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1 Introduction

If you have already used an older version of the codes, you can skip the Introduction section, and
go directory to Section 2, “What’s new in this release?”.

For a set of variables {xi}, principal component analysis (PCA) (also called Empirical Orthog-
onal Function analysis) extracts the eigenmodes of the data covariance matrix. It is used to (i)
reduce the dimensionality of the dataset, and (ii) extract features from the dataset. When there
are two sets of variables {xi} and {yj}, canonical correlation analysis (CCA) finds the modes
of maximum correlation between {xi} and {yj}, rendering CCA a standard tool for discovering
relations between two fields. The PCA method has also been extended to become a multivariate
spectral method— the singular spectrum analysis (SSA). See von Storch and Zwiers (1999) for a
description of these classical methods.

Neural network (NN) models have been widely used for nonlinear regression and classification
(with codes available in many computer packages, e.g. in the MATLAB Neural Network toolbox).
Recent developments in neural network modelling have further led to the nonlinear generalization
of PCA, CCA and SSA.

This manual for NeuMATSA (Neuralnets for Multivariate And Time Series Analysis) describes
the neural network codes developed at UBC for nonlinear PCA (NLPCA), nonlinear CCA (NL-
CCA), and nonlinear SSA (NLSSA). There are several approaches to nonlinear PCA; here, we
follow the Kramer (1991) approach, and the Kirby and Miranda (1996) generalization to closed
curves. Options of regularization with weight penalty have been added to these models. The
NLCCA model is based on that proposed by Hsieh (2000).

To keep this manual brief, the user is referred to the review paper Hsieh (2004) for details.
This and other relevant papers are downloadable from the web site:
http://www.ocgy.ubc.ca/projects/clim.pred/download.html.
This manual assumes the reader is already familiar with Hsieh (2004), and is aware of the relatively
unstable nature of neural network models because of local minima in the cost function, and the
danger of overfitting (i.e. using the great flexibility of NN models to fit to the noise in the data).
The codes are written in MATLAB using its Optimization Toolbox, and should be compatible
with MATLAB 7, 6.5, and 6.

This manual is organized as follows: Section 3 describes the NLPCA code of Hsieh (2001a),
which is based on Kramer (1991). Section 4 describes the ‘NLPCA.cir’ code, i.e. the NLPCA
generalized to closed curves by having a circular neuron at the bottleneck, as in Hsieh (2001a),
which follows Kirby and Miranda (1996). This code is also used for NLSSA (Hsieh and Wu,
2002). Section 5 describes the NLCCA code of Hsieh (2001b), which is an improved version of
Hsieh (2000). A demo problem is set up in each section. The sans serif font is used to denote the
names of computer commands, files and variables. Section 6 is on hints and trouble-shooting .

Whether the nonlinear approach has a significant advantage over the linear approach is highly
dependent on the dataset— the nonlinear approach is generally ineffective if the data record is
short and noisy, or the underlying relation is essentially linear. Also time-averaging (e.g. daily
data to seasonal data) can mask underlying nonlinear relations due to the Central Limit Theorem
(Yuval and Hsieh, 2002). Because of local minima in the cost function, an ensemble of optimization
runs from random initial weight parameters is needed, with the best run selected as the solution.
There is no guarantee that the best run is close to the global minimum.

The computer programs are free software under the terms of the GNU General Public License
as published by the Free Software Foundation. Please read the file ‘LICENSE’ in the program
directory before using the software.
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2 What’s new in this release?

Since this is a major upgrade, users should not mix codes from this release with codes from
earlier releases. The major improvements are: (1) The appropriate weight penalty parameter(s)
is now objectively determined by the codes, in contrast to previous releases. (2) Robust options
have been introduced in the codes to deal with noisy datasets containing outliers. Early stopping
during model training is no longer implemented. Technically, the nonlinear optimization is now
performed by fminunc.m (instead of fminu.m) in the Matlab Optimization toolbox. [Unfortunately,
for a slight improvement in accuracy, fminunc.m in Matlab 7 runs at a half to a quarter the speed
of that in Matlab 6. Hence for Matlab 7 users, a notable speedup can be achieved if the old
M-files fminunc.m and fminusub.m from Matlab 6 are used.]

In the NLPCA and NLPCA.cir models, to determine the best weight penalty parameter P to
use, the codes now check if the solution for a particular weight penalty value undesirably projects
neighbouring points to distant parts of the NLPCA curve (i.e. if neighbouring points are assigned
very different values of the nonlinear principal component (NLPC)). For each data point x and its
nearest neighbour x̃, the model assigns u and ũ as their NLPC. With C denoting the (Pearson)
correlation coefficient, Hsieh (2007) defined an index for measuring inconsistency between nearest
neighbours in a dataset:

I = 1 − C(u, ũ) . (1)

When some neighbouring points are projected to distant parts of the NLPCA curve, the difference
between u and ũ becomes large for such pairs, causing C to drop, hence a rise in the inconsistency
index I.

Given enough model flexibility (by using enough hidden neurons), the model chooses the most
appropriate P by solving the problem multiple times with P ranging from large to small values,
and chooses the optimal P yielding the smallest value for the information criterion H = MSE×I
(or MAE2 × I if the new robust version is used), with MSE denoting the mean square error, and
MAE, the mean absolute error. In other words, we do not just pick the solution with the lowest
MSE or MAE, but also ensure the solution is reasonably consistent in assigning NLPC to nearest
neighbours, thereby eliminating unreasonable zigzag curves as the solution.

NLPCA with more than one bottleneck neuron is now implemented with the addition of a
term in the cost function trying to force the bottleneck neurons to be uncorrelated with each
other.

In the new NLCCA model, for each ensemble run starting from random initial weights, weight
penalty is also randomly chosen from a range of given values. With test data eliminating overfitted
solutions, the optimal solution is chosen without the need for the user to choose the weight penalty
as in earlier releases.

For increased robustness against outliers in noisy datasets, an option to use MAE instead of
MSE is now available in NLPCA and NLPCA.cir, and to use biweight midcorrelation (and MAE)
instead of Pearson correlation (and MSE) is available in NLCCA. The advantage of the biweight
midcorrelation over the Pearson correlation is shown in Cannon and Hsieh (2008).

3 Nonlinear Principal Component Analysis (NLPCA)

3.1 Files in the directory for NLPCA

The downloaded tar file NLPCA5.0.tar can be uncompressed with the Unix tar command:
tar -xf NLPCA5.0.tar
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and a new directory NLPCA5.0 will be created containing the following files:

setdat.m sets up the demo problem, produces a demo dataset xdata which is stored in the file
data1.mat. This demo problem is instructive on how NLPCA works. To see the demo
dataset, the reader should get onto MATLAB, and type in: setdat
which also creates an (encapsuled) postscript plot file data1.eps. The plot displays the
theoretical mode, and the data xdata (generated from the theoretical mode plus considerable
Gaussian noise) (shown as dots). The objective is to use NLPCA to retrieve the underlying
theoretical mode from xdata.

nlpca1.m is the main program for calculating the NLPCA mode 1. (Here xdata is loaded). To
run NLPCA on the demo dataset on unix, use:
matlab < nlpca1.m > out1new &
(The ‘&’ allows unix to run the job on the background, as this run could take some time).
Compare the new output file out1new with the downloaded output file out1 in this directory;
they should be similar. The user should then use nlpca1.m as a template for his/her own
main program.

plmode1.m plots the output mode 1, also saving the plot as an (encapsuled) postscript file
plmode1.eps. Alternatively, pltmode1.m gives a more compact plot.

nlpca2.m is the main program for calculating the NLPCA mode 2, after removing the NLPCA
mode 1 from the data. On unix, use: matlab < nlpca2.m > out2new &
As the dataset here contains only 1 theoretical mode + noise, there is no meaningful mode
2 for nlpca2.m to extract. In the directory Eg2, there is a sample problem containing 2
theoretical modes, so you could could try nlpca2.m there (see Sec. 3.4). The problem of this
mode-by-mode extraction process is that the first NLPCA mode could end up extracting a
combination of the 2 underlying theoretical modes. An alternative (better?) approach is to
use 2 bottleneck neurons in the NN as done in the directory Nb2.

plmode2.m plots the output mode 2, and writes out the plot on a postscript file. Alternatively,
pltmode2.m gives a more compact plot.

param.m contains the default parameters for the problem (some of the parameters are reset in
nlpca1.m). It contains the parameters for the demo problem. After the demo, the user will
need to put the parameters relevant to his/her problem into this file.

out1 is the downloaded output file from the UBC run of nlpca1.m for the demo problem.

mode1.mat contains the extracted nonlinear mode 1 (and the linear mode 1).

manual.m contains the online manual. To see manual while in MATLAB, type in: help manual

———

The remaining files do not in general require modifications by the user:

chooseTestSet.m randomly divides the dataset into a training set and a test set (also called a
validation set). Different runs in the ensemble will in general have different training datasets
and different test sets.

calcmode.m computes the NLPCA mode (or PCA mode).
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Figure 1: The NN model for calculating nonlinear PCA (NLPCA). There are 3 ‘hidden’ layers of
variables or ‘neurons’ (denoted by circles) sandwiched between the input layer x (with l variables
or neurons) on the left and the output layer x′ on the right. (In the code, xdata is the input, while
xi is the output). Next to the input layer is the encoding layer (with m neurons), followed by the
bottleneck layer (shown here with a single neuron u), which is then followed by the decoding layer
(also with m neurons). A nonlinear function maps from the higher dimension input space to the
lower dimension bottleneck space, followed by an inverse transform mapping from the bottleneck
space back to the original space represented by the outputs, which are to be as close to the inputs
as possible by minimizing the cost function J (i.e. minimizing the MSE or MAE of x′ relative
to x). Data compression is achieved by the bottleneck, with the bottleneck neuron giving u, the
nonlinear principal component (NLPC). In the current version, more than 1 neuron is allowed in
the bottleneck layer.

costfn.m computes the cost function.

mapu.m maps from xdata to u, the nonlinear PC (i.e. the value of the bottleneck neuron) (Fig.
1).

invmapx.m computes the inverse map from u to xi (where xi is the NLPCA approximation to the
original xdata), then the cost function J .

nondimen.m and dimen.m are used for scaling and descaling the data. The input are nondimen-
sionalized according to the scaling option selected, NLPCA is then performed, and the final
results are again dimensionalized.

extracalc.m can be used for projecting new data onto an NLPCA mode, i.e. calculate x′ and
u from given x, or calculate x′ from given u. Also needed by the plotting programs (e.g.
plmode1.m).

3.2 Parameters stored in param.m for NLPCA

Parameters are classified into 3 categories, ‘*’ means the user normally has to change the value to
fit the problem. ‘+’ means the user may want to change the value, and ‘−’ means the user rarely
has to change the value.

+ iprint = 0, 1, 2 or 3 increases the amount of printout.
Hint: A printout summary from an output file (e.g. out1) can be extracted by using the
unix grep command, e.g.
grep # out1
grep ## out1
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grep ### out1
where more brevity is attained by using more ‘#’ signs.

+ Err norm = 1 or 2 uses either the L1 or the L2 norm to measure the error between the data
and the model output, i.e. uses the mean absolute error (MAE) or mean square error (MSE)
for the variable Err. L1 is a less sensitive norm than L2, hence more robust to outliers in
noisy datasets.

− linear = 0 means NLPCA; linear = 1 uses only linear transfer functions, thereby reducing
to linear PCA. [When linear = 1, m, the number of hidden neurons in the encoding layer,
should be set to equal nbottle (the number of hidden neurons in the bottleneck layer), and
testfrac (see below) be set to 0].

* nensemble is the number of runs in the ensemble. Many runs may converge to shallow local
minina and hence wasted. Increase nensemble if results appear unstable/irreproducible from
serious local minima problem.

− testfrac = 0 does not reserve a portion of the data for testing or validation, i.e. all data are
used for training. Use only when data is not noisy, or a linear solution is wanted.
testfrac > 0 (usually between 0.1 to 0.2), then a fraction of the data record will be randomly
selected as test data.
Note: with testfrac > 0, different ensemble runs will work with different training datasets,
so there will be more scatter in the solutions of individual ensemble runs than when testfrac
= 0 (where all runs have the same training dataset, as all data are used for training).

+ segmentlength = 1 if autocorrelation of the data (in time) is not of concern; otherwise the
user might want to set segmentlength to about the autocorrelation time scale. Data for
training and testing are chosen in segments with length equal to segmentlength. For instance,
if monthly data are available, and the autocorrelation time scale is 7 months, then set
segmentlength = 7.

− overfit tol is the tolerance for overfitting, should be 0 (recommended) or a small positive
number (� 0.1). Only ensemble runs having Err over the test set no worse than (Err over
the training set)×(1+overfit tol) are accepted, and the selected solution is the run with the
lowest Err over all the data.

When overfit tol = 0, program automatically chooses an overfit tolerence level to decide
which ensemble runs to accept. [The program calculates overfit tol2, the average value of
Errtest − Errtrain for ensemble runs where Errtest is less than Errtrain, i.e. error for the test
data is less than that for the training data. The program then also accepts ensemble runs
where Errtest exceeds Errtrain by no more than overfit tol2].

− info crit = 1 means the final model solution is selected among the accepted runs based on the
minimum information criterion H. If 0, the run with the minimum Err is selected.

* xscaling controls scaling of the x variables before performing NLPCA.
= −1, no scaling (not recommended unless variables are of order 1).
= 0, scales all the xi variables by removing the mean and dividing by the standard deviation
of each variable.
= 1, scales all xi variables by removing the mean and dividing by the standard deviation of
the 1st x variable (i.e. x1). (Similarly for xscaling = 2, 3, ...)
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Note: When the x variables are the principal components of a dataset and the 1st variable
is from the leading mode, xscaling = 1 is preferred. [If xscaling = 0, the importance of
the higher PC modes (with weak signal-to-noise ratio) can be greatly exaggerated by the
scaling].

For instance, if the x1 variable ranges from 0 to 3, and x2 from 950 to 1050, then poor
convergence can be expected from setting xscaling = −1, while xscaling = 0 should do much
better. However, if the xi variables are the leading principal components, with x1 ranging
from -9 to 10, x2 from -3 to 2, and x3 from -1 to 1, then xscaling = 0 will greatly exaggerate
the importance of the higher modes by causing the standard deviations of the scaled x1, x2

and x3 variables to be all equal to one, whereas xscaling = 1 will not cause this problem.

+ penalty store stores a variety of values for the weight penalty parameter used in the cost
functions. During ensemble runs with random initial weights, the penalty parameter value
is also randomly chosen among the values given in penalty store. Increasing penalty leads
to less nonlinearity (i.e. less wiggles and zigzags when fitting to noisy data). Too large a
value for penalty leads to linear solutions and trivial solutions. For instance, penalty store
= [1 0.1 0.01 0.001 0.0001 0] covers a good range of weight penalty values. It is important
to proceed from large to small weight penalty, since for small enough penalty, the program
may not find any acceptable solution (due to overfitting) and will (correctly) terminate at
that point.

− maxiter scales the maximum number of function iterations allowed during optimization. Start
with 1, increase if needed.

+ initRand = a positive integer, initializes the random number generator, used for generating
random initial weights. Because of multiple minima in the cost function, it is a good idea
to rerun with a different value of initRand, and check that one gets a similar solution.

− initwt radius controls the initial random weight radius for the ensemble. Adjust this parameter
if having convergence problem. (Suggest starting with initwt radius = 1). The weight radius
is smallest for the first ensemble run, increasing by a factor of 4 when the final ensemble run
is reached (so the earliest ensemble runs may tend to be more linear than the later runs).

Input dimensions of the network (Fig. 1):

* l is the number of input variables xi.

* m is the number of hidden neurons in the encoding layer (i.e. the first hidden layer). For
nonlinear solutions, m ≥ 2 is needed. In the current version, m is no longer set in param.m,
but the main program (nlpca1.m) assigns m from the values specified by the vector m store.
Increase the m values in m store if the user expects an NLPCA solution of considerable
complexity.

− nbottle is the number of hidden neurons in the bottleneck layer. Usually nbottle = 1, but
nbottle > 1 is allowed, with the directory Nb2 containing an example where nbottle = 2 is
used.

Note: The total number of (weight and bias) parameters is 2lm + 4m + l + 1 (for nbottle
= 1). In general this number should be less than the number of observations in the dataset
(though this is not a strict requirement since increasing weight penalty will automatically
reduce the effective number of free parameters). If the number of observations is much less
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than the number of parameters, principal component analysis may be needed to pre-filter
the dataset, so only the leading principal components are used as input to NLPCA.

3.3 Variables in the codes for NLPCA

The reader can skip this subsection if he/she does not intend to modify the basic code.

Global variables are given by:

global iprint Err norm linear nensemble testfrac segmentlength ...
overfit tol info crit xscaling penalty maxiter initRand ...
initwt radius options n l m nbottle iter Jscale xmean xstd ntrain ...
xtrain utrain xitrain ntest xtest utest xitest Err inearest I H

Be careful not to introduce user variables with the same name as some of the global variables
(e.g. n, l, m, I, H).
If you add or remove variables from this global list, it is CRITICAL that the same changes
are made on ALL of the following files:
nlpca1.m, nlpca2.m, param.m, calcmode.m, costfn.m, mapu.m, invmapx.m, extracalc.m,
plmode1.m, plmode2.m, pltmode1.m, pltmode2.m.

options are the options used for the m-file fminunc.m in the MATLAB optimization toolbox.

n is the number of observations [automatically determined from xdata].

xdata is an l × n data matrix, as there are l ‘xi’ variables (i = 1, . . . , l), and n observations.
(A common error is to input an n × l data matrix, i.e. the transpose of the correct matrix,
which leads MATLAB to complain about incorrect matrix dimensions).

iter is the number of function iterations.

Jscale is a scale factor for the cost function J.

xmean and xstd are the means and standard deviations of the xdata variables.

ntrain, ntest are the number of observations for training and for testing (i.e. validating).

xtrain, xtest are the portions of xdata used for training and testing.

utrain, utest are the bottleneck neuron values (the NLPC) during training and testing.
[mean(utrain) = 0 and utrain*utrain′/ntrain = 1 are forced on the cost function J.]

xitrain, xitest are the model predicted values for x during training and testing.

Err is the error computed over all data (training+testing), Err can be the MAE or the MSE (as
specified by Err norm).

inearest indicates the location of the nearest neighbour for each data point.

I is the inconsistency index I in Eq.(1), measuring the inconsistency between the NLPC of
nearest neighbours (see Sec. 2).
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H is the holistic information criterion H for selecting the best model (see Sec. 2) among various
models built with different values of penalty and m. (H = MSE×I or MAE2 × I depending
on whether Err norm = 2 or 1).

All the weights of the NN are stored in the vector W. In the main program nlpca.1, NLPCA
is repeatedly run for a range of penalty values as specified by the vector penalty store, and for a
range of m values as specified by m store. W for each pair of penalty and m values is stored in the
cell array W store. Plot programs like plmode1.m retrieves W by W = W store{ip, im}, where ip
and im are chosen based on the information criterion H. User can look at other NLPCA solutions
by specifying ip and im in the plot program. For instance, if penalty store = [1 0.1 0.01 0.001
0.0001 0] and m store = [3 4 5], then choosing ip = 2 and im = 3 would select the NLPCA solution
for penalty = 0.1 and m = 5.

3.4 Extracting more than one NLPCA mode

In the directory Eg2, setdat2.m produces a dataset containing 2 nonlinear theoretical modes plus
a little Gaussian noise. Two bottleneck neurons are used (nbottle = 2) to extract the 2 modes
simultaneously. The main program nlpca.m produced modes.mat and out (the printout file). Use
plmodes.m to plot the modes.

The disadvantage of the mode-by-mode extraction approach with a single bottleneck neuron
(i.e. extract mode 2 from the residual after the mode 1 solution has been removed) is that the
NLPCA mode 1 may be a combination of the 2 theoretical modes.

With nbottle = 2, the NLPCA solution is no longer a curve but a curved surface. The 2
bottleneck neurons may be correlated, so one cannot generate a meaningful 1-D curve from the
2-D surface by holding one bottleneck neuron at zero and vary the other. Hence, the cost function
J has an extra term added, namely (u1 · u2)2, where u1 and u2 are the n-dimensional vectors
containing the values of the first and second bottleneck neurons, respectively, thereby forcing the
bottleneck neurons to be uncorrelated with each other. This will allow meaningful extraction of
two 1-D curves from the 2-D surface by the plotting program plmodes.m. When nbottle > 1, one
needs to use larger m (and nensemble) than when nbottle = 1.

plmodes.m generates first the plot file plmodes.eps showing the 2-D surface from the NLPCA
solution, then the first 1-D curve in plmode1.eps and the second 1-D curve in plmode2.eps. Since
these are nonlinear curves, the percent variance explained by each 1-D curve does not in general
add up to that explained by the 2-D surface. The corresponding linear modes are then plotted in
pllinmodes.eps, pllinmode1.eps and pllinmode2.eps.

4 Nonlinear Principal Component Analysis with a circular bot-
tleneck neuron (NLPCA.cir)

The NLPCA model of the previous section (when used with one hidden neuron) extracts an open
curve solution, whereas the NLPCA.cir model in this section is capable of extracting a closed
curve solution, and is also used for nonlinear singular spectrum analysis (NLSSA).

4.1 Files in the directory for NLPCA.cir

The downloaded tar file NLPCA.cir.tar can be uncompressed with the Unix tar command:
tar -xf NLPCA.cir5.0.tar
and a new directory NLPCA.cir5.0 will be created containing the following files:
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setdat.m sets up the demo problem, produces a demo dataset xdata which is stored in the file
data1.mat, and creates a postscript plot file data1.eps. The plot shows the two theoretical
modes, and the input data as dots. The user should go through the demo as in Sec.3.

nlpca1.m is the main program for calculating the NLPCA.cir mode 1. The user should later use
nlpca1.m as a template for his/her own main program.

nlpca2.m is the main program for calculating the NLPCA.cir mode 2 after removing mode 1 from
the data.

param.m contains the default parameters for the problem (some of the parameters are reset in
nlpca1.m). The user will need to put the parameters relevant to his/her problem into this
file.

out1 and out2 are the output files from running nlpca1.m and nlpca2.m respectively.

mode1.mat contains the extracted nonlinear mode 1 (and the linear mode 1). Similarly for
mode2.mat.

plmode1.m plots the output mode 1, also saving the plot on a postscript file plmode1.eps. Alter-
natively, pltmode1.m gives a more compact plot.

plmode2.m plots the output mode 2. Alternatively, pltmode2.m gives a more compact plot.

manual.m contains the online manual.

———

The following files do not in general require modifications by the user:

chooseTestSet.m divides the dataset into a training set and a test set.

calcmode.m computes the NLPCA.cir mode.

costfn.m computes the cost function.

mappq.m maps from the input neurons xdata to the bottleneck (p, q) (Fig. 2).

invmapx.m computes the inverse map from (p, q) to the output neurons xi (where xi is the model
approximation to the original xdata), and the cost function J .

nondimen.m and dimen.m are used for scaling and descaling the data.

extracalc.m can be used for projecting new data onto an NLPCA.cir mode, i.e. calculate x′ and
p, q from given x, or calculate x′ from given p and q. Also needed by the plotting programs
(e.g. plmode1.m).

4.2 Parameters stored in param.m for NLPCA.cir

Parameters are classified into 3 categories, ‘*’ means user normally has to change the value to
fit the problem. ‘+’ means user may want to change the value, and ‘−’ means user rarely
has to change the value.

+ iprint = 0, 1, 2 or 3 increases the amount of printout.
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Figure 2: The NLPCA with a ‘circular neuron’ at the bottleneck. Instead of having one bottleneck
neuron u as in Fig.1, there are now two neurons p and q constrained to lie on a unit circle in
the p-q plane, so there is only one free angular parameter (θ). [This is also the network used
for performing NLSSA (Hsieh and Wu, 2002), where the inputs to this network are the leading
principal components from the singular spectrum analysis of a dataset].

+ Err norm = 1 or 2 uses either the L1 or the L2 norm to measure the error between the data
and the model output, i.e. uses the mean absolute error (MAE) or mean square error (MSE)
for the variable Err. L1 is a less sensitive norm than L2, hence more robust to outliers in
noisy datasets.

− linear = 0 means NLPCA.cir; linear = 1 reduces to the straight line PCA solution.

* nensemble is the number of runs in the ensemble. (Many runs may converge to shallow local
minina and hence wasted).

− testfrac = 0 does not reserve a portion of the data for testing or validation, i.e. all data are
used for training. Use only when data is not noisy, or a linear solution is wanted.
testfrac > 0 (usually between 0.1 to 0.2), then a fraction of the data record will be randomly
selected as test data.

+ segmentlength = 1 if autocorrelation of the data is not of concern; otherwise the user may
want to set segmentlength to about the autocorrelation time scale.

− overfit tol is the tolerance for overfitting, should be 0 (recommended) or a small positive
number (� 0.1). Only ensemble runs having Err over the test set no worse than (Err over
the training set)×(1+overfit tol) are accepted, and the selected solution is the run with the
lowest Err over all the data. When overfit tol = 0, program automatically chooses an overfit
tolerence level to decide which ensemble runs to accept.

− info crit = 1 means the final model solution is selected among the accepted runs based on the
minimum information criterion H. If 0, the run with the minimum Err is selected (which can
overfit).

* xscaling controls scaling of the x variables before performing NLPCA.cir.
xscaling = −1, no scaling (not recommended unless variables are of order 1).
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xscaling = 0, scales all the xi variables by removing the mean and dividing by the standard
deviation of each variable.
xscaling = 1, scales all xi variables by removing the mean and dividing by the standard
deviation of the 1st x variable (i.e. x1). (Similarly for 2, 3, ...)
Note: When the x variables are the principal components of a dataset and the 1st variable
is from the leading mode, xscaling = 1 is preferred. [If xscaling = 0, the importance of
the higher PC modes (with weak signal-to-noise ratio) can be greatly exaggerated by the
scaling].

+ penalty store stores a variety of values for the weight penalty parameter used in the cost
functions. During ensemble runs with random initial weights, the penalty parameter value
is also randomly chosen among the values given in penalty store. Increasing penalty leads
to less nonlinearity (i.e. less wiggles and zigzags when fitting to noisy data). Too large a
value for penalty leads to linear solutions and trivial solutions. For instance, penalty store
= [1 0.1 0.01 0.001 0.0001 0] covers a good range of weight penalty values. It is important
to proceed from large to small weight penalty, since for small enough penalty, the program
may not find any acceptable solution (due to overfitting) and will (correctly) terminate at
that point.

− maxiter scales the maximum number of function iterations allowed during optimization. Start
with 1, increase if needed.

+ initRand = a positive integer, initializes the random number generator, used for generating
random initial weights.

− initwt radius controls the initial random weight radius for the ensemble. Adjust this parameter
if having convergence problem. (Suggest starting with initwt radius = 1).

In older releases, there was an option (zeromeanpq = 1) for forcing the bottleneck neurons p and
q to have zero mean. This option is no longer available as it is not entirely consistent with
the current use of an information criterion to select the right model.

Input dimensions of the networks:

* l is the number of input variables xi.

* m is the number of hidden neurons in the encoding layer (i.e. the first hidden layer). For
nonlinear solutions, m ≥ 2 is needed. In the current version, m is no longer set in param.m,
but the main program (nlpca1.m) assigns m from the values specified by the vector m store.
Increase the m values in m store if the user expects an NLPCA solution of considerable
complexity.

Note: The total number of free (weight and bias) parameters is 2lm + 6m + l + 2. In
general this number should be less than the number of observations in the dataset (though
this is not a strict requirement since increasing weight penalty will automatically reduce the
effective number of free parameters). If this is not the case, principal component analysis
may be needed to pre-filter the dataset, so only the leading principal components are used
as input to NLPCA.cir.



4 NLPCA.CIR 13

4.3 Variables in the codes for NLPCA.cir

The reader can skip this subsection if he/she does not intend to modify the basic code.

Global variables are given by:

global iprint Err norm linear nensemble testfrac segmentlength ...
overfit tol info crit xscaling penalty maxiter initRand ...
initwt radius options n l m iter Jscale xmean xstd ntrain xtrain ...
ptrain qtrain xitrain ntest xtest ptest qtest xitest Err inearest I H

Be careful not to introduce user variables with the same name as some of the global variables
(e.g. n, l, m, I, H).
If you add or remove variables from this global list, it is CRITICAL that the same changes
are made on ALL of the following files:
nlpca1.m, nlpca2.m, param.m, calcmode.m, costfn.m, mapu.m, invmapx.m, extracalc.m,
plmode1.m, plmode2.m, pltmode1.m, pltmode2.m.

options are the options used for the m-file fminunc.m in the MATLAB optimization toolbox.

n is the number of observations [automatically determined from xdata].

xdata is an l × n data matrix, as there are l ‘xi’ variables, and n observations.

iter is the number of function iterations.

Jscale is a scale factor for the cost function J.

xmean and xstd are the means and standard deviations of the xdata variables.

ntrain, ntest are the number of observations for training and for testing.

xtrain, xtest are the portions of xdata used for training and testing.

ptrain, ptest are the bottleneck neuron values (the NLPC) during training and testing. Similarly
for qtrain, qtest. [Note that in this version there is no longer an option to impose mean(p)
= mean(q) = 0 during training].

xitrain, xitest are the model predicted values for x during training and testing.

Err is the error computed over all data (training+testing), Err can be the MAE or the MSE (as
specified by Err norm).

inearest indicates the location of the nearest neighbour for each data point.

I is the inconsistency index I in Eq.(1), measuring the inconsistency between the NLPC of
nearest neighbours (see Sec. 2).

H is the holistic information criterion H for selecting the best model (see Sec. 2) among various
models built with different values of penalty and m. (H = MSE×I or MAE2 × I depending
on whether Err norm = 2 or 1).
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In the main program nlpca.1, NLPCA.cir is repeatedly run for a range of penalty values, as
specified by penalty store, and for a range of m values, as specified by m store. W, containing all
the weights for the NN computed for each pair of penalty and m values, is stored in the cell array
W store. Plot programs like plmode1.m retrieves W by W = W store{ip, im}, where ip and im
are chosen based on the information criterion H. User can look at other NLPCA.cir solutions by
specifying ip and im in the plot program.

5 Nonlinear Canonical Correlation Analysis (NLCCA)

The downloaded tar file NLCCA.tar can be uncompressed with the Unix tar command:
tar -xf NLCCA5.0.tar
and a new directory NLCCA5.0 will be created containing the following files:

5.1 Files in the directory for NLCCA

setdat.m sets up the demo problem, produces two datasets xdata and ydata which are stored
in the file data1.mat. It also produces two (encapsuled) postscript plot files data1x.eps and
data1y.eps, with data1x.eps containing the xdata (shown as dots), and its two underlying
theoretical modes, and data1y.eps containing the ydata and its two theoretical modes. The
objective is to use NLCCA to retrieve the two underlying theoretical modes from xdata and
ydata.

nlcca1.m is the main program for calculating the NLCCA mode 1. (Here the datasets xdata and
ydata are loaded). The user should use this file as a template for his/her own main program.

nlcca2.m is the main program for calculating the NLCCA mode 2 after the NLCCA mode 1
solution has been subtracted from the data. User needs to give the name of the file containing
the NLCCA mode 1 solution.

param.m contains the default parameters for the problem (some of the parameters are reset in
nlcca1.m). The user will need to put the parameters relevant to his/her problem into this
file.

out1 and out2 are the outputs from running nlcca1 and nlcca2 respectively.

mode1.mat contains the linear and nonlinear mode 1, the nonlinear mode having multiple so-
lutions with no. of hidden neurons l2 = m2 = 2, 3, 4. After subtracting mode 1 from the
data, the residual was fed into the NLCCA model to extract the second NLCCA mode—
again with the number of hidden neurons l2 = m2 = 2, 3, 4 yielding the file mode2.mat.

plmode1.m plots the output mode 1, producing two postscript plot files (plmode1x.eps and
plmode1y.eps), whereas pltmode1.m produces more compact plots onto one postscript file.
User can specify which solution to plot out. The default is to plot the best solution based
on the overall score (see below).

plmode2.m plots the output mode 2 (producing plot files plmode2x.eps and plmode2y.eps), and
so does pltmode2.m in a more compact format.

manual.m contains the online manual.

———
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Figure 3: The three NNs used to perform NLCCA. The double-barreled NN on the left maps
from the inputs x and y to the canonical variates u and v. Starting from the left, there are l1
input x variables, denoted by circles. The information is then mapped to the next layer (to the
right)— a ‘hidden’ layer h(x) (with l2 neurons). For input y, there are m1 neurons, followed by a
hidden layer h(y) (with m2 neurons). The mappings continued onto u and v. The cost function
J forces the correlation between u and v to be maximized. On the right side, the top NN maps
from u to a hidden layer h(u) (with l2 neurons), followed by the output layer x′ (with l1 neurons).
The cost function J1 minimizes the MSE or MAE of x′ relative to x. The third NN maps from
v to a hidden layer h(v) (with m2 neurons), followed by the output layer y′ (with m1 neurons).
The cost function J2 minimizes the MSE or MAE of y′ relative to y.

The following files do not in general require modifications by the user:

bicor.m computes the biweight midcorrelation.

chooseTestSet.m divides the dataset (xdata and ydata) into a training set and a test set.

chooseTestuv.m divides the nonlinear canonical variates u and v (Fig. 3) into a training set and
a test set.

calcmode.m computes the NLCCA mode (or CCA mode). NLCCA uses 3 neural networks (NN1,
NN2 and NN3) (Fig. 3) with 3 cost functions J, J1 and J2, and weight vectors W, W1 and
W2, respectively. The best ensemble run is selected for the forward map (x,y) → (u, v),
and its (u, v) become the input to the two inverse maps.

costfn.m computes the cost function J for the forward map (x,y) → (u, v).

mapuv.m maps (x,y) → (u, v).

costfn1.m computes the costfn J1 for the inverse map: u → x′ (i.e. from u to xi).

invmapx.m computes the inverse map: u → x′.

costfn2.m computes the costfn J2 for the inverse map: v → y′ (i.e. from v to yi).

invmapy.m computes the inverse map: v → y′.
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nondimen.m and dimen.m are used for scaling and descaling the data. The input are nondimen-
sionalized according to the scaling option selected, NLCCA is then performed, and the final
results are again dimensionalized.

extracalc.m can be used for projecting new data onto an NLCCA mode, and is used by the
plotting programs.

5.2 Parameters stored in param.m for NLCCA

Parameters are classified into 3 categories, ‘*’ means user normally has to change the value to
fit the problem. ‘+’ means user may want to change the value, and ‘−’ means user rarely
has to change the value.

+ iprint = 0, 1, 2 or 3 increases the amount of printout.
Note: Printout summary from an output file (e.g. out1) can be extracted by the unix grep
command: grep # out1

+ irobust = 0 uses the Pearson correlation in NN1 and the MSE (mean square error) in NN2
and NN3.
irobust = 1 uses the biweight midcorrelation in NN1 and the MAE (mean absolute error) in
NN2 and NN3. This is the new robust version for handling noisy datasets with outliers.

Actually, various combinations are possible by specifying a 3-element vector for irobust:
e.g. irobust = [1 0 0] uses biweight midcorrelation in NN1 and MSE in NN2 and NN3 (this
is the default). irobust = [1 0 1] uses biweight midcorrelation in NN1, MSE in NN2, and
MAE in NN3, etc.

− linear = 0 means NLCCA; linear = 1 extracts the linear mode instead. [When linear = 1, it
is recommended that the number of hidden neurons in the encoding layers be set to 1, and
testfrac be set to 0].

* nensemble is the number of runs in the ensemble. (Many runs may converge to shallow local
minina and hence wasted). E.g. [60 30 30] uses 60 runs in the 1st NN, and 30 runs in the
2nd NN and in the 3rd NN. It is advisable to use more runs in the 1st NN.

− testfrac = 0 does not reserve a portion of the data for testing or validation, i.e. all data are
used for training. Use only when data is not noisy, or a linear solution is wanted.
testfrac > 0 (usually between 0.15 to 0.25), then a fraction of the data record will be
randomly selected as test data.

+ segmentlength = 1 if autocorrelation of the data is not of concern; otherwise the user may
want to set segmentlength to about the autocorrelation time scale.

− overfit tol is the tolerance for overfitting, should be a small positive number (� 0.1). Only runs
having correlation of u,v over the test set no worse than the (correlation over the training
set)×(1−overfit tol), or the error (MSE or MAE) over the test set no worse than (error over
the training set)×(1+overfit tol) are accepted, and the selected solution is the run with the
highest correlation and lowest error over all the data.

* scaling controls scaling of the x and y variables before performing NLCCA. scaling can be
specified as a 2-element vector [scaling(1), scaling(2)], or simply as a scalar (then both
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elements of the vector will take on the same scalar value).
scaling(1) = −1, no scaling (not recommended unless variables are of order 1).
scaling(1) = 0, scales all xi variables by removing the mean and dividing by the standard
deviation of each variable.
scaling(1) = 1, scales all xi variables by removing the mean and dividing by the standard
deviation of the 1st x variable (i.e. x1). (Similarly for 2, 3, ...)
Note: When the x variables are the principal components of a dataset and the 1st variable
is from the leading mode, scaling(1) = 1 is preferred. [If scaling = 0, the importance of
the higher PC modes (with weak signal-to-noise ratio) can be greatly exaggerated by the
scaling].
Similarly for scaling(2) which controls the scaling of the y variables.

+ penalty store stores a variety of values for the weight penalty parameter used in the cost
functions. During ensemble runs with random initial weights, the penalty parameter value
is also randomly chosen among the values given in penalty store. Increasing penalty leads to
less nonlinearity (i.e. less wiggles and zigzags when fitting to noisy data). Too large a value
for penalty leads to linear solutions and trivial solutions. E.g. if data record is relatively
noisy and short, one may use penalty store = [3e-1 1e-1 3e-2 1e-2 3e-3 1e-3]; but if data
record is of good quality, one may use penalty store = [1e-2 3e-3 1e-3 3e-4 1e-4 3e-5 1e-5].

+ maxiter scales the maximum number of function iterations allowed during optimization. Start
with 1, increase if needed.

+ initRand = a positive integer, initializes the random number generator, used for generating
random initial weights.

− initwt radius controls the initial random weight radius for the ensemble runs. Adjust this
parameter if having convergence problem. (Suggest starting with initwt radius = 1). The
weight radius is smallest for the first ensemble run, increasing by a factor of 4 when the
final ensemble run is reached.

Note: maxiter and initwt radius can each be specified as a 3-element row vector, giving the
values to be used for the forward mapping network and the two inverse mapping networks
separately. (e.g. maxiter = [2 0.5 1.5] ). (If given as a scalar, then all 3 networks use the
same value.)

Input dimensions of the networks:

* l1 = l1, the number of input x variables.

* m1 = m1, the number of input y variables.

* l2 = l2, the number of hidden neurons in the first hidden layer after the input x variables.

* m2 = m2, the number of hidden neurons in the first hidden layer after the input y variables.
For nonlinear solutions, both l2 and m2 need to be at least 2. In the current version, l2 and
m2 are no longer specified in param.m. Instead they are now specified in the main program
nlcca1.m.

Note: The total number of free (weight and bias) parameters is 2(l1l2 + m1m2) + 4(l2 +
m2)+ l1 +m1 +2. In general this number should be less than the number of observations in
the dataset. If this is not the case, principal component analysis may be needed to pre-filter
the datasets, so only the leading principal components are used as input to NLCCA.
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5.3 Variables in the codes for NLCCA

The reader can skip this subsection if he/she does not intend to modify the basic code.

Global variables are given by:

global iprint irobust linear nensemble testfrac segmentlength ...
overfit tol scaling penalty penalty store maxiter initRand ...
initwt radius options n l1 m1 l2 m2 iter xmean xstd ymean ystd ...
ntrain xtrain ytrain utrain vtrain xitrain yitrain ntest xtest ...
ytest utest vtest xitest yitest corruv Errx Erry

Be careful not to introduce user variables with the same name as some of the global variables
(e.g. n, l1, m1, l2, m2). If you add or remove variables from this global list, it is CRITICAL
that the same changes are made on ALL of the following files: nlcca1.m, nlcca2.m, param.m,
calcmode.m, costfn.m, mapuv.m, costfn1.m, invmapx.m, costfn2.m, invmapy.m, extracalc.m.

options are the options used for the m-file fminunc.m in the MATLAB optimization toolbox.

n is the number of observations [automatically determined from xdata and ydata (assumed to
have equal number of observations) by the function chooseTestSet].

xdata is an l1 × n data matrix, while ydata is an m1 × n data matrix.
(A common error is to input an n× l1 data matrix for xdata, or an n×m1 matrix for ydata,
which leads MATLAB to complain about inconsistent matrix dimensions).
If xdata and ydata contain time series data, it is useful to record the measurement time in
the variables tx and ty respectively (both 1 × n vectors). The variables tx and ty are not
used by NLCCA in the calculations.

iter is the number of function iterations.

xmean and xstd are the means and standard deviations of the xi variables (Similarly, ymean and
ystd are for the yj variables).

ntrain, ntest are the number of observations for training and for testing.

xtrain, xtest are the portions of xdata used for training and testing, respectively.

ytrain, ytest are the portions of ydata used for training and testing.

utrain, utest are the canonical variate u values during training and testing. Similarly for vtrain
and vtest.

xitrain, xitest are the model predicted values for x during training and testing. (Similarly for
yitrain and yitest).

corruv is the (Pearson or biweight mid) correlation over all data (training+testing).

Errx is the error (MSE or MAE) of x over all data (training+testing). (Similarly for Erry).

score can be used to select the best model among several models (with different number of hidden
neurons), i.e. choose the highest overall score (normalized by that from the linear model),
where
score = corruv/sqrt(Errx*Erry), (if MSE used for the error);
score = corruv/(Errx*Erry), (if MAE used).
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6 Hints and trouble-shooting

A common error message from MATLAB is: ‘Inner matrix dimensions must agree’. Check the
dimensions of your input data matrices xdata and ydata. For instance, it is easy to erroneously
put in an n × l data matrix for xdata in NLPCA, when it should be an l × n matrix (i.e. the
transpose).

Increasing the number of hidden neurons allows more complicated nonlinear solutions to be
found, but also more chance of overfitting. One should generally follow the principle of parsimony
in that the smallest network which can do the job is the one to be favoured.

Sometimes, the program gives the error that no ensemble run has been accepted as the solution.
One can rerun with a bigger ensemble size. One can also avoid using zero or very small weight
penalty and/or too many hidden neurons to reduce overfitting, which is usually the cause for
having no ensemble runs accepted.

Sometimes, one gets the warning message about mean(u2) or mean(v2) not close to unity.
This means the normalization terms in the cost function were not effective in keeping mean(u2)
or mean(v2) around unity. This usually occurs when large weight penalty were used, so the
penalty terms dwarfed the normalization term. One can either ignore the warning or scale up the
normalization term in the cost function (in invmapx.m for NLPCA, and in mapuv.m for NLCCA).
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