
A Fingertip Detection and Tracking System as a Virtual Mouse, a Signature
Input Device and an Application Selector

Abstract

This project presents vision-based fingertip detection and tracking system on a 2D

plane using a camera as an input interface to the computer. An intensity based approach

is used to detect the arbitrary shaped, uniform colored 2D area on which the hand

operates, and then the fingertip is effectively detected and tracked using the sampled hand

contour. Grid sampling approach is used for a fast implementation. The system achieves

speeds of up to 30 fps.Tip pointers such as a stylus or a pen can be used in place of the

fingertip, making the device user-friendly. The system is used to implement a virtual

mouse, a signature input device and an application selector.

1. Introduction:

In the field of computer vision, many prototypes of intelligent vision-based

interface systems have been developed that are more intuitive and cost-effective than the

conventional interface devices such as the mouse and the keyboard. We describe such a

system that detects and tracks the fingertip in a 2-D plane, and then demonstrate its

application as a virtual mouse, a signature input device and an application selector. The

system is shown in Figure 1.

It comprises a panel, which is a 2D object of an arbitrary shape and a uniform

color. The panel acts as a pad on which the finger is to be operated. A camera is focused

on the panel to observe the tip pointer. This acts as the interface link between the user and

the computer. Firstly, we present an overview of the system. Then, we present an analysis

of the system to describe in detail, the techniques used for detecting the panel and

detecting and tracking the fingertip. Finally, we present the application of the fingertip

detection and tracking system as (a) a virtual mouse, (b) a signature input device and (c)

an application selector. The system achieves a speed of up to 30 frames per second on a

computer running on Intel Core 2 Duo processor, 1.73 GHz with 1GB RAM.

1.2. Company Profile.

 2. System Study

 The System study phase analyzes the problems of existing systems, defines the

objectives to be attained by a solution and evaluates various solution alternatives

2.1 Existing System

 Exploring vision-based interfaces is motivated by the unnaturalness of some of

the conventional input devices such as mice and joysticks in many intelligent

environments where intuitive interactions and teleoperations are required.

 The bottleneck of such devices comes from the lack of flexibility due to the

constraints from the environments, and the lack of the feeling of immersiveness in

human computer interaction.

 2.2 Proposed System

 Future work on the system can include the integration of a character-recognition

system with this system.

 Various extensions and improvements in the fingertip detection and tracking

system can be explored.

2.3 Advantages of Proposed System

 We have developed a prototype of vision-based fingertip detection and tracking

system on a 2D plane based on the intensity of captured images.

 This approach combined with the method of grid sampling results in speeds up to

30 frames per second with images of resolution 640x480 pixels.

 This is higher than the speeds that have been achieved by some similar methods

as documented in.

3. System Analysis & Feasibility

The analysis of a problem that we will try to solve with an information system; describes

what a system should do.

3.1 Feasibility Study:

Next step in the analysis is feasibility study. By performing feasibility study the

scope of the system will be defined completely.

Most computer systems are developed to satisfy a known user requirement. This

means that the first event in the life cycle of a System is usually the task of studying

whether it is feasible to a Computerize a system under consideration or not. Once the

decision is made, a report is forwarded and is known as Feasibility Report.

The Feasibility is studied under three contexts
a. Technical Feasibility
b. Economic Feasibility
c. Operational Feasibility

3.1.1 Technical Feasibility

 What resources are available for given developer system? Is

the problem worth solving? In the proposed system, technical feasibility centers on the

existing computer system (hardware, software etc.) and what extent it can support the

proposed system. There should not be more cost involved here for the hardware because

all the hardware required are present in the existing system and software specified also

exists. There fore, now we needed to install the software on existing system for the

project. And the operation of this system requires knowledge about Windows XP or

window Professional. This assistance would be easily available.

Even though these technical requirements are needed for implementing the

system, once the code is generated and compiled, the executable code of the project is

sufficient to run the application.

 Hence the proposed system is technically feasible.

3.1.2 Economic Feasibility

Economic feasibility is used for evaluating the effectiveness of a candidate

system. The procedure is to determine the cost and benefits/savings that are expected

from a candidate system and compare with the costs. If cost is less and benefit is high,

then the decision is made to design and implement the system. All the required facilities,

hardware and software, to be used are initially may be costly, but when put to use it

proves to be much more economical than the existing system. Regarding the

maintenance, since the source code will be with the company, any small and necessary

changes can be done with minimum maintenance cost involved in it. The system that is

developed and installed must be good investment for organization. The organization has

to spend the amount for technology, as it is not computerized. The present system

performance is high when compared to the previous system. So for the organization the

cost factor is acceptable, so it is economically feasible.

 If installed will certainly be beneficial since there will be reduction in manual

work, and increase in the speed of work there by increasing the profit of company and

saving time. The proposed system is cost effective one compared with the current

existing system. Hence the system is economically feasible.

3.1.3 Operational feasibility

Fingertip Detection and tracking system is mainly involved in looking to Virtual

mouse operations. This is done by using special control and monitoring software. The

monitoring system should include features like

• Automatically opening the application based on the virtual mouse click.

• Finger tip signature will be taken as the input to authenticate the application

• Automatic typing is done in the screen.

The main problem in developing a new system is getting acceptance and the co-

operation from the users because many users are reluctant to operate on a new system.

The software being developed is more interactive. With the developing system, it is

instantaneous; moreover even a new person can operate the system and easily execute the

system. So it is operationally feasible.

 Since the system relives the management of maintaining an voluminous

records in a login at user level, the proposed system would be acceptable by the user and

is operationally feasible.

3.2 Packages Selected:

The Microsoft .NET Framework 3.0 is the new managed code programming

model for Windows. It combines the power of the .NET Framework version 2.0 with new

technologies for building applications that have visually compelling user experiences,

seamless communication across technology boundaries, and the ability to support a wide

range of business processes. These new technologies are Windows Presentation

Foundation, Windows Communication Foundation, Windows Workflow Foundation, and

Windows CardSpace. The .NET Framework 3.0 is included as part of the Windows Vista

operating system; you can install it or uninstall it using Windows Features Control Panel.

This redistributable package is for Windows XP and Windows Server 2003.

Microsoft Windows XP Service Pack 2 (SP2) provides new proactive security

technologies for Windows XP to better defend against viruses, worms, and hackers. In

addition to a more robust security infrastructure, SP2 improves the security configuration

options of Windows XP and provides better security information to help users faced with

security decisions.

3.3 Resource Required

 Planning and analyzing the resources is also the one of the major part of the

SDLC to complete the project with in a given time. In this phase we need to analyze the

availability of the resources that are required to design, develop, Implement and Test the

project. The resources to be analyzed are Employees, Time and the SRS. Teams of three

members are involved in the entire SDLC life cycle except the testing phase. The testing

phase is guided by the Manual testers before the hosting the application in the server

space.

 Time Analyzed to complete the project is approximately three months with

3 hrs on daily basis except week ends. SRS is prepared and provided as per the

URS.

3.4 Dataflow Diagram

4. System Design

 In the Design phase of SDLC both the Logical and physical design specifications

for the systems solution are produced.

 Web cam Image

Convert to bit
map image

Set to Grayscale
Conversion

 Output Image

4.1 Architectural Design

 Architecture diagram shows the relationship between different components of

system. This diagram is very important to understand the over all concept of system

4.2 Hardware Specifications

 Processor : Pentium III

 Clock speed : 550MHz

 Hard Disk : 20GB

 RAM : 128MB

 Cache Memory : 512KB

 Operating System : windows xp

 Monitor : Color Monitor

 Keyboard : 104Keys

 WebCam

Initialization

Gray Scale
Conversion

Binary
Conversion

Panel
Detection Hand

Detection
And

Fingertip
Detection

Virtual Mouse

Signature
Device

Application
SelectorAction

Detector

 LED Array

4.3 Software Requirements

 Microsoft XP

 VB.NET

4.4 Screen shots

5. Coding & Debugging

5.1 Module Description:

 The System as a Virtual Mouse

The new coordinates of the tip location are compared with the previous coordinates, and

the difference between the coordinates is algebraically added to the previous coordinates.

This results in mouse motion. The speed of the mouse can be controlled by using a

multiplying factor M to multiply the difference between coordinates before addition to

previous coordinates. Mathematically:

Px, t = M*(Cx, t – Cx, t-1) + Px, t-1 (1)

Py, t = M*(Cy, t – Cy, t-1) + Py, t-1 (2)

Where, ‘P’ denotes the pointer location on screen,

‘C’ denotes the coordinates of tip,

‘M’ denotes the multiplying factor,

‘x’ & ‘y’ denote the rectangular x & y axes respectively,

‘t’ denotes the present time.

Our present implementation supports single clicking mode. The clicking mode is

simulated by holding the tip stationary at a location for a short duration of time, say 2

seconds. This simulates the left click of the mouse. The position of the pointer may not

remain constant due to noise and hence if the fluctuation is within 1 grid pixel, the tip is

considered immobile.

The System as a Signature Input Device

The Signature Capture ON instruction is generated by holding the tip pointer stationary at

a location for a short duration of time, say 2 seconds. When the application is activated,

the user is asked to input his/her signature. The tip pointer coordinates obtained from

successive images are joined by straight lines as shown in Fig. 5. The Signature Capture

OFF instruction is generated by holding the tip pointer stationary at a location for a short

duration of time after completing the signature, say 2 seconds. This application provides

an efficient and economical way of obtaining digital images of signatures.

Fig. 5 Virtual image during the signature input process

The System as an Application Selector

In this application, the panel acts like a touch pad to initiate different

commands/programs/applications. We implemented a touch-pad that provides 4 options

of applications to the user. The A4 sheet is divided into blocks each specifying a

particular application (as shown in Fig. 6), and the commands that trigger the application

corresponding to each block are pre-stored in the memory. The paper orientation is fixed.

After panel detection, the coordinates of the four vertices of the A4 sheet are stored at a

memory location, and with their help, the equations of the diagonals of the quadrilateral

panel are determined. Let the equations of the two diagonals be:

Ax + By + C = 0 (3)

Dx + Ey + F = 0 (4)

Where A, B, C, D, E and F are constants; x and y are variables of the Cartesian

coordinate system.

The 4 blocks, as shown in Fig. 6, can be specified in terms of the equations of the

diagonals as:

Block 1: Ax + By + C < 0 and Dx + Ey + F < 0 (5)

Block 2: Ax + By + C < 0 and Dx + Ey + F > 0 (6)

Block 3: Ax + By + C > 0 and Dx + Ey + F < 0 (7)

Block 4: Ax + By + C > 0 and Dx + Ey + F > 0 (8)

An application is selected by holding the finger stationary on the corresponding block for

a short duration of time, say 2 seconds. The system determines the block in which the tip

pointer is held constant with the help of (5) – (8) and activates the pre-stored commands

corresponding to that block.

Fig. 6 The panel for application selector

5.2 About the Software

Visual Basic.NET: A New Framework

 Microsoft .Net Framework is an integral Windows component that supports

building and running the next generation of applications and XML Web services. The key

components of the .NET Framework are the common language runtime and the .NET

Framework class library, which includes VB.NET,ADO.NET, ASP.NET AND Windows

Forms. The .NET framework provides a managed execution environment simplified

development and a deployment and integration with a wide variety of programming

languages. The .NET framework is a new computing platform that simplifies application

development in the highly distributed environment of the Internet. The .NET framework

is designed to fulfill the following objectives

 To provide a consistent object-oriented programming environment whether object

code is stored and executed locally but internet-distributed or executed remotely.

 To provide a code-execution environment that minimizes software deployment

and versioning conflicts.

 To provide a code-execution environment that guarantees safe execution of code,

including code, created by an unknown or semi-trusted third party.

 To provide a code-execution environment that eliminates the performance

problems of scripted or interpreted environments

 To make the developer experience consistent across widely varying types of

applications and web based applications

 To build all communication on industry standards to ensure that code based on the

.NET framework can integrate with any other code.

 As you already know, .NET is a name for a new strategy: a blueprint for building

applications for the next decade. It’s actually even more than that. It’s Microsoft’s

commitment to remain at the top of a rapidly changing world and give us the tools to

address the needs of tomorrow’s computing.

 Visual Basic .NET is a language for creating .NET applications, like many others. It

also happens that Visual Basic is the easiest to learn, most productive language (but you

already know that).Visual Basic .NET is released shortly after the tenth anniversary of

the first version of VB. The original language that changed the landscape of computing

has lasted for 10 years and has enabled more programmers to write Windows application

than any other language. Programmers who invested in Visual Basic 10 years ago are in

demand today.

 In the world of computing, however, things change very fast, including languages.

At some point, they either die, or they evolve into something new. Visual Basic was a

language designed primarily for developing Windows applications. It was a simple

language, because it managed to hide many of the low-level details of the operating

system. Those who wanted to do more with Visual Basic had to resort to Windows API.

In a way, earlier versions of Visual Basic were ‘sandboxed’ to protect developers from

scary details.

 Microsoft had to redesign Visual Basic. The old language just didn’t belong in

the .NET picture (at least, it wouldn’t integrate very well into the picture). Visual

Basic .NET is not VB7; it’s a drastic departure from VB6, but a necessary departure.

Visual Basic .NET was designed to take us through the next decade of computing, and if

you want to stay ahead, you will have to invest the time and effort to learn it. The most

fundamental component of the .NET initiative is the .NET Framework, or simply the

Framework. You can think of the Framework as an enormous collection of functions for

just about any programming task. All drawing methods, for example, are part of the

System.Drawingclass. To draw a rectangle, you call the DrawRectangle method, passing

the appropriate arguments. To create a new folder, you call the CreateDirectory method

of the Directory class; to retrieve the files in a folder, you call the GetFiles method of the

same object. The Framework contains all the functionality of the operating system and

makes it available to your application through numerous methods.

 VB was such a success because it was a very simple language. You didn’t have to

learn a lot before you could start using the language. Being able to access the

Framework’s objects means that you’re no longer limited by the language. The new

version of the language unlocks the full potential of .NET; now there’s hardly anything

you can do with another language but can’t do with Visual Basic. This makes the

language as powerful as any other language, but it also makes the learning curve steeper.

Development environments:

• Visual Studio .NET (VS .NET)

• Visual Web Developer

Intermediate Language:

All the .NET languages are compiled into another lower-level language before the

code is executed. This lower-level language is the Common Intermediate Language (CIL,

or just IL). The CLR, the engine of .NET, uses only IL code. Because all .NET languages

are designed based on IL, they all have profound similarities. This is the reason that the

VB and C# languages provide essentially the same features and performance. In fact, the

languages are so compatible that a web page written with C# can use a VB component in

the same way it uses a C# component, and vice versa.

The .NET Framework formalizes this compatibility with something called the

Common Language Specification (CLS). Essentially, the CLS is a contract that, if

respected, guarantees that a component written in one .NET language can be used in all

the others. One part of the CLS is the common type system (CTS), which defines the

rules for data types such as strings, numbers, and arrays that are shared in all .NET

languages. The CLS also defines object oriented ingredients such as classes, methods,

events, and quite a bit more. For the most part, .NET developers don’t need to think about

how the CLS works, even though they rely on it every day.

Figure shows how the .NET languages are compiled to IL. Every EXE or DLL

file that you build with a .NET language contains IL code. This is the file you deploy to

other computers. In the case of a web application, you deploy your compiled code to a

live web server.

Other .NET Languages:

VB and C# aren’t the only choices for ASP.NET development. Developers can

also use J# (a language with Java-like syntax). You can even use a .NET language

provided by a third-party developer, such as a .NET version of Eiffel or even COBOL.

This increasing range of language choices is possible thanks to the CLS and CTS, which

define basic requirements and standards that allow other companies to write languages

that can be compiled to IL. Although you can use any .NET language to create an

ASP.NET web application, some of them do not provide the same level of design support

in Visual Studio, and virtually all ASP.NET developers use VB and C#. For more

information about third-party .NET languages.

The Common Language Runtime:

The CLR is the engine that supports all the .NET languages. Many modern

languages use runtimes. In VB 6, the runtime logic is contained in a DLL file named

msvbvm60.dll. In C++, many applications link to a file named mscrt40.dll to gain

common functionality. These runtimes may provide libraries used by the language, or

they may have the additional responsibility of executing the code (as with Java).

Runtimes are nothing new, but the CLR is Microsoft’s most ambitious runtime to date.

Not only does the CLR execute code, it also provides a whole set of related services such

as code verification, optimization, and object management.

All .NET code runs inside the CLR. This is true whether you’re

running a Windows application or a web service. For example, when a

client requests an ASP.NET web page, the ASP.NET service runs inside

the CLR environment, executes your code, and creates a final HTML

page to send to the client.

The implications of the CLR are wide-ranging:

Deep language integration: VB and C#, like all .NET languages,

compile to IL. In other words, the CLR makes no distinction between

different languages—in fact, it has no way of knowing what language

was used to create an executable. This is far more than mere language

compatibility; it’s language integration.

Side-by-side execution: The CLR also has the ability to load more

than one version of a component at a time. In other words, you can

update a component many times, and the correct version will be

loaded and used for each application. As a side effect, multiple

versions of the .NET Framework can be installed, meaning that you’re

able to upgrade to new versions of ASP.NET without replacing the

current version or needing to rewrite your applications.

Fewer errors: Whole categories of errors are impossible with the CLR.

For example, the CLR prevents many memory mistakes that are

possible with lower-level languages such as C++. Along with these

truly revolutionary benefits, the CLR has some potential drawbacks.

Here are three issues that are often raised by new developers but

aren’t always answered:

Performance: A typical ASP.NET application is much faster than a

comparable ASP application, because ASP.NET code is compiled to

machine code before it’s executed. However, processor-crunching

algorithms still can’t match the blinding speed of well-written C++

code, because the CLR imposes some additional overhead. Generally,

this is a factor only in a few performance-critical high-workload

applications (such as real-time games). With high-volume web

applications, the potential bottlenecks are rarely processor-related but

are usually tied to the speed of an external resource such as a

database or the web server’s file system. With ASP.NET caching and

some well-written database code, you can ensure excellent

performance for any web application.

Code transparency: IL is much easier to disassemble, meaning that if

you distribute a compiled application or component, other

programmers may have an easier time determining how your code

works. This isn’t much of an issue for ASP.NET applications, which

aren’t distributed but are hosted on a secure web server.

Questionable cross-platform support: No one is entirely sure

whether .NET will ever be adopted for use on other operating systems

and platforms. Ambitious projects such as Mono (a free implementation

of .NET on Linux, Unix, and Windows) are currently underway.

However, .NET will probably never have the wide reach of a language

such as Java because it incorporates too many different platform-

specific and operating system–specific technologies and features.

The .NET Class Library:

The .NET class library is a giant repository of classes that provide

prefabricated functionality for everything from reading an XML file to

sending an e-mail message. If you’ve had any exposure to Java, you

may already be familiar with the idea of a class library. However,

the .NET class library is more ambitious and comprehensive than just

about any other programming framework. Any .NET language can use

the .NET class library’s features by interacting with the right objects.

This helps encourage consistency among different .NET languages and

removes the need to install numerous components on your computer

or web server.

 Some parts of the class library include features you’ll never

need to use in web applications (such as the classes used to create

desktop applications with the Windows interface). Other parts of the

class library are targeted directly at web development. Still more

classes can be used in various programming scenarios and aren’t

specific to web or Windows development. These include the base set of

classes that define common variable types and the classes for data

access, to name just a few. You’ll explore the .NET Framework

throughout this book.

.NET Framework deals with thorny issues like database

transactions and concurrency, making sure that hundreds or thousands

of simultaneous users can request the same web page at once. You

just add the logic needed for your specific application.

Visual Studio:
The last part of .NET is the Visual Studio development tool, which provides a rich

environment where you can rapidly create advanced applications. Although in theory you

could create an ASP.NET application without Visual Studio (for example, by writing all

the source code in a text editor and compiling it with .Net’s command-line compilers),

this task would be tedious, painful, and prone to error. For that reason, all professional

ASP.NET developers use a design tool like Visual Studio

.
Some of the features of Visual Studio include the following:

Page design: You can create an attractive page with drag-and-drop ease using Visual

Studio’s integrated web form designer. You don’t need to understand HTML.

Automatic error detection: You could save hours of work when Visual Studio detects

and

reports an error before you run your application. Potential problems are underlined, just

like the “spell-as-you-go” feature found in many word processors.

Debugging tools: Visual Studio retains its legendary debugging tools, which allow you to

watch your code in action and track the contents of variables. And you can test web

applications just as easily as any other application type, because Visual Studio has a

built-in web server that works just for debugging.

IntelliSense: Visual Studio provides statement completion for

recognized objects and automatically lists information such as function

parameters in helpful tool tips. You don’t need to use Visual Studio to

create web applications. In fact, you might be tempted to use the

freely downloadable .NET Framework and a simple text editor to create

ASP.NET web pages and web services.

Visual Studio is available in several editions. The Standard

Edition has all the features you need to build any type of application

(Windows or web). The Professional Edition and the Team Edition

increase the cost and pile on more tools and frills (which aren’t

discussed in this book). For example, they incorporate features for

managing source code that’s edited by multiple people on a

development team and running automated tests.

The scaled-down Visual Web Developer Express Edition is a completely free

version of Visual Studio that’s surprising capable, but it has a few significant limitations.

Visual Web Developer Express Edition gives you full support for developing web

applications, but it doesn’t support any other type of application. This means you can’t

use it to develop separate components for use in your applications or to develop Windows

applications. However, rest assured that Visual Web Developer Express Edition is still a

bona fide version of Visual Studio, with a similar set of features and development

interface.

The .NET Languages

The .NET Framework ships with three core languages that are commonly used for

building ASP.NET applications: C#, VB, and J#. These languages are, to a large degree,

functionally equivalent. Microsoft has worked hard to eliminate language conflicts in

the .NET Framework. These battles slow down adoption, distract from the core

framework features, and make it difficult for the developer community to solve problems

together and share solutions. According to Microsoft, choosing to program in C# instead

of VB is just a lifestyle choice and won’t affect the performance, interoperability, feature

set, or development time of your applications. Surprisingly, this ambitious claim is

essentially true.

.NET also allows other third-party developers to release languages that

are just as feature rich as C# or VB. These languages (which include

Eiffel, Pascal, Python, and even COBOL) “snap in” to the .NET

Framework effortlessly. In fact, if you want to install other .NET

languages, all you need to do is copy the compiler to your computer

and add a line to register it in the computer’s machine.config

configuration file. Typically, a setup program would perform these

steps for you automatically. Once installed, the new compiler can

transform your code creations into a sequence of Intermediate

Language (IL) instructions, just like the VB and C# compilers do with

VB and C# code. IL is the only language that the Common Language

Runtime (CLR) recognizes. When you create the code for an ASP.NET

web form, it’s changed into IL using the C# compiler (csc.exe), the VB

compiler (vbc.exe), or the J# compiler (vjc.exe). Although you can

perform the compilation manually, you’re more likely to let ASP.NET

handle it automatically when a web page is requested.

6. System Testing and Implementation

6.1 System Testing

 Any software has to be tested with pre-planned strategies. As Roger Pressmen

states, the preparation for testing should start as soon as the design of system starts, to

carry out the testing in an efficient manner certain amount of strategic planning has to be

done. Any testing strategy must incorporate test planning, test case design, test execution

and the resultant data collection and evaluation.

6.2 Unit Testing:

 In the lines of this strategy all, the individual functions and modules were put to

the test independently. By following this strategy all, the errors in coding were identified

and corrupted. This method was applied in combination with the white and black box

testing techniques to find the errors in each module.

6.3 Integration Testing:

 Again this software testing strategy has different approach in which integration

is carried out from the top level module to the bottom and the bottom up approach in

which integration is carried out from the low level module to the top.

• The modules are tested using the bottom up approach by introducing stumps

for the top level functions.

• This test used to identify the errors in the interfaces, the errors in passing

the parameters between the functions and corrects them.

6.4 Validation Testing:

 Validation testing is done to validate the inputs given by the user. The user

inputs are checked for their correctness and range. If there are errors, the error message

is given and the user is prompted again to enter the new value. If the user types some

characters in the numeric field an error message and it is demonstrated in the following

figure.

6.5 Testing Information Flow:

Testing

Evaluation
Software Configuration

Test Result

Errors

7. User Manual

7.1 System Overview

Firstly, we define a virtual image, which is of the same size as that of the captured

image and is black in color, i.e. the value of all pixels is taken to be 0 (on a scale of 0 to

1). System analysis can be divided into three parts: Panel detection, hand detection, and

fingertip detection and tracking.

Debug
Test Configuration

Expected Result

Corrections

Panel Detection

For a fast implementation with high-resolution images, we use the method of grid

sampling as described in [2]. The captured image is divided into grids of block size 10

pixel x 10 pixels. Each block is referred to as a grid pixel. Hence, an image of size

640x480 pixels is transformed to an image of size 64x48 grid pixels. Each captured

image is separated into its 3 component images corresponding to red, green and blue.

In each of the three images, each grid pixel is analyzed. If the intensity of 95%

pixels, i.e. 95 pixels out of 100 in a grid pixel, is greater than 0.85 (an empirical value on

a scale of 0 to 1 for a white A4 sheet), then the corresponding grid pixel in the virtual

image is set to 0.5. Hence, the panel in the captured image corresponds to a gray region in

the virtual image. A number of consecutive captured images are analyzed to check

whether the panel is static or not. This is done by comparing the position of the gray

pixels in the consecutive virtual images. When it is ascertained that the panel is static, the

virtual image is saved in a permanent location and the panel is said to be successfully

detected. The actual intensity of the panel is also stored at a permanent location. A

command is outputted by the system that the fingertip can be brought on the panel. An

example of panel detection is shown in Fig. 2.

Fig. 2(a) Captured image of panel

Fig. 2(b) Corresponding virtual image of panel

Hand Detection

When the hand is brought on the panel, the grid pixels of the captured image are

analyzed again. If 50% of all pixels of a grid pixel lying on the panel have intensity less

than 0.65 (an empirical value on a scale of 0 to 1 for a hand, taking values between 0.65

and 0.85 as a buffer), then the corresponding grid pixel in the virtual image is set to

1.Hence the hand in the captured image corresponds to a white region in the virtual

image. An example of hand detection is shown in Fig. 3.

Fig. 3(a) Captured image of hand on panel

Fig. 3(b) Fingertip in the corresponding virtual image

Fingertip Detection and Tracking

For fingertip detection, a square of 7 pixel x 7 pixels with a white grid pixel at its

center is considered, for every white grid pixel present on the panel. The number of white

grid pixels in this square is calculated. The white grid pixel whose corresponding square

has the least number of white grid pixels is the required position of fingertip. The

coordinates of this tip position are calculated and returned to the system. This tip position

is continuously updated for incoming images, and by this means the tracking of fingertip

is achieved. The method is graphically shown in Fig. 4, where the square corresponding

to the X marked grid pixel is constructed, and it consists of 12 white grid pixels. A buffer

region of 3 pixels is left on the edge of the detected panel for an efficient algorithm. An

example of fingertip detection is shown in Fig. 3.

Fig. 4 A square corresponding to the X marked white grid pixel

7.2 System Implementation:

 Implementation is that stage in the project where the theoretical design is turned

into a working system. The most crucial stage in achieving a new system and effectively.

The first step in implementing the system is in getting approval from the sample user.

This is done in view of any last minute changes that will be necessary in the formats.

When the sample users are satisfied, finally the site is implemented in .Net. The more

complex the system being implemented, the more involved will be system’s analysis and

design effort required for implementation.

7.3 Installation Procedure

If you have been directed to do a server installation, you must have the following

software installed in addition to the typical installation requirements:

ASP.NET is supported only on the following platforms: Microsoft Windows 2000

Professional (Service Pack 3 recommended), Microsoft Windows 2000 Server (Service

Pack 3 recommended), Microsoft Windows XP Professional, and Microsoft Windows

Server 2003 family.

 Any of the Operating System Mentioned above can be installed.

 Internet Information Services (IIS) version 5.0 or later. To access the features of

ASP.NET, IIS with the latest security updates must be installed prior to installing

the .NET Framework.

8. Conclusion

We have developed a prototype of vision-based fingertip detection and tracking system

on a 2D plane based on the intensity of captured images. This approach combined with

the method of grid sampling results in speeds up to 30 frames per second with images of

resolution 640x480 pixels. The system uses an arbitrary shaped panel of uniform color

(e.g. an A4 sheet) and a web-cam, objects that are inexpensive and easily available in

present day organizations. The fingertip can be substituted by a tip pointer such as a

stylus or a pen. This makes the device convenient and user-friendly. Three applications

have been developed based on the fingertip detection and tracking system. The virtual

mouse is an economical substitute of the hardware mouse. The signature input device

eliminates the complexity involved in devices such as digital pens or touch-sensitive

pads, and can be used in daily life to store digital images of signatures. This can find

application in organizations such as banks. The application selector provides an

inexpensive alternative to touch-sensitive pads and screens.

9. Future Enhancement

Future work on the system can include the integration of a character-recognition system

with this system. Various extensions and improvements in the fingertip detection and

tracking system can be explored.

10. References

 Ying Wu, Ying Shan, Zhengyou Zhangy, Steven Shafer, “Visual Panel: From an

ordinary paper to a wireless and mobile input device,” Technical Report, MSR-

TR-2000 Microsoft Research Corporation, http://www.research.microsoft.com,

October 2000.

 Duan-Duan Yang, Lain-Wen Jin, Jun-Xun Yin, Li-Xin Zhen, Jian-Cheng Huang,

“An effective robust fingertip detection method for finger writing character

recognition system,” Proceedings of the Fourth Int’l Conference on Machine

Learning and Cybernetics, Guangzhou, pp. 4191 – 4196, August 2005.

 J. L. Crowley, F. Berard and J. Coutaz, “Finger tracking as an input device for

augmented reality,” Proceedings of Int’l Workshop on Automatic Face and

Gesture Recognition, Zurich, Switzerland, pp. 195-200, June 1995.

 F. K. H. Quek, T. Mysliwiec and M. Zhao, “Finger Mouse: A freehand pointing

computer interface,” Proceedings of Int’l Workshop on Automatic Face and

Gesture Recognition, Zurich, Switzerland, pp. 372-377, June 1995.

 Christian. V. H, François. Bm., “Bare-hand human computer interaction,”

Proceedings of the 2001 workshop on Perceptive user interfaces, Orlando,

Florida, USA, pp. 1-8, Nov 2001.

 Oka. K, Sato. Y, Koike. H, “Real-time tracking of multiple fingertips and gesture

recognition for augmented desk interface system,” Proceedings of the Fifth IEEE

International Conference on Automatic Face and Gesture Recognition, pp. 411 –

416, May 2002.

 R. C. Gonzalez, R. E. Woods, Digital Image Processing, 2nd ed, Prentice Hall,

2002.

