
(12) United States Patent
US006494408B2

(10) Patent N0.: US 6,494,408 B2
Katzer (45) Date of Patent: *Dec. 17, 2002

(54) MODEL TRAIN CONTROL SYSTEM 4,853,883 A 8/1989 Nickles et al.
5,072,900 A 12/1991 Malon

(75) Inventor: Matthew A. Katzer, 1416 NW. 5,475,818 A 12/1995 M°1Ynea_11X ct a1~
Ben?eld Dr., Portland, OR (US) 97229 5,493,642 A 2/1996 Dunsmulr et 91

5,681,015 A 10/1997 Kull
- _ - 5,696,689 A 12/1997 Okumura et al.

(73) Assignee. Mjzgtthew A. Katzer, Hillsboro, OR 5,787,371 A 7/1998 Balukin et a1‘
() 5,828,979 A 10/1998 Polivka et al.

. 5 896 017 A 4 1999 S t l.

(*) Notice: SubJect to any disclaimer, the term of this 5’940’005 A 82999 5:32:22 ; 2L
patent is extended or adjusted under 35 5:952:797 A 9/1999 Rossler
U.S.C. 154(1)) by 0 days. 6,065,406 A 5/2000 KatZer

6,270,040 1 * 8/2001 KatZer 246/1 R

Th' 1 t ' b' t t t ' l d' -
daring? en 1s su Jec 0 a ermma 1s OTHER PUBLICATIONS

Chapell, David. Understanding ActiveX and OLE. Red
. 0.: , mon : 1croso t ress, . 21 Appl N 09/858 297 d M' f P 1996

(22) Filed: May 15, 2001 * cited by examiner

(65) Prior Publication Data Primary Examiner—Mark T. be
(74) Attorney, A gent, or F irm—Chernoff Vilhauer McClung

US 2002/0113171 A1 Aug. 22, 2002 & Stenzel, LLP

Related US. Application Data (57) ABSTRACT

(63) Continuation of application No. 09/541,926, ?led on Apr. 3, A system Which operates a digitally controlled model rail
2000: HOW Pat- N°~ 672707049 road transmitting a ?rst command from a ?rst client program

(51) Int. c1.7 G05D 1/00 to a resident eXternal Controlling interface thrqugh a ?rst
(52) us CL 246/1 R; 701/19 communications transport. A second command is transmit
(58) Field of Search 246/1 R 3 5 ted from a second client program to the resident external

24646 2 500’ 5’40’ controlling interface through a second communications
825 825 01 82’5 03 825 06 825' 67 8&5 22’ transport. The ?rst command and the second command are

’ ' 82’5 52' 28’6 01 ' 28’6 02' 761/19' 20’ received by the resident external controlling interface Which
' ’ ' ’ ' ’ ’ queues the ?rst and second commands. The resident external

(56) References Cited controlling interface sends third and fourth commands rep

U.S. PATENT DOCUMENTS
resentative of the ?rst and second commands, respectively,
to a digital command station for execution on the digitally
controlled model railroad.

3,944,986 A
3,976,272 A
4,307,302 A

3/1976 Staples
8/1976 Murray et al.

12/1981 Russell 43 Claims, 13 Drawing Sheets

. if, a T m E ‘ EXTERNAL‘

mREsPoNsE STORAGE ccmRnL < ,

\7108 “2 “I

U.S. Patent Dec. 17, 2002 Sheet 8 0f 13 US 6,494,408 B2

mm“ .95

TmmmU mTTIIll MUM/gamma wzgém Ill T| EDEN; I ZOFUIHFOMQ m0 WZON |1 29:22 - Inc/E 068m - ~52 TII IVTII WUZAQIWHQ UZHIM1<IMQ |IIIIL TI ZQSANIE I ZQMHUWHOMA "HO MZON Ii
T| WUZAFHEQ mvzhvmém 11.1 T|||| ESQ/SE2 I'll I ZOEIUWHOME m0 WZON

ZOHH<O~QZH I MDOm .MUOQm I NEH
T| 23542 I ZOEIUWHOME m0 mZON |I|l

Tlll EDEHZHE |||Il I ZQEIUmEIOME m0 mZON

ZOHH<UMQZH I MESH “MUOIHm I 03%

U.S. Patent Dec. 17, 2002 Sheet 13 0f 13 US 6,494,408 B2

COMMAND QUEUE

PRIORITY TYPE COMMAND

5 A ' INCREASE LOCO 1 BY 2
37 B OPEN SWITCH 1
15 B CLOSE SWITCH l
26 B OPEN SWITCH 1
6 A DECREASE LOCO 2 BY 5

176 B CLOSE SWITCH 6
123 C TURN ON LIGHT 5
35 D QUERY LOCO 3
5 A INCREASE LOCO 2 BY 7
9 A DECREASE LOCO 1 BY 2
0 E MISC

37 D QUERY LOCO 2
215 g D QUERY SWITCH 1
216 l‘ C TURN ON LIGHT 3
227 D , QUERY SWITCH 5
225 C , TURN ON LOCO 1 LIGHT

0 D QUERY ALL
255 A STOP LOCO 1

FIG. 11

US 6,494,408 B2
1

MODEL TRAIN CONTROL SYSTEM

This is a continuation of US. application Ser. No.
09/541,926, ?led Apr. 3, 2000, now US. Pat. No. 6,270,040,
for MODEL TRAIN CONTROL SYSTEM.

BACKGROUND OF THE INVENTION

The present invention relates to a system for controlling
a model railroad.

Model railroads have traditionally been constructed With
of a set of interconnected sections of train track, electric
sWitches betWeen different sections of the train track, and
other electrically operated devices, such as train engines and
draW bridges. Train engines receive their poWer to travel on
the train track by electricity provided by a controller through
the track itself. The speed and direction of the train engine
is controlled by the level and polarity, respectively, of the
electrical poWer supplied to the train track. The operator
manually pushes buttons or pulls levers to cause the
sWitches or other electrically operated devices to function, as
desired. Such model railroad sets are suitable for a single
operator, but unfortunately they lack the capability of
adequately controlling multiple trains independently. In
addition, such model railroad sets are not suitable for being
controlled by multiple operators, especially if the operators
are located at different locations distant from the model
railroad, such as different cities.

Adigital command control (DDC) system has been devel
oped to provide additional controllability of individual train
engines and other electrical devices. Each device the opera
tor desires to control, such as a train engine, includes an
individually addressable digital decoder. Adigital command
station (DCS) is electrically connected to the train track to
provide a command in the form of a set of encoded digital
bits to a particular device that includes a digital decoder. The
digital command station is typically controlled by a personal
computer. A suitable standard for the digital command
control system is the NMRA DCC Standards, issued March
1997, and is incorporated herein by reference. While pro
viding the ability to individually control different devices of
the railroad set, the DCC system still fails to provide the
capability for multiple operators to control the railroad
devices, especially if the operators are remotely located from
the railroad set and each other.

DigiToys Systems of LaWrenceville, Ga. has developed a
softWare program for controlling a model railroad set from
a remote location. The softWare includes an interface Which
alloWs the operator to select desired changes to devices of
the railroad set that include a digital decoder, such as
increasing the speed of a train or sWitching a sWitch. The
softWare issues a command locally or through a netWork,
such as the internet, to a digital command station at the
railroad set Which executes the command. The protocol used
by the softWare is based on Cobra from Open Management
Group Where the softWare issues a command to a commu
nication interface and aWaits con?rmation that the command
Was executed by the digital command station. When the
softWare receives con?rmation that the command executed,
the softWare program sends the next command through the
communication interface to the digital command station. In
other Words, the technique used by the softWare to control
the model railroad is analogous to an inexpensive printer
Where commands are sequentially issued to the printer after
the previous command has been executed. Unfortunately, it
has been observed that the response of the model railroad to
the operator appears sloW, especially over a distributed

10

15

20

25

30

35

40

45

50

55

60

65

2
netWork such as the internet. One technique to decrease the
response time is to use high-speed netWork connections but
unfortunately such connections are expensive.
What is desired, therefore, is a system for controlling a

model railroad that effectively provides a high-speed con
nection Without the additional expense associated thereWith.

The foregoing and other objectives, features, and advan
tages of the invention Will be more readily understood upon
consideration of the folloWing detailed description of the
invention, taken in conjunction With the accompanying
draWings.

SUMMARY OF THE PRESENT INVENTION

The present invention overcomes the aforementioned
draWbacks of the prior art, in a ?rst aspect, by providing a
system for operating a digitally controlled model railroad
that includes transmitting a ?rst command from a ?rst client
program to a resident external controlling interface through
a ?rst communications transport. A second command is
transmitted from a second client program to the resident
external controlling interface through a second communica
tions transport. The ?rst command and the second command
are received by the resident external controlling interface
Which queues the ?rst and second commands. The resident
external controlling interface sends third and fourth com
mands representative of the ?rst and second commands,
respectively, to a digital command station for execution on
the digitally controlled model railroad.

Incorporating a communications transport betWeen the
multiple client program and the resident external controlling
interface permits multiple operators of the model railroad at
locations distant from the physical model railroad and each
other. In the environment of a model railroad club Where the
members Want to simultaneously control devices of the same
model railroad layout, Which preferably includes multiple
trains operating thereon, the operators each provide com
mands to the resistant external controlling interface, and
hence the model railroad. In addition by queuing by com
mands at a single resident external controlling interface
permits controlled execution of the commands by the digi
tally controlled model railroad, Would may otherWise con
?ict With one another.

In another aspect of the present invention the ?rst com
mand is selectively processed and sent to one of a plurality
of digital command stations for execution on the digitally
controlled model railroad based upon information contained
therein. Preferably, the second command is also selectively
processed and sent to one of the plurality of digital command
stations for execution on the digitally controlled model
railroad based upon information contained therein. The
resident external controlling interface also preferably
includes a command queue to maintain the order of the
commands.
The command queue also alloWs the sharing of multiple

devices, multiple clients to communicate With the same
device (locally or remote) in a controlled manner, and
multiple clients to communicate With different devices. In
other Words, the command queue permits the proper execu
tion in the cases of: (1) one client to many devices, (2) many
clients to one device, and (3) many clients to many devices.

In yet another aspect of the present invention the ?rst
command is transmitted from a ?rst client program to a ?rst
processor through a ?rst communications transport. The ?rst
command is received at the ?rst processor. The ?rst proces
sor provides an acknowledgement to the ?rst client program
through the ?rst communications transport indicating that

US 6,494,408 B2
3

the ?rst command has properly executed prior to execution
of commands related to the ?rst command by the digitally
controlled model railroad. The communications transport is
preferably a COM or DCOM interface.

The model railroad application involves the use of
extremely slow real-time interfaces between the digital
command stations and the devices of the model railroad. In
order to increase the apparent speed of execution to the
client, other than using high-speed communication
interfaces, the resident external controller interface receives
the command and provides an acknowledgement to the
client program in a timely manner before the execution of
the command by the digital command stations. Accordingly,
the execution of commands provided by the resident exter
nal controlling interface to the digital command stations
occur in a synchronous manner, such as a ?rst-in-?rst-out
manner. The COM and DCOM communications transport
between the client program and the resident external con
trolling interface is operated in an asynchronous manner,
namely providing an acknowledgement thereby releasing
the communications transport to accept further communica
tions prior to the actual execution of the command. The
combination of the synchronous and the asynchronous data
communication for the commands provides the bene?t that
the operator considers the commands to occur nearly instan
taneously while permitting the resident external controlling
interface to verify that the command is proper and cause the
commands to execute in a controlled manner by the digital
command stations, all without additional high-speed com
munication networks. Moreover, for traditional distributed
software execution there is no motivation to provide an
acknowledgment prior to the execution of the command
because the command executes quickly and most commands
are sequential in nature. In other words, the execution of the
next command is dependent upon proper execution of the
prior command so there would be no motivation to provide
an acknowledgment prior to its actual execution.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

FIG. 1 is a block diagram of an exemplary embodiment of
a model train control system.

FIG. 2 is a more detailed block diagram of the model train
control system of FIG. 1 including external device control
logic.

FIG. 3 is a block diagram of the external device control
logic of FIG. 2.

FIG. 4 is an illustration of a track and signaling arrange
ment.

FIG. 5 is an illustration of a manual block signaling
arrangement.

FIG. 6 is an illustration of a track circuit.

FIGS. 7A and 7B are illustrations of block signaling and
track capacity.

FIG. 8 is an illustration of different types of signals.
FIGS. 9A and 9B are illustrations of speed signaling in

approach to a junction.
FIG. 10 is a further embodiment of the system including

a dispatcher.
FIG. 11 is an exemplary embodiment of a command

queue.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENT

Referring to FIG. 1, a model train control system 10
includes a communications transport 12 interconnecting a

10

15

25

35

45

55

65

4
client program 14 and a resident external controlling inter
face 16. The client program 14 executes on the model
railroad operator’s computer and may include any suitable
system to permit the operator to provide desired commands
to the resident external controlling interface 16. For
example, the client program 14 may include a graphical
interface representative of the model railroad layout where
the operator issues commands to the model railroad by
making changes to the graphical interface. The client pro
gram 14 also de?nes a set of Application Programming
Interfaces (API’s), described in detail later, which the opera
tor accesses using the graphical interface or other programs
such as Visual Basic, C++, Java, or browser based applica
tions. There may be multiple client programs interconnected
with the resident external controlling interface 16 so that
multiple remote operators may simultaneously provide con
trol commands to the model railroad.
The communications transport 12 provides an interface

between the client program 14 and the resident external
controlling interface 16. The communications transport 12
may be any suitable communications medium for the trans
mission of data, such as the internet, local area network,
satellite links, or multiple processes operating on a single
computer. The preferred interface to the communications
transport 12 is a COM or DCOM interface, as developed for
the Windows operating system available from Microsoft
Corporation. The communications transport 12 also deter
mines if the resident external controlling interface 16 is
system resident or remotely located on an external system.
The communications transport 12 may also use private or
public communications protocol as a medium for commu
nications. The client program 14 provides commands and
the resident external controlling interface 16 responds to the
communications transport 12 to exchange information. A
description of COM (common object model) and DCOM
(distributed common object model) is provided by Chappel
in a book entitled Understanding ActiveX and OLE,
Microsoft Press, and is incorporated by reference herein.

Incorporating a communications transport 12 between the
client program(s) 14 and the resident external controlling
interface 16 permits multiple operators of the model railroad
at locations distant from the physical model railroad and
each other. In the environment of a model railroad club
where the members want to simultaneously control devices
of the same model railroad layout, which preferably includes
multiple trains operating thereon, the operators each provide
commands to the resistant external controlling interface, and
hence the model railroad.
The manner in which commands are executed for the

model railroad under COM and DCOM may be as follows.
The client program 14 makes requests in a synchronous
manner using COM/DCOM to the resident external interface
controller 16. The synchronous manner of the request is the
technique used by COM and DCOM to execute commands.
The communications transport 12 packages the command
for the transport mechanism to the resident external con
trolling interface 16. The resident external controlling inter
face 16 then passes the command to the digital command
stations 18 which in turn executes the command. After the
digital command station 18 executes the command an
acknowledgement is passed back to the resident external
controlling interface 16 which in turn passes an acknowl
edgement to the client program 14. Upon receipt of the
acknowledgement by the client program 14, the communi
cations transport 12 is again available to accept another
command. The train control system 10, without more, per
mits execution of commands by the digital command sta

US 6,494,408 B2
5

tions 18 from multiple operators, but like the DigiToys
Systems’ software the execution of commands is sloW.

The present inventor came to the realiZation that unlike
traditional distributed systems Where the commands passed
through a communications transport are executed nearly
instantaneously by the server and then an acknowledgement
is returned to the client, the model railroad application
involves the use of extremely sloW real-time interfaces
betWeen the digital command stations and the devices of the
model railroad. The present inventor came to the further
realiZation that in order to increase the apparent speed of
execution to the client, other than using high-speed com
munication interfaces, the resident external controller inter
face 16 should receive the command and provide an
acknoWledgement to the client program 12 in a timely
manner before the execution of the command by the digital
command stations 18. Accordingly, the execution of com
mands provided by the resident external controlling inter
face 16 to the digital command stations 18 occur in a
synchronous manner, such as a ?rst-in-?rst-out manner. The
COM and DCOM communications transport 12 betWeen the
client program 14 and the resident external controlling
interface 16 is operated in an asynchronous manner, namely
providing an acknoWledgement thereby releasing the com
munications transport 12 to accept further communications
prior to the actual execution of the command. The combi
nation of the synchronous and the asynchronous data com
munication for the commands provides the bene?t that the
operator considers the commands to occur nearly instanta
neously While permitting the resident external controlling
interface 16 to verify that the command is proper and cause
the commands to execute in a controlled manner by the
digital command stations 18, all Without additional high
speed communication netWorks. Moreover, for traditional
distributed softWare execution there is no motivation to
provide an acknoWledgment prior to the execution of the
command because the command executes quickly and most
commands are sequential in nature. In other Words, the
execution of the next command is dependent upon proper
execution of the prior command so there Would be no
motivation to provide an acknoWledgment prior to its actual
execution. It is to be understood that other devices, such as
digital devices, may be controlled in a manner as described
for model railroads.

Referring to FIG. 2, the client program 14 sends a
command over the communications transport 12 that is
received by an asynchronous command processor 100. The
asynchronous command processor 100 queries a local data
base storage 102 to determine if it is necessary to package
a command to be transmitted to a command queue 104. The
local database storage 102 primarily contains the state of the
devices of the model railroad, such as for example, the speed
of a train, the direction of a train, Whether a draW bridge is
up or doWn, Whether a light is turned on or off, and the
con?guration of the model railroad layout. If the command
received by the asynchronous command processor 100 is a
query of the state of a device, then the asynchronous
command processor 100 retrieves such information from the
local database storage 102 and provides the information to
an asynchronous response processor 106. The asynchronous
response processor 106 then provides a response to the client
program 14 indicating the state of the device and releases the
communications transport 12 for the next command.

The asynchronous command processor 100 also veri?es,
using the con?guration information in the local database
storage 102, that the command received is a potentially valid
operation. If the command is invalid, the asynchronous

15

25

35

45

55

65

6
command processor 100 provides such information to the
asynchronous response processor 106, Which in turn returns
an error indication to the client program 14.
The asynchronous command processor 100 may deter

mine that the necessary information is not contained in the
local database storage 102 to provide a response to the client
program 14 of the device state or that the command is a valid
action. Actions may include, for example, an increase in the
train’s speed, or turning on/off of a device. In either case, the
valid unknoWn state or action command is packaged and
forWarded to the command queue 104. The packaging of the
command may also include additional information from the
local database storage 102 to complete the client program 14
request, if necessary. Together With packaging the command
for the command queue 104, the asynchronous command
processor 100 provides a command to the asynchronous
request processor 106 to provide a response to the client
program 14 indicating that the event has occurred, even
though such an event has yet to occur on the physical
railroad layout.
As such, it can be observed that Whether or not the

command is valid, Whether or not the information requested
by the command is available to the asynchronous command
processor 100, and Whether or not the command has
executed, the combination of the asynchronous command
processor 100 and the asynchronous response processor 106
both veri?es the validity of the command and provides a
response to the client program 14 thereby freeing up the
communications transport 12 for additional commands.
Without the asynchronous nature of the resident external
controlling interface 16, the response to the client program
14 Would be, in many circumstances, delayed thereby result
ing in frustration to the operator that the model railroad is
performing in a sloW and painstaking manner. In this
manner, the railroad operation using the asynchronous inter
face appears to the operator as nearly instantaneously
responsive.

Each command in the command queue 104 is fetched by
a synchronous command processor 110 and processed. The
synchronous command processor 110 queries a controller
database storage 112 for additional information, as
necessary, and determines if the command has already been
executed based on the state of the devices in the controller
database storage 112. In the event that the command has
already been executed, as indicated by the controller data
base storage 112, then the synchronous command processor
110 passes information to the command queue 104 that the
command has been executed or the state of the device. The
asynchronous response processor 106 fetches the informa
tion from the command cue 104 and provides a suitable
response to the client program 14, if necessary, and updates
the local database storage 102 to re?ect the updated status of
the railroad layout devices.

If the command fetched by the synchronous command
processor 110 from the command queue 104 requires execu
tion by external devices, such as the train engine, then the
command is posted to one of several external device control
logic 114 blocks. The external device control logic 114
processes the command from the synchronous command
processor 110 and issues appropriate control commands to
the interface of the particular external device 116 to execute
the command on the device and ensure that an appropriate
response Was received in response. The external device is
preferably a digital command control device that transmits
digital commands to decoders using the train track. There
are several different manufacturers of digital command
stations, each of Which has a different set of input

US 6,494,408 B2
7

commands, so each external device is designed for a par
ticular digital command station. In this manner, the system
is compatible With different digital command stations. The
digital command stations 18 of the external devices 116
provide a response to the external device control logic 114
Which is checked for validity and identi?ed as to Which prior
command it corresponds to so that the controller database
storage 112 may be updated properly. The process of trans
mitting commands to and receiving responses from the
external devices 116 is sloW.

The synchronous command processor 110 is noti?ed of
the results from the external control logic 114 and, if
appropriate, forWards the results to the command queue 104.
The asynchronous response processor 100 clears the results
from the command queue 104 and updates the local database
storage 102 and sends an asynchronous response to the
client program 14, if needed. The response updates the client
program 14 of the actual state of the railroad track devices,
if changed, and provides an error message to the client
program 14 if the devices actual state Was previously
improperly reported or a command did not execute properly.

The use of tWo separate database storages, each of Which
is substantially a mirror image of the other, provides a
performance enhancement by a fast acknowledgement to the
client program 14 using the local database storage 102 and
thereby freeing up the communications transport 12 for
additional commands. In addition, the number of commands
forWarded to the external device control logic 114 and the
external devices 116, Which are relatively sloW to respond,
is minimiZed by maintaining information concerning the
state and con?guration of the model railroad. Also, the use
of tWo separate database tables 102 and 112 alloWs more
ef?cient multi-threading on multi-processor computers.

In order to achieve the separation of the asynchronous and
synchronous portions of the system the command queue 104
is implemented as a named pipe, as developed by Microsoft
for WindoWs. The queue 104 alloWs both portions to be
separate from each other, Where each considers the other to
be the destination device. In addition, the command queue
maintains the order of operation Which is important to
proper operation of the system.

The use of a single command queue 104 alloWs multiple
instantrations of the asynchronous functionality, With one
for each different client. The single command queue 104
also alloWs the sharing of multiple devices, multiple clients
to communicate With the same device (locally or remote) in
a controlled manner, and multiple clients to communicate
With different devices. In other Words, the command queue
104 permits the proper execution in the cases of: (1) one
client to many devices, (2) many clients to one device, and
(3) many clients to many devices.

The present inventor came to the realiZation that the
digital command stations provided by the different vendors
have at least three different techniques for communicating
With the digital decoders of the model railroad set. The ?rst
technique, generally referred to as a transaction (one or more
operations), is a synchronous communication Where a com
mand is transmitted, executed, and a response is received
therefrom prior to the transmission of the next sequentially
received command. The DCS may execute multiple com
mands in this transaction. The second technique is a cache
With out of order execution Where a command is executed
and a response received therefrom prior to the execution of
the next command, but the order of execution is not neces
sarily the same as the order that the commands Were
provided to the command station. The third technique is a

10

15

25

35

45

55

65

8
local-area-netWork model Where the commands are trans
mitted and received simultaneously. In the LAN model there
is no requirement to Wait until a response is received for a
particular command prior to sending the next command.
Accordingly, the LAN model may result in many commands
being transmitted by the command station that have yet to be
executed. In addition, some digital command stations use
tWo or more of these techniques.

With all these different techniques used to communicate
With the model railroad set and the system 10 providing an
interface for each different type of command station, there
exists a need for the capability of matching up the responses
from each of the different types of command stations With
the particular command issued for record keeping purposes.
Without matching up the responses from the command
stations, the databases can not be updated properly.

Validation functionality is included Within the external
device control logic 114 to accommodate all of the different
types of command stations. Referring to FIG. 3, an external
command processor 200 receives the validated command
from the synchronous command processor 110. The external
command processor 200 determines Which device the com
mand should be directed to, the particular type of command
it is, and builds state information for the command. The state
information includes, for example, the address, type, port,
variables, and type of commands to be sent out. In other
Words, the state information includes a command set for a
particular device on a particular port device. In addition, a
copy of the original command is maintained for veri?cation
purposes. The constructed command is forWarded to the
command sender 202 Which is another queue, and preferably
a circular queue. The command sender 202 receives the
command and transmits commands Within its queue in a
repetitive nature until the command is removed from its
queue. A command response processor 204 receives all the
commands from the command stations and passes the com
mands to the validation function 206. The validation func
tion 206 compares the received command against potential
commands that are in the queue of the command sender 202
that could potentially provide such a result. The validation
function 206 determines one of four potential results from
the comparison. First, the results could be simply bad data
that is discarded. Second, the results could be partially
executed commands Which are likeWise normally discarded.
Third, the results could be valid responses but not relevant
to any command sent. Such a case could result from the
operator manually changing the state of devices on the
model railroad or from another external device, assuming a
shared interface to the DCS. Accordingly, the results are
validated and passed to the result processor 210. Fourth, the
results could be valid responses relevant to a command sent.
The corresponding command is removed from the command
sender 202 and the results passed to the result processor 210.
The commands in the queue of the command sender 202, as
a result of the validation process 206, are retransmitted a
predetermined number of times, then if error still occurs the
digital command station is reset, Which if the error still
persists then the command is removed and the operator is
noti?ed of the error.

Application Programming Interface
Train ToolsTM Interface Description

Building your oWn visual interface to a model railroad
Copyright 1992—1998 KAM Industries.

Computer Dispatcher, Engine Commander, The Conductor,
Train Server, and Train Tools are Trademarks of KAM
Industries, all Rights Reserved.

9
Questions concerning the product can be EMAILED to:
traintools@kam.rain.com
You can also mail questions to:
KAM Industries
2373 NW 185th Avenue Suite 416
Hillsboro, Oreg. 97124
FAX—(503) 291-1221

Table of contents

1. OVERVIEW
1.1 System Architecture
2. TUTORIAL
2.1 Visual BASIC Throttle Example Application
2.2 Visual BASIC Throttle Example Source Code
3. IDL COMMAND REFERENCE
3.1 Introduction
3.2 Data Types
3.3 Commands to access the server con?guration variable

database
KamCVGetValue
KamCVPutValue
KamCVGetEnable
KamCVPutEnable
KamCVGetName
KamCVGetMinRegister
KamCVGetMaxRegister

3.4 Commands to program con?guration variables
KamProgram
KamProgramGetMode
KamProgramGetStatus
KamProgramReadCV
KamProgramCV
KamProgramReadDecoderToDataBase
KamProgramDecoderFromDataBase

3.5 Commands to control all decoder types
KamDecoderGetMaxModels
KamDecoderGetModelName
KamDecoderSetModelToObj
KamDecoderGetMaxAddress
KamDecoderChangeOldNeWAddr
KamDecoderMovePort
KamDecoderGetPort
KamDecoderChecAddrInUse
KamDecoderGetModelFromObj
KamDecoderGetModelFacility
KamDecoderGetObjCount
KamDecoderGetObjAtIndex
KamDecoderPutAdd
KamDecoderPutDel
KamDecoderGetMfgName
KamDecoderGetPoWerMode
KamDecoderGetMaxSpeed

3.6 Commands to control locomotive decoders
KamEngGetSpeed
KamEngPutSpeed
KamEngGetSpeedSteps
KamEngPutSpeedSteps
KamEngGetFunction
KamEngPutFunction
KamEngGetFunctionMax
KamEngGetName
KamEngPutName
KamEngGetFunctionName
KamEngPutFunctionName
KamEngGetConsistMax
KamEngPutConsistParent
KamEngPutConsistChild
KamEngPutConsistRemoveObj

3.7 Commands to control accessory decoders
KamAccGetFunction
KamAccGetFunctionAll
KamAccPutFunction
KamAccPutFunctionAll
KamAccGetFunctionMax
KamAccGetName
KamAccPutName
KamAccGetFunctionName

15

25

35

45

55

65

US 6,494,408 B2
10

-continued

Table of contents

KamAccPutFunctionName
KamAccRegFeedback
KamAccRegFeedbackAll
KamAccDelFeedback
KamAccDelFeedbackAll

3.8 Commands to control the command station
KamOprPutTurnOnStation
KamOprPutStartStation
KamOprPutClearStation
KamOprPutStopStation
KamOprPutPoWerOn
KamOprPutPoWerOff
KamOprPutHardReset
KamOprPutEmergencyStop
KamOprGetStationStatus

3.9 Commands to con?gure the command station
communication port

KamPortPutCon?g
KamPortGetCon?g
KamPortGetName
KamPortPutMapController
KamPortGetMaxLogPorts
KamPortGetMaxPhysical

3.10 Commands that control command floW to the command
station

KamCmdConnect
KamCmdDisConnect
KamCmdCommand

3.11 Cab Control Commands
KamCabGetMessage
KamCabPutMessage
KamCabGetCabAddr
KamCabPutAddrToCab

3.12 Miscellaneous Commands
KamMiscGetErrorMsg
KamMiscGetClockTime
KamMiscPutClockTime
KamMiscGetInterfaceVersion
KamMiscSaveData
KamMiscGetControllerName
KamMiscGetControllerNameAtPort
KamMiscGetCommandStationValue
KamMiscSetCommandStationValue
KamMiscGetCommandStationIndex
KamMiscMaxControllerID
KamMiscGetControllerFacility

I. OVERVIEW
This document is divided into tWo sections, the

Tutorial, and the IDL Command Reference. The tutorial
shoWs the complete code for a simple Visual BASIC program
that controls all the major functions of a locomotive.
This program makes use of many of the commands described
in the reference section. The IDL Command Reference
describes each command in detail.
I. TUTORIAL

A. Visual BASIC Throttle Example Application
The following application is created using the

Visual BASIC source code in the next section. It
controls all major locomotive functions such as speed,
direction, and auxiliary functions.
A. Visual BASIC Throttle Example Source Code
' Copyright 1998, KAM Industries. All rights reserved.

This is a demonstration program showing the
integration of VisualBasic and Train Server(tm)
interface. You may use this application for non
commercial usage.

‘$Date: $
‘$Author: $
‘$Revision: $
‘$Log: $
' Engine Commander, Computer Dispatcher, Train Server,

Train Tools, The Conductor and kamind are registered
' Trademarks of KAM Industries. All rights reserved.

' This ?rst command adds the reference to the Train

US 6,494,408 B2
11

-continued

Table of contents

12

-continued

Table of contents

ServerT Interface object Dim EngCmd As NeW EngComIfc 5 DCOM—95”))
iLogicalPort = 0

Engine Commander uses the term Ports, Devices and LogPort.Caption = iLogicalPort
Controllers ComPort.Caption = “7??”
Ports —> These are logical ids Where Decoders are Controller.Caption = “Unknown”

assigned to. Train ServerT Interface supports a Else
limited number of logical ports. You can also think 10 MsgBoX ((“Simulation(COM1) Train Server —— ” &
of ports as mapping to a command station type. This strVer))
alloWs you to move decoders betWeen command station ‘********************************

Without losing any information about the decoder ‘Con?guration information; Only need to
change these values to use a different

Devices —> These are communications channels controller...

You may have a single device (com1) or multiple ‘ UNKNOWN 0 // Unknown control type
devices ‘ SIMULAT 1 // Interface simulator

(COM 1 — COM8, LPT1, Other). You are required to ‘ LENZflX 2 // Lenz serial support module
map a port to a device to access a command station. ‘ LENZiZX 3 // Lenz serial support module
Devices start from ID 0 —> maX id (FYI; devices do ‘ DIGITiDT200 4 // DigitraX direct drive
not necessarily have to be serial channel. AlWays 20 support using DT200
check the name of the device before you use it as ‘ DIGITiDCS100 5 // DigitraX direct drive
Well as the maXimum number of devices supported. support using DCS100
The Command ‘ MASTERSERIES 6 // North Coast engineering
EngCmd.KamPortGetMaXPhysical(lMaXPhysical, lSerial, master Series
lParallel) provides means that... lMaXPhysical = ‘ SYSTEMONE 7 // System One
lSerial + lParallel + lOther ‘ RAMFIX 8 // RAMFIXX system

25 ‘ DYNATROL 9 // Dynatrol system
Controller — These are command the command station ‘ Northcoast binary 10 // North Coast binary
like LENZ, DigitraX ‘ SERIAL 11 // NMRA Serial
Northcoast, EasyDCC, Marklin... It is recommend interface
that you check the command station ID before you ‘ EASYDCC 12 // NMRA Serial interface
use it. ‘ MRK6050 13 // 6050 Marklin interface

30 (AC and DC)
Errors — All commands return an error status. If ‘ MRK6023 14 // 6923 Marklin hybrid

the error value is non Zero, then the interface (AC)
other return arguments are invalid. In ‘ ZTC 15 // ZTC Systems ltd
general, non Zero errors means command Was ‘ DIGITfPRl 16 // DigitraX direct drive
not eXecuted. To get the error message, support using PR1
you need to call KamMiscErrorMessage and 35 ‘ DIRECT 17 // Direct drive interface
supply the error number routine

M69696****96**

To Operate your layout you Will need to perform a iLogicalPort = 1 ‘Select Logical port 1 for
mapping betWeen a Port (logical reference), Device communications
(physical communications channel) and a Controller iController = 1 ‘Select controller from the list

(command station) for the program to Work. All 40 above.
references uses the logical device as the reference iComPort = 0 1‘ use COM1; 0 means com1 (DigitraX must
device for access. use Com1 or Com2)

‘DigitraX Baud rate requires 16.4K!
Addresses used are an object reference. To use an ‘Most COM ports above Com2 do not
address you must add the address to the command ‘support 16.4K. Check With the
station using KamDecoderPutAdd One of the return 45 ‘manufacture of your smart com card
values from this operation is an object reference
that is used for control.

We need certain variables as global objects; since
the information is being used multiple times

‘for the baud rate. Keep in mind that
‘Dumb com cards With serial port
‘support Com1 — Com4 can only support

‘2 com ports (like com1/com2
‘or com3/com4)

Dim iLogicalPort, iController, iComPort
Dim iPortRate, iPortParity, iPortStop, iPortRetrans, 50

iPortWatchdog, iPortFloW, iPortData
Dim lEngineObject As Long, iDecoderClass As Integer,
iDecoderType As Integer

‘If you change the controller, do not
‘forget to change the baud rate to
‘match the command station. See your
‘user manual for details

M69696*******************9‘*********************************

Dim iError As Integer
‘Get the interface version information
SetButtonState (False)
iError = EngCmd.KamMiscGetInterfaceVersion (strVer)
If (iError) Then

MsgBoX ((“Train Server not loaded. Check

65

Dim lMaXController As Long ‘ 0: // Baud rate is 300
Dim lMaXLogical As Long, lMaXPhysical As Long, lMaXSerial ‘ 1: // Baud rate is 1200

As Long, lMaXParallel As Long 55 ‘ 2: // Baud rate is 2400

‘Form load function ‘ 4: // Baud rate is 9600
‘ — Turn of the initial buttons ‘ 5: // Baud rate is 14.4

‘ — Set he interface information ‘ 6: // Baud rate is 16.4

Private Sub Formiload() 6O iPortRate = 4
Dim strVer As String, strCom As String, strCntrl As ‘ Parity values 0—4 —> no, odd, even, mark,

String space
iPortParity = 0

‘ Stop bits 0,1,2 —> 1, 1.5, 2
iPortStop = 0

iPortRetrans = 10

iPortWatchdog = 2048
iPortFloW = 0

