MicroCal ITC-200 for Isothermal Titration Calorimetry

General Care and Maintenance

- The instrument should be left ON at all times
- Wash the instrument thoroughly before and after every run
- Treat the syringe with care, it's easy to break and expensive
- Report problems immediately in the booking system: https://ppms.us/hms-cmi
- Refer to the Microcal ITC-200 Getting Started Guide and User Manual for more information
- Perform water-in-water titrations at the end of the day to check the system

Start-up Sequence

- 1. Before you start, book time on the PPMS calendar
- 2. Login to the computer using your PPMS credentials (eCommons ID and password)
- 3. The ITC-200 instrument should be left **ON** at all times. If not, turn it on using the power switch on the back.
- 4. Start the MicroCal ITC-200 software.
- 5. After system initialization, check that all systems are working and that the red light on the front of the instrument is on.
- 6. Make sure that wash station bottles and methanol are at least $\frac{1}{2}$ full.
 - a. Methanol bottle should contain 100% Methanol
 - b. Water and Buffer bottles should both contain Milli-Q water
- 7. Empty the waste bottle if more than $\frac{1}{2}$ full.
- 8. Fill the reference cell with water, if it hasn't been filled in more than a week
- 9. In ITC-200 software, select Instrument Controls Tab
- 10. Run Cell Water Rinse (long)
- 11. Run Syringe Wash (long)
 - a. follow on screen directions for attaching the fill port adapter
 - b. **do not over-tighten fill port adapter**

Standard Protocol

- 1. Prepare samples and reagents (see CMI_ITC200_sample_prep_guidelines document for tips)
- 2. In ITC-200 software, select Setup Tab
 - a. enter Data File path. eg. C:\ITC200\Data\PInameLab\YourName
 - b. enter Setup File Path (optional)
 - c. Current User should be Default User (do not create user profiles)
- 3. In ITC-200 software, select Advanced Experimental Design Tab

4. Enter Experimental Parameters:

Total # Injections	19
Cell Temperature (C°)	25
Reference Power (µcal/s)	6-7 (if ΔH is unknown)
Initial Delay (sec)	60

5.

Syringe concentration (mM)		
Cell concentration (mM)		
Stirring Speed (RPM)	1000	
Data File Name		
Feedback Mode/Gain	high	
Enter Injection Parameters:	first inj.	remaining injections
Volume (µl)	0.4	2
Duration (sec)	0.8	4 (2X injection volume)
Spacing (sec)	150	150
Filter Period (sec)	5	5

6. In ITC-200 software, select Instrument Controls Tab

7. Run Syringe Fill Method

- a. place a tube with ≥60 µl syringe sample in the tube holder at load position
- b. follow on screen directions for filling syringe
- c. Don't forget to remove the wash module attachment after filling
- 8. Manually wash cell with buffer matched to sample buffer, at least 3 times using Hamilton syringe
- 9. Manually fill cell with cell sample, being very careful not to introduce air bubbles:
 - a. fill Hamilton syringe with about 300 µl sample for cell, remove air bubbles
 - b. carefully insert syringe into sample cell until it touches the bottom
 - c. lift syringe up 1-2 mm
 - d. slowly fill cell with sample (until sample emerges from top)
 - e. gently aspirate and dispense about 50 µl sample to dislodge any air bubbles
 - f. remove the syringe while ejecting
 - g. place the tip of the syringe on the ledge at top of metal cell stem and remove excess solution
- 10. When syringe fill is complete, disconnect the fill port adapter
 - a. move pipette to rest position
 - b. loosen retaining nut
 - c. remove fill port adapter
 - d. gently tighten retaining nut
- 11. Place pipette into cell port
- 12. Click start to begin assay
 - a. in 5-10 min the differential power (DP) should stabilize near the set reference power (±1 µcal/sec)
 - b. if it doesn't stabilize at all or near the reference power, check that the sample cell and the reference cell are filled or clean the cell again
- 13. Select Real Time Plot to view raw data
- 14. After every run, clean the cell and syringe again before the next titration
- 15. At the end of the day, follow the NEW Shutdown Procedure (below, and posted at the instrument)

New ITC-200 Shutdown Procedure

- 1. Clean the instrument.
 - a. Clean the cell using the Cell Water Rinse (long)
 - b. Clean the syringe using the Syringe Wash (Long) protocol
 - c. If you suspect precipitation in the cell, wash the cell with detergent:
 - i) follow the Detergent Soak and Rinse protocol, with 10-20% Contrad 70
 - ii) Remove the detergent manually from the cell (using the Hamilton syringe)
 - iii) Wash the cell using the wash module
- 2. Run a water-in-water titration:
 - a. Fill the syringe with filtered, degassed water
 - b. Fill the cell with filtered, degassed water
 - c. Detach the wash module from the syringe
 - d. In ITC-200 software, go to Setup Tab
 - i) enter Data File path: C:\ITC200\Data\1_CMI_WaterTitrations
 - ii) enter Setup File Path: C:\ITC200\Setup\1_CMI_WaterTitrations
 - e. In ITC-200 software, select Advanced Experimental Design Tab
 - f. Load the file *Water_15cycle_RP6.inj* or set up the experiment with the following parameters
 - i) 15 injections, 25C, Reference Power 6µcal/sec, Initial Delay 60 sec
 - ii) Data File Name: YYYYMMDDwaterINITIALS (eg. 20150519waterKLA)
 - iii) 2 µl injections, 120 sec spacings
 - g. Start the water-in-water titration (runtime ~30 min)
- 3. During the run, check that :
 - i) the differential power is within 1ucal/sec of the set reference power.
 - ii) Check that the heats of dilution are minimal and uniform
 - iii) If these fails, repeat from Step 1 until the instrument is clean
- 4. Run the Syringe Wash (Long or Short) protocol
- 5. Empty the cell
- 6. Sign in the paper logbook
- 7. Logoff from PPMS!
 - rates are based on booked and real time usage
- 8. Report Problems in the PPMS booking system https://ppms.us/hms-cmi

Contact cmi@hms.harvard.edu with questions

last edited: 2015-10-30