion mode will become effective at the first motion update command (immediate update – UPD, or update on event, UPD!).

© Technosoft 2006

245

Execution Sets the torque external motion mode (reference type). Two cases are possible:

MODE	Reference location
TEF	In the fast loop
TES	In the slow loop

Example

MODE TEF; //Set Torque External reference in //fast loop UPD; //Update immediate

© Technosoft 2006

246

_	M	ODE	TT	Т	orque te	est moti	on moo	de		(M	otion r	node	group)												
Syntax	м		гт			МС	DE To	rque 1	est																
Operands	_																								
Туре			rogram X	C	n-line X																				
Binary code	!																								
15 14	13	12		10 9		7	6	5	4	3	2	1	0												
0 1 1 0	<u>0</u> 1	1 1	1 0	0 0		0	0	0	0 0	1	0	0	1 0												
1 0	0	0	0	0 0		0	0	0	0	1	0	0	0												
	or Th Se im	controne ne refe ee Mot npleme	ne can a ol loops t rence w tion Prog ntation. at the cu	ill be ge grammir	urposes neratec g chap	s. in the er for c	slow co letails a	ontrol I about	oop (j test re	oositio eferenc	n/spee ce para	ed loop amete	o). rs and												
			t define						mont			mout	, 1105												
			ected m nd (imme									tion ı	update												
Execution	Se	ets the	torque t	est mot	ion moo	le (refe	rence t	ype).					command (immediate update – UPD, or update on event, UPD!). Sets the torque test motion mode (reference type).												
	<pre>MODE TT; //Set Torque Test Mode REFTST = 40; //Reference saturation value in test mode</pre>																								

247

Nam	е	Μ	IODE	VC		Volta	ge co	ntouri	ng mot	tion m	ode	(N	lotion	mode	group
Synta	ix	N	NODE	vc				МО	DE Vo	oltage	C onto	uring			
Opera	ands	_													
Туре		F		orogran	1	On-li	ne								
Rinar	y code	_ _		X		X									
15	14	- 13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	1	0	1	1	0	0	1	0	0	0	0	1	0	0	1
1	0	1	1	0	0	0	0	1	1	0	0	0	0	1	1
1	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1
		s (I S p	tructure position see Mo aramet	es. Th /speed otion ers and	will r me refe l loop). Prograr d imple ontrol lo	erence mming menta	e wil g cha ation.	l be apter	gene	erated etails	in t abou	he s t cor	low d tourin	control	loo
					motion nediate									otion	updat
Execu	ution	S	ets the	voltage	e conto	uring	motio	n mod	e (refe	erence	type)				
Exam	ıple	Sets the voltage contouring motion mode (reference type). MODE VC; //Set Voltage Contouring REF0 = 0.00000; //Initial reference SEG 100U, 12.00000; //Set 1 st motion segment. Increment //voltage reference with 12 bits for //the next 100 sampling periods UPD; //Update immediate SEG 100U, 3.00000; //Set 2 st motion segment. SEG 100U, -15.00000; //Set 3 st motion segment. SEG 0, 0.; //End of contouring mode													
		S S	EG 10 EG 10	OU, -			//1 //1 //: //:	the r Updat Set 2 Set 3	lext im ce im 2 st mo 3 st mo	100 s media tion tion	ampl te segm segm	ing <u>p</u> ent. ent.			

249

Nam	e	M	ODE	VEF,	VES		Vo	ltage e	externa	al moti	on mo		otion r	node (group)	
Synta	ax		ODE \ ODE \							-	Extern Extern					
Opera	ands	-														
Туре				rogran X	n	On-l X										
Binar	y cod	е														
MOD	E VEF		3 12 11 10 9 8 7 6 5 4 3 2 1 0													
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
0	1	0	1	1	0	0	1	0	0	0	0	1	0	0	1	
1	0	1	1	0	0	0	0	1	1	1	0	0	0	0	0	
1	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	
MOD	E VES															
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
0	1	0	1	1	0	0	1	0	0	0	0	1	0	0	1	
1	0	1	1	0	0	0	0	1	1	0	0	0	0	0	0	
1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Desc	riptior	re	MODE VEF/VES instructions define the voltage control operating in the external reference motion mode.													
		re	ferenc		t. In N	IODE	VES t	here a	re als	o pos					nodes	
		st	ructure		e Motio	on Pro	gramr								control erence	

Depending on the selected option (VEF or VES), the reference is generated in the fast control loop or in the slow control loop.

Note that no control loop is needed to implement the selected mode.

The selected motion mode will become effective at the first motion update command (immediate update – UPD, or update on event, UPD!).

© Technosoft 2	2006
----------------	------

250

Execution Sets the voltage external motion mode (reference type). Two cases are possible:

MODE	Reference location
VEF	In the fast loop
VES	In the slow loop

Example

MODE VES; //MODE Voltage External reference in slow loop UPD; //Update immediate

251

© Technosoft 2006

Nam	е	M	ODE	VT		Volta	ige tes	t moti	on mo	de		(M	otion	mode	group)
Synta	IX	М	ODE	/T				МО	DE Vo	orque	F est				
Opera	ands	-													
Туре				rogram X		On-l X									
Binar	y cod	e													
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0 1	1 0	0 1	1	1 0	0	0	1 0	<u>0</u> 1	0 1	0	0	1	0	0	1
1	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0
	riptior	In all of Th pu Th Se im No Th CC	this r lowing the vo nus, or urpose ne refe ee Mot npleme ote tha ne sel	rence w ion Pro- intation. it no cor ected r id (imme	he reneration neration apply vill be grammed ntrol lo notior ediate	eference on of a the el a con gener ming c oop is n moc e upda	ce mo a satur lectric a stant c rated ir chapter neede de will te – Ul	dule rated i angle or a ro n the s for d of to in beco PD, o	will us ramp of of the otating slow co etails a mplem ome e r upda	se the or a co motor voltag ontrol about ent the ffectiv te on o	value onstar ge veo loop (test re e sele e at event,	es of a t value ctor to position eference cted m the fir	specif for the the m n/spec ce par node. st mo	ic var ne am otor, f ed loo amete	plitude for test p). ers and
Exect	ution	Se	ets the	voltage	e test	motior	n mode	e (refe	rence	type).					
Exam	ple	RI R	EFTST	<pre>s the voltage test motion mode (reference type). DE VT; //Set Voltage Test Mode FTST = 15; //Reference saturation value in test mode</pre>											

252

Nam	е	N	OP		No ope	eratior	ı					(Mis	scellar	neous g	aroup)	
Synta	x	N	OP					No	D pera ⁻	tion					<u>, </u>	
Opera	ands	_														
Туре				orogran X	n	On-l X										
Binary	y code	;														
15 0	<u>14</u>	<u>13</u> 0	12 0	11	<u>10</u>	9	8	7	6	5	4	3	2	1	0	
Descr	Ū	N	OP ins	struction used as	n can l	be use	ed to in	ntroduc	e a de	elay be	etwee	n two i			Ū	
Execu	ution		o ope structi	eration on.	is ex	ecute	d. The	e TMI	_ pro	gram	will	contin	ue wi	th the	next	
Exam	ple		SPD = ODE S PD;	30.;		<pre>//Acceleration command for speed profile //(counts/sampling²) //Speed command (counts/sampling) //Set Speed Profile Mode 1 //Update immediate // New jog speed command for the next // on-the-fly change of jog speed, during</pre>										
		NC	DOP: DP; DTO L	00P;		// r // i	/motion / no operation / infinite loop, exit only by RESET or a /TML interrupt									

© Technosoft 2006

Name	OUTPORT	Output to us	er port				(1/0) group)
Syntax	OUTPORT VAR16		OUT put V	/AR16 \	/alue to	0 10 PO I	RT	
Operands	VAR16: integer varial	ble						
Туре	TML program X	On-line X]					
Binary code								
15 14 1	3 12 11 10	98	76	5	4	3	2 1	0
0 1	1 0 1 1	0	(9LSBs	of &VA	R16)		
Description	The OUTPORT instru- variable can be any o See details about use	of the TML or u	user variab	les.		-	out port.	VAR16
Execution	The 16-bit value of Va	ar16 is send to	o the user	output p	oort.			
Example	int Varl; Varl = 0x1255; OUTPORT Varl;	// setup // output	Varl var Varl va		o use:	r port	Ę	

Name	R	RAOU Reset automatic origin update (Configuration and command group)											group)	
Syntax	F	RAOU					Res	set Aut	omati	c O rig	in U pd	ate		
Operands	_													
Туре	E		orogram X	1	On-l X									
Binary code	•													
15 14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0 1	0	1	1	0	0	1	0	0	0	0	1	0	0	1
1 1	1	0	1	1	1	1	1	1	1	1	1	1	1	1
0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	th b to	The RAOU instruction resets the automatic origin update mode. In this case, the ariable POS0 is not changed at event occurrence, and needs to be initialized by the user. For successive motions, the event tests for relative position will be based on the same value of the POS0 parameter. Use instruction SAOU in order to automatically update variable POS0 after each detected event.												
Execution	R	lesets t	he auto	omatio	c origin	n upda	te.							
Example	C C C C M U U C C I I I I I I I I I I I I I I I I	2ACC = 2POS = 2PA; 10DE P 1PD; 2AOU ; 2OSO = 1PD; 2SPD = RPO 2 1PD!;	20; 8000 P3; APOS 40;	0;	//(a //Sg //Pa //Pa //Ug //Ug //Na //Ug //Na //(a	count peed count positi positi podate core podate podate podate podate podate podate podate podate podate podate podate podate podate positi p	s/sat comma s/sat on co sitio auto the a immo eed o s/sat ent o	nplin and f nplin omman on Pr ediat omati actua ediat comma nplin	g ²) or po g) d (co d is ofilo e c upo c upo l pos e nd fo g) rela	ositi ounts Absc e Mod date sitic or pc	lute le 3	refe on pr	e rence ofile	2

255

Name	REMGRID	Remove gro	oup ID	(Multiple axis group)
Syntax	REMGRID value16 REMGRID VAR16	•		e16 from GROUP ID e of VAR16 from GROUP ID
Operands	<i>value16</i> : 16-bit intege VAR16: integer varia		value	
Туре	TML program	On-line X		
Binary code				
	lue16 13 12 11 10 0 0 1 0	9 8 0 0 Value	76 10 e16	5 4 3 2 1 0 0 0 0 0 0 0
REMGRID VA	R16			
<u>15 14</u>	13 12 11 10	98	76	<u>5 4 3 2 1 0</u>
0 0	0 0 1 0	0 1 &VAF	10	0 0 0 0 0 0
Description	In multiple axis struc local axis.			vs one to remove a group ID of the
		axis and the	e communica	oup ID value removed is no more ation drivers will reject messages
		corresponds	to a gro	<i>16</i> parameters are used for group up. Up to 8 groups can be ture.
	An axis can belong to A multiple-axis mess			one axis or to a group of axes.
Execution	Delete Group_ID with	the specified	I value from t	he Group_lds of the local axis.
Example	GROUPID 1; ADDGRID 2; ADDGRID 5; REMGRID 2;	//local a //local a	axis belon axis belon ow on, th	gs to groups 1 gs to groups 1 and 2 gs to groups 1, 2 and 5 e local axis belongs only
© Technosoft 20	006	250	6	MotionChip II TML Programming

Name	F	RESET Reset the DSP processor (Configuration and command group											group)	
Syntax		RESET					Res	set DS	P proc	essor				
Operands	-	-												
Туре	-		rogram X		On-li X	ne								
Binary code	9													
15 14	13	12		10	9	8	7	6	5	4	3	2	1	0
0 0	0	0	0	1	0	0	0	0	0	0	0	0	1	0
	 The RESET instruction resets the DSP processor. After this instruction the omplete TML environment is reinitialized. The following basic initializations are performed: The TML registers and parameters are initialized with their default values; Based on these values, and some hardware tests, the basic hardware initializations are also performed; The TML environment detects if an external memory is installed on the SPI interface, by identifying a valid TML command at the start address of this memory; If such a program is detected, it is executed; otherwise, an infinite loop is executed and only an on-line TML command will change this status. Execute such a command in order to exit from a malfunctioning situation, when the system does not operate correspondingly. This instruction can be used also from a TML interrupt or when detecting an error in the motion system operation (protections, control error, etc.). 												dware on the ess of oop is when	
Execution	F	Resets t	he DSP	proc	essor.									
Example														
Example		CACC =				celer ounts				d foi	r pos	itio	n pro	ofile
		SPD =				ounts	s/sar		g)		posit	ion	pro	ofile
			70000;			sitio								
		PA; ODE PF	3;			sitio t Pos								
		PD;				date								
	!	MC;				t eve					plete	2		
		AIT!;				IT ur					ogot	+ h o	arrat	
	R	ESET;			//AI	ter r	10010	JU CO	mpret	le, r	eset	LIIE	SYST	2111
							-							_ <u>. </u>
© Technosoft	2006	5				25	7		Ν	Aotion(Chip II ⁻	ΓML Pr	ogram	ming

Name	RET	Re	turn from	n a T	ML f	uncti	on						(Dec	ision g	group)
Syntax	RET			U	ncoi	nditio	nal F	RET	urn	from	a TN	1L fu	unctic	on	
Operands	-														
Туре	TML	program X	On	-line -]									
Binary code															
	13 12		0 9	8		7	6		5	4	3		2	1	0
0 0	0 0	0	1 0	0		0	0		0	0	0		1	0	0
Description	Specif The R continu	struction al ic sequence ET instruc ue the TML	es can be tion may sequence	e call / be ce fol	ed f use	rom c d to	liffer end	ent the	poin e ex	ts of ecuti	the T on o	ΓML	prog		and to
Execution	Return	IS from a TI TOS -> IF		on.											
Example	my_pc CALL	my_pos; os = 2000 MOVEP; os = 4000					Exe cou			a fi	rst	mo	tion	of	2000
	CALL	MOVEP, A	ASPD, G	T;									n of > 0	400	0
	MOVEP	CACC = CSPD = CPOS = UPD; RET;	1.5; -20;	;	//pc //Ad //pi //Sp //Cc //Pc //Up	osit: ccel cofi:	ion erat le (con s/sa ion e im	con man mp: con med	n c unt nd ling mman dia	omma s/sa for g) nd (te	nd mpl: pos cour	for ing iti	1 ²) .on <u>p</u>	sitic	on .le (

258

Nam	e	F	RETI	F	Return	from	a TML	interi	rupt fu	nction			(Dec	sision	group)
Synta	x		RETI				RET	urn fr	om a T	ſML I r	nterrup	t funct	ion		
Opera	ands	-	_												
Туре				rogram X		On-li –	ine								
Binary	y code	•													
15 0	14 0	13 0	12 0	11 0	10 1	9 0	8 1	7 0	6 0	5 0	4 0	3 0	2 1	1 0	0
Descr		i	This inst When a executed The retu interrupt Returns	TML i d. urn fror functio	nterru n intei n and	pt ser rrupt to cor	rvice r instruc ntinue	outine tion N the TI	e is er will be	ntered	, a sp I to er	ecific nd the	TML s	seque ution	
			Returns from a TML interrupt function. Enables TML interrupts (they were disabled at the start of the TML interrupt service routine); TOS -> IP;												
Exam	ple		/ test int u_ fixed BEGIN; INTTAB ENDINI AXISON SAP 0; u var	var, d dp; LE = 1 T; ;	lt ;			e; / / /	/ loc / glc / act	cate bal civat	he TM the i syste e cor ual p	nter m se ntrol	rupt tting	vect Is	
		SRB ICR, 4095, 4095; // set interrupt masks CACC = 0.5; // set acceleration CSPD = 30.; // set speed SP1 // Set Speed Profile Mode 1 UPD; // start the motion EINT; // enable interrupts 1b1 : GOTO 1b1, u_var, GT; // loop while u_var > 0													
© Tech	nnosoft	200	6				25	9		1	Motion	Chip II ⁻	TML Pr	ogram	ming

```
My_flag = u_var;
                            // this instruction is executed
                            //after an interrupt
GOTO lb1, u_var, GT;
                            // again in the infinite loop if
                            //u_var > 0
END;
                            // end the TML program after
                            //motion complete
Int0_Disable:
                            // [level 0: disable] interrupt
                            //function
     u_var = 100;
     RETI;
                            // [level 1: PDPINT] interrupt
Int1_PDPINT:
                            //function
     u_var = 101;
     RETI;
Int2 SoftProtection:
                            // [level 2: Software
                            //protection] interrupt function
     u_var = 102;
     RETI;
Int3_ControlError:
                            // [level 3: Control error]
                            //interrupt function
     u var = 103;
     RETI;
                      // [level 4: Communication error]
Int4_CommError:
                      //interrupt function
     u_var = 104;
     RETI;
Int5 WrapAround:
                      // [level 5: Wrap Around] interrupt
                      //function
     u_var = 105;
     RETI;
                            // [level 6: Positive limit
Int6_LimitSwitchP:
                            //switch] interrupt function
     u var = 106;
    RETI;
Int7 LimitSwitchM:
                            // [level 7: Negative limit
                            //switch] interrupt function
     u_var = 107;
     RETI;
Int8 Capture:
                            // [level 8: Capture] interrupt
                            //function
     CPOS = CAPPOS;
     UPD;
     u_var = 108;
     RETI;
Int9_MotionComplete:
                           // [level 9: Motion complete]
                            //interrupt function
     UPD;
     u_var = -109 ;
     RETI ;
```

260

	/[level 10: Update contour /segment] interrupt function
dp = -dp; SEG dt, dp; u_var = 110; RETI;	
Intll_EventReached:	<pre>// [level 11: Event reached] //interrupt function</pre>
CPOS = -20000; UPD; u_var = 111; RETI;	-
IntVect:	// interrupt vector table
<pre>@Int0_Disable;</pre>	// pointer to level 0 interrupt
@Int1_PDPINT;	// pointer to level 1 interrupt
<pre>@Int2_SoftProtection; @Int3 ControlError;</pre>	<pre>// pointer to level 2 interrupt // pointer to level 3 interrupt</pre>
	// pointer to level 4 interrupt
	// pointer to level 5 interrupt
	// pointer to level 6 interrupt
	// pointer to level 7 interrupt
	// pointer to level 8 interrupt
	// pointer to level 9 interrupt
	eg; // pt. To level 10 interrupt // pointer to level 11 interrupt
gineri_ivenencacheu/	, Poincer co rever in incertape

MotionChip II TML Programming

261

Nam	e	R	RGM Reset gear/cam master mode (Configuration and Command group)												
Synta	ax	R	GM					Res	et axis	s as G	ear/Ca	am M a	ster		
Opera	ands	_													
Туре			TML p	rogran X	n	On-l X									
Binar	y code	e													
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	1	0	1	1	0	0	1	0	0	0	0	1	0	0	1
1	1 0	<u>1</u> 0	1	0	1 0	1	1 0	1	1	1 0	1 0	1	1	1	1
0 Desc	ription			structi	Ū		ie axis			electro	onic g			ning r	0 naster cally.
			ne axis cally.	does	not se	end its	positi	on info	ormati	on to t	the sla	ave ax	es, bu	t use	it only
			ee Mot nd impl			ming o	chapte	r for d	etails	about	gearir	ng refe	erence	parar	neters
Exect	ution	Re	esets t	he axi	s from	the ge	ear/car	n mas	ter op	eratior	n mode	Ð.			
Exam	ple	RC	GM ;	1.	/exit	from	n mas	ter n	node;	ente	er in	loca	al mo	de	

© Technosoft 2006

Name	ROUT			Rese	t outp	ut bit-j	oort					(1/0 -	
												(#0 g	group)
Syntax	ROUT#	n				Res	et OU	IT#n to	o low s	state (0))		
Operands	<i>n</i> : numb	er of ou	utput bi	t-port	0<=n∙	<=39)							
Туре	TML p	rogram	1	On-li	ne								
		Х		Х									
Binary code													
15 14	13 12	11	10	9	8	7	6	5	4	3	2	1	0
0 1	0 1	1	1	0	0	0	0	0	0	0	0	0	0
					PxDA ANE								
					OR								
Description	ROUT#r Note tha instruction	at the bi			the ou	tput s							
Execution	Resets t	he outp	out bit-p	oort n	umber	n.							
Example	SETIO#1 ROUT#13		;					ne 13 IO 1		-	lt		

AND/C	R mas	ks for RO	UT#n
PxDATDIR	#n	ANDrst	ORrst
0X7098	#0	0xFFFE	0x0000
0X07098	#1	0xFFFD	0x0000
0X7098	#2	0xFFFB	0x0000
0X7098	#3	0xFFF7	0x0000
0X7098	#4	0xFFEF	0x0000
0X7098	#5	0xFFDF	0x0000
0X7098	#6	0xFFBF	0x0000
0X7098	#7	0xFF7F	0x0000
0X709A	#8	0xFFFE	0x0000
0X709A	#9	0xFFFD	0x0000
0X709A	#10	0xFFFB	0x0000
0X709A	#11	0xFFF7	0x0000
0X709A	#12	0xFFEF	0x0000
0X709A	#13	0xFFDF	0x0000
0X709A	#14	0xFFBF	0x0000
0X709A	#15	0xFF7F	0x0000
0X709C	#16	0xFFFE	0x0000
0X709C	#17	0xFFFD	0x0000
0X709C	#18	0xFFFB	0x0000
0X709C	#19	0xFFF7	0x0000

PxDATDIR	#n	ANDrst	ORrst
0X709C	#20	0xFFEF	0x0000
0X709C	#21	0xFFDF	0x0000
0X709C	#22	0xFFBF	0x0000
0X709C	#23	0xFF7F	0x0000
0X709E	#24	0xFFFE	0x0000
0X7095	#25	0xFFFE	0x0000
0X7095	#26	0xFFFD	0x0000
0X7095	#27	0xFFFB	0x0000
0X7095	#28	0xFFF7	0x0000
0X7095	#29	0xFFEF	0x0000
0X7095	#30	0xFFDF	0x0000
0X7095	#31	0xFFBF	0x0000
0X7095	#32	0xFF7F	0x0000
0X7096	#33	0xFFFE	0x0000
0X7096	#34	0xFFFD	0x0000
0X7096	#35	0xFFFB	0x0000
0X7096	#36	0xFFF7	0x0000
0X7096	#37	0xFFEF	0x0000
0X7096	#38	0xFFDF	0x0000
0X7096	#39	0xFFBF	0x0000

© Technosoft 2006

MotionChip II TML Programming

264

Name	S	SAOU Set automatic origin update (Configuration and command group)											group)	
Syntax	S	SAOU					Res	set A ut	tomati	c O rigi	in U pd	ate		
Operands	_													
Туре	E		orogram X		On-l X									
Binary code	e													
15 14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0 1	0	1	1	0	0	1	0	0	0	0	1	0	0	1
1 1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
0 0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
Execution	ir w F	The SAOU instruction sets the automatic origin update mode. In this case, variable POS0 is changed at an UPDATE event occurrence, and needs not to initialized by the user. For successive motions, the event tests for relative positivil be based on the updated values of the POS0 parameter. Use instruct RAOU in order to manually update variable POS0. Sets the automatic origin update.												osition
Execution	3		automa		ngin u	puale.								
Example		ACC = SPD = PR; DDE PF AOU ; PD; SPD = RPO 20 PD!; AIT!;	20; 90000 93; 40;	;	//(c //Sg //Pc //Pc //Se //UF //Ne //(c //Se //i. //c	ccele count peed count positi positi et Po pet au podate ev sp count et ev count podate ait e	s/sat con con con sitic toma immo eed s/sat ent vhen s on o	mplin mmand mplin comman comman cic u ediat comma mplin when moto event	g ²) d fo g) d (co d is cofile pdate e nd fo g) relat relat	or Dunts Rela e Mod e mod or po tive	posit) tive e 3 e sitic posit	cion on pr	pro ofile >= 20	ofile e 0000

265

	SAP	S	et actual p	osition			(Conf	igurati	ion an	d cor	nman	d group
Syntax	SAP va SAP VA						Set Act					
Operands		: 32-bit lo	ong immeo riable	diate va	alue							
Туре		orogram X	-	line K								
Binary code												
SAP value32	-			_	_	_	_	_	_	_		_
<u>15 14</u> 1 0	<u>13 12</u> 0 0	11 0	<u>10 9</u> 1 0	8	7	6 0	5	4	3	2	1	0
IU	0 0	U	-	WORD	-		U	U	U	U	U	U
				NORD								
SAP VAR32												
15 14	13 12	11	10 9 0 0	8	7	6	5 (9LSB	4	3	2	1	0
-	VAR32.	Also co	prrects the	e refere	ence v	alue,	so that	at the	differ	ence	betw	
-	VAR32. position	Also co reference	orrects the ce and th	e refere e actua	ence v al pos	alue, ition	so that before	at the	differ	ence	betw	een the
	VAR32. position after the	Also cc referend change	orrects the ce and th of the abs	e refere e actua solute p	ence v al pos positior	alue, ition 1 valu	so that before	at the	differ	ence	betw	een the
	VAR32. position after the Dependi	Also co referenc change ing on th	orrects the ce and th	e refere e actua solute p	ence v al pos positior	alue, ition 1 valu	so that before	at the	differ	ence	betw	een the
	VAR32. position after the Dependi	Also co reference change ing on the is set:	orrects the ce and th of the abs	e refere e actua solute p	ence v al pos positior	alue, ition 1 valu	so that before	at the	differ	ence	betw	een the
	VAR32. position after the Dependi If TUM1 i value32	Also co reference change ing on the is set: :: value32	orrects the ce and th of the abs	e refere e actua solute p pdate r ence +	ence v al pos oositior node t old Af	alue, ition n valu bit:	so that before le.	at the s	differ setting	ence	betw	een the
	VAR32. position after the Dependi If TUM1 i value32	Also cc reference change ing on the is set: c value32 value32 VAR32 -	orrects the ce and th of the abs ne target u - old refer -> new re - old refere	e refere e actua solute p pdate r ence + ence +	ence v al pos position node t old AF e	alue, ition n valu bit: POS	so that before le.	at the sthe s	differ setting	ence	betw	een the
	VAR32. position after the Dependi If TUM1 i value32	Also cc reference change ing on the is set: 2: value32 value32 VAR32 - VAR32 - is set:	orrects the ce and th of the abs ne target u - old refer -> new re	e refere e actua solute p pdate r ence + ence +	ence v al pos position node t old AF e	alue, ition n valu bit: POS	so that before le.	at the sthe s	differ setting	ence	betw	een the
	VAR32. position after the Dependi If TUM1 i value32 VAR32: If TUM0 i value32	Also co reference change ing on the is set: value32 value32 VAR32 - VAR32 - is set: value32	orrects the ce and th of the abs ne target u - old refer -> new re - old refere	e refere e actua solute p pdate r ence + ence + erence erence	ence v al pos position node t old AF e old AP	alue, ition n valu bit: POS -	so that before le. -> new > new	APOS	differ etting	ence	betw	een the
Description	VAR32. position after the Dependi If TUM1 i value32 VAR32: If TUM0 i value32	Also co reference change ing on the is set: value32 VAR32 - VAR32 - value32 value32 value32 value32 value32	orrects the ce and th of the abs ne target u - old refer -> new refer -> new refer + old refer	e refere e actua solute p pdate r ence + erence - POS ence –	old AF old AF old AP	alue, ition n valu bit: POS - POS-	so tha before le. -> new > new	APOS APOS	differ setting	ence	betw	een the

Example

CACC = 1.5;	//Acceleration command for speed profile
	//(counts/sampling ²)
CSPD = 20;	//Speed command (counts/sampling)
MODE SP1;	//Set Speed Profile Mode 1
UPD;	//Update immediate
SAP 0;	<pre>//Set the actual position to 0 (counts)</pre>
!APO 60000;	<pre>//Set event when absolute position >= 60000</pre>
	//(counts)
UPD!;	//Update on event

267

Name	SCIBR		Set	: SCI se	rial co	mmur	nicatio	n bau		scellan	eous	group)
Syntax	SCIBR I SCIBR									to <i>valu</i> to VAF		
Operands	value16: V		iteger im iteger va		value	. (0<=	-value	32<=4	·)			
Туре		rogram X		-line X								
Binary code												
SCIBR val	lue16 13 12	11 ·	10 9	8	7	6	5	4	3	2	1	0
	0 0		$\frac{10}{0}$	0	0	0	1	0	0	0	0	0
	0 0	•		Valu	-	U		U	U	U	U	U
SCIBR VA 15 14 0 0	R16 13 12 0 0		10 9 0 0	8 1	7	6 0	5	4	3	2 0	1	0
				&VA	R16							
Description Execution	Sets the input par Baud rat drive is S Sets the	rameter v tes range 9600.	value16. e from 96 al comm	600 to 1 unicatio	15200 n bau) baud d rate	d. The	e defau	ılt bau	d rate	value	
			Value1		l baud	d rate						
			0	960								
			1	192								
			2	384								
			3	566								
Example	SCIBR 4;	;		sets t	5200 he SC	I baı	ud ra	te to	11520)0 bau	d	

268

Nomo	850	Define		<i>.</i>							
Name	SEG	Define a	segment	for cor	ntourii			ode <i>on and</i>	comr	nand g	roup)
Syntax											
	SEG D_time, SEG VAR16,	_		ient D_ ient VA			2				
Operands	<i>D_time</i> : 16-bit				IX 10,	VAN32	-				
Operands	<i>D_ref</i> : 32-bit l	ong imme									
	VAR32: long v VAR16: intege										
Туре	TML progra	im (On-line								
Binary code	X										
SEG D_time, I	D ref										
<u>15 14</u>	<u>13 12 11</u>		98	7	6	5	4	3	2	1	0
0 1	1 1 1	0	00	0 time	0	0	0	0	0	0	0
			LOWOF		ef)						
			HIWOR								
SEG VAR16,											
	<u>13 12 11</u> 1 1 1	1	<u>98</u> 0	7	6		$\frac{4}{2 \circ f^{8}}$	3 /AR16	2	1	0
0 1	1 1 1		-	AR32		(9130:	SUIQ	VARIO)		
Description	The SEG ins	truction is	used in	the co	ntouri	ing mo	de to	genera	ate th	e refer	ence,
	describing on							0			
	Its paramete										
	segment will to the actual								incre	ment a	dded
	The reference										
	control loop) reference mo				ing c	napter	TOF C	ietalis	about	Conto	uring
Execution	Generate a sampling incr							me sa	mplin	gs, at	each
Example											
-	MODE PC3; SEG 100U,	5 00000		'Set P 'Set 1					Mode	e 3	
	UPD;	5.00000	11	'Updat	e im	media	ite				
	SEG 100U,			Set 2							
	SEG 100U, SEG 100U,			Set 3 Set 4							
	SEG 0, 0.;			/End					•		

269

Nam			QE	ΤΙΟ				Sat	hit no	rt as ir	nut	or	outou	tno	-+						
Maii			3L					Sel	bit-bo	11 05 11	iput	01	outpu	t po	ι				(1/0) qi	roup)
Synta	ax																				17
			-	ETIO#									as In								
			S	ETIO#	n OU	Г				SE	τιο	#n	as O	JTpi	ut p	ort					
Oper	ands		n:	numb	er of c	outp	ut bi	t-por	t 0<=	n<=39)										
Туре				TML p	rogra	m		On-	line												
					Х)	<												
Bina	y coc	le																			
SETI	O#n II	N																			
15	14		13	12	11	1	0	9	8	7	(6	5	4		3		2	1		0
0	1		0	1	1	1		0	0	0		0	0	0)	0		0	0		0
										ATDIR											
										IDin Rin											
			_						0												
	O#n C		-	40	44		^	•	•	7		~	F			•		2			•
15 0	14 1	Т	13 0	<u>12</u> 1	<u>11</u> 1	1	0	9 0	8	7	-	6 0	5	4		<u>3</u> 0	-	2 0	1		0
0			U	- 1				U	-	ATDIR		0	U		,	U		U	U		0
										Dout											
										Rout											
Desc	riptio	n	SE	ETIO#	n inst	ructi	ion (defin	es the	e oper	atin	a r	node	of bi	t-p	ort r	านท	nber	#n.	Ea	ch of
										ually d											
					ons ha	avin	g th	e so	urce	operar	nt IN	\#r	7) or (outp	ut (in i	nsti	ructi	on S	ÕU	T#n)
			bit	-port.																	
Exec	ution		De	efine tl	he ope	erati	ng n	node	for b	t-port	านท	nbe	er <i>n</i> .								
Exam	elar																				
	•		ir	nt vl	;																
					13 0	UT;				0 lin											
				DUT#1	3; :14 II	м:				IO l O lin					_	JE					
					N#14					I/O 1				-		to ·	vai	riak	ole '	v1	
											_										
				AND)/OR n	nask	s fo	r SET	۲IO#n	IN		AN	ID/OR	mas	ks f	or S	ET	lO#n			
	PxDA	TD	IR		#n		NDin		ORin		1		#n		NDo				out		
	0X709	98			#0	0x	FEF	F	0x000	0			#0		FF				0100		
	0X709	98			#1	0x	FDF	F	0x000				#1		FFI			0x0	0200		
	0X709	98			#2	0x	FBF	F	0x000	0			#2	0×	FFI	FF		0x0)400		

0X7098

270

0x0000

0xF7FF

#3

MotionChip II TML Programming

0x0800

0xFFFF

#3

DATDIR	#n	ANDin	ORin	#n	ANDout	OR
7098	#4	0xEFFF	0x0000	#4	0xFFFF	0x1
(7098	#5	0xDFFF	0x0000	#5	0xFFFF	0x2
X7098	#6	0xBFFF	0x0000	#6	0xFFFF	0x4
X7098	#7	0x7FFF	0x0000	#7	0xFFFF	0x8
X709A	#8	0xFEFF	0x0000	#8	0xFFFF	0x0
X709A	#9	0xFDFF	0x0000	#9	0xFFFF	0x0
X709A	#10	0xFBFF	0x0000	#1	0 0xFFFF	0x0
X709A	#11	0xF7FF	0x0000	#1	1 0xFFFF	0x0
X709A	#12	0xEFFF	0x0000	#1	2 0xFFFF	0x1
X709A	#13	0xDFFF	0x0000	#1	3 0xFFFF	0x2
X709A	#14	0xBFFF	0x0000	#1		0x4
X709A	#15	0x7FFF	0x0000	#1		0x8
X709C	#16	0xFEFF	0x0000	#1	6 0xFFFF	0x0
X709C	#17	0xFDFF	0x0000	#1	7 0xFFFF	0x0
X709C	#18	0xFBFF	0x0000	#1		0x0
X709C	#19	0xF7FF	0x0000	#1	9 0xFFFF	0x0
X709C	#20	0xEFFF	0x0000	#2	0 0xFFFF	0x1
X709C	#21	0xDFFF	0x0000	#2	1 0xFFFF	0x2
X709C	#22	0xBFFF	0x0000	#2	2 0xFFFF	0x4
X709C	#23	0x7FFF	0x0000	#2	3 0xFFFF	0x8
X709E	#24	0xFEFF	0x0000	#24	4 0xFFFF	0x0
X7095	#25	0xFEFF	0x0000	#2	5 0xFFFF	0x0
X7095	#26	0xFDFF	0x0000	#2	6 0xFFFF	0x0
X7095	#27	0xFBFF	0x0000	#2	7 0xFFFF	0x0
)X7095	#28	0xF7FF	0x0000	#2	8 0xFFFF	0x0
X7095	#29	0xEFFF	0x0000	#2	9 0xFFFF	0x1
X7095	#30	0xDFFF	0x0000	#3	0xFFFF	0x2
X7095	#31	0xBFFF	0x0000	#3	1 0xFFFF	0x4
X7095	#32	0x7FFF	0x0000	#3	2 0xFFFF	0x8
X7096	#33	0xFEFF	0x0000	#3	3 0xFFFF	0x0
X7096	#34	0xFDFF	0x0000	#34	4 0xFFFF	0x0
X7096	#35	0xFBFF	0x0000	#3	5 0xFFFF	0x0
X7096	#36	0xF7FF	0x0000	#3	6 0xFFFF	0x0
X7096	#37	0xEFFF	0x0000	#3	7 0xFFFF	0x1
X7096	#38	0xDFFF	0x0000	#3	8 0xFFFF	0x2
X7096	#39	0xBFFF	0x0000	#3		0x4

271

Nam	e	S	GM		Set ge	ear ma	ster m	node		(Confi	guratio	on and	Comr	mand g	group)
Synta	ax		SGM					S et	axis a	s G ea	r/Cam	Maste	er		
Opera	ands	-	-												
Туре		[TML p	orogram X	١	On-l X									
Binar	y cod	е													
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	1	0	1	1	0	0	1	0	0	0	0	1	0	0	1
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0
Desc	riptior	 	n those ocal ax parame	struction e modes is) will ter in o /cammi	s, the also b order	positio be sen to gei	on refe t to th nerate	erence le slav	value e axe	s com s. The	puted mast	for the	e mas use th	ter axi ne SLA	VEID
		t	he valu	ling on t le sent the <i>ma</i>	to the	slaves	s is th	e mas	ter act	ual po	sition	– APO	s (if bi		
				tion Pro lement		ming	chapte	er for d	letails	about	geariı	ng refe	erence	paran	neters
Exec	ution	ę	Sets the	e axis in	the g	ear/ca	ım ma	ster op	peratio	on moc	le.				
Exam	ple		SGM;	ID = 2 SR,0xF			nable 10; //	ID of Mast //Set refer Updat	cer i OSR rence	n Ele regi posi	ectro ster tion	nic (, 15	Geari bit t	ng mo to sei	nd

© Technosoft 2006

Name	SOUT	Set output bit-port	
			(I/O group)
Syntax	SOUT#n	Set OL	JT#n to high state (1)
Operands	n: number of o	output bit-port 0<=n<=39)	
Туре	TML progra	m On-line X	
Binary code			
15 14 1	3 12 11		<u>6 5 4 3 2 1 0</u>
0 1	0 1 1		0 0 0 0 0 0 0
		PxDATDIR ANDset	
		ORset	
Execution	Sets the outp	It bit-port number <i>n</i> to high s	tate.
Description		uction sets the output status bit-port must be defined as a	of the bit-port number <i>n</i> . an output port (using the SETIO#n OUT
Example	SETIO#13 O SOUT#13;	UT; //Set IO line 1 //Set High to I/O li	

© Technosoft 2006

AND/OR masks for SOUT#n											
PxDATDIR	#n	ANDset	ORset								
0X7098	#0	0xFFFF	0x0001								
0X7098	#1	0xFFFF	0x0002								
0X7098	#2	0xFFFF	0x0004								
0X7098	#3	0xFFFF	0x0008								
0X7098	#4	0xFFFF	0x0010								
0X7098	#5	0xFFFF	0x0020								
0X7098	#6	0xFFFF	0x0040								
0X7098	#7	0xFFFF	0x0080								
0X709A	#8	0xFFFF	0x0001								
0X709A	#9	0xFFFF	0x0002								
0X709A	#10	0xFFFF	0x0004								
0X709A	#11	0xFFFF	0x0008								
0X709A	#12	0xFFFF	0x0010								
0X709A	#13	0xFFFF	0x0020								
0X709A	#14	0xFFFF	0x0040								
0X709A	#15	0xFFFF	0x0080								
0X709C	#16	0xFFFF	0x0001								
0X709C	#17	0xFFFF	0x0002								
0X709C	#18	0xFFFF	0x0004								
0X709C	#19	0xFFFF	0x0008								

PxDATDIR	#n	ANDset	ORset
0X709C	#20	0xFFFF	0x0010
0X709C	#21	0xFFFF	0x0020
0X709C	#22	0xFFFF	0x0040
0X709C	#23	0xFFFF	0x0080
0X709E	#24	0xFFFF	0x0001
0X7095	#25	0xFFFF	0x0001
0X7095	#26	0xFFFF	0x0002
0X7095	#27	0xFFFF	0x0004
0X7095	#28	0xFFFF	8000x0
0X7095	#29	0xFFFF	0x0010
0X7095	#30	0xFFFF	0x0020
0X7095	#31	0xFFFF	0x0040
0X7095	#32	0xFFFF	0x0080
0X7096	#33	0xFFFF	0x0001
0X7096	#34	0xFFFF	0x0002
0X7096	#35	0xFFFF	0x0004
0X7096	#36	0xFFFF	8000x0
0X7096	#37	0xFFFF	0x0010
0X7096	#38	0xFFFF	0x0020
0X7096	#39	0xFFFF	0x0040

© Technosoft 2006

MotionChip II TML Programming

274

Nam	le	SF	PIBR			Set	t SPI se	erial co	ommur	nication	n baud		cellan	eous	group)
Synta	ax	-		value1 VAR16	-				-		Baud Baud				
Oper	ands			: 16-bit intege			mediat	e valu	e. (0<=	value	32<=2))			
Туре				rogran X	n		I-line X								
Bina	ry code	9													
SF 15	PIBR <i>v</i> a 14	alue16 13	ີ 12	11	10	9	8	7	6	5	4	3	2	1	0
0	0	0	0	1	0	0	0	0	0	0	1	0	0	0	0
							Val	ue16							
SF	PIBR V	'AR16													
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	0	0	0	1	0	0	1	0 4 <i>R</i> 16	0	0	1	0	0	0	0
Desc	ription	inj Ba	put par aud rat	ramete tes ran	er <i>valu</i> ge fro	<i>ue16</i> o om 1 t	rial con or <i>VAR</i> to 5 Mb	nmunic 216. baud. T	he def	fault ba	aud rat	te valu	e is 1	Mb.	of the
Exec	ution	Se	ets the	SPI se	erial c	comm	unicati	on bau	id rate,	, base	d on <i>va</i>	alue16	value	:	
Exan	nple	SP	IBR 1	- ;	V 0 1 2	alue1	1	Mb Mb Mb	d rate		rate	to 2	Mbau	d	

275

Name	SRB, SRBL	Set/reset bits of a	variable	(Arithmetic & L	.ogic group)
Syntax	SRB VAR16, ANDm SRBL VAR16, AND		Set/Reset Bi Set/Reset B addressing)	ts of VAR16 its of VAR16	(long
Operands	VAR16: integer varia ANDmask: 16-bit ma ORmask: 16-bit mas	ask for AND operatio	n		
Туре	TML program X	On-line X			
Binary code					
	16, ANDmask, ORmas		о г		4 0
	l <u>3 12 11 10</u> 0 1 1 0	<u>987</u> 0	6 5 4 (9LSBs of		1 0
		ANDm	(02020 01		
		ORm			
	R16, ANDmask, ORma				
	l <u>3 12 11 10</u> 0 1 1 1	9 8 7 0 0 0			1 0
		&VAR16			• •
		ANDm			
		ORm			
Description	This special instructi a 16-bit variable.	ion allows setting an	d resetting ind	lividually each o	of the bits of
	The instruction must variables that can program. The SRB i <i>VAR16</i> such that no modification occurs.	be changed during instruction will perfor	the executio	n of the real-t ation of the bits	ime motion s of variable
Execution	Reset in VAR16 all the Set in VAR16 all the				
Example	int varl;				
	SRB var1, 0xFF0		/Reset bits and 1 of va		et bits O

276

Nam	е	S	STA Set target p					to act	ual po		igurati	on and	l comr	nand g	group)
Synta	X	S	ТА					S et	Targe	t posit	ion = /	Actual	positio	on	
Opera	ands	-													
Туре			TML progra			m On-line X									
Binar	Binary code														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	0	1	0	1	1	0	0	1	0	1	1	0	0	1	0
0	0	0	0	0	0	1	0	0	0	1	0	1	0	0	0
Desci	ription	 STA instruction sets the value of the target position value of the actual motor position. This can be useful for example for actualization execution of a given reference profile, when change value allows one to re-start from a 0-error point, motion execution. 							of th	ne refe on-the	erence -fly" th	durin e refe	ig the erence		
Execu	ution	A	205 ->	TPOS											
Exam	Example MODE PC2; TUM1; SEG 100U, 5.00000; UPD; SEG 100U, 5.00000; SEG 100U, -20.00000; SEG 100U, 10.00000; SEG 0, 0.; STA;						2 / / 2 / / 2 / / 2 / / 2 / / 1 / 2 / 2 /	Set t Set 1 Jpdat Set 2 Set 3 Set 4 End o Set t	arget st mo e imm st mo st mo f con carge	t upd tion media tion tion tion ntour t po	ate n segm te segm segm ing n sitio	ent. ent.	l		l to

277

© Technosoft 2006

Name	S	ΓΟΡ			Stop	the m	otion		<i>(</i>)	. ,.				
									(Conf	igurati	on and	d comr	nand g	group
Syntax														
		TOP0								n mode				
		TOP1				STOP motion in mode 1 STOP motion in mode 2								
		TOP2 TOP3								i mode i mode				
	3	1083					510			mode	: ၁			
Operands	-													
Гуре		TML p	orograr	n	On-l	ine								
			Х		Х									
Binary cod	le													
STOP0														
15 14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0 0	0	0	0	0	0	1	0	0	0	0	0	1	0	0
STOP1														
15 14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0 0	0	0	0	0	0	1	0	1	0	0	0	1	0	0
CTOD2														
STOP2 15 14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0 0	0	0	0	0	0	1	1	Ō	0	0	0	1	0	0
STOP3					_	-	_		_	_				_
	13 0	12 0	11 0	10 0	9 0	8	7	6 1	5	4	3	2 1	1	0
<u>15 14</u> 0 0														

instruction after the initialization of the stop the execution of any current TML program! ode! The END instruction will stop

If a **STOP** instruction is executed from a TML program, it will only stop the motor.

© Technosoft 2006

278

Four cases are possible:

Stop	Stop method
STOP0	Impose a voltage reference equal to 0 to the motor
STOP1	Impose a current reference equal to 0 to the motor
STOP2	Impose a speed reference equal to 0 to the motor
STOP3	Impose a speed reference equal to 0 to the motor, using the profiles acceleration value to brake

Example

CACC = 1.5;	//Acceleration command for position
	<pre>//profile (counts/sampling²)</pre>
CSPD = -20;	//Speed command for position profile
	//(counts/sampling)
CPOS = -100000;	//Position command (counts)
CPR;	//Position command is Relative
MODE PP3;	//Set Position Profile Mode 3
UPD;	//Update immediate
CSPD = -40;	//New speed command for position profile
	//(counts/sampling)
!RU -20000;	//Set event if Reference =< -20000
	//(counts)
WAIT!;	//Wait until event occurs
STOP0;	//Apply 0 voltage reference to the motor

279

© Technosoft 2006

Nam	ne	S	[OP!			Stop	the m	otion o	on eve	ent					
										(Conf	igurati	on and	d comr	mand g	group,
Synta	ax														
•)		S	TOP0			STOP motion in mode 0 on event									
		S	TOP1				STOP motion in mode 1 on event								
		S	TOP2	!			STOP motion in mode 2 on event								
		STOP3!						STO)P mo	tion in	mode	3 on	event		
Oper	ands	_													
Туре			TML p	rogran	n	On-l	ine								
71				Х		Х									
Binary code															
STOP	•	-													
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0
STOP	P 1!														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	0	0	0	0	0	0	0	0	1	0	0	0	1	0	0
STOF	P 2!														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	0	0	0	0	0	0	0	1	0	0	0	0	1	0	0
STOP3!															
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	0	0	0	0	0	0	0	1	1	0	0	0	1	0	0

Description STOP[0/1/2/3]! Instruction imposes a motor stop when an event occurs during the motion. Four different stop modes can be used, as presented in the table bellow.

Execution Stops the motion by applying a specific reference, at the occurrence of a programmed event. Four cases are possible:

Stop	Stop method when event occurs
STOP0!	Impose a voltage reference equal to 0 to the motor
STOP1!	Impose a current reference equal to 0 to the motor
STOP2!	Impose a speed reference equal to 0 to the motor
STOP3!	Impose a speed reference equal to 0 to the motor, using the profiles acceleration value to brake

© Technosoft 2006

280

Example:

CACC = 1;//Acceleration command for speed profile //(counts/sampling²) CSPD = 25.5;// Speed command (counts/sampling) MODE SP1; //Set Speed Profile Mode 1 UPD; //Update immediate !SO 10; if >= 10 //Set event speed (counts/sampling) . . . STOP2!; $//\ensuremath{\mathsf{Stop}}$ mode 2 when event occurs WAIT!; //Wait until event occurs

281

© Technosoft 2006

Nam	e	τι	JM			Targ	et upo	late m	ode						
										(Confi	igurati	on and	d comr	nand g	group)
Synta	ax														
-		Т	UM0					Set	Targe	t U pda	ate Mo	de 0			
		Т	UM1					Set	Targe	t U pda	ate M o	de 1			
									0	•					
Opera	ands	_													
Туре			TML p	rograr	n	On-l	ine								
- 71				X		X									
							-								
Binar	y cod	е													
	,	-													
TUM)														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	1	0	1	1	0	0	1	0	0	0	0	1	0	0	1
1	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TUM1	1														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	1	0	1	1	0	0	1	0	0	0	0	1	0	0	1
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Desc	riptior	η Τι	JM0 a	nd TL	JM1 (t	arget	update	e mod	le 0 o	r 1) le	et the	user	to cho	ose h	ow to
	-	CC	onsider	the o	rigin fo	r relat	ive po	sitionir	ng con	nmand	ls.				
		٨٩	tor c	TUMA	00000	aand	the er	iain ia	0000	idarad	00 +h			tor n	onition
															osition
	(default). This option is should move a specifie												•		

After a **TUM1** command, the origin is considered as the target position. In this case, successive relative moves can be commanded and the final target represents the exact sum of the individual commands. In the example below, 2^{nd} update command occurs when the motion commanded by the 1^{st} update is complete, i.e. when target position reaches the command value 3000. Hence, due to **TUM1** mode, the next absolute position command is 3000+3000 = 6000.

It is important to note that the event motion complete refers to the target position and not to the actual motor position, which follows the target usually with a certain delay. If in the example below, **TUM1** command is replaced with **TUM0**, the next position command will not be 6000, but 6000 – the position error from the moment when target position reaches 3000.

© Technosoft 2006

282

signaled by setting an input event).

Another difference between **TUM0** and **TUM1** modes is related to the treatment of the target speed and position, when the motion mode is changed.

Under **TUM0** mode, each time the motion mode is changed, the target speed takes the value of the actual motor speed and the target position takes the value of the actual motor position.

Under **TUM1** mode, the target speed and position remain unchanged providing a smoother, glitch-free transition of the target speed and position, when motion modes are changed.

However it should be noted that the target speed and position are computed only in the speed/position profile and speed/position contouring modes.

If the system operates in other motion modes, all motion mode changes must be done under **TUM0** mode.

Execution After a **TUM0** command, the origin is considered as the actual motor position (default). After a **TUM1** command, the origin is considered as the target position.

Example

CACC = 0.5; //Acceleration command for position profile CSPD = 10;//Speed command for position profile CPOS = 3000; //Position command CPR; //Position command is Relative MODE PP3; //Set Position Profile Mode 3 TUM1; //Set Target Update Mode 1 UPD; //Update immediate //Set event when MotionComplete !MC; CSPD = 30; //Speed command for position profile CPOS = 3000;//Position command CPR; //Position command is Relative MODE PP3; //Set Position Profile Mode 3 TUM1; //Set Target Update Mode 1 UPD!; //Update on event WAIT!; //WAIT until event occurs

283

Name	UPD Up	odate the motion i	mmediate	(Confi	qurati	on and	l comn	nand c	aroup)
Syntax	UPD		UPDate n	•	-			<u> </u>	<u>,</u>
Operands	-								
Туре	TML program	On-line X]						
Binary code									
		10 9 8	76	5	4	3	2	1	0
0 0 0	0 0	0 0 1	0 0	0	0	1	0	0	0
Description	 All motion parameters are buffered. Consequently, when a motion parameter is changed, the new value is placed into a buffer. This operation doesn't affect the reference generator, which continues to generate the target reference using the previous motion parameters. In order to activate the new motion parameters an <i>update</i> command must be issued. The update command UPD transfers all motion parameters from buffers into the active registers, which are used for reference computation. The same principle applies also to the MODE commands, which set the motion modes. The update command can be issued at any time. If it is issued during motion, it determines a motion mode and/or motion parameter change on the fly. If it is issued after the motion was completed, it acts like a start motion command. 						ct the ng the ust be uffers notion ion, it f it is		
Execution	Transfer all moti used for reference	on parameters fr e computation.	om buffers	into tl	he act	tive re	gisters	, whic	h are
Example	CACC = 0.5; CSPD = 40; MODE SP1; UPD; CSPD = -40; UPD;	//p //S //S //U //U	ccelerat rofile(c peed com et Speed pdate im peed com pdate im	ounts mand Prof media mand	/samj (cour ile I te (cour	nts/s Mode	ampli 1	lng)	peed

© Technosoft 2006

284

0																
Nam	е	U	PD!		Upda	te the i	motion	on ev	ent							
					-					(Conf	igurati	ion and	d com	mand	group)	
Synta	ix	ι	JPD!	UPDate motion on event !												
Opera	ands	-														
Туре				orograr	n	On-line X										
			X													
Binary code																
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	
Desc	a buffer. This operation generate the target real In order to activate issued. The update of into the active registed the possible events of						rs are buffered. a motion parameter is changed, the new value is placed into ion doesn't affect the reference generator, which continues to reference using the previous motion parameters. the new motion parameters an <i>update</i> command must be command UPD! Transfers all motion parameters from buffers ters, which are used for reference computation, when one of occurs in the motion system. , which can be programmed, one at a time, for monitoring: When the actual motion is completed When motor absolute position is equal or over a value or the value of a variable When motor absolute position is equal or under a value or the value of a variable									
			!RPC !RPU			value Whe	e of a v n moto	variabl or rela	e tive p						alue or	
			!SO			Whe	alue o n moto riable				or ove	r a va	lue or	the va	alue of	
			!SU			Whe		or spee	ed is (equal c	or unde	er a va	alue or	the va	alue of	
	!AT			After		t abso	lute ti	ime eq	ual wit	h a va	lue or	the va	alue of			
	!RT		After varia		relati	ve tin	ne equa	al with	a valu	ie or tl	ne valı	le of a				
			!RO				When position/speed/torque/voltage reference is equal or over a value or the value of a variable									

© Technosoft 2006

285

	IRU ICAP ILSP ILSN IN#n 1 IN#n 0 IVO IVU Only one event can b	When position/speed/torque/voltage reference is equal or under a value or the value of a variable When the selected capture input is triggered When the positive limit switch is triggered When the negative limit switch is triggered When a digital input goes high When a digital input goes low When value of a variable is equal or over a value or the value of another variable When value of a variable is equal or under a value or the value of another variable				
Execution	Transfer all motion parameters from buffers into the active registers, which are used for reference computation, when a monitored event occurs.					
Example	<pre>CACC = 1.5; CSPD = 20; MODE SP1; UPD; ENLSP1; edge CSPD = -20; !LSP; UPD!;</pre>	<pre>//Acceleration command for speed profile //(counts/sampling²) //Speed command (counts/sampling) //Set Speed Profile Mode 1 //Update immediate //Positive Limit Switch triggers rising //New speed command (counts/sampling) //Set event if Positive LimitSwitch is //reached //Update on event</pre>				

MotionChip II TML Programming

286

Name	WAIT!	Wait a motion event to occur
		(Event group)
a <i>i</i>		
Syntax	WAIT!	WAIT motion event !
	WAIT!	
Operands	_	
••••••••		
Туре	TML program	On-line
	X	
D		
Binary code		
15 14	13 12 11 1	0 9 8 7 6 5 4 3 2 1 0
0 0		
<u> </u>		
Description		e execution of the following TML instructions from the TML
	program sequenc	e, until the monitored event occurs.
	There are 18 ever	nts, which can be programmed, one at a time, for monitoring:
	!MC	When the actual motion is completed
	!APO	When motor absolute position is equal or over a value or
	!APU	the value of a variable
	!APU	When motor absolute position is equal or under a value or the value of a variable
	!RPO	When motor relative position is equal or over a value or the
		value of a variable
	!RPU	When motor relative position is equal or under a value or
		the value of a variable
	!SO	When motor speed is equal or over a value or the value of
	!SU	a variable When motor speed is equal or under a value or the value of
	:30	a variable
	!AT	After a wait absolute time equal with a value or the value of
		a variable
	!RT	After a wait relative time equal with a value or the value of a
	15.0	variable
	!RO	When position/speed/torque/voltage reference is equal or over a value or the value of a variable
	!RU	When position/speed/torque/voltage reference is equal or
		under a value or the value of a variable
	!CAP	When the selected capture input is triggered
	!LSP	When the positive limit switch is triggered
	!LSN	When the negative limit switch is triggered
	!IN#n 1	When a digital input goes high
	!IN#n 0	When a digital input goes low

© Technosoft 2006

287

	IVO IVU Only one event can b	When value of a variable is equal or over a value or th value of another variable When value of a variable is equal or under a value or th value of another variable be monitored at a time.						
Execution	Hold up execution of	the following instructions until the monitored event occurs.						
Example:	<pre>CACC = 1; CSPD = 25.5; MODE SP1; UPD; !SO 10; (counts/samplin STOP2!; WAIT!;</pre>	<pre>//(counts/sampling²) // Speed command (counts/sampling) //Set Speed Profile Mode 1 //Update immediate //Set event if speed >= 10</pre>						

288

This page is empty

© Technosoft 2006

289

