BitTorrent Sync: First Impressions and Digital Forensic Implications

Jason Farina, Mark Scanlon, M-Tahar Kechadi

UCD School of Computer Science and Informatics,
University College Dublin, Dublin 4, Ireland.

Abstract

With professional and home Internet users becoming increasingly concerned with data protection and privacy, the privacy afforded
by popular cloud file synchronisation services, such as Dropbox, OneDrive and Google Drive, is coming under scrutiny in the
press. A number of these services have recently been reported as sharing information with governmental security agencies without
warrants. BitTorrent Sync is seen as an alternative by many and has gathered over two million users by December 2013 (doubling
since the previous month). The service is completely decentralised, offers much of the same synchronisation functionality of cloud
powered services and utilises encryption for data transmission (and optionally for remote storage). The importance of understanding
BitTorrent Sync and its resulting digital investigative implications for law enforcement and forensic investigators will be paramount
to future investigations. This paper outlines the client application, its detected network traffic and identifies artefacts that may be of

ﬁ-
i
)

$

(@))

value as evidence for future digital investigations.

Keywords:

(Q\ BitTorrent, Sync, Peer-to-Peer, Synchronisation, Privacy, Digital Forensics

R]

1. Introduction

Each of the aforementioned services can be categorised as
cloud synchronisation services. This means that while the data

) With home user bandwidth rising and the growth in profes-
g g p
. . is synchronised between user machines, a copy of the data is
O sional and non-professional computer power, the volume of . .
o . also stored remotely in the cloud. In recent headline news,
data created by each individual computer user is constantly h of this data is freel abl | .
. . 3 much of this data is freely available to governmental agencies
«| growing. For mobile users, access to this data has long been without the need of a warrant or even just cause. As a re-
q—> an 1ssu:>. EIVIT tgreatteihconnectlvtlty ?r}%,g;eater_fﬁlll,ibihay f(;f sult, BitTorrent Sync (also referred to as BTSync, BitSync or
N~ eslictzeljziclgu fa:ll de}z;l:sili;tcsot?)(;zp es”(;lavelﬁl ojzglaiv; ! zro’m(; h<; BSync), which provides much of the same functionality without
— AcKUp an) & . Y the cloud storage aspect is seen by many as a real alternative.
OO domain solely inhabited by large corporations and has started . . :
" tob) ol : ith d The service has numerous desirable attributes for any Internet
o)) to become increasingly popular with computer users and every- | (l:
day data consumers. Applications such as Evernote and Drop-
O day PP P
< box leverage the'decreasmg cos't of hard disk storage seen in e Compatibility and Availability — Clients are built for most
< Storage as a Service (SaaS) providers, e.g., Amazon S3, to pro-

© vide data storage on the cloud to home users and businesses

@

alike. The main advantage of services such as Dropbox, Google
Drive, Microsoft Skydive and Apple iCloud to the end user is
that their data is stored in a virtual extension of their local ma-
chine with no direct user interaction required after installation.
It is also backed up by a full distributed data-centre architecture
that would be completely outside the financial reach of the av-
erage consumer. Their data is available anywhere with Internet
access and is usually machine agnostic so the same data can be
accessed on multiple devices without any need to re-format par-
titions or wasting space by creating multiple copies of the same
file for each device. Some services such as Dropbox, also have
offline client applications that allow for synchronisation of data
to a local folder for offline access.

Email addresses: jason.farina@ucdconnect.ie (Jason Farina),
mark.scanlon@ucd.ie (Mark Scanlon), tahar.kechadi@ucd.ie
(M-Tahar Kechadi)

Preprint submitted to Digital Forensics Research Workshop EU 2014

common desktop and mobile operating systems, e.g., Win-
dows, Mac OS, Linux, BSD, Android and iOS.

e Synchronisation Options — Users can choose whether to
sync their content over a local network or over the Internet
to remote machines.

e No Limitations or Cost — Most cloud synchronisation ser-
vices provide a free tier offering a small amount of storage
and subsequently charge when the user outgrows the avail-
able space. BTSync eliminates these limitations and costs.
The only limitation to the volume of storage and speed of
the service is down to the limitations of the synchronised
users machines.

e Automated Backup — Like most competing products, once
the initial install and configuration is complete, the data
contained within specified folders is automatically syn-
chronised between machines.

September 30, 2014

e Decentralised Technology — All data transmission and
synchronisation takes place solely in a Peer-to-Peer (P2P)
fashion, based on the BitTorrent file sharing protocol.

e Encrypted Data Transmission — While synchronising data
between computers on different LAN (the option exists to
apply encryption for internal LAN transmission), the data
is encrypted using RSA encryption. Under the BTSync
API [2], developers can also enable remote file storage en-
cryption. This could result in users storing their data on
untrusted remote locations for the purposes of redundancy
and secure remote backup.

e Proprietary Technology — The precise protocol and oper-
ation of the technology is not openly documented by the
developer resulting in an element of perceived “security
through obscurity”. Of course, this requires a significant
degree trust on behalf of users that the developers’ security
has been implemented and tested correctly.

As a result of the above, the BTSync application has become
a very popular choice for file replication and synchronisation.
The technology had grown to over one million users by Novem-
ber 2013 and doubled to over two million users by December
2013 [3]]. The service will be of interest to both law enforce-
ment and digital forensics investigators in future investigations.
Like any other file distribution technology, this interest may be
centred around recovering evidence of the data itself, of the
modification of the data or of where the data is synchronised
to. While the legitimate usage of the system, e.g., backup and
synchronisation, teamwork, data transfer between systems, etc.,
may be of interest to an investigation, the technology may also
be a desirable one for a number of potential crimes including
industrial espionage, copyright infringement, sharing of child
exploitation material, malicious software distribution, etc.

1.1. Contribution of this work

This contribution of this work includes a forensic analysis of
the BTSync client application, its behaviour, artefacts created
during installation and use, and remnants left behind after unin-
stallation. An analysis of the sequence of network traffic and
file I/O interactions used as part of the synchronisation process
are also provided. This information should prove useful to dig-
ital forensic investigators when BTSync is found to be installed
on a machine under investigation. Gaining an understanding
of how BTSync operates could aid in directing the focus of a
digital investigation to additional remote machines where any
pertinent data is replicated. Depending on the crime under in-
vestigation, these remote machines may be owned and operated
by a single suspect or by a group sharing a common goal. While
an initial analysis of the network protocol and its operation is
included below, comprehensive network analysis is beyond the
scope of this paper.

2. Background

In order to understand how BTSync operates, its important
to first understand the technologies its based upon and how a

number of similar technologies operate. This section provides
some of the required background information.

2.1. BitTorrent File Sharing Protocol

The BitTorrent protocol was designed with the aim of fa-
cilitating one-to-many and many-to-many file transfers as ef-
ficiently as possible. The protocol is described in BitTorrent
Enhancement Proposal (BEP) No. 3 [4]. The main strength
of the protocol is the usage of file parts, each of which can be
manipulated and managed separately. While one part of a file
downloads, another, already downloaded part can be uploaded
to a different peer. In this way, peers can start trading parts even
before they have downloaded the entire file themselves. This
has the benefit of not only speeding up distribution as each peer
can find useful information on a broad range of potential peers
but it also helps alleviate the issues of “churn” [3]] and “free rid-
ing” [6] experienced with older protocols such as Gnutella and
eDonkey. Data leeching is where a user downloads an entire
file in one go and then removes the share to avoid uploading.
Data churn is the natural expansion and retraction of the net-
work horizon as peers leave and join the "swarm" freely result-
ing in a large variance in the availability of full versions of a file
being available from individual sources.

The overall BitTorrent network can be seen as being sub-
divided into BitTorrent “swarms”. Each swarm consists of a
collection of peers involved in the sharing of the same file. The
central commonality of a swarm is a unique identifier created
from a SHA-1 hash of the file(s) references in the metadata. A
peer can be a member of multiple swarms as multiple files are
uploaded and downloaded simultaneously. In order to initiate
download of content from a particular swarm the user must first
download a metadata .torrent file (or corresponding magnet
URI) from an indexing website. The BitTorrent client applica-
tion running on the users machine then interprets the metadata
and uses it to locate other peers actively participating in that
swarm using one or more of the following methods [7]:

1. Tracker Server — Tracker servers are Internet accessible
servers that maintain a list of seeders (those peers with
100% of a file available and as such are only uploading
data) and leechers (peers that are beginning the process
or are in the middle of the process of downloading infor-
mation from the swarm) [8]. While the data transfer is
in progress, the client application will periodically report
to the tracker to update its status and to update its list of
active peers.

2. Distributed Hash Table (DHT) — While the original Bit-
Torrent protocol was designed with central repositories of
peers stored on servers, clients were developed such as
Vuze and pTorrent that also stored a list of active clients
on the local machine. This common DHT allows peers to
identify peers through requesting information from other
BitTorrent clients without the requirement for a central
server (these clients serving information from the DHT
are likely not involved in the requested swarm). Each peer
record in the DHT is associated with the swarms in which
it is actively participating. The Mainline DHT, as outlined

in BEP No. 5 [4]], that is used by BitTorrent and BTSync is
based on the Kademlia protocol and allows for completely
decentralised discovery of peers associated with sharing a
particular piece of content (identified by the SHA-1 hash
of the content).

3. Peer Exchange (PEX) — Originally, the BitTorrent proto-
col did not allow for any direct communication between
peers beyond the transmission of data, but various exten-
sions of the protocol have resulted in the removal of this
restriction. As DHT participation became commonly sup-
ported in the major BitTorrent clients, peers started to ex-
change the local peer caches. Peer Exchange is a BEP
outlined a method for when two peers are communicating
(sharing the data referenced by a torrent file), a subset of
their respective peer lists are shared back and forth as part
of the communication. Coupled with DHT, PEX removes
a potential vulnerability from the BitTorrent network by
allowing for fully distributed bootstrapping, tracking and
peer discovery.

Any metadata or network control requests/responses are
transmitted using “bencoding”, as explained in BEP No. 3
[4]. Bencoded data consists of dictionaries and lists consist-
ing of key:value pairs. Each key name and corresponding
value is prepended by the length (in bytes) followed by a colon.
For example the get_peers request message can be bencoded
as 1:m9:get_peers (with the ‘m’ representing the key name
“message”).

2.2. BitTorrent Sync

BTSync is a file replication utility created by BitTorrent Inc.
and released as a private alpha in April 2013[1]. It is not a
cloud backup solution, nor necessarily intended as any form of
offsite storage. Any data transferred using BTSync resides in
whole files on at least one of the synchronised devices. This
makes the detection of data much simpler for digital forensic
purposes as there is no distributed file system, redundant data
block algorithms or need to contact a cloud storage provider to
get a list of all traffic to or from a container using discovered
credentials. The investigation remains an examination of the
local suspect machine. However, because BTSync optionally
uses a DHT to transfer data there is also no central authority to
manage authentication or log data access attempts. A suspect
file found on a system may have been downloaded from one or
many sources and may have been uploaded to many recipients.

While the paid cloud synchronisation services offer up to
1TB of storage (Amazon S3 paid storage plan) the free versions
which are much more popular with home users cap at approx-
imately 10GB. The BTSync storage is limited only by the size
of the folder being set as a share (most likely limited by the
available disk space). Unless the system under investigation is
the creator of the shared folder, it is possible that any files con-
tained therein may have been downloaded without the user’s
prior knowledge of the folder’s contents. The BTSync appli-
cation does not feature a built in content preview utitily. As a
result, it blindly and completely synchronises all content within

Source (Seeder)
("3
Authentication R |- s
Server ﬁ
N T B

Replication Site (Leecher)

Figure 1: Operation of Cloud File Synchronisation Services

the shared folder without any file selection process available to
the user.

3. Related Work

At the time of publication, there are no academic publica-
tions focussing on BTSync. However, due to BTSync sharing
a number of attributes and functionalities with cloud synchro-
nisation services, e.g., Dropbox, Google Drive, etc., and it is
largely based on the BitTorrent protocol, there are a number of
relevant related topics of interest. This section outlines a num-
ber of related case studies and investigative techniques for these
shared technologies. While the specific attributes of a number
of popular cloud synchronisation services are outlined below,
there is a common generalised architecture employed by these
services. There are two main stages to this synchronisation pro-
cess, as shown in Figure [T}

e Stage 1 — The local client with the source file (the seeder
in P2P terms) and the remote replication target (leecher)
both contact the server of authority belonging to the ser-
vice being used to confirm their credentials.

e Stage 2 — Both seeder and leecher contact the remote stor-
age location, usually cloud based for high availability. The
Seeder uploads a full copy of each file to be replicated and
the leecher downloads a full version of the files it finds in
the cloud storage container.

At no point in the process do the clients have to talk directly to
one another. An important feature of these services is the fact
that there is a full copy of the data being stored on a remote
third party server outside the control of either client.

3.1. Forensic Analysis of Cloud Synchronisation Clients

Forensic investigation of these utilities can be challenging, as
presented by Chung et al. in their 2012 paper [9]. Unless local
synchronisation is completely up to date, the full picture of the

data may reside across temporary files, volatile storage (such as
the system’s RAM) and across multiple data-centres of the ser-
vice provider’s cloud storage facilities. Any digital forensic ex-
amination of these systems must pay particular attention to the
method of access, e.g., usually the Internet browser connecting
to the service provider’s access page. This temporary access
serves to highlight the importance of live forensic techniques
when investigating a suspect machine. Cutting power to the sus-
pect machine may not only lose access to any currently opened
documents, but would also lose any currently stored passwords
or other authentication tokens that are stored in RAM. Chung
et al. describe three main forms of online storage in use by
consumers:

1. Data Storage for Large Data — Examples would include the
services provided by Amazon S3, Dropbox, Google drive,
etc.

2. Online Only Office Applications — This includes services
whereby an entire productivity suite of tools is accessed
in a completely self contained online environment, e.g.,
Google Docs, Office 365 or Sage Online.

3. Personal Data — Examples would include Evernote, which
allows users to save notes to a central store, and Spotify,
which allows playlists to be stored in the cloud when users
build their online music catalogue.

3.2. Cloud File Synchronisation Services

In various complimentary papers on data remnants [[1O} [11}
12], Quick et. al offers an additional approach to forensics when
dealing with cloud storage investigation. This involves access-
ing using the full client application whether or not it has been
tampered with by the end user, e.g., perhaps an anti-forensics
attempt was made to hide data by uninstalling the application
and deleting the synchronised folders. Each of the applica-
tions examined stored their authentication credentials on the
local system while the client was actively connected to the ser-
vice, again highlighting the importance of live forensic recov-
ery techniques. It should be noted that while Dropbox and Mi-
crosoft OneDrive (formally SkyDrive) appear to be very sim-
ilar utilities, there are distinct differences in the way they are
intended to be used. Dropbox (when used with the client ap-
plication) creates a local folder that synchronises any contents
stored in it with an online duplicate of that folder. By default,
Dropbox gives 2GB of storage for free with an option to buy
additional storage. OneDrive on the other hand is intended as a
predominantly online storage facility with an option to synchro-
nise a copy of the files to a client machine folder. However, this
is not the default behaviour and has to be specifically enabled
if used as part of the Windows 8.1 operating system. For non-
Windows 8 based computers, the user is required to download
and install the OneDrive desktop application to enable file syn-
chronisation across devices.

Many Cloud storage utilities provide a method of synchroni-
sation of files which involves some form of periodic checking
to determine if changes have been made to any version being
viewed locally or to compare offline copies with their online
counterparts as soon as communication can be re-established

(network connectivity re-enabled or the application or service
restarted). For Dropbox, Drago et al. [13] identified two sets
of servers, the control servers owned and operated by Drop-
box themselves and the storage management and cloud storage
servers hosted by Amazon’s EC2 and S3 services. This identi-
fication is also verified by Wang et al. [14].

4. BTSync Application & Protocol Analysis

Name | Host 1: Guest 1:
oS Windows 7 PC (64 bit) | Windows XP SP3
Ram 8GB ram 512mb RAM
Vmware Workstation 8 | Bridged network adapter
Name | Host 2: Guest 2:
(0N} Linux Debian laptop Widows XP SP3
Ram 4GB ram 512mb RAM
VirtualBox 4.2 Bridged network Adapter

Table 1: Hardware Used in the Analysis of the BitTorrent Sync Application

Table[T]shows the hardware and virtual machines used to per-
form an analysis on the BTSync application. The tool was in-
stalled on all machines outlined using the default installation
parameters. A complete list of the files created during the in-
stall process is outlined in Table 2}

Default installation includes the creation of a BT-
Sync folder (the location on Windows based machines
is $Volume$\Documents and Settings\ [User] \BTSync).
This folder is automatically populated with three files:

1. .SyncID - Stores a 20 byte unique share ID

2. .SyncIgnore — A list of files in the folder or subfolder to
ignore when synchronising with remote machines.

3. .SyncArchive (Folder) — An archive to store files that
were deleted on a remote synchronised system.

These three files are created whenever any new BTSync share
is set up and are used to aid in the control of data exchange
between the nodes.

On Linux based machines, the installation directory is wher-
ever the user chooses to unpack the application package. All
of the same files are created included the hidden folders. In
addition the user interface is a web GUI on localhost:8888
and the application can generate a configuration file by running
the command “./btsync ——dump-sample-config” from
the terminal. If this plain text file is edited it can be used to
overwrite the username and password for the web GUI to allow
the investigator access without changing any other settings.

4.1. BTSync Client Activity

The options for synchronisation and replication are set for
each share on the local machine. As shown in Figure 2] there
are three main distinct settings determining the resources used
for peer discovery and the paths available for traffic transmis-
sion. BTSync uses similar peer discovery methods to the regu-
lar BitTorrent protocol. These methods are outlined below:

File

Purpose

$Volume$\Program Files\BitTorrent Sync\BTSync.exe

Main Executable

$Volume$\Documents and Settings\[User]\Application Data\Microsoft\Crypto\<user SID>

Private Key

$Volume$\Documents and Settings\[User]\Application Data\Bittorrent Sync

Application folder

$Volume$\Documents and Settings\[User]\Application Data\Bittorrent Sync\settings.dat

Configuration Settings

$Volume$\Documents and Settings\[User]\Application Data\Bittorrent Sync\sync.log

Log of Synchronisation Activity

$Volume$\Documents and Settings\[User]\Application Data\Bittorrent Sync\sync.Ing

Language File

$Volume$\Documents and Settings\All Users\Desktop\BitTorrent Sync.Ink

Application Shortcut

$Volume$\Documents and Settings\All Users\Start Menu\BitTorrent Sync.Ink

Application Shortcut

$Volume$\Documents and Settings\All Users\Quick Start\BitTorrent Sync.Ink

Application Shortcut

Table 2: BitTorrent Sync Default Application Files

%Sm;-&a.ederc:b

A

By

Replication Site (Leecher)

t.usyncapp.com r.usyncapp.com

C

Figure 2: BTSync Synchronisation Options

1. LAN Discovery — If the option ‘‘search LAN”’ is en-
abled the client application will start sending peer dis-
covery packets across the LAN utilising the multicast ad-
dress IP Address: IP 239.192.0.0 Port: 3838.
These packets are sent at a frequency of one every ten sec-
onds for each share utilising this method.

SR X

Frame 5: 131 bytes on wire (1048 bits), 131 bytes captured (1048 bits) on interface 1
ethernet II, src: vmware_87:3c:1b (00:0c:29:87:3c:1b), Dst: IPv4Amcast_40:00:00 (01:00:5e:4(
Internet Protocol version 4, src: 192.168.0.22 (192.168.0.22), Dst: 239.192.0.0 (239.192.0.
User Datagram Protocol, Src Port: sos (3838), Dst Port: sos (3838)

pata (89 bytes)

< m] 3

! 5 3.648744000 192.168.0.22 239.192.0.0 UDP 131 Source port: sos Destination port: sos

Figure 3: BTSync Multicast “Seeker” Packet

The local peer discovery packet has a BSYNC header and
a message type of “ping” and includes the sending host’s
IP address, port and the 20 byte SharelD of the share being
advertised. Hosts on the LAN receiving the packet will
drop it if the SharelD is not of interest to them. Any host
that has an interest will respond with a UDP packet to the
port advertised. The response does not have a BSYNC
header present and the data field only contains the PeerID
of the responding peer. This discovery is restricted to Path

M 390 35.049519000 192.168.0.22 54.225.92.50 DIS 135 PDUType: Unknown

‘A’ in Figure[2]

o | E

Frame 390: 135 bytes on wire (1080 bits), 135 bytes captured (1080 bits) on interface 1
ethernet II, src: vmware 87:3c:1b (00:0c:29:87:3c:1b), Dst: Technico_d2:d4:50 (80:c6:ab:d2:
Internet Protocol Version 4, Src: 192.168.0.22 (192.168.0.22), Dst: 54.225.92.50 (54.225.9:z
User Datagram Protocol, Src Port: 42978 (42978), Dst Port: hbci (3000)

pistributed Interactive simulation

0000 B0 c6 ab d2 d4 50 00 Oc 29 &7 3c 1b
0010 00 79 04 53 00 00 80 11 e2 4f cO a8
0020 5c 32 a7 e2 Ob b8 00 65 a7 e0 42 53
0030 3a 6C 61 36 3a cO a8 00 16 a7
0040 39 3a 67 65 74 5f 70 65 65 72 73 34
0050 72 32 30 3a 00 1a 35 29 37 26 4d e8
0060 36 fc 16 19 30 e5 5a ef 35 3a 73 68
0070 30 3a 35 f7 62 99 9b 12 75 cO f8 94
0080 70 59 f7 67 83 ed 65

Figure 4: BTSync Tracker Request Packet

=NAcl X

Frame 391: 231 bytes on wire (1848 bits), 231 bytes captured (1848 bits) on interface 1 .
thernet II, src: Technico_d2?:d4:50 (80:c6:ab:d2:d4:50), Dst: vmware_87:3c:1b (00:0c:29:1g|
nternet Protocol Version 4, Src: 54.225.92.50 (54.225.92.50), Dst: 192.168.0.22 (192.16!
User Datagram Protocol, Src Port: hbci (3000), Dst Port: 42978 (42978)
= Distributed Interactive simulation

M 391 35.171151000 54.225.92.50 192.168.0.22 DIS 231 PDUType: Unknown

« . v

0010 00 d9 00 00 40 00 2d 11 f9 42 36 el 5c 32
00 de 43

Lg..4:ti m
90398ee

Figure 5: BTSync Tracker Response Packet

2. Tracker — The option ¢‘Use Tracker’’ causes the client to
search for peers by requesting a peer list from the tracker
located at t.usyncapp.com which was resolves to three
IP addresses:

e 54.225.100.8
e 54.225.92.50
e 54.225.196.38

These three IP addresses are each hosted on Amazon’s
EC2 cloud service. The client sends a get_peers re-
quest to the tracker server (as can be seen in Figure [).
When this request is received, the client’s IP addresses
gets added to the list of active peers available for that par-
ticular ShareID on the tracker. The path to the tracker
server taken by the peers is displayed as Path ‘B’ of Fig-
ure[2] The information keys contained in the get_peers

message are shown in Table 3] The peer discovery re-
sponse, as displayed in Figure [5] consists of a list of ben-
coded IP:Port:PeerID:SharelID entries identifying the
known peers with the same secret. Due to the fact that
the client only requests this list for a secret it already pos-
sesses, the response from the server will always contain at
least one active peer, i.e., the requesting client’s informa-

tion.
Key Explanation
d: [The Entire Dictionary]
la: [IP:Port in Network-Byte Order]
m: [Message Type Header, e.g., get_peers]
peer: [Local Peer ID]
share: | [Local Share ID]
e: [End]

Table 3: Component Fields for Request Packet

3. Distributed Hash Table (DHT) — The client can be set to
perform peer discovery using a DHT. Using this option,
any peer will register its details in the form of
SHA-1(Secret) : IP:Port with other peers, even those
that do not participate in the swarm. Using this option a
user can avoid using any form of tracking server but they
may find that peer discovery is slower or less complete.

4. Known Peers — The final, and least detectable, method
of peer discovery is the option to ‘Use Predefined
Hosts’’. The user can add a list of IP address:Port com-
binations to the share preferences. This list of peers will
be contacted directly without any lookup with a BSYNC
packet containing a ping message type.

4.2. Data Transfer

Similar to peer discovery methods, BTSync allows the user to
configure a number of options that affect how data is transferred
between peers:

1. No options set (Path ‘A’ in Figure). The seeding host
will attempt to communicate directly with the replication
target (the leecher). This traffic is encrypted by default if
it travels outside the local LAN. There is an option in the
application preferences to enable or disable encryption of
LAN traffic as well if the user prefers.

2. If the communication between the hosts is blocked for
some reason, usually if the hosts are on different networks
protected by firewalls or in segments or subnets of the
same LAN locked down by inbound Access Control Lists,
the option ‘‘Use Relay Server when required’’ will
allow the traffic to bypass these restrictions if possible (this
is represented by Path ‘C in Figure[2). The relay server,
located at r.usyncapp . com resolves to:

e relay-Ol.utorrent.com (67.215.229.106)
e relay-02.utorrent.com (67.215.231.242)

These packets are sent via UDP to port 3000 and contain
“ping” messages, as can be seen in Figure[6]. These ping

r ——= =
‘ 263 41877146000 192.168.0.22 67.215.229.106 DIS 150 PDUTypE:m:wn l EE
— iy =

Frame 263: 150 bytes on wire (1200 bits), 150 bytes captured (1200 bits) on interface 1
Ethernet 1I, src: vmware_87:3c:1b (00:0c:29:87:3c:1b), Dst: Technico_d2:d4:50 (80:c6:ab:d2:
Internet Protocol version 4, src: 192.168.0.22 (192.168.0.22), Dst: 67.215.229.106 (67.215.
User Datagram Protocol, Src Port: 42978 (42978), Dst Port: hbci (3000)

Distributed Interactive simulation

< i »
0010 00 88 Of c6 00 Q0 80 11 40 9f cO a8 00 16 43 d7
0020 e5 6a a7 e2 Ob b8 00 74 ¢5 3d 42 53 59 4e 43 80
00 43 49 b2 B2 49 [EN]

42 b3 36 e3

70 65 65 72 32 30 3a 00 1a 35 29 37 26 4d e8 b

m

05 e7 1d 36 fc 16 19 30 e5 5a ef 35 3a 73 68 61
72 65 33 32 3a ae a8 66 86 Oc dc 23 0c ee fc 6h
bb ed 6d 6b 2a 04 6d ee 8c ca 56 a0 51 20 f2 ef]
ca 71

413557

Figure 6: BTSync Relay Request Packet

e ™
Frame 301: 168 bytes on wire (1344 bits), 168 bytes captured (1344 bits) on interface 1
ethernet II, src: Technico_d2:d4:50 (80:c6:ab:d2:d4:50), Dst: vmware_87:3c:1b (00:0c:29:87:
Internet Protocol Version 4, Src: 67.215.231.242 (67.215.231.242), Dst: 192.168.0.22 (192.1
user Datagram Protocol, src Port: hbci (3000), Dst Port: 42978 (42978)

pistributed Interactive simulation

< m v

M 301 43.466297000 67.215.231.242 192.168.0.22 DIS 168 PDUType: Unknown -

00 Oc 29 87 3c 1b 80 c6 al
00 8a 00 00 40 00 34 11
00 16 Ob b8 a7 e2 00 86 7
00 39 bd e8 87 74 75 49

6d ee Bc ca 56 a0 51 20
2 of ca 71 34 13 57 65

Figure 7: BTSync Relay Nonce Exchange Packet

messages contain a 20 byte PeerID and a 32 byte ShareID
derived from the secret key. After the initial handshake
with the relay server the relay negotiates the data trans-
mission session with the remote peer. This negotiation in-
volves exchange of the 16 byte “nonce” (a one off value
used for encryption purposes) and a map of the availabil-
ity of the file parts, as can be seen in Figure[7] Once the
handshake is complete, the next packet contains the 160 bit
public key and the encrypted transfer of data begins. The
responsibility for the actual data transfer is retained by the
individual clients and only metadata and ping packets are
sent unencrypted.

4.3. BTSync Keys

When a share is created by a seeder, a master key is gen-
erated. This is the “all access”, or read/write (RW), key that
allows the owner of the share to add, remove or modify the
contents of the share. The only scenario when this key should
be distributed to another peer is when that peer is a trusted col-
laborator or when that peer is meant as a secondary source of
content as opposed to a backup or repository. Read/write Keys
can be recognised by the initial character ‘A’ at the beginning of
the 33 character “secret” string. All keys are stored in plaintext
in the bencoded block describing the corresponding share in the
sync.dat file. From the master key, three other types of keys
can be derived:

1. Read Only — The read-only (RO) key allows the receiving
user to read the data being synchronised but not to mod-
ify or change the content on the source in any way. If,
for some reason, a file in the share is modified or deleted
on the local read-only host, its invalidate flag in the
<shareID>.db-wal file is switched from a value of 0 to a
value of 1. The result of this is that the file will no longer

be synchronised from the source, even if the version on the
source is updated or the local copy is deleted. RO keys are
recognisable by the starting character ‘B’ prepended to the
32 character secret string. It should be noted that this was
originally the character ‘R’ but it was changed with post
alpha releases.

2. 24 Hour — The 24 hour key can be either a RO or RW key
that has a time limit of 24 hours before it expires and can-
not be used. The 24 hour time limit refers to the time dur-
ing which the remote peer must use the key to gain access
to the share. Once used successfully the peer will have
continued access until the share is deleted or the source
changes the authentication key. 24 hour keys start with the
character ‘C’. These key types are useful for security as
they are only vulnerable to a third party interception for a
limited period of time. The key stored in sync.dat is not
the 24-hour key, it is the corresponding, non-expiring RW
or RO equivalent.

3. Encrypted — There is an encrypted key that can be gen-
erated that creates an encrypted repository on the remote
peer. The files synchronised are stored in their encrypted
state remotely and cannot be read by the operator of the
remote machine unless they are given the decryption key
as well. This type of key is only possible to produce if
the developer API has been installed and further analysis
is outside the scope of this paper. Investigators should be
aware that an encryption key is recognisable by the char-
acter ‘D’ at the start of the 33 character sequence.

In addition to the key strings, BTSync gives users the option
of creating a RW or RO QR code that they can scan into a mo-
bile application if preferred. Seeders must be very careful about
what keys they distribute and to whom they are distributed. A
RW key sent to the wrong person could subvert the assurance
of file integrity and negate many of the benefits of BTSync over
a shared folder hosted at a neutral location.

Sample keys taken from the same BTSync Share:

RW: ACHY3VFJZ3RJ3DE2CHPUGE6W7EZSRA30R
RO: BY6G6B7KIBGELLXE2RL65C34CAGPV7LUJ
24-hour RW: CBJIK32CLMWF2P7 JLFYRGC3JRTEZ6JLPU
24-hour RO: CCYGZN6R67067QB7HGLLAF5BAVA3AJ5LC

5. Sources of Interest to Forensic Investigation

To determine what can be found without resorting to special-
ist forensic utilities the BTSync application was installed and
three folders were synchronised. The default settings were cho-
sen at installation which include:

e BTSync runs at startup.

e BTSync service icon in the system tray (right click to
hide).

e BTSync shortcut placed on the desktop of the All Users
profile.

e BTSync added to the “All Users” profile quick launch.

In order to gather sample network data, three separate syn-
chronisations were set up and monitored:

1. To $Volume$\Documents and Settings\[User]
\Desktop\sharedfolder from a separate Linux laptop
on the same LAN.

2. From $Volume$\Documents and Settings\[User]
\Desktop\sf2 on localhost to a separate Linux laptop on
the same LAN.

3. Performed using a secret key posted on Reddit
[115]]. The folder advertised itself as containing
Gameboy ROMSs with the read-only shared key of
“RUAM2EDSISKYR7LVELNVX56LLHQ47GBOZ”.
The application does not provide an indication as to what
size the remote folder is or what files it contains before
commencing the download.

As each folder was shared and assigned a secret key
(either generated locally or copied from another source)
a file was created in the folder: $Volume$\Documents
and Settings\[User]\Application Data\BitTorrent
Sync\ with the SharelD of the folder created. This is the same
share ID found in the file . SyncID created in the share folder
itself.

The name of the db files created when the shared folder was
added to BTSync consisted of the contents of the .SyncID
file (35F762999B1275C0F894F3D5SFBAC7059F76783ED).
This is the 20 byte share code that gets advertised to
t.usyncapp.com when BTSync sends out its get_peer
message, as can be seen in Figure [4]

As each synchronisation was run, the BT-
Sync logfile located at $Volume$\Documents and
Settings\ [User] \Application Data\Bittorrent
Sync\sync.log is updated to record events. A sample of what
this log filed contains is outlined in Table @ The behaviour
seen in the sync.log file corresponds with that observed in the
captured network activity and the system activity recorded.

Table 5 presents the system activity logged during the syn-
chronisation process. This was performed in a monitored ses-
sion whereby a text file named “sample3.txt” was created on the
source host (seeder) and then the read/write secret was shared to
the prepared receiving folder on the repository (leecher). The
synchronization process is shown from the point where apply
was clicked on the repository. In the table AppData is short-
hand for
~User\Application Data\Bittorrent Sync and Share
represents the path to the folder that has been allocated to re-
ceive the data. In this particular instance it is C:\Documents
and Settings\User\Desktop\sharedfolder.

The shared folder is populated with the application control
files and the 20 byte sharelD is written to the . SyncID file.The
database files are created in the User application data folder.
The filenames used for these database files are the same as the
SharelD stored in the . SyncID file. . SyncIgnore is created in
the share folder and 822bytes are written to it. The data written
are the explanation of the file’s purpose and usage as well as a
short list of files usually generated by an Operating System.

Table 4: Sample Contents of BitSync Log File

Next the synchronization process starts with the creation
of sync.dat.new which will be renamed to sync.dat and
eventually sync.dat.old as subsequent synchronisations take
place. The <ShareID>.db-wal file is created to act as a hold-
ing area for data to be written to the SQLite database file of the
same name. Next the data is received and written to a synchro-
nisation delta file in preparation for merging into a fully syn-
chronized text file. File data waiting merger can be identified
by the extension !sync and !sync (X).

The registry keys outlined in Table [§] were found after instal-
lation.

Next a file was deleted from the remote host and ten min-
utes were given to ensure the local host had synchronised com-
pletely. While the file had been removed completely from the
original host, on the local host it was instead moved from the
main folder to a hidden subfolder (.SyncArchive) and not
moved to the recycle bin. It is unknown at this time if there is
any trigger or flag set that would result in this hidden file being
deleted completely off the system. If not, then a remote host
could theoretically constantly add and remove files to a syn-
chronisation folder in order to deliberately occupy space on the
local host with hidden files and so perform a form of low-tech
denial of service attack by filling local storage.

BTSync does not come with any uninstaller of its own and
must be removed from the Control panel. After uninstall the
system was rebooted to ensure that the service had stopped run-
ning and any post uninstall clean-up had been performed, file
locks cleared etc. A number of associated registry keys were
still present, as outlined in Table[7]

In addition to this, all shared file folders used in
synchronisations were still present as well as the de-
fault BTSync share created at install. The application
folder was also still present in the $Volume$\Documents
and Settings\[User]\Application Data folder but the

[2013-12-01 12:41:33] Loading config file version 1.1.82 Action File /0 Path
[2013-12-01 12:41:33] Loaded folder \\~User\BTSync Create .SyncID 20B Share
[2013-12-01 12:41:33] Loaded folder Create <ShareID>.db AppData
\\\~User\Desktop\sharefolder Create <ShareID>.db-journal AppData
[2013-12-01 12:41:33] Loaded folder \\?\~User\Desktop\sf2 Write <ShareID>.db-journal 512B | AppData
[2013-12-01 12:43:44] Got ping (broadcast: 1) from peer Write <ShareID>.db 3 KB | AppData
192.168.0.11:27900 Delete <ShareID>.db-journal AppData
(OODCOAC2F0F91921 AE29FCSE8F2273828BBAC747) Create .SyncIgnore 822B | Share
for share Create sync.dat.new 822B | AppData
35F762999B1275C0F894F3D5FBAC7059F76783ED Rename | sync.dat to 450B | AppData
[2013-12-01 12:43:44] Found peer for folder sync.dat.old
\\\~User\Desktop\sharefolder Rename | sync.dat.new to 822B | AppData
00DCOAC2F0F91921AE29FC5E8F2273828BBAC747 sync.dat
192.168.0.11:27900 direct: 1 Create <ShareID>.db-wal AppData
[2013-12-01 12:43:45] Sending broadcast ping for share Create sample3.txt.!sync 33B Share
55045F90CA4C1A42DDB78DCD132F3ACC33E946EC Rename | sample3.txt.lsync to 33B Share
[2013-12-01 12:43:45] Requesting peers from server sample3.txt.!sync.!syncl
[2013-12-01 12:43:45] Sending broadcast ping for share Write sample3.txt.sync.syncl 33B Share
35F762999B1275C0F894F3D5SFBAC7059F76783ED Rename | sample3.txt.sync.syncl Share
to:sample3.txt

Table 5: Example File I/O During the Client’s Synchronisation Procedure

sync.log file had been emptied.

As well as registry keys BTSync creates several other files
that may be of interest to the forensic investigator. These
files are located in the directory $Volume$\Documents
and Settings\[User]\Application Data\Bittorrent
Sync\. The contents of each file is outlined below:

e <40 character share ID number>[.db, .db-shm,
.db-wal] — These files contribute to a SQLite3 database.
The database describes the contents of the share directory
corresponding to the share ID. It contains filenames,
transfer piece registers and hash values for each individual
file and its constituent pieces. While the .db file stores
information on the schema of the database the db-wal file
contains bencoded entries for each file within the share in
the format:

<Filename>:invalidatedl:main

hash:<20 byte hash>:mtime:

<timestamp of modification time>:npiecesli:
owner20:<20 byte PeerID of the Seeder>:
path<path to file within share>
perm:420:size[bytes] :statel:timestamp:typel
pvtime0:sig:<32 byte signature><filename>

e settings.dat — This is a bencoded file with a fileguard
key (this key is a salted hash value ensuring that the file has
not been edited by another tool besides the BTSync appli-
cation itself). This file contains a log of settings for the ap-
plication including the settings used to generate the Cryp-
tographic keys and the registered URLs for peer searches.

e sync.dat — This is a bencoded file with a fileguard key.
This file lists what files have been synchronised across the

HKCR \Applications \BTSync.exe \shell \open \command

HKCR \Applications \BTSync.exe \shell \open \command

HKCU \Software \Classes \Applications \BTSync.exe
\shell \open \command

HKCU \Software \Classes \Applications \BTSync.exe
\shell \open \command

HKCU \Software \Microsoft \Windows \CurrentVersion
\Run

HKCU \Software \Microsoft \Windows \CurrentVersion
\Run

HKCU \Software \Microsoft \Windows \ShellNoRoam
\MUICache

("C: \Program Files \BitTorrent Sync \BTSync.exe"
/MINIMIZED)

HKLM \SOFTWARE \Microsoft \ESENT \Process
\BTSync \DEBUG <-if debug log enabled

HKCU \Software \Microsoft \Windows \ShellNoRoam
\MUICache

HKLM \SOFTWARE \Microsoft \ Windows
\CurrentVersion \Uninstall \BitTorrent Sync

HKLM \SOFTWARE \Microsoft \ESENT \Process
\BTSync \DEBUG

HKLM \SYSTEM \ControlSet001 \Services
\SharedAccess \Parameters \FirewallPolicy
\StandardProfile \ Authorized Applications \List

value: (C: \Program Files \BitTorrent Sync
\BTSync.exe:*:Enabled:BitTorrent Sync)

(BTSync Rot 13 encoded = OGflap)

HKCU \Software \Microsoft \Windows \CurrentVersion
\Explorer \UserAssist
\75048700-EF1F-11D0-9888-006097DEACF9 \Count Key
= HRZR_EHACNGU:P: \Qbphzragf naq Frggvatf \BFv
\Qrfxgbc \OGFlap.rkr

HKU \S-1-5-21...-1003 \Software \Classes \Applications
\BTSync.exe

HKU \S-1-5-21...-1003 \Software \Classes \ Applications
\BTSync.exe \shell \open \command

HKU \S-1-5-21...-1003 \Software \Microsoft \Windows
\CurrentVersion \Run

HKU \S-1-5-21...-1003 \Software \Microsoft \ Windows
\ShellNoRoam \MUICache

HKU \S-1-5-21...-1003_Classes \ Applications
\BTSync.exe \shell \open \command

C: \Program Files \BitTorrent Sync \BTSync.exe

C: \Documents and Settings \All Users \Desktop
\BTSync.Ink

Table 6: Created BTSync Registry Keys During Installation

network. The directory paths and the shared secret used
can be recovered from this file. This file is perhaps of
most interest to the investigator due ot the large amount of
timestamped and option recording it contains. Each share
has an entry that is laid out in the following style:

path:<full path to share folder>:
secret:<33 character Key>:

pub_key:<32 byte ShareID used in Relay
messages>:

stopped_by_user[0]1]:

use_dht [0]1] :use_lan_broadcast[0]1]:
use_relay[0|1] :use_tracker[0]1]:
use_known_hosts[0|1]:
known_hosts:<contents of known hosts
option>:

peers:<list of peerIDs involved in sync>:
last_sync_completed<timestamp>:
invites<list of swarm invites received>:
folder_typeO:

delete_to_trash[0|1]:
mutex_file_initialized[0[1]:
directTotal<I0 direct to/from peer>:
relayTotal<IO total between peer and relay>

HKU \S-1-5-21...-1003 \Software \Microsoft \Windows
\CurrentVersion \Explorer \UserAssist
\75048700-EF1F-11D0-9888-006097DEACF9 \Count Key
= HRZR_EHACNGU:P: \Qbphzragf naq Frggvatf \BFv
\Qrfxgbc \OGFlap.rkr

Table 7: Registry Keys Remaining After Uninstallation

e settings.dat.old — This is the previous settings file.
BTSync rotates through two settings generations deleting
the old file when it is time to update with new data.

5.1. Recovering Destroyed Evidence

A number of the above artefacts prove that BTSync was in-
stalled on a client machine. It is possible that some or all of the
incriminating files themselves may prove unrecoverable from
the local hard disk due to anti-forensic measures. Should the
secret be recovered for a given share, it is possible that a syn-
chronisation of the suspect secret will enable the forensic inves-
tigator to recover this lost information from any other nodes still
active in the share. Regular file system forensic analysis iden-
tifying synchronisation artefacts left behind from a particular
share combined with this subsequent data synchronisation can
prove that the suspect machine was involved in the sharing of
incriminating material. Like any other digital investigation, the
evidence gathered from the synchronisation process should be
collected into a suitable digital evidence bag. Due to the value
of BTSync metadata in the recovery of files stored remotely, a
suitable P2P oriented evidence bag should be selected, such as
that proposed by Scanlon and Kechadi [16]. The after-the-fact
recovery of data from remote machines is beyond the scope of
this paper.

6. Conclusion

This paper gave a first look at a new use for a popular
and widespread file synchronisation protocol. BTSync is not

intended to replace BitTorrent as a file dissemination utility.
However, it is still being used for this purpose. This is facil-
itated though websites publicly providing shared secrets, e.g.,
Reddit [15], as a form of dead-drop. The developers of the
application describe it as an end-to-end encrypted method of
transferring files without the use of a third party staging area.
The reason for this is to try and ensure that the content and
personal details remain hidden from unauthorised access. Ini-
tial analysis of the installation procedure identified files most
likely to be of use to a forensic examiner confronted with a
suspect live system or image running BTSync. However while
the presence of a SyncID hidden folder can explain how a file
was transferred to a system there is currently no way known
outside of the application itself to determine the file’s origin or
any further synchronisation points. From an investigative per-
spective, the decentralised nature of BTSync will always leave
an avenue of gathering information identifying nodes sharing
particular content (while providing many desirable redundancy
and resilience against attack).

For the digital investigator working on a case involving BT-
Sync, the description of the registry keys and files outlined can
aid in identifying the content that may have been present on
the local machine. Seeing as though BTSync merely requires
any user wishing to join a particular synchronised folder to
have the key, an investigator could also join the shared folder
to download the data having recovered the corresponding files
through hard drive analysis. Subsequent monitoring of the net-
work communications using common tools, e.g., WireShark,
tcpdump or libpcap, can aid in the identification of other nodes
syncing the same content. In a number of investigative scenar-
ios, this may focus the investigation in a beneficial direction
resulting in the discovery of additional pertinent evidence or
additional suspects.

6.1. Future Work

From this initial analysis of the BTSync system, much further
work needs to be done. The following list amounts to the list of
areas for future investigation:

e Network Analysis — Identification of BTSync traffic and
subsequent analysis to determine differentiation from stan-
dard BitTorrent traffic.

o Investigation Utility — A standalone application to extract
relevant information from a suspect live or imaged ma-
chine running BTSync.

e Automated Share Detection — Identifying BTSync shares
advertised by BTSync clients and detecting network activ-
ity to or from known locations.

e Crawling — To systematically follow connections to or
from a share and identify new connections as they are dis-
covered.

e Enumeration — Identifying individual shares and all active
swarm members by the participating IP addresses and peer
identifiers.

10

e Geolocation — Geolocating identified IP addresses may
prove pertinent to recovering additional evidence regard-
ing the suspect or may aid in the identification of others
involved.

e API Analysis — Testing the provisioned API to determine
what features can be leveraged to assist in forensic inves-
tigations.

e Recovery of Deleted Shares — In the scenario where a sus-
pect has securely deleted any incriminating evidence from
the local machine, the identification of trace information
on the machine may result in the evidence being recov-
erable from other remote hosts. Due to BitTorrent’s re-
liance on regular hashing for file distribution, the resultant
hashes of remotely gathered files may be resolvable to the
suspect’s machine.

References

1. BitTorrent Inc . BitTorrent Sync User Manual.
http://www.bittorrent.com/help/manual/; 2013.
cessed February 2014].

2. BitTorrent Inc . BitTorrent Sync Developer API.
http://www.bittorrent.com/sync/developers/api; 2013. [On-
line; accessed February 2014].

3. BitTorrent Inc . BitTorrent Sync Article.
http://blog.bittorrent.com/2013/12/05/
bittorrent-sync-hits-2-million-user-mark/; 2013.
line; accessed February 2014].

4. Cohen B. The BitTorrent Protocol Specification and Enhancement Pro-
posals.
http://www.bittorrent.org/beps/bep_0000.html; 2014.
line; accessed February 2014].

5. Stutzbach D, Rejaie R. Understanding churn in peer-to-peer networks.
In: Proceedings of the 6th ACM SIGCOMM Conference on Internet Mea-
surement. IMC ’06; New York, NY, USA: ACM. ISBN 1-59593-561-
4; 2006:189-202. URL: http://doi.acm.org/10.1145/1177080.
1177105, doiz10.1145/1177080.1177105!

6. Karakaya M, Korpeoglu I, Ulusoy O. Free riding in peer-to-peer net-
works. Internet Computing, IEEE 2009;13(2):92-98. doi{10.1109/MIC.
2009.33.

7. Scanlon M, Hannaway A, Kechadi MT. A Week in the Life of the Most
Popular BitTorrent Swarms. 5th Annual Symposium on Information As-
surance (ASIA’10) 2010;.

8. Cohen B. Incentives build robustness in bittorrent. In: Proceedings of the
Workshop on Economics of Peer-to-Peer systems; vol. 6. 2003:68-72.

9. Chung H, Park J, Lee S, Kang C. Digital forensic investigation of cloud

storage services. Digital Investigation 2012;9(2):81 — 95.

Quick D, Choo KKR. Forensic collection of cloud storage data: Does the

act of collection result in changes to the data or its metadata? Digital

Investigation 2013;10(3):266 — 277.

. Quick D, Choo KKR. Google drive: Forensic analysis of data remnants.

Journal of Network and Computer Applications 2013;.

Quick D, Choo KKR. Digital Droplets: Microsoft SkyDrive Forensic

Data Remnants. Future Generation Computer Systems 2013;.

. Drago I, Mellia M, M. Munafo M, Sperotto A, Sadre R, Pras A. Inside

dropbox: Understanding personal cloud storage services. In: Proceedings

of the 2012 ACM Conference on Internet Measurement Conference. IMC

’12; New York, NY, USA: ACM. ISBN 978-1-4503-1705-4; 2012:481—

494.

Wang H, Shea R, Wang F, Liu J. On the impact of virtualization on

dropbox-like cloud file storage/synchronization services. In: Proceed-

ings of the 2012 IEEE 20th International Workshop on Quality of Service.

IEEE Press; 2012: 11.

. Reddit . BTSecrets.

http://www.reddit.com/r/btsecrets; 2013.
February 2014].

[Online; ac-

[On-

[On-

[Online; accessed

http://www.bittorrent.com/help/manual/
http://www.bittorrent.com/sync/developers/api
http://blog.bittorrent.com/2013/12/05/bittorrent-sync-hits-2-million-user-mark/
http://blog.bittorrent.com/2013/12/05/bittorrent-sync-hits-2-million-user-mark/
http://www.bittorrent.org/beps/bep_0000.html
http://doi.acm.org/10.1145/1177080.1177105
http://doi.acm.org/10.1145/1177080.1177105
http://dx.doi.org/10.1145/1177080.1177105
http://dx.doi.org/10.1109/MIC.2009.33
http://dx.doi.org/10.1109/MIC.2009.33
http://www.reddit.com/r/btsecrets

16. Scanlon M, Kechadi MT. Digital Evidence Bag Selection for P2P
Network Investigation. In: Future Information Technology. Springer;
2014:307-314.

11

	1 Introduction
	1.1 Contribution of this work

	2 Background
	2.1 BitTorrent File Sharing Protocol
	2.2 BitTorrent Sync

	3 Related Work
	3.1 Forensic Analysis of Cloud Synchronisation Clients
	3.2 Cloud File Synchronisation Services

	4 BTSync Application & Protocol Analysis
	4.1 BTSync Client Activity
	4.2 Data Transfer
	4.3 BTSync Keys

	5 Sources of Interest to Forensic Investigation
	5.1 Recovering Destroyed Evidence

	6 Conclusion
	6.1 Future Work

