

MotionChip™ II

TML
Programming

User Manual

 Preliminary

© Technosoft 2006

TECHNOSOFT

MotionChip™ II
TML Programming

P091.055.MCII.TML.UM.0806

Technosoft S.A.
Buchaux 38

CH-2022 BEVAIX
Switzerland

Tel.: +41 (0) 32 732 5500
Fax: +41 (0) 32 732 5504

 contact@technosoftmotion.com
www.technosoftmotion.com/

© Technosoft 2006 MotionChip II TML Programming III

Read This First
Whilst Technosoft believes that the information and guidance given in this manual is correct, all
parties must rely upon their own skill and judgment when making use of it. Technosoft does not
assume any liability to anyone for any loss or damage caused by any error or omission in the
work, whether such error or omission is the result of negligence or any other cause. Any and all
such liability is disclaimed.

All rights reserved. No part or parts of this document may be reproduced or transmitted in any
form or by any means, electrical or mechanical including photocopying, recording or by any
information-retrieval system without permission in writing from Technosoft S.A.

About This Manual
This book presents the Technosoft Motion Language (in short TML) and how to use it for the
programming of drives built around MotionChip II. The book includes the following information:

• TML basic concepts
• Motion programming
• Functional description of the TML instructions
• Communication channels and protocols
• Detailed description of each TML instruction including: syntax, binary code and examples.

Scope of This Manual
The TML programming of drives based on MotionChip II involves 2 steps:

Step 1 - Parameters setup
Step 2 - Motion programming

The goal of first step is to set the TML parameters in accordance with the user application data.
This step is described in the user manual MotionChip II Configuration Setup.

This manual describes the second step – Motion programming.

Both steps can be performed using IPM Motion Studio – a development platform offering easy-
to-use graphical programming for devices based on MotionChip II. The output from IPM Motion
Studio is a TML program, which can be downloaded into the non-volatile memory of the drive and
can be started automatically after power on.

Depending on your application configuration, you have the following options for splitting the tasks
between your host and your drive based on MotionChip II:

1. Host control is absent. The complete motion application is programmed in the drive
using TML

2. Host control is done via I/O handshake. The host commands are set via digital or
analogue signals. The drive answers also using digital signals

3. Minimal host control via a communication channel. The host control is reduced at
calling motion functions implemented in the drive non-volatile memory and requesting

© Technosoft 2006 MotionChip II TML Programming IV

status information. The motion functions from the drive memory can be developed
separately using IPM Motion Studio

4. Extended host control via a communication channel. The host sends all the TML
commands needed to program the motion, but does not perform the drive setup. This is
done via a TML program executed automatically after power-on. The TML program can
be developed using IPM Motion Studio.

5. Full host control via a communication channel. In this case the host performs both the
drive setup and the motion programming. There is no TML program stored in the drive.

You need this manual only if you plan to use options 4 or 5. The options 1 to 3 can be
handled using IPM Motion Studio platform and its user-friendly, graphical programming.

Remarks:

• The 3rd option requires the host to handle a limited number of TML instructions, typically
just for calling functions and asking/getting status data. You can quickly find the code of
these instructions and how to pack them into communication messages by using the IPM
Motion Studio tool Binary Code Viewer.

• Option 5 requires a good understanding of how to determine the TML parameters values.
This information is presented in the user manual MotionChip II Configuration Setup.

Notational Conventions
 This document uses the following conventions:

• TML – Technosoft Motion Language

• Program examples are shown with a special font. Here is an example:
 ENIO#36; //Configure dual function pin as I/O line 36
 user_1 = IN#36; //Read I/O line 36 data into variable user_1

Related Documentation from Technosoft
MotionChip II Configuration Setup (part no. P091.055.MCII.STP.UM.xxxx) describes

the MotionChip II operation and how to setup its registers and parameters
starting from the user application data. This is a technical reference manual for
all the MotionChip II registers, parameters and variables.

MotionChip II Data sheet (part no. P091.055. MCII-QFP100.DST.xxxx) presents the
MotionChip II features and specifications, and how to interface it with typical
external devices

IPM Motion Studio User Manual (part no. P091.088.E075.UM.xxxx) describes how to
use the IPM Motion Studio – the complete development platform for MotionChip
II including: motion system setup & tuning wizard, motion sequence
programming wizard, testing and debugging tools like: data logging, watch,
control panels, on-line viewers of TML registers, parameters and variables, etc.

© Technosoft 2006 MotionChip II TML Programming V

If you Need Assistance …

If you want to …

Contact Technosoft at …

 Visit Technosoft online

World Wide Web: http://www.technosoftmotion.com/

Receive general information
or assistance

Ask questions about
product operation or report
suspected problems

Make suggestions about or
report errors in
documentation

World Wide Web: http://www.technosoftmotion.com/
Email: contact@technosoftmotion.com

Fax: (41) 32 732 55 04
Email: hotline@technosoftmotion.com

Mail: Technosoft SA

 Buchaux 38
 CH 2022 Bevaix-NE
 Switzerland

Trademarks

MotionChip is a trademark of Technosoft SA.

© Technosoft 2006 MotionChip II TML Programming VI

This page is empty

© Technosoft 2006 MotionChip II TML Programming VII

Contents
1. TML Basic Concepts ... 1

TML Overview... 1
TML Environment ... 1
Program Execution ... 2
TML Program Structure .. 3
TML Instruction Coding... 5
TML Data .. 5

1.1.1. TML Registers... 7
1.1.2. TML Parameters ... 8
1.1.3. TML Variables ... 9
1.1.4. User variables ... 9

TML Development tools.. 10
Memory Map... 10
AUTORUN mode .. 14

2. TML description... 19
Motion programming and control.. 19

2.1.1. Position Profile Modes .. 20
2.1.2. Speed Profile Modes... 25
2.1.3. Position/Speed/Torque/Voltage Contouring Modes ... 26
2.1.4. External Position/Speed/Torque/Voltage Modes .. 30
2.1.5. Position/Speed Pulse & Direction Modes ... 33
2.1.6. Electronic Gearing Modes... 35
2.1.7. Electronic Camming Modes .. 40
2.1.8. Motor Commands. Stop Modes .. 46
2.1.9. Torque/Voltage Test Modes.. 50
2.1.10. Motion Mode Changing... 51

Program flow control... 53
2.1.11. Events ... 53
2.1.12. GOTO, CALL... 59
2.1.13. Interrupts ... 60

I/O Programming .. 63
2.1.14. General I/O.. 63
2.1.15. Captures.. 64
2.1.16. Limit switches.. 65

© Technosoft 2006 MotionChip II TML Programming VIII

Assignment & Data Transfer... 67
2.1.17. Setup 16-bit variable ... 67
2.1.18. Setup 32-bit variable ... 68

Arithmetic & Logic Operations .. 72
Multi-axis control ... 75

2.1.19. Axis ID. Group ID .. 75
2.1.20. Data transfers between axes .. 75
2.1.21. Remote control.. 77

Miscellaneous commands .. 78
Internal units and scaling factors .. 79

3. Communication Channels and Protocols... 85
Communication channels ... 85
Communication protocols ... 86

3.1.1. Axis Identification in a Multiple-axis Network.. 86
3.1.2. Serial communication protocol.. 89
3.1.3. CAN-bus Communication Protocol ... 94

4. TML instruction set ... 99
TML instruction set description... 106

© Technosoft 2006 MotionChip II TML Programming IX

Figures

Figure 1.1 Typical structure of a TML Program 4
Figure 1.2. Memory map MotionChip II based on TMS320LF2407A 13
Figure 1.3. Memory map MotionChip II based on TMS320LF2406 14
Figure 2.1. Position profile parameters 20
Figure 2.2. Position profile. On-the-fly change of motion parameters 22
Figure 2.3. Position profile. Automatic elimination of round-off errors 24
Figure 2.4. Speed profile parameters 25
Figure 2.5. Reference generation in contouring modes 27
Figure 2.6. Reference profile in test modes 50
Figure 2.7. Electrical angle setup in test modes with brushless AC motors 51
Figure 3.1. Serial RS-232 communication between a host and the MotionChip II 85
Figure 3.2. Multi-drop network using serial RS-485 communication 85
Figure 3.3. Multi-drop network using CAN-bus communication 86
Figure 3.4. Multi-drop network using CAN-bus communication with host connected through RS-

232 to an axis used as communication relay 86
Figure 3.5. Message Structure 88
Figure 3.6. Serial communication message format 89
Figure 3.7. Serial message contents when TML instruction “kpp = 5” is sent 90
Figure 3.8. Serial message contents for “Give Me Data” value of kpp 91
Figure 3.9. Serial message contents for “Take Data” value of kpp 91
Figure 3.10. CAN message structure 94
Figure 3.11. CAN message contents when TML instruction “kpp = 0x1234” is sent 95
Figure 3.12. CAN message contents when TML instruction “?POSERR” is sent 96
Figure 3.13. CAN message contents for “Take Data” value of POSERR 97

© Technosoft 2006 MotionChip II TML Programming X

Tables

Table 1.1. Type of TML commands ... 2
Table 1.2. TML data type ... 9
Table 2.1. Motion modes.. 19
Table 2.2. Position Profile - Motion Modes .. 20
Table 2.3. Round-off error example. Options and expected errors. .. 23
Table 2.4. Speed Profile - Motion Modes... 25
Table 2.5. Contouring Modes... 28
Table 2.6. External Modes ... 31
Table 2.7. Pulse & Direction Modes... 34
Table 2.8. Electronic Gearing Slave - Motion Modes... 37
Table 2.9. Electronic Cam Slave - Motion Modes.. 43
Table 2.10. Stop Modes ... 48
Table 2.11. Programmable Event Triggers .. 53
Table 2.12. TML Interrupt Conditions... 61
Table 3.1. Axis ID values.. 87
Table 3.2. Definition of the groups ... 88
Table 4.1. Motion mode setting group.. 99
Table 4.2. Event group ... 100
Table 4.3. Program flow (decision) group .. 101
Table 4.4. I/O group ... 101
Table 4.5. Assignment group ... 102
Table 4.6. Arithmetic & Logic group ... 103
Table 4.7. Configuration and Command group.. 103
Table 4.8. Communication & Multiple axis group... 104
Table 4.9. Miscellaneous group ... 105
Table 4.10. On line group... 105
Table 4.11. TML Instructions Code Symbols ... 106

© Technosoft 2006 MotionChip II TML Programming 1

1. TML Basic Concepts
1.1 TML Overview

The Technosoft Motion Language (TML) is a high-level language allowing you to:

• Setup a drive built with MotionChip II for a given application
• Program and execute motion sequences

The setup part consists in assigning the right values for the TML registers and parameters.
Through this process you can:

• Describe your application configuration (as motor and sensors type)
• Select specific operation settings (as motor start mode, PWM mode, sampling rates, etc.)
• Setup the controllers’ parameters (current, speed, position), etc.

The next part is for motion programming. Here the TML allows you to:

• Set various motion modes (profiles, contouring, electronic gearing or camming, etc.)
• Change the motion modes and/or the motion parameters on-the-fly
• Execute homing sequences
• Control the program flow through:

o Conditional jumps and calls of TML functions
o TML interrupts generated on pre-defined or programmable conditions

(protections triggered, detection of transitions on limit switch or capture inputs,
etc.)

o Waits for programmed events to occur

• Handle digital I/O and analogue input signals
• Execute arithmetic and logic operations
• Perform data transfers between axes
• Control motion of an axis from another one via motion commands sent between axes
• Send commands to a group of axes (multicast). This includes the possibility to start

simultaneously motion sequences on all the axes from the group

Due to a powerful instruction set, the motion programming in TML is quick and easy even for
complex motion applications. The result is a high-level motor-independent program which once
conceived may be used in other applications too.

1.2 TML Environment
The TML environment includes three basic components:

1. “TML processor”
2. Trajectory generator
3. Motor control kernel

The software-implemented “TML processor” represents the core of the TML environment. It
decodes and executes the TML commands. Like any processor, it includes specific elements as
program counter, stack, ALU, interrupt management and registers.

© Technosoft 2006 MotionChip II TML Programming 2

The trajectory generator computes the position, speed, torque or voltage reference at each
sampling step, depending on the selected motion mode.

The motor-control kernel implements the control loops including: the acquisition of the feedback
sensors, the controllers, the PWM commands, the protections, etc.

When the “motion processor” executes a motion command, it translates them into actions upon
the trajectory generator and/or the motor control kernel.

1.3 Program Execution
The TML programs are executed sequentially, one instruction after the other. A 16-bit instruction
pointer (IP) controls the program flow. As the binary code of a TML instruction may have up to 5
words, during its execution the IP is increased accordingly. When the execution of a TML
instruction ends, the IP always points to the next TML instruction, or more exactly to the first word
of its binary code.

The sequential execution may be interrupted by one of the following causes:

• A TML command received through a communication channel (on-line commands);
• A branch to the interrupt service routine (ISR) when a TML interrupt occurs;
• The need to send the master position to the slave axes when the current axis is set as

master for electronic gearing or camming
• A GOTO or CALL instruction;
• A return from a TML function – RET or from a TML interrupt – RETI;
• During the execution of the instructions: WAIT! (wait event), SEG (new contour segment)

and data transfers between axes of type local_variable = [x]remote_variable,
which all keep the IP unchanged (i.e. loop on the same instruction) until a specific
condition is achieved

• After execution of the END instruction.

The on-line commands have the highest priority and act like interrupts: when an on-line command
is received through any communication channel, it starts to be executed immediately after the
current TML instruction is completed.

If an on-line command is received during a wait loop, e.g. when WAIT! or SEG commands are
processed, the wait loop is temporary suspended, to permit the execution of the on-line
command.

The TML works with 3 types of commands, presented in Table 1.1.
Table 1.1 Type of TML commands

Execution TML Command Type
From a TML program Send via communication

Immediate √ √
Sequential √ -

On-line - √

© Technosoft 2006 MotionChip II TML Programming 3

The immediate commands may be send via a communication channel, or can reside a TML
program. These commands don’t require any wait loops to complete. Their execution is
straightforward and can’t be interrupted by other TML commands.

The sequential commands require a wait loop to complete i.e. will not permit IP to advance until
the wait condition becomes true. In this category enter commands like:

WAIT!; // Wait a programmed event to occur

SEG Time, Increment; // Set a contour segment with parameters Time and Increment to
be executed when the previous one ends

local_variable = [x]remote_variable; // Get value of remote_variable
from axis x and put it in local_variable

The sequential commands can reside only in a TML program saved in the local memory.

Remark: If a sequential command is sent via a communication channel, it is immediately
executed as if the wait loop condition is always true.

The on-line commands may be sent only via a communication channel. These commands can’t
be included in a TML program. The on-line commands do not have an associated mnemonic and
syntax rules as they are do not need to be recognized by the TML compiler.

Remark: Some of the on-line commands are implemented in debugging tools like the Command
Interpreter from IPM Motion Studio, which was specifically designed to allow sending
commands via a communication channel. In this manual, these commands are presented with a
“mnemonic” like that used in the Command Interpreter.

1.4 TML Program Structure
The main section of a TML program starts with the instruction BEGIN and ends with the
instruction END. It is divided into two parts:

• Setup part
• Motion programming part

The setup part starts after BEGIN and lasts until the ENDINIT instruction, meaning “END of
INITitialization”. This part of the TML program consists mainly of assignment instructions, which
shall set the TML registers and the TML parameters in accordance with your application data.
When the ENDINIT command is executed, key features of the TML environment are initialized
according with the setup data. After the ENDINIT execution, the basic configuration involving the
motor and sensors types or the sampling rates, cannot be changed unless a reset is performed.

Remark: The MotionChip II Configuration Setup user manual specifies which TML parameters
may not change after execution of the ENDINIT instruction

The motion programming part starts after the ENDINIT instruction until the END instruction. All the
TML programs (the main section) should end with the TML instruction END. When END instruction
is encountered, the sequential execution of a TML program is stopped.

© Technosoft 2006 MotionChip II TML Programming 4

Apart from the main section, a TML program also includes the TML interrupt vectors table, the
interrupt service routines (ISRs) for the TML interrupts and the TML functions. A typical structure
for a TML program is presented in Figure 1.1

 BEGIN; // TML program start
 ...

// Setup part of the main section
 ...
 ENDINIT; // end of initialization
 ...

// Motion programming part of the main section
 ...
 END; // end of the main section

InterruptTable: // start of the interrupt vectors table
 @Int0_Axis_disable_ISR;
 @Int1_PDPINT_ISR;
 @Int2_Software_Protection_ISR;
 @Int3_Control_Error_ISR;
 @Int4_Communication_Error_ISR;
 @Int5_Wrap_Around_ISR;
 @Int6_Limit_Switch_Positive_ISR;
 @Int7_Limit_Switch_Negative_ISR;
 @Int8_Capture_ISR;
 @Int9_Motion_Complete_ISR;
 @Int10_Update_Contour_Segment_ISR;
 @Int11_Event_Reach_ISR;
Int0_Axis_disable_ISR: // Int0_Axis_disable_ISR body

...
 RETI; // RETurn from TML ISR

...
Int11_Event_Reach_ISR: // Int11_Event_Reach_ISR body

...
 RETI; // RETurn from TML ISR
Function1: // Start of the first TML function named Function1

...
 RET; // RETurn from TML function named Function 1

...
FunctionX: // Start of the last TML function named FunctionX

...
 RET; // RETurn from the last TML function named Function X

Figure 1.1 Typical structure of a TML Program

© Technosoft 2006 MotionChip II TML Programming 5

1.5 TML Instruction Coding
The TML instruction code consists of 1 to 5, 16-bit words. The first word is the operation code.
The rest of words (if present) represent the instruction data words. The operation code is divided
into two fields: Bits 15-9 represent the code for the operation category.

For example all TML instructions that perform addition of two integer variables share the same
operation category code. The remaining bits 8-0 represent the operand ID that is specific for each
instruction.

Operation Code
Data (1)
…
Data (4)

 Operation Code Structure
Operation Category Operand ID

15 ……………………9 8 ……………………….. 0

1.6 TML Data
The TML works with the following categories of data:

• TML registers
• TML parameters
• TML variables
• User variables

All TML data are identified by their name. The names of the TML registers, parameters or
variables are predefined and do not require to be declared. The names of the user variables are
at your choice. You need to declare the user variables before using them.

The TML uses the following data types:

• int 16-bit signed integer

• uint 16-bit unsigned integer
• fixed 32-bit fixed-point data with the 16MSB for the integer part and the 16LSB
 for the factionary part.

• long 32-bit signed integer

• ulong 32-bit unsigned integer

The data type uint or ulong are reserved for the TML predefined data. The user-defined
variables are always signed. Hence you may declare them of type: int, fixed or long.

Remark: An unsigned TML data means that in the MotionChip II firmware its value is interpreted
as unsigned. Typical examples: register values, time-related variables, protection limits for signals
that may have only positive values like temperature or supply voltage, etc. However, the same

© Technosoft 2006 MotionChip II TML Programming 6

data will interpreted as signed if it is used in a TML instruction whose operands are treated as
signed values.

Each TML data has an associated address. This represents the address of the data memory
location where the TML data exists. In TML the data components may be addressed in 2 ways:

• direct, using their name in the TML instruction mnemonic

Example:

CPOS = 2000; // write 2000 in CPOS parameter (command position)

• indirect, using a pointer variable. The pointer value is the address of the data component
to work with

Example:

user_var = 0x29E; // write hexadecimal value 0x29E representing CPOS address in
 // the user-defined pointer variable user_var
(user_var),dm = 2000; // write 2000 in the data memory address pointed by
 // user_var i.e. in the CPOS parameter

Remark: direct addressing may be used with all TML data having addresses between 0x200
and 0x3FF. This covers most of the TML data including the user-defined variables. There are
however some TML data with extended addresses placed outside this range typically
between 0x800 and 0x9FF. These variables shall be addressed either using the indirect
addressing presented above or by using another direct addressing mode specifically foreseen
for writing values in the variables with extended addresses:

• direct with extended address, using the TML data name

Example:

CPOS,dm = 2000; // write 2000 in CPOS using direct mode with extended address

In the TML instructions the operands (variables) are grouped into 2 categories:

• V16. In this category enter all the 16-bit data from all the categories: TML registers, TML
parameters, TML variables, and user parameters. From the execution point of view, the
TML makes no difference between them

• V32. In this category enter all the 32-bit data either long or fixed from all the categories:
TML registers, TML parameters, TML variables, and user parameters. From the
execution point of view, the TML makes no difference between them

Remarks:

• It is possible to address only the high or low part of a 32-bit data, using the suffix (H) or
(L) after the variable name.

Examples:

CPOS(L) = 0x4321; // write hexadecimal value 0x4321 in low part of CPOS
CPOS(H) = 0x8765; // write hexadecimal value 0x8765 in high part of CPOS
 // following the last 2 commands, CPOS = 0x87654321

© Technosoft 2006 MotionChip II TML Programming 7

• The TML compiler always checks the data type. It returns an error if an operand has an
incompatible data type or if the operands are not of the same type

• A write operation using indirect addressing is performed on one or two words function of
the data type. If the data is a 16-bit integer, the write is done at the specified address. If
the data is fixed or long the write is performed at the specified address and the next one.
A fixed data is recognized by the presence of the do, for example: 2. or 1.5. A long
variable is automatically recognized when it’s size is outside the 16-bit integer range or in
case of smaller values by the presence of the suffix L, for example: 200L or –1L.

 Examples:

user_var = 0x29E; // write CPOS address in pointer variable user_var
(user_var),dm = 1000000; // write 1000000 (0xF4240) in the CPOS parameter i.e
 // 0x4240 at address 0x29E and 0xF at next address 0x29F
(user_var),dm = -1;// write -1 (0xFFFF) in CPOS(L). CPOS(H) remains unchanged
(user_var),dm = -1L;// write –1 seen as a long variable (0xFFFFFFFF) in CPOS i.e.

 // CPOS(L) = 0xFFFF and CPOS(H) = 0xFFFF
user_var = 0x2A0; // write CSPD address in pointer variable user_var

(user_var),dm = 1.5; // write 1.5 (0x18000) in the CSPD parameter i.e
 // 0x8000 at address 0x2A0 and 0x1 at next address 0x2A1

• In an indirect addressing, if the pointer variable if followed by + sign, it is automatically
incremented by 1 or 2 depending on the data type: 1 for integer, 2 for fixed or long data.

 Examples:

user_var = 0x29E; // write CPOS address in pointer variable user_var
(user_var+),dm = 1000L; // write 1000 seen as long in CPOS, then increment

 // user_var by 2
(user_var+),dm = 1000; // write 1000 seen as int at address 0x29A (0x29E+2) ,

// then increment user_var by 1

1.6.1 TML Registers

There are 3 categories of TML registers:

• Configuration registers
• Command registers
• Status registers

The configuration registers contain essential configuration information like motor and sensors
type, or basic operation settings like PWM mode, motor start method, etc. The configuration
registers must be set up during the setup part before the ENDINIT instruction

The command registers hold configuration settings that can be changed during motion. These
settings refer to the activation/deactivation of software protections, to the use of TML interrupts
and to communication options.

© Technosoft 2006 MotionChip II TML Programming 8

The status registers provide information about: communication, active motion mode and control
loops, system protections, TML interrupts. The status registers can be used to detect events and
to make decisions in a TML program.

Configuration registers (R/W):

SCR – System Configuration Register. It’s used to define the basic application configuration:
motor and sensors types, presence of brake circuit.

OSR – Operating Settings Register. Used to define specific system operating settings, as: current
offset detection mode, Brushless AC motor start procedure, PWM special features.

Command registers (R/W):

CCR – Communication Control Register. Contains settings for SPI.

ICR – Interrupt Control Register. Used to disable/enable TML interrupts.

PCR.5-0 – Protections Control Register. Used to activate different protections in the system, as:
maximum current, I2t, over- and under-voltage and over-temperature.

Status registers (RO):

AAR - Axis Address Register. Keeps the Axis ID and the group ID.

CBR – CAN Baud rate Register. Keeps the current settings for CAN-bus baud-rate.

CER – Communication Error Register. Contains error flags for the communication channels.

CSR – Communication Status Register. Contains status flags for the communication channels.

ISR - Interrupt Status Register. Contains interrupt flags set by the TML interrupt conditions.

MCR – Motion Command Register. Contains information about the motion modes: reference
mode, active control loops, positioning type - absolute or relative, etc.

MSR – Motion Status Register. It’s used internally by the TML kernel; the register bits give
indications about motion progress and specific motion events as software protections, control
error, wrap-around, limit switches, captures, contour segments, events, axis status, etc.

PCR.13-8 - Protections Control Register. Used to examine the status of different protections in
the system, as: over-current, I2 t, over- and under-voltage and TEMP1, TEMP2 inputs over limits.

The TML registers have reserved mnemonics, but no especially dedicated instructions. Hence, in
a TML program, registers are treated like any other TML parameter or variable.

The configuration and command registers can be read or written. The status registers can only be
read.

1.6.2 TML Parameters

The TML parameters allow you to setup the parameters of the TML environment according with
your application data. Though most of the TML parameters have their own address, there are
some that share the same memory address. They are used in application configurations that
exclude each other, and thus are not needed at the same time.

© Technosoft 2006 MotionChip II TML Programming 9

Some TML parameters must be setup during the initialization phase. They are used to define the
real-time kernel, including the PWM frequency and the control loops sampling periods, and
should not be changed after the execution of the ENDINIT command. The other parameters can
be initialized, used and changed any time, before or after the ENDINIT command.

1.6.3 TML Variables

The TML variables provide you status information about the TML environment like the motor
position, speed and current, the position, speed and current commands, etc. These values may
be used to take decisions in the motion program or for analysis and debug.

The TML variables are read-only (RO). Modifying their value during motion execution may cause
an improper operation of the motion system. There are however, specific situations when some
TML variables may also be written (R/W variables).

Most of the TML variables are internally initialized after power-on, or during the setup phase at the
execution of the ENDINIT command.

Activating the on-chip logger module, real-time data tracking can also be implemented for any of
these variables.

1.6.4 User variables

Besides the TML pre-defined variables, you can also define your own user variables. You can use
your variables in any TML instruction accepting variables of the same type.

The user variables type can be: integer, fixed (point) or long (integer) (see Table 1.2).

Table 1.2. TML data type

Type Format Representation Range
Int Signed integer 16 bits -32768 ¸ 32767 (0x8000 ¸ 0x7FFF)

Long Signed long integer 32 bits -2147483648 ¸ 2147483647
(0x80000000 ¸ 0x7FFFFFFF)

Fixed (Integer part).(fractional
part) 32 bits -32768.999969 ¸ 32767.999969

(0xFFFF.FFFF ¸ 0x7FFF.FFFF)

The address of the user variables is automatically set in order of declaration starting with 0x03B0.
First integer variable takes address 0x3B0, next one 0x3B1, etc. An int variable takes one
memory location. A long or fixed variable takes 2 consecutive memory locations. In this case
the variable address is the lowerst one.

Example:
 int user_var1; // user_var1 address is 0x3B0
 long user_var2; // user_var2 address is 0x3B1
 fixed user_var3; // user_var3 address is 0c3B3
 int user_var4; // user_var4 address is 0x3B5

Remark: you have to declare a user variable before using it first time.

© Technosoft 2006 MotionChip II TML Programming 10

1.7 TML Development tools
As mentioned earlier, a TML program has 2 parts: the setup and the motion programming.

You should always start with the setup part. This consists in assigning the right values for the
TML registers and parameters according with your application data: motor and sensors type,
operating conditions, controller settings, etc.

Once the setup process is completed, you can start programming your application motion.

You can do these steps either by writing directly the TML program by using a higher-level tool like
IPM Motion Studio which generates automatically the TML program starting from your input
data.

IPM Motion Studio is an integrated development platform specifically designed to help you
develop and test motion applications in TML. It comes with a user-friendly interface allowing you
to introduce your motor data, select different operation options for the drive and perform a series
of validation tests including identification of the motor parameters, operation conditions and the
controllers tuning. Based on this information the IPM Motion Studio automatically generates the
TML instructions needed to set the right values into the TML registers and parameters.

For the motion programming, IPM Motion Studio offers the Motion wizard – a collection of user-
friendly dialogues through which you can quickly define your motion application. The Motion
wizard automatically generates TML source code (TML instructions) based on your inputs.

IPM Motion Studio is a complete development platform. Embedded code development tools allow
you to further edit or directly compile, link and generate executable code to be downloaded to the
drive. Finally, advanced graphics tools – like data logger, control panel and view/watch of TML
parameters, registers and memory – can be used to analyze the behavior of the motion system.

1.8 Memory Map
The MotionChip II works with 2 separate address spaces: one for TML programs and the other for
data memory. Each space accommodates a total of 64K 16-bit word.

The first 16K of the TML program space (0 to 3FFFh) are reserved and can’t be used. The next
16K, from 4000h to 7FFFh are mapped to a serial SPI-connected EEROM with the maximum size
32K bytes (seen as 16K 16-bit words). This space can be used to store TML programs, cam
tables or other user data in a non-volatile memory. The recommended way to organize the
EEPROM memory space is:

• TML program at the beginning of the EEPROM memory, starting with first address
4000h.

• Cam tables, after the TML program
• Other data until the end of the EEPROM

Remarks:

• If the MotionChip II is set in AUTORUN mode, it checks the contents of the first EEPROM
location at address 4000h. If the data read matches with the binary code of the TML
instruction BEGIN (the first instruction in a TML program), then the instruction pointer IP is
set to 4000h and the TML program from the EEPROM is executed

© Technosoft 2006 MotionChip II TML Programming 11

• The overall dimension of a TML program includes apart from the main section, the TML
interrupt vectors table, the interrupt service routines (ISRs) for the TML interrupts and the
TML functions

• IPM Motion Studio, uses the last 68 words of the EEPROM space/read some data about
the drive like: product ID, firmware ID, etc.

The next 2K of the TML program space from 8000h to 87FFh represents the Motion Chip II
internal SRAM memory. From it, the first 200h, from 8000h to 81FFh are reserved for the internal
use. The rest from 8200h to 87FFh may be used to temporary store TML programs.

The MotionChip II firmware can be programmed on two versions of DSP made by Texas
Instruments: TMS320LF2407A or TMS320LF2406A.

The TMS320LF2406A has no external interface, hence only the internal SRAM may be used as
TML program memory in the address range 8200h to 87FFh. The remaining TML program
memory space from 8800h to FFFFh is invalid.

The TMS320LF2407A offers the possibility to connect an external SRAM, which can be mapped
in the last 32K more exactly in the address range 8800h to FFFFh (all TML program memory
accesses in the address range 0x8000 to 0x87FF are using the internal SRAM). By connecting a
32Kx16 external SRAM, the total TML program space in SRAM memory becomes from 8200h to
FFFFh.

The data memory space is used to store the TML data (registers, parameters, variables), the cam
tables during runtime (after being copied from the EEPROM memory) and for data acquisitions.
The TML data are stored in reserved area, while the others are using the same Motion Chip II
internal SRAM memory.

In the data memory space, the internal SRAM is mapped at a different address range 800h to
FFFh From this the first 200h, from 800h to 9FFh (corresponding to 8000h to 81FFh in TML
program memory space) are reserved for the internal use. The rest from A00h to FFFh
corresponding to 8200h to 87FFh in the TML program memory space) may be used for data
acquisitions and/or to store cam tables during runtime. As this space is available in both the TML
program space and the data space it is the user responsibility to decide how to split it between
the two and to avoid overlapping them.

In the case of TMS320LF2407A, if an external SRAM is connected it can be mapped both on the
TML program space and in the data space. Typically, the external SRAM is mapped at the same
addresses in both the TML program and the data space. Therefore the data memory extends with
the external SRAM space from 0x8000 to 0xFFFF.

The recommended way to organize the SRAM memory (both for TML programs and data) is:

A) For MotionChip II based on TMS320LF2406A:

• Data acquisitions at the beginning of the internal SRAM memory, starting from address
A00h

• Cam tables, only if used, after the data acquisitions until the end of the internal SRAM.

Typically, you should start by checking if or how much space you need to reserve for cam tables,
and use the rest of the SRAM for data acquisitions

© Technosoft 2006 MotionChip II TML Programming 12

Remark: You may also store TML programs in the internal SRAM memory. However, this will
further reduce the limited space available for data acquisitions and cam tables. Therefore it is
highly preferable to store the TML programs in the EEPROM space. Typically, you may want to
use the SRAM memory instead of the EEPROM memory for TML programs only during the
application development in order to speed-up testing due to a faster access

B) For MotionChip II based on TMS320LF2407A:

• Data acquisitions at the beginning of the external SRAM memory not overlapped with the
internal SRAM, starting from address 8000h

• TML programs (for faster testing instead of using the EEPROM)

• Cam tables, only if used, after the data acquisitions until the end of the internal SRAM.

Remarks:

• In IPM Motion Studio, if you chose to download and execute a TML program from the
SRAM memory the default start address proposed is C000h i.e. half of the overall
external SRAM space

• Data acquisitions may start directly from address 8000h, if this is the beginning of the
external SRAM. When used as data memory, the external SRAM is also visible in the
range 8000h to 87FFh. When used as program memory, the same address range is
mapped into the internal SRAM. However, if you plan to examine the memory contents
using an IPM Motion Studio tool like View | Memory, be aware that the values displayed
in the range 8000h to 87FFh do not represent the data acquisition results but the internal
SRAM values.

© Technosoft 2006 MotionChip II TML Programming 13

Figure 1.2. Memory map MotionChip II based on TMS320LF2407A

8200h

TML Program space
Internal SRAM memory

87FFh
8800h

TML Program space

External SRAM memory

FFFFh

4000h

TML program space

E2ROM memory
(SPI-connected)

7FFFh

Internal SRAM memory

External SRAM memory

A00h

Data memory space

Internal SRAM memory

FFFh

8000h

Data memory space
External SRAM memory

FFFFh

© Technosoft 2006 MotionChip II TML Programming 14

Figure 1.3. Memory map MotionChip II based on TMS320LF2406

1.9 AUTORUN mode
After power on the MotionChip II checks the status of its analogue input ADCIN9. If this input is
low, the MotionChip II is set in the AUTORUN mode.

In the AUTORUN mode, the MotionChip II, reads the first EEPROM memory location at address
0x4000 and checks if the binary code corresponds to the TML instruction BEGIN. If this condition
is true, the TML program saved in the EEPROM memory is executed starting with the next
instruction after BEGIN.

If analogue input ADCIN9 is high, the MotionChip II enters in the slave mode where it waits to
receive commands via a communication channel. Even if there is a valid TML program in the
EEPROM, this is not executed.

During a TML program execution, the MotionChip II can enter in the slave mode and thus
stopping the TML program execution after the execution of the END command or after receiving
STOPx (x=0,1,2 or 3) command from an external device, via a communication channel.

8200h

TML Program space
Internal SRAM memory

87FFh

4000h

TML program space
E2ROM memory
(SPI-connected)

7FFFh

Internal SRAM memory

A00h

Data memory space

Internal SRAM memory

FFFh

© Technosoft 2006 MotionChip II TML Programming 15

1.10 Logger feature
Step to follow, in order to use the logger features:

- Setup the logger header

- Setup the logger pointer

- If the drive is in Axison state, the data acquisition is done at each current or
speed/position loop period, depending by logger configuration

The following table presents the map of logger buffer.

Buffer Logger buffer address Name Description

LOG_START_ADDR+0 N_POINTS Number of points left to be acquired. During the
acquisition this value is decremented to 0.

LOG_START_ADDR+1 INT_CNT Internal sampling counter. It must be initialized with the
same value as sampling multiplier

LOG_START_ADDR+2 S_MULTPL Sampling multiplier

LOG_START_ADDR+3 FREE_LOC The address of next free buffer location. It must be
initialized with

LOG_START_ADDR + 4 + NO_16B_VARS

LOG_START_ADDR+4 ADDR1 1st 16-bit location address which it will be acquired

LOG_START_ADDR+5 ADDR2 2nd 16-bit location address which it will be acquired

LOG_START_ADDR+6 ADDR3 3rd 16-bit location address which it will be acquired

… … …

LOG_START_ADDR+3+
NO_16B_VARS

ADDRn Last 16-bit location address which it will be acquired

Lo
gg

er
 H

ea
de

r

LOG_START_ADDR+4+
NO_16B_VARS

END_LIST End of address list = 0 value

LOG_START_ADDR+5+
NO_16B_VARS

 1st 16-bit data acquired - first point

LOG_START_ADDR+6+
NO_16B_VARS

 2nd 16-bit data acquired - first point

… …

LOG_START_ADDR+6+
2 * NO_16B_VARS

 1st 16-bit data acquired - second point

LOG_START_ADDR+7+
2 * NO_16B_VARS

 2nd 16-bit data acquired - second point

D
at

a
B

uf
fe

r

… …

© Technosoft 2006 MotionChip II TML Programming 16

LOG_START_ADDR +4+

NO_16B_VARS +

(N_POINTS *

 NO_16B_VARS)

 Last 16-bit data acquired - last point

Note: 1. The LOG_START_ADDR must have the bits 0 and 1 set to 0, i.e. a value multiple of 4.

 2. NO_16B_VARS = number of 16-bit locations which must be acquired.

 3. A 32-bit variable can be acquired as 2 x 16-bit variables

Address Name Description

0x0365 LOG_PTR Internal pointer to logger buffer.

Bits 15-2 = bits 15-2 of LOG_START_ADDR
Bits 1-0 = logger active in:

 01 – Speed/ Position control loop

 10 – Current control loop

Example for the acquisition of APOS and ATIME variables in speed/position loop period. The
acquisition buffer starts at the address 0x0A00.

Buffer Address: data (hex) Name Description

0A00: 012C N_POINTS Acquisition of 300 points

0A01: 0004 INT_CNT Internal counter. It must be initialized with the same
value as sampling multiplier.

0A02: 0004 S_MULTPL Sampling multiplier = 4, i.e. 1 acquisition point at 4
samplings

0A03: 0A09 FREE_LOC The address of next free buffer location

0A04: 0228 ADDR1 The address of APOS variable (32-bits) - low part

0A05: 0229 ADDR2 The address of APOS variable (32-bits) - high part

0A06: 02C0 ADDR3 The address of ATIME variable (32-bits) - low part

0A07: 02C1 ADDR4 The address of ATIME variable (32-bits) - high part

Lo
gg

er
 H

ea
de

r

0A08: 0000 END_LIST End of address list = 0 value

0A09: xxxx Acquired value – APOS(L) – first point

0A0A: xxxx Acquired value – APOS(H) – first point D
at

a
B

uf
fe

r

0A0B: xxxx Acquired value – ATIME(L) – first point

© Technosoft 2006 MotionChip II TML Programming 17

0A0C: xxxx Acquired value – ATIME(H) – first point

0A0D: xxxx Acquired value – APOS(L) – second point

0A0E: xxxx Acquired value – APOS(L) – second point

0A0F: xxxx Acquired value – ATIME(L) – second point

0A10: xxxx Acquired value – ATIME(H) – second point

… …

0EB8: xxxx Acquired value – ATIME(H) – last point

Address: data (hex) Name Description

0365: 0A01 LOG_PTR Internal pointer to logger buffer.

Bits 15-2 = 00001010000000(bin)

 = bits 15-2 of LOG_START_ADDR

Bits 1-0 = 01(bin)
 = logger active in Speed/ Position control

 loop

When the acquisition is done in speed/ position control loop the acquisition period is:

Acquisition period [s] = SLPER [bits] * <Sampling multiplier> [bits] * <PWM period>[s]

When the acquisition is done in current control loop the acquisition period is:

Acquisition period [s] = CLPER [bits] * <Sampling multiplier> [bits] * <PWM period>[s]

Example:

• SLPER = 20

• <Sampling multiplier> = 4

• <PWM period> = 50 x 10-6 [s]

Acquisition period [s] = 20 x 4 x 50 x 10-6 [s] = 4 x 10-3 [s]

© Technosoft 2006 MotionChip II TML Programming 18

This page is empty

© Technosoft 2006 MotionChip II TML Programming 19

2. TML description
This chapter describes the TML - Technosoft Motion Language. The TML provides instructions for
the following categories of operations:

• Motion programming and control
• Program flow control
• I/O handling
• Assignment and data transfer
• Arithmetic and logic manipulation
• Data transfer between axes
• Miscellaneous

2.1 Motion programming and control
These instructions allow you to program the MotionChip II built-in motion controller in order to set
different motion modes and trajectories. Table 2.1 summarizes all the motion modes supported.
These are divided into 2 categories function of how the motion reference is generated:

• Motion modes with reference provided by an external device via an analog input, pulse &
direction signals, a master encoder or via a communication channel

• Motion modes with reference computed by the internal reference generator. In this
category enter all the other motion modes

Table 2.1. Motion modes

Control Type Motion Modes
Position Speed Torque Voltage

Position profiles √ – – –
Speed profiles – √ – –
Contouring (point to point with linear interpolation) √ √ √ √

√ SL √ SL External reference read from the analogue input
REFERENCE or set by an external device via a
communication channel

√ √
√ FL √ SL

Pulse and direction √ √ – –
Electronic Gearing/Camming – master √ √ – –
Electronic Gearing – slave √ – – –
Electronic Camming – slave √ – – –
Stop – √ √ √
Test (limited ramp) – – √ FL √ FL

© Technosoft 2006 MotionChip II TML Programming 20

2.1.1 Position Profile Modes

In the position profile modes, the motor is controlled in position. You specify the position to reach
(relative or absolute), the acceleration/deceleration rate and the slew (travel) speed. The
reference generator computes the position trajectory, which results with a trapezoidal or triangular
speed profile. During motion, you can change on the fly all the profile parameters (see par.
2.1.10)

Figure 2.1. Position profile parameters

Once programmed, the motion profile parameters are memorized. If you intend to use the same
values as previously defined for the acceleration rate, the slew speed, the position increment or
position to reach you don’t need to set these again, each time you program a new position profile.

Depending on the control structure used, four position profile modes are possible:

Table 2.2. Position Profile - Motion Modes

Controlled Loops Position Profile
Motion Modes Position Speed Torque
PP3 √ √ √
PP2 √ √ –
PP1 √ – √
PP0 √ – –

dec

acc

Slew speed

Target
position

acceleration

speed

position

time

time

time

© Technosoft 2006 MotionChip II TML Programming 21

The selection of one of the above position profile modes, must match with the setup data. For
example, you can choose to perform a position control with or without closing the speed loop and
with torque/current loop closed. In the first case, the position controller provides a speed
command for the speed controller who on its turn provides a current command for the current
controller. In this case, you should use the TML instruction MODE PP3. In the second case, the
position controller provides directly the current command for the current controller and you should
use the TML instruction MODE PP1. As the tuning for the position controller is different in the 2
cases, it is not possible to switch on the fly between MODE PP3 and MODE PP1. During the setup
phase you have to chose one option and set the parameters accordingly. Then during the motion
programming, you need to use the appropriate motion mode.

Remarks:

• As in most applications the current/torque control is needed, the IPM Motion Studio does
not cover the setup options where current loop is not closed. Therefore, using IPM Motion
Studio, you can chose only between 2 options: position loop with speed loop and current
loop (MODE PP3) and position loop without speed loop and with current loop (MODE
PP1).

• Closing all the loops offers a good control of the motor speed while closing only position
and current loop may provide better performances for high-dynamic applications requiring
quick positioning moves. When position loop is closed without the speed loop (MODE
PP1) you can increase the position loop bandwidth 2-3 times more compared with the
case when all the 3 loops are closed (MODE PP3).

Related TML Parameters

CPOS Command position (long) – desired position (absolute or relative) in
position units1

CSPD Command speed (fixed) – desired slew speed in speed units
CACC Command acceleration (fixed) – desired acceleration / deceleration in

acceleration units

Related TML Variables

TPOS Target position (long) – position reference computed by the reference
generator at each slow loop (position/speed loop) sampling period when a
position profile mode is performed. Measured in position units

TSPD Target speed (fixed) – speed reference computed by the reference
generator at each slow loop sampling period when a position profile mode
is performed. Measured in speed units

TACC Target acceleration (fixed) – acceleration/deceleration reference computed
by the reference generator at each slow loop sampling period when a
position profile mode is performed. Measured in acceleration units

APOS Actual position (long) – motor position measured in position units

1 See par. 2.8 for details about the MCII internal units and their correspondence with the
International Standard (IS) units

© Technosoft 2006 MotionChip II TML Programming 22

ASPD Actual speed (fixed) – motor speed measured in speed units

Related TML Instructions

CPR Command position is relative
CPA Command position is absolute
MODE PPx Set position profile mode x (x = 0, 1, 2, 3)
TUM1 Generate new trajectory starting from the actual values of position and

speed reference (i.e. don’t update the reference values with motor position
and speed)

TUM0 Generate new trajectory starting from the actual values of motor position
and speed (i.e. update the reference values with motor position and
speed)

UPD Update motion mode and parameters. Start motion
STOP0, STOP1, STOP2 or STOP3 – Stop motion using methods 0 to 3

In all position profile modes, the motion parameters CPOS, CSPD, CACC can be changed any
time during motion. The reference generator automatically re-computes the position trajectory in
order to reach the new commanded position, using the new values for slew speed and
acceleration.

Figure 2.2 shows an example where slew speed and acceleration rate are changed, while the
commanded position is kept the same.

172

CPOS = 172
CSPD = 4
CACC = 1
UPD

CSPD = 8
CACC = 2
UPD

Figure 2.2. Position profile. On-the-fly change of motion parameters

There is no restriction for the commanded position. If during motion, a new position command is
issued that requires reversing the motor, the reference generator does automatically the following
operations:

• stops the motor with the programmed deceleration rate

© Technosoft 2006 MotionChip II TML Programming 23

• accelerates the motor in the opposite direction till the slew speed is reached, or till the
motor has to decelerate

• stops the motor on the commanded position

In position profile modes, the reference generator automatically eliminates the round-off errors,
which may appear when the commanded position cannot be reached with the programmed slew
speed and acceleration/deceleration rate. This situation is illustrated by the example below.

Example:

The commanded position is 258 counts, with the slew speed 18 counts/sampling and the
acceleration rate 4 counts/sampling2. To reach the slew speed, two options are available:

• Accelerate to 16 in 4 steps, then from 16 to 18 in a 5th step. Acceleration space is 49
counts

• Accelerate from 0 to 2 in 1st step, then from 2 to 18 in 4 steps. Acceleration space is 41
counts

For the deceleration phase, the options and spaces are the same. But, no matter which option is
used for the acceleration and deceleration phases, the space that remains to be done at constant
speed is not a multiple of 18, i.e. the position increment at each step.

So, when to start the deceleration phase? Table 2.3 presents the possible options, and the
expected errors.

 Table 2.3. Round-off error example. Options and expected errors.

Acceleration
 Space

[counts]

Deceleration
Space

[counts]

Space to do
at constant
speed
[counts]

Time to go at
constant speed

[sampling steps]

Deceleration
starts after

[samplings]

Target
position
Error
[counts]

5 + 8 = 13 - 16 49 counts 49 counts 258 – 2 * 49
= 160 counts 160/18 = 8.8

5 + 9 = 14 + 2
5 + 9 = 14 - 6 49 counts 41 counts 258 – 49 – 41

= 168 counts 168/18 = 9.3 5 + 10 = 15 + 12
5 + 9 = 14 - 6 41 counts 49 counts 258 – 41 – 49

= 168 counts 168/18 = 9.3 5 + 10 = 15 +12
5 + 9 = 14 -14 41 counts 41 counts 258 – 2 * 41

= 176 counts 176/18 = 9.7 5 + 10 = 15 +4

TML comes with a different approach. It monitors the round-off errors and automatically
eliminates them by introducing, during deceleration phase, short periods where the target speed
is kept constant. Hence, the target position is always reached precisely, without any errors.

© Technosoft 2006 MotionChip II TML Programming 24

CPOS=258
CSPD=18
CACC=4

Figure 2.3. Position profile. Automatic elimination of round-off errors

Figure 2.3 shows the target speed generated by TML for the above example. During the
deceleration phase, the target speed:

• decelerates from 18 to 6 in 3 steps (target position advances by 36 counts)
• is kept constant for 1 step (target position advances by 6 counts)
• decelerates from 6 to 2 in one step (target position advances by 4 counts)
• decelerates from 2 to 0 in the last step (target position advances by 1 count)

Hence the deceleration space is 47 counts, which, added to 49 counts for acceleration phase and
to the 162 counts for constant speed, gives exactly the 258-count commanded position.

Programming Example
CACC = 1.5; // command acceleration = 1.5

// encoder counts/sampling2
 CSPD = 20.; // command speed = 20 counts/sampling
 CPOS = 20000; // command position = 20000 counts
 CPA; // command position is absolute
 MODE PP3; // set position profile mode 3
 TUM1; // keep the position and speed reference
 UPD; // update - start the motion
 !MC; // set event on motion complete
 WAIT!; // wait for the event to occur

Remarks:

• Once a position profile is started, you can find when the motion is completed, by setting
an event on motion complete and waiting until this event occurs (see for details par. 2.2)

• The TML instruction TUM1 must always be executed AFTER setting the motion mode and
BEFORE executing the UPD command. When a motion mode command is executed it
includes the TUM0 command. However, as the new motion mode becomes active only
after the UPD command, if TUM1 command is set, it overwrites TUM0 set together with the
motion mode

© Technosoft 2006 MotionChip II TML Programming 25

2.1.2 Speed Profile Modes

In the speed profile, the motor is controlled in speed. You specify the acceleration/deceleration
rate and the jog speed. The speed sign specifies the direction. The motor accelerates until the jog
speed is reached. During motion, you can change on the fly the jog speed and the
acceleration/deceleration rate. Use a stop command to stop the motion.

Figure 2.4. Speed profile parameters

Depending on the control structure used, two speed profile modes are possible:

Table 2.4. Speed Profile - Motion Modes

Controlled Loops Speed Profile
Motion Modes Position Speed Torque
SP1 – √ √
SP0 – √ –

Like in the position profile modes, the selection of one of the above speed profile modes, must
match with the setup data.

Remarks:

• As in most applications the current/torque control is needed, the IPM Motion Studio does
not cover the setup options where current loop is not closed. Therefore, using IPM Motion
Studio, you have only one option: speed loop with current loop closed (MODE SP1).

• You can switch on the fly between a position control mode closing all the loops like MODE
PP3 and a speed control mode closing speed and current loops like MODE SP1. However
if you use a position control mode closing only position and current loop like MODE PP1,
because in this case the speed loop is disabled switching between the position and speed
control may create problems and therefore it is not recommended

Related TML Parameters

CSPD Command speed (fixed) – desired jog speed in speed units. Sign gives
direction.

CACC Command acceleration (fixed) – desired acceleration / deceleration in
acceleration units

acc

Jog Speed

acceleration

speed

time

time

© Technosoft 2006 MotionChip II TML Programming 26

Related TML Variables

TPOS Target position (long) – position reference computed by the reference
generator at each slow loop (position/speed loop) sampling period, while
performing a speed profile. TPOS is computed by integrating the speed
profile. Measured in position units

TSPD Target speed (fixed) – speed reference computed by the reference
generator at each slow loop sampling period, while performing a speed
profile. Measured in speed units

TACC Target acceleration (fixed) – acceleration/deceleration reference computed
by the reference generator at each slow loop sampling period, while
performing a speed profile. Measured in acceleration units

APOS Actual position (long) – motor position measured in position units
ASPD Actual speed (fixed) – motor speed measured in speed units

Related TML Instructions

MODE SPx Set speed profile mode x (x = 0, 1).
TUM1 Generate new trajectory starting from the actual values of position and

speed reference (i.e. don’t update the reference values with motor position
and speed)

TUM0 Generate new trajectory starting from the actual values of motor position
and speed (i.e. update the reference values with motor position and
speed)

UPD Update motion mode and parameters. Start motion
STOP0, STOP1, STOP2 or STOP3 – Stop motion using methods 0 to 3.

Programming Example
 CACC = 1; // command acceleration = 1.0 counts/sampling2
 CSPD = -25.5; // command speed = -25.5 counts/sampling
 // negative command speed = negative direction
 MODE SP1; // set speed profile mode 1
 UPD; // update - start the motion

2.1.3 Position/Speed/Torque/Voltage Contouring Modes

In contouring mode, you can program an arbitrary profile whose contour is described by a
succession of linear segments. Depending on the reference type, four options are available:

• Position contouring - the motor is controlled in position. The arbitrary profile represents
a position reference

• Speed contouring – the motor is controlled in speed. The arbitrary profile represents a
speed reference

• Torque contouring – the motor is controlled in torque. The arbitrary profile represents a
current reference

• Voltage contouring – the motor is controlled in voltage. The arbitrary profile represents a
voltage reference

© Technosoft 2006 MotionChip II TML Programming 27

The position contouring and the speed contouring have been foreseen for normal operation. You
may use them together with the position profile and the speed profile to generate the desired
position or speed trajectory. You can switch between these four motion modes at any moment.

The torque contouring and the voltage contouring have been foreseen only for setup tests. The
torque contouring may be used, for example, to check the response of the current controllers to
other input signals than the step signal used in the Current Controller Tuning Test. The voltage
contouring may be used, for example, to check the motors behavior under a constant voltage or
any other voltage shape.

A contouring segment has 2 parameters: the time and the reference increment. The time
parameter represents the segment duration expressed in time units i.e. in number of slow
(position/speed) loop sampling periods. The reference increment represents the amount of
reference variation per time unit i.e. per sampling period.

0

4

8

12

16

20

24

0 2 4 6 8 10 12 14

Figure 2.5. Reference generation in contouring modes

Example:

A position contouring segment starts at position 0 and reaches position 2000 encoder counts in 1
second. Considering a slow-loop sampling period 1ms, the contouring segment data are:

Time = 1000 (1000 x 1ms = 1s)
Reference increment per sampling = 2 (1000 x 2 = 2000)

In position or speed contouring, the starting point is either the current value of the target
position/speed (if TUM1 command is set between the motion mode setting and the UPD
command), or the actual value of the motor position/speed (if TUM1 is omitted)

In torque/voltage contouring, the starting value is set by the user in the high part of the TML
parameter EREF i.e. in EREF(H). After reset, the default value of EREF(H) is zero.

© Technosoft 2006 MotionChip II TML Programming 28

The contouring modes require a local memory where to place the sequence of contour segments
to be executed. First, the contouring mode must be set and the first segment should be provided.
Then the contouring mode can be activated with the UPD command.

Once a contouring mode is activated, the rest of the segments are automatically executed. The
sequence of contour segments must end with a segment where the time interval is 0.

When a sequence of contour segments is executed, the TML instruction pointer IP advances as
the segments are executed. When the reference generator starts working with a new segment, at
TML program level the IP advances to the execution of the next contour segment instruction. The
execution of a TML instruction for a contour segment means to copy the segment data into a local
buffer and then wait (i.e. loop on the same instruction) until the previous segment, currently under
execution at reference generator level will end. This procedure permits to immediately start the
execution of the next contour segment when the current one ends because the next segment
data are already available in a local buffer. Each time the reference generator starts to execute a
new segment, the IP advances to the next contour segment and its data are transferred into the
local buffer.

Table 2.5 presents the possible contouring modes.

Table 2.5. Contouring Modes

Controlled Loops Category Motion Modes Position Speed Torque
PC3 √ √ √
PC2 √ √ –
PC1 √ – √

Position Contouring

PC0 √ – –
SC1 – √ √ Speed Contouring SC0 – √ –

Torque Contouring TC – – √
Voltage Contouring VC – – –

Remarks:

• The selection of one of the above position contouring modes or speed contouring modes
must match with the setup data like in the case of position and speed profiles (see par.
2.1.1 and 2.1.2 for details)

• As in most applications the current/torque control is needed, the IPM Motion Studio does
not cover the setup options where current loop is not closed. Therefore, using IPM Motion
Studio, you can choose for position contouring only 2 options: position loop with speed
loop and current loop (MODE PC3) and position loop without speed loop and with current
loop (MODE PC1), and for speed contouring only the option with both speed and current
loop closed (MODE SP1)

Related TML Parameters

REF0(H) Starting value (int) – torque/voltage contouring in torque/voltage units
Time Value or variable (uint) – segment time interval in time units

© Technosoft 2006 MotionChip II TML Programming 29

Increment Value or variable (fixed) – segment reference increment per time unit
measured in:

• speed units for a position contouring segment
• acceleration units for a speed contouring segment
• current units / time units for torque contouring
• voltage units / time units for voltage contouring

Related TML Variables

TPOS Target position (long) – position reference computed by the reference
generator at each slow loop (position/speed loop) sampling period when
position or speed contouring is performed. During speed contouring, TPOS
is computed by integrating TSPD. Measured in position units

TSPD Target speed (fixed) – speed reference computed by the reference
generator at each slow loop sampling period when position or speed
contouring is performed. Measured in speed units

TACC Target acceleration (fixed) – acceleration/deceleration reference computed
by the reference generator at each slow loop sampling period when
position or speed contouring is performed. Measured in acceleration
units

IQREF Current reference – computed by the reference generator at each slow
loop sampling period when torque contouring is performed. Measured in
current units

UQREF Voltage reference – computed by the reference generator at each slow
loop sampling period when voltage contouring is performed. Measured in
voltage command units

APOS Actual position (long) – motor position measured in position units
ASPD Actual speed (fixed) – motor speed measured in speed units
IQ Motor current – measured in current units

Related TML Instructions

MODE PCx Set position contouring mode x (x = 0, 1, 2, 3)
MODE SCx Set speed contouring mode x (x = 0, 1)
MODE TC Set torque contouring
MODE VC Set voltage contouring. Voltage reference represents motor voltage for DC

motor, and quadrature component (Q-axis) of the voltage vector for AC
motors

SEG Time, Increment Set a contour segment with parameters Time and Increment
TUM1 Generate new trajectory starting from the actual values of position and

speed reference (i.e. don’t update the reference values with motor position
and speed)

TUM0 Generate new trajectory starting from the actual values of motor position
and speed (i.e. update the reference values with motor position and
speed)

UPD Update motion mode and parameters. Start motion
STOP0, STOP1, STOP2 or STOP3 – Stop motion using methods 0 to 3

© Technosoft 2006 MotionChip II TML Programming 30

Programming Example (see Figure 2.5)
 MODE PC3; // set position contouring mode 3
 SEG 2, 4.; // set 1st segment. Increment position reference
 // with 4 counts/sampling in the next 2 samplings
 UPD; // update – start motion
 SEG 4, 2.; // set 2nd segment
 SEG 4, 1.; // set 3rd segment
 SEG 2, 0.; // set 4th segment
 SEG 0, 0.; // end contour sequence

Remarks:
• At the end of a contouring sequence, the last reference value is kept constant
• The TML parameter REF0, used to set the initial value for the torque or voltage contouring

mode is also used (under the name EREF) in the external mode as reference set on-line
via a communication channel by an external device (see par 2.1.4)

• The SEG 0,0 command signals the end of a contouring sequence, time value being
zero.

• The TML command SEG is a sequential command. This means that SEG command must
be executed only as part of a TML program and not as a command sent on-line via a
communication channel. If a host sends contouring segments on-line, each time a
segment command is received, it starts to be executed immediately, canceling previous
segment processing. Therefore the generated trajectory is incorrect.

2.1.4 External Position/Speed/Torque/Voltage Modes

In the external modes, you can drive your motor using a reference provided by an external device,
in one of the following ways:

• As an analogue signal connected to a dedicated analogue input of the MotionChip II named
REFERENCE (10-bit resolution)

• As a continuously updated data sent by the external device via a communication channel into
the dedicated TML variable EREF

In both cases, depending on the reference type, you can have:

• Position external modes, where the motor is controlled in position and the external
reference is interpreted as a position reference

• Speed external modes, where the motor is controlled in speed and the external reference
is interpreted as a speed reference

• Torque external modes, where the motor is controlled in torque and the external
reference is interpreted as a current reference.

• Voltage external modes, where the motor is controlled in voltage and the external
reference is interpreted as a voltage reference.

The position and speed external modes have been foreseen for normal operation. With the torque
external mode you can set your drive as a torque amplifier. The voltage external mode is foreseen
for test purposes.

© Technosoft 2006 MotionChip II TML Programming 31

The torque and voltage external modes with analogue reference have two options:
• torque/voltage slow – reference is read at each slow-loop (position/speed) sampling

period
• torque/voltage fast – reference is read at each fast-loop (torque/current) sampling period

In the torque and voltage external modes with reference set via communication in the TML
variable EREF, only slow option is available i.e. reference is read at each slow-loop
(position/speed) sampling period.

By default, after power on, the external mode with reference set via communication in EREF is
enabled. In order to activate the external mode with reference read from a dedicated analogue
input, you need to execute the TML command EXTREF 1.

Before enabling an external mode with analogue reference, during the setup phase, you need to
establish how to interpret a value read from the analogue input. Put in other words, you need to
set the associated TML parameters in order to get the desired range for a position, speed, current
or voltage command.

Table 2.6 presents the possible external modes.

Table 2.6 External Modes

Controlled Loops Category Motion Modes Position Speed Torque
PE3 √ √ √
PE2 √ √ –
PE1 √ – √

Position External

PE0 √ – –
SE1 – √ √ Speed External SE0 – √ –

Torque External Slow TES – – √
Torque External Fast TEF – – √
Voltage External Slow VES – – –
Voltage External Fast VEF – – –

Remarks:

• The selection of one of the above position external modes or speed external modes must
match with the setup data like in the case of position and speed profiles (see par. 2.1.1
and 2.1.2 for details)

• As in most applications the current/torque control is needed, the IPM Motion Studio does
not cover the setup options where current loop is not closed. Therefore, using IPM Motion
Studio, you can choose for position external only 2 options: position loop with speed loop
and current loop (MODE PE3) and position loop without speed loop and with current loop
(MODE PE1), and for speed external only the option with both speed and current loop
closed (MODE SE1)

Related TML Parameters

© Technosoft 2006 MotionChip II TML Programming 32

EREF 32-bit TML parameter needed only for the external modes with reference
set on-line via a communication channel. EREF is where the external
device must write the reference. Depending on the reference type, EREF is
seen as a:

 32-bit long value representing the position reference in position units
for the external position modes

 32-bit fixed value representing the speed reference in speed units for
the external speed modes

 16-bit integer value read from EREF(H) representing the current or
voltage reference in current units or voltage units for the external
torque or voltage modes

 Examples:

EREF = 2000; // External position mode. Reference is set to 2000 position units
EREF = 1.5; // External speed mode. Reference is set to 1.5 speed units
EREF(H) = 5000; // External torque mode. Reference is set to 5000 current units

CADIN, SFTDIN, AD5OFF 16-bit TML parameters needed only for the external modes with
analogue reference. Are used to define the desired range for the position,
speed, current or voltage command that corresponds to the analogue input
range. For details regarding how to set these parameters see MotionChip
II Configuration Setup user manual

Related TML Variables

AD5 16-bit unsigned integer value representing the value read from the
analogue input REFERENCE. The output of the 10-bit A/D converter is set
in the 10 MSB (most significant bits) of the AD5

TPOS Target position (long) – position reference updated at each slow loop
(position/speed loop) sampling period, when position external mode is
performed. TPOS is set function of the analogue input value or with the
EREF value. Measured in position units

TSPD Target speed (fixed) – speed reference updated at each slow loop
sampling period when position or speed external mode is performed. TSPD
is set function of the analogue input value or with the EREF value during
external speed mode and is computed from TPOS in external position
mode. Measured in speed units

TACC Target acceleration (fixed) – acceleration or deceleration reference
computed by the reference generator at each slow loop sampling period
from the position or speed external references. Measured in acceleration
units

IQREF Current reference – updated at each fast or slow loop function of the
analogue input value or set with EREF value, when torque external mode is
performed. Measured in current units

© Technosoft 2006 MotionChip II TML Programming 33

UQREF Voltage reference – updated at each fast or slow loop function of the
analogue input value or set with EREF value, when voltage external mode
is performed. Measured in voltage command units

APOS Actual position (long) – motor position measured in position units
ASPD Actual speed (fixed) – motor speed measured in speed units
IQ Motor current – measured in current units
 Related TML Instructions

MODE PEx Set external position mode x (x = 3, 2, 1, 0)
MODE SEx Set external speed mode x (x = 1, 0)
MODE TES Set external torque mode slow
MODE TEF Set external torque mode fast
MODE VES Set external voltage mode slow
MODE VES Set external voltage mode fast
EXTREF 0 Set external reference type: provided on-line in EREF via communication
EXTREF 1 Set external reference type: read from analog input
EXTREF 2 Set external reference type: read from second encoder input
UPD Update motion mode and parameters. Start motion
STOP0, STOP1, STOP2 or STOP3 – Stop motion using methods 0 to 3

Programming Example
EXTREF 1; // external reference read from analog input
MODE SE1; // set speed external mode 1
UPD; // update – activate new mode

Remarks:
 TML instruction EXTREF 2 sets a third way of providing an external reference: using

incremental encoder signals connected to the MotionChip II 2nd encoder inputs. This
external mode is used only for electronic gearing and camming modes and will be
presented later on

 TML instructions EXTREF 0, 1 or 2 are exclusive. After power on, EXTREF 0 is set by
default. After an EXTREF 1 command, EXTREF 0 is disabled and all the external
reference modes are read from the analogue input

2.1.5 Position/Speed Pulse & Direction Modes

In the pulse & direction modes, you can drive your motor using a "Pulse & Direction" command
provided by an external device. The "Pulse & Direction" command consists of 2 digital signals that
must be connected to especially dedicated inputs:

• Pulse – a sequence of pulses. Each pulse represents a position unit. The sum of the
pulses indicates the position displacement to be performed. The variation of number of
pulses per time unit represents a speed reference.

• Direction - a digital signal, which indicates the reference sign. Depending on Direction
value the pulses are counted up or down

© Technosoft 2006 MotionChip II TML Programming 34

Hence the pulse and direction signals can be interpreted either as a position reference or as a
speed reference. Depending on the reference type you can have:

• Position pulse & direction modes, where the motor is controlled in position.

• Speed pulse & direction modes, where the motor is controlled in speed.

Table 2.7 presents the possible pulse & direction modes.

Table 2.7 Pulse & Direction Modes

Controlled Loops Category Motion Modes Position Speed Torque
PPD3 √ √ √
PPD2 √ √ –
PPD1 √ – √

Position Pulse &
Direction

PPD0 √ – –
SPD1 – √ √ Speed Pulse &

Direction SPD0 – √ –

Remarks:

• The selection of one of the above position pulse & direction modes or speed pulse &
direction modes must match with the setup data like in the case of position and speed
profiles (see par. 2.1.1 and 2.1.2 for details)

• As in most applications the current/torque control is needed, the IPM Motion Studio does
not cover the setup options where current loop is not closed. Therefore, using IPM Motion
Studio, you can choose for position pulse & direction only 2 options: position loop with
speed loop and current loop (MODE PPD3) and position loop without speed loop and with
current loop (MODE PPD1), and for speed pulse & direction only the option with both
speed and current loop closed (MODE SPD1)

Related TML Variables

TPOS Target position (long) – position reference computed by the reference
generator at each slow loop (position/speed loop) sampling period when
position or speed pulse & direction modes are performed. Measured in
position units

TSPD Target speed (fixed) – speed reference computed by the reference
generator at each slow loop sampling period when position or speed pulse
& direction modes are performed. Measured in speed units

TACC Target acceleration (fixed) – acceleration/deceleration reference computed
by the reference generator at each slow loop sampling period when
position or speed pulse & direction modes are performed. Measured in
acceleration units

© Technosoft 2006 MotionChip II TML Programming 35

APOS Actual position (long) – motor position measured in position units
ASPD Actual speed (fixed) – motor speed measured in speed units

Related TML Instructions

MODE PPDx Set position pulse & direction mode x (x = 3, 2, 1, 0)
MODE SPDx Set speed pulse & direction mode x (x = 1, 0)
UPD Update motion mode and parameters. Start motion
STOP0, STOP1, STOP2 or STOP3 – Stop motion using methods 0 to 3

Programming Example
 MODE PPD3; // set pulse & dir mode 3
 UPD; // update – activate new mode. Motion starts

// when external device provides pulses

2.1.6 Electronic Gearing Modes

In the electronic gearing modes, one drive is set as master and other drives are set as slaves.
The slaves follow the master position with a programmable ratio. The slaves can get the master
position in two ways:

• The master sends its position via a communication channel. This option requires having
the drives connected on a CAN-bus or RS-485 network. The master sends either the
motor position (if OSR.15 = 0 i.e. bit 15 from OSR register is 0) or the position reference
(if OSR.15 =1), once at each slow loop (speed/position loop) sampling time interval

• The signals of the encoder connected to the master drive are also connected to the 2nd
encoder input of the slave drives.

In both cases the slaves perform a position control. They compute the master position increment
and multiply it with their programmed gear ratio. The result represents the increment of the
reference position for the slaves, which is added to previous reference position to obtain the new
reference position for the slaves.

Remarks:

 You need to program a drive as master in electronic gearing only if the master position is
sent via a communication channel. If actual position is sent, the master can work in any
motion mode. If target position is sent, the master should work in a mode that generates a
target position

 By default the slow loop sampling period is set at 1ms. If you intend to use the RS-485 to
send a master position, be aware that the transmission time for this operation at
maximum baudrate of 115200 is close to 1ms and therefore occupies almost the entire
communication bandwidth. One way to reduce the overall communication charge is to
increase with 50-100% the slow-loop sampling period

Master mode

© Technosoft 2006 MotionChip II TML Programming 36

The master mode can be enabled with the TML command SGM followed by an UPD (update) and
can be disabled by the TML command RGM followed by an UPD. In both cases, this has no effect
on the motion executed by the master.

When a drive is set as master, it starts sending its actual position APOS or its target position TPOS
to the axis or the group of axes specified in the TML parameter SLAVEID. This contains either the
axis ID of one slave or the value of a group ID+256 i.e. the group of slaves to which the master
should send its position.

Before enabling the master operation for electronic gearing, you need to initialize the slaves with
the master position by setting the master to send its (actual or target/reference) position to the
slaves in the dedicated TML parameter MPOS0. This initialization is necessary to make sure that
the slaves got the latest master position before entering in the slave mode.

Examples:
 [255]MPOS0 = APOS; // set MPOS0 on slave axis 255 with actual position of the master
 [255]MPOS0 = TPOS; // set MPOS0 on slave axis 255 with target position of the master
 [G2]MPOS0 = TPOS; // set MPOS0 on all slave axes from group 2 with target position of

// the master

Remark: Make sure when the master position initialization is performed that all slave drives are
powered and in communication. Otherwise the initialization with master position will fail.

Slave mode

When a drive should work as slave for electronic gearing, the following settings must be checked
or performed before enabling the electronic gearing slave mode:

1) Set gear ratio. This is specified via 3 TML variables: GEAR, GEARSLAVE and GEARMASTER

GEARSLAVE and GEARMASTER represent the numerator and denominator of the Slave / Master
ratio. GEARSLAVE is a signed integer, while GEARMASTER is an unsigned integer. GEARSLAVE
sign indicates the direction of movement: positive – same as the master, negative – reversed to
the master. GEAR is a fixed value containing the result of the gear ratio i.e. the result of the
division GEARSLAVE / GEARMASTER. In order to eliminate any cumulative errors the electronic
gearing slave mode includes an automatic compensation of the round off errors when the gear
ratio has an irrational value like: Slave = 1, Master = 3, giving a ratio of 1/3 = 0.33333 which can’t
be represented exactly.

Example: in order to implement a gear ratio of 2/3, you need to set:

 GEARSLAVE = 2; // gear ratio numerator
 GEARMASTER = 3; // gear ratio denominator
 GEAR= 0.66667; // gear ratio value

2) Enable master position calculation from 2nd encoder inputs, if the master position is provided
via its encoder signals.

This operation is done with TML instruction EXTREF 2. The initial value of the master position is
set by default to 0. It may be changed to a different value by writing the desired value in data
memory at location 0x81C. This operation can be performed by the following TML code:

© Technosoft 2006 MotionChip II TML Programming 37

user_var = 0x81C; // set user variable user_var with 0x81C - the address of the
master

// position computed from 2nd encoder inputs
user_var),dm = initial_value; // write initial_value in data memory (dm) at
 // address pointed by user_var i.e. in the master position

Remarks:

 The initial master value is a 32-bit long integer value. However, if the initial value to write
is small enough to be represented as a 16-bit integer (i.e. between –32768 and +32767)
add after the initial value an L (for example: 200L) to indicate that this value is a long not
an integer. This will initialize the 16MSB part too (i.e. the next memory location 0x81D)

 Initialization of the drives for reading the master position from the 2nd encoder inputs
requires one speed/position sampling period (typically 1ms). After EXTREF 2 command
do not enable immediately the slave operation. Introduce a wait time of 1 speed/position
sampling period (see for details par. 2.2)

3) Set master resolution e.g. the number of encoder counts per one revolution of the master
motor. The slaves need the master resolution to compute correctly the master position and speed
(i.e. position increment). This operation can be performed by the following TML code:

user_var = 0x81A; // set user variable user_var with 0x81A - the address of the
master

// resolution parameter
user_var),dm = resolution_value; // write resolution_value in data memory (dm) at
 // address pointed by user_var i.e. in the master resolution

Remark: The master resolution is a 32-bit long integer value. If master position is not cyclic (i.e.
the resolution is equal with the whole 32-bit range of position), set master resolution to
0x80000001. When this value is used, no modulo operation is performed on the position counted
from the 2nd encoder inputs.

4) Enable synchronization with the master if the master position is provided via communication.
When the synchronization is enabled, the slave performs a slight adjustment of the moments
when the speed/position loop control is performed to synchronize them with the moments when
the master sends its position. This allows the slaves to always have a new master position before
starting to use it. In order to:

 Enable the synchronization with the master, set TML variable EFLEVEL = 0;
 Disable the synchronization with the master, set TML variable EFLEVEL = 0xFFFF;

Remark: The synchronization must be enabled only after the master starts sending its position
and must be disabled before or immediately after the master stops sending its position. Do not
leave a slave with the synchronization enabled while the master is disabled. During this period the
motor control performance is slightly degraded

5) Enable operation in one of the electronic gearing slave modes. Depending on the control
structure, the following four motion modes are possible for the slaves.

Table 2.8. Electronic Gearing Slave - Motion Modes

© Technosoft 2006 MotionChip II TML Programming 38

Controlled Loops Electronic Gearing
Slave Motion Modes Position Speed Torqu

e
GS3 √ √ √
GS2 √ √ –
GS1 √ – √
GS0 √ – –

Remarks:

• The selection of one of the above electronic gearing modes must match with the setup
data like in the case of position and speed profiles

• As in most applications the current/torque control is needed, the IPM Motion Studio does
not cover the setup options where current loop is not closed. Therefore, using IPM Motion
Studio, you can chose only between 2 options: position loop with speed loop and current
loop (MODE GS3) and position loop without speed loop and with current loop (MODE
GS1).

Related TML Parameters

SLAVEID the axis or group ID to which the master sends its position. When group ID
is used, the SLAVEID is set with group ID value + 256 (int)

MREF Slave location where the master sends its position (long). Measured in
master position units

MPOS0 Slave location where the previous master position is stored (long). The
master increment is computed on each slave axis as MREF – MPOS0.
Measured in master position units

GEAR Slave(s) gear ratio value (fixed). Negative values means opposite direction
GEARMASTER Denominator of gear ratio (uint)
GEARSLAVE Numerator of gear ratio (int). Negative values means opposite direction
MASTERRES Master resolution used by slave(s) (long) Set at extended address 0x81A.

Can be read/written using indirect addressing commands. Measured in
master position units

APOS2 Master position computed from 2nd encoder inputs on slave axes (long).
Set at extended address 0x81C. Can be read/written using indirect
addressing commands. Measured in master position units

MSPD Master speed computed from 2nd encoder inputs on slave axes (long). Set
at extended address 0x820. Can be read/written using indirect addressing
commands. Measured in master speed units

EFLEVEL Set to 0 enables and set to 0xFFFF disables the synchronization of the
slave(s) with the master when master position is sent via communication
(int)

Related TML Variables

TPOS Target position (long) – position reference computed by the reference
generator at each slow loop (position/speed loop) sampling period when

© Technosoft 2006 MotionChip II TML Programming 39

electronic gearing slave modes are performed. Measured in position
units

TSPD Target speed (fixed) – speed reference computed by the reference
generator at each slow loop sampling period when electronic gearing slave
modes are performed. Measured in speed units

TACC Target acceleration (fixed) – acceleration/deceleration reference computed
by the reference generator at each slow loop sampling period when
electronic gearing slave modes are performed. Measured in acceleration
units

APOS Actual position (long) – motor position measured in position units
ASPD Actual speed (fixed) – motor speed measured in speed units

Related TML Instructions
SGM Set electronic gearing master mode
RGM Reset electronic gearing master mode
EXTREF 0 Receive master position via a communication channel
EXTREF 2 Read master position from second encoder input
MODE GSx Set electronic gear slave mode x (x = 3, 2, 1, 0)
TUM1 Generate new trajectory starting from the actual values of position and

speed reference (i.e. don’t update the reference values with motor position
and speed)

TUM0 Generate new trajectory starting from the actual values of motor position
and speed (i.e. update the reference values with motor position and
speed)

UPD Update motion mode and parameters. Start motion
STOP0, STOP1, STOP2 or STOP3 – Stop motion using methods 0 to 3

Programming Example
// On slave axis (Axis ID = 1):

GEAR = 0.66667; // set gear ratio value
 GEARMASTER = 3; // set gear ration denominator
 GEARSLAVE = 2; // set gear ratio numarator
 EXTREF 0; //receive master position via a

//communication channel
 EIR = 0x081A; // set EIR variable with address of MASTERRES
 (EIR),dm = 2000L; // set MASTERRES = 2000
 MODE GS3; //set gear slave mode 3
 TUM1; // keep the position and speed reference (optional)
 UPD; // update – activate gear slave mode. Slave starts

 // following the master position
// On master axis:

SLAVEID 1; // slave axis has Axis ID = 1
SGM; // set electronic gearing master mode
SRB OSR,0xFFFF,0x8000; // send target position
[1]MPOS0 = TPOS; // set master target position on slave axis
UPD; // update – activate new mode. Master starts

// sending its position

© Technosoft 2006 MotionChip II TML Programming 40

Remark: When a drive is set in an electronic gearing slave mode, it starts to add the position
increment (computed from the master position increment and the gear ratio) to its current position.
Hence electronic gearing mode is a relative move, which on each slave starts from its current
position. If needed, the slave position may be modified before enabling the slave operation using
the SAP 0 TML command (see par. 2.1.10 for details)

2.1.7 Electronic Camming Modes

In the electronic camming mode, one drive is set as master and other drives are set as slaves.
The slaves execute a cam profile function of the master position. A cam table describes the cam
profile. The cam table consists of 2 columns of points: X for the master and Y for the slave.

The slaves can get the master position in two ways:

• The master sends its position via a communication channel. This option requires having
the drives connected on a CAN-bus or RS-485 network. The master sends either the
motor position (if OSR.15 = 0 i.e. bit 15 from OSR register is 0) or the position reference
(if OSR.15 =1), once at each slow loop (speed/position loop) sampling time interval

• The signals of the encoder connected to the master drive are also connected to the 2nd
encoder input of the slave drives.

In both cases the slaves perform a position control. The master position represents the input in
the cam table. The output of the cam table is the slave position reference. Between the cam table
points, linear interpolation is performed.

Remarks:

 You need to program a drive as master in electronic camming only if the master position
is sent via a communication channel. If actual position is sent, the master can work in any
motion mode. If target position is sent, the master should work in a mode that generates a
target position

 By default the slow loop sampling period is set at 1ms. If you intend to use the RS-485 to
send a master position, be aware that the transmission time for this operation at
maximum baudrate of 115200 is close to 1ms and therefore occupies almost the entire
communication bandwidth. One way to reduce the overall communication charge is to
increase with 50-100% the slow-loop sampling period

Master mode

The master mode is the same as for electronic gearing. It can be enabled with the TML command
SGM followed by an UPD (update) and can be disabled by the TML command RGM followed by an
UPD. In both cases, this has no effect on the motion executed by the master. No other initialization
is needed for electronic camming.

When a drive is set as master, it starts sending its actual position APOS or its target position TPOS
to the axis or the group of axes specified in the TML parameter SLAVEID. This contains either the
axis ID of one slave or the value of a group ID+256 i.e. the group of slaves to which the master
should send its position

Slave mode

© Technosoft 2006 MotionChip II TML Programming 41

When a drive should work as slave for electronic camming, the following settings must be
checked or performed before enabling the electronic camming slave mode:

1) Load a previously defined cam table into SRAM program memory.

The cam table contains equally spaced values for X at: 1, 2, 4, 8, 16, 32, 64 or 128. Between the
points of the table, linear interpolation is performed. It is not mandatory to define the cam table for
360 degrees of the master. You may also define shorter cam tables, which for example may be
active between angles 120 and 200 degrees of the master. In this case, the slave position
remains unchanged outside the active area of the cam. You can continuously run the master in
any direction with the slaves performing a glitch free transition when the cam table is restarted.

A cam table has the following format:

• 1st word (1 word = 16-bit data):

 Bits 15-13 – the power of 2 of the interpolation step. For example, if these bits have
the binary value 010 (2), the interpolation step is 22 = 4, hence the master X values
are spaced from 4 to 4: 0, 4, 8, 12, etc.

 Bits 12-0 – the length -1 of the table. The length represents the number of points

• 2nd and 3rd words: the master start position (long), expressed in master position units.
2nd word contains the low part, 3rd word the high part

• 4th and 5th words: Reserved. Must be set to 0
• Next pairs of 2 words: the slave Y positions (long), expressed in position units. The 1st

word from the pair contains the low part and the 2nd word from the pair the high part
• Last word: the cam table checksum, representing the sum modulo 65536 of all the cam

table data except the checksum word itself

Once define, a cam table must be downloaded into the EEPROM memory of the drive. Before
enabling an electronic camming slave mode, the cam table must be copied from the EEPROM
into the SRAM program memory. This operation can be done using the TML command:

INITCAM LoadAddress, RunAddress

where LoadAddress is the EEPROM memory address where the cam table was loaded and
RunAddress is the SRAM program memory address where to copy the cam table. After the
execution of this command the TML variable CAMSTART takes the value of the RunAddress.

Remarks:

• When electronic camming slave mode is performed, only the cam table from the SRAM
program memory is used to compute the slave position

• It is possible to download in the EEPROM memory several cam tables. You can use
INITCAM command to copy one or all of them into the SRAM program memory. In the
last case, in order to switch between several cam tables all you need to do is to change
the value of the TML parameter CAMSTART which points to the beginning of the cam
table to be used when electronic camming slave mode is activated

• LoadAddress and RunAddress values be expressed as decimal values

© Technosoft 2006 MotionChip II TML Programming 42

In IPM Motion Studio, you can quickly create or import a cam table using its menu command
Tools | Edit CAM files. For example, you can specify your cam table in a simple text file as 2
columns of values (expressed in master and slave position units): first column for the X points,
next one for the Y points. Using the Import feature, IPM Motion Studio translates your data into
the cam table format mentioned above (files with extension .cam). You can create as many cam
tables as you like. Then using the menu command Project | Settings - General tab, you can
choose from the list of all cam tables defined, the cam(s) to be used in your application, named
active cams. Using menu command Application | Download CAM, you can download the active
cams into the EEPROM and finally in the Motion Wizard, the electronic camming dialogue, you
can select from the Use Table list of active cams, which one to be used. Following this selection
the TML instruction INITCAM is generated with LoadAddress and RunAddress values
automatically computed by IPM Motion Studio

Remarks:

• Some applications may require starting the electronic cam from the Y position
corresponding to the current position of the master. You can find the Y position (cam
table output) before activation of the electronic camming slave mode (in order to move
the motors to this position) in the following way:

 Activate a position profile mode, for example to keep the current position
 Set TML parameter GEAR = 0, then wait one slow loop sampling period (see par 2.2)
 Read the Y position from TML variable EREF

In order to stop computing Y when electronic cam slave mode is not active, set GEAR to a
non-zero value, for example: GEAR=0.5. TML parameter GEAR is also used in electronic
gearing slave mode to keep the gear ratio value.

• You can define a cam offset for each slave in order to shift the cam profile versus the
master position. Let’s take for example a cam table defined between master angles: 100
to 250 degrees. If you define a 50 degrees cam offset, the cam profile will execute
between master angles: 150 and 300 degrees. The following relation exists between: the
master position (MREF), the cam offset (CAMOFF), the cam table X input (MPOS0) and the
master resolution (MASTERRES):

MPOS0 = (MREF – CAMOFF) % MASTERRES

2) Enable master position calculation from 2nd encoder inputs, if the master position is provided
via its encoder signals.

This operation is done with TML instruction EXTREF 2. The initial value of the master position is
set by default to 0. It may be changed to a different value by writing the desired value in data
memory at location 0x81C.

This operation can be performed by the following TML code:

user_var = 0x81C; // set user variable user_var with 0x81C - the address of the
master

// position computed from 2nd encoder inputs
user_var),dm = initial_value; // write initial_value in data memory (dm) at
 // address pointed by user_var i.e. in the master position

© Technosoft 2006 MotionChip II TML Programming 43

Remarks:

• The initial master value is a 32-bit long integer value. However, if the initial value to write
is small enough to be represented as a 16-bit integer (i.e. between –32768 and +32767)
add after the initial value an L (for example: 200L) to indicate that this value is a long not
an integer. This will initialize the 16MSB part too (i.e. the next memory location 0x81D)

• Initialization of the drives for reading the master position from the 2nd encoder inputs
requires one speed/position sampling period (typically 1ms). After EXTREF 2 command
do not enable immediately the slave operation. Introduce a wait time of 1 speed/position
sampling period (see for details par. 2.2)

3) Set master resolution e.g. the number of encoder counts per one revolution of the master
motor. The slaves need the master resolution to compute correctly the master position and
speed (i.e. position increment). This operation can be performed by the following TML code:

user_var = 0x81A; // set user variable user_var with 0x81A - the address of the
master

// resolution parameter
user_var),dm = resolution_value; // write resolution_value in data memory (dm) at
 // address pointed by user_var i.e. in the master resolution

Remark: The master resolution is a 32-bit long integer value. If master position is not cyclic (i.e.
the resolution is equal with the whole 32-bit range of position), set master resolution to
0x80000001. When this value is used, no modulo operation is performed on the position counted
from the 2nd encoder inputs.

4) Enable synchronization with the master if the master position is provided via communication.
When the synchronization is enabled, the slave performs a slight adjustment of the moments
when the speed/position loop control is performed to synchronize them with the moments
when the master sends its position. This allows the slaves to always have a new master
position before starting to use it. In order to:

 Enable the synchronization with the master, set TML variable EFLEVEL = 0;
 Disable the synchronization with the master, set TML variable EFLEVEL = 0xFFFF;

Remark: The synchronization must be enabled only after the master starts sending its position
and must be disabled before or immediately after the master stops sending its position. Do not
leave a slave with the synchronization enabled while the master is disabled. During this period the
motor control performance is slightly degraded

5) Enable operation in one of the electronic camming slave modes. Depending on the control
structure, the following four motion modes are possible for the slaves.

Table 2.9. Electronic Cam Slave - Motion Modes

Controlled Loops Electronic Cam Slave
Motion Modes Position Speed Torqu

e

© Technosoft 2006 MotionChip II TML Programming 44

CS3 √ √ √
CS2 √ √ –
CS1 √ – √
CS0 √ – –

Remarks:

• The selection of one of the above electronic camming modes must match with the setup
data like in the case of position and speed profiles (see par. 2.1.1 and 2.1.2 for details)

• As in most applications the current/torque control is needed, the IPM Motion Studio does
not cover the setup options where current loop is not closed. Therefore, using IPM Motion
Studio, you can chose only between 2 options: position loop with speed loop and current
loop (MODE CS3) and position loop without speed loop and with current loop (MODE
CS1).

Related TML Parameters

SLAVEID the axis or group ID to which the master sends its position. When group ID
is used, the SLAVEID is set with group ID value + 256 (int)

MREF Slave location where the master sends its position (long). Measured in
master position units

CAMOFF Cam offset (long). The cam table X input MPOS0 is computed by
subtracting cam offset from the master position. Measured in master
position units

MASTERRES Master resolution used by slave(s) (long) Set at extended address 0x81A.
Can be read/written using indirect addressing commands. Measured in
master position units

APOS2 Master position computed from 2nd encoder inputs on slave axes (long).
Set at extended address 0x81C. Can be read/written using indirect
addressing commands. Measured in master position units

MSPD Master speed computed from 2nd encoder inputs on slave axes (long). Set
at extended address 0x820. Can be read/written using indirect addressing
commands. Measured in master speed units

EFLEVEL Set to 0 enables and set to 0xFFFF disables the synchronization of the
slave(s) with the master when master position is sent via communication
(int)

Related TML Variables
MPOS0 Cam table X input (long). MPOS0 = (MREF – CAMOFF) % MASTERRES.

Measured in master position units.
CAMSTART SRAM program memory start address for a cam table. When several cam

tables are used, switching between them resumes to set CAMSTART to the
right address i.e. the beginning of next the cam table to use. CAMSTART is
automatically set by the INITCAM command, which copies the cam table
from the EEPROM to the SRAM memory

TPOS Target position (long) – position reference computed by the reference
generator at each slow loop (position/speed loop) sampling period when

© Technosoft 2006 MotionChip II TML Programming 45

electronic camming slave modes are performed. Measured in position
units

TSPD Target speed (fixed) – speed reference computed by the reference
generator at each slow loop sampling period when electronic camming
slave modes are performed. Measured in speed units

TACC Target acceleration (fixed) – acceleration/deceleration reference computed
by the reference generator at each slow loop sampling period when
electronic camming slave modes are performed. Measured in
acceleration units

APOS Actual position (long) – motor position measured in position units
ASPD Actual speed (fixed) – motor speed measured in speed units

Related TML Instructions
SGM Set electronic camming master mode
RGM Reset electronic camming master mode
INITCAM LoadAddress, RunAddress Copy cam table from E2ROM starting with

LoadAddress into SRAM starting at RunAddress
EXTREF 0 Receive master position via a communication channel
EXTREF 2 Read master position from second encoder input
MODE CSx Set electronic camming slave mode x (x = 3, 2, 1, 0)
TUM1 Generate new trajectory starting from the actual values of position and

speed reference (i.e. don’t update the reference values with motor position
and speed)

TUM0 Generate new trajectory starting from the actual values of motor position
and speed (i.e. update the reference values with motor position and
speed)

UPD Update motion mode and parameters. Start motion
STOP0, STOP1, STOP2 or STOP3 – Stop motion using methods 0 to 3

Programming Example
// On slave axis (Axis ID = 1):

INITCAM 0x4500,0xE500;// copy cam table from E2ROM at address
// 0x4500 to SRAM at address 0xE500

 EXTREF 0; // receive master position via a
//communication channel

 EIR = 0x081A; // set EIR variable with address of MASTERRES
 (EIR),dm = 2000L;// set MASTERRES = 2000
 MODE CS3; // set cam slave mode 3
 UPD; // update – activate cam slave mode. Slave
 // starts following the master position
// On master axis:

SLAVEID 1; // slave axis has Axis ID = 1
SGM; // set electronic camming master mode
UPD; // update – activate new mode. Master starts

// sending its actual position (APOS)

In the electronic camming mode, the slave computes a position increment, which is added to its
current position.

© Technosoft 2006 MotionChip II TML Programming 46

When the master moves in the positive direction, the slave position increment is:

• DY = Y – Y_1, if in the cam, where Y = f(X) is the actual cam table output and Y_1 =
f(X_1) is the previous cam table output. In the cam condition is when both X and X_1
inputs are between the minimum (Xmin) and maximum (Xmax) input values

• DY = Y – Ymin, on cam entry, where Y = f(X) is the actual cam table output and Ymin =
f(Xmin) is the first cam table output point. On cam entry condition is when actual X is
inside cam table i.e. X > Xmin, but the previous X_1 was outside the cam table i.e. X_1 <
Xmin

• DY = Ymax – Y_1, on cam exit, where Ymax = f(Xmax) is the last cam table output point
and Y_1 = f(X_1) is the previous cam table output. On cam exit condition is when actual X
is outside cam table i.e. X > Xmax, but previous X_1 was inside the cam i.e. X_1 < Xmax

• DY = Ymax – Y_1 + Y – Ymin, if in the cam with master rollover, where Y = f(X) is the
actual cam table output, Y_1 = f(X_1) is the previous cam table output, Ymax = f(Xmax) is
the last cam table output point, Ymin = f(Xmin) is the first cam table output point. In the
cam with master rollover condition is when both X and X_1 inputs are inside the cam
table, but X < X_1 because the master position has rolled over

When the master moves in the negative direction, the slave position increment is:

• DY = Y – Y_1, if in the cam, where Y = f(X) is the actual cam table output and Y_1 =
f(X_1) is the previous cam table output. In the cam condition is when both X and X_1
inputs are between the minimum (Xmin) and maximum (Xmax) input values

• DY = Ymin – Y_1, on cam exit, where Ymin = f(Xmin) is the first cam table output point
and Y_1 = f(X_1) is the previous cam table output. On cam exit condition is when actual X
is outside cam table i.e. X < Xmin, but the previous X_1 was inside the cam table i.e. X_1
> Xmin

• DY = Y – Ymax, on cam entry, where Y = f(X) is the actual cam table output and Ymax =
f(Xmax) is the last cam table output point. On cam entry condition is when actual X is
inside cam table i.e. X < Xmax, but previous X_1 was outside the cam i.e. X_1 > Xmax

• DY = Ymin – Y_1 + Y – Ymax, if in the cam with master rollover, where Y = f(X) is the
actual cam table output, Y_1 = f(X_1) is the previous cam table output, Ymax = f(Xmax) is
the last cam table output point, Ymin = f(Xmin) is the first cam table output point. In the
cam with master rollover condition is when both X and X_1 inputs are inside the cam
table but X > X_1 because the master position has rolled over

If needed, the slave position may be modified before enabling the slave operation using the SAP
0 TML command (see par. 2.1.8 for details)

2.1.8 Motor Commands. Stop Modes

You can apply one of following commands to the motor:

• Activate/deactivate the control loops and the power stage PWM output commands
(AXISON / AXISOFF)

• Stop the motor in one of the four possible modes: STOP3, STOP2, STOP1, STOP0

© Technosoft 2006 MotionChip II TML Programming 47

• Issue an update command, immediate (UPD) or when a previously programmed event
occurs (UPD!)

• Change the values of the motor position and the position reference

The AXISON command activates the control loops and the PWM output commands. After power
on, the AXISON command has to be executed at least once, after the ENDINIT (end of
initialization) command. During operation, AXISON command may be used to restore the normal
drive operation following an AXISOFF command. Typically, the AXISON command can be used in
the error treatment routines, to restore the normal operation after the error cause was detected
and eliminated.

At first AXISON after power on, the reference generator starts from the initial conditions. However,
when AXISON is set after an AXISOFF command, the reference generator resumes its
calculations from the same conditions left when the AXISOFF command was executed. If the
values for the speed reference were high when the AXISOFF command was issued, at next
AXISON command, a still motor may suddenly face a large speed reference. This may lead to a
high reaction, which may stress the motion system mechanical parts. In order to avoid this
situation, it is recommended to reprogram the (remaining) motion, without using TUM1 (i.e.
updating the target position and target speed with the actual values of the position and speed),
and only then set the AXISON command.

Example: A motor controlled in speed, was stopped with an AXISOFF command. In order to
resume the normal operation, the TML program can be:

CACC = 0.5; // only if you want to change the previous acceleration value
CSPD = 100; // only if you want to change the previous speed value
MODE SP1; // set again the speed profile mode 1
UPD; // update motion mode & parameters. Motion is prepared but will not start
// as the drive continues to be in the AXISOFF condition
AXISON; // motion starts. The initial value for target speed is 0 because was
// updated with the actual motor speed which is 0 because the motor is still

Remarks:

• During AXISON condition, the Motion Status Register bit 13 is set (MSR.13 = 1)

• In IPM Motion Studio, the AXISON command is automatically included in the motion
programs, after the drive setup parameters and before the motion sequences you
program using the Motion Wizard. Therefore it is not necessary to include it at the
beginning of a motion programming sequence

The AXISOFF command deactivates the control loops, the reference generator and the PWM
output commands (all the switching devices are off). However, all the measurements remain
active and therefore the motor currents, speed, position as well as the supply voltage continue to
be updated and monitored. If the AXISOFF command is applied during motion, it leaves the motor
free running. Typically, the AXISOFF command is used when an error condition is detected, for
example when a protection is triggered.

Remark: The AXISOFF command is automatically generated when the Enable input goes from
enabled to disabled status. If the Enable input returns to the enabled status, no other command
(like AXISON) is automatically generated. However, if needed, you can generate automatically the

© Technosoft 2006 MotionChip II TML Programming 48

AXISON command when Enable input returns to the enable status, by setting the AXISON
command in the TML interrupt service routine called each time when the Enable input status
changes.

The TML offers you 4 ways to stop a motor. Table 2.10 presents these stop modes.

Table 2.10. Stop Modes

Stop Modes Action

STOP3 Set speed control and decelerate with the rate set in
TML parameter CACC until speed is 0

STOP2 Set speed control and force speed reference to 0
STOP1 Set torque control and force current reference to 0
STOP0 Set voltage control and force motor voltage to 0

Select STOP3 to stop the motor smoothly, with a deceleration rat set in TML parameter CACC.
When this command is executed, the drive is automatically set in speed profile mode (MODE SP1)
with jog speed command = 0. When the speed reference arrives at zero, the motion complete
condition is set

Select STOP2 to stop very abruptly the motor. When this command is executed, the drive is
automatically set in speed external mode (MODE SE1) with on-line speed reference set to 0.

Remark: STOP3 or STOP2 modes may not work correctly if in the setup data you have set your
drive for position control without closing the speed loop. In this case, you’ll close the speed loop
using a speed controller whose parameters have not been properly set.

Select STOP1 to stop the motor when the drive performs torque control. When this command is
executed, the drive is set in torque external mode (MODE TES) with on-line current reference set
to 0.

Select STOP0 to stop the motor when the drive performs voltage control. When this command is
executed, the drive is set in voltage external mode (MODE VES) with on-line voltage reference set
to 0. STOP0 is foreseen only for test purposes. During normal operation, the drive performs at
least torque control. Voltage control may occur only during setup tests or if you have specifically
set the drive in voltage contouring, voltage external or voltage test modes.

Remarks:
• In order to restart after a STOPx (x = 0,1,2,3) command, the motion mode has to be set

again, even if it is not changed. Setting a motion mode disables the stop mode and allows
the motor to move

• STOPx (x = 0,1,2,3) commands always set TUM0 mode to perform an update of the
target/reference position and speed with the actual motor position and speed

• When a host sends via a communication channel a STOPx command, this stops the
execution of any TML program from the local memory, in order to avoid the risk of
overwriting the STOPx command from the TML program

• Use with caution STOP2, STOP1 and STOP0 commands. These cause abrupt stops that
may generate an important energy towards the supply. If the power supply can’t absorb

© Technosoft 2006 MotionChip II TML Programming 49

the energy generated by the motor, it is necessary to foresee an adequate surge
capacitor in parallel with the drive supply to limit the over voltage.

When an immediate update command UPD is executed, the last motion mode programmed
together with the latest motion parameters are taken into consideration. During motion execution,
you can freely change the motion mode and/or its parameters. These changes will have no effect
until an update command is executed.

If you intend to perform an update when a specific condition occurs, you can set an event which
monitors the condition, followed by an update on event command UPD!. When the monitored
condition occurs, the update will be automatically performed. Once you have set an update on
event UPD!, you can either wait for the monitored event to occur, or perform other operations.

The TML command SAP offers you the possibility to set / change the referential for position
measurement by changing simultaneously the motor position APOS and the target position TPOS
values, while keeping the same position error.

You can specify the new position either as an immediate value or via a 32-bit long variable. SAP
command can be executed at any moment during motion. When SAP command is executed, the
following operations are performed:

• Under TUM1, i.e. if TUM1 command has been executed after the last motion mode setting
and before the last UPD, the target/reference position TPOS is set equal with the new
position value and the actual motor position APOS is set equal with the new position
reference minus the position error (POSERR)

TPOS = new_value;
APOS = TPOS – POSERR;

• Under TUM0, i.e. if TUM1 command has not been executed after the last motion mode
setting and before the last UPD, the actual motor position APOS is set equal with the new
position value and the target/reference position TPOS is set equal with the new position
plus the position error (POSERR)

APOS = new_value;
TPOS = APOS + POSERR;

The TML command STA sets the target position equal with the actual position: TPOS = APOS.

Remark: The target position update with the actual position is automatically performed each time
a new motion mode is set without TUM1. Together with the target position the target speed is also
updated with the actual speed

Related Instructions

AXISON Set axis ON. Activate control loops and PWM commands
AXISOFF Set axis OFF. Deactivate control loops and PWM commands
STOPx Set stop mode x (x = 3, 2, 1, 0)
UPD Update immediate motion mode and parameters. Start motion
UPD! Update the motion mode and parameters a programmed event occurs
SAP V32 Set V32 in the actual or target position. V32 is either a 32-bit immediate

value or a long TML data (user variable) containing the value to set

© Technosoft 2006 MotionChip II TML Programming 50

STA Set target position TPOS equal with the actual position APOS

Programming Example
CACC = 1.5; // command acceleration = 1.5

// encoder counts/sampling2
 CSPD = 20.; // command speed = 20 counts/sampling
 CPOS = 20000; // command position = 2000 counts
 CPR; // command position is relative
 MODE PP3; // set position profile mode 3
 TUM1; // keep the position and speed reference
 UPD; // update - start the motion

...
STOP3; // stop smoothly with CACC = 1.5
!MC; // set event on motion complete

 WAIT!; // wait for the event to occur
SAP 0; // STOP3 disables TUM1. Hence APOS = 0 and
 // TPOS = APOS + POSERR
...
MODE PP3; // set again the position profile mode 3
UPD; // update – restart motion after a STOP command

2.1.9 Torque/Voltage Test Modes

The torque and voltage test modes have been designed to facilitate the testing during the setup
phase. In these test modes, either a voltage or a torque (current) command can be set using a
test reference consisting of a limited ramp (see Figure 2.6).

For AC motors (like for example the brushless motors), the test mode offers also the possibility to
rotate a voltage or current reference vector with a programmable speed (see Figure 2.7). As a
result, these motors can be moved in an “open-loop” mode without using the position sensor. The
main advantage of this test mode is the possibility to conduct in a safe way a series of tests,
which can offer important information about the motor parameters, drive status and the integrity of
the its connections.

Figure 2.6. Reference profile in test modes

© Technosoft 2006 MotionChip II TML Programming 51

Figure 2.7. Electrical angle setup in test modes with brushless AC motors

Remark: The Motion test is a special test mode to be used only in some special cases for drives
setup. The Motion Test mode is not supposed to be used during normal operation

Related Parameters

REFTST maximum value of the test reference in torque or voltage units (int)
RINCTST reference increment at each slow-loop sampling period (int)
THTST initial value for the electrical angle in electrical angle units (int)
TINCTST electrical angle increment at each fast-loop sampling period (int)

Related Instructions

MODE TT Set torque test mode
MODE VT Set voltage test mode
UPD Update motion mode and parameters. Start motion

2.1.10 Motion Mode Changing

The TML allows switching all motion modes on the fly, except for the test modes.

This feature is especially useful for position/speed control applications, where the target reference
is provided by the internal trajectory generator using position/speed profile modes, position/speed
contouring modes, electronic gearing, electronic cam and stop modes.

On the fly changes of the motion modes are possible because the target reference is updated
each time the motion mode changes. Whenever a new motion mode is set, the target position and
the target speed reference are set to the actual values of the motor position and motor speed i.e.
TPOS = APOS and TSPD = ASPD.

This default target update mode (TUM0) is particularly useful to perform precise relative
positioning triggered by an external event, because the input data for the relative position profile
computation are the real motor position and speed.

There are however situations when the target reference update is not desired. In these cases you
can overwrite the default target update mode by adding the TML instruction TUM1 between the
motion mode setting and the update commands.

© Technosoft 2006 MotionChip II TML Programming 52

The TUM1 command is particularly useful for open-loop applications, where there is no
position/speed feedback. Here using TUM1 the target reference is preserved when motion modes
are changed. As in the speed profile or speed contouring modes, the trajectory generator
computes the target position by integrating the target speed, it is possible to do on the fly
transitions from these modes to position profile or position contouring modes, even in the
absence of motor feedback, under TUM1.

© Technosoft 2006 MotionChip II TML Programming 53

2.2 Program flow control
In the TML you can control the program flow in 3 ways:

• By setting an event to be monitored and waiting the event occurrence
• Through conditional or unconditional GOTO and CALL instructions
• Through the TML interrupts which can be triggered in certain conditions

2.2.1 Events

You can define an event (a condition) to be monitored and to perform one of the following actions:

• Change the motion mode and/or the motion parameters, when the programmed event occurs
• Stop the motion with one of the 4 possible stop modes, when the programmed event occurs
• Wait for the program event to occur

Remark: Only a single event can be monitored at a time. The programmed event is automatically
erased if the event is reached or if a new event is programmed.

There are 18 events, which can be programmed, one at a time, for monitoring. Table 2.11
presents them.

Table 2.11. Programmable Event Triggers

No. Mnemonic Event Description
1 !MC When the actual motion is completed

2 !APU value32
!APU var32

When the actual (motor) absolute position is equal or under a
32-bit long value or the value of a long variable

3 !APO value32
!APO var32

When the actual (motor) absolute position is equal or over a 32-
bit long value or the value of a long variable

4 !RPU value32
!RPU var32

When the actual (motor) relative position is equal or under a 32-
bit long value or the value of a long variable

5 !RPO value32
!RPO var32

When the actual (motor) relative position is equal or over a 32-
bit long value or the value of a long variable;

6 !SU value32
!SU var32

When the actual (motor) speed is equal or under a 32-bit fixed
value or the value of a fixed variable

7 !SO value32
!SO var32

When the actual (motor) speed is equal or over a 32-bit fixed
value or the value of a fixed variable

8 !RT value32
!RT var32

After a wait time (measured from the event setting) equal with a
32-bit long value or the value of a long variable. The time unit is
the slow-loop sampling period

9 !AT value32
!AT var32

When absolute time is equal with a 32-bit long value or the value
of a long variable. The time unit is the slow-loop sampling period

10 !RU value32
!RU var32

When position or speed or torque or voltage target reference is
equal or under a 32-bit value or the value of a long/fixed variable

11 !RO value32
!RO var32

When position or speed or torque or voltage target reference is
equal or over a 32-bit value or the value of a long/fixed variable

12 !CAP When the selected capture input is triggered

© Technosoft 2006 MotionChip II TML Programming 54

13 !LSP When positive limit switch input (LSP) is triggered
14 !LSN When negative limit switch input (LSN) is triggered
15 !IN#n 0 When digital input #n goes low;
16 !IN#n 1 When digital input #n goes high;

17 !VU var32a, value32
!VU var32a, var32b

When value of the long/fixed variable var32a is equal or under a
32-bit long/fixed value or the value of long/fixed variable var32b

18 !VO var32a, value32
!VO var32a, var32b

When value of the long/fixed variable var32a is equal or over a
32-bit long/fixed value or the value of long/fixed variable var32b

You can combine the events with the motion programming in order to define the moment when a
new motion mode and/or motion parameters must be updated (i.e. enabled) as the moment when
a programmed event will occur. This involves the following operations:

• Definition of an event
• Programming of a new motion mode and/or new motion parameters
• Setting of an update on event (UPD!) command or one of the stop modes on event:

STOP0!, STOP1!, STOP2! Or STOP3!
• Wait for the event to occur (WAIT!)

Remarks:

• After you have programmed a new motion mode and/or new motion parameters with an
update on event or a stop on event, it is recommended to introduce a wait until the
programmed event occurs. Otherwise, the TML program will continue with the next
instructions that may override the event set for monitoring.

• If the TML command WAIT! is executed and the programmed event doesn’t occur, the
TML program will remain in a loop. In order to get it out of the loop, you can send via a
communication channel a GOTO command to a preset location, which will move the
program execution outside the wait loop

• The TML command WAIT! is a sequential command. This means that the WAIT!
command must be executed only as part of a TML program and not as a command sent
on-line via a communication channel. If a host sends a WAIT! command on-line, the wait
condition is disregarded

Programming Examples:

1) !IN#4 0 // set event when input IO#4 goes low
CPOS=2000; // command position is 2000
CPR; // command position is relative
MODE PP3 // set position profile mode 3
UPD!; // when the event will occur, execute the move
WAIT!; // wait the event to occur

2) !CAP; // set event when a capture input is triggered
STOP3!; // smooth stop when event occurs
WAIT!; // wait the event to occur

© Technosoft 2006 MotionChip II TML Programming 55

3) !RT 100; // set a wait time event of 100 slow-loop periods
// i.e. 100 ms for the default sampling values

WAIT!; // wait the event to occur

2.2.1.1 When the actual motion is completed

The motion complete condition is set in the following conditions:

• During position profiles execution, when the target position reference (computed by the
reference generator, at each step) reaches the commanded position

• During a STOP3 command, when the target speed (computed by the reference
generator) reaches zero

By setting a motion complete event and waiting for its occurrence, you can start the next move
after the actual profile generation is completed.

Remark: One way to execute successive position profiles where each move waits the previous
one to finish is to start the first move, and then program all the other moves with update on event
(UPD!) where the selected event is: when the actual motion is completed.

2.2.1.2 Function of motor position

The monitored events are: when the absolute or the relative actual (motor) position is equal or
over/under a 32-bit long value or the value of a long variable. The comparison value is expressed
in position units

Remark: The motor relative position is defined as the motor displacement from the beginning of
the actual movement. For example if a position profile was started with the absolute motor
position 50000 counts, when the absolute motor position reaches 60000 counts, the relative
motor position is 10000 counts.

2.2.1.3 Function of motor speed

The monitored events are when the actual (motor) speed is equal or over/under a 32-bit fixed
value or the value of a fixed variable. The comparison value is expressed in speed units

2.2.1.4 After a wait time

The monitored event is when a 32-bit relative time counter is equal with a 32-bit long value or the
value of a long variable. The comparison value is expressed in time units, i.e. in slow-loop
sampling periods. When the wait time event is set, the 32-bit relative time counter is reset and
restarts counting from zero.

Remark: After setting a wait time event, in order to effectively execute the time delay, you need
to wait for the event to occur, using for example the wait on event command WAIT!

© Technosoft 2006 MotionChip II TML Programming 56

It is also possible to set an event when a 32-bit absolute time counter is equal with a 32-bit long
value or the value of a long variable. Like in the relative case, the comparison value is expressed
in time units

Remark:

• Both the relative and the absolute time counters are started ONLY after the execution of
the ENDINIT (end of initialization) command. Therefore you should not set wait events or
absolute time events before executing this command

• In the case of an absolute time event, be aware that the 32-bit absolute time counter rolls
over when it reaches the maximum value of 232-1

2.2.1.5 Function of reference

The monitored event is when TML variable TREF is equal or over/under with a 32-bit value or the
value of a 32-bit variable.

The TML variable TREF represents:

• The position reference, when position control is performed
• The speed reference, when speed control is performed
• The current/torque reference, when torque control is performed
• The voltage reference, when voltage control is performed

Depending on the reference type selection, the comparison value is a:

• 32-bit long integer value for position reference, expressed in position units
• 32-bit fixed value for speed reference, expressed in speed units
• 32-bit long integer value where the current reference is in the 16MSB part and the 16LSB

part is 0, where the 16MSB value is expressed in current units
• 32-bit long integer value where the voltage reference is in the 16MSB part and the 16LSB

part is 0, where the 16 MSB value is expressed in voltage command units

Remarks:

• Setting an event based on the position or speed reference is particularly useful for open
loop operation where motor position and speed is not available

• It is the user responsibility to know in which mode the drive operates when this event is
set and to set the comparison value accordingly.

2.2.1.6 Function of inputs status

You can define events function of the following inputs status:

• Capture inputs
• Limit switch inputs
• General purpose digital inputs

© Technosoft 2006 MotionChip II TML Programming 57

Capture inputs

The MotionChip II has two capture inputs: IN#5/Z1/CAPI and IN#34/H2/Z2/2CAPI. These can be
programmed to sense either a low to high or high to low transition. Typically, on the IN#5/Z1/CAPI
input is connected the motor encoder index and on the IN#34/H2/Z2/2CAPI input is connected the
master encoder index (when available)

When the programmed transition occurs on IN#5/Z1/CAPI input, the actual (motor) position is
captured and stored in a dedicated variable named CAPPOS. When the programmed transition
occurs on IN#34/H2/Z2/2CAPI input, the master position APOS2 is captured and stored in a
dedicated variable named CAPPOS2.

When the position sensor is an incremental encoder, the captured position is very accurate as the
whole process is done in less than 200 ns.

The master position can be captured only in the following conditions:
• The encoder signals from the master are connected to the 2nd encoder inputs
• The drive is set as slave either in electronic gearing or electronic camming with the option

to read the master position from 2nd encoder inputs

In order to set an event on a capture input, you need to:

1) Enable the capture input for the detection of a low->high or a high-> low transition. The TML
instructions for enabling the capture inputs are:

• To enable detection of a high to low transition

ENCAPI0; //Activate CAPI input to detect a falling transition
EN2CAPI0; //Activate 2CAPI input to detect a falling transition

• To enable detection of a low -> high transition

 ENCAPI1; //Activate CAPI input to detect a rising transition
 EN2CAPI1; //Activate 2CAPI input to detect a rising transition

2) Set a capture event, with the TML instruction: !CAP;

3) Wait for the event to occur, with the TML instruction: WAIT!;

Remarks:

• If both capture inputs are activated in the same time, the capture event is set by the
capture input that is triggered first.

• A capture input is automatically disabled, after the programmed transition was detected.
In order to reuse a capture input, you need to enable it again.

If you have a capture input enabled, and you want to disable it, before sensing the transition, use
the following TML instructions:

 DISCAPI; //Deactivate CAPI input. Set CAPI pin as digital input.
DIS2CAPI; //Deactivate 2CAPI input. Set 2CAPI pin as digital input.

© Technosoft 2006 MotionChip II TML Programming 58

Limit switch inputs

The MotionChip II has two limits switch inputs: IN#2/LSP and IN#24/LSN, first for the positive
direction and the second for negative direction. Their goal is to protect against accidental moves
outside the working area. Limit switches working mode is presented in detail par. 2.3.3

Like the capture inputs, the limit switch inputs can be programmed to sense either a low to high or
high to low transition. When the programmed transition occurs, the actual (motor) position is
captured and stored in the dedicated variable named CAPPOS. The position capture is done with a
maximum delay of 5 μs.

In many applications, in order to determine the working area, the initialization procedure requires
to move the motor until one or both limit switches are reached. You can program events on both
positive or negative limit switches to detect when then these have been reached.

In order to set an event on a limit switch input, you need to:

1) Enable the limit switch input capability to detect a low->high or a high-> low transition. The TML
instructions for enabling transition detection on the limit switch inputs are:

• To enable detection of a high to low transition

ENLSP0; //Activate LSP input capability to detect a falling transition
ENLSN0; //Activate LSN input capability to detect a falling transition

• To enable detection of a low -> high transition

 ENLSP1; //Activate LSP input capability to detect a rising transition
 ENLSN1; //Activate LSN input capability to detect a rising transition

2) Set a limit switch event, with the TML instructions:

!LSP; // set event when transition is detected on positive limit switch
!LSN; // set event when transition is detected on negative limit switch

3) Wait for the event to occur, with the TML instruction: WAIT!;

Remarks:

• Both limit switch inputs can be set in the same time to detect transitions, as each input
has its own event and TML interrupt

• A limit switch input capability to detect transitions is automatically disabled, after the
programmed transition was detected. In order to reuse it, you need to enable it again.

If you have a limit switch input enabled to detect transitions, and you want to disable this
capability, before sensing the transition, use the following TML instructions:

 DISLSP; //Deactivate LSP input capability to detect transitions
DISLSN; //Deactivate LSN input capability to detect transitions

Remark: The main task of the limit switches is to protect against accidental moves outside the
working area, by blocking moves in the wrong direction. For their main task, the limit switches are
active on level, i.e. as long as a limit switch is activated, it will stop any move in the wrong

© Technosoft 2006 MotionChip II TML Programming 59

direction. This task is always performed, independently of the fact if the limit switch is enabled or
not to detect transitions.

General purpose digital inputs

You can program an event on any general-purpose digital input. The event can be set when the
input goes high (after a low to high transition) or low (after a high to low transition)

In order to set an event when the digital input IN#n goes high, use:

 !IN#n 1; //set event when input #n goes high

In order to set an event when the digital input IN#n goes low, use:

 !IN#n 0; //set event when input # goes low

where number “n” is the input number.

2.2.1.7 Function of a variable value

You can set an event function of the value of a selected variable. The selected variable for this
event can be any 32-bit TML variable. The monitored events are:

• When variable var_name is equal or over a 32-bit value or the value of variable

 !VU var_name, value; // set event when var_name is equal or under value
 !VU var_name, variable;//set event when var_name is equal or under variable

• When variable var_name is equal or over a 32-bit value or the value of variable

 !VO var_name, value; // set event when var_name is equal or over value
 !VO var_name, variable;//set event when var_name is equal or over variable

2.2.2 GOTO, CALL
The TML offers the possibility to make unconditional or conditional jumps to a specific label and
also unconditional or conditional calls of TML subroutines/functions.

The conditional instructions test the value of a variable for the following conditions: < 0, <= 0, >0,
>=0, =0, |= 0. The GOTO or CALL is executed only if the test condition is true.

In all the cases, the jump location is defined via a label. A label can be any user-defined string of
up to 32 characters, which starts from the first column of a text line and ends with a colon (:). A
label contains the TML program address of the next TML instruction. In the case of the CALL
instructions, the label name represents the TML subroutine called. This is because, in TML a
subroutine or function is defined as follows:

TML_subroutine_name: // Label with subroutine name. This is the subroutine start point

 ... // TML instructions. The subroutine body

 RET; // Return from subroutine. Subroutine exit point

© Technosoft 2006 MotionChip II TML Programming 60

Programming Examples
 GOTO label1, var1, LT; // jump to label1 if var1 < 0
 GOTO label2, var1, LEQ; // jump to label2 if var1 <= 0
 GOTO label3, var1, GT; // jump to label3 if var1 > 0
 GOTO label4; // unconditional jump to label4
 CALL fct1, var2, GEQ; // call function fct1, if var2 >= 0
 CALL fct1, var2, EQ; // call function fct1, if var2 = 0
 CALL fct1, var2, NEQ; // call function fct1, if var2 != 0
 CALL fct1; // unconditional call of function fct1
fct1:
 ...
 ...

RET;

Remarks:

• All labels mentioned in the GOTO or CALL instructions must exist i.e. must be defined
somewhere in the TML program

• The variable tested in the conditional GOTO and CALL can be of any type, 16 or 32-bit
• When you call a TML subroutine, the return address pointed by the IP (instruction pointer)

is saved into the TML stack. When RET is executed, the IP is set with the last value from
the TML stack, hence the TML program execution continues with the next instruction after
the CALL. The TML stack dimension is 12 words. Each CALL and TML interrupt uses one
word of the TML stack.

• The body of the TML subroutines, must be placed outside the main TML program i.e.
after the END instruction (see Figure 1.1)

2.2.3 Interrupts

The TML interrupts offer the possibility of selecting up to 12 interrupt conditions that can be
monitored in the same time. Unlike the events, where the programmed event is expected to occur
and is waited for, the TML interrupts’ main goal is to provide a way of reacting to unexpected
events as are most of the conditions in Table 2.12

The TML interrupt mechanism is the following:

• Conditions that may generate TML interrupts are continuously monitored
• When an interrupt condition occurs, a flag (bit) is set in the Interrupt status register (ISR)
• If the interrupt condition is enabled i.e. the same bit (as position) is set in the Interrupt

control register (ICR) and also if the interrupts are globally enabled (EINT instruction was
executed), the interrupt condition is qualified and it generates an interrupt

• The interrupt causes a jump to the associated interrupt service routine. On entry in this
routine, the TML interrupts are globally disabled (DINT) and the interrupt flag is reset

• The interrupt service routine ends with the TML instruction RETI, which returns to normal
program execution and in the same time globally enables the TML interrupts (EINT)

The interrupt service routines (ISR) of the TML interrupts are similar with the TML subroutines:
the starting point is a label and the ending point is the TML instruction RETI (return from
interrupt). The use of the TML interrupts requires defining an interrupt table. This starts with a

© Technosoft 2006 MotionChip II TML Programming 61

label whose value must be assigned in the dedicated TML variable INITABLE, and then is
followed by the values of the labels (i.e. the starting points) of all the ISR. Like the TML functions,
the TML interrupt service routines must be positioned after the end of the main program (see the
programming example below).

Table 2.12. TML Interrupt Conditions

TML Interrupt No. Condition Description
0 When ENABLE input changes. Both transitions are monitored
1 When power-stage hardware protection is triggered

2
When at least one software-monitored protection: over-current, I2t, over
temperature motor, over temperature drive, over-voltage or under-voltage is
triggered

3 When control error protection is triggered i.e. the difference between the
target reference and actual feedback value goes over a programmed limit

4 When a communication error occurs
5 When 32-bit actual (motor) position wraps-around
6 When positive limit switch input (LSP) has detected a programmed transition
7 When negative limit switch input (LSN) has detected a programmed transition
8 When a capture input (CAPI or 2CAPI) has detected a programmed transition
9 When motion is completed
10 When a new contour segment can be provided
11 When a programmed event has occurred

Remarks:
1. By default, during the execution of the ISR, the TML interrupts are disabled. If you want to

enable in this period some of the TML interrupts, set accordingly the interrupt mask in the
ICR register and insert the EINT instruction that enables globally the interrupts

2. The interrupt conditions set the flags in the ISR register independently of the fact that the
interrupts are disabled or enabled. If an interrupt flag is set while the interrupt is disabled,
the flag remains set. If later on, the interrupt is enabled, due to the flag set by a previous
condition, a TML interrupt is generated. In order to avoid this situation, before enabling an
interrupt, it is recommended to reset the corresponding interrupt flag.

3. Use only the TML instruction SRB to set/reset bits in the interrupt control (ICR) and the
interrupt status (ISR) registers. TML command SRB provides a safe mechanism which
avoids errors when data of these registers is simultaneously modified by the user and
internally due to a change in a monitored condition

Related TML Parameters

INITABLE Must be initialized with the start address of the interrupt table

Related TML Instructions

EINT Globally enables the TML interrupts. Sets ICR.15 = 1
DINT Globally disables the TML interrupts. Sets ICR.15 = 0
SRB ICR, ANDm, ORm Individually enable/disable TML interrupts, by setting/resetting bits

from ICR register according with AND mask ANDm and OR mask ORm
SRB ISR, ANDm, 0; Reset interrupt flags in the ISR register according with AND mask ANDm

© Technosoft 2006 MotionChip II TML Programming 62

RETI Return from a TML interrupt service routine

Programming Example

 BEGIN; // TML program start
 ...
 INTTABLE = InterruptTable; // set interrupt table start address
 SRB ICR, 4095, 4; // unmask INT2 Software Protection
 ...
 ENDINIT; // end of initialization
 ...
 EINT; // globally enable the TML interrupts
 ...
 END; // end of the main section

InterruptTable: // start of the interrupt table
 @Int0_Axis_disable_ISR;
 @Int1_PDPINT_ISR;
 @Int2_Software_Protection_ISR;
 @Int3_Control_Error_ISR;
 @Int4_Communication_Error_ISR;
 @Int5_Wrap_Around_ISR;
 @Int6_Limit_Switch_Positive_ISR;
 @Int7_Limit_Switch_Negative_ISR;
 @Int8_Capture_ISR;
 @Int9_Motion_Complete_ISR;
 @Int10_Update_Contour_Segment_ISR;
 @Int11_Event_Reach_ISR;
Int0_Axis_disable_ISR: // Int0_Axis_disable_ISR body

...
 RETI; // RETurn from TML ISR

...
Int2_Software_Protection_ISR;: // Int11_Event_Reach_ISR body

AXISOFF; // set axis OFF if a protection is triggered
 RETI; // RETurn from TML ISR

...
Int11_Event_Reach_ISR: // Int11_Event_Reach_ISR body

...
 RETI; // RETurn from TML ISR

© Technosoft 2006 MotionChip II TML Programming 63

2.3 I/O Programming

2.3.1 General I/O

The MotionChip II has a total of 40 pins that can be set as I/O lines. These pins are numbered
from #0 to #39. All of them share the I/O function with an alternate function like: PWM output
command, receive and transmit for serial and CAN-bus communication, encoder inputs, etc.
Most of the 40 pins are set by default for the alternate functions and cannot be used as general-
purpose I/O. Some of the remaining I/O lines are used for special functions like the Enable input
and the Ready or Error output. Finally only 8 I/O lines remain available and may be used as
general-purpose I/O. By default 4 are set as general-purpose inputs and the other 4 as general-
purpose outputs.

The 4 general-purpose inputs are: #36, #37, #38 and #39. You can read their status with the TML
command:

user_var = IN#n; // read input #n in the user variable user_var

where user_var is a 16-bit integer user defined variable and n is the input number: 36 to 39. If
the input is low (0 logic), user_var is set to 0, else user_var is set to a non-zero value.

Programming Example

 user_var = IN#36; // read input #36 in user_var
 GOTO label1, user_var, NEQ; // go to label1 if input #36 is high (1 logic)
 user_var = IN#39; // read input #39 in user_var
 GOTO label2, user_var, EQ; // go to label2 if input #39 is low (0 logic)

The 4 general-purpose outputs are: #28, #29, #30, #31. You can set them high (1 logic) or low (0
logic) with the following commands:

 ROUT#n; // Set low the output line #n
 SOUT#n; // Set high the output line #n

where n is the output number: 28-31.

You can also read simultaneously the 4 general-purpose inputs and set simultaneously the 4
general-purpose outputs, with the TML instructions:

 user_var = INPORT, 0xF; // user_var (bits 3-0) = status of IN#39, 38, 37, 36
 OUTPORT user_var; // OUT#28,29,30,31 = user_var (bits 3-0)

In the first TML instruction, the status of the 4 inputs is saved in the 4LSB of the 16-bit user
variable, while the 12MSB are set to 0. If an input line is low, the corresponding bit in the user
variable is zero. If an input line is high, the corresponding bit in the user variable is one. The
correspondence with the input lines is the following:

IN#36 -> bit 0, IN#37 -> bit 1, IN#38 -> bit 2, IN#39 -> bit 3 of the user variable

In the second TML instruction, you can set the 4 outputs according with the 4LSB from the user
variable. The 12MSB of the user variable must be set to zero. If a bit in the user variable is zero,
the corresponding output line is set low. If a bit in the user variable is one, the corresponding
output line is set high. The correspondence with the output lines is the following:

© Technosoft 2006 MotionChip II TML Programming 64

User variable Bit 0 -> OUT#28, bit 1 -> OUT#29, bit 2 -> OUT#30, bit 3 -> OUT#31

Remark: When reading inputs or setting outputs keep in mind that the I/O status refers to the
MotionChip II pin. If your drive has either the inputs or outputs inverted, you must reverse the
logic levels presented above. For example, if the general-purpose outputs are inverted, the
OUTPORT command with the 4LSB bits at zero, sets the 4 output lines high. The command
SOUT#n will set low the output line #n and the command ROUT#n, will set the same output high.

If you application require more inputs or more outputs you have the possibility to change some of
the general-purpose outputs into inputs and vice versa, using the following commands:

 SETIO#n OUT; //Set the I/O line #n as an input
 SETIO#n IN; //Set the I/O line #n as an output

where n is the I/O number.

Remark: An I/O line status change must be done only after carefully checking if your drive was
designed to support it.

You can further extend the number of I/O in some special situations, by enabling the I/O function
for some pins set by default with the alternate function. For example if your drive was designed to
control only DC motors and uses just 4 PWM output commands, the remaining PWM output
commands may be transformed into general-purpose I/O. This can be done with the command:

 ENIO#n; // Enable the use of pin #n as an I/O line

The reverse is also possible i.e. to disable the I/O function and activate the alternate function

 DISIO#n; // Disable the use of pin #n as an I/O line

Remark: Enabling or disabling I/O lines must be done only after carefully checking if your drive
was designed to support it

2.3.2 Captures

The MotionChip II has two capture inputs: IN#5/Z1/CAPI and IN#34/H2/Z2/2CAPI. These can be
programmed to sense either a low to high or high to low transition. Typically, on the IN#5/Z1/CAPI
input is connected the motor encoder index and on the IN#34/H2/Z2/2CAPI input is connected the
master encoder index (when available)

When the programmed transition occurs on IN#5/Z1/CAPI input, the actual (motor) position is
captured and stored in a dedicated variable named CAPPOS. When the programmed transition
occurs on IN#34/H2/Z2/2CAPI input, the master position APOS2 is captured and stored in a
dedicated variable named CAPPOS2.

When the position sensor is an incremental encoder, the captured position is very accurate as the
whole process is done in less than 200 ns.

The master position can be captured only in the following conditions:
• The encoder signals from the master are connected to the 2nd encoder inputs
• The drive is set as slave either in electronic gearing or electronic camming with the option

to read the master position from 2nd encoder inputs

You can set either an event or a TML interrupt on a capture input. In both cases you need to:

© Technosoft 2006 MotionChip II TML Programming 65

1) Enable the capture input for the detection of a low->high or a high-> low transition. The TML
instructions for enabling the capture inputs are:

• To enable detection of a high to low transition

ENCAPI0; //Activate CAPI input to detect a falling transition
EN2CAPI0; //Activate 2CAPI input to detect a falling transition

• To enable detection of a low -> high transition

 ENCAPI1; //Activate CAPI input to detect a rising transition

 EN2CAPI1; //Activate 2CAPI input to detect a rising transition

2) Set:
• A capture event with !CAP, then wait until the event occurs with WAIT!;, or
• Enable the TML capture interrupt with SRB ICR 0xFFFF,0x100; which sets ICR.8 =1.

Remarks:

• If both capture inputs are activated in the same time, the capture event and the TML
capture interrupt flag is set by the capture input that is triggered first.

• A capture input is automatically disabled, after the programmed transition was detected.
In order to reuse a capture input, you need to enable it again.

If you have a capture input enabled, and you want to disable it, before sensing the transition, use
the following TML instructions:

 DISCAPI; //Deactivate CAPI input. Set CAPI pin as digital input.
DIS2CAPI; //Deactivate 2CAPI input. Set 2CAPI pin as digital input.

2.3.3 Limit switches

The MotionChip II has two limits switch inputs: IN#2/LSP and IN#24/LSN, first for the positive
direction and the second for negative direction. Their goal is to protect against accidental moves
outside the working area.

The limit switch inputs are active on level, more exactly when the input level is high. When a limit
switch input is active, it stops the motor when it attempts to move towards the protected direction
but allows the motor to move in the opposite direction. Therefore, with the positive limit switch
active, movement is possible only in the negative direction; with the negative limit switch active,
movement is possible only in the positive direction.

Like the capture inputs, the limit switch inputs can be programmed to sense either a low to high or
high to low transition. When the programmed transition occurs, the actual (motor) position is
captured and stored in the dedicated variable named CAPPOS. The position capture is done with a
maximum delay of 5 μs.

In many applications, in order to determine the working area, the initialization procedure requires
to move the motor until one or both limit switches are reached. You can set for each limit switch
input, either an event or a TML interrupt to detect when it has been reached.

In order to set an event or a TML interrupt on a limit switch input, you need to:

© Technosoft 2006 MotionChip II TML Programming 66

1) Enable the limit switch input capability to detect a low->high or a high-> low transition. The TML
instructions for enabling transition detection on the limit switch inputs are:

• To enable detection of a high to low transition

ENLSP0; //Activate LSP input capability to detect a falling transition
ENLSN0; //Activate LSN input capability yo detect a falling transition

• To enable detection of a low -> high transition

 ENLSP1; //Activate LSP input capability to detect a rising transition
 ENLSN1; //Activate LSN input capability to detect a rising transition

2) Set

• A limit switch event, with the TML instructions: !LSP or !LSN, then wait until the event
occurs with WAIT!;, or

• Enable LSP or LSN TML interrupt with SRB ICR 0xFFFF,0x40; which sets ICR.6 =1
or with SRB ICR 0xFFFF,0x80; which sets ICR.7 =1

Remarks:

• Both limit switch inputs can be set in the same time to detect transitions, as each input
has its own event and TML interrupt

• A limit switch input capability to detect transitions is automatically disabled, after the
programmed transition was detected. In order to reuse it, you need to enable it again.

If you have a limit switch input enabled to detect transitions, and you want to disable this
capability, before sensing the transition, use the following TML instructions:

 DISLSP; //Deactivate LSP input capability to detect transitions
DISLSN; //Deactivate LSN input capability to detect transitions

Remarks:
• The main task of the limit switches i.e. to protect against accidental moves outside the

working area is performed, independently of the fact if the limit switches are enabled or
not to detect transitions

• You can disable the limit switches by executing the following TML code, once at the
beginning of the TML program:

 user_var = 0x0832; // Set variable user_var with value 0x0832
(user_var),dm = 1; // Write 1 at data memory address 0x0832

Following this command, the active levels on limit switch inputs will no longer block the
movement in the wrong direction. The capability to detect transitions remains unchanged

• You can read the status of the limit switches inputs like any other general purpose inputs
using the TML instructions:

var = IN#2; // read status of the positive limit switch input
var = IN#24; // read status of the negative limit switch input

© Technosoft 2006 MotionChip II TML Programming 67

2.4 Assignment & Data Transfer

2.4.1 Setup 16-bit variable

The TML instructions presented in this paragraph help you to program assignment operations
involving the transfer of a 16-bit value from a source to a 16-bit destination.

The source can be:
• A 16-bit immediate value
• A 16-bit TML data: TML register, parameter, variable or user variable (direct or negate)
• The high or low part of a 32-bit TML data: TML parameter, variable or user variable
• A memory location indicated through a pointer variable

The destination can be:
• A 16-bit TML data: TML register, TML parameter or user variable
• A memory location indicated through a pointer variable

Programming Examples

1) Source: 16-bit immediate value, Destination: 16-bit TML data. The immediate value can be
decimal or hexadecimal

 user_var = 100; // set user variable user_var with value 100
 user_var = 0x100; // set user variable user_var with value 0x100 (256)

2) Source: 16-bit TML data, Destination: 16-bit TML data.

 var_dest = var_source; // copy value of var_source in var_dest
 var_dest = -var_source;// copy negate value of var_source in var_dest

3) Source: high or low part of a 32-bit TML data, Destination: 16-bit TML data. The 32-bit TML
data can be either long or fixed

 int_var = long_var(L); // copy low part of long_var in int_var
 int_var = fixed_var(H); // copy high part of fixed_var in int_var

4) Source: a memory location indicated through a pointer variable, Destination: 16-bit TML data.
The memory location can be of 3 types: SRAM data memory (dm), SRAM memory for TML
programs (pm), EEPROM SPI-connected memory for TML programs (spi). If the pointer variable
is followed by a + sign, after the assignment, the pointer variable is incremented by 1

 p_var = 0x4500; // set 0x4500 in pointer variable p_var
 var1 = (p_var),spi; // var1 = value of the EEPROM memory location 0x4500
 var1 = (p_var+),spi; // var1 = value of the EEPROM memory location 0x4500
 // p_var = 0x4501
 p_var = 0x8200; // set 0x8200 in pointer variable p_var
 var1 = (p_var),pm; // var1 = value of the SRAM program memory location 0x8200
 var1 = (p_var+),pm; // var1 = value of the SRAM program memory location 0x8200
 // p_var = 0x8201
 p_var = 0xA00; // set 0xA00 in pointer variable p_var

© Technosoft 2006 MotionChip II TML Programming 68

 var1 = (p_var),dm; // var1 = value of the SRAM data memory location 0xA00
 var1 = (p_var+),dm; // var1 = value of the SRAM data memory location 0xA00
 // p_var = 0xA01

Remark: Check the memory map (par. 1.8) for the valid address ranges of the 3 memory types:
EEPROM memory for TML programs, SRAM memory for TML programs, SRAM data memory.

5) Source: 16-bit immediate value (decimal or hexadecimal) or 16-bit TML data. Destination: a
memory location indicated through a pointer variable. The memory location can be of 3 types:
SRAM data memory (dm), SRAM memory for TML programs (pm), EEPROM SPI-connected
memory for TML programs (spi). If the pointer variable is followed by a + sign, after the
assignment, the pointer variable is incremented by 1

 p_var = 0x4500; // set 0x4500 in pointer variable p_var
 (p_var),spi = -5; // write value –5 in the EEPROM memory location 0x4500
 (p_var+),spi = var1; // write var1 value in the EEPROM memory location 0x4500
 // p_var = 0x4501
 p_var = 0x8200; // set 0x8200 in pointer variable p_var
 (p_var),pm = 0x10; // write value 0x10 in SRAM program memory location 0x8200
 (p_var+),pm = var1; // write var1 value in SRAM program memory location 0x8200
 // p_var = 0x8201
 p_var = 0xA00; // set 0xA00 in pointer variable p_var
 (p_var),dm = 50; // write value 50 in the SRAM data memory location 0xA00
 (p_var+),dm = var1; // write var1 value in the SRAM data memory location 0xA00
 // p_var = 0xA01

Remark: When the source is either an immediate value or another TML data and the destination
is a TML data, the destination address must be between 0x200 and 0x3FF. This happens for
most of the TML data, including all the user-defined variables, which take addresses between
0x3B0 to 0x3FF. There are however a limited number of TML parameters and variables having an
extended address situated between 0x800 and 0x9FF. For these TML data, you should use
either indirect addressing via a pointer variable, or the following commands that support extended
addressing:

 int_var,dm = 100; // write 100 in int_var using extended addressing

 int_var,dm = 0x100; // with 0x100(256) in int_var using extended addressing

 var_dest,dm = var_source; // copy value of var_source in var_dest using

// extended addressing

2.4.2 Setup 32-bit variable

The TML instructions presented in this paragraph help you to program assignment operations
involving the transfer of a 16 or 32-bit value from a source to a 32-bit destination.

The source can be:
• A 32-bit immediate value

© Technosoft 2006 MotionChip II TML Programming 69

• A 32-bit TML data: TML parameter, variable or user variable (direct or negate)
• A 16-bit immediate value or a 16-bit TML data: TML register, parameter, variable or user

variable to be set in the high or low part of the destination: a 32-bit TML data
• A 16-bit TML data: TML register, parameter, variable or user variable left shifted by 0 to

16
• A memory location indicated through a pointer variable

The destination can be:
• A 32-bit TML data: TML parameter or user variable
• A memory location indicated through a pointer variable

Programming Examples

1) Source: 32-bit immediate value, Destination: 32-bit TML data. The immediate value can be
decimal or hexadecimal. The destination can be either a long or a fixed variable

 long_var = 100000; // set user variable long_var with value 100000
 long_var = 0x100000; // set user variable long_var with value 0x100000
 fixed_var = 1.5; // set user variable fixed_var with value 1.5 (0x18000)
 fixed_var = 0x14000; // set user variable fixed_var with value 1.25 (0x14000)

2) Source: 32-bit TML data, Destination: 32-bit TML data.

 var_dest = var_source; // copy value of var_source in var_dest
 var_dest = -var_source;// copy negate value of var_source in var_dest

Remark: source and destination must be of the same type i.e. both long or both fixed

3) Source: 16-bit immediate value (decimal or hexadecimal) or 16-bit TML data, Destination: high
or low part of a 32-bit TML data. The 32-bit TML data can be either long or fixed

 long_var(L) = -1; // write value –1 (0xFFFF) into low part of long_var
 fixed_var(H) = 0x2000; // write value 0x2000 into high part of fixed_var
 long_var(L) = int_var; // copy int_var into low part of long_var
 fixed_var(H) = int_var; // copy int_var into high part of fixed_var

4) Source: 16-bit TML data left shifted 0 to 16. Destination: 32-bit TML data. The 32-bit TML data
can be either long or fixed

 long_var = int_var << 0; // copy int_var left shifted by 0 into long_var
 fixed_var(H) = int_var << 16;// copy int_var left shifted by 16 fixed_var

Remarks:

• The left shift operation is done with sign extension. If you intend to copy the value of an
integer TML data into a long TML data preserving the sign use this operation with left shift 0

• If you intend to copy the value of a 16-bit unsigned data into a 32-bit long variable, assign the
16-bit data in low part of the long variable and set the high part with zero.

Examples:

var = 0xFFFF; // As integer, var = 1, as unsigned integer var = 65535
lvar = var << 0; // lvar = -1 (0xFFFFFFFF), the 16MSB of lvar are all set to 1 the

© Technosoft 2006 MotionChip II TML Programming 70

 // sign bit of var
lvar(L) = var; // lvar(L) = 0xFFFF
lvar(H) = 0; // lvar(H) = 0. lvar = 65535 (0x0000FFFF)

5) Source: a memory location indicated through a pointer variable, Destination: 32-bit TML data.
The memory location can be of 3 types: SRAM data memory (dm), SRAM memory for TML
programs (pm), EEPROM SPI-connected memory for TML programs (spi). If the pointer variable
is followed by a + sign, after the assignment, the pointer variable is incremented by 2. The
destination can be either a long or a fixed TML data

 p_var = 0x4500; // set 0x4500 in pointer variable p_var
 var1 = (p_var),spi; // var1 = value of the EEPROM memory location 0x4500
 var1 = (p_var+),spi; // var1 = value of the EEPROM memory location 0x4500
 // p_var = 0x4502
 p_var = 0x8200; // set 0x8200 in pointer variable p_var
 var1 = (p_var),pm; // var1 = value of the SRAM program memory location 0x8200
 var1 = (p_var+),pm; // var1 = value of the SRAM program memory location 0x8200
 // p_var = 0x8202
 p_var = 0xA00; // set 0xA00 in pointer variable p_var
 var1 = (p_var),dm; // var1 = value of the SRAM data memory location 0xA00
 var1 = (p_var+),dm; // var1 = value of the SRAM data memory location 0xA00
 // p_var = 0xA02

Remark: Check the memory map (par. 1.8) for the valid address ranges of the 3 memory types:
EEPROM memory for TML programs, SRAM memory for TML programs, SRAM data memory.

6) Source: 32-bit immediate value (decimal or hexadecimal) or a 32-bit TML data. Destination: a
memory location indicated through a pointer variable. The memory location can be of 3 types:
SRAM data memory (dm), SRAM memory for TML programs (pm), EEPROM SPI-connected
memory for TML programs (spi). If the pointer variable is followed by a + sign, after the
assignment, the pointer variable is incremented by 2

 p_var = 0x4500; // set 0x4500 in pointer variable p_var
 (p_var),spi = 200000; // write 200000 in the EEPROM memory location 0x4500
 (p_var+),spi = var1; // write var1 value in the EEPROM memory location 0x4500
 // p_var = 0x4502
 p_var = 0x8200; // set 0x8200 in pointer variable p_var
 (p_var),pm = 3.5; // write value 3.5 in SRAM program memory location 0x8200
 (p_var+),pm = var1; // write var1 value in SRAM program memory location 0x8200
 // p_var = 0x8202
 p_var = 0xA00; // set 0xA00 in pointer variable p_var
 (p_var),dm = -1L; // write –1 (0xFFFFFFFF) in the SRAM data memory 0xA00
 (p_var+),dm = var1; // write var1 value in the SRAM data memory location 0xA00
 // p_var = 0xA02

When this operation is performed having as source an immediate value, the TML compiler checks
the type and the dimension of the immediate value and based on this generates the binary code
for a 16-bit or a 32-bit data transfer. Therefore if the immediate value has a decimal point, it is

© Technosoft 2006 MotionChip II TML Programming 71

automatically considered as a fixed value. If the immediate value is outside the 16-bit integer
range (-32768 to +32767), it is automatically considered as a long value. However, if the
immediate value is inside the integer range, in order to execute a 32-bit data transfer it is
necessary to add the suffix L after the value, for example: 200L or –1L.

Examples:

user_var = 0x29E; // write CPOS address in pointer variable user_var
(user_var),dm = 1000000; // write 1000000 (0xF4240) in the CPOS parameter i.e
 // 0x4240 at address 0x29E and 0xF at next address 0x29F
(user_var+),dm = -1;// write -1 (0xFFFF) in CPOS(L). CPOS(H) remains unchanged

// CPOS value is (0xFFFFF) i.e. 1048575, user_var is
// incremented by 1

user_var = 0x29E; // write again CPOS address in pointer variable user_var
(user_var+),dm = -1L;// write –1L long value (0xFFFFFFFF) in CPOS i.e.

// CPOS(L) = 0xFFFF and CPOS(H) = 0xFFFF, user_var is
// incremented by 2

user_var = 0x2A0; // write CSPD address in pointer variable user_var

(user_var),dm = 1.5; // write 1.5 (0x18000) in the CSPD parameter i.e
 // 0x8000 at address 0x2A0 and 0x1 at next address 0x2A1

Remark: When the source is either an immediate value or another TML data and the destination
is a TML data, the destination address must be between 0x200 and 0x3FF. This happens for
most of the TML data, including all the user-defined variables, which take addresses between
0x3B0 to 0x3FF. There are however a limited number of TML parameters and variables having an
extended address situated between 0x800 and 0x9FF. For these TML data, you should use
either indirect addressing via a pointer variable, or the following commands that support extended
addressing:

 long_var,dm = 100000; // write 100000 in long_var using extended addressing
 long_var,dm = 0x100000;// with 0x100000 in TMLparam using extended addressing
 var_dest,dm = var_source; // copy value of var_source in var_dest using

// extended addressing

© Technosoft 2006 MotionChip II TML Programming 72

2.5 Arithmetic & Logic Operations
The TML offers the possibility to perform the following operations with the TML data:

• Addition
• Subtraction
• Multiplication
• Left and right shift
• Logic AND and OR

In all the cases, except the multiplication, the result of the operation is saved into the left side
operand. For the multiplication, the result is saved in a dedicated 48-bit register named PROD.

For all the operations, except the logic AND and OR, the left side operand can be any 16 or 32-bit
TML data. The logic AND and OR are performed only with 16-bit data.

Addition: The right-side operand is added to the left-side operand

The left side operand can be:

• A 16-bit TML data: TML parameter or user variable
• A 32-bit TML data: TML parameter or user variable

The right side operand can be:

• A 16-bit immediate value
• A 16-bit TML data: TML parameter, variable or user variable
• A 32-bit immediate value, if the left side operand is a 32-bit TML data
• A 32-bit TML data: TML parameter, variable or user variable, if the left side operand is a

32-bit data too

Programming Examples

 int_var += 10; // int_var1 = int_var1 + 10
 int_var += int_var2; // int_var = int_var + int_var2
 long_var += -100; // long_var = long_var + (-100) = long_var – 100
 long_var += long_var2; // long_var = long_var + long_var2
 fixed_var += 10.; // fixed_var = fixed_var + 10.0
 fixed_var += fixed_var2; // fixed_var = fixed_var + fixed_var2

Subtraction: The right-side operand is subtracted from the left-side operand

The left side operand can be:

• A 16-bit TML data: TML parameter or user variable
• A 32-bit TML data: TML parameter or user variable

The right side operand can be:

• A 16-bit immediate value
• A 16-bit TML data: TML parameter, variable or user variable
• A 32-bit immediate value, if the left side operand is a 32-bit TML data

© Technosoft 2006 MotionChip II TML Programming 73

• A 32-bit TML data: TML parameter, variable or user variable, if the left side operand is a
32-bit data too

Programming Examples

 int_var -= 10; // int_var1 = int_var1 - 10
 int_var -= int_var2; // int_var = int_var - int_var2
 long_var -= -100; // long_var = long_var - (-100) = long_var + 100
 long_var -= long_var2; // long_var = long_var - long_var2
 fixed_var -= 10.; // fixed_var = fixed_var - 10.0
 fixed_var -= fixed_var2; // fixed_var = fixed_var - fixed_var2

Multiplication: The 2 operands are multiplied and the result is saved in a dedicated 48-bit
register named PROD. The result of the multiplication can be left or right-shifted with 0 to 15 bits,
before being stored in the PROD register. At right shifts, high order bits are sign-extended and the
low order bits are lost. At left shifts, high order bits are lost and the low order bits are zeroed. The
result is preserved in the PROD register until the next multiplication.

The first (left) operand can be:

• A 16-bit TML data: TML parameter, variable or user variable
• A 32-bit TML data: TML parameter, variable or user variable

The second (right) operand can be:

• A 16-bit immediate value
• A 16-bit TML data: TML parameter, variable or user variable

Programming Examples

long_var * -200 << 0; // PROD = long_var * (-200)
fixed_var * 10 << 5; // PROD = fixed_var * 10 * 25 i.e. fixed_var *320
int_var1 * int_var2 >> 1; // PROD = (int_var1 * int_var2) / 2
long_var * int_var >> 2; // PROD = (long_var * int_var) / 4
long_var = PROD; // save 32LSB of PROD in long_var
long_var = PROD(H); // save 32MSB of PROD in long_var i.e. bits 47-15

Left and right shift: The operand is left or right shifted with 0 to 15. The result is saved in the
same operand. At right shifts, high order bits are sign-extended and the low order bits are lost. At
left shifts, high order bits are lost and the low order bits are zeroed.

The right shift is performed with sign-extension.

The operand can be:

• A 16-bit TML data: TML parameter, variable or user variable
• A 32-bit TML data: TML parameter, variable or user variable
• The 48-bit PROD register with the result of the last multiplication

© Technosoft 2006 MotionChip II TML Programming 74

Programming Examples

long_var << 3; // long_var = long_var * 8
int_var = -16; // int_var = -16 (0xFFF0)
int_var >> 3; // int_var = int_var / 8 = -2 (0xFFFE)
PROD << 1; // PROD = PROD * 2

Logic AND and OR: A logic AND is performed between the operand and a 16-bit data (the AND
mask), followed by a logic OR between the result and another 16-bit data (the OR mask).

The operand is a 16-bit TML data: TML register, TML parameter or user variable

The AND and OR masks are 16-bit immediate values, decimal or hexadecimal.

Programming Examples

int_var = 13; // int_var = 13 (0xD)
SRB int_var, 0xFFFE, 0x2; // set int_var bit 0 = 0 and bit 1 = 1
 // int_var = 12 (0xC)

The SRB instruction modifies the TML data in specific conditions that avoid the interference with
changes done in parallel by the MotionChip II firmware. This is particularly useful for the TML
registers, which have bits that can be manipulated both at firmware level and at TML level by the
user. A typical example is the interrupt flag register (IFR) where the interrupt flags set and reset
by both the firmware and the user. The SRB instruction allows you to set/reset bits in a “safe” way
without the risk of altering the settings done in parallel by the firmware.

Remark: In the SRB instruction, the address of the operand must be between 0x200 and 0x3FF.
This happens for most of the TML data, including all the user-defined variables, which take
addresses between 0x3B0 to 0x3FF. There are however a limited number of TML parameters
and variables having an extended address situated between 0x800 and 0x9FF. For these TML
data, you should use the SRBL instruction, for setting and resetting bits:

SRBL TMLvar, 0xFFFE, 0x2; // set bit 0 = 0 and bit 1 = 1 in TMLvar with
// extended address

© Technosoft 2006 MotionChip II TML Programming 75

2.6 Multi-axis control
This group of instructions includes:

• Data transfer operations between drives connected in a network
• Remote control commands through which a drive which acts like a host, effectively

controls one or more drives operation

2.6.1 Axis ID. Group ID

In multiple-axis configurations, each axis (drive) needs to be identified through a unique number –
the axis ID. This is a number between 1 and 255. The axis ID is initially set at power on by
reading the MotionChip II analogue input lines ADCIN10 to ADCIN14, as follows:

• Axis ID = 255 if all the analogue inputs ADCIN10 to ADCIN14 are high;
• Axis ID = 1 to 31, if at least one of the ADCIN10 to ADCIN14 inputs is low. The axis ID

value depends on the analogue inputs combination (see Table 3.1)

Later on, you can change the axis ID to any of the 255 possible values, using the TML instruction
AXISID, followed by an integer value between 1 and 255.

Apart from the Axis ID, each drive has also a group ID. The group ID represents a way to identify
a group of drives, for a multicast transmission. Each drive can be programmed to be member of
one or several of the 8 possible groups. When a TML command is sent to a group, all the axes
members of this group, will receive the command. For example, if the drive is member of group 1
and group 3, he will receive all the messages that in the group ID include group 1 and group 3.
This feature allows a host to send a command simultaneously to several axes, for example to
start or stop the axes motion in the same time.

The group ID is like the axis ID an 8-bit value. A TML command can be sent to 8 different groups.
Each group is defined as having one of the 8 bits of the group ID value set to 1 (see Table 3.2)

The group ID of an axis can have any value between 0 and 255. If for example the group ID is 11
(1011b) this means that the axis will receive all messages sent to groups 1, 2 and 4. You can set
a drive to be member of one group using the TML instruction GROUPID, followed by an integer
value between 1 and 8. You can add/remove an axis to group using the TML instructions
ADDGRID / REMGRID followed by an integer value between 1 and 8.

Remark: By default all the drives are set as members of group 1.

2.6.2 Data transfers between axes

There are 2 categories of data transfer operations between axes:

1. Read data from a remote axis. A variable or a memory location from the remote axis is
saved into a local variable

2. Write data to a remote axis. A variable or a memory location of a remote axis or group of
axes is written with the value of a local variable

In a read data from a remote axis operation:

© Technosoft 2006 MotionChip II TML Programming 76

• The source is placed on a remote axis and can be:

 A 16-bit TML data: TML register, parameter, variable or user variable
 A memory location indicated through a pointer variable

• The destination is placed on the local axis and can be:

 A 16-bit TML data: TML register, parameter or user variable

Programming Examples

1) Source: remote 16-bit TML data, Destination: local 16-bit TML data.

 local_var = [2]remote_var; // set local_var with value of remote_var from axis 2

Remark: If remote_var is a user variable, it has to be declared in the local axis too. Moreover, for
correct operation, remote_var must have the same address in both axes, which means that it
must be declared on each axis on the same position. Typically, when working with data transfers
between axes, it is advisable to establish a block of user variables that may be the source,
destination or pointer of data transfers, and to declare these data on all the axes as the first user
variables. This way you can be sure that these variables have the same address on all the axes.

2) Source: remote memory location pointed by a remote pointer variable, Destination: 16-bit TML
data. The remote memory location can be of 3 types: SRAM data memory (dm), SRAM memory
for TML programs (pm), EEPROM SPI-connected memory for TML programs (spi). If the pointer
variable is followed by a + sign, after the assignment, the pointer variable is incremented by 1 if
the destination is a 16-bit integer or by 2 if the destination is a 32-bit long or fixed

 local_var = [2](p_var),spi; // local_var = value of EEPROM program memory
// location from axis 2, pointed by p_var from axis 2

 long_var = [3](p_var+),dm; // local long_var = value of SRAM data memory
// locations from axis 3, pointed by p_var from axis

3
// p_var is incremented by 2

int_var = [4](p_var+),pm; // local int_var = value of SRAM program memory
// location from axis 4, pointed by p_var from axis 4;
// p_var is incremented by 1

Remark: When the remote source is a TML data, its address must be between 0x200 and 0x3FF.
This happens for most of the TML data, including all the user-defined variables, which take
addresses between 0x3B0 to 0x3FF. There are however a limited number of TML parameters
and variables having an extended address situated between 0x800 and 0x9FF. For these TML
data, you should use either indirect addressing via a pointer variable, or the following command
that supports extended addressing:

 local_var = [2]remote_var,dm; // set local_var with value of remote_var
// from axis 2 using extended addressing

In a write data to a remote axis or group of axes operation:

• The source is placed on the local drive and can be:

 A 16-bit TML data: TML register, parameter, variable or user variable

© Technosoft 2006 MotionChip II TML Programming 77

• The destination is placed on the remote axis or group of axes and can be:

 A 16-bit TML data: TML register, parameter or user variable
 A memory location indicated through a pointer variable

Programming Examples

1) Source: local 16-bit TML data, Destination: remote 16-bit TML data.

 [2]remote_var = local_var; // set remote_var from axis 2 with local_var value
 [G2]remote_var = local_var; // set remote_var from group 2 with local_var value

2) Source: 16-bit TML data, Destination: remote memory location pointed by a remote pointer
variable. The remote memory location can be of 3 types: SRAM data memory (dm), SRAM
memory for TML programs (pm), EEPROM SPI-connected memory for TML programs (spi). If the
pointer variable is followed by a + sign, after the assignment, the pointer variable is incremented
by 1 if the source is a 16-bit integer or by 2 if the source is a 32-bit long or fixed

 [2](p_var),spi = local_var; // set local_var value in EEPROM program memory
// location from axis 2, pointed by p_var from axis 2

 [G3](p_var+),dm = long_var; // set local long_var value in SRAM data memory
// location from group 3 of axes, each location being
// pointed its own p_var, which is incremented by 2

[4](p_var+),pm = int_var; // set local int_var value in SRAM program memory
// location from axis 4, pointed by p_var from axis 4;
// p_var is incremented by 1

Remark: When the remote destination is a TML data, its address must be between 0x200 and
0x3FF. This happens for most of the TML data, including all the user-defined variables, which
take addresses between 0x3B0 to 0x3FF. There are however a limited number of TML
parameters and variables having an extended address situated between 0x800 and 0x9FF. For
these TML data, you should use either indirect addressing via a pointer variable, or the following
command that supports extended addressing:

 [G2]remote_var,dm = local_var; // set remote_var from group 2 with
// local_var value, using extended addressing

2.6.3 Remote control

The TML includes 2 powerful instructions through which you can program a drive to issue TML
commands to another drive or group of drives. You can include these instructions in the TML
program of a drive, which can act like a host and can effectively control the operation of the other
drives from the network. These TML instructions are:
 [axis]{TML command;};
 [group]{TML command;};

where TML command can be any single axis TML instructions whose instruction code can be
represented in maximum 4 words (1 operation code + 3 data words). A single axis TML
instruction is defined as an instruction which does not transfer data or send TML commands to
other axes i.e. it is not one of the TML instructions presented in this paragraph.

© Technosoft 2006 MotionChip II TML Programming 78

Remark: Most of the TML instructions, enter in the category of those that can be sent to another
axis or group of axes.

Programming Examples

[G1]{CPOS=2000;}; // send a new CPOS command to all axes from group 1
[G1]{UPD}; // send an UPDate command to all the axes from group 1
 // all axes from group 1 will start to move simultaneously
[5]{STOP3;}; // send an STOP3 command to axis 5

2.7 Miscellaneous commands
In this category enter the following TML instructions:

NOP; // No operation
BEGIN; // first instruction in the main section of a TML program.
END; // marks the end of a TML program
SCIBR value; // change RS-232/RS-485 baudrate. Value specifies the new baudrate

as
// follows: 0 – 9600, 1 – 19200, 2 – 38400, 3 – 56000, 4 – 115200

SPIBR value; // change SPI baudrate with the EEPROM. Value specifies the new
// baudrate as: 0 for 1 MHz, 2 for 2MHz, 3 for 5MHz

CANBR value; // change CANbus baudrate Value specifies the new baudrates as:
// 0xF36C for 125 kHz, 0x736C for 250 kHz, 0x3273 for 500 kHz,
// 0x412A for 800 kHz and 0x1273 for 1MHz

CHECKSUM, dm start, stop, user_var; // compute the sum modulo 65535 of
// SRAM data memory locations from addresses start to stop

CHECKSUM, pm start, stop, user_var; // compute the sum modulo 65535 of
// SRAM TML program memory locations from addresses start to stop

CHECKSUM, spi start, stop, user_var; // compute the sum modulo 65535 of
// EEPROM TML program memory locations from addresses start to stop

Remarks:
1. It is mandatory to end the main section of a TML program with an END command. This

stops the execution of the TML program resident in the memory. All ML subroutines and
interrupt service routines should be added after the END command. IPM Motion Studio
automatically handles these requirements when it generates the TML program to compile
and download into the drive.

2. The END commands is also useful when you intend to change the TML program from the
EEPROM of a drive set in AUTORUN mode (i.e. which starts to execute automatically
after reset the TML program from the EEPROM memory) you should do the following:

• Send to the drive the command END, to stop the current program execution. In
order to disable the power stage, send also an AXISOFF command

• Download the new program
• Reset the drive. The new program will start to execute

3. When a drive is set in AUTORUN mode, it checks the first EEPROM memory location at
address 0x4000 to contain the binary code of the TML instruction BEGIN. If this is true,
the drive continues to execute the next TML instructions from the EEPROM, otherwise it

© Technosoft 2006 MotionChip II TML Programming 79

puts the drive in a wait. Therefore, for correct operation in AUTORUN mode, it is
important to have the TML program downloaded in EEPROM starting with first address
0x4000 and having the first TML instruction BEGIN.

2.8 Internal units and scaling factors
This paragraph describes the MotionChip II internal units (IU) and their correspondence with the
international standard units (SI).

The values you set in the TML parameters must be always in internal units. As the TML
parameters may represent various signals: position, speed, current, voltage, etc. in order to
correctly identify each category of internal units, these have been named after their category. For
example the position units are the internal units for position, the speed units are the internal
units for speed, etc.

Position units

In the TML environment the internal position units (IU) are encoder counts.

The correspondence with the international standard (SI) units is:

.]u.i[Position
lines_encoder_No4

2]rad[Position ⋅
×

π×
=

where:

 No_encoder_lines – is the number of encoder lines per revolution

Speed units

In TML environment the internal speed units (IU) are encoder counts/slow loop sampling period
i.e. the position variation over one position/speed loop sampling period

The correspondence with the international standard (SI) units is:

.]u.i[Speed
S_Tslines_encoder_No4

2]s/rad[Speed ⋅
××

π×
=

where:

 No_encoder_lines – is the number of encoder lines per revolution

 Ts_S – is the slow loop sampling period [s]

Acceleration units

In TML environment the internal acceleration units (IU) are encoder counts/slow loop sampling^2

The correspondence with the international standard (SI) units is:

.]u.i[onAccelerati
2^S_Tslines_encoder_No4

2]2^s/rad[onAccelerati ⋅
××

π×
=

where:

 No_encoder_lines – is the number of encoder lines per revolution

© Technosoft 2006 MotionChip II TML Programming 80

 Ts_S – is the speed loop sampling period [s]

Current units

The correspondence with the international standard (SI) units is:

.]u.i[Current
65472

axPSIm2]A[Current ⋅=

where:

 ImaxPS – is the power stage peak current i.e. the maximum measurable current [A]

Typically, a motor phase current is measured through transducers that provide a voltage
proportional with the current value. This is connected to a MotionChip II analogue input. The
currents are both positive and negative, therefore the current transducer output is offset by half in
order to get zero current at half A/D input scale. The power stage peak current is the current
corresponding to half of the maximum value for the analogue input i.e. half of 3.3V. After A/D
conversion 3.3V is 65472.

Voltage command units

The significance of the voltage commands as well as the scaling factors, depend on the motor
technology and the control method used.

For a brushed DC motor the voltage command is the voltage to apply between the motor phases.

For a brushless DC motor (BLDC) i.e. a brushless motor with trapezoidal control (more exactly
with commutation on Hall sensors causing trapezoidal BEMF), the voltage command is the
voltage to apply between 2 of the 3 motor phases. These are the 2 phases that are supplied at
one moment.

For a brushless AC motor (PMSM) i.e. a brushless motor with sinusoidal control (field oriented
vector control generating sinusoidal currents and voltages), the voltage commands are the
amplitude of the sinusoidal phase voltages.

For the brushed DC and brushless DC motors, the correspondence with the international
standard (SI) units is:

.]u.i[commandVoltage
32767
Vdc]V[commandVoltage ⋅=

where:

Vdc – is the rated DC-link/supply voltage [V]

In MotionChip II, the output voltage of each inverter is leg is set via a command in the range (-
32767, + 32767). The minimum value means that that lower transistor is all the time ON and
upped one is OFF, hence the inverter output voltage is 0. The maximum value means that the
upper transistor is all the time ON and the lower one is OFF, hence the inverter output voltage is
equal with the DC link/supply voltage (minus a slight voltage drop).

© Technosoft 2006 MotionChip II TML Programming 81

In the case of a brushed DC or brushless DC motor, a voltage command for of let’s say 16384
(half of positive scale), means that on one leg the command is +16384 and on the other leg it is
negated that is –16384. This means that one motor leg is connected to a potential of ¾ of the DC
link/supply voltage, while the other motor leg is connected to ¼ of the DC-link/supply voltage. The
difference i.e. the motor voltage is half of the inverter supply.

For the brushless AC motor, the correspondence with the international standard (SI) units is:

.]u.i[commandVoltage
65534

Vdc1.1]V[commandVoltage ⋅
×

=

In the case of a brushless AC motor, the voltage commands are sinusoidal with mid point and
amplitude equal with ½ of the DC-link/supply voltage. The 1.1 factor comes from a MotionChip II
advanced PWM control technique which add another 10% on the voltages applied on the motor

DC-link/supply voltage units

The correspondence with the international standard (SI) units for DC-link/supply voltage is:

.]u.i[Voltage
65472

urableVdcMaxMeas]V[Voltage ⋅=

where:

 VdcMaxMeasurable – is the maximum measurable DC-link/supply voltage [V]

Typically, the DC-link/supply voltage is measured through a voltage divisor connected to an
analogue input of the MotionChip II. The maximum measurable DC-link/supply voltage is the DC-
link/supply voltage that corresponds to the MotionChip II maximum value for the analogue input
i.e. 3.3V, which after A/D conversion is 65472.

Time units

In TML environment the internal time units (IU) are expressed in slow loop sampling periods.

The correspondence with the international standard (SI) units is:

.]u.i[TimeS_Ts]s[Time ⋅=

where:

 Ts_S – is the speed loop sampling period

For example, if Ts_S is 1ms, one second is 1000 in internal time units.

Current increment units

The correspondence with the international standard (SI) units for current increment is:

i.u.]Increment[Current
Ts_S65472

2ImaxPSA/s]Increment[Current ⋅
×

=

where:

ImaxPS – is the power stage maximum current [A]
 Ts_S – is the speed loop sampling period [s]

© Technosoft 2006 MotionChip II TML Programming 82

Voltage (command) increment units

Like in the case of the voltage command units, the correspondence with the international
standard (SI) units of the voltage increment units depends on the on the motor technology and the
control method used.

For the brushed DC and brushless DC motors, the correspondence with the international
standard (SI) units is:

.]u.i[Increment Voltage
S_Ts×32767

Vdc
=]s/V[rementncI Voltage

For the brushless AC motor, the correspondence with the international standard (SI) units is:

.]u.i[incrementVoltage
S_Ts×65534

Vdc×1.1
=]s/V[incrementVoltage

where:

 Vdc – is the DC-link/supply voltage [V]
 Ts_S – is the speed loop sampling period [s]

Electrical angle units

The correspondence with the international standard (SI) units is:

.]u.i[angleElectrical
32768
π

=]rad[angleElectrical

The electrical angle is the mechanical angle divided by the number of pole pairs. For example
when a brushless motor with 2 pairs does half of revolution (i.e. 180 mechanical degrees) this
corresponds to 360 electrical degrees

Electrical angle increment units

The correspondence with the international standard (SI) units is:

.]u.i[increment angleElectrical
pp×C_Ts×32767

π
=]s/rad[speed Motor

where:
 pp – is the number of pair poles
 Ts_C – is the current loop sampling period [s]

Temperature units

The correspondence with the international standard (SI) units is:

().]u.i[TempOffset.]u.i[eTemperatur
65472]C/V[GainTempSensor

V3.3]C[eTemperatur
o

-
×

=°

where:
TemperatureSensorGain – expresses the sensor output voltage variation when the
temperature modifies with one degree Celsius.

© Technosoft 2006 MotionChip II TML Programming 83

TempOffset – is the temperature sensor voltage output at 0°C expressed in internal units
[V]

.]u.i[TempOffset
65472

3.3]V[At0oCTempOutput ⋅=

Master Position units

When the master position is sent via a communication channel, the master position units depend
on the type of position sensor present on the master axis.

When the master position is an encoder the correspondence with the international standard (SI)
units is:

.]u.i[position_Master
lines_encoder_No×4

π×2
=]rad[position_Master

where:

 No_encoder_lines – is the master number of encoder lines per revolution

Master Speed units

The master speed is computed in internal units (IU) as master position units /slow loop sampling
period i.e. the master position variation over one position/speed loop sampling period.

When the master position is an encoder, the correspondence with the international standard (SI)
units is:

.]u.i[speed_Master
S_Ts×lines_encoder_No×4

π×2
=]s/rad[speed_Master

where:

 No_encoder_lines – is the master number of encoder lines per revolution

 Ts_S – is the slave slow loop sampling period [s]

© Technosoft 2006 MotionChip II TML Programming 85

3. Communication Channels and Protocols
3.1 Communication channels

The Motion Chip II accepts two types of communication channels:
• Serial RS-232 or RS-485
• CAN-bus
The serial RS-232 communication channel can be used to connect a host with a single
MotionChip II based drive (see Figure 3.1). The serial RS-485 and the CAN-bus communication
channels can be used to create a distributed control network with a host and up to 255
MotionChip II based drives (see Figure 3.2 and Figure 3.3).
When CAN-bus communication is used, any MotionChip II based drive from the network may also
be connected through RS-232 with a host (see Figure 3.4). In this structure, the axis connected
to the host, apart from executing the commands received from host or other axes acts also as a
retransmission relay which:
• Receives through RS-232, commands from host for another axis and retransmits them to the

destination through CAN-bus
• Receives through CAN-bus data requested by host from another axis and retransmits them to

the host through RS-232
This flexibility enables a host to program and monitor a CAN-bus network using only one RS-232
connection, without the need to have a CAN-bus interface. In this case the CAN-bus protocol is
completely transparent for the host.

Figure 3.1. Serial RS-232 communication between a host and the MotionChip II

Figure 3.2. Multi-drop network using serial RS-485 communication

Rx

Gnd

Tx

RS-232
transceiver SCITx

SCIRx

M
C

II
 D

riv
e

PC or Host

1 2 N

Host

485B (R-=T-)
485A (R+=T+)

RS485
transceiver

RS485
transceiver

S
C

IR
x

S
C

IT
x

RS485
transceiver

IO
#1

7/
48

5T
xE

n

M
C

II
D

riv
e

M
C

II
D

riv
e

M
C

II
D

riv
e

© Technosoft 2006 MotionChip II TML Programming 86

Figure 3.3. Multi-drop network using CAN-bus communication

Figure 3.4.Multi-drop network using CAN-bus communication with host connected through RS-232 to an axis

used as communication relay

3.2 Communication protocols

3.2.1 Axis Identification in a Multiple-axis Network

In multiple-axis configurations, each axis (drive) needs to be identified through a unique number –
the axis ID. This is a number between 1 and 255. The axis ID is initially set at power on by
reading the MotionChip II analogue input lines ADCIN10 to ADCIN14, as follows:

• Axis ID = 255 if all the analogue inputs ADCIN10 to ADCIN14 are high;
• Axis ID = 1 to 31, if at least one of the ADCIN10 to ADCIN14 inputs is low. The axis ID

value depends on the analogue inputs combination (see Table 3.1)

PC or Host
Rx
Gnd
Tx

RS232
transceiver

CAN HI
CAN LO

CAN
transceiver

 M

C
II

D
riv

e

SCIRx

SCITx

1 2 N

CAN
transceiver

CAN
transceiver

C
A

N
R

X

C
A

N
TX

 M
C

II
D

riv
e

 M

C
II

D
riv

e

1 2 N

Host

CAN HI
CAN LO

CAN
transceiver

CAN
transceiver

C
A

N
R

x

C
A

N
Tx

CAN
transceiver

 M

C
II

D
riv

e

 M

C
II

D
riv

e

 M

C
II

D
riv

e

© Technosoft 2006 MotionChip II TML Programming 87

Later on, you can change the axis ID to any of the 255 possible values, using the TML instruction
AXISID, followed by an integer value between 1 and 255.

Table 3.1 Axis ID values

ADCIN10 ADCIN11 ADCIN12 ADCIN13 ADCIN14 AXISID
HIGH HIGH HIGH HIGH HIGH 255
HIGH HIGH HIGH HIGH LOW 1
HIGH HIGH HIGH LOW HIGH 2
HIGH HIGH LOW HIGH LOW 3
HIGH HIGH LOW HIGH HIGH 4
HIGH HIGH LOW HIGH LOW 5
HIGH HIGH LOW LOW HIGH 6
HIGH HIGH LOW LOW LOW 7
HIGH LOW HIGH HIGH HIGH 8
HIGH LOW HIGH HIGH LOW 9
HIGH LOW HIGH LOW HIGH 10
HIGH LOW HIGH LOW LOW 11
HIGH LOW LOW HIGH HIGH 12
HIGH LOW LOW HIGH LOW 13
HIGH LOW LOW LOW HIGH 14
HIGH LOW LOW LOW LOW 15
LOW HIGH HIGH HIGH HIGH 16
LOW HIGH HIGH HIGH LOW 17
LOW HIGH HIGH LOW HIGH 18
LOW HIGH HIGH LOW LOW 19
LOW HIGH LOW HIGH HIGH 20
LOW HIGH LOW HIGH LOW 21
LOW HIGH LOW LOW HIGH 22
LOW HIGH LOW LOW LOW 23
LOW LOW HIGH HIGH HIGH 24
LOW LOW HIGH HIGH LOW 25
LOW LOW HIGH LOW HIGH 26
LOW LOW HIGH LOW LOW 27
LOW LOW LOW HIGH HIGH 28
LOW LOW LOW HIGH LOW 29
LOW LOW LOW LOW HIGH 30
LOW LOW LOW LOW LOW 31

Apart from the Axis ID, each drive has also a group ID. The group ID represents a way to identify
a group of drives, for a multicast transmission. Each drive can be programmed to be member of
one or several of the 8 possible groups. When a TML command is sent to a group, all the axes
members of this group, will receive the command. For example, if the drive is member of group 1
and group 3, he will receive all the messages that in the group ID include group 1 and group 3.
This feature allows a host to send a command simultaneously to several axes, for example to
start or stop the axes motion in the same time.

The group ID is like the axis ID an 8-bit value. A TML command can be sent to 8 different groups.
Each group is defined as having one of the 8 bits of the group ID value set to 1 (see Table 3.2)

© Technosoft 2006 MotionChip II TML Programming 88

Table 3.2. Definition of the groups

Group No. Group ID value
1 1 (0000 0001b)
2 2 (0000 0010b)
3 4 (0000 0100b)
4 8 (0000 1000b)
5 16 (0001 0000b)
6 32 (0010 0000b)
7 64 (0100 0000b)
8 128 (1000 0000b)

The group ID of an axis can have any value between 0 and 255. If for example the group ID is 11
(1011b) this means that the axis will receive all messages sent to groups 1, 2 and 4. You can set
a drive to be member of one group using the TML instruction GROUPID, followed by an integer
value between 1 and 8. You can add/remove an axis to group using the TML instructions
ADDGRID / REMGRID followed by an integer value between 1 and 8.

Remark: By default all the drives are set as members of group 1.

When a TML Instruction is send through the serial or CAN-bus channel, the message consists of
the axis or group ID followed by the instruction code (see Figure 3.5.).
.

Axis/Group ID
Operation Code
Data (1)
…
Data (4)

Figure 3.5. Message Structure

In a serial or CAN message, the axis or group ID is 16-bit word with the following structure:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 G ID7 ID6 ID5 ID4 ID3 ID2 ID1 ID0 0 0 0 H
 7 6 5 4 3 2 1 0

Where:
• Bit 0 – HOST bit. In a network configuration the HOST bit indicates the destination axis for

messages received by the relay axis: 0 – relay axis, 1 – host. Messages received by the relay
axis with HOST bit set to 1, will be retransmitted through RS-232 to the host. Messages
received by the relay axis with HOST bit set to 0, will be interpreted as commands for this axis
and will be executed. On RS-485, the host and the drives have different axis ID, the HOST bit
has as no significance and must be set to 0.

• Bits 11-8 – ID7-ID0: the 8-bit value of an axis or group ID
• Bit 12 – GROUP bit: 0 – ID7-ID0 value is an axis ID, 1 – ID7-ID0 value is a group ID

© Technosoft 2006 MotionChip II TML Programming 89

3.2.2 Serial communication protocol

Serial settings and message packaging

The RS-232/RS-485 serial communication is done using 8 data bits, 2 stop bits, no parity at the
following baud rates: 9600 (default after reset), 19200, 38400, 56600 and 115200. The messages
exchanged through serial communication are packed in the following format:

Byte 1: Message length
Byte 2: Axis/Group ID – high byte
Byte 3: Axis/Group ID – low byte
Byte 4: Operation code – high byte
Byte 5: Operation code – low byte
Byte 6: Data (1) – high byte
Byte 7: Data (1) – low byte
Byte 8: Data (2) – high byte
…
Byte13: Data (4) – low byte
Last byte: Checksum

Figure 3.6. Serial communication message format

The message length byte contains the total number of bytes of the message minus 2. Put in other
words, the length byte value is the number of bytes of the: axis/group ID (2bytes), the operation
code (2 bytes) and the data words (variable from 0 to 8 bytes). The checksum byte is the sum
modulo 256 of all the bytes of the message except the checksum byte itself.

Message types on serial communication
The serial communication protocol is based on two types of messages:
• Type A: Messages that don’t require an answer (a return message). In this category enter for

example the messages containing commands for parameter settings, commands that start or
stop motion execution, etc.

• Type B: Messages that require an answer. In this category enter the messages containing
commands that ask to return data, for example the value of TML parameters, registers, or
variables.

The type B message has two components:
• A request message sent through the TML command “Give Me Data”.
• An answer message sent through the TML command “Take Data”
The “Give Me Data” request message includes the following information:

 “Give Me Data” Message Contents

Axis ID (destination axis)
Operation Code: B004h for 16-bit data
 B005h for 32-bit data
Data(1): Sender Axis ID
Data(2): Requested Data Address

© Technosoft 2006 MotionChip II TML Programming 90

The “Take Data” answer message includes the following information:

Axis ID (destination axis)
Operation Code: B404h for 16-bit data
 B405h for 32-bit data
Data(1): Sender Axis ID
Data(2): Requested Data Address
Data(3): Data Requested 16LSB
Data(4): Data Requested 16MSB (for 32-bit data)

Example 1:

A host is connected to a drive via RS-232 and sends a type A message with the TML instruction
“kpp = 5” (set proportional part of the position controller with value 5).

The axis ID of host and of the drive are 255 = 0FFh. The TML instruction code is:

Operation Code = 205Eh
Data (1) = 0005h

The serial message package must have the following contents:

Byte 1: 06h – length: ID=2,Opcode=2,Data=2
Byte 2: 0Fh – high byte of ID = 0FF0h
Byte 3: F0h – low byte of ID = 0FF0h
Byte 4: 20h – high byte of OpCode = 205Eh
Byte 5: 5Eh – low byte of OpCode = 205Eh
Byte 6: 00h – high byte of Data(1) = 0005h
Byte 7: 05h – low byte of Data(1) = 0005h)
Byte 8: 88h – checksum

Figure 3.7. Serial message contents when TML instruction “kpp = 5” is sent

The host receives from the drive a byte 0x4F as confirmation that the message was received OK.

Remarks:
1. If the host wants to sent the same TML instruction “kpp = 5” to another drive with axis

ID=1, drive connected via CAN-bus with the drive having axis ID=255, the destination ID
becomes 0010h instead of 0FF0h. Hence the modifications are: byte 2: 00h, byte 3: 10h,
checksum byte adjusted accordingly (99h).

2. If the host is connected via RS-485 with a drive, the two devices must have different axis
ID values. For example if the host ID = 255 and the drive ID = 1, the message is the same
as in the previous remark.

Example 2:

A host is connected to a drive via RS-232 and wants to get the value of the kpp parameter from
the drive. The ID of host and drive are 255 = 0FFh.

Let’s suppose that the kpp value returned by the drive is 288 (120h). The host has to send a
“Give Me Data” TML command with the following instruction code:

© Technosoft 2006 MotionChip II TML Programming 91

Operation Code = B004h (16-bit value)
Data(1) = 0FF1h (sender ID = destination ID + HOST bit set)
Data(2) = 025Eh (kpp variable address)

The” Take Data” answer will have the following instruction code:

Operation Code = B404h (16-bit value)
Data(1) = 0FF0h (sender ID)
Data(2) = 025Eh (kpp variable address)
Data(3) = 0120h (kpp variable value)

The serial message send by the host with “Give Me Data” TML command must have the following
contents:

Byte 1: 08h – length ID=2,Opcode=2,Data=4
Byte 2: 0Fh – high byte of ID = 0FF0h
Byte 3: F0h – low byte of ID = 0FF0h
Byte 4: B0h – high byte of OpCode = B004h
Byte 5: 04h – low byte of OpCode = B004h
Byte 6: 0Fh – high byte of Data(1) = 0FF1h
Byte 7: F1h – low byte of Data(1) = 0FF1h
Byte 8: 02h – high byte of Data(2) = 025Eh
Byte 9: 5Eh – low byte of Data(2) = 025Eh
Byte 8: 1Bh – checksum

Figure 3.8. Serial message contents for “Give Me Data” value of kpp

The host receives from the drive a byte 0x4F as confirmation that the message was received OK.

The serial message received by the host with “Take Data” TML command must have the following
contents:

Byte 1: 0Ah – length ID=2,Opcode=2,Data=6
Byte 2: 0Fh – high byte of ID = 0FF1h
Byte 3: F1h – low byte of ID = 0FF1h
Byte 4: B4h – high byte of OpCode = B404h
Byte 5: 04h – low byte of OpCode = B404h
Byte 6: 0Fh – high byte of Data(1) = 0FF0h
Byte 7: F0h – low byte of Data(1) = 0FF0h
Byte 8: 02h – high byte of Data(2) = 025Eh
Byte 9: 5Eh – low byte of Data(2) = 025Eh
Byte 10: 01h – high byte of Data(3) = 0120h
Byte 11: 20h – low byte of Data(3) = 0120h
Byte 12: 42h – checksum

Figure 3.9. Serial message contents for “Take Data” value of kpp

© Technosoft 2006 MotionChip II TML Programming 92

Remarks:

1. If the host wants to get the value of the kpp parameter from another drive with axis ID=1,
connected via CAN-bus with the drive having axis ID=255, the destination ID becomes
0010h in instead of 0FF0h in the “Give Me Data” message. “Take Data” message also will
have 0010h in instead of 0FF0h as sender ID. Hence the modifications are:

• “Give Me Data”: byte 2: 00h, byte 3: 10h, checksum byte adjusted accordingly;
• “Take Data”: byte 6: 00h, byte 7: 10h, checksum byte adjusted accordingly;

2. If the host is connected via RS-485 with a drive, the 2 devices must have different axis ID
values. For example if the host ID = 255 and the drive ID = 1, the modifications compared
with the above examples are:

• “Give Me Data”: byte 2: 00h, byte 3: 10h, byte 7: F0h (in sender ID the host bit =
0) and the checksum byte adjusted accordingly;

• “Take Data”: byte 3: F0h, byte 6: 00h, byte 7: 10h and the checksum byte
adjusted accordingly.

RS-232 communication protocol

The RS-232 protocol is full duplex, allowing simultaneous transmission in both directions. After
each command (Type A or B) sent by the host, the drive will confirm the reception by sending one
acknowledge-Ok byte. This byte is: ‘O’ (ASCII code of capital letter “o”, 0x4F). If the host receives
the ‘O’ byte, this means that the drive has received correctly (checksum verification was passed)
the last message sent, and now is ready to receive the next message.

Remark: If the destination axis for the message is not the axis connected with the host via RS-
232 (e.g. the relay axis), but another axis connected with the relay axis via CAN-bus, the
reception of the acknowledge-Ok byte from the relay axis doesn’t mean that the message was
received by the destination axis, but just by the relay axis. Depending on the CAN-bus baud rate
and the amount of traffic on this bus, the host may need to consider introducing a delay before
sending the next message to an axis connected on the CAN-bus. This delay must provide the
relay axis the time necessary to retransmit the message via CAN-bus.

If any error occurs during the message reception, for example the checksum computed by the
drive axis doesn’t match with the one sent by the host, the drive will not send the acknowledge-Ok
byte. If the host doesn’t receive any acknowledge byte for at least 2ms after the end of the
checksum byte transmission, this means that at some point during the last message transmission,
one byte was lost and the synchronization between the host and the relay axis is gone. In order to
restore the synchronization the host should do the following:

1. Send a SYNC byte having value 0x0D (higher values are also accepted)
2. Wait a programmed timeout (typically 2ms) period for an answer;
3. If the drive sends back the same SYNC byte, the synchronization is restored and the host

can send again the last message, else go to step 1

Repeat steps 1 to 3 until the drive answers with a SYNC byte or until 15 SYNC bytes are sent. If
after 15 SYNC bytes the drive still doesn’t answer, then there is a serious communication problem
and the serial link must be checked.

When a host sends a type A message through RS-232 it has to:
• Send the message;
• Wait the acknowledge-OK byte ‘O’ from the drive;

© Technosoft 2006 MotionChip II TML Programming 93

When a host sends a type B message through RS-232 it has to:
• Send a message with “Give Me Data” command;
• Wait the acknowledge-OK byte ‘O’ from the drive connected via RS-232 (relay axis);
• Wait the response message from the drive to which the message is addressed. The

answer contains the command “Take Data”.

When the relay axis returns a “Take Data” message it doesn’t expect to receive an acknowledge
byte from the host. It is the host task to monitor the communication. If the host gets the response
message with a wrong checksum, it is the host duty to send again the “Give Me Data” request.

RS-485 communication protocol

The RS-485 protocol is half duplex. If two devices start by mistake to transmit in the same time,
both transmissions are corrupted. Therefore for a correct operation, in an RS-485 network it is
mandatory to have a master, which controls the transmission. This means that only the master
can initiate a transmission, while all the other devices from the network may transmit only when
the master asks them to provide some data. Usually you should set as master your host.

After each command (Type A or B) sent by the host to one drive, the drive will confirm the
reception by sending one acknowledge-Ok byte. This byte is: ‘O’ (ASCII code of capital letter “o”,
0x4F). If the host receives the ‘O’ byte, this means that the drive has received correctly
(checksum verification was passed) the last message sent, and now is ready to receive the next
message.

The acknowledge-Ok byte is not sent when the host broadcasts a message to a group of drives.

If any error occurs during the message reception, for example if the checksum computed by the
drive axis doesn’t match with the one sent by the host, the drive will not send the acknowledge-Ok
byte. If the host doesn’t receive any acknowledge byte for at least 2ms after the end of the
checksum byte transmission, this means that at some point during the last message transmission,
one byte was lost and the synchronization between the host and the relay axis is gone. In order to
restore the synchronization the host should do the following:

1. Send a 15 SYNC byte having value 0x0D (higher values are also accepted)
2. Wait a programmed timeout (typically 2ms) period for an answer;
3. If the drive sends back the same SYNC byte, the synchronization is restored and the host

can send again the last message, else go to step 1

If the drive still doesn’t answer, then there is a serious communication problem and the serial link
must be checked

When a host sends a type A message through RS-485 it has to:
• Send the message;
• Wait the acknowledge-OK byte ‘O’ from the drive, only if the message destination was a

single drive;

When a host sends a type B message through RS-485 it has to:
• Send a message with “Give Me Data” command;
• Wait the acknowledge-OK byte ‘O’ from the drive;
• Wait the response message from the drive, which contains the command “Take Data”.

Remark: it is not possible to send a “Give Me Data” command to a group of axes.

© Technosoft 2006 MotionChip II TML Programming 94

When the drive returns a “Take Data” message it doesn’t expect to receive an acknowledge byte
from the host. It is the host task to monitor the communication. If the host gets the response
message with a wrong checksum, it is the host duty to send again the “Give Me Data” request.

3.2.3 CAN-bus Communication Protocol

CAN-bus communication settings and message packaging

The Technosoft drives implements the CAN 2.0B protocol that uses 29 bits for the identifier.
Below you can see how the information to be sent is packed in a CAN-bus message:

CAN message identifier:

28 0

Operation Code (7MSB) Group bit Axis/Group ID 0 0 0 Host bit Operation code (9LSB)

CAN message data bytes:

CAN Message
Data Byte No. TML Data Word

0 Data word (1) – low byte
1 Data word (1) – high byte
2 Data word (2) – low byte
3 Data word (2) – high byte
4 Data word (3) – low byte
5 Data word (3) – high byte
6 Data word (4) – low byte
7 Data word (4) – high byte

Figure 3.10. CAN message structure

Where G is the group bit and H is the host bit.

The CAN-bus communication offers the possibility to work on a semi-duplex network like in a full-
duplex one. The CAN controller automatically solves the conflicts that occur while two axes try to
transmit messages in the same time. In an RS-485 network, such an event usually corrupts both
messages, while in a CAN-bus the higher priority message always wins. The lower priority
message is automatically sent after the transmission of the first message ends. Hence, in a CAN-
bus network, all the limitations mentioned for RS-485 are eliminated.

Message types on CAN-bus communication

The CAN-bus communication protocol is based on two types of messages:

• Type A: Messages that don’t require an answer (a return message). In this category enter
for example the messages containing commands for parameter settings, commands that
start or stop motion execution, etc.

• Type B: Messages that require an answer. In this category enter the messages
containing commands that ask to return data, for example the value of TML parameters,
registers, or variables.

© Technosoft 2006 MotionChip II TML Programming 95

The type B message has two components:
• A request message sent through the TML command “Give Me Data”.
• An answer message sent through the TML command “Take Data”

The “Give Me Data” request message includes the following information:
CAN Identifier: Operation Code and Axis ID (destination
axis)
Data word (1): Sender Axis ID
Data word (2): Request Data Address

The Operation Code for the “Give Me Data” request is B004h for 16-bit data and B005h for 32-bit
data.
The “Take Data” answer message includes the following information:

CAN Identifier: Operation Code and Axis ID (destination
axis)
Data word (1): Sender Axis ID
Data word (2): Request Data Address
Data word (3): Data Requested 16 LSB
Data word (4): Data Requested 16 MSB (for 32-bit data)

The Operation Code for the “Take Data” request is B404h for 16-bit data and B405h for 32-bit
data.

Example 1:

A host is directly connected on a CAN-bus network with Technosoft drives and wants to send to
the drive with the axis ID=5 the TML instruction “kpp = 0x1234” (set proportional part of the
position controller with value 1234 hexa).

The code of the TML instruction is:

Operation Code = 205Eh
Data word (1) = 1234h

The CAN Message Identifier have the following content:
28 0

Operation Code
(7MSB of
205Eh)

Group
bit

Axis/Group
ID 0 0 0 Host

bit
Operation code
(9LSB of 205Eh)

0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 0 1 1 1 1 0 0400A05Eh

Consequently, the CAN message for “kpp = 0x1234” is:

 Value Description
Identifier 0400A05E CAN Message Identifier
Byte 0 34 low byte of Data word (1) = 1234h
Byte 1 12 high byte of Data word (1) = 1234h

Figure 3.11. CAN message contents when TML instruction “kpp = 0x1234” is sent

© Technosoft 2006 MotionChip II TML Programming 96

Example 2:

A host is directly connected on a CAN-bus network of Technosoft drives and wants to get the
value of the position error from the drive with the axis ID=5. The host ID=3.

The position error is a 16-bit TML variable named POSERR situated at the memory address
0x022A

The code of the TML instruction for “Give Me Data” is:

Operation Code = B004h
Data word (1) = 0031h
Data word (2) = 022Ah

The CAN Message Identifier for request command “Give Me Data” have the following content:
28 0

Operation Code
(7MSB of
B004h)

Group
bit

Axis/Group
ID 0 0 0 Host

bit

Operation code
(9LSB of
B004h)

1 0 1 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 1600A004h

Consequently, the CAN message for the TML instruction “?POSERR” (e.g. “Give Me Data of
POSERR) is:

 Value Description
Identifier 1600A004 CAN Message Identifier
Byte 0 31 low byte of Data word (1) = 0031h
Byte 1 00 high byte of Data word (1) = 0031h
Byte 2 2A low byte of Data word (2) = 022Ah
Byte 3 02 high byte of Data word (2) = 022Ah

Figure 3.12. CAN message contents when TML instruction “?POSERR” is sent
Supposing that the position error value is 2, the code of the TML instruction ”Take Data” is:

Operation Code = B404h
Data word (1) = 0050h
Data word (2) = 022Ah
Data word (3) = 0002h

The CAN message Identifier for command “Take Data” will have the following content:
28 0

Operation Code
(7MSB of
B004h)

Group
bit

Axis/Group
ID 0 0 0 Host

bit
Operation code
(9LSB of B004h)

1 0 1 1 0 1 0 0 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 1 0 0 16806204h

© Technosoft 2006 MotionChip II TML Programming 97

Consequently, the CAN message for the answer to the “?POSERR” request is:

 Value Description
Identifier 16806204 CAN Message Identifier
Byte 0 50 low byte of Data word (1) = 0050h
Byte 1 00 high byte of Data word (1) = 0050h
Byte 2 2A low byte of Data word (2) = 022Ah
Byte 3 02 high byte of Data word (2) = 022Ah
Byte 4 02 low byte of Data word (2) = 0002h
Byte 5 00 high byte of Data word (2) = 0002h

Figure 3.13. CAN message contents for “Take Data” value of POSERR

Remark: A “Give Me Data” command can’t be sent to a group of axes.

© Technosoft 2006 MotionChip II TML Programming 98

This page is empty

© Technosoft 2006 MotionChip II TML Programming 99

4. TML instruction set

The chapter describes the complete set of TML instructions, grouped by functionality. In each
group the instructions are ordered alphabetically, mnemonic, syntax and description are given for
each instruction.

TML instructions are divided in groups as follows:
• Motion mode setting group (Table 4.1)
• Event group (Table 4.2)
• Program flow (decision) group (Table 4.3)
• I/O group (Table 4.4)
• Assignment group (Table 4.5)
• Arithmetic and logic group (Table 4.6)
• Configuration and command group (Table 4.7)
• Multiple axis group (Table 4.8)
• Miscellaneous group (Table 4.9).
• On-line group (Table 4.10)

Table 4.1. Motion mode setting group

Mnemonic Syntax Description
MODE MODE CS0 Set MODE Cam Slave 0 ()
 MODE CS1 Set MODE Cam Slave 1 (T)
 MODE CS2 Set MODE Cam Slave 2 (S)
 MODE CS3 Set MODE Cam Slave 3 (S, T)
 MODE GS0 Set MODE Gear Slave 0 ()
 MODE GS1 Set MODE Gear Slave 1 (T)
 MODE GS2 Set MODE Gear Slave 2 (S)
 MODE GS3 Set MODE Gear Slave 3 (S,T)
 MODE PC0 MODE Position Contouring 0 ()
 MODE PC1 MODE Position Contouring 1 (T)
 MODE PC2 MODE Position Contouring 2 (S)
 MODE PC3 MODE Position Contouring 3 (S,T)
 MODE PE0 MODE Position External 0 ()
 MODE PE1 MODE Position External 1 (T)
 MODE PE2 MODE Position External 2 (S)
 MODE PE3 MODE Position External 3 (S,T)
 MODE PP0 MODE Position Profile 0 ()
 MODE PP1 MODE Position Profile 1 (T)
 MODE PP2 MODE Position Profile 2 (S)
 MODE PP3 MODE Position Profile 3 (S,T)

© Technosoft 2006 MotionChip II TML Programming 100

 MODE PPD0 MODE Position Pulse & Dir 0 ()
 MODE PPD1 MODE Position Pulse & Dir 1 (T)
 MODE PPD2 MODE Position Pulse & Dir 2 (S)
 MODE PPD3 MODE Position Pulse & Dir 3 (S,T)
 MODE SC0 MODE Speed Contouring 0 ()
 MODE SC1 MODE Speed Contouring 1 (T)
 MODE SE0 MODE Speed External 0 ()
 MODE SE1 MODE Speed External 1 (T)
 MODE SP0 MODE Speed Profile 0 ()
 MODE SP1 MODE Speed Profile 1 (T)
 MODE SPD0 MODE Speed Pulse & Dir 0 ()
 MODE SPD1 MODE Speed Pulse & Dir 1 (T)
 MODE TC MODE Torque Contouring
 MODE TEF MODE Torque External Fast loop
 MODE TES MODE Torque External Slow loop
 MODE TT MODE Torque Test
 MODE VC MODE Voltage Contouring
 MODE VEF MODE Voltage External Fast loop
 MODE VES MODE Voltage External Slow loop
 MODE VT MODE Voltage Test

Table 4.2. Event group

Mnemonic Syntax Description
!APO !APO V32 ! if Relative Position Over V32
 !APO val32 ! if Relative Position Over val32
!APU !APU V32 ! if Relative Position Under V32
 !APU val32 ! if Relative Position Under val32
!AT !AT V32 ! if Absolute Time >= V32
 !AT val32 ! if Absolute Time >= val32
!CAP !CAP ! if Capture triggered
!IN !IN#n 0 ! if Input #n is 0
 !IN#n 1 ! if Input #n is 1
!LSN !LSN ! if Limit Switch Negative active
!LSP !LSP ! if Limit Switch Positive active
!MC !MC !(set event) if Motion Complete
!RO !RO V32 ! if Reference Over V32
 !RO val32 ! if Reference Over val32
!RPO !RPO V32 ! if Relative Position Over V32
 !RPO val32 ! if Relative Position Over val32
!RPU !RPU V32 ! if Relative Position Under V32
 !RPU val32 ! if Relative Position Under val32

© Technosoft 2006 MotionChip II TML Programming 101

!RT !RT V32 ! if Relative Time >= V32
 !RT val32 ! if Relative Time >= val32
!RU !RU V32 ! if Reference Under V32
 !RU val32 ! if Reference Under val32
!SO !SO V32 ! if Speed Over V32
 !SO val32 ! if Speed Over val32
!SU !SU V32 ! if Speed Under V32
 !SU val32 ! if Speed Under val32
!VO !VO V32A, V32B ! if V32A Over V32B
 !VO V32A, val32 ! if V32A Over val32
!VU !VU V32A, V32B ! if V32A Under V32B
 !VU V32A, val32 ! if V32A Under val32
WAIT! WAIT! Wait until event occurs

Table 4.3. Program flow (decision) group

Mnemonic Syntax Description
CALL CALL Label Unconditional CALL of a function
 CALL Label, V16, Flag CALL function if V16 Flag 0
 CALL Label, V32, Flag CALL function if V32 Flag 0
GOTO GOTO Label Unconditional GOTO to label
 GOTO Label, V16, Flag GOTO label if V16 Flag 0
 GOTO Label, V32, Flag GOTO label if V32 Flag 0
RET RET Return from TML function
RETI RETI Return from TML Interrupt Service Routine

 Table 4.4. I/O group

Mnemonic Syntax Description
DIS2CAPI DIS2CAPI Disable 2nd CAPI capture input
DISCAPI DISCAPI Disable CAPI capture input
DISIO#n DISIO#n Disable IO#n
DISLSN DISLSN Disable LSN limit switch
DISLSP DISLSP Disable LSP limit switch
EN2CAPI0 EN2CAPI0 Enable 2nd CAPI capture for 1->0
EN2CAPI1 EN2CAPI1 Enable 2nd CAPI capture for 0->1
ENCAPI0 ENCAPI0 Enable CAPI capture for 1->0
ENCAPI1 ENCAPI1 Enable CAPI capture for 0->1
ENIO#n ENIO#n Enable IO#n
ENLSN0 ENLSN0 Enable LSN limit switch for 1->0
ENLSN1 ENLSN1 Enable LSN limit switch for 0->1
ENLSP0 ENLSP0 Enable LSP limit switch for 1->0

© Technosoft 2006 MotionChip II TML Programming 102

ENLSP1 ENLSP1 Enable LSP limit switch for 0->1
OUTPORT OUTPORT V16 Set OUT#28-31 with V16 value (4LSB)
ROUT#n ROUT#n Reset IO#n output to 0
SETIO#n SETIO#n IN Set IO#n as input
 SETIO#n OUT Set IO#n as output
SOUT#n SOUT#n Set IO#n output to 1

= V16D = IN#n Read input #n
 V16D = IN1/IN2,ANDm Read IN#4 to IN#11 with ANDm
 V16D = INPUT1, ANDm Read IN#25 to IN#32 with ANDm
 V16D = INPUT2, ANDm Read IN#33 to IN#39 with ANDm
 V16D = INPORT#n Read one input from IN#33 to 39
 V16D = INPORT,ANDm Read IN#36-39 in V16D (4LSB)

Table 4.5. Assignment group

Mnemonic Syntax Description
= (V16D), TM = V16S (V16D) from TM = V16S
 (V16D), TM = V32S (V16D) from TM = V32S
 (V16D), TM = val16 (V16D) from TM = val16
 (V16D), TM = val32 (V16D) from TM = val32
 (V16D+), TM = V16S (V16D) from TM = V16S then V16D += 1
 (V16D+), TM = V32S (V16D) from TM = V32S then V16D += 2
 (V16D+), TM = val16 (V16D) from TM = val16 then V16D += 1
 (V16D+), TM = val32 (V16D) from TM = val32 then V16D += 2
 V16 = label V16 = address of a TML label
 V16 = val16 V16 = val16
 V16D = (V16S), TM V16D = (&V16S) from TM
 V16D = (V16S+), TM V16D = (&V16S) from TM then V16S += 1
 V16D = V16S V16D = V16S
 V16D = -V16S V16D = -V16S
 V16D = V32S(H) V16D = V32S(H)
 V16D = V32S(L) V16D = V32S(L)
 V16D, dm = V16S V16D from dm = V16S (la)
 V16D, dm = val16 V16 from dm = val16 (la)
 V32 = val32 V32 = val32
 V32(H) = val16 V32(H) = val16
 V32(L) = val16 V32(H) = val16
 V32D = (V16S), TM V32D = (V16S) from TM
 V32D = (V16S+), TM V32D = (V16S) from TM then V16D += 2
 V32D = V32S V32D = V32S
 V32D = -V32S V32D = -V32S
 V32D =V16S << N V32D = V16S left-shifted by N

© Technosoft 2006 MotionChip II TML Programming 103

 V32D(H) = V16S V32D(H) = V16
 V32D(L) = V16S V32D(L) = V16
 V32D, dm = V32S V32D from dm = V32S (la)
 V32D, dm = val32 V32 from dm = val32 (la)

 Table 4.6. Arithmetic & Logic group

Mnemonic Syntax Description
+= V16 += val16 Add val16 to V16
 V16D += V16S Add V16S to V16D
 V32 += val32 Add val32 to V32
 V32D += V32S Add V32S to V32D
-= V16 -= val16 Subtract val16 from V16
 V16D -= V16S Subtract V16S from V16D
 V32 -= val32 Subtract val32 from V32
 V32D -= V32S Subtract V32S from V32D
* V16 * val16 << N PROD = (V16 * val16) >> N
 V16 * val16 >> N PROD = (V16 * val16) >> N
 V16A * V16B << N PROD = (V16A * V16B) << N
 V16A * V16B >> N PROD = (V16A * V16B) >> N
 V32 * V16 << N PROD = (V32 * V16) << N
 V32 * V16 >> N PROD = (V32 * V16) >> N
 V32 * val16 << N PROD = (V32 * val16) << N
 V32 * val16 >> N PROD = (V32 * val16) >> N
<<= PROD <<= N Left shift PROD by N
 V16 <<= N Left shift V16 by N
 V32 <<= N Left shift V32 by N
>>= PROD >>= N Right shift PROD by N
 V16 >>= N Right shift V16 by N
 V32 >>= N Right shift V32 by N
SRB SRB V16,ANDm,ORm Set / Reset Bits of a V16
 SRBL V16,ANDm,ORm Set / Reset Bits of a V16 (la)

Table 4.7. Configuration and Command group

Mnemonic Syntax Description
AXISOFF AXISOFF AXIS is OFF (deactivate control)
AXISON AXISON AXIS is ON (activate control)
CPA CPA Command Position is Absolute
CPR CPR Command Position is Relative
DINT DINT Disable TML Interrupts
EINT EINT Enable TML Interrupts

© Technosoft 2006 MotionChip II TML Programming 104

ENDINIT ENDINIT END of Initialization
EXTREF EXTREF 0 External Reference read from variable EREF updated on-line
 EXTREF 1 External Reference read from REFERENCE input
 EXTREF 2 External Reference read from second encoder input
RAOU RAOU Reset Automatic Origin Update
RESET RESET RESET DSP controller
RGM RGM Reset axis as Gear/Cam Master
SAOU SAOU Set Automatic Origin Update
SAP SAP V32 Set Actual Position = V32
 SAP val32 Set Actual Position = val32
SEG SEG D_time, D_ref Segment D_time, D_ref
 SEG V16, V32 Segment V16, V32
SGM SGM Set axis as Gear/Cam Master
STA STA Set Target position = Actual position
STOP0 STOP0 STOP motion in mode 0
STOP0! STOP0! STOP0 when ! (event occurs)
STOP1 STOP1 STOP motion in mode 1
STOP1! STOP1! STOP1 when ! (event occurs)
STOP2 STOP2 STOP motion in mode 2
STOP2! STOP2! STOP2 when ! (event occurs)
STOP3 STOP3 STOP motion in mode 3
STOP3! STOP3! STOP3 when ! (event occurs)
TUM0 TUM0 Set Target Update Mode 0
TUM1 TUM1 Set Target Update Mode 1
UPD UPD Update motion immediate
UPD! UPD! Update when ! (event occurs)

Table 4.8. Communication & Multiple axis group

Mnemonic Syntax Description
= [A/G] { Instr1; Instr2; …} Send a series of TML instructions to [A/G]
 [A/G] (V16D),TM = V16S [A/G] (V16D),TM = local V16S
 [A/G] (V16D),TM = V32S [A/G] (V16D),TM = local V32S
 [A/G] (V16D+),TM = V16S [A/G] (V16D),TM = local V16S then V16D += 1
 [A/G] (V16D+),TM = V32S [A/G] (V16D),TM = local V32S then V16D += 2
 [A/G] V16D = V16S [A/G] V16D = local V16S
 [A/G] V16D,dm = V16S [A/G] V16D,dm = local V16S (la)
 [A/G] V32D = V32S [A/G] V32D = local V32S
 [A/G] V32D,dm = V32S [A/G] V32D,dm= local V32S (la)
 V16D = [A] (V16S),TM Local V16D = [A] (V16S), dm
 V16D = [A] (V16S+),TM Local V16D = [A] (V16S), dm then V16S += 1
 V16D = [A] V16S Local V16D = [A] V16S

© Technosoft 2006 MotionChip II TML Programming 105

 V16D = [A] V16S,dm Local V16D = [A] V16S, dm (la)
 V32D = [A] V32S,dm Local V32D = [A] V32S, dm (la)
 V32D = [A] (V16S),TM Local V32D = [A] (V16S),TM
 V32D = [A] (V16S+),TM Local V32D = [A] (V16S),TM then V16S += 2
 V32D = [A] V32S Local V32D = [A] V32S
ADDGRID ADDGRID V16 Add Group ID = V16
 ADDGRID val16 Add Group ID = val16
AXISID AXISID val16 AXIS ID = val16
 AXISID V16 AXIS ID = V16
CANBR CANBR val16 Set CAN-bus Baud-Rate
GROUPID GROUPID val16 GROUP ID = val16
REMGRID REMGRID V16 Remove Group ID = V16
 REMGRID val16 Remove Group ID = val16

Table 4.9. Miscellaneous group

Mnemonic Syntax Description
BEGIN BEGIN BEGIN of a TML program

CHECKSUM CHECKSUM, TM Start, Stop,
V16D V16D=Checksum between Start and Stop addresses from TM

INITCAM INITCAM addrS, addrD Copy CAM table from SPI (addrS address) to RAM (addrD
address)

END END END of a TML program
NOP NOP No Operation
SCIBR SCIBR V16 Set SCI Baud Rate
 SCIBR val16 Set SCI Baud Rate
SPIBR SPIBR V16 Set SPI Baud Rate
 SPIBR val16 Set SPI Baud Rate

Table 4.10 On line group

Mnemonic Syntax Description
? ?V16 GiveMeData - 16-bit from SRAM data memory
 ?V32 GiveMeData - 32-bit from SRAM data memory
 GiveMeData - 16-bit from SRAM program memory
 GiveMaData - 32-bit from SRAM program memory
 GiveMeData - 16-bit from EEPROM program memory
 GiveMeData - 32-bit from EEPROM program memory
 TakeData requested with GiveMeData - 16-bit data
 TakeData requested with GiveMeData - 32-bit data
 Get a 16-bit TML data (address range 200-3FFh)
 Get a 32-bit TML data (address range 200-3FFh)
 Take the 16-bit TML data requested with Get a 16-bit TML
 Take the 32-bit TML data requested with Get a 32-bit TML

© Technosoft 2006 MotionChip II TML Programming 106

 Take a 32-bit TML data (address range 200-3FFh)
 Get version
 Answer to Get version

4.1 TML instruction set description
This paragraph presents for each TML instruction: mnemonic, arguments, binary code and
programming examples. TML instructions are ordered alphabetically. Instructions descriptions
may contain specific symbols. Their significance is presented in Table 4.11. The information is
grouped as follows:

• instruction name
• syntax
• operands
• type
• binary code
• description
• execution
• example

Table 4.11 TML Instructions Code Symbols

Symbols Description

&Label Address of TML program label
&V16 Address of a 16-bit integer variable
&V32 Address of a 32-bit long or fixed variable
(V16) Memory location at address equal with V16 value
(la) Long addressing. Source/destination operand provided with 16-bit address.

Some TML instructions using 9-bit short addressing are doubled with their long
addressing equivalent

9LSB(&V16) The 9 LSB (less significant bits) of the address of a 16-bit integer
9LSB(&V32) The 9 LSB (less significant bits) of the address of a 32-bit long or fixed
A Axis ID
A/G Axis ID or Group ID
ANDdis 16-bit AND mask. See Table MCRx & AND/OR masks for DISIO#n and

Table MCRx & PxDIR addresses
ANDen 16-bit AND mask. See Table MCRx & AND/OR masks for ENIO#n and

Table MCRx & PxDIR addresses
ANDin 16-bit AND mask. See Table AND/OR masks for SETIO#n IN
ANDm 16-bit user-defined AND mask
ANDout 16-bit AND mask. See Table AND/OR masks for SETIO#n OUT
ANDrst 16-bit AND mask. See Table AND/OR masks for ROUT#n

© Technosoft 2006 MotionChip II TML Programming 107

ANDset 16-bit AND mask. See Table AND/OR masks for SOUT#n
Bit_mask 16-bit AND mask. See Tables PxDIR & Bit_mask for V16=IN#n and

table MCRx & PxDIR addresses
D_ref 32-bit fixed value
D_time 16-bit value
Flag Condition Flag for GOTO/CALL
LengthMLI Length of a TML instruction code in words – 1
MCRx See Tables MCRx & AND/OR masks for ENIO#n / DISIO#n and

Table MCRx & PxDIR addresses
ORdis 16-bit OR mask. See Table MCRx & AND/OR masks for DISIO#n and

Table MCRx & PxDIR addresses
ORen 16-bit OR mask. See Table MCRx & AND/OR masks for ENIO#n and

Table MCRx & PxDIR addresses
ORin 16-bit OR mask.. See Table AND/OR masks for SETIO#n IN
ORm 16-bit user-defined OR mask
ORout 16-bit OR mask. See Table AND/OR masks for SETIO#n OUT
ORrst 16-bit OR mask. See Table AND/OR masks for ROUT#n
ORset 16-bit OR mask. See Table AND/OR masks for SOUT#n
PxDIR See Table PxDIR & Bit_msk for V16=IN#n and Table MCRx & PxDIR addresses
PM Data memory space: 200 – 3FFh/800 – 9FFh (internal), 8000 – FFFFh (external)
DM Program memory space: 8000 – FFFFh (external)
SPI SPI-E2ROM memory space: 4000h – 7FFFh (external)
TM Type of memory. When used in syntax TM should be replaced by DM or PM or

SPI. When used in code, see Table TM values.
VAR16 16-bit integer variable
VAR16D 16-bit integer variable used as destination
VAR16S 16-bit integer variable used as source
VAR32 32-bit long or fixed variable
VAR32(L) 16LSB of a 32-bit long or fixed variable (seen as a 16-bit integer)
VAR32(H) 16MSB of a 32-bit long or fixed variable (seen as a 16-bit integer)
VAR32D 32-bit long or fixed variable used as destination
VAR32S 32-bit long or fixed variable used as source
value16 16-bit integer value
value32 32-bit long or fixed value
value32(L) 16LSB of a 32-bit long or fixed value
value32(H) 16MSB of a 32-bit long or fixed value

© Technosoft 2006 MotionChip II TML Programming 108

Name ? Get data - On line commands send by a host + the answers
(On-line group)

Syntax

?VAR16 GiveMeData - 16-bit from SRAM data memory
?VAR32 GiveMeData - 32-bit from SRAM data memory
 GiveMeData - 16-bit from SRAM program memory
 GiveMaData - 32-bit from SRAM program memory
 GiveMeData - 16-bit from EEPROM program memory
 GiveMeData - 32-bit from EEPROM program memory
 TakeData requested with GiveMeData - 16-bit data
 TakeData requested with GiveMeData - 32-bit data
 Get a 16-bit TML data (address range 200-3FFh)
 Get a 32-bit TML data (address range 200-3FFh)
 Take the 16-bit TML data requested with Get a 16-bit TML
 Take the 32-bit TML data requested with Get a 32-bit TML
 Get version
 Answer to Get version request

Operands VAR16: integer variable

VAR32: long/fixed variable

TML program On-line Type
– X

Binary code

?VAR16 – GiveMeData – 16-bit from SRAM data memory

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 1 1 0 0 0 0 0 0 0 0 0 1 0 0

Expeditor AxisID
Data memory address from where to read data requested (&VAR16)

?VAR32 - GiveMeData – 32-bit from SRAM data memory

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 1 1 0 0 0 0 0 0 0 0 0 1 0 1

Expeditor AxisID
Data memory address from where to read data requested (&VAR32)

© Technosoft 2006 MotionChip II TML Programming 109

GiveMeData – 16-bit from SRAM TML program memory
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0

Expeditor AxisID
SRAM program memory address from where to read data requested

GiveMeData – 32-bit from SRAM TML program memory

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1

Expeditor AxisID
SRAM program memory address from where to read data requested

GiveMeData – 16-bit from EEPROM TML program memory

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0

Expeditor AxisID
EEPROM program memory address from where to read data requested

GiveMeData – 32-bit from EEPROM TML program memory

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 1 1 0 0 0 0 0 0 0 0 1 0 0 1

Expeditor AxisID
EEPROM program memory address from where to read data requested

TakeData requested with GiveMeData – 16-bit data

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 1 1 0 1 0 0 0 0 0 0 0 1 0 0

Expeditor AxisID
SRAM data, SRAM program or EEPROM memory address of data requested

Data requested

TakeData requested with GiveMeData – 32-bit data

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 1 1 0 1 0 0 0 0 0 0 0 1 0 1

Expeditor AxisID
SRAM data, SRAM program or EEPROM memory address of data requested

Data requested – 16LSB
Data requested – 16MSB

Get a 16-bit TML data (the TML data address must be in range 200-3FFh)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 1 0 0 0 0 (9LSBs of &VAR16D)

Expeditor AxisID

Get a 32-bit TML data (the TML data address must be in range 200-3FFh)

© Technosoft 2006 MotionChip II TML Programming 110

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 1 0 0 1 0 (9LSBs of &VAR32D)

Expeditor AxisID

Take the 16-bit TML data requested with Get 16-bit TML data

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 1 0 1 0 0 (9LSBs of &VAR16D)

Expeditor AxisID
Data requested

Take the 32-bit TML data requested with Get 32-bit TML data

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 1 0 1 1 0 (9LSBs of &VAR32D)

Expeditor AxisID
Data requested – 16 LSB
Data requested – 16 MSB

Get version

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 1

Expeditor AxisID

Answer to get version request

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 1

Expeditor AxisID
ASCII code of first 2 digits of the firmware ID

ASCII code of last digit + revision letter of the firmware ID

Description These instructions allow a host to interrogate a MotionChip II based drive in order to

find the contents of any TML data as well as the value of any memory location from
the TML program space (EEPROM or SRAM) or from the SRAM data space. The
Get version command offers the possibility to check find which is the firmware
version of the drive. The firmware version has the form: FxyzA, where xyz is the
firmware number (3 digits) and A is a letter for the revision

Execution Return the answer messages

© Technosoft 2006 MotionChip II TML Programming 111

Name !APO Set event when motor absolute position is over a given value

(Event group)
Syntax

!APO value32 ! if AbsPositionOver value32
!APO VAR32 ! if AbsPositionOver VAR32

Operands VAR32: long variable

value32: 32-bit long immediate value

TML program On-line Type
X X

Binary code

!APO value32

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 1 0 0 0 0 1 0 0 1 0 0 1 0
0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0

LOWORD(value32)
HIWORD(value32)

!APO VAR32
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 1 0 0 0 1 1 0 0 1 0 0 1 0
0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0

&VAR32

Description Program the detection of the event when the motor position is greater than the

specified value. An update on event command (UPD!) must be used in these
cases, in order to activate an update operation when the monitored event occurs.

Execution Activate the setting of an event when motor position >= value32 or VAR32,

respectively.
The bits 14 and 11 of the TML motion status register (MSR) are reset.
This operation erases a previous programmed event that has occurred.

Example CACC = 1.5; //Acceleration command for speed profile
//(counts/sampling2)

CSPD = 20; //Speed command (counts/sampling)
MODE SP1; //Set Speed Profile Mode 1
UPD; //Update immediate
CSPD = 40; //New speed command (counts/sampling)
!APO 60000; //Set event when absolute position >= 60000

//(counts)
UPD!; //Update on event

© Technosoft 2006 MotionChip II TML Programming 112

Name !APU Set event when motor absolute position is under a given value

(Event group)

Syntax

!APU value32 ! if AbsPositionUnder value32
!APU VAR32 ! if AbsPositionUnder VAR32

Operands VAR32: long variable

value32: 32-bit long immediate value

TML program On-line Type
X X

Binary code

!APU value32

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 1 0 0 0 0 1 0 0 0 0 0 1 1
0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0

LOWORD(value32)
HIWORD(value32)

!APU VAR32
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 1 0 0 0 1 1 0 0 0 0 0 1 1
0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0

&VAR32

Description Program the detection of the event when the motor position is smaller than the
specified value. An update on event command (UPD!) must be used in these
cases, in order to activate an update operation when the monitored event occurs.

Execution Activate the setting of an event when motor position <= value32 or VAR32,
respectively.
The bits 15 and 14 of the TML motion status register (MSR) are reset.
This operation erases a previous programmed event that has occurred.

Example CACC = 1.5; //Acceleration command for speed profile
//(counts/sampling2)

CSPD = -20; //Speed command (counts/sampling)
MODE SP1; //Set Speed Profile Mode 1
UPD; //Update immediate
CSPD = -40; //New speed command (counts/sampling)
!APU -60000; //Set event when absolute position =< -

60000
//(counts)

UPD!; //Update on event

© Technosoft 2006 MotionChip II TML Programming 113

Name !AT Set event when absolute time is greater than a given value

(Event group)

Syntax

!AT value32 ! if AbsoluteTime >= value32
!AT VAR32 ! if AbsoluteTime >= VAR32

Operands VAR32: long variable

value32: 32-bit long immediate value

TML program On-line Type
X X

Binary code

!AT value32

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 1 0 0 0 0 1 0 0 1 1 0 0 0
0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0

LOWORD(value32)
HIWORD(value32)

!AT VAR32

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 1 0 0 0 1 1 0 0 1 1 0 0 0
0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0

&VAR32
Description Program the detection of the event when the system absolute time is greater than

the specified value. An update on event command (UPD!) must be used in these
cases, in order to activate an update operation when the monitored event occurs.

Execution Activate the setting of an event when system absolute time >= value32 OR

VAR32, respectively.
The bits 15 and 14 of the TML motion status register (MSR) are reset.
This operation erases a previous programmed event that has occurred.

Example CACC = 1.5; //Acceleration command for speed profile
//(counts/sampling2)

CSPD = 20; //Speed command (counts/sampling)
MODE SP1; //Set Speed Profile Mode 1
UPD; //Update immediate
CSPD = 40; //New speed command (counts/sampling)
!AT 10000; //Set event when absolute time is bigger

//than 10000 samplings
UPD!; //Update on event

© Technosoft 2006 MotionChip II TML Programming 114

Name !CAP Set event when a capture is triggered

(Event group)

Syntax

!CAP ! if CAPture triggered

Operands –

TML program On-line Type
X X

Binary code

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 1 0 0 0 0 0 0 0 0 1 1 1 0

Description Program the detection of the event when one of the external captures (from

encoder index – CAPI, or from second encoder – 2CAPI) was detected and
triggered by the DSP. An update on event command (UPD!) must be used in
these cases, in order to activate an update operation, when the monitored event
occurs.

Execution Activate the setting of an event when an external capture was triggered.

The bits 15 and 14 of the TML motion status register (MSR) are reset.

This operation erases a previous programmed event that has occurred.
Example

CACC = 1.5; //Acceleration command for speed profile
//(counts/sampling2)

CSPD = 20; //Speed command (counts/sampling)
MODE SP1; //Set Speed Profile Mode 1
UPD; //Update immediate
ENCAPI0; //Activate CAPI input to trigger a falling

//transitions.
CSPD = 40; //New speed command (counts/sampling)
!CAP; //Set event when capture is triggered
UPD!; //Update on event

© Technosoft 2006 MotionChip II TML Programming 115

Name !IN#n Set event when data from input #n is 0 or 1

(Event group)

Syntax

!IN#n 0 ! if Input#n is 0
!IN#n 1 ! if Input#n is 1

Operands n: bit-port number (0<=n<=39)

TML program On-line Type
X X

Binary code

!IN#n 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 1 0 0 0 0 1 1 0 1 1 0 1 1

PxDATDIR
Bit_mask

!IN#n 1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 1 0 0 0 0 1 1 0 1 1 0 1 0

PxDATDIR
Bit_ mask

Description Program the detection of the event once the data read from input bit-port #n

becomes 0, respectively 1. An update on event command (UPD!) must be used in
these cases, in order to activate an update operation when the monitored event
occurs.

Execution Activate the setting of an event, when the data read from input bit-port #n

becomes 0 (!IN#n 0) or 1 (!IN#n 1), respectively.
The bits 15 and 14 of the TML motion status register (MSR) are reset.
This operation erases a previous programmed event that has occurred.

Example
CACC = 1.5; //Acceleration command for speed profile

//(counts/sampling2)
CSPD = 20; //Speed command (counts/sampling)
MODE SP1; //Set Speed Profile Mode 1
UPD; //Update immediate
CSPD = 40; //New speed command (counts/sampling)
!IN#38 1; //Set event if INput#38 is high
UPD!; //Update on event

© Technosoft 2006 MotionChip II TML Programming 116

PxDAT & Bit_mask for !IN#n 0 and !IN#n 1

#n PxDATDIR Bit_mask
#0 0x7098 0x0001
#1 0x7098 0x0002
#2 0x7098 0x0004
#3 0x7098 0x0008
#4 0x7098 0x0010
#5 0x7098 0x0020
#6 0x7098 0x0040
#7 0x7098 0x0080
#8 0x709A 0x0001
#9 0x709A 0x0002
#10 0x709A 0x0004
#11 0x709A 0x0008
#12 0x709A 0x0010
#13 0x709A 0x0020
#14 0x709A 0x0040
#15 0x709A 0x0080
#16 0x709C 0x0001
#17 0x709C 0x0002
#18 0x709C 0x0004
#19 0x709C 0x0008

#n PxDATDIR Bit_mask
#20 0x709C 0x0010
#21 0x709C 0x0020
#22 0x709C 0x0040
#23 0x709C 0x0080
#24 0x709E 0x0001
#25 0x7095 0x0001
#26 0x7095 0x0002
#27 0x7095 0x0004
#28 0x7095 0x0008
#29 0x7095 0x0010
#30 0x7095 0x0020
#31 0x7095 0x0040
#32 0x7095 0x0080
#33 0x7096 0x0001
#34 0x7096 0x0002
#35 0x7096 0x0004
#36 0x7096 0x0008
#37 0x7096 0x0010
#38 0x7096 0x0020
#39 0x7096 0x0040

© Technosoft 2006 MotionChip II TML Programming 117

Name !LSN Set event when negative limit switch becomes active

(Event group)

Syntax

!LSN ! if LimitSwitchNegative active

Operands –

TML program On-line Type
X X

Binary code

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 1 0 0 0 0 0 0 0 0 1 1 0 0

Description Program the detection of the event once the negative limit switch is reached and

becomes active. An update on event command (UPD!) must be used in these
cases, in order to activate an update operation when the monitored event occurs.

Execution Activate the setting of an event when the negative limit switch becomes active.

The bits 15 and 14 of the TML motion status register (MSR) are reset.
This operation erases a previous programmed event that has occurred.

Example
CACC = 1.5; //Acceleration command for speed profile

//(counts/sampling2)
CSPD = -20; //Speed command (counts/sampling)
MODE SP1; //Set Speed Profile Mode 1
UPD; //Update immediate
ENLSN1; //Negative Limit Switch triggers rising
edge
CSPD = 20; //New speed command (counts/sampling)
!LSN; //Set event if Negative Limit Switch is

//reached
UPD!; //Update on event

© Technosoft 2006 MotionChip II TML Programming 118

Name !LSP Set event when positive limit switch becomes active

(Event group)

Syntax

!LSP ! if LimitSwitchPositive active

Operands –

TML program On-line Type
X X

Binary code

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 1 0 0 0 0 0 0 0 0 1 1 0 1

Description Program the detection of the event once the positive limit switch is reached and

becomes active. An update on event command (UPD!) must be used in these
cases, in order to activate an update operation when the monitored event occurs.

Execution Activate the setting of an event when the positive limit switch becomes active.

The bits 15 and 14 of the TML motion status register (MSR) are reset.
This operation erases a previous programmed event that has occurred.

Example
CACC = 1.5; //Acceleration command for speed

//profile (counts/sampling2)
CSPD = 20; //Speed command (counts/sampling)
MODE SP1; //Set Speed Profile Mode 1
UPD; //Update immediate
ENLSP1; //Positive Limit Switch triggers

//rising edge
CSPD = -20; //New speed command (counts/sampling)
!LSP; //Set event if Positive LimitSwitch is

//reached
UPD!; //Update on event

© Technosoft 2006 MotionChip II TML Programming 119

Name !MC Set event when the actual motion is completed

(Event group)

Syntax

!MC !(set event) if MotionComplete

Operands –

TML program On-line Type
X X

Binary code

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1

Description Program the detection of the event once the actual motion sequence is

completed. An update on event command (UPD!) must be used in these cases, in
order to activate an update operation when the monitored event occurs.

Execution Activate the setting of an event when the actual motion sequence is completed.

The bits 15 and 14 of the TML motion status register (MSR) are reset.
This operation erases a previous programmed event that has occurred.

Example
CACC = 1.5; //Acceleration command for position
 //profile (counts/sampling2)
CSPD = 40; //Speed command for position profile

//(counts/sampling)
CPOS = 50000; //Position command (counts)
CPA; //Position command is Absolute
MODE PP3; //Set Position Profile Mode 3
UPD; //Update immediate
CPOS = 100000; //New position command (counts);
!MC; //Set event when MotionComplete
UPD!; //Update on event

© Technosoft 2006 MotionChip II TML Programming 120

Name !RO Set event when the reference is grater than a given value

(Event group)

Syntax

!RO value32 ! if ReferenceOver value32
!RO VAR32 ! if ReferenceOver VAR32

Operands VAR32: long variable

value32: 32-bit long immediate value

TML program On-line Type
X X

Binary code

!RO value32

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 1 0 0 0 0 1 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 1 0 1 0 1 1 1 0

LOWORD(value32)
HIWORD(value32)

!RO VAR32

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 1 0 0 0 1 1 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 1 0 1 0 1 1 1 0

&VAR32

Description Program the detection of the event when the reference value is greater than the

specified value. An update on event command (UPD!) must be used in these
cases, in order to activate an update operation when the monitored event occurs.

 The reference value can be:
• a position reference
• a speed reference
• a torque reference
• a voltage reference

Execution Activate the setting of an event when the reference value is >= value32 or

VAR32, respectively.
 The bits 15 and 14 of the TML motion status register (MSR) are reset.
 This operation erases a previous programmed event that has occurred.

© Technosoft 2006 MotionChip II TML Programming 121

Examples :

a) In case of a position reference:

CACC = 1.5; //Acceleration command for position

//profile (counts/sampling2)
CSPD = 20; //Speed command for position profile

//(counts/sampling)
CPOS = 100000; //Position command (counts)
CPA; //Position command is Absolute
MODE PP3; //Set Position Profile Mode 3
UPD; //Update immediate
CSPD = 40; //New speed command for position

//profile (counts/sampling)
!RO 20000; //Set event if Reference >= 20000

//(counts) - position reference
UPD!; //Update on event

b) In case of a speed reference:

CACC = 0.005; //Acceleration command for speed
//profile (counts/sampling2)

CSPD = 20; //Speed command (counts/sampling)
MODE SP1; //Set Speed Profile Mode 1
UPD; //Update immediate
CACC = 0.5; //New acceleration command for speed

//profile (counts/sampling2)
!RO 10.; //Set event if Reference >= 10.

//(counts/sampling) - speed reference
UPD!; //Update on event

c) In case of a torque reference:

MODE TT; //Set Torque Test Mode
REFTST = 3968; //Reference saturation value in test

//mode
RINCTST = 10; //Reference increment value in test

//mode
UPD; //Update immediate
CACC = 0.005; //Acceleration command for speed

//profile (counts/sampling2)
CSPD = 20; //Speed command (counts/sampling)
MODE SP1; //Set Speed Profile Mode 1
!RO 2500; //Set event if Reference >= 2500

//(bits) – torque reference
UPD!; //Update on event

© Technosoft 2006 MotionChip II TML Programming 122

d) In case of a voltage reference:

MODE VT; //Set Voltage Test Mode
REFTST = 19353; //Reference saturation value in test

//mode
RINCTST = 194; //Reference increment value in test

//mode
UPD; //Update immediate
CACC = 0.05; //Acceleration command for position

//profile (counts/sampling2)
CSPD = 20; //Speed command for position profile

//(counts/sampling)
CPOS = 80000; //Position command (counts)
CPA; //Position command is Absolute
MODE PP3; //Set Position Profile Mode 3
!RO 15000; //Set event if Reference >= 15000

//(bits) – voltage reference
UPD!; //Update on event

© Technosoft 2006 MotionChip II TML Programming 123

Name !RPO Set event when the relative position is greater than a given value

(Event group)

Syntax

!RPO value32 ! if RelPositionOver value32
!RPO VAR32 ! if RelPositionOver VAR32

Operands VAR32: long variable

value32: 32-bit long immediate value

TML program On-line Type
X X

Binary code

!RPO value32

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 1 0 0 0 0 1 0 0 1 0 1 0 0
0 0 0 0 0 0 1 0 1 0 1 1 1 0 1 0

LOWORD(value32)
HIWORD(value32)

!RPO VAR32

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 1 0 0 0 1 1 0 0 1 0 1 0 0
0 0 0 0 0 0 1 0 1 0 1 1 1 0 1 0

&VAR32

Description Program the detection of the event when the relative position value is greater

than the specified value. An update on event command (UPD!) must be used in
these cases, in order to activate an update operation when the monitored event
occurs.

Execution Activate the setting of an event when the relative position value is >= value32 or

VAR32, respectively.
The bits 15 and 14 of the TML motion status register (MSR) are reset.

 This operation erases a previous programmed event that has occurred.

Example

CACC = 0.5; //Acceleration command for position
//profile (counts/sampling2)

CSPD = 20; //Speed command for position profile
//(counts/sampling)

CPOS = 100000; //Position command (counts0
CPR; //Position command is Relative
MODE PP3; //Set Position Profile Mode 3

© Technosoft 2006 MotionChip II TML Programming 124

UPD; //Update immediate
CSPD = 40; //New speed command (counts/sampling)
!RPO 60000; //Set event when relative position

//>= 60000 (counts)
UPD!; //Update on event

© Technosoft 2006 MotionChip II TML Programming 125

Name !RPU Set event when the relative position is smaller than a given value

(Event group)

Syntax

!RPU value32 ! if RelPositionUnder value32
!RPU VAR32 ! if RelPositionUnder VAR32

Operands VAR32: long variable

value32: 32-bit long immediate value

TML program On-line Type
X X

Binary code

!RPU value32

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 1 0 0 0 0 1 0 0 0 0 1 0 1
0 0 0 0 0 0 1 0 1 0 1 1 1 0 1 0

LOWORD(value32)
HIWORD(value32)

!RPU VAR32

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 1 0 0 0 1 1 0 0 0 0 1 0 1
0 0 0 0 0 0 1 0 1 0 1 1 1 0 1 0

&VAR32

Description Program the detection of the event when the relative position value is smaller

than the specified value. An update on event command (UPD!) must be used in
these cases, in order to activate an update operation when the monitored event
occurs.

Execution Activate the setting of an event, when the relative position value is <= value32 or
VAR32, respectively.
The bits 15 and 14 of the TML motion status register (MSR) are reset.

 This operation erases a previous programmed event that has occurred.
Example

CACC = 0.5; //Set acceleration command
 CSPD = -20; //Set speed command
CPOS = -100000; //Position command (counts)
CPR; //Position command is Relative
MODE PP3; //Set Position Profile Mode 3
UPD; //Update immediate
CSPD = -40; //New speed command (counts/sampling)
!RPU -60000; //Set event when relative position =< -60000

© Technosoft 2006 MotionChip II TML Programming 126

UPD!; //Update on event

© Technosoft 2006 MotionChip II TML Programming 127

Name !RT Set event when relative time is greater than a given value

(Event group)

Syntax

!RT value32 ! if RelativeTime >= value32
!RT VAR32 ! if RelativeTime >= VAR32

Operands VAR32: long variable

value32: 32-bit long immediate value

TML program On-line Type
X X

Binary code

!RT value32

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 1 0 0 0 0 1 0 1 1 1 0 0 1
0 0 0 0 0 0 1 0 1 1 0 0 0 0 1 0

LOWORD(value32)
HIWORD(value32)

!RT VAR32

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 1 0 0 0 1 1 0 1 1 1 0 0 1
0 0 0 0 0 0 1 0 1 1 0 0 0 0 1 0

&VAR32

Description Program the detection of the event when the system relative time is greater than

the specified value. An update on event command (UPD!) must be used in these
cases, in order to activate an update operation when the monitored event occurs.

Execution Activate the setting of an event when system relative time >= value32 or VAR32,
respectively.
The bits 15 and 14 of the TML motion status register (MSR) are reset.
This operation erases a previous programmed event that has occurred.

Example
CACC = 0.5; //Set acceleration command)
CSPD = 20; //Set speed command
CPOS = 100000; //Position command (counts)
CPR; //Position command is Relative
MODE PP3; //Set Position Profile Mode 3
UPD; //Update immediate
CSPD = 30; //New speed command
!RT 2000; //Set event if Relative Time >= 2000
UPD!; //Update on event

© Technosoft 2006 MotionChip II TML Programming 128

Name !RU Set event when the reference is smaller than a given value

(Event group)

Syntax

!RU value32 ! if ReferenceUnder value32
!RU VAR32 ! if ReferenceUnder VAR32

Operands VAR32: long variable

value32: 32-bit long immediate value

TML program On-line Type
X X

Binary code

!RU value32

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 1 0 0 0 0 1 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0 1 0 1 0 1 1 1 0

LOWORD(value32)
HIWORD(value32)

!RU VAR32

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 1 0 0 0 1 1 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0 1 0 1 0 1 1 1 0

&VAR32

Description Program the detection of the event when the reference value is smaller than the

specified value. An update on event command (UPD!) must be used in these
cases, in order to activate an update operation when the monitored event occurs.

The reference value can be:
• a position reference
• a speed reference
• a torque reference
• a voltage reference

Execution Activate the setting of an event when the reference value is <= value32 or

VAR32, respectively.
The bits 15 and 14 of the TML motion status register (MSR) are reset.

 This operation erases a previous programmed event that has occurred.

© Technosoft 2006 MotionChip II TML Programming 129

Examples :
a) In case of a position reference:

CACC = 1.5; //Acceleration command for position
//profile (counts/sampling2)

CSPD = -20; //Speed command for position
//profile (counts/sampling)

CPOS = -100000; //Position command (counts)
CPR; //Position command is Relative
MODE PP3; //Set Position Profile Mode 3
UPD; //Update immediate
CSPD = -40; //New speed command for position

//profile (counts/sampling)
!RU -20000; //Set event if Reference <= -20000

//(counts) - position reference
UPD!; //Update on event

b) In case of a speed reference:

CACC = 0.005; //Acceleration command for speed
//profile counts/sampling2)

CSPD = -20; //Speed command (counts/sampling)
MODE SP1; //Set Speed Profile Mode 1
UPD; //Update immediate
CACC = 0.5; //New acceleration command for speed

//profile (counts/sampling2)
!RU -10.; //Set event if Reference <=-10.

//(counts/sampling) - speed reference
UPD!; //Update on event

c) In case of a torque reference:

MODE TT; //Set Torque Test Mode
REFTST = -3968; //Reference saturation value in test

//mode
RINCTST = -10; //Reference increment value in test

//mode
UPD; //Update immediate
CACC = 0.005; //Acceleration command for speed

//profile (counts/sampling2)
CSPD = -20; //Speed command (counts/sampling)
MODE SP1; //Set Speed Profile Mode 1
!RU -2500; //Set event if Reference <= -2500

//(bits) – torque reference
UPD!; //Update on event

d) In case of a voltage reference:

MODE VT; //Set Voltage Test Mode
REFTST = -19353; //Reference saturation value in test

//mode

© Technosoft 2006 MotionChip II TML Programming 130

RINCTST = -194; //Reference increment value in test
//mode

UPD; //Update immediate
CACC = 0.05; //Acceleration command for position

//profile (counts/sampling2)
CSPD = 20; //Speed command for position profile

//(counts/sampling)
CPOS = 80000; //Position command (counts)
CPA; //Position command is Absolute
MODE PP3; //Set Position Profile Mode 3
!RU -15000; //Set event if Reference <= -15000

//(bits) – voltage reference
UPD!; //Update on event

© Technosoft 2006 MotionChip II TML Programming 131

Name !SO Set event when speed is over a given value

(Event group)

Syntax

!SO value32 ! if SpeedOver value32
!SO VAR32 ! if SpeedOver VAR32

Operands VAR32: fixed variable

value32: 32-bit fixed immediate value

TML program On-line Type
X X

Binary code
!SO value32

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 1 0 0 0 0 1 0 0 1 0 1 1 0
0 0 0 0 0 0 1 0 0 0 1 0 1 1 0 0

LOWORD(value32)
HIWORD(value32)

!SO VAR32
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 1 0 0 0 1 1 0 0 1 0 1 1 0
0 0 0 0 0 0 1 0 0 0 1 0 1 1 0 0

&VAR32

Description Program the detection of the event when the motor speed is bigger than the
specified value. An update on event command (UPD!) must be used in these
cases, in order to activate an update operation when the monitored event occurs.

Execution Activate the setting of an event when motor speed >= value32 or VAR32,

respectively.
The bits 15 and 14 of the TML motion status register (MSR) are reset.
This operation erases a previous programmed event that has occurred.

Example
CACC = 0.005; //Set acceleration command
CSPD = 20; //Set speed command
CPOS = 100000; //Position command (counts)
CPA; //Position command is Absolute
MODE PP3; //Set Position Profile Mode 3
UPD; //Update immediate
 CACC = 1; //Set new acceleration
!SO 15; //Set event if speed >= 15
UPD!; //Update on event

© Technosoft 2006 MotionChip II TML Programming 132

Name !SU Set event when speed is under a given value

(Event group)

Syntax

!SU value32 ! if SpeedUnder value32
!SU VAR32 ! if SpeedUnder VAR32

Operands VAR32: fixed variable

value32: 32-bit fixed immediate value

TML program On-line Type
X X

Binary code

!SU value32

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 1 0 0 0 0 1 0 0 0 0 1 1 1
0 0 0 0 0 0 1 0 0 0 1 0 1 1 0 0

LOWORD(value32)
HIWORD(value32)

!SU VAR32

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 1 0 0 0 1 1 0 0 0 0 1 1 1
0 0 0 0 0 0 1 0 0 0 1 0 1 1 0 0

&VAR32

Description Program the detection of the event when the motor speed is smaller than the

specified value. An update on event command (UPD!) must be used in these
cases, in order to activate an update operation when the monitored event occurs.

Execution Activate the setting of an event when motor speed <= value32 or VAR32,
respectively.
The bits 15 and 14 of the TML motion status register (MSR) are reset.
This operation erases a previous programmed event that has occurred.

Example
CACC = 0.005; //Set acceleration command
CSPD = -20; //Set speed command
CPOS = -100000; //Position command (counts)
CPA; //Position command is Absolute
MODE PP3; //Set Position Profile Mode 3
UPD; //Update immediate
CACC = 1; //Set new acceleration
!SU -15; //Set event if speed <= -15
UPD!; //Update on event

© Technosoft 2006 MotionChip II TML Programming 133

Name !VO Set event when a selected variable is equal or over a given value

(Event group)

Syntax

!VO VAR32A, value32 ! if Var32AOver value32
!VO VAR32A, VAR32B ! if Var32AOver VAR32B

Operands VAR32A: long variable

VAR32B: long variable
value32: 32-bit long immediate value

TML program On-line Type

X X
Binary code
!VO VAR32A, value32

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 1 0 0 0 0 1 0 0 1 0 0 0 0

&VAR32A
LOWORD(value32)
HIWORD(value32)

!VO VAR32A, VAR32B
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 1 0 0 0 1 1 0 0 1 0 0 0 0

&VAR32A
&VAR32B

Description Program the detection of the event when the selected variable (any 32-bit TML
variable) is greater than the specified value or the value of another 32-bit variable.
An update on event command (UPD!) must be used in these cases, in order to
activate an update operation when the monitored event occurs.

Execution Activate the setting of an event when the selected variable (VAR32A) >= value32,
or VAR32B, respectively.
The bits 15 and 14 of the TML motion status register (MSR) are reset.
This operation erases a previous programmed event that has occurred.

Example
CACC = 0.5; //Set acceleration command
CSPD = 20; //Set speed command
CPOS = 100000; //Position command (counts)
CPA; //Position command is Absolute
MODE PP3; //Set Position Profile Mode 3
UPD; //Update immediate
CSPD = 30; //Set new speed command
!VO APOS, 50000;//Set event when APOS is equal or over 50000
UPD!; //Update on event

© Technosoft 2006 MotionChip II TML Programming 134

Name !VU Set event when a selected variable is equal or under a given value

 (Event group)

Syntax

!VU VAR32A, value32 ! if Var32AUnder value32
!VU VAR32A, VAR32B ! if Var32AUnder VAR32B

Operands VAR32A: long variable

VAR32B: long variable
value32: 32-bit long immediate value

TML program On-line Type

X X

Binary code

!VU VAR32A, value32

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 1 0 0 0 0 1 0 0 0 0 0 0 1

&VAR32A
LOWORD(value32)
HIWORD(value32)

!VU VAR32A, VAR32B

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 1 0 0 0 1 1 0 0 0 0 0 0 1

&VAR32A
&VAR32B

Description Program the detection of the event when the selected variable (any 32-bit TML

variable) is smaller than the specified value or the value of another 32-bit
variable. An update on event command (UPD!) must be used in these cases, in
order to activate an update operation when the monitored event occurs.

Execution Activate the setting of an event when the selected variable (VAR32A) <= value32

or VAR32B, respectively.
The bits 15 and 14 of the TML motion status register (MSR) are reset.
This operation erases a previous programmed event that has occurred.

Example
CACC = 0.5; //Acceleration command for

//position profile (counts/sampling2)
CSPD = 20; //Speed command for position

//profile (counts/sampling)
CPOS = -50000; //Position command (counts)

© Technosoft 2006 MotionChip II TML Programming 135

CPA; //Position command is Absolute
MODE PP3; //Set Position Profile Mode 3
UPD; //Update immediate
CSPD = 30; //New speed command for position

//profile (counts/sampling2)
!VU APOS, -10000; //Set event when APOS is equal or

//under -10000 (counts)
UPD!; //Update on event

© Technosoft 2006 MotionChip II TML Programming 136

Name = Assignment instruction for 16 bits TML variables

(Assignment group)

Syntax

VAR16D = label set VAR16D to value of a label
VAR16D = value16 set VAR16D to value16
VAR16D = VAR16S set VAR16D to VAR16S value
VAR16D = VAR32S(L) set VAR16D to VAR32S(L) value
VAR16D = VAR32S(H) set VAR16D to VAR32S(H) value
VAR16D, dm = value16 set VAR16D from dm to value16
VAR16D, dm = VAR16S set VAR16D from dm to VAR16S
VAR16D = (VAR16S), TypeMem set VAR16D to &(VAR16S) from TM
VAR16D = (VAR16S+), TypeMem set VAR16D to &(VAR16S) from TM, then

VAR16S += 1
(VAR16D), TypeMem = value16 set &(VAR16D) from TM to value16
(VAR16D), TypeMem = VAR16S set &(VAR16D) from TM to VAR16S
(VAR16D+), TypeMem = value16 set &(VAR16D) from TM to value16, then

VAR16D += 1
(VAR16D+), TypeMem = VAR16S set &(VAR16D) from TM to VAR16S, then

VAR16D += 1
VAR32D(L) = value16 set VAR32D low word to value16
VAR32D(L) = VAR16S set VAR32D (L) to VAR16 value
VAR32D(H) = value16 set VAR32D high word to value16
VAR32D(H) = VAR16S set VAR32D (H) to VAR16 value

 Legend: D (destination), S (source).

Operands label: 16-bit address of a TML instruction label

value16: 16-bit integer immediate value
VAR16x: integer variable
VAR32x(L): the low word of VAR32x long variable
VAR32x(H): the high word of VAR32x long variable
Dm: data memory operand
TypeMem: memory operand.
(VAR16x): contents of variable VAR16x, representing a 16-bit address of another
variable

TML program On-line Type

X X

© Technosoft 2006 MotionChip II TML Programming 137

Binary code

VAR16D = label

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 1 0 0 0 0 (9LSBs of &VAR16D)

&label

VAR16D = value16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 1 0 0 0 0 (9LSBs of &VAR16D)

value16

VAR16D = VAR16S

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 1 0 1 0 0 (9LSBs of &VAR16D)

&VAR16S

VAR16D = VAR32S(L)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 1 0 1 0 0 (9LSBs of &VAR16D)

&VAR32S

VAR16D = VAR32S(H)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 1 0 1 0 0 (9LSBs of &VAR16D)

&VAR32S + 1

VAR16D,dm = value16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0

&VAR16D
value16

VAR16D, dm = VAR16S

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0

&VAR16D
&VAR16S

VAR16D = (VAR16S), TypeMem

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 0 1 0 0 0 1 1 0 0 0 TypeMem 0 0

&VAR16S
&VAR16D

VAR16D = (VAR16S+), TypeMem

© Technosoft 2006 MotionChip II TML Programming 138

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 0 1 0 0 0 1 0 0 0 0 TypeMem 0 0

&VAR16S
&VAR16D

 (VAR16D), TypeMem = value16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 0 1 0 0 0 0 1 0 1 0 TypeMem 0 0

&VAR16D
value16

(VAR16D), TypeMem = VAR16S

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 0 1 0 0 0 0 1 0 1 1 TypeMem 0 0

&VAR16D
&VAR16S

(VAR16D+), TypeMem = value16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 0 1 0 0 0 0 0 0 1 0 TypeMem 0 0

&VAR16D
value16

(VAR16D+), TypeMem = VAR16S

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 0 1 0 0 0 0 0 0 1 1 TypeMem 0 0

&VAR16D
&VAR16S

 VAR32D(L) = value16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 1 0 0 0 0 (9LSBs of &VAR32D)

value16

VAR32D(L) = VAR16S

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 1 0 1 0 0 (9LSBs of &VAR32D)

&VAR16S

VAR32D(H) = value16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 1 0 0 0 0 (9LSBs of &VAR32D+1)

value16

VAR32D(H) = VAR16S

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

© Technosoft 2006 MotionChip II TML Programming 139

0 0 1 0 1 0 0 (9LSBs of &VAR32D+1)
&VAR16S

Description This command allows you to generate assignment TML instruction for a specified

16-bit variable. All possible 16-bit assignment instruction forms are covered.
Execution (destination variable) = source value
TypeMem
DM 01
PM 00
SPI 10

Example1
int Var1;
Label1 …
...
Var1 = Label1;

Before instruction After instruction
Label1 0x1234 Label1 0x1234
Var1 x Var1 0x1234

Example2
int Var1;
...
Var1 = 26438;

Before instruction After instruction
Var1 x Var1 26438

Example3
int Var1, Var2;
...
Var2 = Var1;

Before instruction After instruction
Var2 0x56AB Var2 0x56AB
Var1 x Var1 0x56AB

Example4
int Var1;

 long Var3;
...
Var1 = Var3(L);

Before instruction After instruction
Var3 0x56ABCD98 Var3 0x56ABCD98
Var1 x Var1 0xCD98

Example5

int Var1;

© Technosoft 2006 MotionChip II TML Programming 140

 long Var3;
 ...

Var1 = Var3(H);

Before instruction After instruction
Var3 0x56ABCD98 Var3 0x56ABCD98
Var1 x Var1 0x56AB

Example6
 int Var1;

...
Var1, dm = 3321;

Before instruction After instruction
Var1 x Var1 3321

Example7
int Var1, Var2;
...
Var1, dm = Var2;

Before instruction After instruction
Var1 0x0A01 Var1 0x0A01
Var2 x Var2 0x0A01

Example8

int Var1, pVar2;
...
Var1 = (pVar2), dm;

Before instruction After instruction
pVar2 0x0A01 pVar2 0x0A01
Data memory Data memory
0x0A01 0x1234 0x0A01 0x1234
Var1 x Var1 0x1234

Example9

int Var1, pVar2;
...
Var1 = (pVar2+), dm;

Before instruction After instruction
pVar2 0x0A01 pVar2 0x0A02
Data memory Data memory
0x0A01 0x1234 0x0A01 0x1234
Var1 x Var1 0x1234

Example10

int pVar1;

© Technosoft 2006 MotionChip II TML Programming 141

...
(pVar1), spi = 0x5422;

Before instruction After instruction
pVar1 0x5100 pVar1 0x5100
SPI memory SPI memory
0x5100 x 0x5100 0x5422

Example11
int pVar1;
...
(pVar1+), spi = 0x5422;

Before instruction After instruction
pVar1 0x5100 pVar1 0x5101
SPI data memory SPI data memory
0x5100 x 0x5100 0x5422

Example12
int pVar1, Var2;
...
(pVar1), pm = Var2;

Before instruction After instruction
pVar1 0x8200 pVar1 0x8200
Var2 0xA987 Var2 0xA987
program memory program memory
0x8200 x 0x8200 0xA987

Example13
int pVar1, Var2;
...
(pVar1+), pm = Var2;

Before instruction After instruction
pVar1 0x8200 pVar1 0x8201
Var2 0xA987 Var2 0xA987
program memory program memory
0x8200 x 0x8200 0xA987

Example14
 long Var5;

...
Var5(H) = 0xAA55 ;

Before instruction After instruction
Var5 0x12344321 Var5 0xAA554321

Example15

long Var5;

© Technosoft 2006 MotionChip II TML Programming 142

...
Var5(L) = 0xAA55;

Before instruction After instruction
Var5 0x12344321 Var5 0x1234AA55

Example16
 int Var1;

long Var5;
...
Var5(H) = Var1;

Before instruction After instruction
Var1 0x7711 Var1 0x7711
Var5 0x12344321 Var5 0x77114321

Example17

int Var1;
long Var5;
...
Var5(L) = Var1;

Before instruction After instruction
Var1 0x7711 Var1 0x7711
Var5 0x12344321 Var5 0x12347711

© Technosoft 2006 MotionChip II TML Programming 143

Name = Assignment instruction for 16 bits TML variables

(IO group)

Syntax

VAR16D = IN#n read input #n into VAR16D
VAR16D = INPUT1, ANDm read inputs IN#25 to IN#32 into VAR16D with

ANDm
VAR16D = INPUT2, ANDm read input IN#33 to IN#39 into VAR16D with

ANDm
VAR16D = INPORT, 0xF read IN#36 to IN#39 into VAR16D with 0xF as

ANDm

Operands
 Var16D: integer variable

IN#n : the source is input bit-port number n (0=<n<=39)
INPUT1: the source is 8 input lines status of IO inputs #25 to #32
INPUT2: the source is 8 input lines status of IO inputs #33 to #39
ANDm: a 16-bit mask used to indicate which bits are read from the input ports
INPORT: the source is 4 input lines status of IO inputs #39, #38, #37 and #36

The variable VAR16D must be a valid variable name, defined in the current TML
application. The selection of the IN#n line is specific for each Technosoft drive.

TML program On-line Type

X X

Binary code

VAR16D = IN#n

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 0 0 0 0 (9LSBs of &VAR16D)

PxDATDIR
0 0 0 0 0 0 0 0 Bit_mask

VAR16D = INPUT1, ANDm

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 0 0 0 0 (9LSBs of &VAR16D)
0 1 1 1 0 0 0 0 1 0 0 1 0 1 0 1
0 0 0 0 0 0 0 0 ANDm

VAR16D = INPUT2, ANDm

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 0 0 0 0 (9LSBs of &VAR16D)
0 1 1 1 0 0 0 0 1 0 0 1 0 1 1 0
0 0 0 0 0 0 0 0 ANDm

© Technosoft 2006 MotionChip II TML Programming 144

VAR16D = INPORT, ANDm

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 0 1 0 0 (9LSBs of &VAR16D)

ANDm

Description Assign the value (status) of input #n or groups of input to the 16-bit destination
variable.
Execution (destination variable) = source input (input lines) status

PxDATDIR & Bit_mask
#n PxDATDIR Bit_mask
#0 0x7098 0x0001
#1 0x7098 0x0002
#2 0x7098 0x0004
#3 0x7098 0x0008
#4 0x7098 0x0010
#5 0x7098 0x0020
#6 0x7098 0x0040
#7 0x7098 0x0080
#8 0x709A 0x0001
#9 0x709A 0x0002
#10 0x709A 0x0004
#11 0x709A 0x0008
#12 0x709A 0x0010
#13 0x709A 0x0020
#14 0x709A 0x0040
#15 0x709A 0x0080
#16 0x709C 0x0001
#17 0x709C 0x0002
#18 0x709C 0x0004
#19 0x709C 0x0008

#n PxDATDIR Bit_mask
#20 0x709C 0x0010
#21 0x709C 0x0020
#22 0x709C 0x0040
#23 0x709C 0x0080
#24 0x709E 0x0001
#25 0x7095 0x0001
#26 0x7095 0x0002
#27 0x7095 0x0004
#28 0x7095 0x0008
#29 0x7095 0x0010
#30 0x7095 0x0020
#31 0x7095 0x0040
#32 0x7095 0x0080
#33 0x7096 0x0001
#34 0x7096 0x0002
#35 0x7096 0x0004
#36 0x7096 0x0008
#37 0x7096 0x0010
#38 0x7096 0x0020
#39 0x7096 0x0040

Example1
int Var1;
…
Var1 = IN#14;

Before instruction After instruction
IN#14 logic
state

1 IN#14 logic
state

1

Var1 x Var1 0x0040
 Bit#6 of Var1 has logic value of

IN#14. Remaining bits are set

© Technosoft 2006 MotionChip II TML Programming 145

to 0.
Example2

int Var1;
…
Var1 = INPUT1, 0x00E7;

Before instruction After instruction
IN# 32 31 30 29 28 27 26 25 IN# 32 31 30 29 28 27 26 25
Logic
state 0 1 1 0 1 1 0 1 Logic

state 0 1 1 0 1 1 0 1

Var1 x Var1 0x0065

IN# 32 31 30 29 28 27 26 25

Port state 0 1 1 0 1 1 0 1
And_Mas
k 1 1 1 0 0 1 1 1

Var1 0 1 1 0 0 1 0 1

Bitwise
operation

Example3
 int Var1;

…
Var1 = INPUT2, 0x00E7;

Before instruction After instruction
IN# 39 38 37 36 35 34 33 IN# 39 38 37 36 35 34 33
Input
state 1 0 0 1 1 0 1 Input

state 1 0 0 1 1 0 1

Var1 x Var1 0x0045

IN# 39 38 37 36 35 34 33

Input state 1 0 0 1 1 0 1
And_Mas
k 1 1 0 0 1 1 1

Var1 1 0 0 0 1 0 1

Bitwise
operation

Example4
int Var1;
…
Var1 = INPORT, 0xF;

Before instruction After instruction
IN# 39 38 37 36 IN# 39 38 37 36
Input state 1 0 1 1 Logic state 1 0 1 1

Var1 x Var1 0x000B

© Technosoft 2006 MotionChip II TML Programming 146

The inputs status (IN#39 to IN#36) is saved in the 4LSB of the
variable while the 12MSB are set to 0. If an input line is low, the
corresponding bit in the variable is zero. If an input line is high,
the corresponding bit in the variable is one.

Name = Assignment instruction for 32 bits TML variables
(Assignment group)

Syntax

VAR32D = value32 set VAR32D to value32
VAR32D = VAR32S set VAR32D to VAR32S value
VAR32D = VAR16S << N set VAR32D to VAR16S << N
VAR32D, DM = value32 set long VAR32D from DM to

value32
VAR32D, DM = VAR32S set long VAR32D from DM to

VAR32S
VAR32D = (VAR16S), TypeMem set VAR32D to &(VAR16S) from

TM
VAR32D = (VAR16S+), TypeMem set VAR32D to &(VAR16S) from

TM, then VAR16S += 2
(VAR16D), TypeMem = value32 set &(VAR16D) from TM to

value32
(VAR16D), TypeMem = VAR32S set &(VAR16D) from TM to

VAR32S
(VAR16D+), TypeMem = value32 set &(VAR16D) from TM to

value32, then VAR16D += 2
(VAR16D+), TypeMem = VAR32S set &(VAR16D) from TM to

VAR32S, then VAR16D += 2

Operands value32: 32-bit long immediate value

VAR32x: long variable
DM: data memory operand
TypeMem: memory operand
(VAR16x): contents of variable VAR16x, representing a 16-bit address of a
variable

TML program On-line Type
X X

Binary code

VAR32D = value32

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 1 0 0 1 0 (9LSBs of &VAR32D)

LOWORD(value32)
HIWORD(value32)

© Technosoft 2006 MotionChip II TML Programming 147

VAR32D = VAR32S

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 1 0 1 1 0 (9LSBs of &VAR32D)

&VAR32S

VAR32D =VAR16S << N

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 0 0 1 0 0 1 0 1 1 N (0≤N≤16)

&VAR32D
&VAR16S

VAR32D, dm = value32

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 1

&VAR32D
LOWORD(value32)
HIWORD(value32)

VAR32D, dm = VAR32S

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 0 1 0 0 0 0 0 0 0 1 0 1 0 1

&VAR32D
&VAR32S

VAR32D = (VAR16S), TypeMem

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 0 1 0 0 0 1 1 0 0 0 TypeMem 0 1

&VAR16S
&VAR32D

VAR32D = (VAR16S+), TypeMem

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 0 1 0 0 0 1 0 0 0 0 TypeMem 0 1

&VAR16S
&VAR32D

 (VAR16D), TypeMem = value32

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 0 1 0 0 0 0 1 0 1 0 TypeMem 0 1

&VAR16D
LOWORD(value32)
HIWORD(value32)

(VAR16D), TypeMem = VAR32S

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

© Technosoft 2006 MotionChip II TML Programming 148

1 0 0 1 0 0 0 0 1 0 1 1 TypeMem 0 1
&VAR16D
&VAR32S

(VAR16D+), TypeMem = value32

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 0 1 0 0 0 0 0 0 1 0 TypeMem 0 1

&VAR16D
LOWORD(value32)
HIWORD(value32)

(VAR16D+), TypeMem = VAR32S

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 0 1 0 0 0 0 0 0 1 1 TypeMem 0 1

&VAR16D
&VAR32S

Description Assign the 32-bit value of the source operand to the 32-bit destination variable

Execution (destination variable) = source value

TypeMem
DM 01
PM 00
SPI 10

Example1
long Var1;
...
Var1 = 0x1122AABB;

Before instruction After instruction
Var1 x Var1 0x1122AABB

Example2
long Var1, Var2;
...
Var1 = Var2;

Before instruction After instruction
Var2 0xAABC1234 Var2 0xAABC1234
Var1 x Var1 0xAABC1234

Example3
int Var1;
long Var2;
...

© Technosoft 2006 MotionChip II TML Programming 149

Var2 = Var1 << 4;

Before instruction After instruction
Var1 0x9876 Var1 0x9876
Var2 x Var2 0x00098760

Example4
long Var1;
...
Var1, dm = 0x1122AABB;

Before instruction After instruction
Var1 x Var1 0x1122AABB

Example5

long Var1, Var2;
...
Var1, dm = Var2;

Before instruction After instruction
Var2 0xAABC1234 Var2 0xAABC1234
Var1 x Var1 0xAABC1234

Example6

long Var1;
int pVar2;
...
Var1 = (pVar2), dm;

Before instruction After instruction
pVar2 0x96AB pVar2 0x96AB
Data memory Data memory
0x96AB 0x1234 0x96AB 0x1234
0x96AC 0xABCD 0x96AC 0xABCD
Var1 x Var1 0xABCD1234

Example7
 long Var1;

int pVar2;
...
Var1 = (pVar2+), dm;

Before instruction After instruction
pVar2 0x0A02 pVar2 0x0A04
Data memory Data memory
0x0A02 0x1234 0x0A02 0x1234
0x0A03 0xABCD 0x0A03 0xABCD
Var1 x Var1 0xABCD1234

© Technosoft 2006 MotionChip II TML Programming 150

Example8

int pVar1;
...
(pVar1), spi = 0x5422AFCD;

Before instruction After instruction
pVar1 0x5100 pVar1 0x5100
SPI memory SPI memory
0x5100 x 0x5100 0xAFCD
0x5101 x 0x5101 0x5422

Example9

int pVar1;
long Var2;
...
(pVar1), pm = Var2;

Before instruction After instruction
pVar1 0x8200 pVar1 0x8200
Var2 0xA98711EF Var2 0xA98711EF
program memory program memory
0x8200 x 0x8200 0x11EF
0x8201 x 0x8201 0xA987

Example10

int pVar1;
...
(pVar1+), pm = 0x5422AFCD;

Before instruction After instruction
pVar1 0x8200 pVar1 0x8202
program memory program memory
0x8200 x 0x8200 0xAFCD
0x8201 x 0x8201 0x5422

Example11

int pVar1;
long Var2;

 ...
(pVar1+), pm = Var2;

Before instruction After instruction
pVar1 0x8200 pVar1 0x8202
Var2 0xA98711EF Var2 0xA98711EF
program memory program memory
0x8200 x 0x8200 0x11EF

© Technosoft 2006 MotionChip II TML Programming 151

0x8201 x 0x8201 0xA987

© Technosoft 2006 MotionChip II TML Programming 152

Name = Assignment instruction for a 16 bits TML local variable with data from

another axis – multiple axis instruction (get data from another axis)
 (Multiple axis group)

Syntax

VAR16D = [Axis] VAR16S local VAR16D = [Axis] VAR16S
VAR16D = [Axis] VAR16S, DM local VAR16D = [Axis] VAR16S, DM
VAR16D = [Axis] (VAR16S), TypeMem local VAR16D = [Axis] &(VAR16S),

TM
VAR16D = [Axis] (VAR16S+), TypeMem local VAR16D = [Axis] &(VAR16S),

TM, then V16S+=1

Operands VAR16x: integer variable
 Axis: 8-bit ID for source axis

DM: data memory operand
TypeMem: memory operand. One of dm (0x1), pm (0x0) or spi (0x2) values
(VAR16x): contents of variable VAR16x, representing a 16-bit address of a
variable

TML program On-line Type
X –

Binary code

VAR16D = [Axis] VAR16S

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 1 0 0 0 0 (9LSBs of &VAR16S)
0 0 0 0 Axis 0 0 0 0

&VAR16D

VAR16D = [Axis] VAR16S, dm

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 0 1 1 1 0 0 0 0 0 0 0 1 0 0
0 0 0 0 Axis 0 0 0 0

&VAR16S
&VAR16D

VAR16D = [Axis] (VAR16S), TypeMem

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 0 1 1 1 0 1 1 0 0 0 TypeMem 0 0
0 0 0 0 Axis 0 0 0 0

&VAR16S
&VAR16D

© Technosoft 2006 MotionChip II TML Programming 153

VAR16D = [Axis] (VAR16S+), TypeMem
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 0 1 1 1 0 1 0 0 0 0 TypeMem 0 0
0 0 0 0 Axis 0 0 0 0

&VAR16S
&VAR16D

Description Bring the 16-bit value of the source operand from an external axis and assign it to

the 16-bit destination local variable.

Execution (local 16-bit destination variable) = external source 16-bit value, from another axis

TypeMem
DM 01
PM 00
SPI 10

Example1

int VarLoc, VarExt;
...
VarLoc = [15]VarExt;

Before instruction After instruction
VarLoc on local axis x VarLoc on local axis 0x1234
VarExt on axis 15 0x1234 VarExt on axis 15 0x1234

Example2

int VarLoc, VarExt;
...
VarLoc = [15]VarExt, dm;

Before instruction After instruction
VarLoc on local axis x VarLoc on local axis 0x1234
VarExt on axis 15 0x1234 VarExt on axis 15 0x1234

Example3

int VarLoc, pVarExt;
...
VarLoc = [15](pVarExt), dm;

Before instruction After instruction
pVarExt on axis 15 0x1234 pVarExt on axis 15 0x1234
At dm address 0x1234
on axis 15

0xFEDC At dm address 0x1234
on axis 15

0xFEDC

VarLoc on local axis x VarLoc on local axis 0xFEDC

Example4

© Technosoft 2006 MotionChip II TML Programming 154

int VarLoc, pVarExt;
...
VarLoc = [15](pVarExt+), dm;

Before instruction After instruction
pVarExt on axis 15 0x1234 pVarExt on axis 15 0x1235
At dm address 0x1234
on axis 15

0xFEDC At dm address 0x1234
on axis 15

0xFEDD

VarLoc on local axis x VarLoc on local axis 0xFEDC

© Technosoft 2006 MotionChip II TML Programming 155

Name = Assignment instruction for a 32 bits TML local variable with data from

another axis – multiple axis instruction (get data from another axis))
 (Multiple axis group)

Syntax

VAR32D = [Axis] VAR32S local VAR32D = [A] VAR32S
VAR32D = [Axis] VAR32S, DM local VAR32D = [A] VAR32S, DM
VAR32D = [Axis] (VAR16S), TypeMem local VAR32D = [A] &(VAR16S), TM
VAR32D = [Axis] (VAR16S+), TypeMem local VAR32D = [A] &(VAR16S), TM,

then V16S+=2

Operands VAR32x: long variable VAR32x
 Axis: 8-bit ID for source axis

DM: data memory operand
TypeMem: memory operand. One of dm (0x1), pm (0x0) or spi (0x2) values
(VAR16x): contents of variable VAR16x, representing a 16-bit address of a
variable

TML program On-line Type
X –

Binary code

VAR32D = [Axis] VAR32S

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 1 0 0 1 0 (9LSBs of &VAR32S)
0 0 0 0 Axis 0 0 0 0

&VAR32D

VAR32D = [Axis] VAR32S, dm

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 0 1 1 1 0 0 0 0 0 0 0 1 0 1
0 0 0 0 Axis 0 0 0 0

& VAR32S
& VAR32D

VAR32D = [Axis] (VAR16S), TypeMem

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 0 1 1 1 0 1 1 0 0 0 TypeMem 0 1
0 0 0 0 Axis 0 0 0 0

& VAR16S
& VAR32D

VAR32D = [Axis] (VAR16S+), TypeMem

© Technosoft 2006 MotionChip II TML Programming 156

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 0 1 1 1 0 1 0 0 0 0 TypeMem 0 1
0 0 0 0 Axis 0 0 0 0

& VAR16S
& VAR32D

Description Bring the 32-bit value of the source operand from an external axis and assign it to

the 32-bit destination local variable

Execution (local 32-bit destination variable) = external source 32-bit value, from another axis

TypeMem
DM 01
PM 00
SPI 10

Example1
long VarLoc, VarExt;
…
VarLoc = [15]VarExt;

Before instruction After instruction
VarLoc on local axis x VarLoc on local axis 0x1234ABCD
VarExt on axis 15 0x1234ABCD VarExt on axis 15 0x1234ABCD

Example2
long VarLoc, VarExt;
...
VarLoc = [15]VarExt, dm;

Before instruction After instruction
VarLoc on local axis x VarLoc on local axis 0xF0E1A2B3
VarExt on axis 15 0xF0E1A2B3 VarExt on axis 15 0xF0E1A2B3

Example3
long VarLoc;
int pVarExt;
...
VarLoc = [15](pVarExt), dm;

Before instruction After instruction
pVarExt on axis 15 0x1234 pVarExt on axis 15 0x1234
At dm address 0x1234
on axis 15

0xFEDC At dm address 0x1234
on axis 15

0xFEDC

At dm address 0x1235
on axis 15

0x2233 At dm address 0x1235
on axis 15

0x2233

VarLoc on local axis x VarLoc on local axis 0x2233FEDC

Example4 long VarLoc;

© Technosoft 2006 MotionChip II TML Programming 157

int pVarExt;
...
VarLoc = [15](pVarExt+), dm;

Before instruction After instruction
pVarExt on axis 15 0x1234 pVarExt on axis 15 0x1236
At dm address 0x1234
on axis 15

0xFEDC At dm address 0x1234
on axis 15

0xFEDF

At dm address 0x1235
on axis 15

0x2233 At dm address 0x1235
on axis 15

0x2233

VarLoc on local axis x VarLoc on local axis 0x2233FEDC

© Technosoft 2006 MotionChip II TML Programming 158

Name = Assignment instruction for a 16 bits TML external variable with data sent

 from the local axis – multiple axis instruction (send data to another axis)
(Multiple axis group)

Syntax

[Axis/Group] VAR16D = VAR16S [A/G] VAR16D = local VAR16S
[Axis/Group] VAR16D,dm = VAR16S [A/G] VAR16D, dm = local VAR16S
[Axis/Group] (VAR16D), TypeMem = VAR16S [A/G] &(VAR16D), TM = local VAR16S
[Axis/Group] (VAR16D+), TypeMem = VAR16S [A/G] &(VAR16D), TM = local VAR16S,

then V16D+=1

Operands VAR16x: integer variable
 Axis/Group: 8-bit ID for source axis or group of axes

dm: data memory operand
TypeMem: memory operand. One of dm (0x1), pm (0x0) or spi (0x2) values
(VAR16x): contents of variable VAR16x, representing a 16-bit address of a
variable

TML program On-line Type

X –

Binary code

[Axis/Group] VAR16D = VAR16S

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 1 1 1 0 0 (9LSBs of &VAR16D)
0 0 0 0 Axis/Group 0 0 0 0

&VAR16S

[Axis/Group] VAR16D,dm = VAR16S

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 0 1 1 0 0 0 0 0 0 1 0 1 0 0
0 0 0 0 Axis/Group 0 0 0 0

&VAR16D
&VAR16S

[Axis/Group] (VAR16D), TypeMem = VAR16S

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 0 1 1 0 0 0 1 0 1 1 TypeMem 0 0
0 0 0 0 Axis/Group 0 0 0 0

&VAR16D
&VAR16S

[Axis/Group] (VAR16D+), TypeMem = VAR16S

© Technosoft 2006 MotionChip II TML Programming 159

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 0 1 1 0 0 0 0 0 1 1 TypeMem 0 0
0 0 0 0 Axis/Group 0 0 0 0

&VAR16D
&VAR16S

Description Send the 16-bit local value of the source operand to an external axis and assign it

to the 16-bit destination external variable

Execution (external 16-bit destination variable from another axis) = local source 16-bit value

TypeMem
DM 01
PM 00
SPI 10

Example1

int VarLoc, VarExt;
...
[G8]VarExt = VarLoc;

Before instruction After instruction
VarLoc on local axis 0x1234 VarLoc on local axis 0x1234
VarExt on all axes
belonging to group 8

x VarExt on all axes
from group 8

0x1234

Example2

int VarLoc, VarExt;
...
[15]VarExt, dm = VarLoc;

Before instruction After instruction
VarLoc on local axis 0x1234 VarLoc on local axis 0x1234
VarExt on axis 15 x VarExt on axis 15 0x1234

Example3 int VarLoc, pVarExt;

...
[G8](pVarExt), dm = VarLoc;

Before instruction After instruction
VarLoc on local axis 0xFEDC VarLoc on local axis 0xFEDC
pVarExt on all axes
belonging to group 8

0x1234 pVarExt on all axes
belonging to group 8

0x1234

At dm address 0x1234
on all axes belonging
to group 8

x At dm address 0x1234
on all axes belonging
to group 8

0xFEDC

© Technosoft 2006 MotionChip II TML Programming 160

Example4
int VarLoc, pVarExt;
...
[G8](pVarExt+), dm = VarLoc;

Before instruction After instruction
VarLoc on local axis 0xFEDC VarLoc on local axis 0xFEDC
pVarExt on all axes
belonging to group 8

0x1234 pVarExt on all axes
belonging to group 8

0x1235

At dm address 0x1234
on all axes belonging
to group 8

x At dm address 0x1234
on all axes belonging
to group 8

0xFEDC

© Technosoft 2006 MotionChip II TML Programming 161

Name = Assignment instruction for a 32 bits TML external variable with data sent
 from the local axis – multiple axis instruction (send data to another axis)

(Communication & Multiple axis group)

Syntax

[Axis/Group] VAR32D = VAR32S [A/G] long VAR32D = local VAR32S
[Axis/Group] VAR32D, DM = VAR32S [A/G] long VAR32D, DM = local

VAR32S
[Axis/Group] (VAR16D), TypeMem =
VAR32S

[A/G] &(VAR16D), TM = local
VAR32S

[Axis/Group] (VAR16D+), TypeMem =
VAR32S

[A/G] &(VAR16D), TM = local
VAR32S, then V1DS+=2

Operands VAR32x: long variable VAR32x
 Axis: 8-bit ID for source axis or group of axes

dm: data memory operand
TypeMem: memory operand
(VAR16x): contents of variable VAR16x, representing a 16-bit address of a
variable

TML program On-line Type

X –

Binary code

[Axis/Group] VAR32D = VAR32S

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 1 1 1 1 0 (9LSBs of &VAR32D)
0 0 0 0 Axis/Group 0 0 0 0

&VAR32S

[Axis/Group] VAR32D, dm = VAR32S

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 0 1 1 0 0 0 0 0 0 1 0 1 0 1
0 0 0 0 Axis/Group 0 0 0 0

& VAR32D
& VAR32S

[Axis/Group] (VAR16D), TypeMem = VAR32S

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 0 1 1 0 0 0 1 0 1 1 TypeMem 0 1
0 0 0 0 Axis/Group 0 0 0 0

& VAR16D
& VAR32S

© Technosoft 2006 MotionChip II TML Programming 162

[Axis/Group] (VAR16D+), TypeMem = VAR32S
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 0 1 1 0 0 0 0 0 1 1 TypeMem 0 1
0 0 0 0 Axis/Group 0 0 0 0

& VAR16D
& VAR32S

Description Send the 32-bit local value of the source operand to an external axis and assign it

to the 32-bit destination external variable
TypeMem
DM 01
PM 00
SPI 10

Execution (external 32-bit destination variable from another axis) = local source 32-bit value

Example1

long VarLoc, VarExt;
...
[15]VarExt = VarLoc;

Before instruction After instruction
VarLoc on local axis 0x1234ABCD VarLoc on local axis 0x1234ABCD
VarExt on axis 15 x VarExt on axis 15 0x1234ABCD

Example2
long VarLoc, VarExt;
...
[15]VarExt, dm = VarLoc;

Before instruction After instruction
VarLoc on local axis 0xF0E1A2B3 VarLoc on local axis 0xF0E1A2B3
VarExt on axis 15 x VarExt on axis 15 0xF0E1A2B3

Example3
long VarLoc;
int pVarExt;
...
[15](pVarExt), dm = VarLoc;

Before instruction After instruction
VarLoc on local axis 0x2233FEDC VarLoc on local axis 0x2233FEDC
pVarExt on axis 15 0x1234 pVarExt on axis 15 0x1234
At dm address 0x1234
on axis 15

x At dm address 0x1234
on axis 15

0xFEDC

At dm address 0x1235
on axis 15

x At dm address 0x1235
on axis 15

0x2233

Example4

© Technosoft 2006 MotionChip II TML Programming 163

long VarLoc;
int pVarExt;
...
[15](pVarExt+), dm = VarLoc;

Before instruction After instruction
VarLoc on local axis 0x2233FEDC VarLoc on local axis 0x2233FEDC
pVarExt on axis 15 0x1234 pVarExt on axis 15 0x1236
At dm address 0x1234
on axis 15

x At dm address 0x1234
on axis 15

0xFEDC

At dm address 0x1235
on axis 15

x At dm address 0x1235
on axis 15

0x2233

© Technosoft 2006 MotionChip II TML Programming 164

Name – Get data from memory (16-bit/32-bit) with direct addressing

(On-line group)

Syntax –

Operands –

TML program On-line Type
– X

Binary code

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 0 1 0 0 0 0 0 0 0 0 TypeMem 0 0

Destination Address
16-bit value

Description The instructions request, via a communication channel, from a remote drive the

value contained in the memory location(s) with address specified directly in the
code. The address can be in data memory, program memory or SPI memory.

TypeMem
DM 01
PM 00
SPI 10

Execution Request from the remote drive, the remote drive sends the value requested.

© Technosoft 2006 MotionChip II TML Programming 165

Name – Get data from memory (16-bit/32-bit) with indirect addressing

 (On-line group)

Syntax –

Operands –

TML program On-line Type
– X

Binary code

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 0 1 0 0 0 0 1 0 0 0 TypeMem 0 0

Destination Address
LOWORD(value32)
HIWORD(value32)

Description The instructions request, via a communication channel, from a remote

drive the value contained in the memory location(s) with address
specified in VAR16 variable. The address contained in VAR16 can be in
data memory, program memory or SPI memory.

TypeMem
DM 01
PM 00
SPI 10

Execution Request from the remote drive, the remote drive sends the requested value.

© Technosoft 2006 MotionChip II TML Programming 166

Name – Send a TML instruction to another axis

(Communication & Multiple axis group)

Syntax [Axis/Group] {TML Instruction;}

Operands Axis/Group ID: the ID of the destination axis or group

TML Instruction: any of the single axis TML instruction codes, to be send to the
destination axis/group

TML program On-line Type

X X

Binary code

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 0 1 0 1 0 length(MLI) – 1
0 0 0 A/G Axis/Group 0 0 0 0

TML instruction word 1 (operation code)
TML instruction word 2 (data)

…
TML instruction word (length(MLI)) (data)

Description This multiple axis operation allows one to send TML commands from one axis to

another one. When this code is encountered, the TML instruction included in it is
sent to the destination axis, and will be executed as an on-line TML command
received by that axis.

Execution

 TML instruction
Local axis Destination axis

 communication channel (Axis/Group)

Send the “TML Instruction” through the multiple-axis communication channel.

Example

[G8] {STOP3;} //Send to all axes that belong to group 8 the command
//to execute a motion stop of type 3.

© Technosoft 2006 MotionChip II TML Programming 167

Name =- Set inverse value for TML variables

(Assignment group)

Syntax

VAR16D = -VAR16S set VAR16D to –VAR16S value
VAR32D = -VAR32S set VAR32D to –VAR32S value

Operands VAR16x: integer variable

VAR32x: long variable VAR32x

TML program On-line Type
X –

Binary code

VAR16D = -VAR16S

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 1 1 0 0 0 (9LSBs of &VAR16D)

&VAR16S

VAR32D = -VAR32S

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 1 1 0 1 0 (9LSBs of &VAR32D)

&VAR32S

Description Assign to the variable its inverse value

Execution variable = - variable

Example
 int Var1;
 long Var2;

...
Var1 = - Var1;
Var2 = - Var1;

Before instruction After instruction
Var1 1256 Var1 -1256
Var2 -22450 Var2 1256

© Technosoft 2006 MotionChip II TML Programming 168

Name += Add a value to a TML variable

(Arithmetic&Logic group)

Syntax

VAR16 += value16 add to VAR16 value16
VAR16D += VAR16S add to VAR16D VAR16S value
VAR32 += value32 add to VAR32 value32
VAR32D += VAR32S add to VAR32D VAR32S value

Operands VAR16x: integer variable

VAR32x: long variable
value16: 16-bit immediate integer value
value32: 32-bit immediate long value

TML program On-line Type

X X

Binary code

VAR16 += value16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 1 1 1 0 0 (9LSBs of &VAR16)

value16

VAR16D += VAR16S

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 0 0 0 0 (9LSBs of &VAR16D)

&VAR16S

VAR32 += value32

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 1 1 1 1 0 (9LSBs of &VAR32)

LOWORD(value32)
HIWORD(value32)

VAR32D += VAR32S

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 0 0 1 0 (9LSBs of &VAR32D)

&VAR32S

Description Add to the destination variable the value of the source variable or value. Store the
result in the destination variable.

Execution destination variable = destination variable + source variable / value

© Technosoft 2006 MotionChip II TML Programming 169

Example
int Var1, Var2, Var3;

 long Var10, Var11, Var12;
 ...

Var1 += 125;
Var3 += Var2;
Var10 += 128000;
Var12 += Var11;

Before instruction After instruction
Var1 1256 Var1 1381
Var2 -22450 Var2 -22450
Var3 22500 Var3 50
Var10 -1201 Var10 126799
Var11 25 Var11 25
Var12 12500 Var12 12525

© Technosoft 2006 MotionChip II TML Programming 170

Name -= Subtract a value from a TML variable

(Arithmetic&Logic group)

Syntax

VAR16 -= value16 subtract from VAR16 value16
VAR16D -= VAR16S subtract from VAR16D VAR16S value
VAR32 -= value32 subtract from VAR32 value32
VAR32D -= VAR32S subtract from VAR32D VAR32S value

Operands VAR16x: integer variable

VAR32x: long variable
value16: 16-bit immediate integer value
value32: 32-bit immediate long value

TML program On-line Type

X X

Binary code

VAR16 -= value16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 0 1 0 0 (9LSBs of &VAR16)

value16

VAR16D -= VAR16S

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 0 0 0 (9LSBs of &VAR16D)

&VAR16S

VAR32 -= value32

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 0 1 1 0 (9LSBs of &VAR32)

LOWORD(value32)
HIWORD(value32)

VAR32D -= VAR32S

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 0 1 0 (9LSBs of &VAR32D)

&VAR32S

Description Subtract from the destination variable the value of the source variable or value.

Store the result in the destination variable.

Execution destination variable = destination variable – source variable / value

© Technosoft 2006 MotionChip II TML Programming 171

Example
int Var1, Var2, Var3;

 long Var10, Var11, Var12;
...
Var1 -= 125;
Var3 -= Var2;
Var10 -= 128000;
Var12 -= Var11;

Before instruction After instruction
Var1 1256 Var1 1131
Var2 -22450 Var2 -22450
Var3 22500 Var3 44950
Var10 -1201 Var10 -129201
Var11 25 Var11 25
Var12 12500 Var12 12475

© Technosoft 2006 MotionChip II TML Programming 172

Name * Multiplication operation

(Arithmetic&Logic group)

Syntax

VAR16 * VALUE16 >> N PROD = (VAR16*value16) >> N
VAR16 * VALUE16 << N PROD = (VAR16*value16) << N
VAR16A * VAR16B >> N PROD = (VAR16A*VAR16B) >> N
VAR16A * VAR16B << N PROD = (VAR16A*VAR16B) << N
VAR32 * VALUE16 >> N PROD = (VAR32*value16) >> N
VAR32 * VALUE16 << N PROD = (VAR32*value16) << N
VAR32 * VAR16 >> N PROD = (VAR32*VAR16) >> N
VAR32 * VAR16 << N PROD = (VAR32*VAR16) << N

Operands VAR16x: integer variable

VAR32x: long variable
value16: 16-bit immediate integer value
value32: 32-bit immediate long value
N: result shift factor

TML program On-line Type

X X

Binary code

VAR16 * VALUE16 >> N

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 0 0 1 1 0 0 0 0 0 0 N (0≤N≤15)

&VAR16
VALUE16

VAR16 * VALUE16 << N

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 0 0 1 1 0 0 0 0 1 0 N (0≤N≤15)

&VAR16
VALUE16

VAR16A * VAR16B >> N

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 0 0 1 1 0 0 1 0 0 0 N (0≤N≤15)

&VAR16A
&VAR16B

© Technosoft 2006 MotionChip II TML Programming 173

VAR16A * VAR16B << N
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 0 0 1 1 0 0 1 0 1 0 N (0≤N≤15)

&VAR16A
&VAR16B

VAR32 * VALUE16 >> N

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 0 0 1 1 0 1 0 0 0 0 N (0≤N≤15)

&VAR32
VALUE16

VAR32 * VALUE16 << N

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 0 0 1 1 0 1 0 0 1 0 N (0≤N≤15)

&VAR32
VALUE16

VAR32 * VAR16 >> N

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 0 0 1 1 0 1 1 0 0 0 N (0≤N≤15)

&VAR32
&VAR16

VAR32 * VAR16 << N

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 0 0 1 1 0 1 1 0 1 0 N (0≤N≤15)

&VAR32
&VAR16

Description Multiply two values and store the result (eventually shifted) in the PROD (product)

register of the TML environment.

Execution PROD register = (first operand * second operand) shifted to left or right with a

specified number of bits
Example1

int Var1;
long var2;
...
Var1 * 0x125;
Var2 = PROD;

Before instruction After instruction
Var1 0x1256 Var1 0x1256
PROD x PROD 0x00000014FC6E
Var2 x Var2 0x0014FC6E

© Technosoft 2006 MotionChip II TML Programming 174

Example2
int Var1;

 long Var2;
...
Var1 * 0x125 << 12;
Var2 = PROD(H);

Before instruction After instruction
Var1 0x1256 Var1 0x1256
PROD x PROD 0x00014FC6E000
Var2 X Var2 0x00014FC6

Example3

int Var2, Var3;
 long Var4;

...
Var2 * Var3 >> 4;
Var4 = PROD;

Before instruction After instruction
Var2 0x1256 Var2 0x1256
Var3 0x125 Var3 0x125
PROD x PROD 0x000000014FC6
Far4 x Var4 0x00014FC6

Example4

int Var2, Var3;
 long Var7;

...
Var2 * Var3 << 8;
Var7 = PROD(H);

Before instruction After instruction
Var2 0x1256 Var2 0x1256
Var3 0x125 Var3 0x125
PROD x PROD 0x000014FC6E00
Var7 x Var7 0x000014FC

Example5

long Var1, Var2;
 ...

Var1 * 0x125;
Var2 = PROD;

Before instruction After instruction
Var1 0x001256AB Var1 0x1256
PROD x PROD 0x000014FD31B7
Var2 x Var2 0x14FD31B7

© Technosoft 2006 MotionChip II TML Programming 175

Example6

long Var1, Var2;
...
Var1 * 0x125 << 12;
Var2 = PROD(H);

Before instruction After instruction
Var1 0x001256AB Var1 0x001256AB
PROD x PROD 0x014FD31B7000
Var2 x Var2 0x014FD31B

Example7

long Var2, Var9;
int Var3;
...
Var2 * Var3 >> 4;
Var9 = PROD(H);

Before instruction After instruction
Var2 0x001256AB Var2 0x001256AB
Var3 0x125 Var3 0x125
PROD x PROD 0x0000014FD31B
Var9 x Var9 0x0000014F

Example8

long Var2, Var9;
int Var3;
...
Var2 * Var3 << 8;
Var9 = PROD;

Before instruction After instruction
Var2 0x001256AB Var2 0x001256AB
Var3 0x125 Var3 0x125
PROD x PROD 0x0014FD31B700
Var9 X Var9 0xFD31B700

© Technosoft 2006 MotionChip II TML Programming 176

Name >>= Shift right

(Arithmetic & Logic group)

Syntax

VAR16 >>= N shift VAR16 right by N
VAR32 >>= N shift VAR32 right by N
PROD >>= N shift PROD (product reg.) right by N

Operands VAR16: integer variable

VAR32: long variable
PROD: product register
N: shift factor

TML program On-line Type

X X

Binary code

VAR16 >>= N

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 0 0 1 0 0 0 0 0 0 0 N (0≤N≤15)

&VAR16

VAR32 >>= N

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 0 0 1 0 0 1 0 0 0 0 N (0≤N≤15)

&VAR32

PROD >>= N

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 0 0 1 0 0 0 1 0 0 0 N (0≤N≤15)

Description Right shift the source operand with the specified number of bits (N). Fill the most

significant bits with the sign bit (sign extension mode applied, all values are
considered as signed values).

Execution Value = Value shifted to right with N bits

Example1 int Var1;
 ...

Var1 >>= 4;

Before instruction After instruction
Var1 0x1256 Var1 0x0125

© Technosoft 2006 MotionChip II TML Programming 177

Example2 long Var1;
…
Var1 >>= 12;

Before instruction After instruction
Var1 0x1256ABAB Var1 0x0001256A

Example3 PROD >>= 4;

Before instruction After instruction
PROD 0x12560000ABCD PROD 0x012560000ABC

© Technosoft 2006 MotionChip II TML Programming 178

Name <<= Shift left

(Arithmetic & Logic group)

Syntax

VAR16 <<= N shift VAR16 left by N
VAR32 <<= N shift VAR32 left by N
PROD <<= N shift PROD (product reg.) right by N

Operands VAR16: integer variable

VAR32: long variable
PROD: product register
N: shift factor

TML program On-line Type

X X

Binary code

VAR16 <<= N

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 0 0 1 0 0 0 0 0 1 0 N (0<N<15)

&VAR16

VAR32 <<= N

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 0 0 1 0 0 1 0 0 1 0 N (0<N<15)

&VAR32

PROD <<= N

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 0 0 1 0 0 0 1 0 1 0 N (0<N<15)

Description Left shift the source operand, with the specified number of bits (N). Fill the least

significant bits with 0.

Execution Value = Value shifted to left with N bits

Example1

int Var1;
…
Var1 <<= 4;

Before instruction After instruction
Var1 0x1256 Var1 0x2560

© Technosoft 2006 MotionChip II TML Programming 179

Example2
long Var1;
…
Var1 <<= 12;

Before instruction After instruction
Var1 0x1256ABAB Var1 0x6AABAB000

Example3

PROD <<= 4;

Before instruction After instruction
PROD 0x12560000ABCD PROD 0x2560000ABCD0

© Technosoft 2006 MotionChip II TML Programming 180

Name ADDGRID Add group ID

(Multiple axis group)

Syntax

ADDGRID value16 Add value16 to GROUP ID
ADDGRID VAR16 Add value of VAR16 to GROUP ID

Operands value16: 16-bit integer immediate value
 VAR16: integer variable

TML program On-line Type
X X

Binary code
ADDGRID value16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0

Value16

ADDGRID VAR16
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 1 0 0 1 0 1 0 0 0 0 0 0

&VAR16

Description In multiple axis structures, this command allows one to add a new group ID to the
local axis.
After the execution of this command, the new group ID value is recognized by the
axis and is used by the communication drivers in order to accept or reject
messages addressed to groups of axes.
Only the lower 8 bits of the value16 or VAR16 parameters are used for group
coding. Each bit corresponds to a group.
Up to 8 groups (1 to 8) can be defined/added/removed in a multiple axis structure.
An axis can belong to any of the groups. A multiple-axis message can be
addressed to one axis or to a group of axes.

Execution Group_ID = Group_ID + value16 (or value of VAR16).
Example
 GROUPID 1; //local axis belongs to group 1

ADDGRID 2; //from now on, the local axis belongs
//to groups 1 and 2 GROUPID = 3)

 ADDGRID 4; //from now on, the local axis belongs
 //to groups 1, 2 and 4
 //(GROUPID 11)
 . . .

[G4] {STOP3;} //send stop motion command to all axes
//belonging to group 4

© Technosoft 2006 MotionChip II TML Programming 181

Name AXISID Set axis ID value

(Multiple axis group)

Syntax

AXISID value16 Set AXIS ID address
AXISID VAR16 Set AXIS ID with value of VAR16

Operands value16: 16-bit integer immediate value
 VAR16: integer variable

TML program On-line Type
X X

Binary code

AXISID value16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1

Value16

AXISID VAR16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 1

&VAR16

Description In multiple axis structures, these commands allows changing the ID of the axis.

After the execution of these commands, the new ID value is recognized by the
axis. The ID value16 or the ID value of VAR16 has the range from 0 to 255.

Execution Axis_ID is set to value16 or value of VAR16.

Example
 AXISID 10; // from now on, the local axis ID is 10
 ...

[10] {AXISID 9;} // change the ID of axis 10 to 9 (this
//instruction is send and executed on
//the actual axis 10)

 ...
 [9] {CSPD = 30;} // send a command to axis 9 (previous axis

//10)

© Technosoft 2006 MotionChip II TML Programming 182

Name AXISOFF Set the axis OFF

(Configuration and command group)

Syntax

AXISOFF AXIS is OFF (deactivate control)

Operands –

TML program On-line Type
X X

Binary code

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

Description This command deactivates the control loops (current, speed and position) and the

reference generator module. The PWM outputs are also deactivated (put in the
high impedance status).
The real-time kernel continues to be active, both slow and high frequency
sampling loops are active. Only acquisition of measured data (currents, position,
Vdc, etc) continues to be performed.

Execution Sets the axis OFF, and deactivates the control.

Example

BEGIN;
#include “dc_epc.ini” //includes the setup file
ENDINIT; //end of setup file
Loop: AXISON; //start program
 MODE SP1 ; //work mode ;
 CSPD = 20.; //setup reference speed
 UPD; //update

!RT 1000; //Set event if RelativeTime >= 1000
WAIT!; //WAIT until event occurs

 AXISOFF; //deactivate the control
 !RT 20000; //Set event if RelativeTime >= 20000
 WAIT!; //WAIT until event occurs
 GOTO loop; // restart the motion

 END; //end of program

© Technosoft 2006 MotionChip II TML Programming 183

Name AXISON Set the axis ON

(Configuration and command group)

Syntax

AXISON AXIS is ON (activate control)

Operands –

TML program On-line Type
X X

Binary code

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0

Description This command activates the control loops (current, speed and position) and the

reference generator module. The PWM outputs are also activated.

Execution Sets the axis ON, and activates the control.

Example

BEGIN;
#include “dc_epc.ini” //includes the setup file
ENDINIT; //end of setup file
Loop: AXISON; //start program
 MODE SP1 ; //work mode ;
 CSPD = 20.; //setup reference speed
 UPD; //update

!RT 1000; //Set event if RelativeTime >= 1000
WAIT!; //WAIT until event occurs

 AXISOFF; //deactivate the control
 !RT 20000; //Set event if RelativeTime >= 20000
 WAIT!; //WAIT until event occurs
 GOTO loop; // restart the motion

 END; //end of program

© Technosoft 2006 MotionChip II TML Programming 184

Name BEGIN Begin a TML program sequence

(Miscellaneous group)

Syntax

BEGIN Beginning of a TML program

Operands –

TML program On-line Type
X –

Binary code

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 0 0 1 0 0 1 0 0 1 1 1 0 0

Description This command is used at the beginning of an independent sequence of TML

instructions.
The TML instruction decoding section will recognize the BEGIN instruction as the
first valid instruction of a TML program.

Execution Begin a sequence of TML instructions.

Example

BEGIN;
#include “dc_epc.ini” //includes the setup file
ENDINIT; //end of setup file
Loop: AXISON; //start program
 MODE SP1 ; //work mode ;
 CSPD = 20.; //setup reference speed
 UPD; //update

 END; //end of program

© Technosoft 2006 MotionChip II TML Programming 185

Name CALL Call a TML function

(Decision group)

Syntax

CALL Label Unconditional CALL of a TML function
CALL Label, VAR16, Flag CALL if VAR16 Flag 0
CALL Label, VAR32, Flag CALL if VAR32 Flag 0

Operands Label: 16-bit program memory address

VAR16: integer variable
VAR32: long variable
Flag: one of ‘=’, ‘!=’, ‘>’, ‘>=’, ‘<’, ‘<=’ relational factors.

TML program On-line Type

X X

Binary code

CALL Label

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 1

&Label

CALL Label, VAR16, Flag

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 1 0 1 0 0 Flag 1

&VAR16
&Label

CALL Label, VAR32, Flag

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 1 0 1 0 1 Flag 1

&VAR32
&Label

Description This instruction allows the execution of a TML function (subroutine).

A TML function starts with a label and ends with RET instruction. The function
can contain any TML instruction. When a conditional CALL instruction is
encountered, the condition is checked and, if it is true (i.e. the tested variable is in
the specified relation with 0), a call of to the specified label is executed. If
condition is false, the next TML instruction is executed.

Specific sequences can be called from different points of the TML program. Use a
RET instruction to end the execution of a function and to continue the TML
sequence following the CALL instruction.

© Technosoft 2006 MotionChip II TML Programming 186

Execution Calls a TML function (subroutine) located at the address Label.

Unconditional call.
 IP -> TOS
 Label -> IP

Conditional call.
 If VarXX Flag 0 then

IP -> TOS
 Label -> IP

The label must be an existing label name, defined in the TML program (a 16-bit
program memory address), otherwise an error will occur. The variable must be an
existing TML variable name (an integer or long variable), defined in the TML
program, otherwise an error will occur. The flag imposes the test condition for the
variable var.

In case of a conditional decision instruction (CALL Label, VAR16/32, Flag) the
variable specified is compared to 0, using one of the following test conditions:
 variable.EQ.0 // variable = 0 (EQUAL)
 variable.NEQ.0 // variable != 0 (NON EQUAL)
 variable.LT.0 // variable < 0 (LESS THAN)
 variable.LEQ.0 // variable <= 0 (LESS OR EQUAL)
 variable.GT.0 // variable > 0 (GREATER THAN)
 variable.GEQ.0 // variable >= 0 (GREATER OR EQUAL)

The CALL instruction is executed only if the test condition is satisfied.

Flag
LT 0x0090
LEQ 0x0088
EQ 0x00C

0
NEQ 0x00A0
GT 0x0084
GEQ 0x0082

Example1

CALL fct1, i_var1, GEQ; //call function fct1, if i_var1 >= 0
 CALL fct1, i_var1, EQ; //call function fct1, if i_var1 = 0
 CALL fct1, i_var1, NEQ; //call function fct1, if i_var1 != 0
 CALL fct1; //unconditional call of function fct1

fct1:
 ...
 ...
 RET;

Example2

int my_pos;

© Technosoft 2006 MotionChip II TML Programming 187

my_pos = 2000;
CALL MOVEP; // execute a first motion of 2000

//counts
My_pos = 4000;
CALL MOVEP, ASPD, GT; // execute a second motion of 4000

//counts, if motor speed > 0
...
MOVEP: // function to move up to a specified position

CACC = 1.5; // acceleration = 1.5counts/sampling2
CSPD = -20.; // slew speed = -20counts/sampling
CPOS = my_pos; // position command (input argument)
UPD; // start the motion
RET; // exit from function MOVEP

...
END;

© Technosoft 2006 MotionChip II TML Programming 188

Name CANBR Set the baud rate

(Multiple axis group)

Syntax

CANBR value16 Set the baud rate for CAN-bus

Operands value16: 16-bit integer immediate value

TML program On-line Type
X X

Binary code

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0

Value16

Description This command is used to setup the baud rate for CAN communication parameters
channel. It also sets the CBR register.

Baud rate
[kb]

Value 16

125 0xF36C
250 0x736C
500 0x3273
800 0x412A

1000 0x1273

Execution CBR register = value16. Program the CAN controller accordingly.

Example In order to configure the baud rate at 1 Mb for the CAN communication channel

use the following assignment instruction:

CANBR 0x1273;

© Technosoft 2006 MotionChip II TML Programming 189

Name CHECKSUM Assignment instruction for a 16 bits TML variable with the result

of the checksum operation
 (Miscellaneous group)

Syntax

CHECKSUM, TypeMem Start, Stop, V16D V16D=Checksum data from TM Start
address to TM Stop address-1

Operands TypeMem: memory operand.
 Start: Start addresses from TypeMem
 Stop: Stop addresses from TypeMem

VAR16D: integer variable (destination)

TML program On-line Type
X X

Binary code

CHECKSUM, TypeMem Start, Stop, V16D

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 1 1 0 0 1 0 TypeMem 0 0 0 0 0

& VAR16D
Start address
Stop address

Description The selected 16-bit variable is assigned with checksum operation performed on

the all memory locations situated in TypeMem between Start address and Stop
address –1.

Execution (16-bit destination variable) = checksum of data located in TypeMem between

Start address and Stop address - 1.

TypeMem
DM 01
PM 00
SPI 10

Example

int Var1;
…
CHECKSUM, SPI 0x5000, 0x5007, VAR1;

Before instruction After instruction
Var1 x Var1 0xD45F
TypeMem start address 0xB004 TypeMem start address 0xB004

© Technosoft 2006 MotionChip II TML Programming 190

0x5000 0x5000
TypeMem address
0x5001

0x0FF1 TypeMem address
0x5001

0x0FF1

TypeMem address
0x5002

0x0366 TypeMem address
0x5002

0x0366

TypeMem address
0x5003

0x0404 TypeMem address
0x5003

0x0404

TypeMem address
0x5004

0x0C09 TypeMem address
0x5004

0x0C09

TypeMem address
0x5005

0x0010 TypeMem address
0x5005

0x0010

TypeMem address
0x5006

0x00E7 TypeMem address
0x5006

0x00E7

TypeMem address
0x5007

0x0008 TypeMem address
0x5007

0x0008

© Technosoft 2006 MotionChip II TML Programming 191

Name CPA Absolute command position

(Configuration and command group)

Syntax

CPA Command Position is Absolute

Operands –

TML program On-line Type
X X

Binary code

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 1 0 0 1 0 0 0 0 1 0 0 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

Description After the execution of this instruction, all position commands will be considered as

absolute values. So, position references will be compared with the absolute
position of the motor (stored in the APOS variable).

Execution Subsequent position commands are considered as absolute.

Example

...
 CACC = 1.5; //Acceleration command for position profile

//(counts/sampling2)
CSPD = 40; //Speed command for position profile

//(counts/sampling)
CPOS = 50000; //Position command (counts)
CPA; //Position command is Absolute
MODE PP3; //Set Position Profile Mode 3
UPD; //Update immediate

© Technosoft 2006 MotionChip II TML Programming 192

Name CPR Relative command position

(Configuration and command group)

Syntax

CPR Command Position is Relative

Operands –

TML program On-line Type
X X

Binary code

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 1 0 0 1 0 0 0 0 1 0 0 1
1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Description After the execution of this instruction, all position commands will be considered as

relative values. Depending on the target update mode setting (using instructions
TUM0 or TUM1), the position value will be relative to the actual and respectively
target motor position.

Execution Subsequent position commands are considered as relative.

Example

...
CACC = 0.5; //Acceleration command for position

//profile (counts/sampling2)
CSPD = 20; //Speed command for position profile

//(counts/sampling)
CPOS = 40000; //Position command (counts)
CPA; //Position command is Absolute
MODE PP3; //Set Position Profile Mode 3
UPD; //Update immediate
CPOS = 80000; //New Position command (counts)
CPR; //Position command is Relative
TUM0; //Target update mode 0
!IN#38 1; //Set event if INput#38 is high
UPD!; //Update on event
WAIT!; //WAIT until event occurs

© Technosoft 2006 MotionChip II TML Programming 193

Name DINT Disable TML interrupts

(Configuration and command group)

Syntax

DINT Disable TML INTerrupts

Operands –

TML program On-line Type
X X

Binary code

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0

Description After the execution of this instruction, further TML interrupts are disabled. Use the

EINT instruction to re-enable TML interrupts.

Execution Disable TML interrupts.

© Technosoft 2006 MotionChip II TML Programming 194

Name DIS2CAPI Disable Index2 capture

(I/O group)

Syntax

DIS2CAPI DISable 2nd CAPture Index

Operands –

TML program On-line Type
X X

Binary code

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 0 1 0 1 0 0 0 0 0

Description After the execution of this instruction the index2 capture connected to 2CAPI pin

is disabled.
Use the EN2CAPI0 or EN2CAPI1 instructions to re-enable this capture.
In the disabled mode, the index2 capture is reprogrammed and can be used as a
general purpose I/O pin. By default, it is re-programmed as an input pin.

Index2Capture captures the master position. The master position can be captured
only in the following conditions:
• The encoder signals from the master system are connected to the 2nd

encoder input of the drive
• The drive is set as slave either in electronic gearing or electronic camming

with option Read master position from 2nd encoder input activated

In order to enable the index2 capture input, specify the type of transition to look
for: index2 Capture transition low->high or index2 Capture transition high-> low.
Normally, you don’t need to disable the index2 capture input as this is
automatically done when the programmed transition occurs. Use Disable only if
you want to disable on purpose the index2 capture input, before sensing the
transition.

Execution Disable index2 input capture.

© Technosoft 2006 MotionChip II TML Programming 195

Name DISCAPI Disable index capture

(I/O group)

Syntax

DISCAPI DISable CAPture Index

Operands –

TML program On-line Type
X X

Binary code

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 1

Description After the execution of this instruction, the index capture, connected to CAPI pin, is

disabled.
Use the ENCAPI0 or ENCAPI1 instructions to re-enable this capture.
In the disabled mode, the index capture is reprogrammed and can be used as a
general purpose I/O pin. By default, it is re-programmed as an input pin.
Index capture captures the motor position.
In order to enable a capture input, specify the type of transition to look for:
Capture transition low->high or Capture transition high-> low. Normally, you don’t
need to disable a capture input as this is automatically done when the
programmed transition occurs. Use Disable only if you want to disable on purpose
a capture input, before sensing the transition.

Execution Disable index input capture.

© Technosoft 2006 MotionChip II TML Programming 196

Name DISIO Disable input bit-port

(I/O group)

Syntax

DISIO#n DISable IO#n

Operands n: the input/output bit-port number (0<=n<=39)

TML program On-line Type
X X

Binary code

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0

MCRx
ANDdis
ORdis

Description After the execution of this instruction, the I/O bit-port #n is disabled. Use the

ENIO#n instruction to re-enable this I/O bit-port. In the disabled mode, the
associated pin is reprogrammed and can be used for its primary function on the
DSP.

Execution Disable I/O bit-port number n (0<=n<=39).

© Technosoft 2006 MotionChip II TML Programming 197

MCRx & AND/OR masks for DISIO#n

#n MCRx ANDdis ORdis
#0 0x7090 0xFFFF 0x0001
#1 0x7090 0xFFFF 0x0002
#2 0x7090 0xFFFF 0x0004
#3 0x7090 0xFFFF 0x0008
#4 0x7090 0xFFFF 0x0010
#5 0x7090 0xFFFF 0x0020
#6 0x7090 0xFFFF 0x0040
#7 0x7090 0xFFFF 0x0080
#8 0x7090 0xFFFF 0x0100
#9 0x7090 0xFFFF 0x0200
#10 0x7090 0xFFFF 0x0400
#11 0x7090 0xFFFF 0x0800
#12 0x7090 0xFFFF 0x1000
#13 0x7090 0xFFFF 0x2000
#14 0x7090 0xFFFF 0x4000
#15 0x7090 0xFFFF 0x8000
#16 0x7092 0xFFFF 0x0001
#17 0x7092 0xFFFF 0x0002
#18 0x7092 0xFFFF 0x0004
#19 0x7092 0xFFFF 0x0008

#n MCRx ANDdis ORdis
#20 0x7092 0xFFFF 0x0010
#21 0x7092 0xFFFF 0x0020
#22 0x7092 0xFFFF 0x0040
#23 0x7092 0xFFFF 0x0080
#24 0x7092 0xFFFF 0x0100
#25 0x7094 0xFFFF 0x0001
#26 0x7094 0xFFFF 0x0002
#27 0x7094 0xFFFF 0x0004
#28 0x7094 0xFFFF 0x0008
#29 0x7094 0xFFFF 0x0010
#30 0x7094 0xFFFF 0x0020
#31 0x7094 0xFFFF 0x0040
#32 0x7094 0xFFFF 0x0080
#33 0x7094 0xFFFF 0x0100
#34 0x7094 0xFFFF 0x0200
#35 0x7094 0xFFFF 0x0400
#36 0x7094 0xFFFF 0x0800
#37 0x7094 0xFFFF 0x1000
#38 0x7094 0xFFFF 0x2000
#39 0x7094 0xFFFF 0x0000

© Technosoft 2006 MotionChip II TML Programming 198

Name DISLSN Disable negative limit switch

(I/O group)

Syntax

DISLSN DISable Limit Switch Negative

Operands –

TML program On-line Type
X X

Binary code

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0
0 1 1 1 0 0 0 0 0 1 1 1 0 0 0 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Description After the execution of this instruction, the negative limit switch is deactivated.
Use the ENLSN0 or ENLSN1 instructions to re-enable the negative limit switch
detection.
In the disabled mode, the negative limit switch pin is re-programmed and can be
used as an input pin, usable to get the status of the limit switch signal. Use the
LSN variable in order to examine the status of this pin.

Execution Disable negative limit switch.

© Technosoft 2006 MotionChip II TML Programming 199

Name DISLSP Disable positive limit switch

(I/O group)

Syntax

DISLSP DISable Limit Switch Positive

Operands –

TML program On-line Type
X X

Binary code

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0
0 1 1 1 0 0 0 0 0 1 1 1 0 0 0 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Description After the execution of this instruction, the positive limit switch is deactivated.
Use the ENLSP0 or ENLSP1 instructions to re-enable the positive limit switch
detection.
In the disabled mode, the positive limit switch pin is re-programmed and can be
used as an input pin, usable to get the status of the limit switch signal. Use the
LSP variable in order to examine the status of this pin.

Execution Disable positive limit switch.

© Technosoft 2006 MotionChip II TML Programming 200

Name EINT Enable TML interrupts

(Configuration and command group)

Syntax

EINT Enable TML INTerrupts

Operands –

TML program On-line Type
X X

Binary code

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 1 0 0 0 1 0 0 0 0

Description After the execution of this instruction, the TML interrupts will be enabled. If an

interrupt flag is set by a specific event, and the corresponding interrupt enable bit
from the ICR register is active, the corresponding TML interrupt service routine
will be called and executed. The TML interrupts can be de-activated using the
DINT instruction.

Execution Enable TML interrupts.

© Technosoft 2006 MotionChip II TML Programming 201

Name EN2CAPI0 Enable index2 capture on falling-edge front

(I/O group)

Syntax

EN2CAPI0 Enable 2ndCAPture Index 1->0

Operands –

TML program On-line Type
X X

Binary code

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0

Description After the execution of this instruction, the DSP will detect the first transition from 1

to 0 on the index2 capture input (pin 2CAPI) for drives where the second encoder
input is available. Index2 Capture captures the master position.

The master position can be captured only in the following conditions:
• The encoder signals from the master are connected to the second encoder

input of the drive
• The drive is set as slave either in electronic gearing or electronic camming

with option Read master position from second encoder input activated

When the programmed transition occurs, the following happens:
• The value of the master position will be stored in the CAPPOS2 system

variable;
• An event is detected, and the update event and the wait event bits of the

MSR register are set if a capture triggered (!CAP) instruction was executed
prior the occurrence of the capture;

• If an update on event was programmed, a motion update is performed;
• The corresponding status bit in the MSR register (Bit 8, position capture) is

set
• The corresponding interrupt bit in the ISR register (Bit 8, position capture) is

set, and will determine the execution of the associated interrupt service
routine if the corresponding mask bit from the ICR register is set.

• The DSP index capture pin is programmed as a general input data pin(bit-port
#34 in TML).

A capture input is automatically disabled after the programmed transition was
detected and the position was captured. In order to reuse a capture input, you
need to enable it again.

Execution Enable index2 capture on falling-edge front (transition from 1 to 0).

© Technosoft 2006 MotionChip II TML Programming 202

Example

CACC = 0.5; //Acceleration command for speed profile
//(counts/sampling2)

CSPD = 20; //Speed command (counts/sampling)
MODE SP1; //Set Speed Profile Mode 1
UPD; //Update immediate
EN2CAPI0; //Activate 2CAPI input to trigger a falling

//transition
CSPD = 30; //New acceleration command for speed profile

//(counts/sampling2)
!CAP; //Set event if CAPture is triggered
UPD!; //Update on event

© Technosoft 2006 MotionChip II TML Programming 203

Name EN2CAPI1 Enable index2 capture on rising-edge front

(I/O group)

Syntax

EN2CAPI1 Enable 2ndCAPture Index 0->1

Operands –

TML program On-line Type
X X

Binary code

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 1 0 0 1 0 0 0 0 0

Description After the execution of this instruction, the DSP will detect the first transition from 0

to 1 on the index2 capture input (pin 2CAPI) for drives where the second encoder
input is available.
Index2 Capture captures the master position.

The master position can be captured only in the following conditions:
• The encoder signals from the master are connected to the second encoder

input of the drive
• The drive is set as slave in electronic gearing or electronic camming with

option Read master position from second encoder input activated

When the programmed transition occurs, the following happens:
• The value of the master position will be stored in the CAPPOS2 system

variable;
• An event is detected, and the update event and the wait event bits of the

MSR register are set if a capture triggered (!CAP) instruction was executed
prior the occurrence of the capture;

• If an update on event was programmed, a motion update is performed;
• The corresponding status bit in the MSR register (Bit 8, position capture) is

set
• The corresponding interrupt bit in the ISR register (Bit 8, position capture) is

set, and will determine the execution of the associated interrupt service
routine if the corresponding mask bit from the ICR register is set.

• The DSP index capture pin is programmed as a general input data pin(bit-port
#34 in TML).

A capture input is automatically disabled after the programmed transition was
detected and the position was captured. In order to reuse a capture input, you
need to enable it again.

© Technosoft 2006 MotionChip II TML Programming 204

Execution Enable index2 capture on rising-edge front (transition from 0 to 1).

Example

CACC = 0.5; //Acceleration command for speed profile
//(counts/sampling2)

CSPD = 20; //Speed command (counts/sampling)
MODE SP1; //Set Speed Profile Mode 1
UPD; //Update immediate
EN2CAPI1; //Activate 2CAPI input to trigger a rising

//transitions.
CSPD = 30; //New acceleration command for speed profile

//(counts/sampling2)
!CAP; //Set event if CAPture is triggered
UPD!; //Update on event

© Technosoft 2006 MotionChip II TML Programming 205

Name ENCAPI0 Enable index capture on falling-edge front

(I/O group)

Syntax

ENCAPI0 Enable CAPture Index 1->0

Operands –

TML program On-line Type
X X

Binary code

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1

Description After the execution of this instruction, the DSP will detect the first transition from 1

to 0 on the index capture input (CAPI pin).
Index capture captures the motor actual position.

On capture, the following happens:
• the value of the motor position will be stored in the CAPPOS system variable;
• an event is detected, and the update event and the wait event bits of the MSR

register are set if a capture triggered (!CAP) instruction was executed prior
the occurrence of the capture;

• if an update on event was programmed, a motion update is performed;
• the corresponding status bit in the MSR register (Bit 8, position capture) is set
• the corresponding interrupt bit in the ISR register (Bit 8, position capture) is

set, and will determine the execution of the associated interrupt service
routine if the corresponding mask bit from the ICR register is set.

• the DSP index capture pin is programmed as a general input data pin(bit-port
#5 in TML).

Execution Enable index capture on falling-edge front (transition from 1 to 0).

Example

CACC = 0.5; //Acceleration command for speed profile
//(counts/sampling2)

CSPD = 20; //Speed command (counts/sampling)
MODE SP1; //Set Speed Profile Mode 1
UPD; //Update immediate
ENCAPI0; //Activate CAPI input to trigger a falling

//transitions.
CSPD = 50; //New acceleration command for speed profile

//(counts/sampling2)
!CAP; //Set event if CAPture is triggered

© Technosoft 2006 MotionChip II TML Programming 206

UPD!; //Update on event
Name ENCAPI1 Enable index capture on rising-edge front

(I/O group)

Syntax

ENCAPI1 Enable CAPture Index 0->1

Operands –

TML program On-line Type
X X

Binary code

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1

Description After the execution of this instruction, the DSP will detect the first transition from 0

to 1 on the index capture input (CAPI pin). Index capture captures the motor
actual position.

On capture, the following happens:
• The value of the motor position will be stored in the CAPPOS system

variable;
• An event is detected, and the update event and the wait event bits of the

MSR register are set if a capture triggered (!CAP) instruction was
executed prior the occurrence of the capture;

• If an update on event was programmed, a motion update is performed;
• The corresponding status bit in the MSR register (Bit 8, position capture)

is set
• The corresponding interrupt bit in the ISR register (Bit 8, position capture)

is set, and will determine the execution of the associated interrupt service
routine if the corresponding mask bit from the ICR register is set.

• The DSP index capture pin is programmed as a general input data pin
(bit-port #5 in TML).

Execution Enable index capture on rising-edge front (transition from 0 to 1).

Example

CACC = 0.5; //Set acceleration command
CSPD = 20; //Ser speed command (counts/sampling)
MODE SP1; //Set Speed Profile Mode 1
UPD; //Update immediate
ENCAPI1; //Activate CAPI input to trigger a rising

//transitions.
CSPD = 50; //Set new acceleration command
!CAP; //Set event if CAPture is triggered

© Technosoft 2006 MotionChip II TML Programming 207

UPD!; //Update on event

© Technosoft 2006 MotionChip II TML Programming 208

Name END End of TML program

(Miscellaneous group)

Syntax

END END of a TML program

Operands –

TML program On-line Type
X X

Binary code

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Description The END instruction will indicate the end of a TML program sequence. After the

execution of this instruction, the TML kernel will enter in a wait loop, and no other
TML instruction is executed (this stops the execution of the motion program
resident in the drive memory). A RESET, a TML interrupt or an on-line GOTO or
CALL instructions are needed to change this status, and to start the execution of
another TML program sequence.

Please note that after the execution of the END instruction, the control, PWM
outputs and real-time section of the system continue to operate as before the
execution of this instruction. Use commands as AXISOFF in order to stop the
controllers and to de-activate the PWM outputs.

Remarks:
1. It is mandatory to end the motion program (main routine) with an END

command. All the TML subroutines and interrupt service routines should be
added after the END command.

2. If you intend to change the program of a drive set for stand-alone operation
(e.g. which starts to execute automatically after reset the TML program from
the E2ROM memory) you should do the following:
a. Send to the drive the command END, to stop the current program

execution. In order to disable the power stage, send also an AXISOFF
command

b. Compile the new program
c. Download the new program
d. Reset the drive. The new program will start to execute

Execution End a TML program.

© Technosoft 2006 MotionChip II TML Programming 209

Name ENDINIT End of the initialization part of a TML program

(Configuration and command group)

Syntax

ENDINIT END of INITialization

Operands –

TML program On-line Type
X –

Binary code

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

Description The ENDINIT instruction will indicate the end of the initialization part of the TML

program. This instruction must be preceded by all the initializations (TML
instructions) needed to setup the motion system configuration structure and
parameters.

When executed, this instruction uses these parameters and settings in order to
setup the operating environment of the motion system (real-time sampling
periods, PWM parameters, sensor-related parameters, etc.).

 The following settings must be done before executing the ENDINIT instruction.

Category Name Remarks
Registers SCR
 OSR
Parameters PWMPER
 DBT
 CLPER
 SLPER

Remarks:

1. Only one ENDINIT instruction may be executed in a TML program.
2. The ENDINIT instruction activates the real-time interrupts and the measurement from A/D

channels, but no PWM outputs or controllers. Use the AXISON command in order to
activate them, too.
The AXISON command must be executed after the ENDINIT command!

Execution End the initialization part of the TML program.

© Technosoft 2006 MotionChip II TML Programming 210

Name ENIO Enable input bit-port

(I/O group)

Syntax

ENIO#n Enable IO#n

Operands n: the input/output bit-port number (0<=n<=39)

TML program On-line Type
X X

Binary code

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0

MCRx
ANDen
ORen

Description After the execution of this instruction, the I/O bit-port #n is enabled.

Use the DISIO#n instruction to disable this I/O bit-port.

In the enabled mode, the associated pin is programmed and can be used as a
general-purpose I/O bit. The ENIO#n instruction does not change the bit-port type
(input or output). By default, after reset, the bit-port is set as an input port.

Use the SETIO#n OUT instruction to change it to an output bit-port or,
alternatively, the SETIO#n IN to change it to an input bit-port.

Execution Enable the use of the IO#n signal as an I/O line (0<=n<=39).

Example

ENIO#5 // enable port 5

© Technosoft 2006 MotionChip II TML Programming 211

MCRx & AND/OR masks for ENIO#n
#n MCRx ANDen ORen
#0 0x7090 0xFFFE 0x0000
#1 0x7090 0xFFFD 0x0000
#2 0x7090 0xFFFB 0x0000
#3 0x7090 0xFFF7 0x0000
#4 0x7090 0xFFEF 0x0000
#5 0x7090 0xFFDF 0x0000
#6 0x7090 0xFFBF 0x0000
#7 0x7090 0xFF7F 0x0000
#8 0x7090 0xFEFF 0x0000
#9 0x7090 0xFDFF 0x0000
#10 0x7090 0xFBFF 0x0000
#11 0x7090 0xF7FF 0x0000
#12 0x7090 0xEFFF 0x0000
#13 0x7090 0xDFFF 0x0000
#14 0x7090 0xBFFF 0x0000
#15 0x7090 0x7FFF 0x0000
#16 0x7092 0xFFFE 0x0000
#17 0x7092 0xFFFD 0x0000
#18 0x7092 0xFFFB 0x0000
#19 0x7092 0xFFF7 0x0000

#n MCRx ANDen ORen
#20 0x7092 0xFFEF 0x0000
#21 0x7092 0xFFDF 0x0000
#22 0x7092 0xFFBF 0x0000
#23 0x7092 0xFF7F 0x0000
#24 0x7092 0xFEFF 0x0000
#25 0x7094 0xFFFE 0x0000
#26 0x7094 0xFFFD 0x0000
#27 0x7094 0xFFFB 0x0000
#28 0x7094 0xFFF7 0x0000
#29 0x7094 0xFFEF 0x0000
#30 0x7094 0xFFDF 0x0000
#31 0x7094 0xFFBF 0x0000
#32 0x7094 0xFF7F 0x0000
#33 0x7094 0xFEFF 0x0000
#34 0x7094 0xFDFF 0x0000
#35 0x7094 0xFBFF 0x0000
#36 0x7094 0xF7FF 0x0000
#37 0x7094 0xEFFF 0x0000
#38 0x7094 0xDFFF 0x0000
#39 0x7094 0xFFFF 0x0000

© Technosoft 2006 MotionChip II TML Programming 212

Name ENLSN0 Enable falling-edge front detection on negative limit switch

(I/O group)

Syntax

ENLSN0 Enable Limit Switch Negative 1->0

Operands –

TML program On-line Type
X X

Binary code

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0
0 1 1 1 0 0 0 0 0 1 1 1 0 0 0 1
1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Description After the execution of this instruction, the DSP will detect the first transition from 1
to 0 on the negative limit switch input.

 In this case, the following happens:
• the update event and the wait event bits of the MSR register are set if a

negative limit switch triggered (!LSN) instruction was executed prior the
occurrence of the transition;

• if an update on event was programmed, a motion update is performed;
• the corresponding status bit in the MSR register (Bit 7) is set;
• the corresponding interrupt bit in the ISR register (Bit 7) is set, and will

determine the execution of the associated interrupt service routine if the
corresponding mask bit from the ICR register is set;

• the negative limit switch pin is reprogrammed in the disabled mode and can
be used as an input pin, usable to get the status of the limit switch signal.

Use the DISLSN instruction to disable this function.
Use the LSN variable in order to examine the status of the negative limit switch
pin.

Execution Enable falling-edge front detection on negative limit switch.
Example

CACC = 1.5; //Set acceleration command
CSPD = -20; //Speed command (counts/sampling)
MODE SP1; //Set Speed Profile Mode 1
UPD; //Update immediate
ENLSN0; //Negative Limit Switch triggers falling edge
CSPD = 20; //Set new speed command (counts/sampling)
!LSN; //Set event if Negative LimitSwitch is reached
UPD!; //Update on event

© Technosoft 2006 MotionChip II TML Programming 213

Name ENLSN1 Enable rising-edge front detection on negative limit switch

(I/O group)

Syntax

ENLSN1 Enable Limit Switch Negative 0->1

Operands –

TML program On-line Type
X X

Binary code

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0
0 1 1 1 0 0 0 0 0 1 1 1 0 0 0 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1

Description After the execution of this instruction, the DSP will detect the first transition from 0
to 1 on the negative limit switch input.

 In this case, the following happens:
• the update event and the wait event bits of the MSR register are set if a

negative limit switch triggered (!LSN) instruction was executed prior the
occurrence of the transition;

• if an update on event was programmed, a motion update is performed;
• the corresponding status bit in the MSR register (Bit 7) is set;
• the corresponding interrupt bit in the ISR register (Bit 7) is set, and will

determine the execution of the associated interrupt service routine if the
corresponding mask bit from the ICR register is set;

• the negative limit switch pin is reprogrammed in the disabled mode and can
be used as an input pin, usable to get the status of the limit switch signal.

Use the DISLSN instruction to disable this function.
Use the LSN variable in order to examine the status of the negative limit switch
pin.

Execution Enable rising-edge front detection on negative limit switch.
Example

CACC = 1.5; //Set acceleration command
CSPD = -20; //Set speed command (counts/sampling)
MODE SP1; //Set Speed Profile Mode 1
UPD; //Update immediate
ENLSN1; //Negative Limit Switch triggers rising edge
CSPD = 20; //Set new speed command (counts/sampling)
!LSN; //Set event if Negative LimitSwitch is reached
UPD!; //Update on event

© Technosoft 2006 MotionChip II TML Programming 214

Name ENLSP0 Enable falling-edge front detection on positive limit switch

(I/O group)

Syntax

ENLSP0 Enable Limit Switch Positive 1->0

Operands –

TML program On-line Type
X X

Binary code

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0
0 1 1 1 0 0 0 0 0 1 1 1 0 0 0 0
1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Description After the execution of this instruction, the DSP will detect the first transition from 1

to 0 on the positive limit switch input.
 In this case, the following happens:

• The update event and the wait event bits of the MSR register are set if a
positive limit switch triggered (!LSP) instruction was executed prior the
occurrence of the transition;

• If an update on event was programmed, a motion update is performed;
• The corresponding status bit in the MSR register (Bit 6) is set;
• The corresponding interrupt bit in the ISR register (Bit 6) is set, and will

determine the execution of the associated interrupt service routine if the
corresponding mask bit from the ICR register is set;

• The positive limit switch pin is reprogrammed in the disabled mode and can
be used as an input pin, usable to get the status of the limit switch signal.

Use the DISLSP instruction to disable this function.
Use the LSP variable in order to examine the status of the positive limit switch
pin.

Execution Enable falling-edge front detection on positive limit switch.
Example

CACC = 1.5; //Set acceleration command
CSPD = 20; //Set speed command (counts/sampling)
MODE SP1; //Set Speed Profile Mode 1
UPD; //Update immediate
ENLSP0; //Positive Limit Switch triggers falling edge
CSPD = -20; //Set new speed command (counts/sampling)
!LSP; //Set event if Positive LimitSwitch is reached

© Technosoft 2006 MotionChip II TML Programming 215

UPD!; //Update on event

© Technosoft 2006 MotionChip II TML Programming 216

Name ENLSP1 Enable rising-edge front detection on positive limit switch

(I/O group)

Syntax

ENLSP1 Enable Limit Switch Positive 0->1

Operands –

TML program On-line Type
X X

Binary code

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0
0 1 1 1 0 0 0 0 0 1 1 1 0 0 0 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1

Description After the execution of this instruction, the DSP will detect the first transition from 0

to 1 on the positive limit switch input.
 In this case, the following happens:

• the update event and the wait event bits of the MSR register are set if a
positive limit switch triggered (!LSP) instruction was executed prior the
occurrence of the transition;

• if an update on event was programmed, a motion update is performed;
• the corresponding status bit in the MSR register (Bit 6) is set;
• the corresponding interrupt bit in the ISR register (Bit 6) is set, and will

determine the execution of the associated interrupt service routine if the
corresponding mask bit from the ICR register is set;

• the positive limit switch pin is reprogrammed in the disabled mode and
can be used as an input pin, usable to get the status of the limit switch
signal.

Use the DISLSP instruction to disable this function.
Use the LSP variable in order to examine the status of the positive limit switch
pin.

Execution Enable rising – edge front detection on positive limit switch.
Example

CACC = 1.5; //Acceleration command for speed profile
CSPD = 20; //Speed command (counts/sampling)
MODE SP1; //Set Speed Profile Mode 1
UPD; //Update immediate
ENLSP1; //Positive Limit Switch triggers rising edge
CSPD = -20; //New speed command (counts/sampling)
!LSP; //Set event if Positive LimitSwitch is reached

© Technosoft 2006 MotionChip II TML Programming 217

UPD!; //Update on event

© Technosoft 2006 MotionChip II TML Programming 218

Name EXTREF Set external reference type

(Configuration and command group)

Syntax

EXTREF value Set EXTernal REFerence type

Operands value: two bits value

TML program On-line Type
X X

Binary code

EXTREF 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 1 0 0 1 0 0 0 0 1 0 0 1
1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

EXTREF 1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 1 0 0 1 0 0 0 0 1 0 0 1
1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

EXTREF 2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 1 0 0 1 0 0 0 0 1 0 0 1
1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

Description This instruction sets the type of external references depending on the parameter

value:
• value = 0: external reference read from EREF system variable (integer or long

variable) updated on-line
• value = 1: external reference read from REFERENCE input
• value = 2: external reference read from second encoder input

Execution Sets the external reference type based on value’s value (0, 1 or 2)

Example

EXTREF 1; // the reference will be read from the analogue
//reference A/D channel (REFERENCE input)

© Technosoft 2006 MotionChip II TML Programming 219

Name GOTO Jump to a TML address

(Decision group)

Syntax

GOTO Label Unconditional GOTO to label
GOTO Label, VAR16, Flag GOTO if VAR16 Flag 0
GOTO Label, VAR32, Flag GOTO if VAR32 Flag 0

Operands Label: 16-bit program memory address

VAR16: integer variable
VAR32: long variable
Flag: one of ‘=’, ‘!=’, ‘>’, ‘>=’, ‘<’, ‘<=’ relational factors.

TML program On-line Type

X X
Binary code
GOTO Label

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0

&Label

GOTO Label, VAR16, Flag
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 1 0 1 0 0 Flag 0

&VAR16
&Label

GOTO Label, VAR32, Flag
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 1 0 1 0 1 Flag 0

&VAR32
&Label

Description This instruction allows the jump to a TML instruction located at the address Label.

When a conditional GOTO instruction is encountered, the condition is checked
and, if it is true (i.e. the tested variable is in the specified relation with 0), a jump
to the specified label is executed. If condition is false, the next TML instruction is
executed.

Execution Jumps to a TML instruction located at the address Label.
Unconditional jump.

 Label -> IP
Conditional jump.

 If VarXX Flag 0 then
 Label -> IP

© Technosoft 2006 MotionChip II TML Programming 220

The label must be an existing label name, defined in the TML program (a 16-bit
program memory address), otherwise an error will occur. The VAR16/VAR32
must be an existing TML variable name (an integer or long variable), defined in
the TML program, otherwise an error will occur. The flag imposes the test
condition for the variable VAR16/VAR32.

In case of a conditional decision instruction (GOTO Label, VAR16/32, Flag) the
variable specified is compared to 0, using one of the following test conditions:
 variable.EQ.0 // variable = 0 (EQUAL)
 variable.NEQ.0 // variable != 0 (NON EQUAL)
 variable.LT.0 // variable < 0 (LESS THAN)
 variable.LEQ.0 // variable <= 0 (LESS OR EQUAL)
 variable.GT.0 // variable > 0 (GREATER THAN)
 variable.GEQ.0 // variable >= 0 (GREATER OR EQUAL)

The GOTO instruction is executed only if the test condition is satisfied.

Example1

GOTO label1, i_var2, LT; // jump to label1 if i_var2 < 0
GOTO label2, i_var2, LEQ; // jump to label2 if i_var2 <= 0
GOTO label3, i_var2, GT; // jump to label3 if i_var2 > 0
GOTO label4; // unconditional jump to label4

Example2

...
GOTO MOVEP; // jump unconditionally
...
GOTO MOVEP, ASPD, GT; // jump if motor speed > 0
...
MOVEP: // program sequence to move to a

//specified position
CACC = 1.5; // acceleration = 1.5

//(counts/sampling2)
CSPD = -20.; // slew speed = -20 (counts/sampling)
CPOS = my_pos; // position command
UPD; // start motion

 GOTO Exit; // exit
 ...
 Exit: //label

© Technosoft 2006 MotionChip II TML Programming 221

Name GROUPID Set group ID value

(Multiple axis group)

Syntax

GROUPID value16 Set GROUP ID address

Operands value16: 16-bit integer immediate value

TML program On-line Type
X X

Binary code

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0

Value16

Description In multiple axis structures, this command allows one to change the group ID of
the local axis.

After the execution of this command, the new ID value is recognized by the axis
and is used by the communication drivers in order to accept or reject messages
addressed to groups of axes.

Only the lower 8 bits of the value16 parameter are used for group coding. Each
bit corresponds to a group. Up to 8 groups can be defined in a multiple axis
structure.

An axis can belong to any of the 8 groups.
A multiple-axis message can be addressed to one or more of the axes.

Execution Group_ID = value16.

Example
 GROUPID 1; // local axis belongs to groups 1

GROUPID 3; // from now on, the local axis belongs to group 3
 ...
 [G3] {STOP3;} // stop the motion for all axes belonging
to

//group 3

© Technosoft 2006 MotionChip II TML Programming 222

Name INITCAM Init CAM table for electronic camming mode operation

 (Miscellaneous group)

Syntax

INITCAM LoadAddress, RunAddress InitCam table from LoadAddress to
RunAddress

Operands LoadAddress: SPI drive memory, type E2PROM
 RunAddress: RAM drive memory

TML program On-line Type
X –

Binary code

INITCAM LoadAddress, RunAddress

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 1 1 0 0 0 0 1 0 0 0 0 0 0

Load address
Run address

Description The INITCAM instruction copies the selected CAM Table from the drives’ E2ROM

memory to the drives’ RAM memory where the CAM Table must reside while
electronic camming is enabled.

The LoadAddress represents the address (decimal number) of E2ROM memory
where the selected CAM Table was loaded.

The RunAddress parameter (decimal number) specifies address in the RAM
memory of the Technosoft drive where the CAM profile Table resides at run-time.
Note that in order to copy a CAM table using this instruction, the following steps
must be done:
• The cam must be created or imported before;
• The cam must be selected as an active cam;
• The cam must be downloaded to the drive. The Download CAM files

command downloads into the drives’ E2ROM memory all the active cams
selected;

• The cam must be selected from the Use Table list of cams available into the
E2ROM memory.

Execution Copy CAM table from drive’s SPI memory to drive’s RAM memory.

Example
INITCAM 18864,2560; //Copy CAM table from SPI memory

//(address 0x49B0) to RAM memory
//(address 0xA00)

UPD; // Update immediate

© Technosoft 2006 MotionChip II TML Programming 223

Name MODE CS Set cam slave mode

(Motion mode group)

Syntax

MODE CS0 Set axis in MODE Camming Slave 0 ()
MODE CS1 Set axis in MODE Camming Slave 1 (T)
MODE CS2 Set axis in MODE Camming Slave 2 (S)
MODE CS3 Set axis in MODE Camming Slave 3 (S,T)

Operands –

TML program On-line Type
X X

Binary code

MODE CS0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 1 0 0 1 0 0 0 0 1 0 0 1
1 0 1 1 0 1 0 0 1 1 0 0 0 1 1 0
1 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0

MODE CS1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 1 0 0 1 0 0 0 0 1 0 0 1
1 0 1 1 0 1 0 1 1 1 0 0 0 1 1 0
1 0 0 0 0 1 0 1 0 0 0 0 0 1 1 0

MODE CS2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 1 0 0 1 0 0 0 0 1 0 0 1
1 0 1 1 0 1 1 0 1 1 0 0 0 1 1 0
1 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0

MODE CS3

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 1 0 0 1 0 0 0 0 1 0 0 1
1 0 1 1 0 1 1 1 1 1 0 0 0 1 1 0
1 0 0 0 0 1 1 1 0 0 0 0 0 1 1 0

Description MODE CS0/CS1/CS2/CS3 instruction set the axis to operate in the slave

camming mode.

© Technosoft 2006 MotionChip II TML Programming 224

In this mode, the reference values received from the master are differentiated and
used to obtain the position reference for the slave axis based on the active CAM
Table.

See Motion Programming chapter for details about camming reference
parameters and implementation.

 Depending on the selected option (CS0, CS1, CS2 or CS3), some of the internal
control loops – speed and current – are activated or not (depending on the
system structure) – see below table.

 Note that for all the control loops needed to implement the selected mode
(position [, speed] [, current]), one must define the corresponding parameters.

 The selected motion mode will become effective at the first motion update
command (immediate update – UPD, or update on event, UPD!).

Execution Sets the slave camming mode operation for the axis (reference type). Four cases

are possible:

MODE Position
controller

Speed
controller

Current
controller

CS0 √ - -
CS1 √ - √
CS2 √ √ -
CS3 √ √ √

Example

EXTREF 0;
 EIR = 0x081A;
 (EIR),dm = 2000;
 EIR = 0x081B;
 (EIR),dm = 0;
 MODE CS3; //Set as slave, position mode 3
 TUM1; //Set Target Update Mode 1
 UPD; //Update immediate
 EFLEVEL = 0; //Activate synchronization

© Technosoft 2006 MotionChip II TML Programming 225

Name MODE GS Set gear slave mode

(Motion mode group)

Syntax

MODE GS0 Set axis in MODE Gear Slave 0 ()
MODE GS1 Set axis in MODE Gear Slave 1 (T)
MODE GS2 Set axis in MODE Gear Slave 2 (S)
MODE GS3 Set axis in MODE Gear Slave 3 (S,T)

Operands –

TML program On-line Type
X X

Binary code

MODE GS0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 1 0 0 1 0 0 0 0 1 0 0 1
1 0 1 1 0 1 0 0 1 1 0 0 0 1 0 1
1 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1

MODE GS1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 1 0 0 1 0 0 0 0 1 0 0 1
1 0 1 1 0 1 0 1 1 1 0 0 0 1 0 1
1 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1

MODE GS2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 1 0 0 1 0 0 0 0 1 0 0 1
1 0 1 1 0 1 1 0 1 1 0 0 0 1 0 1
1 0 0 0 0 1 1 0 0 0 0 0 0 1 0 1

MODE GS3

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 1 0 0 1 0 0 0 0 1 0 0 1
1 0 1 1 0 1 1 1 1 1 0 0 0 1 0 1
1 0 0 0 0 1 1 1 0 0 0 0 0 1 0 1

Description MODE GS0/GS1/GS2/GS3 instruction set the axis to operate in the slave gear

mode. In this mode, the reference values must be sent from the master and
stored into the variable MREF. Multiplied with the parameter GEAR, these values
will be used as position reference for the axis.

© Technosoft 2006 MotionChip II TML Programming 226

See Motion Programming chapter for details about gearing reference parameters
and implementation.

 Depending on the selected option (GS0, GS1, GS2 or GS3), some of the internal
control loops – speed and current – are activated or not (depending on the
system structure).

 Note that for all the control loops needed to implement the selected mode
(position [, speed] [, current]), one must define the corresponding parameters.

 The selected motion mode will become effective at the first motion update
command (immediate update – UPD, or update on event, UPD!).

Execution Sets the slave gear mode operation for the axis (reference type). Four cases are

possible:

MODE Position
controller

Speed
controller

Current
controller

GS0 √ - -
GS1 √ - √
GS2 √ √ -
GS3 √ √ √

Example

GEAR = 2.00000;
GEARMASTER = 1; //Gearing factor for master axis
GEARSLAVE = 2; //Gearing factor for slave axis
EXTREF 0; //Set axis as Gear Slave without read

//master position from 2nd Encoder Input
EIR = 0x081A;
(EIR),dm = 2000;
EIR = 0x081B;
(EIR),dm = 0;
MODE GS3; //Set as slave, position mode 3
UPD; //Update immediate (enable gear mode)
EFLEVEL = 0xFFFF; //Deactivate synchronization

© Technosoft 2006 MotionChip II TML Programming 227

Name MODE PC Position contouring motion mode

(Motion mode group)

Syntax

MODE PC0 MODE Position Contouring 0 ()
MODE PC1 MODE Position Contouring 1 (T)
MODE PC2 MODE Position Contouring 2 (S)
MODE PC3 MODE Position Contouring 3 (S,T)

Operands –

TML program On-line Type
X X

Binary code

MODE PC0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 1 0 0 1 0 0 0 0 1 0 0 1
1 0 1 1 1 1 0 0 1 1 0 0 0 0 1 0
1 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0

MODE PC1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 1 0 0 1 0 0 0 0 1 0 0 1
1 0 1 1 1 1 0 1 1 1 0 0 0 0 1 0
1 0 0 0 0 1 0 1 0 0 0 0 0 0 1 0

MODE PC2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 1 0 0 1 0 0 0 0 1 0 0 1
1 0 1 1 1 1 1 0 1 1 0 0 0 0 1 0
1 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0

MODE PC3

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 1 0 0 1 0 0 0 0 1 0 0 1
1 0 1 1 1 1 1 1 1 1 0 0 0 0 1 0
1 0 0 0 0 1 1 1 0 0 0 0 0 0 1 0

Description MODE PC0/PC1/PC2/PC3 instruction defines the position control operating in the

contouring reference motion mode.

In this mode, the reference module will perform linear interpolation based on
motion segments, described using the SEG instruction.

© Technosoft 2006 MotionChip II TML Programming 228

The reference will represent a position reference value in position control
structures. The reference will be generated in the slow control loop
(position/speed loop).

See Motion Programming chapter for details about contouring reference
parameters and implementation.

 Depending on the selected option (PC0, PC1, PC2 or PC3), some of the internal
control loops – speed and current – are activated or not (depending on the
system structure).

 Note that for all the control loops needed to implement the selected mode
(position [, speed] [, current]), one must define the corresponding parameters.

 The selected motion mode will become effective at the first motion update
command (immediate update – UPD, or update on event, UPD!).

Execution Sets the position contouring motion mode. Four cases are possible:

MODE Position / User
controller

Speed
controller

Current
controller

PC0 √ - -
PC1 √ - √
PC2 √ √ -
PC3 √ √ √

Example

MODE PC3; //Set Position Contouring Mode 3
SEG 100U, 5.00000; //Set 1st motion segment. Increment

//position reference with 5 counts for
//the next 100 sampling periods

UPD; //Update immediate
SEG 100U, 5.00000; //Set 2st motion segment.
SEG 100U, -20.00000; //Set 3st motion segment.
SEG 100U, 10.00000; //Set 4st motion segment.
SEG 0, 0.; //End of contouring mode

© Technosoft 2006 MotionChip II TML Programming 229

Name MODE PE Position external motion mode

(Motion mode group)

Syntax

MODE PE0 MODE Position External 0 ()
MODE PE1 MODE Position External 1 (T)
MODE PE2 MODE Position External 2 (S)
MODE PE3 MODE Position External 3 (S,T)

Operands –

TML program On-line Type
X X

Binary code

MODE PE0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 1 0 0 1 0 0 0 0 1 0 0 1
1 0 1 1 1 1 0 0 1 1 0 0 0 0 0 0
1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

MODE PE1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 1 0 0 1 0 0 0 0 1 0 0 1
1 0 1 1 1 1 0 1 1 1 0 0 0 0 0 0
1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0

MODE PE2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 1 0 0 1 0 0 0 0 1 0 0 1
1 0 1 1 1 1 1 0 1 1 0 0 0 0 0 0
1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0

MODE PE3

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 1 0 0 1 0 0 0 0 1 0 0 1
1 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0
1 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0

Description MODE PE0/PE1/PE2/PE3 instruction defines the position control operating in the

external reference motion mode.

In this mode, the reference module will use an external reference, as previously
defined by the EXTREF instruction.

© Technosoft 2006 MotionChip II TML Programming 230

The reference will represent a position reference value, in position control
structures. The reference will be generated in the slow control loop
(position/speed loop).

See Motion Programming chapter for details about external reference parameters
and implementation.

 Depending on the selected option (PE0, PE1, PE2 or PE3), some of the internal
control loops – speed and current – are activated or not (depending on the
system structure).

 Note that for all the control loops needed to implement the selected mode
(position [, speed] [, current]), one must define the corresponding parameters.

 The selected motion mode will become effective at the first motion update
command (immediate update – UPD, or update on event, UPD!).

Execution Sets the position external motion mode (reference type). Four cases are possible:

MODE Position controller Speed controller Current controller
PE0 √ - -
PE1 √ - √
PE2 √ √ -
PE3 √ √ √

Example

MODE PE3; // set position external mode, with speed and
// current loops active

 TUM1; // set target update mode 1
 UPD; // update immediate

© Technosoft 2006 MotionChip II TML Programming 231

Name MODE PP Position profile motion mode

(Motion mode group)

Syntax

MODE PP0 MODE Position Profile 0 ()
MODE PP1 MODE Position Profile 1 (T)
MODE PP2 MODE Position Profile 2 (S)
MODE PP3 MODE Position Profile 3 (S,T)

Operands –

TML program On-line Type
X X

Binary code

MODE PP0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 1 0 0 1 0 0 0 0 1 0 0 1
1 0 1 1 1 1 0 0 1 1 0 0 0 0 0 1
1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1

MODE PP1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 1 0 0 1 0 0 0 0 1 0 0 1
1 0 1 1 1 1 0 1 1 1 0 0 0 0 0 1
1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1

MODE PP2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 1 0 0 1 0 0 0 0 1 0 0 1
1 0 1 1 1 1 1 0 1 1 0 0 0 0 0 1
1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1

MODE PP3

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 1 0 0 1 0 0 0 0 1 0 0 1
1 0 1 1 1 1 1 1 1 1 0 0 0 0 0 1
1 0 0 0 0 1 1 1 0 0 0 0 0 0 0 1

Description MODE PP0/PP1/PP2/PP3 instructions define the position control operating in the

profile reference motion mode. In this mode, the reference module will generate a
position value with a trapezoidal speed profile.

© Technosoft 2006 MotionChip II TML Programming 232

The reference will represent a position reference value. The reference will be
generated in the slow control loop (position/speed loop). See Motion
Programming chapter for details about profile reference parameters and
implementation.

Depending on the selected option (PP0, PP1, PP2 or PP3), some of the internal
control loops – speed and current – are activated or not (depending on the
system structure) – see below table.

 Note that for all the control loops needed to implement the selected mode
(position [, speed] [, current]), one must define the corresponding parameters.

 The selected motion mode will become effective at the first motion update
command (immediate update – UPD, or update on event, UPD!).

Execution Sets the position profile motion mode (reference type). Four cases are possible:

MODE Position controller Speed controller Current controller
PP0 √ - -
PP1 √ - √
PP2 √ √ -
PP3 √ √ √

Example

CACC = 0.5; //Acceleration command for position
//profile (counts/sampling2)

CSPD = 20; //Speed command for position profile
//(counts/sampling)

CPOS = 100000; //Position command (counts)
CPA; //Position command is Absolute
MODE PP3; //Set Position Profile Mode 3
TUM1; //Set Target Update Mode 1
UPD; //Update immediate

© Technosoft 2006 MotionChip II TML Programming 233

Name MODE PPD Position pulse&direction motion mode

(Motion mode group)

Syntax

MODE PPD0 MODE Position External 0 ()
MODE PPD1 MODE Position External 1 (T)
MODE PPD2 MODE Position External 2 (S)
MODE PPD3 MODE Position External 3 (S,T)

Operands –

TML program On-line Type
X X

Binary code

MODE PPD0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 1 0 0 1 0 0 0 0 1 0 0 1
1 0 1 1 1 1 0 0 1 1 0 0 0 1 0 0
1 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0

MODE PPD1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 1 0 0 1 0 0 0 0 1 0 0 1
1 0 1 1 1 1 0 1 1 1 0 0 0 1 0 0
1 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0

MODE PPD2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 1 0 0 1 0 0 0 0 1 0 0 1
1 0 1 1 1 1 1 0 1 1 0 0 0 1 0 0
1 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0

MODE PPD3

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 1 0 0 1 0 0 0 0 1 0 0 1
1 0 1 1 1 1 1 1 1 1 0 0 0 1 0 0
1 0 0 0 0 1 1 1 0 0 0 0 0 1 0 0

Description MODE PPD0/PPD1/PPD2/PPD3 instruction defines the position control operating

in the pulse and direction reference motion mode.

In this mode, the reference module will get the reference values from the specific
pulse and direction interface of the DSP.

© Technosoft 2006 MotionChip II TML Programming 234

The reference will represent a position reference value, in position control
structures. The reference will be generated in the slow control loop
(position/speed loop).

See Motion Programming chapter for details about pulse and direction reference
parameters and implementation.

 Depending on the selected option (PPD0, PPD1, PPD2 or PPD3), some of the
internal control loops – speed and current – are activated or not (depending on
the system structure) – see below table.

 Note that for all the control loops needed to implement the selected mode
(position [, speed] [, current]), one must define the corresponding parameters.

 The selected motion mode will become effective at the first motion update
command (immediate update – UPD, or update on event, UPD!).

Execution Sets the position / user pulse & direction motion mode (reference type). Four

cases are possible:

MODE Position controller Speed controller Current
controller

PPD0 √ - -
PPD1 √ - √
PPD2 √ √ -
PPD3 √ √ √

Example

MODE PPD3; //Set Position mode 3 with Pulse &
Direction

//reference
UPD; //Update immediate

© Technosoft 2006 MotionChip II TML Programming 235

Name MODE SC Speed contouring motion mode

(Motion mode group)

Syntax

MODE SC0 MODE Speed Contouring 0 ()
MODE SC1 MODE Speed Contouring 1 (T)

Operands –

TML program On-line Type
X X

Binary code

MODE SC0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 1 0 0 1 0 0 0 0 1 0 0 1
1 0 1 1 1 0 1 0 1 1 0 0 0 0 1 0
1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0

MODE SC1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 1 0 0 1 0 0 0 0 1 0 0 1
1 0 1 1 1 0 1 1 1 1 0 0 0 0 1 0
1 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0

Description MODE SC0/SC1 instruction defines the speed control operating in the contouring

reference motion mode.

In this mode, the reference module will perform linear interpolation based on
motion speed segments described using the SEG instruction. The reference will
represent a speed reference value, in speed control structures. The reference is
generated in the slow control loop (position/speed loop).

See Motion Programming chapter for details about contouring reference
parameters and implementation.

 Depending on the selected option (SC0, SC1), the internal current control loop –
is activated/deactivated (depending on the system structure).

 Note that if the current control loop is needed to implement the selected mode
(MODE SC1), one must define the corresponding parameters.

 The selected motion mode will become effective at the first motion update
command (immediate update – UPD, or update on event, UPD!).

© Technosoft 2006 MotionChip II TML Programming 236

Execution Sets the speed contouring motion mode (reference type). Two cases are
possible:

MODE Current controller
SC0 -
SC1 √

Example
 MODE SC1; //Set Speed Contouring Mode 1
 TUM1; //Set Target Update Mode 1

SEG 100U, 5.00000; //Set 1st motion segment. Increment
//speed reference with 5 counts/sampling
//for the next 100 sampling periods

UPD; //Update immediate
SEG 100U, 5.00000; //Set 2st motion segment.
SEG 200U, -10.00000; //Set 3st motion segment.
SEG 100U, -10.00000; //Set 4st motion segment.
SEG 200U, 10.00000; //Set 5st motion segment.
SEG 0, 0.; //End of contouring mode

© Technosoft 2006 MotionChip II TML Programming 237

Name MODE SE Speed external motion mode

(Motion mode group)

Syntax

MODE SE0 MODE Speed External 0 ()
MODE SE1 MODE Speed External 1 (T)

Operands –

TML program On-line Type
X X

Binary code

MODE SE0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 1 0 0 1 0 0 0 0 1 0 0 1
1 0 1 1 0 0 1 0 1 1 0 0 0 0 0 0
1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

MODE SE1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 1 0 0 1 0 0 0 0 1 0 0 1
1 0 1 1 0 0 1 1 1 1 0 0 0 0 0 0
1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0

Description MODE SE0/SE1 instruction defines the speed control operating in the external

reference motion mode.

In this mode, the reference module will use an external reference, as previously
defined by the EXTREF instruction. The reference will represent a speed
reference value, in speed control structures. The reference will be generated in
the slow control loop (position/speed loop).

See Motion Programming chapter for details about external reference parameters
and implementation.

 Depending on the selected option (SE0, SE1), the internal current control loop is
activated or not (depending on the system structure).

 Note that if the current control loop is needed to implement the selected mode
(MODE SE1), one must define the corresponding parameters.

 The selected motion mode will become effective at the first motion update
command (immediate update – UPD, or update on event, UPD!).

© Technosoft 2006 MotionChip II TML Programming 238

Execution Sets the speed external motion mode (reference type). Two cases are possible:

MODE Current controller
SE0 –
SE1 √

Example

MODE SE1 ; //Set Speed External Mode 1
UPD; //Update immediate

© Technosoft 2006 MotionChip II TML Programming 239

Name MODE SP Speed profile motion mode

(Motion mode group)

Syntax

MODE SP0 MODE Speed Profile 0 ()
MODE SP1 MODE Speed Profile 1 (T)

Operands –

TML program On-line Type
X X

Binary code

MODE SP0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 1 0 0 1 0 0 0 0 1 0 0 1
1 0 1 1 1 0 1 0 1 1 0 0 0 0 0 1
1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1

MODE SP1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 1 0 0 1 0 0 0 0 1 0 0 1
1 0 1 1 1 0 1 1 1 1 0 0 0 0 0 1
1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1

Description MODE SP0/SP1 instruction defines the speed control operating in the profile

reference motion mode.

In this mode, the reference module will generate a ramp speed profile. The
reference will represent a speed reference value, in speed control structures. The
reference is generated in the slow control loop (position/speed loop).

See Motion Programming chapter for details about speed profile reference
parameters and implementation.

 Depending on the selected option (SP0, SP1), the internal current control loop is
activated or not (depending on the system structure).

 Note that if the current control loop is needed to implement the selected mode
(MODE SP1), one must define the corresponding parameters.

 The selected motion mode will become effective at the first motion update
command (immediate update – UPD, or update on event, UPD!).

© Technosoft 2006 MotionChip II TML Programming 240

Execution Sets the speed profile motion mode (reference type). Two cases are possible:

MODE Current controller
SP0 -
SP1 √

Example:

CACC = 0.5; //Acceleration command for speed profile
//(counts/sampling2)

CSPD = -20; //Speed command (counts/sampling)
MODE SP1; //Set Speed Profile Mode 1
UPD; //Update immediate

© Technosoft 2006 MotionChip II TML Programming 241

Name MODE SPD Speed pulse & direction motion mode

(Motion mode group)

Syntax

MODE SPD0 MODE Speed External 0 ()
MODE SPD1 MODE Speed External 1 (T)

Operands –

TML program On-line Type
X X

Binary code

MODE SPD0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 1 0 0 1 0 0 0 0 1 0 0 1
1 0 1 1 1 0 1 0 1 1 0 0 0 1 0 0
1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0

MODE SPD1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 1 0 0 1 0 0 0 0 1 0 0 1
1 0 1 1 1 0 1 1 1 1 0 0 0 1 0 0
1 0 0 0 0 0 1 1 0 0 0 0 0 1 0 0

Description MODE SPD0/SPD1 instruction defines the speed control operating in the pulse

and direction reference motion mode.

In this mode, the reference module will get the reference values from the specific
pulse and direction interface of the DSP.
The reference will represent a speed reference value, in speed control structures.
The reference will be generated in the slow control loop (position/speed loop).

See Motion Programming chapter for details about pulse and direction reference
parameters and implementation.

 Depending on the selected option (SPD0, SPD1), the internal current control loop
is activated or not (depending on the system structure).

 Note that if the current control loop is needed to implement the selected mode
(MODE SPD1), one must define the corresponding parameters.

The selected motion mode will become effective at the first motion update
command (immediate update – UPD, or update on event, UPD!).

© Technosoft 2006 MotionChip II TML Programming 242

Execution Sets the speed pulse & direction motion mode (reference type). Two cases are
possible:

MODE Current controller
SPD0 -
SPD1 √

Example

MODE SPD1; //Set Speed mode 1 with Pulse & Direction
//reference

UPD; //Update immediate

© Technosoft 2006 MotionChip II TML Programming 243

Name MODE TC Torque contouring motion mode

(Motion mode group)

Syntax

MODE TC MODE Torque Contouring

Operands –

TML program On-line Type
X X

Binary code

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 1 0 0 1 0 0 0 0 1 0 0 1
1 0 1 1 0 0 0 1 1 1 0 0 0 0 1 1
1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1

Description MODE TC instruction defines the torque control operating in the contouring

reference motion mode.

In this mode, the reference module will perform linear interpolation based on
motion speed segments, described using the SEG instruction. The reference will
represent a torque reference value, in torque control structures.

The reference will be generated in the slow control loop (position/speed loop).

See Motion Programming chapter for details about contouring reference
parameters and implementation.

 Note that the current control loop is needed to implement the selected mode, thus
one must define the corresponding parameters.

The selected motion mode will become effective at the first motion update
command (immediate update – UPD, or update on event, UPD!).

Execution Sets the torque contouring motion mode (reference type).

Example
 MODE TC; //Set Torque Contouring Mode 1

REF0 = 0.00000; //Initial reference
SEG 200U, 2.00000;; //Set 1st motion segment. Increment

//torque reference with 2 bits for the
//next 200 sampling periods

UPD; //Update immediate
SEG 100U, -1.00000; //Set 2st motion segment.
SEG 200U, 0.00000; //Set 3st motion segment.
SEG 100U, -1.00000; //Set 4st motion segment.

© Technosoft 2006 MotionChip II TML Programming 244

SEG 0, 0.; //End of contouring mode

© Technosoft 2006 MotionChip II TML Programming 245

Name MODE TEF, TES Torque external motion mode

(Motion mode group)

Syntax

MODE TEF MODE Torque External Fast
MODE TES MODE Torque External Slow

Operands –

TML program On-line Type
X X

Binary code

MODE TEF

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 1 0 0 1 0 0 0 0 1 0 0 1
1 0 1 1 0 0 0 1 1 1 1 0 0 0 0 0
1 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0

MODE TES

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 1 0 0 1 0 0 0 0 1 0 0 1
1 0 1 1 0 0 0 1 1 1 0 0 0 0 0 0
1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

Description MODE TEF/TES instruction defines the torque control operating in the external

reference motion mode.

If MODE TEF is set, the reference module will always use only the analogue
reference input. In MODE TES there are also possible the other external modes
as previously defined by the EXTREF instruction. The reference will represent a
torque reference value, in torque control structures.

See Motion Programming chapter for details about external reference parameters
and implementation.

 Depending on the selected option (TEF or TES), the reference is generated in the
fast control loop or in the slow control loop. This is based to the fact that
normally, an external torque reference needs to be updated in the fast control
loop (where the current controllers are activated).

 Note that the current control loop is needed to implement the selected mode, thus
one must define the corresponding parameters.

 The selected motion mode will become effective at the first motion update
command (immediate update – UPD, or update on event, UPD!).

© Technosoft 2006 MotionChip II TML Programming 246

Execution Sets the torque external motion mode (reference type). Two cases are possible:

MODE Reference location
TEF In the fast loop
TES In the slow loop

Example

MODE TEF; //Set Torque External reference in
//fast loop

UPD; //Update immediate

© Technosoft 2006 MotionChip II TML Programming 247

Name MODE TT Torque test motion mode

(Motion mode group)

Syntax

MODE TT MODE Torque Test

Operands –

TML program On-line Type
X X

Binary code

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 1 0 0 1 0 0 0 0 1 0 0 1
1 0 1 1 0 0 0 1 1 1 0 0 1 0 0 0
1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0

Description MODE TT instruction defines the torque test operating motion mode. In this

mode, the reference module will use the values of specific variables, allowing the
generation of a saturated ramp or a constant value for the amplitude of the torque
/ current and for the electric angle of the motor.

Thus, one can apply a constant or a rotating current vector to the motor, for test
or control loops tuning purposes.
The reference will be generated in the slow control loop (position/speed loop).

See Motion Programming chapter for details about test reference parameters and
implementation.

 Note that the current control loop is needed to implement the selected mode, thus
one must define the corresponding parameters.

The selected motion mode will become effective at the first motion update
command (immediate update – UPD, or update on event, UPD!).

Execution Sets the torque test motion mode (reference type).

Example

MODE TT; //Set Torque Test Mode
REFTST = 40; //Reference saturation value in test mode

//(bits)
RINCTST = 1; //Reference increment value in test mode

//(bits/sampling)
UPD; //Update immediate

© Technosoft 2006 MotionChip II TML Programming 248

Name MODE VC Voltage contouring motion mode

(Motion mode group)

Syntax

MODE VC MODE Voltage Contouring

Operands –

TML program On-line Type
X X

Binary code

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 1 0 0 1 0 0 0 0 1 0 0 1
1 0 1 1 0 0 0 0 1 1 0 0 0 0 1 1
1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

Description MODE VC instruction defines the voltage control operating in the contouring

reference motion mode.

In this mode, the reference module will perform linear interpolation based on
motion speed segments described using the SEG instruction.

The reference will represent a voltage reference value, in voltage control
structures. The reference will be generated in the slow control loop
(position/speed loop).

See Motion Programming chapter for details about contouring reference
parameters and implementation.

 Note that no control loop is needed to implement the selected mode.

 The selected motion mode will become effective at the first motion update
command (immediate update – UPD, or update on event, UPD!).

Execution Sets the voltage contouring motion mode (reference type).

Example

MODE VC; //Set Voltage Contouring
REF0 = 0.00000; //Initial reference
SEG 100U, 12.00000; //Set 1st motion segment. Increment

//voltage reference with 12 bits for
//the next 100 sampling periods

UPD; //Update immediate
SEG 100U, 3.00000; //Set 2st motion segment.
SEG 100U, -15.00000; //Set 3st motion segment.
SEG 0, 0.; //End of contouring mode

© Technosoft 2006 MotionChip II TML Programming 249

© Technosoft 2006 MotionChip II TML Programming 250

Name MODE VEF, VES Voltage external motion mode

(Motion mode group)

Syntax

MODE VEF MODE Voltage External Fast
MODE VES MODE Voltage External Slow

Operands –

TML program On-line Type
X X

Binary code

MODE VEF

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 1 0 0 1 0 0 0 0 1 0 0 1
1 0 1 1 0 0 0 0 1 1 1 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

MODE VES

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 1 0 0 1 0 0 0 0 1 0 0 1
1 0 1 1 0 0 0 0 1 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Description MODE VEF/VES instructions define the voltage control operating in the external

reference motion mode.

If MODE VEF is set, the reference module will always use only the analogue
reference input. In MODE VES there are also possible the other external modes
as previously defined by the EXTREF instruction.

The reference will represent a voltage reference value, in voltage control
structures. See Motion Programming chapter for details about external reference
parameters and implementation.

 Depending on the selected option (VEF or VES), the reference is generated in the
fast control loop or in the slow control loop.

 Note that no control loop is needed to implement the selected mode.

 The selected motion mode will become effective at the first motion update
command (immediate update – UPD, or update on event, UPD!).

© Technosoft 2006 MotionChip II TML Programming 251

Execution Sets the voltage external motion mode (reference type). Two cases are possible:

MODE Reference location
VEF In the fast loop
VES In the slow loop

Example

MODE VES; //MODE Voltage External reference in slow loop
UPD; //Update immediate

© Technosoft 2006 MotionChip II TML Programming 252

Name MODE VT Voltage test motion mode

(Motion mode group)

Syntax

MODE VT MODE Vorque Test

Operands –

TML program On-line Type
X X

Binary code

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 1 0 0 1 0 0 0 0 1 0 0 1
1 0 1 1 0 0 0 0 1 1 0 0 1 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

Description MODE VT instruction defines the voltage test operating motion mode.

In this mode, the reference module will use the values of specific variables,
allowing the generation of a saturated ramp or a constant value for the amplitude
of the voltage and for the electric angle of the motor.

Thus, one can apply a constant or a rotating voltage vector to the motor, for test
purposes.
The reference will be generated in the slow control loop (position/speed loop).

See Motion Programming chapter for details about test reference parameters and
implementation.

 Note that no control loop is needed to implement the selected mode.

The selected motion mode will become effective at the first motion update
command (immediate update – UPD, or update on event, UPD!).

Execution Sets the voltage test motion mode (reference type).

Example

MODE VT; //Set Voltage Test Mode
REFTST = 15; //Reference saturation value in test mode

//(bits)
RINCTST = 4; //Reference increment value in test mode

//(bits/sampling)
UPD; //Update immediate

© Technosoft 2006 MotionChip II TML Programming 253

Name NOP No operation

(Miscellaneous group)

Syntax

NOP No Operation

Operands –

TML program On-line Type
X X

Binary code

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Description NOP instruction can be used to introduce a delay between two instructions. It also

can be used as a labeled instruction for GOTO instructions.

Execution No operation is executed. The TML program will continue with the next

instruction.

Example

CACC = 0.5; //Acceleration command for speed profile
//(counts/sampling2)

CSPD = -20; //Speed command (counts/sampling)
MODE SP1; //Set Speed Profile Mode 1
UPD; //Update immediate
CSPD = 30.; // New jog speed command for the next
update
UPD; // on-the-fly change of jog speed, during

//motion
LOOP:
NOP; // no operation
GOTO LOOP; // infinite loop, exit only by RESET or a

//TML interrupt

© Technosoft 2006 MotionChip II TML Programming 254

Name OUTPORT Output to user port

(I/O group)

Syntax

OUTPORT VAR16 OUTput VAR16 value to IOPORT

Operands VAR16: integer variable

TML program On-line Type
X X

Binary code

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 0 1 1 0 (9LSBs of &VAR16)

Description The OUTPORT instruction sends a 16-bit value to the user output port. VAR16

variable can be any of the TML or user variables.

See details about user output I/O port according to the drive.

Execution The 16-bit value of Var16 is send to the user output port.

Example

int Var1;
Var1 = 0x1255; // setup Var1 variable
OUTPORT Var1; // output Var1 value to user port

© Technosoft 2006 MotionChip II TML Programming 255

Name RAOU Reset automatic origin update

(Configuration and command group)

Syntax

RAOU Reset Automatic Origin Update

Operands –

TML program On-line Type
X X

Binary code

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 1 0 0 1 0 0 0 0 1 0 0 1
1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Description The RAOU instruction resets the automatic origin update mode. In this case, the

variable POS0 is not changed at event occurrence, and needs to be initialized by
the user. For successive motions, the event tests for relative position will be
based on the same value of the POS0 parameter. Use instruction SAOU in order
to automatically update variable POS0 after each detected event.

Execution Resets the automatic origin update.

Example

CACC = 0.5; //Acceleration command for position profile
//(counts/sampling2)

CSPD = 20; //Speed command for position profile
//(counts/sampling)

CPOS = 80000; //Position command (counts)
CPA; //Position command is Absolute
MODE PP3; //Set Position Profile Mode 3
UPD; //Update immediate
RAOU ; // Reset automatic update mode
POS0 = APOS; //Store the actual position as reference
UPD; //Update immediate
CSPD = 40; //New speed command for position profile

//(counts/sampling)
!RPO 20000; //Set event when relative position >= 20000

//(bits)
UPD!; //Update on event

© Technosoft 2006 MotionChip II TML Programming 256

Name REMGRID Remove group ID

(Multiple axis group)

Syntax

REMGRID value16 Remove value16 from GROUP ID
REMGRID VAR16 Remove value of VAR16 from GROUP ID

Operands value16: 16-bit integer immediate value
 VAR16: integer variable

TML program On-line Type
X X

Binary code

REMGRID value16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0

Value16

REMGRID VAR16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 1 0 0 1 1 0 0 0 0 0 0 0

&VAR16

Description In multiple axis structures, this command allows one to remove a group ID of the

local axis.

After the execution of this command, the group ID value removed is no more
recognized by the axis and the communication drivers will reject messages
addressed to the removed group ID.

Only the lower 8 bits of the value16 or VAR16 parameters are used for group
coding. Each bit corresponds to a group. Up to 8 groups can be
defined/added/removed in a multiple axis structure.

An axis can belong to any of the 8 groups.
A multiple-axis message can be addressed to one axis or to a group of axes.

Execution Delete Group_ID with the specified value from the Group_Ids of the local axis.

Example
 GROUPID 1; //local axis belongs to groups 1
 ADDGRID 2; //local axis belongs to groups 1 and 2
 ADDGRID 5; //local axis belongs to groups 1, 2 and 5

REMGRID 2; //from now on, the local axis belongs only
//groups 1 and 5

© Technosoft 2006 MotionChip II TML Programming 257

Name RESET Reset the DSP processor

(Configuration and command group)

Syntax

RESET Reset DSP processor

Operands –

TML program On-line Type
X X

Binary code

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0

Description The RESET instruction resets the DSP processor. After this instruction the
complete TML environment is reinitialized. The following basic initializations are performed:

• The TML registers and parameters are initialized with their default values;
• Based on these values, and some hardware tests, the basic hardware

initializations are also performed;
• The TML environment detects if an external memory is installed on the

SPI interface, by identifying a valid TML command at the start address of
this memory;

• If such a program is detected, it is executed; otherwise, an infinite loop is
executed and only an on-line TML command will change this status.

Execute such a command in order to exit from a malfunctioning situation, when
the system does not operate correspondingly.

This instruction can be used also from a TML interrupt or when detecting an error
in the motion system operation (protections, control error, etc.).

Execution Resets the DSP processor.

Example

CACC = 0.5; //Acceleration command for position profile
//(counts/sampling2)

CSPD = 20; //Speed command for position profile
//(counts/sampling)

CPOS = 70000; //Position command (counts)
CPA; //Position command is Absolute
MODE PP3; //Set Position Profile Mode 3
UPD; //Update immediate
!MC; //Set event when MotionComplete
WAIT!; //WAIT until event occurs
RESET; //After motion complete, reset the system

© Technosoft 2006 MotionChip II TML Programming 258

Name RET Return from a TML function

(Decision group)

Syntax

RET Unconditional RETurn from a TML function

Operands –

TML program On-line Type
X –

Binary code

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0

Description This instruction allows the return from a TML function (subroutine).

Specific sequences can be called from different points of the TML program.
The RET instruction may be used to end the execution of a function and to
continue the TML sequence following the CALL instruction.

Execution Returns from a TML function.

 TOS -> IP

Example

int my_pos;
my_pos = 2000;
CALL MOVEP; //Execute a first motion of 2000

//counts
my_pos = 4000;

CALL MOVEP, ASPD, GT; //Execute a second motion of 4000

//counts, if motor speed > 0
. . .

MOVEP: //Function to move up to a specified

//position
CACC = 1.5; //Acceleration command for position

//profile (counts/sampling2)
CSPD = -20; //Speed command for position profile (
 //counts/sampling)
CPOS = my_pos; //Position command (counts)
UPD; //Update immediate
RET; //Exit from function MOVEP

© Technosoft 2006 MotionChip II TML Programming 259

Name RETI Return from a TML interrupt function

(Decision group)

Syntax

RETI RETurn from a TML Interrupt function

Operands –

TML program On-line Type
X –

Binary code

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0

Description This instruction allows the return from a TML interrupt service routine.

When a TML interrupt service routine is entered, a specific TML sequence is
executed.
The return from interrupt instruction will be used to end the execution of the
interrupt function and to continue the TML sequence that was interrupted.

Execution Returns from a TML interrupt function.
 Enables TML interrupts (they were disabled at the start of the TML

interrupt service routine);
 TOS -> IP;

Example

// test TML interrupts
int u_var, dt ;
fixed dp;

BEGIN; // start the TML program
INTTABLE = InterruptTable; // locate the interrupt vector
ENDINIT; // global system settings
AXISON; // activate control
SAP 0; // set actual position value
u_var = 19;

SRB ICR, 4095, 4095; // set interrupt masks
CACC = 0.5; // set acceleration
CSPD = 30.; // set speed
SP1 //Set Speed Profile Mode 1
UPD; // start the motion
EINT ; // enable interrupts
lb1 :
GOTO lb1, u_var, GT; // loop while u_var > 0

© Technosoft 2006 MotionChip II TML Programming 260

My_flag = u_var; // this instruction is executed
//after an interrupt

GOTO lb1, u_var, GT; // again in the infinite loop if
//u_var > 0

END; // end the TML program after
//motion complete

Int0_Disable: // [level 0: disable] interrupt

//function
 u_var = 100;
 RETI;
Int1_PDPINT: // [level 1: PDPINT] interrupt

//function
 u_var = 101;
 RETI;
Int2_SoftProtection: // [level 2: Software

//protection] interrupt function
 u_var = 102;
 RETI;
Int3_ControlError: // [level 3: Control error]

//interrupt function
 u_var = 103;
 RETI;
Int4_CommError: // [level 4: Communication error]

//interrupt function
 u_var = 104;
 RETI;
Int5_WrapAround: // [level 5: Wrap Around] interrupt

//function
 u_var = 105;
 RETI;
Int6_LimitSwitchP: // [level 6: Positive limit

//switch] interrupt function
 u_var = 106;
 RETI;
Int7_LimitSwitchM: // [level 7: Negative limit

//switch] interrupt function
 u_var = 107;
 RETI;
Int8_Capture: // [level 8: Capture] interrupt

//function
 CPOS = CAPPOS;
 UPD;
 u_var = 108;
 RETI;
Int9_MotionComplete: // [level 9: Motion complete]

//interrupt function
 UPD;
 u_var = -109 ;
 RETI ;

© Technosoft 2006 MotionChip II TML Programming 261

Int10_UpdateContourSeg: //[level 10: Update contour
//segment] interrupt function

 dp = -dp;
 SEG dt, dp;
 u_var = 110;
 RETI;
Int11_EventReached: // [level 11: Event reached]

//interrupt function
 CPOS = -20000;
 UPD;
 u_var = 111;
 RETI;

IntVect: // interrupt vector table
 @Int0_Disable; // pointer to level 0 interrupt
 @Int1_PDPINT; // pointer to level 1 interrupt
 @Int2_SoftProtection; // pointer to level 2 interrupt
 @Int3_ControlError; // pointer to level 3 interrupt
 @Int4_CommError; // pointer to level 4 interrupt
 @Int5_WrapAround; // pointer to level 5 interrupt
 @Int6_LimitSwitchP; // pointer to level 6 interrupt
 @Int7_LimitSwitchM; // pointer to level 7 interrupt
 @Int8_Capture; // pointer to level 8 interrupt
 @Int9_MotionComplete; // pointer to level 9 interrupt
 @Int10_UpdateContourSeg; // pt. To level 10 interrupt
 @Int11_EventReached; // pointer to level 11 interrupt

© Technosoft 2006 MotionChip II TML Programming 262

Name RGM Reset gear/cam master mode

(Configuration and Command group)

Syntax

RGM Reset axis as Gear/Cam Master

Operands –

TML program On-line Type
X X

Binary code

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 1 0 0 1 0 0 0 0 1 0 0 1
1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Description RGM instruction resets the axis from the electronic gearing/camming master

operation mode. In this mode, the reference values will be generated only locally.

The axis does not send its position information to the slave axes, but use it only
locally.

See Motion Programming chapter for details about gearing reference parameters
and implementation.

Execution Resets the axis from the gear/cam master operation mode.

Example

RGM; //exit from master mode; enter in local mode

© Technosoft 2006 MotionChip II TML Programming 263

Name ROUT Reset output bit-port

(I/O group)

Syntax

ROUT#n Reset OUT#n to low state (0)

Operands n: number of output bit-port 0<=n<=39)

TML program On-line Type
X X

Binary code

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0

PxDATDIR
ANDrst
ORrst

Description ROUT#n instruction resets the output status of the bit-port (IO line) number n.

Note that the bit-port must be defined as an output port (using the SETIO#n OUT
instruction).

Execution Resets the output bit-port number n.

Example
 SETIO#13 OUT; //Set IO line 13 as output
 ROUT#13; //Reset the IO line 13

© Technosoft 2006 MotionChip II TML Programming 264

AND/OR masks for ROUT#n

PxDATDIR #n ANDrst ORrst
0X7098 #0 0xFFFE 0x0000
0X07098 #1 0xFFFD 0x0000
0X7098 #2 0xFFFB 0x0000
0X7098 #3 0xFFF7 0x0000
0X7098 #4 0xFFEF 0x0000
0X7098 #5 0xFFDF 0x0000
0X7098 #6 0xFFBF 0x0000
0X7098 #7 0xFF7F 0x0000
0X709A #8 0xFFFE 0x0000
0X709A #9 0xFFFD 0x0000
0X709A #10 0xFFFB 0x0000
0X709A #11 0xFFF7 0x0000
0X709A #12 0xFFEF 0x0000
0X709A #13 0xFFDF 0x0000
0X709A #14 0xFFBF 0x0000
0X709A #15 0xFF7F 0x0000
0X709C #16 0xFFFE 0x0000
0X709C #17 0xFFFD 0x0000
0X709C #18 0xFFFB 0x0000
0X709C #19 0xFFF7 0x0000

PxDATDIR #n ANDrst ORrst
0X709C #20 0xFFEF 0x0000
0X709C #21 0xFFDF 0x0000
0X709C #22 0xFFBF 0x0000
0X709C #23 0xFF7F 0x0000
0X709E #24 0xFFFE 0x0000
0X7095 #25 0xFFFE 0x0000
0X7095 #26 0xFFFD 0x0000
0X7095 #27 0xFFFB 0x0000
0X7095 #28 0xFFF7 0x0000
0X7095 #29 0xFFEF 0x0000
0X7095 #30 0xFFDF 0x0000
0X7095 #31 0xFFBF 0x0000
0X7095 #32 0xFF7F 0x0000
0X7096 #33 0xFFFE 0x0000
0X7096 #34 0xFFFD 0x0000
0X7096 #35 0xFFFB 0x0000
0X7096 #36 0xFFF7 0x0000
0X7096 #37 0xFFEF 0x0000
0X7096 #38 0xFFDF 0x0000
0X7096 #39 0xFFBF 0x0000

© Technosoft 2006 MotionChip II TML Programming 265

Name SAOU Set automatic origin update

(Configuration and command group)

Syntax

SAOU Reset Automatic Origin Update

Operands –

TML program On-line Type
X X

Binary code

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 1 0 0 1 0 0 0 0 1 0 0 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

Description The SAOU instruction sets the automatic origin update mode. In this case, the

variable POS0 is changed at an UPDATE event occurrence, and needs not to be
initialized by the user. For successive motions, the event tests for relative position
will be based on the updated values of the POS0 parameter. Use instruction
RAOU in order to manually update variable POS0.

Execution Sets the automatic origin update.

Example

CACC = 0.5; //Acceleration command for position profile
//(counts/sampling2)

CSPD = 20; //Speed command for position profile
//(counts/sampling)

CPOS = 90000; //Position command (counts)
CPR; //Position command is Relative
MODE PP3; //Set Position Profile Mode 3
SAOU ; //Set automatic update mode
UPD; //Update immediate
CSPD = 40; //New speed command for position profile

//(counts/sampling)
!RPO 20000; //Set event when relative position >= 20000

//i.e. when motor position has done 20000
// counts

UPD!; //Update on event
WAIT!; //Wait event to occur

© Technosoft 2006 MotionChip II TML Programming 266

Name SAP Set actual position

(Configuration and command group)

Syntax

SAP value32 Set Actual Position to value32
SAP VAR32 Set Actual Position to VAR32

Operands value32: 32-bit long immediate value

VAR32: long variable

TML program On-line Type
X X

Binary code
SAP value32

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

LOWORD(value32)
HIWORD(value32)

SAP VAR32
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 0 0 0 0 0 (9LSBs of &VAR32)

Description Sets the value of variable APOS (absolute position) with the value value32 or
VAR32. Also corrects the reference value, so that the difference between the
position reference and the actual position before the setting will be preserved
after the change of the absolute position value.

Execution
 Depending on the target update mode bit:

If TUM1 is set:
value32:

value32 - old reference + old APOS -> new APOS
value32 -> new reference

VAR32:
VAR32 - old reference + old APOS -> new APOS
VAR32 -> new reference

If TUM0 is set:
value32:

value32 + old reference – old APOS-> new reference
value32 -> new APOS

VAR32:
VAR32 + old reference – old APOS -> new reference
VAR32 -> new APOS

© Technosoft 2006 MotionChip II TML Programming 267

Example
CACC = 1.5; //Acceleration command for speed profile

//(counts/sampling2)
CSPD = 20; //Speed command (counts/sampling)
MODE SP1; //Set Speed Profile Mode 1
UPD; //Update immediate
SAP 0; //Set the actual position to 0 (counts)
!APO 60000; //Set event when absolute position >= 60000

//(counts)
UPD!; //Update on event

© Technosoft 2006 MotionChip II TML Programming 268

Name SCIBR Set SCI serial communication baud rate

(Miscellaneous group)

Syntax

SCIBR value16 Set SCI Baud Rate to value16
SCIBR VAR16 Set SCI Baud Rate to VAR16

Operands value16: 16-bit integer immediate value. (0<=value32<=4)
 VAR16: integer variable

TML program On-line Type
X X

Binary code

 SCIBR value16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0

Value16

 SCIBR VAR16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 1 0 0 1 0 0 1 0 0 0 0 0

&VAR16

Description Sets the value of SCI serial communication baud rate, based on the value of the

input parameter value16.
Baud rates range from 9600 to 115200 baud. The default baud rate value of the
drive is 9600.

Execution Sets the SCI serial communication baud rate, based on value16 value:

Value16 SCI baud rate
0 9600
1 19200
2 38400
3 56600
4 115200

Example
 SCIBR 4; // sets the SCI baud rate to 115200 baud

© Technosoft 2006 MotionChip II TML Programming 269

Name SEG Define a segment for contouring motion mode

(Configuration and command group)
Syntax

SEG D_time, D_ref SEGment D_time, D_ref
SEG VAR16, VAR32 SEGment VAR16, VAR32

Operands D_time: 16-bit integer immediate value
D_ref: 32-bit long immediate value
VAR32: long variable
VAR16: integer variable

TML program On-line Type
X –

Binary code
SEG D_time, D_ref

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0

D_time
LOWORD(D_ref)
HIWORD(D_ref)

SEG VAR16, VAR32
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 1 1 1 0 (9LSBs of &VAR16)

&VAR32

Description The SEG instruction is used in the contouring mode to generate the reference,
describing one of the segments of the contour.
Its parameters represent the number of sampling periods over which that
segment will be generated, respectively the value of reference increment added
to the actual value of the reference at each sampling moment.
The reference is updated in the slow sampling interrupt routine (position/speed
control loop). See Motion Programming chapter for details about contouring
reference mode and its parameters.

Execution Generate a segment for the next D_time [VAR16] time samplings, at each
sampling increment the reference with D_ref [VAR32].

Example
MODE PC3; //Set Position Contouring Mode 3
SEG 100U, 5.00000;; //Set 1st motion segment.
UPD; //Update immediate
SEG 100U, 5.00000; //Set 2st motion segment.
SEG 100U, -20.00000; //Set 3st motion segment.
SEG 100U, 10.00000; //Set 4st motion segment.
SEG 0, 0.; //End of contouring mode.

© Technosoft 2006 MotionChip II TML Programming 270

Name SETIO Set bit-port as input or output port

(I/O group)
Syntax

SETIO#n IN SETIO#n as Input port
SETIO#n OUT SETIO#n as OUTput port

Operands n: number of output bit-port 0<=n<=39)

TML program On-line Type
X X

Binary code
SETIO#n IN

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0

PxDATDIR
ANDin
ORin

SETIO#n OUT
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0

PxDATDIR
ANDout
ORout

Description SETIO#n instruction defines the operating mode of bit-port number #n. Each of
the bit-ports can thus be individually defined and used as an input (in assignment
instructions having the source operant IN#n) or output (in instruction SOUT#n)
bit-port.

Execution Define the operating mode for bit-port number n.
Example

int v1;
SETIO#13 OUT; //Set IO line 13 as output
ROUT#13; //Reset IO line 13 as output
SETIO#14 IN; //Set IO line 14 as input
v1 = IN#14; //Read I/O line 14 data into variable v1

 AND/OR masks for SETIO#n IN AND/OR masks for SETIO#n OUT

PxDATDIR #n ANDin ORin #n ANDout ORout
0X7098 #0 0xFEFF 0x0000 #0 0xFFFF 0x0100
0X7098 #1 0xFDFF 0x0000 #1 0xFFFF 0x0200
0X7098 #2 0xFBFF 0x0000 #2 0xFFFF 0x0400
0X7098 #3 0xF7FF 0x0000 #3 0xFFFF 0x0800

© Technosoft 2006 MotionChip II TML Programming 271

 AND/OR masks for SETIO#n IN AND/OR masks for SETIO#n OUT

PxDATDIR #n ANDin ORin #n ANDout ORout
0X7098 #4 0xEFFF 0x0000 #4 0xFFFF 0x1000
0X7098 #5 0xDFFF 0x0000 #5 0xFFFF 0x2000
0X7098 #6 0xBFFF 0x0000 #6 0xFFFF 0x4000
0X7098 #7 0x7FFF 0x0000 #7 0xFFFF 0x8000
0X709A #8 0xFEFF 0x0000 #8 0xFFFF 0x0100
0X709A #9 0xFDFF 0x0000 #9 0xFFFF 0x0200
0X709A #10 0xFBFF 0x0000 #10 0xFFFF 0x0400
0X709A #11 0xF7FF 0x0000 #11 0xFFFF 0x0800
0X709A #12 0xEFFF 0x0000 #12 0xFFFF 0x1000
0X709A #13 0xDFFF 0x0000 #13 0xFFFF 0x2000
0X709A #14 0xBFFF 0x0000 #14 0xFFFF 0x4000
0X709A #15 0x7FFF 0x0000 #15 0xFFFF 0x8000
0X709C #16 0xFEFF 0x0000 #16 0xFFFF 0x0100
0X709C #17 0xFDFF 0x0000 #17 0xFFFF 0x0200
0X709C #18 0xFBFF 0x0000 #18 0xFFFF 0x0400
0X709C #19 0xF7FF 0x0000 #19 0xFFFF 0x0800
0X709C #20 0xEFFF 0x0000 #20 0xFFFF 0x1000
0X709C #21 0xDFFF 0x0000 #21 0xFFFF 0x2000
0X709C #22 0xBFFF 0x0000 #22 0xFFFF 0x4000
0X709C #23 0x7FFF 0x0000 #23 0xFFFF 0x8000
0X709E #24 0xFEFF 0x0000 #24 0xFFFF 0x0100
0X7095 #25 0xFEFF 0x0000 #25 0xFFFF 0x0100
0X7095 #26 0xFDFF 0x0000 #26 0xFFFF 0x0200
0X7095 #27 0xFBFF 0x0000 #27 0xFFFF 0x0400
0X7095 #28 0xF7FF 0x0000 #28 0xFFFF 0x0800
0X7095 #29 0xEFFF 0x0000 #29 0xFFFF 0x1000
0X7095 #30 0xDFFF 0x0000 #30 0xFFFF 0x2000
0X7095 #31 0xBFFF 0x0000 #31 0xFFFF 0x4000
0X7095 #32 0x7FFF 0x0000 #32 0xFFFF 0x8000
0X7096 #33 0xFEFF 0x0000 #33 0xFFFF 0x0100
0X7096 #34 0xFDFF 0x0000 #34 0xFFFF 0x0200
0X7096 #35 0xFBFF 0x0000 #35 0xFFFF 0x0400
0X7096 #36 0xF7FF 0x0000 #36 0xFFFF 0x0800
0X7096 #37 0xEFFF 0x0000 #37 0xFFFF 0x1000
0X7096 #38 0xDFFF 0x0000 #38 0xFFFF 0x2000
0X7096 #39 0xBFFF 0x0000 #39 0xFFFF 0x4000

© Technosoft 2006 MotionChip II TML Programming 272

Name SGM Set gear master mode

(Configuration and Command group)

Syntax

SGM Set axis as Gear/Cam Master

Operands –

TML program On-line Type
X X

Binary code

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 1 0 0 1 0 0 0 0 1 0 0 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

Description SGM instruction sets the axis in the gear/cam master operation mode.

In those modes, the position reference values computed for the master axis (the
local axis) will also be sent to the slave axes. The master will use the SLAVEID
parameter in order to generate the address of slave axes toward which the
gearing/camming value is sent.

Depending on the “Electronic gearing/camming mode” bit of OSR register (bit 15),
the value sent to the slaves is the master actual position – APOS (if bit 15 of OSR
is 0), or the master target position – TPOS (if bit 15 of OSR is 1).

See Motion Programming chapter for details about gearing reference parameters
and implementation.

Execution Sets the axis in the gear/cam master operation mode.

Example

SLAVEID = 2; //ID of the slave axis referenced
SGM; //Enable Master in Electronic Gearing mode
SRB OSR,0xFFFF,0x8000; //Set OSR register, 15 bit to send

//reference position to slave axis 2
UPD; //Update immediate

© Technosoft 2006 MotionChip II TML Programming 273

Name SOUT Set output bit-port

(I/O group)

Syntax

SOUT#n Set OUT#n to high state (1)

Operands n: number of output bit-port 0<=n<=39)

TML program On-line Type
X X

Binary code

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0

PxDATDIR
ANDset
ORset

Execution Sets the output bit-port number n to high state.

Description SOUT#n instruction sets the output status of the bit-port number n.

Note that the bit-port must be defined as an output port (using the SETIO#n OUT
instruction).

Example

SETIO#13 OUT; //Set IO line 13 as output
SOUT#13; //Set High to I/O line 13

© Technosoft 2006 MotionChip II TML Programming 274

AND/OR masks for SOUT#n

PxDATDIR #n ANDset ORset
0X7098 #0 0xFFFF 0x0001
0X7098 #1 0xFFFF 0x0002
0X7098 #2 0xFFFF 0x0004
0X7098 #3 0xFFFF 0x0008
0X7098 #4 0xFFFF 0x0010
0X7098 #5 0xFFFF 0x0020
0X7098 #6 0xFFFF 0x0040
0X7098 #7 0xFFFF 0x0080
0X709A #8 0xFFFF 0x0001
0X709A #9 0xFFFF 0x0002
0X709A #10 0xFFFF 0x0004
0X709A #11 0xFFFF 0x0008
0X709A #12 0xFFFF 0x0010
0X709A #13 0xFFFF 0x0020
0X709A #14 0xFFFF 0x0040
0X709A #15 0xFFFF 0x0080
0X709C #16 0xFFFF 0x0001
0X709C #17 0xFFFF 0x0002
0X709C #18 0xFFFF 0x0004
0X709C #19 0xFFFF 0x0008

PxDATDIR #n ANDset ORset
0X709C #20 0xFFFF 0x0010
0X709C #21 0xFFFF 0x0020
0X709C #22 0xFFFF 0x0040
0X709C #23 0xFFFF 0x0080
0X709E #24 0xFFFF 0x0001
0X7095 #25 0xFFFF 0x0001
0X7095 #26 0xFFFF 0x0002
0X7095 #27 0xFFFF 0x0004
0X7095 #28 0xFFFF 0x0008
0X7095 #29 0xFFFF 0x0010
0X7095 #30 0xFFFF 0x0020
0X7095 #31 0xFFFF 0x0040
0X7095 #32 0xFFFF 0x0080
0X7096 #33 0xFFFF 0x0001
0X7096 #34 0xFFFF 0x0002
0X7096 #35 0xFFFF 0x0004
0X7096 #36 0xFFFF 0x0008
0X7096 #37 0xFFFF 0x0010
0X7096 #38 0xFFFF 0x0020
0X7096 #39 0xFFFF 0x0040

© Technosoft 2006 MotionChip II TML Programming 275

Name SPIBR Set SPI serial communication baud rate

(Miscellaneous group)

Syntax

SPIBR value16 Set SPI Baud Rate to value16
SPIBR VAR16 Set SPI Baud Rate to VAR16

Operands value16: 16-bit integer immediate value. (0<=value32<=2)

VAR16: integer variable

TML program On-line Type
X X

Binary code

 SPIBR value16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0

Value16

 SPIBR VAR16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 1 0 0 1 0 0 0 1 0 0 0 0

&VAR16

Description Sets the value of SPI serial communication baud rate, based on the value of the

input parameter value16 or VAR16.
Baud rates range from 1 to 5 Mbaud. The default baud rate value is 1 Mb.

Execution Sets the SPI serial communication baud rate, based on value16 value:

Value16 SPI baud rate
0 1 Mb
1 2 Mb
2 5 Mb

Example
 SPIBR 1; // sets the SPI baud rate to 2 Mbaud

© Technosoft 2006 MotionChip II TML Programming 276

Name SRB, SRBL Set/reset bits of a variable

(Arithmetic & Logic group)

Syntax

SRB VAR16, ANDmask, ORmask Set/Reset Bits of VAR16
SRBL VAR16, ANDmask, ORmask Set/Reset Bits of VAR16 (long

addressing)

Operands VAR16: integer variable
 ANDmask: 16-bit mask for AND operation
 ORmask: 16-bit mask for OR operation

TML program On-line Type
X X

Binary code
 SRB VAR16, ANDmask, ORmask

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 1 0 0 (9LSBs of &VAR16)

ANDm
ORm

 SRBL VAR16, ANDmask, ORmask
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0

&VAR16
ANDm
ORm

Description This special instruction allows setting and resetting individually each of the bits of
a 16-bit variable.

The instruction must be used when needing to perform such operations on TML
variables that can be changed during the execution of the real-time motion
program. The SRB instruction will perform the modification of the bits of variable
VAR16 such that no interference between this modification and possible real-time
modification occurs.

Execution Reset in VAR16 all the bits that are 0 in the corresponding position of ANDmask.
Set in VAR16 all the bits that are 1 in the corresponding position of ORmask.

Example
int var1;

 ...
SRB var1, 0xFF0F, 0x0003; //Reset bits 4 to 7, set bits 0

//and 1 of var1

© Technosoft 2006 MotionChip II TML Programming 277

Name STA Set target position to actual position

(Configuration and command group)

Syntax

STA Set Target position = Actual position

Operands –

TML program On-line Type
X X

Binary code

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 1 0 1 1 0 0 1 0 1 1 0 0 1 0
0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0

Description STA instruction sets the value of the target position (the position reference) to the

value of the actual motor position.

This can be useful for example for actualization of the reference during the
execution of a given reference profile, when changing “on-the-fly” the reference
value allows one to re-start from a 0-error point, the reference generation and
motion execution.

Execution APOS -> TPOS

Example
 MODE PC2; //Set Position Contouring Mode 2
 TUM1; //Set target update mode 1

SEG 100U, 5.00000; //Set 1st motion segment
UPD; //Update immediate
SEG 100U, 5.00000; //Set 2st motion segment.
SEG 100U, -20.00000; //Set 3st motion segment.
SEG 100U, 10.00000; //Set 4st motion segment.
SEG 0, 0.; //End of contouring mode
STA; //Set target position value equal to

//the actual position value

© Technosoft 2006 MotionChip II TML Programming 278

Name STOP Stop the motion

(Configuration and command group)

Syntax

STOP0 STOP motion in mode 0
STOP1 STOP motion in mode 1
STOP2 STOP motion in mode 2
STOP3 STOP motion in mode 3

Operands –

TML program On-line Type
X X

Binary code

STOP0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0

STOP1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 0 0 1 0 1 0 0 0 1 0 0

STOP2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0

STOP3

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 0 0 1 1 1 0 0 0 1 0 0

Description STOP[0/1/2/3] instruction imposes a motor stop.
Four different stop modes can be used, as presented in the table bellow.

Execution Stops the motion by applying a specific reference.

 When a STOP instruction sent on-line is executed it will also contain an END

instruction after the initialization of the stop mode! The END instruction will stop
the execution of any current TML program!

 If a STOP instruction is executed from a TML program, it will only stop the motor.

© Technosoft 2006 MotionChip II TML Programming 279

Four cases are possible:

Stop Stop method
STOP0 Impose a voltage reference equal to 0 to the motor
STOP1 Impose a current reference equal to 0 to the motor
STOP2 Impose a speed reference equal to 0 to the motor

STOP3 Impose a speed reference equal to 0 to the motor,
using the profiles acceleration value to brake

Example

CACC = 1.5; //Acceleration command for position
//profile (counts/sampling2)

CSPD = -20; //Speed command for position profile
//(counts/sampling)

CPOS = -100000; //Position command (counts)
CPR; //Position command is Relative
MODE PP3; //Set Position Profile Mode 3
UPD; //Update immediate
CSPD = -40; //New speed command for position profile

//(counts/sampling)
!RU -20000; //Set event if Reference =< -20000

//(counts)
WAIT!; //Wait until event occurs
STOP0; //Apply 0 voltage reference to the motor

© Technosoft 2006 MotionChip II TML Programming 280

Name STOP! Stop the motion on event

(Configuration and command group)

Syntax

STOP0! STOP motion in mode 0 on event
STOP1! STOP motion in mode 1 on event
STOP2! STOP motion in mode 2 on event
STOP3! STOP motion in mode 3 on event

Operands –

TML program On-line Type
X X

Binary code
STOP0!

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

STOP1!
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0

STOP2!
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0

STOP3!
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 0 0 0 1 1 0 0 0 1 0 0

Description STOP[0/1/2/3]! Instruction imposes a motor stop when an event occurs during
the motion. Four different stop modes can be used, as presented in the table
bellow.

Execution Stops the motion by applying a specific reference, at the occurrence of a

programmed event. Four cases are possible:

Stop Stop method when event occurs
STOP0! Impose a voltage reference equal to 0 to the motor
STOP1! Impose a current reference equal to 0 to the motor
STOP2! Impose a speed reference equal to 0 to the motor

STOP3! Impose a speed reference equal to 0 to the motor,
using the profiles acceleration value to brake

© Technosoft 2006 MotionChip II TML Programming 281

Example:

CACC = 1; //Acceleration command for speed profile
//(counts/sampling2)

CSPD = 25.5; // Speed command (counts/sampling)
MODE SP1; //Set Speed Profile Mode 1
UPD; //Update immediate
!SO 10; //Set event if speed >= 10
(counts/sampling)
...
STOP2!; //Stop mode 2 when event occurs
WAIT!; //Wait until event occurs

© Technosoft 2006 MotionChip II TML Programming 282

Name TUM Target update mode

(Configuration and command group)

Syntax

TUM0 Set Target Update Mode 0
TUM1 Set Target Update Mode 1

Operands –

TML program On-line Type
X X

Binary code

TUM0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 1 0 0 1 0 0 0 0 1 0 0 1
1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

TUM1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 1 0 0 1 0 0 0 0 1 0 0 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Description TUM0 and TUM1 (target update mode 0 or 1) let the user to choose how to

consider the origin for relative positioning commands.

After a TUM0 command, the origin is considered as the actual motor position
(default). This option is useful in applications where, for example, the motor
should move a specified distance after it reaches a contact (event that can be
signaled by setting an input event).

After a TUM1 command, the origin is considered as the target position. In this
case, successive relative moves can be commanded and the final target
represents the exact sum of the individual commands. In the example below, 2nd
update command occurs when the motion commanded by the 1st update is
complete, i.e. when target position reaches the command value 3000. Hence, due
to TUM1 mode, the next absolute position command is 3000+3000 = 6000.

It is important to note that the event motion complete refers to the target position
and not to the actual motor position, which follows the target usually with a certain
delay. If in the example below, TUM1 command is replaced with TUM0, the next
position command will not be 6000, but 6000 – the position error from the
moment when target position reaches 3000.

© Technosoft 2006 MotionChip II TML Programming 283

Another difference between TUM0 and TUM1 modes is related to the treatment of
the target speed and position, when the motion mode is changed.
Under TUM0 mode, each time the motion mode is changed, the target speed
takes the value of the actual motor speed and the target position takes the value
of the actual motor position.

Under TUM1 mode, the target speed and position remain unchanged providing a
smoother, glitch-free transition of the target speed and position, when motion
modes are changed.

However it should be noted that the target speed and position are computed only
in the speed/position profile and speed/position contouring modes.

If the system operates in other motion modes, all motion mode changes must be
done under TUM0 mode.

Execution After a TUM0 command, the origin is considered as the actual motor position

(default). After a TUM1 command, the origin is considered as the target position.

Example
 CACC = 0.5; //Acceleration command for position profile
 CSPD = 10; //Speed command for position profile
 CPOS = 3000; //Position command
 CPR; //Position command is Relative
 MODE PP3; //Set Position Profile Mode 3
 TUM1; //Set Target Update Mode 1
 UPD; //Update immediate

 !MC; //Set event when MotionComplete
 CSPD = 30; //Speed command for position profile
 CPOS = 3000; //Position command
 CPR; //Position command is Relative
 MODE PP3; //Set Position Profile Mode 3
 TUM1; //Set Target Update Mode 1
 UPD!; //Update on event
 WAIT!; //WAIT until event occurs

© Technosoft 2006 MotionChip II TML Programming 284

Name UPD Update the motion immediate

(Configuration and command group)

Syntax

UPD UPDate motion immediate

Operands –

TML program On-line Type
X X

Binary code

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0

Description All motion parameters are buffered. Consequently, when a motion parameter is

changed, the new value is placed into a buffer. This operation doesn’t affect the
reference generator, which continues to generate the target reference using the
previous motion parameters.

In order to activate the new motion parameters an update command must be
issued. The update command UPD transfers all motion parameters from buffers
into the active registers, which are used for reference computation.

The same principle applies also to the MODE commands, which set the motion
modes.

The update command can be issued at any time. If it is issued during motion, it
determines a motion mode and/or motion parameter change on the fly. If it is
issued after the motion was completed, it acts like a start motion command.

Execution Transfer all motion parameters from buffers into the active registers, which are

used for reference computation.

Example

CACC = 0.5; //Acceleration command for speed
//profile(counts/sampling2)

CSPD = 40; //Speed command (counts/sampling)
MODE SP1; //Set Speed Profile Mode 1
UPD; //Update immediate
CSPD = -40; //Speed command (counts/sampling)
UPD; //Update immediate

© Technosoft 2006 MotionChip II TML Programming 285

Name UPD! Update the motion on event

(Configuration and command group)

Syntax

UPD! UPDate motion on event !

Operands –

TML program On-line Type
X X

Binary code

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

Description All motion parameters are buffered.

Consequently, when a motion parameter is changed, the new value is placed into
a buffer. This operation doesn’t affect the reference generator, which continues to
generate the target reference using the previous motion parameters.
In order to activate the new motion parameters an update command must be
issued. The update command UPD! Transfers all motion parameters from buffers
into the active registers, which are used for reference computation, when one of
the possible events occurs in the motion system.
There are 18 events, which can be programmed, one at a time, for monitoring:

!MC When the actual motion is completed
!APO When motor absolute position is equal or over a value or

the value of a variable
!APU When motor absolute position is equal or under a value or

the value of a variable
!RPO When motor relative position is equal or over a value or the

value of a variable
!RPU When motor relative position is equal or under a value or

the value of a variable
!SO When motor speed is equal or over a value or the value of

a variable
!SU When motor speed is equal or under a value or the value of

a variable
!AT After a wait absolute time equal with a value or the value of

a variable
!RT After a wait relative time equal with a value or the value of a

variable
!RO When position/speed/torque/voltage reference is equal or

over a value or the value of a variable

© Technosoft 2006 MotionChip II TML Programming 286

!RU When position/speed/torque/voltage reference is equal or
under a value or the value of a variable

!CAP When the selected capture input is triggered
!LSP When the positive limit switch is triggered
!LSN When the negative limit switch is triggered
!IN#n 1 When a digital input goes high
!IN#n 0 When a digital input goes low
!VO When value of a variable is equal or over a value or the

value of another variable
!VU When value of a variable is equal or under a value or the

value of another variable
Only one event can be monitored at a time.

Execution Transfer all motion parameters from buffers into the active registers, which are

used for reference computation, when a monitored event occurs.

Example

CACC = 1.5; //Acceleration command for speed profile
//(counts/sampling2)

CSPD = 20; //Speed command (counts/sampling)
MODE SP1; //Set Speed Profile Mode 1
UPD; //Update immediate
ENLSP1; //Positive Limit Switch triggers rising
edge
CSPD = -20; //New speed command (counts/sampling)
!LSP; //Set event if Positive LimitSwitch is

//reached
UPD!; //Update on event

© Technosoft 2006 MotionChip II TML Programming 287

Name WAIT! Wait a motion event to occur

(Event group)

Syntax

WAIT! WAIT motion event !

Operands –

TML program On-line Type
X –

Binary code

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0

Description WAIT! holds the execution of the following TML instructions from the TML

program sequence, until the monitored event occurs.

There are 18 events, which can be programmed, one at a time, for monitoring:
!MC When the actual motion is completed
!APO When motor absolute position is equal or over a value or

the value of a variable
!APU When motor absolute position is equal or under a value or

the value of a variable
!RPO When motor relative position is equal or over a value or the

value of a variable
!RPU When motor relative position is equal or under a value or

the value of a variable
!SO When motor speed is equal or over a value or the value of

a variable
!SU When motor speed is equal or under a value or the value of

a variable
!AT After a wait absolute time equal with a value or the value of

a variable
!RT After a wait relative time equal with a value or the value of a

variable
!RO When position/speed/torque/voltage reference is equal or

over a value or the value of a variable
!RU When position/speed/torque/voltage reference is equal or

under a value or the value of a variable
!CAP When the selected capture input is triggered
!LSP When the positive limit switch is triggered
!LSN When the negative limit switch is triggered
!IN#n 1 When a digital input goes high
!IN#n 0 When a digital input goes low

© Technosoft 2006 MotionChip II TML Programming 288

!VO When value of a variable is equal or over a value or the
value of another variable

!VU When value of a variable is equal or under a value or the
value of another variable

Only one event can be monitored at a time.

Execution Hold up execution of the following instructions until the monitored event occurs.

Example:

CACC = 1; //Acceleration command for speed profile
//(counts/sampling2)

CSPD = 25.5; // Speed command (counts/sampling)
MODE SP1; //Set Speed Profile Mode 1
UPD; //Update immediate
!SO 10; //Set event if speed >= 10
(counts/sampling)
. . .
STOP2!; //Stop mode 2 when event occurs
WAIT!; //Wait until event occurs

© Technosoft 2006 MotionChip II TML Programming 289

This page is empty

	Contents
	
	1. TML Basic Concepts
	1.1 TML Overview
	1.2 TML Environment
	1.3 Program Execution
	1.4 TML Program Structure
	1.5 TML Instruction Coding
	1.6 TML Data
	1.6.1 TML Registers
	1.6.2 TML Parameters
	1.6.3 TML Variables
	1.6.4 User variables

	1.7 TML Development tools
	1.8 Memory Map
	1.9 AUTORUN mode
	1.10 Logger feature

	2. TML description
	2.1 Motion programming and control
	2.1.1 Position Profile Modes
	2.1.2 Speed Profile Modes
	2.1.3 Position/Speed/Torque/Voltage Contouring Modes
	2.1.4 External Position/Speed/Torque/Voltage Modes
	2.1.5 Position/Speed Pulse & Direction Modes
	2.1.6 Electronic Gearing Modes
	2.1.7 Electronic Camming Modes
	2.1.8 Motor Commands. Stop Modes
	2.1.9 Torque/Voltage Test Modes
	2.1.10 Motion Mode Changing

	2.2 Program flow control
	2.2.1 Events
	2.2.1.1 When the actual motion is completed
	2.2.1.2 Function of motor position
	2.2.1.3 Function of motor speed
	2.2.1.4 After a wait time
	2.2.1.5 Function of reference
	2.2.1.6 Function of inputs status
	2.2.1.7 Function of a variable value

	2.2.2 GOTO, CALL
	2.2.3 Interrupts

	2.3 I/O Programming
	2.3.1 General I/O
	2.3.2 Captures
	2.3.3 Limit switches

	2.4 Assignment & Data Transfer
	2.4.1 Setup 16-bit variable
	2.4.2 Setup 32-bit variable

	2.5 Arithmetic & Logic Operations
	2.6 Multi-axis control
	2.6.1 Axis ID. Group ID
	2.6.2 Data transfers between axes
	2.6.3 Remote control

	2.7 Miscellaneous commands
	2.8 Internal units and scaling factors

	3. Communication Channels and Protocols
	3.1 Communication channels
	3.2 Communication protocols
	3.2.1 Axis Identification in a Multiple-axis Network
	3.2.2 Serial communication protocol
	3.2.3 CAN-bus Communication Protocol

	4. TML instruction set
	4.1 TML instruction set description

