US006494408B2

United States Patent

(12) 10y Patent No.: US 6,494,408 B2
Katzer @#5) Date of Patent: *Dec. 17, 2002
(549) MODEL TRAIN CONTROL SYSTEM 4,853,883 A 8/1989 Nickles et al.
5072900 A 12/1991 Malon
(75) Inventor: Matthew A. Katzer, 1416 NW. 5475818 A 12/1995 Molyneaux et al.
Benfield Dr., Portland, OR (US) 97229 5,493,642 A 2/1996 Dunsmuir et al.
5681015 A 10/1997 Kull
. . . 5,696,689 A 12/1997 Okumura et al.
(73) Assignee: I\{I%tthew A. Katzer, Hillsboro, OR 5787371 A 7/1098 Balukin et al.
(US) 5,828979 A 10/1998 Polivka et al.
. 5,896,017 A 4/1999 S t al.
(*) Notice: Subject to any disclaimer, the term of this 5940.005 A 8;1999 SZZZ;:((;E Zt Zl.
patent is extended or adjusted under 35 5:952:797 A 9/1999 Rossler
U.S.C. 154(b) by 0 days. 6,065,406 A 5/2000 Katzer
6,270,040 B1 * 8/2001 Katzercccccevvvvnnnnnnne 246/1 R
Thi tent 1 bject t t inal dis-
Claliingi ent is subject to a terminal dis OTHER PUBLICATIONS
Chapell, David. Understanding ActiveX and OLE. Red-
(21) Appl. No.: 09/858,297 mond: Microsoft Press, 1996.
(22) Filed: May 15, 2001 * cited by examiner
(65) Prior Publication Data Primary Examiner—Mark T. Le
(74) Antorney, Agent, or Firm—Chernoff Vilhauer McClung
US 2002/0113171 Al Aug. 22, 2002 & Stenzel, LLP
Related U.S. Application Data (57) ABSTRACT
(63) Continuation of application No. 09/541,926, filed on Apr. 3, A system which operates a digitally controlled model rail-
2000, now Pat. No. 6,270,040. road transmitting a first command from a first client program
(51) Ite CL s GO5D 1/00 to a resident external controlling interface through a first
(52) US.CL oo . 246/1 R; 701/19 communications transport. A second command is transmit-
(58) Field of Search 246 /1,R 35 ted from a second client program to the resident external
246 /167 R187 A340/1 46.2 500’ 5’40’ controlling interface through a second communications
825, 825 01 82,5 03 855 06 825 (’)7 855 22’ transport. The first command and the second command are
’ ’ 82,5 52' 28, 6.01 ’ 28’ 6 02.' 70’1 /19' 20’ received by the resident external controlling interface which
o o R ? queues the first and second commands. The resident external
(56) References Cited controlling interface sends third and fourth commands rep-

resentative of the first and second commands, respectively,

U.S. PATENT DOCUMENTS

controlled model railroad.

3,044,986 A
3,976,272 A
4307302 A

3/1976 Staples
8/1976 Murray et al.
12/1981 Russell

1 o

CLIENT D) COMMUN\CAUONS\~ e
. o
{COMMAND _ =8

{CocaL
DATABASE
STORAGE

102

COMMANDJ
(GGE0E

108

ASYNCHRONOUS
__RESPONSE
PROCESSOR

‘mm
52
gzt
32

. |E33
&z e

ke

’1

EXTERNAL

chmoL <

to a digital command station for execution on the digitally

43 Claims, 13 Drawing Sheets

EXTERNAL
| [pEvicEs,

us/ u

= AUTOMATIC D1

DIRCCTION OF
SIGNAL-CONTROLLED ~ ABS AT
TRAFFIC BLOCKSIGNALS ST

== POWER-OPERATED § DVERIGCKING CTC = CENTRALIZED
SWITCHES TOWER TRAFFIC
== MANUALLY-OPERATED x RESTRICTED CONTROL
SWITCHES CLEARANCE: $5 = SPRING
TUNNEL SWITCH

= SINGLE-TRACK.

DOUBLE-TRACK

US 6,494,408 B2

Sheet 1 of 13

Dec. 17, 2002

U.S. Patent

wr/

SNOILVLlS
ANVAIWOOD
v 1iold

N 7N

3OVd4dd3LNI
ONITTOHLNOD
TVYNYH3LX3
LN3dIs3H

\l

1HOdSNVYHL

ni/mZ9p<ozassoorr\\

o 0]
0] @)

NYHO0Hd
1N3IND

@) 0
@) O
O O

/" 1HOdSNVHL J
e—\ SNOILVIOINNWINOD\ ¢

mr\\

~. 7

CL—

WVYHOOHd

1N3I7D
\\

AN

ol

US 6,494,408 B2

Sheet 2 of 13

Dec. 17, 2002

U.S. Patent

8l 9L

J

/s391A3Q
1YNH3LX3T

0]

vLL
A Thi~ 90k~
21901 H0SS$3ID0Hd
TOHLINOD 3OVHOLS JSNOdS3H [
39I1A3Q asvav.iva S SNONOYHONASY
TYNE3LX 3L H37T0H1INOD
yOL~ eOb™
\
IDVHOLS
3n3no 3SVYEVLYQ
—ANYIWWOD V501
2107
7 doss3ooHd L]
T0HINOD -
: SNONOHHONAS
TYNH3ILXT > SNONOHHONASY
i s oo~
oL
|
1HOdSNYYHL u WYHDOHd
SNOILYDINNWWOD \ <~ LN3I1D
T JJ
zL- e

US 6,494,408 B2

Sheet 3 of 13

Dec. 17, 2002

U.S. Patent

N

> TLL/0LL

90¢ ~ oLz N
HOSS3IDO0Hd
3ISNOds3ay mowwwwmmm
NOILDNNA
NOILVYAITVA
e
meZWW.m\\\£<m 80¢ mwwmmﬂ%ma \
02
aNvinwWoo TYNHILX3
¢c0¢ l\ 00z 4\
¢FT\\

Olt

US 6,494,408 B2

Sheet 4 of 13

Dec. 17, 2002

U.S. Patent

Y 'DIA AOVIL-ATONIS = [-§ gTVYNDIS MO0 T4 OLIAVYL
MOVIL-A19N0d = 1-a DILVINOLNY = SV QI TIOYLNOD-TYNDIS
HOLIMS TANNNL 0 NOLLOH¥dId - ==
DNIIdS = SS FONVIVITO STHOLIMS
10¥INOD QELONLSTY # QALVYAdO-ATIVINVIN =
QO EENA ATMOL STHOLIMS
EZITVEINAD = 010 ONDIOOTIHINI & QELVIAdO-YAMOd =

(
“ 0 mm<H-mL L Ol S\ %
NOISIAIA g Jo1 NOISIAIA) Jo1r Noisiala
NJILSTM e

<~ ~—DIINVILV —&=— ANFHDHTIV S
%90 %b0

%90 %S0 %90
%90 %S0 %80

HTIA0WUd - ANI'T NIVIN

US 6,494,408 B2

Sheet 5 of 13

Dec. 17, 2002

U.S. Patent

¢ DIA

paads pazuoyine wnuwixe

woi sourstp Furddorg [e6T A1NA]

T > (Teao
-~ [eu3is swWoH)
ﬁ ~ [v62 A1) - QgID0Ud
‘ - (doysye A
’ [eudis SwWoy) 5
\4 _/r - HOVOUddYV, TVNDIS
INVLSIA

S1OddSV
N\ g _IVNDIS = padnoog pardnosoun)

Z TVIIdAL yooid yooig

@L & dOLS : - ommoommﬁ@
= A >

U_ \o\ﬂ."l_.rl <y m

9 OId

US 6,494,408 B2

TN ANO OL dNn
< HIONAT LINOYID HOVIL -
n n e :
= m JJ — I +
v) S U
o e N[— o O — 75, = .
— MIJI == -
- L _ —] .ﬂ.
= _ -
o e e —
- -]
2 ==
z il
amd
=
S
Mw —> — — -
. Q]
" 4 Aﬁ - -— N~ - .N + -
- " |m === STIVY HONOYHL INTRNNO qrvryg E !
m ___ = "\ = T Avydllvd NAgMIFd AYdLLVd
5 T TVNDIS INTHIND AOVHL
AIZIOYANT IOVIVAT
I
o zmm%@MQ; 1160 AVITY Ad1dNIO0NN JD01d
= MOVIL

VL DIA

US 6,494,408 B2

Sheet 7 of 13

Dec. 17, 2002

U.S. Patent

ddddsS LVHL OL 30NAddd A TALVIAdWI
LSO d3ddS d4.LINITONIIIOXH NIVIL |

dd4ddS LVHL OL 30Ndgd A THLVIAdWINI
LSO ddddS WAIAdIW DNIATIOXH NIVAL =

NAFIO =D MOTIHA=A dddd=14

uﬂ
agaao0dd no AVATO
L TVNDIS
IIHL 1V dO1S OL S HOVOIddV
aIIvdTdd a49004d A IINVAAVY
+ TVNDIS +
ANODHS LV dOILS OL Tx WNIAan
AgdVvdadd aa9004d A HOVOUddV
« TVNDIS +
LXAN LV dOLS OL T
AIvVdadd aadd0dd AA HOVOUddV
Ty Eﬁh
qad00¥4d T HPREVIA
ANV dOLS —d dOIS
NOILVOIANI 1DddSV TNVN

HTdNVXH - 4O1LOVdd TVNDIS 20014

US 6,494,408 B2

Sheet 8 of 13

Dec. 17, 2002

U.S. Patent

mh @Hm keSSAIX A>te—— FONV.LSIA ONDIVIE —
S Ny Ny St S St

ALLARAALLALAALE AR LR R LA RILLIES CAR LA LLRABRRAT R RBR AR UG R ERRRY
A AR AL L L ALA AA L ARMALAALLLALAA LA ALRAB R BLAARAR DR R CRA L CCRRRES

Fe— IWNINIXVIA - NOILLDALOYd 40 ANOZ —=
NOLLVOIANI - FAId D014 - 4N04

le— SSHOXH ——— JONV.LSIA ONDIVId —=

AAALALMAALALALALLEAL R AR LA ALLLALAALLBBALLRLALR AR RARR R B E LB R RBR BB RRE
S N S s N S SSSUSSSSSSSISSSSSSSSSSSS]

fe—— WNINIXVIA - NOILDALOdd 40 HNOZ —*

le—— AONV.LSIA DNIDAVIE —i

N ARG LA AL AR A AR AL AT A AL AR ALALAAAR AL R R RL RS
P AL L AL AL A AR AL ARAR AR L LR AR R AR LR LA LB A BB AR B R RS

pe—— WONININ ——>
- NOILDHLOYUd 40 ANOZ

NOLLVOIQNI - 4N0d D014 - H9JHL

_ le—ONIOVAS NIVYL SSHOXH —+——dONVLSId ONIVId —

1y Nt

SR AR AR AL A AL AL A L A AL L L AL AL A L AL L A A A LA L L C L L A A A A AL A R LA A AR AR AR AR AL R AR R R AR R R LR RRRRY
B S T S e S S S S S S NS S RSAS SRS A SSANRSSSSSAASI SIS

b= IWNINIXVIA - NOLLOALOYd 40 INOZ >

AL AL L A A A LA LA L AG AR AR A AR AR AV LR AR RRERRR®
AARAA A AL ALAA LA L AL A AL A AR ALMALAALAALAAA AR LAERRRY

e WOWININ ——>
- NOILOHLOYd 40 INOZ

NOILLVOIANI - F9dHL Y0019 - OM1L

US 6,494,408 B2

Sheet 9 of 13

Dec. 17, 2002

U.S. Patent

8 ‘DId

>

== ==

~
~

(=7

=
(O

~

-4

=

=
ok ake

o]
>
- z
= =
>>4>'

NOLLISOd

LHOI']

&

ooo:[b @-@—

=
=

b
ot @

{ TATUIATATUND

\LINVAuVviiv

ull
r

'
D

LHOI'T

LHOI'T ddddn)

JOT0D NOILISOd

“HOYVAS

JOT0D HIOHIVINAS

(z6z ATNY)

TMATO

adulLd

(60S 1MW)

adioldirsHdd
1V ad400dd
ANV dOLS

(s8z 1N

TVNDIS

LXAN LV dOLS
OL dvdddd
HOVOdddV

(187 31N

addds
TVINION
LV ad9050dd

'SIOAdSV NOILVOIGNI

addo0dd
aNV dOLS

HOVOdddVv

qvd1O

HINVN

V6 DId

US 6,494,408 B2

AN
AN

E

_HOVORIAY SN O\

%%mm/////

«@
[T
]
=
g (HdW ST = a93dS MO1S)
= D 5 ¥ (B AOVILOLNI ¥IAOSSOAD
d 4 D Z1 'ON HONOYWHL 4100y
4 A A ONIOYAAIA YOI ATIVATO Al
o (HdW 0€ = a944ddS WNIganW)
E k| d R (®) MOVYL OL JIAOSSOUD
< D D A 91 'ON HONOYHL 31.N0Y
= d A 9 ONIOYIAIA JOJ ATIVHTO Al
m (HJIN 08 = A9EdS LINID
n n b 2) YOVIL OL LNONMNL
D D ¥ adddS-ADIH HONOYHL 4LN0Y
4 X D DNIDYAAIA YO4 ATIVATIO 41
= (ag4ds TYINION)
i3 | | d MOVIL
- A 4 ¥ OL HONOYHL THOIVILS
A D O D ALNOY 04 AIVATO Al
7] > 8 V :LV STYNDIS 4O SLOddSV
-

Ny

NN
SN
oo

US 6,494,408 B2

Sheet 11 of 13

Dec. 17, 2002

U.S. Patent

d6 DIA

soIno1 paads wnIpauwr Spnoul J0u S20p JnoAe] Ji (,paods paywif, Sunesrpur)

peay [eudis puodes mopaq 9je(d Joxrew ren3ueLn Ym pade[dar oq KB

D
. SLINIT AVHTID d
DONIIDOTHHINI NTHLIM dd3dS MOIS -ddd00dd MOTIS A
*D
SLINIT IVHIO n
ONITIDOTIALNI NIHLIM d3ddS A4LINIT :ddd00dd ddLINIT k: |
d
SLINIT AVIAIO 9
ONDIDOTIALNI NTHLIM adddS WNIaW :ddd00dd WNIAAW |
D
ddddS d4.LINI'T ddLIANIT D
LV TVNDIS LXAN ODNTHOVOIddV dd9d00dd HOVOdddV A
|
‘ddddsS WIiddin IWNIAIN D
LV TVNOIS LXAN ONIHOVOIdddV d39d00dd HOVOUddV A
WNIdInW b |
‘ddddS WNIAInW HOVOdddVv A
LV TVNDIS ANODAS ONIHOVOUddV dddD0dd AONVAAQV D
‘ddddS LVHL OL 30NddTd ATALVIAdWIAI n
LSN d93dS WNATW ONIQIIOXd NIVIL ‘addds MOTS k:|
MOTS LV TYNDIS LXAN ONTHOVOALIY AFHDONUd HOVOIddV A
ddddsS LVHL OL 30Ndad ATALVIAIWIAL LSNIA k|
adddsS WNIAIA ONIQFaOXd NIVYEL dOLS OL A
dRIvVdNId TVNDIS LXAN ONIHOVOIddV ddd00dd HOVOUdddV A
q
ki |
dd4ddS TVINUON 1V dd400dd AVvVATIO 19

NOILVDIANI HAVN I1DAdSV

US 6,494,408 B2

Sheet 12 of 13

Dec. 17, 2002

U.S. Patent

O "DIA

AVOYTIVY THAON
00¢ J
SHOIAHA TYNYH1XH F1LLOYHL TVANVIN
] i f T
81~ ~0T¢
YITIOULNOD
YHHOLVJSIA
org
OV 4IHLNI ONITIOULNOD
o1
— o0
¢l / 4! %
TANVA TOYLNOD TANVd TOULNOD
00g coo | o0g~
NVYO0¥d INAI'TO WVID0Yd LNAITO
iy)

vi-

Vi~

U.S. Patent Dec. 17, 2002 Sheet 13 of 13 US 6,494,408 B2

COMMAND QUILUE
PRIORTTY { TYPE COMMAND
5 A | INCREASELOCO1BY 2
37 B OPEN SWITCH 1
15 B | CLOSE SWITCH 1
26 B OPEN SWITCH 1
6 A | DECREASELOCO2BY 5
176 B CLOSE SWITCH ¢
123 C | TURNON LIGHT 5
85 D QUERY LOCO 3
5 A | INCREASELOCO2BY 7
9 A | DECREASELOCO 1BY 2
0 E | MISC
37 D | QUERY LOCO 2
215 | D | QUERYSWITCH
216 ' C | TURN ON LIGHT 3
227 D | QUERY SWITCH 5
225 C | TURNONLOCO 1 LIGHT
0 D | QUERY ALL
255 A | STOPLOCO 1

FI1G. 11

US 6,494,408 B2

1
MODEL TRAIN CONTROL SYSTEM

This is a continuation of U.S. application Ser. No.
09/541,926, filed Apr. 3, 2000, now U.S. Pat. No. 6,270,040,
for MODEL TRAIN CONTROL SYSTEM.

BACKGROUND OF THE INVENTION

The present invention relates to a system for controlling
a model railroad.

Model railroads have traditionally been constructed with
of a set of interconnected sections of train track, electric
switches between different sections of the train track, and
other electrically operated devices, such as train engines and
draw bridges. Train engines receive their power to travel on
the train track by electricity provided by a controller through
the track itself. The speed and direction of the train engine
is controlled by the level and polarity, respectively, of the
electrical power supplied to the train track. The operator
manually pushes buttons or pulls levers to cause the
switches or other electrically operated devices to function, as
desired. Such model railroad sets are suitable for a single
operator, but unfortunately they lack the capability of
adequately controlling multiple trains independently. In
addition, such model railroad sets are not suitable for being
controlled by multiple operators, especially if the operators
are located at different locations distant from the model
railroad, such as different cities.

A digital command control (DDC) system has been devel-
oped to provide additional controllability of individual train
engines and other electrical devices. Each device the opera-
tor desires to control, such as a train engine, includes an
individually addressable digital decoder. A digital command
station (DCS) is electrically connected to the train track to
provide a command in the form of a set of encoded digital
bits to a particular device that includes a digital decoder. The
digital command station is typically controlled by a personal
computer. A suitable standard for the digital command
control system is the NMRA DCC Standards, issued March
1997, and is incorporated herein by reference. While pro-
viding the ability to individually control different devices of
the railroad set, the DCC system still fails to provide the
capability for multiple operators to control the railroad
devices, especially if the operators are remotely located from
the railroad set and each other.

DigiToys Systems of Lawrenceville, Ga. has developed a
software program for controlling a model railroad set from
a remote location. The software includes an interface which
allows the operator to select desired changes to devices of
the railroad set that include a digital decoder, such as
increasing the speed of a train or switching a switch. The
software issues a command locally or through a network,
such as the internet, to a digital command station at the
railroad set which executes the command. The protocol used
by the software is based on Cobra from Open Management
Group where the software issues a command to a commu-
nication interface and awaits confirmation that the command
was executed by the digital command station. When the
software receives confirmation that the command executed,
the software program sends the next command through the
communication interface to the digital command station. In
other words, the technique used by the software to control
the model railroad is analogous to an inexpensive printer
where commands are sequentially issued to the printer after
the previous command has been executed. Unfortunately, it
has been observed that the response of the model railroad to
the operator appears slow, especially over a distributed

10

15

20

25

30

35

40

45

50

55

60

65

2

network such as the internet. One technique to decrease the
response time is to use high-speed network connections but
unfortunately such connections are expensive.

What is desired, therefore, is a system for controlling a
model railroad that effectively provides a high-speed con-
nection without the additional expense associated therewith.

The foregoing and other objectives, features, and advan-
tages of the invention will be more readily understood upon
consideration of the following detailed description of the
invention, taken in conjunction with the accompanying
drawings.

SUMMARY OF THE PRESENT INVENTION

The present invention overcomes the aforementioned
drawbacks of the prior art, in a first aspect, by providing a
system for operating a digitally controlled model railroad
that includes transmitting a first command from a first client
program to a resident external controlling interface through
a first communications transport. A second command is
transmitted from a second client program to the resident
external controlling interface through a second communica-
tions transport. The first command and the second command
are received by the resident external controlling interface
which queues the first and second commands. The resident
external controlling interface sends third and fourth com-
mands representative of the first and second commands,
respectively, to a digital command station for execution on
the digitally controlled model railroad.

Incorporating a communications transport between the
multiple client program and the resident external controlling
interface permits multiple operators of the model railroad at
locations distant from the physical model railroad and each
other. In the environment of a model railroad club where the
members want to simultaneously control devices of the same
model railroad layout, which preferably includes multiple
trains operating thereon, the operators each provide com-
mands to the resistant external controlling interface, and
hence the model railroad. In addition by queuing by com-
mands at a single resident external controlling interface
permits controlled execution of the commands by the digi-
tally controlled model railroad, would may otherwise con-
flict with one another.

In another aspect of the present invention the first com-
mand is selectively processed and sent to one of a plurality
of digital command stations for execution on the digitally
controlled model railroad based upon information contained
therein. Preferably, the second command is also selectively
processed and sent to one of the plurality of digital command
stations for execution on the digitally controlled model
railroad based upon information contained therein. The
resident external controlling interface also preferably
includes a command queue to maintain the order of the
commands.

The command queue also allows the sharing of multiple
devices, multiple clients to communicate with the same
device (locally or remote) in a controlled manner, and
multiple clients to communicate with different devices. In
other words, the command queue permits the proper execu-
tion in the cases of: (1) one client to many devices, (2) many
clients to one device, and (3) many clients to many devices.

In yet another aspect of the present invention the first
command is transmitted from a first client program to a first
processor through a first communications transport. The first
command is received at the first processor. The first proces-
sor provides an acknowledgement to the first client program
through the first communications transport indicating that

US 6,494,408 B2

3

the first command has properly executed prior to execution
of commands related to the first command by the digitally
controlled model railroad. The communications transport is
preferably a COM or DCOM interface.

The model railroad application involves the use of
extremely slow real-time interfaces between the digital
command stations and the devices of the model railroad. In
order to increase the apparent speed of execution to the
client, other than using high-speed communication
interfaces, the resident external controller interface receives
the command and provides an acknowledgement to the
client program in a timely manner before the execution of
the command by the digital command stations. Accordingly,
the execution of commands provided by the resident exter-
nal controlling interface to the digital command stations
occur in a synchronous manner, such as a first-in-first-out
manner. The COM and DCOM communications transport
between the client program and the resident external con-
trolling interface is operated in an asynchronous manner,
namely providing an acknowledgement thereby releasing
the communications transport to accept further communica-
tions prior to the actual execution of the command. The
combination of the synchronous and the asynchronous data
communication for the commands provides the benefit that
the operator considers the commands to occur nearly instan-
taneously while permitting the resident external controlling
interface to verify that the command is proper and cause the
commands to execute in a controlled manner by the digital
command stations, all without additional high-speed com-
munication networks. Moreover, for traditional distributed
software execution there is no motivation to provide an
acknowledgment prior to the execution of the command
because the command executes quickly and most commands
are sequential in nature. In other words, the execution of the
next command is dependent upon proper execution of the
prior command so there would be no motivation to provide
an acknowledgment prior to its actual execution.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

FIG. 1 is a block diagram of an exemplary embodiment of
a model train control system.

FIG. 2 is a more detailed block diagram of the model train
control system of FIG. 1 including external device control
logic.

FIG. 3 is a block diagram of the external device control
logic of FIG. 2.

FIG. 4 is an illustration of a track and signaling arrange-
ment.

FIG. § is an illustration of a manual block signaling
arrangement.

FIG. 6 is an illustration of a track circuit.

FIGS. 7A and 7B are illustrations of block signaling and
track capacity.

FIG. 8 is an illustration of different types of signals.

FIGS. 9A and 9B are illustrations of speed signaling in
approach to a junction.

FIG. 10 is a further embodiment of the system including
a dispatcher.

FIG. 11 is an exemplary embodiment of a command
queue.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENT

Referring to FIG. 1, a model train control system 10
includes a communications transport 12 interconnecting a

10

15

20

25

30

35

40

45

50

55

60

65

4

client program 14 and a resident external controlling inter-
face 16. The client program 14 executes on the model
railroad operator’s computer and may include any suitable
system to permit the operator to provide desired commands
to the resident external controlling interface 16. For
example, the client program 14 may include a graphical
interface representative of the model railroad layout where
the operator issues commands to the model railroad by
making changes to the graphical interface. The client pro-
gram 14 also defines a set of Application Programming
Interfaces (API’s), described in detail later, which the opera-
tor accesses using the graphical interface or other programs
such as Visual Basic, C++, Java, or browser based applica-
tions. There may be multiple client programs interconnected
with the resident external controlling interface 16 so that
multiple remote operators may simultaneously provide con-
trol commands to the model railroad.

The communications transport 12 provides an interface
between the client program 14 and the resident external
controlling interface 16. The communications transport 12
may be any suitable communications medium for the trans-
mission of data, such as the internet, local area network,
satellite links, or multiple processes operating on a single
computer. The preferred interface to the communications
transport 12 is a COM or DCOM interface, as developed for
the Windows operating system available from Microsoft
Corporation. The communications transport 12 also deter-
mines if the resident external controlling interface 16 is
system resident or remotely located on an external system.
The communications transport 12 may also use private or
public communications protocol as a medium for commu-
nications. The client program 14 provides commands and
the resident external controlling interface 16 responds to the
communications transport 12 to exchange information. A
description of COM (common object model) and DCOM
(distributed common object model) is provided by Chappel
in a book entitled Understanding ActiveX and OLE,
Microsoft Press, and is incorporated by reference herein.

Incorporating a communications transport 12 between the
client program(s) 14 and the resident external controlling
interface 16 permits multiple operators of the model railroad
at locations distant from the physical model railroad and
each other. In the environment of a model railroad club
where the members want to simultaneously control devices
of the same model railroad layout, which preferably includes
multiple trains operating thereon, the operators each provide
commands to the resistant external controlling interface, and
hence the model railroad.

The manner in which commands are executed for the
model railroad under COM and DCOM may be as follows.
The client program 14 makes requests in a synchronous
manner using COM/DCOM to the resident external interface
controller 16. The synchronous manner of the request is the
technique used by COM and DCOM to execute commands.
The communications transport 12 packages the command
for the transport mechanism to the resident external con-
trolling interface 16. The resident external controlling inter-
face 16 then passes the command to the digital command
stations 18 which in turn executes the command. After the
digital command station 18 executes the command an
acknowledgement is passed back to the resident external
controlling interface 16 which in turn passes an acknowl-
edgement to the client program 14. Upon receipt of the
acknowledgement by the client program 14, the communi-
cations transport 12 is again available to accept another
command. The train control system 10, without more, per-
mits execution of commands by the digital command sta-

US 6,494,408 B2

5

tions 18 from multiple operators, but like the DigiToys
Systems’ software the execution of commands is slow.

The present inventor came to the realization that unlike
traditional distributed systems where the commands passed
through a communications transport are executed nearly
instantaneously by the server and then an acknowledgement
is returned to the client, the model railroad application
involves the use of extremely slow real-time interfaces
between the digital command stations and the devices of the
model railroad. The present inventor came to the further
realization that in order to increase the apparent speed of
execution to the client, other than using high-speed com-
munication interfaces, the resident external controller inter-
face 16 should receive the command and provide an
acknowledgement to the client program 12 in a timely
manner before the execution of the command by the digital
command stations 18. Accordingly, the execution of com-
mands provided by the resident external controlling inter-
face 16 to the digital command stations 18 occur in a
synchronous manner, such as a first-in-first-out manner. The
COM and DCOM communications transport 12 between the
client program 14 and the resident external controlling
interface 16 is operated in an asynchronous manner, namely
providing an acknowledgement thereby releasing the com-
munications transport 12 to accept further communications
prior to the actual execution of the command. The combi-
nation of the synchronous and the asynchronous data com-
munication for the commands provides the benefit that the
operator considers the commands to occur nearly instanta-
neously while permitting the resident external controlling
interface 16 to verify that the command is proper and cause
the commands to execute in a controlled manner by the
digital command stations 18, all without additional high-
speed communication networks. Moreover, for traditional
distributed software execution there is no motivation to
provide an acknowledgment prior to the execution of the
command because the command executes quickly and most
commands are sequential in nature. In other words, the
execution of the next command is dependent upon proper
execution of the prior command so there would be no
motivation to provide an acknowledgment prior to its actual
execution. It is to be understood that other devices, such as
digital devices, may be controlled in a manner as described
for model railroads.

Referring to FIG. 2, the client program 14 sends a
command over the communications transport 12 that is
received by an asynchronous command processor 100. The
asynchronous command processor 100 queries a local data-
base storage 102 to determine if it is necessary to package
a command to be transmitted to a command queue 104. The
local database storage 102 primarily contains the state of the
devices of the model railroad, such as for example, the speed
of a train, the direction of a train, whether a draw bridge is
up or down, whether a light is turned on or off, and the
configuration of the model railroad layout. If the command
received by the asynchronous command processor 100 is a
query of the state of a device, then the asynchronous
command processor 100 retrieves such information from the
local database storage 102 and provides the information to
an asynchronous response processor 106. The asynchronous
response processor 106 then provides a response to the client
program 14 indicating the state of the device and releases the
communications transport 12 for the next command.

The asynchronous command processor 100 also verifies,
using the configuration information in the local database
storage 102, that the command received is a potentially valid
operation. If the command is invalid, the asynchronous

10

15

20

25

30

35

40

45

50

55

60

65

6

command processor 100 provides such information to the
asynchronous response processor 106, which in turn returns
an error indication to the client program 14.

The asynchronous command processor 100 may deter-
mine that the necessary information is not contained in the
local database storage 102 to provide a response to the client
program 14 of the device state or that the command is a valid
action. Actions may include, for example, an increase in the
train’s speed, or turning on/off of a device. In either case, the
valid unknown state or action command is packaged and
forwarded to the command queue 104. The packaging of the
command may also include additional information from the
local database storage 102 to complete the client program 14
request, if necessary. Together with packaging the command
for the command queue 104, the asynchronous command
processor 100 provides a command to the asynchronous
request processor 106 to provide a response to the client
program 14 indicating that the event has occurred, even
though such an event has yet to occur on the physical
railroad layout.

As such, it can be observed that whether or not the
command is valid, whether or not the information requested
by the command is available to the asynchronous command
processor 100, and whether or not the command has
executed, the combination of the asynchronous command
processor 100 and the asynchronous response processor 106
both verifies the validity of the command and provides a
response to the client program 14 thereby freeing up the
communications transport 12 for additional commands.
Without the asynchronous nature of the resident external
controlling interface 16, the response to the client program
14 would be, in many circumstances, delayed thereby result-
ing in frustration to the operator that the model railroad is
performing in a slow and painstaking manner. In this
manner, the railroad operation using the asynchronous inter-
face appears to the operator as nearly instantaneously
responsive.

Each command in the command queue 104 is fetched by
a synchronous command processor 110 and processed. The
synchronous command processor 110 queries a controller
database storage 112 for additional information, as
necessary, and determines if the command has already been
executed based on the state of the devices in the controller
database storage 112. In the event that the command has
already been executed, as indicated by the controller data-
base storage 112, then the synchronous command processor
110 passes information to the command queue 104 that the
command has been executed or the state of the device. The
asynchronous response processor 106 fetches the informa-
tion from the command cue 104 and provides a suitable
response to the client program 14, if necessary, and updates
the local database storage 102 to reflect the updated status of
the railroad layout devices.

If the command fetched by the synchronous command
processor 110 from the command queue 104 requires execu-
tion by external devices, such as the train engine, then the
command is posted to one of several external device control
logic 114 blocks. The external device control logic 114
processes the command from the synchronous command
processor 110 and issues appropriate control commands to
the interface of the particular external device 116 to execute
the command on the device and ensure that an appropriate
response was received in response. The external device is
preferably a digital command control device that transmits
digital commands to decoders using the train track. There
are several different manufacturers of digital command
stations, each of which has a different set of input

US 6,494,408 B2

7

commands, so each external device is designed for a par-
ticular digital command station. In this manner, the system
is compatible with different digital command stations. The
digital command stations 18 of the external devices 116
provide a response to the external device control logic 114
which is checked for validity and identified as to which prior
command it corresponds to so that the controller database
storage 112 may be updated properly. The process of trans-
mitting commands to and receiving responses from the
external devices 116 is slow.

The synchronous command processor 110 is notified of
the results from the external control logic 114 and, if
appropriate, forwards the results to the command queue 104.
The asynchronous response processor 100 clears the results
from the command queue 104 and updates the local database
storage 102 and sends an asynchronous response to the
client program 14, if needed. The response updates the client
program 14 of the actual state of the railroad track devices,
if changed, and provides an error message to the client
program 14 if the devices actual state was previously
improperly reported or a command did not execute properly.

The use of two separate database storages, each of which
is substantially a mirror image of the other, provides a
performance enhancement by a fast acknowledgement to the
client program 14 using the local database storage 102 and
thereby freeing up the communications transport 12 for
additional commands. In addition, the number of commands
forwarded to the external device control logic 114 and the
external devices 116, which are relatively slow to respond,
is minimized by maintaining information concerning the
state and configuration of the model railroad. Also, the use
of two separate database tables 102 and 112 allows more
efficient multi-threading on multi-processor computers.

In order to achieve the separation of the asynchronous and
synchronous portions of the system the command queue 104
is implemented as a named pipe, as developed by Microsoft
for Windows. The queue 104 allows both portions to be
separate from each other, where each considers the other to
be the destination device. In addition, the command queue
maintains the order of operation which is important to
proper operation of the system.

The use of a single command queue 104 allows multiple
instantrations of the asynchronous functionality, with one
for each different client. The single command queue 104
also allows the sharing of multiple devices, multiple clients
to communicate with the same device (locally or remote) in
a controlled manner, and multiple clients to communicate
with different devices. In other words, the command queue
104 permits the proper execution in the cases of: (1) one
client to many devices, (2) many clients to one device, and
(3) many clients to many devices.

The present inventor came to the realization that the
digital command stations provided by the different vendors
have at least three different techniques for communicating
with the digital decoders of the model railroad set. The first
technique, generally referred to as a transaction (one or more
operations), is a synchronous communication where a com-
mand is transmitted, executed, and a response is received
therefrom prior to the transmission of the next sequentially
received command. The DCS may execute multiple com-
mands in this transaction. The second technique is a cache
with out of order execution where a command is executed
and a response received therefrom prior to the execution of
the next command, but the order of execution is not neces-
sarily the same as the order that the commands were
provided to the command station. The third technique is a

10

15

20

25

30

40

45

50

55

60

65

8

local-area-network model where the commands are trans-
mitted and received simultaneously. In the LAN model there
iS no requirement to wait until a response is received for a
particular command prior to sending the next command.
Accordingly, the LAN model may result in many commands
being transmitted by the command station that have yet to be
executed. In addition, some digital command stations use
two or more of these techniques.

With all these different techniques used to communicate
with the model railroad set and the system 10 providing an
interface for each different type of command station, there
exists a need for the capability of matching up the responses
from each of the different types of command stations with
the particular command issued for record keeping purposes.
Without matching up the responses from the command
stations, the databases can not be updated properly.

Validation functionality is included within the external
device control logic 114 to accommodate all of the different
types of command stations. Referring to FIG. 3, an external
command processor 200 receives the validated command
from the synchronous command processor 110. The external
command processor 200 determines which device the com-
mand should be directed to, the particular type of command
it is, and builds state information for the command. The state
information includes, for example, the address, type, port,
variables, and type of commands to be sent out. In other
words, the state information includes a command set for a
particular device on a particular port device. In addition, a
copy of the original command is maintained for verification
purposes. The constructed command is forwarded to the
command sender 202 which is another queue, and preferably
a circular queue. The command sender 202 receives the
command and transmits commands within its queue in a
repetitive nature until the command is removed from its
queue. A command response processor 204 receives all the
commands from the command stations and passes the com-
mands to the validation function 206. The validation func-
tion 206 compares the received command against potential
commands that are in the queue of the command sender 202
that could potentially provide such a result. The validation
function 206 determines one of four potential results from
the comparison. First, the results could be simply bad data
that is discarded. Second, the results could be partially
executed commands which are likewise normally discarded.
Third, the results could be valid responses but not relevant
to any command sent. Such a case could result from the
operator manually changing the state of devices on the
model railroad or from another external device, assuming a
shared interface to the DCS. Accordingly, the results are
validated and passed to the result processor 210. Fourth, the
results could be valid responses relevant to a command sent.
The corresponding command is removed from the command
sender 202 and the results passed to the result processor 210.
The commands in the queue of the command sender 202, as
a result of the validation process 206, are retransmitted a
predetermined number of times, then if error still occurs the
digital command station is reset, which if the error still
persists then the command is removed and the operator is
notified of the error.

Application Programming Interface

Train ToolsTM Interface Description

Building your own visual interface to a model railroad
Copyright 1992-1998 KAM Industries.

Computer Dispatcher, Engine Commander, The Conductor,
Train Server, and Train Tools are Trademarks of KAM
Industries, all Rights Reserved.

9

Questions concerning the product can be EMAILED to:

traintools@Kkam.rain.com

You can also mail questions to:
KAM Industries

2373 NW 185th Avenue Suite 416
Hillsboro, Oreg. 97124
FAX—(503) 291-1221

Table of contents

1. OVERVIEW

1.1 System Architecture

2. TUTORIAL

2.1 Visual BASIC Throttle Example Application

2.2 Visual BASIC Throttle Example Source Code

3. IDL COMMAND REFERENCE

3.1 Introduction

3.2 Data Types

3.3 Commands to access the server configuration variable

database

KamCVGetValue
KamCVPutValue
KamCVGetEnable
KamCVPutEnable
KamCVGetName
KamCVGetMinRegister
KamCVGetMaxRegister

3.4 Commands to program configuration variables
KamProgram
KamProgramGetMode
KamProgramGetStatus
KamProgramReadCV
KamProgramCV
KamProgramReadDecoderToDataBase
KamProgramDecoderFromDataBase

3.5 Commands to control all decoder types
KamDecoderGetMaxModels
KamDecoderGetModelName
KamDecoderSetModel ToObj
KamDecoderGetMaxAddress
KamDecoderChangeOldNewAddr
KamDecoderMovePort
KamDecoderGetPort
KamDecoderChecAddrInUse
KamDecoderGetModelFromObj
KamDecoderGetModelFacility
KamDecoderGetObjCount
KamDecoderGetObjAtIndex
KamDecoderPutAdd
KamDecoderPutDel
KamDecoderGetMfgName
KamDecoderGetPowerMode
KamDecoderGetMaxSpeed

3.6 Commands to control locomotive decoders
KamEngGetSpeed
KamEngPutSpeed
KamEngGetSpeedSteps
KamEngPutSpeedSteps
KamEngGetFunction
KamEngPutFunction
KamEngGetFunctionMax
KamEngGetName
KamEngPutName
KamEngGetFunctionName
KamEngPutFunctionName
KamEngGetConsistMax
KamEngPutConsistParent
KamEngPutConsistChild
KamEngPutConsistRemoveObj

3.7 Commands to control accessory decoders
KamAccGetFunction
KamAccGetFunctionAll
KamAccPutFunction
KamAccPutFunctionAll
KamAccGetFunctionMax
KamAccGetName
KamAccPutName
KamAccGetFunctionName

10

15

20

25

30

35

40

45

50

55

60

65

US 6,494,408 B2

10

-continued

Table of contents

3.8

3.9

3.10

3.11

3.12

L

Tuto

KamAccPutFunctionName
KamAccRegFeedback
KamAccRegFeedbackAll
KamAccDelFeedback
KamAccDelFeedbackAll

Commands to control the command station
KamOprPutTurnOnStation
KamOprPutStartStation
KamOprPutClearStation
KamOprPutStopStation
KamOprPutPowerOn
KamOprPutPowerOff
KamOprPutHardReset
KamOprPutEmergencyStop
KamOprGetStationStatus

Commands to configure the command station

communication port
KamPortPutConfig
KamPortGetConfig
KamPortGetName
KamPortPutMapController
KamPortGetMaxLogPorts
KamPortGetMaxPhysical

Commands that control command flow to the command

station
KamCmdConnect
KamCmdDisConnect
KamCmdCommand

Cab Control Commands
KamCabGetMessage
KamCabPutMessage
KamCabGetCabAddr
KamCabPutAddrToCab

Miscellaneous Commands
KamMiscGetErrorMsg
KamMiscGetClockTime
KamMiscPutClockTime
KamMiscGetlnterface Version
KamMiscSaveData
KamMiscGetControllerName
KamMiscGetControllerNameAtPort
KamMiscGetCommandStationValue
KamMiscSetCommandStationValue
KamMiscGetCommandStationIndex
KamMiscMaxControllerID
KamMiscGetControllerFacility

OVERVIEW
This document is divided into two sections, the
rial, and the IDL Command Reference. The tutorial

shows the complete code for a simple Visual BASIC program

that
This

controls all the major functions of a locomotive.
program makes use of many of the commands described

in the reference section. The IDL Command Reference

desc
L

ribes each command in detail.

TUTORIAL

A. Visual BASIC Throttle Example Application
The following application is created using the

Visual BASIC source code in the next section. It
controls all major locomotive functions such as speed,
direction, and auxiliary functions.

A.

Visual BASIC Throttle Example Source Code

' Copyright 1998, KAM Industries. All rights reserved.

This is a demonstration program showing the
integration of VisualBasic and Train Server(tm)
interface. You may use this application for non
commercial usage.

'$Date: $
'$Author: $

'$Re
'$1o,

vision: $

g $

Engine Commander, Computer Dispatcher, Train Server,
Train Tools, The Conductor and kamind are registered
Trademarks of KAM Industries. All rights reserved.

This first command adds the reference to the Train

11

-continued

US 6,494,408 B2

12

-continued

Table of contents

Table of contents

Engine Commander uses the term Ports, Devices and
Controllers

Ports —> These are logical ids where Decoders are
assigned to. Train ServerT Interface supports a

limited number of logical ports. You can also think

of ports as mapping to a command station type. This
allows you to move decoders between command station
without losing any information about the decoder

Devices —> These are communications channels
configured in your computer.

You may have a single device (com1) or multiple
devices

' (COM 1 - COMBS, LPT1, Other). You are required to
map a port to a device to access a command station.
Devices start from ID 0 -> max id (FYI; devices do
not necessarily have to be serial channel. Always
check the name of the device before you use it as
well as the maximum number of devices supported.

' The Command

' EngCmd. KamPortGetMaxPhysical(IMaxPhysical, 1Serial,
[Parallel) provides means that... IMaxPhysical =

' ISerial + 1Parallel + 10ther

Controller - These are command the command station
' like LENZ, Digitrax

! Northcoast, EasyDCC, Marklin... It is recommend
that you check the command station ID before you
use it.

Errors - All commands return an error status. If
the error value is non zero, then the
other return arguments are invalid. In
general, non zero errors means command was
not executed. To get the error message,
you need to call KamMiscErrorMessage and
supply the error number

To Operate your layout you will need to perform a
mapping between a Port (logical reference), Device
(physical communications channel) and a Controller
(command station) for the program to work. All
references uses the logical device as the reference
device for access.

Addresses used are an object reference. To use an
address you must add the address to the command
station using KamDecoderPutAdd ... One of the return
values from this operation is an object reference

that is used for control.

We need certain variables as global objects; since

the information is being used multiple times

Dim iLogicalPort, iController, iComPort

Dim iPortRate, iPortParity, iPortStop, iPortRetrans,
iPortWatchdog, iPortFlow, iPortData

Dim 1EngineObject As Long, iDecoderClass As Integer,

iDecoderType As Integer

Dim IMaxController As Long

ServerT Interface object Dim EngCmd As New EngComlfc 5

10

15

20

25

30

35

40

45

50

Dim IMaxLogical As Long, IMaxPhysical As Long, IMaxSerial

As Long, IMaxParallel As Long
Ve s ok ke s ok ke ok ok ok ok sk ok sk sk ok sk sk ke sk ok ke ok ok ke ok ok ok ok sk sk
'Form load function
' - Turn of the initial buttons
' - Set he interface information
Ve s ok ke s ok ke ok ok ok ok sk ok sk sk ok sk sk ke sk ok ke ok ok ke ok ok ok ok sk sk
Private Sub Form_ load()
Dim strVer As String, strCom As String, strCntrl As
String
Dim iError As Integer
'Get the interface version information
SetButtonState (False)
iError = EngCmd. KamMiscGetInterface Version (strVer)
If (iError) Then
MsgBox ((“Train Server not loaded. Check

55

60

65

DCOM-957))
iLogicalPort = 0
LogPort.Caption = iLogicalPort
ComPort.Caption = “?77”
Controller.Caption = “Unknown”
Else
MsgBox ((“Simulation(COM1) Train Server -- ~ &
strVer))
Vofe sk sk ke sk ok ke sk ok ok ok ok ok ok sk ok ok sk ok ke sk ok ke ok ok ok ok ok ok ok sk ok
'Configuration information; Only need to
change these values to use a different
controller...

ke e sk sk 3 3 sk o s s ok o ke ke ok 3 ok sk sk o R s s ok ok ke ok ok ke ok ok

' UNKNOWN 0 // Unknown control type

' SIMULAT 1 // Interface simulator
'LENZ_1x 2 // Lenz serial support module
' LENZ_2x 3 // Lenz serial support module

' DIGIT_DT200 4 // Digitrax direct drive
support using DT200

' DIGIT_DCS100 5 // Digitrax direct drive
support using DCS100

' MASTERSERIES 6 // North Coast engineering
master Series

' SYSTEMONE 7 // System One
' RAMFIX 8 // RAMFIxx system
' DYNATROL 9 // Dynatrol system
' Northcoast binary 10 // North Coast binary
' SERIAL 11 // NMRA Serial
interface
' EASYDCC 12 // NMRA Serial interface
' MRK6050 13 // 6050 Marklin interface
(AC and DC)
' MRK6023 14 // 6923 Marklin hybrid
interface (AC)
' ZTC 15 // ZTC Systems ltd
' DIGIT_PR1 16 // Digitrax direct drive
support using PR1
' DIRECT 17 // Direct drive interface
routine

ok e e sk sk o o sk o e e ok o sl sl ok o 3R s sk o ok e e ok ol sl sk sk o R s sk o ok e ok ok ok sk sk o R s o ok ke ke ok ok ke ke sk sk

iLogicalPort = 1 'Select Logical port 1 for
communications
iController = 1 'Select controller from the list
above.
iComPort = 0 1' use COM1; 0 means com1 (Digitrax must
use Com1 or Com?2)
'Digitrax Baud rate requires 16.4K!
'Most COM ports above Com2 do not
'support 16.4K. Check with the
'manufacture of your smart com card
'for the baud rate. Keep in mind that
'Dumb com cards with serial port
'support Com1 - Com4 can only support
"2 com ports (like com1/com?2
‘or com3/com4)
'If you change the controller, do not
'forget to change the baud rate to
'match the command station. See your
‘user manual for details
Ve s o ke ok ok ok ok ok ok ok sk ok sk sk ok ke sk ok e ok ok ok ok sk ok ok ok ok sk ok ke sk ok ke ok ok ke ok ok ok ok sk ok sk sk ok sk sk ke ke ok s ok sk sk
' 0: // Baud rate is 300
' 1: // Baud rate is 1200
' 2: // Baud rate is 2400
' 3: // Baud rate is 4800
' 4: // Baud rate is 9600
' 5: // Baud rate is 14.4
' 6: // Baud rate is 16.4
' 7: // Baud rate is 19.2
iPortRate = 4
! Parity values 0—4 —> no, odd, even, mark,
space
iPortParity = 0
! Stop bits 0,1,2 -> 1, 1.5, 2
iPortStop = 0
iPortRetrans = 10
iPortWatchdog = 2048
iPortFlow = 0

US 6,494,408 B2

13

-continued

14

-continued

Table of contents

Table of contents

! Data bits 0 - > 7 Bits, 1-> 8 bits
iPortData = 1
'Display the port and controller information
iError = EngCmd. KamPortGetMaxLogPorts(IMaxLogical)
iError = EngCmd. KamPortGetMaxPhysical(IMaxPhysical,
IMaxSerial, IMaxParallel)
' Get the port name and do some checking...
iError = EngCmd. KamPortGetName(iComPort, strCom)
SetError ({Error)
If (iComPort > IMaxSerial) Then MsgBox (“Com port
our of range”)
iError =
EngCmd.KamMiscGetControllerName(iController,
strCatrl)
If (iLogicalPort > IMaxLogical) Then MsgBox
(“Logical port out of range™)
SetError (iError)
End If
'Display values in Throttle..
LogPort.Caption = iLogicalPort
ComPort.Caption = strCom
Controller.Caption = strCntrl
End Sub
Ve s ok ke sk ok ke ok ok ok ok sk ok ke sk ok ke sk ok ke ok ok ok ok ok ok ok sk sk
'Send Command
'Note:
' Please follow the command order. Order is important
for the application to work!
Ve s ok ke sk ok ke ok ok ok ok sk ok ke sk ok ke sk ok ke ok ok ok ok ok ok ok sk sk
Private Sub Command_ Click()
'Send the command from the interface to the command
station, use the engineObject
Dim iError, iSpeed As Integer
If Not Connect.Enabled Then
"TrainTools interface is a caching interface.
'This means that you need to set up the CV’s or
'other operations first; then execute the
‘command.
iSpeed = Speed.Text
iError =

EngCmd.KamEngPutFunction(IEngineObject, 0, FO.Value)

iError =
EngCmd.KamEngPutFunction (IEngineObject, 1,
F1.Value)
iError =
EngCmd.KamEngPutFunction (IEngineObject, 2,
F2.Value)
iError =
EngCmd.KamEngPutFunction (IEngineObject, 3,
F3.Value)
iError = EngCmd.KamEngPutSpeed (IEngineObject,
iSpeed, Direction. Value)
If iError = O Then iError =
EngCmd.KamCmdCommand(IEngineObject)
SetError (iError)
End If
End Sub

ok e e sk 3 s s o o ke e ok ok ke sk sk o R sk sk ok ok ke ok ok ke ke sk sk

'Connect Controller
Ve s ok ke sk ok ke ok ok ok ok sk ok ke sk ok ke sk ok ke ok ok ok ok ok ok ok sk sk
Private Sub Connect_ Click()
Dim iError As Integer
'These are the index values for setting up the port
for use

' PORT_RETRANS // Retrans index

0
' PORT_RATE 1 // Retrans index
' PORT_PARITY 2 // Retrans index
' PORT_STOP 3 // Retrans index
' PORT_WATCHDOG 4 // Retrans index
' PORT_FLOW 5 // Retrans index
' PORT_DATABITS 6 // Retrans index
' PORT_DEBUG 7 // Retrans index

' PORT_PARALLEL 8 // Retrans index
'These are the index values for setting up the
port for use

' PORT_RETRANS

' PORT_RATE

0 // Retrans index
1 // Retrans index

10

15

20

30

35

40

45

50

55

60

65

' PORT_PARITY 2 // Retrans index

' PORT_STOP 3 // Retrans index

' PORT_WATCHDOG 4 // Retrans index

' PORT_FLOW 5 // Retrans index

' PORT_DATABITS 6 // Retrans index
7

' PORT_DEBUG // Retrans index
' PORT_PARALLEL 8 // Retrans index
iError = EngCmd.KamPortPutConfig(ilogicalPort, O,
iPortRetrans, 0) ' setting PORT__RETRANS
iError = EngCmd.KamPortPutConfig(ilogicalPort, 1,
iPortRate, = 0) ' setting PORT_RATE
iError = EngCmd.KamPortPutConfig(ilogicalPort, 2,
iPortParity, 0) ' setting PORT__PARITY
iError = EngCmd.KamPortPutConfig(ilogicalPort, 3,
iPortStop, 0) ' setting PORT__STOP
iError = EngCmd.KamPortPutConfig(ilogicalPort, 4,
iPortWatchdog, 0) ' setting PORT_WATCHDOG
iError = EngCmd.KamPortPutConfig(ilogicalPort, 5,
iPortFlow, 0) ' setting PORT_FLOW
iError = EngCmd.KamPortPutConfig(ilogicalPort, 6,
iPortData, 0) ' setting PORT_DATABITS

' We need to set the appropriate debug mode for display..

' this command can only be sent if the following is true

' -Controller is not connected

' -port has not been mapped

' -Not share ware version of application (Shareware

' always set to 130)

Write Display Log Debug

'File Win Level Value

"1+ 3+4=7->LEVELI1 -- put packets into

! queues

"1+ 2+ 8=11 -> LEVEL2 -- Status messages

' send to window

"1+2+16 =19 -> LEVEL3 --

"1+ 2+ 32 =35-> LEVELA4 -- All system

! semaphores/critical sections

"1+ 2+ 64 =67 -> LEVELS -- detailed

' debugging information

"1+ 2+ 128 = 131 —> COMMONLY -- Read comm write

! comm ports

"You probably only want to use values of 130. This will

'give you a display what is read or written to the

‘controller. If you want to write the information to

'disk, use 131. The other information is not valid for

‘end users.

"Note: 1. This does effect the performance of you
' system; 130 is a save value for debug

' display. Always set the key to 1, a value
' of 0 will disable debug

' 2. The Digitrax control codes displayed are

encrypted. The information that you
determine from the control codes is that
information is sent (S) and a response is
' received (R)

iDebugMode = 130
iValue = Value.Text' Display value for reference
iError = EngCmd.KamPortPutConfig(iLogicalPort, 7, iDebug,
iValue) ' setting PORT__DEBUG
'Now map the Logical Port, Physical device, Command
station and Controller
iError = EngCmd.KamPortPutMapController(iLogicalPort,
iController, iComPort)
iError = EngCmd.KamCmdConnect(iLogicalPort)
iError = EngCmd. KamOprPutTurnOnStation(iLogicalPort)
If (iError) Then
SetButtonState (False)

Else
SetButtonState (True)
End If
SetError (iError) 'Displays the error message and error
number
End Sub
Wk s ofe ke ok ok ok ok ok ok ok sk ok ke sk ok ke sk ok ke ok ok ok ok ok ok ok sk ook
'Set the address button

ok e e sk sk o 3 s o o e e ok ok ke ke sk o 3 s sk ok ok ke ke ok ke ke sk ok

15

-continued

US 6,494,408 B2

16

-continued

Table of contents

Table of contents

Private Sub DCCAddr_ Click()
Dim iAddr, iStatus As Integer
" All addresses must be match to a logical port to
operate
iDecoderType = 1 ' Set the decoder type to an NMRA
baseline decoder (1-8 reg)
iDecoderClass = 1 ' Set the decoder class to Engine
decoder (there are only two classes of decoders;
Engine and Accessory
'Once we make a connection, we use the 1EngineObject
'as the reference object to send control information
If (Address.Text > 1) Then
iStatus = EngCmd. KamDecoderPutAdd(Address.Text,
iLogicalPort, iLogicalPort, 0,
iDecoderType, IEngineObject)

SetError (iStatus)
If (IEngineObject) Then

Command.Enabled = True 'turn on the control

(send) button

Throttle.Enabled = True ' Turn on the throttle

Else
MsgBox (“Address not set, check error message”)
End If
Else
MsgBox (“Address must be greater then 0 and
less then 1287)

End If

End Sub

ok e ke sk f o s s ok ok ke ke ok ok ok sk ok ok

'Disconnect button
Ve s ok ke sk ok ok ok ok ok ok sk ok ke ke ok ok koke
Private Sub Disconnect Click()
Dim iError As Integer
iError = EngCmd. KamCmdDisconnect(iLogicalPort)
SetError ({Error)
SetButtonState (False)
End Sub

ok e e sk o o sk sk o o s e ok ok ke ok ok R sk sk o

'Display error message
Ve s ok ke sk ok ok ok ok ok ok sk ok ke sk ok ke sk ok ook ok
Private Sub SetError(iError As Integer)
Dim szError As String
Dim iStatus
' This shows how to retrieve a sample error message
from the interface for the status received.
iStatus = EngCmd. KamMiscGetErrorMsg(iError, szError)
ErrorMsg.Caption = szError
Result.Caption = Str(iStatus)
End Sub

ok e e sk 3 sk sk o s s ok ok ke ok ok ok sk ok o Sk ok ok

'Set the Form button state
ok ok ok 3k ke ke ok ok e ke ok ok Sk sk ok sk sk ok ok ok 3K ke ok ok sk ke
Private Sub SetButtonState(iState As Boolean)
'We set the state of the buttons; either connected
or disconnected
If (iState) Then
Connect.Enabled = False
Disconnect.Enabled = True
ONCmd.Enabled = True
OffCmd.Enabled = True
DCCAddr.Enabled = True
UpDownAddress.Enabled = True
'Now we check to see if the Engine Address has been
'set; if it has we enable the send button
If (IEngineObject > 0) Then
Command.Enabled = True
Throttle.Enabled = True
Else
Command.Enabled = False
Throttle.Enabled = False
End If
Else
Connect.Enabled = True
Disconnect.Enabled = False
Command.Enabled = False
ONCmd.Enabled = False
OffCmd.Enabled = False

10

15

20

25

30

35

40

45

50

55

60

65

DCCAddr.Enabled = False
UpDownAddress.Enabled = False
Throttle.Enabled = False
End If

End Sub

ok ok ok ok oK e ke ok Sk Sk ok ok ok 3k ok ok ok kK

"Power Off function

ok e e sk sk o s ok o sk ke ok ok K sk ook

Private Sub OffCmd_ Click()
Dim iError As Integer
iError = EngCmd. KamOprPutPowerOff(iLogicalPort)
SetError (iError)

End Sub

ok e e sk sk o s ok ok sk ke ok ok K sk o

"Power On function

Ve e o ok ok ok ok ok ok ok ok sk ok ok sk ok ok ok

Private Sub ONCmd__Click()
Dim iError As Integer
iError = EngCmd. KamOprPutPowerOn(iLogicalPort)
SetError (iError)

End Sub

ok e e sk sk o s ok o ke e ok ok ok ok o oo ok ok ke

‘Throttle slider control
ok ok ok ok ok ke sk ok s sk ok ok ok sk ok ok oK ke sk ok ok ok ok ok

Private Sub Throttle Click()

If (IEngineObject) Then
If (Throttle. Value > 0) Then
Speed.Text = Throttle. Value
End If
End If
End Sub
I. IDL COMMAND REFERENCE
A. Introduction

This document describes the IDL interface to
the KAM Industries Engine Commander Train Server. The
Train Server DCOM server may reside locally or on a
network node This server handles all the background
details of controlling your railroad. You write simple,
front end programs in a variety of languages such as
BASIC, Java, or C++ to provide the visual interface to
the user while the server handles the details of
communicating with the command station, etc.

A. Data Types
Data is passed to and from the IDL interface using a
several primitive data types. Arrays of these simple
types are also used. The exact type passed to and from
your program depends on the programming language your are

using.

The following primitive data types are used:

IDL Type BASIC Type C++ Type Java Type Description
short short short short Short signed integer

int int int int Signed integer

BSTR BSTR BSTR BSTR Text string

long long long long Unsigned 32 bit value
Name ID CV Range Valid CV’s Functions Address Range Speed
Steps

NMRA Compatible 0 None None 2 1-99 14

Baseline 1 18 18 9 1-127 14
Extended 2 1-106 1-9,17, 18,19, 23, 24, 29, 30,

49, 66-95 9 1-10239 14,28,128

All Mobile 3 1-106 1-106 9 1-10239 14,28,128
Name ID CV Range Valid CV’s Functions Address Range
Accessory 4 513-593 513-593 8 0-511

All Stationary 5 513-1024 513-1024 8 0-511

A long /DecoderObject/D value is returned by the
KamDecoderPutAdd call if the decoder is successfully

registered with the server. This unique opaque ID should

be used for all subsequent calls to reference this

decoder.

A. Commands to access the server configuration variable

database

This section describes the commands that access
the server configuration variables (CV) database. These
CVs are stored in the decoder and control many of its
characteristics such as its address. For efficiency, a
copy of each CV value is also stored in the server
database. Commands such as KamCVGetValue and

US 6,494,408 B2

17

-continued

18

-continued

Table of contents

Table of contents

KamCVPutValue communicate only with the server, not the
actual decoder. You then use the programming commands in
the next section to transfer CVs to and from the decoder.
0KamCVGetValue

Parameter List Type Range Direction Description
IDecoderObjectID long 1 In Decoder object ID
iCVRegint 1-1024 2 in CV register

pCVValue int * 3 Out Pointer to CV value

1 Opaque object ID handle returned by
KamDecoderPutAdd.

2 Range is 1-1024. Maximum CV for this decoder is
given by KamCVGetMaxRegister.

3 CV Value pointed to has a range of 0 to 255.

Return Value Type Range Description
iError short 1 Error flag

1 iError = 0 for success. Nonzero is an error number
(see KamMiscGetErrorMsg). KamCVGetValue takes the
decoder object ID and configuration variable (CV) number
as parameters. It sets the memory pointed to by pCVValue
to the value of the server copy of the configuration

variable.

0KamCVPutValue

Parameter List Type Range Direction Description
IDecoderObjectID long 1 In Decoder object ID
iCVRegint 1-1024 2 In CV register

iCVValue int 0255 In CV value

1 Opaque object ID handle returned by
KamDecoderPutAdd.

2 Maximum CV is 1024. Maximum CV for this decoder is
given by KamCVGetMaxRegister.

Return Value Type Range Description
iError short 1 Error flag

1 iError = 0 for success. Nonzero is an error number
(see KamMiscGetErrorMsg).

KamCVPutValue takes the decoder object ID, configuration
variable (CV) number, and a new CV value as parameters.
It sets the server copy of the specified decoder CV to

iCVValue.

0KamCVGetEnable

Parameter List Type Range Direction Description
IDecoderObjectID long 1 In Decoder object ID
iCVRegint 1-1024 2 In CV number

pEnable int * 3 Out Pointer to CV bit mask
1 Opaque object ID handle returned by
KamDecoderPutAdd.

2 Maximum CV is 1024. Maximum CV for this decoder is

given by KamCVGetMaxRegister.

3 0x0001 - SET_CV_INUSE 0x0002 - SET_CV_READ_ DIRTY
0x0004 - SET_CV_WRITE_ DIRTY 0x0008 -
SET_CV_ERROR_READ
0x0010 - SET_CV_ERROR_WRITE

Return Value Type Range

iError short 1 Error flag

1 iError = 0 for success. Nonzero is an error number

(see KamMiscGetErrorMsg). KamCVGetEnable takes the

decoder object ID, configuration variable (CV) number,

and a pointer to store the enable flag as parameters. It
sets the location pointed to by pEnable.

Description

0KamCVPutEnable

Parameter List Type Range Direction Description
IDecoderObjectID long 1 In Decoder object ID
iCVRegint 1-1024 2 In CV number

iEnableint 3 In CV bit mask

1 Opaque object ID handle returned by
KamDecoderPutAdd.

2 Maximum CV is 1024. Maximum CV for this decoder is

given by KamCVGetMaxRegister.

3 0x0001 - SET_CV_INUSE 0x0002 - SET_CV_READ_ DIRTY
0x0004 - SET_CV_WRITE_DIRTY 0x0008 -
SET_CV__ERROR READ
0x0010 - SET_CV_ERROR_WRITE

Return Value Type Range

iError short 1 Error flag

1 iError = O for success. Nonzero is an error number

(see KamMiscGetErrorMsg)

KamCVPutEnable takes the decoder object ID, configuration

variable (CV) number, and a new enable state as

Description

10

15

20

25

30

35

40

45

50

55

60

65

parameters. It sets the server copy of the CV bit mask
to iEnable.

0KamCVGetName

Parameter List Type Range Direction Description
iCV int 1-1024 In CV number
pbsCVNameString BSTR * 1 Out Pointer to CV

name string

1 Exact return type depends on language. It is
Cstring * for C++. Empty string on error.

Return Value Type Range Description
iError short 1 Error flag
1 iError = O for success. Nonzero is an error number
(see KamMiscGetErrorMsg).
KamCVGetName takes a configuration variable (CV) number
as a Parameter. It sets the memory pointed to by
pbsCVNameString to the name of the CV as defined in NMRA
Recommended Practice RP 9.2.2.

0KamCVGetMinRegister

Parameter List Type Range Direction Description
IDecoderObjectID long 1 In Decoder object ID
pMinRegister int * 2 Out Pointer to min CV

register number
1 Opaque object ID handle returned by
KamDecoderPutAdd.
2 Normally 1-1024. 0 on error or if decoder does not
support CVs.
Return Value Type Range
iError short 1 Error flag
1 iError = O for success. Nonzero is an error number
(see KamMiscGetErrorMsg).
KamCVGetMinRegister takes a decoder object ID as a
parameter. It sets the memory pointed to by pMinRegister
to the minimum possible CV register number for the
specified decoder.

Description

0KamCVGetMaxRegister

Parameter List Type Range Direction Description
IDecoderObjectID long 1 In Decoder object ID
pMaxRegister int * 2 Out Pointer to max CV

register number
1 Opaque object ID handle returned by
KamDecoderPutAdd.
2 Normally 1-1024. 0 on error or if decoder does not
support CVs.
Return Value Type Range
iError short 1 Error flag
1 iError = O for success. Nonzero is an error number
(see KamMiscGetErrorMsg).
KamCVGetMaxRegister takes a decoder object ID as a
parameter. It sets the memory pointed to by pMaxRegister
to the maximum possible CV register number for the
specified decoder.
A. Commands to program configuration variables

This section describes the commands read and
write decoder configuration variables (CVs). You should
initially transfer a copy of the decoder CVs to the
server using the KamProgramReadDecoderToDataBase command.
You can then read and modify this server copy of the CVs.
Finally, you can program one or more CVs into the decoder
using the KamProgramCV or KamProgramDecoderFromDataBase
command. Not that you must first enter programming mode
by issuing the KamProgram command before any programming
can be done.

Description

OKamProgram

Parameter List Type Range Direction Description

IDecoderObjectID long 1 In Decoder object ID

iProgLogPort int 1-65535 2 In Logical
programming
port ID

iProgMode int 3 In Programming mode

1 Opaque object ID handle returned by

KamDecoderPutAdd.

2 Maximum value for this server given by

KamPortGetMaxLogPorts.

3 0-PROGRAM__MODE_NONE

1- PROGRAM_MODE__ADDRESS 2
PROGRAM_ MODE_ REGISTER

3 - PROGRAM_MODE_ PAGE

US 6,494,408 B2

19

-continued

20

-continued

Table of contents

Table of contents

4 - PROGRAM_MODE_ DIRECT

5 - DCODE__PRGMODE__ OPS_ SHORT

6 - PROGRAM__MODE__ OPS_ LONG
Return Value Type Range Description
iError short 1 Error flag
1 iError = 0 for success. Nonzero is an error number
(see KamMiscGetErrorMsg).
KamProgram take the decoder object ID logical
programming port ID, and programming mode as parameters.
It changes the command station mode from normal operation
(PROGRAM__MODE_ NONE) to the specified programming mode.
Once in programming modes, any number of programming
commands may be called. When done, you must call
KamProgram with a parameter of PROGRAM_MODE__NONE to
return to normal operation.

0KamProgramGetMode

Parameter List Type Range Direction Description

IDecoderObjectID long 1 In Decoder object ID

iProgLogPort int 1-65535 2 In Logical
programming
port ID

piProgMode int * 3 Out Programming mode

1 Opaque object ID handle returned by

KamDecoderPutAdd.

2 Maximum value for this server given by

KamPortGetMaxLogPorts.

3 0 -PROGRAM_MODE_NONE

1 - PROGRAM__MODE__ADDRESS 2 -
PROGRAM__MODE_ REGISTER

3 - PROGRAM_MODE_ PAGE

4 - PROGRAM_ MODE_ DIRECT

5 - DCODE__PRGMODE_ OPS__ SHORT

6 - PROGRAM__MODE__ OPS_ LONG
Return Value Type Range Description
iError short 1 Error flag
1 iError = G for success. Nonzero is an error number
(see KamMiscGetErrorMsg)
KamProgramGetMode take the decoder object ID, logical
programming port ID, and pointer to a place to store
the programming mode as parameters. It sets the memory
pointed to by piProgMode to the present programming mode.

OKamProgramGetStatus

Parameter List Type Range Direction Description

IDecoderObjectID long 1 In Decoder object ID

iCVRegint 0-1024 2 In CV number

piCVAllStatus int * 3 Out Or’d decoder programming
status

1 Opaque object ID handle returned by

KamDecoderPutAdd.
2 0 returns OR’d value for all CVs. Other values
return status for just that CV.
3 0x0001 - SET_CV_INUSE
0x0002 - SET_CV_READ_DIRTY
0x0004 - SET_CV_ WRITE_DIRTY
0x0008 - SET_CV_ERROR_READ
0x0010 - SET_CV_ERROR_WRITE
Return Value Type Range
iError short 1 Error flag
1 iError = 0 for success. Nonzero is an error number
(see KamMiscGetErrorMsg).
KamProgramGetStatus take the decoder object ID and
pointer to a place to store the OR’d decoder programming
statue as parameters. It sets the memory pointed to by
piProgMod to the present programming mode.

Description

O0KamProgramReadCV

Parameter List Type Range Direction Description
IDecoderObjectID long 1 In Decoder object ID
iCVRegint 2 In CV number

1 Opaque object ID handle returned by

KamDecoderPutAdd.

2 Maximum CV is 1024. Maximum CV for this decoder is
given by KamCVGetMaxRegister.
Return Value Type Range
iError short 1 Error flag
1 iError = O for success. Nonzero is an error number
(see KamMiscGetErrorMsg).

KamProgramCV takes the decoder object ID, configuration

Description

10

15

20

25

30

35

40

45

50

55

60

65

variable (CV) number as parameters. It reads the
specified CV variable value to the server database.

OKamProgramCV

Parameter List Type Range Direction Description
IDecoderObjectID long 1 In Decoder object ID
iCVRegint 2 In CV number

iCVValue int 0255 In CV value

1 Opaque object ID handle returned by

KamDecoderPutAdd.

2 Maximum CV is 1024. Maximum CV for this decoder is
given by KamCVGetMaxRegister.
Return Value Type Range
iError short 1 Error flag
1 iError = O for success. Nonzero is an error number
(see KamMiscGetErrorMsg).

KamProgramCV takes the decoder object ID, configuration
variable (CV) number, and a new CV value as parameters.
It programs (writes) a single decoder CV using the
specified value as source data.
OKamProgramReadDecoderToDataBase

Description

Parameter List Type Range Direction Description
IDecoderObjectID long 1 In Decoder object ID
1 Opaque object ID handle returned by
KamDecoderPutAdd.

Return Value Type Range Description
iError short 1 Error flag

1 iError = O for success. Nonzero is an error number

(see KamMiscGetErrorMsg).
KamProgramReadDecoderToDataBase takes the decoder object
ID as a parameter. It reads all enabled CV values from

the decoder and stores them in the server database.
OKamProgramDecoderFromDataBase

Parameter List Type Range Direction Description
IDecoderObjectID long 1 In Decoder object ID
1 Opaque object ID handle returned by
KamDecoderPutAdd

Return Value Type Range Description
iError short 1 Error flag

1 iError = O for success. Nonzero is an error number
(see KamMiscGetErrorMsg)
KamProgramDecoderFromDataBase takes the decoder object ID
as a parameter. It programs (writes) all enabled decoder
CV values using the server copy of the CVs as source
data.
A. Commands to control all decoder types

This section describes the commands that all
decoder types. These commands do things such getting the
maximum address a given type of decoder supports, adding
decoders to the database, etc.
OKamDecoderGetMaxModels

Parameter List Type Range Direction Description

piMaxModels int * 1 Out Pointer to Max
model ID

1 Normally 1-65535. 0 on error.

Return Value Type Range Description

iError short 1 Error flag

1 iError = O for success. Nonzero is an error number

(see KamMiscGetErrorMsg).

KamDecoderGetMaxModels takes no parameters. It sets the
memory pointed to by piMaxModels to the maximum decoder
type ID.

O0KamDecoderGetModelName

Parameter List Type Range Direction Description
iModel int 1-65535 1 In Decoder type ID
pbsModelName BSTR * 2 Out Decoder name

string
1 Maximum value for this server given by
KamDecoderGetMaxModels.
2 Exact return type depends on language. It is
Cstring * for C++. Empty string on error.
Return Value Type Range
iError short 1 Error flag
1 iError = O for success. Nonzero is an error number
(see KamMiscGetErrorMsg). KamPortGetModelName takes a
decoder type ID and a pointer to a string as parameters.
It sets the memory pointed to by pbsModelName to a BSTR
containing the decoder name.

Description

US 6,494,408 B2

21

-continued

22

-continued

Table of contents

Table of contents

0KamDecoderSetModel ToObj

Parameter List Type Range Direction Description

iModel int 1 In Decoder model ID

IDecoderObjectID long 1 In Decoder object ID

1 Maximum value for this server given by

KamDecoderGetMaxModels.

2 Opaque object ID handle returned by

KamDecoderPutAdd.

Return Value Type Range

iError short 1 Error flag

1 iError = 0 for success. Nonzero is an error number

(see KamMiscGetErrorMsg).

KamDecoderSetModelToObj takes a decoder ID and decoder

object ID as parameters. It sets the decoder model type

of the decoder at address IDecoderObjectID to the type

specified by iModel.

0KamDecoderGetMaxAddress

Parameter List Type Range Direction Description

iModel int 1 In Decoder type ID

piMaxAddress int * 2 Out Maximum decoder
address

1 Maximum value for this server given by

KamDecoderGetMaxModels.

2 Model dependent. O returned on error.

Return Value Type Range

iError short 1 Error flag

1 iError = 0 for success. Nonzero is an error number

(see KamMiscGetErrorMsg).

KamDecoderGetMaxAddress takes a decoder type ID and a

pointer to store the maximum address as parameters. It

sets the memory pointed to by piMaxAddress to the maximum

address supported by the specified decoder.

0KamDecoderChangeOldNewAddr

Description

Description

Parameter List Type Range Direction Description
101dObjID long 1 In Old decoder object ID
iNewAddr int 2 In New decoder address
pINewObJID long * 1 Out New decoder object ID
1 Opaque object ID handle returned by

KamDecoderPutAdd.

2 1-127 for short locomotive addresses. 1-10239 for
long locomotive decoders. 0—511 for accessory decoders.
Return Value Type Range Description
iError short 1 Error flag

1 iError = 0 for success. Nonzero is an error number
(see KamMiscGetErrorMsg).
KamDecoderChangeOldNewAddr takes an old decoder object ID
and a new decoder address as parameters. It moves the
specified locomotive or accessory decoder to iNewAddr and
sets the memory pointed to by pINewObjID to the new
Object ID. The old object ID is now invalid and should

no longer be used.

0KamDecoderMovePort
Parameter List Type Range Direction Description
IDecoderObjectID long 1 In Decoder object ID

iLogicalPortID int 1-655352 In
1 Opaque object ID handle returned by

Logical port ID

KamDecoderPutAdd.

2 Maximum value for this server given by
KamPortGetMaxLogPorts.

Return Value Type Range Description

iError short 1 Error flag

1 iError = 0 for success. Nonzero is an error number

(see KamMiscGetErrorMsg).

KamDecoderMovePort takes a decoder object ID and logical
port ID as parameters. It moves the decoder specified by
IDecoderObjectID to the controller specified by

iLogicalPortID.

0KamDecoderGetPort

Parameter List Type Range Direction Description
IDecoderObjectID long 1 In Decoder object ID
pilogicalPortID int * 1-65535 2 Out Pointer to

logical port ID
1 Opaque object ID handle returned by

KamDecoderPutAdd.

2 Maximum value for this server given by
KamPortGetMaxLogPorts.

Return Value Type Range Description

10

15

20

25

30

35

40

45

50

55

60

65

iError short 1 Error flag

1 iError = O for success. Nonzero is an error number

(see KamMiscGetErrorMsg).

KamDecoderMovePort takes a decoder object ID and pointer
to a logical port ID as parameters. It sets the memory
pointed to by pilogicalPortID to the logical port ID

associated with 1DecoderObjectID.
O0KamDecoderCheckAddrInUse
Parameter List Type Range Direction Description
iDecoderAddress int 1 In Decoder address
iLogicalPortID int 2 In Logical Port ID
iDecoderClass int 3 In Class of decoder
1 Opaque object ID handle returned by
KamDecoderPutAdd.
2 Maximum value for this server given by
KamPortGetMaxLogPorts.
3 1- DECODER_ENGINE TYPE,

2 - DECODER_SWITCH_TYPE,

3 - DECODER__SENSOR_TYPE.
Return Value Type Range Description

iError short 1 Error flag

1 iError = O for successful call and address not in

use. Nonzero is an error number (see

KamMiscGetErrorMsg). IDS_ ERR__ ADDRESSEXIST returned if
call succeeded but the address exists.
KamDecoderCheckAddrInUse takes a decoder address, logical
port, and decoder class as parameters. It returns zero

if the address is not in use. It will return
IDS_ERR_ADDRESSEXIST if the call succeeds but the address
already exists. It will return the appropriate non zero

error number if the calls fails.

O0KamDecoderGetModelFromObj

Parameter List Type Range Direction Description

IDecoderObjectID long 1 In Decoder object ID

piModelint * 1-65535 2 Out Pointer to decoder
type ID

1 Opaque object ID handle returned by

KamDecoderPutAdd.

2 Maximum value for this server given by
KamDecoderGetMaxModels.

Return Value Type Range
iError short 1 Error flag
1 iError = O for success. Nonzero is an error number

(see KamMiscGetErrorMsg).

KamDecoderGetModelFromObj takes a decoder object ID and
pointer to a decoder type ID as parameters. It sets the
memory pointed to by piModel to the decoder type ID
associated with IDCCAddr.

O0KamDecoderGetModelFacility

Description

Parameter List Type Range Direction Description
IDecoderObjectID long 1 In Decoder object ID
pdwFacility long * 2 Out Pointer to decoder

facility mask

1 Opaque object ID handle returned by
KamDecoderPutAdd.
2 0 - DCODE_PRGMODE_ADDR

1 - DCODE_PRGMODE__REG

2 - DCODE_PRGMODE_ PAGE

3 - DCODE__PRGMODE_ DIR

4 - DCODE_PRGMODE_ FLYSHT

5 - DCODE_PRGMODE_ FLYLNG

6 - Reserved

7 - Reserved

8 - Reserved

9 - Reserved

10 - Reserved

11 - Reserved

12 - Reserved

13 - DCODE_FEAT_ DIRLIGHT

14 - DCODE__FEAT 1LNGADDR

15 - DCODE_FEAT__CVENABLE

16 - DCODE_FEDMODE__ADDR

17 - DCODE_FEDMODE_ REG

18 - DCODE__FEDMODE_ PAGE

19 - DCODE_FEDMODE_ DIR

20 - DCODE_FEDMODE_ FLYSHT

21 - DCODE_FEDMODE_ FLYLNG

23

-continued

US 6,494,408 B2

24

-continued

Table of contents

Table of contents

Return Value Type Range Description 5
iError short 1 Error flag
1 iError = 0 for success. Nonzero is an error number
(see KamMiscGetErrorMsg)
KamDecoderGetModelFacility takes a decoder object ID and
pointer to a decoder facility mask as parameters. It
sets the memory pointed to by pdwFacility to the decoder 10
facility mask associated with iDCCAddr.
0KamDecoderGetObjCount
Parameter List Type Range Direction Description
iDecoderClass int 1 In Class of decoder
piObjCount int * 0-65535 Out Count of active
decoders 15
1 1-DECODER_ENGINE_TYPE,
2 - DECODER_SWITCH_TYPE,
3 - DECODER__SENSOR__TYPE.
Return Value Type Range Description®
iError short 1 Error flag
1 iError = 0 for success. Nonzero is an error number 20
(see KamMiscGetErrorMsg).
KamDecoderGetObjCount takes a decoder class and a pointer
to an address count as parameters. It sets the memory
pointed to by piObjCount to the count of active decoders
of the type given by iDecoderClass.
0KamDecoderGetObjAtIndex
Parameter List Type Range Direction Description® 25
ilndex int 1 In Decoder array index
iDecoderClass int 2 In Class of decoder
plDecoderObjectID long * 3 Out Pointer to decoder

object ID
1 0 to (KamDecoderGetAddressCount - 1).
2 1-DECODER_ENGINE_TYPE,
2 - DECODER_SWITCH_TYPE,
3 - DECODER_SENSOR__TYPE.
3 Opaque object ID handle returned by

KamDecoderPutAdd.
Return Value Type Range Description
iError short 1 Error flag

1 iError = 0 for success. Nonzero is an error number
(see KamMiscGetErrorMsg).

KamDecoderGetObjCount takes a decoder index, decoder
class, and a pointer to an object ID as parameters. It

sets the memory pointed to by plDecoderObjectID to the
selected object ID.

0KamDecoderPutAdd

Parameter List Type Range Direction Description

iDecoderAddress int 1 In Decoder address

iLogicalCmdPortID int 1-65535 2 In Logical
command
port ID

iLogicalPortID int 1-65535 2 In Logical
programming
port ID

iClearState int 3 In Clear state flag

iModel int 4 In Decoder model type ID

plDecoderObjectID long * 5 Out Decoder
object ID

1 1-127 for short locomotive addresses. 1-10239 for
long locomotive decoders. 0—511 for accessory decoders.
2 Maximum value for this server given by
KamPortGetMaxLogPorts.

3 0 - retain state, 1 - clear state.

4 Maximum value for this server given by
kamDecoderGetMaxModels.

5 Opaque object ID handle. The object ID is used to
reference the decoder.

Return Value Type Range
iError short 1 Error flag
1 iError = 0 for success. Nonzero is an error number
(see KamMiscGetErrorMsg).

KamDecoderPutAdd takes a decoder object ID, command
logical port, programming logical port, clear flag,

decoder model ID, and a pointer to a decoder object ID as
parameters. It creates a new locomotive object in the
locomotive database and sets the memory pointed to by
plDecoderObjectID to the decoder object ID used by the
server as a key.

Description

30

35

40

45

50

55

60

65

OKamDecoderPutDel

Parameter List Type Range Direction Description
IDecoderObjectID long 1 In Decoder object ID
iClearState int 2 In Clear state flag

1 Opaque object ID handle returned by

KamDecoderPutAdd.

2 0 - retain state, 1 - clear state.
Return Value Type Range
iError short 1 Error flag
1 iError = O for success. Nonzero is an error number
(see KamMiscGetErrorMsg).

KamDecoderPutDel takes a decoder object ID and clear flag
as parameters. It deletes the locomotive object specified

by IDecoderObjectID from the locomotive database.
O0KamDecoderGetMfgName

Description®

Parameter List Type Range Direction Description
IDecoderObjectID long 1 In Decoder object ID
pbsMfgName BSTR * 2 Out Pointer to

manufacturer name
1 Opaque object ID handle returned by
KamDecoderPutAdd.
2 Exact return type depends on language. It is
Cstring * for C++. Empty string on error.
Return Value Type Range
iError short 1 Error flag
1 iError = O for success. Nonzero is an error number
(see KamMiscGetErrorMsg).
KamDecoderGetMfgName takes a decoder object ID and
pointer to a manufacturer name string as parameters. It
sets the memory pointed to by pbsMfgName to the name of
the decoder manufacturer.

Description

OKamDecoderGetPowerMode

Parameter List Type Range Direction Description

IDecoderObjectID long 1 In Decoder object ID

pbsPowerMode BSTR * 2 Out Pointer to
decoder power
mode

1 Opaque object ID handle returned by

KamDecoderPutAdd.

2 Exact return type depends on language. It is

Cstring * for C++. Empty string on error.

Return Value Type Range Description®

iError short 1 Error flag

1 iError = O for success. Nonzero is an error number

(see KamMiscGetErrorMsg).

KamDecoderGetPowerMode takes a decoder object ID and a
pointer to the power mode string as parameters. It sets

the memory pointed to by pbsPowerMode to the decoder
power mode.

O0KamDecoderGetMaxSpeed

Parameter List Type Range Direction Description

IDecoderObjectID long 1 In Decoder object ID

piSpeedStep int * 2 Out Pointer to max
speed step

1 Opaque object ID handle returned by

KamDecoderPutAdd.

2 14, 28, 56, or 128 for locomotive decoders. 0 for

accessory decoders.

Return Value Type Range Description

iError short 1 Error flag

1 iError = O for success. Nonzero is an error number

(see KamMiscGetErrorMsg).

KamDecoderGetMaxSpeed takes a decoder object ID and a

pointer to the maximum supported speed step as
parameters. It sets the memory pointed to by piSpeedStep
to the maximum speed step supported by the decoder.
A. Commands to control locomotive decoders

This section describes the commands that
control locomotive decoders. These commands control
things such as locomotive speed and direction. For
efficiency, a copy of all the engine variables such speed
is stored in the server. Commands such as KamEngGetSpeed
communicate only with the server, not the actual decoder.
You should first make any changes to the server copy of
the engine variables. You can send all changes to the
engine using the KamCmdCommand command.
O0KamEngGetSpeed

US 6,494,408 B2

25

-continued

26

-continued

Table of contents

Table of contents

Parameter List Type Range Direction Description

IDecoderObjectID long 1 In Decoder object ID

IpSpeed int * 2 Out Pointer to locomotive
speed

IpDirection int* 3 Out Pointer to locomotive
direction

1 Opaque object ID handle returned by

KamDecoderPutAdd.

2 Speed range is dependent on whether the decoder is
set to 14,18, or 128 speed steps and matches the values
defined by NMRA S9.2 and RP 9.2.1. 0 is stop and 1 is
emergency stop for all modes.

3 Forward is boolean TRUE and reverse is boolean
FALSE.

Return Value Type Range
iError short 1 Error flag
1 iError = 0 for success. Nonzero is an error number
(see KamMiscGetErrorMsg).

KamEngGetSpeed takes the decoder object ID and pointers
to locations to store the locomotive speed and direction

as parameters. It sets the memory pointed to by lpspeed

to the locomotive speed and the memory pointed to by
IpDirection to the locomotive direction.

Description

0KamEngPutSpeed

Parameter List Type Range Direction Description®
IDecoderObjectID long 1 In Decoder object ID
iSpeed int 2 In Locomotive speed

iDirection int 3 In Locomotive direction

1 Opaque object ID handle returned by

KamDecoderPutAdd.

2 Speed range is dependent on whether the decoder is
set to 14,18, or 128 speed steps and matches the values
defined by NMRA S9.2 and RP 9.2.1. 0 is stop and 1 is
emergency stop for all modes.

3 Forward is boolean TRUE and reverse is boolean
FALSE.

Return Value Type Range
iError short 1 Error flag
1 iError = 0 for success. Nonzero is an error number

(see KamMiscGetErrorMsg).

KamEngPutSpeed takes the decoder object ID, new
locomotive speed, and new locomotive direction as
parameters. It sets the locomotive database speed to

iSpeed and the locomotive database direction to

iDirection. Note: This command only changes the

locomotive database. The data is not sent to the decoder

until execution of the KamCmdCommand command. Speed is
set to the maximum possible for the decoder if iSpeed
exceeds the decoders range.

Description

0KamEngGetSpeedSteps
Parameter List Type Range Direction Description
IDecoderObjectID long 1 In Decoder object ID

Pointer to number
of speed steps

IpSpeedSteps int * 14,28,128 Out

1 Opaque object ID handle returned by
KamDecoderPutAdd.

Return Value Type Range

iError short 1 Error flag

1 iError = 0 for success. Nonzero is an error number
(see KamMiscGetErrorMsg).

KamEngGetSpeedSteps takes the decoder object ID and a
pointer to a location to store the number of speed steps
as a parameter. It sets the memory pointed to by
IpSpeedSteps to the number of speed steps.

Description

0KamEngPutSpeedSteps

Parameter List Type Range Direction Description

IDecoderObjectID long 1 In Decoder object ID

iSpeedSteps int 14,28,128 In Locomotive speed
steps

1 Opaque object ID handle returned by

KamDecoderPutAdd.

Return Value Type Range Description

iError short 1 Error flag

1 iError = 0 for success. Nonzero is an error number

(see KamMiscGetErrorMsg).

KamEngPutSpeedSteps takes the decoder object ID and a new
number of speed steps as a parameter. It sets the number

10

15

20

25

30

35

40

45

50

55

60

65

of speed steps in the locomotive database to iSpeedSteps.
Note: This command only changes the locomotive database.
The data is not sent to the decoder until execution of

the KamCmdCommand command. KamDecoderGetMaxSpeed returns

the maximum possible speed for the decoder. An error is
generated if an attempt is made to set the speed steps
beyond this value.

0KamEngGetFunction

Parameter List Type Range Direction Description
IDecoderObjectID long 1 In Decoder object ID
iFunctionID int 082 In Function ID number
IpFunction int* 3 Out Pointer to function
value

1 Opaque object ID handle returned by

KamDecoderPutAdd.

2 FLis 0. F1 . F8 are 1-8 respectively. Maximum for
this decoder is given by KamEngGetFunctionMax. 3
Function active is boolean TRUE and inactive is boolean
FALSE.

Return Value Type Range
iError short 1 Error flag
1 iError = O for success. Nonzero is an error number

(see KamMiscGetErrorMsg).

KamEngGetFunction takes the decoder object ID, a function
ID, and a pointer to the location to store the specified
function state as parameters. It sets the memory pointed

to by IpFunction to the specified function state.

Description

O0KamEngPutFunction

Parameter List Type Range Direction Description
IDecoderObjectID long 1 In Decoder object ID
iFunctionID int 082 In Function ID number
iFunction int 3 In Function value

1 Opaque object ID handle returned by

KamDecoderPutAdd.

2 FLis 0. F1-F8 are 1-8 respectively. Maximum for
this decoder is given by KamEngGetFunctionMax.

3 Function active is boolean TRUE and inactive is
boolean FALSE.

Return Value Type Range
iError short 1 Error flag
1 iError = O for success. Nonzero is an error number
(see KamMiscGetErrorMsg).

KamEngPutFunction takes the decoder object ID, a function
ID, and a new function state as parameters. It sets the
specified locomotive database function state to

iFunction. Note: This command only changes the
locomotive database. The data is not sent to the decoder
until execution of the KamCmdCommand command.
0KamEngGetFunctionMax

Description®

Parameter List Type Range Direction Description
IDecoderObjectID long 1 In Decoder object ID
piMaxFunction int * 0-8 Out Pointer to maximum

function number
1 Opaque object ID handle returned by
KamDecoderPutAdd.
Return Value Type Range
iError short 1 Error flag
1 iError = O for success. Nonzero is an error number
(see KamMiscGetErrorMsg).
KamEngGetFunctionMax takes a decoder object ID and a
pointer to the maximum function ID as parameters. It
sets the memory pointed to by piMaxFunction to the
maximum possible function number for the specified
decoder.

Description

OKamEngGetName

Parameter List Type Range Direction Description
IDecoderObjectID long 1 In Decoder object ID
pbsEngName BSTR * 2 Out Pointer to

locomotive name
1 Opaque object ID handle returned by
KamDecoderPutAdd.
2 Exact return type depends on language. It is
Cstring * for C++. Empty string on error.
Return Value Type Range
iError short 1 Error flag
1 iError = O for success. Nonzero is an error number
(see KamMiscGetErrorMsg).

Description

US 6,494,408 B2

27

-continued

28

-continued

Table of contents

Table of contents

KamEngGetName takes a decoder object ID and a pointer to
the locomotive name as parameters. It sets the memory
pointed to by pbsEngName to the name of the locomotive.

OKamEngPutName

Parameter List Type Range Direction Description®
IDecoderObjectID long 1 In Decoder object ID
bsEngName BSTR 2 Out Locomotive name

1 Opaque object ID handle returned by

KamDecoderPutAdd.

2 Exact parameter type depends on language. It is
LPCSTR for C++.

Return Value Type Range
iError short 1 Error flag
1 iError = 0 for success. Nonzero is an error number
(see KamMiscGetErrorMsg).

KamEngPutName takes a decoder object ID and a BSTR as
parameters. It sets the symbolic locomotive name to
bsEngName.
0KamEngGetFunctionName
Parameter List Type Range

Description

Direction Description

IDecoderObjectID long 1 In Decoder object ID
iFunctionID int 0-82 In Function ID number
pbsFenNameString BSTR * 3 Out Pointer to

function name
1 Opaque object ID handle returned by
KamDecoderPutAdd.
2 FLis 0. F1-F8 are 1-8 respectively. Maximum for
this decoder is given by KamEngGetFunctionMax. 3 Exact
return type depends on language. It is Cstring * for
C++. Empty string on error.
Return Value Type Range
iError short 1 Error flag
1 iError* = O for success. Nonzero is an error number
(see KamMiscGetErrorMsg).
KamEngGetFuncntionName takes a decoder object ID,
function ID, and a pointer to the function name as
parameters. It sets the memory pointed to by
pbsFenNameString to the symbolic name of the specified
function.
0KamEngPutFunctionName
Parameter List Type Range

Description

Direction Description

IDecoderObjectID long 1 In Decoder object ID
iFunctionID int 082 in Function ID number
bsFenNameString BSTR 3 In Function name

1 Opaque object ID handle returned by

KamDecoderPutAdd.

2 FLis 0. F1-F8 are 1-8 respectively. Maximum for
this decoder is given by KamEngGetFunctionMax.

3 Exact parameter type depends on language. It is
LPCSTR for C++.

Return Value Type Range
iError short 1 Error flag
1 iError = 0 for success. Nonzero is an error number

(see KamMiscGetErrorMsg).

KamEngPutFunctionName takes a decoder object ID, function
ID, and a BSTR as parameters. It sets the specified

symbolic function name to bsFenNameString.

Description

0KamEngGetConsistMax
Parameter List Type Range Direction Description
IDecoderObjectID long 1 In Decoder object ID

piMaxConsist int * 2 Out Pointer to max consist
number

1 Opaque object ID handle returned by

KamDecoderPutAdd.

2 Command station dependent.

Return Value Type Range Description

iError short 1 Error flag

1 iError = 0 for success. Nonzero is an error number
(see KamMiscGetErrorMsg).

KamEngGetConsistMax takes the decoder object ID and a
pointer to a location to store the maximum consist as
parameters. It sets the location pointed to by
piMaxConsist to the maximum number of locomotives that
can but placed in a command station controlled consist.
Note that this command is designed for command station
consisting. CV consisting is handled using the CV
commands.

10

15

20

25

30

35

40

45

50

55

60

65

O0KamEngPutConsistParent

Parameter List Type Range Direction Description

IDCCParentObjID long 1 In Parent decoder
object ID

iDCCAliasAddr int 2 In Alias decoder address

1 Opaque object ID handle returned by

KamDecoderPutAdd.

2 1-127 for short locomotive addresses. 1-10239 for
long locomotive decoders.

Return Value Type Range
iError short 1 Error flag
1 iError = O for success. Nonzero is an error number
(see KamMiscGetErrorMsg).

KamEngPutConsistParent takes the parent object ID and an
alias address as parameters. It makes the decoder

specified by IDCCParentObjID the consist parent referred
to by iDCCAliasAddr. Note that this command is designed
for command station consisting. CV consisting is handled
using the CV commands. If a new parent is defined for a
consist; the old parent becomes a child in the consist.

To delete a parent in a consist without deleting the

consist, you must add a new parent then delete the old
parent using KamEngPutConsistRemoveObj.
O0KamEngPutConsistChild

Description

Parameter List Type Range Direction Description
IDCCParentObjID long 1 In Parent decoder
object ID
IDCCObID long 1 In Decoder object ID
1 Opaque object ID handle returned by
KamDecoderPutAdd.
Return Value Type Range Description
iError short 1 Error flag

1 iError = O for success. Nonzero is an error number
(see KamMiscGetErrorMsg).

KamEngPutConsistChild takes the decoder parent object ID
and decoder object ID as parameters. It assigns the
decoder specified by IDCCObID to the consist identified
by IDCCParentObjID. Note that this command is designed
for command station consisting. CV consisting is handled
using the CV commands. Note: This command is invalid if
the parent has not been set previously using
KamEngPutConsistParent.

O0KamEngPutConsistRemoveObj

Parameter List Type Range Direction Description
IDecoderObjectID long 1 In Decoder object ID
1 Opaque object ID handle returned by
KamDecoderPutAdd.

Return Value Type Range Description
iError short 1 Error flag

1 iError = O for success. Nonzero is an error number
(see KamMiscGetErrorMsg).
KamEngPutConsistRemoveObj takes the decoder object ID as
a parameter. It removes the decoder specified by
IDecoderObjectID from the consist. Note that this
command is designed for command station consisting. CV
consisting is handled using the CV commands. Note: If
the parent is removed, all children are removed also.
A. Commands to control accessory decoders

This section describes the commands that
control accessory decoders. These commands control
things such as accessory decoder activation state. For
efficiency, a copy of all the engine variables such speed
is stored in the server. Commands such as
KamAccGetFunction communicate only with the server, not
the actual decoder. You should first make any changes to
the server copy of the engine variables. You can send
all changes to the engine using the KamCmdCommand
command.

O0KamAccGetFunction

Parameter List Type Range Direction Description

IDecoderObjectID long 1 In Decoder object ID

iFunctionID int 0-312 In Function ID number

IpFunction int* 3 Out Pointer to function
value

1 Opaque object ID handle returned by

KamDecoderPutAdd.

2 Maximum for this decoder is given by

US 6,494,408 B2

29

-continued

30

-continued

Table of contents

Table of contents

KamAccGetFunctionMax.

3 Function active is boolean TRUE and inactive is
boolean FALSE.

Return Value Type Range
iError short 1 Error flag
1 iError = O for success. Nonzero is an error number

(see KamMiscGetErrorMsg).

KamAccGetFunction takes the decoder object ID, a function
ID, and a pointer to the location to store the specified
function state as parameters. It sets the memory pointed

to by IpFunction to the specified function state.

Description

0KamAccGetFunctionAll

Parameter List Type Range Direction Description
IDecoderObjectID long 1 In Decoder object ID
piValue int * 2 Out Function bit mask

1 Opaque object ID handle returned by
KamDecoderPutAdd.

2 Each bit represents a single function state.
Maximum for this decoder is given by
KamAccGetFunctionMax.

Return Value Type Range
iError short 1 Error flag

1 iError = 0 for success. Nonzero is an error number
(see KamMiscGetErrorMsg).

KamAccGetFunctionAll takes the decoder object ID and a
pointer to a bit mask as parameters. It sets each bit in

the memory pointed to by piValue to the corresponding
function state.

Description

0KamAccPutFunction

Parameter List Type Range Direction Description
IDecoderObjectID long 1 In Decoder object ID
iFunctionID int 0-312 In Function ID number
iFunction int 3 In Function value

1 Opaque object ID handle returned by

KamDecoderPutAdd.

2 Maximum for this decoder is given by
KamAccGetFunctionMax.

3 Function active is boolean TRUE and inactive is
boolean FALSE.

Return Value Type Range
iError short 1 Error flag
1 iError = O for success. Nonzero is an error number
(see KamMiscGetErrorMsg).

KamAccPutFunction takes the decoder object ID, a function
ID, and a new function state as parameters. It sets the
specified accessory database function state to iFunction.
Note: This command only changes the accessory database.
The data is not sent to the decoder until execution of

the KamCmdCommand command.

Description®

0KamAccPutFunctionAll
Parameter List Type Range Direction Description
iDecoderObjectID long 1 In Decoder object ID
iValue int 2 In Pointer to function state

array
1 Opaque object ID handle returned by
KamDecoderPutAdd.

2 Each bit represents a single function state.
Maximum for this decoder is given by
KamAccGetFunctionMax.

Return Value Type Range
iError short 1 Error flag

1 iError = O for success. Nonzero is an error number
(see KamMiscGetErrorMsg).

KamAccPutFunctionAll takes the decoder object ID and a
bit mask as parameters. It sets all decoder function
enable states to match the state bits in iValue. The
possible enable states are TRUE and FALSE. The data is
not sent to the decoder until execution of the
KamCmdCommand command.

Description®

0KamAccGetFunctionMax
Parameter List Type Range Direction Description
iDecoderObjectID long 1 In Decoder object ID

Pointer to maximum
function number

1 Opaque object ID handle returned by
KamDecoderPutAdd.

2 Maximum for this decoder is given by

piMaxFunction int * 0-312 Out

10

15

20

25

30

35

40

45

50

55

60

65

KamAccGetFunctionMax.

Return Value Type Range
iError short 1 Error flag
1 iError = O for success. Nonzero is an error number
(see KamMiscGetErrorMsg).

KamAccGetFunctionMax takes a decoder object ID and
pointer to the maximum function number as Parameters. It
sets the memory pointed to by piMaxFunction to the
maximum possible function number for the specified
decoder.

OKamAccGetName

Parameter List Type Range Direction
IDecoderObjectID long 1 In
pbsAccNameString BSTR * 2 Out
1 Opaque object ID handle returned by
KamDecoderPutAdd.

2 Exact return type depends on language. It is
Cstring * for C++. Empty string on error.
Return Value Type Range

iError short 1 Error flag

1 iError = O for success. Nonzero is an error number

(see KamMiscGetErrorMsg).

KamAccGetName takes a decoder object ID and a pointer to
a string as parameters. It sets the memory pointed to by
pbsAccNameString to the name of the accessory.
OKamAccPutName

Parameter List Type Range Direction
IDecoderObjectID long 1 In
bsAccNameString BSTR 2 In

1 Opaque object ID handle returned by
KamDecoderPutAdd.

2 Exact parameter type depends on language. It is
LPCSTR for C++.

Return Value Type Range
iError short 1 Error flag
1 iError = O for success. Nonzero is an error number
(see KamMiscGetErrorMsg).

KamAccPutName takes a decoder object ID and a BSTR as
parameters. It sets the symbolic accessory name to
bsAccName.

OKamAccGetFunctionName

Description

Description
Decoder object ID
Accessory name

Description

Description
Decoder object ID
Accessory name

Description

Parameter List Type Range Direction Description
IDecoderObjectID long 1 In Decoder object ID
iFunctionID int 0-312 In Function ID number
pbsFenNameString BSTR * 3 Out Pointer to

function name
1 Opaque object ID handle returned by
KamDecoderPutAdd.

2 Maximum for this decoder is given by
KamAccGetFunctionMax.

3 Exact return type depends on language. It is
Cstring * for C++. Empty string on error.
Return Value Type Range

iError short 1 Error flag

1 iError = O for success. Nonzero is an error number
(see KamMiscGetErrorMsg).

KamAccGetFunctionName takes a decoder object ID,
function ID, and a pointer to a string as parameters. It
sets the memory pointed to by pbsFenNameString to the
symbolic name of the specified function.
OKamAccPutFunctionName
Parameter List Type Range

Description®

Direction Description

IDecoderObjectID long 1 In Decoder object ID
iFunctionID int 0-312 In Function ID number
bsFenNameString BSTR 3 In Function name

1 Opaque object ID handle returned by

KamDecoderPutAdd.

2 Maximum for this decoder is given by
KamAccGetFunctionMax.

3 Exact parameter type depends on language. It is
LPCSTR for C++.

Return Value Type Range
iError short 1 Error flag
1 iError = O for success. Nonzero is an error number

(see KamMiscGetErrorMsg).

KamAccPutFunctionName takes a decoder object ID, function
ID, and a BSTR as parameters. It sets the specified

Description

US 6,494,408 B2

31

-continued

32

-continued

Table of contents

Table of contents

symbolic function name to bsFenNameString.

O0KamAccRegFeedback

Parameter List Type ~ Range Direction Description®
IDecoderObjectID long 1 In Decoder object ID
bsAccNode BSTR 1 In Server node name
iFunctionID int 0-313 In Function ID number

1 Opaque object ID handle returned by

KamDecoderPutAdd.

2 Exact parameter type depends on language. It is
LPCSTR for C++.

3 Maximum for this decoder is given by
KamAccGetFunctionMax.

Return Value Type Range

iError short 1 Error flag

1 iError* = O for success. Nonzero is an error number
(see KamMiscGetErrorMsg).

KamAccRegFeedback takes a decoder object ID, node name
string, and function ID, as parameters. It registers

interest in the function given by iFunctionID by the

method given by the node name string bsAccNode.
bsAccNode identifies the server application and method to
call if the function changes state. Its format is

“U{Server \N{APP}.{Method}” where {Server} is the server
name, {App} is the application name, and {Method} is the
method name.

Description

0KamAccRegFeedbackAll

Parameter List Type Range Direction Description
IDecoderObjectID long 1 In Decoder object ID
bsAccNode BSTR 2 In Server node name
1 Opaque object ID handle returned by
KamDecoderPutAdd.

2 Exact parameter type depends on language. It is
LPCSTR for C++.

Return Value Type Range
iError short 1 Error flag
1 iError = 0 for success. Nonzero is an error number

(see KamMiscGetErrorMsg).

KamAccRegFeedbackAll takes a decoder object ID and node
name string as parameters. It registers interest in all
functions by the method given by the node name string
bsAccNode. bsAccNode identifies the server application

and method to call if the function changes state. Its

format is “W{Server \{App}.{Method}” where {Server} is
the server name, {App} is the application name, and
{Method} is the method name.

Description

0KamAccDelFeedback

Parameter List Type Range Direction Description
IDecoderObjectID long 1 In Decoder object ID
bsAccNode BSTR 2 In Server node name

iFunctionID int 0-313 In Function ID number
1 Opaque object ID handle returned by
KamDecoderPutAdd.

2 Exact parameter type depends on language. It is
LPCSTR for C++.

3 Maximum for this decoder is given by
KamAccGetFunctionMax.

Return Value Type Range

iError short 1 Error flag

1 iError = 0 for success. Nonzero is an error number
(see KamMiscGetErrorMsg).

KamAccDelFeedback takes a decoder object ID, node name
string, and function ID, as parameters. It deletes

interest in the function given by iFunctionID by the

method given by the node name string bsAccNode.
bsAccNode identifies the server application and method to
call if the function changes state. Its format is

“W{Server \N{App}.{Method}” where {Server} is the server
name, {App} is the application name, and {Method} is the
method name.

Description

0KamAccDelFeedbackAll

Parameter List Type Range Direction Description®
IDecoderObjectID long 1 In Decoder object ID
bsAccNode BSTR 2 In Server node name

1 Opaque object ID handle returned by
KamDecoderPutAdd.

2 Exact parameter type depends on language. It is
LPCSTR for C++.

10

15

20

25

30

35

40

45

50

55

60

65

Return Value Type Range
iError short 1 Error flag
1 iError = O for success. Nonzero is an error number
(see KamMiscGetErrorMsg).
KamAccDelFeedbackAll takes a decoder object ID and node
name string as parameters. It deletes interest in all
functions by the method given by the node name string
bsAccNode. bsAccNode identifies the server application
and method to call if the function changes state. Its
format is “W{Server\{App}.{Method}” where {Server} is
the server name, {App} is the application name, and
{Method} is the method name.
A. Commands to control the command station

This section describes the commands that
control the command station. These commands do things
such as controlling command station power. The steps to
control a given command station vary depending on the
type of command station.
0KamOprPutTurnOnStation
Parameter List Type Range Direction Description
iLogicalPortID int ~ 1-65535 1 In Logical port ID
1 Maximum value for this server given by
KamPortGetMaxLogPorts.
Return Value Type Range
iError short 1 Error flag
1 iError = O for success. Nonzero is an error number
(see KamMiscGetErrorMsg).
KamOprPutTurnOnStation takes a logical port ID as a
parameter. It performs the steps necessary to turn on
the command station. This command performs a combination
of other commands such as KamOprPutStartStation,
KamOprPutClearStation, and KamOprPutPowerOn.
0KamOprPutStartStation
Parameter List Type Range Direction Description
iLogicalPortID int ~ 1-65535 1 In Logical port ID
1 Maximum value for this server given by
KamPortGetMaxLogPorts.
Return Value Type Range
iError short 1 Error flag
1 iError = O for success. Nonzero is an error number
(see KamMiscGetErrorMsg).
KamOprPutStartStation takes a logical port ID as a
parameter. It performs the steps necessary to start the
command station.
0KamOprPutClearStation
Parameter List Type Range Direction Description
iLogicalPortID int ~ 1-65535 1 In Logical port ID
1 Maximum value for this server given by
KamPortGetMaxLogPorts.
Return Value Type Range
iError short 1 Error flag
1 iError = O for success. Nonzero is an error number
(see KamMiscGetErrorMsg).
KamOprPutClearStation takes a logical port ID as a
parameter. It performs the steps necessary to clear the
command station queue.
0KamOprPutStopStation
Parameter List Type Range Direction Description
iLogicalPortID int ~ 1-65535 1 In Logical port ID
1 Maximum value for this server given by
KamPortGetMaxLogPorts.
Return Value Type Range
iError short 1 Error flag
1 iError = O for success. Nonzero is an error number
(see KamMiscGetErrorMsg).
KamOprPutStopStation takes a logical port ID as a
parameter. It performs the steps necessary to stop the
command station.
0KamOprPutPowerOn
Parameter List Type Range Direction Description
iLogicalPortID int ~ 1-65535 1 In Logical port ID
1 Maximum value for this server given by
KamPortGetMaxLogPorts.
Return Value Type Range
iError short 1 Error flag
1 iError = O for success. Nonzero is an error number
(see KamMiscGetErrorMsg).

Description

Description

Description

Description

Description

Description

33

-continued

US 6,494,408 B2

34

-continued

Table of contents

Table of contents

KamOprPutPowerOn takes a logical port ID as a parameter.
It performs the steps necessary to apply power to the

track.

0KamOprPutPowerOff

Parameter List Type Range Direction
iLogicalPortID int ~ 1-65535 1 In
1 Maximum value for this server given by

Description
Logical port ID

KamPortGetMaxLogPorts.
Return Value Type Range Description
iError short 1 Error flag

1 iError = 0 for success. Nonzero is an error number
(see KamMiscGetErrorMsg).

KamOprPutPowerOff takes a logical port ID as a parameter.
It performs the steps necessary to remove power from the
track.

0KamOprPutHardReset

Parameter List Type Range Direction
iLogicalPortID int ~ 1-65535 1 In
1 Maximum value for this server given by

Description
Logical port ID

KamPortGetMaxLogPorts.
Return Value Type Range Description
iError short 1 Error flag

1 iError = 0 for success. Nonzero is an error number
(see KamMiscGetErrorMsg).

KamOprPutHardReset takes a logical port ID as a
parameter. It performs the steps necessary to perform a
hard reset of the command station.
0KamOprPutEmergencyStop

Parameter List Type Range Direction
iLogicalPortID int ~ 1-65535 1 In
1 Maximum value for this server given by

Description
Logical port ID

KamPortGetMaxLogPorts.
Return Value Type Range Description
iError short 1 Error flag

1 iError = 0 for success. Nonzero is an error number
(see KamMiscGetErrorMsg).
KamOprPutEmergencyStop takes a logical port ID as a
parameter. It performs the steps necessary to broadcast
an emergency stop command to all decoders.
0KamOprGetStationStatus

10

15

20

25

30

35

40

Parameter List Type Range Direction Description

iLogicalPortID int 1-65535 1 In Logical port ID

pbsCmdStat BSTR * 2 Out Command station status
string

1 Maximum value for this server given by

KamPortGetMaxLogPorts.

2 Exact return type depends on language. It is
Cstring * for C++.
Return Value Type Range
iError short 1 Error flag
1 iError = 0 for success. Nonzero is an error number
(see KamMiscGetErrorMsg).
KamOprGetStationStatus takes a logical port ID and a
pointer to a string as parameters. It set the memory
pointed to by pbsCmdStat to the command station status.
The exact format of the status BSTR is vendor dependent.
A. Commands to configure the command station
communication port
This section describes the commands that
configure the command station communication port. These
commands do things such as setting BAUD rate. Several of
the commands in this section use the numeric controller
ID (iControllerID) to identify a specific type of
command station controller. The following table shows
the mapping between the controller ID (iControllerID) and
controller name (bsControllerName) for a given type of
command station controller.
iControllerID bsControllerName Description
0 UNKNOWN Unknown controller type
1 SIMULAT Interface simulator
2 LENZ_1Ix Lenz version 1 serial support module
3 LENZ_2x Lenz version 2 serial support module
4 DIGIT_DT200 Digitrax direct drive support using
DT200
Digitrax direct drive support using
DCS100

Description

5 DIGIT_DCS100

45

50

55

60

65

6 MASTERSERIES North coast engineering master
series

7 SYSTEMONE System

8 RAMFIX RAMFIxx system

9 SERIAL NMRA serial interface
10 EASYDCC CVP Easy DCC
11 MRKG6050 Marklin 6050 interface (AC and DC)
12 MRKG6023 Marklin 6023 interface (AC)
13 DIGIT_PR1 Digitrax direct drive using PR1
14 DIRECT Direct drive interface routine
15 ZTC ZTC system Itd
16 TRIX TRIX controller
ilndex Name iValue Values

0 RETRANS 10-255

1 RATE 0 - 300 BAUD, 1 - 1200 BAUD, 2 - 2400 BAUD,
3 - 4800 BAUD, 4 - 9600 BAUD, 5 - 14400 BAUD,
6 - 16400 BAUD, 7 - 19200 BAUD

2 PARITYO - NONE, 1 - ODD, 2 - EVEN, 3 - MARK,

4 - SPACE

STOP 0 -1 bit, 1 - 1.5 bits, 2 - 2 bits

4 WATCHDOG 500 - 65535 milliseconds. Recommended
value 2048

5 FLOW 0 - NONE, 1 - XON/XOFF, 2 - RTS/CTS, 3 BOTH

DATA 0 - 7 bits, 1 - 8 bits

7 DEBUGBiIt mask. Bit 1 sends messages to debug file.
Bit 2 sends messages to the screen. Bit 3 shows
queue data. Bit 4 shows UI status. Bit 5 is
reserved. Bit 6 shows semaphore and critical
sections. Bit 7 shows miscellaneous messages. Bit
8 shows comm port activity. 130 decimal is
recommended for debugging.

8 PARALLEL

(o)

[N

OKamPortPutConfig

Parameter List Type Range Direction Description®
iLogicalPortID int 1-65535 1 In Logical port ID
iIndex int 2 In Configuration type index
iValue int 2 In Configuration value

iKey int 3 In Debug key

1 Maximum value for this server given by
KamPortGetMaxLogPorts.

2 See Figure 7: Controller configuration Index values
for a table of indexes and values.

3 Used only for the DEBUG ilndex value. Should be set
to 0.

Return Value Type Range
iError short 1 Error flag
1 iError = O for success. Nonzero is an error number

(see KamMiscGetErrorMsg).

KamPortPutConfig takes a logical port ID, configuration
index, configuration value, and key as parameters. It

sets the port parameter specified by ilndex to the value
specified by iValue. For the DEBUG ilndex value, the

debug file path is C:\Temp\Debug{PORT}.txt where {PORT}
is the physical comm port ID.

Description

O0KamPortGetConfig

Parameter List Type Range Direction Description
iLogicalPortID int 1-65535 1 In Logical port ID
ilndex int 2 In Configuration type index

piValue int * 2 Out Pointer to configuration value
1 Maximum value for this server given by
KamPortGetMaxLogPorts.

2 See Figure 7: Controller configuration Index values

for a table of indexes and values.
Return Value Type Range
iError short 1 Error flag
1 iError = O for success. Nonzero is an error number
(see KamMiscGetErrorMsg).

KamPortGetConfig takes a logical port ID, configuration
index, and a pointer to a configuration value as
parameters. It sets the memory pointed to by piValue to
the specified configuration value.

OKamPortGetName

Description

Parameter List Type Range Direction Description

iPhysicalPortID int 1-65535 1 In Physical port
number

pbsPortName BSTR * 2 Out Physical port name

1 Maximum value for this server given by

US 6,494,408 B2

35

-continued

36

-continued

Table of contents

Table of contents

KamPortGetMaxPhysical.

2 Exact return type depends on language. It is
Cstring * for C++. Empty string on error.
Return Value Type Range

iError short 1 Error flag

1 iError = 0 for success. Nonzero is an error number

(see KamMiscGetErrorMsg).

KamPortGetName takes a physical port ID number and a
pointer to a port name string as parameters. It sets the

memory pointed to by pbsPortName to the physical port

name such as “COMM1.”

0KamPortPutMapController

Parameter List Type Range Direction Description
iLogicalPortID int 1-65535 1 In Logical port ID
iControllerID int 1-65535 2 In Command station

Description

type ID
iCommPortID int 1-65535 3 In Physical comm
port ID
1 Maximum value for this server given by
KamPortGetMaxLogPorts.

2 See Figure 6: Controller ID to controller name
mapping for values. Maximum value for this server is
given by KamMiscMaxControllerID.

3 Maximum value for this server given by
KamPortGetMaxPhysical.

Return Value Type Range
iError short 1 Error flag
1 iError = 0 for success. Nonzero is an error number

(see KamMiscGetErrorMsg).

KamPortPutMapController takes a logical port ID, a
command station type ID, and a physical communications
port ID as parameters. It maps iLogicalPortID to
iCommPortID for the type of command station specified by
iControllerID.

OKamPortGetMaxLogPorts

Parameter List Type Range Direction Description®
piMaxLogicalPorts int * 1 Out Maximum logical

Description

port ID
1 Normally 1 - 65535. 0 returned on error.
Return Value Type Range Description

iError short 1 Error flag

1 iError = 0 for success. Nonzero is an error number
(see KamMiscGetErrorMsg).

KamPortGetMaxLogPorts takes a pointer to a logical port
ID as a parameter. It sets the memory pointed to by
piMaxLogicalPorts to the maximum logical port ID.
0KamPortGetMaxPhysical

Parameter List Type ~ Range Direction Description

pMaxPhysical int * 1 Out Maximum physical
port ID

pMaxSerial int * 1 Out Maximum serial
port ID

pMaxParallel int * 1 Out Maximum parallel
port ID

1 Normally 1 - 65535. 0 returned on error.

Return Value Type Range Description

iError short 1 Error flag
1 iError = O for success. Nonzero is an error number
(see KamMiscGetErrorMsg).
KamPortGetMaxPhysical takes a pointer to the number of
physical ports, the number of serial ports, and the
number of parallel ports as parameters. It sets the
memory pointed to by the parameters to the associated
values
A. Commands that control command flow to the command

station

This section describes the commands that

control the command flow to the command station. These
commands do things such as connecting and disconnecting
from the command station.
0KamCmdConnect
Parameter List Type Range Direction Description®
iLogicalPortID int 1-65535 1 In Logical port ID
1 Maximum value for this server given by
KamPortGetMaxLogPorts.
Return Value Type Range
iError short 1 Error flag

Description

5

10

15

20

25

30

35

40

45

50

55

60

65

1 iError = O for success. Nonzero is an error number
(see KamMiscGetErrorMsg).

KamCmdConnect takes a logical port ID as a parameter. It
connects the server to the specified command station.
O0KamCmdDisConnect

Parameter List Type Range Direction Description
iLogicalPortID int 1-65535 1 In Logical port ID
1 Maximum value for this server given by
KamPortGetMaxLogPorts.

Return Value Type Range
iError short 1 Error flag
1 iError = O for success. Nonzero is an error number
(see KamMiscGetErrorMsg).

KamCmdDisConnect takes a logical port ID as a parameter.
It disconnects the server to the specified command

station.

Description

O0KamCmdCommand

Parameter List Type Range Direction Description
IDecoderObjectID long 1 In Decoder object ID
1 Opaque object ID handle returned by
KamDecoderPutAdd.

Return Value Type Range Description

iError short 1 Error flag
1 iError = O for success. Nonzero is an error number
(see KamMiscGetErrorMsg).
KamCmdCommand takes the decoder object ID as a parameter.
It sends all state changes from the server database to
the specified locomotive or accessory decoder.
A. Cab Control Commands

This section describes commands that control
the cabs attached to a command station.
O0KamCabGetMessage
Parameter List Type Range Direction Description
iCabAddress int 1-65535 1 In Cab address
pbsMsg BSTR * 2 Out Cab message string
1 Maximum value is command station dependent.
2 Exact return type depends on language. It is
Cstring * for C++. Empty string on error.
Return Value Type Range
iError short 1 Error flag
1 iError = O for success. Nonzero is an error number
(see KamMiscGetErrorMsg).
KamCabGetMessage takes a cab address and a pointer to a
message string as parameters. It sets the memory pointed
to by pbsMsg to the present cab message.
O0KamCabPutMessage
Parameter List Type Range Direction Description
iCabAddress int 1 In Cab address
bsMsg BSTR 2 Out Cab message string
1 Maximum value is command station dependent.
2 Exact parameter type depends on language. It is
LPCSTR for C++.
Return Value Type Range
iError short 1 Error flag
1 iError = O for success. Nonzero is an error number
(see KamMiscGetErrorMsg).
KamCabPutMessage takes a cab address and a BSTR as
parameters. It sets the cab message to bsMsg.

Description

Description

OKamCabGetCabAddr

Parameter List Type Range Direction Description®

IDecoderObjectID long 1 In Decoder object ID

piCabAddress int * 1-65535 2 Out Pointer to Cab
address

1 Opaque object ID handle returned by

KamDecoderPutAdd.

2 Maximum value is command station dependent.

Return Value Type Range Description

iError short 1 Error flag

1 iError = O for success. Nonzero is an error number

(see KamMiscGetErrorMsg).

KamCabGetCabAddr takes a decoder object ID and a pointer
to a cab address as parameters. It set the memory

pointed to by piCabAddress to the address of the cab
attached to the specified decoder.

OKamCabPutAddrToCab
Parameter List Type Range Direction Description
IDecoderObjectID long 1 In Decoder object ID

37

-continued

US 6,494,408 B2

38

-continued

Table of contents

Table of contents

iCabAddress int 1-65535 2 In Cab address
1 Opaque object ID handle returned by
KamDecoderPutAdd.

2 Maximum value is command station dependent.
Return Value Type Range Description
iError short 1 Error flag
1 iError = O for success. Nonzero is an error number
(see KamMiscGetErrorMsg).
KamCabPutAddrToCab takes a decoder object ID and cab
address as parameters. It attaches the decoder specified
by IDCCAddr to the cab specified by iCabAddress.
A. Miscellaneous Commands

This section describes miscellaneous commands
that do not fit into the other categories.

0KamMiscGetErrorMsg

Parameter List Type Range Direction Description
iError int 0-65535 1 In Error flag

1 iError = 0 for success. Nonzero indicates an error.
Return Value — Type Range Description
bsErrorString BSTR 1 Error string

1 Exact return type depends on language. It is

Cstring for C++. Empty string on error.
KamMiscGetErrorMsg takes an error flag as a parameter.
It returns a BSTR containing the descriptive error
message associated with the specified error flag.
0KamMiscGetClockTime

Parameter List Type Range Direction Description
iLogicalPortID int 1-65535 1 In Logical port ID
iSelectTimeMode int 2 In Clock source
piDay int * 0-6 Out Day of week

piHours int * 023 Out Hours

piMinutes int * 0-59 Out Minutes

piRatio int * 3 Out Fast clock ratio

1 Maximum value for this server given by
KamPortGetMaxLogPorts.

2 0 - Load from command station and sync server.

1 - Load direct from server. 2 - Load from cached server
copy of command station time.

3 Real time clock ratio.

Return Value Type Range
iError short 1 Error flag
1 iError = O for success. Nonzero is an error number

(see KamMiscGetErrorMsg).

KamMiscGetClockTime takes the port ID, the time mode, and
pointers to locations to store the day, hours, minutes,

and fast clock ratio as parameters. It sets the memory

pointed to by piDay to the fast clock day, sets pointed

to by piHours to the fast clock hours, sets the memory
pointed to by piMinutes to the fast clock minutes, and

the memory pointed to by piRatio to the fast clock ratio.

The servers local time will be returned if the command
station does not support a fast clock.

Description

0KamMiscPutClockTime

Parameter List Type Range Direction Description
iLogicalPortID int 1-65535 1 In Logical port ID
iDay int 0-6 In Day of week

iHours int 0-23In Hours

iMinutes int 0-59 In Minutes

iRatio int 2 In Fast clock ratio

1 Maximum value for this server given by
KamPortGetMaxLogPorts. 2 Real time clock ratio.
Return Value Type Range Description
iError short 1 Error flag

1 iError = 0 for success. Nonzero is an error number
(see KamMiscGetErrorMsg).

KamMiscPutClockTime takes the fast clock logical port,
the fast clock day, the fast clock hours, the fast clock
minutes, and the fast clock ratio as parameters. It sets
the fast clock using specified parameters.
0KamMiscGetInterface Version

Parameter List Type ~ Range Direction
pbsInterfaceVersion BSTR * 1 Out

Description
Pointer to interface
version string

1 Exact return type.depends on language. It is

Cstring * for C++. Empty string on error.
Return Value Type Range

iError short 1 Error flag

Description

5

10

15

20

25

30

35

40

45

50

55

60

65

1 iError = O for success. Nonzero is an error number
(see KamMiscGetErrorMsg).
KamMiscGetInterface Version takes a pointer to an
interface version string as a parameter. It sets the

memory pointed to by pbsInterface Version to the interface
version string. The version string may contain multiple
lines depending on the number of interfaces supported.
OKamMiscSaveData

Parameter List Type Range Direction Description
NONE

Return Value Type Range Description
iError short 1 Error flag

1 iError = O for success. Nonzero is an error number
(see KamMiscGetErrorMsg).

KamMiscSaveData takes no parameters. It saves all server
data to permanent storage. This command is run
automatically whenever the server stops running. Demo
versions of the program cannot save data and this command
will return an error in that case.
OKamMiscGetControllerName

Parameter List Type Range Direction Description
iControllerID int 1-65535 1 In Command station
type ID
pbsName BSTR * 2 Out Command station type
name

1 See Figure 6: Controller ID to controller name
mapping for values. Maximum value for this server is
given by KamMiscMaxControllerID.

2 Exact return type depends on language. It is

Cstring * for C++. Empty string on error.

Return Value Type Range Description
bsName BSTR 1 Command station type name

Return Value Type Range Description
iError short 1 Error flag

1 iError = O for success. Nonzero is an error number
(see KamMiscGetErrorMsg).
KamMiscGetControllerName takes a command station type ID
and a pointer to a type name string as parameters. It

sets the memory pointed to by pbsName to the command
station type name.

OKamMiscGetControllerNameAtPort

Parameter List Type Range Direction Description

iLogicalPortID int 1-65535 1 In Logical port ID

pbsName BSTR * 2 Out Command station type
name

1 Maximum value for this server given by

KamPortGetMaxLogPorts.

2 Exact return type depends on language. It is
Cstring * for C++. Empty string on error.
Return Value Type Range

iError short 1 Error flag

1 iError = O for success. Nonzero is an error number
(see KamMiscGetErrorMsg).

KamMiscGetControllerName takes a logical port ID and a
pointer to a command station type name as parameters. It
sets the memory pointed to by pbsName to the command
station type name for that logical port.
OKamMiscGetCommandStation Value

Description

Parameter List Type Range Direction Description
iControllerID int 1-65535 1 In Command station
type ID
iLogicalPortID int 1-65535 2 In Logical port ID
ilndex int 3 In Command station array index
piValue int * 0 - 65535 Out Command station value

1 See Figure 6: Controller ID to controller name
mapping for values. Maximum value for this server is
given by KamMiscMaxControllerID.

2 Maximum value for this server given by
KamPortGetMaxLogPorts.

3 0 to KamMiscGetCommandStationIndex

Return Value Type Range Description
iError short 1 Error flag

1 iError = O for success. Nonzero is an error number
(see KamMiscGetErrorMsg).
KamMiscGetCommandStationValue takes the controller ID,
logical port, value array index, and a pointer to the
location to store the selected value. It sets the memory

US 6,494,408 B2

39

-continued

40

-continued

Table of contents

Table of contents

pointed to by piValue to the specified command station
miscellaneous data value.
0KamMiscSetCommandStationValue
Parameter List Type Range Direction Description
iControllerID int 1-65535 1 In Command station
type ID
iLogicalPortID int 1-65535 2 In Logical port ID
ilndex int 3 In Command station array index
iValue int 0 - 65535 In Command station value
1 See Figure 6: Controller ID to controller name
mapping for values. Maximum value for this server is
given by KamMiscMaxControllerID.
2 Maximum value for this server given by
KamPortGetMaxLogPorts. 3 0 to
KamMiscGetCommandStationIndex.
Return Value Type Range
iError short 1 Error flag
1 iError = O for success. Nonzero is an error number
(see KamMiscGetErrorMsg).
KamMiscSetCommandStation Value takes the controller ID,
logical port, value array index, and new miscellaneous
data value. It sets the specified command station data
to the value given by piValue.
0KamMiscGetCommandStationIndex

Description

Parameter List Type Range Direction Description
iControllerID int 1-65535 1 In Command station
type ID

iLogicalPortID int 1-65535 2 In Logical port ID

pilndex int 0-65535 Out Pointer to maximum
index

1 See Figure 6: Controller ID to controller name

mapping for values. Maximum value for this server is

given by KamMiscMaxControllerID.

2 Maximum value for this server given by

KamPortGetMaxLogPorts.

Return Value Type Range

iError short 1 Error flag

1 iError = 0 for success. Nonzero is an error number

(see KamMiscGetErrorMsg).

KamMiscGetCommandStationIndex takes the controller ID,

logical port, and a pointer to the location to store the

maximum index. It sets the memory pointed to by pilndex

to the specified command station maximum miscellaneous

data index.

0KamMiscMaxControllerID

Parameter List Type Range

piMaxControllerID int *

Description

Direction Description

1-655351 Out Maximum
controller type ID

1 See Figure 6: Controller ID to controller name

mapping for a list of controller ID values. O returned

on error.

Return Value Type Range

iError short 1 Error flag

1 iError = 0 for success. Nonzero is an error number

(see KamMiscGetErrorMsg).

1 iError = 0 for success. Nonzero is an error number

(see KamMiscGetErrorMsg).

KamMiscMaxControllerID takes a pointer to the maximum

controller ID as a parameter. It sets the memory pointed

to by piMaxControllerID to the maximum controller type

ID.

0KamMiscGetControllerFacility

Description

Parameter List Type Range Direction Description

iControllerID int 1-65535 1 In Command station
type ID

pdwFacility long * 2 Out Pointer to command

station facility mask

1 See Figure 6: Controller ID to controller name
mapping for values. Maximum value for this server is
given by KamMiscMaxControllerID.
2 0 - CMDSDTA__ PRGMODE__ADDR

1- CMDSDTA_PRGMODE_REG

2 - CMDSDTA__ PRGMODE__ PAGE

3 - CMDSDTA_PRGMODE_ DIR

4 - CMDSDTA__PRGMODE_ FLYSHT

5 - CMDSDTA__PRGMODE_ FLYLNG

6 - Reserved

10

15

20

25

30

35

40

45

50

55

60

65

7 - Reserved
8 - Reserved
9 - Reserved
10 - CMDSDTA_SUPPORT_CONSIST
11 - CMDSDTA_SUPPORT_LONG
12 - CMDSDTA_SUPPORT__FEED
13 - CMDSDTA_SUPPORT_2TRK
14 - CMDSDTA_PROGRAM_TRACK
15 - CMDSDTA_PROGMAIN__POFF
16 - CMDSDTA_FEDMODE__ ADDR
17 - CMDSDTA_FEDMODE_ REG
18 - CMDSDTA__FEDMODE_ PAGE
19 - CMDSDTA_FEDMODE_ DIR
20 - CMDSDTA_FEDMODE_ FLYSHT
21 - CMDSDTA_FEDMODE_ FLYLNG
30 - Reserved
31 - CMDSDTA_SUPPORT__ FASTCLK
Return Value Type Range Description
iError short 1 Error flag
1 iError = O for success. Nonzero is an error number
(see KamMiscGetErrorMsg).
KamMiscGetControllerFacility takes the controller ID and
a pointer to the location to store the selected
controller facility mask. It sets the memory pointed to
by pdwFacility to the specified command station facility
mask.

The digital command stations 18 program the digital
devices, such as a locomotive and switches, of the railroad
layout. For example, a locomotive may include several
different registers that control the horn, how the light blinks,
speed curves for operation, etc. In many such locomotives
there are 106 or more programable values. Unfortunately, it
may take 1-10 seconds per byte wide word if a valid register
or control variable (generally referred to collectively as
registers) and two to four minutes to error out if an invalid
register to program such a locomotive or device, either of
which may contain a decoder. With a large number of byte
wide words in a locomotive its takes considerable time to
fully program the locomotive. Further, with a railroad layout
including many such locomotives and other programmable
devices, it takes a substantial amount of time to completely
program all the devices of the model railroad layout. During
the programming of the railroad layout, the operator is
sitting there not enjoying the operation of the railroad layout,
is frustrated, loses operating enjoyment, and will not desire
to use digital programmable devices. In addition, to repro-
gram the railroad layout the operator must reprogram all of
the devices of the entire railroad layout which takes sub-
stantial time. Similarly, to determine the state of all the
devices of the railroad layout the operator must read the
registers of each device likewise taking substantial time.
Moreover, to reprogram merely a few bytes of a particular
device requires the operator to previously know the state of
the registers of the device which is obtainable by reading the
registers of the device taking substantial time, thereby still
frustrating the operator.

The present inventor came to the realization that for the
operation of a model railroad the anticipated state of the
individual devices of the railroad, as programmed, should be
maintained during the use of the model railroad and between
different uses of the model railroad. By maintaining data
representative of the current state of the device registers of
the model railroad determinations may be made to efficiently
program the devices. When the user designates a command
to be executed by one or more of the digital command
stations 18, the software may determine which commands
need to be sent to one or more of the digital command

US 6,494,408 B2

41

stations 18 of the model railroad. By only updating those
registers of particular devices that are necessary to imple-
ment the commands of a particular user, the time necessary
to program the railroad layout is substantially reduced. For
example, if the command would duplicate the current state
of the device then no command needs to be forwarded to the
digital command stations 18. This prevents redundantly
programming the devices of the model railroad, thereby
freeing up the operation of the model railroad for other
activities.

Unlike a single-user single-railroad environment, the sys-
tem of the present invention may encounter “conflicting”
commands that attempt to write to and read from the devices
of the model railroad. For example, the “conflicting” com-
mands may inadvertently program the same device in an
inappropriate manner, such as the locomotive to speed up to
maximum and the locomotive to stop. In addition, a user that
desires to read the status of the entire model railroad layout
will monopolize the digital decoders and command stations
for a substantial time, such as up to two hours, thereby
preventing the enjoyment of the model railroad for the other
users. Also, a user that programs an extensive number of
devices will likewise monopolize the digital decoders and
command stations for a substantial time thereby preventing
the enjoyment of the model railroad for other users.

In order to implement a networked selective updating
technique the present inventor determined that it is desirable
to implement both a write cache and a read cache. The write
cache contains those commands yet to be programmed by
the digital command stations 18. Valid commands from each
user are passed to a queue in the write cache. In the event of
multiple commands from multiple users (depending on user
permissions and security) or the same user for the same
event or action, the write cache will concatenate the two
commands into a single command to be programmed by the
digital command stations 18. In the event of multiple com-
mands from multiple users or the same user for different
events or actions, the write cache will concatenate the two
commands into a single command to be programmed by the
digital command stations 18. The write cache may forward
either of the commands, such as the last received command,
to the digital command station. The users are updated with
the actual command programmed by the digital command
station, as necessary.

The read cache contains the state of the different devices
of the model railroad. After a command has been written to
a digital device and properly acknowledged, if necessary, the
read cache is updated with the current state of the model
railroad. In addition, the read cache is updated with the state
of the model railroad when the registers of the devices of the
model railroad are read. Prior to sending the commands to
be executed by the digital command stations 18 the data in
the write cache is compared against the data in the read
cache. In the event that the data in the read cache indicates
that the data in the write cache does not need to be
programmed, the command is discarded. In contrast, if the
data in the read cache indicates that the data in the write
cache needs to be programmed, then the command is pro-
grammed by the digital command station. After program-
ming the command by the digital command station the read
cache is updated to reflect the change in the model railroad.
As becomes apparent, the use of a write cache and a read
cache permits a decrease in the number of registers that need
to be programmed, thus speeding up the apparent operation
of the model railroad to the operator.

The present inventor further determined that errors in the
processing of the commands by the railroad and the initial

10

15

20

25

30

35

40

45

50

55

60

65

42

unknown state of the model railroad should be taken into
account for a robust system. In the event that an error is
received in response to an attempt to program (or read) a
device, then the state of the relevant data of the read cache
is marked as unknown. The unknown state merely indicates
that the state of the register has some ambiguity associated
therewith. The unknown state may be removed by reading
the current state of the relevant device or the data rewritten
to the model railroad without an error occurring. In addition,
if an error is received in response to an attempt to program
(or read) a device, then the command may be re-transmitted
to the digital command station in an attempt to program the
device properly. If desirable, multiple commands may be
automatically provided to the digital command stations to
increase the likelihood of programming the appropriate
registers. In addition, the initial state of a register is likewise
marked with an unknown state until data becomes available
regarding its state.

When sending the commands to be executed by the digital
command stations 18 they are preferably first checked
against the read cache, as previously mentioned. In the event
that the read cache indicates that the state is unknown, such
as upon initialization or an error, then the command should
be sent to the digital command station because the state is
not known. In this manner the state will at least become
known, even if the data in the registers is not actually
changed.

The present inventor further determined a particular set of
data that is useful for a complete representation of the state
of the registers of the devices of the model railroad.

An invalid representation of a register indicates that the
particular register is not valid for both a read and a
write operation. This permits the system to avoid
attempting to read from and write to particular registers
of the model railroad. This avoids the exceptionally
long error out when attempting to access invalid reg-
isters.

An in use representation of a register indicates that the
particular register is valid for both a read and a write
operation. This permits the system to read from and
write to particular registers of the model railroad. This
assists in accessing valid registers where the response
time is relatively fast.

A read error (unknown state) representation of a register
indicates that each time an attempt to read a particular
register results in an error.

A read dirty representation of a register indicates that the
data in the read cache has not been validated by reading
its valid from the decoder. If both the read error and the
read dirty representations are clear then a valid read
from the read cache may be performed. A read dirty
representation may be cleared by a successful write
operation, if desired.

A read only representation indicates that the register may
not be written to. If this flag is set then a write error may
not occur.

A write error (unknown state) representation of a register
indicates that each time an attempt to write to a
particular register results in an error.

A write dirty representation of a register indicates that the
data in the write cache has not been written to the
decoder yet. For example, when programming the
decoders the system programs the data indicated by the
write dirty. If both the write error and the write dirty
representations are clear then the state is represented by
the write cache. This assists in keeping track of the
programming without excess overhead.

US 6,494,408 B2

43

Awrite only representation indicates that the register may
not be read from. If this flag is set then a read error may
not occur.

Over time the system constructs a set of representations of
the model railroad devices and the model railroad itself
indicating the invalid registers, read errors, and write errors
which may increases the efficiently of programing and
changing the states of the model railroad. This permits the
system to avoid accessing particular registers where the
result will likely be an error.

The present inventor came to the realization that the valid
registers of particular devices is the same for the same
device of the same or different model railroads. Further, the
present inventor came to the realization that a template may
be developed for each particular device that may be applied
to the representations of the data to predetermine the valid
registers. In addition, the template may also be used to set
the read error and write error, if desired. The template may
include any one or more of the following representations,
such as invalid, in use, read error, write only, read dirty, read
only, write error, and write dirty for the possible registers of
the device. The predetermination of the state of each register
of a particular device avoids the time consuming activity of
receiving a significant number of errors and thus construct-
ing the caches. It is to be noted that the actual read and write
cache may be any suitable type of data structure.

Many model railroad systems include computer interfaces
to attempt to mimic or otherwise emulate the operation of
actual full-scale railroads. FIG. 4 illustrates the organization
of train dispatching by “timetable and train order” (T&TO)
techniques. Many of the rules governing T&TO operation
are related to the superiority of trains which principally is
which train will take siding at the meeting point. Any
misinterpretation of these rules can be the source of either
hazard or delay. For example, misinterpreting the rules may
result in one train colliding with another train.

For trains following each other, T&TO operation must
rely upon time spacing and flag protection to keep each train
a sufficient distance apart. For example, a train may not
leave a station less than five minutes after the preceding train
has departed. Unfortunately, there is no assurance that such
spacing will be retained as the trains move along the line, so
the flagman (rear brakeman) of a train slowing down or
stopping will light and throw off a five-minute red flare
which may not be passed by the next train while lit. If a train
has to stop, a flagman trots back along the line with a red flag
or lantern a sufficient distance to protect the train, and
remains there until the train is ready to move at which time
he is called back to the train. A flare and two track torpedoes
provide protection as the flagman scrambles back and the
train resumes speed. While this type of system works, it
depends upon a series of human activities.

It is perfectly possible to operate a railroad safely without
signals. The purpose of signal systems is not so much to
increase safety as it is to step up the efficiency and capacity
of the line in handling traffic. Nevertheless, it’s convenient
to discuss signal system principals in terms of three types of
collisions that signals are designed to prevent, namely,
rear-end, side-on, and head-on.

Block signal systems prevent a train from ramming the
train ahead of it by dividing the main line into segments,
otherwise known as blocks, and allowing only one train in
a block at a time, with block signals indicating whether or
not the block ahead is occupied. In many blocks, the signals
are set by a human operator. Before clearing the signal, he
must verify that any train which has previously entered the
block is now clear of it, a written record is kept of the status

10

15

20

25

30

35

40

45

50

55

60

65

44

of each block, and a prescribed procedure is used in com-
municating with the next operator. The degree to which a
block frees up operation depends on whether distant signals
(as shown in FIG. 5) are provided and on the spacing of open
stations, those in which an operator is on duty. If as is usually
the case it is many miles to the next block station and thus
trains must be equally spaced. Nevertheless, manual block
does afford a high degree of safety.

The block signaling which does the most for increasing
line capacity is automatic block signals (ABS), in which the
signals are controlled by the trains themselves. The presence
or absence of a train is determined by a track circuit.
Invented by Dr. William Robinson in 1872, the track cir-
cuit’s key feature is that it is fail-safe. As can be seen in FIG.
6, if the battery or any wire connection fails, or a rail is
broken, the relay can’t pick up, and a clear signal will not be
displayed.

The track circuit is also an example of what is designated
in railway signaling practice as a vital circuit, one which can
give an unsafe indication if some of its components mal-
function in certain ways. The track circuit is fail-safe, but it
could still give a false clear indication should its relay stick
in the closed or picked-up position. Vital circuit relays,
therefore, are built to very stringent standards: they are large
devices; rely on gravity (no springs) to drop their armature;
and use special non-loading contacts which will not stick
together if hit by a large surge of current (such as nearby
lightning).

Getting a track circuit to be absolutely reliable is not a
simple matter. The electrical leakage between the rails is
considerable, and varies greatly with the seasons of the year
and the weather. The joints and bolted-rail track are
by-passed with bond wire to assure low resistance at all
times, but the total resistance still varies. It is lower, for
example, when cold weather shrinks the rails and they pull
tightly on the track bolts or when hot weather expands to
force the ends tightly together. Battery voltage is typically
limited to one or two volts, requiring a fairly sensitive relay.
Despite this, the direct current track circuit can be adjusted
to do an excellent job and false-clears are extremely rare.
The principal improvement in the basic circuit has been to
use slowly-pulsed DC so that the relay drops out and must
be picked up again continually when a block is unoccupied.
This allows the use of a more sensitive relay which will
detect a train, but additionally work in track circuits twice as
long before leakage between the rails begins to threaten
reliable relay operation. Referring to FIGS. 7A and 7B, the
situations determining the minimum block length for the
standard two-block, three-indication ABS system. Since the
train may stop with its rear car just inside the rear boundary
of a block, a following train will first receive warning just
one block-length away. No allowance may be made for how
far the signal indication may be seen by the engineer. Swivel
block must be as long as the longest stopping distance for
any train on the route, traveling at its maximum authorized
speed.

From this standpoint, it is important to allow trains to
move along without receiving any approach indications
which will force them to slow down. This requires a train
spacing of two block lengths, twice the stopping distance,
since the signal can’t clear until the train ahead is completely
out of the second block. When fully loaded trains running at
high speeds, with their stopping distances, block lengths
must be long, and it is not possible to get enough trains over
the line to produce appropriate revenue.

The three-block, four-indication signaling shown in FIG.
7 reduces the excess train spacing by 50% with warning two

US 6,494,408 B2

45

blocks to the rear and signal spacing need be only % the
braking distance. In particularly congested areas such as
downgrades where stopping distances are long and trains are
likely to bunch up, four-block, four-indication signaling may
be provided and advanced approach, approach medium,
approach and stop indications give a minimum of three-
block warning, allowing further block-shortening and keeps
things moving.

FIG. 8 uses aspects of upper quadrant semaphores to
illustrate block signaling. These signals use the blade rising
90 degrees to give the clear indication.

Some of the systems that are currently developed by
different railroads are shown in FIG. 8. With the general
rules discussed below, a railroad is free to establish the
simplest and most easily maintained system of aspects and
indications that will keep traffic moving safely and meet any
special requirements due to geography, traffic pattern, or
equipment. Aspects such as flashing yellow for approach
medium, for example, may be used to provide an extra
indication without an extra signal head. This is safe because
a stuck flasher will result in either a steady yellow approach
or a more restrictive light-out aspect. In addition, there are
provisions for interlocking so the trains may branch from
one track to another.

To take care of junctions where trains are diverted from
one route to another, the signals must control train speed.
The train traveling straight through must be able to travel at
full speed. Diverging routes will require some limit, depend-
ing on the turnout members and the track curvature, and the
signals must control train speed to match. One approach is
to have signals indicate which route has been set up and
cleared for the train. In the American approach of speed
signaling, in which the signal indicates not where the train
is going but rather what speed is allowed through the
interlocking. If this is less than normal speed, distant signals
must also give warning so the train can be brought down to
the speed in time. FIGS. 9A and 9B show typical signal
aspects and indications as they would appear to an engineer.
Once a route is established and the signal cleared, route
locking is used to insure that nothing can be changed to
reduce the route’s speed capability from the time the train
approaching it is admitted to enter until it has cleared the last
switch. Additional refinements to the basic system to speed
up handling trains in rapid sequence include sectional route
locking which unlocks portions of the route as soon as the
train has cleared so that other routes can be set up promptly.
Interlocking signals also function as block signals to provide
rear-end protection. In addition, at isolated crossings at
grade, an automatic interlocking can respond to the
approach of a train by clearing the route if there are no
opposing movements cleared or in progress. Automatic
interlocking returns everything to stop after the train has
passed. As can be observed, the movement of multiple trains
among the track potentially involves a series of intercon-
nected activities and decisions which must be performed by
a controller, such as a dispatcher. In essence, for a railroad
the dispatcher controls the operation of the trains and
permissions may be set by computer control, thereby con-
trolling the railroad. Unfortunately, if the dispatcher fails to
obey the rules as put in place, traffic collisions may occur.

In the context of a model railroad the controller is
operating a model railroad layout including an extensive
amount of track, several locomotives (trains), and additional
functionality such as switches. The movement of different
objects, such as locomotives and entire trains, may be
monitored by a set of sensors. The operator issues control
commands from his computer console, such as in the form

10

15

20

25

30

35

40

45

50

55

60

65

46

of permissions and class warrants for the time and track
used. In the existing monolithic computer systems for model
railroads a single operator from a single terminal may
control the system effectively. Unfortunately, the present
inventor has observed that in a multi-user environment
where several clients are attempting to simultaneously con-
trol the same model railroad layout using their terminals,
collisions periodically nevertheless occur. In addition, sig-
nificant delay is observed between the issuance of a com-
mand and its eventual execution. The present inventor has
determined that unlike full scale railroads where the track is
controlled by a single dispatcher, the use of multiple dis-
patchers each having a different dispatcher console may
result in conflicting information being sent to the railroad
layout. In essence, the system is designed as a computer
control system to implement commands but in no manner
can the dispatcher consoles control the actions of users. For
example, a user input may command that an event occur
resulting in a crash. In addition, a user may override the
block permissions or class warrants for the time and track
used thereby causing a collision. In addition, two users may
inadvertently send conflicting commands to the same or
different trains thereby causing a collision. In such a system,
each user is not aware of the intent and actions of other users
aside from any feedback that may be displayed on their
terminal. Unfortunately, the feedback to their dispatcher
console may be delayed as the execution of commands
issued by one or more users may take several seconds to
several minutes to be executed.

One potential solution to the dilemma of managing sev-
eral users’ attempt to simultaneously control a single model
railroad layout is to develop a software program that is
operating on the server which observes what is occurring. In
the event that the software program determines that a
collision is imminent, a stop command is issued to the train
overriding all other commands to avoid such a collision.
However, once the collision is avoided the user may, if
desired, override such a command thereby restarting the
train and causing a collision. Accordingly, a software pro-
gram that merely oversees the operation of track apart from
the validation of commands to avoid imminent collisions is
not a suitable solution for operating a model railroad in a
multi-user distributed environment. The present inventor
determined that prior validation is important because of the
delay in executing commands on the model railroad and the
potential for conflicting commands. In addition, a hardware
throttle directly connected to the model railroad layout may
override all such computer based commands thereby result-
ing in the collision. Also, this implementation provides a
suitable security model to use for validation of user actions.

Referring to FIG. 10, the client program 14 preferably
includes a control panel 300 which provides a graphical
interface (such as a personal computer with software thereon
or a dedicated hardware source) for computerized control of
the model railroad 302. The graphical interface may take the
form of those illustrated in FIGS. 5-9, or any other suitable
command interface to provide control commands to the
model railroad 302. Commands are issued by the client
program 14 to the controlling interface using the control
panel 300. The commands are received from the different
client programs 14 by the controlling interface 16. The
commands control the operation of the model railroad 302,
such as switches, direction, and locomotive throttle. Of
particular importance is the throttle which is a state which
persists for an indefinite period of time, potentially resulting
in collisions if not accurately monitored. The controlling
interface 16 accepts all of the commands and provides an

US 6,494,408 B2

47

acknowledgment to free up the communications transport
for subsequent commands. The acknowledgment may take
the form of a response indicating that the command was
executed thereby updating the control panel 300. The
response may be subject to updating if more data becomes
available indicating the previous response is incorrect. In
fact, the command may have yet to be executed or verified
by the controlling interface 16. After a command is received
by the controlling interface 16, the controlling interface 16
passes the command (in a modified manner, if desired) to a
dispatcher controller 310. The dispatcher controller 310
includes a rule-based processor together with the layout of
the railroad 302 and the status of objects thereon. The
objects may include properties such as speed, location,
direction, length of the train, etc. The dispatcher controller
310 processes each received command to determine if the
execution of such a command would violate any of the rules
together with the layout and status of objects thereon. If the
command received is within the rules, then the command
may be passed to the model railroad 302 for execution. If the
received command violates the rules, then the command
may be rejected and an appropriate response is provided to
update the clients display. If desired, the invalid command
may be modified in a suitable manner and still be provided
to the model railroad 302. In addition, if the dispatcher
controller 310 determines that an event should occur, such as
stopping a model locomotive, it may issue the command and
update the control panels 300 accordingly. If necessary, an
update command is provided to the client program 14 to
show the update that occurred.

The “asynchronous” receipt of commands together with a
“synchronous” manner of validation and execution of com-
mands from the multiple control panels 300 permits a
simplified dispatcher controller 310 to be used together with
a minimization of computer resources, such as com ports. In
essence, commands are managed independently from the
client program 14. Likewise, a centralized dispatcher con-
troller 310 working in an “off-line” mode increases the
likelihood that a series of commands that are executed will
not be conflicting resulting in an error. This permits multiple
model railroad enthusiasts to control the same model rail-
road in a safe and efficient manner. Such concerns regarding
the interrelationships between multiple dispatchers does not
occur in a dedicated non-distributed environment. When the
command is received or validated all of the control panels
300 of the client programs 14 may likewise be updated to
reflect the change. Alternatively, the controlling interface 16
may accept the command, validate it quickly by the dis-
patcher controller, and provide an acknowledgment to the
client program 14. In this manner, the client program 14 will
not require updating if the command is not valid. In a
likewise manner, when a command is valid the control panel
300 of all client programs 14 should be updated to show the
status of the model railroad 302.

A manual throttle 320 may likewise provide control over
devices, such as the locomotive, on the model railroad 302.
The commands issued by the manual throttle 320 may be
passed first to the dispatcher controller 310 for validation in
a similar manner to that of the client programs 14.
Alternatively, commands from the manual throttle 320 may
be directly passed to the model railroad 302 without first
being validated by the dispatcher controller 302. After
execution of commands by the external devices 18, a
response will be provided to the controlling interface 16
which in response may check the suitability of the
command, if desired. If the command violates the layout
rules then a suitable correctional command is issued to the

10

15

20

25

30

35

40

45

50

55

60

65

48

model railroad 302. If the command is valid then no cor-
rectional command is necessary. In either case, the status of
the model railroad 302 is passed to the client programs 14
(control panels 300).

As it can be observed, the event driven dispatcher con-
troller 310 maintains the current status of the model railroad
302 so that accurate validation may be performed to mini-
mize conflicting and potentially damaging commands.
Depending on the particular implementation, the control
panel 300 is updated in a suitable manner, but in most cases,
the communication transport 12 is freed up prior to execu-
tion of the command by the model railroad 302.

The computer dispatcher may also be distributed across
the network, if desired. In addition, the computer architec-
ture described herein supports different computer interfaces
at the client program 14.

The present inventor has observed that periodically the
commands in the queue to the digital command stations or
the buffer of the digital command station overflow resulting
in a system crash or loss of data. In some cases, the queue
fills up with commands and then no additional commands
may be accepted. After further consideration of the slow
real-time manner of operation of digital command stations,
the apparent solution is to incorporate a buffer model in the
interface 16 to provide commands to the digital command
station at a rate no faster than the ability of the digital
command station to execute the commands together with an
exceptionally large computer buffer. For example, the com-
mand may take 5 ms to be transmitted from the interface 16
to the command station, 100 ms for processing by the
command station, 3 ms to transfer to the digital device, such
as a model train. The digital device may take 10 ms to
execute the command, for example, and another 20 ms to
transmit back to the digital command station which may
again take 100 ms to process, and 5 ms to send the processed
result to interface 16. In total, the delay may be on the order
of 243 ms which is extremely long in comparison to the
ability of the interface 16 to receive commands and transmit
commands to the digital command station. After consider-
ation of the timing issues and the potential solution of simply
slowing down the transmission of commands to the digital
command station and incorporating a large buffer, the
present inventor came to the realization that a queue man-
agement system should be incorporated within the interface
16 to facilitate apparent increased responsiveness of the
digital command station to the user. The particular imple-
mentation of a command queue is based on a further
realization that many of the commands to operate a model
railroad are “lossy” in nature which is highly unusual for a
computer based queue system. In other words, if some of the
commands in the command queue are never actually
executed, are deleted from the command queue, or otherwise
simply changed, the operation of the model railroad still
functions properly. Normally a queuing system inherently
requires that all commands are executed in some manner at
some point in time, even if somewhat delayed.

Initially the present inventor came to the realization that
when multiple users are attempting to control the same
model railroad, each of them may provide the same com-
mand to the model railroad. In this event, the digital com-
mand station would receive both commands from the inter-
face 16, process both commands, transmit both commands
to the model railroad, receive both responses therefrom
(typically), and provide two acknowledgments to the inter-
face 16. In a system where the execution of commands
occurs nearly instantaneously the re-execution of commands
does not pose a significant problem and may be beneficial

US 6,494,408 B2

49

for ensuring that each user has the appropriate commands
executed in the order requested. However, in the real-time
environment of a model railroad all of this activity requires
substantial time to complete thereby slowing down the
responsiveness of the system. Commands tend to build up
waiting for execution which decreases the user perceived
responsiveness of control of the model railroad. The user
perceiving no response continues to request commands be
placed in the queue thereby exacerbating the perceived
responsiveness problem. The responsiveness problem is
more apparent as processor speeds of the client computer
increase. Since there is but a single model railroad, the
apparent speed with which commands are executed is
important for user satisfaction.

Initially, the present inventor determined that duplicate
commands residing in the command queue of the interface
16 should be removed. Accordingly, if different users issue
the same command to the model railroad then the duplicate
commands are not executed (execute one copy of the
command). In addition, this alleviates the effects of a single
user requesting that the same command is executed multiple
times. The removal of duplicate commands will increase the
apparent responsiveness of the model railroad because the
time required to re-execute a command already executed
will be avoided. In this manner, other commands that will
change the state of the model railroad may be executed in a
more timely manner thereby increasing user satisfaction.
Also, the necessary size of the command queue on the
computer is reduced.

After further consideration of the particular environment
of a model railroad the present inventor also determined that
many command sequences in the command queue result in
no net state change to the model railroad, and thus should
likewise be removed from the command queue. For
example, a command in the command queue to increase the
speed of the locomotive, followed by a command in the
command queue to reduce the speed of the locomotive to the
initial speed results in no net state change to the model
railroad. Any perceived increase and decrease of the loco-
motive would merely be the result of the time differential. It
is to be understood that the comparison may be between any
two or more commands. Another example may include a
command to open a switch followed by a command to close
a switch, which likewise results in no net state change to the
model railroad. Accordingly, it is desirable to eliminate
commands from the command queue resulting in a net total
state change of zero. This results in a reduction in the depth
of the queue by removing elements from the queue thereby
potentially avoiding overflow conditions increasing user
satisfaction and decreasing the probability that the user will
resend the command. This results in better overall system
response.

In addition to simply removing redundant commands
from the command queue, the present inventor further
determined that particular sequences of commands in the
command queue result in a net state change to the model
railroad which may be provided to the digital command
station as a single command. For example, if a command in
the command queue increases the speed of the locomotive
by 5 units, another command in the command queue
decreases the speed of the locomotive by 3 units, the two
commands may be replaced by a single command that
increases the speed of the locomotive by 2 units. In this
manner a reduction in the number of commands in the
command queue is accomplished while at the same time
effectuating the net result of the commands. This results in
a reduction in the depth of the queue by removing elements

10

15

20

25

30

35

40

45

50

55

60

65

50

from the queue thereby potentially avoiding overflow con-
ditions. In addition, this decreases the time required to
actually program the device to the net state thereby increas-
ing user satisfaction.

With the potential of a large number of commands in the
command queue taking several minutes or more to execute,
the present inventor further determined that a priority based
queue system should be implemented. Referring to FIG. 11,
the command queue structure may include a stack of com-
mands to be executed. Each of the commands may include
a type indicator and control information as to what general
type of command they are. For example, an Acommand may
be speed commands, a B command may be switches, a C
command may be lights, a D command may be query status,
etc. As such, the commands may be sorted based on their
type indicator for assisting the determination as to whether
or not any redundancies may be eliminated or otherwise
reduced.

Normally a first-in-first-out command queue provides a
fair technique for the allocation of resources, such as execu-
tion of commands by the digital command station, but the
present inventor determined that for slow-real-time model
railroad devices such a command structure is not the most
desirable. In addition, the present inventor realized that
model railroads execute commands that are (1) not time
sensitive, (2) only somewhat time sensitive, and (3) truly
time sensitive. Non-time sensitive commands are merely
query commands that inquire as to the status of certain
devices. Somewhat time sensitive commands are generally
related to the appearance of devices and do not directly
impact other devices, such as turning on a light. Truly time
sensitive commands need to be executed in a timely fashion,
such as the speed of the locomotive or moving switches.
These truly time sensitive commands directly impact the
perceived performance of the model railroad and therefore
should be done in an out-of-order fashion. In particular,
commands with a type indicative of a level of time sensi-
tiveness may be placed into the queue in a location ahead of
those that have less time sensitiveness. In this manner, the
time sensitive commands may be executed by the digital
command station prior to those that are less time sensitive.
This provides the appearance to the user that the model
railroad is operating more efficiently and responsively.

Another technique that may be used to prioritize the
commands in the command queue is to assign a priority to
each command. As an example, a priority of 0 would be
indicative of “don’t care” with a priority of 255 “do
immediately,” with the intermediate numbers in between
being of numerical-related importance. The command queue
would then place new commands in the command queue in
the order of priority or otherwise provide the next command
to the command station that has the highest priority within
the command queue. In addition, if a particular number such
as 255 is used only for emergency commands that must be
executed next, then the computer may assign that value to
the command so that it is next to be executed by the digital
command station. Such emergency commands may include,
for example, emergency stop and power off. In the event that
the command queue still fills, then the system may remove
commands from the command queue based on its order of
priority, thereby alleviating an overflow condition in a
manner less destructive to the model railroad.

In addition for multiple commands of the same type a
different priority number may be assigned to each, so
therefore when removing or deciding which to execute next,
the priority number of each may be used to further classify
commands within a given type. This provides a convenient
technique of prioritizing commands.

US 6,494,408 B2

51

An additional technique suitable for model railroads in
combination with relatively slow real time devices is that
when the system knows that there is an outstanding valid
request made to the digital command station, then there is no
point in making another request to the digital command
station nor adding another such command to the command
queue. This further removes a particular category of com-
mands from the command queue.

It is to be understood that this queue system may be used
in any system, such as, for example, one local machine
without a network, COM, DCOM, COBRA, internet
protocol, sockets, etc.

The terms and expressions which have been employed in
the foregoing specification are used therein as terms of
description and not of limitation, and there is no intention,
in the use of such terms and expressions, of excluding
equivalents of the features shown and described or portions
thereof, it being recognized that the scope of the invention
is defined and limited only by the claims which follow.

What is claimed is:

1. A method of operating a digitally controlled model
railroad comprising the steps of:

(2) transmitting a first command from a first client pro-

gram to an interface;

(b) transmitting a second command from a second client
program to said interface;

(¢) receiving said first command and said second com-
mand at said interface;

(d) said interface queuing said first and second commands
and deleting one of said first and second commands if
they are the same; and

(e) said interface sending a third command representative
of said one of said first and second commands not
deleted to a digital command station for execution on
said digitally controlled model railroad.

2. The method of claim 1, further comprising the steps of:

(a) providing an acknowledgment to said first client
program in response to receiving said first command by
said interface that said first command was successfully
validated against permissible actions regarding the
interaction between a plurality of objects of said model
railroad prior to validating said first command; and

(b) providing an acknowledgment to said second client
program in response to receiving said second command
by said interface that said second command was suc-
cessfully validated against permissible actions regard-
ing the interaction between a plurality of objects of said
model railroad prior to validating said second com-
mand.

3. The method of claim 1, further comprising the steps of
selectively sending said third command to one of a plurality
of digital command stations.

4. The method of claim 1, further comprising the step of
receiving command station responses representative of the
state of said digitally controlled model railroad from said
digital command station and validating said responses
regarding said interaction.

5. The method of claim 1 wherein said first and second
commands relate to the speed of locomotives.

6. The method of claim 2, further comprising the step of
updating said successful validation to at least one of said first
and second client programs of at least one of said first and
second commands with an indication that at least one of said
first and second commands was unsuccessfully validated.

7. The method of claim 1, further comprising the step of
updating a database of the state of said digitally controlled

10

15

25

30

35

40

45

50

55

60

65

52

model railroad based upon said receiving command station
responses representative of said state of said digitally con-
trolled model railroad.

8. The method of claim 7 wherein said validation is
performed by an event driven dispatcher.

9. The method of claim 7 wherein said one of said first and
second command, and said third command are the same
command.

10. A method of operating a digitally controlled model
railroad comprising the steps of:

(a) transmitting a first command from a first client pro-

gram to an interface;

(b) receiving said first command at said interface;

(¢) queuing said first command in a command queue if
said first command is different than all other commands
in said command queue; and

(d) said interface selectively sending a second command
representative of said first command to one of a plu-
rality of digital command stations based upon informa-
tion contained within at least one of said first and
second commands.

11. The method of claim 10, further comprising the steps

of:

(a) transmitting a third command from a second client
program to said interface through a second communi-
cations transport;

(b) receiving said third command at said interface;

(¢) queuing said third command in a command queue if
said third command is different than all other com-
mands in said command queue; and

(d) said interface selectively sending a fourth command
representative of said third command to one of said
plurality of digital command stations based upon infor-
mation contained within at least one of said third and
fourth commands.

12. The method of claim 10 wherein said first client
program and said interface are operating on the same
computer.

13. The method of claim 11 wherein said first client
program, said second client program, and said interface are
all operating on different computers.

14. The method of claim 10, further comprising the step
of providing an acknowledgment to said first client program
in response to receiving said first command by said interface
prior to validating said first command against permissible
actions.

15. The method of claim 14, further comprising the step
of receiving command station responses from said of digital
command station and validating said responses regarding
said interaction.

16. The method of claim 15, further comprising the step
of comparing said command station responses to previous
commands sent to said digital command station to determine
which said previous commands it corresponds with.

17. The method of claim 14, further comprising the step
of updating validation of said first command based on data
received from said digital command stations.

18. The method of claim 17, further comprising the step
of updating a database of the state of said digitally controlled
model railroad based upon command station responses.

19. The method of claim 18, further comprising the step
of updating said successful validation to said first client
program in response to receiving said first command by said
interface together with state information from said database
related to said first command.

20. The method of claim 10 wherein said interface com-
municates in an asynchronous manner with said first client

US 6,494,408 B2

53

program while communicating in a synchronous manner
with said plurality of digital command stations.

21. A method of operating a digitally controlled model
railroad comprising the steps of:

(2) transmitting a first command from a first client pro-

gram to an interface;

(b) transmitting a second command from a second client

program to said interface;

(c) receiving said first command at said interface;

(d) receiving said second command at said interface;

(e) queuing said first and second commands, and deleting

one of said first and second commands if they are the
same; and

(f) said interface sending a third and fourth command

representative of said first command and said second
command, respectively, to the same digital command
station.

22. The method of claim 21, further comprising the step
of providing an acknowledgment to said first client program
in response to receiving said first command by said interface
that said first command was successfully validated against
permissible actions prior to validating said first command.

23. The method of claim 22, further comprising the step
of receiving command station responses representative of
the state of said digitally controlled model railroad from said
of digital command station.

24. The method of claim 23, further comprising the step
of comparing said command station responses to previous
commands sent to said digital command station to determine
which said previous commands it corresponds with.

25. The method of claim 24, further comprising the step
of updating a database of the state of said digitally controlled
model railroad based upon said receiving command station
responses.

26. The method of claim 25, further comprising the step
of updating said successful validation to said first client
program in response to receiving said first command by said
interface together with state information from said database
related to said first command.

27. A method of operating a digitally controlled model
railroad comprising the steps of:

(2) transmitting a first command from a first client pro-

gram to a first processor;

(b) receiving said first command at said first processor;

(¢) queuing said first command in a command queue that

is not a first-in-first-out command queue; and

(d) said first processor providing an acknowledgment to

said first client program indicating that said first com-
mand has been validated against permissible actions
regarding the interaction between a plurality of objects
of said model railroad and properly executed prior to
execution of commands related to said first command
by said digitally controlled model railroad.

28. A method of operating a digitally controlled model
railroad comprising the steps of:

(2) transmitting a first command from a first client pro-

gram to an interface;

(b) transmitting a second command from a second client

program to said interface;

(¢) receiving said first command and said second com-

mand at said interface;

(d) said interface queuing said first and second com-

mands;

(e) comparing said first and second commands to one

another to determine if the result of executing said first

54

and second commands would result in no net state
change of said model railroad and the execution of one
of said first and second command would result in a net
state change of said model railroad; and

(f) said interface sending third and fourth commands
representative of said first and second commands,
respectively, to a digital command station if as a result
of said comparing a net state change of said model
railroad would result.

29. The method of claim 28, further comprising the steps

of:

(a) providing an acknowledgment to said first client
program in response to receiving said first command by
said interface that said first command was successfully
validated against permissible actions prior to validating

w

10

15 said first command; and
(b) providing an acknowledgment to said second client
program in response to receiving said second command
by said interface that said second command was suc-
20 cessfully validated against permissible actions prior to

validating said second command.

30. A method of operating a digitally controlled model

railroad comprising the steps of:

(a) transmitting a first command from a first client pro-
gram to an interface;

(b) receiving said first command at said interface;

(¢) comparing said first command against other com-
mands in a command queue to determine if the result of
executing said first command and said other commands
would result in no net state change of said model
railroad; and

(d) said interface selectively sending a second command
representative of said first command to one of a plu-
rality of digital command stations based upon informa-
tion contained within at least one of said first and
second commands.

31. A method of operating a digitally controlled model

railroad comprising the steps of:

(a) transmitting a first command from a first client pro-
gram to an interface;

(b) transmitting a second command from a second client
program to said interface;

(c) receiving said first command at said interface;

(d) receiving said second command at said interface;

(e) comparing said first and second commands to one
another to determine if the result of executing said first
and second commands would result in no net state
change of said model railroad; and

(f) said interface sending a third and fourth command
representative of said first command and said second
command, respectively, to the same digital command
station if as a result of said comparing a net state
change of said model railroad would result.

32. A method of operating a digitally controlled model

railroad comprising the steps of:

(a) transmitting a first command from a first client pro-
gram to a first processor;

(b) receiving said first command at said first processor;

(¢) comparing said first command against other com-
mands in a command queue to determine if the result of
executing said first command and at least one of said
other commands would result in no net state change of
said model railroad; and

(d) said first processor providing an acknowledgment to
said first client program indicating that said first com-
mand has been executed.

25

30

35

40

45

60

US 6,494,408 B2

55

33. A method of operating a digitally controlled model

railroad comprising the steps of:

(2) transmitting a first command from a first client pro-
gram to an interface;

(b) transmitting a second command from a second client
program to said interface;

(¢) receiving said first command and said second com-
mand at said interface;

(d) said interface queuing said first and second com-
mands;

(e) comparing said first and second commands to one
another to determine if the result of executing said first
and second commands would result in a net state
change of said model railroad that would also result
from a single different command; and

(f) said interface sending said single different command
representative of the net state change of said first and
second commands to a digital command station.

34. The method of claim 33, further comprising the steps

of:

(a) providing an acknowledgment to said first client
program in response to receiving said first command by
said interface that said first command was successfully
validated against permissible actions prior to validating
said first command; and

(b) providing an acknowledgment to said second client
program in response to receiving said second command
by said interface that said second command was suc-
cessfully validated against permissible actions prior to
validating said second command.

35. A method of operating a digitally controlled model

railroad comprising the steps of:

(2) transmitting a first command from a first client pro-
gram to an interface;

(b) receiving said first command at said interface;

(¢) comparing said first command against other com-
mands in a command queue to determine if the result of
executing said first and second commands would result
in a net state change of said model railroad that would
also result from a single different command; and

(d) said interface selectively sending said single different
command to one of a plurality of digital command
stations.

36. The method of claim 35, further comprising the steps

of:

(2) transmitting a third command from a second client
program to said interface;

(b) receiving said third command at said interface;

(c) validating said third command against permissible
actions; and

(d) said interface selectively sending a fourth command
representative of said third command to one of said
plurality of digital command stations based upon infor-
mation contained within at least one of said third and
fourth commands.

37. A method of operating a digitally controlled model

railroad comprising the steps of:

(2) transmitting a first command from a first client pro-
gram to an interface;

(b) transmitting a second command from a second client
program to said interface;

(c) receiving said first command at said interface;
(d) receiving said second command at said interface;

56

(e) comparing said first and second commands to one
another to determine if the result of executing said first
and second commands would result in a net state
change of said model railroad that would also result

5 from a single different command; and

(f) said interface sending said single different command to
a digital command station if as a result of said com-
paring such a single different command exists.

38. A method of operating a digitally controlled model

10 railroad comprising the steps of:

(a) transmitting a first command from a first client pro-
gram to an interface;

(b) transmitting a second command from a second client
program to said interface;

(¢) receiving said first command and said second com-
mand at said interface;

(d) said interface queuing said first and second com-
mands;

(e) queuing said first and second commands in a com-
mand queue based on a non-first-in-first-out prioritiza-
tion; and

(f) said interface sending third and fourth commands
representative of said first and second commands,
respectively, to a digital command station based upon
said prioritization.

39. The method of claim 38, further comprising the steps

of:

(a) providing an acknowledgment to said first client
program in response to receiving said first command by
said interface that said first command was successfully
validated prior to validating said first command; and

(b) providing an acknowledgment to said second client
program in response to receiving said second command
by said interface that said second command was suc-
cessfully validated prior to validating said second com-
mand.

40. A method of operating a digitally controlled model

railroad comprising the steps of:

(a) transmitting a first command from a first client pro-
gram to an interface;

(b) transmitting a second command from a second client
program to said interface;

(c) receiving said first command at said interface;

(d) receiving said second command at said interface;

(e) queuing said first and second commands in a com-
mand queue based on a non-first-in-first-out prioritiza-
tion; and

(f) said interface sending a third and fourth command
representative of said first command and said second
command, respectively, to the same digital command
station based upon said prioritization.

41. A method of operating a digitally controlled model

railroad comprising the steps of:

(a) transmitting a first command from a first client pro-
gram to a first processor;

(b) receiving said first command at said first processor;

(¢) queuing said first command in a command queue
based on a non-first-in-first-out prioritization; and

(d) said first processor providing an acknowledgment to
said first client program indicating that said first com-
mand has been executed.

42. A method of operating a digitally controlled model

65 railroad comprising the steps of:

(a) transmitting a first command from a first client pro-

gram to an interface;

15

20

30

35

40

45

50

55

US 6,494,408 B2

57

(b) transmitting a second command from a second client
program to said interface;

(¢) receiving said first command and said second com-
mand at said interface;

(d) said interface queuing said first and second com-
mands;

(e) queuing said first and second commands in a com-
mand queue having the characteristic that valid com-
mands in said command queue are removed from said
command queue without being executed by said model
railroad; and

(f) said interface sending third and fourth commands
representative of said first and second commands,
respectively, to a digital command station if not said
removed.

w

10

58
43. A method of operating a digitally controlled model

railroad comprising the steps of:

(a) transmitting a first command from a first client pro-
gram to a first processor;

(b) receiving said first command at said first processor;

(¢) queuing said first command in a command queue
having the characteristic that valid commands in said
command queue are removed from said command
queue without being executed by said model railroad;
and

(d) said first processor providing an acknowledgment to
said first client program indicating that said first com-
mand has been executed if not said removed.

