
–
0
5
–
2
0
1
5
-0
5
-1
1
–
m
a
in

–

Softwaretechnik / Software-Engineering

Lecture 05: Requirements Engineering

2015-05-11

Prof. Dr. Andreas Podelski, Dr. Bernd Westphal

Albert-Ludwigs-Universität Freiburg, Germany



You Are Here

–
0
5
–
2
0
1
5
-0
5
-1
1
–
m
a
in

–

2/90



Course Content (Original Plan)
–
0
5
–
2
0
1
5
-0
5
-1
1
–
m
a
in

–

3/90

L 1: 20.4., Mo
Introduction T 1: 23.4., Do

L 2: 27.4., Mo
L 3: 30.4., Do
L 4: 4.5., Mo

Development
Process, Metrics

T 2: 7.5., Do
L 5: 11.5., Mo
- 14.5., Do
L 6: 18.5., Mo
L 7: 21.5., Do
- 25.5., Mo
- 28.5., Do

Requirements
Engineering

T 3: 1.6., Mo
- 4.6., Do
L 8: 8.6., Mo
L 9: 11.6., Do
L 10: 15.6., Mo

Design Modelling
& Analysis

T 4: 18.6., Do
L 11: 22.6., Mo
L 12: 25.6., Do
L 13: 29.6., Mo

Implementation,
Testing

T 5: 2.7., Do
L 14: 6.7., Mo
L 15: 9.7., Do
L 16: 13.7., Mo

Formal
Verification

T 6: 16.7., Do
L 17: 20.7., Mo

The Rest L 18: 23.7., Do



Contents & Goals
–
0
5
–
2
0
1
5
-0
5
-1
1
–
S
p
re
li
m

–

4/90

Last Lecture:

• process models: V-Modell XT, agile (XP, Scrum); process metrics: CMMI, SPICE

This Lecture:

• Educational Objectives: Capabilities for following tasks/questions.

• What is requirements engineering (RE)?

• Why is it important, why is it hard?

• What are the two (three) most relevant artefacts produced by RE activities?

• What is a dictionary?

• What are desired properties of requirements specification (documents)?

• What are hard/soft/open/tacit/functional/non-functional requirements?

• What is requirements elicitation?

• Which analysis technique would you recommend in which situation?

• Content:

• motivation and vocabulary of requirements engineering,

• the documents of requirements analysis, and desired properties of RE,

• guidelines for requirements specification using natural language



–
0
5
–
2
0
1
5
-0
5
-1
1
–
m
a
in

–

5/90

Software!

Customer Developer



–
0
5
–
2
0
1
5
-0
5
-1
1
–
S
re
in
tr
o
–

6/90

The hardest single part of building a software system is deciding precisely
what to build. No other part of the conceptual work is as difficult as
establishing the detailed technical requirements ... No other part of the
work so cripples the resulting system if done wrong. No other part is as
difficult to rectify later.

F.P. Brooks (Brooks, 1995)



Requirements and Requirements Analysis
–
0
5
–
2
0
1
5
-0
5
-1
1
–
S
re
in
tr
o
–

7/90

requirement – (1) A condition or capability needed by a user to solve a
problem or achieve an objective.
(2) A condition or capability that must be met or possessed by a system
or system component to satisfy a contract, standard, specification, or other
formally imposed documents.
(3) A documented representation of a condition or capability as in (1) or (2).

IEEE 610.12 (1990)

requirements analysis – (1) The process of studying user needs to arrive at
a definition of system, hardware, or software requirements.
(2) The process of studying and refining system, hardware, or software re-
quirements. IEEE 610.12 (1990)



Requirements and Requirements Analysis
–
0
5
–
2
0
1
5
-0
5
-1
1
–
S
re
in
tr
o
–

7/90

requirement – (1) A condition or capability needed by a user to solve a
problem or achieve an objective.
(2) A condition or capability that must be met or possessed by a system
or system component to satisfy a contract, standard, specification, or other
formally imposed documents.
(3) A documented representation of a condition or capability as in (1) or (2).

IEEE 610.12 (1990)

requirements analysis – (1) The process of studying user needs to arrive at
a definition of system, hardware, or software requirements.
(2) The process of studying and refining system, hardware, or software re-
quirements. IEEE 610.12 (1990)



Requirements and Requirements Analysis
–
0
5
–
2
0
1
5
-0
5
-1
1
–
S
re
in
tr
o
–

7/90

requirement – (1) A condition or capability needed by a user to solve a
problem or achieve an objective.
(2) A condition or capability that must be met or possessed by a system
or system component to satisfy a contract, standard, specification, or other
formally imposed documents.
(3) A documented representation of a condition or capability as in (1) or (2).

IEEE 610.12 (1990)

requirements analysis – (1) The process of studying user needs to arrive at
a definition of system, hardware, or software requirements.
(2) The process of studying and refining system, hardware, or software re-
quirements. IEEE 610.12 (1990)



The Requirements Engineering Problem
–
0
5
–
2
0
1
5
-0
5
-1
1
–
S
re
in
tr
o
–

8/90



The Requirements Engineering Problem
–
0
5
–
2
0
1
5
-0
5
-1
1
–
S
re
in
tr
o
–

8/90

(Σ×A)ω
all computation
paths over Σ and
A, aka. chaos



The Requirements Engineering Problem
–
0
5
–
2
0
1
5
-0
5
-1
1
–
S
re
in
tr
o
–

8/90

(Σ×A)ω
all computation
paths over Σ and
A, aka. chaos

requirements, all
these computation
paths are allowed



The Requirements Engineering Problem
–
0
5
–
2
0
1
5
-0
5
-1
1
–
S
re
in
tr
o
–

8/90

(Σ×A)ω
all computation
paths over Σ and
A, aka. chaos

requirements, all
these computation
paths are allowed

one software which
satisfies the
requirements



The Requirements Engineering Problem
–
0
5
–
2
0
1
5
-0
5
-1
1
–
S
re
in
tr
o
–

8/90

(Σ×A)ω
all computation
paths over Σ and
A, aka. chaos

requirements, all
these computation
paths are allowed

one software which
satisfies the
requirements

• Requirements engineering:

Describe/specify the set of the allowed computation paths.

• Software development:

Create one software S whose computation paths JSK are all allowed.



The Requirements Engineering Problem
–
0
5
–
2
0
1
5
-0
5
-1
1
–
S
re
in
tr
o
–

8/90

(Σ×A)ω
all computation
paths over Σ and
A, aka. chaos

requirements, all
these computation
paths are allowed

one software which
satisfies the
requirements

• Requirements engineering:

Describe/specify the set of the allowed computation paths.

• Software development:

Create one software S whose computation paths JSK are all allowed.

• Note: different programs in different programming languages may also describe JSK.

• Often allowed: any refinement of (→ later; e.g. allow intermediate transitions).



So What is So Important About That?
–
0
5
–
2
0
1
5
-0
5
-1
1
–
S
re
in
tr
o
–

9/90

Software!

need 1
need 2
need 3
. . .

Customer Developer
announcement

(Lastenheft)

→

spec 1
spec 2a
spec 2b
. . .§

. . .e

Customer Developer

software contract
(incl. Pflichtenheft)

→

10
0

1
0
0

10
0

Developer Customer

milestone N

→

10
0

1
0
0

10
0

Developer Customer

software delivery

→

Repair!

Customer Developer

maintenance

requirements
fixed

requirements
fixed

acceptanceacceptance

system
specified
system
specified

system
delivered
system
delivered

architecture
designed

architecture
designed

system
integrated
system

integrated

modules
designed
modules
designed

system
realised
system
realised

verification & validation



So What is So Important About That?
–
0
5
–
2
0
1
5
-0
5
-1
1
–
S
re
in
tr
o
–

9/90

Software!

need 1
need 2
need 3
. . .

Customer Developer
announcement

(Lastenheft)

→

spec 1
spec 2a
spec 2b
. . .§

. . .e

Customer Developer

software contract
(incl. Pflichtenheft)

→

10
0

1
0
0

10
0

Developer Customer

milestone N

→

10
0

1
0
0

10
0

Developer Customer

software delivery

→

Repair!

Customer Developer

maintenance

requirements
fixed

requirements
fixed

acceptanceacceptance

system
specified
system
specified

system
delivered
system
delivered

architecture
designed

architecture
designed

system
integrated
system

integrated

modules
designed
modules
designed

system
realised
system
realised

verification & validation

• the documentation of the requirements defines acceptance criteria,
thus will be considered in any dispute at software delivery time!
(plus, speaking of documentation, mind the → bus-factor)



So What is So Important About That?
–
0
5
–
2
0
1
5
-0
5
-1
1
–
S
re
in
tr
o
–

9/90

Software!

need 1
need 2
need 3
. . .

Customer Developer
announcement

(Lastenheft)

→

spec 1
spec 2a
spec 2b
. . .§

. . .e

Customer Developer

software contract
(incl. Pflichtenheft)

→

10
0

1
0
0

10
0

Developer Customer

milestone N

→

10
0

1
0
0

10
0

Developer Customer

software delivery

→

Repair!

Customer Developer

maintenance

requirements
fixed

requirements
fixed

acceptanceacceptance

system
specified
system
specified

system
delivered
system
delivered

architecture
designed

architecture
designed

system
integrated
system

integrated

modules
designed
modules
designed

system
realised
system
realised

verification & validation

• the documentation of the requirements defines acceptance criteria,
thus will be considered in any dispute at software delivery time!
(plus, speaking of documentation, mind the → bus-factor)

• actively discussed in industry these days: traceability



Purposes of the Requirements Specification
–
0
5
–
2
0
1
5
-0
5
-1
1
–
S
re
in
tr
o
–

10/90



Purposes of the Requirements Specification
–
0
5
–
2
0
1
5
-0
5
-1
1
–
S
re
in
tr
o
–

10/90

• coordination with the customer (or the marketing department, or . . . )

• not properly clarified/specified requirements are hard to satisfy — mismatches with customer’s
needs turn out in operation the latest → additional effort



Purposes of the Requirements Specification
–
0
5
–
2
0
1
5
-0
5
-1
1
–
S
re
in
tr
o
–

10/90

• coordination with the customer (or the marketing department, or . . . )

• not properly clarified/specified requirements are hard to satisfy — mismatches with customer’s
needs turn out in operation the latest → additional effort

• design and implementation,

• programmers may use different interpretations of unclear requirements → difficult integration



Purposes of the Requirements Specification
–
0
5
–
2
0
1
5
-0
5
-1
1
–
S
re
in
tr
o
–

10/90

• coordination with the customer (or the marketing department, or . . . )

• not properly clarified/specified requirements are hard to satisfy — mismatches with customer’s
needs turn out in operation the latest → additional effort

• design and implementation,

• programmers may use different interpretations of unclear requirements → difficult integration

• the user’s manual,

• if the user’s manual author is not developer, he/she can only describe what the system does,
not what it should do (“no more bugs, every observation is a feature”)



Purposes of the Requirements Specification
–
0
5
–
2
0
1
5
-0
5
-1
1
–
S
re
in
tr
o
–

10/90

• coordination with the customer (or the marketing department, or . . . )

• not properly clarified/specified requirements are hard to satisfy — mismatches with customer’s
needs turn out in operation the latest → additional effort

• design and implementation,

• programmers may use different interpretations of unclear requirements → difficult integration

• the user’s manual,

• if the user’s manual author is not developer, he/she can only describe what the system does,
not what it should do (“no more bugs, every observation is a feature”)

• preparation of tests,

• without a description of allowed outcomes, tests are randomly searching for generic errors (like
crashes) → systematic testing impossible



Purposes of the Requirements Specification
–
0
5
–
2
0
1
5
-0
5
-1
1
–
S
re
in
tr
o
–

10/90

• coordination with the customer (or the marketing department, or . . . )

• not properly clarified/specified requirements are hard to satisfy — mismatches with customer’s
needs turn out in operation the latest → additional effort

• design and implementation,

• programmers may use different interpretations of unclear requirements → difficult integration

• the user’s manual,

• if the user’s manual author is not developer, he/she can only describe what the system does,
not what it should do (“no more bugs, every observation is a feature”)

• preparation of tests,

• without a description of allowed outcomes, tests are randomly searching for generic errors (like
crashes) → systematic testing impossible

• acceptance by customer, resolving later objections or regress claims,

• at delivery time unclear whether behaviour is an error (developer needs to fix) or correct
(customer needs to accept and pay) → nasty disputes, additional effort



Purposes of the Requirements Specification
–
0
5
–
2
0
1
5
-0
5
-1
1
–
S
re
in
tr
o
–

10/90

• coordination with the customer (or the marketing department, or . . . )

• not properly clarified/specified requirements are hard to satisfy — mismatches with customer’s
needs turn out in operation the latest → additional effort

• design and implementation,

• programmers may use different interpretations of unclear requirements → difficult integration

• the user’s manual,

• if the user’s manual author is not developer, he/she can only describe what the system does,
not what it should do (“no more bugs, every observation is a feature”)

• preparation of tests,

• without a description of allowed outcomes, tests are randomly searching for generic errors (like
crashes) → systematic testing impossible

• acceptance by customer, resolving later objections or regress claims,

• at delivery time unclear whether behaviour is an error (developer needs to fix) or correct
(customer needs to accept and pay) → nasty disputes, additional effort

• re-use,

• re-use based on re-reading the code → risk of unexpected changes



Purposes of the Requirements Specification
–
0
5
–
2
0
1
5
-0
5
-1
1
–
S
re
in
tr
o
–

10/90

• coordination with the customer (or the marketing department, or . . . )

• not properly clarified/specified requirements are hard to satisfy — mismatches with customer’s
needs turn out in operation the latest → additional effort

• design and implementation,

• programmers may use different interpretations of unclear requirements → difficult integration

• the user’s manual,

• if the user’s manual author is not developer, he/she can only describe what the system does,
not what it should do (“no more bugs, every observation is a feature”)

• preparation of tests,

• without a description of allowed outcomes, tests are randomly searching for generic errors (like
crashes) → systematic testing impossible

• acceptance by customer, resolving later objections or regress claims,

• at delivery time unclear whether behaviour is an error (developer needs to fix) or correct
(customer needs to accept and pay) → nasty disputes, additional effort

• re-use,

• re-use based on re-reading the code → risk of unexpected changes

• later re-implementations.

• the new software may need to adhere to requirements of the old software; if not properly
specified, the new software needs to be a 1:1 re-implementation of the old → additional effort



And What’s Hard About That?
–
0
5
–
2
0
1
5
-0
5
-1
1
–
S
re
in
tr
o
–

11/90



Once Again: The Software Peoples’ View on Requirements
–
0
5
–
2
0
1
5
-0
5
-1
1
–
S
re
in
tr
o
–

12/90



Once Again: The Software Peoples’ View on Requirements
–
0
5
–
2
0
1
5
-0
5
-1
1
–
S
re
in
tr
o
–

12/90

Example: children’s birthday present requirements (birthday on May, 27th).

• “Ich will’n Pony!” (“I want a pony!”)

• Common sense understanding:



Once Again: The Software Peoples’ View on Requirements
–
0
5
–
2
0
1
5
-0
5
-1
1
–
S
re
in
tr
o
–

12/90

Example: children’s birthday present requirements (birthday on May, 27th).

• “Ich will’n Pony!” (“I want a pony!”)

• Common sense understanding:

h
tt
p
:/
/p

ix
ab
ay
.c
om

/e
n
/p

on
y-
h
or
se
-

an
im

al
-r
id
e-
p
as
tu
re
-3
68
97
5/

—
C
C
0

P
u
b
lic

D
om

ai
n

✔ “F
or
d
M
u
st
an
g
on

F
el
ix
st
ow

e
b
ea
ch
”
by

S
te
ve

A
rn
ol
d
—

C
C
B
Y
2.
0

✘
That is: we’re looking for one small horse-like animal; we may (guided by
economic concerns, taste, etc.) choose exact breed, size, color, shape, gender, age
(may not even be born today, only needs to be alive on birthday). . .



Once Again: The Software Peoples’ View on Requirements
–
0
5
–
2
0
1
5
-0
5
-1
1
–
S
re
in
tr
o
–

12/90

Example: children’s birthday present requirements (birthday on May, 27th).

• “Ich will’n Pony!” (“I want a pony!”)

• Common sense understanding:

h
tt
p
:/
/p

ix
ab
ay
.c
om

/e
n
/p

on
y-
h
or
se
-

an
im

al
-r
id
e-
p
as
tu
re
-3
68
97
5/

—
C
C
0

P
u
b
lic

D
om

ai
n

✔ “F
or
d
M
u
st
an
g
on

F
el
ix
st
ow

e
b
ea
ch
”
by

S
te
ve

A
rn
ol
d
—

C
C
B
Y
2.
0

✘
That is: we’re looking for one small horse-like animal; we may (guided by
economic concerns, taste, etc.) choose exact breed, size, color, shape, gender, age
(may not even be born today, only needs to be alive on birthday). . .

• Software Engineering understanding:



Once Again: The Software Peoples’ View on Requirements
–
0
5
–
2
0
1
5
-0
5
-1
1
–
S
re
in
tr
o
–

12/90

Example: children’s birthday present requirements (birthday on May, 27th).

• “Ich will’n Pony!” (“I want a pony!”)

• Common sense understanding:

h
tt
p
:/
/p

ix
ab
ay
.c
om

/e
n
/p

on
y-
h
or
se
-

an
im

al
-r
id
e-
p
as
tu
re
-3
68
97
5/

—
C
C
0

P
u
b
lic

D
om

ai
n

✔ “F
or
d
M
u
st
an
g
on

F
el
ix
st
ow

e
b
ea
ch
”
by

S
te
ve

A
rn
ol
d
—

C
C
B
Y
2.
0

✘
That is: we’re looking for one small horse-like animal; we may (guided by
economic concerns, taste, etc.) choose exact breed, size, color, shape, gender, age
(may not even be born today, only needs to be alive on birthday). . .

• Software Engineering understanding:

We may give everything as long as there’s a pony in it:

• a herd of ponies,

• a whole zoo (if it has a pony),

• . . .



A Bit More Abstract: Software vs. ‘Real World’ Requirements
–
0
5
–
2
0
1
5
-0
5
-1
1
–
S
re
in
tr
o
–

13/90

In other words:

• common sense understanding: choose from “∅ ∪ requirements”

• software engineering understanding:

choose from “chaos ∩ requirements”



A Bit More Abstract: Software vs. ‘Real World’ Requirements
–
0
5
–
2
0
1
5
-0
5
-1
1
–
S
re
in
tr
o
–

13/90

In other words:

• common sense understanding: choose from “∅ ∪ requirements”

• software engineering understanding:

choose from “chaos ∩ requirements”

• S = “x is always 0” is a (semi-informal) software specification.

• It denotes all imaginable softwares with an x which is always 0:

JS K = {S | ∀σ0

α
1−−→ σ1

α
2−−→ σ2 · · · ∈ JSK ∀ i ∈ N0 • σi |= x = 0}



A Bit More Abstract: Software vs. ‘Real World’ Requirements
–
0
5
–
2
0
1
5
-0
5
-1
1
–
S
re
in
tr
o
–

13/90

In other words:

• common sense understanding: choose from “∅ ∪ requirements”

• software engineering understanding:

choose from “chaos ∩ requirements”

• S = “x is always 0” is a (semi-informal) software specification.

• It denotes all imaginable softwares with an x which is always 0:

JS K = {S | ∀σ0

α
1−−→ σ1

α
2−−→ σ2 · · · ∈ JSK ∀ i ∈ N0 • σi |= x = 0}

• The software specification “true” (“I don’t care at all”) denotes chaos.



A Bit More Abstract: Software vs. ‘Real World’ Requirements
–
0
5
–
2
0
1
5
-0
5
-1
1
–
S
re
in
tr
o
–

13/90

In other words:

• common sense understanding: choose from “∅ ∪ requirements”

• software engineering understanding:

choose from “chaos ∩ requirements”

• S = “x is always 0” is a (semi-informal) software specification.

• It denotes all imaginable softwares with an x which is always 0:

JS K = {S | ∀σ0

α
1−−→ σ1

α
2−−→ σ2 · · · ∈ JSK ∀ i ∈ N0 • σi |= x = 0}

• The software specification “true” (“I don’t care at all”) denotes chaos.

• Writing a requirements specification means constraining chaos,
or describing (a) subset(s) of chaos.

• Design/Implementation means: choosing from the obtained subset(s) of chaos.



And What’s Hard About That?
–
0
5
–
2
0
1
5
-0
5
-1
1
–
S
re
in
tr
o
–

14/90

Example: customer says “I need a computation of square numbers, i.e. f : x 7→ x2”



And What’s Hard About That?
–
0
5
–
2
0
1
5
-0
5
-1
1
–
S
re
in
tr
o
–

14/90

Example: customer says “I need a computation of square numbers, i.e. f : x 7→ x2”

• We’ve got options to choose from:

1 i n t sq ( i n t x ) {
2 re turn x ∗ x ;
3 }

1 unsigned i n t

2 sq ( unsigned sho r t x ) {
3 re turn x ∗ x ;
4 }

1 #inc lude <gmp . h>
2 vo id sq ( mpz t x ) {
3 mpz mul ( x , x , x ) ;
4 }

→ 1h, 100e → 2h, 200e → 4h, 400e



And What’s Hard About That?
–
0
5
–
2
0
1
5
-0
5
-1
1
–
S
re
in
tr
o
–

14/90

Example: customer says “I need a computation of square numbers, i.e. f : x 7→ x2”

• We’ve got options to choose from:

1 i n t sq ( i n t x ) {
2 re turn x ∗ x ;
3 }

1 unsigned i n t

2 sq ( unsigned sho r t x ) {
3 re turn x ∗ x ;
4 }

1 #inc lude <gmp . h>
2 vo id sq ( mpz t x ) {
3 mpz mul ( x , x , x ) ;
4 }

→ 1h, 100e → 2h, 200e → 4h, 400e

with errors: sq
(

231 − 1
)

= 1



And What’s Hard About That?
–
0
5
–
2
0
1
5
-0
5
-1
1
–
S
re
in
tr
o
–

14/90

Example: customer says “I need a computation of square numbers, i.e. f : x 7→ x2”

• We’ve got options to choose from:

1 i n t sq ( i n t x ) {
2 re turn x ∗ x ;
3 }

1 unsigned i n t

2 sq ( unsigned sho r t x ) {
3 re turn x ∗ x ;
4 }

1 #inc lude <gmp . h>
2 vo id sq ( mpz t x ) {
3 mpz mul ( x , x , x ) ;
4 }

→ 1h, 100e → 2h, 200e → 4h, 400e

with errors: sq
(

231 − 1
)

= 1 not defined for 216



And What’s Hard About That?
–
0
5
–
2
0
1
5
-0
5
-1
1
–
S
re
in
tr
o
–

14/90

Example: customer says “I need a computation of square numbers, i.e. f : x 7→ x2”

• We’ve got options to choose from:

1 i n t sq ( i n t x ) {
2 re turn x ∗ x ;
3 }

1 unsigned i n t

2 sq ( unsigned sho r t x ) {
3 re turn x ∗ x ;
4 }

1 #inc lude <gmp . h>
2 vo id sq ( mpz t x ) {
3 mpz mul ( x , x , x ) ;
4 }

→ 1h, 100e → 2h, 200e → 4h, 400e

with errors: sq
(

231 − 1
)

= 1 not defined for 216 usage non-trivial:

1 mpz t x ;
2 mpz i n i t ( x ) ;
3 mpz s e t s i ( x , 2147483647 ) ;
4 sq ( x ) ;
5 f p r i n t f ( s tdout ,
6 ”%i −> ” , 2147483647 ) ;
7 mpz ou t s t r ( s tdout , 10 , x ) ;
8 f p r i n t f ( s tdout , ”\n” ) ;



And What’s Hard About That?
–
0
5
–
2
0
1
5
-0
5
-1
1
–
S
re
in
tr
o
–

14/90

Example: customer says “I need a computation of square numbers, i.e. f : x 7→ x2”

• We’ve got options to choose from:

1 i n t sq ( i n t x ) {
2 re turn x ∗ x ;
3 }

1 unsigned i n t

2 sq ( unsigned sho r t x ) {
3 re turn x ∗ x ;
4 }

1 #inc lude <gmp . h>
2 vo id sq ( mpz t x ) {
3 mpz mul ( x , x , x ) ;
4 }

→ 1h, 100e → 2h, 200e → 4h, 400e

with errors: sq
(

231 − 1
)

= 1 not defined for 216 usage non-trivial:

1 mpz t x ;
2 mpz i n i t ( x ) ;
3 mpz s e t s i ( x , 2147483647 ) ;
4 sq ( x ) ;
5 f p r i n t f ( s tdout ,
6 ”%i −> ” , 2147483647 ) ;
7 mpz ou t s t r ( s tdout , 10 , x ) ;
8 f p r i n t f ( s tdout , ”\n” ) ;

• Okay, customer said: input values are from {0, . . . , 27}.



And What’s Hard About That?
–
0
5
–
2
0
1
5
-0
5
-1
1
–
S
re
in
tr
o
–

14/90

Example: customer says “I need a computation of square numbers, i.e. f : x 7→ x2”

• We’ve got options to choose from:

1 i n t sq ( i n t x ) {
2 re turn x ∗ x ;
3 }

1 unsigned i n t

2 sq ( unsigned sho r t x ) {
3 re turn x ∗ x ;
4 }

1 #inc lude <gmp . h>
2 vo id sq ( mpz t x ) {
3 mpz mul ( x , x , x ) ;
4 }

→ 1h, 100e → 2h, 200e → 4h, 400e

with errors: sq
(

231 − 1
)

= 1 not defined for 216 usage non-trivial:

1 mpz t x ;
2 mpz i n i t ( x ) ;
3 mpz s e t s i ( x , 2147483647 ) ;
4 sq ( x ) ;
5 f p r i n t f ( s tdout ,
6 ”%i −> ” , 2147483647 ) ;
7 mpz ou t s t r ( s tdout , 10 , x ) ;
8 f p r i n t f ( s tdout , ”\n” ) ;

• Okay, customer said: input values are from {0, . . . , 27}.

• Still, we’ve got options. . . :

1 unsigned i n t sq ( unsigned sho r t x ) {
2 unsigned i n t r = 0 , n ;
3 f o r ( n = x ; n ; −−n ) {
4 r += x ; s l e e p ( 1 ) ;
5 }
6 re turn r ;
7 }



A First Summary
–
0
5
–
2
0
1
5
-0
5
-1
1
–
S
re
in
tr
o
–

15/90

A good requirements specification

(i) avoids disputes with the customer at (milestones or) delivery time,

(ii) prevents us from doing too little/too much work,

(iii) is economic (see below).



A First Summary
–
0
5
–
2
0
1
5
-0
5
-1
1
–
S
re
in
tr
o
–

15/90

A good requirements specification

(i) avoids disputes with the customer at (milestones or) delivery time,

(ii) prevents us from doing too little/too much work,

(iii) is economic (see below).

There’s a tradeoff between narrowness and openness:



A First Summary
–
0
5
–
2
0
1
5
-0
5
-1
1
–
S
re
in
tr
o
–

15/90

A good requirements specification

(i) avoids disputes with the customer at (milestones or) delivery time,

(ii) prevents us from doing too little/too much work,

(iii) is economic (see below).

There’s a tradeoff between narrowness and openness:

• the optimum wrt. (i) and (ii) is the complete, perfect software product as needed
by the customer (most narrow):

• no disputes; amount of work needed is clear.

Drawback: hard/expensive to get, that’s bad for (iii).



A First Summary
–
0
5
–
2
0
1
5
-0
5
-1
1
–
S
re
in
tr
o
–

15/90

A good requirements specification

(i) avoids disputes with the customer at (milestones or) delivery time,

(ii) prevents us from doing too little/too much work,

(iii) is economic (see below).

There’s a tradeoff between narrowness and openness:

• the optimum wrt. (i) and (ii) is the complete, perfect software product as needed
by the customer (most narrow):

• no disputes; amount of work needed is clear.

Drawback: hard/expensive to get, that’s bad for (iii).

• The cheapest (not: most economic) requirements specification is “do what you
want” (most open).

Drawback: high risk value for not doing (i) and (ii).



A First Summary
–
0
5
–
2
0
1
5
-0
5
-1
1
–
S
re
in
tr
o
–

15/90

A good requirements specification

(i) avoids disputes with the customer at (milestones or) delivery time,

(ii) prevents us from doing too little/too much work,

(iii) is economic (see below).

There’s a tradeoff between narrowness and openness:

• the optimum wrt. (i) and (ii) is the complete, perfect software product as needed
by the customer (most narrow):

• no disputes; amount of work needed is clear.

Drawback: hard/expensive to get, that’s bad for (iii).

• The cheapest (not: most economic) requirements specification is “do what you
want” (most open).

Drawback: high risk value for not doing (i) and (ii).

• Being too narrow has another severe drawback. . .



. . . Namely: Requirements Specification vs. Design
–
0
5
–
2
0
1
5
-0
5
-1
1
–
S
re
in
tr
o
–

16/90

• Idealised views advocate a strict separation between
requirements (“what is to be done?”) and design (“how are things done?”).

• Rationale: Fixing too much of the “how” too early may unnecessarily narrow
down the design space and inhibit new ideas.

There may be better (easier, cheaper, . . . ) solutions than the one imagined first.



. . . Namely: Requirements Specification vs. Design
–
0
5
–
2
0
1
5
-0
5
-1
1
–
S
re
in
tr
o
–

16/90

• Idealised views advocate a strict separation between
requirements (“what is to be done?”) and design (“how are things done?”).

• Rationale: Fixing too much of the “how” too early may unnecessarily narrow
down the design space and inhibit new ideas.

There may be better (easier, cheaper, . . . ) solutions than the one imagined first.

• In practice, this separation is often neither possible nor advisable:

• Existing components should be considered. (→ re-use)

• Customer, (safety) regulations, norms, etc. may require a particular solution anyway.

• It is often useful to reflect real-world structures in the software.

• In some (low risk) cases it may be more economical to skip requirements analysis and
directly code (and document!) a proposal.

• Complex systems may need a preliminary system design before being able to
understand and describe requirements.

• One way to check a requirements specification for consistency (realisability) is to think
through at least one possible solution.

• The requirements specification should answer questions arising during development.



Requirements Engineering: Basics

–
0
5
–
2
0
1
5
-0
5
-1
1
–
m
a
in

–

17/90



Requirements Analysis Basics
–
0
5
–
2
0
1
5
-0
5
-1
1
–
S
re

–

18/90

• Note: analysis in the sense of “finding out what the exact requirements are”.

“Analysing an existing requirements/feature specification” → later.

In the following we shall discuss:

(i) documents of the requirements analysis:

• dictionary,

• requirements/feature specification.

(ii) desired properties of

• requirements specifications,

• requirements specification documents,

(iii) kinds of requirements

• hard and soft,

• open and tacit,

• functional and non-functional, *sigh*

(iv) (a selection of) analysis techniques



Documents of the Requirements Analysis: Dictionary
–
0
5
–
2
0
1
5
-0
5
-1
1
–
S
re

–

19/90

• Requirements analysis should be based on a dictionary.



Documents of the Requirements Analysis: Dictionary
–
0
5
–
2
0
1
5
-0
5
-1
1
–
S
re

–

19/90

• Requirements analysis should be based on a dictionary.

• A dictionary comprises definitions and clarifications of terms that are relevant to the
project and of which different people (in particular customer and developer) may have
different understandings before agreeing on the dictionary.



Documents of the Requirements Analysis: Dictionary
–
0
5
–
2
0
1
5
-0
5
-1
1
–
S
re

–

19/90

• Requirements analysis should be based on a dictionary.

• A dictionary comprises definitions and clarifications of terms that are relevant to the
project and of which different people (in particular customer and developer) may have
different understandings before agreeing on the dictionary.

• Each entry in the dictionary should provide the following information:

• term and synonyms (in the sense of the requirements specification),

• meaning (definition, explanation),

• deliminations (where not to use this terms),

• validness (in time, in space, . . . ),

• denotation, unique identifiers, . . . ,

• open questions not yet resolved,

• related terms, cross references.

Note: entries for terms that seem “crystal clear” at first sight are not uncommon.



Documents of the Requirements Analysis: Dictionary
–
0
5
–
2
0
1
5
-0
5
-1
1
–
S
re

–

19/90

• Requirements analysis should be based on a dictionary.

• A dictionary comprises definitions and clarifications of terms that are relevant to the
project and of which different people (in particular customer and developer) may have
different understandings before agreeing on the dictionary.

• Each entry in the dictionary should provide the following information:

• term and synonyms (in the sense of the requirements specification),

• meaning (definition, explanation),

• deliminations (where not to use this terms),

• validness (in time, in space, . . . ),

• denotation, unique identifiers, . . . ,

• open questions not yet resolved,

• related terms, cross references.

Note: entries for terms that seem “crystal clear” at first sight are not uncommon.

• All work on requirements should, as far as possible, be done using terms from the
dictionary consistently and consequently.

The dictionary should in particular be negotiated with the customer and used in
communication (if not possible, at least developers should stick to dictionary terms).



Documents of the Requirements Analysis: Dictionary
–
0
5
–
2
0
1
5
-0
5
-1
1
–
S
re

–

19/90

• Requirements analysis should be based on a dictionary.

• A dictionary comprises definitions and clarifications of terms that are relevant to the
project and of which different people (in particular customer and developer) may have
different understandings before agreeing on the dictionary.

• Each entry in the dictionary should provide the following information:

• term and synonyms (in the sense of the requirements specification),

• meaning (definition, explanation),

• deliminations (where not to use this terms),

• validness (in time, in space, . . . ),

• denotation, unique identifiers, . . . ,

• open questions not yet resolved,

• related terms, cross references.

Note: entries for terms that seem “crystal clear” at first sight are not uncommon.

• All work on requirements should, as far as possible, be done using terms from the
dictionary consistently and consequently.

The dictionary should in particular be negotiated with the customer and used in
communication (if not possible, at least developers should stick to dictionary terms).

• Note: do not mix up real-world/domain terms with ones only “living” in the software.



Dictionary Example (With Room for Improvement)
–
0
5
–
2
0
1
5
-0
5
-1
1
–
S
re

–

20/90

(Arenis et al., 2014)

Example: Wireless Fire Alarm System

• During a project on designing a highly reliable,
EN-54-25 conforming wireless communication
protocol, we had to learn that the relevant
components of a fire alarm system are

• terminal participants
(wireless sensors and manual indicators),

• a central unit (not a participant),

• and repeaters (a non-terminal participant).

• repeaters and central unit are technically very
similar, but need to be distinguished to understand
requirements. The dictionary explains these terms.



Dictionary Example (With Room for Improvement)
–
0
5
–
2
0
1
5
-0
5
-1
1
–
S
re

–

20/90

(Arenis et al., 2014)

Example: Wireless Fire Alarm System

• During a project on designing a highly reliable,
EN-54-25 conforming wireless communication
protocol, we had to learn that the relevant
components of a fire alarm system are

• terminal participants
(wireless sensors and manual indicators),

• a central unit (not a participant),

• and repeaters (a non-terminal participant).

• repeaters and central unit are technically very
similar, but need to be distinguished to understand
requirements. The dictionary explains these terms.

Excerpt from the dictionary (ca. 50 entries):

Part A part of a fire alarm system is either a par-
ticipant or a central unit.

Repeater A repeater is a participant which accepts
messages for the central unit from other partici-
pants, or messages from the central unit to other
participants. A repeater consists of the following
devices: wireless communication module (1 to 4,
here fixed to 2), [...]

Central Unit A central unit is a part which receives
messages from different assigned participants, as-
sesses the messages, and reacts, e.g. by forwarding
to persons or optical/acustic signalling devices. A
central unit consist of the following devices: [...]

Terminal Participant A terminal participant is a
participant which is not a repeater. Each ter-
minal participant consists of exactly one wireless
communication module and devices which provide
sensor and/or signalling functionality.



Documents of the Requirements Analysis: Specifications
–
0
5
–
2
0
1
5
-0
5
-1
1
–
S
re

–

21/90

• Recall:

Lastenheft (Requirements Specification) Entire demands on deliverables and ser-
vices of a developer within a contracted development, created by the customer.

Pflichtenheft (Feature Specification) Specification of how to realise a given re-

quirements specification, created by the developer. DIN 69901-5 (2009)



Documents of the Requirements Analysis: Specifications
–
0
5
–
2
0
1
5
-0
5
-1
1
–
S
re

–

21/90

• Recall:

Lastenheft (Requirements Specification) Entire demands on deliverables and ser-
vices of a developer within a contracted development, created by the customer.

Pflichtenheft (Feature Specification) Specification of how to realise a given re-

quirements specification, created by the developer. DIN 69901-5 (2009)

• Recommendation:

If the requirements specification is not given by customer (but needs to be
developed), focus on and maintain only the collection of requirements
(possibly sketchy and unsorted) and maintain the feature specification.

(Ludewig and Lichter, 2013)



Documents of the Requirements Analysis: Specifications
–
0
5
–
2
0
1
5
-0
5
-1
1
–
S
re

–

21/90

• Recall:

Lastenheft (Requirements Specification) Entire demands on deliverables and ser-
vices of a developer within a contracted development, created by the customer.

Pflichtenheft (Feature Specification) Specification of how to realise a given re-

quirements specification, created by the developer. DIN 69901-5 (2009)

• Recommendation:

If the requirements specification is not given by customer (but needs to be
developed), focus on and maintain only the collection of requirements
(possibly sketchy and unsorted) and maintain the feature specification.

(Ludewig and Lichter, 2013)

• Note: In the following (unless otherwise noted), we discuss the feature specification, i.e.
the basis of the software development.

To maximise confusion, we may occasionally (inconsistently) call it requirements
specification or just specification — should be clear from context. . .



Requirements on Requirements Specifications
–
0
5
–
2
0
1
5
-0
5
-1
1
–
S
re

–

22/90

A requirements specification should be



Requirements on Requirements Specifications
–
0
5
–
2
0
1
5
-0
5
-1
1
–
S
re

–

22/90

A requirements specification should be

• correct
— it correctly represents the wishes/needs of the customer,



Requirements on Requirements Specifications
–
0
5
–
2
0
1
5
-0
5
-1
1
–
S
re

–

22/90

A requirements specification should be

• correct
— it correctly represents the wishes/needs of the customer,

• complete
— all requirements (existing in somebody’s head, or a document, or . . . ) should be
present,



Requirements on Requirements Specifications
–
0
5
–
2
0
1
5
-0
5
-1
1
–
S
re

–

22/90

A requirements specification should be

• correct
— it correctly represents the wishes/needs of the customer,

• complete
— all requirements (existing in somebody’s head, or a document, or . . . ) should be
present,

• relevant
— things which are not relevant to the project should not be constrained,



Requirements on Requirements Specifications
–
0
5
–
2
0
1
5
-0
5
-1
1
–
S
re

–

22/90

A requirements specification should be

• correct
— it correctly represents the wishes/needs of the customer,

• complete
— all requirements (existing in somebody’s head, or a document, or . . . ) should be
present,

• relevant
— things which are not relevant to the project should not be constrained,

• consistent, free of contradictions
— each requirement is compatible with all other requirements; otherwise the requirements
are not realisable,



Requirements on Requirements Specifications
–
0
5
–
2
0
1
5
-0
5
-1
1
–
S
re

–

22/90

A requirements specification should be

• correct
— it correctly represents the wishes/needs of the customer,

• complete
— all requirements (existing in somebody’s head, or a document, or . . . ) should be
present,

• relevant
— things which are not relevant to the project should not be constrained,

• consistent, free of contradictions
— each requirement is compatible with all other requirements; otherwise the requirements
are not realisable,

• neutral, abstract
— a requirements specification does not constrain the realisation more than necessary,



Requirements on Requirements Specifications
–
0
5
–
2
0
1
5
-0
5
-1
1
–
S
re

–

22/90

A requirements specification should be

• correct
— it correctly represents the wishes/needs of the customer,

• complete
— all requirements (existing in somebody’s head, or a document, or . . . ) should be
present,

• relevant
— things which are not relevant to the project should not be constrained,

• consistent, free of contradictions
— each requirement is compatible with all other requirements; otherwise the requirements
are not realisable,

• neutral, abstract
— a requirements specification does not constrain the realisation more than necessary,

• traceable, comprehensible
— the sources of requirements are documented, requirements are uniquely identifiable,



Requirements on Requirements Specifications
–
0
5
–
2
0
1
5
-0
5
-1
1
–
S
re

–

22/90

A requirements specification should be

• correct
— it correctly represents the wishes/needs of the customer,

• complete
— all requirements (existing in somebody’s head, or a document, or . . . ) should be
present,

• relevant
— things which are not relevant to the project should not be constrained,

• consistent, free of contradictions
— each requirement is compatible with all other requirements; otherwise the requirements
are not realisable,

• neutral, abstract
— a requirements specification does not constrain the realisation more than necessary,

• traceable, comprehensible
— the sources of requirements are documented, requirements are uniquely identifiable,

• testable, objective
— the final product can objectively be checked for satisfying a requirement.



The Crux of Requirements Engineering
–
0
5
–
2
0
1
5
-0
5
-1
1
–
S
re

–

23/90

(Σ× A)ω

?!

Customer Analyst

requirements analysis

• Correctness and completeness of a requirements specification is defined relative to
something which is usually only in the customer’s head.

→ in that case, there is hardly a chance to be sure of correctness and completeness.



The Crux of Requirements Engineering
–
0
5
–
2
0
1
5
-0
5
-1
1
–
S
re

–

23/90

(Σ× A)ω

?!

Customer Analyst

requirements analysis

• Correctness and completeness of a requirements specification is defined relative to
something which is usually only in the customer’s head.

→ in that case, there is hardly a chance to be sure of correctness and completeness.

• “Dear customer, please tell me/write down what is in your head!”
is in almost all cases not a solution!

• It’s not unusual that even the customer does not precisely know. . . !

For example, the customer may not be aware of contradictions due to technical limitations.



Requirements on Requirements Specification Documents
–
0
5
–
2
0
1
5
-0
5
-1
1
–
S
re

–

24/90

The representation and form of a requirements specification should be:



Requirements on Requirements Specification Documents
–
0
5
–
2
0
1
5
-0
5
-1
1
–
S
re

–

24/90

The representation and form of a requirements specification should be:

• easily understandable, not unnecessarily complicated —
all affected people are able to understand the requirements specification,



Requirements on Requirements Specification Documents
–
0
5
–
2
0
1
5
-0
5
-1
1
–
S
re

–

24/90

The representation and form of a requirements specification should be:

• easily understandable, not unnecessarily complicated —
all affected people are able to understand the requirements specification,

• precise —
the requirements specification does not introduce new unclarities or rooms for
interpretation (→ testable, objective),



Requirements on Requirements Specification Documents
–
0
5
–
2
0
1
5
-0
5
-1
1
–
S
re

–

24/90

The representation and form of a requirements specification should be:

• easily understandable, not unnecessarily complicated —
all affected people are able to understand the requirements specification,

• precise —
the requirements specification does not introduce new unclarities or rooms for
interpretation (→ testable, objective),

• easily maintainable —
creating and maintaining the requirements specification should be easy and should not
need unnecessary effort,



Requirements on Requirements Specification Documents
–
0
5
–
2
0
1
5
-0
5
-1
1
–
S
re

–

24/90

The representation and form of a requirements specification should be:

• easily understandable, not unnecessarily complicated —
all affected people are able to understand the requirements specification,

• precise —
the requirements specification does not introduce new unclarities or rooms for
interpretation (→ testable, objective),

• easily maintainable —
creating and maintaining the requirements specification should be easy and should not
need unnecessary effort,

• easily usable —
storage of and access to the requirements specification should not need significant effort.



Requirements on Requirements Specification Documents
–
0
5
–
2
0
1
5
-0
5
-1
1
–
S
re

–

24/90

The representation and form of a requirements specification should be:

• easily understandable, not unnecessarily complicated —
all affected people are able to understand the requirements specification,

• precise —
the requirements specification does not introduce new unclarities or rooms for
interpretation (→ testable, objective),

• easily maintainable —
creating and maintaining the requirements specification should be easy and should not
need unnecessary effort,

• easily usable —
storage of and access to the requirements specification should not need significant effort.

Note: Once again, it’s about compromises.

• A very precise objective requirements specification may not be easily understandable by
every affected person.

→ provide redundant explanations.

• It is not easy to have both, low maintenance effort and low access effort.

→ value low access effort higher, a requirements specification document is much more
often read than changed or written (most changes require reading beforehand).



Kinds of Requirements

–
0
5
–
2
0
1
5
-0
5
-1
1
–
S
re

–

25/90



Kinds of Requirements: Hard and Soft Requirements
–
0
5
–
2
0
1
5
-0
5
-1
1
–
S
re

–

26/90

• Example of a hard requirement:

• Cashing a cheque over N e must result in a new balance decreased by N ; there is not
a micro-cent of tolerance.



Kinds of Requirements: Hard and Soft Requirements
–
0
5
–
2
0
1
5
-0
5
-1
1
–
S
re

–

26/90

• Example of a hard requirement:

• Cashing a cheque over N e must result in a new balance decreased by N ; there is not
a micro-cent of tolerance.

• Examples of soft requirements:

• If the vending machine dispenses the selected item within 1 s, it’s clearly fine; if it takes
5min., it’s clearly wrong — where’s the boundary?

• A car entertainment system which produces “noise” (due to limited bus bandwidth or
CPU power) in average once per hour is acceptable, once per minute is not acceptable.



Kinds of Requirements: Hard and Soft Requirements
–
0
5
–
2
0
1
5
-0
5
-1
1
–
S
re

–

26/90

• Example of a hard requirement:

• Cashing a cheque over N e must result in a new balance decreased by N ; there is not
a micro-cent of tolerance.

• Examples of soft requirements:

• If the vending machine dispenses the selected item within 1 s, it’s clearly fine; if it takes
5min., it’s clearly wrong — where’s the boundary?

• A car entertainment system which produces “noise” (due to limited bus bandwidth or
CPU power) in average once per hour is acceptable, once per minute is not acceptable.

The border between hard/soft is difficult to draw:

• As developer, we want requirements specifications to be “as hard as possible”, i.e. we
want a clear right/wrong.

• As customer, we often cannot provide this clarity; we know what is “clearly wrong” and
we know what is “clearly right”, but we don’t have a sharp boundary.

→ intervals, rates, etc. can serve as precise specifications of soft requirements.



Kinds of Requirements: Open and Tacit
–
0
5
–
2
0
1
5
-0
5
-1
1
–
S
re

–

27/90

• open: customer is aware of and able to explicitly communicate the requirement,

• (semi-)tacit:
customer not aware of something being a requirement (obvious to the customer,
not considered relevant by the customer, not known to be relevant).



Kinds of Requirements: Open and Tacit
–
0
5
–
2
0
1
5
-0
5
-1
1
–
S
re

–

27/90

• open: customer is aware of and able to explicitly communicate the requirement,

• (semi-)tacit:
customer not aware of something being a requirement (obvious to the customer,
not considered relevant by the customer, not known to be relevant).

Examples:

• buttons and screen of a mobile
phone should be on the same side,

• important web-shop items should be
on the right side because our main
users are socialised with right-to-left
reading direction,

• the ECU (embedded control unit)
may only use a certain amount of
bus capacity.

• distinguish don’t care:

intentionally left to be decided by
developer.



Kinds of Requirements: Open and Tacit
–
0
5
–
2
0
1
5
-0
5
-1
1
–
S
re

–

27/90

• open: customer is aware of and able to explicitly communicate the requirement,

• (semi-)tacit:
customer not aware of something being a requirement (obvious to the customer,
not considered relevant by the customer, not known to be relevant).

Examples:

• buttons and screen of a mobile
phone should be on the same side,

• important web-shop items should be
on the right side because our main
users are socialised with right-to-left
reading direction,

• the ECU (embedded control unit)
may only use a certain amount of
bus capacity.

• distinguish don’t care:

intentionally left to be decided by
developer.

Analyst
knows domain new to domain

C
u
st
o
m
e
r/
C
li
e
n
t ex

p
lic
it

requirements
discovered

requirements
discoverable

se
m
i-
ta
ci
t

requirements
discoverable

requirements
discoverable

with difficulties
ta
ci
t

hard/impossible to discover

(Gacitua et al., 2009)



Kinds of Requirements: Functional and Non-Functional
–
0
5
–
2
0
1
5
-0
5
-1
1
–
S
re

–

28/90

• *sigh*



Kinds of Requirements: Functional and Non-Functional
–
0
5
–
2
0
1
5
-0
5
-1
1
–
S
re

–

28/90

• *sigh*

• Recall definition of software:

A finite description of a set of computation paths of the form

π = σ0

α
1−→ σ1

α
2−→ σ2 · · ·

Note: states σ may be labelled with timestamps, or energy consumption so far, . . .

• Another view: software is a function which maps input to output sequences:

S : σi
0

αi

1−→ σi
1

αi

2−→ σi
2 · · · 7→

(

σi
0

σo
0

)

αi

1−−→
αo

1

(

σi
1

σo
1

)

αi

2−−→
αo

2

· · ·



Kinds of Requirements: Functional and Non-Functional
–
0
5
–
2
0
1
5
-0
5
-1
1
–
S
re

–

28/90

• *sigh*

• Recall definition of software:

A finite description of a set of computation paths of the form

π = σ0

α
1−→ σ1

α
2−→ σ2 · · ·

Note: states σ may be labelled with timestamps, or energy consumption so far, . . .

• Another view: software is a function which maps input to output sequences:

S : σi
0

αi

1−→ σi
1

αi

2−→ σi
2 · · · 7→

(

σi
0

σo
0

)

αi

1−−→
αo

1

(

σi
1

σo
1

)

αi

2−−→
αo

2

· · ·

• Every constraint on things observable in the computation paths is a functional
requirement (because it requires something for the function S).

Thus timing, energy consumption, etc. may be subject to functional requirements.

• Clearly non-functional requirements:

programming language, coding conventions, process model requirements, portability. . .



Requirements Analysis Techniques

–
0
5
–
2
0
1
5
-0
5
-1
1
–
S
re

–

29/90



(A Selection of) Analysis Techniques
–
0
5
–
2
0
1
5
-0
5
-1
1
–
S
re

–

30/90

Focus
current desired innovation

Analysis Technique situation situation consequences

Analysis of existing data and documents

Observation

Questionning with

(

closed
structured

open

)

questions

Interview

Modelling

Experiments

Prototyping

Participative development

(Ludewig and Lichter, 2013)



Requirements Elicitation
–
0
5
–
2
0
1
5
-0
5
-1
1
–
S
re

–

31/90

• Observation:

Customers are typically not trained in stating/communicating requirements.
They live in the “I want a pony”-world — in multiple senses. . . ;-)



Requirements Elicitation
–
0
5
–
2
0
1
5
-0
5
-1
1
–
S
re

–

31/90

• Observation:

Customers are typically not trained in stating/communicating requirements.
They live in the “I want a pony”-world — in multiple senses. . . ;-)

• It is the task of the analyst to:

• ask what is wanted,
ask what is not wanted,

• establish precision,
look out for contradictions,

• anticipate exceptions,
difficulties, corner-cases,

• have technical background to
know technical difficulties,

• communicate (formal)
specification to customer,

• “test” own understanding by
asking more questions.

→ i.e. to elicit the requirements.



Requirements Elicitation
–
0
5
–
2
0
1
5
-0
5
-1
1
–
S
re

–

31/90

• Observation:

Customers are typically not trained in stating/communicating requirements.
They live in the “I want a pony”-world — in multiple senses. . . ;-)

• It is the task of the analyst to:

• ask what is wanted,
ask what is not wanted,

• establish precision,
look out for contradictions,

• anticipate exceptions,
difficulties, corner-cases,

• have technical background to
know technical difficulties,

• communicate (formal)
specification to customer,

• “test” own understanding by
asking more questions.

→ i.e. to elicit the requirements.

A made up dialogue:

Analyst: So in the morning, you open the door at

the main entrance?



Requirements Elicitation
–
0
5
–
2
0
1
5
-0
5
-1
1
–
S
re

–

31/90

• Observation:

Customers are typically not trained in stating/communicating requirements.
They live in the “I want a pony”-world — in multiple senses. . . ;-)

• It is the task of the analyst to:

• ask what is wanted,
ask what is not wanted,

• establish precision,
look out for contradictions,

• anticipate exceptions,
difficulties, corner-cases,

• have technical background to
know technical difficulties,

• communicate (formal)
specification to customer,

• “test” own understanding by
asking more questions.

→ i.e. to elicit the requirements.

A made up dialogue:

Analyst: So in the morning, you open the door at

the main entrance?

Customer: Yes, as I told you.



Requirements Elicitation
–
0
5
–
2
0
1
5
-0
5
-1
1
–
S
re

–

31/90

• Observation:

Customers are typically not trained in stating/communicating requirements.
They live in the “I want a pony”-world — in multiple senses. . . ;-)

• It is the task of the analyst to:

• ask what is wanted,
ask what is not wanted,

• establish precision,
look out for contradictions,

• anticipate exceptions,
difficulties, corner-cases,

• have technical background to
know technical difficulties,

• communicate (formal)
specification to customer,

• “test” own understanding by
asking more questions.

→ i.e. to elicit the requirements.

A made up dialogue:

Analyst: So in the morning, you open the door at

the main entrance?

Customer: Yes, as I told you.

A: Every morning?



Requirements Elicitation
–
0
5
–
2
0
1
5
-0
5
-1
1
–
S
re

–

31/90

• Observation:

Customers are typically not trained in stating/communicating requirements.
They live in the “I want a pony”-world — in multiple senses. . . ;-)

• It is the task of the analyst to:

• ask what is wanted,
ask what is not wanted,

• establish precision,
look out for contradictions,

• anticipate exceptions,
difficulties, corner-cases,

• have technical background to
know technical difficulties,

• communicate (formal)
specification to customer,

• “test” own understanding by
asking more questions.

→ i.e. to elicit the requirements.

A made up dialogue:

Analyst: So in the morning, you open the door at

the main entrance?

Customer: Yes, as I told you.

A: Every morning?

C: Of course.



Requirements Elicitation
–
0
5
–
2
0
1
5
-0
5
-1
1
–
S
re

–

31/90

• Observation:

Customers are typically not trained in stating/communicating requirements.
They live in the “I want a pony”-world — in multiple senses. . . ;-)

• It is the task of the analyst to:

• ask what is wanted,
ask what is not wanted,

• establish precision,
look out for contradictions,

• anticipate exceptions,
difficulties, corner-cases,

• have technical background to
know technical difficulties,

• communicate (formal)
specification to customer,

• “test” own understanding by
asking more questions.

→ i.e. to elicit the requirements.

A made up dialogue:

Analyst: So in the morning, you open the door at

the main entrance?

Customer: Yes, as I told you.

A: Every morning?

C: Of course.

A: Also on the weekends?



Requirements Elicitation
–
0
5
–
2
0
1
5
-0
5
-1
1
–
S
re

–

31/90

• Observation:

Customers are typically not trained in stating/communicating requirements.
They live in the “I want a pony”-world — in multiple senses. . . ;-)

• It is the task of the analyst to:

• ask what is wanted,
ask what is not wanted,

• establish precision,
look out for contradictions,

• anticipate exceptions,
difficulties, corner-cases,

• have technical background to
know technical difficulties,

• communicate (formal)
specification to customer,

• “test” own understanding by
asking more questions.

→ i.e. to elicit the requirements.

A made up dialogue:

Analyst: So in the morning, you open the door at

the main entrance?

Customer: Yes, as I told you.

A: Every morning?

C: Of course.

A: Also on the weekends?

C: No, on weekends, the entrance stays closed.



Requirements Elicitation
–
0
5
–
2
0
1
5
-0
5
-1
1
–
S
re

–

31/90

• Observation:

Customers are typically not trained in stating/communicating requirements.
They live in the “I want a pony”-world — in multiple senses. . . ;-)

• It is the task of the analyst to:

• ask what is wanted,
ask what is not wanted,

• establish precision,
look out for contradictions,

• anticipate exceptions,
difficulties, corner-cases,

• have technical background to
know technical difficulties,

• communicate (formal)
specification to customer,

• “test” own understanding by
asking more questions.

→ i.e. to elicit the requirements.

A made up dialogue:

Analyst: So in the morning, you open the door at

the main entrance?

Customer: Yes, as I told you.

A: Every morning?

C: Of course.

A: Also on the weekends?

C: No, on weekends, the entrance stays closed.

A: And during company holidays?



Requirements Elicitation
–
0
5
–
2
0
1
5
-0
5
-1
1
–
S
re

–

31/90

• Observation:

Customers are typically not trained in stating/communicating requirements.
They live in the “I want a pony”-world — in multiple senses. . . ;-)

• It is the task of the analyst to:

• ask what is wanted,
ask what is not wanted,

• establish precision,
look out for contradictions,

• anticipate exceptions,
difficulties, corner-cases,

• have technical background to
know technical difficulties,

• communicate (formal)
specification to customer,

• “test” own understanding by
asking more questions.

→ i.e. to elicit the requirements.

A made up dialogue:

Analyst: So in the morning, you open the door at

the main entrance?

Customer: Yes, as I told you.

A: Every morning?

C: Of course.

A: Also on the weekends?

C: No, on weekends, the entrance stays closed.

A: And during company holidays?

C: Then it also remains closed of course.



Requirements Elicitation
–
0
5
–
2
0
1
5
-0
5
-1
1
–
S
re

–

31/90

• Observation:

Customers are typically not trained in stating/communicating requirements.
They live in the “I want a pony”-world — in multiple senses. . . ;-)

• It is the task of the analyst to:

• ask what is wanted,
ask what is not wanted,

• establish precision,
look out for contradictions,

• anticipate exceptions,
difficulties, corner-cases,

• have technical background to
know technical difficulties,

• communicate (formal)
specification to customer,

• “test” own understanding by
asking more questions.

→ i.e. to elicit the requirements.

A made up dialogue:

Analyst: So in the morning, you open the door at

the main entrance?

Customer: Yes, as I told you.

A: Every morning?

C: Of course.

A: Also on the weekends?

C: No, on weekends, the entrance stays closed.

A: And during company holidays?

C: Then it also remains closed of course.

A: And if you are ill or on vacation?



Requirements Elicitation
–
0
5
–
2
0
1
5
-0
5
-1
1
–
S
re

–

31/90

• Observation:

Customers are typically not trained in stating/communicating requirements.
They live in the “I want a pony”-world — in multiple senses. . . ;-)

• It is the task of the analyst to:

• ask what is wanted,
ask what is not wanted,

• establish precision,
look out for contradictions,

• anticipate exceptions,
difficulties, corner-cases,

• have technical background to
know technical difficulties,

• communicate (formal)
specification to customer,

• “test” own understanding by
asking more questions.

→ i.e. to elicit the requirements.

A made up dialogue:

Analyst: So in the morning, you open the door at

the main entrance?

Customer: Yes, as I told you.

A: Every morning?

C: Of course.

A: Also on the weekends?

C: No, on weekends, the entrance stays closed.

A: And during company holidays?

C: Then it also remains closed of course.

A: And if you are ill or on vacation?

C: Then Mr. M opens the door.



Requirements Elicitation
–
0
5
–
2
0
1
5
-0
5
-1
1
–
S
re

–

31/90

• Observation:

Customers are typically not trained in stating/communicating requirements.
They live in the “I want a pony”-world — in multiple senses. . . ;-)

• It is the task of the analyst to:

• ask what is wanted,
ask what is not wanted,

• establish precision,
look out for contradictions,

• anticipate exceptions,
difficulties, corner-cases,

• have technical background to
know technical difficulties,

• communicate (formal)
specification to customer,

• “test” own understanding by
asking more questions.

→ i.e. to elicit the requirements.

A made up dialogue:

Analyst: So in the morning, you open the door at

the main entrance?

Customer: Yes, as I told you.

A: Every morning?

C: Of course.

A: Also on the weekends?

C: No, on weekends, the entrance stays closed.

A: And during company holidays?

C: Then it also remains closed of course.

A: And if you are ill or on vacation?

C: Then Mr. M opens the door.

A: And if Mr. M is not available, too?



Requirements Elicitation
–
0
5
–
2
0
1
5
-0
5
-1
1
–
S
re

–

31/90

• Observation:

Customers are typically not trained in stating/communicating requirements.
They live in the “I want a pony”-world — in multiple senses. . . ;-)

• It is the task of the analyst to:

• ask what is wanted,
ask what is not wanted,

• establish precision,
look out for contradictions,

• anticipate exceptions,
difficulties, corner-cases,

• have technical background to
know technical difficulties,

• communicate (formal)
specification to customer,

• “test” own understanding by
asking more questions.

→ i.e. to elicit the requirements.

A made up dialogue:

Analyst: So in the morning, you open the door at

the main entrance?

Customer: Yes, as I told you.

A: Every morning?

C: Of course.

A: Also on the weekends?

C: No, on weekends, the entrance stays closed.

A: And during company holidays?

C: Then it also remains closed of course.

A: And if you are ill or on vacation?

C: Then Mr. M opens the door.

A: And if Mr. M is not available, too?

C: Then the first client will knock on the window.



Requirements Elicitation
–
0
5
–
2
0
1
5
-0
5
-1
1
–
S
re

–

31/90

• Observation:

Customers are typically not trained in stating/communicating requirements.
They live in the “I want a pony”-world — in multiple senses. . . ;-)

• It is the task of the analyst to:

• ask what is wanted,
ask what is not wanted,

• establish precision,
look out for contradictions,

• anticipate exceptions,
difficulties, corner-cases,

• have technical background to
know technical difficulties,

• communicate (formal)
specification to customer,

• “test” own understanding by
asking more questions.

→ i.e. to elicit the requirements.

A made up dialogue:

Analyst: So in the morning, you open the door at

the main entrance?

Customer: Yes, as I told you.

A: Every morning?

C: Of course.

A: Also on the weekends?

C: No, on weekends, the entrance stays closed.

A: And during company holidays?

C: Then it also remains closed of course.

A: And if you are ill or on vacation?

C: Then Mr. M opens the door.

A: And if Mr. M is not available, too?

C: Then the first client will knock on the window.

A: Okay. Now what exactly does “morning” mean?

. . . (Ludewig and Lichter, 2013)



How Can Requirements Engineering Look In Practice?
–
0
5
–
2
0
1
5
-0
5
-1
1
–
S
re

–

32/90

• Set up a core team for analysis (3 to 4 people), include experts from the domain and developers.
Analysis benefits from highest skills and strong experience.

• During analysis, talk to decision makers (managers), domain experts, and users. Users can be
interviewed by a team of 2 analysts, ca. 90 min.

• The resulting “raw material” is sorted and assessed in half- or full-day workshops in a team of
6-10 people. One searches for, e.g., contradictions between customer wishes, and for priorisation.

Note: The customer decides. Analysts may make proposals (different options to choose from),
but the customer chooses. (And the choice is documented.)

• The “raw material” is basis of a preliminary requirements specification (audience: the
developers) with open questions.

Analysts need to communicate the requirements specification appropriately (explain, give
examples, point out particular corner-cases). Customers without strong maths/computer science
background are often overstrained when “left alone” with a formal requirements specification.

• Result: dictionary, specified requirements.



How Can Requirements Engineering Look In Practice?
–
0
5
–
2
0
1
5
-0
5
-1
1
–
S
re

–

32/90

• Set up a core team for analysis (3 to 4 people), include experts from the domain and developers.
Analysis benefits from highest skills and strong experience.

• During analysis, talk to decision makers (managers), domain experts, and users. Users can be
interviewed by a team of 2 analysts, ca. 90 min.

• The resulting “raw material” is sorted and assessed in half- or full-day workshops in a team of
6-10 people. One searches for, e.g., contradictions between customer wishes, and for priorisation.

Note: The customer decides. Analysts may make proposals (different options to choose from),
but the customer chooses. (And the choice is documented.)

• The “raw material” is basis of a preliminary requirements specification (audience: the
developers) with open questions.

Analysts need to communicate the requirements specification appropriately (explain, give
examples, point out particular corner-cases). Customers without strong maths/computer science
background are often overstrained when “left alone” with a formal requirements specification.

• Result: dictionary, specified requirements.

• Many customers do not want (radical) change, but improvement.

• Good questions: How’re things done today? What should be improved?



Specification Languages

–
0
5
–
2
0
1
5
-0
5
-1
1
–
m
a
in

–

33/90



Requirements Specification Language
–
0
5
–
2
0
1
5
-0
5
-1
1
–
S
sp
ec
la
n
g
–

34/90

specification — A document that specifies, in a complete, precise, verifiable
manner, the requirements, design, behavior, or other characteristics of a sys-
tem or component, and, often, the procedures for determining whether these
provisions have been satisfied. IEEE 610.12 (1990)



Requirements Specification Language
–
0
5
–
2
0
1
5
-0
5
-1
1
–
S
sp
ec
la
n
g
–

34/90

specification — A document that specifies, in a complete, precise, verifiable
manner, the requirements, design, behavior, or other characteristics of a sys-
tem or component, and, often, the procedures for determining whether these
provisions have been satisfied. IEEE 610.12 (1990)

specification language — A language, often a machine-processible combina-
tion of natural and formal language, used to express the requirements, design,
behavior, or other characteristics of a system or component. For example, a
design language or requirements specification language. Contrast with: pro-
gramming language; query language. IEEE 610.12 (1990)



Requirements Specification Language
–
0
5
–
2
0
1
5
-0
5
-1
1
–
S
sp
ec
la
n
g
–

34/90

specification — A document that specifies, in a complete, precise, verifiable
manner, the requirements, design, behavior, or other characteristics of a sys-
tem or component, and, often, the procedures for determining whether these
provisions have been satisfied. IEEE 610.12 (1990)

specification language — A language, often a machine-processible combina-
tion of natural and formal language, used to express the requirements, design,
behavior, or other characteristics of a system or component. For example, a
design language or requirements specification language. Contrast with: pro-
gramming language; query language. IEEE 610.12 (1990)

requirements specification language — A specification language with spe-
cial constructs and, sometimes, verification protocols, used to develop, ana-
lyze, and document hardware or software requirements. IEEE 610.12 (1990)



Requirements Specification Language
–
0
5
–
2
0
1
5
-0
5
-1
1
–
S
sp
ec
la
n
g
–

34/90

specification — A document that specifies, in a complete, precise, verifiable
manner, the requirements, design, behavior, or other characteristics of a sys-
tem or component, and, often, the procedures for determining whether these
provisions have been satisfied. IEEE 610.12 (1990)

specification language — A language, often a machine-processible combina-
tion of natural and formal language, used to express the requirements, design,
behavior, or other characteristics of a system or component. For example, a
design language or requirements specification language. Contrast with: pro-
gramming language; query language. IEEE 610.12 (1990)

requirements specification language — A specification language with spe-
cial constructs and, sometimes, verification protocols, used to develop, ana-
lyze, and document hardware or software requirements. IEEE 610.12 (1990)

software requirements specification (SRS)—Documentation of the essen-
tial requirements (functions, performance, design constraints, and attributes)
of the software and its external interfaces. IEEE 610.12 (1990)



Requirements Specification Language
–
0
5
–
2
0
1
5
-0
5
-1
1
–
S
sp
ec
la
n
g
–

34/90

specification — A document that specifies, in a complete, precise, verifiable
manner, the requirements, design, behavior, or other characteristics of a sys-
tem or component, and, often, the procedures for determining whether these
provisions have been satisfied. IEEE 610.12 (1990)

specification language — A language, often a machine-processible combina-
tion of natural and formal language, used to express the requirements, design,
behavior, or other characteristics of a system or component. For example, a
design language or requirements specification language. Contrast with: pro-
gramming language; query language. IEEE 610.12 (1990)

requirements specification language — A specification language with spe-
cial constructs and, sometimes, verification protocols, used to develop, ana-
lyze, and document hardware or software requirements. IEEE 610.12 (1990)

software requirements specification (SRS)—Documentation of the essen-
tial requirements (functions, performance, design constraints, and attributes)
of the software and its external interfaces. IEEE 610.12 (1990)



Natural Language Specification
–
0
5
–
2
0
1
5
-0
5
-1
1
–
S
sp
ec
la
n
g
–

35/90

(Ludewig and Lichter, 2013) based on (Rupp and die SOPHISTen, 2009):

rule explanation, example

R1 State each
requirement in
active voice.

Name the actors, indicate whether the user or the
system does something. Not “the item is deleted”.

R2 Express processes
by full verbs.

Not “is”, “has”, but “reads”, “creates”; full verbs
require information which describe the process more
precisely. Not “when data is consistent” but “after
program P has checked consistency of the data”.

R3 Discover
incompletely
defined verbs.

In “the component raises an error”, ask whom the
message is addressed to.

R4 Discover
incomplete
conditions.

Conditions of the form “if-else” need descriptions of the
if- and the then-case.

R5 Discover universal
quantifiers.

Are sentences with “never”, “always”, “each”, “any”,
“all” really universally valid? Are “all” really all or are
there exceptions.

R6 Check Nouns like “registration” often hide complex processes



–
0
5
–
2
0
1
5
-0
5
-1
1
–
S
sp
ec
la
n
g
–

36/90

quantifiers. “all” really universally valid? Are “all” really all or are
there exceptions.

R6 Check
nominalisations.

Nouns like “registration” often hide complex processes
that need more detailed descriptions; the verb “register”
raises appropriate questions: who, where, for what?

R7 Recognise and
refine unclear
substantives.

Is the substantive used as a generic term or does it
denote something specific? Is “user” generic or is a
member of a specific classes meant?

R8 Clarify
responsibilities.

If the specification says that something is “possible”,
“impossible”, or “may”, “should”, “must” happen,
clarify who is enforcing or prohibiting the behaviour.

R9 Identify implicit
assumptions.

Terms (“the firewall”) that are not explained further
often hint to implicit assumptions (here: there seems to
be a firewall).



Natural Language Patterns
–
0
5
–
2
0
1
5
-0
5
-1
1
–
S
sp
ec
la
n
g
–

37/90

Natural language requirements can be written using A, B, C, D, E, F where

A clarifies when and under what conditions the activity takes place



Natural Language Patterns
–
0
5
–
2
0
1
5
-0
5
-1
1
–
S
sp
ec
la
n
g
–

37/90

Natural language requirements can be written using A, B, C, D, E, F where

A clarifies when and under what conditions the activity takes place

B is MUST (obligation), SHOULD (wish), or WILL (intention);
also: MUST NOT (forbidden)



Natural Language Patterns
–
0
5
–
2
0
1
5
-0
5
-1
1
–
S
sp
ec
la
n
g
–

37/90

Natural language requirements can be written using A, B, C, D, E, F where

A clarifies when and under what conditions the activity takes place

B is MUST (obligation), SHOULD (wish), or WILL (intention);
also: MUST NOT (forbidden)

C is either “the system” or the concrete name of a (sub-)system



Natural Language Patterns
–
0
5
–
2
0
1
5
-0
5
-1
1
–
S
sp
ec
la
n
g
–

37/90

Natural language requirements can be written using A, B, C, D, E, F where

A clarifies when and under what conditions the activity takes place

B is MUST (obligation), SHOULD (wish), or WILL (intention);
also: MUST NOT (forbidden)

C is either “the system” or the concrete name of a (sub-)system

D one of three possibilities:

• “does”, description of a system activity,
• “offers”, description of a function offered by the system to somebody,
• “is able if”, usage of a function offered by a third party, under certain

conditions



Natural Language Patterns
–
0
5
–
2
0
1
5
-0
5
-1
1
–
S
sp
ec
la
n
g
–

37/90

Natural language requirements can be written using A, B, C, D, E, F where

A clarifies when and under what conditions the activity takes place

B is MUST (obligation), SHOULD (wish), or WILL (intention);
also: MUST NOT (forbidden)

C is either “the system” or the concrete name of a (sub-)system

D one of three possibilities:

• “does”, description of a system activity,
• “offers”, description of a function offered by the system to somebody,
• “is able if”, usage of a function offered by a third party, under certain

conditions

E extensions, in particular an object



Natural Language Patterns
–
0
5
–
2
0
1
5
-0
5
-1
1
–
S
sp
ec
la
n
g
–

37/90

Natural language requirements can be written using A, B, C, D, E, F where

A clarifies when and under what conditions the activity takes place

B is MUST (obligation), SHOULD (wish), or WILL (intention);
also: MUST NOT (forbidden)

C is either “the system” or the concrete name of a (sub-)system

D one of three possibilities:

• “does”, description of a system activity,
• “offers”, description of a function offered by the system to somebody,
• “is able if”, usage of a function offered by a third party, under certain

conditions

E extensions, in particular an object

F the actual process word (what happens)

(Rupp and die SOPHISTen, 2009)



Natural Language Patterns
–
0
5
–
2
0
1
5
-0
5
-1
1
–
S
sp
ec
la
n
g
–

37/90

Natural language requirements can be written using A, B, C, D, E, F where

A clarifies when and under what conditions the activity takes place

B is MUST (obligation), SHOULD (wish), or WILL (intention);
also: MUST NOT (forbidden)

C is either “the system” or the concrete name of a (sub-)system

D one of three possibilities:

• “does”, description of a system activity,
• “offers”, description of a function offered by the system to somebody,
• “is able if”, usage of a function offered by a third party, under certain

conditions

E extensions, in particular an object

F the actual process word (what happens)

(Rupp and die SOPHISTen, 2009)

Example:

After office hours (= A), the system (= C) should (= B) offer to the operator
(= D) a backup (= F ) of all new registrations to an external medium (= E).



Other Pattern Example: RFC 2119
–
0
5
–
2
0
1
5
-0
5
-1
1
–
S
sp
ec
la
n
g
–

38/90

Network Working Group                                         S. Bradner
Request for Comments: 2119                            Harvard University
BCP: 14                                                       March 1997
Category: Best Current Practice

        Key words for use in RFCs to Indicate Requirement Levels

Status of this Memo

   This document specifies an Internet Best Current Practices for the
   Internet Community, and requests discussion and suggestions for
   improvements.  Distribution of this memo is unlimited.

Abstract

   In many standards track documents several words are used to signify
   the requirements in the specification.  These words are often
   capitalized.  This document defines these words as they should be
   interpreted in IETF documents.  Authors who follow these guidelines
   should incorporate this phrase near the beginning of their document:

      The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL
      NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED",  "MAY", and
      "OPTIONAL" in this document are to be interpreted as described in
      RFC 2119.

   Note that the force of these words is modified by the requirement
   level of the document in which they are used.

1. MUST   This word, or the terms "REQUIRED" or "SHALL", mean that the
   definition is an absolute requirement of the specification.

2. MUST NOT   This phrase, or the phrase "SHALL NOT", mean that the
   definition is an absolute prohibition of the specification.

3. SHOULD   This word, or the adjective "RECOMMENDED", mean that there
   may exist valid reasons in particular circumstances to ignore a
   particular item, but the full implications must be understood and
   carefully weighed before choosing a different course.

4. SHOULD NOT   This phrase, or the phrase "NOT RECOMMENDED" mean that
   there may exist valid reasons in particular circumstances when the
   particular behavior is acceptable or even useful, but the full
   implications should be understood and the case carefully weighed
   before implementing any behavior described with this label.

Bradner                  Best Current Practice                  [Page 1]

RFC 2119                     RFC Key Words                    March 1997

5. MAY   This word, or the adjective "OPTIONAL", mean that an item is
   truly optional.  One vendor may choose to include the item because a
   particular marketplace requires it or because the vendor feels that
   it enhances the product while another vendor may omit the same item.
   An implementation which does not include a particular option MUST be
   prepared to interoperate with another implementation which does
   include the option, though perhaps with reduced functionality. In the
   same vein an implementation which does include a particular option
   MUST be prepared to interoperate with another implementation which
   does not include the option (except, of course, for the feature the
   option provides.)

6. Guidance in the use of these Imperatives

   Imperatives of the type defined in this memo must be used with care
   and sparingly.  In particular, they MUST only be used where it is
   actually required for interoperation or to limit behavior which has
   potential for causing harm (e.g., limiting retransmisssions)  For
   example, they must not be used to try to impose a particular method
   on implementors where the method is not required for
   interoperability.

7. Security Considerations

   These terms are frequently used to specify behavior with security
   implications.  The effects on security of not implementing a MUST or
   SHOULD, or doing something the specification says MUST NOT or SHOULD
   NOT be done may be very subtle. Document authors should take the time
   to elaborate the security implications of not following
   recommendations or requirements as most implementors will not have
   had the benefit of the experience and discussion that produced the
   specification.

8. Acknowledgments

   The definitions of these terms are an amalgam of definitions taken
   from a number of RFCs.  In addition, suggestions have been
   incorporated from a number of people including Robert Ullmann, Thomas
   Narten, Neal McBurnett, and Robert Elz.



–
0
5
–
2
0
1
5
-0
5
-1
1
–
S
sp
ec
la
n
g
–

39/90

 

The Institute of Electrical and Electronics Engineers, Inc.
345 East 47th Street, New York, NY 10017-2394, USA

Copyright © 1998 by the Institute of Electrical and Electronics Engineers, Inc.
All rights reserved. Published 1998. Printed in the United States of America.

ISBN 0-7381-0332-2

 

No part of this publication may be reproduced in any form, in an electronic retrieval system or otherwise, without the prior 
written permission of the publisher.

 

IEEE Std 830-1998

 

(Revision of

IEEE Std 830-1993)

 

IEEE Recommended Practice for 
Software Requirements 
SpeciÞcations

 

Sponsor

 

Software Engineering Standards Committee
of the
IEEE Computer Society

 

Approved 25 June 1998

 

IEEE-SA Standards Board

 

Abstract:

 

 The content and qualities of a good software requirements specification (SRS) are de-

scribed and several sample SRS outlines are presented. This recommended practice is aimed at

specifying requirements of software to be developed but also can be applied to assist in the selec-

tion of in-house and commercial software products. Guidelines for compliance with IEEE/EIA

12207.1-1997 are also provided.

 

Keywords:

 

 contract, customer, prototyping, software requirements specification, supplier, system

requirements specifications



Structure of a Requirements Document: Example
–
0
5
–
2
0
1
5
-0
5
-1
1
–
S
sp
ec
la
n
g
–

40/90

1 INTRODUCTION

1.1 Purpose
1.2 Acronyms and Definitions
1.3 References
1.4 User Characteristics

2 FUNCTIONAL REQUIREMENTS

2.1 Function Set 1
2.2 etc.

3 REQUIREMENTS TO EXTERNAL INTERFACES

3.1 User Interfaces
3.2 Interfaces to Hardware
3.3 Interfaces to Software Products / Software / Firmware
3.4 Communication Interfaces

4 REQUIREMENTS REGARDING TECHNICAL DATA

4.1 Volume Requirements
4.2 Performance
4.3 etc.

5 GENERAL CONSTRAINTS AND REQUIREMENTS

5.1 Standards and Regulations
5.2 Strategic Constraints
5.3 Hardware
5.4 Software
5.5 Compatibility
5.6 Cost Constraints
5.7 Time Constraints
5.8 etc.

6 PRODUCT QUALITY REQUIREMENTS

6.1 Availability, Reliability, Robustness
6.2 Security
6.3 Maintainability
6.4 Portability
6.5 etc.

7 FURTHER REQUIREMENTS

7.1 System Operation
7.2 Customisation
7.3 Requirements of Internal Users

(Ludewig and Lichter, 2013) based on (IEEE, 1998)



You Are Here

–
0
5
–
2
0
1
5
-0
5
-1
1
–
m
a
in

–

41/90



–
0
5
–
2
0
1
5
-0
5
-1
1
–
S
re
fm

–

42/90

L
1
:

2
0
.4
.,
M
o

In
tr
o
d
u
ct
io
n

T
1
:

2
3
.4
.,

D
o

L
2
:

2
7
.4
.,
M
o

L
3
:

3
0
.4
.,

D
o

L
4
:

4
.5
.,
M
o

D
ev
el
o
p
m
en
t

P
ro
ce
ss
,
M
et
ri
cs

T
2
:

7
.5
.,

D
o

L
5
:

1
1
.5
.,
M
o

-
1
4
.5
.,

D
o

L
6
:

1
8
.5
.,
M
o

L
7
:

2
1
.5
.,

D
o

-
2
5
.5
.,
M
o

-
2
8
.5
.,

D
o

R
eq
u
ir
em

en
ts

E
n
g
in
ee
ri
n
g

T
3
:

1
.6
.,
M
o

-
4
.6
.,

D
o

L
8
:

8
.6
.,
M
o

L
9
:

1
1
.6
.,

D
o

L
1
0
:

1
5
.6
.,
M
o

D
es
ig
n
M
o
d
el
lin

g
&

A
n
al
ys
is

T
4
:

1
8
.6
.,

D
o

L
1
1
:

2
2
.6
.,
M
o

L
1
2
:

2
5
.6
.,

D
o

L
1
3
:

2
9
.6
.,
M
o

Im
p
le
m
en
ta
ti
o
n
,

T
es
ti
n
g

T
5
:

2
.7
.,

D
o

L
1
4
:

6
.7
.,
M
o

L
1
5
:

9
.7
.,

D
o

L
1
6
:

1
3
.7
.,
M
o

F
or
m
al

V
er
ifi
ca
ti
o
n

T
6
:

1
6
.7
.,

D
o

L
1
7
:

2
0
.7
.,
M
o

T
h
e
R
es
t

L
1
8
:

2
3
.7
.,

D
o



Recall: Formal Methods
–
0
5
–
2
0
1
5
-0
5
-1
1
–
S
re
fm

–

43/90

Formal Methods (in the Software Development Domain)

–
1
–
2
0
1
5
-0
4
-2
0
–
m
a
in

–

20/37

... back to “ ‘technological paradise’ where ‘no acts of God can be permitted’

and everything happens according to the blueprints”.

(Kopetz, 2011; Lovins and Lovins, 2001)

Definition. [Bjørner and Havelund (2014)]

A method is called formal method if and only if its techniques and

tools can be explained in mathematics.

Example: If a method includes, as a tool, a specification language, then that

language has

• a formal syntax,

• a formal semantics, and

• a formal proof system.

Formal, Rigorous, or Systematic Development

–
1
–
2
0
1
5
-0
4
-2
0
–
m
a
in

–

21/37

“The techniques of a formal method help

• construct a specification, and/or

• analyse a specification, and/or

• transform (refine) one (or more) specification(s) into a program.

The techniques of a formal method, (besides the specification languages) are
typically software packages that help developers use the techniques and other
tools.

The aim of developing software, either

• formally (all arguments are formal) or

• rigorously (some arguments are made and they are formal) or

• systematically (some arguments are made on a form that can be made formal)

is to (be able to) reason in a precise manner about properties of what is
being developed.” (Bjørner and Havelund, 2014)



Recall: Formal Methods
–
0
5
–
2
0
1
5
-0
5
-1
1
–
S
re
fm

–

43/90

Formal Methods (in the Software Development Domain)

–
1
–
2
0
1
5
-0
4
-2
0
–
m
a
in

–

20/37

... back to “ ‘technological paradise’ where ‘no acts of God can be permitted’

and everything happens according to the blueprints”.

(Kopetz, 2011; Lovins and Lovins, 2001)

Definition. [Bjørner and Havelund (2014)]

A method is called formal method if and only if its techniques and

tools can be explained in mathematics.

Example: If a method includes, as a tool, a specification language, then that

language has

• a formal syntax,

• a formal semantics, and

• a formal proof system.

Formal, Rigorous, or Systematic Development

–
1
–
2
0
1
5
-0
4
-2
0
–
m
a
in

–

21/37

“The techniques of a formal method help

• construct a specification, and/or

• analyse a specification, and/or

• transform (refine) one (or more) specification(s) into a program.

The techniques of a formal method, (besides the specification languages) are
typically software packages that help developers use the techniques and other
tools.

The aim of developing software, either

• formally (all arguments are formal) or

• rigorously (some arguments are made and they are formal) or

• systematically (some arguments are made on a form that can be made formal)

is to (be able to) reason in a precise manner about properties of what is
being developed.” (Bjørner and Havelund, 2014)

Decision tables (DT) are one example for a
formal requirements specification language:

• we give a formal syntax and semantics,

• requirements quality criteria, e.g.
completeness, can be formally defined,

• thus for a DT we can formally argue
whether it is complete or not,

• (some) formal arguments can be done
automatically (→ tool support).



Formal Specification and Analysis of Requirements:

Decision Tables for Example

–
0
5
–
2
0
1
5
-0
5
-1
1
–
m
a
in

–

44/90



Decision Tables
–
0
5
–
2
0
1
5
-0
5
-1
1
–
S
et

–

45/90

Definition. [Decision Table] Let C be a set of (atomic) conditions and A

a set of actions.

(i) The set Φ(C) of premises over C consists of the terms defined by
the following grammar: ϕ ::= true | c | ¬ϕ1 | ϕ1 ∨ ϕ2, c ∈ C.

(ii) A rule r over C and A is a pair (ϕ, α), denoted by ϕ → α, which
comprises a premise ϕ ∈ Φ(C) and a finite set α ⊆ A of actions
(the effect).

(iii) Any finite set T of rules over C and A is called decision table (over
C and A).



Decision Tables: Example
–
0
5
–
2
0
1
5
-0
5
-1
1
–
S
et

–

46/90

This might’ve been the specification of lecture hall 101-0-026’s ventilation system:

• Conditions:

C = {button pressed , ventilation on, ventilation off } shorthands: {b, on, off }.

• Actions:

A = {do ventilate, stop ventilate} shorthands: {go, stop}.

• Rules:

• r1 = b ∧ ventilation off → {go}

• r2 = b ∧ ventilation on → {stop}

• Decision table:

T = {r1, r2}.



Satisfaction of Conditions and Premises
–
0
5
–
2
0
1
5
-0
5
-1
1
–
S
et

–

47/90

• Let Σ be a set of states with a satisfaction relation |=0 ⊆ Σ× C.

We say σ satisfies condition c, and write σ |=0 c, if and only if (σ,c) ∈ |=0,
otherwise we write σ 6|=0ϕ.



Satisfaction of Conditions and Premises
–
0
5
–
2
0
1
5
-0
5
-1
1
–
S
et

–

47/90

• Let Σ be a set of states with a satisfaction relation |=0 ⊆ Σ× C.

We say σ satisfies condition c, and write σ |=0 c, if and only if (σ,c) ∈ |=0,
otherwise we write σ 6|=0ϕ.

Example: (useful sets of states for room ventilation model)

• Σ1 = C → {0, 1}(= B) — a state σ ∈ Σ1 is a (boolean) valuation of conditions

|=0 defined by: σ |=0 c if and only if σ(c) = 1.



Satisfaction of Conditions and Premises
–
0
5
–
2
0
1
5
-0
5
-1
1
–
S
et

–

47/90

• Let Σ be a set of states with a satisfaction relation |=0 ⊆ Σ× C.

We say σ satisfies condition c, and write σ |=0 c, if and only if (σ,c) ∈ |=0,
otherwise we write σ 6|=0ϕ.

Example: (useful sets of states for room ventilation model)

• Σ1 = C → {0, 1}(= B) — a state σ ∈ Σ1 is a (boolean) valuation of conditions

|=0 defined by: σ |=0 c if and only if σ(c) = 1.

• Σ2 = {b, V } → B ∪R
+

0 ; σ(b) ∈ B (button state), σ(V ) ∈ R
+

0 (voltage at ventilator)

|=0 defined by:

• σ |=0 b if and only if σ(b) = 1,

• σ |=0 on if and only if σ(V ) ≥ 0.7, (ventilator rotates),

• σ |=0 off if and only if σ(V ) < 0.7. (voltage too low for rotation),



Satisfaction of Conditions and Premises
–
0
5
–
2
0
1
5
-0
5
-1
1
–
S
et

–

47/90

• Let Σ be a set of states with a satisfaction relation |=0 ⊆ Σ× C.

We say σ satisfies condition c, and write σ |=0 c, if and only if (σ,c) ∈ |=0,
otherwise we write σ 6|=0ϕ.

Example: (useful sets of states for room ventilation model)

• Σ1 = C → {0, 1}(= B) — a state σ ∈ Σ1 is a (boolean) valuation of conditions

|=0 defined by: σ |=0 c if and only if σ(c) = 1.

• Σ2 = {b, V } → B ∪R
+

0 ; σ(b) ∈ B (button state), σ(V ) ∈ R
+

0 (voltage at ventilator)

|=0 defined by:

• σ |=0 b if and only if σ(b) = 1,

• σ |=0 on if and only if σ(V ) ≥ 0.7, (ventilator rotates),

• σ |=0 off if and only if σ(V ) < 0.7. (voltage too low for rotation),

• In other words: Σ can be whatever you want, as long as you explain/define how to read
out from σ ∈ Σ whether conditions b, on, off should be considered satisfied in σ.



Satisfaction of Premises
–
0
5
–
2
0
1
5
-0
5
-1
1
–
S
et

–

48/90

• Given (Σ, |=0), the usual interpretation of the logical connectives

true,¬,∨

induces a satisfaction relation |= ⊆ Σ× Φ(C) for premises as follows:

• σ |= true, for all σ ∈ Σ,

• σ |= ¬c, if and only if σ 6|=0 c,

• σ |= c1 ∨ c2, if and only if σ |=0 c1 or σ |=0 c2.



Satisfaction of Premises
–
0
5
–
2
0
1
5
-0
5
-1
1
–
S
et

–

48/90

• Given (Σ, |=0), the usual interpretation of the logical connectives

true,¬,∨

induces a satisfaction relation |= ⊆ Σ× Φ(C) for premises as follows:

• σ |= true, for all σ ∈ Σ,

• σ |= ¬c, if and only if σ 6|=0 c,

• σ |= c1 ∨ c2, if and only if σ |=0 c1 or σ |=0 c2.

• We call r = ϕ → α over C and A enabled σ if and only if σ |= ϕ.

Note: In the following, we may use ∧, =⇒ , ⇐⇒ as abbreviations as usual.



Satisfaction of Premises
–
0
5
–
2
0
1
5
-0
5
-1
1
–
S
et

–

48/90

• Given (Σ, |=0), the usual interpretation of the logical connectives

true,¬,∨

induces a satisfaction relation |= ⊆ Σ× Φ(C) for premises as follows:

• σ |= true, for all σ ∈ Σ,

• σ |= ¬c, if and only if σ 6|=0 c,

• σ |= c1 ∨ c2, if and only if σ |=0 c1 or σ |=0 c2.

• We call r = ϕ → α over C and A enabled σ if and only if σ |= ϕ.

Note: In the following, we may use ∧, =⇒ , ⇐⇒ as abbreviations as usual.

Example:

• Consider σ ∈ Σ1 with σ = {b 7→ 1, on 7→ 1, off 7→ 0} and ϕ = b ∧ on ∈ Φ(C).

Then σ |= ϕ, thus r is enabled in σ.



Specifying Behaviour with Decision Tables
–
0
5
–
2
0
1
5
-0
5
-1
1
–
S
et

–

49/90

A decision table T induces computation paths as follows:

• Let C be a set of conditions, A a set of actions.

• Let (Σ, |=0) be a set of states with a satisfaction relation for conditions.

• Set A := 2A as event set.



Specifying Behaviour with Decision Tables
–
0
5
–
2
0
1
5
-0
5
-1
1
–
S
et

–

49/90

A decision table T induces computation paths as follows:

• Let C be a set of conditions, A a set of actions.

• Let (Σ, |=0) be a set of states with a satisfaction relation for conditions.

• Set A := 2A as event set.

A (finite or infinite) state/event sequence

π = σ0

α
1−→ σ1

α
2−→ σ2 · · ·

is called computation path of T if and only if

• for all i ∈ N0, exists r = ϕ → α ∈ T , such that σi |= ϕ and αi+1 = α.



Specifying Behaviour with Decision Tables
–
0
5
–
2
0
1
5
-0
5
-1
1
–
S
et

–

49/90

A decision table T induces computation paths as follows:

• Let C be a set of conditions, A a set of actions.

• Let (Σ, |=0) be a set of states with a satisfaction relation for conditions.

• Set A := 2A as event set.

A (finite or infinite) state/event sequence

π = σ0

α
1−→ σ1

α
2−→ σ2 · · ·

is called computation path of T if and only if

• for all i ∈ N0, exists r = ϕ → α ∈ T , such that σi |= ϕ and αi+1 = α.

In other “words”: if and only if ∀ i ∈ N0 ∃ r = ϕ → α ∈ T • σi |= ϕ ∧ αi+1 = α.



Specifying Behaviour with Decision Tables
–
0
5
–
2
0
1
5
-0
5
-1
1
–
S
et

–

49/90

A decision table T induces computation paths as follows:

• Let C be a set of conditions, A a set of actions.

• Let (Σ, |=0) be a set of states with a satisfaction relation for conditions.

• Set A := 2A as event set.

A (finite or infinite) state/event sequence

π = σ0

α
1−→ σ1

α
2−→ σ2 · · ·

is called computation path of T if and only if

• for all i ∈ N0, exists r = ϕ → α ∈ T , such that σi |= ϕ and αi+1 = α.

In other “words”: if and only if ∀ i ∈ N0 ∃ r = ϕ → α ∈ T • σi |= ϕ ∧ αi+1 = α.

• Set JT Kinterleave := {π | π is a computation path of T}.

We call J · Kinterleave the interleaving interpretation/semantics of decision tables.

• Note: We will also define the collecting semantics J · Kcollect later.



Decision Tables: Example
–
0
5
–
2
0
1
5
-0
5
-1
1
–
S
et

–

50/90

Back to lecture hall 101-0-026’s ventilation system:

• C = {button pressed , ventilation on, ventilation off } shorthands: {b, on, off }.

• A = {do ventilate, stop ventilate} shorthands: {go, stop}.

• r1 = b ∧ ventilation off → {go}

• r2 = b ∧ ventilation on → {stop}

• T = {r1, r2}.

What’s in JT Kinterleaving?



Decision Tables: Example
–
0
5
–
2
0
1
5
-0
5
-1
1
–
S
et

–

50/90

Back to lecture hall 101-0-026’s ventilation system:

• C = {button pressed , ventilation on, ventilation off } shorthands: {b, on, off }.

• A = {do ventilate, stop ventilate} shorthands: {go, stop}.

• r1 = b ∧ ventilation off → {go}

• r2 = b ∧ ventilation on → {stop}

• T = {r1, r2}.

What’s in JT Kinterleaving? Naja, for example

• π1 = σ0

{go}
−−−→ σ1

{stop}
−−−−→ σ2

σ0 |= b ∧ off , σ1 |= b ∧ on



Decision Tables: Example
–
0
5
–
2
0
1
5
-0
5
-1
1
–
S
et

–

50/90

Back to lecture hall 101-0-026’s ventilation system:

• C = {button pressed , ventilation on, ventilation off } shorthands: {b, on, off }.

• A = {do ventilate, stop ventilate} shorthands: {go, stop}.

• r1 = b ∧ ventilation off → {go}

• r2 = b ∧ ventilation on → {stop}

• T = {r1, r2}.

What’s in JT Kinterleaving? Naja, for example

• π1 = σ0

{go}
−−−→ σ1

{stop}
−−−−→ σ2

σ0 |= b ∧ off , σ1 |= b ∧ on

• π2 = σ0

σ0 6|= b ∧ on and σ0 6|= b ∧ off



Decision Tables: Example
–
0
5
–
2
0
1
5
-0
5
-1
1
–
S
et

–

50/90

Back to lecture hall 101-0-026’s ventilation system:

• C = {button pressed , ventilation on, ventilation off } shorthands: {b, on, off }.

• A = {do ventilate, stop ventilate} shorthands: {go, stop}.

• r1 = b ∧ ventilation off → {go}

• r2 = b ∧ ventilation on → {stop}

• T = {r1, r2}.

What’s in JT Kinterleaving? Naja, for example

• π1 = σ0

{go}
−−−→ σ1

{stop}
−−−−→ σ2

σ0 |= b ∧ off , σ1 |= b ∧ on

• π2 = σ0

σ0 6|= b ∧ on and σ0 6|= b ∧ off

• and also π3 = σ0

{go}
−−−→ σ1

{go}
−−−→ σ2

σ0 |= b ∧ off , σ1 |= b ∧ off



Decision Tables: Example
–
0
5
–
2
0
1
5
-0
5
-1
1
–
S
et

–

50/90

Back to lecture hall 101-0-026’s ventilation system:

• C = {button pressed , ventilation on, ventilation off } shorthands: {b, on, off }.

• A = {do ventilate, stop ventilate} shorthands: {go, stop}.

• r1 = b ∧ ventilation off → {go}

• r2 = b ∧ ventilation on → {stop}

• T = {r1, r2}.

What’s in JT Kinterleaving? Naja, for example

• π1 = σ0

{go}
−−−→ σ1

{stop}
−−−−→ σ2

σ0 |= b ∧ off , σ1 |= b ∧ on

• π2 = σ0

σ0 6|= b ∧ on and σ0 6|= b ∧ off

• and also π3 = σ0

{go}
−−−→ σ1

{go}
−−−→ σ2

σ0 |= b ∧ off , σ1 |= b ∧ off

• also π4 = σ0

{go}
−−−→ σ1

{go}
−−−→ σ2 . . .

σi |= b ∧ off , i ∈ N0



Decision Tables: Example
–
0
5
–
2
0
1
5
-0
5
-1
1
–
S
et

–

50/90

Back to lecture hall 101-0-026’s ventilation system:

• C = {button pressed , ventilation on, ventilation off } shorthands: {b, on, off }.

• A = {do ventilate, stop ventilate} shorthands: {go, stop}.

• r1 = b ∧ ventilation off → {go}

• r2 = b ∧ ventilation on → {stop}

• T = {r1, r2}.

What’s in JT Kinterleaving? Naja, for example

• π1 = σ0

{go}
−−−→ σ1

{stop}
−−−−→ σ2

σ0 |= b ∧ off , σ1 |= b ∧ on

• π2 = σ0

σ0 6|= b ∧ on and σ0 6|= b ∧ off

• and also π3 = σ0

{go}
−−−→ σ1

{go}
−−−→ σ2

σ0 |= b ∧ off , σ1 |= b ∧ off

• also π4 = σ0

{go}
−−−→ σ1

{go}
−−−→ σ2 . . .

σi |= b ∧ off , i ∈ N0

• but not σ0

{go}
−−−→ σ1

{go,stop}
−−−−−−→ σ2

σ0 6|= b ∧ off



Isn’t There a Bell Ringing...?
–
0
5
–
2
0
1
5
-0
5
-1
1
–
S
et

–

51/90



Isn’t There a Bell Ringing...?
–
0
5
–
2
0
1
5
-0
5
-1
1
–
S
et

–

51/90

Definition. Software is a finite description S of a (possibly infinite)
set JSK of (finite or infinite) computation paths of the form

σ0
α
1−→ σ1

α
2−→ σ2 · · ·

where

• σi ∈ Σ, i ∈ N0, is called state (or configuration), and

• αi ∈ A, i ∈ N0, is called action (or event).

The (possibly partial) function J · K : S 7→ JSK is called interpreta-
tion of S.



Isn’t There a Bell Ringing...?
–
0
5
–
2
0
1
5
-0
5
-1
1
–
S
et

–

51/90

Definition. Software is a finite description S of a (possibly infinite)
set JSK of (finite or infinite) computation paths of the form

σ0
α
1−→ σ1

α
2−→ σ2 · · ·

where

• σi ∈ Σ, i ∈ N0, is called state (or configuration), and

• αi ∈ A, i ∈ N0, is called action (or event).

The (possibly partial) function J · K : S 7→ JSK is called interpreta-
tion of S.

→ a decision table T is software (surprise, surprise!?).



And Where’s The Table?
–
0
5
–
2
0
1
5
-0
5
-1
1
–
S
et

–

52/90



And Where’s The Table?
–
0
5
–
2
0
1
5
-0
5
-1
1
–
S
et

–

52/90

Decision tables can be written in tabular form:

T : room ventilation r1 r2

b button pressed? × ×
off ventilation off? × -
on ventilation on? - ×

go start ventilation × -
stop stop ventilation - ×



And Where’s The Table?
–
0
5
–
2
0
1
5
-0
5
-1
1
–
S
et

–

52/90

Decision tables can be written in tabular form:

T : room ventilation r1 r2

b button pressed? × ×
off ventilation off? × -
on ventilation on? - ×

go start ventilation × -
stop stop ventilation - ×

From the table to the rules:

• r1 = b ∧ on ∧ ¬off → {go}

• r2 = b ∧ ¬on ∧ off → {stop}



And Where’s The Table?
–
0
5
–
2
0
1
5
-0
5
-1
1
–
S
et

–

52/90

Decision tables can be written in tabular form:

T : room ventilation r1 r2

b button pressed? × ×
off ventilation off? × -
on ventilation on? - ×

go start ventilation × -
stop stop ventilation - ×

r3

∗
-
-

-
-

From the table to the rules:

• r1 = b ∧ on ∧ ¬off → {go}

• r2 = b ∧ ¬on ∧ off → {stop}



And Where’s The Table?
–
0
5
–
2
0
1
5
-0
5
-1
1
–
S
et

–

52/90

Decision tables can be written in tabular form:

T : room ventilation r1 r2

b button pressed? × ×
off ventilation off? × -
on ventilation on? - ×

go start ventilation × -
stop stop ventilation - ×

r3

∗
-
-

-
-

From the table to the rules:

• r1 = b ∧ on ∧ ¬off → {go}

• r2 = b ∧ ¬on ∧ off → {stop}

• r3 = ¬on ∧ ¬off → ∅



Decision Tables vs. Rules In General
–
0
5
–
2
0
1
5
-0
5
-1
1
–
S
et

–

53/90

T : decision table r1 · · · rn

c1 description condition 1 v1,1 · · · v1,n
..
.

..

.
..
.

. . .
..
.

cm description condition m vm,1 · · · vm,n

a1 description action 1 w1,1 · · · w1,n

..

.
..
.

..

.
. . .

..

.
ak description action k wk,1 · · · wk,n

vi,j ∈ {−,×, ∗}, wi,j ∈ {−,×}



Decision Tables vs. Rules In General
–
0
5
–
2
0
1
5
-0
5
-1
1
–
S
et

–

53/90

T : decision table r1 · · · rn

c1 description condition 1 v1,1 · · · v1,n
..
.

..

.
..
.

. . .
..
.

cm description condition m vm,1 · · · vm,n

a1 description action 1 w1,1 · · · w1,n

..

.
..
.

..

.
. . .

..

.
ak description action k wk,1 · · · wk,n

vi,j ∈ {−,×, ∗}, wi,j ∈ {−,×}

• C = {c1, . . . , cm}, A = {a1, . . . , ak}

• ri = F (v1,i, ci) ∧ · · · ∧ F (vm,i, cm) → {aj | wj,i = ×}}, F (v, c) =











c , if v = ×

¬c , if v = −

true , if v = ∗
Recall:

∧

1≤j≤m F (vj,i, ci) = true by definition.

• T = {r1, . . . , rn}

• From rules to table: use disjunctive normal form of ϕ.



Decision Tables as Business Rules
–
0
5
–
2
0
1
5
-0
5
-1
1
–
S
et

–

54/90

T1: cash a cheque r1 r2 else

c1 credit limit exceeded? × ×
c2 payment history ok? × -
c3 overdraft < 500 e? - ∗

a1 cash cheque × - ×

a2 do not cash cheque - × -

a3 offer new conditions × - -

(Balzert, 2009)



Decision Tables as Business Rules
–
0
5
–
2
0
1
5
-0
5
-1
1
–
S
et

–

54/90

T1: cash a cheque r1 r2 else

c1 credit limit exceeded? × ×
c2 payment history ok? × -
c3 overdraft < 500 e? - ∗

a1 cash cheque × - ×

a2 do not cash cheque - × -

a3 offer new conditions × - -

(Balzert, 2009)

• One customer session at the bank:

σ
{cc,onc}
−−−−−→ σ′

if σ |= c1 ∧ c2 ∧ ¬c3.

• clerk checks database state σ,

• database says: credit limit exceeded over 500 e, but payment history ok,

• clerk cashes cheque but offers new conditions.



Decision Tables as Software Specification

–
0
5
–
2
0
1
5
-0
5
-1
1
–
S
et

–

55/90



Another Bell...
–
0
5
–
2
0
1
5
-0
5
-1
1
–
S
et

–

56/90

• T can be viewed as a software specification by setting

JT Kspec := {S | JSK ⊆ JT Kinterleave}.

in words:

• Any software S, whose behaviour is a subset of T ’s behaviour,
satisfies the specification T .

In particular: S need not have all computation paths of T .

• The computation paths of T are all allowed for the final product S;
what is not a computation path of T is forbidden for the final product.

• The refinement view: Any software S′ which is a refinement of a software
S ∈ JT Kspec satisfies the specification T .



Basic Requirements Quality Criteria for DTs

–
0
5
–
2
0
1
5
-0
5
-1
1
–
m
a
in

–

57/90



Quality Criteria for DTs: Uselessness and Vacuity
–
0
5
–
2
0
1
5
-0
5
-1
1
–
S
et
p
ro
p
–

58/90

Definition. [Uselessness and Vacuity] Let T be a decision table.

• A rule r = ϕ → α is called vacuous (wrt. states Σ) if and only if there
is no state σ ∈ Σ such that

σ |= ϕ.

• A rule r = ϕ → α is called useless (or: redundant) if and only if there
is another rule r′ whose premise ϕ′ is subsumed by ϕ and whose effect
is the same as r’s, i.e. if

∃ r′ = ϕ′ → α′, r′ 6= r • ϕ =⇒ ϕ′ ∧ α = α′.

r′ is called subsumed by r.



Uselessness: Example
–
0
5
–
2
0
1
5
-0
5
-1
1
–
S
et
p
ro
p
–

59/90

Example:

• (c ∧ ¬c) → α is vacuous.

Proposition: any rule with insatisfiable premise is vacuous.



Uselessness: Example
–
0
5
–
2
0
1
5
-0
5
-1
1
–
S
et
p
ro
p
–

59/90

Example:

• (c ∧ ¬c) → α is vacuous.

Proposition: any rule with insatisfiable premise is vacuous.

• Let Σ = {{c 7→ 0}} — there’s only one state σ ∈ Σ, and c not satisfied in σ.

Then c → α is vacuous.



Uselessness: Example
–
0
5
–
2
0
1
5
-0
5
-1
1
–
S
et
p
ro
p
–

59/90

Example:

• (c ∧ ¬c) → α is vacuous.

Proposition: any rule with insatisfiable premise is vacuous.

• Let Σ = {{c 7→ 0}} — there’s only one state σ ∈ Σ, and c not satisfied in σ.

Then c → α is vacuous.

•
T : room ventilation r1 r2 r3 r4

b button pressed? × × - -

off ventilation off? × - ∗ -

on ventilation on? - × ∗ -

go start ventilation × - - -

stop stop ventilation - × - -

• r4 is useless — it is subsumed by r3.

• r3 is not subsumed by r4!



Uselessness: Example
–
0
5
–
2
0
1
5
-0
5
-1
1
–
S
et
p
ro
p
–

59/90

Example:

• (c ∧ ¬c) → α is vacuous.

Proposition: any rule with insatisfiable premise is vacuous.

• Let Σ = {{c 7→ 0}} — there’s only one state σ ∈ Σ, and c not satisfied in σ.

Then c → α is vacuous.

•
T : room ventilation r1 r2 r3 r4

b button pressed? × × - -

off ventilation off? × - ∗ -

on ventilation on? - × ∗ -

go start ventilation × - - -

stop stop ventilation - × - -

• r4 is useless — it is subsumed by r3.

• r3 is not subsumed by r4!

• Proposition: if rule r is given in form of a table and if Σ is equivalent to C → B,
then r is not vacuous (yet it may be subsumed by another rule).



Uselessness: Consequences
–
0
5
–
2
0
1
5
-0
5
-1
1
–
S
et
p
ro
p
–

60/90

• Doesn’t hurt wrt. the final product:

The decision table T with useless rules has the same computation paths
as the one with useless rules removed.

• But

• Decision tables with useless rules are unnecessarily hard to work with
(read, maintain, . . . ).

• May make communication with customer harder!



Quality Criteria for DTs: Completeness
–
0
5
–
2
0
1
5
-0
5
-1
1
–
S
et
p
ro
p
–

61/90

Definition. [Completeness] A decision table T is called complete if and
only if the disjunction of all rules’ premises is a tautology, i.e. if

|=
∨

ϕ→α∈T

ϕ.



Completeness: Example
–
0
5
–
2
0
1
5
-0
5
-1
1
–
S
et
p
ro
p
–

62/90

T : room ventilation r1 r2

b button pressed? × ×

off ventilation off? × -

on ventilation on? - ×

go start ventilation × -

stop stop ventilation - ×



Completeness: Example
–
0
5
–
2
0
1
5
-0
5
-1
1
–
S
et
p
ro
p
–

62/90

T : room ventilation r1 r2

b button pressed? × ×

off ventilation off? × -

on ventilation on? - ×

go start ventilation × -

stop stop ventilation - ×

• is not complete: there is no rule, e.g., for the case ¬b ∧ on ∧ ¬off .



Completeness: Example
–
0
5
–
2
0
1
5
-0
5
-1
1
–
S
et
p
ro
p
–

62/90

T : room ventilation r1 r2

b button pressed? × ×

off ventilation off? × -

on ventilation on? - ×

go start ventilation × -

stop stop ventilation - ×

• is not complete: there is no rule, e.g., for the case ¬b ∧ on ∧ ¬off .

T : room ventilation r1 r2 r3 r4 r5

b button pressed? × × - ∗ ∗

off ventilation off? × - ∗ × -

on ventilation on? - × ∗ × -

go start ventilation × - - - -

stop stop ventilation - × - - -

• is complete.



Completeness: Example
–
0
5
–
2
0
1
5
-0
5
-1
1
–
S
et
p
ro
p
–

62/90

T : room ventilation r1 r2

b button pressed? × ×

off ventilation off? × -

on ventilation on? - ×

go start ventilation × -

stop stop ventilation - ×

• is not complete: there is no rule, e.g., for the case ¬b ∧ on ∧ ¬off .

T : room ventilation r1 r2 else

b button pressed? × ×
off ventilation off? × -

on ventilation on? - ×

go start ventilation × - -

stop stop ventilation - × -

• is complete.



Incompleteness: Consequences
–
0
5
–
2
0
1
5
-0
5
-1
1
–
S
et
p
ro
p
–

63/90

• An incomplete decision table may allow too little behaviour (it forbids too much)!

• This very incomplete decision table:

T : room ventilation r1

b button pressed? ×

off ventilation off? ×

on ventilation on? -

go start ventilation ×

stop stop ventilation -

• forbids all actions in case b ∧ ¬on ∧ off is satisfied.

• May not be the intention of the customer!



Quality Criteria for DTs: Determinism
–
0
5
–
2
0
1
5
-0
5
-1
1
–
S
et
p
ro
p
–

64/90

Definition. [Determinism] A decision table T is called deterministic if
and only if the premises of all rules are pairwise disjoint, i.e. if

∀ϕi → αi, ϕj → αj , i 6= j• |= ¬(ϕi ∧ ϕj).

Otherwise, T is called non-deterministic.



Determinism: Example
–
0
5
–
2
0
1
5
-0
5
-1
1
–
S
et
p
ro
p
–

65/90

T : room ventilation r1 r2 r3

b button pressed? × × -

go start ventilation × - -

stop stop ventilation - × -

• is non-determistic:



Determinism: Example
–
0
5
–
2
0
1
5
-0
5
-1
1
–
S
et
p
ro
p
–

65/90

T : room ventilation r1 r2 r3

b button pressed? × × -

go start ventilation × - -

stop stop ventilation - × -

• is non-determistic: In a state σ with σ |= b, both rules are enabled.



Determinism: Example
–
0
5
–
2
0
1
5
-0
5
-1
1
–
S
et
p
ro
p
–

65/90

T : room ventilation r1 r2 r3

b button pressed? × × -

go start ventilation × - -

stop stop ventilation - × -

• is non-determistic: In a state σ with σ |= b, both rules are enabled.

• Is non-determinism a bad thing in general?



Determinism: Example
–
0
5
–
2
0
1
5
-0
5
-1
1
–
S
et
p
ro
p
–

65/90

T : room ventilation r1 r2 r3

b button pressed? × × -

go start ventilation × - -

stop stop ventilation - × -

• is non-determistic: In a state σ with σ |= b, both rules are enabled.

• Is non-determinism a bad thing in general?

• Just the opposite: one of the most powerful modelling tools we have.

• Read table T as:

• under certain conditions (which I will specify later)
the button may switch the ventilation on, and

• under certain conditions (which I will specify later)
the button may switch the ventilation off.

• This is quite some less chaos than full chaos!

• We can already analyse the specification, e.g., we state that we do not (under any
condition) want to see on and off executed together.



Non-determism: Consequences
–
0
5
–
2
0
1
5
-0
5
-1
1
–
S
et
p
ro
p
–

66/90

• Good:

• A non-determistic decision table leaves more choices (more freedom) to the
developer.

• Bad:

• A non-determistic decision table leaves more choices to the developer;
even the choice to create a non-deterministic final product.

(Input-)Deterministic final products, i.e. “same data in, same data out”,
are easier to deal with and are usually desired.

• Another view:
deterministic decision tables can be implemented with deterministic
programming languages.



Implementing Decision Tables
–
0
5
–
2
0
1
5
-0
5
-1
1
–
S
et
p
ro
p
–

67/90

T : room ventilation r1 r2 else

b button pressed? × ×
off ventilation off? × -
on ventilation on? - ×

go start ventilation × - -
stop stop ventilation - × -

1 i n t b , on , o f f ;
2

3 ex tern vo id go ( ) ; ex tern vo id s top ( ) ;
4

5 vo id (∗ e f f e c t ) ( ) = 0 ;
6

7 vo id dt ( ) {
8

9 r e a d b o n o f f ( ) ; // read
10

11 // compute
12 //
13 i f ( b && o f f ) e f f e c t = go ;
14

15 i f ( b && on ) e f f e c t = s top ;
16

17 e x e c u t e e f f e c t ( ) ; // w r i t e
18 }



More Requirements Quality Criteria for DTs

–
0
5
–
2
0
1
5
-0
5
-1
1
–
m
a
in

–

68/90



Consistency of Rules
–
0
5
–
2
0
1
5
-0
5
-1
1
–
S
et
co

n
fl
–

69/90

T : room ventilation r1 r2 else

b button pressed? × ×
off ventilation off? × -
on ventilation on? - ×

go start ventilation × - -
stop stop ventilation - × -

• Conditions and actions are abstract entities without inherent connection to the real world.

• Yet we want to use decision tables to model/represent requirements on the behaviour of
software systems, which are used in the real world.

• When modelling real-world aspects by conditions and actions, we should also model
relations between actions/conditions in the real-world (→ domain model).



Consistency of Rules
–
0
5
–
2
0
1
5
-0
5
-1
1
–
S
et
co

n
fl
–

69/90

T : room ventilation r1 r2 else

b button pressed? × ×
off ventilation off? × -
on ventilation on? - ×

go start ventilation × - -
stop stop ventilation - × -

• Conditions and actions are abstract entities without inherent connection to the real world.

• Yet we want to use decision tables to model/represent requirements on the behaviour of
software systems, which are used in the real world.

• When modelling real-world aspects by conditions and actions, we should also model
relations between actions/conditions in the real-world (→ domain model).

Example:

• if on models “room ventilation is on”, and

• if off models “room ventilation is off”,

• then in the abstract setting, σ |= on ∧ off is still possible.

T “doesn’t know” that on and off model opposites in the real-world.



Conflicting Conditions and Actions, Consistency
–
0
5
–
2
0
1
5
-0
5
-1
1
–
S
et
co

n
fl
–

70/90

• A conflict axiom for conditions C is a formula ϕconfl ∈ Φ(C).

Definition. [Vacuitiy wrt. Conflict Axiom] A rule r = ϕ → α ∈ T over C
and A is called vacuous wrt. conflict axiom ϕconfl ∈ Φ(C) if and only
if the premise implies the conflict axiom, i.e. if |= (ϕ =⇒ ϕconfl ).



Conflicting Conditions and Actions, Consistency
–
0
5
–
2
0
1
5
-0
5
-1
1
–
S
et
co

n
fl
–

70/90

• A conflict axiom for conditions C is a formula ϕconfl ∈ Φ(C).

Definition. [Vacuitiy wrt. Conflict Axiom] A rule r = ϕ → α ∈ T over C
and A is called vacuous wrt. conflict axiom ϕconfl ∈ Φ(C) if and only
if the premise implies the conflict axiom, i.e. if |= (ϕ =⇒ ϕconfl ).

• A conflict relation on actions A is a transitive and symmetric relation
 ⊆ (A×A).

Definition. [Consistency] Let r = ϕ → α ∈ T be a rule.

(i) r is called consistent with conflict relation  if and only if there
are no conflicting actions in α, i.e. if 6 ∃ a1, a2 ∈ α • a1 a2.

(ii) T is called consistent if and only if all rules r ∈ T are consistent.



Example: Conflicting Conditions Actions
–
0
5
–
2
0
1
5
-0
5
-1
1
–
S
et
co

n
fl
–

71/90

• Let ϕconfl = (on ∧ off ) ∧ (¬on ∧ ¬off ).

“on models an opposite of off , neither can both be satisfied nor bot non-satisfied”

• Let  be the transitive, symmetric closure of stop go.

“actions stop and go are not supposed to be executed at the same time”

• Then

T : room ventilation r1 r2

b button pressed? × ×
off ventilation off? × -

on ventilation on? × ×

go start ventilation × ×

stop stop ventilation - ×

• r1 is vacuous wrt. ϕconfl ,

• r2 is inconsistent with  .



Conflicting Conditions Actions: Consequences
–
0
5
–
2
0
1
5
-0
5
-1
1
–
S
et
co

n
fl
–

72/90

• Vacuity wrt. ϕconfl :

Same as with uselessness and general vacuity, doesn’t hurt but

May make communication with customer harder!

Implementing vacuous rules is a waste of effort!

• Consistency:

A decision table with non-useless/vacuous but inconsistent rules
cannot be implemented!

Detecting an inconsistency only late during a project can incur significant cost!

Inconsistencies (in particular in (multiple) decision tables, created and edited by
multiple people, as well as in requirements in general) are not always as obvious
as in the toy examples given here! (would be too easy...)



Other Semantics for Decision Tables

–
0
5
–
2
0
1
5
-0
5
-1
1
–
m
a
in

–

73/90



A Collecting Semantics for Decision Tables
–
0
5
–
2
0
1
5
-0
5
-1
1
–
S
et
co

ll
–

74/90

• Let T be a decision table and π = σ0

α
1−→ σ1

α
2−→ σ2 · · · a state/event sequence.

• Recall: π is a computation path of T (in the interleaving semantics) if

∀ i ∈ N0 ∃ r = ϕ → α ∈ T • σi |= ϕ ∧ αi+1 = α.

• π is a computation path of T (in the collecting semantics) if and only if

∀ i ∈ N0 ∃ r = ϕ → α ∈ T • σi |= ϕ ∧ αi+1 =
⋃

ϕ′→α′∈T,

σi|=ϕ′

α′.

That is, all rules which are enabled in σi “fire” simultaneously,
the joint effect is the union of the effects.

• Advantage:

• separation of concerns, multiple (smaller) tables may contribute to a transition,

• no non-determinism between rules: all enabled ones “fire”.

• Disadvantages: conflicts much less obvious.



An Update Semantics for Decision Tables
–
0
5
–
2
0
1
5
-0
5
-1
1
–
S
et
co

ll
–

75/90

• By now, we didn’t talk about the effect of actions from A on states.
Actions are uninterpreted.

• Recall the “cash cheque” example:

Here it makes sense, because the next state seen by the bank clerk may be the
result of many database updates by other bank clerks.

We can also define a semantics with action effects:

• Let A be a set of actions and Σ a set of states.

• Let J · Kacteff : A× Σ → Σ which assigns to each pair of (a, σ) of action and state
a new state σ′. σ′ is called the result of applying a to σ.

• Example: on Σ = {b, on, off }, we could define

JgoKacteff (σ) = σ|{b} ∪ {on 7→ 1, off 7→ 0}

JstopKacteff (σ) = σ|{b} ∪ {on 7→ 0, off 7→ 1}

• The interleaving semantics with action effects is then

∀ i ∈ N0 ∃ r = ϕ → α ∈ T • σi |= ϕ ∧ αi+1 = α ∧ σi+1 = JαKacteff (σ).



An Update Semantics for Decision Tables Cont’d
–
0
5
–
2
0
1
5
-0
5
-1
1
–
S
et
co

ll
–

76/90

• In addition, we may want to constrain initial states, i.e. give a set Σini ⊆ Σ.

• Computation paths of T (over Σ) are then required to have σ0 ∈ Σini .

• Example: decision table

T : room ventilation r1
off ventilation off? ×
on ventilation on? -

go start ventilation ×
stop stop ventilation -

with Σini = {{on 7→ 0, off 7→ 1}} has only one computation path, namely

σ0

off
−−→ σ1

with σ1 = {on 7→ 0, off 7→ 1}.

• We can say T terminates.

• This gives rise to another notion of vacuity: r = (on ∧ off ) → α is never
enabled, because no state satisfying the premise is ever reached
(even with conflict axiom ϕconfl = false).



Distinguishing Controlled and Uncontrolled Conditions
–
0
5
–
2
0
1
5
-0
5
-1
1
–
S
et
co

ll
–

77/90

• For some systems, we can distinguish inputs and outputs.

• In terms of decision tables:

• C is partitioned into controlled conditions Cc and uncontrolled conditions Cu, i.e.
C = Cc ∪̇ Cu.

• actions only affect controlled conditions.

• Example:

• Cc = {on, off } (only the software switches the ventilation on or off),

• Cu = {b} (the button is not controlled by the software, but by the environment, by a
user external to the computer system)

• One more quality criterion, another notion of completeness:

We want the specification to be able to deal with all possible sequences of inputs,
i.e. we require

JT K|Cu
= (Σ|Cu

)ω ( or (Σ|Cu
)∗).



Controlled and Uncontrolled Conditions: Example
–
0
5
–
2
0
1
5
-0
5
-1
1
–
S
et
co

ll
–

78/90

• Example:

T : room ventilation r1 r2

b button pressed? × -
off ventilation off? × -
on ventilation on? - ×

go start ventilation × -
stop stop ventilation - ×

• is not input sequence complete:

There is no rule enabled if the button is pressed when the ventilation is off.

• Note: it’s not that pressing the button such a state has no effect, but the
system stops to work; it “gets stuck” in that state.

(Because in order to take a transition, we need to have at least one enabled rule.)



Decision Tables: Discussion

–
0
5
–
2
0
1
5
-0
5
-1
1
–
m
a
in

–

79/90



User Stories

–
0
5
–
2
0
1
5
-0
5
-1
1
–
m
a
in

–

80/90



–
0
5
–
2
0
1
5
-0
5
-1
1
–
S
u
se
rs
to
ry

–

81/90



–
0
5
–
2
0
1
5
-0
5
-1
1
–
S
u
se
rs
to
ry

–

82/90



Scenarios

–
0
5
–
2
0
1
5
-0
5
-1
1
–
m
a
in

–

83/90



Live Sequence Charts

–
0
5
–
2
0
1
5
-0
5
-1
1
–
m
a
in

–

84/90



Use Case Diagrams

–
0
5
–
2
0
1
5
-0
5
-1
1
–
m
a
in

–

85/90



Wrap-Up

–
0
5
–
2
0
1
5
-0
5
-1
1
–
m
a
in

–

86/90



–
0
5
–
2
0
1
5
-0
5
-1
1
–
m
a
in

–

87/90



Software vs. Systems Engineering

–
0
5
–
2
0
1
5
-0
5
-1
1
–
m
a
in

–

88/90



References

–
0
5
–
2
0
1
5
-0
5
-1
1
–
m
a
in

–

89/90



References
–
0
5
–
2
0
1
5
-0
5
-1
1
–
m
a
in

–

90/90

Arenis, S. F., Westphal, B., Dietsch, D., Muñiz, M., and Andisha, A. S. (2014). The wireless fire alarm system: Ensuring conformance to
industrial standards through formal verification. In Jones, C. B., Pihlajasaari, P., and Sun, J., editors, FM 2014: Formal Methods - 19th
International Symposium, Singapore, May 12-16, 2014. Proceedings, volume 8442 of LNCS, pages 658–672. Springer.

Balzert, H. (2009). Lehrbuch der Softwaretechnik: Basiskonzepte und Requirements Engineering. Spektrum, 3rd edition.

Brooks, F. P. (1995). The Mythical Man-Month: Essays on Software Engineering, Anniversary Edition. Addison-Wesley.

DIN (2009). Projektmanagement; Projektmanagementsysteme. DIN 69901-5.

Gacitua, R., Ma, L., Nuseibeh, B., Piwek, P., de Roeck, A., Rouncefield, M., Sawyer, P., Willis, A., and Yang, H. (2009). Making tacit
requirements explicit. talk.

IEEE (1990). IEEE Standard Glossary of Software Engineering Terminology. Std 610.12-1990.

IEEE (1998). IEEE Recommended Practice for Software Requirements Specifications. Std 830-1998.

Ludewig, J. and Lichter, H. (2013). Software Engineering. dpunkt.verlag, 3. edition.

Rupp, C. and die SOPHISTen (2009). Requirements-Engineering und -Management. Hanser, 5th edition.


	You Are Here
	Course Content (Original Plan)
	Contents & Goals
	
	
	Requirements and Requirements Analysis
	The Requirements Engineering Problem
	So What is So Important About That?
	Purposes of the Requirements Specification
	And What's Hard About That?
	Once Again: The Software Peoples' View on Requirements
	A Bit More Abstract: Software vs. `Real World' Requirements
	And What's Hard About That?
	A First Summary
	… Namely: Requirements Specification vs. Design

	Requirements Engineering: Basics
	Requirements Analysis Basics
	Documents of the Requirements Analysis: Dictionary
	Dictionary Example (With Room for Improvement)
	Documents of the Requirements Analysis: Specifications
	Requirements on Requirements Specifications
	The Crux of Requirements Engineering
	Requirements on Requirements Specification Documents

	Kinds of Requirements
	Kinds of Requirements: Hard and Soft Requirements
	Kinds of Requirements: Open and Tacit
	Kinds of Requirements: Functional and Non-Functional

	Requirements Analysis Techniques
	(A Selection of) Analysis Techniques
	Requirements Elicitation
	How Can Requirements Engineering Look In Practice?

	Specification Languages
	Requirements Specification Language
	Natural Language Specification
	
	Natural Language Patterns
	Other Pattern Example: RFC 2119
	
	Structure of a Requirements Document: Example

	You Are Here
	
	Recall: Formal Methods

	Formal Specification and Analysis of Requirements: Decision Tables for Example
	Decision Tables
	Decision Tables: Example
	Satisfaction of Conditions and Premises
	Satisfaction of Premises
	Specifying Behaviour with Decision Tables
	Decision Tables: Example
	Isn't There a Bell Ringing...?
	And Where's The Table?
	Decision Tables vs. Rules In General
	Decision Tables as Business Rules

	Decision Tables as Software Specification
	Another Bell...

	Basic Requirements Quality Criteria for DTs
	Quality Criteria for DTs: Uselessness and Vacuity
	Uselessness: Example
	Uselessness: Consequences
	Quality Criteria for DTs: Completeness
	Completeness: Example
	Incompleteness: Consequences
	Quality Criteria for DTs: Determinism
	Determinism: Example
	Non-determism: Consequences
	Implementing Decision Tables

	More Requirements Quality Criteria for DTs
	Consistency of Rules
	Conflicting Conditions and Actions, Consistency
	Example: Conflicting Conditions Actions
	Conflicting Conditions Actions: Consequences

	Other Semantics for Decision Tables
	A Collecting Semantics for Decision Tables
	An Update Semantics for Decision Tables
	An Update Semantics for Decision Tables Cont'd
	Distinguishing Controlled and Uncontrolled Conditions
	Controlled and Uncontrolled Conditions: Example

	Decision Tables: Discussion
	User Stories
	
	

	Scenarios
	Live Sequence Charts
	Use Case Diagrams
	Wrap-Up
	

	Software vs. Systems Engineering
	References
	References


