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1. Introduction 
Software is nothing more than a sequence of configurations for an important part of a 
digital circuit; the controller. Controller’s purpose, as its name suggests, is to control 
part or the whole of the digital circuit. As such, its configuration (software) vastly 
affects the power consumption of the circuit. 
 
In this work we will present the creation of a framework that allows the estimation of 
power consumption of a processor by analyzing its software. We will also suggest 
ways to decrease power consumption by writing software with a different way while 
keeping functionality the same. 

2. Previous Work 
The most historical early papers in the software power estimation field is written by 
Tiwari et al. [1] and describes the methodology of estimating power on a 486 with an 
analytical way. We heavily relied on this paper and we used its values for our 
framework. At about the same time they suggest techniques [2] for creating power 
aware compilers. Later they did characterization studies on SPARClite [3] and some 
other processors and DSPs [4]. Hasegawa et al. [5] and Segars et al. [6] at about the 
same time highlight the relation between code density and low power for SH3 and 
ARM/Thumb instruction sets. Their processor architecture techniques that they use in 
their early papers latter became mainstream. At architectural level, principles from the 
extended addressing mode [7] of Kalambur et Al could be considered. 
 
Benini et al. summarize [8] the available solutions for low power design with 
extensive references. Probably this was done in order to support their later paper [9] 
where they compare very well different C constructs on their energy efficiency. They 
talk about recursion that we also studied. Their claim that “On the ARM processor the 
overhead is small - only four instructions” is wrong. The problem isn’t the 
calling/returning but parameter passing (possibly via the expensive stack). The whole 
paragraph is a bit misleading because it compares unequal algorithms. 
 
In the same field of “coding tips for energy reduction” a lot of work has been done. 
Metha [10] et al. propose register relabeling as a technique for energy reduction. 
Vishal et Al. [11] do power estimation for the ARM processor. The most effective tip 
they propose is “transforming branchings” 
which is actually synonymous to repairing bad 
code. Decreasing function calls (which we used 
as well) significantly seems to contribute in 
ARM 32-bit code. Li Lai et al. on their 
interesting paper [12], they propose loop 
merging and loop unrolling along with scalar 
replacement as a method for reducing the 
energy of an algorithm. 
 
There is a lot of work [13], [14], [15] on 
software power optimization on DPSs. This is 
reasonable because DSPs usually have to retain their high performance despite energy 
reduction and usually execute software with small loops that execute all the time 
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(easier to optimize) instead of general purpose control-oriented code. A software 
power reduction technique that could fit very well DSPs needs is that of the energy-
quality (E-Q) factor presented by Sinha et Al [16]. By using different algorithms or by 
simply changing the order of calculations one can have acceptable accuracy with a 
minimum number of iterations in arithmetic calculations as the previous figure shows. 
If there is enough power, you continue the calculation and get extra accuracy. In non-
critical applications like an mp3 player you can trade-off quality with energy to 
prologue battery life. They successfully apply this technique for a Microsensor Node 
[17]. 
 
Brandolese et Al [18] give models of power consumption of software in different 
levels of abstraction and as a result with different level of accuracy.  They also present 
[19] some abstract models based on instruction decomposition in functions based on 
their earlier work [20]. The final model includes the inter-instruction effects and is 
supposed to be accurate enough. They report to have assembly listings in the order of 
107 – 108 lines, which is actually a bottleneck in the whole power estimation process. 
 
After the buzz of the first period, simplicity and efficiency are always the values that 
survive. Russell et al. [21] in their brilliant paper verify that the simplest and most 
efficient is also accurate. Assuming constant power and just calculating the time is 
enough to give energy estimations with 8% of accuracy. This is very important and 
can be verified from our work as well. If we haven’t assumed different currents for 
each instruction, but we used just a constant current value, small differences in the 
results would be noticed. The most important parameter in software power estimation 
is time. Much later Sinha et al. [22] used the same assumption to develop JouleTrack, 
a web-based power estimation application for StrongARM processors. They also 
applied the same principles [23] later to profile an operating system. They highlight 
the importance of system function calls which we also verify that are very important 
and if overlooked, only wrong conclusions can be drawn. Just estimating the energy 
required by malloc could be the subject of a thesis. 
 
Nikolaidis et Al. [24] came late. At their paper we can see how dirty, the work of 
estimating software energy can be. They were forced to decode from binary 
instructions available from traces of the ARM debugger. The good point is that model 
both the core and the memory. Now that they had done it “the hard way” they might 
consider taking binary traces directly from the bus [25]. 
 
In the System on Chip era new problems arise. Marcello et Al. in their very good 
paper [26] show how heterogeneous tools can be used together for software/hardware 
power co-estimate. The important about this paper is that they focus on the industry’s 
need of both reasonable accuracy but also fast execution time of simulation which is 
important when (and it’s always the case) the power estimation is part of an iterative 
refinement process. They also give an important literature review on current SOC 
power estimation research. Vijaykrishnan et Al. [27] present their SimplePower, one 
of the best power estimating tools available at the moment in terms of accuracy and 
execution speed. Wehmeyer et Al. [28] propose register file size design space 
exploration in order to meet both energy and area budget. Hung-Ming et Al. [29] 
summarize what we need to make practically power efficient software development: 
 

1. Use a power-aware compiler 
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2. Establish a set of coding guidelines based on system’s characteristics, and let 
the programmers write this way. 

3. Collaborate the characteristics of application software such as load with 
hardware to dynamically adjust the system processing performance. 

 
Sometimes researchers try to hard in their area and loose the big picture. Gurumurthi 
Et al. [30] bring us back to reality with some interesting system-level perspectives. 
They rate the power consuming elements of a computer with the following way: 
 

1. “The disk is the single largest consumer of power accounting for 34% of the 
system power.” 

2. After that comes “clock distribution and generation network and the on-chip 
first level instruction cache” 

3.  “The memory subsystem has a higher average power than the processor core” 
 
The most power consuming parts are more likely to give better energy saving with 
least effort. A 3% power reduction in a disk is orders of magnitude better than a 3% 
power reduction on a processor’s core. In an mp3 player I suspect that most of the 
energy is spent in the analog subsystem. Using cheap Delta-Sigma D/As who operate 
in large frequency and with full voltage swing may be more power consuming than 
the expensive R-2R D/As. Matching headphones typical resistance with amplifier’s 
output resistance and using more efficient headphones (more dB/mV) will be 
beneficial as well. 
 
From a software perspective, they observe that the user mode is the most power 
consuming (because of the various protection schemes) but the kernel mode consumes 
15% of system’s energy due to frequent calls. Over 5% of system’s energy is 
consumed in idle mode. Because nothing is being done in that time, a power down 
mode could be used instead. 
 
Finally, Hu et Al. [31] give a detailed overview of the latest software power 
optimization techniques including techniques for processors with reconfigurable 
resources (e.g. reconfigurable caches). They also give an example of one of the few 
cases where faster program doesn’t mean less power consumption (compiler-guided 
speculative cache prefetching).  
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2. Powprof: Our power estimation framework 

2.1 Instruction traces 

2.1.1 Tools 
In order to estimate power in a platform one thing that is necessary is instruction 
traces. Many open source profilers were tested but most of them didn’t provide the 
functionality we wanted.  
gprof1, the GNU profiler provides information only for the number of calls on 
functions (gprof’s internatl operation can be found here2). PIN3 is useful but it doesn’t 
provide disassembly of the instructions out of the box. gcov4, the GNU coverage tool 
was much closer to what we needed. It provided the number of times each C line was 
executed. With a closer look at its source code, it was clear that it was more complex 
than we needed in order to be cross-platform. Additionally, by looking at the source 
code it generated, it was obvious that the profile files it generated weren’t suitable for 
our needs, because they were directed towards profiling C code. For example for a 
conditional branch of C with multiple conditions like if (a==0 && b==0), it would 
probe just if the branch is taken or not while in assembly this condition translates to 
two branches. The second one didn’t get profiled. 

2.1.2 Bochs 
“Bochs is a highly portable open source IA-32 (x86) PC emulator written in C++, that 
runs on most popular platforms. It includes emulation of the Intel x86 CPU, common 
I/O devices, and a custom BIOS. Currently, Bochs can be compiled to emulate a 386, 
486, Pentium, Pentium Pro or AMD64 CPU, including optional MMX, SSE, SSE2 
and 3DNow! instructions.”5.  
 
Bochs is a very accurate and it allows instruction level emulation of arbitrary 
programs as complicated as operating systems. Operating systems like dos (FreeDOS) 
and linux (DLX linux) are available as images from Bochs’ web site and have been 
tested successfully but they don’t provide compiler internally. Bohcs can also be used 
for debugging BIOS implementations. 
 
Bochs provides a powerful instrumentation facility. The problem is that it’s not as 
complete as I expected. 
 
Problem 1: It’s enabled by default and doesn’t turn off. There is so much time 
consuming tracing that doesn’t allow FreeDOS to boot in a reasonable amount of 
time. 
Solution: I modified instrument.cc and instrument.h by adding two missing functions: 
 
void bx_instr_start() { 
  active = 1; 
} 

                                                 
1 http://www.cs.utah.edu/dept/old/texinfo/as/gprof_toc.html 
2 http://www.informatik.uni-hamburg.de/RZ/software/gnu/gcc/gprof_9.html 
3 http://rogue.colorado.edu/Pin/docs/pin-2.0-1061-gcc.3.2-ia32/html/ 
4 http://gcc.gnu.org/onlinedocs/gcc-3.0/gcc_8.html 
5 http://bochs.sourceforge.net/ 
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void bx_instr_stop() { 
  active = 0; 
} 
 
and turned instrumentation off by default: 
 
static bx_bool active = 0; 
 
Problem 2: “instrument stop” instruction doesn’t work. You can start probing a 
program but you can’t stop. 
Solution: This is a bug of bochs. I quickly fixed it by changing the instruction to 
“instrument stops” by modifying “bx_debug/dbg_main.cc”. I submitted a detailed bug 
report to bochs’ forum. 

2.1.3 Our approach 
A set of Perl scripts were written that take x86 assembly source code from the gcc –S 
and analyze it. When program flow changes are detected, a small chunk of code is 
interleaved that increases the appropriate profiling counter. At the exit points of 
main() a special function call is also called. This function takes these profiling 
counters and writes them to a regular text file. The profiling counters are 64 bits long. 
The assembly listing for the function that writes the counters to the file were created 
with gcc and modified by hand. The whole idea was inspired by the way gcov works. 
The second Perl script takes the profile file and the original assembly file and creates 
a file of the powest format (see Appendix A.5) that is ready to be used from the rest of 
the flow. The main advantage of this technique is that it’s extremely fast because it 
runs at native system’s speed. It even allows probing of optimized assembly files (e.g. 
gcc –O3). The main disadvantage is that it doesn’t trace system calls and is limited to 
a single assembly file. 
 
Another alternative for creating instruction traces is Bochs Emulator that we 
described above. We have implemented instrumentation modules that create powest 
formatted files directly. Internally we use STL’s map object to minimize the amount 
of memory that is needed to store profiling data. By using the instrument start, 
instrument stops, instrument reset and instrument print commands we can control the 
instrumentation functionality of bochs (see Appendix A.7). The main disadvantage of 
bochs is that it’s too slow. Its main advantage and disadvantage at the same time is 
that it’s too accurate meaning that it gives realistic instruction traces, including 
operating system’s and library call’s overhead. Note that no source code is needed in 
order to estimate the energy of a program with blochs. 
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2.3 Power estimation flow with powprof framework 
The following figure shows the power estimation flow with our framework. 
 

 
 
We have already discussed the two instruction traces’ alternatives, perl profiling and 
bochs emulator. After using them, we have a powest formatted instruction trace file. 
This file and a powest configuration file are given to the powest tool that creates the 
final power estimation results. It must be noted that pwoest formatted instruction 
traces and powest configuration files are platform dependant but powest is not. It can 
be used with any processor or instruction format like binary, Intel or AT&T assembly 
or even more be integrated inside any profiling framework to provide power 
estimations. 

2.4 The powest configuration file 
The real power and flexibility of the powest tool relies on its configuration file. By 
modifying its entries one can re-use the powest for estimating power on: 
 

1. Different processor with the same instruction set 
2. Different processors with different instruction sets 
3. Different systems 
4. Different compilers or assembly notions. 
5. Different operation modes in terms of voltage and frequency 

 
We can see the example of the configuration file bellow. 
 
    Comment: All values in mA. 
#config static 100 100 mA static current 
#config volt 3.3 3.3V power supply 
#config freq 133 Frequency in MHz 
#config dcurre 400.0 Default cost 400mA 
#config dclock 2 Default cost 2 clock cycles 
 
push.* 451 1 stack opperations Push functions 
pop.* 428 4 stack opperations Pop functions 

powest 
format file 

powest 

Perl binary 
profiling 

Bochs 
emulator 

Power 
estimations 

powest 
configuration 
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(mov|add|adc|sub|sbb|xor|and|or|cmp|test|xchg).*\$[^,]+,[^%]*%.* 300
 2 Arithmetic operations Arithmetic opperations with 
immediate 

 
The configuration file is divided in columns. Each column is separated by its next one 
by a tab (\t) character. If the first column is empty, it ignores the whole line. If it 
contains the #config directive, it tries to parse the following as configuration data. 
There are 5 configuration parameters up to now and more may be added on demand: 
 
1. static This is the static current in mA 
2. volt This the voltage in Volts 
3. freq This the Frequency in MHz 
4. dcurrent This is the default current in mA for unknown instructions 
5. dclock This is the default  number of clock cycles for unknown instructions 

 
All the parameters are doubles. Even the clock cycles are doubles in powest because 
they usually represent mean values. The rest of columns on  a #config line are 
comments and are not being considered. 
 
If the first column is not empty or #config then we have an instruction line. Every 
such line represents a set of instructions. The first column in an instruction line is a 
regular expression that matches the specified instruction. A good starting point for 
someone who wants to learn regular expressions is wikipedia6. So, for example 
“push.*” matches the push instruction followed by anything and the cryptic… 
 
(mov|add|adc|sub|sbb|xor|and|or|cmp|test|xchg).*\$[^,]+,[^%]*%.* 
 
matches all the instructions listed above that operate on an immediate in AT&T 
syntax e.g. mov $4324, %eax or movl $WRONG, %MEANINGLESS. What I want 
emphasize is that regular expressions are being used in order to distinguish if a line 
contains that given instruction. They are able to verify the correctness of an assembly 
line (e.g. saying that the second example is wrong) but I don’t think it would be 
extremely beneficial because the code is probably correct if created by a compiler or 
another automated way. It would just make the whole procedure slower. 
 
The order matters. Instructions are being checked from top to the bottom and the first 
match is being accepted. If you have for example: 
 
push.* 
pusha.* 
 
the second instruction will never match anything because the first one matches pusha 
as well. The best way to build these regular expressions is to start with a clear 
configuration file and add one by one ensuring that each one matches exactly what it 
should. The commonly used process of starting with a working example and 
modifying isn’t beneficial in this case. Note also that arranging the most often used 
instruction patterns first improves average performance. 
 

                                                 
6 http://en.wikipedia.org/wiki/Regular_expression 
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The second column on an instruction argument is the average current in mA that these 
instructions consume. This is a value of double type. 
 
The third column is the number of clock cycles for these instructions. This is also a 
double value for the reason explained above. 
 
The total energy of the instruction is being calculated by: 
 

( )1instr cc instr cc instrEnergy I V Time I V Cycles freq= ⋅ ⋅ = ⋅ ⋅ ⋅  
 
The fourth column is very important. It is the (optional) class of the instruction. 
Instructions can be grouped in classes like “Memory write instructions” or “Flow 
control instructions”. At the end of power estimation an energy breakdown of all the 
classes appears. This way you can find out where your algorithm lacks of energy 
efficiency and optimize it e.g. you may find out that stack operations dominate the 
power consumption because of excessive use of functions (poor compiler 
performance on inlining). The number of classes is unlimited. A default class named 
“other” is always being added and contains unclassified instruction i.e. instructions 
that have that column empty or instructions that don’t match any pattern. 
 
If something exists beyond the fourth column it is a comment and doesn’t get 
considered. 
 
An unlimited number of instructions is being supported. Instruction classification is a 
very important feature and has been implemented with this very flexible way. 
 
The configuration file is being passed as (the first) parameter to powest tool. This 
means that someone can have tenths of different configurations for different kinds of 
processors, voltages clock frequencies or any other property included on the 
configuration. By invoking powest with a different configuration file, one gets the 
results for the different conditions without any need of recompilation of the program 
or re-acquisition or modification of the (usually expensive to obtain) profiling data. 
By using regular expressions and not hard-coding the instructions format on the 
binary, we are able to use the same program with a new instruction set (e.g. Sparc, 
MIPS) within minutes. 
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2.5 The powest tool  
The powest tool is written in C++. The UML diagram can be seen in the figure 
bellow. 
 

 
 
As one can easily see powest is nothing more than a wrapper to the PowerEstimator 
class. This class does all the work and is autonomous enough to be integrated easily 
within each framework. There is no public constructor for the PowerEstimator class 
instances of which can be created only by using the static method: 
PowerEstmator::createPowerEstimator(). This function returns NULL if the 
configuration file passed as parameter doesn’t exist or is faulty. The configuration file 
is being parsed to a Configuration Class that includes Instructions and Instruction 
classes. PowerEstimator provides three functions; reset(), parseLine() and 
printStatistics().  
reset() resets its internal accumulators of energy, clock cycles etc. This can be useful 
in case you integrate the PowerEstimator to another platform and you want to 
measure just a part of a program. You just reset() on the beginning of the part and 
printStatistics() at the end. 
The parseLine() method should be called each time an instruction is being executed 
with the disassembled text as parameter. By calling it instruction’s text is being 
compared with the regular expressions from the configuration file. If a match is 
found, the energy for the given instruction is being added to the total and its class’s 
energy. Otherwise the default energy is being added to the total and the “others” 
class’s energy and the instruction is being added to the unknown list. 
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printStatistics() method prints the statistics gathered by the previous procedure. It 
prints the total energy, the static energy, the static energy factor (see Appendix B). 
Then it prints the breakdown of the energy into instruction classes sorted in reverse 
energy consumption order. Finally, if unknown instructions exist, it prints them. 
 
PowerEstmator could be directly integrated on bochs but this wasn’t technically easy 
in our development environment (Cygwin) because of some library conflicts. (The 
whole bochs is being compiled with the –mno-cygwin flag that prevents the use of the 
original Cygwin libraries in order to keep the final executable independent from 
Cygwin’s DLLs. Unfortunately regular expression libraries weren’t available on 
Cygwin-independent libraries). 

2.6 Feature discussion 
Our power estimation model allows different average currents for each instruction. As 
we will show in the next chapter, this is not extremely important but it allows 
somehow more accurate estimations. It also allows approximate modelling of cache 
misses, pipeline effects and other inter-instruction effects as described in [1].  
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3. Estimation results 

3.1 Energy estimation on mergesort 
We have used 3 different implementations of mergesort. A third one that didn’t write 
an element to the memory if there was no change was tested but gave worst results 
than the original so it didn’t get used. The source code for these three mergesorst can 
be found in Appendix D. 
 
msort_original.c The original mergesort implementation. Heavily based on 

Michael Lamont’s implementation7. 
msort_less_calls.c This is a version that has unrolled the 4 last levels of 

recursion of mergesort in order to save call overhead. It was 
implemented by me, but latter it was found that Knuth8 
proposed a similar optimization. 

msort_less_calls_l
ess_writes.c 

This is the most efficient implementation that has more 
complex coding but uses both arrays to half the number of 
memory writes. 

 
I would like to comment a little the second one. In 
the figure on the right, one can see the way 
mergesort works. It breaks the region that has to 
be sorted in two and calls itself till it ends to single 
numbers. Then it merges the left and right sorted 
sub-lists and backtracks. The last e.g. 2 stages get 
called n + n/2 times and the merge operation is trivial (nothing or swap) which means 
that we just pay the overhead for calling a function for something. This is what is 
being attacked by second optimization. 
 
Why mergesort? First of all I believe that it’s the sorting algorithm of the future. It 
may be slow but it can be easily parallelized. You just send each sub-list to a different 
processor for sorting and then you merge the results. Secondly it is recursive and non-
trivial and thus there are a lot of ways to be coded. 
 
In the tables presented bellow we can see the results obtained by a series of 
estimations using profiling and bochs as source of our instruction traces. 
 
The Eest column is the energy estimated by using a constant current of 411 mA instead 
of different current for each instruction. For profiling derived data the difference 
between the two estimates is 4% on average and 11% worst case. For bochs derived 
data the difference is on average 1% and 4% worst case. Obviously we can draw 
similar results as in the literature. Using a constant value for current and counting 
only the time is not so inaccurate as it sounds. 

                                                 
7 http://linux.wku.edu/~lamonml/algor/sort/merge.html (Western Kentucky University) 
8 D. Knuth. The Art of Programming, Vol. 3 (Sorting and Searching). Addison-Wesley, 1973 
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Results from Profiling 

Original 

n Time (s) E (J) Eest (J) Estatic Earith_w Eflow Earith Earith_r Estack Eother 
100 0.001 0.001 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

1000 0.006 0.008 0.008 0.002 0.003 0.002 0.001 0.001 0.000 0.000 
10000 0.074 0.098 0.100 0.024 0.033 0.028 0.018 0.012 0.004 0.004 

100000 0.873 1.160 1.185 0.288 0.396 0.329 0.212 0.142 0.044 0.037 
1000000 10.100 13.412 13.707 3.333 4.657 3.828 2.496 1.625 0.441 0.365 

Less calls 

n Time (s) E (J) Eest (J) Estatic Earith_w Eflow Earith Earith_r Estack Eother 
100 0.000 0.001 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

1000 0.005 0.007 0.007 0.002 0.002 0.002 0.001 0.001 0.000 0.000 
10000 0.068 0.090 0.092 0.022 0.029 0.026 0.018 0.011 0.002 0.004 

100000 0.813 1.071 1.103 0.268 0.350 0.313 0.219 0.129 0.024 0.037 
1000000 9.450 12.445 12.825 3.118 4.110 3.662 2.589 1.486 0.233 0.365 

Less calls less writes 

n Time (s) E (J) Eest (J) Estatic Earith_w Eflow Earith Earith_r Estack Eother 
100 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

1000 0.004 0.005 0.005 0.001 0.001 0.002 0.001 0.000 0.000 0.000 
10000 0.051 0.067 0.069 0.017 0.018 0.022 0.014 0.005 0.003 0.004 

100000 0.604 0.791 0.819 0.199 0.217 0.269 0.178 0.060 0.030 0.037 
1000000 6.860 8.976 9.310 2.264 2.508 3.088 2.075 0.644 0.297 0.365 

 
Results from bochs 

Original 

n Time (s) E (J) Eest (J) Estatic Earith_w Eflow Earith Earith_r Estack Eother 
100 0.053 0.069 0.072 0.017 0.009 0.020 0.010 0.006 0.024 0.001 
500 0.071 0.094 0.096 0.023 0.022 0.028 0.011 0.010 0.022 0.001 

1000 0.102 0.137 0.139 0.034 0.041 0.042 0.013 0.016 0.024 0.001 
5000 0.330 0.447 0.448 0.109 0.183 0.141 0.029 0.068 0.026 0.001 

10000 0.614 0.833 0.833 0.203 0.361 0.265 0.047 0.135 0.025 0.001 
Less calls 

n Time (s) E (J) Eest (J) Estatic Earith_w Eflow Earith Earith_r Estack Eother 
100 0.040 0.053 0.054 0.013 0.007 0.015 0.007 0.005 0.017 0.001 
500 0.052 0.069 0.071 0.017 0.021 0.021 0.007 0.008 0.012 0.000 

1000 0.065 0.088 0.088 0.021 0.037 0.028 0.006 0.013 0.005 0.000 
5000 0.291 0.395 0.394 0.096 0.179 0.125 0.021 0.063 0.006 0.000 

10000 0.618 0.838 0.838 0.204 0.361 0.265 0.049 0.134 0.029 0.001 
Less calls less writes 

n Time (s) E (J) Eest (J) Estatic Earith_w Eflow Earith Earith_r Estack Eother 
100 0.033 0.043 0.044 0.011 0.007 0.013 0.006 0.004 0.013 0.000 
500 0.045 0.061 0.062 0.015 0.020 0.019 0.006 0.007 0.009 0.000 

1000 0.088 0.118 0.120 0.029 0.039 0.037 0.011 0.014 0.018 0.001 
5000 0.300 0.407 0.407 0.099 0.180 0.130 0.023 0.057 0.017 0.001 

10000 0.587 0.797 0.796 0.194 0.358 0.256 0.044 0.113 0.026 0.001 
 
The easiest way to understand those tables is by looking their graphs on Appendix C. 
It must be noted that both axes are logarithmic which means that small offsets may 
mean great changes. It must also be noted that bochs’ graphs are in the 100-10000 
range. We couldn’t go further because emulation times were prohibiting. 
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In respect of Total time and energy (Graphs 1-6) we see the same pattern. The second 
version of mergesort offers almost no performance benefits while the third one offers 
energy reduction of 33% in profiling results and 5% in boch’s results. 
 
Why this happens is clear in the next graphs (Graphs 7-8) where we see that we have 
significantly reduced number of memory writes in profiled results but in bochs’s 
results we have almost no difference. Additionally the number of writes doesn’t seem 
to be O(n) something like O(an). It must be mentioned however that the third version 
of mergesort has approximately half energy consumption on write operations which 
means that our optimization was successful. 
 
The only interesting thing to note about flow control instructions (Graphs 9-10) is that 
in bochs’ version, the second version of mergesort changes in an unexpected way in 
respect with the third version of mergesort. The same pattern repeats with arithmetic 
operations in registers (Graphs 11-12) and stack operations (Graphs 15-16). 
 
Arithmetic operations with memory read (Graphs 13-14), follow the same pattern 
with arithmetic writes and get significantly reduced on the third version. 
 
In profiling stack operations (Graph 15) we can see that the second version is the most 
efficient as we expected by having almost half the energy of the original version. This 
means that our optimization for reducing the calls was successful. It also means as we 
noted before, that the main overhead involved with function calls is not the call/ret but 
parameter passing via stack. In the third version of mergesort we have a slight 
(although it seems large) increase of 27% on stack operations because of the extra 
parameter that is being passed on them (swap). In bochs’ version, the pattern is funny. 
No correlation seems to exist and an amplified version of the pattern of flow control 
appears. 

3.2 Comments on the results 
The results are quite the expected for the profiled version and quite unexpected for 
bochs’ version. The problem is that what you are going to “pay” as energy to the real 
hardware is that of bochs’ version! All these strange patterns in bochs’ version exist 
because: 
 

1. DOS compiler is less optimizing than gcc 
2. Because of system calls 
3. Because of the overhead of the operating system 

 
File loading and unloading the program uses a large number of read/writes and 
branches. The number of these calls is independent of ‘n’ and can be larger than the 
cost for sorting e.g. 100 numbers. 
 
The most important cause of inconsistency is because of memory allocation/de-
allocation routines for both loading/unloading the program and program’s needs. The 
memory has to be allocated and initialized. Then random number generation has to 
take place. Depending on the used algorithm this may add from small to very large 
overhead. 
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Random numbers created with naïve random algorithms are not so random. What we 
may actually be seeing in many of the energy profiles may be just a result of 
correlations between numbers in the array under sort after a certain point (e.g. the 
array may be somehow sorted between 1000 elements and 10000 elements). Just one 
seed has been used in bochs’ experiment and it’s not checked to have fair statistical 
properties. 
 
It takes about half a second to execute the 10000 element’s sorting. During this time a 
lot of interrupts to serve even the non-multi-tasking DOS will have taken place. 
 
In conclusion all these high-level effects make the actual energy consumption of a 
program running on a real system 10 times more energy consuming than it would be 
expected from a first order analysis. The only think we can do given a program file, 
without details about the operating system and the libraries is just to tell that it’s more 
or less power consuming in comparison with another. 

3.3 Power reduction tips 
It’s tempting to follow the tradition of each power estimation paper in the past and 
provide some power estimation tips. I will do it very briefly because it’s not one of 
the aims of this research and because most of the important ideas have already been 
highlighted in the literature. I will focus in things that a compiler can’t do, because a 
good time-optimizing compiler is also energy efficient in general. 
 
1. Adjust buffer sizes to fit data caches 
2. Adjust code size including calling function of loops in order to fit instruction 
caches and far jumps are not needed. 
3. Allocate the memory on the beginning and manage it yourself. malloc is generally 
not supposed to be energy efficient. 
4. In general, don’t assume that system calls are energy efficient. 
5. Distribute the load. If you can’t power down individual modules, use them in order 
to finish earlier or lower the operation frequency. Modern DSPs for example have a 
lot of extra features that may remain unused. E.g. setup DMA transfer to send data to 
the audio decoder. Don’t pass everything from the CPU. 
6. Use interrupts instead of polling for large wait intervals 
7. Get to know the compiler. If you make a change e.g. to decrease the number of 
writes and you finally end up with more writes then there is some sort of 
“misunderstanding” between you and the compiler. See the assembly listings and 
understand them to see what’s wrong. After a while you will be able to understand the 
compiler and avoid mistakes. 
8. Reduce data redundancy (e.g. XML) 
9. Know your data and do clever data transformations. For example sometimes storing 
an array in a differential form (a[n] = a[n-1]+a[n]) results in small numbers that are 
beneficial in a power aspect. You may also be able to transfer more than one such 
small number in one memory transaction.  
10. Do transformations such as most data have the same bits all the time. It reduces 
swing on busses and switching activities. If this means extra time then do a data 
transform to save time. E.g. butterfly based FFT, multiply, IFFT instead of FIR with 
many taps.  
11. Try to compress and de-compress data at runtime. Especially applicable if the 
processor has special instructions that help. 
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4. Conclusion 
With our program we are able to provide numbers. We provide answer to the question 
how much energy is needed to complete a software task. We also provide answer to 
the question if a piece of code is more energy efficient than another with the same 
functionality. 
 
We give that answer with a piece of software that is portable, configurable, extensible 
and relatively fast. Someone with knowledge of regular expression can port it to 
another processor. Someone with average C++ knowledge can integrate it to any 
profiling framework. 
 
Yet the engineer that uses it has to choose between accuracy and efficiency. Accuracy 
is not a matter of current measurement and platform characterization but a matter of 
deciding which are the most power consuming hardware (disks, external memories, 
buses, caches, cores) and software (operating system, communication protocols, 
application) elements of the system and including them in your estimation. Of course 
the more items you include, the more inefficient the estimation gets. 
 
So, no, software power estimation is not just a summation. Tracking system’s state is 
not an easy job either. Software power estimation is an open problem that has not 
been solved both accurately and an efficiently for more than 10 years. 
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Appendix A. User manual 

A.1 Installing Cygwin 
Installing Cygwin is relatively easy. The setup (setup.exe) file has to be downloaded 
from Cygwin’s web site www.cygwin.com. The default options on the setup are OK 
till the “Cygwin setup - select packages” dialog. Here we have to select the packages 
for Cygwin installation witch is similar task with any Linux installation. 
 
The setup should include at least the following:  
All the base utilities.  
Devel: g++, bison, flex, byacc, autoconf, automake, make.  
Interpreters: perl 
 
The easiest way to do this 
setup is just to select install 
for the Devel and 
Interpreters Categories as 
shown in the picture. 
 
Then press next and the 
download and installation of 
the packages will begin. 
The process will take about 
5 minutes depending on the 
amount of packages you 
have selected in the 
previous step.  
 
At the end you will have 
Cygwin’s link in start menu. 
The installation was 
successful. Cygwin is 
installed by default in 
C:\cygwin. A default user 
has been created that has 
the same name as the user 
that installed. In my case 
it’s “lookfwd”. It will be 
different in your machine 
and you should use your 
own name whenever 
mentioned in the 
procedures bellow. The root directory for that user is: C:\cygwin\home\lookfwd\.  
 
This is where we will install everything for the rest of this chapter. 



 19

A.2 Installing bochs 
Download the latest version of bochs from bochs’ web site 
http://bochs.sourceforge.net/. In my case the latest version is bochs-20060518.tar.gz. 
Put that file in your root directory (described above). Start Cygwin with the link on 
the start menu. Now decompress the archive with the following command: 
 
$ tar –xzf bochs-20060518.tar.gz 
 
Download my framework’s package archive: swcost.tar.gz. Put it in your root 
directory and then untar it with the following command. 
 
$ tar –xzf swcost.tar.gz 
 
This creates a swcost directory in your machine. Therein there are some updates to the 
original bochs release that must be applied before compilation. Do the following: 
 
$ cp swcost/original_bochs_updates/dbg_main.cc bochs-
20060518/bx_debug/dbg_main.cc 
$ cp swcost/original_bochs_updates/instrument.h bochs-
20060518/instrument/example0/instrument.h 
$ cp swcost/original_bochs_updates/instrument.cc bochs-
20060518/instrument/example0/instrument.cc 
 
Now we are ready to compile bochs. Goto bochs’ directory  
 
$ cd ~/bochs-20060518 
 
Compile bochs from the source code with the following commands. Configuration 
will take about 4 minutes and make will take about 8 minutes. 
 
$ configure --enable-debugger --enable-disasm --enable-
instrumentation="instrument/example0" --enable-vbe --enable-clgd54xx 
--enable-icache 
$ make 
$ make install 
 
The installation of bochs is complete. 

A.3 Your first bochs session 
We can now test bochs with the following procedure. In my swcost directory, there 
exists a FreeDOS version from bochs’ web-site (slightly modified). Other operating 
systems (like dlxlinux) can be downloaded and tested but this one is already 
configured and will work straight out of the bochs! Go to the freedos-img directory 
and run bochs. 
 
$ cd ~/swcost/freedos-img/ 
$ bochs 
 
IMPORTANT NOTE: If you’ve installed Cygwin in a directory other than C:\cygwin, 
you will have to modify the following two lines of the bochsrc file in that directory. 
 
romimage: file="C:\cygwin\usr\local\share\bochs\BIOS-bochs-latest", 
address=0xf0000 
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vgaromimage: file="C:\cygwin\usr\local\share\bochs\VGABIOS-lgpl-
latest" 
 
Now I assume that you have initiated a bochs session and you see something like this: 
 
Please choose one: [5] 
 
Press enter. After a while bochs console appears as it can be seen in the figure bellow.  
 

 
 
So now we have two consoles. The one is Cygwin’s console and the other one is 
bochs’ console. This terminology will be used for the rest of the chapter. The 
simulation is initially paused. So go in Cygwin’s console and enter ‘c’ <enter> to 
continue the simulation. You will now see a familiar DOS booting prompt on bochs’ 
console. Press enter two times. You will now end up with a DOS prompt: C:\ in 
bochs’ console. Goto progs directory.  
 
> cd progs 
 
This is where I’ve put some sorting executables: msor, mslc and mslclw 
corresponding to the three versions of the sorting functions. Run one of them: 
 
> msor 200 
 
A “Done.” must appear that indicates that the sorting is complete. Because these 
programs are used for instrumentation, detailed messages are not included to 
minimize I/O overhead.  
 

Bochs’ console 

Cygwin’s console 
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Now go to Cygwin’s console and press Ctrl+C. Now we are in debug mode and 
boch’s console is inactive. Start the instrumentation facility and continue the 
simulation by entering c. 
 
<bochs:2> instrument start 
<bochs:3> c 
 
You will immediately see a listing of the assembly code that bochs is running just and 
only to prompt for your key-press on your DOS window. You may now begin to 
realize that instrumentation and power estimation is really much more complex task 
than you thought. 
 
Press Ctrl+C again in Cygwin’s console. Stop the instrumentation and continue. 
 
<bochs:4> instrument stops 
<bochs:5> c 
 
This feature didn’t actually work in the original bochs’ and was one of the 
modifications done with the patch files we used before. Now press the power button 
in bochs’ console window. This will end your bochs session. Congratulations, you 
have successfully run your first session on bochs’ virtual processor. 
 
For more information about bochs consult the bochs documentation at 
http://bochs.sourceforge.net/.  

A.4 Installing powprof framework 
You have already installed my powprof framework by unpacking the swcost archive. 
I will provide some more details in case that you want to modify or extend the 
framework. You can safely skip this chapter if you are interested only on using the 
framework. 
 
The frameword directory is the swcost directory. 
 
Here you will find the source code of the powest power estimator. This consists of 
three files: PowerEstimator.cc, PowerEstimator.hh and powest.cc. The first 
two files are completely self contained and it’s extremely easy to integrate them to 
another profiling suite. You can compile them with the following command. 
 
$ g++ -O3 powest.cc PowerEstimator.cc -o powest 
 
This generates “powest.exe” on Cygwin platform or “powest” on most unix 
platforms. This powest tool uses can parse files with listings of assembly instructions 
and their frequency of usage in the following “powest format”: 
 
|------ 19 characters --|- tab -|--------- Instruction --------| 
                  180000            mov (%eax), %ebx 
                     222            jmp L3 
 
This format is powest.cc - specific. The PowerEstimator.cc provides a generic class.  
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There are two demo configuration files: gcc_x86.powconf and bochs_x86.powconf. 
The first one is being used for the gcc AT&T assembly syntax and the second one is 
being used for bochs’ disassembled instruction syntax.  
 
There are also two very important perl scripts that are the backbone of the powprof 
framework. These are: add_probes.pl and back_annotate_probes.pl. 
 
add_probes.pl takes as parameter a .s assembly file as created with gcc if a 
compilation with the –S option and creates a _probed.s file that has a small probe 
function each time the flow control may changes within the file; labels (entry points) 
and jumps/rets (exit points). At the end(s) of the main routine, a call to a special 
assembly function (_prof_print_prof_data) is being added to write probing results 
to a file named prof_data.txt. All these functions are assembly functions and are 
highly likely to change on a port to another instruction set. 
 
The back_annotate_probes.pl takes the original .s file and the profiling result 
(prof_data.txt) and creates a file in the powest format with the frequency of 
occurrence for each instruction. This is very similar to the add_probes.pl and is also 
highly probable to change on a port to another instruction set. 
 
The powprof.sh file is a bash script that executes all the actions required to profile a 
.c source file. We will comment its procedure because it’s very important to 
understand the flow of data through the tools. 
 
> gcc "$1.c" $3 –S 
This compiles the .c file using as parameters the third command line parameters 
(usually a –Ox parameter that will give the optimization level) and by using the –S 
switch creates an assembly listing of the program. 
 
> add_probes.pl "$1.s" > "$1_probed.s" 
This script adds probes to the places that the flow changes within the assembly 
program. 
 
> gcc "$1_probed.s" -o "$1_probed" 
Then we compile this modified assembly program.  
 
> `$1_probed $2` 
And we execute it with the second command line parameter as parameter. In the 
sorting cases, this is the number of elements to be sorted. 
 
> back_annotate_probes.pl "$1.s" prof_data.txt > "$1_back.s" 
This back annotates profiling data back to the original assembly level file. The 
generated file is in powest format. 
 
> powest gcc_x86.powconf "$1_back.s" 
At the end we run powest and this gives us the actual numbers about the energy 
consumption with the given parameters.  
 
This modular structure of the powprof framework gives it so much flexibility and the 
ability to easily be modified to other platforms and execution environments with 
minimum coding effort. 
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A.5 Using powprof framework 
In the swcost directory there are 3 demo .c files (msort_original.c, 
msort_less_calls.c, msort_less_calls_less_writes.c) with three differently 
coded versions of mergesort. 
 
Go to the swcost directory and run the power profiling script. 
 
$ cd ~/swcost 
$ powprof.sh msort_less_calls 1000 -O3 
 
You will get the following result: 
 
>> Creating msort_less_calls.s file, optimization level: -O3 
>> Adding probes to msort_less_calls.s file. New file: 
msort_less_calls_probed.s 
 
>> Compiling probed file to msort_less_calls_probed 
>> Executing msort_less_calls_probed with parameter 1000 
>> Back annotating the results from prof_data.txt to 
msort_less_calls_back.s 
>> Running power estimator on msort_less_calls_back.s 
Configuration______________________ 
Static current 100 mA 
Voltage 3.3 V 
Frquency 133 MHz 
Default current 400 mA 
Default clock 2 
___________________________________ 
Pattern: pusha.*, current: 451 mA, cycles: 9 
Pattern: popa.*, current: 428 mA, cycles: 9 
 
... 
 
Pattern: (rol|ror|sal|shl|sar).*, current: 300 mA, cycles: 4 
 
Statistics_________________________ 
time:   0.0054 s 
energy: 0.0071 Joule 
static energy:  0.0018 Joule 
static energy factor:   25.0 % 
Class breakdown____________________ 
1       0.0022 Joule    arithmetic write operations 
2       0.0020 Joule    flow control 
3       0.0014 Joule    arithmetic operations 
4       0.0009 Joule    arithmetic read operations 
5       0.0004 Joule    floating point 
6       0.0002 Joule    stack opperations 
7       0.0000 Joule    other 

 
How easier could it be? You just give it a file and it gives you the energy estimation 
and the breakdown in instruction classes. Test it with other functions and other 
parameters to see it working. 

A.6 Installing bochs power estimation extensions 
Now we are going to install some extensions to bochs in order to allow it to be used 
for instrumentation.  
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cp -r ~/swcost/bochs_powest/* ~/bochs-20060518/instrument/ 
 
Now we go back to bochs’ directory and clean the old configuration. 
 
$ cd ~/bochs-20060518 
$ make dist-clean 
 
Then we re-run the configuration and make process with slightly different parameters. 
 
$ configure --enable-debugger --enable-disasm --enable-
instrumentation="instrument/powest" --enable-vbe --enable-clgd54xx --
enable-icache 
$ make 
$ make install 
 
The re-installation of bochs is now complete. 

A.7 Using bochs for accurate system-aware power estimation 
Let’s go back to our FreeDOS example. We will go through a process similar to the 
one of chapter A.3. 
 
$ cd ~/swcost/freedos-img/ 
$ bochs 
 
Press Enter and c <enter> in Cygwin’s console. Then press two enters in bochs’ 
console. Then goto progs directory by typing cd progs on bochs’ console. Now write 
in bochs’ console and DON’T press enter. 
 
> msor 200 
 
Press Ctrl+C on Cygwin’s console. You will see something like this: 
 
Next at t=77192901 
(0) [0x000f4c23] f000:4c23 (unk. ctxt): mov ax, 0x0082    ; b88200 

 
Start the instrumentation. 
 
<bochs:2> instrument start 
<bochs:3> c 

 
By pressing enter after c go quickly to bochs’ console and press enter. This way you 
don’t account much of system’s overhead before program’s execution start. Wait until 
you see “Done.”. Then go quickly to Cygwin’s console and press Ctrl+C. You will se 
something like this: 
 
Next at t=56309027 
(0) [0x000016ea] 0060:10ea (unk. ctxt): mov word ptr ss:[bp+0xfffc], 
0x0000 ; c746fc0000 

 
Now write the following instruction to force instrumentation file’s printing. 
 
<bochs:4> instrument print 
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Profile data successfully saved in file "probe.stat" 

 
An probling file named “probe.stat” has been saved in the local directory 
(~/swcost/freedos-img/). This is already in pwoest format. An example of that file can 
be seen in the figure bellow. 
 
                350 adc ah, 0x00 
                 29 adc ax, word ptr ds:[bx+0x1b7a] 
                600 adc ax, word ptr ss:[bp+0xfffa] 
                600 adc ax, word ptr ss:[bp+0xfffc] 
                600 adc ax, word ptr ss:[bp+0xfffe] 
                  3 adc cx, cx 

 
Then you type the following instructions: 
 
<bochs:5> instrument stops 
<bochs:6> instrument reset 
<bochs:7> c 

 
And the DOS execution continues as usually. The instrument reset command resets 
the internal structures of our boch’s instrumentation module. This way, you can now 
continue re-applying the above procedure to probe another program or to probe the 
same program with other parameters. Once you are done, press the Power button on 
bochs’ window to end the bochs session. 
 
Be careful. Each time you execute “instrument print”, the old “probe.stat” file (if 
exists) gets overridden which means that if you need it you should have already 
renamed it. 
 
We have some sample files of our execution probing in the ~/swcost/statistics files/. 
We will see how the process continues by using one of them. So we assume that you 
have one of your probe “.stat” files from bochs. You then go to the powprof folder by 
typing: 
 
$ cd ~/swcost/ 
 
Then you run the powest tool directly (without using powprof.sh) by typing:  
 
$ powest bochs_x86.powconf statistics\ files/probe_msor_1000.stat 
 
As we said above, bochs’ “.stat” files are already in powest format so no conversion is 
needed. Note also that we now use the bochs_x86.powconf that has the configuration 
for bochs’ style disassembly listings and includes more instructions that appear in a 
realistic system that runs operating system and library functions as well.  
 
The results that you will get are similar to the following: 
 
Configuration______________________ 
Static current 100 mA 
Voltage 3.3 V 
Frquency 133 MHz 
Default current 400 mA 
Default clock 2 
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___________________________________ 
Pattern: pusha.*, current: 451 mA, cycles: 9 
Pattern: popa.*, current: 428 mA, cycles: 9 
... 
Pattern: stos.*, current: 451 mA, cycles: 5 
 
Statistics_________________________ 
time:   0.1023 s 
energy: 0.1366 Joule 
static energy:  0.0338 Joule 
static energy factor:   24.7 % 
Class breakdown____________________ 
1       0.0416 Joule    flow control 
2       0.0405 Joule    arithmetic write operations 
3       0.0244 Joule    stack opperations 
4       0.0164 Joule    arithmetic read operations 
5       0.0131 Joule    arithmetic operations 
6       0.0007 Joule    other 

 
As you can see bochs gives much higher energy consumption even for simple 
programs. This is true. Just for loading executable’s file to the memory and printing 
the “Done.” message requires a lot of operations, maybe more than sorting. 

A.8 Compiling your own programs for FreeDOS 
In the swcost/tools/ folders you will find all the tools you need to compile and run 
your own programs in this FreeDOS environment. I use the freeware HI-TECH 
Pacific DOS compiler to compile programs for FreeDOS. 
 
The functions have to be de-unixified in order to be compiled successfully with 
pacific compiler. More specifically the time.h library doesn’t exist and as a result, we 
use a constant to initialize our random routine. The three DOS compatible source files 
can be found in the swcost\dos_versions directory and are msor.c, mslc.c and 
mslclw.c. Note that these should have the old 8.3 DOS filename format in order to 
work with FreeDOS. In the same directory are the corresponding executables and the 
executables which start with “o” which are cygwin executables for the same 
algorithms. The latter can’t be executed in the FreeDOS environment. 
 
Back to our compilation process. To compile a program you use the Pacific C 
compiler picc.exe. Assuming that you are in the binary directory of the pacific 
compiler (e.g. C:\pacific\bin) and that your source file is there as well, you write e.g.: 
 
pacc.exe msor.c 
 
This creates msor.exe. Now that you have the executable the problem is that you have 
to insert into bochs’ disk image in order to be able to run it with FreeDOS. To do it, 
we use a Japanese program, DiskExplorer9 that can also be found in the tools 
directory. We open c.img image file (on C:\cygwin\home\lookfwd\swcost\free-
dos.img\) as “vmware plain disk” and add the files via the graphical interface. Note 
that a large part of the user interface is written in Japanese, so good luck! 

                                                 
9 http://hp.vector.co.jp/authors/VA013937/editdisk/index_e.html 
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A.9 Your way through 
This tutorial has provided you with everything you need to start using the powprof 
framework to estimate power consumption of programs. The problem that you may 
have now is that you have too many options. To summarize, there are two main ways 
to use the powprof framework. 
 
If you want to optimize the power of your own small algorithmic functions then you 
will probably work with powprof.sh to have very easy, fast and noise-free power 
estimation. Limitations of this option are that up to the moment it works with single 
file programs and of course it doesn’t profile anything that isn’t included in that single 
file e.g. library calls. Both of them are not major drawbacks but limit its usage to 
small algorithmic functions as described above. 
 
If you want more detailed system-aware power estimation then you will probably use 
bochs. If you want to use FreeDOS you can use Hitech’s Pacific dos compiler or any 
other DOS compiler or assembler. Of course this limits you a lot and who develops 
for DOS anymore anyway? The reason I used this option is because I wanted a quick 
and easy evaluation platform for our bochs extensions. You can use bochs with linux 
(http://bochs.sourceforge.net/diskimages.html) or windows 
(http://www.psyon.org/projects/bochs-win32/) distributions. You can also use any 
compiler tool you want. The only problem that exists in this option is simulation’s 
performance. You can overcome this problem by applying instrumentation only on 
the time it’s needed. Further development (e.g. indexing of instructions’ regex’s) and 
integration inside bochs of the PowerEstimator class can drastically improve the 
performance as well. This is a really powerful option of simulation that can give very 
realistic values for the power consumption including operating system’s and library 
calls’ overhead. 
 
If you want to port the powprof framework to another instruction set or architecture 
you can do it easily by modifying two perl scripts and a configuration file. (Refer to 
chapter A.4). The fact that powprof.sh is based on gcc, which has already been ported 
to many platforms and supports cross-compiling, makes porting significantly easier. 
 
If you want to extend powprof framework to support more options or to include more 
things on power estimation you will find it extremely easy. For example to include the 
cost of interrupts call PowerEstimator’s parseLine function with a string like 
“<interrupts>” as a parameter and add a similar line to the configuration file. 
 
To integrate the PowerEstimator into another profiling environment or another data 
flow just study the PowerEstimator class and you will be able to integrate it quickly. 
There are certain things that can be done easily and others that can’t. In the later case 
you may have to modify the source code. 
 
I hope you found this User Manual useful and inspiring. 
 
Dimitris Kouzis – Loukas 
 
24 May 2006 
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Appendix B. Static power consumption 
The main property of static power consumption that makes us consider it separately is 
that it doesn’t depend only on the clock cycles of a program but also on clock’s 
frequency. 
 
A program executed on a CMOS processor on 1Mhz in 1second requires the same 
dynamic (switching) energy with the same program executed in 2 seconds on 500kHz. 
The second version requires twice the static energy in comparison to the first one. 
 
Static power consumption is being caused by leakage power on transistors and thus 
depends on their state. If we wanted to be extremely precise we would have to go 
down to a spice model of a processor. Obviously this is not a reasonable decision in 
most of cases.  We estimate this with a constant current value that can be measured by 
averaging the current, with stopped clocked, for different internal states. 
 
By using “base energy costs” [1] we include the static power consumption in our 
measurements. We only have to consider it separately if we want to calculate the 
percentage of our energy that gets wasted on leakage. To do this we multiply the total 
execution time with the static power and the result is static energy. Then we divide the 
static energy with the total energy and we have the static energy factor. 

(%) 100 %total static CC

total

t i V
static energy factor

E
⋅ ⋅

= ⋅  

Obviously the slowest the frequency, the higher the waster static energy is. With the 
increasing participation of the leakage power to the total power consumption this may 
become an important metric. 
 

Appendix C. Graphs 
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Graph 2. Total time (bochs)
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Graph 3. Total Energy (profiling)
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Graph 4. Total Energy (bochs)
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Graph 5. Static energy (profiling)
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Graph 6. Static energy (bochs)
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Graph 7. Energy of arithmetic operations with writes on memory (profiling)
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Graph 8. Energy of arithmetic operations with writes on memory (bochs)
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Graph 9. Energy of flow control operations (profiling)
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Graph 10. Energy of flow control operations (bochs)
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Graph 11. Energy of arithmetic operations on registers (profiling)
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Graph 12. Energy of arithmetic operations on registers (bochs)

0,000

0,010

0,020

0,030

0,040

0,050

0,060

100 1000 10000

Number of elements to be sorted

En
er

gy
 (J

ou
le

)

original less calls less calls & writes



Graph 13. Energy of arithmetic operations with read on memory (profiling)
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Graph 14. Energy of arithmetic operations with read on memory (bochs)
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Graph 15. Energy of stack operations (profiling)
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Graph 16. Energy of stack operations (bochs)
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Appendix D. Mergesorts’ source code 
 
msort_original.c 
 
#include <stdio.h> 
#include <stdlib.h> 
#include <time.h> 
#include <string.h> 
#include <sys/time.h>  
 
#define DATA_RANDOM 1 
#define DATA_INCREASING_RAMP 2 
#define DATA_DECREASING_RAMP 3 
 
// Change this to one of the options from the list above 
// to select source data type 
#define DATA_TYPE DATA_RANDOM 
 
#define bool int 
#define true 1 
#define false 0 
 
void Merge(int numbers[], int temp[], int left, int middle, int right) { 
 int i, leftend, elements, pos; 
 
 leftend = middle - 1; 
 pos = left; 
 elements = right - left + 1; 
   
 while((left <= leftend) && (middle <= right)) { 
  if(numbers[left] <= numbers[middle]) { 
   temp[pos] = numbers[left]; 
   pos++; 
   left++; 
  } 
  else { 
   temp[pos] = numbers[middle]; 
   pos++; 
   middle++; 
  } 
 } 
 while(left <= leftend) { 
  temp[pos] = numbers[left]; 
  left++; 
  pos++; 
 } 
   while(middle <= right) { 
  temp[pos] = numbers[middle]; 
  middle++; 
  pos++; 
 } 
 for(i=0;i<=elements;i++) { 
  numbers[right] = temp[right]; 
  right--; 
 } 
} 
 
void m_sort_original(int *numbers, int *temp, int left, int right, int 
depth){ 
 int middle; 
 if (right > left) { 
              middle = (right + left) >> 1; 
              m_sort_original(numbers, temp, left, middle, depth+1); 
              middle++; 
              m_sort_original(numbers, temp, middle, right, depth+1); 
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              Merge(numbers, temp, left, middle, right); 
 } 
} 
 
 
void Merge_Sort(int *numbers, int size) { 
 int * temp = (int *)malloc(size * sizeof(int)); 
 m_sort_original(numbers, temp, 0, size-1, 0); 
       free(temp); 
} 
 
void generateData(int *numbers, int type, int size) { 
  int i; 
  struct timeval tv; 
 
  switch (type) { 
    case DATA_RANDOM: 
      if (SEED == -1) { 
        gettimeofday(&tv, NULL); 
        srand ( tv.tv_usec );  
      } 
      else srand((unsigned int)SEED); 
       
      for(i=0;i<size;i++) { 
        // Better method for generating random numbers according to the man 
        numbers[i] = 1+(int) (100.0*rand()/(RAND_MAX+1.0)); 
      } 
      break; 
    case DATA_INCREASING_RAMP: 
      for(i=0;i<size;i++) numbers[i] = i; 
      break; 
    case DATA_DECREASING_RAMP: 
      for(i=0;i<size;i++) numbers[i] = size-i; 
      break; 
  }         
} 
 
void printData(int *numbers, int size, char * message) { 
        int i; 
        printf("%s\n", message); 
 for(i=0;i<size;i++) printf("%d ", numbers[i]); 
        printf("\n"); 
} 
 
int main(int argc, char **argv) 
{ 
    int i, size; 
    int* numbers; 
    int* numbers2; 
 
    if (argc < 2) { 
      printf("Usage m_sort <number of samples>\n"); 
      return; 
    } 
   
    if (sscanf(argv[1], "%d", &size) != 1) { 
      printf("Expected integer\n"); 
      return; 
    } 
    numbers = (int *)malloc(size * sizeof(int)); 
 
    generateData(numbers,DATA_TYPE, size); 
//    printData(numbers, size, "Before"); 
    Merge_Sort(numbers, size); 
//    printData(numbers, size, "After"); 
 
    free(numbers); 
} 
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msort_less_calls.c 
 
… the same with msort_original.c with the only change of: 
 
void m_sort(int *numbers, int *temp, int left, int right, int depth) { 
  int middle; 
  int dif = right - left; 
 
  if(dif > 0) { 
    if (dif >= 16) { 
          middle = (right + left) >> 1; 
          m_sort(numbers, temp, left, middle, depth+1); 
          middle++;  
          m_sort(numbers, temp, middle, right, depth+1); 
          Merge(numbers, temp, left, middle, right); 
    } 
    else { 
      switch (dif) { 
        case 1: 
          Merge(numbers, temp, left+0, left+1, left+1); 
        break; 
        case 2: 
            Merge(numbers, temp, left+0, left+1, left+1); 
          Merge(numbers, temp, left+0, left+2, left+2); 
        break; 
        case 3: 
            Merge(numbers, temp, left+0, left+1, left+1); 
            Merge(numbers, temp, left+2, left+3, left+3); 
          Merge(numbers, temp, left+0, left+2, left+3); 
        break; 
        case 4: 
              Merge(numbers, temp, left+0, left+1, left+1); 
            Merge(numbers, temp, left+0, left+2, left+2); 
            Merge(numbers, temp, left+3, left+4, left+4); 
          Merge(numbers, temp, left+0, left+3, left+4); 
        break; 
… 
        default: 
        break; 
      } 
    } 
  } 
} 

 
msort_less_calls_less_writes.c 
 
… the same with msort_original.c with the only change of: 
 
void Merge(int * numbers, int * temp, int left, int middle, int right, bool 
swap) { 
  int i, leftend, elements, pos; 
  int * tmp; 
 
  leftend = middle - 1; 
  pos = left; 
  elements = right - left + 1; 
 
  if (swap) { 
    tmp = temp; 
    temp = numbers; 
    numbers = tmp; 
  } 
 
  while((left <= leftend) && (middle <= right)) { 
          if(numbers[left] <= numbers[middle]) { 
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                  temp[pos] = numbers[left]; 
                  pos++; 
                  left++; 
          } 
          else { 
                  temp[pos] = numbers[middle]; 
                  pos++; 
                  middle++; 
          } 
  } 
 
  while(left <= leftend) { 
          temp[pos] = numbers[left]; 
          left++; 
          pos++; 
  } 
 
  while(middle <= right) { 
          temp[pos] = numbers[middle]; 
          middle++; 
          pos++; 
  } 
} 
 
bool m_sort(int *numbers, int *temp, int left, int right) { 
  int middle; 
  bool i_swap = true; 
  int dif = right - left; 
 
  if(dif > 0) { 
    if (dif >= 16) { 
      middle = (right + left) >> 1; 
      m_sort(numbers, temp, left, middle); 
      middle++;  
      if (middle < right) 
      i_swap = m_sort(numbers, temp, middle, right); 
      Merge(numbers, temp, left, middle, right, i_swap); 
    } 
    else { 
      switch (dif) { 
        case 1: 
          Merge(numbers, temp, left+0, left+1, left+1, false); 
          i_swap = false; 
        break; 
        case 2: 
            Merge(numbers, temp, left+0, left+1, left+1, false); 
            temp[left+2] = numbers[left+2]; 
          Merge(numbers, temp, left+0, left+2, left+2, true); 
          i_swap = true; 
        break; 
        case 3: 
            Merge(numbers, temp, left+0, left+1, left+1, false); 
            Merge(numbers, temp, left+2, left+3, left+3, false); 
          Merge(numbers, temp, left+0, left+2, left+3, true); 
          i_swap = true; 
        break; 
… 
        default: 
          printf("Bug!"); 
        break; 
      } 
    } 
  } 
  return !i_swap; 
} 
 

 


